Oracle® OLAP

User's Guide

11gRelease 1 (11.1)
B28124-02

September 2007

ORACLE

Oracle OLAP User's Guide, 11¢ Release 1 (11.1)
B28124-02
Copyright © 2003, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ... e e e ettt aen iX
AN S Lo 1= V< T SSRRRTT ix
Documentation AcCeSSIDILItYcccciiuiiiiiiiiiiiiiic s iX
ReElated DOCUITIEIESeoviieeiieceeeeeeeeeee ettt et e et e e ae e ete e e aeeeaaeeteeesaeeabeesaeeenseesessnseensessnseenseesneesnees X
(@03 4 T£<3 015 (o) o - IR RRU OO X

What's NeW iN OFacCle OLAP? ...t Xi
Oracle Database 11g Release 11.1 Oracle OLAPccccccoviiiiininiiiiiiiiincans Xi

1 Overview

OLAP Technology in the Oracle Database................cccoooiiiiiiiiiiiiies 1-1
Full Integration of Multidimensional Technologycccccoviiiiiiiiiiiiiicciccccceenes 1-1
Ease of Application Developmentc.cccceucuciiiiueiiiiiiiiiiiiniieccreeee e 1-2
Ease of AdMINIStTatiONccuiiieiiiiieiieeieceeteste ettt ettt e e s teeae e be e e s e s tae s e ssesseeseessessseseessenseeseas 1-2
SECUTILY v s 1-2
Unmatched Performance and Scalability ..o 1-2
REAUCEA COSES ..ottt ettt ettt ettt e vt et e et e saesraesbe e e e beesaessesssesseessansaessenseessasseeseas 1-3

Developing Reports and Dashboards Using SQL Tools and Application Builders................... 1-3

Overview of the Dimensional Data Model..............ccoooiiiieiiieieiieiee e 1-5
CUDES. ...ttt ettt ettt e e et et e et b e beeseesbeesseeseesaesaaesbeseenbeesaenbeessenbeereenreesaenteeraenseenean 1-6
IMLEASULES.......ueeeuieeiieeieeeteee it eeteeeteetteeaeebeessseaseesssaessaasssessssassseesseesssaanssassseasseeassessseesssessseenssesssenseenns 1-6
DINIEINISIONS ...ttt ettt ettt ettt ettt e st estt e e beesbeessbeeabaessbeensaesasessseesssessbeenssenssesnsaesssaenseenns 1-7
Hierarchies and LEeVELScuccuiiiiiiiiiiie ettt ettt rae st eebesbeesb e seesbesaeesaesseennas 1-7

Level-Based HIeTarchi@scvcciieviiiiiieiieiecieeeeeteete ettt ettt e eve e eae et eanens 1-7
Value-Based Hierarchies..........ccccuieuieiiieieriieieiesteieeeeieseete st eveseesseessesesseessesssessesssessessnans 1-8
ATEIIDULES ...ttt ettt et ete et e e ta e beeaa e be e aesbeesa e beesbenbeereenteessebeeraenseeneas 1-8

2 Getting Started with Oracle OLAP

Installing the Sample Schema ... 2-1
Database Management Tasks............ccccccooiniiiiiiiiini e 2-1
Granting Privileges to DBAs and Application Developers.............cccccoevriiniiiniiniiiine, 2-1
Getting Started with Analytic Workspace Manager................cccccoeviiiinniniinniiiies 2-2
Installing Analytic Workspace Managerccccccvvvviniininnnininniissscscesec s 2-2
Opening Analytic Workspace Manager ...t 2-3
Defining a Database CONNeCtioN...........cooiiuriiiiiiicicie e 2-3

Opening a Database CONNeCHiON...........cccoeiiiiiiiiiiiiiiiiii e 2-3
Installing PIUGINS.cucueiiiieiei et 2-4

3 Creating Dimensions and Cubes

Designing a Dimensional Model for Your Data ..o, 3-1
Introduction to Analytic Workspace Manager..............ccccoociiviniiiiiiiiiiiiccccencnes 3-2
Creating a Dimensional Data Store Using Analytic Workspace Manager..............cccccccevurvennnnn. 3-3
Basic Steps for Creating an Analytic Workspace..........cooooeueiiiiiiiiiiccicce, 3-3
Adding Functionality to Dimensional ObJectscccccoceeiuiiuiiiiiieiciceeeeceeeeeeeeienennes 3-4
How Analytic Workspace Manager Saves Changes...........cccccooiiieiiiiiiiiiccecee, 3-4
Creating DImenSioNsS.............cooiiiiiiiiiiiicc s 3-4
Creating LevVelS.......c.coiiiiiiccecee e 3-6
Creating Hierarchies ..o 3-7
Creating AttribULESc.oviiei 3-8
Automatically Defined AttriDULEScccoviiiiiiiiiciccccecccce e 3-8
User-Defined Attributes. ... 3-9

Unique Key AtribUutesccoiiiiiiiiiiii s 3-10
Mapping DIMENSIONScciiiiiiiiiiiiiiiiii s 3-10
Mapping WINAOWcoviiiiiiiiiiiiiiiic s 3-10

Source Data QUETYccouiiiiiiiii s 3-11
Loading Data Into DImMensionsccccvvuiiiiiiniiiiiiiiiccccsssees 3-11
Displaying the Dimension Members............ccooeuoiiirieiiiinieice s 3-12
Displaying the Dimension View Descriptions.........c.ooocueieiiiicieieiiiccieicce e 3-13
Creating Cubes...........ccooiiiiiiii s 3-13
Creating MEASUIESc.coviuiieiiietcie ettt 3-15
MapPPING CUDES ...t 3-15
Choosing a Partitioning Strategycccoiiiiiiiiiiiieciceeeee e seneees 3-16
Choosing a Dimension for Partitioning...........cceeueeirieiiiciiic 3-17
Example of a Partitioned Dimensionccccooiiiiiiiiciiiicc 3-18
Loading Data INt0 @ CUDE........c.c.oiiiiiiiiiiicicccccceeeeee e 3-18
Displaying the Data in a Cube ..., 3-19
Displaying the Cube View Descriptions...........ccccccciiiiiiiiiiiiiiiiiiiiiiicrinnscns 3-20
Choosing a Data Maintenance Method ..., 3-21
Creating and Executing Custom Cube Scripts.........ccouovirieiiiiiciciic e, 3-22
Adding Materialized View Capability to @ Cube.........ccccoeviiiiiiiiiic, 3-23
Defining Measure FOIAers ... 3-25
Using Templates to Re-Create Dimensional Objects..............cccccccovviiiiiiiiiiiiiiic 3-26

4 Querying Dimensional Objects

Exploring the OLAP VIEWSccccoiiiiiiiiiiiiii e 4-1
CUDE VIBWS . 4-2
Discovering the Names of the Cube VIEWS.........cccccoviiiviiinrcicrrereeeeae 4-2
Discovering the Columns of a Cube VIewccoooiiiiiiiiii e 4-2
Displaying the Contents of a Cube VIEWcccooeiiiiiiiiiiicc 4-3
Dimension and Hierarchy VIEWS.........cccccccciiiiiiiiiiiiicecceceecereeeeeseseeee e 4-3
Discovering the Names of Dimension and Hierarchy Views ..o, 4-4
Discovering the Columns of a Dimension VIew ... 4-4

Displaying the Contents of a Dimension VIew ... 4-5

Discovering the Columns of a Hierarchy View ... 4-5
Displaying the Contents of a Hierarchy VIEWccccovvvviniinnnnnnncnneeccceceenne 4-6
Creating Basic QUETIesccooiiiiiiiiiiiii s 4-6
Applying a Filter to Every Dimension........cccoooceieiiiiieiiiccieeci e 4-7
Allowing the Cube to Aggregate the Data ..o 4-9
QUETY PrOCESSING ..ottt 4-10
Creating Hierarchical QUeTies ... 4-11
Drilling Down t0 Children..........c.cociiiiiiiiiiiceceecece et 4-11
Drilling Up t0 Parents..........ccuoviiiiiiiiiieei b 4-12
Drilling Down to Descendants.............c.cccueiiiiiiiiiicieiece e 4-12
Drilling Up t0 ANCESLOTLSucuuiimiiiiiiiiiieiiicieicieeeietee ettt seeees 4-12
Using Calculations in QUeTies............cccccoovviiiiiiiiiiiiiicc s 4-13
Using Attributes for Aggregationcccoovviiiiiiin 4-14
Aggregating Measures Over Attributes ... 4-14
Aggregating Calculated Measures Over Attributes ..o 4-15
Viewing Exectution PIans ... 4-16
Generating Execution Plans...........cccociiiiiiiii s 4-16
Types of Execution PLAns ..o 4-18
Querying the Data Dictionary ... 4-18

5 Enhancing Your Database With
Analytic Content

What Is a Calculated Measure?...............cocooveiiiiiiiiininiiiincc e 5-1
Functions for Defining Calculations ..o, 5-1
Arithmetic OPerators..... ..ot 5-2
ANAlYHC FUNCHONS ...t 5-2
SIngle-ROW FUNCHONS ..ottt 5-2
Creating Calculated Measurescccoiiiiiiiiiiiiiiiiiii s 5-3
Modifying @ TEMPLAtecccceueuiiiiiiiieiiiciceecee e 5-4
Choosing a Range of Time Periods..........c.coouiuiiiiiiiiiiiciccc 5-4
Using Calculation Templatesccccooiiviiiiiiiiiiiii e 5-5
Arithmetic Calculations ..o 5-5
RANK c.oviii s 5-5
SIATE ...ttt 5-6
Prior and Future Periods.........ccuiiiiiii e 5-7
Parallel Period.........coiiiiiiiiiiii s 5-7
Period 10 DAteccooviuiiiiiiicicicc ettt 5-8
Cumulative Calculations..........ccocviiiiiiiiiniiii s 5-9
Moving Calculations..........couiiiiiiiiiei e 5-10
IIUAX ettt 5-11
Nested Calculations ... 5-11
Creating User-Defined EXPressions..............cccooiiiiiiiiiiiiiiiiiicee e 5-12

6 Developing Reports and Dashboards

Developing OLAP Applications ..o 6-1
Developing a Report Using BI Publisher ... 6-3
Creating an OLAP Report in BI PUDLiSher..........ccooooiiii 6-3
Creating a Template in Microsoft Wordoooroii e, 6-5
Generating a Formatted REPOTtccccciiiiiiiiiiiiicccce e 6-7
Adding Dimension Choice Lists........cccoeueiiiiiiiiiiiiiec e 6-9
Creating a List of Values ... 6-9
Creating @ MEeNU........cciiiiiiiiiiiiiiiii s 6-9

Editing the QUETY........c.ooiiiii s 6-10
Developing a Dashboard Using Application EXpressccccccovviniinniniiiiiiii, 6-11
Creating an OLAP Application in Application EXPress.........cccccccoevvueiiiervnnnnnncrrrnenes 6-12
Adding Dimension Choice Listscccoceieiiiiiiiiiiici e 6-13
Creating @ ReGION.........coiiiiiiiii s 6-14
Creating a List Of VAlUES......c.cccoiuiiiiiiiiiiiiccecc s 6-15
Creating the Choice List.........ccooiiiiiiiii s 6-15

Editing the QUETY.......cooiiiii s 6-16
Drilling on DImension COIUMIS..........c.coioiiiiiiiiiieceeieeeeiee e sene e nenens 6-17
Creating Hidden IHems..........c.c.ooiiiiiiii s 6-17

Editing the QUETY........cooiiii s 6-18
Adding Links to the Dimension COIUMNScccccccueiriririiienrreerereeereeee s 6-19

7 Administering Oracle OLAP

Setting Database Initialization Parameters................cccoviiiiiiiiiics 7-1
Storage Management ... 7-2
Creating an Undo TableSpaceccccueiiiiiiiiiie et 7-2
Creating Permanent Tablespaces for OLAP Use..........cccccociiiiiiiiiiiiiciceeeeceeeeeeeeeeennas 7-3
Creating Temporary Tablespaces for OLAP USecccoooviiiiiiiiiiiiciecci 7-3
Spreading Data Across Storage ReSOUICES...........cccueieiiriciiiiicicieecce i 7-3
Dictionary Views and System Tables............cccccoooiiiiis 7-4
Static Data Dictionary VIEWS.......coiuiiiiiiiieiici 7-4
SYSEEM TADLES ..ot 7-4
Analytic WOrkspace TabIescccccccuiuiiiiiiiiiiiiiiiiceccccceee et 7-5
BUILA LOZS......oeieiiiectee e 7-5
Partitioned Cubes and ParallelisSm ... 7-6
Querying Metadata for Cube Partitioningc.cccccovvviriiinninnrrrrcsree e 7-6
Creating and Dropping Partitionsccceeiieieiiiicieccic e 7-6
ParalleliSIN...c.covviuiiieieiiiircc ettt 7-6
Analyzing Cubes and DIimensions ..o 7-9
Monitoring Analytic WOrkspaces.............cccccoovviiiiiiiniiiiiiiii 7-9
Dynamic Performance VIEWSccccccuiiiiiiiiiiiiiiiiiciecceiieiee e 7-10
Basic Queries for Monitoring the OLAP OPtioncccccevvivrivirininrrrcceeereeeeeeeeeeeeenes 7-10

Is the OLAP Option Installed in the Database?...........cccoceieiiiniiiiiiciicccee 7-11

What Analytic Workspaces are in the Database?............cccccoovoreeininiieiinicece 7-11

How Big is the Analytic WOrkspace?.........ccccooeerriinrnncccnecceeeeeeeeeeeseeeeeeeas 7-11

When Were the Analytic Workspaces Created?...........coooeuoiiiieiiiiiii 7-12

vi

8

OLAP DBA SCIIPES ..ottt 7-12

Scripts for Monitoring Performance............ccoceueciiiiiciciiiccc 7-13
Monitoring DISK SPacecccoccuiiiiiiiiiiiciieceeiee et 7-13
Backup and ReCOVETY ..o 7-14
Export and IMpPort ... 7-14
Cube Materialized VIEWS ... 7-15
Acquiring Information From the Data Dictionaryccccooiiiiieiiiiiiiiiccce, 7-15
Identifying Cube Materialized VIEWS........cccoouoioiiiiiiiiiicc 7-15
Identifying the Refresh LOGSccccciiiiiiiiiiiicccccceeeece e 7-15
Initiating a Data Refresh...........ooooiiiii 7-16
Using DBMS_CUBE........cccooiiiiiiiiiciinci st 7-16
Using DBMS_MVIEWccooiiiiiiiiiiiiie s 7-16
Refresh Methods. ..o 7-17
Refresh Method Descriptions............ococuiioiiiiiiiiiiic s 7-17
Fast Solve Refreshes..........ccoviiiiiiiiiiiiii s 7-18
Using QUeTry REWTIteocoiiiiiii 7-18
Acquiring Additional Information About Cube Materialized Views..........ccccccevvvnnnnnn. 7-19
Security
Security of Multidimensional Data in Oracle Databaseccccccccevniniiiiiiiiiiiin, 8-1
Security Management ... 8-1
TYPES Of SECUTILY ..o 8-1
About the Privileges ... 8-2
Layered SECUTIEYc.covuiiiiiiieiiccerc e 8-2
Setting Object SECUTItY ... 8-3
Using SQL to Set Object SECUTItYcccoiiiiiiiiiiiiiiiiiii s 8-3
Setting Object Security on an Analytic WOrkspace.........ccccevvvvvvcveenininnnncnnnecccceenee 8-3
Setting Object Security on DImensions...........cooieioiiiiieiici e 8-3
Setting Object Security 0n CUDES...........ccoviiiiiiic s 8-3
Using Analytic Workspace Manager to Set Object SECUTIYcccoiiiiiiiiiciiiccicecenes 8-4
Setting Object Security on an Analytic Workspace.........c.ccoooiueieiiiinieiiiniicccccee 8-4
Setting Object Security on DImMensionsc.cccooeeveieiiccniniccecc s 8-5
Setting Object Security 0N CUDESccccciiiiiiiiiiiieccce e 8-6
Creating Data Security Policies on Dimensions and Cubes..............ccccocoviiiiiiiiniiiinnn, 8-6

Advanced Aggregations

What is Agregation?.............cccoviiiiiiiiiiiiiiiii s 9-1
Aggregation OPeratorsccoocciiiiiiiiiiiiiii e 9-3
Basic OPerators........ccciiiiiiiiiiiiiii e 9-3
Scaled and Weighted Operatorscccccevvvieiiiiiiiiiiiiiiiciii e 9-3
Hierarchical OpPeratorscccccciucuiiiiiiiiiiiiiiiiciiccc e 9-4
When Does Aggregation Order Matter? ..o 9-4
Using the Same Operator for All Dimensions of @ Cubeccccoceeviiiiiiiiiiiiiiin, 9-5
Order Has NO EffeCt ..ottt et 9-5

Order Changes the Aggregation ReSults...........cccccociiiiiiiiiiiiiiicceeceeceeceeeenae 9-5

Order May Be IMportant ... 9-5

vii

Example: Mixing Aggregation OPeratorscoccueuiieieieiiiieieiecie e 9-5

Example: Aggregating the Units Cube.............ccocoooiiiiiiii 9-6
Selecting the Aggregation Operators and Hierarchies...........cccccococociiiiiiiiiiiiiiicenes 9-6
Choosing the Percentage of Precomputed Valuesccoooviiiiiiiiiiiiiiicce 9-7

A Designing a Dimensional Model

Case StUAY SCONATIO...........oiiiiiiii e A-1

Reporting ReQUITeMENtSccuoviiiiiiiiiiiii s A-2

BUSINESS GOALS ...t s A-2

Information ReqUIremMents...........ciiiiiiiiiiiiiiiiiiiiice s A-3

Business Analysis QUESHIONS...........cocuruiiiiiiieieiicce et A-3

What products are profitable?............ooiiiiiiiiiicccee e A-3

Who are our customers, and what and how are they buying? ... A-3

Which accounts are most profitable? ..o, A-4

What is the performance of each distribution channel?..............c.cccccccooiiiiiininnne A-4

Is there still a seasonal variance to the business?............c.cccocevviviiiiiiiiincic, A-4

Summary of Information Requirements.............cccccovoiiriiiiiiiiieiiciccce e, A-4

Identifying Required Business Facts............c.ccccocoooiiinniiiiiie A-5

Designing a Dimensional Model for Global Computing...............cccccovvvniniiiiiiinn, A-5

Identifying DIimMeNSIONScceviiurieiiiicie et A-5

Tdentifying LeVels.......ccciiiiiiiiiicccecceeee s A-6

Identifying HIieTarchies ... e A-6

Identifying Stored MEASUIEScccuruiieiiuiiiiicc e A-6
Glossary

Index

viii

Audience

Preface

The Oracle OLAP User's Guide explains how SQL applications can extend their analytic
processing capabilities and manage summary data by using the OLAP option of
Oracle Database. It also provides information about managing resources for OLAP.

The preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

This manual is intended for DBAs who need to perform these tasks:
= Develop and manage a data warehouse
» Create and maintain dimensional data objects

= Administer Oracle Database with the OLAP option

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information about the OLAP option, see the following manuals in the Oracle
Database 11g documentation set:

» Oracle OLAP Developer’s Guide to the OLAP API

Introduces the Oracle OLAP AP], a Java application programming interface for
Oracle OLAP, which is used for defining, building, and querying dimensional
objects in the database.

» Oracle OLAP Java API Reference

Describes the classes and methods in the Oracle OLAP Java API for defining,
building, and querying dimensional objects in the database.

» Oracle OLAP DML Reference

Contains a complete description of the OLAP Data Manipulation Language
(OLAP DML) used to define and manipulate analytic workspace objects.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in Oracle OLAP?

This preface identifies the major enhancements to the OLAP option of Oracle
Database.

Oracle Database 11g Release 11.1 Oracle OLAP

The OLAP Option to Oracle Database 11¢ continues the development trends of
Oracle9i and Oracle Database 10g, especially in deepening integration with the
database and enhancing SQL access to cubes, security, and metadata. The power of
OLAP is easily accessible to SQL applications. Oracle Database 11g also introduces the
cube as a summary management solution for relational OLAP (ROLAP)
implementations.

OLAP Metadata Integration

All metadata for cubes and dimensions is stored in the Oracle database and revealed
in the data dictionary views, so that you can query the entire business model in SQL.
Use of the data dictionary to store the metadata officially codifies the dimensional
model in the database, provides significant improvements for metadata queries, and
supports other new features such as SQL object security for cubes and dimensions.

See Also:
s Chapter 4, "Querying Dimensional Objects"

» Oracle Database Reference

Automatic Maintenance of Cube and Dimension Views

Oracle Database 11g automatically creates and maintains relational views for every
cube, dimension, and hierarchy in the database. If you modify a dimensional object,
such as adding a calculated measure to a cube, the view is immediately re-created to
reflect the change. Oracle Database defines these views using the new CUBE_TABLE
function, which enables the SQL Optimizer enhancements.

See Also:
s Chapter 4, "Querying Dimensional Objects"
» Oracle Database SQL Reference

Cube Scripts

A cube script is an ordered list of commands that prepare a cube for querying, such as
Clear Data, Load Data, Aggregate, Execute PL/SQL, and Execute OLAP DML. For

xi

Xii

many applications, cube scripts will eliminate the need to use procedural programs for
processing cubes.

See Also: Chapter 3, "Creating Dimensions and Cubes"

Cost-Based Aggregation

Fast updates and uniform querying performance are two hallmarks of the OLAP
option. Cost-based aggregation enhances performance in both areas by executing a
fine-grained pre-aggregation strategy and storing sparse data sets very efficiently.

See Also: Chapter 3, "Creating Dimensions and Cubes"

Calculation Expression Syntax

OLAP calculation expressions extend the syntax of the SQL analytic functions. This
syntax is already familiar to SQL developers and DBAs, so that it is easier for them to
adopt than proprietary OLAP languages and APIs.

This syntax is used to define calculations that are embedded in the cube, such as
dynamically calculated facts or measures.

See Also: Chapter 5, "Enhancing Your Database With
Analytic Content"

Cube Materialized Views

Cube materialized views are cubes that have been enhanced to use the automatic
refresh and query rewrite features of Oracle Database.

Cube materialized views bring the fast update and fast query capabilities of the OLAP
option to applications that query detail relational tables. Summary data is generated
and stored in a cube, and query rewrite automatically redirects queries to the cube
materialized views. Applications experience excellent query performance.

See Also:

s Chapter 3, "Creating Dimensions and Cubes"

» Chapter 7, "Administering Oracle OLAP"

Object and Data Security

Oracle Database 11g introduces both object security and data security to OLAP cubes
and dimensions. Both types of security are granted to database users and roles.

Object security controls access to analytic workspaces, cubes, and dimensions using
standard SQL GRANT and REVOKE syntax.

Data security controls access to the data in a cube or a dimension. You can grant
SELECT, INSERT, UPDATE, and DELETE privileges to dimension members (keys)
either globally or in the context of a particular cube to control access to the data in a
cube.

See Also: Chapter 8, "Security"

1

Overview

This chapter introduces the powerful analytic resources available in the Oracle
Database with the OLAP option. It consists of the following topics:

= OLAP Technology in the Oracle Database
= Developing Reports and Dashboards Using SQL Tools and Application Builders

s Overview of the Dimensional Data Model

OLAP Technology in the Oracle Database

Oracle Database offers the industry's first and only embedded OLAP server. Oracle
OLAP provides native multidimensional storage and speed-of-thought response times
when analyzing data across multiple dimensions. The database provides rich support
for analytics such as time series calculations, forecasting, advanced aggregation with
additive and nonadditive operators, and allocation operators. These capabilities make
the Oracle database a complete analytical platform, capable of supporting the entire
spectrum of business intelligence and advanced analytical applications.

Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of the Oracle database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:
s The OLAP engine runs within the kernel of Oracle Database.

= Dimensional objects are stored in Oracle Database in their native
multidimensional format.

s Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

= Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

= Applications can query dimensional objects using SQL.

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity: One database, standard administration and security, standard interfaces
and development tools.

Overview 1-1

OLAP Technology in the Oracle Database

Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence (BI) and analytical applications of any type compared to systems that offer
proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional limited
collection of OLAP applications.

Ease of Administration

Security

Because Oracle OLAP is completely embedded in the Oracle database, there is no
administration learning curve as is typically associated with stand-alone OLAP
servers. You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

One major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With stand-alone OLAP servers, the burden of
refreshing the cube is left entirely to the administrator. This can be a complex and
potentially error-prone job. The administrator must create procedures to extract the
changed data from the relational source, move the data from the source system to the
system running the stand-alone OLAP server, load and rebuild the cube. The DBA
must take responsibility for the security of the deltas (changed values) during this
process as well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by the Oracle database.
The database tracks the staleness of the dimensional objects, automatically keeps track
of the deltas in the source tables, and automatically applies only the changed values
during the refresh process. The DBA simply schedules the refresh at appropriate
intervals, and Oracle Database takes care of everything else.

With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a stand-alone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the stand-alone OLAP system.

Unmatched Performance and Scalability

Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a myriad
of similar calculations. Often these actions are essentially random across the entire
space of potential hierarchical aggregations. Because Oracle OLAP precomputes or
efficiently computes on the fly all aggregates in the defined multidimensional space, it
delivers unmatched performance for typical business intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

When Oracle Database is installed with Real Application Clusters (RAC), OLAP
applications receive the same benefits in performance, scalability, fail over, and load
balancing as any other application.

1-2 Oracle OLAP User's Guide

Developing Reports and Dashboards Using SQL Tools and Application Builders

Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, the Oracle database can manage
the refresh of dimensional objects, a complex task left to administrators in other
systems. Standard security reduces administration costs as well. Application
development costs are reduced because the availability of a large pool of application
developers who are SQL knowledgeable, and a large collection of SQL-based
development tools means applications can be developed and deployed more quickly.
Any SQL-based development tool can take advantage of Oracle OLAP. Hardware costs
are reduced by Oracle OLAP's efficient management of aggregations, use of shared
cursors, and Oracle RAC, which enables highly scalable systems to be built from
low-cost commodity components.

Developing Reports and Dashboards Using SQL Tools and
Application Builders

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data. You can use your favorite tool or application, or use one of the
tools supplied with Oracle Database.

Figure 1-1 displays a portion of a dashboard created in Oracle Application Express,
which is distributed with Oracle Database. Application Express generates HTML
reports that display the results of SQL queries. It only understands SQL; it has no
special knowledge of dimensional objects.

This dashboard demonstrates information-rich calculations such as ratio, share, prior
period, and cumulative total. Separate tabs on the dashboard present Profitability
Analysis, Sales Analysis, and Product Analysis. Each tab presents the data in dials, bar
charts, horizontal bar charts, pie charts, and cross-tabular reports. A drop-down list in
the upper left corner provides a choice of Customers.

The dial displays the quarterly profit margin. To the right is a bar chart that compares
current profits with year-ago profits.

Overview 1-3

Developing Reports and Dashboards Using SQL Tools and Application Builders

Figure 1-1 Dashboard Created in Oracle Application Express

bl Ll b Sales Analysis - Product Analy

Select Regien to Analyze

Sstect Customer | 41 Customer: | (D)

Profit Margin Last Quarter Profit Trend

2000000

W Prefit
W Pricr Year

2000000

2000000

1009000

©0L0s QR0S QA0S QDS QLU QR0E Q308 Q.06

Profit by Product Family Last Quarter Profit by Product Last Quarter

Share of Parent

¥TDr Change From Year A0

Envay Standard
Monitor: 19" Super VaA
Standard Mouse

Modary -
b il Estemal - DVDEW - 0%
% ; Santinel Standard
Desktop PEs, 40% wnifwindous Suser pack

Dutabde D3, 9%

Multimudia spaaker- 5 conis

Intamsl 48 CO-ROM USE

Multimudia spaakers- 37 conas

The pie chart in Figure 1-2 displays the percent share that each product family
contributed to the total profits in the last quarter.

Figure 1-2 Contributions of Product Families to Total Profits

Profit by Product Family Last Quarter

Share of Parent

Modems;:@&t’ oz 1%
Mermaory, 7 5

Portable PCs, 99% -

Desktop PCs, 40%

CO/DVD, 38%
The horizontal bar chart in Figure 1-3 displays ranked results for locations with the

largest gains in profitability from a year ago. Decision makers can see at a glance how
each location improved by the last quarter.

1-4 Oracle OLAP User's Guide

Overview of the Dimensional Data Model

Figure 1-3 Ranking of Percent Change in Year-To-Date Profits From Year Ago

Profit by Location Last Quarter

¥TD Change From Year Ago

US Marine Svcs Washington
Dept. of Labor Mew Orleans
Roval Air Farce Bligh

US Dept. of Research Trure
Jeffrey May Atlanta

IBS Cornputers Mew Orleans
SHG Sacramento

Buzinesz World Mew York
Bavarian Indust, GmbH Munich
Tar Heel Carmputing Mayadan
Cornputer Services Athens
Computer Services Toronto
Cornputer Warehouse San Diego
UK Env Dept Glasgow

Bavarian Indust, GmbH Bonn

0% Z0% 4036 &0% 0% 100%

Figure 1-4 compares current profits with year-to-date, year-to-date year ago, the
change between year-to-date and year-to-date year ago, and percent change between
year-to-date and year-to-date year-ago profits. The cross-tabular report features
interactive drilling, so that decision makers can easily see the detailed data that
contributed to a parent value of interest.

Figure 1-4 Year-to-Date Profits Compared to Year Ago

Profit Reporting

YTD YTD Chg | YTD % Chg
¥r Ago ¥r Ago

Product Custnmer‘ Profit ‘ YTD

Total Total
1geg | L8 TEE 7249205 7249206
1ggg | Lol it 9100282 | 8,180,282 | 7,240,206 | 1,040,965 2677
— | Product Customer ! ! ! ! ! ! ! !
zopg | Lot 0tal 8,880,360 | 5,880,380 | 0,100,282 | -308,913 -237
—— | Product Customer : ; : - : ! :
zopp | Lol dotgl 8668271 | B,668.271 | B,8E0,360 | -222.008 -250
— | Product Customer ! ! ! ! ! ! !
sppz | Lol L] BA54.325 | B054325 | B658.271 | 1,803,845 2083
== | Product_ | _Customer_ | | | |
sppy | Lol Jotg] BT30,605 | B730.505 | 5854335 | 1876370 2737
= | Product Customer
sppy | T0tal Total 11175647 | 11175647 | S.730,685 | 2444052 2800
= Product | Customer | | | | |
2op5 | Lot AIE] 10544532 | 10544532 | 11,176.647 | -631,115 565
T | Product | Customer | | | | |
z2op | Lot Lot 11024547 | 11024547 | 10,544532 | 480,015 455

= | Product Customer

Overview of the Dimensional Data Model

Dimensional objects are an integral part of OLAP. Because OLAP is on-line, it must
provide answers quickly; analysts pose iterative queries during interactive sessions,
not in batch jobs that run overnight. And because OLAP is also analytic, the queries
are complex. The dimensional objects and the OLAP engine are designed to solve
complex queries in real time.

The dimensional objects include cubes, measures, dimensions, attributes, levels, and
hierarchies. The simplicity of the model is inherent because it defines objects that
represent real-world business entities. Analysts know which business measures they

Overview 1-5

Overview of the Dimensional Data Model

Cubes

Measures

are interested in examining, which dimensions and attributes make the data
meaningful, and how the dimensions of their business are organized into levels and
hierarchies.

Figure 1-5 shows the general relationships among dimensional objects.

Figure 1-5 Diagram of the OLAP Dimensional Model

Cube . .
Dimensions

Levels Hierarchies Attributes

Measures

The dimensional data model is highly structured. Structure implies rules that govern
the relationships among the data and control how the data can be queried. Cubes are
the physical implementation of the dimensional model, and thus are highly optimized
for dimensional queries. The OLAP engine leverages this innate dimensionality in
performing highly efficient cross-cube joins for inter-row calculations, outer joins for
time series analysis, and indexing. Dimensions are pre-joined to the measures. The
technology that underlies cubes is based on an indexed multidimensional array model,
which provides direct cell access.

The OLAP engine manipulates dimensional objects in the same way that the SQL
engine manipulates relational objects. However, because the OLAP engine is
optimized to calculate analytic functions, and dimensional objects are optimized for
analysis, analytic and row functions can be calculated much faster in OLAP than in
SQL.

The dimensional model enables Oracle OLAP to support high-end business
intelligence tools and applications such as OracleBI Discoverer Plus OLAP, OracleBI
Spreadsheet Add-In, OracleBI Suite Enterprise Edition, BusinessObjects Enterprise,
and Cognos ReportNet.

Cubes provide a means of organizing measures that have the same shape, that is, they
have the exact same dimensions. Measures in the same cube can easily be analyzed
and displayed together.

A cube usually corresponds to a single fact table or view.

Measures populate the cells of a cube with the facts collected about business
operations. Measures are organized by dimensions, which typically include a Time
dimension.

An analytic database contains snapshots of historical data, derived from data in a
transactional database, legacy system, syndicated sources, or other data sources. Three

1-6 Oracle OLAP User's Guide

Overview of the Dimensional Data Model

Dimensions

years of historical data is generally considered to be appropriate for analytic
applications.

Measures are static and consistent while analysts are using them to inform their
decisions. They are updated in a batch window at regular intervals: weekly, daily, or
periodically throughout the day. Some administrators refresh their data by adding
periods to the time dimension of a measure, and may also roll off an equal number of
the oldest time periods. Each update provides a fixed historical record of a particular
business activity for that interval. Other administrators do a full rebuild of their data
rather than performing incremental updates.

A critical decision in defining a measure is the lowest level of detail. Users may never
view this detail data, but it determines the types of analysis that can be performed. For
example, market analysts (unlike order entry personnel) do not need to know that
Beth Miller in Ann Arbor, Michigan, placed an order for a size 10 blue polka-dot dress
on July 6, 2006, at 2:34 p.m. But they might want to find out which color of dress was
most popular in the summer of 2006 in the Midwestern United States.

The base level determines whether analysts can get an answer to this question. For this
particular question, Time could be rolled up into months, Customer could be rolled up
into regions, and Product could be rolled up into items (such as dresses) with an
attribute of color. However, this level of aggregate data could not answer the question:
At what time of day are women most likely to place an order? An important decision
is the extent to which the data has been aggregated before being loaded into a data
warehouse.

Dimensions contain a set of unique values that identify and categorize data. They
form the edges of a cube, and thus of the measures within the cube. Because measures
are typically multidimensional, a single value in a measure must be qualified by a
member of each dimension to be meaningful. For example, the Sales measure has four
dimensions: Time, Customer, Product, and Channel. A particular Sales value
(43,613.50) only has meaning when it is qualified by a specific time period (Feb-06), a
customer (Warren Systems), a product (Portable PCs), and a channel (Catalog).

Base-level dimension values correspond to the unique keys of a fact table.

Hierarchies and Levels

A hierarchy is a way to organize data at different levels of aggregation. In viewing
data, analysts use dimension hierarchies to recognize trends at one level, drill down to
lower levels to identify reasons for these trends, and roll up to higher levels to see
what affect these trends have on a larger sector of the business.

Level-Based Hierarchies

Each level represents a position in the hierarchy. Each level above the base (or most
detailed) level contains aggregate values for the levels below it. The members at
different levels have a one-to-many parent-child relation. For example, Q1-05 and
02-05 are the children of 2005, thus 2005 is the parent of 91-05 and 02-05.

Suppose a data warehouse contains snapshots of data taken three times a day, that is,
every 8 hours. Analysts might normally prefer to view the data that has been
aggregated into days, weeks, quarters, or years. Thus, the Time dimension needs a
hierarchy with at least five levels.

Similarly, a sales manager with a particular target for the upcoming year might want
to allocate that target amount among the sales representatives in his territory; the

Overview 1-7

Overview of the Dimensional Data Model

Attributes

allocation requires a dimension hierarchy in which individual sales representatives are
the child values of a particular territory.

Hierarchies and levels have a many-to-many relationship. A hierarchy typically
contains several levels, and a single level can be included in more than one hierarchy.

Each level typically corresponds to a column in a dimension table or view. The base
level is the primary key.

Value-Based Hierarchies

Although hierarchies are typically composed of named levels, they do not have to be.
The parent-child relations among dimension members may not define meaningful
levels. For example, in an employee dimension, each manager has one or more reports,
which forms a parent-child relation. Creating levels based on these relations (such as
individual contributors, first-level managers, second-level managers, and so forth)
may not be meaningful for analysis. Likewise, the line item dimension of financial data
does not have levels. This type of hierarchy is called a value-based hierarchy.

An attribute provides additional information about the data. Some attributes are used
for display. For example, you might have a product dimension that uses Stock Keeping
Units (SKUs) for dimension members. The SKUs are an excellent way of uniquely
identifying thousands of products, but are meaningless to most people if they are used
to label the data in a report or a graph. You would define attributes for the descriptive
labels.

You might also have attributes like colors, flavors, or sizes. This type of attribute can
be used for data selection and answering questions such as: Which colors were the
most popular in women's dresses in the summer of 2005? How does this compare with
the previous summer?

Time attributes can provide information about the Time dimension that may be useful
in some types of analysis, such as identifying the last day or the number of days in
each time period.

Each attribute typically corresponds to a column in dimension table or view.

1-8 Oracle OLAP User's Guide

2

Getting Started with Oracle OLAP

This chapter describes the preliminary steps you need to take to use Oracle OLAP. It
assumes that you have already installed Oracle Database 11g Enterprise Edition. The
OLAP option is installed automatically as part of a Basic installation of Oracle
Database.

Note: To start querying dimensional objects immediately, install the
Global analytic workspace, as described in "Installing the Sample
Schema". Then follow the instructions in Chapter 4.

This chapter includes the following topics:

= Installing the Sample Schema

» Database Management Tasks

= Granting Privileges to DBAs and Application Developers
s Getting Started with Analytic Workspace Manager

Installing the Sample Schema

You can download and install the sample Global schema from the Oracle Web site and
use it to try the examples shown throughout this guide:

http://www.oracle.com/technology/products/bi/olap/doc_sample_
schemas/sampleschemasfordoc.html

Instructions for installing the schema are provided in the README file.

Database Management Tasks

You should create undo, permanent, and temporary tablespaces that are appropriate
for use by dimensional objects. Follow the recommendations in "Storage Management"
on page 7-2.

Granting Privileges to DBAs and Application Developers

Anyone who needs to create or manage dimensional objects in Oracle Database must
have the necessary privileges. These privileges are different from those needed just to
query the data stored in dimensional objects. The security system is discussed in
Chapter 8.

DBAs and application developers need the following roles and privileges.

Getting Started with Oracle OLAP 2-1

Getting Started with Analytic Workspace Manager

To create dimensional objects in the user's own schema:
= OLAP_USERTrole

= CREATE SESSION privilege

To create dimensional objects in different schemas:
s OLAP_DBA role

s CREATE SESSION privﬂege

To administer data security:
s OLAP_XS_ADMIN role

To create cube materialized views in the user's own schema:
= CREATE MATERIALIZED VIEW privilege

= CREATE DIMENSION privilege

= ADVISOR privilege

To create cube materialized views in different schemas:
= CREATE ANY MATERIALIZED VIEW privilege

» CREATE ANY DIMENSION privilege
= ADVISOR privilege

Users also need an unlimited quota on the tablespace in which the dimensional objects
will be stored. The tablespaces should be defined specifically for OLAP use, as
described in Chapter 7.

If the source tables are in a different schema, then the owner of the dimensional objects
needs SELECT object privileges on those tables.

Example 2-1 shows the SQL statements for creating the GLOBAL user.

Example 2-1 SQL Statements for Creating the GLOBAL User

CREATE USER "GLOBAL" IDENTIFIED BY password
DEFAULT TABLESPACE glo
TEMPORARY TABLESPACE glotmp
QUOTA UNLIMITED ON glo
PASSWORD EXPIRE;

GRANT OLAP_USER TO GLOBAL;
GRANT CREATE SESSION TO GLOBAL;
GRANT OLAP_XS_ADMIN TO GLOBAL;

Getting Started with Analytic Workspace Manager

In this section, you will learn how to install Analytic Workspace Manager software
and make a connection to Oracle Database.

Installing Analytic Workspace Manager

Analytic Workspace Manager is distributed on the Oracle Database Client installation
disk.

2-2 Oracle OLAP User's Guide

Getting Started with Analytic Workspace Manager

If you are installing on the same system as the database, then choose a Custom
installation and install into the same Oracle home directory as the database. Select
OLAP Analytic Workspace Manager and Worksheet from the list of components.

If you are installing on a remote system, then choose either an Administrator or a
Custom installation. The Administrator choice automatically installs Analytic
Workspace Manager on the client.

See Also: An installation guide for your client platform, such as the
Oracle Database Client Quick Installation Guide for 32-Bit Windows.

Opening Analytic Workspace Manager

On Windows, open Analytic Workspace Manager from the Start menu. Choose Oracle
- Oracle_home, then Integrated Management Tools, and then OLAP Analytic
Workspace Manager and Worksheet.

On Linux, open Analytic Workspace Manager from the shell command line:

SORACLE_HOME/olap/awm/awnm.sh

Defining a Database Connection

You can define a connection to each database that you use for OLAP. After you define
a connection, the database instance is listed in the navigation tree for you to access at
any time.

To define a database connection:

1. Right-click the top Databases folder in the navigation tree, then choose Add
Database to Tree from the pop-up menu.

2, Complete the Add Database to Tree dialog box.

Opening a Database Connection

To connect to a database:
1. Click the plus icon (+) next to a database in the navigation tree.
2. Complete the Connect to Database dialog box.

Figure 2-1 shows Analytic Workspace Manager displaying the properties of the
database connection by the Global user.

Getting Started with Oracle OLAP 2-3

Getting Started with Analytic Workspace Manager

Figure 2—1 Analytic Workspace Manager Connection to Oracle Database

) analytic Workspace Managen

File Tools Help

By Databases A
ZXEN 21115 (giobal) - OLAP 11g P el |
E%Schemas Enter description and connection information
g GLOBAL
E“F‘ Description: rellla
; -%Mnalytlc Workspaces
H [@DataSecurity Roles Connection Information: localhost1492:relllg
BH Reports Database THS Allas or hosthame:portsid
FH-C35GL Reports
a 2 Database Compatibility Mode: 11.0.0.0.0
Cube Type: QLAP11g
Database Lahguage: AMERICAN
| Hewp Apply | | Reven

] i I»

Installing Plugins

Plugins extend the functionality of Analytic Workspace Manager. Any Java developer
can create a plugin. Plugins are distributed as JAR files. The developer should provide
information about what the plugin does and how to use it.

If you have one or more plugins, then you only need to identify their location to

Analytic Workspace Manager.

To Use Plugins:
1. Create a local directory for storing plugins for Analytic Workspace Manager.

2. Copy the JAR files to that directory.
3. Open Analytic Workspace Manager.
4, Choose Configuration from the Tools menu.
The Configuration dialog box opens.
5. Select Enable Plugins and identify the plugin directory. Click OK.
6. Close and reopen Analytic Workspace Manager.
The new functionality provided by the plugins is available in the navigator.
See Also: Developing Analytic Workspace Manager Plug-ins, which you

can download from the Oracle Technology Network at
http://www.oracle.com/technology/products/bi/olap.

2-4 Oracle OLAP User's Guide

3

Creating Dimensions and Cubes

This chapter explains how to design a data model and create dimensions and cubes
using Analytic Workspace Manager.

This chapter contains the following topics:

= Designing a Dimensional Model for Your Data

s Introduction to Analytic Workspace Manager

s Creating a Dimensional Data Store Using Analytic Workspace Manager
s Creating Dimensions

s Creating Cubes

s Choosing a Data Maintenance Method

s Defining Measure Folders

= Using Templates to Re-Create Dimensional Objects

Designing a Dimensional Model for Your Data

Chapter 1 introduced the dimensional objects: Cubes, measures, dimensions, levels,
hierarchies, and attributes. In this chapter, you will learn how to define them in Oracle
Database, but first you need to decide upon the dimensional model you want to create.
What are your measures? What are your dimensions? How can you distinguish
between a dimension and an attribute in your data? You can design a dimensional
model using pencil and paper, a database design software package, or any other
method that suits you.

If your source data is already in a star or snowflake schema, then you already have the
elements of a dimensional model:

s Fact tables correspond to cubes.

s Data columns in the fact tables correspond to measures.

= Foreign key constraints in the fact tables identify the dimension tables.

= Dimension tables identify the dimensions.

= Primary keys in the dimension tables identify the base-level dimension members.

= Parent columns in the dimension tables identify the higher level dimension
members.

s Columns in the dimension tables containing descriptions and characteristics of the
dimension members identify the attributes.

Creating Dimensions and Cubes 3-1

Introduction to Analytic Workspace Manager

You can also get insights into the dimensional model by looking at the reports
currently being generated from the source data. The reports will identify the levels of
aggregation that interest the report consumers, as well as the attributes used to qualify
the data.

While investigating your source data, you may decide to create relational views that
more closely match the dimensional model that you plan to create.

See Also:

"Overview of the Dimensional Data Model" on page 1-5 for an
introduction to dimensional objects

Appendix A, "Designing a Dimensional Model" for a case study of
developing a dimensional model for the Global analytic workspace

Introduction to Analytic Workspace Manager

Analytic Workspace Manager is the primary tool for creating, developing, and
managing dimensional objects in Oracle Database. Your goal in using Analytic
Workspace Manager is to create a dimensional data store that supports business
analysis. This data store can stand alone or store summary data as part of a relational
data warehouse.

Populating dimensional objects involves a physical transformation of the data. The
first step in that transformation is defining the cubes, measures, dimensions, levels,
hierarchies, and attributes. Afterward, you can map these dimensional objects to their
relational data sources. The data loading process transforms the data from a relational
format into a dimensional format.

Using Analytic Workspace Manager, you can:

= Develop a dimensional model of your data.

» Instantiate that model as dimensional objects.

» Load data from relational tables into those objects.

» Define information-rich calculations.

s Create materialized views that can be used by the database refresh system.
= Automatically generate relational views of the dimensional objects.
You can load data from these sources in the database:

s Tables

s Views

= Synonyms

You must have SELECT privileges on the relational data sources so you can load the
data into the dimensions and cubes. This chapter assumes that you have a star,
snowflake, or other relational schema that supports dimensional objects.

Figure 3-1 shows the main window of Analytic Workspace Manager. It contains
menus, a toolbar, a navigation tree, and property sheets. When you select an object in
the navigation tree, the property sheet to the right provides detailed information about
that object. When you right-click an object, you get a choice of menu items with
appropriate actions for that object.

Analytic Workspace Manager has a full online Help system, which includes
context-sensitive Help.

3-2 Oracle OLAP User's Guide

Creating a Dimensional Data Store Using Analytic Workspace Manager

Figure 3—1 Analytic Workspace Manager Main Window

) Analytic Workspace Managen

File Tools Help
E-Q’JDatabases : Dimensions:
£ 111y {globaly - GLAP 11
%é; chhfﬂ::) = Mame Lang Description Type
g CHAMNMEL Channel User
‘!' GG CUSTOMER Customer User
¢ B Analytic workspaces PRODUCT Product User
IR GLoRal Grtached Rw) Bl R Time Time
. Dimensions
EE; Cubes
: BHE] Measure Folders
@ Data Security Roles Cubes:
B Reports Marne Long Description Difnensians
B-L50L Reports PRICE_CUBE Price Cube PRODUCT, TIME
UMITS_CUBE Units Cube TIME, PRODUCT, CUSTOMEE,
< = [T]
Meazures:
Mame Cuhe Lang Description |
UMIT_PRICE FRICE_CUBE Unit Price
UMIT _COsT FRICE_CUBE Unit Cast
UMITS UMITS_CUEE Units
SALES UMITS_CUEE Sales
CosT UMITS_CUEE Cast
4 | R |]

Creating a Dimensional Data Store Using Analytic Workspace Manager

An analytic workspace is a container for storing related cubes. You create dimensions,
cubes, and other dimensional objects within the context of an analytic workspace.

Basic Steps for Creating an Analytic Workspace

To create an analytic workspace:

1. Open Analytic Workspace Manager and connect to your database instance as the
user defined for this purpose.

2. Create a new analytic workspace in the database:

a. In the navigation tree, expand the folders until you see the schema where you
want to create the analytic workspace.

b. Right-click Analytic Workspaces, then choose Create Analytic Workspace.
c. Complete the Create Analytic Workspace dialog box, then choose Create.

The new analytic workspace appears in the Analytic Workspaces folder for the
schema.

3. Define the dimensions for the data.

See "Creating Dimensions" on page 3-4.
4. Define the cubes for the data.

See "Creating Cubes" on page 3-13.
5. Load data into the cubes and dimensions.

See "Loading Data Into a Cube" on page 3-18

Creating Dimensions and Cubes 3-3

Creating Dimensions

When you have finished, you will have an analytic workspace populated with the
detail data fetched from relational tables or views. You may also have summarized
data and calculated measures.

Adding Functionality to Dimensional Objects

In addition to the basic steps, you can add functionality to the cubes in these ways:

Develop custom cube scripts to customize the builds.

See "Creating and Executing Custom Cube Scripts" on page 3-22.

Generate materialized views that support automatic refresh and query rewrite.
See "Adding Materialized View Capability to a Cube" on page 3-23.

Define measure folders to simplify access for end users.

See "Defining Measure Folders" on page 3-25.

How Analytic Workspace Manager Saves Changes

Analytic Workspace Manager saves changes automatically that you make to the
analytic workspace. You do not explicitly save your changes.

Saves occur when you take an action such as these:

Click OK or the equivalent button in a dialog box.

For example, when you click Create in the Create Dimension dialog box, the new
dimension is committed to the database.

Click Apply in a property sheet.

For example, when you change the labels on the General property page for an
object, the change takes effect when you click Apply.

Creating Dimensions

Dimensions are lists of unique values that identify and categorize data. They form the
edges of a cube, and thus of the measures within the cube. In a report, the dimension
values (or their descriptive attributes) provide labels for the rows and columns.

You can define dimensions that have any of these common forms:

Level-based dimensions that use parent-child relationships to group members into
levels. Most dimensions are level-based.

Value-based dimensions that have parent-child relationships among their
members, but these relationships do not form meaningful levels.

List or flat dimensions that have no levels or hierarchies.

Dimension Members Must Be Unique

Every dimension member must be a unique value. Depending on your data, you can
create a dimension that uses either natural keys or surrogate keys from the relational
sources for its members. If you have any doubt that the values are unique across all
levels, then keep the default choice of surrogate keys.

Source keys are read from the relational sources without modification. To use the
same exact keys as the source data, the values must be unique across levels.
Because each level may be mapped to a different relational column, this
uniqueness may not be enforced in the source data. For example, a dimension

3-4 Oracle OLAP User's Guide

Creating Dimensions

table might have a Day column with values of 1 to 366 and a Week column with
values of 1 to 52. Unless you take steps to assure uniqueness, Week values will
overwrite the Day values.

= Surrogate keys ensure uniqueness by adding a level prefix to the members while
loading them into the analytic workspace. For the previous example, surrogate
keys create two dimension members named DAY_1 and WEEK_1, instead of a
single member named 1. A dimension that has surrogate keys must be defined
with at least one level-based hierarchy.

Analytic Workspace Manager creates surrogate keys unless you specify otherwise.

Time Dimensions Have Special Requirements

You can define dimensions as either User or Time dimensions. Business analysis is
performed on historical data, so fully defined time periods are vital. A time dimension
table must have columns for period end dates and time span. These required attributes
support comparisons with earlier or later time periods. If this information is not
available, then you can define Time as a User dimension, but it will not support
time-based analysis.

You must define a Time dimension with at least one level to support time-based
analysis, such as a custom measure that calculates the difference from the prior period.

To create a dimension:
1. Expand the folder for the analytic workspace.

2. Right-click Dimensions, then choose Create Dimension.
The Create Dimension dialog box is displayed.
3. Complete the General tab.

4. If the keys in the source table are unique across levels, you can change the default
setting on the Implementation Details tab.

5. Click Create.
The new dimension appears as a subfolder under Dimensions.

Figure 3-2 shows the creation of the Product dimension.

Creating Dimensions and Cubes 3-5

Creating Dimensions

Figure 3-2 Creation of the Product Dimension

B, Create Dimension

(General r Matetialized Views r Implementstion Details

Specify General Dimension Information

hame: [ProDUCT |
Short Label |p,0d |
Long Label: [Procuct |
Description: |Pr0duc1 Dimension |
Dimension Tyoe: | ser Dimension M|

Help | Cresate | Cancel

Creating Levels

For business analysis, data is typically summarized by level. For example, your
database may contain daily snapshots of a transactional database. Days are the base
level. You might summarize this data at the weekly, quarterly, and yearly levels.

Levels have parent-child or one-to-many relationships, which form a level-based
hierarchy. For example, each week summarizes seven days, each quarter summarizes
13 weeks, and each year summarizes four quarters. This hierarchical structure enables
analysts to detect trends at the higher levels, then drill down to the lower levels to
identify factors that contributed to a trend.

For each level that you define, you must identify a data source for dimension members
at that level. Members at all levels are stored in the same dimension. In the previous
example, the Time dimension contains members for weeks, quarters, and years.

To create a level:
1. Expand the folder for the dimension.

2. Right-click Levels, then choose Create Level.

The Create Level dialog box is displayed.
3. Complete the General tab of the Create Level dialog box.
4. Click Create.

The new level appears as an item in the Levels folder.

Figure 3-3 shows the creation of the Class level for the Product dimension.

3-6 Oracle OLAP User's Guide

Creating Dimensions

Figure 3-3 Creation of the Class Level

* Create Level @
Ceneral |

Specify Ceneral Level Inform ation

Mame: [cLass

Short Label: |Class

Long Label: |Class

Description: |Class Level|

Help | E Create ;| Cancel

Creating Hierarchies

Dimensions can have one or more hierarchies. They can be level-based or value-based.

Level-Based Hierarchies

Most hierarchies are level-based. Analytic Workspace Manager supports these
common types of level-based hierarchies:

= Normal hierarchies consist of one or more levels of aggregation. Members roll up
into the next higher level in a many-to-one relationship, and these members roll
up into the next higher level, and so forth to the top level.

= Ragged hierarchies contain at least one member with a different base, creating a
"ragged" base level for the hierarchy. Ragged hierarchies are not supported for
cube materialized views.

» Skip-level hierarchies contain at least one member whose parents are more than
one level above it, creating a hole in the hierarchy. An example of a skip-level
hierarchy is City-State-Country, where at least one city has a country as its parent
(for example, Washington D.C. in the United States).

In relational source tables, a skip-level hierarchy may contain nulls in the level
columns. Skip-level hierarchies are not supported for cube materialized views.

Multiple hierarchies for a dimension typically share the base-level dimension members
and then branch into separate hierarchies. They can share the top level if they use all
the same base members and use the same aggregation operators. Otherwise, they need
different top levels to store different aggregate values. For example, a Customer
dimension may have multiple hierarchies that include all base-level customers and are
summed to a shared top level. However, a Time dimension with calendar and fiscal
hierarchies must aggregate to separate Calendar Year (January to December) and
Fiscal Year (July to June) levels, because they use different selections of base-level
members.

Value-Based Hierarchies

You may also have dimensions with parent-child relations that do not support levels.
For example, an employee dimension might have a parent-child relation that identifies
each employee's supervisor. However, levels that group together first-, second-, and
third-level supervisors and so forth may not be meaningful for analysis. Similarly, you
might have a line-item dimension with members that cannot be grouped into
meaningful levels. In this situation, you can create a value-based hierarchy defined by
the parent-child relations, which does not have named levels. You can create

Creating Dimensions and Cubes 3-7

Creating Dimensions

value-based hierarchies only for dimensions that use the source keys, because
surrogate keys are formed with the names of the levels.

To create a hierarchy:
1. Expand the folder for the dimension.

2. Right-click Hierarchies, then choose Create Hierarchy.
The Create Hierarchy dialog box is displayed.

3. Complete the General tab of the Create Hierarchy dialog box.
Click Help for information about these choices.

4. Click Create.
The new hierarchy appears as an item in the Hierarchies folder.

Figure 3—4 shows the creation of the Primary hierarchy for the Product dimension.

Figure 3—4 Creation of the Product Primary Hierarchy

*% Create Hierarchy

Ceneral |

Specify General Hierarchy Information

Hame [PRIMARY

Short Label: |Prud Primary

|
|
Long Label: |Product Primary |
|

Description |Product Primary Hierarchy

Set as Default Hierarchy

(o) Level Based Hierarchy () Walue Based Hierarchy

Define the lewels for this hierarchy by moving levels from the Awailable list 1o the selected list. The order of
levels in the Selected list reflect the order of the levels (highest to lowesty in the hierarchy.

Auwailable Levels: Selecred Lewvels (Highest 1o Lovwest

Help | Create §| Cancel

Creating Attributes

Attributes provide information about the individual members of a dimension. They
are used for labeling crosstabular and graphical data displays, selecting data,
organizing dimension members, and so forth.

Automatically Defined Attributes
Analytic Workspace Manager creates some attributes automatically when creating a
dimension. These attributes have a unique type, such as "Long Description."

All dimensions are created with long and short description attributes. If your source
tables include long and short descriptions, then you can map the attributes to the
appropriate columns. However, if your source tables include only one set of

3-8 Oracle OLAP User's Guide

Creating Dimensions

descriptions, then you can map the long description attributes. If you map the short
description attributes to the same column, the data will be loaded twice.

Time dimensions are created with time-span and end-date attributes. This information
must be provided for all Time dimension members.

User-Defined Attributes

You can create additional "User" attributes that provide supplementary information
about the dimension members, such as the addresses and telephone numbers of
customers, or the color and sizes of products.

To create an attribute:
1. Expand the folder for the dimension.

2. Right-click Attributes, then choose Create Attribute.
The Create Attribute dialog box is displayed.
3. Complete the General tab of the Create Attribute dialog box.

Some attributes apply to all dimension members, and others apply to only one
level. Your selection in the Apply Attributes To box controls the mapping of the
attribute to one column or to more than one.

Click Help for information about these choices.

4. To change the data type from the default choice of VARCHAR2, complete the
Implementation Details tab.

5. Click Create.
The new attribute appears as an item in the Attributes folder.

Figure 3-5 shows the creation of the Marketing Manager attribute for the Product
dimension. Notice that this attribute applies only to the Item level.

Figure 3-5 Creation of the Product Marketing Manager Attribute

* Create Attribute @

r General r Implementation Cetails |

Specify Ceneral Attribute Information

Name [MARKETIMG_MANAGER |
Shart Label: |Mkting Mar |
Long Label: |Marketing hanager |
Description |Pr0auct Marketing Manager |
Attribute Type: |User vl
[#] Index

[Default Order
Apply Attributes To:

B A PRODUCT
B A PRIMARY

[

ST & FAMILY || | Select All |
“f % |=] | Deselect All |

| Cancel |

Creating Dimensions and Cubes 3-9

Creating Dimensions

Unique Key Attributes

Materialized views require that each dimension of the cube have unique key
attributes. These attributes store the original key values of the source dimensions,
which may have been changed when creating the embedded total dimensions of the
cubes.

Unique key attributes are created automatically by Analytic Workspace Manager for
the dimensions of a cube materialized view.

Mapping Dimensions

Mapping identifies the relational data source for each dimensional object. After
mapping a dimension to a column of a relational table or view, you can load the data.
You can create, map, and load each dimension individually, or perform each step for
all dimensions before proceeding to the next step.

Mapping Window

The mapping window has a tabular view and a graphical view.

= Tabular view: Drag-and-drop the names of individual columns from the schema
navigation tree to the rows for the dimensional objects.

= Graphical view: Drag-and-drop icons, which represent tables and views, from the

schema navigation tree onto the mapping canvas. Then draw lines from the

columns to the dimensional objects.

Click Help on the Mapping page for more information. When you are done mapping
the dimension, click Apply.

Figure 3-6 shows the Product dimension mapped in the tabular view.

Figure 3—6 Product Dimension Mapped in Tabular View

) Analytic Workspace Manager

Eile Tools Help

g ITEM_DSC_DUTCH
g ITEM_PACKAGE
2 ITEM_MAREETING_MAN
2b, ITEM_BUYER

3 FAMILY_ID

3 FAMILY_DSC

b FAMILY_DSC_DUTCH
b, CLASSID

3t CLASS_DSC

b, CLASS_DSC_FREMCH
b, CLASS_DSC_DUTCH
b, TOTALID

3% TOTAL_DSC

by TOTAL_DSC_FREMCH
2, TOTAL_DSC_DUTCH
B TIME_DIM

LOMG_DESCRIFTION
SHORT _DESCRIFTION
FEODUCT _TOTAL_ID
EICLASS
Member
LOMG_DESCRIFTION
SHORT _DESCRIFTION
FEODUCT _CLASS_ID
EIFAMILY
Member
LOMG_DESCRIFTION
SHORT _DESCRIFTION
FEODUCT _FAMILY_ID
EITEM
Member
LOMG_DESCRIFTION
SHORT _DESCRIFTION

GLOBAL PRODUCT _DIM.TOTAL_DSC
GLOBAL PRODUCT _DIM.TOTAL_DSC
GLOBAL PRODUCT _DIM.TOTAL_ID

GLOBAL PRODUCT _DIM. CLASS_ID
GLOBAL PRODUCT _DIM. CLASS_DSC
GLOBAL PRODUCT _DIM. CLASS_DSC
GLOBAL PRODUCT _DIM. CLASS_ID

GLOBAL PRODUCT _DIM.FAMILY_ID
GLOBAL PRODUCT _DIM.FAMILY_DSC
GLOBAL PRODUCT _DIM.FAMILY_DSC
GLOBAL PRODUCT _DIM.FAMILY_ID

GLOBAL PRODUCT _DIM.ITEM_ID
GLOBAL PRODUCT _DIM.ITEM _DSC
GLOBAL PRODUCT _DIM.ITEM _DSC

4
M :?]”: §§§ Eﬂ &T—;- Type of Dimension Table{s): |StarSchema V|
G PRODUCT_DIM [+ PRODUCT | Saurce Colurnn
b ITEM_ID: EIHIERARCHIES [«
%, ITEM_DSC EIPRIMARY
|-2b, ITEM_DSC_FRENCH STOTAL
Member GLOBAL PRODUCT _DIM. TOTAL_ID

tLFR UNTe_FACT BUYER GLOBAL PRODUCT _DIM.ITEM_BUYER

o - MARKET ING_MANAGER GLOBAL PRODUCT _DIM.ITEM_MARKETING_MANAGER |
I = PACKAGE GLOBAL PRODUCT _DIM. ITEM _PACKAGE E

T Sy nin v | — =

| I [T»] « s [Ty

L et]

3-10 Oracle OLAP User's Guide

Creating Dimensions

Source Data Query

You can view the contents of a particular source column without leaving the mapping
window. The information is readily available, eliminating the guesswork when the
names are not adequately descriptive.

To see the values in a particular source table or view:

1. Right-click the source object in either the schema tree or the graphical view of the
mapping canvas.

2. Choose View Data from the pop-up menu.

Figure 3-7 shows the data stored in the PRODUCT_DIM table.

Figure 3-7 Data in the PRODUCT_DIM Table

%% GLOBAL.PRODUCT,_DIM Data

Fetched 36 rows

ITEM _ID ITEM _D5C ‘ . | . | [TEM _PACKACE | ITEM_MARKE.. |ITEM_BUYER |FAMILY_ID | FAMILY _DSC
ENWY STD Envoy Standard .. Laptop Val... Furst Kenyon LTPC Fortable PCs|a
ENWY EXE Envoy Executive L.l..) Executive Furst Kenyon LTPC Portable PCs
ENWY AEM Envoy Ambassador L.l.. Furst Kenyon LTPC Portable PCs
SENT STD sentinel Standard) Furst Kenyon DTPC Desktop PCs
SENT FIN sentinel Financial ..., Furst Kenyon DTPC Desktop PCs
SENT MM Sentinel Multimedia ..., Multimedia Furst Kenyon DTPC Desktop PCs
LT CASE Laptop carrying case ...Laptop val... |Burtis Berry ACC Accessories
17 SWGA Monitor- 17"Super VGA Executive Furst Berry HON Monitors

19 SWGA Monitor- 19"Super VGA Multimedia Furst Berry HON Monitors
ENWY EXT KBD Enwoy External Keyboard Executive Burtis Berry ACC Accessories
EXT KED External 101-key keyhoard Multimedia Burtis Berry ACC Accessories

S56KPS MODEM |S6Kbps V.90 Tyvpe IT Modem Executive Jacksaon Monturio MOD Modems,/ Fax

512 UsB DRY |512MB UsSB Drive Jacksaon Monturio MEM Hemory

10E UsSBE DRY |1GB USB Drive Jacksaon Monturio MEM Hemory

MM SPKR 3 Multimedia speakers- 3" cones Executive Burtis Berry aCC ACCeSsOries

05 1 USER Uni ¥ Aindows 1-user pack A1 Furst Berry 05 Operating ..[|
05 5 USER Uni ¥ Aindows S-user pack Furst Berry 05 Operating ..
MOUSE PAD Mouse Pad A1 Burtis Berry aCC ACCeSsOries
144MB DISK 1.44MB External 3.5" Diskette Executive Burtis Berry aCC ACCeSsOries

MM SPKR 5 Multimedia speakers- 5" cones MuTtimedia Burtis Berry aCC ACCeSsOries
F23MODEM SaKbps V.92 Type IT Fax/Moden Laptop Wal... Jackson Monturio MOD Modems,/ Fax

INT CD ROM Internal 48X CD-ROM Laptop Wal... Jackson Monturio DISK CD/DWD

INT BX DVD Internal - DWD-RW - 8} Jacksaon Monturio DISK CD/DWD —
E¥T 0 EOK Fxterna] A '] lacksnn Monturin NTSK CNANTL =

4|

] [»]

| cose |

Loading Data Into Dimensions

Analytic Workspace Manager provides several ways to load data into dimensional
objects. The quickest way when developing a data model is using the default choices
of the Maintenance Wizard. Other methods may be more appropriate in a production
environment than the one shown here. They are discussed in "Choosing a Data
Maintenance Method" on page 3-21.

To load data into the dimensions:

1. In the navigation tree, right-click the Dimensions folder or the folder for a
particular dimension.

2. Choose Maintain Dimension.
The Maintenance Wizard opens on the Select Objects page.

3. Select one or more dimensions from Available Target Objects and use the shuttle
buttons to move them to Selected Target Objects.

4. Click Finish to load the dimension values immediately.

Creating Dimensions and Cubes 3-11

Creating Dimensions

Displaying the

The additional pages of the wizard enable you to create a SQL script or submit the
load to the Oracle job queue. To use these options, click Next instead.

5. Review the build log, which appears when the build is complete. If the log shows
that errors occurred, then fix them and run the Maintenance Wizard again.

Errors are typically caused by problems in the mapping. Check for incomplete
mappings or changes to the source objects.

Figure 3-8 shows the first page of the Maintenance Wizard. Only the Product
dimension has been selected for maintenance. All the Product dimension members
and attributes will be fetched from the mapped relational sources.

Figure 3-8 Loading Dimension Values into the Product Dimension

8% Maintenance Wizard: Select ohjects

Choose dimensions to be maintained for ahalytic workspace
CLOBALGLOBAL

Available Target Chjects Selected Target Chjects
E--@Dimensions =+ Dimensions
AT CHANNEL
-] CUSTOMER
SN FRODLICT
§LAT TIME
EE' Cubes

EBYRIEIR

[]ladd the Dimensions of the Cubes

[ﬂext>§[Einish][Cancel }

Dimension Members

After loading a dimension, you can display the dimension members in Analytic
Workspace Manager.

To display dimension members:
1. In the navigation tree, right-click the name of a dimension.

2. Choose View Data.

Figure 3-9 shows the Product dimension members.

3-12 Oracle OLAP User's Guide

Creating Cubes

Figure 3-9 Displaying the Product Dimension

%% PRODUCT Dimension E]

'Product' Dimension Members 1ofl2 Selected
EQ: Total Product
EQ: Hardware
@ [§ co/ovD
EQ: Deskiop PCs
@ Sentinel Financial
@ Sentinel Multimedia
@ Sentinel Standard
[} Portable PCs
Q: Memory
Q: ModemsFax
Q: Monito

=] EY:
@]@]ﬁ]TomL -

Displaying the Dimension View Descriptions

The Maintenance Wizard automatically generates relational views of dimensions and
hierarchies. Chapter 4 describes these views and explains how to query them.

Figure 3-10 shows the description of the relational view of the Product Primary

hierarchy.

Figure 3-10 Product Primary Hierarchy View

i Analytic Workspace Manager

Eile Tools Help
4
al) - OLAP 11g M | General ‘
Specify Wiew Inform ation
AL
.alytic Workspaces Difmension Mame: FROGLCT
! GLOBAL {attached RW))
]__% Dimensions Hierarchy Name: PRIMARY
B CHANNEL Wiew MName PRODUCT _PRIMARY VIV
B0 CUSTOMER
BN PRODUCT
@ vl Column Mame Data Tyoe Object Type
[Hierarchies DIM_KEY WARCHARZ Ky
-@Attributes LEVEL_MAME WARCHARZ Lewel Mame
] R FAREMNT WARCHARZ Parent
U Mappings TOTAL YARCHARZ Hierarchy Lewel
E% Wiews CLASS WARCHARZ Hierarchy Lewel
o @PRODUCT_VIEW— [Cimensi Fah LY WARCHARZ Hierarchy Lewvel
@ PR 7 1 ITEM WARCHARZ Hierarchy Lewvel
——— = LOMG_DESCRIPTION VARCHAR2 Atribute
B Data Security SHORT _DESCRIPTION VARCHARZ Agtripute
B 5 TIME
]EE' Cubes
]EE Meazure Folders
Security Roles 4] [T
Default system-generated dimension member view. Returns one row for each dimension member.
rts
T
4] e [»

Creating Cubes

Cubes are informational objects that identify measures with the exact same dimensions
and thus are candidates for being processed together at all stages: data loading,

aggregation, storage, and querying.

Creating Dimensions and Cubes 3-13

Creating Cubes

Cubes define the shape of your business measures. They are defined by a set of
ordered dimensions. The dimensions form the edges of a cube, and the measures are
the cells in the body of the cube.

To create a cube:
1. Expand the folder for the analytic workspace.

2. Right-click Cubes, then choose Create Cube.
The Create Cube dialog box is displayed.
3. On the General tab, enter a name for the cube and select its dimensions.

4. On the Aggregation tab, click the Rules subtab and select an aggregation method
for each dimension. If the cube uses more than one method, then you may need to
specify the order in which the dimensions are aggregated to get the desired
results.

You can ignore the bottom of the tab, unless you want to exclude a hierarchy from
the aggregation.

5. Oracle OLAP will determine the best partitioning and storage options for the cube
after it is mapped. However, if you want to define these options yourself, then
complete the Partitioning and Storage tabs before creating the cube.

6. Click Create. The new cube appears as a subfolder under Cubes.
Figure 3-11 shows the Rules subtab for the Units cube with the list of operators
displayed.

See Also: "Aggregation Operators" on page 9-3 for descriptions of
the aggregation operators

Figure 3-11 Selecting an Aggregation Operator

*% Create Cube g|
(Ceneral rAggregation r Partitioning r Storage r Materialized Wiews |
Specify the aggregation rules of the cube
Rules Precompute |
Order and Method
Choose an operator for each dimension.
Aggregation Crder and Method:
GOrder | Dimension COperatar
| Sum -
2 STCHAMMEL Maxirmum 4+
2 &l CUSTOMER, Monadditive (Do Mot Summarize)
4 SIPRODUCT Scaled Sum |+
neighted Average
Weighted First
Aggregation Hierarchies Weighted Last
Waighted Sum
Aggregate the cube using selected hierarchies: 4
BV A TIME |~
L -
EH¥ &I CHANNEL | selectal |
HE = o
H = ‘é | Deselect All ‘
-V I CUSTOMER
LA L
: FE A -
B ST opanieT 2
| Help ‘ - Create Cancel

3-14 Oracle OLAP User's Guide

Creating Cubes

Creating Measures

Measures store the facts collected about your business. Each measure belongs to a
particular cube, and thus shares particular characteristics with other measures in the
cube, such as the same dimensions. The default characteristics of a measure are
inherited from the cube.

To create a measure:

1.
2

Expand the folder for the cube that has the dimensions of the new measure.
Right-click Measures, then choose Create Measure.

The Create Measure dialog box is displayed.

On the General tab, enter a name for the measure.

Click Create.

The new measure appears in the navigation tree as an item in the Measures folder.

Figure 3-12 shows the General tab of the Create Measure dialog box.

Figure 3—12 Creating the Sales Measure

B Create Measure @

rGeneraI rlmplemerdation Dretailz |

Specify General Measure Information

[ame:

Short Label: |Sa|es

|
|
Long Label: [Uni Sales |
|

De=cription: |Un'rt Sales Measure

Help Creste || Cancel

Mapping Cubes

You use the same interface to map cubes as you did to map dimensions, as described
in "Mapping Dimensions" on page 3-10.

To map a cube in the graphical view:

1.
2.

Define the cube and its measures.
In the navigation tree, expand the Cubes folder and click Mappings.

The Mapping Window will be displayed in the right pane. You will see a schema
navigation tree and a table with rows for the measures, dimensions, and levels.

Enlarge the mapping window by dragging the divider to the left.

In the schema navigation tree, locate the tables with the measures. Drag-and-drop
them onto the mapping canvas.

Draw lines from the source columns to the target objects.

To draw a line, click the output connector of the source column and drag it to the
input connector of the target object. You must map both the measures and the
related dimension keys.

Creating Dimensions and Cubes 3-15

Creating Cubes

6. To uncross the lines, click the Auto Arrange Mappings tool.

7. When you have mapped all objects for the dimension, drag the divider to the right
to restore access to the navigation tree.

Figure 3-13 shows the mapping canvas with the Units cube mapped to columns in the
UNITS_FACT table. The mapping toolbar is at the top.

Figure 3-13 Units Cube Mapped in the Graphical View

8l Analytic Workspace Manager

Eile Tools Help

4 o -
WM O #ETS

A
[

4 () uNITS_CUBE o

I I
T MEASURES
o [LNITS

w

w

SALES

I - > cosT
UNITS T2q F © DIMENSIONS
SALES T3 F STIME
cosT g b TOTAL

FISCAL_YEAR

FISCAL_QUARTER
CALEMDAR_YEAR
CALEMNDAR_QUARTER
MONTH

C/ PRODUCT
TOTAL

CHANMEL_ID .k

wmig=
=1
Imo
._035
L
o 0T
i i
=l (=)
o omow
oo o
S
TT T
W || w v

W | | g

© CUSTOMER
TOTAL
MARKET SEGMENT
ACCOUNT
REGION
WAREHOUSE

W | | | g | g

k3
=
[=]
=
E

w
I}
S

E

=

m

[4]

4T = [T]

Choosing a Partitioning Strategy

Partitioning is a method of physically storing the measures in a cube. It improves the
performance of large measures in the following ways:

= Improves scalability by keeping data structures small. Each partition functions like
a smaller measure.

= Keeps the working set of data smaller both for queries and maintenance, since the
relevant data is stored together.

= Enables parallel aggregation during data maintenance. Each partition can be
aggregated by a separate process.

= Simplifies removal of old data from storage. Old partitions can be dropped, and
new partitions can be added.

The number of partitions affects the database resources that can be allocated to loading
and aggregating the data in a cube. Partitions can be aggregated simultaneously when
sufficient resources have been allocated.

3-16 Oracle OLAP User's Guide

Creating Cubes

The Cube Partitioning Advisor analyzes the source tables and develops a partitioning
strategy. You can accept the recommendations of the Cube Partitioning Advisor, or you
can make your own decisions about partitioning.

Note: Run the Cube Partitioning Advisor after mapping the cube to
a data source and before loading the data. You can change the
partitioning strategy at any time using the Cube Partitioning Advisor,
but you will need to reload the data afterward.

You can specify your own partitioning strategy only when creating the
cube.

Choosing a Dimension for Partitioning

If your partitioning strategy is driven primarily by life-cycle management
considerations, then you should partition the cube on the Time dimension. Old time
periods can then be dropped as a unit, and new time periods added as a new partition.
In Figure 3-15, for instance, the Quarter level of the Time dimension is used as the
partitioning key. The Cube Partitioning Advisor has a Time option, which will
recommend a hierarchy and a level in the Time dimension for partitioning.

If life-cycle management is not a primary consideration, then run the Cube
Partitioning Advisor and choose the Statistics option. The Cube Partitioning Advisor
will develop a strategy designed to achieve optimal build and query performance.

If you bypass the Partitioning tab, then Oracle OLAP typically chooses one of the
middle levels of the Time dimension as the partitioning key. If the source fact table is
partitioned, then the cube will be partitioned on the same dimension.

To run the Cube Partitioning Advisor:
1. Map the cube to its data source, if you have not done so already:.

2. On the navigation tree, select the cube to display its property pages.
3. On the Partitioning tab, click Cube Partitioning Advisor.
4. Choose Partition Using a Time Dimension or Partition Using Statistics.

Wait while the Cube Partitioning Advisor analyzes the cube. When it is done, the
Cube Partitioning Advisor displays its recommendations.

5. Evaluate the recommendations of the Cube Partitioning Advisor.

= Select Accept Partition Advice to accept the recommendations. The cube will
be re-created with the new partitions.

» Clear the Accept Partition Advice box to reject the recommendations.
6. Click OK.
You will be returned to the Partitioning tab.

Figure 3-14 shows the Cube Partitioning Advisor dialog box.

Creating Dimensions and Cubes 3-17

Creating Cubes

Figure 3—-14 Partitioning a Cube

B Partitioning Advisor

Choose to parttion the cube using & Time dimension when cube
updates primarily consist of adding new time periods and deleting old
titme periods. Inthis case, processing of the cube is localized to the
pattition with nes or updsted time periods.

Choose to partiion the cube using statistics when the cube is updated
ACr0SS hany time periods. This will ocour when data from dlder time

periods is commonly updated and swhen other dimensions commanly
changed with nevy members or updated hisrarchies.

-::}_.- Pattition using & Time dimension

() Partition using statistics

| Continue || Cancel

Example of a Partitioned Dimension

The Cube Partitioning Advisor might recommend partitioning at the Quarter level of
the Calendar hierarchy of the Time dimension. Each Quarter and its descendants are
stored in a separate partition. If there are three years of data in the analytic workspace,
then partitioning on Quarter produces 12 bottom partitions, in addition to the default
top partition. The top partition contains all remaining levels, that is, those above
Quarter (such as Year) and those in other hierarchies (such as Fiscal Year or
Year-to-Date).

Figure 3-15 illustrates a Time dimension partitioned by Quarter.

Figure 3—-15 Partitioning Time by Quarter

Time Dimension 2004 Top Partition
Calendar Hierarchy g % 2005 Calendar Years and
3 Years 2006 Fiscal Hierarchy
12 Quarters Jan-06 B
12 Bottom Partitions
m Calendar Quarters

and Manths

36 Months

Loading Data Into a Cube

You load data into cubes using the same methods as dimensions. However, loading
and aggregating the data for your business measures typically takes more time to
complete. Unless you are developing a dimensional model using a small sample of
data, you may prefer to run the build in one or more background processes.

3-18 Oracle OLAP User's Guide

Creating Cubes

1. In the navigation tree, right-click the Cubes folder or the name of a particular cube.
2. Choose Maintain Cube.
The Maintenance Wizard opens on the Select Objects page.

3. Select one or more cubes from Available Target Objects and use the shuttle buttons
to move them to Selected Target Objects. If the dimensions are already loaded, you
can omit them from Selected Target Objects.

4. On the Dimension Data Processing Options page, you can keep the default values.

5. On the Task Processing Options page, you can submit the build to the Oracle job
queue or create a SQL script that you can run outside of Analytic Workspace
Manager.

You can also select the number of processes to dedicate to this build. The number
of parallel processes is limited by the smallest of these numbers: The number of
partitions in the cube, the number of processes dedicated to the build, and the
setting of the JOB_QUEUE_PROCESSES initialization parameter.

Click Help for information about these choices.
6. Click Finish.
Figure 3-16 shows the build submitted immediately to the Oracle job queue.

Figure 3-16 Selecting the Task Processing Options

8 Maintenance Wizard: Analytic Workspace task processing options (GLOBAL.GLOBAL) g|

Choose how and when the maintainence task is processed.

Dﬁun maintenance task immediately in this session
Submit the maintenance task to the Oracle Job Queue

(%) Run immediately
() Run at a future time

(BETHS EXRE] I 04/06/2007 13343
Maximum number of parallel processes:

[] save maintenance task 1o script
File Mame:

L3

| Cancel ‘

| Finish

Help = Back

Displaying the Data in a Cube

After loading a cube, you can display the data for your business measures in Analytic
Workspace Manager.

To display the data in a cube:
1. In the navigation tree, right-click the cube.

2. Choose View Data from the pop-up menu.

The Measure Data Viewer displays the selected measure in a crosstab at the top of the
page and a graph at the bottom of the page. On the crosstab, you can expand and
collapse the dimension hierarchies that label the rows and columns. You can also
change the location of a dimension by pivoting or swapping it. If you wish, you can

Creating Dimensions and Cubes 3-19

Creating Cubes

use more than one dimension to label the columns and rows, by nesting one
dimension under another.

= To pivot, drag a dimension from one location and drop it at another location,
usually above or below another dimension.

= To swap dimensions, drag and drop one dimension directly over another
dimension, so they exchange locations.

To make extensive changes to the selection of data, choose Query Builder from the File
menu.

Figure 3-17 shows the Units cube in the Measure Viewer.

Figure 3—-17 Displaying the Units Cube

%% Measure Data Viewer [g|
File
& |Beul=sB=mn, .09 BB
Pagenemsﬁ Praduct Tatal Product ~|7] Channel Total Channel |
El» 2006
Units | Sales | Cost
= [
+ Total Custarmer 584,929.00 140,138,317.39 129,113,769.97
» HMorth America 338,222.00 71,893,281.76 65,575,453.41
v Asia Pacific 143,533.00 52,736,294.71 49 160,305.22
» Europe 102,174.00 15,508, 740,92 14,378011.34
av
Beu===56R B EES:

160M

1400

120M

100m [Total Customer

[North America

G = ElAsia Pacific

P E—— 4 T [Europe

40M

20M

AR —— [N i S
2006 Units 2006 Sales 2006 Cost

Displaying the Cube View Descriptions
The Maintenance Wizard automatically generates relational views of a cube. Chapter 4
describes these views and explains how to query them.

Figure 3-18 shows the description of the relational view of the Units cube.

3-20 Oracle OLAP User's Guide

Choosing a Data Maintenance Method

Figure 3-18 Description of the Units Cube View

| d) Analytic Workspace Manager

Eile Tools Help

=

3 {globaly

hemas

| GLOBAL

|55 Analytic warkspaces
£/l GLOBAL fattached RW)

o

P
General
Specify Wiew Information

Cube Mame: UNITS_CUBE

=32 Dimensions ViewName: | Jn TS _CUBE_VIEW
-] CHANNEL
L?’N ElbrelEs Column Name Data Type Object Type Dimansion
5N PRODUCT [TIME VARCHAR2 DIMENSION TIME
-5 TIME | CUSTOMER WARCHAR2 DIt ENSION CUSTOMER
£-Ef Cubes | PRODUCT WARCHARZ DIMENSION PRODUCT
() PRICE_COST_CLIBE | CHANNEL VARCHARZ DIMENSION CHANNEL
= UNITS_CUBE | SALES MUMEER, MEASURE
BE Measures UNITS MUMBEF. MEASURE

] saLes | COsT MUMEER. MEASURE

-] unms

-] cosT

g Calculated Measures
% Manpings
L;-_l\iieus

4 Cube Scripts

&l Dara security

:“'.-f}] Measure Folders

[‘ | e ‘_ =

Default system -generated cube member wiew. Returns one rowfor each cube member.

k
KR | F— e I L

[dee |

Choosing a Data Maintenance Method

While developing a dimensional model of your data, mapping and loading each object
immediately after you create it is a good idea. That way, you can detect and correct
any errors that you made to the object definition or the mapping.

However, in a production environment, you want to perform routine maintenance as
quickly and easily as possible. For this stage, you can choose among data maintenance
methods.

You can refresh all cubes using the Maintenance Wizard. This wizard enables you to
refresh a cube immediately, or submit the refresh as a job to the Oracle job queue, or
generate a PL/SQL script. You can run the script manually or using a scheduling
utility, such as Oracle Enterprise Manager Scheduler or the DBMS_SCHEDULER
PL/SQL package.

The generated script calls the BUILD procedure of the DBMS_CUBE PL/SQL package.
You can modify this script or develop one from scratch using this package.

The data for a partitioned cube will be loaded and aggregated in parallel when
multiple processes have been allocated to the build. You will be able to see this in the
build log.

In addition, each cube can support these data maintenance methods:
s Custom cube scripts
» Cube materialized views

If you are defining cubes to replace existing materialized views, then you will use the
materialized views as an integral part of data maintenance. Materialized view
capabilities restrict the types of analytics that can be performed by a custom cube
script.

Creating Dimensions and Cubes 3-21

Choosing a Data Maintenance Method

See Also:
s "Build Logs" on page 7-5

s 'Parallelism" on page 7-6

Creating and Executing Custom Cube Scripts

A cube script is an ordered list of steps that prepare a cube for querying. Each step
represents a particular data transformation. By specifying the order in which these
steps are performed, you can allow for interdependencies.

Each cube automatically has a default cube script that loads the data and aggregates it
using the rules defined on the cube. You can define any number of additional scripts
and designate one of them as the default cube script. All methods of refreshing a cube
execute the default cube script. You can execute other cube scripts manually using the
Maintenance Wizard.

You can choose from these step types:

Clear Data: Clears the data from the entire cube, from selected measures, or from
selected portions of the cube. You can clear just the detail data (called leaves) for a
fast refresh, just the aggregate data, or both for a complete refresh. Clearing old
data values is typically done before loading new values.

Load: Loads the data from the source tables into the cube. You can load all
measures in the cube or just selected measures.

Aggregation: Generates aggregate values using the rules defined for the cube. You
can aggregate the entire cube, selected measures, or selected portions of the cube.

Analyze: Generates optimizer statistics, which can improve the performance of
some types of queries. For more information, see "Analyzing Cubes and
Dimensions" on page 7-9. Generating statistics is typically done at the end of data
maintenance.

OLAP DML: Executes a command or program in the OLAP DML.

PL/SQL: Executes a PL/SQL command or script. You can run a PL/SQL script, for
example, at the beginning of data maintenance to initiate a refresh of the relational
source tables.

If a cube is used to support advanced analytics in a cube script, then it cannot be
enhanced as a cube materialized view, as described in "Adding Materialized View
Capability to a Cube" on page 3-23. In this case, you are responsible for detecting when
the data in the cube is stale and needs to be refreshed.

To create a cube script:

1.
2

Expand the folder for a cube.

Right-click Cube Scripts, then choose Create Cube Script.
The Create Cube Script dialog box is displayed.

On the General tab, enter a name for the cube script.

To create a new step, click New Step.

Choose the type of step.

The New Step dialog box is displayed for that type of step.
Complete the tabs, then click OK.

3-22 Oracle OLAP User's Guide

Choosing a Data Maintenance Method

The new step is listed on the Cube Script General tab.

7. Click Create.

The new cube script appears as an item in the Cube Script folder.

8. To run the cube script:

a. Right-click the cube script on the navigation tree, and choose Run Cube

Script.

The Maintenance Wizard opens.

b. Follow the steps of the wizard.

c. To view the results, right-click the cube and choose View Data.

Figure 3-19 shows the Create Cube Script dialog box, in which several steps have

already been defined.

Figure 3-19 Creating a Cube Script

% Create Cube Script

Ceneral |

Specify Ceneral Cube Script Inform ation for UMITS_CLUEE

Mame: | CUSTOM_MAINTEMAMCE_SCRIFT

Default Script for this cube

Cube Script:

Define the Cube Script by creating and ordering processing steps:

| & MewStep || Edit Step... || Delete Step |

Help |

| Create §| Cancel

Adding Materialized View Capability to a Cube

Oracle OLAP cubes can be enhanced with materialized view capabilities. They can be
incrementally refreshed through the Oracle Database materialized view subsystem,
and they can serve as targets for transparent rewrite of queries against the source
tables. A cube that has been enhanced in this way is called a cube materialized view.

The OLAP dimensions associated with a cube materialized view are also defined with

materialized view capabilities.

A cube must conform to these requirements, before it can be designated as a cube

materialized view:

= All dimensions of the cube have at least one level and one hierarchy.

= All dimensions of the cube use the same aggregation operator, which is either SUM,

MIN, or MAX.

» The cube is fully defined and mapped. For example, if the cube has five measures,
then all five are mapped to the source tables.

Creating Dimensions and Cubes 3-23

Choosing a Data Maintenance Method

s The detail tables support dimension and rely constraints. If they have not been
defined, then use the Relational Schema Advisor to generate a script that defines
them on the detail tables.

» The cube is compressed.

n The cube can be enriched with calculated measures, but it cannot support more
advanced analytics in a cube script.

See Also: "Cube Materialized Views" on page 7-15

To add materialized view capabilities:
1. In the navigation tree, select a cube.

The property sheets for the cube are displayed.

2. Choose the Materialized Views tab.

3. Review the check list and, if some tests failed, fix the cause of the problem.
You cannot define a cube materialized view until the cube is valid.

4. For automatic refresh, complete just the top half of the page. For query rewrite,
complete the entire page.

Click Help for information about the choices on this page.
5. Click Apply.

The cube materialized views appear in the same schema as the analytic workspace. A
materialized view is created for the cube and each of its dimensions. Cube
materialized views do not store data; the data is stored in the cube. A CB$ prefix
identifies the tables as cube materialized views.

The initial state of a new materialized view is stale, so it will not support query rewrite
until after it is refreshed. You can specify the first refresh time on the Materialized
View tab of the cube, or you can run the Maintenance Wizard.

Figure 3-20 shows the Materialized View tab of the Units Cube. It specifies an
automatic refresh of the data every Thursday at 10:00 P.M.

3-24 Oracle OLAP User's Guide

Defining Measure Folders

Figure 3—-20 Defining a Materialized View

rceneral rAggregatiUn rPaniUUning rStDrage rMaterialized Wiewnis |
Choose this option to manage refresh of the Cube with the Materialized View refresh system
Enable Materialized View Refresh of the Cube

Choose how and when to refresh of the Cube with the Materialized YWiew refresh system

RefreshMethod: [fasr »| Refresh Made: [start f pext v |

Start With: | TRUNC({ TO_DATE('07/10/2007", 'MM/DD/ (Y HHZ4:MIS3)) + 792 | wogiry.. |
Mext Refresh: | TRUNC({ NEXT_DAY{ SYSDATE + 7, ‘Thursday'y) + 75200/86400 | | wodiry.. |
Constraints: () Trusted () Enforced

Choose this option to allow queries on the source tables of the Cube to be automatically rewritten to use
summary data in the Cube

[Enable Query Rewrite

Materialized Wiew Implem entation Details

r Com patibility Check list r Materialized Wiew details |

Status Required for |Object |Check
% Rewrite UMITS_CUBE User rust have create Materialized View privilege| <
[] Rewrite UMITS_CUBE Cube must be compressed
[] Rewrite UMITS_CUBE Cube must have one ar mare Measures
@ Rewrite UMITS_CUBE Cube must be fully mapped
[] Rewrite UMITS_CUBE Cube must have one ar maore Dimensions
@ Rewrite UMITS_CUBE Aggregation Operator must be the same for all Di
[] Refresh TIME Dimension must hawve one or mare Levels
@ Refresh TIME Dimension must be fully mapped
Refresh _T\MF Dirmensinn mu‘ t hawe nne nr more Hierarchis | = 3
| prosRe

Choose the Materialized View Advisor to generate the Materialized Wiew Source Tables Constraints script.

Help foply || Reven

Defining Measure Folders

Measure folders organize and label groups of measures. Users may have access to
several analytic workspaces or relational schemas with measures named Sales or
Costs, and measure folders provide a way for applications to differentiate among
them.

To create a measure folder:
1. Expand the folder for the analytic workspace.

2. Right-click Measure Folders, then choose Create Measure Folder from the pop-up
menu.

3. Complete the General tab of the Create Measure Folder dialog box.
Click Help for specific information about these choices.

The new measure folder appears in the navigation tree under Measure Folders. You
can also create subfolders.

Figure 3-21 shows creation of a measure folder.

Creating Dimensions and Cubes 3-25

Using Templates to Re-Create Dimensional Objects

Figure 3-21 Creating a Measure Folder

(X

B Create Measure Folder

General

Specify General Measure Folder Information

Dathe: |GLOBAL_MEASURES

Short Lakel |Global Measures

|
|
Long Label |Global Measures |
|

Description: |Glnbal Measures

Suvailable Measures: Selected Measures:

PRICE_COST_CUBE.COST
PRICE_COST_CUBE PRICE
UNITS_CLIEE

Help | creete || cancel

Using Templates to Re-Create Dimensional Objects

Analytic Workspace Manager enables you to save all or part of the data model as a text
file. This text file contains the XML definitions of the dimensional objects, such as
dimensions, levels, hierarchies, attributes, and measures. Only the metadata is saved,
not the data. Templates are small files, so you can easily distribute them by email or on
a Web site, just as the templates for Global and Sales History are distributed on the
Oracle Web site. To re-create the dimensional objects, you simply identify the
templates in Analytic Workspace Manager.

You can save the following types of objects as XML templates:

= Analytic workspace: Saves all dimensional objects. You can save measure folders
only by saving the complete analytic workspace.

s Dimension: Saves the dimension and its levels, hierarchies, attributes, and
mappings.

» Cube: Saves the cube and its measures, calculated measures, cube scripts, and
mappings.

You can save the template in anywhere on your local system.

To create a template:

In the navigation tree, right-click an analytic workspace, a dimension, or a cube, and
choose Save object to Template.

To re-create an analytic workspace from a template:

In the navigation tree, right-click Analytic Workspaces and choose Create Analytic
Workspace From Template.

To re-create a dimension or a cube from a template:
1. Create or open an analytic workspace.

2. In the navigation tree, right-click Dimensions or Cubes and choose Create object
From Template.

3-26 Oracle OLAP User's Guide

4

Querying Dimensional Objects

Oracle OLAP adds power to your SQL applications by providing extensive analytic
content and fast query response times. A SQL query interface enables any application
to query cubes and dimensions without any knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that comply with the structure expected by your applications,
using the system-generated views like base tables.

In this chapter, you will learn the basic methods for querying dimensional objects in
SQL. It contains the following topics:

= Exploring the OLAP Views

s Creating Basic Queries

» Creating Hierarchical Queries

= Using Calculations in Queries

= Using Attributes for Aggregation
= Viewing Execution Plans

= Querying the Data Dictionary

See Also:

= "Developing Reports and Dashboards Using SQL Tools and
Application Builders" on page 1-3 for a sample dashboard created
using Oracle Application Express

= "Overview of the Dimensional Data Model" on page 1-5 for a
discussion of cubes, dimensions, and hierarchies

Exploring the OLAP Views

The system-generated views are created in the same schema as the analytic workspace.
Oracle OLAP provides three types of views:

s Cube views
s Dimension views
= Hierarchy views

These views are related in the same way as fact and dimension tables in a star schema.
Cube views serve the same function as fact tables, and hierarchy views and dimension

Querying Dimensional Objects 4-1

Exploring the OLAP Views

Cube Views

views serve the same function as dimension tables. Typical queries will join a cube
view with either a hierarchy view or a dimension view.

Each cube has a cube view that presents the data for all the measures and calculated
measures in the cube. You can use a cube view like a fact table in a star or snowflake
schema. However, the cube view contains all the summary data in addition to the
detail level data.

Discovering the Names of the Cube Views
The default name for a cube view is cube_VIEW. To find the view for UNITS_CUBE in
your schema, you might issue a query like this one:

SQL> SELECT VIEW_NAME FROM USER_VIEWS WHERE VIEW_NAME LIKE 'UNITS_CUBE%';

VIEW_NAME

UNITS_CUBE_VIEW

The next query returns the names of all the cube views in your schema from USER_
CUBE_VIEWS:

SQL> SELECT VIEW_NAME FROM USER_CUBE_VIEWS;

VIEW_NAME

UNITS_CUBE_VIEW
PRICE_CUBE_VIEW

Discovering the Columns of a Cube View

Like a fact table, a cube view contains a column for each measure, calculated measure,
and dimension in the cube. In the following example, UNITS_CUBE_VIEW has
columns for the SALES, UNITS, and COST measures, for several calculated measures
on SALES, and for the TIME, CUSTOMER, PRODUCT, and CHANNEL dimensions.

SQL> DESCRIBE units_cube_view

Name Null? Type

SALES NUMBER

UNITS NUMBER

COST NUMBER
SALES_PP NUMBER
SALES_CHG_PP NUMBER
SALES_ PCTCHG_PP NUMBER
SALES_PROD_SHARE_PARENT NUMBER
SALES_PROD_SHARE_TOTAL NUMBER
SALES_PROD_RANK_PARENT_PP NUMBER

TIME VARCHAR2 (100)
CUSTOMER VARCHAR2 (100)
PRODUCT VARCHAR2 (100)
CHANNEL VARCHAR2 (100)

The USER_CUBE_VIEW_COLUMNS data dictionary view describes the columns of a
cube view, as shown by the following query.

SQL> SELECT COLUMN_NAME, COLUMN_TYPE FROM USER_CUBE_VIEW_COLUMNS
WHERE VIEW_NAME= 'UNITS_CUBE_VIEW';

4-2 Oracle OLAP User's Guide

Exploring the OLAP Views

COLUMN_NAME

COST

SALES_PP

SALES_CHG_PP
SALES_PCTCHG_PP
SALES_PROD_SHARE_PARENT
SALES_PROD_SHARE_TOTAL
SALES_PROD_RANK_PARENT_PP
TIME

CUSTOMER

PRODUCT

CHANNEL

13 rows selected.

COLUMN_TYPE

MEASURE
MEASURE
MEASURE
MEASURE
MEASURE
MEASURE
MEASURE
MEASURE
MEASURE
KEY
KEY
KEY
KEY

Displaying the Contents of a Cube View

You can display the contents of a cube view quickly with a query like this one. All
levels of the data are contained in the cube, from the detail level to the top.

SQL> SELECT sales, units,
FROM units_cube_view WHERE ROWNUM < 15;

CUSTOMER

PRODUCT

time, customer, product, channel

1120292752 4000968 TOTAL

3
2
2
3

1

Dimension and

134109248 330425 CY1999
130276514 534069 CY2003
100870877 253816 CY1998
136986572 565718 CY2005
140138317 584929 CY2006
144290686 587419 CY2004
124173522 364233 CY2000

92515295 364965 CY2002
116931722 415394 CY2001
1522409.5 88484 CY2000
7798426.6 97346 CY2001.
9691668.2 105704 CY2001
2617248.6 138953 CY2005

4 rows selected.

Hierarchy Views

.01
Q2
.03
.03

TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

Each dimension has one dimension view plus a hierarchy view for each hierarchy
associated with the dimension. For example, a Time dimension might have these three
views:

Time dimension view
Calendar hierarchy view

Fiscal hierarchy view

You can use dimension views and hierarchy views like dimension tables in a star
schema.

Querying Dimensional Objects 4-3

Exploring the OLAP Views

Discovering the Names of Dimension and Hierarchy Views

USER_CUBE_DIM VIEWS identifies the dimension views for all dimensions. The
default name for a dimension view is dimension_VIEW.

SQL> SELECT * FROM USER_CUBE_DIM_VIEWS;

DIMENSION_NAME VIEW_NAME
PRODUCT PRODUCT_VIEW
CUSTOMER CUSTOMER_VIEW
CHANNEL CHANNEL_VIEW
TIME TIME_VIEW

USER_CUBE_HIER_VIEWS identifies the hierarchy views for all the dimensions. For a
hierarchy view, the default name is dimension_hierarchy_ VIEW. The following
query returns the dimension, hierarchy, and view names.

SQL> SELECT * FROM USER_CUBE_HIER VIEWS ORDER BY DIMENSION_NAME;

DIMENSION_NAME HIERARCHY_NAME VIEW_NAME

CHANNEL PRIMARY CHANNEL_PRIMARY_VIEW
CUSTOMER SEGMENT CUSTOMER_SEGMENT_VIEW
CUSTOMER SHIPMENTS CUSTOMER_SHIPMENTS_VIEW
PRODUCT PRIMARY PRODUCT_PRIMARY_VIEW
TIME FISCAL TIME_FISCAL_VIEW

TIME CALENDAR TIME_CALENDAR_VIEW

Discovering the Columns of a Dimension View

Like a dimension table, a dimension view contains a key column, level name, level
keys for every level of every hierarchy associated with the dimension, and attribute
columns. In the following example, TIME_VIEW has a column for the dimension keys,
the level name, and the dimension attributes.

SQL> DESCRIBE time_view

Name Null? Type

DIM_KEY VARCHAR2 (100)
LEVEL_NAME VARCHAR2 (30)
DIM_ORDER NUMBER
END_DATE DATE
LONG_DESCRIPTION VARCHAR2 (100)
SHORT_DESCRIPTION VARCHAR2 (100)
TIME_SPAN NUMBER

USER_CUBE_DIM VIEW_COLUMNS describes the information in each column, as
shown in this query.

SQL> SELECT COLUMN_NAME, COLUMN_TYPE FROM USER_CUBE_DIM_VIEW_COLUMNS
WHERE VIEW_NAME='TIME_VIEW';

COLUMN_NAME COLUMN_TYPE
DIM_KEY KEY
LEVEL_NAME LEVEL_NAME
DIM_ORDER DIM_ORDER
END_DATE ATTRIBUTE
TIME_SPAN ATTRIBUTE
LONG_DESCRIPTION ATTRIBUTE
SHORT_DESCRIPTION ATTRIBUTE

4-4 Oracle OLAP User's Guide

Exploring the OLAP Views

7 rows selected.

Displaying the Contents of a Dimension View
The following query displays the level and attributes of each dimension key.

SQL> SELECT dim_key, level_name, long description description, time_span, end_date
FROM time_view WHERE dim_key LIKE '%2005%';

DIM _KEY LEVEL_NAME DESCRIPTION TIME_SPAN END_DATE
CY2005 CALENDAR_YEAR 2005 365 31-DEC-05
CY2005.02 CALENDAR_QUARTER 02.05 91 30-JUN-05
CY2005.04 CALENDAR_QUARTER 04.05 92 31-DEC-05
CY2005.03 CALENDAR_QUARTER 03.05 92 30-SEP-05
CY2005.01 CALENDAR_QUARTER 01.05 90 31-MAR-05
2005.01 MONTH JAN-05 31 31-JAN-05
2005.05 MONTH MAY-05 31 31-MAY-05
2005.07 MONTH JUL-05 31 31-JUL-05
2005.03 MONTH MAR-05 31 31-MAR-05
2005.04 MONTH APR-05 30 30-APR-05
2005.08 MONTH AUG-05 31 31-AUG-05
2005.09 MONTH SEP-05 30 30-SEP-05
2005.02 MONTH FEB-05 28 28-FEB-05
2005.11 MONTH NOV-05 30 30-NOV-05
2005.06 MONTH JUN-05 30 30-JUN-05
2005.10 MONTH 0CT-05 31 31-0CT-05
2005.12 MONTH DEC-05 31 31-DEC-05
FY2005 FISCAL_YEAR FY2005 365 30-JUN-05
FY2005.04 FISCAL_QUARTER Q4 FY-05 91 30-JUN-05
FY2005.01 FISCAL_QUARTER 01 FY-05 92 30-SEP-04
FY2005.02 FISCAL_QUARTER Q2 FY-05 92 31-DEC-04
FY2005.03 FISCAL_QUARTER 03 FY-05 90 31-MAR-05

22 rows selected.

Discovering the Columns of a Hierarchy View

Like the dimension views, the hierarchy views also contain columns for the dimension
key, level name, and level keys. However, all of the rows and columns are associated
with the dimension keys that belong to the hierarchy.

SQL> DESCRIBE time_calendar_view

Name Null? Type

DIM_KEY VARCHAR2 (100)
LEVEL_NAME VARCHAR2 (30)
DIM_ORDER NUMBER
HIER_ORDER NUMBER

LONG_DESCRIPTION
SHORT_DESCRIPTION
END_DATE
TIME_SPAN

PARENT

TOTAL
CALENDAR_YEAR
CALENDAR_QUARTER
MONTH

VARCHAR2 (100)
VARCHAR2 (100)
DATE

NUMBER
VARCHAR2 (100)
VARCHAR2 (100)
VARCHAR2 (100)
VARCHAR2 (100)
VARCHAR2 (100)

Querying Dimensional Objects 4-5

Creating Basic Queries

Displaying the Contents of a Hierarchy View

The following query displays the dimension keys, parent key, and the full ancestry for
calendar year 2005.

SELECT dim_key, long_description description, parent, calendar_year year,
calendar_quarter quarter, month FROM time_calendar_view
WHERE calendar_year='CY2005"'
ORDER BY level_name, end_date;

DIM_KEY DESCRIPTION PARENT YEAR QUARTER MONTH
CY2005.0Q1 Q1.05 CY2005 CY2005 CY2005.0Q1

CY2005.Q2 02.05 CY2005 CY2005 CY2005.0Q2

CY2005.Q3 03.05 CY2005 CY2005 CY2005.0Q3

CY2005.04 04.05 CY2005 CY2005 CY2005.04

CY2005 2005 TOTAL CY2005

2005.01 JAN-05 CY2005.0Q1 CY2005 CY2005.01 2005.01
2005.02 FEB-05 CY2005.Q1 CY2005 CY2005.0Q1 2005.02
2005.03 MAR-05 CY2005.Q1 CY2005 CY2005.01 2005.03
2005.04 APR-05 CY2005.Q2 CY2005 CY2005.Q2 2005.04
2005.05 MAY-05 CY2005.Q2 CY2005 CY2005.Q2 2005.05
2005.06 JUN-05 CY2005.02 CY2005 CY2005.02 2005.06
2005.07 JUL-05 CY2005.03 CY2005 CY2005.0Q3 2005.07
2005.08 AUG-05 CY2005.03 CY2005 CY2005.0Q3 2005.08
2005.09 SEP-05 CY2005.0Q3 CY2005 CY2005.03 2005.09
2005.10 OCT-05 CY2005.04 CY2005 CY2005.04 2005.10
2005.11 NOV-05 CY2005.04 CY2005 CY2005.04 2005.11
2005.12 DEC-05 CY2005.04 CY2005 CY2005.04 2005.12

17 rows selected.

Creating Basic Queries

Querying a cube is similar to querying a star schema. In a star schema, you join a fact
table to a dimension table. The fact table provides the numerical business measures,
and the dimension table provides descriptive attributes that give meaning to the data.
Similarly, you join a cube view with either a dimension view or a hierarchy view to
provide fully identified and meaningful data to your users.

For dimensions with no hierarchies, use the dimension views in your queries. For
dimensions with hierarchies, use the hierarchy views, because they contain more
information than the dimension views.

When querying a cube, remember these guidelines:
= Apply a filter to every dimension.

The cube contains both detail level and aggregated data. A query with an
unfiltered dimension typically returns more data than users need, which
negatively impacts performance.

= Let the cube aggregate the data.

Because the aggregations are already calculated in the cube, a typical query does
not need a GROUP BY clause. Simply select the aggregations you want by using
the appropriate filters on the dimension keys or attributes.

4-6 Oracle OLAP User's Guide

Creating Basic Queries

Applying a Filter to Every Dimension

To create a level filter, you must know the names of the dimension levels. You can
easily acquire them by querying the dimension or hierarchy views:

SQL> SELECT DISTINCT LEVEL_NAME FROM time_calendar_view;

LEVEL_NAME
CALENDAR_YEAR
CALENDAR_QUARTER
MONTH

TOTAL

Several data dictionary views list the names of the levels. The following example
queﬂesUSER_CUBE_HIER_LEVELS

SQL> SELECT LEVEL_NAME FROM USER_CUBE_HIER_LEVELS
WHERE DIMENSION_NAME = 'TIME' AND HIERARCHY_NAME='CALENDAR';

LEVEL_NAME

TOTAL
CALENDAR_YEAR
CALENDAR_QUARTER
MONTH

To see the importance of applying a filter to every dimension, consider the query in
Example 4-1, which has no filter on the time dimension.

Example 4-1 Displaying Aggregates at All Levels of Time

/* Select key descriptions and facts */
SELECT t.long_description time,
ROUND(f.sales) sales
/* From dimension views and cube view */
FROM time_calendar view t,
product_primary view p,
customer_shipments_view cu,
channel_primary_view ch,
units_cube_view f
/* No filter on Time */
WHERE p.level_name = 'TOTAL'
AND cu.level_name = 'TOTAL'
AND ch.level_name = 'TOTAL'
/* Join dimension views to cube view */
AND t.dim key = f.time
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
ORDER BY t.end_date;

Without a filter on the Time dimension, the query returns values for every level of
time. This is more data than users typically want to see, and the volume of data
returned can negatively impact performance.

TIME SALES
JAN-98 8338545
FEB-98 7972132
01.98 24538588

Querying Dimensional Objects 4-7

Creating Basic Queries

MAR-98 8227911
APR-98 8470315
MAY-98 8160573
JUN-98 8362386
02.98 24993273
JUL-98 8296226
AUG-98 8377587
SEP-98 8406728
03.98 25080541
O0CT-98 8316169
NOV-98 8984156
04.98 26258474
1998 100870877

Now consider the results when a filter restricts Time to yearly data.

Example 4-2 shows a basic query. It selects the Sales measure from UNITS_CUBE_
VIEW, and joins the keys from the cube view to the hierarchy views to get descriptions
of the keys.

Example 4-2 Basic Cube View Query

/* Select key descriptions and facts */
SELECT t.long_description time,
ROUND (f.sales) sales
/* From dimension views and cube view */
FROM time_calendar_view t,
product_primary view p,
customer_shipments_view cu,
channel_primary view ch,
units_cube_view f
/* Create level filters */
WHERE t.level_name = 'CALENDAR_YEAR'
AND p.level_name = 'TOTAL'
AND cu.level_name = 'TOTAL'
AND ch.level_name = 'TOTAL'
/* Join dimension views to cube view */
AND t.dim key = f.time
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
ORDER BY t.end_date;

Example 4-2 selects the following rows. For CUSTOMER, PRODUCT, and CHANNEL, only
one value is at the top level. TIME has a value for each calendar year.

TIME SALES
1998 100870877
1999 134109248
2000 124173522
2001 116931722
2002 92515295
2003 130276514
2004 144290686
2005 136986572
2006 140138317

4-8 Oracle OLAP User's Guide

Creating Basic Queries

9 rows selected.

Dimension attributes also provide a useful way to select the data for a query. The
WHERE clause in Example 4-3 uses attributes values to filter all of the dimensions.

Example 4-3 Selecting Data With Attribute Filters

/* Select key descriptions and facts */

SELECT t.long_description time,
p.long_description product,
cu.long_description customer,
ch.long_description channel,
ROUND (f.sales) sales

/* From dimension views and cube view */

FROM time_calendar_view t,
product_primary view p,
customer_shipments_view cu,
channel_primary view ch,
units_cube_view f

/* Create attribute filters */

WHERE t.long description in ('2005', '2006"')
AND p.package = 'Laptop Value Pack'
AND cu.long _description LIKE '$Boston%'
AND ch.long_description = 'Internet'

/* Join dimension views to cube view */
AND t.dim_key = f.time
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel

ORDER BY time, customer;

The query select two calendar years, the products in the Laptop Value Pack, the
customers in Boston, and the Internet channel.

TIME PRODUCT CUSTOMER CHANNEL SALES
2005 Laptop carrying case KOSH Entrpr Boston Internet 5936
2005 56Kbps V.92 Type II Fax/Modem KOSH Entrpr Boston Internet 45285
2005 Internal 48X CD-ROM KOSH Entrpr Boston Internet 2828
2005 Standard Mouse KOSH Entrpr Boston Internet 638
2005 Envoy Standard Warren Systems Boston Internet 19359
2005 Laptop carrying case Warren Systems Boston Internet 13434
2005 Standard Mouse Warren Systems Boston Internet 130
2006 Standard Mouse KOSH Entrpr Boston Internet 555
2006 Laptop carrying case KOSH Entrpr Boston Internet 6357
2006 56Kbps V.92 Type II Fax/Modem KOSH Entrpr Boston Internet 38042
2006 Internal 48X CD-ROM KOSH Entrpr Boston Internet 3343
2006 Envoy Standard Warren Systems Boston Internet 24198
2006 Laptop carrying case Warren Systems Boston Internet 13153
2006 Standard Mouse Warren Systems Boston Internet 83

14 rows selected.

Allowing the Cube to Aggregate the Data

A cube contains all of the aggregate data. As shown in this chapter, a query against a
cube just needs to select the aggregate data, not calculate the values.

The following is a basic query against a fact table:

/* Querying a fact table */

Querying Dimensional Objects 4-9

Creating Basic Queries

SELECT t.calendar_year_dsc time,
SUM(f.sales) sales
FROM time_dim t, units_fact £
WHERE t.calendar_year_dsc IN ('2005', '2006')
AND t.month_id = f.month_id
GROUP BY t.calendar_year_dsc;

The next query fetches the exact same results from a cube using filters:

/* Querying a cube */
SELECT t.long_description time, f.sales sales
FROM time_calendar view t,
product_primary view p,
customer_shipments_view cu,
channel_primary_view ch,
units_cube_view f
/* Apply filters to every dimension */
WHERE t.long_description IN ('2005', '2006")
AND p.level_name = 'TOTAL'
AND cu.level_name = 'TOTAL'
AND ch.level_name = 'TOTAL'
/* Join dimension views to cube view */
AND t.dim_key = f.TIME
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
ORDER BY time;

Both queries return these results:

2005 136986572
2006 140138317

The query against the cube does not compute the aggregate values with a SUM
operator and GROUP BY clause. Because the aggregates exist already in the cube, this
would re-aggregate previously aggregated data. Instead, the query selects the
aggregates directly from the cube and specifies the desired aggregates by applying the
appropriate filter to each dimension.

Query Processing

The most efficient queries allow the OLAP engine to filter the data, so that the
minimum number of rows required by the query are returned to SQL.

The following are among the WHERE clause operations that are pushed into the OLAP
engine for processing:

. >
L] >
m <
] <
L] IN

4-10 Oracle OLAP User's Guide

Creating Hierarchical Queries

= NOT IN
= IS NULL
s LIKE

= NOT LIKE

The OLAP engine also processes nested character functions, including INSTR,
LENGTH, NVL, LOWER, UPPER, LTRIM, RTRIM, TRIM, LPAD, RPAD, and SUBSTR.

SQL processes other operations and functions in the WHERE clause, and all operations
in other parts of the SELECT syntax.

Creating Hierarchical Queries

Drilling is an important capability in business analysis. In a dashboard or an
application, users click on a dimension key to change the selection of data. Decision
makers frequently want to drill down to see the contributors to a data value, or drill
up to see how a particular data value contributes to the whole. For example, the
Boston regional sales manager might start at total Boston sales, drill down to see the
contributions of each sales representative, then drill up to see how the Boston region
contributes to the New England sales total.

The hierarchy views include a PARENT column that identifies the parent of every
dimension key. This column encapsulates all of the hierarchical information of the
dimension: If you know the parent of every key, then you can derive the ancestors, the
children, and the descendants.

For level-based hierarchies, the LEVEL_NAME column supplements this information by
providing a convenient way to identify all the keys at the same depth in the hierarchy,
from the top to the base. For value-based hierarchies, the PARENT column provides all
the information about the hierarchy.

See Also: Chapter 6, "Developing Reports and Dashboards" about
using bind variables to support drilling

Drilling Down to Children

You can use the PARENT column of a hierarchy view to select only the children of a
particular value. The following WHERE clause selects the children of calendar year
2005.

/* Select children of calendar year 2005 */
WHERE t.parent = 'CY2005'

AND p.dim key = 'TOTAL'

AND cu.dim_key = 'TOTAL'

AND ch.dim_key = 'TOTAL'

The query drills down from Year to Quarter. The four quarters 91-05 to Q4-05 are the
children of year CY2005 in the Calendar hierarchy.

TIME SALES
Q01.05 31381338
02.05 37642741
03.05 32617249
04.05 35345244

Querying Dimensional Objects 4-11

Creating Hierarchical Queries

Drilling Up to Parents

The PARENT column of a hierarchy view identifies the parent of each dimension key.
Columns of level keys identify the full heritage. The following WHERE clause selects
the parent of a Time key based on its LONG_DESCRIPTION attribute.

/* Select the parent of a Time key*/
WHERE t.dim_key =
(SELECT DISTINCT parent
FROM time_calendar view
WHERE long_description='JAN-05")
AND p.dim_key= 'TOTAL'
AND cu.dim key = 'TOTAL'
AND ch.dim key = 'TOTAL'

The query drills up from Month to Quarter. The parent of month JAN-05 is the
quarter Q1-05 in the Calendar hierarchy.

Drilling Down to Descendants

The following WHERE clause selects the descendants of calendar year 2005 by selecting
the rows with a LEVEL_NAME of MONTH and a CALENDAR_YEAR of CY2005.

/* Select Time level and ancestor */
WHERE t.level_name = 'MONTH'
AND t.calendar_year = 'CY2005'
AND p.dim_key = 'TOTAL'
AND cu.dim _key = 'TOTAL'
AND ch.dim key = 'TOTAL'

The query drills down two levels, from year to quarter to month. The 12 months
Jan-05 to Dec-05 are the descendants of year 2005 in the Calendar hierarchy.

TIME SALES
JAN-05 12093518
FEB-05 10103162
MAR-05 9184658
APR-05 9185964
MAY-05 11640216
JUN-05 16816561
JUL-05 11110903
AUG-05 9475807
SEP-05 12030538
OCT-05 11135032
NOV-05 11067754
DEC-05 13142459

Drilling Up to Ancestors

The hierarchy views provide the full ancestry of each dimension key, as shown in
"Displaying the Contents of a Hierarchy View" on page 4-6. The following WHERE
clause uses the CALENDAR_YEAR level key column to identify the ancestor of a MONTH
dimension key.

/* Select the ancestor of a Time key based on its Long Description attribute */
WHERE t.dim_key =

4-12 Oracle OLAP User's Guide

Using Calculations in Queries

(SELECT calendar_year
FROM time_calendar view
WHERE long_description = 'JAN-05')
AND p.dim_key = 'TOTAL'
AND cu.dim_key = 'TOTAL'
AND ch.dim key = 'TOTAL'

The query drills up two levels from month to quarter to year. The ancestor of month
Jan-05 is the year 2005 in the Calendar hierarchy.

2005 136986572

Using Calculations in Queries

A DBA can create calculated measures in Analytic Workspace Manager, so they are
available to all applications. This not only simplifies application development, but
ensures that all applications use the same name for the same calculation.

Nonetheless, you may want to develop queries that include your own calculations. In
this case, you can use an inner query to select aggregate data from the cube, then
perform calculations in an outer query. You can select data from cubes that use any
type of aggregation operators, and you can use any functions or operators in the query.
You only need to make sure that you select the data from the cube at the appropriate
levels for the calculation, and that the combination of operators in the cube and in the
query create the calculation you want.

Example 4-4 shows a query that answers the question, What was the average sales of
Sentinel Standard computers to Government customers for the third quarter of fiscal
year 2005. UNITS_CUBE is summed over all dimensions, so that FY2005.03 is a total
for July, August, and September. The inner query extracts the data for these months,
and the outer query uses the MIN, MAX, and AVG operator s and a GROUP BY clause to
calculate the averages.

Example 4-4 Calculating Average Sales Across Customers

SELECT customer, ROUND(MIN(sales)) minimum, ROUND (MAX(sales)) maximum,
ROUND (AVG (sales)) average
FROM
(SELECT cu.long_description customer,
f.sales sales
FROM time_fiscal_view t,
product_primary view p,
customer_segment_view cu,
channel_primary view ch,
units_cube_view f
WHERE t.parent = 'FY2005.Q3'
AND p.dim_key = 'SENT STD'
AND cu.parent = 'GOV'
AND ch.level_name = 'TOTAL'
AND t.dim key = f.time
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
)
GROUP BY customer
ORDER BY customer;

Querying Dimensional Objects 4-13

Using Attributes for Aggregation

This is the data extracted from the cube by the inner query:

CUSTOMER TIME SALES
Dept. of Labor JAN-05 1553.26
Dept. of Labor MAR-05 1555.6
Ministry of Intl Trade JAN-05 1553.26
Ministry of Intl Trade FEB-05 1554.56
Ministry of Intl Trade MAR-05 1555.6
Royal Air Force JAN-05 1553.26
Royal Air Force FEB-05 6218.23
UK Environmental Department JAN-05 4659.78
UK Environmental Department FEB-05 3109.12

The outer query calculates the minimum, maximum, and average sales for each

customer:

CUSTOMER MINIMUM MAXIMUM AVERAGE
Dept. of Labor 1553 1556 1554
Ministry of Intl Trade 1553 1556 1554
Royal Air Force 1553 6218 3886
UK Environmental Department 3109 4660 3884

Using Attributes for Aggregation

An OLAP cube aggregates the data within its hierarchies, using the parent-child
relationships revealed in the hierarchy views. The OLAP engine does not calculate
aggregates over dimension attribute values.

Nonetheless, you may want to aggregate products over color or size, or customers by
age, zip code, or population density. This is the situation when you can use a GROUP
BY clause when querying a cube. Your query can extract data from the cube, then use
SQL to aggregate by attribute value.

The cube must use the same aggregation operator for all dimensions, and the
aggregation operator in the SELECT list of the query must match the aggregation
operator of the cube. You can use a GROUP BY clause to query cubes that use these
operators:

= First Non-NA Value
= Last Non-NA Value
s Maximum
s Minimum

= Sum

Aggregating Measures Over Attributes

Example 4-5 shows a query that aggregates over an attribute named Package. It
returns these results:

TIME PACKAGE SALES
2005 All 1809157.64
2005 Multimedia 18083256.3
2005 Executive 19836977

2005 Laptop Value Pack 9547494.81

4-14 Oracle OLAP User's Guide

Using Attributes for Aggregation

Units Cube uses the SUM operator for all dimensions, and the query uses the SUM
operator to aggregate over Sales. The Package attribute applies only to the Item level
of the Product dimension, so the query selects the Item level of Product. It also
eliminates nulls for Package, so that only products that belong to a package are
included in the calculation. The GROUP BY clause breaks out Total Sales by Time and
Package

Example 4-5 Aggregating Over an Attribute

SELECT t.long description time,
p.package package,
SUM(f.sales) sales
FROM time_calendar_view t,
product_primary view p,
customer_shipments_view cu,
channel_primary view ch,
units_cube_view f
/* Select Product by level and attribute */
WHERE p.level_name = 'ITEM'
AND p.package IS NOT NULL
AND t.long_description = '2005"'
AND cu.level_name = 'TOTAL'
AND ch.level_name = 'TOTAL'
/* Join dimensions and cube */
AND t.dim key = f.time
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
GROUP BY t.long_description, p.package;

Aggregating Calculated Measures Over Attributes

Before using the technique described in "Aggregating Measures Over Attributes" on
page 4-14, be sure that the calculation is meaningful. For example, the common
calculation Percent Change might be defined as a calculated measure in a cube.
Summing over Percent Change would produce unexpected results, because the
calculation for Percent Change ((a-b) /b,) is not additive.

Consider the following rows of data. The correct Total Percent Change is . 33, whereas
the sum of the percent change for the first two rows is . 75.

Row Sales Sales Prior Period Percent Change
1 15 10 .50
2 25 20 .25
Total 40 30 .33

Example 4-6 shows a query that aggregates over the Package attribute and calculates
Percent Change From Prior Period. The inner query aggregates Sales and Sales Prior
Period over the attributes, and the outer query uses the results to compute the percent
change. These are the results of the query, which show the expected results for PCT_

CHG_PP:

TIME PACKAGE SALES PRIOR_PERIOD PCT_CHG_PP
2005 All 1809157.64 1853928.06 -.02414895
2006 All 1720399.03 1809157.64 -.04906074
2005 Executive 19836977 20603879.8 -.03722128

Querying Dimensional Objects 4-15

Viewing Execution Plans

2006 Executive 19580638.4 19836977 -.01292226
2005 Laptop Value Pack 9547494.81 10047298.6 -.04974509
2006 Laptop Value Pack 9091450.58 9547494.81 -.04776585
2005 Multimedia 18083256.3 19607675.5 -.07774604
2006 Multimedia 18328678.7 18083256.3 .013571806

8 rows selected.

Example 4-6 Querying Over Attributes Using Calculated Measures

/* Calculate Percent Change */
SELECT TIME, package, sales, prior_period,
((sales - prior_period) / prior_period) pct_chg_pp
FROM
/* Fetch data from the cube and aggregate over Package */
(SELECT t.long_description TIME,
p.package package,
SUM(f.sales) sales,
SUM (f.sales_pp) prior_period
FROM time_calendar_view t,
product_primary_view p,
customer_shipments_view cu,
channel_primary view ch,
units_cube_view f
/* Create filters */
WHERE p.level_name = 'ITEM'
AND p.package IS NOT NULL
AND t.long_description IN ('2005', '2006"')
AND cu.level_name = 'TOTAL'
AND ch.level_name = 'TOTAL'
/* Join dimension views to cube view */
AND t.dim_key = f.TIME
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
GROUP BY t.long_description, p.package
ORDER BY p.package) ;

Viewing Execution Plans

You can generate and view execution plans for queries against cubes and dimensions
the same as for those against relational tables.

The SQL EXPLAIN PLAN command creates a table with the content of the explain
plan. The default table name is PLAN_TABLE.

Generating Execution Plans
The following command creates an execution plan for a basic query on a cube:

EXPLAIN PLAN FOR

SELECT t.long_description time,
p.long description product,
cu.long_description customer,
ch.long_description channel,
f.sales sales

FROM time_calendar view t,
product_primary_view p,
customer_shipments_view cu,
channel_primary view ch,

4-16 Oracle OLAP User's Guide

Viewing Execution Plans

units_cube_view f
WHERE t.level_name = 'CALENDAR_YEAR'
AND p.level_name = 'TOTAL'
AND cu.level name = 'TOTAL'
AND ch.level _name = 'TOTAL'
AND t.dim _key = f.TIME
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel
ORDER BY t.end_date;

Example 4-7 shows selected columns of the execution plan. A CUBE SCAN operation is
performed. The plan option is PARTIAL OUTER, which is described in "Types of
Execution Plans" on page 4-18.

Example 4-7 Selected Columns From PLAN_TABLE
SQL> SELECT operation, options, object_name FROM plan_table;

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT

SORT ORDER BY

JOINED CUBE SCAN PARTIAL OUTER

CUBE ACCESS UNITS_CUBE
CUBE ACCESS CHANNEL
CUBE ACCESS CUSTOMER
CUBE ACCESS PRODUCT
CUBE ACCESS TIME

8 rows selected.

The DISPLAY table function of the DBMS_XPLAN PL/SQL package formats and
displays information from an execution plan, as shown in Example 4-8.

Example 4-8 Formatted Execution Plan From DBMS_XPLAN
SQL> SELECT plan_table_output FROM TABLE (dbms_xplan.display());

PLAN_TABLE_OUTPUT

Plan hash value:

1667678335

| Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

SELECT STATEMENT | | 1] 900 | 1570 (94)] 00:00:19

SORT ORDER BY | | 1] 900 | 1570 (94)] 00:00:19
JOINED CUBE SCAN PARTIAL OUTER| | | \ \ |
CUBE ACCESS | UNITS_CUBE | | | | |
CUBE ACCESS | CHANNEL | | \ \ |
CUBE ACCESS | CUSTOMER | | \ \ |
CUBE ACCESS | PRODUCT | | | | |

CUBE ACCESS | TIME | 1] 900 | 1569 (94)] 00:00:19

7 - filter (SYS_OP_ATG(VALUE (KOKBF$),12,13,2)="'CALENDAR_YEAR' AND

Querying Dimensional Objects 4-17

Querying the Data Dictionary

SYS_OP_ATG (VALUE (KOKBFS) ,24,25,2)="TOTAL' AND

SYS_OP_ATG (VALUE (KOKBFS) ,36,37,2)="TOTAL' AND

SYS_OP_ATG (VALUE (KOKBFS$) ,43,44,2)="TOTAL' AND SYS_OP_ATG (VALUE (KOKBF$),5,6,2) IS NOT
)
)

NULL AND SYS_OP_ATG (VALUE (KOKBF$),18,19,2) IS NOT NULL AND
SYS_OP_ATG (VALUE (KOKBFS) ,30,31,2) IS NOT NULL AND SYS_OP_ATG (VALUE (KOKBFS) ,39,40,2)
IS NOT NULL)

25 rows selected.

Types of Execution Plans

Table 4-1 describes the types of execution plans for cubes.

Table 4-1 Descriptions of Execution Plans for Cubes and Dimensions

Operation Option Description
CUBE SCAN - Uses inner joins for all cube access.
CUBE SCAN PARTIAL OUTER Uses an outer join for least one dimension, and inner

joins for the other dimensions.

CUBE SCAN OUTER Uses outer joins for all cube access.

Querying the Data Dictionary

If you are developing a generic application -- that is, one where the names of the
dimensional objects are not known -- then your application can retrieve this
information from the data dictionary.

Among the static views of the database data dictionary are those that provide
information about dimensional objects. All OLAP metadata is stored in the data
dictionary. A few of the data dictionary views were introduced previously in this
chapter.

Table 4-2 provides brief descriptions of the ALL views. There are corresponding DBA
and USER views.

Table 4-2 Static Data Dictionary Views for OLAP

View Description

ALL_CUBE_ATTR_VISIBILITY Describes the visibility of the attributes for cube
dimensions.

ALL_CUBE_ATTRIBUTES Describes the attributes for cube dimensions.

ALL_CUBE_BUILD_PROCESSES Describes the cube build processes and maintenance
scripts.

ALL_CUBE_CALCULATED_MEMBERS Describes the calculated members (keys) for cube
dimensions.

ALL_CUBE_DIM_LEVELS Describes the cube dimension levels.

ALL_CUBE_DIM_MODELS Describes the models for cube dimensions.

ALL_CUBE_DIM_VIEW_COLUMNS Describes the columns of the system-generated
relational views of cube dimensions.

ALL_CUBE_DIM_VIEWS Describes the system-generated relational views of
OLAP dimensions.

ALL_CUBE_DIMENSIONALITY Describes the dimension order of the OLAP cubes.

ALL_CUBE_DIMENSIONS Describes the cube dimensions.

4-18 Oracle OLAP User's Guide

Querying the Data Dictionary

Table 4-2 (Cont.) Static Data Dictionary Views for OLAP

View

Description

ALL_CUBE_HIER_LEVELS

ALL_CUBE_HIER_VIEW_COLUMNS

ALL_CUBE_HIER_VIEWS
ALL_CUBE_HIERARCHIES
ALL_CUBE_MEASURES

ALL_CUBE_VIEW_COLUMNS

ALL_CUBE_VIEWS

ALL_CUBES
ALL_MEASURE_FOLDER_CONTENTS

ALL_MEASURE_FOLDERS

Describes the hierarchy levels for cube dimensions.

Describes the columns of relational hierarchy views of
cube dimensions.

Describes the hierarchies for cube dimensions.
Describes the OLAP dimension hierarchies.
Describes the measures in the OLAP cubes.

Describes the columns of the relational views of OLAP
cubes.

Describes the system-generated relational views of
OLAP cubes.

Describes the OLAP cubes.
Describes the contents of OLAP measure folders.

Describes the OLAP measure folders.

See Also: Oracle Database Reference for full descriptions of data

dictionary views.

Querying Dimensional Objects 4-19

Querying the Data Dictionary

4-20 Oracle OLAP User's Guide

O

Enhancing Your Database With
Analytic Content

Oracle OLAP provides an extensive set of analytic functions for enhancing your
database with information-rich content. This chapter explains how you can use
Analytic Workspace Manager to create calculated measures using templates and
free-form calculations.

This chapter contains the following topics:
= WhatIs a Calculated Measure?

= Functions for Defining Calculations

»s Creating Calculated Measures

= Using Calculation Templates

s Creating User-Defined Expressions

What Is a Calculated Measure?

Calculated measures return values that are computed at run-time from data stored in
one or more measures. Like relational views, calculated measures store queries against
data stored in other objects. Because calculated measures do not store data, you can
create dozens of them without increasing the size of the database. You can use them as
the basis for defining other calculated measures, which adds depth to the types of
calculations you can create using the templates in Analytic Workspace Manager.

As soon as you create a calculated measure, it appears as a column in a cube view.
Because calculated measures do not contain data, they are not associated with a build
process. You can create a calculated measure at any time, and it is available
immediately for querying by SQL applications.

Functions for Defining Calculations

The library of functions for defining calculated measures contains these basic
categories:

= Arithmetic Operators: Perform calculations on the values of two measures.

= Analytic Functions: Perform calculations on an ordered series or a range of values
in a single measure or column.

= Single-Row Functions: Perform calculations on a value in a single row.

Enhancing Your Database With Analytic Content 5-1

Functions for Defining Calculations

Arithmetic Operators

You can perform the following arithmetic operations using two measures. The
calculations in the cube are performed on a cell-by-cell basis at all levels of the
dimension hierarchies.

s Addition: Adds the values of two measures.

s Subtraction: Subtracts the values of one measure from the values of another
measure.

= Multiplication: Multiplies the values of two measures.

= Division or Ratio: Divides the values of one measure by the values of another
measure.

s Percent Difference: Calculates the percent difference between the values of two
measures.

The arithmetic operations are available in Analytic Workspace Manager as templates.
as described in "Using Calculation Templates" on page 5-5.

Analytic Functions

The analytic functions provide the most powerful computations and fuel the most
useful queries for business intelligence and similar applications. They include a variety
of rank, share, time series, and other single-column functions. The analytic functions
enable analysts and decision makers to make comparisons and identify trends.

Analytic functions provided by Oracle OLAP leverage the knowledge associated with
the dimensions about levels and family relationships. Time dimensions have
additional information that enables them to support time series methods such as lags,
leads, moving and cumulative calculations. Because the knowledge is stored with the
dimension, you do not need to specify these relationships when creating a calculated
measure.

The analytic functions are available in Analytic Workspace Manager as templates.
They are described in "Using Calculation Templates" on page 5-5.

Single-Row Functions
Oracle OLAP supports most of the SQL single-row functions including;:
s Numeric functions such as ABS, CEIL, FLOOR, POWER, ROUND, and TRUNC.

s Character functions such as CONCAT, LPAD, RPAD, LTRIM, RTRIM, REPLACE, and
SUBSTR.

s Datetime functions such as CURRENT_DAY, MONTHS_BETWEEN, NEXT_ DAY, and
SYSTIMESTAMP.

s Comparison functions GREATEST and LEAST.

s Conversion functions such as TO_CHAR, TO_DATE, TO_NUMBER, and TO_
TIMESTAMP.

You can use these functions to manipulate the data values in a measure, typically as
part of a more complex calculation. These functions are not available as templates, but
you can use them in free-form calculations, as described in "Creating User-Defined
Expressions" on page 5-12.

5-2 Oracle OLAP User's Guide

Creating Calculated Measures

Creating Calculated Measures

Analytic Workspace Manager provides easy-to-use templates for creating calculated
measures. You can create them in the same cube with the source measures, or you can
create them in a separate cube.

Calculated measures are available for querying as additional columns in a cube view
(such as UNITS_CUBE_VIEW). They are not available through cube materialized views
(such as CBSUNITS_CUBE).

To create a calculated measure:
1. In the navigation tree, expand an existing cube or create a new cube.

2. Right-click Calculated Measures, then choose Create Calculated Measure from the
pop-up menu.

The Create Calculated Measure dialog box is displayed.
3. Enter a descriptive name.
4. Choose a calculation method.

Your choice of an arithmetic or analytic function dynamically changes the
Calculation template.

5. Modify the calculation template.
6. Click Create.

The new calculated measure appears in the navigation tree in the Calculated
Measures folder.

Figure 5-1 displays the Create Calculated Measure dialog box.

Figure 5-1 Creating a Calculated Measure

X

% Create Calculated Measure

Ceneral |

Specify Ceneral Calculated Measure Information

Name [uniTs_pe

Long Label: |Units Frior Period

|
Short Label: |Units PP |
|
|

Description |Units Prior Period

Choose a calculation type: |En Prior Period Bt

Calculation:

Prior period for measure UMITS CUBEUMITS ¢ % in TIME dimension and CALEMDAR hierarchy 1 period ago

Expression:

LAG(GLOBAL UMITS_CUBE UNITS, 1) OWER HIERARCHY (CLOEBAL TIME CALEMDAR) =

Cancel

Help

Enhancing Your Database With Analytic Content 5-3

Creating Calculated Measures

Modifying a Template

The calculation that you selected is presented as template, which is a description of the
calculation with variable parts that enable you to customize it.

Figure 5-2 shows the template for calculating the prior period. You can view the
choice lists by clicking the links.

Figure 5-2 Changing the Variable Parts of a Calculation

Calculation:

Prior period for measure UNMITS _CUBEURMITS {5 in TIME dimension and CALEMDAR hierarchy 1 period ago.

You can include all values of a measure in a calculation, or, for some types of
calculations, you can filter the measure to include only a selection of values. To limit
one or more dimensions to a single dimension member, click the ellipses (. . .) next to
the measure. The Qualify Measure dialog box appears, as shown in Figure 5-3.

Figure 5-3 Limiting a Dimension to a Single Member

* Qualify Measure - Units

Specify the values that you want to base your qualified data
reference an for each of the dimensions in 'Units".

Dimension | Mem ber
Time <hongs
Product <nones
Customer | <nonez -
Channel Total Customer =

Canada

Computer Services Toronto i
United States

Bavarian Indust, CmbH Irvine
Buzinezs World Mew rark
Busziness World San Jose -

Help

Choosing a Range of Time Periods

Many calculations are performed over time periods at the same level in the hierarchy.
In some types of calculations, you can control the range of time periods that are used
in the same calculation. For example, you might want to calculate a running total of
months for each fiscal year, not a running total that begins with the first month stored
in the cube.

You can use the following methods for identifying the range of time periods that you
want calculated together:

s Level: Calculates all time periods at the same level, so that all months in the cube
are included in one calculation, all quarters are included in another calculation,
and so forth.

= Parent: Calculates all time periods with the same parent, so that all months in
Q1-07 are included in one calculation, all months in Q2-07 are included in another
calculation, and so forth.

5-4 Oracle OLAP User's Guide

Using Calculation Templates

= Ancestor at level: Calculates all time periods with the same ancestor at a specified
level. For example, if the specified level is Year in a Year-Quarter-Month hierarchy,
then Q1-06 to Q4-06 are included in one calculation, Q1-07 to Q4-07 are included
in another calculation, Jan-06 to Dec-06 are included in a third calculation, and so
forth. Any levels higher in the hierarchy are not calculated.

= Gregorian periods: The Gregorian periods - Year, Quarter, Month, and Week --
impose the Gregorian calendar onto the selected hierarchy. This can be useful for
analyzing data that uses non-standard calendar hierarchies. For example, if you
use Gregorian Year on a fiscal hierarchy that begins July 1 and ends June 30, then
the last half of one fiscal year and the first half of the next fiscal year are calculated
together. Time periods higher in the hierarchy than the specified Gregorian period
are not calculated.

Using Calculation Templates

Analytic Workspace Manager provides templates for all of the calculations typically in
demand for business intelligence applications. The following topics describe the types
of calculations available as templates in Analytic Workspace Manager.

Arithmetic Calculations

Rank

Basic mathematical operations enable you to perform cell-by-cell calculations on two
measures, as described in "Arithmetic Operators” on page 5-2.

Arithmetic Example
This template defines a calculated measure using Percent Difference:

Percent difference between measure PRICE_CUBE.UNIT PRICE and measure PRICE
CUBE.UNIT COST.

A query against this calculated measure returns results like these. The PCT_CHG
column shows the percent change between PRICE and COST, which is calculated as
PRICE-COST/COST.

PRODUCT PRICE COST PCT_DIFF
Envoy Ambassador 2892 2664 .09
Envoy Executive 2803 2644 .06
Envoy Standard 1662 1737 -.04
Sentinel Financial 1755 1658 .06
Sentinel Multimedia 1770 1813 -.02
Sentinel Standard 1552 1410 .1

Rank orders the values of a dimension based on the values of the selected measure.
When defining a rank calculation, you choose the dimension, a hierarchy, and the
measure.

You can choose a method for handling identical values:

= Rank: Assigns the same rank to identical values, so there may be fewer ranks than
there are members. For example, it may return 1, 2, 3, 3, 4 for a series of five
dimension members.

= Dense Rank: Assigns the same minimum rank to identical values. For example, it
may return 1, 2, 3, 3, 5 for a series of five dimension members.

Enhancing Your Database With Analytic Content 5-5

Using Calculation Templates

Share

= Average Rank: Assigns the same average rank to identical values. For example, it
may return 1, 2, 3.5, 3.5, 5 for a series of five dimension members.

You can also choose the group in which the dimension members are ranked:
= Member's level: Ranks members at the same level.
= Member's parent: Ranks members with the same parent.

= Member's ancestor: Ranks members with the same ancestor at a specified level
higher in the hierarchy.

Rank Example
This template defines a calculated measure using Rank:
Rank members of the PRODUCT dimension and PRODUCT PRIMARY hierarchy based on

measure UNITS CUBE SALES. Calculate rank using RANK method with member's parent in
order from lowest to highest.

These are the results of a query against the calculated measure in which the products
are ordered by RANK:

PRODUCT SALES RANK
Monitors 4474150 1
Memory 5430466 2
Modems/Fax 5844185 3
CD/DVD 16559860 4
Portable PCs 19066575 5
Desktop PCs 78770152 6

Share calculates the ratio of a measure's value for the current dimension member to the
value for a related member of the same dimension. You can choose whether the related
member is:

= Top of hierarchy: Calculates the ratio of each member to the total.
= Member's parent: Calculates the ratio of each member to its parent.

s Member's ancestor: Calculates the ratio of each member to its ancestor, that is, a
member at a specified level higher in the hierarchy.

When creating a share calculation, you can choose the measure, dimension, and
hierarchy. You also have the option of multiplying the results by 100 to get percentages
instead of fractions.

Share Example
This template defines a calculated measure using SHARE:

Share of measure UNITS CUBE.SALES in PRODUCT PRIMARY hierarchy of the PRODUCT
dimension as a ratio of top of hierarchy.

These are the results of a query against the calculated measure. The TOTAL_SHARE
column displays the percent share of the total for the selected products.

PRODUCT PROD_LEVEL SALES TOTAL_SHARE
Total Product TOTAL 144290686 100
Hardware CLASS 130145388 90
Desktop PCs FAMILY 78770152 55

5-6 Oracle OLAP User's Guide

Using Calculation Templates

Portable PCs FAMILY 19066575 13
CD/DVD FAMILY 16559860 11
Software/Other CLASS 14145298 10
Accessories FAMILY 6475353 4
Operating Systems FAMILY 5738775 4
Memory FAMILY 5430466 4
Modems /Fax FAMILY 5844185 4
Monitors FAMILY 4474150 3
Documentation FAMILY 1931170 1

Prior and Future Periods

Parallel Period

Oracle OLAP provides several calculations for prior or future time periods:
» Prior Period: Returns the value of a measure at an earlier time period.
» Future Period: Returns the value of a measure at a later time period.

s Difference From Prior Period: Calculates the difference between values for the
current time period and an earlier period.

s Difference From Future Period: Calculates the difference between the values for
the current time period and a later period.

s Percent Difference From Prior Period: Calculates the percent difference between
the values for the current time period and an earlier period.

s Percent Difference From Future Period: Calculates the percent difference between
the values for the current time period and a later period.

When creating a calculation for prior or future time periods, you choose the measure,
the time dimension, the hierarchy, and the number of periods from the current period.

Prior Period Example
This template defines a calculated measure using Prior Period:

Prior period for UNITS CUBE.SALES in TIME dimension and CALENDAR hierarchy 1
period ago.

These are the results of a query against the calculated measure. The PRIOR_PERIOD
column shows the value of Sales for the preceding period at the same level in the
Calendar hierarchy.

TIME TIME_LEVEL SALES PRIOR_PERIOD
2005 CALENDAR_YEAR 136986572 144290686
2006 CALENDAR_YEAR 140138317 136986572
01.05 CALENDAR_QUARTER 31381338 41988687
02.05 CALENDAR_QUARTER 37642741 31381338
03.05 CALENDAR_QUARTER 32617249 37642741
04.05 CALENDAR_QUARTER 35345244 32617249
01.06 CALENDAR_QUARTER 36154815 35345244
02.06 CALENDAR_QUARTER 36815657 36154815
03.06 CALENDAR_QUARTER 32318935 36815657
04.06 CALENDAR_QUARTER 34848911 32318935

Parallel periods are at the same level as the current time period, but have different
parents in an earlier period. For example, you may want to compare current sales with
sales for the prior year.

Enhancing Your Database With Analytic Content 5-7

Using Calculation Templates

Oracle OLAP provides several functions for parallel periods:
» Parallel Period: Calculates the value of the parallel period.

s Difference From Parallel Period: Calculates the difference in values between the
current period and the parallel period.

s Percent Difference From Parallel Period: Calculates the percent difference in
values between the current period and the parallel period.

To identify the parallel period, you specify a level and the number of periods before
the current period. You can also decide what happens when two periods do not
exactly match, such as comparing daily sales for February (28 days) with January (31
days).

You also choose the measure, the time dimension, and the hierarchy.

Parallel Period Example
This template defines a calculated measure using Parallel Period.

Parallel period for UNITS CUBE.SALES in the TIME dimension and CALENDAR hierarchy
1 CALENDAR QUARTER ago based on position from beginning to ending of period.

These are the results of a query against the calculated measure, which lists the months
for two calendar quarters. The parallel month has the same position within the
previous quarter. The prior period for JUL-06 is APR-06, for AUG-06 is MAY-06, and
for SEP-06 is JUN-06.

TIME PARENT SALES LAST_QTR

APR-06 CY2006.02 11356940 13119235
MAY-06 CY2006.02 13820218 11441738
JUN-06 CY2006.02 11638499 11593842
JUL-06 CY2006.Q3 9417316 11356940
AUG-06 CY2006.03 11596052 13820218
SEP-06 CY2006.03 11305567 11638499

Period to Date

Period-to-date functions perform a calculation over time periods with the same parent
up to the current period. These functions calculate period-to-date:

» Period to Date: Calculates the values up to the current time period.
» Period to Date Period Ago: Calculates the data values up to a prior time period.

» Difference From Period to Date Period Ago: Calculates the difference in data
values up to the current time period compared to the same calculation up to a
prior period.

s Percent Difference From Period To Date Period Ago: Calculates the percent
difference in data values up to the current time period compared to the same
calculation up to a prior period.

When creating a period-to-date calculation, you can choose from these aggregation
methods:

= Sum
= Average
s Maximum

s Minimum

5-8 Oracle OLAP User's Guide

Using Calculation Templates

You also choose the measure, the time dimension, and the hierarchy.

Period to Date Example
This template defines a calculated measure using Period to Date.

CALENDAR YEAR to date for UNITS CUBE.SALES in the TIME dimension and CALENDAR
hierarchy. Aggregate using MINIMUM from the beginning of the period.

These are the results of a query against the calculated measure. The MIN_TO_DATE
column displays the current minimum SALES value within the current level and year.

TIME TIME_LEVEL SALES MIN_TO_DATE
01.06 CALENDAR_QUARTER 36154815 36154815
02.06 CALENDAR_QUARTER 36815657 36154815
03.06 CALENDAR_QUARTER 32318935 32318935
04.06 CALENDAR_QUARTER 34848911 32318935
JAN-06 MONTH 13119235 13119235
FEB-06 MONTH 11441738 11441738
MAR-06 MONTH 11593842 11441738
APR-06 MONTH 11356940 11356940
MAY-06 MONTH 13820218 11356940
JUN-06 MONTH 11638499 11356940
JUL-06 MONTH 9417316 9417316
AUG-06 MONTH 11596052 9417316
SEP-06 MONTH 11305567 9417316
OCT-06 MONTH 11780401 9417316
NOV-06 MONTH 10653184 9417316
DEC-06 MONTH 12415325 9417316

Cumulative Calculations

Cumulative calculations start with the first time period and calculate up to the current
member, or start with the last time period and calculate back to the current member.
Oracle OLAP provides several aggregation methods for cumulative calculations:

s Cumulative Average: Calculates a running average across time periods.

s Cumulative Maximum: Calculates the maximum value across time periods.
s Cumulative Minimum: Calculates the minimum value across time periods.
s Cumulative Total: Calculates a running total across time periods.

You can choose the measure, the time dimension, and the hierarchy. You can also select
the range, as described in "Choosing a Range of Time Periods" on page 5-4, and
whether you want to start the calculation with the first period and calculate forward,
or start with the last period and calculate back.

Cumulative Calculation Example
This template defines a calculated measure using Cumulative Minimum.
Cumulative minimum of UNITS CUBE.SALES in the TIME dimension and Calendar

hierarchy within ancestor at level CALENDAR YEAR. Total from beginning member to
current member.

These are the results of a query against the calculated measure, which displays values
for the descendants of calendar year 2004. The minimum value for quarters begins
with Q1-04 and ends with Q4-04, and for months begins with Jan-04 and ends with
Dec-04.

Enhancing Your Database With Analytic Content 5-9

Using Calculation Templates

TIME TIME_LEVEL SALES MIN_SALES
01.04 CALENDAR_QUARTER 32977874 32977874
02.04 CALENDAR_QUARTER 35797921 32977874
03.04 CALENDAR_QUARTER 33526203 32977874
04.04 CALENDAR_QUARTER 41988687 32977874
JAN-04 MONTH 11477898 11477898
FEB-04 MONTH 10982016 10982016
MAR-04 MONTH 10517960 10517960
APR-04 MONTH 11032057 10517960
MAY-04 MONTH 11432616 10517960
JUN-04 MONTH 13333248 10517960
JUL-04 MONTH 12070352 10517960
AUG-04 MONTH 11108893 10517960
SEP-04 MONTH 10346958 10346958
O0CT-04 MONTH 14358605 10346958
NOV-04 MONTH 12757560 10346958
DEC-04 MONTH 14872522 10346958

Moving Calculations

Moving calculations are performed over the time periods surrounding the current
period. Oracle OLAP provides several aggregation methods for moving calculations:

= Moving Average: Calculates the average value for a measure over a fixed number
of time periods.

s Moving Maximum: Calculates the maximum value for a measure over a fixed
number of time periods.

= Moving Minimum: Calculates the minimum value for a measure over a fixed
number of time periods.

= Moving Total: Returns the total value for a measure over a fixed number of time
periods.

You can choose the measure, the time dimension, and the hierarchy. You can also select
the range, as described in "Choosing a Range of Time Periods" on page 5-4, and the
number of time periods before and after the current period to include in the
calculation.

Moving Calculation Example
This template defines a calculated measure using Moving Minimum.

Moving minimum of UNITS CUBE.SALES in the TIME dimension and CALENDAR hierarchy.
Include 1 preceding and 1 following members within level.

These are the results of a query against the calculated measure, which displays values
for the descendants of calendar year 2004. Each value of Minimum Sales is the smallest
among the current value and the values immediately before and after it. The
calculation is performed over all members of a level in the cube.

TIME TIME_LEVEL SALES MIN_SALES
01.04 CALENDAR_QUARTER 32977874 32977874
02.04 CALENDAR_QUARTER 35797921 32977874
03.04 CALENDAR_QUARTER 33526203 33526203
04.04 CALENDAR_QUARTER 41988687 31381338
JAN-04 MONTH 11477898 10982016
FEB-04 MONTH 10982016 10517960
MAR-04 MONTH 10517960 10517960

5-10 Oracle OLAP User's Guide

Using Calculation Templates

Index

APR-04 MONTH 11032057 10517960
MAY-04 MONTH 11432616 11032057
JUN-04 MONTH 13333248 11432616
JUL-04 MONTH 12070352 11108893
AUG-04 MONTH 11108893 10346958
SEP-04 MONTH 10346958 10346958
OCT-04 MONTH 14358605 10346958
NOV-04 MONTH 12757560 12757560
DEC-04 MONTH 14872522 12093518

An index calculates the percentage difference between the values of a measure and a
selected value that serves as a base number.

Index Example

An index calculation does not use a template. Instead, it provides a list of dimension
members, from which you can choose one to use as an index. This example creates an
index on the Product dimension using Desktop PCs as the index.

PRODUCT SALES PROD_INDEX
Desktop PCs 76682955 100
Portable PCs 18072328 24
CD/DVD 17302122 23
Modems/Fax 5565552 7
Memory 5347292 7
Monitors 3926632 5

Nested Calculations

You can extend the variety of functions available through the templates by using a
calculated measure as the basis for another calculated measure.

For example, Analytic Workspace Manager has templates for Rank and for Prior
Period. You can create a calculated measure that calculates rank, then use it to
calculate the rank of the prior period.

Nested Calculations Example
This template creates a Rank calculation for Product Sales named SALES_PROD_RANK:
Rank members of the PRODUCT dimension and PRODUCT PRIMARY hierarchy based on

measure UNITS CUBE_SALES. Calculate rank using RANK method with member's parent in
order from lowest to highest.

The next template creates a Prior Period calculation from SALES_PROD_RANK.

Prior period for UNITS_ CUBE.SALES PROD RANK in TIME dimension and CALENDAR
hierarchy 1 period ago.

These are the results of a query against the calculated measure. The PRIOR_PERIOD
column shows the Sales rank for the preceding month.

TIME PRODUCT SALES RANK PRIOR_PERIOD
JAN-06 Monitors 308329 1 1
JAN-06 Memory 308329 2 1
JAN-06 Modems/Fax 504260 3 3
JAN-06 Portable PCs 1427967 4 5
JAN-06 CD/DVD 308329 5 4

Enhancing Your Database With Analytic Content 5-11

Creating User-Defined Expressions

JAN-06 Desktop PCs 7928253 6 6
FEB-06 Monitors 326697 1 1
FEB-06 Memory 398675 2 2
FEB-06 Modems/Fax 426603 3 3
FEB-06 Portable PCs 1566064 4 4
FEB-06 CD/DVD 1569463 5 5
FEB-06 Desktop PCs 6029854 6 6
MAR-06 Monitors 279203 1 1
MAR-06 Modems /Fax 403299 2 3
MAR-06 Memory 279203 3 1
MAR-06 Portable PCs 1462553 4 4
MAR-06 CD/DVD 279203 5 5
MAR-06 Desktop PCs 6064321 6 6

Creating User-Defined Expressions

Among the calculation types is a user-defined expression. It enables you to create
calculations using the OLAP expression syntax, which includes the analytic functions,
arithmetic operators, and single-row functions described in this chapter. The OLAP
syntax is an extension of the SQL syntax. If you have used SQL analytic functions or
single-row functions, this syntax will be familiar to you.

The easiest way to formulate an expression is to let Analytic Workspace Manager do
the work for you. You can use the templates to create a similar calculation, and
cut-and-paste the syntax into an expression.

To create an expression:
1. Open the Create Calculated Measure dialog box.

Select the calculation type that most closely matches the one you want to define.
Modify the template as desired.

2
3
4. Cut-and-paste the calculation from the Calculation box into a text editor.
5. Repeat these steps if your calculation uses two or more functions.

6

Modify the calculation as desired in the text editor. You can combine numeric
operators, analytic functions, and single-row functions in a single calculation.

N

From the Calculation Types list, select Expression.
8. Cut-and-paste the calculation from the text editor into the Calculation box.
9. Click Create.

See Also: Analytic Workspace Manager Help for information about
the OLAP expression syntax

Expression Example Using an Arithmetic Operator

This template for Multiplication generates a calculation using Units Sold and Unit
Cost.

Multiply measure UNITS CUBE UNITS by measure PRICE CUBE.UNIT COST.

The template generates this calculation using the multiplication operator (*). It is
displayed in the Calculation box.

GLOBAL.UNITS_CUBE.UNITS * GLOBAL.PRICE_CUBE.UNIT_COST

5-12 Oracle OLAP User's Guide

Creating User-Defined Expressions

The syntax of this calculation is so simple that you only need the template to obtain
the fully qualified name of the measure.

Following is a free-form calculation that calculates a 2% increase in units sold:

GLOBAL.UNITS_CUBE.UNITS * 1.02

These are the results of a query against this calculated measure:

PRODUCT UNITS TARGET
Envoy Ambassador 2116 2158
Envoy Executive 2481 2531
Envoy Standard 3300 3366
Sentinel Financial 30513 31123
Sentinel Multimedia 7948 8107
Sentinel Standard 7302 7448

Free-Form Calculation Example Using an Analytic Function
This template for Cumulative Average generates a calculation for the average number
of units sold:

Cumulative average of UNITS CUBE.UNITS in the TIME dimension and Calendar
hierarchy within level. Total from beginning member to following member.

The template generates this calculation using the AvVG function.

AVG (GLOBAL.UNITS_CUBE.UNITS) OVER HIERARCHY (GLOBAL.TIME.CALENDAR BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING WITHIN LEVEL)

Following is a free-form calculation that computes the percent difference between
current units sold and the cumulative average. It uses the AVG function and the
subtraction (-), division (/) and multiplication (*) operators.

((GLOBAL.UNITS_CUBE.UNITS - AVG(GLOBAL.UNITS_CUBE.UNITS) OVER HIERARCHY
(GLOBAL.TIME.CALENDAR BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING WITHIN
LEVEL)) / AVG(GLOBAL.UNITS_CUBE.UNITS) OVER HIERARCHY (GLOBAL.TIME.CALENDAR
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING WITHIN LEVEL)) * 100

These are the results of a query against this calculated measure.

TIME UNITS CUM_AVG PCT_DIFF
Q01.06 146819 107965 36
02.06 145233 109062 33
03.06 143572 110048 30
04.06 149305 111138 34

Note that you could create this calculation using templates:

1. Calculate the cumulative average of UNITS with the Cumulative Average
template.

2. Calculate the percent difference between current UNITS and the cumulative
average with the Percent Difference template.

Analytic Functions

Table 5-1 describes the analytic functions that you can use to create free-form
calculations. For the syntax of these functions, refer to Analytic Workspace Manager
Help.

Enhancing Your Database With Analytic Content 5-13

Creating User-Defined Expressions

Table 5-1 OLAP Analytic Functions

Function

Description

AVERAGE_RANK

AVG

COUNT

DENSE_RANK

HIER_ANCESTOR

HIER_CHILD_COUNT

HIER_DEPTH

HIER_LEVEL

HIER_PARENT

HIER_TOP

LAG

LAG_VARIANCE

LAG_VARIANCE_PERCENT

LEAD

LEAD_VARIANCE

LEAD_VARIANCE_PERCENT

MAX

MIN

RANK

ROW_NUMBER

5-14 Oracle OLAP User's Guide

Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same average rank to
identical values.

Returns the average of a selection of values calculated over time.

Tallies the number of data values identified by a selection of
dimension members.

Orders dimension members based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same minimum rank to
identical values.

Returns an ancestor at a particular level of a hierarchy for either
all members in the hierarchy or a particular member.

Returns the number of children of either all dimension members
in a hierarchy or a particular member.

Returns a number representing the level depth of either all
members of a hierarchy or a particular member, where 0 is the
top level.

Returns the level of either all members of a hierarchy or a
particular member.

Returns the parent of either all dimension members in a
hierarchy or a particular member.

Returns the topmost ancestor of either all members of a
hierarchy or a particular member.

Returns the value of an expression at a specified number of time
periods before the current period.

Returns the difference between values for the current time
period and a prior period.

Returns the percent different between values for the current time
period and a prior period.

Returns the value of an expression at a specified number of time
periods after the current period.

Returns the difference between values for the current time
period and a future period.

Returns the percent different between values for the current time
period and a future period.

Returns the largest of a selection of data values calculated over a
particular dimension.

Returns the smallest of a selection of data values calculated over
a particular dimension.

Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns the same rank to identical
values.

Orders the members of a dimension based on the values of an
expression. The function returns the sequence numbers of the
dimension members, and assigns a unique and arbitrary rank to
identical values.

Creating User-Defined Expressions

Table 5-1 (Cont.) OLAP Analytic Functions

Function Description

SHARE Calculates the ratio of an expression's value for the current
dimension member to the value for a related member of the
same dimension.

SUM Returns the total of a selection of values calculated over a
particular dimension.

Enhancing Your Database With Analytic Content 5-15

Creating User-Defined Expressions

5-16 Oracle OLAP User's Guide

6

Developing Reports and Dashboards

You can use any SQL development tool or application to create reports and
dashboards populated with data from OLAP cubes. This chapter shows the basic steps
for working with the tools provided with Oracle Database: Oracle Business
Intelligence Publisher (BI Publisher) and Oracle Application Express. You can try these
tools, or you can apply the methods shown here to your favorite SQL tool.

This chapter contains the following topics:

= Developing OLAP Applications

= Developing a Report Using BI Publisher

= Developing a Dashboard Using Application Express

See Also: Chapter 4, "Querying Dimensional Objects"

Developing OLAP Applications

You can use any SQL query against a cube as the content for a report or dashboard.
Both BI Publisher and Application Express contain a Query Builder, which you can use
to develop queries against both relational and dimensional objects. You can also
cut-and-paste queries from a SQL script or another source, which is the method used
in this chapter.

If your goal is to create static reports and dashboards, then you do not need to read
any further. You can start developing OLAP applications immediately using your
favorite tool. This chapter explains how to create applications with dynamic content. It
focuses on ways to leverage the unique capabilities of cubes and dimensions to create
drillable reports and graphs using a single query. You will learn how to create two
types of drillable interfaces:

» Choice Lists: You can create a drop-down list for each dimension to drill on the
dimensions in a report or dashboard.

= Linked Dimension Columns: In Application Express, you can add links to the
dimension columns of a crosstab to drill down to the bottom of a hierarchy, and
use a Reset button to return to the top level.

These user interfaces set the values of bind variables in the WHERE clause of the source
query. When a user changes the current selection in a choice list or clicks a link in a
crosstab, that action dynamically changes the value of the variable. When the variable
changes, so does the condition of the query and the contents of the report or
dashboard.

When the variable sets the value of the PARENT column of the hierarchy views, users
can drill on a parent to view its children.

Developing Reports and Dashboards 6-1

Developing OLAP Applications

Example 6-1 shows a basic SQL query against UNITS_CUBE_VIEW in the Global
sample schema. The query selects the SALES measure and three calculated measures
that use SALES as the basis for the calculations:

= SALES_PP: Sales from the prior period.

= SALES_CHG_PP: Difference in sales between the current period and the prior
period.

s SALES_PCTCHG_PP: Percent difference in sales between the current period and
the prior period.

This query is used in the sample applications developed in this chapter. The PARENT
columns for the Product, Customer, and Time dimensions will support drilling in
these applications. The CHANNEL dimension will remain anchored at the TOTAL level.

Example 6-1 SQL Query Against the Sales Cube

SELECT p.long_description "Product",
cu.long_description "Customer",
t.long_description "Time",
ROUND(f.sales) "Sales",

ROUND (f.sales_pp) "Prior Period",
ROUND (f.sales_chg_pp) "Change",
ROUND (f.sales_pctchg_pp * 100) "Percent Change"

/* From dimension views and cube view */

FROM product_primary view p,
customer_shipments_view cu,
time_calendar_view t,
channel_primary view ch,
units_cube_view f

/* Use parent columns to implement drilling */

WHERE p.parent = 'TOTAL'

AND cu.parent = 'TOTAL'
AND t.parent = 'CY2006'
AND ch.level _name = 'TOTAL'
/* Join dimension views to cube view */
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND t.dim_key = f.time
AND ch.dim_key = f.channel
ORDER BY product, customer, t.end date;

Product Customer Time Sales Prior Period Change Percent Change
Hardware North America Q1.06 16002175 14493426 1508749 10
Hardware North America 02.06 16032643 16002175 30469 0
Hardware North America 03.06 15698208 16032643 -334436 -2
Hardware North America 04.06 15958791 15698208 260583 2
Hardware Asia Pacific 01.06 13416447 14273900 -857453 -6
Hardware Asia Pacific 02.06 14306431 13416447 889984 7
Software/Other Asia Pacific 04.06 652300 647019 5281 1
Software/Other Europe 01.06 737523 634293 103230 16
Software/Other Europe 02.06 678391 737523 -59132 -8
Software/Other Europe 03.06 499008 678391 -179383 -26
Software/Other Europe Q4.06 710796 499008 211788 42

24 rows selected.

6-2 Oracle OLAP User's Guide

Developing a Report Using Bl Publisher

Developing a Report Using Bl Publisher

BI Publisher is an efficient, scalable reporting solution for generating and delivering
information through a variety of distribution methods. It reduces the high costs
associated with the development and maintenance of business documents, while
increasing the efficiency of reports management. BI Publisher generates reports in a
variety of formats, including HTML, PDF, and Excel.

If you have not used BI Publisher, you can download the software, tutorials, and full
documentation from the Oracle Technology Network at

http://www.oracle.com/technology/products/xml-publisher/index.ht
ml.

Figure 6-1 shows a report in PDF format based on the query shown in Example 6-1.
When generating a report for distribution, you can select any combination of Products,
Customers, and Time Periods from the choice lists. The selection for this report is
Hardware products, customers in Europe, and months in Q2-06. This chapter explains
how you can create a report like this one using drillable dimensions.

Figure 6-1 Sales Report in Bl Publisher

W\ Global Enterprises, Inc.

Sales Analysis

Product Customer Time Sales Prior Period Change % Change
CD/DVD France APR-06 125,401 111,866 13,535 12
CD/DVD France MAY-06 16,391 125,401 -108,010 -a7
CD/DVD France JUN-06 170,033 16,391 153,642 937
CD/DVD Germany APR-06 27,727 19,499 8,228 42
CD/DVD Germany MAY-06 27,178 27,727 -549 -2
CD/DVD Germany JUN-06 31,263 27,178 4,085 15
CD/DVD Italy APR-06 22,960 20,814 2,146 10
CD/DVD Italy MAY-06 21,290 22,960 -1,669 -7
CD/DVD Italy JUN-06 15,472 21,200 -5,818 -27
CD/DVD Spain APR-06 8,148 6,920 1,227 18
CD/DVD Spain MAY-06 7,323 8,148 -825 -10
CD/DVD Spain JUN-06 10,522 7.323 3,199 44
CD/DVD United Kingdom | APR-08 63,371 50,752 12,619 25
CD/DVD United Kingdom | MAY-06 56,083 63,371 7,288 -12
CD/DVD United Kingdom | JUN-06 62,155 56,083 6,071 11
Desktop PCs France APR-06 38,063 38,182 -119 0
Desktop PCs France MAY-06 45,451 38,063 7,388 19
Desktop PCs France JUN-08 44,759 45 451 -692 -2

Creating an OLAP Report in Bl Publisher

A report consists of a report entry, which you create in BI Publisher, and a layout
template, which you create using an application such as Microsoft Word or Adobe
Acrobat. You can organize your reports in folders.

BI Publisher is a middleware application and can derive data from multiple sources.
These procedures assume that you can access one or more cubes from BI Publisher. If
you cannot, contact your Bl Publisher administrator about defining a new data source.

Developing Reports and Dashboards 6-3

Developing a Report Using Bl Publisher

To create a report entry:
1. Open a browser to the BI Publisher home page and log in.

2. Click My Folders.
3. Open an existing folder.
or
To create a new folder:
a. Click Create a New Folder.
b. Enter a name for the folder in the text box, such as OLAP Reports.
c. Click Create.
4. Click the new folder to open it.
5. Create a new report:
a. Click Create a New Report.
b. Enter a report name in the text box.
This example creates a report named Global Sales.
c. Click Create.

The new report appears in the folder, as shown in Figure 6-2.

Figure 6—2 Creating a New Report

TORACLE' Bl Publisher Enterprise

Reports | Schedules
Home = Wy Folders = QOLAP Reports

Search

Global Sales
| —| Date Modified 6/21/07 5:27 PM Eastern Time
cearch Wiew Schedule History Edit Configure

Folder and Report Tasks
3 Create a new folder

Create 3 new report
=] Upload a report
=] Template Builder

Tip
To copy, delete, rename folder or

report, please cick o folder icon
or report ican.

To configure the report entry:
1. To define the contents of the report, click Edit.

The Report Editor opens.
2. For General Settings, enter a description and select a default data source.

If the list does not include a connection to the database and schema containing
your cubes, contact your BI Publisher administrator.

3. Select Data Model, then click New.

6-4 Oracle OLAP User's Guide

Developing a Report Using Bl Publisher

The Data Set page opens.

4. Enter a name for the data set and enter a SQL query like the one shown in
Example 6-1. Do not use a semicolon.

5. Click Save.
6. Click View.

BI Publisher checks the report definition for errors. If there are none, then it
generates the XML for the report.

Figure 6-3 shows the Report Editor with the Data Set page displayed.

Figure 6-3 Creating a Data Model in the Bl Publisher Report Editor

Home = iy Folders = OLAP Reports = Glohal Sales Wiew Schedule History Edit Configure

E'l Save |@|Generate KLIFF

Report
=] Hosste)) Data Set
Repart

B 3 DataModel

General Settings

= Name | Sales Guer
= Sales Query b

Type
B List of values YR8 SCL Query =
El Parameters
Details
E} Layouts
& Bursting Data3owrce (3 pefault Data Source
O [l ~ |Refresh Dats Source List
[cache result
S0L Query Query Builder
SELECT p.long description "Product”, ~

cu. long_description "Customer”,

t.long description "Time",

ROUNL (£.=zales) "Sales",

ROUND (£.=ales_pp) "Prior Peried”,

ROMND (£.=2ales_chg_pp) "Change™,

ROOND (£.5ales_p pp ¥ 100) "Percent Change™
/% From dimension wi and cube view %/
FROM product_primary wiew p,

customer_shipments_view ocu,

time_calendar wiew t,

channel primary wview ch,

units_cube_wiew £
A% Use parents for drilling %/ w

Creating a Template in Microsoft Word

BI Publisher does not contain formatting tools. Instead, it enables you to design a
report using familiar desktop applications. This example uses Microsoft Word. A
report template can contain:

= Static text and graphics that you enter like any other Word document.

= Dynamic fields such as the date and time or page numbers, which are processed
by Word.

» Codes that identify the XML tags for your data, which are processed by Bl
Publisher. When BI Publisher generates a report, it replaces the codes with the data
identified by these tags.

You can format all parts of the report template in Word, selecting the fonts, text and
background colors, table design, and so forth.

Example 6-2 shows the XML for a row of data returned by the sample query. The tags
match the column names in the select list, except that underscores replace the spaces.
The tags are Product, Customer, Time, Sales, Prior_Period, Change, and

Developing Reports and Dashboards 6-5

Developing a Report Using BI Publisher

Percent_Change. XML tags are case-sensitive. You use the HTML tag names as the
codes in the Word document.

Example 6-2 XML for a SQL Query

<ROW>

<Product>Hardware</Product>
<Customer>North America</Customer>
<Time>Q1.06</Time>
<Sales>16002175</Sales>
<Prior_Period>14493426</Prior_Period>
<Change>1508749</Change>
<Percent_Change>10</Percent_Change>
</ROW>

Figure 6-4 shows the Word document that will be used as the template for the sample
report. It contains these elements:

= A table used to format the banner, which consists of a graphic, the company name,
and a horizontal line. (Static)

s The name of the report. (Static)
= A table for the query results that contains two rows:
- A heading row. (Static)

- A body row containing text form fields, which identify the XML tags and the
appropriate formatting for the data. BI Publisher will replace these fields with
data from the query. Note that the first and last columns contain two fields.
The first and last fields identify the range of repeating columns. (Dynamic)

= A date field. Word updates this field with the current date. (Dynamic)

This example uses a blank Word template, but you could use a template with, for
example, the banner already defined.

Figure 6—4 Sample Report Template Created in Word for Bl Publisher

\\ Global Enterprises, Inc.

Sales Analysis

Priar 9%
Product Customer Time Sales Period Change Change
for-each TOTAL 2006 1]] 0 0 end

TOTAL

June 27, 2007

The following procedure defines the template manually. Alternatively, you can use a
Word plugin called Oracle BI Publisher Desktop. On the BI Publisher My Folders page,
click Template Builder to download the plugin.

To create a Bl Publisher template in Word:
1. Open a new document in Word.

6-6 Oracle OLAP User's Guide

Developing a Report Using Bl Publisher

2, Compose the page according to your preferences.
3. For the query results, create a table.

The table shown in Figure 6—4 is very simple. You can use much more elaborate
formatting if you wish, including nested columns and tables.

4. From the View menu, choose Toolbars, then Forms.
The Forms toolbar opens.
5. Enter a field in the body row of each column:
a. Position the cursor in the appropriate cell.
b. On the Forms toolbar, click the Text Form Field icon.
The Text Form Field Options dialog box opens.

c. Choose an appropriate Type, generally Regular Text for dimension labels and
Number for measures.

d. Enter a default value and a format.
e. Click Add Help Text.
The Form Field Help Text dialog box opens.
f. Type the appropriate XML tag in the Type Your Own box, using the format

<?tag?>.

Enter the tag name exactly as it appears in the XML report. For example, enter
<?Product?> for the XML tag <Product>.

g. Click OK to close the Form Field Help dialog box.
h. Click OK to close the Text Form Field Options dialog box.
6. Insert an additional form field at the beginning of the first column:

a. In the Text Form Field Options dialog box, enter any default value, such as
For-Each.

b. Inthe Form Field Help Text dialog box, enter this text:

<?for-each:ROW?>

7. Insert an additional form field at the end of the last column:

a. In the Text Form Field Options dialog box, enter any default value, such as
End.

b. In the Form Field Help Text dialog box, enter this text:

<?end for-each?>

8. Make any additional formatting changes in Word, such as the appropriate
justification of the table headings and data columns.

9. Save the document as an RTF file.

Generating a Formatted Report

After creating a report template in Word, you can upload it to BI Publisher and
associate it with your report definition. Then you can generate reports in a variety of
formats.

Developing Reports and Dashboards 6-7

Developing a Report Using BI Publisher

Create a Report Layout:

1.
2.

Open the report editor in BI Publisher.

Select Layouts.

The Create Layouts page opens.

Click New.

The Layout page opens.

Enter a name and select RTF for the template type.

Select Layouts again, and select the new layout as the default template for this
report.

Under Manage Template Files, click Browse. Select the RTF file you created.
Click Upload.

The uploaded file will be listed under Manage Template Files. Whenever you
change the file in Word, upload it again. Otherwise, BI Publisher will continue to
use its copy of the previous version.

Click Save.
Click View.
The report is displayed.

10. To change the format, select a new format from the list and click View.

To see the XML, select Data.

Figure 6-5 shows the report in HTML format.

Figure 6-5 Bl Publisher Report Displayed in HTML Format

Reports Admin
I T acmin T e s]

Home = hy Folders = OLAP Reports = Global Sales

Template | Giobal || html || view | [Export | | | Analyzer |_

Global Enterprises, Inc.

Sales Analvysis

Product Customer Time Sales Prior Period Change Ch:
Hardware Morth America | Q1.06 16,002,175 14,493,426 1,508,749
Hardware Morth America | Q2.06 16,032,643 16,002,175 30,459
Hardware Morth America | Q3.06 15,698,208 16,032,643 -334,436
Hardware Morth America | Q4.06 15,958,791 15,698,208 260,583
Hardware Asia Pacific Q1.06 13,416,447 14,273,900 -857,453
Hardware Asia Pacific 02,06 14,306,431 13,416,447 889,994
Hardware Asia Pacific 03.06 10,435,666| 14,306,431 -3,870,765
Hardware Asia Pacific 04.06 12,163,497 10,435,666 1,727,831
Hardware Europe 01.06 3,293,269 3,264,469 28,801

6-8 Oracle OLAP User's Guide

Developing a Report Using Bl Publisher

Adding Dimension Choice Lists

You can add choice lists for the dimensions to a report. When generating a report, you
can change the selection of data without changing the query. To add choice lists, take
these steps:

= Create one or more Lists of Values (LOV) to be displayed in the menu.
s Create menus for displaying the LOVs.

= Edit the query to use the bind variables created for the menus.

Creating a List of Values

For an LOV, use a SQL query that selects the dimension keys that you want to display.
Include the LONG_DESCRIPTION and DIM_KEY columns from the hierarchy view.
This example creates a list for the Product Primary hierarchy:

SELECT long_description, dim_key
FROM product_primary view
WHERE parent = 'TOTAL'
OR dim_key = 'TOTAL'
ORDER BY level_name, long_description

LONG_DESCRIPTION DIM_KEY
Hardware HRD
Software/Other SFT
Total Product TOTAL

To create a list of values:
1. Open the Report Editor in BI Publisher.

2. Select List of Values, then click New.

The List of Values page opens.
3. Define the list:

a. [Enter a name for the list, such as Product_LOV.

b. For the type, select SQL Query.

c. Enter a query against the dimension hierarchy view, as shown previously.
4. Click Save.

Repeat these steps for the other dimensions. This example uses lists for Product,
Customer, and Time.

Creating a Menu

In BI Publisher, a menu is a type of parameter. Creating a parameter automatically
creates a bind variable that you can use in the query for the report.

To create a menu:
1. Select Parameters, then click New.

The Parameter page opens.
2. Define the parameter:

a. For the Identifier, enter a name such as product.

Developing Reports and Dashboards 6-9

Developing a Report Using BI Publisher

This is the case-sensitive name of the bind variable that you will use in the
query.
b. Select an appropriate data type, typically String.

c. For the Default Value, enter the dimension key used in the WHERE clause of the
LOV query.

The menu will initially display this key.
d. For the Parameter Type, select Menu.
e. Select the appropriate List of Values.
f. Clear all options.
3. Click Save.

Repeat these steps for the other dimensions. This example creates menus for Product,
Customer, and Time.

Editing the Query

To activate the menus, you change the WHERE clause in the query for the report to use
the bind variables. The value of a bind variable is the current menu choice.

This is the format for the conditions of the WHERE clause:

parent_column = :bind_variable

In this example, the WHERE clause uses the bind variables for Time, Product, and

Customer:

WHERE p.parent = :product
AND cu.parent = :customer
AND t.parent = :time

AND ch.level _name = 'TOTAL'

To edit the query:
1. Under Data Model, select the data set you defined for this report.

The Data Set page opens.

2. In the SQL Query box, edit the WHERE clause to use the bind variables created by
the parameter definitions.

3. Click Save.

Figure 6-6 shows a report in HTML format displayed in BI Publisher. The choice lists
for Product, Customer, and Time appear across the top. The crosstab lists the months
in Q3.06, the Hardware products, and the countries in Europe. To see a different
selection of data, you choose a Time Period, Product, and Customer from the menus,
then click View. This report was generated by the same report entry, using the same
query, as the one shown in Figure 6-1.

You can continue working on this report, adding charts and other tables.

6-10 Oracle OLAP User's Guide

Developing a Dashboard Using Application Express

Figure 6-6 Sales Report With Choice Lists in Bl Publisher

Home = hiyFolders = QLAP Reports = Global Sales View Schedule History Edit Configure
Product| Total Product v Customner| Asia Pacific hd Time Period| 2005 %

| | Analyzer | Analyzer for Excel |

Sales Analysis

Product Customer Time Sales Prior Period Change % Change
Hardware Australia Q1.06 230,526 259,615 -20,089 -8
Hardware Australia Q2.06 238,622 239,526 -a04]
Hardware Australia Q3.06 271,316 238,622 32,605 14
Hardware Australia Q4.06 278,809 271,316 7,493 3
Hardware Hong Kong Q1,08 102,961 120,206 -27,246 -21
Hardware Hong Kong Q2,06 142,004 102,961 30,043 38
Hardware Hong kKong 03,06 137,822 142,004 -4,081 -3
Hardware Haong kKaong Q4,06 199,122 137,922 61,200 44
Hardware Japan Q1.06 10,569,808 11,672,213 -1,108,404 -9
Hardware Japan Q2.06 12,292,229 10,569,308 1,722,421 16
Hardware Japan Q3.06 7,243,345 12,292,229 -5,048,384 -41
Hardware Japan Q4,06 10,140,041 7,243,345 2,896,696 40

Developing a Dashboard Using Application Express

Oracle Application Express is a rapid Web application development tool for Oracle
Database. Application Express offers built-in features such as user interface themes,
navigational controls, form handlers, and flexible reports, which simplify the
development process.

Chapter 1 shows a sophisticated dashboard that extracts analytic data from cubes and
presents it in a variety of graphs and reports. You can easily create dashboards from
your cubes that display the rich analytical content generated by Oracle OLAP.

If you have not used Application Express, you can download the software, tutorials,
and full documentation from the Oracle Technology Network at

http://www.oracle.com/technology/products/database/application_
express.

Figure 6-7 shows a crosstab with display lists for Product and Customer, and links in
all three dimension columns. Choosing a new Product or Customer changes the
related column to show the children for the selected key. Clicking a dimension key in
any column displays its children. The Reset button refreshes the page with the initial
selection of data.

Developing Reports and Dashboards 6-11

Developing a Dashboard Using Application Express

Figure 6—7 Drillable Dimensions in Application Express

Global Enterprises, Inc.

Product| Total Product v | Customer | Total Customer

Sales Analysis Reset |
Search Display [15 | (Ga)

Product & Customer Time Sales Prior Period Change Percent Change

Hardware Asia Pacific Q106 13416447 14273900 -B57453 -6

Q206 14306431 13416447 289984 T

Q306 10435666 14306431 -3870765 =27

Q4.06 12163497 10435666 1727831 17

Europe o106 3293269 3264469 288M 1

Q206 32983949 3293269 5128 a

306 3093762 3298399 -204637 -6

Q4 06 3187593 3093762 103832 3

Maorth America Q1.06 16002175 14493426 1508749 10

Q206 16032643 16002175 30469 a

306 15698208 16032643 -334438 -2

Q4.06 15958791 15698208 260583 2

SoftwarefOther Asia Pacific @1.06 A63786 672404 108619 -16

Q206 551148 A63TEE -12637 -2

Q306 647019 551148 95870 17

row(z) 1 -15 of 24 s | Mext (e

Creating an OLAP Application in Application Express

In Application Express, the Administrator creates a workspace in which you can
develop your Web applications. An application consists of one or more HTML pages,
a page consists of regions that identify specific locations on the page, and a region
contains a report (crosstab), a chart, or some other item.

Application Express runs in Oracle Database. If your dimensional objects are stored in
a different database, then you need to use a database link in your queries. The
following procedure assumes that you have a workspace and access to at least one
cube. It creates an application with one page containing a crosstab.

To create a Web page from a SQL query:
1. Open a browser to the Application Express home page and log in.

2. Click the Application Builder icon.
The Application Builder opens.
3. Click Create.
The Create Application wizard opens.
4. Select Create Application, then Next.

5. On the Name page, enter a title for the application such as Global Dashboard
and select From Scratch.

6. On the Pages page, select the Report page type, then define the page:
a. For Page Source, select SQL Query.
b. For Title, enter a name such as Sales Analysis.

This title is displayed on the page.

6-12 Oracle OLAP User's Guide

Developing a Dashboard Using Application Express

c. For Query, enter a SQL SELECT statement for your cube, like the one shown in
Example 6-1. Do not include an ORDER BY clause or a semicolon.

d. Click Add Page.
The page definition appears in the Create Application Box.

7. Click Next, then complete the Create Application wizard according to your own
preferences.

This example was created with no tabs, no shared components, no authentication,
and Theme 15 (Light Blue).

8. On the Confirm page, click Create.
9. On the Application Builder home page, click the Run Application icon.

Tip: To continue working on this page, click the Edit Page 1 link at
the bottom of the display.

Figure 6-8 shows the results of the query displayed in Application Express. Several
items are automatically added to the page: breadcrumbs, Search box, Display list, Go
button, Reset button, and Spread Sheet link. This application only needs the Reset
button, so you can delete the other items if you wish.

Figure 6-8 Basic Sales Report in Application Express

Sales Analysis

Sales Analysis Reset |
Search Display [15 [»| [(Go)

Product & Customer Time Sales Prior Period Change Percent Change
Hardware Asia Pacific Q3.06 10435666 14306431 -3870765 -27
Hardweare Asia Pacific Q2.06 14306431 13416447 889984 7
Hardware Asia Pacific Q4.06 12163497 10435666 1727831 17
Hardware Europe @206 3298399 3293269 h1249 1]
Hardweare Europe Q406 3197593 3093762 103832 &)
Hardware Europe Q3.06 3093762 3298399 -204637 -6
Hardware Europe G106 3293269 3264469 288M 1
Hardweare Morth America @1.06 160021745 14493426 1508749 10
Hardware MNorth America Q3.06 15698208 16032643 -334436 -2
Hardware Morth America @2.06 16032643 16002175 30469 a
Hardweare Morth America @4.068 159587591 15658208 260583 2
Hardware Asia Pacific Q1.06 13416447 14273900 -B5T453 -6
SoftwarefCther Asia Pacific @1.06 563786 672404 108619 -16
SoftwareiOther Asia Pacific Q306 647019 551149 95870 17
SoftwarefOther Asia Pacific Q2.06 551148 563786 -12637 -2

SIS ElE ronl(s)1 - 15 of 24 |w| Next(®

Adding Dimension Choice Lists

Like BI Publisher, Application Express enables you to drill on the dimensions by
adding choice lists of dimension keys. The dashboard user can choose a particular
item from the list and dynamically change the selection of data displayed in one or
more graphics and crosstabs on the page. To implement a choice list, take these steps:

» Create a new region on the page to display the list.
m Create a list of values (LOV).

» Create a list item with a bind variable to display the LOV.

Developing Reports and Dashboards 6-13

Developing a Dashboard Using Application Express

s Create an unconditional branch for the list.
= Edit the query to use the bind variable.

The Page Definition is where you can create new pages and edit existing ones,
including adding new graphical items and modifying existing ones. The items are
organized in three columns: Page Rendering, Page Processing, and Shared
Components.

To open the Page Definition:
After running the application, click the Edit Page link at the bottom of the page.

or
On the Application home page, click the icon for the page where the report is defined.

Figure 6-9 shows an area of the Page Definition.

Figure 6-9 Application Express Page Definition

ORACLE" Application Express
Home)4 : Sl Workshop .l

Home = Application Builder > Application 102 > Page 1 Fage 1 |'_' L
- 1 -~ Last Updste
// Page View | Definion [Copy] [Delete]| [Create > pa— .
aje COmme
Page Rendering Pagye Processing Shared Components
v (] 8 = E E v B @& = - R = E
%
A
Page Mame: Sales Analysis Template: foplication
default
Title: Sales Analysi Header Text: .
SR B e Te Static Report Row Per Page
HTML Header: Footer Text: \
HTMAL Body: Build Option:
Help Text: Mo help is available for this jon: Mo Adter Submit
. . 10 Resst Reset Pagination Conditional Breaderumb
Page Group: Cached: Mo .
Pagination
20 Reset report Clear Cache for tems Conditional
p search (ITEMITEM, ITEW)
Display Paoint: Page Template Body (2] ‘\
10 Sales Analysis Rep .
ales Analysis Report After Frocessing Pag.e Mo Tabs)
10 Go To Page 1 Unconditional FRegion Breaderumb Region
Di=play Point: Region Position 01 Region Reportz Region
1 Breaderumbs Breaderumb Entry Label Optional Label with Hel
Button Button
\ Buttan Button
Breaderumb Breadecrumbs
Region: Sales Analysis Report Standard Report
10 Feset Submit az "RESET"
tem Submit as "Go"
\ 16, Light Blue

Region: Sales Analysis < O

10 F1_REPORT SEARCH Text Fizld (3lways submits page when
Erter pressad)

Creating a Region
You can create the choice list in a plain HTML area at the top of the page.

To create an empty HTML region:
1. On the Page Definition under Regions, click the Create icon.

The Create Region wizard opens.

2. On the Region pages, select HTML, click Next, then select HTML again.

6-14 Oracle OLAP User's Guide

Developing a Dashboard Using Application Express

3.

On the Display Attributes page, enter a descriptive title and select an appropriate
template and location on the page for the lists.

For this example, the name is 1ov_region, the template is No Template, and the
location is Page Template Body (1 items below template content). The name can
be displayed on the rendered page, but it is hidden in this example.

Click Create Region.

The new region appears on the Page Definition under Regions.

Creating a List of Values

For a list of values, use a SQL query like the one shown here. Include the LONG_
DESCRIPTION and DIM_KEY columns from the hierarchy view. This query creates a
list for the Customer Shipments hierarchy:

SELECT long_description, dim_key

FROM customer_shipments_view

WHERE parent = 'TOTAL'

OR dim_key= 'TOTAL'

ORDER BY level_name, long_description;

LONG_DESCRIPTION DIM_KEY
Asia Pacific APAC
Europe EMEA
North America AMER
Total Customer TOTAL

To create a List of Values

1.

On the Page Definition under List of Values, click the Create icon.

The Create List of Values wizard opens.

On the Source page, select From Scratch.

On the Name and Type page, enter a descriptive name and select Dynamic.
This example uses the name CUSTOMER_LOV.

On the Query page, enter a query like the one shown previously. Do not use a
semicolon.

Click Create List of Values.
The new LOV appears in the Page Definition under List of Values.

For additional LOVs, repeat these steps. This example creates LOVs for the Product
and Customer dimensions.

Creating the Choice List
For a choice list, you create a list item that displays the LOV.

To create a list item:

1.

On the Page Definition under Items, click the Create icon.
The Create Item wizard opens.

On the Item Type page, select Select List.

For Control Type, select Select List with Submit.

Developing Reports and Dashboards 6-15

Developing a Dashboard Using Application Express

4. On the Display Position and Name page:

s Enter a name that identifies the dimension, such as P1_CUSTOMER for the
name of the Customer bind variable. P1 is the page number, and CUSTOMER
identifies the Customer dimension.

s Choose the new HTML region for the location of the list.
5. On the List of Values page, set these values:

s Named LOV to the List Of Values created for this dimension, such as
CUSTOMER_LOV.

= Display Null Option to No.

6. Select the Item attributes according to your own preferences.

7. On the Source page, enter the name of the top dimension key for the default value.
For the Global Customer dimension, the value is TOTAL.

8. Click Create Item.

Repeat these steps for other lists. This example creates lists for the Product and
Customer dimensions.

To activate the list item:
1. On the Page Definition under Branches, click the Create icon.

The Edit Branch wizard opens.
2. On the Point and Type page, accept the default settings.
3. On the Target page:
n Set Target to Page in This Application.
= Set Page to the page with the list item, which is 1 in this example.
= Select Reset Pagination For This Page.

4. On the Branch Conditions page, accept the default settings to create an
unconditional branch.

5. Click Apply Changes.

The Edit Branch page closes, and you return to the Page Definition. The new
unconditional branch is listed under Branches.

Editing the Query

This is the format for the dynamic conditions in the WHERE clause:
parent_column = NVL(:bind_variable, 'top dim_key')

The NVL function substitutes the name of the top dimension key in the hierarchy for
null values. The dimension keys at the top have no parent key.

To edit the query:
1. Open the Page Definition.

2. Under Regions, click the Edit Region link. In this example, the region is named
Sales Report.

The Edit Region page opens.
3. Under Source, modify the query:

6-16 Oracle OLAP User's Guide

Developing a Dashboard Using Application Express

s Change the WHERE clause to use the bind variables.

s Delete the outer SELECT added by Application Express.
4. Click Apply Changes.
For this example, the WHERE clause now looks like this:

WHERE p.parent = NVL(:P1_PRODUCT, 'TOTAL')
AND cu.parent = NVL(:P1_CUSTOMER, 'TOTAL')
AND t.parent = 'CY2006'

AND ch.level name = 'TOTAL'

Figure 6-10 shows the modified page with choice lists for Product and Customer.

Figure 6—-10 Dashboard With Choice Lists for Drilling

Sales Analysiz

Froduct| Total Product % | Customer | Evope v

Sales Analysis Reset |
Search Display[10 [+ | (o)

Product & Customer Time Sales Prior Period Change Percent Change
Hardware France Q1.06 516260 472307 43853 9
Hardware Spain Q4,06 133449 118218 1523 13
Hardware Germany Q406 HBIBEGZ GE3524 -24862 -4
Hardware [taly Q4.06 300803 278440 22363 g
Hardware France @406 607580 428493 173087 42
Hardware United Kingdom Q2.06 1590795 1739746 -1485891 -9
Hardware Spain Q206 155818 13234 23479 18
Hardware Germany Q206 699964 G44067 858497 9
Hardware Italy Q206 298935 260856 38079 15
Hardware France Q206 552886 516260 36626 7
Spread Sheet

row(z) 1 - 10af 40 s | Mext(e

Drilling on DImension Columns

You can enable users to drill down from the top of a hierarchy to the detail level using
a single query. To implement drilling in Application Express, take these steps:

s Create hidden items with bind variables.
= Edit the query to use the bind variables.
s Add links to the dimension columns of the crosstab.

This example adds drilling to all displayed dimensions.

Creating Hidden ltems

You can create various types of items in Application Express that provide bind
variables. They store the session state for a particular element, in this case, the current
selection of a parent dimension key.

Each dimension that will support drilling needs a bind variable. In this example,
Product and Customer already have bind variables created with the list items. Time is
the only displayed dimension in the report that does not have a bind variable. Because
links in the Time dimension column will provide the user interface for changing the
session state, Time does not need any other graphical user interface. A hidden item
serves the purpose.

Developing Reports and Dashboards 6-17

Developing a Dashboard Using Application Express

To create a hidden item:
1. Open the Page Definition.

2. Under Items, click the Create icon.
The Create Item wizard opens.
3. On the Item Type page, select Hidden.
4. On the Display Position and Name page:

s Enter a name that identifies the dimension, such as P1_TIME for the name of
the Time bind variable.

= Choose the region where the report is defined.
5. On the Source page, enter the dimension key at the top of the hierarchy.

TOTAL is the top of all hierarchies in the Global schema. For this example, Time is
set to CY2006 to restrict the selection to one year.

6. Click Create Item.

7. Repeat these steps for any other dimensions that will support drilling only on the
column links.

For this example, a hidden item is defined for Time.

Editing the Query

To add column links to a report, you must change two areas of the SELECT statement:

= Select list: Application Express manages only those columns that appear in the
select list. You can choose to display or hide the columns. For defining the column
links, add the DIM_KEY and PARENT columns in the hierarchy views to the query
select list.

= WHERE clause: Add the bind variables for the hidden items like you did for the
choice lists in "Editing the Query" on page 6-10.

Example 6-3 shows the modified sample query.

Example 6-3 Revised Query for Column Links in Application Express

SELECT p.long_description "Product",
cu.long_description "Customer",
t.long_description "Time",

ROUND (f.sales) "Sales",

ROUND (f.sales_pp) "Prior Period",

ROUND (f.sales_chg_pp) "Change",

ROUND (f.sales_pctchg_pp * 100) "Percent Change",

/* Add DIM_KEY and PARENT columns for column links */
p.dim_key product_key,
p.parent product_parent,
cu.dim_key customer_key,
cu.parent customer_parent,
t.dim_key time_key,
t.parent time_parent

/* From dimension views and cube view */

FROM product_primary view p,
customer_shipments_view cu,
time_calendar_view t,
channel_primary view ch,
units_cube_view f

/* Use parent columns and bind variables for drilling */

6-18 Oracle OLAP User's Guide

Developing a Dashboard Using Application Express

parent = NVL(:P1_PRODUCT, 'TOTAL')
cu.parent = NVL(:P1_CUSTOMER, 'TOTAL')
t.parent = NVL(:P1_TIME, 'CY2006')
ch.level_name = 'TOTAL'

dimension views to cube view */
p.dim_key = f.product

cu.dim_key = f.customer

t.dim_key = f.time

ch.dim_key = f.channel

Adding Links to the Dimension Columns

When a dashboard user clicks a linked dimension key in the crosstab, the value of the
bind variable changes, causing the crosstab to change also. After drilling down a
hierarchy, the user can restore the display to its original selection of data by pressing
the Reset button. To implement these column links, you must add the column links
and activate the Reset button.

To add a link to a dimension column:

1.
2.

Open the Page Definition.

Under Regions, click the Report link.

The Report Attributes page opens.

Under Column Attributes, modify the report display:

Clear the Show check boxes for columns that you want to hide, such as the
DIM_KEY and PARENT columns.

Set the Sort and Sort Sequence check boxes for appropriate sorting for the
report. In this example, the sort order is Product (1), Customer (2), and
Time (3).

Click the Edit icon for a dimension column.

The Column Attributes page opens.

Under Column Link, define the link as follows:

Link Text: Choose the dimension name.
Page: Enter the page number.

Name: List the dimensions in the order they appear in the report. Item is the
name of the bind variable. Value is the DIM_KEY column for the dimension
being defined or the PARENT column for the other dimensions.

Figure 6-11 shows the link definition for the Time dimension.

Click Apply Changes.

The Column Attributes page closes, and you return to the Report Attributes page.

Define links on the other dimension columns.

Click Apply Changes.

The Report Attributes page closes, and you return to the Page Definition.

Developing Reports and Dashboards 6-19

Developing a Dashboard Using Application Express

Figure 6—11 Definition of the Time Link

Column Link

Link Text #Timett ?
[Time] [leonq] [lcon2] [con 3] [lcond] [leonS]

Link Afttibutes

Target | Page in this Application |+ Page |1 Creset Pagination
Reguest Clear Cache
Mame Walue
Item 1 |F1_PRODUCT & HPRODUCT_PARENTH &
Item 2 |P1_CUSTOMER « HCUSTOMER_PARENTH @
Item 3 F1_TIME « HTIME_KE'WH
Fage Checksum | - Use default - v

To activate the Reset button:
1. Open the Page Definition.

2. Under Branches, click the Go to Page conditional link.

The Reset button was created on the page automatically along with its conditional
branch. The Edit Branch page opens.

3. Under Action, set Clear Cache to the page number (in this example, 1).
4. Under Conditions, set When Button Pressed to RESET.
5. Click Apply Changes.
The Edit Branch page closes, and you return to the Page Definition.
6. Click Run to display the page.

Figure 6-12 shows the finished page displaying months in Q3.06. You can continue
working on this application, adding more reports and charts to the page. For the SQL
queries providing data to those reports and charts, you can re-use the same bind
variables for the dimensions.

Figure 6—12 Sales Report With Column Links in Application Express

Sales Analysis

FProduct| Total Product % | Customer | Naorth America %

Sales Analysis Reset |
Search Display [18 v (Ga)

Product Customer Tiﬂ" Sales Prior Period Change Percent Change
Hardware Canada AIG-06 127402 236818 109114 -4f
Hardware United States AUG-06 4897322 3605106 1292216 36
Software/Other Canada ALIG-06 52106 Tr4a0 -25345 -33
SoftwarefOther United States AUG-06 5736893 624373 -110679 -16
Hardware Canada JUL-06 - 236514 216709 19806 q
Hardware United States JUL-06 3605108 5847615 -2242509 -38
SoftwarefOther Canada JUL-06 774580 46909 30541 65
SoftwarefOther United States JUL-06 684373 489917 194456 40
Hardware Canada SEP-06 286923 127402 129522 102
Hardware United States SEP-05 6574940 4897322 1677618 34
SoftwarefOther Canada SEP-06 43854 52106 -8250 -16
Software/Other United States SEP-06 5137895 736593 -59894 -10

1-12

6-20 Oracle OLAP User's Guide

7

Administering Oracle OLAP

Because Oracle OLAP is contained in the database and its resources are managed
using the same tools, the management tasks of Oracle OLAP and the database
converge. Nonetheless, you should address tasks such as database tuning in the
specific context of data warehousing.

This chapter contains the following topics:

Setting Database Initialization Parameters
Storage Management

Dictionary Views and System Tables
Partitioned Cubes and Parallelism
Analyzing Cubes and Dimensions
Monitoring Analytic Workspaces

Backup and Recovery

Export and Import

Cube Materialized Views

Setting Database Initialization Parameters

Table 7-1 identifies the parameters that affect the performance of Oracle OLAP. Alter
your server parameter file or init.ora file to these values, then restart your database
instance. You can monitor the effectiveness of these settings and adjust them as
necessary.

See Also:

» Oracle Database Performance Tuning Guide for information about
tuning parameter settings

s Oracle Database Reference for descriptions of individual
parameters

Administering Oracle OLAP 7-1

Storage Management

Table 7-1 Initial Settings for Database Parameters

Parameter Default Value Recommended Setting Description
JOB_QUEUE_ 0 Number of CPUs, plus one Controls the degree of parallelism
PROCESSES additional process for every three in OLAP builds, as described in
CPUs; in a multi-core CPU, each "Parallelism" on page 7-6
core counts as a CPU
For example, JOB_QUEUE_
PROCESSES=5 for a four-processor
computer
SESSIONS Derived 2.5 * maximum number of Provides sufficient background
simultaneous OLAP users processes for each user
UNDO_ AUTO AUTO Specifies use of an undo tablespace
MANAGEMENT (MANUAL in 10g)
UNDO_ Derived Name of the undo tablespace, which Identifies the undo tablespace
TABLESPACE must already be defined defined for OLAP use, as shown in
"Creating an Undo Tablespace" on
page 7-2

To set the system parameters:
1. Open the init.ora initialization file in a text editor.

2. Add or change the settings in the file, as described in Table 7-1.
3. Stop and restart the database.
On Windows, use the Services utility to stop and restart OracleService.

On Linux, use commands like the following. Be sure to identify the initialization
file in the STARTUP command.

SQLPLUS '/ AS SYSDBA'
SHUTDOWN IMMEDIATE
STARTUP pfile=$ORACLE_BASE/admin/orcl/pfile/init.ora.724200516420

Storage Management

Analytic workspaces are stored in the owner's default tablespace, unless the owner
specifies otherwise. All tablespaces for OLAP use should specify EXTENT
MANAGEMENT LOCAL. Tablespaces created using default parameters may use
resources inefficiently. You should create undo, permanent, and temporary tablespaces
that are appropriate for storing analytic workspaces.

Creating an Undo Tablespace

Create an undo tablespace with the EXTENT MANAGEMENT LOCAL clause, as shown in
this example:

CREATE UNDO TABLESPACE olapundo DATAFILE '$ORACLE_BASE/oradata/undo.dbf'
SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
MAXSIZE UNLIMITED EXTENT MANAGEMENT LOCAL;

After creating the undo tablespace, change your system parameter file to include the
following settings, then restart the database as described in "Setting Database
Initialization Parameters" on page 7-1.

UNDO_TABLESPACE=tablespace
UNDO_MANAGEMENT=AUTO

7-2 Oracle OLAP User's Guide

Storage Management

Creating Permanent Tablespaces for OLAP Use

Each dimensional object occupies at least one extent. A fixed extent size may waste
most of the allocated space. For example, if an object is 64K and the extents are set to a
uniform size of 1M (the default), then only a small portion of the extent is used.

Create permanent tablespaces with the EXTENT MANAGEMENT LOCAL and SEGMENT
SPACE MANAGEMENT AUTO clauses, as shown in this example:

CREATE TABLESPACE glo DATAFILE 'SORACLE_BASE/oradata/glo.dbf
SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

Creating Temporary Tablespaces for OLAP Use

Oracle OLAP uses the temporary tablespace to store all changes to the data in a cube,
whether the changes are the result of a data load or data analysis. Saving the cube
moves the changes into the permanent tablespace and clears the temporary tablespace.

This usage creates numerous extents within the tablespace. A temporary tablespace
suitable for use by Oracle OLAP should specify the EXTENT MANAGEMENT LOCAL
clause and a UNIFORM SIZE clause with a small size, as shown in this example:

CREATE TEMPORARY TABLESPACE glotmp TEMPFILE '$SORACLE_BASE/oradata/glotmp.tmp'
SIZE 50M REUSE AUTOEXTEND ON NEXT 5M MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K;

Spreading Data Across Storage Resources

Oracle Database provides excellent storage management tools to simplify routine
tasks. Automatic Storage Management (ASM) provides a simple storage management
interface that virtualizes database storage into disk groups. You can manage a small
set of disk groups, and ASM automates the placement of the database files within
those disk groups.

ASM spreads data evenly across all available storage resources to optimize
performance and utilization. After you add or drop disks, ASM automatically
rebalances files across the disk group.

Because OLAP is part of Oracle Database, you can use ASM to manage both relational
and dimensional data.

ASM is highly recommended for analytic workspaces. A system managed with ASM is
faster than a file system and easier to manage than raw devices. ASM optimizes the
performance of analytic workspaces both on systems with RAC and those without
RAC.

However, you do not need ASM to use Oracle OLAP. You can still spread your data
across multiple disks, just by defining the tablespaces like in this example:

CREATE TABLESPACE glo DATAFILE
'diskl/oradata/glol.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

ALTER TABLESPACE glo ADD DATAFILE
'disk2/oradata/glo2.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M MAXSIZE 1024M,
'disk3/oradata/glo3.dbf' SIZE 64M REUSE AUTOEXTEND ON NEXT 8M
MAXSIZE UNLIMITED;

Administering Oracle OLAP 7-3

Dictionary Views and System Tables

Dictionary Views and System Tables

Oracle Database data dictionary views and system tables contain extensive
information about analytic workspaces.

Static Data Dictionary Views

Among the static views of the database data dictionary are several that provide
information about analytic workspaces. Table 7-2 provides brief descriptions of them.
All data dictionary views have corresponding DBA and USER views.

Table 7-2 Static Data Dictionary Views for OLAP

View Description
ALL_AWS Describes all analytic workspaces accessible to the current user.
ALL_AW_OBJ Describes the current objects in all analytic workspaces accessible to the

current user.

ALL_AW_PROP Describes the properties defined in all analytic workspaces accessible to
the current user.

ALL_AW_PS Describes the page spaces currently in use by all analytic workspaces
accessible to the current user.

See Also:

= "Querying the Data Dictionary" on page 4-18 for a list of data
dictionary views that describe OLAP dimensional objects

» Oracle Database Reference for full descriptions of all data dictionary
views

System Tables

The SYS user owns several tables associated with analytic workspaces. Table 7-3
provides brief descriptions.

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly without
being fully aware of the consequences.

Table 7-3 OLAP Tables Owned By SYS

Table Description

AWS Maintains a record of all analytic workspaces in the database,
recording its name, owner, and other information.

AWSAWCREATE Stores the AWCREATE analytic workspace, which contains
programs for using OLAP Catalog metadata in Oracle Database
10g Release 10.1.0.2 and earlier releases. It exists only for
backward compatibility.

AWSAWCREATE10G Stores the AWCREATE10G analytic workspace, which contains
programs for using OLAP Catalog metadata in Oracle Database
10g Release 10.1.0.3. The OLAP Catalog is not used by later
releases. It exists only for backward compatibility.

AWSAWMD Stores the AWMD analytic workspace, which contains programs
for creating metadata catalogs.

7-4 Oracle OLAP User's Guide

Dictionary Views and System Tables

Table 7-3 (Cont.) OLAP Tables Owned By SYS

Table Description

AWSAWREPORT Stores the AWREPORT analytic workspace, which contains a
program named AWREPORT for generating a summary space
report.

AWSAWXML Stores the AWXML analytic workspace, which contains programs
for creating and managing analytic workspaces for Oracle
Database 10g Release 10.1.0.4 and later.

AWSEXPRESS Stores the EXPRESS analytic workspace. It contains objects and
programs that support basic operations. EXPRESS is used any
time a session is open.

AW_OBJ$ Describes the objects stored in analytic workspaces.

AW_PRG$ Stores program data. Not currently used.

AW_PROP$ Stores analytic workspace object properties.

AW_TRACKS Stores tracking data about access to aggregate cells. Not
currently used.

PS$ Maintains a history of all page spaces. A page space is an

ordered series of bytes equivalent to a file. Oracle OLAP
manages a cache of workspace pages. Pages are read from
storage in a table and written into the cache in response to a
query. The same page can be accessed by several sessions.

The information stored in PS$ enables Oracle OLAP to discard
pages that are no longer in use, and to maintain a consistent
view of the data for all users, even when the workspace is being
modified during their sessions. When changes to a workspace
are saved, unused pages are purged and the corresponding rows
are deleted from PSS.

Analytic Workspace Tables

Analytic workspaces are stored in tables in the Oracle database. The names of these
tables always begin with AWS.

Build Logs

For example, if the GLOBAL user creates two analytic workspaces, one named
MARKETING and the other named FINANCIALS, then these tables will be created in the

GLOBAL schema:

AWSFINANCIALS
AWSMARKETING

The tables store all of the object definitions and data.

The first time you load data into a cube or dimension using Analytic Workspace
Manager, a table named CUBE_BUILD_LOG is created in your schema. This table stores
information about the build. Information about each subsequent build is added to the
table and is identified by its own build identifier. CUBE_BUILD_LOG is populated
whenever a cube is refreshed, whether by Analytic Workspace Manager, the database
materialized view refresh subsystem, or a PL/SQL procedure. It is updated in real
time during the build, so that you can check its status at any time by querying the

table in SQL.

The Maintenance Wizard in Analytic Workspace Manager displays the relevant rows
from this table at the end of every build on the Log page.

Administering Oracle OLAP 7-5

Partitioned Cubes and Parallelism

Partitioned Cubes and Parallelism

Cubes are often partitioned to improve build and maintenance times. For information
about creating a partitioned cube, refer to "Choosing a Partitioning Strategy" on
page 3-16.

Querying Metadata for Cube Partitioning

To discover the current partitioning, query the ALL_CUBES data dictionary view. The
PARTITION_DIMENSION_NAME, PARTITION_HIERARCHY_NAME, and PARTITION_
LEVEL_NAME columns display partitioning information. For example, the following
query shows that the Units Cube is partitioned on the Time dimension, the Calendar
hierarchy, and the Calendar Year level.

SELECT partition_dimension_name, partition_hierarchy_name,
partition_level name FROM all_cubes
WHERE owner='GLOBAL' AND cube_name='UNITS_CUBE';

PARTITION_DIMENSION_NAME PARTITION_HIERARCHY NAME PARTITION_LEVEL_NAME

TIME CALENDAR CALENDAR_YEAR

Creating and Dropping Partitions

Parallelism

The OLAP engine automatically creates and drops partitions as part of data
maintenance, as members are added and deleted from the partitioning dimension.

For example, assume that in the sample Global analytic workspace, the Units cube is
partitioned on the Time dimension, using the Calendar hierarchy, and at the Calendar
Quarter level. The OLAP engine creates a partition for each Calendar Quarter and its
children. The default top partition contains Calendar Years and all members of the
Fiscal hierarchy. If Global has three years of data, then the Units cube has 13 partitions:
Four bottom partitions for each Calendar Year, plus the top partition.

A data refresh typically creates new time periods and deletes old ones. Whenever a
Calendar Quarter value is loaded into the Time dimension, a corresponding new
partition is added to the cube. Whenever a Calendar Quarter value is deleted from the
Time dimension, the corresponding empty partition is deleted from the cube.

You can improve the performance of data maintenance by enabling parallel
processing. There are two levels of parallelism:

= Parallel job execution: Loading and aggregating the data using multiple processes.

= Parallel update: Moving the data from temporary to permanent tablespaces using
multiple processes.

This number of parallel processes is controlled by these factors:

s The number of objects that can be aggregated in parallel. Each cube and each
partition (including the top partition) can use a separate process.

You can control the number of partitions in a cube on the Partitioning tab of the
cube property sheet in Analytic Workspace Manager.

s The number of simultaneous database processes the user is authorized to run.

This number is controlled by the JOB_QUEUE_PROCESSES parameter. The setting
for this parameter is based on the number of processors, as described in "Setting

7-6 Oracle OLAP User's Guide

Partitioned Cubes and Parallelism

Database Initialization Parameters" on page 7-1. You can obtain the current
parameter setting with the following SQL command:

SHOW PARAMETER JOB_QUEUE_PROCESSES

» For parallel update, the number of processes you allocate to the job. You can
specify the number of processes in the Maintenance Wizard of Analytic Workspace
Manager when specifying the task processing options, or on the Materialized View
tab of the cube.

Suppose that a cube is partitioned on the Quarter level of Time, and the cube contains
three years of data. The cube has 3*4=12 bottom partitions, JOB_QUEUE_PROCESSES
is set to 8, and you set the parallelism option to 4 for the build. Oracle Database will
process the cube in this way:

1. Load and build the dimensions of the cube serially using a single process.

2. Load and build the 12 bottom partitions in parallel using 4 processes. As soon as
one process finishes, another begins until all 12 are complete.

This cube could use the 8 processes allowed by JOB_QUEUE_PROCESSES, but it is
limited to 4 by the build setting.

3. Load and build the top partition.

The following are excerpts from CUBE_BUILD_LOG for a completed build that used
two parallel processes.

SQL> SELECT slave_number, status, command, build_object, partition FROM cube_build_log
WHERE build_id='6";

SLAVE_NUMBER STATUS COMMAND BUILD_OBJECT PARTITION

STARTED BUILD BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL
UES, LOAD, SOLVE)

STARTED UPDATE UNITS_CUBE
COMPLETED UPDATE UNITS_CUBE
STARTED COMMIT UNITS_CUBE
COMPLETED COMMIT UNITS_CUBE

STARTED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, LOAD , SOLVE
)', 'P10', 'JOB$_41', 6, 1); END;

COMPLETED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, LOAD , SOLVE
)', 'P10', 'JOB$_41', 6, 1); END;

STARTED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, LOAD , SOLVE
)', 'P9', 'JOBS_42', 6, 2); END;

COMPLETED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, LOAD , SOLVE
)', 'P9', 'JOBS_42', 6, 2); END;

1 STARTED BUILD SLAVE BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL P10
UES, LOAD , SOLVE)

1 STARTED CLEAR VALUES UNITS_CUBE P10

2 STARTED BUILD SLAVE BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL P9
UES, LOAD , SOLVE)

Administering Oracle OLAP 7-7

Partitioned Cubes and Parallelism

1 COMPLETED CLEAR VALUES UNITS_CUBE P10
1 STARTED LOAD UNITS_CUBE P10
2 STARTED CLEAR VALUES UNITS_CUBE P9
1 COMPLETED LOAD UNITS_CUBE P10
1 STARTED SOLVE UNITS_CUBE P10
10 STARTED CLEAR VALUES UNITS_CUBE Pl
10 COMPLETED CLEAR VALUES UNITS_CUBE Pl
10 STARTED LOAD UNITS_CUBE Pl
10 COMPLETED LOAD UNITS_CUBE Pl
10 STARTED SOLVE UNITS_CUBE Pl
10 COMPLETED SOLVE UNITS_CUBE Pl
10 STARTED UPDATE UNITS_CUBE Pl
10 COMPLETED UPDATE UNITS_CUBE Pl
10 STARTED COMMIT UNITS_CUBE Pl
10 COMPLETED COMMIT UNITS_CUBE Pl
10 COMPLETED BUILD SLAVE BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL Pl

UES, LOAD , SOLVE)

STARTED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, SOLVE)', 'P
0', 'JOBS$_51', 6, 11); END;

COMPLETED SCHEDULE DBMS JOB BEGIN DBMS_CUBE.BUILD_SLAVE ('GLOBAL.UNIT
S_CUBE USING (CLEAR VALUES, SOLVE)', 'P
0', 'JOB$_51', 6, 11); END;

11 STARTED BUILD SLAVE BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL P0Q
UES, SOLVE)
11 STARTED CLEAR VALUES UNITS_CUBE PO
11 COMPLETED CLEAR VALUES UNITS_CUBE PO
11 STARTED SOLVE UNITS_CUBE PO
11 COMPLETED SOLVE UNITS_CUBE PO
11 STARTED UPDATE UNITS_CUBE PO
11 COMPLETED UPDATE UNITS_CUBE PO
11 STARTED COMMIT UNITS_CUBE PO
11 COMPLETED COMMIT UNITS_CUBE PO
11 COMPLETED BUILD SLAVE BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL P0Q
UES, SOLVE)
COMPLETED BUILD BUILD GLOBAL.UNITS_CUBE USING (CLEAR VAL

UES, LOAD, SOLVE)
156 rows selected.

Oracle Database allocates the specified number of processes regardless of whether all
of them can be used simultaneously at any point in the job. For example, if your job
can use up to three processes, but you specify five, then two of the processes allocated
to your job cannot be used by it or by any other job.

If Oracle Database is installed with Real Application Clusters (RAC), then a script
submitted to the job queue will be distributed across all nodes in the cluster. The
performance gains can be significant. For example, a job running on four nodes in a
cluster may run up to four times faster than the same job running on a single
computer.

7-8 Oracle OLAP User's Guide

Monitoring Analytic Workspaces

Analyzing Cubes and Dimensions

If your application executes queries directly against a single cube, you do not need to
generate optimizer statistics for the cube. These queries are automatically optimized
within the analytic workspace.

Optimizer statistics are used to create execution plans for queries that join two cube
views or join a cube view to a table or a view of a table. They are also used for
cost-based rewrite to cube materialized views. You need to generate the statistics only
for these types of queries.

To generate optimizer statistics, use the DBMS_AW_STATS PL/SQL package. You can
run this package in Analytic Workspace Manager as part of a cube script, in SQL*Plus,
or in any other SQL interface. Generating the statistics does not have a significant
performance cost.

DBMS_AW_STATS has the following syntax:

DBMS_AW_STATS.ANALYZE
(object IN VARCHAR2) ;

The argument can be either a cube or a dimension. Example 7-1 shows a sample script
for generating statistics on the Units cube and its dimensions.

Example 7-1 Generating Statistics for the Units Cube

BEGIN
DBMS_AW_STATS.ANALYZE ('units_cube');
DBMS_AW_STATS.ANALYZE('time') ;
DBMS_AW_STATS.ANALYZE (' customer') ;
DBMS_AW_STATS.ANALYZE ('product') ;
DBMS_AW_STATS .ANALYZE (' channel ') ;

END;

/

Although you cannot view the statistics directly, you can examine the execution plans,
as described in "Viewing Execution Plans" on page 4-16.

See Also: Oracle Database Performance Tuning Guide

Monitoring Analytic Workspaces

Oracle Database provides various tools to help you diagnose performance problems.
As an Oracle DBA, you will find these tools useful in tuning the database:

» Oracle Enterprise Manager Database Control (Database Control) is a general
database management and administration tool. In addition to facilitating basic
tasks like adding users and modifying datafiles, Database Control presents a
graphic overview of a database's current status. It also provides an interface to
troubleshooting and performance tuning utilities.

= Automatic Workload Repository collects database performance statistics and
metrics for analysis and tuning, shows the exact time spent in the database, and
saves session information.

= Automatic Database Diagnostic Monitor watches database performance statistics
to identify bottlenecks, analyze SQL statements, and offer suggestions to improve
performance.

Administering Oracle OLAP 7-9

Monitoring Analytic Workspaces

Oracle Database also provides system views to help you diagnose performance
problems. The following topics identify views that are either specific to OLAP or
provide database information that is pertinent to OLAP.

Dynamic Performance Views

Each Oracle Database instance maintains fixed tables that record current database
activity. These tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP.

These tables are available to users through a set of dynamic performance views. By
monitoring these views, you can detect usage trends and diagnose system bottlenecks.
Table 7—4 provides a brief description of each view. Global dynamic performance
views (GVS$) are also provided.

See Also: Oracle Database Reference for full descriptions of the OLAP
dynamic performance views.

Table 7-4 OLAP Dynamic Performance Views

View Description

V$AW_AGGREGATE_OP Lists the aggregation operators available in analytic workspaces.

VS$SAW_ALLOCATE_OP Lists the allocation operators available in analytic workspaces.

VSAW_CALC Collects information about the use of cache space and the status
of dynamic aggregation.

V$AW_LONGOPS Collects status information about SQL fetches.

VS$AW_SESSION_INFO Collects information about each active session.

VSAW_OLAP Collects information about the status of active analytic
workspaces.

Table 7-5 describes some other dynamic performance views that are not specific to
OLAP, but which you may want to use when tuning your database for OLAP.

Table 7-5 Selected Database Performance Views

View Description

VS$LOG Displays log file information from the control file.

VSLOGFILE Contains information about redo log files.

VS$PGASTAT Provides PGA memory usage statistics as well as statistics about

the automatic PGA memory manager when PGA_AGGREGATE_
TARGET is set.

VSROWCACHE Displays statistics for data dictionary activity. Each row contains
statistics for one data dictionary cache.

VSSYSSTAT Lists system statistics.

Basic Queries for Monitoring the OLAP Option

The following queries extract OLAP information from the data dictionary.

More complex queries are provided in a script that you can download from the Oracle
OLAP web site on the Oracle Technology Network. For descriptions of these scripts
and download instructions, refer to "OLAP DBA Scripts" on page 7-12.

7-10 Oracle OLAP User's Guide

Monitoring Analytic Workspaces

Is the OLAP Option Installed in the Database?

The OLAP option is provided with Oracle Database Enterprise Edition. To verify that
the OLAP components have been installed, issue this SQL command:

SQL> SELECT comp_name, version, status FROM DBA_REGISTRY
WHERE comp_name LIKE '%OLAP%';

COMP_NAME VERSION STATUS

OLAP Analytic Workspace 11.1.0.6.0

Oracle OLAP API 11.1.0.6.0 VALID
OLAP Catalog 11.1.0.6.0

What Analytic Workspaces are in the Database?

The DBA_AWS view provides information about all analytic workspaces. Use the

following SQL command to get a list of names, their owners, and the version:

SELECT owner, aw_name, aw_version FROM DBA_AWS;

OWNER AW_NAME AW_VERSION
SYS EXPRESS 11.1
GLOBAL GLOBAL 11.1
SYS AWCREATE 11.1
SH SH 11.1
SYS AWMD 11.1
SYS AWXML 11.1
SYS AWREPORT 11.1
SYS AWCREATE10G 11.1

See Also: "System Tables" on page 7-4 for descriptions of the
analytic workspaces owned by SYS.

How Big is the Analytic Workspace?

To find out the size in bytes of the tablespace extents for a particular analytic
workspace, use the following SQL statements, replacing GLOBAL with the name of
your analytic workspace.

SELECT extnum, SUM(dbms_lob.getlength(awlob)) bytes FROM global.aw$Sglobal
GROUP BY extnum;

EXTNUM BYTES

0 191776956

To see the size of the LOB table containing an analytic workspace, use a SQL
command like the following, replacing GLOBAL . AWSGLOBAL with the qualified name
of your analytic workspace.

SELECT ROUND (SUM (dbms_1lob.getlength(awlob))/1024,0) kb
FROM global.aw$Sglobal;

187282

Administering Oracle OLAP 7-11

Monitoring Analytic Workspaces

When Were the Analytic Workspaces Created?

The DBA_OBJECTS view provides the creation date of the objects in your database.
The following SQL command generates an easily readable report for analytic
workspaces.

SELECT owner, object_name, created, status FROM dba_objects
WHERE object_name LIKE 'AWS%' AND object_name!='AWS'
GROUP BY owner, object_name, created, status
ORDER BY owner, object_name;

OWNER OBJECT_NAME CREATED STATUS
GLOBAL AWSGLOBAL 05-JUL-07 VALID
SYS AWSAWCREATE 30-JUN-07 VALID
SYS AWSAWCREATEL10G 30-JUN-07 VALID
SYS AWSAWMD 30-JUN-07 VALID
SYS AWSAWREPORT 30-JUN-07 VALID
SYS AWSAWXML 30-JUN-07 VALID
SYS AWSEXPRESS 30-JUN-07 VALID

7 rows selected.

OLAP DBA Scripts

You can download a file that contains several SQL scripts from the Oracle OLAP web
site on the Oracle Technology Network. These scripts typically extract information
from two or more system views and generate a report that may be useful in
monitoring and tuning a database. To download the file, use this URL:

http://www.oracle.com/technology/products/bi/olap/olap_dba_
scripts.zip

Table 7-6 describes these scripts. For more information, refer to the README file
provided with the scripts.

Table 7-6 OLAP DBA Scripts

SQL Script Description

aw_objects_in_cache Identifies the objects in the buffer cache that are related to
analytic workspaces.

aw_reads_writes Tallies the reads from temporary and permanent tablespaces, the
writes to cache, and the rows processed in analytic workspaces.

aw_segment_size Calculates the size of analytic workspace segments in
tablespaces on disk.

aw_size Displays the amount of disk space used by each analytic
workspace.

aw_tablespaces Provides extensive information about the tablespaces used by
analytic workspaces.

aw_total_size Tallies the sizes of all analytic workspaces accessible to the
current user.

aw_users Identifies the users of analytic workspaces.

aw_wait_events Describes the wait events experienced by users of analytic

workspaces over the previous hour.

buffer_cache_hits Calculates the buffer cache hit ratio.

7-12 Oracle OLAP User's Guide

Monitoring Analytic Workspaces

Table 7-6 (Cont.) OLAP DBA Scripts

SQL Script

Description

cursor_parameters

olap_hit_ratio

olap_pga_performance

olap_pga_use

session_resources

shared_pool_hits

Indicates whether the database parameters that limit the number
of open cursors are set too low.

Identifies the PGA, OLAP page pool, and OLAP hit/miss ratio
for every user of analytic workspaces in the database.

Determines how much PGA is in use, the size of the OLAP page
pool, and the hit/miss ratio for OLAP pages for each user.

Determines how much PGA is consumed by the OLAP page
pool to perform operations on analytic workspaces.

Identifies the use of cursors, PGA, and UGA for each open
session.

Calculates the shared pool hit ratio.

Scripts for Monitoring Performance

Several of the scripts listed in "OLAP DBA Scripts" on page 7-12 provide detailed
information about the use of memory and other database resources by OLAP sessions.
You can use these scripts as is, or you can use them as the starting point for developing

your own scripts.

Example 7-2 shows the information returned by the session_resources script. It lists
the use of resources such as cursors, PGA, and UGA.

Example 7-2 Querying Session Resources

SQL> @session_resources

USERNAME NAME VALUE
GLOBAL: 95 opened cursors cumulative 101
opened cursors current 3
session cursor cache count 31
session cursor cache hits 68
session pga memory 1219292
session pga memory max 1219292
session stored procedure space 0
session uga memory 432700
session uga memory max 432700

9 rows selected.

Monitoring Disk Space

Several of the scripts listed in "OLAP DBA Scripts" on page 7-12 provide detailed
information about the use of disk space by analytic workspaces. Example 7-3 shows
the information returned by the aw_size script. It lists all of the analytic workspaces
in the database, the disk space they consume, and the tablespaces in which they are

stored.

Example 7-3 Querying the Use of Disk Space By Analytic Workspaces

SQL> @aw_size

Analytic Workspace

On Disk MB Tablespace

Administering Oracle OLAP 7-13

Backup and Recovery

GLOBAL.GLOBAL 239.38 GLOBAL
SYS.AWCREATE 9.81 SYSAUX
SYS.AWCREATE10G 1.38 SYSAUX
SYS . AWMD 7.00 SYSAUX
SYS.AWREPORT 1.50 SYSAUX
SYS . AWXML 12.00 SYSAUX
SYS.EXPRESS 2.69 SYSAUX
Total Disk: 273.75

7 rows selected.

Backup and Recovery

You can backup and recover analytic workspaces using the same tools and procedures
as the rest of your database.

Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and
improves the performance of backup and recovery operations. RMAN enables one
time backup configuration, automatic management of backups, and archived logs
based on a user-specified recovery window, restartable backups and restores, and test
restore/recovery.

RMAN implements a recovery window to control when backups expire. This lets you
establish a period of time during which it is possible to discover logical errors and fix
the affected objects by doing a database or tablespace point-in-time recovery. RMAN
also automatically expires backups that are no longer required to restore the database
to a point-in-time within the recovery window. Control file auto backup also allows for
restoring or recovering a database, even when an RMAN repository is not available.

Export and Import

You can copy analytic workspaces in several different ways, either to replicate them on
another computer or to back them up.

= Data Pump. Analytic workspaces are copied with the other objects in a schema or
database export. Use the expdp/impdp database utilities.

= Transportable Tablespaces. Analytic workspaces are copied with the other objects
to a transportable tablespace. However, you can only transport the tablespace to
the same platform (for example, from Linux to Linux, Solaris to Solaris, or
Windows to Windows) because the OLAP DECIMAL data type is hardware
dependent. Use the expdp/impdp database utilities. Transportable tablespaces
are much faster than dump files.

= XML Templates. A template saves the XML definition of objects in an analytic
workspace. You can save the entire analytic workspace, or individual cubes,
dimensions, and calculated measures. Using a saved template, you can create a
new analytic workspace exactly like an existing one. The template does not save
any data, nor does it save any customizations to the analytic workspace. You can
copy a template to a different platform.

The owner of an analytic workspace can create an XML template, or export the schema
to a dump file. Only users with the EXP_FULL_DATABASE privilege or a privileged
user (such as SYS or a user with the DBA role) can export the full database or create a
transportable tablespace.

7-14 Oracle OLAP User's Guide

Cube Materialized Views

See Also:

s "Using Templates to Re-Create Dimensional Objects" on page 3-26
for information about XML templates

» Oracle Database Utilities for information about Oracle Data Pump
and the expdp/impdp commands

Cube Materialized Views

A cube materialized view is an Oracle OLAP cube that has been enhanced with the
capabilities of a materialized view at build time.

See Also: "Adding Materialized View Capability to a Cube" on
page 3-23

Acquiring Information From the Data Dictionary

The data dictionary contains numerous static views that provide information about
materialized views. They list cube materialized views along with all other materialized
views. The ALL_MVIEW_DETAIL_SUBPARTITION view is the only exception, with no
information about cube materialized views.

See Also: Oracle Database Reference for complete descriptions of the
data dictionary views

Identifying Cube Materialized Views

USER_MVIEWS contains a row for each materialized view owned by the current user.
The following query lists the materialized views owned by the GLOBAL user. The CBS
prefix identifies a cube materialized view.

SQL> SELECT mview_name, refresh_mode "MODE", refresh _method "METHOD",
last_refresh_date "DATE", staleness FROM user mviews;

MVIEW_NAME MODE METHOD DATE STALENESS
CBSTIME_CALENDAR DEMAND FORCE 10-JUL-07 FRESH
CBSTIME_FISCAL DEMAND FORCE 10-JUL-07 FRESH
CB$PRODUCT_PRIMARY DEMAND FORCE 10-JUL-07 FRESH
CB$CUSTOMER_SHIPMENTS DEMAND FORCE 10-JUL-07 FRESH
CBSCUSTOMER_SEGMENT DEMAND FORCE 10-JUL-07 FRESH
CBS$SCHANNEL_PRIMARY DEMAND FORCE 10-JUL-07 FRESH
CBSUNITS_CUBE DEMAND COMPLETE 10-JUL-07 FRESH

7 rows selected.
The example shows the cube materialized views defined by Analytic Workspace
Manager: One for each dimension hierarchy and one for each cube.

Identifying the Refresh Logs

Oracle Database can maintain a set of logs on the master tables for the cube
materialized views. These logs support incremental (fast) refresh of the cube. The
script generated by the Relational Schema Advisor creates a log for each fact and
dimension table to record any changes to the data. The following query lists the
materialized view logs owned by the GLOBAL user:

SQL> SELECT master, log_table FROM user_mview_logs;

MASTER LOG_TABLE

Administering Oracle OLAP 7-15

Cube Materialized Views

CHANNEL_DIM MLOG$_CHANNEL_DIM
CUSTOMER_DIM MLOG$_CUSTOMER_DIM
PRODUCT_DIM MLOG$_PRODUCT_DIM
TIME_DIM MLOG$_TIME DIM
UNITS_FACT MLOGS_UNITS_FACT

Initiating a Data Refresh

You can initiate a data refresh of a cube materialized view in several different ways
using Analytic Workspace Manager or a PL/SQL package:

= Automatic Refresh: On the Materialized View tab for a cube, you can create a
regular schedule for the materialized view refresh subsystem, as described in
"Adding Materialized View Capability to a Cube" on page 3-23.

= Maintenance Wizard: The Maintenance Wizard is available for refreshing all
cubes and dimensions, including cube materialized views.

= DBMS_CUBE: The DBMS_CUBE PL/SQL package is available for refreshing all
cubes and dimensions.

= DBMS_MVIEW: The DBMS_MVIEW PL/SQL package contains several procedures for
use with cube materialized views.

Using DBMS_CUBE

DBMS_CUBE can be used to create and populate an analytic workspace. You can use it
to maintain any cube, including cube materialized views.

The following command initiates a complete refresh of UNITS_CUBE, which is enabled
as a cube materialized view. It automatically refreshes any stale dimensions before
refreshing the cube.

SQL> EXECUTE dbms_cube.build('GLOBAL.UNITS_CUBE');
PL/SQL procedure successfully completed.

You can determine the refresh method from USER_MVIEWS, as shown in "Identifying
Cube Materialized Views" on page 7-15.

Using DBMS_MVIEW

DBMS_MVIEW can be used to refresh all types of materialized views. These refresh
procedures can be used with cube materialized views:

m REFREGSH refreshes a list of one or more materialized views.
s REFRESH_ALL_MVIEWS refreshes all materialized views that meet certain criteria.

= REFRESH_DEPENDENT refreshes all materialized views that depend on a
particular master table and meet certain criteria.

Dimensions must be refreshed before the cube. An error is raised during refresh of a
cube materialized view if any of its associated dimension materialized views are stale.
The procedures in DBMS_MVIEW can refresh multiple materialized views in one call,
but they do not guarantee the appropriate refresh order. You must be sure to list all the
dimension materialized views before the cube materialized views when using this
package.

The following command initiates a refresh of the materialized view for the CHANNEL_
PRIMARY hierarchy. Only the Complete refresh type is valid for dimensions.

7-16 Oracle OLAP User's Guide

Cube Materialized Views

SQL> EXECUTE dbms_mview.refresh('CBSCHANNEL_PRIMARY', 'C');

PL/SQL procedure successfully completed.

Refresh Methods

In Analytic Workspace Manager, you can specify the COMPLETE, FAST, or FORCE
methods for refreshing a cube. Two additional methods, FAST_PCT and FAST_SOLVE,
are invoked by the materialized view subsystem. They are not separate choices.

Refresh Method Descriptions
Table 7-7 describes the refresh methods that are supported on cube materialized

views.

Table 7-7 Refresh Methods For Cube Materialized Views

Refresh Method

Description

COMPLETE

FAST

FAST_PCT

FAST_SOLVE

Deletes and recreates the cube.

This option supports arbitrarily complex mappings from the
source tables to the cube.

Loads and re-aggregates only changed values, based on the
materialized view logs.

The source for the refresh is the incremental differences that
have been captured in the materialized view logs, rather than
the original mapped sources. These differences are used to
incrementally rebuild the cube. Only cells that are affected by
the changed values are re-aggregated.

This option supports only simple mappings for cube
materialized views, that is, where no expressions (other than
table.column), views, or aggregations occur in the query defining
the mapping.

The materialized view subsystem determines whether to
perform a FAST or a FAST_PCT refresh.

Loads and re-aggregates data only from changed partitions.

The Partition Change Tracking method is not available for cube
materialized views enabled for query rewrite. This method
works best when the source table and the cube are partitioned
on the same dimension.

FAST_PCT does not use change logs. It is always available, and
it is always faster than a COMPLETE refresh. The materialized
view subsystem determines whether to perform a FAST or a
FAST_PCT refresh.

Loads and re-aggregates only changed values, based on the
original mapped data source.

FAST_SOLVE is a new type of refresh only for cube materialized
views. It incrementally re-aggregates the cube even when the
refresh source is the original mapped source instead of the
materialized view logs. The aggregation subsystem identifies the
differences and then incrementally re-aggregates the cube.

This option is supported for arbitrarily complex mappings from
the source tables to the cube. To discover whether a FAST _
SOLVE refresh has occurred, review the CUBE_BUILD_LOG table
as shown in "Fast Solve Refreshes".

Administering Oracle OLAP 7-17

Cube Materialized Views

Table 7-7 (Cont.) Refresh Methods For Cube Materialized Views

Refresh Method Description
FORCE Loads and re-aggregates only changed values, using the best
method possible.

The materialized view system first attempts a FAST refresh. If it
cannot FAST refresh a cube materialized view, it performs a
FAST_SOLVE refresh.

Fast Solve Refreshes

The build log lists the CLEAR LEAVES command when the FAST SOLVE method was
used. Example 7-4 shows the rows of CUBE_BUILD_LOG concerned with building
UNITS_CUBE.

See Also: "Build Logs" on page 7-5

Example 7-4 Identifying a FAST SOLVE Refresh

SQL> SELECT build_object, status, command FROM cube_build_log
WHERE build_object='UNITS_CUBE'
AND build_id=8;

BUILD_OBJECT STATUS COMMAND
UNITS_CUBE STARTED CLEAR LEAVES
UNITS_CUBE COMPLETED CLEAR LEAVES
UNITS_CUBE STARTED LOAD
UNITS_CUBE COMPLETED LOAD
UNITS_CUBE STARTED SOLVE
UNITS_CUBE COMPLETED SOLVE
UNITS_CUBE STARTED UPDATE
UNITS_CUBE COMPLETED UPDATE
UNITS_CUBE STARTED COMMIT
UNITS_CUBE COMPLETED COMMIT

10 rows selected.

Using Query Rewrite

Query rewrite changes a query to select data from the materialized views instead of
calculating the result set from the master tables. The transformation is fully
transparent to the client, and requires no mention of the materialized views in the SQL
statement. In the case of cube materialized views, the query is written against the
tables or views of a star or snowflake schema, and it is transformed into a query
against a cube materialized view. This transformation can result in significant
improvements in runtime performance.

Query rewrite requires optimizer statistics on the cubes and dimensions. You can
discover whether a query will be rewritten by generating and examining its execution
plan.

Oracle Database uses two initialization parameters to control query rewrite:

= QUERY_REWRITE_ENABLED: Enables or disables query rewrite globally for the
database.

= QUERY_REWRITE_ INTEGRITY: Determines the degree to which query rewrite
monitors the consistency of materialized views with the source data. The trusted

7-18 Oracle OLAP User's Guide

Cube Materialized Views

or stale tolerated settings are recommended when using rewrite to cube
materialized views.
See Also:

= "Analyzing Cubes and Dimensions" on page 7-9 for information
about optimizer statistics

= Viewing Execution Plans on page 4-16 for information about
execution plans

» Oracle Database Reference for complete descriptions of the
initialization parameters

Acquiring Additional Information About Cube Materialized Views

Oracle Database has numerous PL/SQL packages for managing materialized views.
Cube materialized views are already optimized to provide the best performance, so
you have no need to use most of these packages. Few design decisions remain for you
to make. For this reason, the TUNE_MVIEW procedure of DBMS_ADVISOR is disabled
for cube materialized views.

However, there are a few packages that you may find useful, as shown in Table 7-8.

Table 7-8 PL/SQL Packages for Cube Materialized Views

Package Description

DBMS_METADATA Returns the metadata for an object.

DBMS_MVIEW Executes data refreshes. See "Initiating a Data Refresh" on
page 7-16.

You can use the EXPLAIN_REWRITE and EXPLAIN_MVIEW
procedures to obtain information about cube materialized views.

DBMS_XPLAN Displays an execution plan. See "Viewing Execution Plans" on
page 4-16.

Administering Oracle OLAP 7-19

Cube Materialized Views

7-20 Oracle OLAP User's Guide

8

Security

Oracle OLAP secures your data using the standard security mechanisms of Oracle
Database.

This chapter contains the following topics:
= Security of Multidimensional Data in Oracle Database
= Setting Object Security

s Creating Data Security Policies on Dimensions and Cubes

Security of Multidimensional Data in Oracle Database

Your company's data is a valuable asset. The information must be secure, private, and
protected. Analytic data is particularly vulnerable because it is highly organized, easy
to navigate, and summarized into meaningful units of measurement.

When you use Oracle OLAP, your data is stored in the database. It has the security
benefits of Oracle Database, which leads the industry in security. You do not need to
expose the data by transferring it to a stand-alone database. You do not need to
administer security on a separate system. And you do not need to compromise your
data by storing it in a less secure environment than Oracle Database.

Security Management

Because you have just one system to administer, you do not have to replicate basic
security tasks such as these:

»s Creating user accounts

s Creating and administering rules for password protection
= Securing network connections

s Detecting and eliminating security vulnerabilities

= Safeguarding the system from intruders

The cornerstone of data security is the administration of user accounts and roles. Users
open a connection with Oracle Database with a user name and password, and they
have access to both dimensional and relational objects in the same session.

Types of Security

Users by default have no access rights to an analytic workspace or any other data type
in another user's schema. The owner or an administrator must grant them, or a role to
which they belong, any access privileges.

Security 8-1

Security of Multidimensional Data in Oracle Database

Oracle OLAP provides two types of security: Object security and data security.

= Object security provides access to dimensional objects. You must set object
security before other users can access them. Object security is implemented using
SQL GRANT and REVOKE.

= Data security provides fine-grained control of the data on a cellular level. This
type of security is optional. You only need to define data security policies when
you want to restrict access to specific areas of a cube. Data security is implemented
using the XML DB security of Oracle Database.

You can administer both data security and object security in Analytic Workspace
Manager. For object security, you also have the option of using SQL GRANT and
REVOKE.

About the Privileges

Using both object security and data security, you can grant and revoke the following
privileges:

= Alter: Change the definition of a cube or dimension. Users need this privilege to
create and modify a dimensional model.

s Delete: Remove old dimension members. Users need this privilege to refresh a
dimension.

s Insert: Add new dimension members. Users need this privilege to refresh a
dimension.

= Select: Query the cube or dimension. Users need this privilege to query a view of
the cube or dimension or to use the CUBE_TABLE function. CUBE_TABLE is a SQL
function that returns the values of a dimensional object.

= Update: Change the data values of a cube or the name of a dimension member.
Users need this privilege to refresh a dimension or cube.

Users exercise these privileges either using Analytic Workspace Manager to create and
administer dimensional objects, or by using SQL to query them. They do not issue
commands such as SQL INSERT and UPDATE directly on the cubes and dimensions.

Layered Security

For dimensional objects, you can manage security at these levels:
= Dimension member

= Dimension

s Cube

= Analytic workspace

= View

The privileges are layered so that, for example, a user with SELECT data security on
Software products must also have SELECT object security on the PRODUCT dimension
and the Global analytic workspace. Users also need SELECT privileges on the views of
the dimensional objects.

8-2 Oracle OLAP User's Guide

Setting Object Security

Setting Object Security

You can use either SQL or Analytic Workspace Manager to set object security. The
results are identical.

Using SQL to Set Object Security

You can set and revoke object privileges on dimensional objects using the SQL GRANT
and REVOKE commands.

Setting Object Security on an Analytic Workspace

Object privileges on an analytic workspace simply open the container. You must grant
object privileges on the cubes and dimensions for users to be able to access them. The
table name is the same as the analytic workspace name, with the addition of an AWS
prefix.

The following command enables Scott to attach the Global analytic workspace,
AWSGLOBAL, to a session:

GRANT SELECT ON aw$global TO scott;

Setting Object Security on Dimensions

You can grant privileges on individual dimensions to enable users to query the
dimension members and attributes. For users to query a cube, they must have
privileges on every dimension of the cube.

The privileges apply to the entire dimension. However, you can set fine-grained access
on a dimension to restrict the privileges, as described in "Creating Data Security
Policies on Dimensions and Cubes" on page 8-6.

Example 8-1 shows the SQL commands that enable Scott to query the Product
dimension. They give Scott SELECT privileges on the Product dimension, on the
Global analytic workspace, and on the Product view.

Example 8-1 Privileges to Query the Product Dimension

GRANT SELECT ON product TO scott;
GRANT SELECT ON aw$global TO scott;
GRANT SELECT ON product_view TO scott;

Setting Object Security on Cubes

Privileges on cubes enable users to access business measures and perform analysis.
You must also grant privileges on each of the dimensions of the cube.

The privileges apply to the entire cube. However, you can create a data security policy
on the cube or on its dimensions to restrict the privileges, as described in "Creating
Data Security Policies on Dimensions and Cubes" on page 8-6.

Example 8-2 shows the SQL commands that enable Scott to query the Units cube.
They give Scott SELECT privileges on the Global analytic workspace, the cube, and all
of its dimensions. Scott also gets privileges on the dimension views so that he can
query the dimension attributes for formatted reports.

Example 8-2 Privileges to Query the Units Cube

/* Grant privileges on the analytic workspace */
GRANT SELECT ON global.aw$global TO scott;

Security 8-3

Setting Object Security

/* Grant privileges on the cube */
GRANT SELECT ON global.units_cube TO scott;

/* Grant privileges on the dimensions */
GRANT SELECT ON global.channel TO scott;
GRANT SELECT ON global.customer TO scott;
GRANT SELECT ON global.product TO scott;
GRANT SELECT ON global.time TO scott;

/* Grant privileges on the cube, dimension, and hierarchy views */
GRANT SELECT ON global.units_cube_view TO scott;

GRANT SELECT ON global.channel_view TO scott;

GRANT SELECT ON global.channel_primary view TO scott;
GRANT SELECT ON global.customer_view TO scott;

GRANT SELECT ON global.customer_shipments_view TO scott;
GRANT SELECT ON global.customer_segments_view TO scott;
GRANT SELECT ON global.product_view TO scott;

GRANT SELECT ON global.product_primary view TO scott;
GRANT SELECT ON global.time_view TO scott;

GRANT SELECT ON global.time_calendar_view TO scott;
GRANT SELECT ON global.time_fiscal_view TO scott;

Example 8-3 shows the SQL commands that give SCOTT the privileges to modify and
update all dimensional objects in GLOBAL using Analytic Workspace Manager.

Note: The GRANT ALL commands encompass more privileges than
those discussed in this chapter. Be sure to review the list of privileges
before using GRANT ALL.

Example 8-3 Privileges to Modify and Refresh GLOBAL

/* Grant privilege to use Analytic Workspace Manager */
GRANT OLAP_USER TO scott;

/* Grant privileges on the analytic workspace */
GRANT ALL ON global.aw$global TO scott;

/* Grant privileges on the cubes */
GRANT ALL ON global.units_cube TO scott;
GRANT ALL ON global.price_cost_cube TO scott;

/* Grant privileges on the dimensions */
GRANT ALL ON global.channel TO scott;
GRANT ALL ON global.customer TO scott;
GRANT ALL ON global.product TO scott;
GRANT ALL ON global.time TO scott;

Using Analytic Workspace Manager to Set Object Security

Analytic Workspace Manager provides a graphical interface for setting object security.
It also displays the SQL commands, so that you can cut-and-paste them into a script.

Setting Object Security on an Analytic Workspace

Take these steps to set object security on an analytic workspace in Analytic Workspace
Manager:

8-4 Oracle OLAP User's Guide

Setting Object Security

In the navigation tree, right-click the analytic workspace and select Set Analytic
Workspace Object Security.

The Set Analytic Workspace Object Security dialog box is displayed.
Complete the dialog box, then click OK.

Click Help for specific information about the choices.

Grant privileges on one or more cubes and their dimensions.

Privileges on the analytic workspace do not automatically extend to the cubes and
dimensions contained in the analytic workspace.

Figure 8-1 shows the SELECT privilege on GLOBAL granted to PUBLIC.

Figure 8—1 Setting Object Security on GLOBAL

&% set Analytic Workspace GLOBAL Object Security: El

Schema: GLOBAL

Analytic Workspace Mame: |CLOBAL V|

User or Role: |pL|B|_|c

Crant or revoke privileges by moving the available privileges toffrom the selected privileges

[] with Grant Option

Available Privileges Selected Privileges

UPDATE [»]
DELETE —
ALTER. ‘2'
<]
«
S0L Commands:
GRANT SELECT OM GLOBALAWSCLOBAL TO PUBLIC =
E
Help Apply | t (018 i | Cancel

Setting Object Security on Dimensions
Take these steps to set object security on dimensions in Analytic Workspace Manager:

1.

In the navigation tree, right-click any dimension and select Set Dimension Object
Security.

The Set Dimension Object Security dialog box is displayed.
Complete the dialog box, then click OK.

You can set privileges on all of the dimensions at one time. Click Help for specific
information about the choices.

Grant privileges on the analytic workspace and one or more cubes. Use SQL to
grant privileges on the views.

Figure 8-2 shows the SELECT privilege on all dimensions granted to PUBLIC.

Security 8-5

Creating Data Security Policies on Dimensions and Cubes

Figure 8-2 Setting Object Security on Dimensions

& St Dimension CHANNEL Object Security

Schema: GLOBAL

Limension Mame: | <ALL DIMENSICNS > bl

W e Bl <ALL DIMENSIONS

Crant or revoke privileges by moving the available privileges to/from the selected privileges

[with Grant ©ption

Available Privileges Selected Privileges

UPDATE
DELETE
ALTER

&)%)y

S0L Commands:

GRANT SELECT ON GLOBAL CHAMNEL TO PUBLIC 2
GRANT SELECT OM GLOBAL CUSTOMER TO PUBLIC
GRANT SELECT ON CLOBAL PRODIUCT TO PUEBLIC
GRANT SELECT OM GLOBAL TIME TO PUBLIC

-

Help Apply ||: Qe }| Cancel

Setting Object Security on Cubes

Take these steps to set object security on cubes in Analytic Workspace Manager:

1. In the navigation tree, right-click any cube and select Set Cube Object Security.
The Set Cube Object Security dialog box is displayed.

2. Complete the dialog box, then click OK.

You can set privileges on all of the cubes at one time. Click Help for specific
information about the choices.

3. Grant privileges on the cube's dimensions and the analytic workspace. Use SQL to
grant privileges on the views.

Creating Data Security Policies on Dimensions and Cubes

Data security policies enable you to grant users and roles privileges on a selection of
dimension members. For example, you might restrict district sales managers to the
data for just their own districts instead of all geographic areas. You can create a data
security policy on dimensions, cubes, or both:

s When you create a data security policy on a dimension, the policy extends to all
cubes with that dimension. You do not need to re-create the policy for each cube.

= When you create a data security policy on a cube, you select the members for each
dimension of the cube. The policy only applies to that cube.

= When you create data security policies on both dimensions and cubes, users have
privileges on the most narrowly defined portion of the data, where the policies
overlap.

8-6 Oracle OLAP User's Guide

Creating Data Security Policies on Dimensions and Cubes

Granting Data Privileges

You can apply a policy to one or more users, roles, and data security roles. A data
security role is a group of users and database roles that you can manage in Analytic
Workspace Manager just for use in security policies. You create data security roles and
policies in Analytic Workspace Manager.

As soon as you create a data security policy, all other users are automatically denied
access. Analytic Workspace Manager creates a default policy that grants all privileges
to the owner. Otherwise, the owner is denied access also.

Note: Do not delete the default policy. It grants you the privileges to
access your own data.

Selecting Data By Criteria

When defining a data security policy, you can select specific dimension members or
those that meet certain criteria based on the dimension hierarchy. By using criteria
instead of hard-coding specific dimension members, the selection remains valid after a
data refresh. You do not need to modify the selection after adding new members. For
example, a security policy that grants SELECT privileges to all Hardware products
remains valid when old products are rolled off and new products are added to the
PRODUCT dimension.

Note: You must have the OLAP_XS_ADMIN privilege to manage data
security policies in Analytic Workspace Manager.

To create a data security policy in Analytic Workspace Manager:
1. Expand the folder for a dimension or a cube.

2. Right-click Data Security and choose Create Data Security Policy.
The Create Data Security Policy dialog box is displayed.

3. On the General tab, type a descriptive name in the Data Security Policy Name
field.

4. Click Add Users or Roles.
The Add Users or Roles dialog box is displayed.

5. Select the users, roles, and OLAP data security roles that you want to use this
policy. Then click OK to close the dialog box.

The selected users and roles are now listed in the table on the General tab.
6. Select the permissions you want to grant to each user or role.

7. On the Member Selection tab, select the dimension members or conditions. For
cubes, set the scope for each dimension.

8. Click OK to save the data security policy.

The new data security policy appears in the navigation tree in the Data Security
folder for the dimension.

9. Grant these users and roles object privileges on the dimension or cube, and on the
analytic workspace.

Security 8-7

Creating Data Security Policies on Dimensions and Cubes

See Also:
= "Setting Object Security on Dimensions" on page 8-5
= "Setting Object Security on an Analytic Workspace" on page 8-4
Figure 8-3 shows the Member Selection tab of the data security policy for PRODUCT.

Users who have privileges on the PRODUCT dimension based on this policy have
access to all Hardware products. They do not have access to Software products or Total

Product.

Figure 8-3 Restricting Product to Hardware and Descendants

*% Create Data Security Policy @

[(General | Member Selection |

,'N‘g'louse From: | 'Primary’ hierarchy =

Available: Selected:

Members Conditiohs Steps Members ‘

[ERE=Y Hicrarchy ¥ L Startwith & [§ Hardware
V Descendants of Hardware > [2. add V Descendants of Hard:
W ToOTAL
»
£
4] S [T

Conditioh Expression:
CLOBALPRODUCT.DIM_KEY IN ('HRD') OR'HRD' = HIER_AMCESTORMITHIM
CLOBALPRODUCT.PRIMARY LEVEL CLOBALPRODUCT.CLASSY

|| Show Condition

See Also: Analytic Workspace Manager Help for information about
creating data security roles.

8-8 Oracle OLAP User's Guide

9

Advanced Aggregations

A cube always returns summary data to a query as needed. While the cube may store
data at the day level, for example, it will return a result at the quarter or year level
without requiring a calculation in the query. This chapter explains how to optimize the
unique aggregation subsystem of Oracle OLAP to provide the best performance for
both data maintenance and querying.

This chapter contains the following topics:
= Whatis Aggregation?

s Aggregation Operators

s When Does Aggregation Order Matter?
= Example: Aggregating the Units Cube

What is Aggregation?

Aggregation is the process of consolidating multiple values into a single value. For
example, data can be collected on a daily basis and aggregated into a value for the
week, the weekly data can be aggregated into a value for the month, and so on.
Aggregation allows patterns in the data to emerge, and these patterns are the basis for
analysis and decision making. When you define a data model with hierarchical
dimensions, you are providing the framework in which aggregate data can be
calculated.

Aggregation is frequently called summarization, and aggregate data is called
summary data. While the most frequently used aggregation operator is Sum, there are
many other operators, such as Average, First, Last, Minimum, and Maximum. Oracle
OLAP also supports weighted and hierarchical methods. Following are some simple
diagrams showing how the basic types of operators work. For descriptions of all the
operators, refer to "Aggregation Operators” on page 9-3.

Figure 9-1 shows a simple hierarchy with four children and one parent value. Three of
the children have values, while the fourth is empty. This empty cell has a null or NA
value. The Sum operator calculates a value of (2 + 4 + 6)=12 for the parent value.

Advanced Aggregations 9-1

What is Aggregation?

Figure 9-1 Summary Aggregation in a Simple Hierarchy

12

_

2 4 6 NA

The Average operator calculates the average of all real data, producing an aggregate
value of ((2 + 4 + 6)/3)=4, as shown in Figure 9-2.

Figure 9-2 Average Aggregation in a Simple Hierarchy

4

N

2 4 6 NA

The hierarchical operators include null values in the count of cells. In Figure 9-3, the
Hierarchical Average operator produces an aggregate value of ((2 + 4 + 6 +NA)/4)=3.

Figure 9-3 Hierarchical Average Aggregation in a Simple Hierarchy

3

N

2 4 6 NA

The weighted operators use the values in another measure to generate weighted
values before performing the aggregation. Figure 9—4 shows how the simple sum of 12
in Figure 9-1 changes to 20 by using weights ((3*2) + (2*4) + (NA*6) +(4*NA)).

9-2 Oracle OLAP User's Guide

Aggregation Operators

Figure 9-4 Weighted Sum Aggregation in a Simple Hierarchy

20

/' N\

6 NA

Weights

1 1

Aggregation Operators

Analytic workspaces provide an extensive list of aggregation methods, including
weighted, hierarchical, and weighted hierarchical methods.

Basic Operators

The following are descriptions of the basic aggregation operators:

Average: Adds non-null data values, then divides the sum by the number of data
values that were added together.

First Non-NA Data Value: Returns the first real data value.
Last Non-NA Data Value: Returns the last real data value.
Maximum: Returns the largest data value among the children of each parent.

Minimum: Returns the smallest non-null data value among the children of each
parent.

Nonadditive: Does not aggregate the data.
Sum: Adds data values.

Scaled and Weighted Operators

These operators require a measure providing the weight or scale values in the same
cube. In a weight measure, an NA (null) is calculated like a 1. In a scale measure, an
NA is calculated like a 0.

The weighted operators use outer joins, as described in "When Does Aggregation
Order Matter?" on page 9-4.

These are the scaled and weighted aggregation operators:

Scaled Sum: Adds the value of a weight object to each data value, then adds the
data values.

Weighted Average: Multiplies each data value by a weight factor, adds the data
values, and then divides that result by the sum of the weight factors.

Advanced Aggregations 9-3

When Does Aggregation Order Matter?

= Weighted First: Multiplies the first non-null data value by its corresponding
weight value.

s Weighted Last: Multiplies the last non-null data value by its corresponding weight
value.

s Weighted Sum: Multiplies each data value by a weight factor, then adds the data
values.

Hierarchical Operators

The following are descriptions of the hierarchical operators. They include all cells
identified by the hierarchy in the calculations, whether or not the cells contain data.

Hierarchical Average and the Hierarchical Weighted operators use outer joins.

= Hierarchical Average: Adds data values, then divides the sum by the number of
the children in the dimension hierarchy. Unlike Average, which counts only
non-null children, hierarchical average counts all of the children of a parent,
regardless of whether each child does or does not have a value.

= Hierarchical First Member: Returns the first data value in the hierarchy, even
when that value is null.

= Hierarchical Last Member: Returns the last data value in the hierarchy, even when
that value is null.

s Hierarchical Weighted Average: Multiplies non-null child data values by their
corresponding weight values, then divides the result by the sum of the weight
values. Unlike Weighted Average, Hierarchical Weighted Average includes weight
values in the denominator sum even when the corresponding child values are
null.

= Hierarchical Weighted First: Multiplies the first data value in the hierarchy by its
corresponding weight value, even when that value is null.

= Hierarchical Weighted Last: Multiplies the last data value in the hierarchy by its
corresponding weight value, even when that value is null.

When Does Aggregation Order Matter?

The OLAP engine aggregates a cube across one dimension at a time. When the
aggregation operators are the same for all dimensions, the order in which they are
aggregated may or may not make a difference in the calculated aggregate values,
depending on the operator.

You should specify the order of aggregation when a cube uses more than one
aggregation method. The only exceptions are that you can combine Sum and Weighted
Sum, or Average and Weighted Average, when the weight measure is only aggregated
over the same dimension. For example, a weight measure used to calculate weighted
averages across Customer is itself only aggregated across Customer.

The weight operators are uncompressible for the specified dimension and all
preceding dimensions. For a compressed cube, you should list the weighted operators
as early as possible to minimize the number of outer joins. For example, suppose that a
cube uses Weighted Sum across Customer, and Sum across all other dimensions.
Performance will be best if Customer is aggregated first.

9-4 Oracle OLAP User's Guide

When Does Aggregation Order Matter?

Using the Same Operator for All Dimensions of a Cube

The following information provides guidelines for when you need to specify the order
of the dimensions as part of defining the aggregation rules for a cube.

Order Has No Effect

When these operators are used for all dimension of a cube, the order does not affect
the results:

= Average

s Maximum

s Minimum

= Sum

» Hierarchical First Member
» Hierarchical Last Member

» Hierarchical Average

Order Changes the Aggregation Results

Even when these operators are used for all dimensions of a cube, the order can affect
the results:

» First Non-NA Data Value

= Last Non-NA Data Value

= Weighted First

= Weighted Last

» Hierarchical Weighted First
» Hierarchical Weighted Last

s Scaled Sum

Order May Be Important

When the following weighted operators are used for all dimensions of a cube, the
order affects the results only if the weight measure is aggregated over multiple
dimensions:

= Weighted Average
s Weighted Sum
» Hierarchical Weighted Average

Example: Mixing Aggregation Operators

Even though you can use the Sum and Maximum operators alone without ordering
the dimensions, you cannot use them together without specifying the order. The
following figures show how they calculate different results depending on the order of
aggregation. Figure 9-5 shows a cube with two dimensions. Sum is calculated first
across one dimension of the cube, then Maximum is calculated down the other
dimension.

Advanced Aggregations 9-5

Example: Aggregating the Units Cube

Figure 9-5 Sum Method Followed by Maximum Method

Calculate Sum

Then M aximum

Figure 9-6 shows the same cube, except Maximum is calculated first down one
dimension of the cube, then Sum is calculated across the other dimension. The
maximum value of the sums in Figure 9-5 is 15, while the sum of the maximum values
in Figure 9-6 is 19.

Figure 9-6 Max Method Followed by Sum Method

Then Sum

£
g 4 4 na 4 4 na 8
e
= 1 8 § 1 8 6 | 15
&
m
3
= 2 3 T 2 3 7 12
(@]

4 3 T 4 8 T 19

Example: Aggregating the Units Cube

This example describes changes to the default aggregation of the Units cube in the
GLOBAL analytic workspace. These changes will take effect in the next data refresh.

Selecting the Aggregation Operators and Hierarchies

Analytic Workspace Manager initially sets all dimensions to use the Sum operator and
aggregates all levels of all dimensions. To change these default settings, use the Rules
subtab of the Aggregation tab.

Figure 9-7 shows the operators for the Units Cube. Time is now set to Last Non-NA
Data Value, and it will be aggregated after the other dimensions. For operators like
First and Last, the order in which the dimensions are aggregated can change the
results.

Another change is that only the Shipments hierarchy of the Customer dimension will
be aggregated during data maintenance. Because the Segment hierarchy is seldom
queried, the Global DBA chose not to calculate these aggregate values in order to save
maintenance time and storage space. However, response time will be slower for
queries that request Segment aggregations.

9-6 Oracle OLAP User's Guide

Example: Aggregating the Units Cube

Figure 9-7 Selecting the Aggregation Operators

* Create Cube

X

rCenera\ rAggregation rPanitioning rStorage rhﬂaterialized\u‘iews |

Specify the aggregation rules of the cube

Rules Precompute

Order and Method
Choose ah operator for each dimension.

Aggregation Crder and Method:

orger | Dimension | operator | Based on [
1 S CHANNEL sum
2 SICUSTOMER sum
3 =IPRODUCT sum

T ME Last Non-NA Data value I Lt

Aggregation Hierarchies

Aggregate the cube using selected hierarchies:

BV AT TIME

LA

EMW 5 CHANNEL

LA | selectan |

BT & cusTOMER:

= T - HIFMENTS

© RS A SECMENT

EHV & PRODUCT
T A

| Deselect All |

| Help ‘ L Create a| Cancel

Choosing the Percentage of Precomputed Values

Analytic Workspace Manager initially chooses cost-based aggregation with 20%
precomputed values for the bottom partitions and 0% for the top partition. An
unpartitioned cube is also set to 20%. This setting means that 20% of the aggregate
values will be calculated and stored during data maintenance, and 80% will be
calculated in response to a query. These settings optimize data maintenance.

Increasing the materialization of the bottom partitions improves querying of both the
bottom and the top partitions. Increasing the materialization of the top partition
improves querying of the most aggregate data and any other hierarchies of the
partitioned dimension.

Figure 9-8 shows the settings for the Units Cube. In this case, the Global DBA chose to
keep the top partition at 0%, and to increase the bottom partitions from 20 to 50%. This
change will increase maintenance costs in time and storage space, but will improve
runtime performance of all partitions.

Advanced Aggregations 9-7

Example: Aggregating the Units Cube

Figure 9-8 Setting Cost-Based Presummarization

* Create Cube E]

rCenera\ rAggregation rPanitioning rStorage rhﬂaterialized\u‘iews |

Specify the aggregation rules of the cube

Rules Precompute |

Choose an aggregation method:

@ LCost-based aggregation {recommended for compressed cubes)

Top Partition: EI
Eottom Partition:

() Level-based aggregation (required for uncompressed cubes)

Choose the levels of the cube to be aggregated and stored.

Dimension:

TIME [Lewvels

1T, L A

9-8 Oracle OLAP User's Guide

A

Designing a Dimensional Model

This guide uses the Global schema for its examples. This appendix explores the
business requirements of the fictitious Global Computing Company and discusses
how the design of a data model emerges from these requirements.

This appendix contains the following topics:
s Case Study Scenario
» Identifying Required Business Facts

= Designing a Dimensional Model for Global Computing

Case Study Scenario

The fictional Global Computing Company was established in 1990. Global Computing
distributes computer hardware and software components to customers on a
worldwide basis. The Sales and Marketing department has not been meeting its
budgeted numbers. As a result, this department has been challenged to develop a
successful sales and marketing strategy.

Global Computing operates in an extremely competitive market. Competitors are
numerous, customers are especially price-sensitive, and profit margins tend to be
narrow. In order to grow profitably, Global Computing must increase sales of its most
profitable products.

Various factors in Global Computing's current business point to a decline in sales and
profits:

s Traditionally, Global Computing experiences low third-quarter sales (July through
September). However, recent sales in other quarters have also been lower than
expected. The company has experienced bursts of growth but, for no apparent
reason, has had lower first-quarter sales during the last two years as compared
with prior years.

= Global has been successful with its newest sales channel, the Internet. Although
sales within this channel are growing, overall profits are declining.

s Perhaps the most significant factor is that margins on personal computers -
previously the source of most of Global Computing's profits - are declining
rapidly.

Global Computing needs to understand how each of these factors is affecting its
business.

Current reporting is done by the IT department, which produces certain standard
reports on a monthly basis. Any ad hoc reports are handled on an as-needed basis and
are subject to the time constraints of the limited IT staff. Complaints have been

Designing a Dimensional Model A-1

Case Study Scenario

widespread within the Sales and Marketing department, with regard to the delay in
response to report requests. Complaints have also been numerous in the IT
department, with regard to analysts who change their minds frequently or ask for
further information.

The Sales and Marketing department has been struggling with a lack of timely
information about what it is selling, who is buying, and how they are buying. In a
meeting with the CIO, the VP of Sales and Marketing states, "By the time I get the
information, it's no longer useful. I'm only able to get information at the end of each
month, and it doesn't have the details I need to do my job."

Reporting Requirements

When asked to be more specific about what she needs, the Vice President of Sales and
Marketing identifies the following requirements:

» Trended sales data for specific customers, regions, and segments.

» The ability to provide information and some analysis capabilities to the field sales
force. A Web interface would be preferred, since the sales force is distributed
throughout the world.

s Detail regarding mail-order, phone, and e-mail sales on a monthly and quarterly
basis, as well as a comparison to past time periods. Information must identify
when, how, and what is being sold by each channel.

= Margin information on products in order to understand the dollar contribution for
each sale.

= Knowledge of percent change versus the prior and year-ago period for sales, units,
and margin.

» The ability to perform analysis of the data by ad hoc groupings.

The CIO has discussed these requirements with his team and has come to the
conclusion that a standard reporting solution against the production order entry
system would not be flexible enough to provide the required analysis capabilities. The
reporting requirements for business analysis are so diverse that the projected cost of
development, along with the expected turnaround time for requests, would make this
solution unacceptable.

The CIO's team recommends using an analytic workspace to support analysis. The
team suggests that the Sales and Marketing department's IT group work with
Corporate IT to build an analytic workspace that meets their needs for information
analysis.

Business Goals

The development team identifies the following high-level business goals that the
project must meet:

= Global Computing's strategic goal is to increase company profits by increasing
sales of higher margin products and by increasing sales volume overall.

» The Sales and Marketing department objectives are to:
- Analyze industry trends and target specific market segments
- Analyze sales channels and increase profits

- Identify product trends and create a strategy for developing the appropriate
channels

A-2 Oracle OLAP User's Guide

Case Study Scenario

Information Requirements

Once you have established business goals, you can determine the type of information
that will help achieve these goals. To understand how end users will examine the data
in the analytic workspace, it is important to conduct extensive interviews. From
interviews with key end users, you can determine how they look at the business, and
what types of business analysis questions they want to answer

Business Analysis Questions

Interviews with the VP of Sales and Marketing, salespeople, and market analysts at
Global Computing reveal the following business analysis questions:

= What products are profitable?

= Who are our customers, and what and how are they buying?
= What accounts are most profitable?

= What is the performance of each distribution channel?

» Is there still a seasonal variance to the business?

We can examine each of these business analysis questions in detail.

What products are profitable?
This business analysis question consists of the following questions:

= What is the percent of total sales for any item, product family, or product class in
any month, quarter or year, and in any distribution channel? How does this
percent of sales differ from a year ago?

= What is the unit price, unit cost, and margin for each unit for any item in any
particular month? What are the price, cost, and margin trends for any item in any
month?

= What items were most profitable in any month, quarter, or year, in any distribution
channel, and in any geographic area or market segment? How did profitability
change from the prior period? What was the percent change in profitability from
the prior period?

= What items experienced the greatest change in profitability from the prior period?

= What items contributed the most to total profitability in any month, quarter, or
year, in any distribution channel, and in any geographic area or market segment?

= What items have the highest per unit margin for any particular month?

= In summary, what are the trends?

Who are our customers, and what and how are they buying?
This business analysis question consists of the following questions:

= What were sales for any item, product family, or product class in any month,
quarter, or year?

= What were sales for any item, product family, or product class in any distribution
channel, geographic area, or market segment?

» How did sales change from the prior period? What was the percent change in sales
from the prior period?

» How did sales change from a year ago? What was the percent change in sales from
a year ago?

Designing a Dimensional Model A-3

Case Study Scenario

In summary, what are the trends?

Which accounts are most profitable?
This business analysis question consists of the following questions:

Which accounts are most profitable in any month, quarter, or year, in any
distribution channel, by any item, product family, or product class?

What were sales and extended margin (gross profit) by account for any month,
quarter, or year, for any distribution channel, and for any product?

How does account profitability compare to the prior time period?

Which accounts experienced the greatest increase in sales as compared to the prior
period?

What is the percent change in sales from the prior period? Did the percent change
in profitability increase at the same rate as the percent change in sales?

In summary, what are the trends?

What is the performance of each distribution channel?
This business analysis question consists of the following questions:

What is the percent of sales to total sales for each distribution channel for any
item, product family, or product class, or for any geographic area or market
segment?

What is the profitability of each distribution channel: direct sales, catalog sales,
and the Internet?

Is the newest distribution channel, the Internet, "cannibalizing" catalog sales? Are
customers simply switching ordering methods, or is the Internet distribution
channel reaching additional customers?

In summary, what are the trends?

Is there still a seasonal variance to the business?
This business analysis question consists of the following questions:

Are there identifiable seasonal sales patterns for particular items or product
families?

How do seasonal sales patterns vary by geographic location?
How do seasonal sales patterns vary by market segment?

Are there differences in seasonal sales patterns as compared to last year?

Summary of Information Requirements

By examining the types of analyses that users wish to perform, we can identify the
following key requirements for analysis:

Global Computing has a strong need for profitability analysis. The company must
understand profitability by product, account, market segment, and distribution
channel. It also needs to understand profitability trends.

Global Computing needs to understand how sales vary by time of year. The
company must understand these seasonal trends by product, geographic area,
market segment, and distribution channel.

A-4 Oracle OLAP User's Guide

Designing a Dimensional Model for Global Computing

= Global Computing has a need for ad hoc sales analysis. Analysis must identify
what products are sold to whom, when these products are sold, and how
customers buy these products.

s The ability to perform trend analysis is important to Global Computing.

Identifying Required Business Facts

The key analysis requirements reveal the business facts that are required to support
analysis requirements at Global Computing.

These facts are ordered by time, product, customer shipment or market segment, and
distribution channel:

Sales

Units

Change in sales from prior period

Percent change in sales from prior period
Change in sales from prior year

Percent change in sales from prior year
Product share

Channel share

Market share

Extended cost

Extended margin

Extended margin change from prior period
Extended margin percent change from prior period
Units sold, change from prior period

Units sold, percent change from prior period
Units sold, change from prior year

Units sold, percent change from prior year

These facts are ordered by item and month:

Unit price
Unit cost
Margin per unit

Designing a Dimensional Model for Global Computing

"Business Goals" on page A-2 identifies the business facts that will support analysis
requirements at Global Computing. Next, we will identify the dimensions, levels, and
attributes in a data model. We will also identify the relationships within each
dimension. The resulting data model will be used to design the Global schema, the
dimensional model, and the analytic workspace.

Identifying Dimensions
Four dimensions will be used to organize the facts in the database.
s Product shows how data varies by product.
s Customer shows how data varies by customer or geographic area.
s Channel shows how data varies according to each distribution channel.

s Time shows how data varies over time.

Designing a Dimensional Model A-5

Designing a Dimensional Model for Global Computing

Identifying Levels

Now that we have identified dimensions, we can identify the levels of summarization
within each dimension. Analysis requirements at Global Computing reveal that:

s There are three distribution channels: Sales, Catalog, and Internet. These three
values are the lowest level of detail in the data warehouse and will be grouped in
the Channel level. From the order of highest level of summarization to the lowest
level of detail, levels will be Total and Channel.

= Global performs customer and geographic analysis along the line of shipments to
customers and by market segmentation. Shipments and Segment will be two
hierarchies in the Customer dimension. In each case, the lowest level of detail in
the data model is the Ship To location.

— When analyzing along the line of customer shipments, the levels of
summarization will be (highest to lowest): Total, Region, Warehouse, and Ship
To.

— When analyzing by market segmentation, the levels of summarization will be
(highest to lowest): Total, Market Segment, Account, and Ship To.

s The Product dimension will have four levels (highest to lowest): Total, Class,
Family, and Item.

s The Time dimension will have four levels (highest to lowest): Total, Year, Quarter,
and Month.

All dimensions have a Total level as the highest level of summarization. Adding this
highest level provides additional flexibility as application users analyze data.

Identifying Hierarchies

We will identify the hierarchies that organize the levels within each dimension. To
identify hierarchies, we will group the levels in the correct order of summarization and
in a way that supports the identified types of analysis.

For the Channel and Product dimensions, Global Computing requires only one
hierarchy for each dimension. For the Customer dimension, Global Computing
requires two hierarchies. Analysis within the Customer dimension tends to be either
by geographic area or market segment. Therefore, we will organize levels into two
hierarchies, Shipments and Segment. Analysis over time also requires two hierarchies,
a Calendar hierarchy and a Fiscal hierarchy.

Identifying Stored Measures

"Identifying Required Business Facts" on page A-5 lists 21 business facts that are
required to support the analysis requirements of Global Computing. Of this number,
only four facts need to be acquired from the transactional database:

s Units
= Sales
s Unit Price
» Unit Cost

All of the other facts can be derived from these basic facts. The derived facts can be
calculated in the analytic workspace on demand. If experience shows that some of
these derived facts are being used heavily and the calculations are putting a noticeable

A-6 Oracle OLAP User's Guide

Designing a Dimensional Model for Global Computing

load on the system, then some of these facts can be calculated and stored in the
analytic workspace as a data maintenance procedure.

Designing a Dimensional Model A-7

Designing a Dimensional Model for Global Computing

A-8 Oracle OLAP User's Guide

Glossary

additive

Describes a measure or fact that can be summarized through addition, such as a SUM
function. An additive measure is the most common type. Examples include sales, cost,
and profit.

Contrast with nonadditive.

aggregation

The process of consolidating data values into a single value. For example, sales data
could be collected on a daily basis and then be aggregated to the week level, the week
data could be aggregated to the month level, and so on. The data can then be referred
to as aggregate data.

The term aggregation is often used interchangeably with summarization, and
aggregate data is used interchangeably with summary data. However, there are a wide
range of aggregation methods available in addition to SUM.

allocation

The process of distributing aggregate data down a hierarchy to the detail level,
sometimes using an existing set of data as the basis for the allocation. Allocation is
often used in forecasting and budgeting systems. An example of a financial allocation
is the automated distribution of a bonus pool, based on the current salaries and
performance ratings of the employees.

analytic workspace

A container for storing related dimensional objects, such as dimensions and cubes. An
analytic workspace is stored in a relational table.

See also cube, cube dimension.

ancestor

A dimension member at a higher level of aggregation than a particular member. For
example, in a Time dimension, the year 2007 is the ancestor of the day 06-July-07. The
member immediately above is the parent. In a dimension hierarchy, the data value of
the ancestor is the aggregated value of the data values of its descendants.

Contrast with descendant. See also hierarchy, level, parent.

attribute

A database object related to an OLAP cube dimension. An attribute stores descriptive
characteristics for all dimension members, or members of a particular hierarchy, or
only members at a particular level of a hierarchy.

Glossary-1

base level data

Glossary-2

When the values of an attribute are unique, they provide supplementary information
that can be used for display (such as a descriptive name) or in analysis (such as the
number of days in a time period). When the values of an attribute apply to a group of
dimension members, they enable users to select data based on like characteristics. For
example, in a database representing footwear, you might use a color attribute to select
all boots, sneakers, and slippers of the same color.

See also cube dimension.

base level data
See detail data.

base measure

See measure.

calculated measure

A stored expression that executes in response to a query. For example, a calculated
measure might generate the difference in costs from the prior period by using the
LAG_VARIANCE function on the COSTS measure. Another calculated measure might
calculate profits by subtracting the COSTS measure from the SALES measure. The
expression resolves only the values requested by the query.

See also expression, measure.

cell

A single data value of an expression. In a dimensioned expression, a cell is identified
by one value from each of the dimensions of the expression. For example, if you have a
measure with the dimensions MONTH and CUSTOMER, then each combination of a
month and a customer identifies a separate cell of that measure.

See also cube dimension.

child

A dimension member that is part of a more aggregate member in a hierarchy. For
example, in a Time dimension, the month Jan-06 might be the child of the quarter
Q1-2006. A dimension member can be the child of a different parent in each hierarchy.

Contrast with parent. See also descendant, hierarchy.

composite

A compact format for storing sparse multidimensional data. Oracle OLAP provides
two types of composites: a compressed composite for extremely sparse data, and a
regular composite for moderately sparse data.

See also dimension, sparsity.

compressed cube

A cube with very sparse data that is stored in a compressed composite.

See also composite.

compression

See compressed cube.

consistent solve specification

See solve specification.

data warehouse

cube

An organization of measures with identical dimensions and other shared
characteristics. The edges of the cube contain the dimension members, and the body of
the cube contains the data values. For example, sales data can be organized into a cube
whose edges contain values from the Time, Product, and Customer dimensions and
whose body contains Volume Sales and Dollar Sales data.

cube dimension

A cube dimension is a dimensional object that stores a list of values. It is an index for
identifying the values of a measure. For example, if Sales data has a separate sales
figure for each month, then the data has a Time dimension that contains month values,
which organize the data by month.

In the context of multidimensional analysis, a cube dimension is called a dimension.

See also dimension.

cube materialized view

A cube that has been enhanced with materialized view capabilities. A cube
materialized view can be incrementally refreshed through the Oracle Database
materialized view subsystem, and it can serve as a target for transparent rewrite of
queries against the source tables.

Also called a cube-organized materialized view or a cube-based materialized view.

cube script

A sequence of steps that prepare the data for querying, such as loading and
aggregating new data.

cube view

A relational view of the data stored in a cube, which can be queried by SQL. It contains
columns for the dimensions, measures, and calculated measures of the cube.

custom measure

See calculated measure.

custom member

A dimension member whose data is calculated from the values of other members of
the same dimension using the rules defined in a model.

See model.

data security role

A group of users and database roles that is defined just for use in managing OLAP
security policies.

data source

A relational table, view, synonym, or other database object that provides detail data for
cubes and cube dimensions.

data warehouse

A database designed for query and analysis rather than transaction processing. A data
warehouse usually contains historical data that is derived from transaction data, but it
can include data from other sources. It separates analysis workload from transaction
workload and enables a business to consolidate data from several sources.

Glossary-3

denormalized

denormalized

Permit redundancy in a table. Contrast with normalize.

derived measure

See calculated measure.

descendant

A dimension member at a lower level of aggregation than a particular member. For
example, in a Time dimension, the day 06-July-07 is the descendant of year 2007. The
member immediately below is the child. In a dimension hierarchy, the data values of
the descendants roll up into the data values of the ancestors.

Contrast with ancestor. See also aggregation, child, hierarchy, level.

detail data

Data at the lowest level, which is acquired from another source.

Contrast with aggregation.

dimension

A structure that categorizes data. Among the most common dimensions for
sales-oriented data are Time, Geography, and Product. Most dimensions have
hierarchies and levels.

In a cube, a dimension is a list of values at all levels of aggregation.

In a relational table, a dimension is a type of object that defines hierarchical
(parent/child) relationships between pairs of column sets.

See also cube dimension, hierarchy.

dimension key

See dimension member.

dimension member

One element in the list that composes a cube dimension. For example, a Time
dimension might have dimension members for days, months, quarters, and years.
dimension table

A relational table that stores all or part of the values for a dimension in a star or
snowflake schema. Dimension tables typically contain columns for the dimension
keys, levels, and attributes.

dimension value

See dimension member.

dimension view

A relational view of a cube dimension that provides information about all members of
all hierarchies. It includes columns for the dimension keys, level, and attributes.

See also cube dimension, hierarchy view.

drill

To navigate from one item to a set of related items. Drilling typically involves
navigating up and down through the levels in a hierarchy.

Glossary-4

hierarchy view

Drilling down expands the view to include child values that are associated with parent
values in the hierarchy.

Drilling up collapses the list of descendant values that are associated with a parent
value in the hierarchy.

EIF file

A specially formatted file for transferring data between analytic workspaces, or for
storing versions of an analytic workspace (all of it or selected objects) outside the
database.

embedded total

A list of dimension members at all levels of a hierarchy, such that the aggregate
members (totals and subtotals) are interspersed with the detail members. For example,
a Time dimension might contain dimension members for days, months, quarters, and
years.

expression

A combination of one or more values (typically provided by a measure or a calculated
measure), operators, and functions that evaluates to a value. An expression generally
assumes the data type of its components.

The following are examples of expressions, where SALES is a measure: SALES,
SALES*1.05, TRUNC (SALES).
fact

See measure.

fact table

A table in a star schema that contains factual data. A fact table typically has two types
of columns: those that contain facts and those that are foreign keys to dimension
tables. The primary key of a fact table is usually a composite key that is made up of all
of its foreign keys.

A fact table might contain either detail facts or aggregated facts. Fact tables that
contain aggregated facts are typically called summary tables or materialized views. A
fact table usually contains facts with the same level of aggregation.

See also materialized view.

hierarchy

A way to organize data at different levels of aggregation. Hierarchies are used to
define data aggregation; for example, in a Time dimension, a hierarchy might be used
to aggregate data from days to months to quarters to years. Hierarchies are also used
to define a navigational drill path.

In a relational table, hierarchies can be defined as part of a dimension object.

See also level-based hierarchy, ragged hierarchy, skip-level hierarchy, value-based
hierarchy.

hierarchy view

A relational view of a cube dimension that provides information about the members
that belong to a particular hierarchy. It includes columns for the dimension keys,
parents, levels of the hierarchy, and attributes.

See also cube dimension, dimension view.

Glossary-5

key

Glossary-6

key

A column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database.

See also dimension member.

leaf data
See detail data.

level

A named position in a hierarchy. For example, a Time dimension might have a
hierarchy that represents data at the month, quarter, and year levels. The levels might
be named Month, Quarter, and Year. The names provide an easy way to reference a
group of dimension members at the same distance from the base.

level-based hierarchy

A hierarchy composed of levels. For example, Time is always level based with levels
such as Month, Quarter, and Year. Most hierarchies are level based.

See also value-based hierarchy.

mapping

The definition of the relationship and data flow between source and target objects. For
example, the metadata for a cube includes the mappings between each measure and
the columns of a fact table or view.

materialized view

A database object that provides access to aggregate data and can be recognized by the
automatic refresh and the query rewrite subsystems.

See also cube materialized view.

measure

Data that represents a business measure, such as sales or cost data. You can select,
display, and analyze the data in a measure. The terms measure and fact are
synonymous; measure is more commonly used in a multidimensional environment
and fact is more commonly used in a relational environment.

Measures are dimensional objects that store data, such as Volume Sales and Dollar
Sales. Measures belong to a cube.

See also calculated measure, fact, cube.

measure folder

A database object that organizes and label groups of measures. Users may have access
to several schemas with measures named Sales or Costs, and measure folders provide
a way to differentiate among them.

model

A set of inter-related equations specified using the members of a particular dimension.
Line item dimensions often use models to calculate the values of dimension members.

See also custom member. Contrast with calculated measure.

page

NA value

A special data value that indicates that data is "not available" (N2) or null. It is the
value of any cell to which a specific data value has not been assigned or for which data
cannot be calculated.

See also cell, sparsity.

nonadditive

Describes a measure or fact that cannot be summarized through addition, such as Unit
Price. Maximum is an example of a nonadditive aggregation method.

Contrast with additive.

normalize

In a relational database, the process of removing redundancy in data by separating the
data into multiple tables. Contrast with denormalized.

OLAP

Online Analytical Processing. OLAP functionality is characterized by dynamic,
dimensional analysis of historical data, which supports activities such as the
following:

= Calculating across dimensions and through hierarchies
= Analyzing trends

s Drilling up and down through hierarchies

= Rotating to change the dimensional orientation

Contrast with OLTP.

OLAP DML

The internal data definition and manipulation language for analytic workspaces.

OLTP

Online Transaction Processing. OLTP systems are optimized for fast and reliable
transaction handling. Compared to data analysis systems, most OLTP interactions
involve a relatively small number of rows, but a larger group of tables.

Contrast with OLAP.

on the fly

Calculated at run-time in response to a specific query. In a cube, calculated measures
and custom members are typically calculated on the fly. Aggregate data can be
precomputed, calculated on the fly, or a combination of the two methods.

Contrast with precompute.

override solve specification

See solve specification.

page
A unit for swapping data in and out of memory.

Also called a block.

Glossary-7

page space

Glossary-8

page space
A grouping of related data pages.

parent

A dimension member immediately above a particular member in a hierarchy. In a
dimension hierarchy, the data value of the parent is the aggregated total of the data
values of its children.

Contrast with child. See also hierarchy, level.

parent-child relation

A one-to-many relationship between one parent and one or more children in a
hierarchical dimension. For example, New York (at the state level) might be the parent
of Albany, Buffalo, Poughkeepsie, and Rochester (at the city level).

See also child, parent.

precalculate

See precompute.

precompute

Calculate and store as a data maintenance procedure. In a cube, aggregate data can be
precomputed, calculated on the fly, or a combination of the two methods.

Contrast with on the fly.

ragged hierarchy

A hierarchy that contains at least one member with a different base level, creating a
"ragged" base level for the hierarchy. Organization dimensions are frequently ragged.
refresh

Load new and changed values from the source tables and recompute the aggregate
values.

security role

See data security role.

skip-level hierarchy

A hierarchy that contains at least one member whose parents are more than one level
above it, creating a hole in the hierarchy. For example, in a Geography dimension with
levels for City, State, and Country, Washington D.C. is a city that does not have a State
value; its parent is United States at the Country level.

snowflake schema

A type of star schema in which the dimension tables are partly or fully normalized.
See also normalize, star schema.

solve specification

The aggregation method for each dimension of the cube.

solved data

A result set in which all derived data has been calculated. Data fetched from an cube is
always fully solved, because all of the data in the result set is calculated before it is

update window

returned to the SQL-based application. The result set from the cube is the same
whether the data was precomputed or calculated on the fly.

See also on the fly, precompute.

source

See data source.

sparsity

A concept that refers to multidimensional data in which a relatively high percentage of
the combinations of dimension values do not contain actual data.

There are two types of sparsity:

= Controlled sparsity occurs when a range of values of one or more dimensions has
no data; for example, a new measure dimensioned by Month for which you do not
have data for past months. The cells exist because you have past months in the
Month dimension, but the cells are empty.

= Random sparsity occurs when nulls are scattered throughout a measure, usually
because some combinations of dimension members never have any data. For
example, a district might only sell certain products and never have sales data for
the other products.

Some dimensions may be sparse while others are dense. For example, every time
period may have at least one data value across the other dimensions, making Time a
dense dimension. However, some products may not be sold in some cities, and may
not be available anywhere for some time periods; both Product and Geography may
be sparse dimensions.

See also composite.

star query

A join between a fact table and a number of dimension tables. Each dimension table is
joined to the fact table using a primary key to foreign key join, but the dimension
tables are not joined to each other.

star schema

A relational schema whose design represents a dimensional data model. The star
schema consists of one or more fact tables and one or more dimension tables that are
related through foreign keys.

See also snowflake schema.

status

The list of currently accessible values for a given dimension. The status of a dimension
persists within a particular session, and does not change until it is changed
deliberately. When an analytic workspace is first attached to a session, all members are
in status.

See also cube dimension, dimension member.

summary

See aggregation.

update window

The length of time available for loading new data into a database.

Glossary-9

value-based hierarchy

Glossary-10

value-based hierarchy

A hierarchy defined only by the parent-child relationships among dimension
members. The dimension members at a particular distance from the base level do not
form a meaningful group for analysis, so the levels are not named. For example, an
employee dimension might have a parent-child relation that identifies each employee's
supervisor. However, levels that group together first-, second-, and third-level
supervisors and so forth may not be meaningful for analysis.

See also hierarchy, level-based hierarchy.

A

ADVISOR privilege, 2-2
aggregation
average operator, 9-2
calculated measures, 4-15
definition, 9-1
hierarchical average operator, 9-2
over attributes, 4-14
sum operator, 9-2
weighted operators, 9-2
aggregation operators, 3-14, 4-14,9-3
aggregation order, 9-4
aggregation percentages, 9-7
Aggregation step (cube scripts), 3-22
ALL_AW_OB]J view, 7-4
ALL_AW_PROP view, 7-4
ALL_AW_PSview, 7-4
ALL_AWS view, 7-4
ALL_CUBES view, 7-6
analysis tools, 1-3
analytic functions, 5-2,5-13
Analytic Workspace Manager
installation, 2-2
opening, 2-3
using, 3-2to 3-26
analytic workspace object security, 8-4
analytic workspace security, 8-3
analytic workspaces
creating, 3-3
database storage, 7-5
disk space consumption, 7-13
enhancing functionality, 3-4
listing, 7-11
size, 7-11
Analyze step (cube scripts), 3-22
Application Express, 1-3, 6-11
arithmetic operations, 5-2
attribute aggregation, 4-14
attributes
creating, 3-9
defined, 1-8
description, 3-8
authentication, 2-1
Automatic Database Diagnostic Monitor, 7-9
Automatic Storage Management, 7-3

Index

Automatic Workload Repository, 7-9
average

cumulative, 5-9

moving, 5-10
average operator (aggregation), 9-2
average rank, 5-6
AVERAGE_RANK function, 5-14
AVG function, 5-14
AWS tables, 7-4
AWSAWCREATE10G table, 7-4
AWSAWMD table, 7-4

backup and recovery, 7-14
backup options

for analytic workspaces, 7-14
batch processing, 7-6
BI Publisher, 6-3
BI Suite, 1-6
bind variables, 6-1, 6-10, 6-17, 6-18
branches (Application Express), 6-16
build log, 3-12
build logs, 7-5
BusinessObjects Enterprise, 1-6

Cc

calculated measures
creating, 5-3
defined, 5-1
calculation templates, 5-4, 5-5
calculations
free-form, 5-12
in queries, 4-13
nested, 5-11
changes
saving, 3-4
character functions, 4-11
Clear Data step (cube scripts), 3-22
CLEAR LEAVES command, 7-18
Cognos ReportNet, 1-6
column links, 6-19
connect string
for Analytic Workspace Manager, 2-3

Index-1

connections
defining, 2-3
CREATE ANY DIMENSION privilege, 2-2
CREATE ANY MATERIALIZED VIEW
privilege, 2-2
CREATE DIMENSION privilege, 2-2
CREATE MATERIALIZED VIEW privilege, 2-2
CREATE SESSION privilege, 2-2
creation
analytic workspaces, 7-12
cube materialized views, 7-15
creating, 3-23
Cube Partitioning Advisor, 3-17
CUBE SCAN, 4-18
cube scripts, 3-22
cube security, 8-3
cube views, 3-20,4-2
CUBE_BUILD_LOG table, 7-5
cubes
creating, 3-14
defined, 1-6
description, 3-13
mapping, 3-15
requirements for materialized views, 3-23
cumulative calculations, 5-9
cursors, 1-2

D

dashboard, 1-3
data
displaying, 3-19
data dictionary views, 4-18,7-4
data display, 3-12
data loads, 3-11, 3-18
data maintenance, 3-21
data model
description of dimensional, 1-6
designing, 3-1
saving, 3-26
Data Pump, 7-14
data security, 8-2
data security policies, 8-6
data sources
database objects, 3-2
mapping, 3-10
database connections
defining, 2-3
Database Control, 7-9
database integration, 1-1
database security, 2-1
DBA scripts download, 7-12
DBA_AW_OB]J view, 7-4
DBA_AW_PROP view, 7-4
DBA_AW_PS view, 7-4
DBA_AWS view, 7-4,7-11
DBA_OBJECTS view, 7-12
DBA_REGISTRY view, 7-11
DBMS_AW_STATS PL/SQL package, 7-9
DBMS_CUBE PL/SQL package, 3-21,7-16

Index-2

DBMS_LOB PL/SQL package, 7-11
DBMS_METADATA PL/SQL package, 7-19
DBMS_MVIEW PL/SQL package, 7-16,7-19
DBMS_SCHEDULER PL/SQL package., 3-21
DBMS_XPLAN PL/SQL package, 7-19
dense rank, 5-5
DENSE_RANK function, 5-14
dimension hierarchies
See hierarchies
dimension object security, 8-5
dimension order
effect on aggregation, 9-5
dimension security, 8-3
dimension views, 4-3
dimensions
creating, 3-5
defined, 1-7
description, 3-4
viewing members, 3-12
Discoverer Plus OLAP, 1-6
disk
spreading data, 7-3
disk space consumption, 7-13
displaying data, 3-19
drillable reports, 6-3
drilling, 4-11, 6-19
drilling (Application Express), 6-17
dump files, 7-14
dynamic performance tables, 7-10

E

edits

saving, 3-4
end date attributes, 3-9
Enterprise Manager Database Control, 7-9
execution plans, 4-16
EXP_FULL_DATABASE privilege, 7-14
EXPLAIN PLAN command, 4-16
extensibility using plugins, 2-4
EXTENT MANAGEMENT LOCAL, 7-2

F

FAST SOLVE method, 7-18
filtering queries, 4-7
free-form calculations, 5-12
future periods, 5-7

G

Global Computing Company

data requirements, A-2to A-6
Global schema

download, 2-1
Gregorian calendar, 5-5

H

hidden items (Application Express), 6-17
HIER_ANCESTOR function, 5-14
HIER_CHILD_COUNT function, 5-14
HIER_DEPTH function, 5-14
HIER_LEVEL function, 5-14
HIER_PARENT function, 5-14
HIER_TOP function, 5-14
hierarchical average operator (aggregation), 9-2
hierarchical operators, 9-4
hierarchical queries, 4-11
hierarchies

creating, 3-8

defined, 1-7

description, 3-7

level-based, 3-6

supported types, 3-7
hierarchy views, 4-3

index, 5-11
initialization parameters, 7-1
init.ora file, 7-1
installation
Analytic Workspace Manager, 2-2
installation of OLAP option
validating, 7-11
integration in database, 1-1

J

JOB_QUEUE_PROCESSES parameter, 7-2,7-6

L

lag, 5-7
LAG function, 5-14
LAG_VARIANCE function, 5-14
LAG_VARIANCE_PERCENT function, 5-14
layout template (BI Publisher), 6-3
lead, 5-7
LEAD function, 5-14
LEAD_VARIANCE function, 5-14
LEAD_VARIANCE_PERCENT function, 5-14
level-based dimensions, 3-4
level-based hierarchy, 3-6
levels
creating, 3-6
defined, 1-7
Load step (cube scripts), 3-22
loading data, 3-11,3-18
login names, 2-1
LOVs (list of values), 6-9, 6-15

maintenance alternatives, 3-21
Maintenance Wizard, 3-11,3-18
mappings

creating, 3-10
materialized views, 3-23

refresh logs, 7-15
MAX function, 5-14
maximum

cumulative, 5-9

moving, 5-10
measure folders

creating, 3-25
measures

creating, 3-15

defined, 1-6
MIN function, 5-14
minimum

cumulative, 5-9

moving, 5-10
moving calculations, 5-10

N

natural keys, 3-4
nested calculations, 5-11
normal hierarchies, 3-7

(o)

object security, 8-2,8-3
objects

mapping, 3-10
OLAP DML step (cube scripts), 3-22
OLAP option

verifying installation, 7-11
OLAP_DBA role, 2-2
OLAP_USER role, 2-2
OLAP_XS_ADMIN privilege, 8-7
OLAP_XS_ADMIN role, 2-2
optimizer statistics, 7-9
Oracle Application Express, 1-3
Oracle Business Intelligence, 1-6
Oracle Recovery Manager, 7-14
OracleBI Discoverer Plus OLAP, 1-6
OracleBI Spreadsheet Add-In, 1-6
OracleBI Suite Enterprise Edition, 1-6
OUTER plan option, 4-18
owners

identifying for analytic workspaces, 7-11

P

page definition (Application Express), 6-14
parallel periods, 5-7
parallel processing, 7-6
parameter file, 7-2
parent-child relations
described, 1-7
PARTIAL OUTER plan option, 4-18

Index-3

partitioning, 7-6

benefits, 3-16

description, 3-18
Partitioning Advisor for cubes, 3-17
partitioning strategies, 3-17
performance counters, 7-10
period to date, 5-8
pfile settings, 7-2
PLAN_TABLE table, 4-16
PL/SQL step (cube scripts), 3-22
plugins, 2-4
prior periods, 5-7
privileges, 8-2
PS$ tables, 7-5

Q

queries

filtering, 4-7
query rewrite, 7-18
query tools, 1-3
QUERY_REWRITE_ENABLED parameter, 7-18
QUERY_REWRITE_INTEGRITY parameter, 7-18
querying dimensions and cubes, 4-1

R

RAC, 1-2,7-8

ragged hierarchies, 3-7

rank, 5-5

RANK function, 5-14

Real Application Clusters, 1-2
refresh logs, 7-15

refresh methods, 7-16,7-17
report entry (BI Publisher), 6-3
report layout (BI Publisher), 6-8
reports, 6-3

RMAN, 7-14
ROW_NUMBER function, 5-14

S

sample schema

download, 2-1
scaled operators, 9-3
scheduling maintenance, 7-6
security policies, 8-6
server parameter file, 7-2
SESSIONS parameter, 7-2
share, 5-6
SHARE function, 5-15
single-row functions, 5-2
size

analytic workspace, 7-11
skip-level hierarchies, 3-7
source data, 3-2
Spreadsheet Add-In, 1-6
static data dictionary views, 4-18,7-4
step types, 3-22
SUM function, 5-15
sum operator (aggregation), 9-2

Index-4

surrogate keys, 3-5
system tables, 7-4

T

tablespaces
defining for OLAP, 7-2
templates
BI Publisher, 6-5
calculation, 5-4
creating, 3-26
time
defining ranges, 5-4
time dimensions, 3-5
time span attributes, 3-9
total
cumulative, 5-9
moving, 5-10
transportable tablespaces, 7-14

U

UNDO_MANAGEMENT parameter, 7-2
UNDO_TABLESPACE parameter, 7-2
Unique key attributes, 3-10

user names, 2-1

USER_AW_OB]J view, 7-4
USER_AW_PROP view, 7-4
USER_AW_PS view, 7-4

USER_AWS view, 7-4
USER_CUBE_DIM_VIEW_COLUMNS view, 4-4
USER_CUBE_DIM_VIEWS view, 4-4
USER_CUBE_HIER_LEVELS view, 4-7
USER_CUBE_HIER_VIEWS view, 4-4
USER_CUBE_VIEW_COLUMNS view, 4-2
USER_MVIEWS view, 7-15

\'

V$SAW_AGGREGATE_OP view, 7-10
V$SAW_ALLOCATE_OP view, 7-10
V$AW_CALC view, 7-10
V$AW_LONGOPS view, 7-10
V$SAW_OLAP view, 7-10
V$AW_SESSION_INFO view, 7-10
value-based dimensions, 3-4
value-based hierarchies, 3-7

w

weighted operators, 9-3
weighted sum (aggregation), 9-2
WHERE clause operations, 4-10

X

XML Templates, 7-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle OLAP?
	Oracle Database 11g Release 11.1 Oracle OLAP

	1 Overview
	OLAP Technology in the Oracle Database
	Full Integration of Multidimensional Technology
	Ease of Application Development
	Ease of Administration
	Security
	Unmatched Performance and Scalability
	Reduced Costs

	Developing Reports and Dashboards Using SQL Tools and Application Builders
	Overview of the Dimensional Data Model
	Cubes
	Measures
	Dimensions
	Hierarchies and Levels
	Level-Based Hierarchies
	Value-Based Hierarchies

	Attributes

	2 Getting Started with Oracle OLAP
	Installing the Sample Schema
	Database Management Tasks
	Granting Privileges to DBAs and Application Developers
	Getting Started with Analytic Workspace Manager
	Installing Analytic Workspace Manager
	Opening Analytic Workspace Manager
	Defining a Database Connection
	Opening a Database Connection
	Installing Plugins

	3 Creating Dimensions and Cubes
	Designing a Dimensional Model for Your Data
	Introduction to Analytic Workspace Manager
	Creating a Dimensional Data Store Using Analytic Workspace Manager
	Basic Steps for Creating an Analytic Workspace
	Adding Functionality to Dimensional Objects
	How Analytic Workspace Manager Saves Changes

	Creating Dimensions
	Creating Levels
	Creating Hierarchies
	Creating Attributes
	Automatically Defined Attributes
	User-Defined Attributes
	Unique Key Attributes

	Mapping Dimensions
	Mapping Window
	Source Data Query

	Loading Data Into Dimensions
	Displaying the Dimension Members
	Displaying the Dimension View Descriptions

	Creating Cubes
	Creating Measures
	Mapping Cubes
	Choosing a Partitioning Strategy
	Choosing a Dimension for Partitioning
	Example of a Partitioned Dimension

	Loading Data Into a Cube
	Displaying the Data in a Cube
	Displaying the Cube View Descriptions

	Choosing a Data Maintenance Method
	Creating and Executing Custom Cube Scripts
	Adding Materialized View Capability to a Cube

	Defining Measure Folders
	Using Templates to Re-Create Dimensional Objects

	4 Querying Dimensional Objects
	Exploring the OLAP Views
	Cube Views
	Discovering the Names of the Cube Views
	Discovering the Columns of a Cube View
	Displaying the Contents of a Cube View

	Dimension and Hierarchy Views
	Discovering the Names of Dimension and Hierarchy Views
	Discovering the Columns of a Dimension View
	Displaying the Contents of a Dimension View
	Discovering the Columns of a Hierarchy View
	Displaying the Contents of a Hierarchy View

	Creating Basic Queries
	Applying a Filter to Every Dimension
	Allowing the Cube to Aggregate the Data
	Query Processing

	Creating Hierarchical Queries
	Drilling Down to Children
	Drilling Up to Parents
	Drilling Down to Descendants
	Drilling Up to Ancestors

	Using Calculations in Queries
	Using Attributes for Aggregation
	Aggregating Measures Over Attributes
	Aggregating Calculated Measures Over Attributes

	Viewing Execution Plans
	Generating Execution Plans
	Types of Execution Plans

	Querying the Data Dictionary

	5 Enhancing Your Database With Analytic Content
	What Is a Calculated Measure?
	Functions for Defining Calculations
	Arithmetic Operators
	Analytic Functions
	Single-Row Functions

	Creating Calculated Measures
	Modifying a Template
	Choosing a Range of Time Periods

	Using Calculation Templates
	Arithmetic Calculations
	Rank
	Share
	Prior and Future Periods
	Parallel Period
	Period to Date
	Cumulative Calculations
	Moving Calculations
	Index
	Nested Calculations

	Creating User-Defined Expressions

	6 Developing Reports and Dashboards
	Developing OLAP Applications
	Developing a Report Using BI Publisher
	Creating an OLAP Report in BI Publisher
	Creating a Template in Microsoft Word
	Generating a Formatted Report
	Adding Dimension Choice Lists
	Creating a List of Values
	Creating a Menu
	Editing the Query

	Developing a Dashboard Using Application Express
	Creating an OLAP Application in Application Express
	Adding Dimension Choice Lists
	Creating a Region
	Creating a List of Values
	Creating the Choice List
	Editing the Query

	Drilling on DImension Columns
	Creating Hidden Items
	Editing the Query
	Adding Links to the Dimension Columns

	7 Administering Oracle OLAP
	Setting Database Initialization Parameters
	Storage Management
	Creating an Undo Tablespace
	Creating Permanent Tablespaces for OLAP Use
	Creating Temporary Tablespaces for OLAP Use
	Spreading Data Across Storage Resources

	Dictionary Views and System Tables
	Static Data Dictionary Views
	System Tables
	Analytic Workspace Tables
	Build Logs

	Partitioned Cubes and Parallelism
	Querying Metadata for Cube Partitioning
	Creating and Dropping Partitions
	Parallelism

	Analyzing Cubes and Dimensions
	Monitoring Analytic Workspaces
	Dynamic Performance Views
	Basic Queries for Monitoring the OLAP Option
	Is the OLAP Option Installed in the Database?
	What Analytic Workspaces are in the Database?
	How Big is the Analytic Workspace?
	When Were the Analytic Workspaces Created?

	OLAP DBA Scripts
	Scripts for Monitoring Performance
	Monitoring Disk Space

	Backup and Recovery
	Export and Import
	Cube Materialized Views
	Acquiring Information From the Data Dictionary
	Identifying Cube Materialized Views
	Identifying the Refresh Logs

	Initiating a Data Refresh
	Using DBMS_CUBE
	Using DBMS_MVIEW

	Refresh Methods
	Refresh Method Descriptions
	Fast Solve Refreshes

	Using Query Rewrite
	Acquiring Additional Information About Cube Materialized Views

	8 Security
	Security of Multidimensional Data in Oracle Database
	Security Management
	Types of Security
	About the Privileges
	Layered Security

	Setting Object Security
	Using SQL to Set Object Security
	Setting Object Security on an Analytic Workspace
	Setting Object Security on Dimensions
	Setting Object Security on Cubes

	Using Analytic Workspace Manager to Set Object Security
	Setting Object Security on an Analytic Workspace
	Setting Object Security on Dimensions
	Setting Object Security on Cubes

	Creating Data Security Policies on Dimensions and Cubes

	9 Advanced Aggregations
	What is Aggregation?
	Aggregation Operators
	Basic Operators
	Scaled and Weighted Operators
	Hierarchical Operators

	When Does Aggregation Order Matter?
	Using the Same Operator for All Dimensions of a Cube
	Order Has No Effect
	Order Changes the Aggregation Results
	Order May Be Important

	Example: Mixing Aggregation Operators

	Example: Aggregating the Units Cube
	Selecting the Aggregation Operators and Hierarchies
	Choosing the Percentage of Precomputed Values

	A Designing a Dimensional Model
	Case Study Scenario
	Reporting Requirements
	Business Goals
	Information Requirements
	Business Analysis Questions
	What products are profitable?
	Who are our customers, and what and how are they buying?
	Which accounts are most profitable?
	What is the performance of each distribution channel?
	Is there still a seasonal variance to the business?
	Summary of Information Requirements

	Identifying Required Business Facts
	Designing a Dimensional Model for Global Computing
	Identifying Dimensions
	Identifying Levels
	Identifying Hierarchies
	Identifying Stored Measures

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

