ORACLE

Oracle® OLAP
DML Reference

11gRelease 1 (11.1)
B28126-02

September 2007

Oracle OLAP DML Reference, 11 Release 1 (11.1)
B28126-02
Copyright © 1994, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ...t XXV
AN S Lo 1= U< J RO XXV
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiiic e XXV
Related DOCUITIEIESveovieeeeieceeeeeeeeeeee ettt ettt et ete e ete e st eeaeetessaeeeteessseesbeesntessteessasenseeseesnseeneas XXVi
CONMVEILIONS ..oeietitieeeeeetteee e et e e eee et e e ee ettt eeeeesaateeeeeesataseeesessaassessessasaeesssensasasesesssabeessssnsstaseeesnsnrarees XXVi
HELIP VETSION ..ottt XXVi

What's NeW iN the OLAP DIVIL? ... e XXVii
New Features in the OLAP DIML.....ooo ettt s et eeae e e s eaeeesatessaeessaeessssaessans XXVii
OLAP DML Statement Changes for Oraclel1g.........ccoovirviiiiinriniiiiirrcieecereeeeeeeeeeeeeeeeeeeeeas XXX
OLAP DML Statement Changes for Oraclel0g.........cocouorurueieiiiicieiiiiicieecee s XXXii
OLAP DML Statement Changes for Oracledi............ccooiiiiiiiiiiiiiiiiiccccccccccenes XXXV

1 OLAP DML Basic Concepts

What is the OLAP DMLYooiiiiiiiiciereiceesetie ettt 1-1
What You Can Do Using the OLAP DML.......cccccooiiiiiiiiiiiiieeeeeeeeeieereeeeeeeeeeeeeeeeenas 1-1
Basic Syntactic Units of the OLAP DML.........ccccocoiiiniiiniiiiiiiins 1-2

How to Execute OLAP DML Statementsccccocovvininiiiiiniiiiiiiccccces 1-3

OLAP DML as a Definition Language...............ccccoveiiiiiiiiiiniiiiiccens 1-3

Introduction to Analytic WOorkspaces ..o 1-4
Privileges Needed to Create and Delete Analytic Workspaces............cccoovvuiiviiiniiiicininne, 1-4
Defining a New Analytic WOIKSpace.........ccoeuviiieiiiiiiiiiiiciiiiicc, 1-5
Working with Previously-Defined Analytic Workspaces...........cccocoeuvvnininnnnnnnnnninn, 1-5
Viewing Information About an Analytic Workspace...........cccccociiiiiiiiiiiiiiiicciccennes 1-5

About OLAP DML Data ODbjects............cccovuriiiiiiiiiiiiiiiiiii s 1-6
Types of OLAP DML Data ObjJECtS........ccoouviiiiiiiiiiiiiiiiiiiiiicsss s 1-6

VATIADIES ...t 1-6
Objects that Can Dimension Variables ... 1-8
REIAIONS ... s 1-9
Valueset and Surrogate ObJECtScoviviiiiiiiiiiiniiiiiii e 1-9
Objects that Support the Use of Hierarchical Dimensions............cccccevvivviviniiiiiniciincninnnn, 1-10
Hierlist DIMension.........cocciiiiiiiiiiicc e 1-11
Parentrel REIation..........cccccvviiieiiniiieiiiiriiccteee ettt 1-11
Levellist DIMeNSION ..o 1-13
Hierlevels ValUeSet ...t 1-13

Inhier Valueset OF Variable...... ...t seaaeeseareeenes 1-14

Levelrel Relation ... 1-15
Familyrel ReIation.........ccocuiuiiiiiiiiiiiecccccceeete e enes 1-17

Gidrel ReIationcoiviiiiiiiiiiiiiiiiiiiccic s 1-18

OLAP DML Statements Apply to All of the Values of a Data Object..............cccccceeuiiiiinnnes 1-19
Changing the Default Looping Behavior of Statements...........c.cccccococeciiiceiciicieneeeeene 1-19
How to Specify the Set of Data that OLAP DML Operations Work Against............................ 1-20
ADbOoUt StAtus LiStSc.oueviiiiiiiiiiiiiiiicicicc s 1-20
Default Status LIStSccoveiiviiiiiiiiiiic e 1-20
Current Status LiStsoceviiiiiiiiiiicccc s 1-20
Changing the Current Status of a Dimension to Work with a Subset of Data....................... 1-21
Saving and Restoring Current Dimension Status..........cccccccocceeiiieieicicineeccceeeeeeeeees 1-21
Using a Subset of Data Without Changing Status..............ccooeiiiiiiii, 1-21
Populating Multidimensional Hierarchical Data Objectsccccccevuriimiiiiiiiiiiiicns 1-22

Data Types, Operators, and Expressions

OLAP DML Data TYPEScoovoviriniiiiiciiictetcic ettt s ea s 2-1
NUumeric Data TYPeS ..o 2-4
Using LONGINTEGER Valuescocouiiiiiiiiiiciicic s 2-4
Using NUMBER ValUesc.ooiiiiiiii s 2-4
Text Data TYPES....cccimiiiiiiiiiic s 2-5
TeXt LItErals ...cvovoviiiiiiiiciicic s 2-5
ESCape SEqUENCES........c.ooviieiiiii 2-5
Date-0nly Data TYPe....c.ccieuiiiiiiiieicccecee et 2-6
Date-only Input ValUesc.c.oviiiiiiiiii e 2-6
Date-only Dimension VAlUesccoocuriiiiiiiiiiicicecc e 2-7
DATE-only Variable Display STYLes ... 2-8
Datetime and Interval Data Types.........cccouiiioiiiiiiiiii e 2-8
Datetime and Interval Fields..........ccccooiiiiiiiiiiiiii, 2-9
Datetime Format Templates ..o 2-10
String-to-Date Conversion RUIeS ..o 2-10
DATETIME Data TYPe...c.ccuiuiiiieiiiiiiiiiiciiiciicieiiceiiee i 2-11
TIMESTAMP Data TYPEc.ceoiiiiiiiiiiiiiiiiicci e 2-12
TIMESTAMP_TZ Data TYPE ..coovvvvviiiiiiiiniiiiis s 2-12
TIMESTAMP_LTZ Data TYPEccevemiiiiiiiiiiiiiiiciciieeiiiii s 2-13
YMINTERVAL Data TYPE ..occiiiiiiiiiiiiiiciiicics s 2-13
DSINTERVAL Data TYPe ..c.covviiiiiiiiiiiiiiniis s 2-14
Boolean Data TYPe.......c.cciiiiiiiiiiiiicicce s 2-15
RAW Data TYPE ..c.covevviiiiiiiiiiiii st 2-16
Row Identifier Data TYPeS.......ccocoeuriueiiuciiieiieii e 2-16
ROWID Data TYPe....cvcvciiiiitiiiicictcitct s 2-16
UROWID Data TYPe....ccouiiiiiiiiiiiiiiiiciiiiccccs s 2-17
Converting from One Data Type to Another ..o, 2-17
Automatic Conversion of Textual Data TyPesccccovvviieiiiniininiiiccec 2-17
Automatic Conversion of Numeric Data TYPes.........cccoevuvueerirrrriiinrrircrcreceeeeeaes 2-17
OLAP DML OPerators.........cccouvuiiiiiiiiiiiiiiiiiiiiiniis ettt es e en 2-18

Arithmetic OPerators.........cocciiiiiiiiiiiiiii s 2-19

Comparison and Logical OpPerators ..o 2-19

AsSigNMent OPETatorcouiuiuiiiiiiiii s 2-20
OLAP DML EXPIESSIONSc.oviurviiiiiieiiieiieeiireeenetereteree e ese e ae st sae e ne e seene 2-20
About OLAP DML EXPIESSIONS........ccvviviiiiiiiiiiiieieiiiiieieeieisieieesie s 2-21
How the Data Type of an Expression is Determinedcococoeoiiiiiiiiiiiic 2-21
How the Dimensionality of an Expression is Determinedccccccoevviirvvnnnnnccne. 2-21
Determining the Dimensions of an EXpression............cccoceceiiccicccciene 2-22
How Dimension Status Affects the Number of Values in the Results of Expressions......

2-22
Using Workspace Objects in EXPressions. ... 2-23
How OLAP DML Data Objects Behave in EXpressionscccceeeiiiiniiiicicieiieinnennnn, 2-23
Syntax for Specifying an Object in an EXpression.........cccccooereeiniiccieeicicicecccciee 2-24
Considerations When Creating and Using Qualified Object Names........................ 2-25
Specifying Values of Dimensions and Composites in Expressions..........c.ccccceviviiiines 2-26
Specifying a Value of a Composite..........cooorrueieiiiiiciiiiicecc 2-27
Specifying a Value of a CONCAT Dimension........cccceeueueururirueerieennieeeieineeeeeeceeeeeenes 2-27
Using Related Dimensions in EXpressions............cccceeiieieiiiicieciniccccee 2-27
Using Variables and Relations in EXPressions ..o 2-28
Limiting a Dimension to a Single Value Without Changing Status...........c.cccecevuveeeacne. 2-28
Syntax of a Qualified Data Referencecc.cocoveviiiiciiiciiiciicccce, 2-29
Qualifying a Variable ..o 2-29
Replacing a Dimension in a Variable............ccccccccciiiiiiiiiicccceceeeeeees 2-30
Qualifying a Relationcccoceuieiiiriiiiiicicc e 2-31
Qualifying a Dimension...........occeueieiirieieiiiccie e e 2-31
Using Ampersand Substitution with QDRScccociiiiiiiiiiiiiccccccenen 2-31
Working with Empty Cells in EXPIressions ..ot 2-31
Specifying a Value of NA. ... 2-32
Controlling how NA values are treatedc.cccccccceeriiiiiiniirreeereeerreceaes 2-32
NUMETIC EXPIESSIONS......ovivitieiiiietctiietetcc ettt 2-32
Mixing Numeric Data Types........ccccooeiiiiiiiiiiiiii 2-32
Using Text Dimensions in Arithmetic EXpressions ... 2-33
Limitations of Floating Point Calculations...........c.ccoevieiiiiiniiininiicccc 2-33
Controlling Errors During Calculations.............ccccovviiiininininiininiiiiinnscnnes 2-33
Text EXPIOSSIONS.....ccvvivimiiiiiiiiiiiiicict s 2-34
Language of Text EXPressions ... 2-34
Working with DATETIME Values in Text EXpressions..........cccccccccvevvvninniiiinnnnenn, 2-34
Working With NTEXT Data.......cccoeiiiiiiiiiiiieiecceeeeceeeee e nenennens 2-34
Datetime and Interval EXPressions...........ccoceeeieiiiniiiiiiiiiiiecceeeeeee s 2-35
Datetime EXPIeSSIONSccceiviiiiiiiiiiiiiiiiiinic s 2-35
Interval EXPIESSIONScccccuiuiiiiiiiiiieiciciciciciceeeeee et 2-35
Datetime /Interval ATITNIMEOTIC ...ooovvviieiiiieeeeeeee et e e e e e reeeenns 2-36
Date-0nly EXPressions..........coiiiiiiiiiiicci s 2-37
Boolean EXPIeSSIONSc.cccuiiiiiiiiiiriiicicieicieieieceete ettt 2-38
Creating Boolean EXPIressions...........ccccceiiieieiniiiiiniiiniiiiic s 2-39
Comparing NA Values in Boolean EXpressions..........ccccoccvvvvniinininnnninnniinnnes 2-40
Controlling Errors When Comparing Numeric Data........c.cccccccoeeiiiiiiiiiciiccee. 2-40
Controlling Errors Due to Numerical Precision...........ccceeeeeiiieiniieeiieeennen, 2-40

Controlling Errors When Comparing Floating Point Numberscccccoevevnenn. 2-40

Controlling Errors When Comparing Different Numeric Data Types..................... 2-41
Comparing Dimension ValUues..........cccccciiiiiiiiiiiieeceeeeeeeeeeneeneeeneneeeenes 2-41
Comparing Datesc.oiriiiiiii s 2-42
Comparing Text Data ... 2-42

Comparing a Text Value to a Text Pattern.........cccccccocoeeciiiiiiiiciicceccceene 2-43

Comparing Text Literals to Relationsccccoiiiiiiii 2-43

Conditional EXPreSSIONScccicuriciiiiicieieiicice s 2-43
IF... THEN...ELSE eXPIeSSiOnccccceviiiiuiuiiiiniiiiniiiiiiiciiiicccsscessessss s 2-43
SWITCH EXPIESSIONSovvviiieiieiiieieieieieieteiese et 2-44

Substitution EXPressions..........cccuiiiiiiciiiiiicie e 2-45

3 Formulas, Models, Aggregations, and Allocations

Creating Calculation ODbjects ... 3-1
OLAP DML FOrmulas.........ccccocoiiiiniiiiiiiiiiiii s 3-2
OLAP DML Model ODbjects..........oooiiiiiiiiiiiiicicic s 3-3
What is an OLAP DML Model?cccoviiiiiiiiiiiieiicciiee s 3-3
Creating MOELSccciiiiiiice e 3-3
INeSHNE MOAELSovoviiiiiiiic s 3-4
Dimension Status and Model EQuUationscccccooviiiiiiinin, 3-4

Using Data from Past and Future Time Periodsccoiviiiiiiiiiiccccceenes 3-5
Handling NA Values in Modelsccccooviiiiiiiiiiiiiiiiceeas 3-5
Solving Simultaneous EQUAatioNns ... 3-6
Modeling for Multiple SCENATIOSc.ccueueuiuiuiueieiiiiicicieiciciceee e 3-6
CompPiling MOAEIScoouieiiiici 3-6
Resolving Names in EQUAtIONS ..ot 3-7

Code for Looping Over DIMEeNSIONScccccurueucueueiiieieieicieieiecieicteieieieneieeeeeieneneeeeseaesenenenenes 3-7
Evaluating Program Arguments............cccovvviiininiiininiiiis s 3-8
Dependencies Between EQUations...........ccccciiiiiiiiiiiiiiiiiiias 3-8
Obtaining Analysis RESULLScccciiiiiiiiiiicicccce s 3-10
Checking for Additional Problems..........ccccoviieiiiiiiiiniiiiiiicccees 3-10
RUNNING @ MOdEL......c.cociiiiiiiiiiiiiiiic s 3-10
Syntax for Running a Modelcccoeiiiiiiiniiiicnrrrrc s 3-11
Dimensions of Solution Variablesccccciiiiiiieeeeeeeeeeeeeeenenenenesenenenenens 3-11
Debugging a Modelcccccoiiiiiiiiiii s 3-12
OLAP DML Aggregation ODbjects ...t 3-12
What is an OLAP DML Aggregation? ... 3-13
Aggregating Data Using the OLAP DMLcccccccoiiiiinniiiiiiiinces 3-13
Compiling Aggregation SpecifiCationsc.cccccccuiuiiriciiininiiiirrecrrreree s 3-14
Executing the Aggregation ..o 3-14
Creating Custom AGEregatescccciiviiiiiiiiiiici s 3-15
OLAP DML Allocation ODbjects...........ccccocuiiiiiiiiiiiiiiiiiiiiciic e 3-15
Introduction to Allocating Data Using the OLAP DML.........ccccccooeiviiiiiiniiicicn, 3-16
Features of Allocation in Oracle OLAP.........cccoviiiniiiinneecrecee s 3-16
ALlOCAtING DIAta.....eviiiiiiicieiciccceec et 3-17
Handling NA Values When Allocating Data..........cccooiiiiiiiiii, 3-17

vi

OLAP DML Programs

Programs Provided With the OLAP DML ..o 4-1
Creating OLAP DML Programs............ccococciiiiiiiiiiiniiiiiiecieiccsss s ssssssenes 4-2
Specifying Program CONtents ..o 4-3
Creating User-Defined FUNCHONSc..couoiiiiiiiic 4-3
Passing ATGUIMENTSccoviiiiiiiiiii e 4-4
Using Multiple Arguments...........cooiiieieiiiiiciicie s 4-4
Handling Arguments Without Converting Values to a Specific Data Type...................... 4-4
Passing Arguments as Text with Ampersand Substitution...........c.cccocovvvvnrnnnnincnnenee. 4-4
Program Flow-0f-COntrol ... 4-5
Preserving the Environment Settings...........ccooovoiiiiiiiiiiic 4-6
Changing the Program Environment...........ccccocooovvviinnnnnnnnrnsnnreecses e 4-6

Ways to Save and Restore ENvironments...........c.ccoovirieiiiiciciiiciceccec 4-7

Saving the Status of a Dimension or the Value of an Option ... 4-7

Saving Several Values at OnCe........c.cccceuiuiiiiiiiiriiiiiiieeceeeeeee e 4-7

Using Level MArKerscoviiiiiiiicice e 4-8

Using CONTEXT to Save Several Values at Onceccccoovoirieiiiiciciniiceecce 4-8
HandINg EITOTS......c.couiiiiiiiiiiiicereeeere ettt 4-8
Trapping an EITOT ..ot s 4-8
Passing an Error to a Calling Program ..o 4-9
Passing an Error: Method One...........cooviiiiiiiiiine e 4-9

Passing an Error: Method TWo ... 4-9
Suppressing Error MSSAgesccccvueieiiieieiiiiiiieicieeeee s 4-10
Creating Your OwWn Error MeSSages ..o 4-10
Handling Errors in Nested Programs...........ccccoiiriiioiiiicieiniiceci e 4-10
Handling Errors While Saving the Session Environment.............cccoocoeoiniiiiiiincnines 4-11
Compiling Programs............cccooiiiiiiiiiiiniiii s 4-11
Finding Out If a Program Has Been Compiledccoooeiiiiiiniiniicecc 4-11
Programming Methods That Prevent Compilationccccoooiriiiiiiiiiiiccccee, 4-12
Testing and Debugging Programs.............ccccccoooiviiiiiiiiniiiic s 4-12
Generating Diagnostic MeSSages...........cccueiiiurieiiiicieicece e 4-12
Identifying Bad Lines of Code..........ccccoiiimiiiiiiiiiiiiiiiee s 4-12
Sending Output to a Debugging File ... 4-12
Executing Programs. ...t 4-13
Common Types of OLAP DML Programsccccccoeiviiiiiiiiiiiicciccceeeisseeeneeenenenas 4-13
Startup PTOGTAMScoviviiiiiiiiiiciccc s 4-14
Permission PrOgIams...........cciiiiiiiiiiiieicectc ettt 4-14
AUTOGO Programs and ONATTACH Programsccccccceevieieiciiiiicniiceeieeennens 4-15

Data Import and EXport Programs..........c.cccccccceiiiiieiiiceceeeeieeceeeeeeeeeeeeeseeeeeeeseees 4-15
Importing Data to and Exporting Data from Relational Tables............cccccccceveveiininnnnnn. 4-15
Importing Data From Relational Tables to Workspace Objects.............cccoevuereunnnee. 4-15

Exporting Data from OLAP DML Objects to Relational Tablesc.ccccccuvurenenncee. 4-16

Importing Data to and Exporting Data from Flat Filescccccoovviiiiiiiinniiinnnns 4-16
Importing Data to and Exporting Data from Spreadsheets..............ccccooeuriiiininininnnnns 4-16
Trigger PrOZGIAIMScocuiiiiiiiiiicc s 4-16
Creating an Object Trigger Program..........ccccoovviiiniiininiiiiiccccccs 4-17
Characteristics of Object Trigger Programscccocoeveiieininiieininiccceece s 4-17

vii

viii

Aggregation, Allocation, and Modeling Programs...............ccococeieiiiniiiiiineeicccce, 4-20

Forecasting Programisoooeuiuiiiiiiiiiiiiiitciccitttt s 4-20
Programs to Export and Import Workspace Objectsccccovuveirrvniiiinnncicrccceeee 4-21
User-Written Programs that OLAP Looks FOr...........cccocoooiiiiiiiiicicccces 4-21
User-Written Programs Looked For by Oracle OLAPcccccocoviiiniinniii, 4-22
ONATTACH ... 4-23
ONDETACH ... 4-24
PERMIT _READcocoiiiiiiiiiiiiiiiic s 4-25
PERMIT_WRITE.......citiiiitieiieieeeeeee s 4-26
TRIGGER_AFTER_UPDATEccceiiiiiiiiiiiiciece s 4-27
TRIGGER_AW ..ottt 4-28
TRIGGER_BEFORE_UPDATEccootitiiieeeeeete s 4-29
TRIGGER_DEFINEcocooiiiiiiiiiiiie s 4-31

OLAP DML Properties

About OLAP DML Properties..........cccocciiiiiiiiiiiiiiiiiccicce e 5-1
System Properties: Alphabetical LiStingcccocooiiiiiiiii 5-1
System Properties by Category ..o 5-2
BAGGMARP ... 5-3
SAGGREGATE_FORCECALCQcocooviiiiiiiiiiiniiccs s 5-6
SAGGREGATE_FORCEORDER.ccocoiiiiiiiiiic 5-7
SAGGREGATE_FROMocooviiiiiiiiiiiiciic s 5-8
SAGGREGATE_FROMVAR.......cccccoiiiiiiiiiiiiiii s 5-9
SALLOCMARP ...ttt 5-10
BCOUNTVAR ...t 5-11
SDEFAULT_LANGUAGE.......ccooiiiiiiiiiiiiiiici s 5-12
SGID_DEPTH..........ocoriiii s 5-18
BGID _LIST ...t 5-19
BGID_TYPE ..o s 5-20
SLOOP_AGGMARP ...t 5-21
SLOOP_DENSE ...ttt 5-22
BLOOP_VAR ...t 5-23
SNATRIGGER ...t 5-24
$STORETRIGGERVALccooiiiiiiiiiiiiiicc s 5-27
BVARCACHE ... s 5-28

OLAP DML Options

ADOUL OPLIONS ... 6-1
Options: Alphabetical LiSting............cccccocoiiiiiiiiiiiiii s 6-1
OPptONS by CategOrycoiiiiiiiiiiiiiicc s 6-4
ALLOCERRLOGFORMALTcocociiiiiiiiiiiiiiininirirri s 6-8
ALLOCERRLOGHEADERcccoooiiiiiiiiiiic s 6-9
AWWALITTIMEccoooiiiiiiiiic s 6-10
BADLINE ... 6-11
BMARGIN ..o 6-13
CALENDARWEEKoiiiiiiiiiiicts sttt sa sttt a sttt nae 6-14
COLWIDTH......oooiiiiiiiii e 6-16

COMMAS ..ttt s s h e st s sttt et eae bt s besae b e benens 6-17

COMPILEMESSAGE..........coooiiiiieeeetetee ettt s sttt et eae et st sae b b snens 6-18
COMPILEWARN ..ottt st st ea e 6-19
DATEFORMAT ...ttt ettt s st sttt et 6-20
DATEORDERccoooiiiiitiietetetetet sttt ettt sttt s st b sttt ettt st sb b besaeaen 6-24
DAYABBRLEN ...ttt 6-26
DAYNAMES ...ttt b e s ettt ettt 6-28
DECIMALCHAR ..ottt sttt ettt sttt sa e st b e sa et ettt et et sae bt b besaenaen 6-29
DECIMALOVERFLOW ..ottt s 6-30
DECIMALS ...ttt ettt ettt s sb e sae s 6-31
DEFAULTAWSEGSIZEccoooiiiiiiinteestetetete ettt ettt sttt ettt st ss b sae s 6-33
DIVIDEBYZERO ..ottt st sttt sa e 6-34
DSECONDS ...ttt s sttt et a e 6-35
ECHOPROMPT ...ttt sttt ettt ettt st sae st st sa et ettt eaeenesuesaeesebesens 6-36
EIFBYTES ...ttt sttt s sa e 6-37
EIFEXTENSIONPATH........ccoiiiiiiiiieeteteee ettt ettt s 6-38
EIFINADMES ...ttt ettt ettt st bbbttt et eae bt suesaeebebenens 6-39
EIFSHORTINAMES ..ottt s 6-40
EIFTYPES ...ttt e bbbttt ene b sae b e e aens 6-41
EIFUPDBYTES ...ttt ettt ettt st s st sttt eae et suesae s e snens 6-42
EIFVERSION ..ottt st s 6-43
ERRINAMES ...ttt s sttt et bbb aens 6-44
ERRORNAME. ...ttt ettt st s st sttt et et ebe st suesaesnesbesaeas 6-45
ERRORTEXT ..ottt st sttt s sa e 6-46
ESCAPEBASE ...ttt ettt 6-47
EXPTRAQCE.......oo ettt ettt ettt st b bt s et s et et eneenesbesueenebensens 6-48
INF_STOP_ON_ERROR.......ccoiiiiiiiiiiiiiite e st 6-49
LCOLWIDTHcoooiiiiiiiiiiieeee ettt s sttt et et sae b aens 6-50
LIKECASE ...ttt ettt ettt st e s s besa e st ettt e bt enesuesueenebesens 6-52
LIKEESCAPE ...ttt s sa e 6-53
LIKENL. ...ttt s bbbttt eae et s b sae b beaens 6-56
LIMIT.SORTRELooiiiiiiiiititetetet ettt ettt ettt st st b s e s st sttt et et ebe bt saesae st e nennens 6-58
LIMITSTRICT ..ot sttt s sa e 6-59
LINENUM ..ottt s s sttt et ebeeae b sae b benens 6-62
LINESLEFT ...ttt ettt sttt ettt ettt st b e s bbb se ettt et ebeebesbesuees e bensens 6-64
LOCK_LANGUAGE_DIMS.......ccoiiiiiiiiiiictcnrce ettt s sa e 6-66
LSIZE ...t ettt s sa e bbb 6-68
IMAXFETCH......cooitiiiiiieectetete ettt ettt ettt st s st et ettt ene e st bt saess e b benaennen 6-70
MODDAMEP ..ottt 6-71
MODERROR ...ttt sttt et et sae s 6-74
MODGAMMA ...ttt sttt ettt et b e bt bt sttt sa et et et et eneebee st saess e b e besaennen 6-76
MODINPUTORDERc.ooiiiiiiiic ettt 6-79
MODMAXITERS ..ottt s sttt s 6-81
MODOVERFLOW ..ottt sttt ettt ettt sae st et sa ettt et ese st et sae st besbesaennen 6-82
MODSIMULTYPE. ...ttt 6-84
MODTOLERANCE ...ttt s s sttt ettt 6-87
MODTRACQCE ..ottt sttt ettt ettt b e sae st et e sa et et et emeeneesee bt ssess e b e besaennen 6-90

MONTHABBRLEN ..ottt st ettt nes 6-93

MONTHNADMES ...ttt ettt ettt e bbb st ettt ettt eue bt ebesbesaenen 6-95
MULTIPATHHIERc.ccoiiiiiiiiiiiicee ettt 6-97
INASKIP ...ttt e s bbb s b ettt ene s nesaeas 6-100
INASKIP2.....ooiiiiieeeetetet ettt sttt ettt ettt et st sa e b b s st sae e et ene e st euteneenessesaeas 6-103
INASPELL ...ttt s st 6-107
NLS_CALENDAR ...ttt s s s sttt et et saea 6-109
NLS_CURRENQ Y ..ottt ettt ettt et st sae s saesa et s s e ese et enteneenesnesaeas 6-110
NLS_DATE _FORMATccoooiiiiiiiitetcetetet et 6-111
NLS_DATE _LANGUAGE ..ottt 6-112
NLS_DUAL_CURRENQ Yoooiititiiiiintintiestestetetetete ettt ettt saesse st s s eseesseseeneeseenessesaens 6-113
NLS_ISO_CURRENC Yoiiiiiiiiiiiiiniicettet et 6-114
INLS_LANG ...ttt et s s bbbt eaeene b e 6-115
NLS_LANGUAGE ...ttt et s st s s sttt ese e e 6-116
NLS_NUMERIC_CHARACTERSccooitiiiiiiiiiiicicic sttt 6-117
INLS_SORT ...ttt et s s s s st eaeenesnesaeas 6-118
NLS_TERRITORY ..ottt ettt st st b s sa e saese et ene s s saeas 6-119
INOSPELL ..ottt saeas 6-120
OKFORLIMIT ..ottt sttt ettt 6-121
OKNULLSTATUS ...ttt sttt ettt sttt st b st ae ettt sae b sue e 6-122
OUTFILEUNIT ...ttt e 6-123
PAGENUM ..ottt st ettt s en e 6-124
PAGEPRG ...ttt sttt ettt bbb bttt eb e e 6-126
PAGESIZE ...t e 6-129
PAGIING ..o ettt sttt et n e e 6-131
PARENSttt sttt ettt st b e b b st a s ettt ene b b eae 6-133
PERMITERRORoooiiiiiiiiii et e 6-135
POUTFILEUNIT ..ottt sttt ettt s 6-137
PRGTRACE ...ttt sttt ettt st s st a et ettt eae b b 6-139
RANDOM.SEED.1 and RANDOM.SEED.2.........ccccccoiiiiiiniineteeeeeeeeeeeee e 6-141
RECURSIVE ...ttt sttt 6-144
ROLE ...ttt ettt ettt sttt et ettt ettt s bbb e a et et et e e et et et ebeene b nee 6-145
ROOTOEFNEGATIVE ...ttt 6-146
SECONDS ...t b ettt b e 6-147
SESSCACHE ...ttt sttt ettt ettt bbb bt ettt et et ebe b e b nae 6-148
SESSION_NLS_LANGUAGE ..ot e 6-150
SORTCOMPOSITE.......oooiiiiiiiieeee sttt 6-152
SPARSEINDEXc.ooiiiitiiitetctetetete ettt sttt et ettt st b b s st ettt sse b b e 6-154
SOLBLOCKMAX ..ottt st sn e e 6-155
SQLCODE ...ttt ettt s 6-156
SOLERRM ..ottt ettt sttt sttt et et ettt ettt bbb bt ettt et et et eneene b e 6-157
SOLMESSAGES ... e 6-158
STATIC_SESSION_LANGUAGE........ccoooiiiiiitcttctccee et 6-159
THIS_ AW ..ottt ettt sttt ettt ettt et st bt b e s b st et e bt eneentententeneesesnesaeas 6-161
THOUSANDSCHAR ..ot 6-162
TMARGIN ..ottt ettt b et e ese e saeas 6-163

TRACEFILEUNIT ..ottt ettt ettt ettt sa s s st et sae e e ese et eneeneebessesaeas 6-164

TRIGGERMAXDEPTHoocoiiiiiiiieeeceet ettt s 6-165

TRIGGERSTOREOK ...ttt ettt st sa et a sttt sae s 6-167
USERID ...t st 6-169
USETRIGGERS ...ttt s st s s 6-170
VARCACHEttt sttt ettt sttt sae et b st e e ese et sae s st sessesaens 6-171
WEEKDAYSNEWYEAR ...t 6-172
WRAPERRORSttt ettt s 6-173
YESSPELL ...ttt sttt ettt et s e bbbttt et et sae 6-174
YRABSTART ...ttt s s 6-175
ZEROROW ..ottt ettt et s s a ettt s sae s 6-176
ZSPELL ...ttt st sttt et e et b e s b st e ettt st sae s 6-178

OLAP DML Functions: A - K

About OLAP DML FUNCHONScoooviiiiiiiiiiiiii s 7-1
Functions: Alphabetical LiStingcccccoviiiiiiiiiiiiies 7-1
Functions by CateGory ..o 7-7
ABS ..o s 7-14
ADD_MONTHS ...t 7-15
AGGCOUNT ...ttt 7-16
AGGMAPINTFO ...ttt 7-20
AGGREGATE fUNCHION ...t s 7-24
AGGREGATION ..ottt 7-32
AGGROPS ... s 7-34
ALLOGCOPS ...t 7-35
ANTILOG ..ot 7-36
ANTILOGIO ..ot 7-37
ANY oo 7-38
ARCCOS ... 7-40
ARGCSIN ..ot s 7-41
ARCTAN ..ot 7-42
ARCTAN ..ot 7-43
ARG s 7-44
ARGCOUNT ..o 7-46
ARGER ..ottt s 7-47
ARGS ..o 7-49
ASCII ..o 7-51
AVERAGE ... s 7-52
AW FUNCHOM. ...ttt et 7-54
BACK ... 7-57
BASEDIM ...ttt ettt 7-58
BASEVAL ..o 7-60
BEGINDATE ..ottt 7-62
BIN_TO_NUDM ..ottt sttt sttt sttt ettt ettt ettt seae 7-63
BITAND ..o benne 7-64
BLANKSTRIPcoooiiiiiiiicc s 7-65
CALLTYPE ..ottt sttt ettt bttt be sttt 7-66
CATEGORIZE ..o 7-67

xi

Xii

CHANGEBYTES.........oo ittt ettt et et ettt et e ts e teeseesbeesaesbeesaesbeessasssessesssessaessenseessensennes 7-70
CHANGECHARS . ..ottt ettt et et ste st b esbe s essesbestast et assasseeseesesessassessessessesseseaseaseasessessens 7-71
CHANGEDRELATIONS ...ttt st ertesteieeeestesssestesseesseesaesseesaesseessasssessasssessenssesesseesenses 7-72
CHANGEDVALUES ...ttt ettt et ste et e et e sbeesaesbeesaesbeessasssessesrsessaessensesssenseenes 7-73
CHARLIST ...ttt ettt e et e et e et e be st essesbessessesseseeseesaesasseesesessessessessessassasaaseaseasensessensens 7-74
CHARTOROWIDootiieeeiettete sttt ette et stestae e et e b e sss e sesseessessaesseessesseessasssessasssassasssensesseensenses 7-75
CHGDIMS ...ttt ettt et e vt e ae s te et e s ba e beesa e b e etsesseese e beesaesseessesbeessassessesssessaassensesseensenses 7-76
CHR ...ttt ettt e et e st et e st e st etaesa e s e et eebessessessessassassassessase et et e se s et essessassesbessasseseaseasensensessessens 7-78
COALESCE........o oottt ettt et e st e e ae st et e s st e b e e sa e b eessessaeseenseesaesseessesseessasssessasssansanssensenssensenses 7-79
COLVAL ...ttt ettt et et e b e e te e b e e ta e st e e te e b e essesbeeseebeesaesseesaesseessasseessesssensaessensenseensenses 7-80
CONTEXT fUNCHIONoovviiieiieieiieieeteeteeteete st stesee e st et e sstete et esseestesseeseesseessesseensesseensenssensesssensennes 7-81
CONVERT ...ttt ettt et e e et eae s ae et e st e e baesa e b e essesseeseesseesaesseesaesseessassensassaessanssensenseensenses 7-82
CORRELATIONooiiitiieeet ettt et eveete st etesta e veetaesbeessasseessesseesaesseessesssessassessasssessasssensesseensenses 7-90
COS .ttt ettt et ettt e sttt et e b e b e s b e s b e st e st e st e st e Rt ek e b e R e s e s e be st ensenbesteseeseeseeseeteereerenrens 7-93
COSH ...ttt ettt et este et e et e e b e s et e b e s st e s baesaesseessasseaseeseesseaseeseesseessasseessassaessanssensenssensenses 7-94
COUNIT ...ttt ettt et ste et e s te e be e aeebeetaesbaasaesseessessaessebeesaesseesaesteessassessasssensaessensesseensenses 7-95
CUMSUDM ...ttt et et e et et e e et e st e et e b e sbessassassestessassaseas st e se et e sessessassessessassasaaseasessensessensens 7-97
CURRENT_DATE ...ttt ettt eeste et e ste s ae e e e et e sssessasssassasssasseessesseensessesssesssessesseessessenns 7-100
CURRENT_TIMESTAMP.........oootittetieeeeeeeste ettt ettt v e be et e s e avasseeaesvaessesseessesssessesssessanseans 7-101
DDAYOF ...ttt ettt et et et e st et e te et e e s e s besbessesbessassassassastasaas et ees et essessessessesseseessessaseaseasensenes 7-102
DBTIMEZONIE ..ottt ettt e et e e et e ste s e e s se et e sbeessesseessasseessassesseassassenssensesssessenses 7-103
DIDOF ...ttt ettt ettt et e et et e et b e be e re e e te e e e be et e abeerb et e e beete e b e ta et e ereenbeesaenbeereenreenes 7-104
DECODE ...ttt ettt et e e et e et e e te st essesbessassassessestasaasaasesseesessessessessassestessassaseaseasensenes 7-105
DEPRDECL........ooiiioiiieeetet ettt ettt et e st e et e e st e sseesaesseestessaessesseessassaassassasseessassensaessesssessensees 7-108
DEPRDECLSW ...ttt ettt et sve st be et e sbeesbesbsesbasteessassesseessassesssessesrsansenneas 7-112
DEPRSL ...ttt ettt ettt et e te et e et e e b e st essesbessessassessestasaes et e et et ensessessenbessesteseesaaseaseasensenes 7-117
DEPRSOYD ...ttt ettt e e st et e e st e e st e ste s st e s se et e ssaessesseessessaassanssesseassassanssensesssessenses 7-120
ENDDATE. ...ttt ettt e ste et ste s e e te e b e s taesb e beessasseessasseessesseessesseessesseensesssessessnans 7-124
ENDOF ...ttt ettt et et ettt et ete et e e s e e bessesbessessassassassastasaasaasesseasensessessensessessessessaseaseasensenes 7-125
EVERY ...ttt sttt ettt et e e et e s seesae s st e st e e saesseasse s e essessaast e seessanseesteeseenseaseessesseensenseensenseans 7-126
EXISTS ..ottt ettt ettt e eebe e e e et e e ta e beeabesbaessebeesseeseeasaeseeasesreensesseensesteenbeeteensenreans 7-128
EXP ..ottt ettt ettt ettt et e et e e b e b e s ea s esbes s e s b en b e Rt e st e Rttt e Rt et e et e eReeRetenseeseesebessensensesean 7-129
EVERSION ...ttt ettt e e et e et e ste st e stessaesseesaassaessessaassasseassanseensessesnsesseessesseessenssessensenns 7-130
EXTBYTES ...ttt ettt ettt et e e be e b e s be e st e beesbeeteeasasseenseetaeasesseensesseensesssensesseans 7-131
EXTICHARS ...ttt ettt et et e e et e et e s be st essessessessassessastasaasaaseeseesessassessensessessaseessaseaseasensenes 7-132
EXTICOLS ...ttt ettt ettt et e st e st e e e e s seesae s b e essesbaessesseessanseessesseensesseessesssessenssessanseans 7-133
EXTLINES ...ttt ettt et te et et e e e e be et e s baesbebeesbeeteeasasseensesseeasesseensesseensesssensesseans 7-135
EXTRACT ...ttt ettt et et et et et e e et e esesse st essessassessassessastasaasaasesssesensassassessessessessessaseaseasensenes 7-136
FCOPEN ...ttt ettt ettt e st e e st e e et et e et s e seeseesseasseaseessesssesseseessasseassassesseassassenssensesseassenses 7-138
FCQUERY ...ttt ettt et eete et eete et e te et et e ets e teeseeeseeaseeseessesbsessesssenbesseesbenssenseessanseessensesnsenseeneas 7-139
FILEERRORoootiiititeieietetetett et et et ste st et e st et e e et essessestaseasessessessessassassessensessassasseseassesansensensens 7-144
FILEGET ...ttt ettt ettt ettt e et e e e st e sae e st e e seesaesseessesseessasseassassesseassessenseensenseensenseas 7-147
FILEINEXT ...ttt ettt ettt et ettt ett e be e st e sbeeaseebeesaesbeesbesssenbeeseesseessenteessanseessensesrsenseensas 7-149
FILEOPENooiiitiiiitetetetetet ettt et et ete et et et e s es e s estesbessestaseaseasessessessessassessensessassassessassesensensensens 7-151
FILEQUERY ..ottt ettete et ste st et e et e st e e eseesseesaesseesaessaessasssassasseassanssessanssassenssensesssensensees 7-153
FILTERLIINESooiiiieeeeecteete ettt ettt ettt ettt et eae e eteeveebe e b e beesaesbeessebeessanbaessesssensesseeneas 7-156

FINDBYTES ...ttt s s sttt s sa s 7-158

FINDCHARS ...ttt ettt ettt ettt te et e s beesaesbeesbesseesbesseesbesssesseessassesseensesrsessennnas 7-160
FINDLINES ...ttt ettt ettt st te st e st et e s et e st e st e st eseesaesessessessassassessessassassassaseasessensensensens 7-162
FINTSCHED. ...ttt ettt ettt et e te st e s se et e sbeesbessaessasseessanseessasssansesseensesssessenses 7-163
FLOOR ...ttt ettt ettt e s te et e b et e beess e teeaseeseesbeesaesbeessesbeessesbeessesseessansenssensesrsessensnas 7-166
FPIMTSCHEDccoooiiiiieieieteetetette ettt sttt e st e sttt est et e st estesaesessessessessassensessessassassaseasensensensensens 7-167
FROM_TZ ...ttt ettt et et te sttt e e te s st e s e e saesseesaesseessesseessasssessenseassaessassesseensesssansenneas 7-170
GEET ..ottt et ettt et et e e te e b e e e heeta et et b e ba et b e te e et e ebeeateebeenbeereenbesbeenteereensenreans 7-171
GREATEST ...ttt ettt ettt e st ettt e besbesses s esae st e st eseasessesseesesbassessessessestaseessaseasansansenes 7-175
GROUPINGID fUNCHON ..ottt tesae et e s eesesseesaesseessesseessesseessasssessessenssens 7-176
GROWRATEttt ettt et ettt e e e e s be e b et e e s b e beess e seessasseessesseensesssessesssensesssessasseans 7-177
HIERCHECK ..ottt stes e esteste e se st e st e st esteseasassessessassessassessessassassessesesssesensensessens 7-179
HIERHEIGHT fUNCHON ..ottt et steete e ae st esbe e e s e esaessessaessessnessenneas 7-182
INFO ..ottt ettt ettt et e b e et e s b e ete e beesaesbeessessaessasbaessasseessasseessesseensesseensesssensesssersansnans 7-186

INFO (FORECAST)ioteteieieieteetiteteietete st stette e stestesbessessestesaesaesseseesessassessassessessassessessesensenns 7-187

IINFO (IMODEL) ..oetietieieetesteetesieeeesteete e s testessse e sstesseessassasssessesssasssessesseessesssessessesssensssssensesnes 7-190

INFO (PARSE) ...ttt ettt sttt sttt et et e at e bt b e ebe st et et et e st enteneeseebeebenee 7-197

INFO (REGRESS)oovtiteieiiiieiiristeieteietete st tetas e stestestessessessesaesaessessesesssssessessessessessessessesensenes 7-199
INTTICARP ...ttt ettt ettt st e et et e e ae s b e e saes s e e s s e baessasseessassaessesseessesseessesseessesseessanseans 7-201
INLIST ...ttt ettt e e e be e st e e beesaesbeesbassaessesssassassensaessanseesaenseessessesssensesssessansnans 7-202
INSBYTES ...ttt ettt ettt e ettt e b e bes b esbessesaessesaaseaseasesseesessassessessesseseaseessaseasensensenes 7-203
INSCHARS. ...ttt ettt et e e e st e s et et e e sae s b e esaassaessesseessasseessasseessessaessesseessesseessesseessenseans 7-204
INSCOLS ...ttt ettt ettt e s te e te e be e e e s beesaesbaessesbaessasseessasseessesseensesseessesssensesseessansnans 7-205
INSLINES ..ottt ettt ettt ettt e e te et et e et e b esbessessesbesseseaseasaasesseasessassessessessessaseessassassnsensenes 7-207
INSTAT ...ttt ettt et e et e e et e et e et e sae e st e b e e saesseessessaessessaassansaessanseassessaensesseessesseessesseassanseans 7-208
INSTR fUNCHONS.oooviiiiiiiiecieteette ettt et e e b et e e rs e te e b e sseessesseensesseessesseessesssessensnens 7-211
INTPART ...ttt ettt ettt ettt e te et te et et e e s essesbessessessessessesaaseasesseasesassessessessensaseesaeseassnsensenes 7-213
TRR ..ottt ettt ettt et et et etaete et e eteebe e s e b e be b essesbesbessessessesbeseeseeteebeeb e b e b e b esbesbestersersereereetarenns 7-214
ISDIATE ... oottt ettt et et e et be e e e s beesbesbaesbesbeess e teessasseessesseensesseessesssensesssessansnans 7-216
ISEIMPTY ...ttt ettt ettt et ettt et e e teete st e b e b e b essesbessessessessastaseasaasesseaseasasessessessensessessassassasansenes 7-217
ISSESSION ...ttt ettt et et et e st e st e besaesseesbessaessesseessansaessasssessesseessesseessesseessesssersensenns 7-218
ISVALUE ...ttt ettt et et e ettt et e e be et e b e e sb e beess e beeabasssesseeseensesssensesssensesssensenseens 7-219
JOINBYTES ..ottt ettt st et et e st et et e st estesaesaasesseasessa s essessessessessessaseassaseasessensenss 7-220
JOINCHARS ...ttt ettt ettt ettt st et et et s e st esesees e st e sensesentesensesesesesesenseneasenensanes 7-221
JOIINCOLS ...ttt ettt ettt sttt et et et e s e e st esteseeseese st ees e s e sessensensensensensantenseneeneeseasensas 7-223
JOINLINESoototiteieieieietetette et e sttt e st et et e te st et se st aseesaesaasessessessessessessessessassessassassasensensensenss 7-225
| 2 TR SRRSRSRRP 7-226

LAG et s s b s a e s a e s sttt ettt saea 8-2
LAGABSPCT ...ttt ettt ettt ettt et st bbb st et et e e et emeemeentebeebesbesaens 8-5
LAGDIEF ..o 8-8
LAGPCT ...ttt s s sttt ettt et sae bbb 8-10
LARGEST ...ttt ettt sttt ettt ettt sttt e s bt ettt et et ebeebeeuesaeeb e bensens 8-12
LAST DAY ... s st a e 8-14
LEAD ..ot ettt s sa e b a e 8-15
LEAST ..ottt ettt sttt ettt ettt s b bt s a e s a et ettt et et eb e bt e bt sa et beben 8-18

xiii

Xiv

LENGTH FUNCHONS ...ttt e s et e s et e s eaae s s sateessntaessranessnaessneesennnees 8-19

LIMIT fUNCHON ..ottt et ettt et e te et e e te e st e esaesbeesaesbeessesssensasssessaessensesssensenses 8-20
LIMITMAPINFO........oooiiiotiiteieieietetetetete ettt ste st et essessestessessasessassassessassessessassessessessessaseasessensessessens 8-24
LININVL oottt ettt ettt et e et e et e s te e b e st e e st e e s e e s e es s esseeseeseesseaseesaesseessasseessasssansanssensenssensenses 8-25
LOCALTIMESTAMP ...ttt ettt et ettt eete e st e esaesbeesaesbeessasssessesssessaessensesssenseenes 8-26
| IO L@ T 4 ot o I SRS 8-27
| 50 L1 1 RS TR 8-28
LOW ASE ...ttt ettt et e st e st e e ta et e e ta et e ess e beeseasbeesaeeseessesseessasssessesssessaessentesssensenses 8-29
LPAD ..ottt ettt et es et e st et e et e et e et e b e eb e s b e s b e st e st e st e st e Rt et e s e R e s e b e be b essenbestereesteseaseeseereereerens 8-30
LTRIM ...ttt ettt et et et e st e et e et e e sbe s et e b e ssaessaeseessasssassaeseaseessenseesaesseessasssessasssessanssensesseensenses 8-31
MAKEDATEo ottt ettt ettt e et e e st e e ae e beebeesaeesaesbeessessasssensaessensaessensesssenseeses 8-32
IMLAX ettt ettt et ettt ettt ettt e et e et et e b b e s s e s b e st e st e st e st e Rt et e et e e ReeR e s e s e b et esbestentestestestentesees e serensen 8-34
IMAXBYTES ...ttt ettt te st e e sttt e et e et e st e esseeseessesseesaeeseesseessassasssessanssessanssensesssensenses 8-35
IMAXCHARS ...ttt ettt e e te e b e st e e b e ete e st e eaeebeereasaeessesbeessessasssessasssenseessensesssenseenes 8-36
IMEEDIAN ...ttt ettt ettt e et eteete et e s e b e b essesbessessessessaseaseasaasesse et e sassassessessessassessassassasansensensensen 8-37
IMIIN oottt ettt et e et e et e s te et e st e e s b e s be e st e e b e es s e s e e st e et e asseeseesseeseasaeestesseeseenseessensaessensaessenteesaenseenes 8-39
IMIIMIOIF ...ttt ettt ettt e e st e et e et e e st et e esb e et e esseeseesseeseasaeessesseessessasssessasssensaessensenssensenses 8-40
IMIODIE.......o oottt sttt ettt et eteeteete et e s e b e b e s esbessessessesseseeseaseasease et e sessassessessessassessessassasansansensensan 8-41
1LY (@ 5 1 6) 1@ LTSRS 8-43
MONTHS_BETWEEN.........ccoiiiiiiee ettt ettt ettt e aesveesaesaaesaesbs e basssessasssensaessensesssensenses 8-44
MOVINGAVERAGE ..ottt ettt ettt ae st tessassessessessassessessassessassessessassasessensessensen 8-45
IMOVINGIMAX ..ottt et et e e st et e s te et e st e e s e eseesseeseessesseassesssassesssassasssessanssensaessensesssensenses 8-48
MOVINGMIN ..ottt ettt e e et e e e e b e e teesseeseeseeseassesssesseessassasssessasssensaessensesssensenses 8-50
MOVINGTOTAL ...ttt ettt e et b e ae st eseesessesse st essassassessessessassessassassassssessensenses 8-52
IN A ettt ettt et e et e e et e et e st et e b e e b et e et et e es b e ta et e et e entease e teereenaeeR e e beeRtes s e st enseessenseessenreesaenseanes 8-54
INAFILL ...ttt ettt ettt et e st e et e s te et e e beesb e seesseeseasseessesseeseasseessasseessassasssansasssensaessansesssensenses 8-55
INAFLAG ..ottt ettt ettt e teste et et e e b et e s b e st e st essessesteseasaesessees e sassassessessessassessassassasansansensensan 8-56
INEW_TIME ...ttt sttt et s bt et e s e s e st e e st e ese e s e sseesaeessessesssassasssessasssensaessensesssensenses 8-57
INEXT_DAY ..ottt ettt ettt et s e et e s te et et e e sbeeteesseeseesseeseasseessesseessessasssensaessansaessensesssensenses 8-59
INLSSORTooiiieiiieetetetetet et et e et et eteesessesse s essessessessessessastaseasassassessesassassassassessassessessassasensassensensen 8-60
INONE ...ttt ettt e ettt e st e s ae s be e s e et e e s b e s e e st e et e esseaseansesseasseassessesssessanssassanssensaessensenssensenses 8-61
INORMAL ...ttt ettt ettt et et e e e e bt eteste e beeteesbeesaesseeseesseessanseessessesssesseessensaessenseessenseessenseessenseenes 8-63
INPV ettt ettt ettt ettt et e e be e s e b e s b e s essesbessesses b et s e st et e et e e R e e R e e s e s e b et er b e st entest et eestene et ees e s e sensan 8-64
INULLIF ...ttt ettt st et e s te et e s e et e st e e st e s e ess e st e essesseessesseasseaseassesssassanssensanssassanssensesssensenses 8-66
INUMBYTES.......ooitieiiteeeee ettt ettt ettt ete et e e te e b e ebeeaseeasenseereesbeessesbeessensasssensesssensaessenseessenseenes 8-67
INUMOECHARS ..ottt ettt ettt ettt e et s e b e s s essessesse st aseaseasesse st e sassassessessessassessassassasensarsesensen 8-68
INUMLINES ...ttt st te st e e st et e st e e s e et e essesseessesseesaeassessesssassanssessasssansaessensesssensenses 8-69
NUMTODSINTERVALooootietieete ettt ettt ettt et et e e eeaeeveeteessesseessesbessseasesssesseessenseesseseenes 8-70
NUMTOYMINTERVALoooiiiiieteteeetiet ettt saeae st sessessessessessassessessessessassessessessasessassensenses 8-71
INV L ettt e et e ettt e st e e s b e s be e s e et e e s b e s e e st e et e esseaseesseaseesaeeseesseeseesbaessensaestensaestenteereensennes 8-72
INV L2 ottt ettt et et e e te et e s be et e ebeeabeebeesseebeesseeseenseebeeaseeasenbeebsenbeessenbeessenseeseenteereenreenes 8-73
O B oottt ettt et et b b e b e s b e s b e st e st e st et e e Rt e s e s e s e s e b e besbensenbessententententesteseetearens 8-74
OBJLIST ...ttt ettt ettt h e sttt et et e bt e bt e bt s bt b e b ettt e b et et en b et eaeebeebeebesbesbesbesbens 8-88
OBSCURE ...ttt ettt ettt et e e e ete e ta e beese et e essesbeeseasbeesseeseessesbeessessensesssenseessenteessenseenes 8-90
PARTITIONocoiiitiiiiietestesietete et e e etee e e te st e et esbesbessessessestesseseaseasaasarsessesessessessensassaseassesessessensessensens 8-92
PARTITIONGCHECKcoooitieiiiieieseeteettete st eteettetesseessesssesesssessessaesseessesseessassesssasssessesssessenseesenses 8-94
PERCENTAGE ...ttt ettt et ettt e et et beeteeebeetteeseesaesbeessassensesssensaeseenteeseenseenes 8-95

RANDOM ...ttt ettt ettt et e et este e te e beeaesbeesaassaessasbaessasseessasseesseseensesssesseseensesssessanseans 8-100
RAINK .ottt sttt et et et ettt et e e teete et e s e s e s essesbessessesaessastaseaseasesse et esse s et essessentessessaseaseasansenes 8-101
RECNO ...ttt ettt ettt et e st e s e et e sa e s st e bessaesseessassaessassaassanseessanseassesseessesseessesseessesseessensenns 8-106
REM ...ttt ettt ettt ettt et et et e et esae s te e beesaesbeesaessaessesbaes s e teeabenseess e beenbesreenbebeenbesreensenreens 8-107
REMAINDERocooiiiiitietiteteiet ettt ettetee e st sessessessessessessessessastasessassessessessessassessessessassesssseesensensenes 8-108
REMBYTES........oo oottt ettt et ettt e st e b e s sa e b e e b e baes s et aessesseessessaessesseessesseessesssassanseans 8-109
REMOCHARS ...ttt ettt et sae et te et esbeeta et e e s b e baessesseessasssessassaessesssessesssensesssessessnans 8-110
REMOCOLS ...ttt ettt ettt et e e e e st et be b essesbessessessessestaseasaaseaseasessassassessessessaseesanseasensensenes 8-111
REMLINES ...ttt ettt et et e st e ettt e e aesbessa e s e e s sesbaessasseessasseessessaessesseessesseessesseessansenns 8-113
REPLBYTES ...ttt ettt et ettt e a e v e e e e e s e baess et e essasseessasseensesseessesssensesssessessnans 8-114
REPLCHARS ...ttt ettt ettt e ettt et b st e b e s s esaess e st eseasessessessessassessessessessassessaseasensensenes 8-116
REPLCOLS. ...ttt ettt et et e ste st bessaessessaassaessessaessassaessasseessesaessesseessesseessesseessansenns 8-118
REPLLINES ...ttt ettt et et ettt et e b e e e e e et b e beess et e essasseessesbeessesseessesssensesseensensnans 8-120
RESERVEDociiiiiiiiietiet ettt ettt e teete st e s be s e s ess e st essassessasaaseasessessessesessessessessessessesssseaseasensenes 8-121
ROUND ...ttt et e et e et e sae st et e e saesbeessessaessessaessasseessanseessessaessesseessesseessesseessanseans 8-123

ROUND (AAtTIMIE) -...cvieuieuietietiieeieeiete ettt sttt sttt e ettt e besbe st e be st e st et enteneeseebesbenes 8-124

ROUND (INUMDET) ...ttt ettt ettt te s st e ssesseessesseessesssensasnsensesnsanseensensennes 8-127
ROW FUNCHON ..ottt ste et eae st e s b et e e e e seess e seessessaessesseessesseessesssensenssensennsens 8-130
ROWIDTOGCHAR........o oottt et et ste e aeste e s e ba e besbaess e teessasseessasseessesssessesssessesssessesseans 8-132
ROWIDTONCHAR ..ottt ettt ettt e st esb e s essesaessestesassassessessessessessessessessassesseseessasensenes 8-133
RPAD ...ttt ettt ettt et e et e ettt e e e b e e st et e st e bt es b et e e n b e st e Rt e s e enteeseesbesteenseereensenseans 8-134
RTRIM ...ttt ettt ettt et et e te e e e sbeesaeebeesaesbeessassaessesssassasssensaessansassaensesssessesseensesssessansnans 8-135
RUNTIOTAL......ooiteieeee ettt ettt e e e et et e e b b esbesbessessessasaeseasessesseasesassessessessessessesssseasensensenes 8-136
SESSIONTIMEZONEoooiieiieeeteetette ettt e te s e e e e e sesbeess e seessesseessesseessesseessesseessesseessenseans 8-138
SIGN .ottt ettt et e et e e b e et e sae e re e be e e e beera et e et b e be et s e teeabeereeat e beentesreenbeeteentesreensenreens 8-139
ST oottt et et e e e et e et et et et et e st e st et e et e et e et et e b e b e s s essesbestes s e Rt e Rt e Rt e Rt e R e ReeR e ke b e be b ensestentesteseeseeseesersenns 8-140
SIINH ...ttt et e et e et e et e st e e st e beesaesseessassaessessaessassaessanseesseseessesseessesseensesseensanseans 8-141
SIMALLEST ...ttt ettt et e st ettt e e e e beeta e be e s s e beess e seessasseessesaensesseessesseensesssessassnans 8-142
SIMOOTH ...ttt ettt ettt te ettt b et e b esbessessessessastaseaseasesseasessessessessessessaseesasssassasensenes 8-144
SORT FUNCHON ...ttt ettt et e e s e s sa et e sesbees s e seessesseessessaessesseessessesssesseessenseans 8-147
SORTLINESttt ettt et et e ettt e et esbe e e e be e b e beess e beeasasssessesseensesssessesssensesssesensnens 8-148
SOLFETCH ..ottt et e ettt b et es b e s e s sesaessestaseasassessessesessassessessessessessaseassasesenes 8-149
1110) 23 USRNSSR 8-150
STARTOF ...ttt ettt ettt e e te et be e e e s beeta e be e st e beess e beeasasseesseeseensesseensesssensesssensensnens 8-151
STATALL ...ttt ettt ettt et ettt ettt e b e b essessessessesseseaseaseasesseesesessessessessessassessaseassnsensenes 8-153
STATDEPTH ..ottt ettt e et e st e s e e b e be e st et eessesseessesseessesseessesseessesseessanseans 8-154
STATEQUAL ..ottt ettt et ettt e it e et e e e et e e b e beesb e beesbasseeasasseensesseensesssensesseensenseans 8-155
STATEFIRST ...ttt ettt ettt et et e et et e b e s b esbessessessessassaseasessesseesesessassessessessasseseaseaseasensenes 8-156
ST AT LAST ...ttt ettt ettt e st e st e be e e e s seessessaessessaessassaessanseesseseensesseesseseessesseassanseans 8-157
STATLEN ..ottt ettt ettt ettt e et e et esteete e beeaesbeesaesbaessebaessaseeasasseesseesaensesssensesssensesssensanseens 8-158
STATLIST ...ttt ettt et et et ettt ett e e e et s e be b essessessessessesseseaseaseasesseasessassessessessensaseesasseassasensenes 8-159
STATIMAX ..ottt ettt ettt e et e et et e et e st e s st e s e e saesseessassaessessaassansaessanseessesseessesseessaseensesseessensenns 8-161
STATIMIN ...ttt ettt e et e ete e e e beeaesbeetaesbaessebeess e seessasseessesseensesseensesssensesssensenseans 8-163
STATRANK ..ottt ettt et e ettt et besbessessessesseseeseaseasesseesesesessessessesseseessaseassasensenes 8-165
STAT VALt ettt e st e st et e e ae s b e e saes s aessessaessassaessanseessesaensesseessasseessesseessanseans 8-168
STDDEV ...ttt ettt e st e et be e e e s beetb e baesbesbeess e beeasassseaseeseensesseensesssensesssesenseens 8-171

XV

XVi

SUBSTR FUNCHONS ...ttt e et e et e e seaaeeesateeesateessraeeeseseeesnnesssnaeesenresesnes 8-173

SUBTOTAL.......oooeeee ettt ettt et et e et este e e e be e b e sbeessebaessasseessasseessesseessesseessesssensesssensesseans 8-175
SYS_CONTEXToiioiiiieiietiietetet et et ettt ete et e s te st e b esbessessasaessesaesaessesesseasessessessessessessessessassassasensenes 8-177
SYSDATE ...ttt ettt e st e et este e e e s e e sae s b e essesbaessesseessanseessessaessesseessesssessesssessanseans 8-178
SYSIINFO ...ttt ettt ettt et e et este et esteesaesbeesaesbaessasbaassasseessasseessesseessesseessesssensesssessesseans 8-179
SYSTEM ...ttt ettt este et et et et et et ete et eesesbessessessessassassassastasaasaasesseasessessessessessestessessaseasensensenes 8-181
SYSTIMESTAIMP ...ttt ettt ste et e st ae s e e e e s be e s be s ba e st e s s e essasseessessaensesseessesseensenssessanseans 8-182
TALLY oottt ettt ettt e et e st e et et e e ee et e et b e beeaeeebeeaa e be e st e ebeerbe bt e beeteesbeersenteereanbeesaeteereenreenes 8-183
TAN Lottt ettt et et et et et e e st et e e te et et e b e s e b es b e s b e st e st esbeRteRteseeReeRe e s e b e be b e benbestestesteseeseesaeseesenrens 8-185
TANH. ...ttt et e et e st e et b e te e st e sseesaeeseesaesseess e seesbesseess et senseeseenseesaeteereensenneas 8-186
TCONYVERT ...ttt ettt ettt et s b e et ete e e e sbeeaaeebeessesbeessesssesbesssessasssenseessassessaensesrsessenseas 8-187
TEXTEILL.......ooiiieiiieeeteietetet ettt et et etee s et e st e b e b e s bessesbessestaseaseasessessessassessessensassassassassassasensensensens 8-194
TO_CHAR ...ttt ettt e et e st e e st e te e st e sseesteeseesaesseessesseessasssessanssessesssansenssessesssessenses 8-196
TO_DATE........o oottt ettt et e st e et ete e e e e teess e beesbesbaesbesssesbesssassassenseessansesssessesrsessenseas 8-199
TO_DSINTERVALooootiieieietetetetet et tese et be st et et e st eseeseesessessessessessessessessassessessessessesensessens 8-201
TO_INCHAR ...ttt ettt e e et e st e et e te et e sseessesseestesseessesssessesseessanssesseassassanssensesseassenses 8-202
TO_NUMBERoooiiiieee ettt ettt et et ste e s e e beesbesbeesbesssesbesssassasssesseessassesssessesssessenseas 8-205
TO_TIMESTAMP ..ottt ettt et sb e b e st st eseesessesseesessessessessessessasseseassasaesensessens 8-207
TO_TIMESTAMP _TZ........ooooeeeeeeeeeeeeee ettt ettt et ste ettt e sveesbe e e beeseessassaesseessessesssesesseersenseas 8-209
TO_YMINTERVAL ...ttt ettt ettt e ettt e sbe e b e s be e beebeessesssesteessassasssessesssensesseas 8-210
TOD ...ttt ettt ettt et et e ettt e s e b e b e b s e s b e s b e st e st e Rt eR e e Rt e Rt eRe et e b e b e b et et estestesseseenteseesensenrens 8-211
TODAY ..ottt e et e et e e et et e e st e e e st e e b e e st e st et e er e e s b e st e beeteesbe st enteeseenteasaeteereenseenes 8-212
TOTAL ...ttt ettt e e et e st e e tb e be e st e sbeeaseabeessesbeessesssesbesssessassesseessassasssensesrsensenseas 8-213
TRANSLATE ..ottt et et e et e st et e e b e sbesbesteseaseesessessessessessessessessassassaseasseseasensessens 8-215
TRIGGER fUNCHON ..ottt ettt et a e sre b e st e e e s teessassaessesssensenssessessnessenseas 8-216
TRIM ...ttt ettt et et e et e st e et e be e e et e ess e teessesseesseaseessesbaessesssesbesssassassenseessanseessessesrsessenseas 8-218
TRUNQCATE ..ottt ettt et ste st e et s e b essesbesbessesteseaseasessessassessassessessessassassassassassasensensens 8-219

TRUNCATE (dAtEME) ...cuvecvieeiieiieieeeetieeeie st ettt etesee et estesseesaesreesaesseesaesseessesssessessesssensesnes 8-220

TRUNCATE (INUMDET) ...ttt ettt ettt s st saese et et et ebe b e 8-221
TZ_OFFSET ..ottt ettt ettt et et e e sbessess e st estaseesesseaseasessessessessessassassassassasensensensens 8-222
UNIQUELINES ..ottt ettt ettt ettt e e et e ste et e s seesaesseessesssessesseessesssesseessensesssessesssessenses 8-223
UNRAVEL. ...ttt et ettt et e v et te et e ste e et e eseebeebeesbeessenbeebeesseessenteessenseesseteensenseeneas 8-224
UPCASE ...ttt ettt ettt ettt et et e st e s e s b e s se st esbessestaseaseeseaseaseasessessessessessassassessassasansensensens 8-227
VALSPERPAGE ...ttt ettt ettt et ste et st aesbeesa e s st e besseessasssessaessessenssessesssessenseas 8-228
VALUESo ottt ettt ettt ettt ettt e be et e ste et e eseesbeebeeabeessesbeebeenbeessenteeseanseesseseensenseensas 8-229
VINTSCHED........ccoooiiietiieteieietete ettt ettt et et se st esbe b e st asteseessasessessessessessessessessassessassessesensensens 8-232
VPMTSCHED ..ottt ettt et e et e et ste et e sseesaesseessesssesbesssessasssenseessassanssessesssessenneas 8-235
WEEKORF ...ttt et ettt et e v et e te et e sbe et e e beeteebeesbeessenbesseesbeessentaessenseesseseensenseeneas 8-238
WIDTH_BUCGKET ..ottt ettt e et a et esassessessessessessassessessessessessessesseseesensensens 8-239
WIKSDIATA ...ttt ettt et e te et e e et et e e st e teesaesseessesseestesseessesseessesseassanssesseassansanssensenssessenses 8-241
WRITABLE ...ttt ettt e te et ete et e e beebeebeesbeebsenbeebeesbeessenteessanseesseseersenseeneas 8-243
YYOF ...ttt ettt et ettt et e et et e et e b e s e s es b e s s essesbessestaseaseaseaseaseaseesessessensessassassessanseseasensensens 8-244

OLAP DML Commands: A-G

About OLAP DML ComMmMANScccoceueieieiiieiiiiiieeeeeee e 9-1
Commands: Alphabetical LiSting............cccocoooiiiiiiiiii s 9-2
Commands by Category ... 9-5

ACQUIREL. ..ottt et bbb bbbt ae et saesuenes 9-9

ACROSS ... s 9-13
AGGMARP ... 9-14
AGGINDEX......ciiiiiiiiiiiiii s 9-32
BREAKOUT DIMENSIONocooiiiiiiiiiiiiiieiisiisesiesisie s 9-35
CACHE ..ot 9-37
DIMENSION (for aggregation) ...t 9-40
DROP DIMENSIONooiiiiiiiiiiiiiiinicie sttt 9-41
MEASUREDIM (fOr aggregation) ..o ieieeeeesseseseseeeseseseseseseeeseseees 9-43
MODEL (in an aggregation)c.ceuireieiiiicieieecieie et 9-44
PRECOMPUTE ...t 9-45
RELATION (fOr ag@regation).........cocccueuiucueuiueuimimeiemeiereeneiemeieseieneseie e esese e nesenesesesesesenesesenesesenses 9-46
AGGMAP ADD or REMOVE model ..o 9-57
AGGMARP SET ..ot 9-59
AGGREGATE command...........ccccoooiiiiiiiiiiiiii s 9-60
ALLCOMPILE ..ottt 9-69
ALLOCATE ...ttt 9-70
ALLOCMARP ..ottt 9-77
CHILDLOCKoviiiiiiiiniiiiissi s 9-82
DEADLOCK ... 9-83
DIMENSION (fOr @llOCatION)cuviuieeieeieiiieirisiieesiesietetetetesteseesesseesessessessessessessessessesseseesessenses 9-84
ERRORLOG ...ttt 9-85
ERRORMASK ..ottt 9-86
MEASUREDIM (fOr QllOCAtiON) ...c.veveeieieieiieieieisiestestestestesiesseesesseseeseesessessessessessessessessessesseseeses 9-87
RELATION (fOr QllOCAtION) . .cveviieririeiiienirieirieteteiietetetestetetetesteseste e e e ssesessesessesessenessesessesensens 9-88
SOURCEVAL. ..ottt bbb 9-94
VALUESET ..ottt 9-95
ALLSTAT ..o s 9-98
ARGUMENT ..ottt sttt ettt st et s st b a et ettt eateae et sae s b b besaenen 9-99
AW COMMAN ... s 9-104
AW ALTASLIST ..ot 9-105
AW ATTACH ..ot 9-106
AW CREATE ...t 9-114
AW DELETE ... 9-116
AW DETACH ..ottt 9-117
AW FREEZE ..ot 9-119
AW LIST o 9-120
AW PURGE CACHEoiiiiiiciiice ettt 9-122
AW ROLLBACK TO FREEZEccoiiiiiiiiieiiiicicncsie e 9-123
AW SEGMENTSIZEcooiiiiiiiiiiiiiiiniss s 9-124
AW THAW .ottt 9-125
AW TRUNCATE ..ottt 9-126
AWDESCRIBE ..ot s 9-127
BLANK .. et ettt a e e a e st n et ne st e n e ae e 9-129
BREAK ... 9-130
CALL oo 9-131
CDA ettt 9-135

xvii

xviii

CLEAR ..ottt ettt ettt ettt e b e e et et e et e st et eseeteseese st esenseseseesensesensebensesensesensese s esesesensesensene 9-143
COMDMIT ..ottt sttt sttt sttt et et et et et s be e e be e e b et e b et ebe st eseneesentesensne 9-146
COMPILE ..ottt ettt ettt sttt e st et s b e st st e st ete st sbe st ebentesestebenteseneebeneesenteseneesentesesesensesensans 9-147
CONSIDER.cooietiietiieterteteste ettt st e e st e e s te e steseesesesseseeseseesensesansesensesassesensesansesensesansesensesensesensans 9-151
CONTEXT COMMANCocuiiiiiiieiieiieiieieeetese ettt e te e et e te e tesseesaesseensesseeseesseensessesssesseensesseessesseens 9-152
CONTIINUE ..ottt sttt ettt sttt s e st e e st et e be st etestes et esentebensesensesensesestesansesensesensns 9-154
COPYDFEN. ..ottt ettt et st e st e e s te st st e st st eseeteseesessesensesassesansesansesensesansesensesansesensesensesensns 9-155
DATE_FORMAT ...ttt sttt sttt ettt sttt st et s be e b et b et e b et ebe st ese st esenteseneene 9-156
DBGOUTFILE ..ottt ettt ettt ettt et e s st e et esesesestesesseseesenessenessenessanessansesenees 9-163
DIEFINE ...ttt et e e sttt e e eate e sttt e e s a bt e eeabte e s abee s bbae e abeeeaasteesnsaeeesseeseasaeennseeans 9-166
DEFINE AGGMARP ...ttt ettt ettt ettt es et st ene s s 9-168
DEFINE COMPOSITEooutietieieiieiieieiieiteteteie ettt ettt sttt se s s ssesesse e sesensesessenessenes 9-171
DEFINE DIMENSIONcciotttinieinieirieirteteteteteteseeesessesessesessesassesessesssessssessssessssessssessesessesenes 9-175
DEFINE DIMENSION (SIMPIE) ...cvviiiiiiiiireriisecrieei e 9-175
DEFINE DIMENSION (DWMOQY) ..ccvetiieiiieiiieirieitieiieteseteseteessesesseseeeseseeesesensesessens 9-178
DEFINE DIMENSION (CONJOINE)cocvimieieiiiiiiiiiiiieieisiieie s ssssesssiesssssssaesenes 9-181
DEFINE DIMENSION CONCAT ..ottt ettt st 9-184
DEFINE DIMENSION ALIASOF ..ottt ettt et 9-186
DEFINE FORMULA ..ottt ettt ettt ettt et et sassesassesassesessesssassssansesanes 9-189
DEFINE MODEL ..ottt sttt ettt ettt et se st s s b s ssenessens 9-191
DEFINE PARTITION TEMPLATE ..ottt ns 9-193
DEFINE PROGRAMoutietiietirieistetietetsteetetestese st sestesessesassesessesassesansessssessssessssessssessssessesensesenes 9-195
DEFINE RELATION ..ottt ettt ettt ettt ettt ettt st sesesbe st sse st ssentsseneeseneesenes 9-197
DEFINE SURROGATE ...ttt sttt ettt ettt ettt esess e s e e senebeneesenessenes 9-199
DEFINE VALUESETooietitetiieirieiiettettetetete et tess et ese s esassesassesassesassessssessssessssassssessesenes 9-202
DEFINE VARIABLE ..ottt ettt ettt ettt bbb s 9-205
DEFINE WORKSHEET ..ottt ettt ettt ss e be s esanessenes 9-224
DELETE ...ttt e sttt e et e sttt e e s a bt e e s bt e e s bbee s bbae e abeeeaasaaesnbaeeesbeesensaeenaseaans 9-226
DESCRIBE ...ttt sttt sttt ettt et st et be e e b et e b et e b et ebe st e se e esentesenene 9-227
DO ... DOEND ...ttt ettt ettt ettt b et e be st e s et e s e st esesa e st stenestenessenesseneeseneesaneas 9-229
EDIT ...ttt ettt ettt ettt ettt e e st et ese b et e et eseebesteseseesaseebeseesassebessesassesensesassesasesensesensns 9-231
B ettt ettt a et a ettt e b et e a e b et e be e b et b et e bt e b et e st e st seeene 9-232
EXPORT ...ttt ettt ettt ettt sttt e st st e st e te st st e st e se st ebentebentese st ebeneesentebeneesestesesesensenensans 9-234
EXPORT (EIF) c.viuietiietiieiiietiietesteesie et tsesestestsse st se s esessesassesassesassesassesessesessesessesessessssassssessssenes 9-235
EXPORT (SPreadsheet)ocoviiiiiriiiiiiie e 9-241
FOCLOSE ...ttt sttt ettt et ettt ettt et et e s e s e e se s e s et es e stese st e st stene st eneeseneeseneesaneesaneas 9-243
FOEXECQC ...ttt sttt ettt et et et et et e tas s et essebasseb et es et esessesassesessesassessssaseasassasessesansesansesaneas 9-244
FOSET ...ttt ettt ettt bttt e b et e b st e bt e bt e e bt se e bt st e st st ene st ent st ene et et sbeneebenees 9-248
FETCH ...ttt ettt ettt et ettt ettt eb et e s et e se s ese s es e st ese st e st stene st entssenesteneeseneesenees 9-254
FILECLOSE ...ttt ettt te et e s te et e e st e e e be e baessbaesseessbeessaasssesssaassseasseasssaassesnssesnsanseenns 9-257
FILECOPY ...ttt sttt ettt sttt ettt eb et b e st b et b e e bt st e bt st e st st ene st ent st e st st et sbenesbeneas 9-258
FILEDELETEoooiiitiietiietieteeteee ettt ettt ettt et s et et s e s st ese st e st st e st stenesseneetenesseneesenees 9-259
FILEMOYVE ...ttt ettt tte st e s te et e et e e e b e et e e s sbaessaesssaansaasssesssaessseasseasssaasseenssesnsaaseeans 9-260
FILEPAGE ...ttt bttt b et b e st b et b e bt se bt st et st e st st e st st e st st et ebeneebenees 9-261
FILEPUT ...ttt ettt sttt sttt ettt ettt et et e s et ese st e st ses e st e st st enestenestenesseneeteneesaneesanees 9-263
FILEREAD ...ttt ettt et e e ettt e e sate e s abe e e s teeeesseaesssaaesssee e nsaeeanssaeansseeensseesansaeennseeann 9-265

10

FILEVIEW ..ottt ettt ettt et ettt et te st et ast et assese s esasesasesassesessesessesaesessssansasansasenens 9-282
FOR ..ottt sttt ettt ettt st b et b et b etk et b et bt b bbb e bt et e st st e st e st et ent et et eteneas 9-290
FORECAST ...ttt sttt sttt ettt st e et et et et et et ese e esesesesesessesessenestenesseneesaneesansesanens 9-293
FORECAST.REPORT ...ttt ettt ea e bt bt sttt e s e et et entente st eneeseebeenesaens 9-299
FULLDSC ...ttt ettt sttt sttt ettt b et e s e e b st e be st e b et e b et eb e st enestenestesestenesteneetenens 9-301
GOTO ...ttt ettt st ettt st e st et e st e st st eneebeneebe st e b entese st ebe st ebenaebe st esentese e esetesentene 9-303
GROUPINGID COMMANG ...ttt sttt ettt s e sttt e st e st este st et eneeseeaeeseebesbenes 9-306
OLAP DML Commands: H-Z

HEADING ..ottt ettt te ettt et et et esessesas s et assesessesessesesesarseseesaseasensesansesensesansesansesensenn 10-2
HIDE ...ttt ettt ettt b et s e st e st s e st e st es s en e et et e b en e s en b b et eb et enesenn 10-4
HIERDEPTH......c.ooiiiiiiiiieitetetetete ettt ettt ettt et s e st e s e be s sese s aneeseneesensesansesensesensesensenan 10-5
HIERHEIGHT COMMANoouiiiiiiiiiitiiiieeie ettt ettt st sttt ettt et et es e st st ebeebesbeseenean 10-7
IF.. THEN...ELSE COMMANGccoccoiiimiriimiiriiiiniieteteietetetet ettt sttt et et sb e sb e 10-11
IIMPORT ...ttt ettt ettt et ettt s e st e st e st e s e st e st e bentebentebentese st ebeneebanteseneesaneeseeesensesensane 10-13
IMPORT (EIF) c.viuieteieieieieieieieteietesteteste et sasesesae st esesessesaesassesassesansesansesensesensesensesensesensesssessseses 10-14
IIMIPORT (BEXE) v euteveneeveeeieieteietetettstestste sttt ettt te e te s te sttt et e st eb et e se e senteseatese s eseseseaseseasenensenes 10-22
IMPORT (Spreadsheet) ... 10-27
IINFILE ..ottt ettt sttt ettt s be et e st et ese et e e e sensesessebensesa s ebe s esesesessesassesesesensesensans 10-30
LD et b ettt a et a et a et ettt t et ben e b et b et b et b et e b et e b et e et beene 10-32
LIMIT COMMAN. ..ottt ettt ettt b e bbb bt e st e st et et et e st e bt ebesbeebebe e 10-33
LIMIT (using values) command............cccoeuviviiiiiiiiiiniiiiii s 10-42
LIMIT using LEVELREL commandcccccoeuveirinninirrnncreeere s 10-52
LIMIT (using related dimension) command...........cccccoviviiiiiiiiiiiiicccnes 10-54
LIMIT command (using parent relation) ... 10-57
LIMIT NOCONVERT COMMANG ...vtniiviiiiieiirieirieisie ettt ettt ese ettt sesens 10-62
LIMIT command (using POSLIST)cccccevviiiiiniiiiiiniiiciiii s 10-63
LIMIT BASEDIMS.........ooiiiiiieiieieietetete ettt ettt sttt st eseebe e te s eseseese e eseseesensesansesansesansesensesansans 10-64
LISTBY .ottt ettt sttt s et st e e st e et e et et s b et et et e b et e b et e b et e b et e seteseene 10-66
LISTEILES.......cooiieeieieetetete ettt ettt sttt et sttt es et e st st et s be st be st et e st ebe st ebe st ebentesaneesantesaeesensesensns 10-67
LISTINADMES ...ttt ettt sttt ettt et et et e et eseebesaese st ebeseebaseebeseebessesassesassesassesassesansans 10-68
LOAD ...ttt sttt sttt et h et b et e b et bt b et bt bbb e st et beeene 10-71
LOG COMIMANG....c..iiiiiiiiiiiieteete ettt ettt et et b et sbe bt st e st e st et et et e st e bt ebesbeebebenee 10-72
IMATIINTAIN......coitetiitetitettet ettt et et e e test st et et e st esess et essesassesassesesesessesesesassesassessssasessassssesessassasansesanens 10-74
MAINTAIN ADD ..ottt ettt ettt ettt et ettt s et e bt st e st se st besesenesenes 10-77
MAINTAIN ADD for TEXT, ID, and INTEGER Valuescccccevrieinieeneeeneeenieciennes 10-77
MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values........... 10-79
MAINTAIN ADD SESSIONcouiitiiiriiirieteieteenteie ettt sttt stene st s senes 10-80
MAINTAIN ADD TO PARTITION ...ccoottirieiieinieieieieieiieteteee ettt 10-85
MAINTAIN DELETE.......cooiiiiiitiieieieeeeetetetet ettt bbb se s esesaesessesssesenes 10-87
MAINTAIN DELETE dimension.......ccccueueeieueieenieenieienieinieeteteeeseesseeeseeeseneeseseesessenesens 10-87
MAINTAIN DELETE COMPOSIteccoouiuiiiiiiiiiiiiici e 10-89
MAINTAIN DELETE FROM PARTITIONcceotiieieieieeet ettt ee e 10-90
MAINTAIN MERGEcootiiitiiiiieieteeeeeieeeste sttt ettt sttt st st st nee 10-92
MAINTAIN MOVE......ooiieiieiieirieteetste ettt sttt et ettt et s b se s et ssesesbeneseneasenes 10-94
MAINTAIN MOVE dimension VAlUe.........cccccveveiuieieiiieiecieeeecreeeeere ettt ee e evnennen 10-94

Xix

XX

MAINTAIN MOVE TO PARTITION.......ccoectretrieenreinietnreteieeeeeeieeereeereseeesaeneseneneene 10-96

MAINTAIN RENAME ..ottt ettt et aesteesaesveesaesaeeaesbaessesssensesraessesseanns 10-98
IMIODELooiiieiieee ettt ettt et et ete et e b e st e b e s b e s sessessessestaseaseasesseaseasessassessensessassassassassasansensensens 10-99

DIMENSION (i NOAELS) ...cveeiieiieiieieiieieseeteeetee et te e sae e e sae s e ssesssesseessesseessesseessesses 10-104

IINCLUDE ...ttt ettt ettt e s be e b e eteesbesaeeseesaesbesssesseessanseessesseessenseensaseas 10-108
MODEL.COMPRPT ..ottt ste e ste e sbessestessesaeseaseasaesessessessassessessessassassassassass 10-111
MODEL.DEPRToootiiiietete ettt ettete sttt etesteessessaessesseessesseessesssessesssassasssensasssansanssensesseenns 10-112
MODELXEQRPT ...ttt ettt ettt te et e steete s e e sessaesbeesaesaeessassaessesesssansanssanseeseenes 10-113
IMIONITOR ..ottt ett et et et ettesae s e st e et eesessesbessessessestessessastaseassnsessessessessessessassassassassassass 10-115
IMMOVE ... ettt ettt st et s et e st e st e st e e s e e s e e st e esa e st eeseesseeseasseassessesssassaassansanssansanssanseessanns 10-119
OUTFILEc.oo ottt ettt et e e te et e s teesbesaeesbeesaesbesssesseessesseessasseessansesseastesssansesssaneas 10-121
PAGE ...ttt ettt et ettt ettt ettt e et e b et b s e s b e s b es b e st e Rt e Rt e Rt e Rt et e et e Reese et e bese s enbensenteneenes 10-124
PARSE ...ttt et e st et et e e te et e et e esbesaeesbeeae e be e Rt e b e est e s s e e st et e ereenteereenteertenseereenees 10-126
PERMIT ...ttt ettt ettt te et s teesbesaeesbeeasesbessaesbeessasseessesseeseansesseansesssansesssensas 10-128
PERMITRESETooiiiiietiietetetetetetet ettt e e eteste st e e s e b e b essessessessesaasesseasassessessassessessensassessasseses 10-135
POP.....oeeeeeeeeeeee ettt ettt ettt e st e b et e et e e bt et e e rt e beere e b e e Rt e be e Rt e b e et e e be e st et e eseente et eereentenreenaenres 10-137
POPLEVEL.......ooiiiieeteeeteetteett ettt ettt ettt et s teebe et esbeeasesbesssesbeessassaessasseessansesseensesssansenssenes 10-138
PROGRAM ..ottt ettt ettt et et et et e st estesasse st e st e sassassessassessessessastasaaseasansessessessersessessensessassases 10-139
PROPERTY ..ottt sttt te st e v et et e ste et e s st esaesstessesseessasssessesssassasssassenssansesseansesssensesseenses 10-142
PUSH.......c.oioeeeeee ettt ettt et et e e te et e s teesbesaeesbeeasesbesssesbeessessaessesseessansesssansesssensenseeneas 10-144
PUSHLEVEL........cooiiiiiieieteetetete ettt et et ste st et s e b a s e besbestessessessasaaseasassessessensassessansensessassases 10-146
RECARP ...ttt ettt ettt et e sttt e st e st e e bt et e s st essesstesseeseessesstesseessassaeseanseessansesseansesssansenseenses 10-150
REDO ...ttt ettt ettt ettt e st e e te et e e teesbesaeesaeessesbeessesbeessenbeereerbeeseanteereenbeeraenteereenes 10-152
REEDIT ...ttt ettt et ettt e st ete et e sb e s s et assassessessessessessassaseaseasassesseasensessassessansessassases 10-154
REGRESSo oottt ettt ettt ste et e s et e saesat e s e eseesbesseesseessassaaseassesssessesseansesssensenseenses 10-156
REGRESS. REPORTccuiitieeieiieieee ettt ettt et te et saeeaeeteebessaesbesssesseessessesssansesssessesssensesseenss 10-158
RELATTION COMMANc.oooiiiiiiiiiiieieeteieeteie ettt ete st sae st e stesse et e eseen e sseenseensensesneessesssensesseenses 10-159
RELEASE.........o oottt ettt ettt et e e et et e e teesaesaeesse e st esbessaessasssessaaseassesssessesseensesssansenseesees 10-162
RENADME........o oottt ettt ettt e s teesbe s et esbeeae e bessaesbeessesseeseenseessantesssassesssensessseneas 10-165
REPORT ...ttt ettt et e et et e st eteesteseese st e s s e sassassessassassessessassaseaseasassesseasensessensessansessasseses 10-167
RESYNC ...ttt ettt et e st e b et et e e te et e s st essesaeesseeseesbesseesseessessaaseassenssansesseansesssansenseesees 10-177
RETURNootiiiitiee ettt ettt e ettt eete et e e te e b e eteeabesasesseessenbesssesbeesseateessenseessanseereenseesseseessensas 10-179
REVERT ...ttt ettt ettt ettt et ettt e eteste st e s e s as b assessesbessessessastaseaseasaasessessensassessassansessassases 10-181
ROW COMMANA.......coiiiiiiiiieieiiciecieiee ettt e et e st ete st esaesseesbesseesseessessesssessesssessesseessesssensenseenses 10-183
SET oottt ettt ettt e bttt e be et e ettt e bt ebeeatebeehe e beeaeebeete e beeteebeeaeenteeaseeteeateereenteers 10-191
SETT oottt ettt e et et et et e st et et e et e e st e s e s s e s e s es b e s b esben b e st e Rt eR b e Rt e Rt et e et e Reete et e b e se s enbensenteseeses 10-201
SHIOW ...ttt ettt ettt e et e b et e st e s se e s e sseessesseessesseessesseesseessassaaseasseessassenseansesssensenseenses 10-202
SIGINAL ...ttt ettt et e et e et e te et e ete e s e eteeabesasesseessesbesssebeessenseessenseessanseereenteeseeseeasenras 10-204
SLEEP......... oottt ettt et ettt ettt et e teete bbb b e s b e st esbes b e Rt e st e Rttt et e et e seete et ebese s enbenseneeseenes 10-206
SORT COMMAN.......ooiiiiiiiieiiiiciecietee ettt e et e et ebeseesesse e besseessesssessesseessesssessesseessesssessenseenses 10-207
SO .o ettt ettt e te et e bt et e ete et e ere e beeatebeeht e beeba e beett e beeteebeeaeeteenseeteenteereeneenrs 10-214

SQL CLEANTUP ...ttt sttt ettt sttt sse st et sesessessessessesaasessesssasassessessensensensessases 10-218

SQL CLOSE ...ttt ettt ete st ste e et e se s st e te st e ssesssesseessesssessesssessesssansesssensesssensesseenses 10-219

SQL DECLARE CURSORooootiitiiiietieteeeeeie ettt ettt ereetesteeaesseevesssesseessessesssenseesseseessenss 10-220

SQL EXECUTE......ooieieteietetistete ettt ettt ettt et et e s se s essestesaasessessessassessessensassensessases 10-225

SQL FETCH ..ottt ettt ettt e et e e e e te et e stessaesaeessesseessessaessasssensanssensenssessesseenses 10-226

SQL IMPORT ...ttt ettt ettt ettt be e s e eteeabesaeenbesaeesbesbeenseeseensesseenseessensesrsansas 10-233

SQL OPEN.... ettt sttt sttt ettt et sttt b e bt eb et st st bt s st ss et snestsnenenenenes 10-238

SQL PREPARE ...ttt ettt ettt et sve et e e taesbesra e beesaesbaesaesbaessesseessenseensesseennas 10-239

SQL PROCEDUREcteititietietiieieieteteteeteeaesessasse e ssessessessessesseseessasassessessessassessessessessassesenses 10-242

SQL SELECT ...ttt ettt ettt ettt et ettt e s bt et e sveess e ssaesaessaessassaessasssensaessenseessensesssesseases 10-244
STATUS ..ottt ettt et st e et e s te e b e st e e be et e esb e ssenbeeseasseessenteessasbeessesssessensaesseseensenseenes 10-247
STDHDR ...ttt ettt ettt ettt et e s st et e b e b e b e bessessessessesteseaseasessessessessassessessessessassassassasenses 10-249
SWITCH COMMANoviieieiieiieiieiecteeteettet et ete st e e s teesbe st esseeseessesssessesssassesssessesssessesssassesssesseenes 10-251
TEMPSTAT ...ttt ettt et e et e et s et e esbeebeesaesseesbesseessessaesbesssensessaessenseensesseenes 10-254
TRACKPRGccotititiieteietetetett ettt st e et este st e bessestessessestesteseasesseasessassessessassessassessessaseassasensenns 10-256
TRAP ..ottt ettt et e st e et e st e et e st e et b e b e e s b e sa e s s et e essease e st e st e Rt e eRe et e abeesbe st enseereesbeeseensenseenes 10-260
TRIGGER COMMAN.......cooiiiiiiiiiiieiiciiceeiecteet ettt te et te et sreesbesbeesbesrsessessaessesseensesseenes 10-263
TRIGGERASSIGN........ooiiieiieieieiiettettet ettt teste st esbeste st e st estesaessasaesessessessassessassessessessassassassasensenns 10-274
UNHIDEE..........o oottt ettt ettt et e st e et et e e et e e st et e e st esseess e seessessaessassaessesseessasssessanseassensennes 10-278
UPDATEo oottt ettt ettt e et e st e tb et e st e be et s et e esbesseessesseessesssessesssessesssessessaessanseessenseenes 10-279
VARIABLE ..ottt ettt sttt e e st et e e et et e st eseastesaas e et e et essassassensassessessessassasensensansenns 10-281
VN ettt ettt et s b e et et e et e s b e et b e bt e st e b e et s et e e s s easeers e st e st e eRe et e bt enbe st enseereesbenteenseereenes 10-283
WHILE ...ttt ettt et ettt st e s be e ta e st et s e s beese e st e essenseeseesseessesseessesseesaassenseensenseenes 10-290
ZEROTOTAL.......ooiteteteetetetetett et et e sttt e esba st e b e seste st esseseasteseasasseasessassessessassessassessessaseassnsensenns 10-292

OLAP_TABLE SQL Function

Creating Relational Views Using OLAP_TABLE.............ccccccccooiiininii A-1
Required OLAP DML ObjJeCtS.......ccoviiiiiiiiiiiiieiiciciicicecec s A-1
Creating Logical Tables for Use by OLAP_TABLE...........cccoooiiiiiiiiiiicccees A-2

Using OLAP_TABLE With Predefined ADTScccccccoeiiiiiieiicciceeeceeeeeeeeeeens A-2
Using OLAP_TABLE With Automatic ADTS........ccccooiiiiiiiiic A-4
Adding Calculated Columns to the Relational View..........cccocooiiiiiiiiiiicce A-4

Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements......................... A-5
Using OLAP DML Expressions as Single-Row FUnctions............cccooeieiiinniiiccne A-5
Modifying an Analytic Workspace From Within a SELECT FROM OLAP_TABLE Statement.....
A-5

OLAP_TABLE ...ttt nns A-7

OLAP_CONDITIONcooiiiiiiiiiiiiic s A-24

OLAP_EXPRESSION........ocoiiiiiiiiiiiicietriicie ettt ettt A-29

OLAP_EXPRESSION_BOOL.........ccoooiiiiiiiiiiie s A-32

OLAP_EXPRESSION_DATEccccoviiiiiiiiniiiiiicisss s A-36

OLAP_EXPRESSION_TEXTocoiiiiiiiiiiiriiiieiiniicie et A-38

DBMS_AW PL/SQL Package

Managing Analytic WOIKSPacesccccovuviiiiiiiiiiiiiiiiiiiccs s B-1
Converting an Analytic Workspace to Oracle 11g Storage Formatcccccocevinniiinnnnnn B-2
Procedure: Convert an Analytic Workspace to the Latest Storage Format..............c.cc.......... B-2

Procedure: Import an Analytic Workspace from an Older Release of Oracle Database into a
Newer Release of the Database B-2

Embedding OLAP DML in SQL Statementscccccooviiiiiiiiniiiiicns B-3
Methods for Executing OLAP DML Commandsc.ccceeuimueieiinieieiiiceeeee e B-3
Guidelines for Using Quotation Marks in OLAP DML Commands.........ccccccceeuviiivninininininenes B-4

XXi

XXii

Using the Sparsity AdVISOT ... B-4

Data Storage Options in Analytic WOIrKSpaces............ccceueiiirieiiiiicicieccceecie e B-4
Selecting the Best Data Storage Methodccccoociiiiiiiiiiiccceeeeeeeeeees B-4
Using the Sparsity AdVISOTcccoiiiiiiiiiic e B-5
Example: Evaluating Sparsity in the GLOBAL Schema...........ccoooiiiiiiiic B-5
Advice from Sample Programi.........ccccccciuiieiiriiiiiciricceeeeeeeeee s B-7
Information Stored in AW_SPARSITY_ADVICE Table.......ccccoovviiiieieieceeeeeeeeeeeeee B-7

Using the Aggregate AdVISOT...........ccccooiiiiiiiiiiiiiiiiii s B-7
Aggregation Facilities within the Workspace...........cccccocceiiiiiiiiiiicccecccceeeeeees B-7
Example: Using the ADVISE_REL Procedurec.cccoceeviiiiiiiiiiininieiiiiniccceeeeeseennas B-8
Summary of DBMS_AW Subprograms ... B-12
ADD_DIMENSION_SOURCE ProCeAULTEccoeeverieeieeieeieieieeniesteeestessessessessessessessessssessassessenses B-14
ADVISE_CUBE PYOCEAULIEoooevviioeeeeeeeeeeeeeeeeeee ettt e et e et s seaae s eenae s sevesesnseeesnnneesnneesennes B-16
ADVISE_DIMENSIONALITY FUNCHONc..oooiiiiiiiiiieieeeeteeteeteete et e saeesveesveesveessnessvaessaesens B-18
ADVISE_DIMENSIONALITY Procedure...........ccccevueieieieieisinieesesiessessessesseseessessessssessassessenses B-20
ADVISE_PARTITIONING_DIMENSION FUNCHONccccooeiiieiiiiiiicieeteeeieeeveeeeeee e B-22
ADVISE_PARTITIONING_LEVEL FUNCHON.........cccciiiiiiiieieciecteceeeee ettt e B-23
ADVISE_REL PrOCEAULIE.........ooooiieeeiieiieeeee ettt ettt eeeeet e e e eeeeaaateeessesasseessssasseesssssnnseeesssssnssees B-24
ADVISE_SPARSITY PrOCEAULIE.coveieeeeieeeiieeeeee ettt eeae e et s eeaveeseaaeessaneessnaneeenns B-25
AW _ATTACH ProCeULTE. ...t ettt sat e ettt e et s esaaeesstesesaseesnsaeesnneeeennns B-28
AW _COPY PIOCEAUIE ..ottt ettt e e e ettt e eeeeateeesssssasatessssasssteesssssasseesssssssseeesssssssaeees B-30
AW _CREATE PrOCEAUIE. ...ttt eete e e e e st s seaae s eenaeesensesesnsnessnsneesnneesennes B-31
AW _DELETE PYOCEAUI@.......cceeoiieeiieeeeee et ettt e st e e sttt e seaae s esnaeessnveeesaaeesnsseesnneeeennns B-32
AW _DETACH PIOCEAULEooeeeieeeeieeeeeeeeee ettt e ettt e e eeeeatateesssessseessssasseesssssssseeesssssnsseees B-33
AW_RENAME PIOCEAUIEovveeieiieeeee ettt eete e et e eetaesseaaeessnaessesesessnessnsneesnnresennes B-34
AW _TABLESPACE FUNCHON ...ttt ettt eseeaaae e e e sesaaaeeessesnasaeesssnnnanees B-35
AW UPDATE PrOCEAUIEoveeeeieeeiieeeeeeeeee ettt ettt ettt e e sseeaaaeeesssesasseeesssasseesssssasseeessssnseees B-36
CONVERT PrOCEAULTE........oocuieeiiiieeieeieeteetteteete e etteteetestesseesseeseesseessesseessesseessasssessasssessesssessesssensenses B-37
EVAL_NUMBER FUNCHON......ccoiiiiiiiiiiiiiiee ettt ettt eeeeiaveee e s eeataeeesssssaaesessesnasseesessnnaeeeas B-38
EV AL _TEXT FUNCHON ...ttt ettt ettt e e eeeateeessssastaeessssastesesessssssseessssssnseeessssnasees B-39
EXECUTE PrOCeAULTE..........ooouieeieiieiieeteeieettete et eteetteteetestessteeesseesseesaessaesaesseessasssessasssessanssessesseensenses B-40
GETLOG FUNCHON ..ottt ettt e st e et e stte e steessaessbeassaeessaesssassseessaesssaesseasssesnseenseens B-42
INFILE PrOCEAUTE.........oocvieiieieeieiieieeieeteeetete st e stesete e stessesstesseeseesseesaesseensesseensesssensesssenseessensesssensennes B-43
INTERP FUNCHON ...ttt ettt ettt te st et e estete e e e sbeesaesseesaesseessasssensasssessanssensesssensenses B-44
INTERPCLOB FUNCEHON ..ottt ettt st este e taesveessaesssaessaessseessaesssasnseasssesnsesnseeas B-45
INTERP_SILENT PIOCEAUIEoeevveeiieeeieieeeeeeeeee ettt eeetee e e e et eeeeeseanteeesesssnasseessssanseeessssnnseees B-46
OLAP _ON FUNCHON ...coiiiiieeeeee ettt ettt eeeeeate et eseesateeessessaseeesssssssteeesssssassesssssrssseessesssteeessssssaeees B-47
OLAP_RUNNING FUNCHON ...oveviiiiiiiiiiee ettt eeate e e e esatee e eesaaeeeeesssssaeeessesanseesssssnnaneeas B-48
PRINTLOG PrOCEAUTEceeenieiieiieeiieieetieieeeerteeteieetesteesteteestesseesaesseessesseensesssensesssensesssensesssensennes B-49
RUN PIOCEAULIE ..ottt ettt et et s e e et et e sssesbe e st esseesaesseesaesseessasssessasssassanssensesssensenses B-50
SHUTDOWN ProCeAUIE.........ccueeeiiieiieiieeieeiieeie et e ettt et e stteesteesttesveessaessseessaessseeseesssesssessssessssessees B-52
SPARSITY_ADVICE_TABLE Procedurecccocverieieieieieieieireseesesiesieseseseseessesssssssessessessens B-53
STARTUDP PrOCEAUTE.ccoooeeeeiiiieiieeieeteettete et esteste e e testesssesesseessessaesseessesssessasssessasssessasssensesssessenses B-54

OLAP_API_SESSION_INIT

Initialization Parameters for the OLAP APL............ooo it C-1
Viewing the Configuration Table...........c.cccooiiiiiiiiiiiiiiicceece e C-1

ALL_OLAP_ALTER_SESSION View

... C-1
Summary of OLAP_API_SESSION_INIT Subprogramsccccccoeeiriruiuiinininicinininiceccicnenenns C-3
ADD_ALTER_SESSION PIOCEAUTE ..eeeeeveeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeaeeseeaeesssaeesseneessssessennesens C-4
CLEAN_ALTER_SESSION PrOCEAULE.ccoouviieeeii et ettt eeaeee e senaesssannessneeeens C-5
DELETE_ALTER_SESSION PIOCEAUTIEccvioviiiiienienieieeeeeeeeteeteete et ettt eteseas s e v vs e eve v v C-6

Index

xXiii

XXiv

Audience

Preface

The Oracle OLAP DML Reference provides a complete description of the OLAP Data
Manipulation Language (OLAP DML) used to create analytic workspace definitions
that are stored within an analytic workspace and to manipulate these object.

Oracle OLAP DML Reference is intended for programmers and database administrators
who write OLAP DML programs and who create analytic workspaces and analytic
workspace objects using the OLAP DML.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

XXV

Related Documents

For more information about working with Oracle OLAP, see these Oracle resources:
s Oracle OLAP User's Guide

» Oracle OLAP Java API Reference

» Oracle OLAP Java API Developer's Guide

Conventions

XXVi

The following text conventions are used in this reference:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates URLs, code in examples, text that appears on
the screen, or text that you enter.

This reference presents OLAP DML syntax in a simple variant of Backus-Naur Form
(BNF) that includes the following symbols and conventions.

Symbol or Convention Meaning

[] Brackets enclose optional items.
{} Braces enclose items only one of which is required.
| A vertical bar separates alternatives.

Ellipsis points show that the preceeding syntactic element can be
repeated

delimiters Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown

italics Words appearing in italics are placeholders for which you must
substitute a name or a value. Words that are not in italics are
keywords. They must be typed as shown.

What's New in the OLAP DML?

This section identifies the new features of the Oracle Database 11g that relate to the
OLAP DML and lists the Oracle OLAP DML statements that were added, changed,
renamed, or deleted in Oracle9i and Oraclel0g.

= New Features in the OLAP DML

= OLAP DML Statement Changes for Oraclellg
= OLAP DML Statement Changes for Oracle10g
= OLAP DML Statement Changes for Oracle9i

New Features in the OLAP DML
In Oraclellg, the following changes were made to the Oracle OLAP DML:
» Table Privileges Needed When Working With Analytic Workspaces
» Additional Support for Grouping Ids
= Increased Support for Explicit Looping
= Aggregation Improvements
= Support for Analytic Workspace Caching
= Support for Multi-Step Analytic Workspace Build Process
= Additional Data Types
s New SQL-Like Functions
= Support for Materialized Views
= Nested Composites Are No Longer Supported

Also, as outlined in "Changes to the SQL OLAP_TABLE Function" on page xxx, there
are a number of changes in the OLAP_TABLE SQL function which you can use to create
relational views of OLAP DML data structures.

Table Privileges Needed When Working With Analytic Workspaces

In Oraclellg, you must have the correct privileges to create and delete analytic
workspaces. For more information, see "Privileges Needed to Create and Delete
Analytic Workspaces" on page 1-4.

Additional Support for Grouping Ids

In Oraclellg, the following OLAP DML statements have been added or changed to
offer more support for grouping ids:

XXVii

XXViii

s A new GROUPINGID function
= New ROLLUP and GROUPSET keywords in the GROUPINGID command
s New $GID_DEPTH, $GID_LIST, and $GID_TYPE system properties

Increased Support for Explicit Looping

In Oraclellg, there are new looping $LOOP_AGGMAP, $SLOOP_DENSE, and $LOOP_
VAR properties which are used by the OLAP_TABLE SQL function

Additionally, in the limitmap parameter of the OLAP_TABLE SQL function there is
support for a more complex Loop clause and a new Loop optimized clause.

Aggregation Improvements
In Oraclellg, the following changes have been made to enhance aggregation:

= Aggregation by partition. See AGGREGATE command for details

» Clearing variables based on different aggmap objects. See the CLEAR command
for details.

» Checking to see if there are any changes in an aggmap since the last time a
variable was aggregated using that aggmap. See the CHANGEDRELATIONS
function for details.

s Checking to see any value in a variable has changed (or the number of values that
have changed) since the last time a variable was aggregated. See the
CHANGEDVALUES function for details.

» Checking to see if a variable or one or more of its partitions has values. See the
ISEMPTY function for details.

s Identifying the depth of a hierarchy. See the HIERDEPTH command for details.

Support for Analytic Workspace Caching

In Oraclellg, the AW command has been modified to support caching which removes
the time needed to open an analytic workspace for repeated queries

s AW command has new PURGE CACHE keyword.

s AW ATTACH command now uses the cached version of an analytic workspace if
one is available rather than opening a current version.

= AW DETACH command has a new CACHE keyword that specifies that an
analytic workspace that is being detached is considered a candidate for caching.

= AW TRUNCATE command has been improved

Support for Multi-Step Analytic Workspace Build Process

In Oraclellg, the AW command has been modified as follows:

= AW command has new FREEZE and THAW keywords

= AW ATTACH command has a new THAW keyword.

Additionally, the AW function has been modified to include a FROZEN keyword.

Additional Data Types

In Oraclellg, the following OLAP DML data types have been added that correspond
to SQL built-in data types:

= Datetime and interval data types.You can define dimensions and surrogates with
datetime data types. You can define variables, formulas, and programs with both
datetime and interval data types. For more information, see "Datetime and
Interval Data Types" on page 2-8, "Datetime and Interval Expressions” on
page 2-35, and the following OLAP DML statements:

= RAW data type. For more information, see "RAW Data Type" on page 2-16.

= Row identifier data types. more information, see "Row Identifier Data Types" on
page 2-16.:

The addition of these data types impacted the following OLAP DML statements:

CHARTOROWID function
CONVERT function
CURRENT_DATE function
CURRENT_TIMESTAMP function
DATE_FORMAT command
DBTIMEZONE function
DEFINE DIMENSION command
DEFINE VARIABLE command
EXTRACT function

FROM_TZ function
NUMTODSINTERVAL function
NUMTOYMINTERVAL function
LENGTH functions
LOCALTIMESTAMP function
ROUND (datetime) function
ROWIDTOCHAR function
ROWIDTONCHAR function
SESSIONTIMEZONE function
SYS_CONTEXT function
TO_DSINTERVAL function
TO_TIMESTAMP function
TO_TIMESTAMP_TZ function
TO_YMINTERVAL function
TRUNCATE (datetime) function
TZ_OFFSET function (11.0.0.0)

New SQL-Like Functions

In Oraclellg, the following functions, which are based on SQL functions of the same
name, were added to the OLAP DML.

BIN_TO_NUM

INSTR functions

LNNVL

MODULO (based on the SQL MOD function)
NLSSORT

REMAINDER

Additionally, the LOG function was modified so that it corresponds more exactly to its
SQL counterpart.

Support for Materialized Views

Many of the Oracle OLAP features that are new in this release were added so that
analytic workspaces can be deployed as materialized views. Most particularly in the
OLAP DML the following statements which have been added and changed that Oracle

XXiX

OLAP uses to insure that it optimally handles OLAP data cells which correspond to
relational null facts:

s The DEFINE VARIABLE command now has a WITH NULLTRACKING phrase.

s Two new functions, NA2 and NAFLAG, return values that Oracle OLAP uses to
identify how an OLAP data value corresponds to a relational fact.

s The CHGDFN command now includes syntax that adds or removes NA2 bits from
a variable.

Typically, these OLAP DML statements are automatically generated during the
process of creating a materialized view using the Analytic Workspace Manager; you
will not explicitly write DML code that uses these new features. These changes are
documented in this manual so that you can understand the automatically-generated
DML statements.

Nested Composites Are No Longer Supported

In earlier releases of the OLAP DML, when you defined a composite using a DEFINE
COMPOSITE command, you could specify a composite as a base object of another
composite. This functionality was rarely, if ever, used. Beginning, in Oracle 11g, the
base object of a composite can only be a dimension. If you have any nested composites
in an existing analytic workspace, when you convert that analytic workspace into
When you import nested composites from earlier versions into an Oraclellg analytic
workspace, IMPORT (EIF) automatically unnests the composites.

Changes to the SQL OLAP_TABLE Function

OLAP_TABLE is a SQL function that extracts multidimensional data from an analytic
workspace and presents it in the two-dimensional format of a relational table. As
Oracle OLAP is more tightly integrated into Oracle Database in Oraclellg, no longer
need to use a MODEL clause in a SELECT FROM OLAP_TABLE statement to enhance
performance.

See also: Appendix A, "OLAP_TABLE SQL Function"

OLAP DML Statement Changes for Oracle11g

XXX

This section contains listings of the OLAP DML statements that were added, changed,
renamed, or deleted in Oraclellg:

= Statements Added in Oracle 11g
= Statements Deleted in Oracle 11g
s Statements Changed in Oracle 11g

= Statements Renamed in Oracle 11g

Statements Added in Oracle 11g

The following statements have been added to the OLAP DML in Oraclel1g. The
number in parentheses indicates the specific release in which the statement was
added.

$GID_DEPTH system property (11.0.0.0)
$GID_LIST system property (11.0.0.0)
$GID_TYPE system property (11.0.0.0)
$LOOP_AGGMAP system property (11.0.0.0)
$LOOP_DENSE system property (11.0.0.0)

$LOOP_VAR system property (11.0.0.0)
AW FREEZE command (11.0.0.0)

AW PURGE CACHE command (11.0.0.0)
AW THAW command (11.0.0.0)
BIN_TO_NUM function (11.0.0.0)
CHANGEDRELATIONS function (11.0.0.0)
CHANGEDVALUES function (11.0.0.0)
CHARTOROWID function (11.0.0.0)
CURRENT_DATE function (11.0.0.0)
CURRENT_TIMESTAMP function (11.0.0.0)
DATE_FORMAT command (11.0.0.0)
DBTIMEZONE function (11.0.0.0)
EXTRACT function (11.0.0.0)
FROM_TZ function (11.0.0.0)
GROUPINGID function (11.0.0.0)
HIERDEPTH command (11.0.0.0)
INSTR functions (11.0.0.0)

ISEMPTY function (11.0.0.0)

LENGTH functions (11.0.0.0)

LNNVL function (11.0.0.0)
LOCALTIMESTAMP function (11.0.0.0)
NLSSORT function (11.0.0.0)

MODULO function (11.0.0.0)

NA2 function (11.0.0.0)

NAFLAG function (11.0.0.0)
NUMTODSINTERVAL function
NUMTOYMINTERVAL function
PARTITION function (11.0.0.0)
REMAINDER function (11.0.0.0)
ROWIDTOCHAR function (11.0.0.0)
ROWIDTONCHAR function (11.0.0.0)
SESSIONTIMEZONE function (11.0.0.0)
SYS_CONTEXT function (11.0.0.0)
SYSTIMESTAMP function (11.0.0.0)
TO_DSINTERVAL function (11.0.0.0)
TO_TIMESTAMP function (11.0.0.0)
TO_TIMESTAMP_TZ function (11.0.0.0)
TO_YMINTERVAL function (11.0.0.0)
TZ_OFFSET function (11.0.0.0)

Statements Deleted in Oracle 11g
No statements have been deleted from the OLAP DML in Oraclellg.

Statements Changed in Oracle 11g

The following statements have been changed in the OLAP DML in Oraclellg. The
number in parentheses indicates the specific release in which the statement was
added.

AGGREGATE command (11.0.0.0)
AW function (11.0.0.0)

AW ATTACH command (11.0.0.0)
AW DETACH command (11.0.0.0)
AW LIST command (11.0.0.0)

AW TRUNCATE command (11.0.0.0)
CHGDEFN command (11.0.0.0)

XXXi

CLEAR command (11.0.0.0)

CONVERT function (11.0.0.0)

DEFINE COMPOSITE (11.0.0.0)

DEFINE DIMENSION command (11.0.0.0)
DEFINE PARTITION TEMPLATE (11.0.0.0)
DEFINE VARIABLE command (11.0.0.0)
GROUPINGID command (11.0.0.0)

LOG function (11.0.0.0)

OB]J function (11.0.0.0)

Statements Renamed in Oracle 11g
No statements have been renamed in the OLAP DML in Oraclellg.

OLAP DML Statement Changes for Oracle10g

XXXii

This section contains listings of the OLAP DML statements that were added, changed,
renamed, or deleted in Oracle10g:

= Statements Added in Oracle10g
= Statements Deleted in Oracle10g
= Statements Changed in Oraclel0g

= Statements Renamed in Oracle10g

Statements Added in Oracle10g

The following statements were added to the OLAP DML in Oracle10g. The number in
parentheses indicates the specific release in which the statement was added.

$AGGMAP property (10.1.0.0)
$AGGREGATE_FORCECALC property (10.2.0.0)
$AGGREGATE_FORCEORDER property (10.2.0.0)
$AGGREGATE_FROM property (10.1.0.0)
$AGGREGATE_FROMVAR property (10.1.0.0)
$ALLOCMAP property (10.1.0.0)

$COUNTVAR property (10.1.0.0)
$DEFAULT_LANGUAGE property (10.2.0.0)

ACQUIRE command (10.1.0.0)

AGGCOUNT function (10.2.0.0)

AGGMAP command, DROP DIMENSION statement (10.1.0.0)
AGGMAP command, PRECOMPUTE statement (10.2.0.0)
AGGROPS function (10.2.0.0)

ALLOCMAP command, VALUESET statement (10.1.0.0)
ALLOCOPS function (10.2.0.0)

ARCTAN function (10.1.0.0)

ASCII function (10.1.0.0)

AW TRUNCATE command (10.1.0.3)

BITAND function (10.1.0.0)

CHR function (10.1.0.0)

COALESCE function (10.1.0.0)

DECODE function (10.1.0.0)

DEFINE PARTITION TEMPLATE command (10.1.0.0)
DROP DIMENSION statement of the AGGMAP command (10.1.0.0)
EXP function (10.1.0.0)

GREATEST function (10.1.0.0)

INF_STOP_ON_ERROR option (10.1.0.0)
INITCAP function (10.1.0.0)

INSTR functions (INSTR and INSTRB) (10.1.0.0)
LEAST function (10.1.0.0)

LPAD function (10.1.0.0)

LIMIT BASEDIMS command (10.2.0.0)
LOCK_LANGUAGE_DIMS option (10.2.0.0)
LTRIM function (10.1.0.0)

MAXFETCH option (10.1.0.0)

NULLIF function (10.1.0.0)

NVL function (10.1.0.0)

NVL2 function (10.1.0.0)

ONATTACH program (10.1.0.0)
PARTITIONCHECK function (10.1.0.0)
PRECOMPUTE statement in AGGMAP command (10.2.0.0)
RANK_CALLS option (10.2.0.0)

RANK_CELLS option (10.2.0.0)

RANK_SORTS option (10.2.0.0)

RELATION command (10.2.0.0)

RELEASE command (10.1.0.0)

RESYNC command (10.1.0.0)

REVERT command (10.1.0.0)

RPAD function (10.1.0.0)

RTRIM function (10.1.0.0)
SESSION_NLS_LANGUAGE option (10.2.0.0)
SET1 command (10.1.0.0)

SIGN function (10.1.0.0)

SORT function (10.2.0.0)

SQLFETCH function (10.2.0.0)

STATDEPTH function (10.2.0.0)

STATEQUAL function (10.2.0.2)
STATIC_SESSION_LANGUAGE option (10.2.0.0)
SUBSTR functions, SUBSTR and SUBTRB (10.1.0.0)
SUBSTR functions, SUBSTRC, SUBSTR2, and SUBSTR4 (10.2.0.4)
TRANSLATE function (10.2.0.4)

TRIGGER command (10.1.0.0)

TRIGGER function (10.1.0.0)

TRIGGER_DEFINE program (10.1.0.0)
TRIGGER_AFTER_UPDATE program (10.1.0.0)
TRIGGER_BEFORE_UPDATE program (10.1.0.0)
TRIGGERASSIGN command (10.1.0.0)

TRIM function (10.1.0.0)

USETRIGGERS option(10.1.0.0)

VALUESET statement in ALLOCMAP command (10.1.0.0)
WIDTH_BUCKET function (10.1.0.0)
WRAPERRORS option (10.2.0.0)

WRITABLE function (10.2.0.0)

Statements Deleted in Oracle10g

The following statements were deleted from the OLAP DML in Oracle10g. The
number in parentheses indicates the specific release in which the statement was
deleted.

AW ALLOCATE (10.1.0.0)
ROLLUP (10.2.0.0)

XXXxiii

Statements Changed in Oracle10g

The following OLAP DML statements were significantly changed in Oracle10g.
Examples of significant changes are the addition of a new keyword or a change in a
default value. The number in parentheses indicates the last release in which the
statement was significantly changed.

AGGMAPINFO (10.1.0.0)
AGGREGATE command (10.2.0.0)
AGGREGATE function (10.2.0.0)
ARGUMENT (10.1.0.0)

ANY (10.2.0.0)

AVERAGE (10.2.0.0)

AW function (10.2.0.0)

AW ATTACH (10.1.0.0)

CACHE (10.2.0.0)

CHGDEN (10.2.0.0)

CHGDIMS (10.1.0.3)

COUNT (10.2.0.0)

DEFINE COMPOSITE (10.1.0.0)
DEFINE VARIABLE (10.2.0.0)
DEPRDECL (10.2.0.0)
DEPRDECLSW (10.2.0.0)
DEPRSL (10.2.0.0)

DEPRSOYD (10.2.0.0)

EVERY (10.2.0.0)

FINTSCHED (10.2.0.0)
FPMTSCHED (10.2.0.0)
HIERCHECK (10.2.0.2)
LARGEST (10.2.0.0)

LIMIT command (10.2.0.0)
LIMIT function (10.2.0.0)
MAINTAIN ADD SESSION (10.1.0.0)
MAINTAIN ADD TO PARTITION (10.1.0.0)
NONE (10.2.0.0)

OB]J (10.2.0.3)

RANK (10.2.0.0)

RELATION (for aggregation) (10.2.0.0)
SMALLEST (10.2.0.0)

SORT command (10.1.0.3)

SQL (10.1.0.0)

STDDEYV (10.2.0.0)

TALLY (10.2.0.0)

TOTAL (10.2.0.0)

UPDATE (10.1.0.0)

VARIABLE (10.1.0.0)
VALSPERPAGE (10.1.0.0)
VINTSCHED (10.2.0.0)
VPMTSCHED (10.2.0.0)

Statements Renamed in Oracle10g
No OLAP DML statements have been renamed in Oracle10g.

OLAP DML Statement Changes for Oracle9i

This section contains listings of the OLAP DML statement changes in Oracle9i.

XXXiV

s Statements Added in Oracle9i
s Statements Deleted in Oracle9i
s Statements Changed in Oracle9i

s Statements Renamed in Oracle9i

Statements Added in Oracle9i

The following statements were added to the OLAP DML in Oracle9i. The number in
parentheses indicates the specific release in which the statement was added.

ADD_MONTHS (9.0.0.0)
ALLOCATE (9.2.0.0)
ALLOCERRLOGFORMAT (9.2.0.0)
ALLOCERRLOCHEADER (9.2.0.0)
ALLOCMAP (9.2.0.0)

BASEDIM (9.2.0.0)

BASEVAL (9.2.0.0)

CDA (9.2.0.0)

CEIL (9.0.0.0)

CHANGEBYTES (9.0.0.0)

CHGDIMS (9.2.0.0)

CHILDLOCK (9.2.0.0)

COMMIT (9.2.0.0)

DEADLOCK (9.2.0.0)

ERRORLOG (9.2.0.0)

ERRORMASK (9.2.0.0)

EXTBYTES (9.0.0.0)

FETCH (9.2.0.0)

FINDBYTES (9.0.0.0)

FLOOR (9.0.0.0)

GROUPINGID (9.2.0.0)

HIERHEIGHT command (9.2.0.0)

HIERHEIGHT function (9.2.0.0)

INSBYTES (9.0.0.0)

JOINBYTES (9.0.0.0)

LAST_DAY (9.0.0.0)

LIMITMAPINFO (9.2.0.2)

LIMITSTRICT (9.2.0.2)

MAXBYTES (9.0.0.0)

MAXFETCH (9.0.0.0)

MONTHS_BETWEEN (9.0.0.0)

MULTIPATHHIER (9.0.0.0)

NEW_TIME (9.0.0.0)

NEXT_DAY (9.0.0.0)

NLS Options, specifically:
NLS_CALENDAR (9.0.0.0)
NLS_CURRENCY (9.0.0.0)
NLS_DATE_FORMAT (9.0.0.0)
NLS_DATE_LANGUAGE (9.0.0.0)
NLS_DUAL_CURRENCY (9.0.0.0)
NLS_ISO_CURRENCY (9.0.0.0)
NLS_LANG (9.0.0.0)
NLS_LANGUAGE (9.0.0.0)
NLS_NUMERIC_CHARACTERS (9.0.0.0)
NLS_SORT (9.0.0.0)

XXXV

NLS_TERRITORY (9.0.0.0)
NULLIF (9.0.0.0)
POUTFILEUNIT (9.2.0.0)
REMBYTES (9.0.0.0)
REPLBYTES (9.0.0.0)
ROLE (9.0.0.0)
SOURCEVAL (9.2.0.0)
SYSDATE (9.0.0.0)
TO_CHAR (9.0.0.0)
TO_DATE (9.0.0.0)
TO_NCHAR (9.2.0.0)
TO_NUMBER (9.0.0.0)
TRACEFILEUNIT (9.2.0.0)
TRIM (9.0.0.0)

USERID (9.0.0.0)

Statements Deleted in Oracle9j

The following statements were deleted from the OLAP DML in Oracle9i. The number
in parentheses indicates the specific release in which the statement was deleted.

_UPDATEOLDVERS (9.2.0.0)
_XCALONGTIME (9.0.0.0)
_XCARETRIES (9.0.0.0)
_XCASHORTIME (9.0.0.0)
ALLOWQONS (9.2.0.0)
AW ALLOCATE (10.1.0.0)
CACHEHITS (9.2.0.0)
CACHEMISSES (9.2.0.0)
CACHETRIES (9.2.0.0)
CHARSET (9.0.0.0)
CHDIR (9.2.0.0)
CHDRIVE (9.2.0.0)
COMQUERY (9.0.0.0)
COMSET (9.0.0.0)
COMUNIT (9.0.0.0)
CONNECT (9.0.0.0)
DBEXTENDPATH (9.2.0.0)
DBGSESSION (9.2.0.0)
DBREPORT (9.2.0.0)
DBSEARCHPATH (9.2.0.0)
DBTEMPPATH (9.2.0.0)
DEFINE EXTCALL (9.0.0.0)
DGCART (9.2.0.0)

DIR (9.2.0.0)
DISCONNECT (9.0.0.0)
EPRODUCT (9.2.0.0)
ERELEASE (9.2.0.0)
EXECBREAK (9.0.0.0)
EXECSTART (9.0.0.0)
EXECSTATUS (9.0.0.0)
EXECUTE (9.0.0.0)
EXECWAIT (9.0.0.0)
EXTARGS (9.0.0.0)
FETCH (9.0.0.0) -- SNAPI
FILEMODEMASK (9.2.0.0)

XXXVi

IFCOPY (9.2.0.0)
LONGOBJNAMES (9.0.0.0)
MAXFETCH (9.0.0.0)
MKDIR (9.0.0.0)
NAPAGEFREE (9.2.0.0)
ODBC.CONNECTION (9.0.0.0)
ODBC.CONNLIST (9.0.0.0)
ODBC.DISCONN (9.0.0.0)
ODBC.SOURCE (9.0.0.0)
ODBC.SOURCELIST (9.0.0.0)
PGCACHEHITS (9.2.0.0)
PGCACHEMISSES (9.2.0.0)
PAGEPAUSE (9.2.0.0)
PAGEPROMPT (9.2.0.0)
PAUSE (9.2.0.0)

RETRIEVE (9.0.0.0)

RMDIR (9.0.0.0)
SESSIONQUERY (9.0.0.0)
SHARESESSION (9.0.0.0)
SHELL (9.0.0.0)

SQL CONNECT (9.0.0.0)
SQL DISCONNECT (9.0.0.0)
SQL.DMBS (9.0.0.0)
SQL.DMBSLIST (9.0.0.0)
STRIP (9.2.0.0)
THREADEXTCALL (9.0.0.0)
TRACE (9.2.0.0)
TRANSLATE (9.0.0.0)
TRANSPORT (9.0.0.0)
WATCH (9.2.0.0)

XABORT (9.0.0.0)
XCAPORTNUMBER (9.0.0.0)
XCLOSE (9.0.0.0)

XOPEN (9.0.0.0)

Statements Changed in Oracle9i

The following OLAP DML statements were significantly changed in Oracle9i and have
not changed since then. Examples of significant changes are the addition of a new
keyword or a change in a default value. The number in parentheses indicates the last
release in which the statement was significantly changed. See also "Statements
Renamed in Oracle9i" on page -xxxviii for a list of renamed statements.

CONVERT (9.2.0.0)
DECIMALCHAR (9.2.0.0)
EXPORT (9.2.0.0)
FCQUERY (9.2.0.0)
FCSET (9.2.0.0)
FILEOPEN (9.0.0.0)
FILEQUERY (9.0.0.0)
FILEREAD (9.2.0.0)
HIERHEIGHT command (9.2.0.0)
IMPORT (9.0.0.0)

INFILE (9.0.0.0)

LAG (9.2.0.2)
LAGABSPCT (9.2.0.2)

XXXVii

XXXViii

LAGDIF (9.2.0.2)

LAGPCT (9.2.0.2)

LEAD (9.2.0.2)

MODEL (9.2.0.2)
MOVINGAVERAGE (9.2.0.2)
MOVINGMAX (9.2.0.2)
MOVINGMIN (9.2.0.2)
MOVINGTOTAL (9.2.0.2)
NOSPELL (9.2.0.0)

OUTFILE (9.0.0.0)
PROGRAM (9.2.0.0)
PROPERTY (9.0.0.0)
RECURSIVE (9.0.0.0)
RELATION (for aggregation) (9.2.0.2)
RELATION (for allocation) (9.2.0.2)
ROUND (9.0.0.0)

SYSDATE (9.2.0.0)

SYSINFO (9.2.0.2)

SYSTEM (9.2.0.0)

TALLY (10.2.0.0)
THOUSANDSCHAR (9.2.0.0)
YESSPELL (9.2.0.0)

Statements Renamed in Oracle9i

The following OLAP DML statements were renamed in Oracle9i. The number in
parentheses indicates the specific release in which the statement was renamed.

DATABASE command to AW command (9.2.0.0)
DATABASE function to AW function (9.2.0.0)
DBDESCRIBE to AWDESCRIBE (9.2.0.0)
DBWAITTIME to AWWAITTIME (9.2.0.0)
DEFAULTDBFSIZE t o DEFAULTAWSEGSIZE (9.2.0.0)
OESEIFVERSION to EIFVERSION (9.2.0.0)

1

OLAP DML Basic Concepts

This chapter contains the following topics:

= Whatis the OLAP DML?

» How to Execute OLAP DML Statements

= OLAP DML as a Definition Language

= Introduction to Analytic Workspaces

= About OLAP DML Data Objects

= OLAP DML Statements Apply to All of the Values of a Data Object

What is the OLAP DML?

The OLAP DML is the original language for defining Oracle OLAP objects and
manipulating Oracle OLAP data.

The OLAP DML defines, populates, and manipulates the multidimension data that is
stored in an analytic workspace.

The OLAP DML works directly against this data; it does not make, need, or update
any relational views of the analytic workspace.

The OLAP DML is a multidimensional language. The data objects that you define
using the OLAP DML are multidimensional objects. When you use OLAP DML
statements to perform operations against these multidimensional data objects, those
operations apply all at once to entire set of values contained by these objects.

What You Can Do Using the OLAP DML

Using the OLAP DML, application developers can create programs that analyze
analytic workspace data without using SQL, Java, or the Oracle OLAP tools,.

You can use the OLAP DML to:

1. Create an analytic workspace.

2. Define the multidimensional data objects in an analytic workspace.
3. Define calculation objects and programs that will analyze the data.
4

Populate and analyze the data in the multidimensional data objects.

OLAP DML Basic Concepts 1-1

What is the OLAP DML?

Basic Syntactic Units of the OLAP DML

The basic syntactic units of the OLAP DML are options, properties, commands,
functions, and programs. All of these are sometimes collectively referred to as OLAP
DML statements.

OLAP DML Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read /write options for which you can specify values. Read /write options have default
values.

You cannot define your own options as part of an analytic workspace. However, you
can use any of the options that are defined as part of the Oracle OLAP DML. The
options are documented as reference topics in Chapter 6, "OLAP DML Options".

OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. These system properties are documented as
reference topics in Chapter 5, "OLAP DML Properties".

OLAP DML Functions

OLAP functions work in much the same way as commands in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All
of the Values of a Data Object" on page 1-19.

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information.Additionally, you can
augment the functionality of the OLAP DML by writing an OLAP DML program for
use as a function.

The built-in OLAP DML functions are documented as reference topics in Chapter 7,
"OLAP DML Functions: A - K" and Chapter 8, "OLAP DML Functions: L - Z".

OLAP DML Commands

OLAP DML commands work in much the same way as commands in other
programming languages—the one exception is the looping nature of OLAP DML
commands as discussed in "OLAP DML Statements Apply to All of the Values of a
Data Object" on page 1-19.

Many OLAP DML commands perform complex actions. Some of these commands are
data definition commands like the AW command which you use to create an analytic
workspace and the DEFINE command which you use to define objects within an
analytic workspace. Other OLAP DML commands are data manipulation commands.
Some commands are recognized by Oracle OLAP as events that can trigger the
execution of OLAP DML programs. (See "Trigger Programs" on page 4-16 for more
information.) Additionally, you can augment the functionality of the OLAP DML by
writing an OLAP DML program for use as a command.

1-2 Oracle OLAP DML Reference

Introduction to Analytic Workspaces

The built-in OLAP DML commands are documented as reference topics in Chapter 8,
Chapter 9, "OLAP DML Commands: A-G" and Chapter 10, "OLAP DML Commands:
H-Z".

OLAP DML Programs

A number of OLAP DML programs are provided as part of the OLAP DML. Some of
these programs produce reports that you can print or see online. Other programs
provided as part of the OLAP DML perform standard calculations of use to
programmers and database administrators. For more information on the programs
delivered with the OLAP DML, see "Programs Provided With the OLAP DML" on
page 4-1.

You can also write your own OLAP DML programs to augment the functionality of
the OLAP DML as described in Chapter 4, "OLAP DML Programs".

How to Execute OLAP DML Statements

The simplest way to execute OLAP DML statement is by using the OLAP Worksheet.
The OLAP Worksheet is delivered as part of the Analytic Workspace Manager. To
open the OLAP worksheet from within the Analytic Workspace Manager:

1. Connect to an Oracle Database.

2. Select a Schema.

3. Select Tools, then OLAP Worksheet.

You can also execute OLAP DML statements from with SQL and Java:

= Using the PL/SQL DBMS_AW package you can execute OLAP DML statements as
described in "Embedding OLAP DML in SQL Statements" on page B-3.

s Using SPL_Executor delivered as part of Oracle OLAP Java API you can embed
OLAP DML statements within a Java program. See Oracle OLAP Java API Reference
for more information.

OLAP DML as a Definition Language

You use OLAP DML, itself, to create definitions of analytic workspaces and analytic
workspace objects. You can use the AW command to create an analytic workspace and
use the DEFINE command to define analytic workspace objects.

The definitions created using the OLAP DML are only those definitions needed to
manipulate analytic workspace objects using the OLAP DML. In order to use SQL
against analytic objects created using only the OLAP DML, you must create a
relational view of the object using the OLAP_TABLE SQL function documented in
Appendix A, "OLAP_TABLE SQL Function".

See also: '"Defining a New Analytic Workspace" on page 1-5,
"Viewing Information About an Analytic Workspace" on page 1-5,
"About OLAP DML Data Objects" on page 1-6, and Chapter 3,
"Formulas, Models, Aggregations, and Allocations".

Introduction to Analytic Workspaces

Conceptually, an analytic workspace is that portion of Oracle Database that is used by
Oracle OLAP to perform OLAP analysis. Physically, an analytic workspace is stored in
the Database as LOBs in a table named AWS workspacename.

OLAP DML Basic Concepts 1-3

Introduction to Analytic Workspaces

An analytic workspace also contains the following types of objects and the OLAP
DML definitions for these objects:

= Multidimensional data objects that contain the data that you want to analyze and
the results of the analysis.

= Calculation objects (that is, formulas, models, aggregations, and allocations) that
contain OLAP DML statements that specify the analysis that you want.

= OLAP DML programs that perform complex analysis.

See also: "About OLAP DML Data Objects" on page 1-6, Chapter 3,
"Formulas, Models, Aggregations, and Allocations" and Chapter 4,
"OLAP DML Programs"

Privileges Needed to Create and Delete Analytic Workspaces

Since an analytic workspace is physically stored as a table in an Oracle Database, you
need SQL GRANT privileges to work with an analytic workspace. The privileges you
need vary depending on whether the analytic workspace is in a schema that you own
or in a schema that you do not own:

= When you are the owner of the schema, you only need SQL GRANT privileges
when you want to create an analytic workspace or attach an analytic workspace.
These privileges you need to perform these tasks and the OLAP DML commands
that relate to these tasks are outlined in the following table.

Task OLAP DML Command SQL GRANT Privileges Needed
Create an analytic workspace AW CREATE CREATE TABLE

Attach an analytic workspace AW ATTACH with ASOF ~ FLASHBACK TABLE

AS OF keyword

= When you are not the owner of the schema, you need SQL GRANT privileges to
create an analytic workspace, to attach an analytic workspace in ASOF mode, to
drop an analytic workspace, and to truncate an analytic workspace as shown in

the following table.

Task OLAP DML Command SQL GRANT Privileges Needed

Create an analytic workspace =~ AW CREATE CREATE ANY TABLE, SELECT
ANY TABLE, UPDATE ANY
TABLE

Attach an analytic workspace AW ATTACH with ASOF FLASHBACK ANY TABLE

AS OF keyword

Delete an analytic workspace =~ AW DELETE DROP ANY TABLE

Truncate an analytic AW TRUNCATE TRUNCATE ANY TABLE

workspace

Note that Oracle Database does not turn on roles when you are running a named
PL/SQL procedure. In this case, the you must have the CREATE TABLE privilege
directly.

1-4 Oracle OLAP DML Reference

Introduction to Analytic Workspaces

Defining a New Analytic Workspace

You can use the OLAP DML to create analytic workspaces. To create a new analytic
workspace, issue an AW command with the CREATE keyword, followed by an
UPDATE statement and a COMMIT statement.

Working with Previously-Defined Analytic Workspaces

Before you can work with a previously-defined analytic workspace, you must first
attach in by issuing an AW ATTACH statement. You can attach an analytic workspace
in any of the following attachment modes:

Read-only—Users can make private changes to the data in the workspace to
perform what-if analysis but cannot commit any of these changes.

Read/write access mode—Only one user can have an analytic workspace open in
read/write at a time. The user has to commit either all or none of the changes
made to the workspace.

Read/write exclusive access mode—The read/write exclusive attach mode is not
compatible with any other access modes. A user cannot attach an analytic
workspace in read /write exclusive mode when another user has it attached in any
mode. Only one user can have an analytic workspace open in read /write exclusive
at a time. The user has to commit either all or none of the changes made to the
workspace.

Multiwriter access mode—an analytic workspace that is attached in multiwriter
mode can be access simultaneously by several sessions. In multiwriter mode, users
can simultaneously modify the same analytic workspace in a controlled manner
by specifying specify the attachment mode (read-only or read /write) for
individual variables, relations, valuesets, and dimensions.

For more information on the various attachment modes, see the syntax and notes for
the AW ATTACH statement.

Viewing Information About an Analytic Workspace

Table 1-1, " Statements for Viewing Information About an Analytic Workspace" lists
the OLAP DML statements that you can use to view information about an analytic
workspace

Table 1-1 Statements for Viewing Information About an Analytic Workspace

Statement Description

AW function Returns information about currently attached workspaces.

AWDESCRIBE program Sends information about the current analytic workspace to the

current outfile.

EXISTS function Returns a value that indicates whether an object is defined in any
attached workspace.

LISTBY program Lists all objects in an analytic workspace that are dimensioned by
or related to one or more specified dimensions or composites.

LISTNAMES program Lists the names of the objects in an analytic workspace.

OB]J function Returns information about an analytic workspace object.

OBJLIST function Lists the objects that are in one or more workspaces that you
specify.

DESCRIBE command Lists the simple definition of one or more workspace objects.

OLAP DML Basic Concepts 1-5

About OLAP DML Data Objects

Table 1-1 (Cont.) Statements for Viewing Information About an Analytic Workspace

Statement Description

FULLDSC program Lists the complete definition of one or more workspace objects,
including the properties and triggers of the object(s).

About OLAP DML Data Objects

A relational database typically stores data values in tables that represent third normal
form data. In this type of implementation, the values of key columns of a relational
database table are unique values of a single level of data. For example, at one level in
the relational database you might have a table with a key column named City that
contains the names of cities and at the next highest level in the database a table with a
key column named state that contains the names of states, and so on and so on.

In an analytic workspace the objects that hold the data that you want to analyze are
arrays called variables. The keys into variables are stored in other objects which act as
the dimensions of the variables. To support performant OLAP analysis, values from
multiple levels are stored within a single dimension called a hierarchical dimension.
For example, an analytic workspace might have a hierarchical dimension named geog
that had as values the names of both cities and states.

The objects that store values that relate values of two or more dimensions are called
relations. Thus the one-to-many relationship between values of different levels in a
hierarchical dimension are stored in an analytic workspace. For example, the
relationship between the city and state values in a hierarchical geog dimension would
be stored in an analytic workspace relation typically called a parentrel relation. (See
"Parentrel Relation" on page 1-11 for more information.)

Additional analytic workspace objects are typically defined to keep additional
information about the hierarchical dimension. Several important OLAP DML
commands and functions (such as the LIMIT command) presume the existences of
these objects in your analytic workspace as the name of these objects is one argument
in the syntax of the statement.

See also: '"Types of OLAP DML Data Objects" on page 1-6
and"Objects that Support the Use of Hierarchical Dimensions" on
page 1-9.

Types of OLAP DML Data Objects

Introduction

Variables

The most important data object is the variable. A variable is an object that stores data.
All of the data in a variable must have the same data type. Typically, you use variables
to contain data values that quantify a particular aspect of your business For example,
your business might have several categories of transactions (measured in dollars,
units, percentages, and so on) and each category is stored in its own variable. For
example, you might record sales data in dollars (a sales variable) and units (a units
variable).

Since the OLAP DML is a multidimensional programming language, variables are
multidimensional and correspond to what other OLAP languages sometimes call
measures. Conceptually, you can think of a variable with two dimensions as a table, a
variable with three dimensions as a cube, and so on. Physically, variables are stored as

1-6 Oracle OLAP DML Reference

About OLAP DML Data Objects

multidimensional arrays with the actual structure of the arrays determined by the
object by which the variable is dimensioned.

The scope and permanence of a variable can vary. A permanent variable is a variable
for which both the variable values and definitions are stored in an analytic workspace.
Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded. You
can also define variables in programs.

You can define scalar variables (and frequently do in programs), but most variables
that you define using the OLAP DML are dimensioned variables. Dimensioned
variables are arrays that hold more than one value. The indexes or dimensions of the
variable provide the organization for the variable. The values of the dimension are
similar to keys in a relational table; in that they uniquely identify a data value. For
example, if you have sales variable that is dimensioned by time, geography, and
product dimensions, then each combination of the values of time, geography, and
product identifies a value in sales. (Note that the indexes of variable s are not actually
the values of the dimension, but, instead, are the INTEGER positions of the values in
the dimension.)

Variables can be dimensioned by either flat or hierarchical dimensions. A flat
dimension exists when the values within a dimension are all at the same. level; no
value is the child or parent of another value. A hierarchical dimension exists when the
values with a single dimension are in a one-to-many (parent-to-child) relationship
with each other.

A hierarchical dimension is a means of organizing and structuring this type of data
within a single dimension. You can then use it to dimension a variable that contains
data for all the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.You
use a hierarchical dimension to define a variable that contains data of varying levels of
aggregation within a single variable. This type of storage affords a quicker response
time for users who want to view the data, particularly when the variable is large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the variable
that correspond to the lower level dimension values. For example, in a sales variable
that is defined with a hierarchical dimension representing time, the cells of the
variable for each quarter might represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add variable
data to the lowest level of the hierarchy, and then calculate or aggregate the values for
the higher levels of the hierarchy. Conversely, you can distribute or allocate data from
higher levels to lower levels of the hierarchy.

See: DEFINE VARIABLE

Objects that Can Dimension Variables

How variable and relation data is actually structured and stored is dependent on what
type of object you use to dimension the variable or relation and the order in which
those objects appear in the definition of the variable or relation Variables can be
dimensioned by simple dimensions, concat dimensions, composites, partition
templates, and alias dimensions. The object that by which you choose to dimension a
variable determines how the data of the variable is stored.

See also: '"Objects that Support the Use of Hierarchical Dimensions"
on page 1-9

OLAP DML Basic Concepts 1-7

About OLAP DML Data Objects

Simple Dimensions

The members of a simple dimension are data values that all have the same data type.
When a variable is dimensioned by a simple dimension, there is one cell in the variable
for every member of the dimension. When there is a dimension member for which the
variable has no data, Oracle OLAP stores NA values in the variable for that empty
value. (Note that if storing these NA values would result in a full page of NA values
that Oracle OLAP does not actually store the values.) Oracle OLAP does not store NA
values when there is a range.)

See: DEFINE DIMENSION (simple)

Concat Dimensions

You define concat dimensions over previously-defined simple dimensions or conjoint
dimensions. Consequently, the base dimensions of a concat dimension can be of
different data types. You can represent a hierarchy with a concat dimension that is has
two or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in
relational tables and thereby promote more efficient loading of data from the relational
structures into the analytic workspace structures.

See: DEFINE DIMENSION CONCAT

Composites

You define composites over previously-defined dimensions or other composites.
Conceptually, you can think of a composite consisting of two structures:

s The composite object itself. The composite contains the dimension-value
combinations (that is, a composite tuples) that Oracle OLAP uses to determine the
structure of any variables dimensioned by the composite.

= Anindex between the composite values and its base dimension values.

For a variable that is dimensioned by composite, Oracle OLAP does not create a cell
for every value in the base dimensions as it would if the variable was dimensioned by
a simple dimension. Instead, it creates array elements (that is, variable cells) only for
those dimension values that are stored in the tuples of the composite; Data for the
variable is stored in order, cell by cell, for each tuple in the composite. From the
perspective of data storage, each combination of base dimension values in a composite
is treated like the value of a regular dimension. This means that when you define a
variable with one regular dimension and one composite, the data for the variable is
stored as though it was a two-dimensional variable. Using composites to reduce the
number of elements created for a variable results in more efficient data storage.

See: DEFINE COMPOSITE

Partition Template

You define a partition template over previously-defined dimensions or composites. A
partition template is a specification for the partitions of a partitioned variable. A
partitioned variable is stored as multiple rows in the relational table of LOBs that is the
analytic workspace—each partition is a row in the table.

See: DEFINE PARTITION TEMPLATE

1-8 Oracle OLAP DML Reference

About OLAP DML Data Objects

Alias Dimension

An alias dimension is merely an alias for a simple dimension. An alias dimension has
the same type and values as its base dimension. Typically, you define an alias
dimension when you want to dimension a variable by the same dimension twice.

See: DEFINE DIMENSION ALIASOF

Relations

A relation is an object that establishes a correspondence between the values of a given
dimension and the values of that same dimension or other dimensions in the analytic
workspace. Relations are dimensioned arrays. Each cell in a relation holds the index of
the value of a dimension. You can define relations between two or more dimensions,
multiple relations between a set of dimensions, or a dimension with itself (a
self-relation).

Most frequently, a relation is a self-relation for a hierarchical dimension. By creating a
relation between values in a dimension that participate in a one-to-many
(parent-to-child) relationship, you can organize your data by the child values and view
aggregates of data by the parent values. For example, you can create a geog . parent
relation for a geography dimension to define the relationships between the city and
state values in geography. In this way you can organize the data by city and view the
aggregates of data by state.

See also: DEFINE RELATION

Valueset and Surrogate Objects

The OLAP DML provides the following special data objects that you use not when you
are defining your variables, but instead, when you are querying them,

Valueset Objects

A valueset is a list of dimension values for one or more previously-defined
dimensions. You use a valueset to save dimension status lists across sessions.

See: DEFINE VALUESET

Surrogates

A dimension surrogate is an alternative set of values for a previously-defined
dimension. You cannot dimension a variable by a surrogate, but you can use a
surrogate rather than a dimension in a model, in a LIMIT command, in a qualified
data reference, or in data loading with statements such as FILEREAD, FILEVIEW, SQL
FETCH, and SQL IMPORT.

See: DEFINE SURROGATE

Objects that Support the Use of Hierarchical Dimensions

Variables are typically dimensioned by hierarchical objects. For example, you might
have a sales variable that is dimensioned by geog, time, and product. The geog
dimension might have two hierarchies (one for political divisions and another for sales
regions) and each of these hierarchies could have several levels with the top level of
the political geography hierarchy being All Country and the top level of the sales
geography hierarchy being All Regions. Example 1-1, "Defining and Populating a
Hierarchical Dimension Named geog" on page 1-10 illustrates defining and populating
this type of hierarchical geography dimension.

OLAP DML Basic Concepts 1-9

About OLAP DML Data Objects

Example 1-1 Defining and Populating a Hierarchical Dimension Named geog

DEFINE geog DIMENSION TEXT

LD A dimension with two hierarchies for geography

"Populate the dimension with City, State, Region, and Country values

MAINTAIN geog ADD 'Boston' 'Springfield' 'Hartford' 'Mansfield' 'Montreal' 'Walla
Walla' 'Portland' 'Oakland' 'San Diego' 'MA' 'CT' 'WA' 'CA' 'Quebec' 'East' 'West'
'All Regions' 'USA' 'Canada' 'All Country'

"Display the values in geog

REPORT geog

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

Typically, after you define a hierarchical dimension, you define the following objects
for that dimension:

= hierlist dimension that lists the names of the hierarchies for the dimension. See
"Hierlist Dimension" on page 1-11 for more information and an example.

= parentrel relation that defines the hierarchies. A dimension is only a hierarchical
dimension when it has a parentrel defined for it. See "Parentrel Relation" on
page 1-11 for more information and an example.

= levellist relation that lists the names of all of the levels of all of the hierarchies. See
"Levellist Dimension" on page 1-12 for more information and an example.

= hierlevels valueset that is the values of the levels of each hierarchy. See "Hierlevels
Valueset" on page 1-13 for more information and an example.

= inhier valueset or variable that identifies the values of each hierarchy. See "Inhier
Valueset or Variable" on page 1-13 for more information and examples.

= levelrel relation that relates each value of the hierarchical dimension to its level in
the hierarchy. See "Levelrel Relation" on page 1-15 for more information and an
example.

» familyrel relation that is each hierarchical dimension value and its related values.
See "Familyrel Relation" on page 1-17 for more information and an example.

1-10 Oracle OLAP DML Reference

About OLAP DML Data Objects

= gidrel relation that is the grouping ids of each value within each hierarchy. See
"Gidrel Relation" on page 1-18 for more information and an example.

Hierlist Dimension

A hierlist dimension is a TEXT dimension in the analytic workspace that has as values
the names of the hierarchies of a hierarchical dimension. For example, if the company
has a different calendar and fiscal year, the time dimension for that company would
have two hierarchies: one for calendar and another for year. The hierlist dimension
that supported that time hierarchy would have two values: Calendar and Fiscal.

For consistency's sake, analytic workspaces include a hierlist dimension for every
hierarchical dimension -- even when that hierarchical dimension has only one
hierarchy.

Example 1-2, "Defining and Populating a hierlist Dimension Named geog_hierlist" on
page 1-11 illustrates defining and populating this type of dimension.

Example 1-2 Defining and Populating a hierlist Dimension Named geog_ hierlist

DEFINE geog_hierlist DIMENSION TEXT

LD List of Hierarchies for geog dimension

"Populate the geog_hierlist dimension

MAINTAIN geog_hierlist ADD 'Political_Geog' 'Sales_Geog'
"Display the values of the geog_hierlist dimension
REPORT geog_hierlist

GEOG_HIERLIST

Political_Geog
Sales_Geog

Parentrel Relation

A parentrel relation is a relation between the hierarchical dimension and itself (a
self-relation) and the hierlist dimension. It identifies the parent of each dimension
member within a hierarchy.

Example 1-3, "Defining and Populating a parentrel Relation named geog_parentrel” on
page 1-11 illustrates defining and populating this type of relation.

Example 1-3 Defining and Populating a parentrel Relation named geog_parentrel

"Define the relation

DEFINE geog_parentrel RELATION geog <geog geog_hierlist>

LD Self-relation for geog showing parents of each value

"Populate each cell in the relation "with the parent of the geog value
"This example using assignment statement with QDRs to do that

geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Boston') = 'MA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Hartford') = 'CT'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Springfield') = 'MA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Mansfield') = 'CT'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Montreal') = 'Quebec'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Walla Walla') = 'WA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Portland') = 'WA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Oakland') = 'CA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'San Diego') = 'CA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'CT') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'MA') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'WA') = 'West'

OLAP DML Basic Concepts 1-11

About OLAP DML Data Objects

geog_parentrel (geog_hierlist 'Sales_Geog' geog 'CA') = 'West'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Quebec') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'East') = 'All Regions'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'West') = 'All Regions'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Boston') = 'MA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Hartford') = 'CT'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Springfield') = 'MA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Mansfield') = 'CT'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Montreal') = 'Quebec'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Walla Walla') = 'WA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Portland') = 'WA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Oakland') = 'CA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'San Diego') = 'CA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'CT') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'MA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'WA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'CA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Quebec') = 'Canada'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'USA') = 'All Country'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Canada') = 'All Country'
"Display the values of geog_parentrel
REPORT DOWN geog W 20 geog_parentrel

————————————— GEOG_PARENTREL--------=-=----

—————————————— GEOG_HIERLIST------=--===----
GEOG Political_Geog Sales_Geog
Boston MA MA
Springfield MA MA
Hartford CT CT
Mansfield CT CT
Montreal Quebec Quebec
Walla Walla WA WA
Portland WA WA
Oakland CA CA
San Diego CA CA
MA USA East
CT USA East
WA USA West
CA USA West
Quebec Canada East
East NA All Regions
West NA All Regions
All Regions NA NA
USA All Country NA
Canada All Country NA
All Country NA NA

Levellist Dimension

A levellist dimension is a TEXT dimension that has as values the names all of the

levels of the hierarchies of a hierarchical dimension.

Example 14, "Defining and Populating a levellist Dimension Named geog_levellist"

on page 1-12 illustrates defining and populating this type of dimension.

Example 1-4 Defining and Populating a levellist Dimension Named geog_levellist

DEFINE geog_levellist DIMENSION TEXT
LD List of levels used by hierarchies of the geog dimension

1-12 Oracle OLAP DML Reference

About OLAP DML Data Objects

"Populate the geog_levellist dimension with the names of the levels of both the
"Political_Geog and Sales_Geog hierarchies

MAINTAIN geog levellist ADD 'All Country' 'Country' 'All Regions' 'Region'
MAINTAIN geog_levellist ADD 'State-Prov' 'City'

"Display the values of the geog_levellist dimension

REPORT geog_levellist

GEOG_LEVELLIST

All Country
Country

All Regions
Region
State-Prov
City

Hierlevels Valueset

A hierlevels valueset is those values of the hierlevels dimension (typically ordered
from bottom to top) that are included in each hierarchy of the hierarchical dimension.

Example 1-5, "Defining and Populating a hierlevels Valueset named geog_hierlevels"
on page 1-13 illustrates defining and populating this type of valueset.

Example 1-5 Defining and Populating a hierlevels Valueset named geog_hierlevels

DEFINE geog_hierlevels VALUESET geog levellist <geog_hierlist>
"Using LIMIT populate the valueset with the appropriate values for each hierarchy

LIMIT geog_hierlevels TO ALL
LIMIT geog_hierlevels (geog_hierlist 'Political_Geog') TO 'City' 'State-Prov' 'Country' 'All Country'
LIMIT geog_hierlevels (geog_hierlist 'Sales_Geog') TO 'City' 'State-Prov' 'Region' 'All Regions'

"Display the values in the valueset
REPORT W 22 geog_hierlevels

GEOG_HIERLIST GEOG_HIERLEVELS

Political_Geog City
State-Prov
Country
All Country
Sales_Geog City
State-Prov
Region
All Regions

Inhier Valueset or Variable

An inhier valueset is those values of the inhier dimension that are in each hierarchy.
Example 1-6, "Defining and Populating an inhier Valueset Named geog_inhier" on
page 1-14 illustrates defining and populating this type of valueset.

An inhier variable is a BOOLEAN variable that is dimensioned by the hierarchical
dimension and the hierlist dimension. For each hierarchy, it has a TRUE value for each
dimension value that is in that hierarchy. Example 1-7, "Defining and Populating an
inhier Variable Named geog_inhiervar" on page 1-14 illustrates defining and
populating this type of valueset

OLAP DML Basic Concepts 1-13

About OLAP DML Data Objects

Example 1-6 Defining and Populating an inhier Valueset Named geog_inhier

"Define the valueset

DEFINE geog_inhier VALUESET geog <geog_hierlist>

"Using LIMIT commands, populate the valueset

LIMIT geog_inhier (geog_hierlist 'Political_Geog') REMOVE 'East' 'West' 'All Regions'
LIMIT geog_inhier (geog_hierlist 'Sales_Geog') REMOVE 'Canada' 'USA' 'All Country'
"Display the values in the valueset

REPORT W 20 geog_inhier

GEOG_HIERLIST

GEOG_INHIER

Political_Geog Boston

Sales_Geog

Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

USA

Canada

All Country
Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions

Example 1-7 Defining and Populating an inhier Variable Named geog _inhiervar

DEFINE geog_inhiervar VARIABLE BOOLEAN <geog geog_hierlist>

"Using LIMIT commands and assignment statements, populate
" the variable

LIMIT geog_hierlist TO ALL

LIMIT geog_hierlist TO 'Political_Geog'

LIMIT geog TO 'East' 'West' 'All Regions'

geog_inhiervar = FALSE

LIMIT geog COMPLEMENT

1-14 Oracle OLAP DML Reference

About OLAP DML Data Objects

geog_inhiervar =
LIMIT geog_hierlist TO
LIMIT geog_hierlist TO

TRUE

LIMIT geog TO ALL

LIMIT geog TO 'Canada’
geog_inhiervar =

FALSE

LIMIT geog COMPLEMENT

geog_inhiervar =

TRUE

LIMIT geog TO ALL

LIMIT geog_hierlist TO

"Display the values of

ALL

ALL
'Sales_Geog'
'USA' 'All Country'

the variable

REPORT DOWN geog geog_inhiervar

---GEOG_INHIERVAR----
----GEOG_HIERLIST----

Political_

Geog

Sales_Geog

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

yes
yes
yes

Levelrel Relation

A levelrel relation is a relation between the levellist and hierlist dimensions that
records the level for each member of the hierarchical dimension

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

no

no

no

Example 1-8, "Defining and Populating a levelrel Relation named geog_levelrel” on
page 1-15 illustrates defining and populating this type of relation.

Example 1-8 Defining and Populating a levelrel Relation named geog_levelrel

"Define the relation
DEFINE geog_levelrel RELATION geog_levellist <geog geog_hierlist>

LD Level of each dimension member for geog

"Populate the
"This example
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel

relation

uses assignment statements with QDRs to populate

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

'Sales_Geog'
'Sales_Geog'
'Sales_Geog'
'Sales_Geog'
'Sales_Geog'

geog
geog
geog
geog
geog

'Boston') = 'City’
'Hartford') = 'City’'
'Springfield') = 'City’
'Mansfield') = 'City’
'Montreal') = 'City’

OLAP DML Basic Concepts 1-15

About OLAP DML Data Objects

geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Display the values
REPORT DOWN geog W 20 geog_levelrel

'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog
'Sales_Geog' geog

'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'
'Political_Geog'

'Walla Walla') = 'City'’

'Portland') = 'City’'

'Oakland') = 'City’

'San Diego') = 'City’

'CT') = 'State-Prov'

'MA') = 'State-Prov'

'WA') = 'State-Prov'

'"CA') = 'State-Prov'

'Quebec') = 'State-Prov'

'East') = 'Region'

'West') = 'Region'

'All Regions') = 'All Regions'
geog 'Boston') = 'City'
geog 'Hartford') = 'City’
geog 'Springfield') = 'City’
geog 'Mansfield') = 'City’
geog 'Montreal') = 'City’
geog 'Walla Walla') = 'City’
geog 'Portland') = 'City’
geog 'Oakland') = 'City’
geog 'San Diego') = 'City'
geog 'CT') = 'State-Prov'
geog 'MA') = 'State-Prov'
geog 'WA') = 'State-Prov'

geog 'CA') = 'State-Prov'

geog 'Quebec') = 'State-Prov'

geog 'USA') = 'Country'
geog 'Canada') = 'Country'

geog 'All Country') = 'All Country'

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

City

City

City

City

City

City

City

City

City
State-Prov
State-Prov
State-Prov
State-Prov
State-Prov
NA

NA

NA

Country
Country
All Country

State-Prov
State-Prov
State-Prov
State-Prov
State-Prov

Region
Region

All Region
NA

NA

NA

1-16 Oracle OLAP DML Reference

S

About OLAP DML Data Objects

Familyrel Relation

The familyrel relation is a relation between the hierarchical dimension and the levellist
and hierlist dimensions that provides the full parentage of each dimension member in
the hierarchy.

Example 1-9, "Defining and Populating a familyrel Relation named geog_familyrel" on
page 1-17 illustrates defining and populating this type of relation.

Example 1-9 Defining and Populating a familyrel Relation named geog_familyrel

"Define the relation
DEFINE geog_familyrel RELATION geog <geog geog_ levellist geog_hierlist>
LD FEATURES Family/Ancestry structure for the geog dimension

"Populate the relation using the HIERHEIGHT command
HIERHEIGHT geog_parentrel INTO geog_familyrel USING geog_levelrel

"Display the values of the familyrel relation

"First the values for the Political_Geog hierarchy are displayed
"Then the values for the Sales_Geog hierarchy

REPORT DOWN geog W 12 geog_familyrel

GEOG_HIERLIST: Political_Geog

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

GEOG_HIERLIST:

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla

All Country Country All Regions Region State-Prov City
All Country USA NA NA MA Boston
All Country USA NA NA MA Springfield
All Country USA NA NA CT Hartford
All Country USA NA NA CT Mansfield
All Country Canada NA NA Quebec Montreal
All Country USA NA NA WA Walla Walla
All Country USA NA NA WA Portland
All Country USA NA NA CcA Oakland
All Country USA NA NA CA San Diego
All Country USA NA NA MA NA
All Country USA NA NA CT NA
All Country USA NA NA WA NA
All Country USA NA NA CA NA
All Canada NA NA Quebec NA
Countries
NA NA NA NA NA NA

NA NA NA NA NA NA

NA NA NA NA NA NA

All Country USA NA NA NA NA

All Country Canada NA NA NA NA

All Country NA NA NA NA NA
Sales_Geog

——————————————————————————————— GEOG_FAMILYREL-=========— == ——m—m—m——————— —— ——
——————————————————————————————— GEOG_LEVELLIST--=-======—=—— === —————————— —— ——
All Country Country All Regions Region State-Prov City

NA NA All Regions East MA Boston

NA NA All Regions East MA Springfield
NA NA All Regions East CT Hartford
NA NA All Regions East CT Mansfield
NA NA All Regions East Quebec Montreal

NA NA All Regions West WA Walla Walla

OLAP DML Basic Concepts 1-17

About OLAP DML Data Objects

Portland NA NA All Regions West WA Portland
Oakland NA NA All Regions West CA Oakland
San Diego NA NA All Regions West CA San Diego
MA NA NA All Regions East MA NA

CT NA NA All Regions East CT NA

WA NA NA All Regions West WA NA

CcA NA NA All Regions West ca NA
Quebec NA NA All Regions East Quebec NA

East NA NA All Regions East NA NA

West NA NA All Regions West NA NA

All Regions NA NA All Regions NA NA NA

USA NA NA NA NA NA NA
Canada NA NA NA NA NA NA

All Country NA NA NA NA NA NA

Gidrel Relation

A gidrel relation is a relation between a NUMBER dimension, the hierarchical
dimension, and the hierlist dimension that contains the grouping ID of each dimension
member in each hierarchy of the hierarchical dimension. It also has a $GID_DEPTH
property that identifies the depth within a hierarchy of each dimension member.

Example 1-10, "Defining and Populating a gidrel Relation named geog_gidrel" on
page 1-18 illustrates defining and populating this type of relation.

Example 1-10 Defining and Populating a gidrel Relation named geog_gidrel

"Create a dimension that has values that are numbers

DEFINE gid_dimension DIMENSION NUMBER (38,0)

"Add values to that dimension

"This example uses MAINTAIN ADD to add a few numbers

MAINTAIN gid_dimension ADD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"Define the gidrel relation

DEFINE geog_gidrel RELATION gid_dimension <geog geog_hierlist>

"Display the complete definition of the geog_gidrel relation

"Note that it has no properties

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>

"Populate the gidrel relation using the GROUPINGID command

GROUPINGID geog_parentrel INTO geog_gidrel USING geog_levelrel INHIERARCHY geog_inhier
"Display the values of the geog_gidrel relation

REPORT down geog w 20 geog_gidrel

GEOG Political_Geog Sales_Geog
Boston 0 0
Springfield 0 0
Hartford 0 0
Mansfield 0 0
Montreal 0 0
Walla Walla 0 0
Portland 0 0
Oakland 0 0
San Diego 0 0
MA 1 1
CT 1 1
WA 1 1

1-18 Oracle OLAP DML Reference

OLAP DML Statements Apply to All of the Values of a Data Object

CA

Quebec

East

West

All Regions
USA

Canada

All Country

"Display the complete definition of the geog_gidrel relation
"Note that it now has a $GID_DEPTH property

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
PROPERTY 'S$GID_DEPTH' 4

OLAP DML Statements Apply to All of the Values of a Data Object

The OLAP DML is a multidimensional language. This means that operations in the
OLAP DML apply all at once to an entire set of values. Again, conceptually, you can
think of these operations as applying to the values in all of the cells in a variable; or,
physically, you can think of these operations as applying to all of the elements in the
array that is the variable. Consequently, using the OLAP DML assignment statement
(that is, SET or =), you do not need to code explicit loops to assign values to all of the
elements in a variable. Instead, when you issue a statement against an object that has
one or more dimensions, the statement loops over the values in status for each
dimension of the object and performs the requested operation.

Assume, for example, that there is a dimension named prodid that has three values,
Prod01, Prod02, and Prod03, and you have a variable named quantity thatis
dimensioned by prodid. As the following code snippet illustrates, if Prod01, Prodo02,
and Prod03 are all in status, when you assign the value 3 to quantity, Oracle OLAP
assigns the value 3 to all of the elements in quantity.

quantity = 3
REPORT quantity

PRODID QUANTITY
PRODO1 3.00
PROD02 3.00
PRODO03 3.00

Other OLAP DML statements (for example, REPORT, ROW, and FOR) also loop
through all of the in status elements of a dimensioned object when they execute.

Changing the Default Looping Behavior of Statements

By default, statements loop through the values of a dimensioned object using the order
in which the dimensions of the object are listed in the definition of the object. Also,
when a variable is dimensioned by a composite, most looping statements loop through
the variable as though it was not dimensioned by a composite, but was, instead,
dimensioned by the base dimensions of the composite.

The OLAP DML provides ways for you to change the default looping behavior or to
explicitly request looping:

= ACROSS phrase—Some looping command (such as assignment statements that
you use to assign values) have an ACROSS phrase that you can use to specify
nondefault looping behavior. For detailed documentation of the ACROSS phrase,
see the SET (=) command.

OLAP DML Basic Concepts 1-19

How to Specify the Set of Data that OLAP DML Operations Work Against

= ACROSS command—When an OLAP DML statement is not a looping statement
or does not include an ACROSS phrase, you can request looping behavior by
coding the DML statement as an argument of the ACROSS command.

How to Specify the Set of Data that OLAP DML Operations Work Against

Oracle OLAP keeps track of the values of a dimension that are accessible to the user
using lists, called "status lists", for each defined dimension.

About Status Lists

Oracle OLAP keeps track of the values of a dimension are accessible to the user using
lists, called "status lists" for each defined dimension. There are two kinds of status lists:
default status lists and current status lists. The values in the current status lists of the
dimensions in an analytic workspace determine the set of data that is available to the
OLAP DML at any given moment in time.

Default Status Lists

The the default status list of a dimension is the list of all of the values of the
dimension that have read permission, in the order in which the values are stored,
when you first attach an analytic workspace. You can change the default status list of a
dimension in the following ways:

= You can add, delete, move, merge, and rename values in a dimension by using the
MAINTAIN command or adding dimension values in other ways (for example,
using a SQL FETCH statement).

= You can change the read permission of values that are associated with a
dimension by using a PERMIT or PERMITRESET statement.

Current Status Lists

The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be "in status." When you first attach an analytic workspace, the default and current
status lists of each dimension are the same.

The current status list of a dimension determines the accessibility of the data in the
analytic workspace:

» For dimensions, only those dimension values that are in the current status list are
visible and accessible to OLAP DML expressions.

» For dimensioned objects like variables, only those data values that are indexed by
dimension values in the current status list are visible and accessible to OLAP DML
expressions. As a loop is performed through a dimensioned object, the order of the
dimension values in the current status list is used to determine the order in which
the values of the object are accessed.

Note that a dimension and any surrogate for that dimension share the same status.
Setting the status of a dimension surrogate sets the status of its dimension and setting
the status of a dimension sets the status of any dimension surrogates for it.
Throughout this documentation, references to dimensions apply equally to dimension
surrogates, except where noted. Additionally, composites are not dimensions, and
therefore they do not have any independent status. The values of a composite that are
"in status" are determined by the status of the base dimensions of the composite.

1-20 Oracle OLAP DML Reference

How to Specify the Set of Data that OLAP DML Operations Work Against

Note: Whether or not a dimension value is in status merely restricts
the OLAP DML's view of the value during a given session; it does not
permanently affect the values that are stored in the analytic
workspace.

Changing the Current Status of a Dimension to Work with a Subset of Data

Since the current status list of a dimension determines the accessibility of the data in
the analytic workspace, the way to work with a subset of analytic workspace data is to
change the current status lists of one or more dimensions.

You change the change the values and the order of the values in the current status list
of a dimension using the LIMIT command. The LIMIT command is a very complex
OLAP DML command that lets you specify what values you want in the current status
list by specifying the values explicitly or implicitly using relations. At it simplest level,
Example 10-20, "Using LIMIT to Partially Populate Variables" on page 10-47 illustrates
how you can use the LIMIT command to change the current status list of a dimension
allows you to work with a subset of data.

Saving and Restoring Current Dimension Status

There are several different ways that you can save the current status of a dimension.
The scope of each way is different:

= Any session—To save the current status for use in any session, create a named
valueset with that status. Use a DEFINE VALUESET command to define the
valueset. Use a LIMIT command to assign the values to the valueset.

» Current session—To save, access, or update the current status for use in the
current session, then use a named context. Use the CONTEXT command to define
the context.

s Current program—To save the current status for use in the current program, then
use the PUSHLEVEL and PUSH commands. You can restore the current status
values using the POPLEVEL and POP commands.

Using a Subset of Data Without Changing Status

Sometimes you want to have an individual OLAP DML statement or expression work
against a subset of data without actually changing the current status list of a
dimension. To support this need, some OLAP DML statements allow you to specify
the name of a previously-defined valueset object instead of the name of a dimension.
Additionally, on-the-fly, you can specify the data subset that you want without
changing the current status list of dimensions using one of the following;:

s The CHGDIMS function which, during the evaluation of expression, changes the
dimensionality of an expression or changes the dimension status.

» The LIMIT function which, during the evaluation of expression, returns the
dimension or dimension surrogate values that result from a specified LIMIT
command or a specified dimension status stack.

» Use a qualified data reference (QDR) which is a way of limiting one or more
dimensions of an expression to a single value when you want to specify a single
value of a data object without changing the current status.

OLAP DML Basic Concepts 1-21

Populating Multidimensional Hierarchical Data Objects

Populating Multidimensional Hierarchical Data Objects

Frequently you first populate the base values of your variables from relational tables
or from flat files. You then calculate other values from these base values using OLAP
DML calculation objects. For example, you might define aggregation objects to
aggregate the values that are higher up the hierarchy.

You can also assign values to variables, relations, and dimension surrogates using
assignment statements (see SET and SET1) and add values to dimensions using
MAINTAIN statements.

Tip: Chapter 3, "Formulas, Models, Aggregations, and Allocations"

1-22 Oracle OLAP DML Reference

2

Data Types, Operators, and Expressions

This chapter contains information about the following;:
= OLAP DML Data Types
= OLAP DML Operators

= OLAP DML Expressions

OLAP DML Data Types

In the OLAP DML, as in other languages, a data type is a collection of values and the
definition of one or more operations on those values.

The Oracle OLAP DML supports the data types outlined in Table 2-1, " Summary of

Summary of OLAP DML Data Types

Abbreviation Description

OLAP DML Data Types".
Table 2-1

Data Type

BOOLEAN BOOL
DATE None
DATETIME None
TIMESTAMP None

Represents the logical TRUE and FALSE values.

Does not correspond to the SQL data type of the same
name; but, instead, is an older data type that is unique
to the OLAP DML.

Day, month, and year data (but not hour and minute
data) between January 1, 1000 A.D. and December 31,
9999 A.D.

Corresponds to the SQL DATE data type.

Valid date range from January 1, 4712 BC to December
31,9999 AD. The default format is determined
explicitly by the NLS_DATE_FORMAT parameter or
implicitly by the NLS_TERRITORY parameter. The size
is fixed at 7 bytes. This data type contains the datetime
fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.
It does not have fractional seconds or a time zone.

Corresponds to the SQL TIMESTAMP data type.

Year, month, and day values of date, as well as hour,
minute, and second values of time up to a precision of
9 places for the fractional part of the SECOND datetime
field. The default format is determined explicitly by
the NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes. This
data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND. It contains
fractional seconds but does not have a time zone.

Data Types, Operators, and Expressions 2-1

OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

Data Type

Abbreviation

Description

TIMESTAMP_TZ

TIMESTAMP_LTZ

DSINTERVAL

YMINTERVAL

INTEGER
SHORTINTEGER
LONGINTEGER

DECIMAL

SHORTDECIMAL

NUMBER [(p, [s])]

TEXT

2-2 Oracle OLAP DML Reference

None

None

None

INT
SHORTINT
LONGINT
DEC

SHORT

None

None

Corresponds to the SQL TIMESTAMP WITH TIME
ZONE data type.

All values of TIMESTAMP as well as time zone
displacement value, with a precision of 9 places for the
fractional part of the SECOND datetime field. The
default format is determined explicitly by the NLS_
DATE_FORMAT parameter or implicitly by the NLS_
TERRITORY parameter. The size is fixed at 13 bytes.
This data type contains the datetime fields YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_
HOUR, and TIMEZONE_MINUTE. It has fractional
seconds and an explicit time zone.

Corresponds to the SQL TIMESTAMP WITH LOCAL
TIME ZONE data type.

All values of TIMESTAMP_TZ, with the following
exceptions:

s Data is normalized to the Database time zone
when it is stored in the Database.

s When the data is retrieved, users see the data in
the session time zone.

The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes.

Corresponds to the SQL INTERVAL DAY TO SECOND
data type.

Stores a period of time in days, hours, minutes, and
seconds.

Corresponds to the SQL INTERVAL YEAR TO MONTH
data type.

Stores a period of time in years and months.

A whole number in the range of (-2**31) to (2**31)-1.
A whole number in the range of (-2**15) to (2**15)-1.
A whole number in the range of (-2**63) to (2**63)-1.

A decimal number with up to 15 significant digits in
the range of -(10**308) to +(10**308).

A decimal number with up to 7 significant digits in the
range of -(10**38) to +(10**38).

A decimal number with up to 38 significant digits in
the range of -(10**125) to +(10**125).

Up to 4000 bytes for each line in the Database
character set. This data type is equivalent to the CHAR
and VARCHAR2 data types in the Database. (Note that
when defining a variable of this data type you specify
the RANSPACE64 keyword in the DEFINE
VARIABLE statement to increase the maximum
number of characters for the values of the variable
from nearly 2**32 to nearly 2**64.)

OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

Data Type

Abbreviation Description

NTEXT

ID

RAW (size)

ROWID

UROWID

WORKSHEET

None

None

None

None.

None

Up to 4000 bytes for each line in UTF-8 character
encoding. This data type is equivalent to the NCHAR
and NVARCHAR?2 data types in the Database. (Note that
when defining a variable of this data type you specify
the RANSPACE64 keyword in the DEFINE
VARIABLE statement to increase the maximum
number of characters for the values of the variable
from nearly 2**32 to nearly 2**64.)

Up to 8 single-byte characters for each line in the
database character set. (ID is valid only for values of
simple dimensions, see DEFINE DIMENSION

(simple).)

Raw binary data of length size bytes. Maximum size is
2000 bytes. You must specify size for a RAW value.
(Note that when defining a variable of this data type
you specify the RANSPACE64 keyword in the
DEFINE VARIABLE statement to increase the
maximum number of characters for the values of the
variable from nearly 2**32 to nearly 2**64.)

Base 64 string representing the unique address of a
row in its table. This data type is primarily for values
returned by the ROWID pseudocolumn.

Base 64 string representing the logical address of a
row of an index-organized table. The optional size is
the size of a column of type UROWID. The maximum
size and default is 4000 bytes.

Specified for arguments and temporary variables in an
OLAP DML program when you want to handle
arguments without converting values to a specific data
type. Use the WKSDATA function to retrieve the data
type of an argument with a WORKSHEET data type.

Categories of Data Types
Frequently, these data types are thought of as belonging to the following categories:

= Numeric Data Types which are INTEGER, SHORTINTEGER, LONGINTEGER,
DECIMAL, SHORTDECIMAL, and NUMBER

s Text Data Typeswhich are TEXT, NTEXT and ID.

= Datetime and Interval Data Types which includes the datetime data types of
DATETIME, TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP-LTZ and the interval
data types of DSINTERVAL and YMINTERVAL.

= Date-only Data Type which is the DATE data type that is unique to the OLAP

DML.

= Boolean Data Type which is BOOLEAN.
= Row Identifier Data Types which are ROWID and UROWID.

Which OLAP DML Data Objects Can Have Which Data Type?
Different objects support the use of different data types for their values:

= For variables, all of the data types are supported.

Data Types, Operators, and Expressions 2-3

OLAP DML Data Types

s For dimensions and surrogates, the INTEGER, NUMBER, TEXT, ID (simple
dimensions only), NTEXT, DATETIME, TIMESTAMP, TIMESTAMP_TZ,
TIMESTAMP-LTZ, DSINTERVAL, and YMINTERVAL data types are supported.
Additionally, when you define a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR using a DEFINE DIMENSION (DWMAQY) statement, the
data type of the values of that dimension are DATE-only.

Numeric Data Types

The numeric data types described in Table 2-2, " OLAP DML Numeric Data Types" are
supported.

Table 2-2 OLAP DML Numeric Data Types

Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.
SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.

LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits in the range of -(10**308)
to +(10**308).

SHORTDECIMAL A decimal number with up to 7 significant digits in the range of -(10**38) to
+(10**38).

NUMBER A decimal number with up to 38 significant digits in the range of -(10**125)
to +(10**125).

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Note, however, that a comma is required before a
negative number that follows another numeric expression, or the minus sign is
interpreted as a subtraction operator. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by the
NLS_NUMERIC_CHARACTERS option as described in NLS Options.

Using LONGINTEGER Values

Most of the numerical data types return NA when a value is outside its range.
However, the LONGINTEGER data type does not have overflow protection and will
return an incorrect value when, for example, a calculation produces a number that
exceeds its range. Use the NUMBER data type instead of LONGINTEGER when this is
likely to be a problem.

Using NUMBER Values

When you define a NUMBER variable, you can specify its precision (p) and scale (s) so
that it is sufficiently, but not unnecessarily, large. Precision is the number of significant
digits. Scale can be positive or negative. Positive scale identifies the number of digits
to the right of the decimal point; negative scale identifies the number of digits to the
left of the decimal point that can be rounded up or down.

The NUMBER data type is supported by Oracle Database standard libraries and
operates the same way as it does in SQL. It is used for dimensions and surrogates
when a text or INTEGER data type is not appropriate. It is typically assigned to
variables that are not used for calculations (like forecasts and aggregations), and it is
used for variables that must match the rounding behavior of the Database or require a

2-4 Oracle OLAP DML Reference

OLAP DML Data Types

high degree of precision. When deciding whether to assign the NUMBER data type to a
variable, keep the following facts in mind in order to maximize performance:

= Analytic workspace calculations on NUMBER variables is slower than other
numerical data types because NUMBER values are calculated in software (for
accuracy) rather than in hardware (for speed).

= When data is fetched from an analytic workspace to a relational column that has
the NUMBER data type, performance is best when the data already has the NUMBER
data type in the analytic workspace because a conversion step is not required.

Text Data Types

The text data types described in Table 2-3, " OLAP DML Text Data Types" are
supported by Oracle OLAP.

Table 2-3 OLAP DML Text Data Types

Data Type Data Value

TEXT Up to 4000 bytes for each line in the database character set. This
data type is equivalent to the CHAR and VARCHAR?2 data types in
the Database.

NTEXT Up to 4000 bytes for each line in UTF-8 character encoding. This
data type is equivalent to the NCHAR and NVARCHAR2 data types
in the Database.

ID Up to 8 single-byte characters for each line in the database

character set. (ID is valid only for values of simple dimensions,
see DEFINE DIMENSION (simple).)

Text Literals

Enclose text literals in single quotes. Oracle OLAP recognizes unquoted alpha-numeric
values as object names and double quotes as the beginning of a comment.

You can embed quoted strings within a quoted string, which is necessary when you
want to specify the base dimension value of a composite or conjoint dimension or
when a value includes an apostrophe. Since a single quotation mark is used in Oracle
OLAP to indicate a text string, it is considered a special character when used within
such a string. Consequently, to specify the literal value of a single quotation mark
within a text string, precede the quotation mark with a backslash.

For example, suppose you want to find out if New York and Apple Sauce are a valid
combination of base dimension values in the markprod conjoint dimension. The
following statement produces the answer YES or NO.

SHOW ISVALUE (markprod, '<\'New York\' \'Apple Sauce\'>")
When embedded quoted strings have a further level of embedding, you must use

backslashes before each special character, such as the apostrophe and the backslash
that must precede it in "Joe's Deli," as shown in the following statement.

SHOW ISVALUE (markprod, '<\'Joe\\\'s Deli\' \'Apple Sauce\'>")
Escape Sequences

Table 2—4, " Recognized Escape Sequences" shows escape sequences that are
recognized by Oracle OLAP.

Data Types, Operators, and Expressions 2-5

OLAP DML Data Types

Table 2-4 Recognized Escape Sequences

Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\! Single quote

\N\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal escape

and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a hexadecimal
escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and nnnn is
a four-digit hexadecimal INTEGER that represents the Unicode codepoint with
the value U+nnnn. The U must be a capital letter.

Date-only Data Type

The Oracle OLAP DML DATE data type does not correspond to the SQL data type of
the same name. It is, instead, is an older data type that is unique to the OLAP DML.
The OLAP DML DATE data type is a valid data type for variables and for dimensions
of type DAY, WEEK, MONTH, QUARTER, and YEAR as discussed in the DEFINE
DIMENSION (DWMQY) command topic. It is used to store day, month, and year data
(but not hour and minute data) between January 1, 1000 A.D. and December 31, 9999
A.D. Because the OLAP DML DATE data type does not include hour and minute data,
it is often referred to as the DATE-only data type.

Tip: The Oracle OLAP DML data type that corresponds to the SQL
DATE data type is named DATETIME. See DATETIME Data Type on
page 2-11 for more information.

See also: '"Date-only Data Type Options" on page 6-7.

Date-only Input Values

A valid input literal value of type DATE must conform to one of three styles: numeric,
packed numeric, or month name. You can mix these styles throughout a session.

Tip: To determine whether a text expression (such as an expression
with a data type of TEXT or ID) represents a valid DATE-only value,
use the ISDATE program

Numeric style

Specify the day, month, and year as three INTEGER values with one or more
separators between them, using these rules:

s The day and month components can have one digit or two digits.

2-6 Oracle OLAP DML Reference

OLAP DML Data Types

= For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

= To separate the components, you can use a space, dash (-), slash (/), colon (:), or
comma (,).

Examples: '24/4/97 "' or '24-04-1997"

Packed numeric style

Specify the day, month, and year as three INTEGER values with no separators between
them, using these rules:

s The day and month components must have two digits. When the day or month is
less than 10, it must be preceded by a zero.

= For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

= You cannot use any separators between the date components.

Examples: '240497' or '04241997'

Month name style
Specify the day and year as INTEGER values and the month as text, using these rules:

s The month component must match one of the names listed in the
MONTHNAMES option. You can abbreviate the month name to one letter or
more, when you supply enough letters to uniquely match the beginning of a name
in MONTHNAMES. The case of the letters in the month component (uppercase or
lowercase) does not need to match the case in MONTHNAMES.

= The day component can have one digit or two digits.

= For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

= When the day and year components are adjacent, they must have at least one
separator between them. As separators, you can use a space, dash (-), slash (/),
colon (:), or comma (,). When you want, you can place one or more separators
between the day and month or between the year and month.

Examples: '24APR97' or '24 ap 97' or 'April 24, 1997

Date-only Dimension Values

The format of a DATE -only value of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is determined by the value name format (VNF) associated with
the object. A VNF is a template that controls the input and display format for DATE
-only values. The template can include format specifications for any of the components
that identify a time period (day, month, calendar year, fiscal year, and period within a
fiscal year). You associate a VNF with an object by adding a VNF statement to its
definition. When you do not add a VNF to the definition of an object, the object uses
the default VNF shown in Table 2-5, " Default VNFs for DWMQY Dimensions".

Data Types, Operators, and Expressions 2-7

OLAP DML Data Types

Table 2-5 Default VNFs for DWMQY Dimensions

Type of Dimension Default VNF Example

DAY <DD><MTXT><YY> 01JAN95

WEEK W<P>.<FF> W1.95

Multiple WEEK <NAME><P>.<FF> MYWEEK1.95
MONTH <MTXT><YY> JAN95

Multiple MONTH <NAME><P>.<FF> MYMONTH1.95
QUARTER Q<P>.<FF> Q1.95

YEAR YR<YY> YR95

DATE-only values have independent input and output formats. You can enter
DATE-only values in one style and report them in a different style.

DATE-only Variable Display Styles

When you show a DATE-only variable value in output, the format depends on the
DATEFORMAT option. The default format is a 2-digit day, a 3-letter month, and a
2-digit year; for example, 03MAR97. The text for the month names depends on the
MONTHNAMES option. To change the order of the month, day, and year
components, see the DATEORDER option.

Datetime and Interval Data Types

The OLAP DML has data types that correspond to SQL datetime and interval data
types. As outlined in Table 2-6, " OLAP DML Datetime and Interval Data Types and
the Corresponding SQL Data Types", the names of the data types are different in
OLAP DML than they are in SQL.

Table 2-6 OLAP DML Datetime and Interval Data Types and the Corresponding SQL

Data Types

OLAP DML Data Type Corresponding SQL Data Type
DATETIME DATE

TIMESTAMP TIMESTAMP

TIMESTAMP_TZ TIMESTAMP WITH TIMEZONE
TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE
DSINTERVAL INTERVAL DAY TO SECOND
YMINTERVAL INTERVAL YEAR TO MONTH

In the OLAP DML, the datetime data types are DATETIME, TIMESTAMP, TIMESTAMP_
TZ, and TIMESTAMP_LTZ. The interval data types are YMINTERVAL and DSINTERVAL.
Both datetimes and intervals are made up of fields as discussed in "Datetime and
Interval Fields" on page 2-9.

2-8 Oracle OLAP DML Reference

OLAP DML Data Types

Note: The Oracle OLAP DML has a date data type named DATE that
does not correspond to the SQL data type of that name. (The OLAP
DML DATE data type was implement before the SQL datetime and
interval data types were implemented in the OLAP DML.) The OLAP
DML DATE data type stores only date values (no time values) and is
therefore sometimes referred to as the DATE-only data type.

Datetime and Interval Fields

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. Table 2-7, " Datetime Fields and Values" lists the
datetime fields and their possible values for datetimes and intervals.

Tip: To avoid unexpected results in your operations on datetime
data, you can verify the Database and session time zones using
DBTIMEZONE and SESSIONTIMEZONE If the time zones have not
been set manually, Oracle Database uses the operating system time
zone by default. If the operating system time zone is not a valid Oracle
time zone, then Oracle uses UTC as the default value.

Table 2-7 Datetime Fields and Values

Valid Values for Interval

Datetime Field Valid Values for Datetime Data Types Data Types
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer
MONTH 01to12 Otoll
DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)
HOUR 00 to 23 0to23
MINUTE 00 to 59 0to 59
SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval
for DATETIME. fractional seconds
TIMEZONE_HOUR -12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATETIME or
TIMESTAMP.
TIMEZONE_MINUTE 00 to 59. Not applicable for DATETIME or Not applicable
(See note at end of table) TIMESTAMP.
TIMEZONE_REGION Query the TZNAME column of the V$ TIMEZONE_ Not applicable

NAMES data dictionary view. Not applicable for
DATETIME or TIMESTAMP. For a complete listing of
all timezone regions, refer to Oracle Database
Globalization Support Guide.

TIMEZONE_ABBR Query the TZABBREV column of the VSTIMEZONE_ Not applicable
NAMES data dictionary view. Not applicable for
DATETIME or TIMESTAMP.

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and
interpreted as an entity in the format + | - hh:mm, with values ranging from -12:59 to
+14:00.

Data Types, Operators, and Expressions 2-9

OLAP DML Data Types

See Also: "Datetime and Interval Expressions" on page 2-35

Datetime Format Templates

A datetime format template is a template that describes the format of datetime data
stored in a character string. A format model does not change the internal
representation of the value in the Database. When you convert a character string into a
date, a format model determines how Oracle Database interprets the string. In OLAP
DML statements, you can use a format model as an argument of the TO_CHAR and TO_
DATE functions to specify:

s The format for Oracle to use to return a value from the Database
= The format for a value you have specified for Oracle to store in the Database
You can use datetime format templates in the following functions:

s Inthe TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions
are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_YMINTERVAL,
and TO_DSINTERVAL.)

= Inthe TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

The default datetime formats are specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_
TERRITORY. You can change the default datetime formats for your session with the
ALTER SESSION statement. You can override this default and specify a datetime
format for use with a particular OLAP DML object by using the DATE_FORMAT
command to add a datetime format to the definition of the object.

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to
datetime values (unless you have used the FX or FXFM modifiers in the format model
to control exact format checking):

= You can omit punctuation included in the format string from the date string if all
the digits of the numerical format elements, including leading zeros, are specified.
In other words, specify 02 and not 2 for two-digit format elements such as MM,
DD, and YY.

= You can omit time fields found at the end of a format string from the date string.

= If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-8, " Oracle Format Matching".

Table 2-8 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

‘MM '"MON' and 'MONTH'
' MON 'MONTH'

'MONTH' 'MON''

'YyYy'! 'YYYY'!

'RR' 'RRRR'

2-10 Oracle OLAP DML Reference

OLAP DML Data Types

DATETIME Data Type

The OLAP DML DATETIME data type corresponds to the SQL DATE data type. As
such, the format and language of DATETIME values are controlled by the settings of
the NLS_DATE_FORMAT and NLS_DATE_LANGUAGE options described in NLS
Options. The DATETIME data type is supported by Oracle Database standard libraries
and operates the same way in the OLAP DML as it does the DATE data type in SQL.

Note: The Oracle OLAP DML has a date data type named DATE that
does not correspond to the SQL data type of that name. The OLAP
DML DATE data type stores only date values (no time values) and is
therefore sometimes referred to as the DATE-only data type. The
DATEORDER, DATEFORMAT, and MONTHNAMES options, which
control the formatting of DATE values, have no effect on DATETIME
values. However, DATETIME and DATE values can be used
interchangeably in most DML statements.

You can specify a DATETIME value as a string literal, or you can convert a character or
numeric value to a date value with the TO_DATE function.

To specify a DATETIME value as a literal, you must use the Gregorian calendar. You
can specify an ANSI literal, as shown in this example:

DATETIME '1998-12-25"'

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY-MM-DD').

Alternatively you can specify a DATETIME value us the TO_DATE function and
include, as in the following example:

TO_DATE('98-DEC-25 17:30"', 'YY-MON-DD HH24:MI')

The default date format template for an Oracle DATETIME value is specified by the
initialization parameter NL.S_DATE_FORMAT. This example date format includes a
two-digit number for the day of the month, an abbreviation of the month name, the
last two digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default datetime format
into datetime values when they are used in datetime expressions.

If you specify a datetime value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a datetime value without a date, then the default date is the first day of the
current month.

Values of DATETIME always contain both the date and time fields. Therefore, if you
use DATETIME values in an expression, you must either specify the time field in your
query or ensure that the time fields in the DATETIME values are set to midnight.
Otherwise, Oracle may not return the results you expect. You can use the TRUNC (date)
function to set the time field to midnight, or you can include a greater-than or
less-than condition in the query instead of an equality or inequality condition.
However, if the expression contains DATETIME values other than midnight, then you
must filter out the time fields in the query to get the correct result.

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the
TO_* datetime functions, and the default date format, see "Datetime functions" on

page 7-9 and the DATE_ FORMAT command.

Data Types, Operators, and Expressions 2-11

OLAP DML Data Types

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATETIME data type. It stores the
year, month, and day of the DATETIME data type, plus hour, minute, and second
values. This data type is useful for storing precise time values.

SHOW SYSDATE
26-JUL-06

DEFINE mytimestamp VARIABLE TIMESTAMP
mytimestamp = SYSDATE

COLWIDTH = 30

REPORT mytimestamp

MYTIMESTAMP

26-JUL-06 10.44.42 AM
The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the fractional
seconds precision value can be any number of digits up to 9, as follows:

TIMESTAMP ‘1997-01-31 09:26:50.124"

TIMESTAMP_TZ Data Type

TIMESTAMP_TZ corresponds to the SQL TIMESTAMP WITH TIMEZONE data type. Itis
a variant of TIMESTAMP that includes a time zone offset in its value. The time zone
offset is the difference (in hours and minutes) between local time and UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). This data type is
useful for collecting and evaluating date information across geographic regions.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

The TIMESTAMP_TZ data type is a variant of TIMESTAMP that includes a time zone
offset. When you specify TIMESTAMP_TZ as a literal, the fractional seconds precision
value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'
Two TIMESTAMP_TZ values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP '1999-04-15 8:00:00 -8:00'

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00"

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard
Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific’
To eliminate the ambiguity of boundary cases when the daylight saving time switches,

use both the TZR and a corresponding TZD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

2-12 Oracle OLAP DML Reference

OLAP DML Data Types

You can also express the time zone offset using a datetime expression.

See Also: "Datetime and Interval Expressions" on page 2-35

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter
set to TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous
datetime as standard time in the specified region.

TIMESTAMP_LTZ Data Type

TIMESTAMP_LTZ corresponds to the SQL TIMESTAMP WITH LOCAL TIMEZONE data
type. It is another variant of TIMESTAMP that includes a time zone offset in its value. It
differs from TIMESTAMP_LTZ in that data stored in the Database is normalized to the
database time zone, and the time zone offset is not stored as part of the column data.
When a user retrieves the data, Oracle returns it in the user's local session time zone.
The time zone offset is the difference (in hours and minutes) between local time and
UTC (Coordinated Universal Time—formerly Greenwich Mean Time). This data type
is useful for displaying date information in the time zone of the client system in a
two-tier application.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

The TIMESTAMP_LTZ data type differs from TIMESTAMP_TZ in that data stored in the
Database is normalized to the database time zone. The time zone offset is not stored as
part of the column data. There is no literal for TIMESTAMP_LTZ. Rather, you represent
values of this data type using any of the other valid datetime literals. The table that
follows shows some of the formats you can use to add a TIMESTAMP_LTZ value into
object, along with the corresponding value returned by a OLAP DML statement such
as a SHOW command.

Value Specified When Adding Value Value Returned

"19-FEB-2004" 19-FEB-2004.00.00.000000 AM
SYSTIMESTAMP 19-FEB-04 02.54.36.497659 PM
TO_TIMESTAMP (’19-FEB-2004', ’DD-MON-YYYY’)); 19-FEB-04 12.00.00.000000 AM
SYSDATE 19-FEB-04 02.55.29.000000 PM
TO_DATE (’19-FEB-2004’, ’'DD-MON-YYYY’)); 19-FEB-04 12.00.00.000000 AM
TIMESTAMP’'2004-02-19 8:00:00 US/Pacific’); 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly
or implicitly, then the value returned defaults to midnight.

YMINTERVAL Data Type

YMINTERVAL corresponds to the SQL INTERVAL YEAR TO MONTH data type. It
stores a period of time using the YEAR and MONTH datetime fields. This data type is
useful for representing the difference between two datetime values when only the year
and month values are significant.

Specify YMINTERVAL interval literals using the following syntax.
INTERVAL ‘integer [- integer] YEARIMONTH [(precision)] [TO YEAR | MONTH]

Data Types, Operators, and Expressions 2-13

OLAP DML Data Types

where

» 'integer [-integer] ' specifiesinteger values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is
MONTH, then the range of integer values for the month field is 0 to 11.

s precisionisthe maximum number of digits in the leading field. The valid range
of the leading field precision is 0 to 9 and its default value is 2.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following YMINTERVAL literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH Aninterval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.
INTERVAL '300' MONTH(3) An interval of 300 months.
INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH

and indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH
and indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision
is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to
yield another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

DSINTERVAL Data Type

DSINTERVAL corresponds to the SQL INTERVAL DAY TO SECOND data type. It
stores a period of time in terms of days, hours, minutes, and seconds. This data type is
useful for representing the precise difference between two datetime values.

Specify DSINTERVAL interval literals using the following syntax.
INTERVAL ‘integedinteger time_expntime_expr

DAYIHOURIMINUTE [(leading_precision)] | SECOND [leading_precision[, fractional_seconds_precision
)

[TO DAYIHOURIMINUTEISECOND [(fractional_seconds_precision)]|
where

» integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

» time_expr specifies a time in the format HH[:MI[:SS[.n]]1] orMI[:SS[.n]]
or SS[.n], where n specifies the fractional part of a second. If n contains more
digits than the number specified by fractional seconds_precision, then n

2-14 Oracle OLAP DML Reference

OLAP DML Data Types

is rounded to the number of digits specified by the fractional seconds_
precision value. You can specify time_expr following an integer and a space
only if the leading field is DAY.

s Jeading precisionisthe number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

» fractional_ seconds_precisionisthe number of digits in the fractional part
of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if
SECOND is the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:
s HOUR:0to23

s MINUTE: 0 to 59

= SECOND: 0 to 59.999999999

Examples of the various forms of DSINTERVAL literals follow, including some
abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND (3) 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY (3) 400 days.

INTERVAL '11:12:10.2222222"' HOUR 11 hours, 12 minutes, and 10.2222222 seconds.
TO SECOND(7)

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4day&

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345'

is rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Boolean Data Type

A BOOLEAN data type enables you to represent logical values. In code, BOOLEAN
values are represented by values for "no" and "yes" (in any combination of uppercase
and lowercase characters). The actual values that are recognized in your version of

Data Types, Operators, and Expressions 2-15

OLAP DML Data Types

Oracle OLAP are determined by the language identified by the NLS_LANGUAGE
option. You can use the read-only NOSPELL and YESSPELL options to obtain the
values represent BOOLEAN values. In English language code, you can represent
BOOLEAN values, using:

= YES, TRUE, ON
= NO, FALSE, OFF

Working with BOOLEAN expressions is discussed in "Boolean Expressions” on
page 2-38.

RAW Data Type

The RAW data type stores data that is not to be interpreted (that is, not explicitly
converted when moving data between different systems) by Oracle Database. The RAW
data type is intended for binary data or byte strings.

The syntax for specifying RAW data is as follows:
RAW (size)
where you must specify a size up to the maximum of 2000 bytes

RAW is a variable-length data type, however Oracle Net (which connects user sessions
to the instance) and Oracle Database utilities do not perform character conversion
when transmitting RAW data.

When Oracle automatically converts RAW data to and from text data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every
four bits of RAW data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as CB.

Row Identifier Data Types

The row identifier data types are used to store an address of a row in a relational table.
The OLAP DML supports two different data types that you can use to copy this data
from a relational table into objects in an analytic workspace:

s ROWID Data Type
= UROWID Data Type

ROWID Data Type

You can examine a row address of a relational table by querying the pseudocolumn
ROWID. Values of this pseudocolumn are strings representing the address of each
row. These strings have the data type ROWID.

Note: Although you can create relational tables and clusters that
contain actual columns having the ROWID data type. Oracle Database
does not guarantee that the values of such columns are valid rowids

The extended ROWID data type stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an identification
number assigned to every database segment. You can retrieve the data object number
from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS.
Objects that share the same segment (clustered tables in the same cluster, for example)
have the same object number.

2-16 Oracle OLAP DML Reference

OLAP DML Data Types

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-z,
0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROWID, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

See also: For more information on the ROWID data type and
pseudocolumns, see the discussions of those topics in Oracle Database
SQL Language Reference.

UROWID Data Type

The rows of some relational tables have addresses that are not physical or permanent
or were not generated by Oracle Database. For example, the row addresses of
index-organized tables are stored in index leaves, which can move. Rowids of foreign
tables (such as DB2 tables accessed through a gateway) are not standard Oracle
rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID
pseudocolumn of an index-organized table has a data type of UROWID. You can
access this pseudocolumn as you would the ROWID pseudocolumn of a
heap-organized table (that is, using a SELECT ... ROWID statement). If you want to
store the rowids of an index-organized table, then you can define a column of type
UROWID for the table and retrieve the value of the ROWID pseudocolumn into that
column.

See also: For more information on the UROWID data type, see the
discussions of that data type in Oracle Database SQL Language
Reference.

Converting from One Data Type to Another

In may cases, Oracle OLAP performs automatic data type conversion for you as
discussed in "Automatic Conversion of Textual Data Types" on page 2-17 and
"Automatic Conversion of Numeric Data Types" on page 2-17. Additionally there area
number of OLAP DML functions that you can use to convert values from one data
type to another.

Automatic Conversion of Textual Data Types
Oracle OLAP automatically converts NTEXT values to TEXT when they are specified as

arguments to OLAP DML statements. This can result in data loss when the NTEXT
values cannot be represented in the database character set

Automatic Conversion of Numeric Data Types

Oracle OLAP automatically converts SHORTINTEGER variables, as well as INTEGER
variables with a fixed width of 1 byte, to INTEGER (with a width of 4 bytes) for
calculations. When you calculate a total of SHORTINTEGER variables, then you can
obtain and report a result greater than 32,767 or less than -32,768. When you calculate
a total of 1-byte INTEGER variables, then you can obtain and report a result greater

Data Types, Operators, and Expressions 2-17

OLAP DML Operators

than 127 or less than -128. However, when you try to assign the result to a
SHORTINTEGER variable or a 1-byte INTEGER variable respectively, then the variable
is set to NA.

Oracle OLAP automatically converts numeric data types according to the following
rules:

When you use a value with the SHORTINTEGER or SHORTDECIMAL data type in
an expression, then the value is converted to its long counterpart before using it.
See "Boolean Expressions" on page 2-38 for information about problems that can
occur when you mix SHORTDECIMAL and DECIMAL data types in a comparison
expression.

When you save the results of a calculation as a value with the SHORTINTEGER
data type, then NA is stored when the result is outside the range of a
SHORTINTEGER (-32768 to 32767).

When you assign the value of a DECIMAL expression to an object with the
INTEGER data type, then the value is rounded before storing or using it.

Note: When a DECIMAL value is outside the range of an INTEGER,
then an NA is stored.

When you use a decimal value where a value with the INTEGER data type is
required, then the value is rounded before storing or using it.

Note: When the DECIMAL value is outside the range of an
INTEGER, then an NA is stored.

When you assign the value of a decimal expression to a variable with the
SHORTDECIMAL data type, then only the first 7 significant digits are stored.

When you combine NUMBER values with other numeric data types, then all values
are converted to NUMBER.

When these conversion are not what you want, then you can use the CONVERT, TO_
CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different results.

OLAP DML Operators

An operator is a symbol that transforms a value or combines it in some way with
another value. Table 2-9, " OLAP DML Operators" describes the categories of OLAP
DML operators.

Table 2-9 OLAP DML Operators

Category Description

Arithmetic ~ Operators that you can use in numeric expressions with numeric data to

produce a numeric result. You can also use some arithmetic operators in date
expressions with a mix of date and numeric data, which returns either a date or
numeric result. For a list of arithmetic operators, see "Arithmetic Operators" on
page 2-19. For more information on numeric expressions, see "Numeric
Expressions" on page 2-32

2-18 Oracle OLAP DML Reference

OLAP DML Operators

Table 2-9 (Cont.) OLAP DML Operators

Category Description

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean), which returns a BOOLEAN result.
For a list of comparison operators, see "Comparison and Logical Operators" on
page 2-19. For more information on BOOLEAN expressions, see "Boolean
Expressions" on page 2-38.

Logical The AND, OR, and NOT operators that you can use to transform BOOLEAN values
using logical operations, which returns a BOOLEAN result. For a list of logical
operators, see "Comparison and Logical Operators" on page 2-19. For more
information on BOOLEAN expressions, see "Boolean Expressions" on page 2-38.

Assignment An operator that you use to assign the results of an expression into an object or
to assign a value to an OLAP DML option. For more information on using
assignment statements, see the SET, and SET1 commands, and "Assignment
Operator” on page 2-20.

Conditional The IF...THEN. . .ELSE, SWITCH, and CASE operators that you can use to use
to select between values based on a condition. For more information, see
"Conditional Expressions" on page 2-43.

Substitution The & (ampersand) operator that you can use to evaluate an expression and
substitute the resulting value. For more information, see "Substitution
Expressions" on page 2-45.

Arithmetic Operators

Table 2-10, " Arithmetic Operators" shows the OLAP DML arithmetic operators, their
operations, and priority where priority is the order in which that operator is evaluated.
Operators of the same priority are evaluated from left to right. When you use two or
more operators in a numeric expression, the expression is evaluated according to
standard rules of arithmetic. You must code a comma before a negative number that
follows another numeric expression, or the minus sign is interpreted as a subtraction
operator. For example, intvar, -4

Table 2-10 Arithmetic Operators

Operator Operation Priority
- Sign reversal 1
o Exponentiation 2
* Multiplication 3
/ Division 3
* Addition 4
- Subtraction 4

Comparison and Logical Operators

You use comparison and logical operators to make expressions in much the same way
as arithmetic operators. Each operator has a priority that determines its order of
evaluation. Operators of equal priority are evaluated left to right, unless parentheses
change the order of evaluation. However, the evaluation is halted when the truth
value is already decided.

Table 2-11, " Comparison and Logical Operators" shows the OLAP DML comparison
operators and logical operators (AND, OR, and NOT). It lists the operator, the operations,
example, and priority where priority is the order in which that operator is evaluated.
Operators of the same priority are evaluated from left to right.

Data Types, Operators, and Expressions 2-19

OLAP DML Expressions

Table 2-11 Comparison and Logical Operators

Operator Operation Example Priority
NOT Returns opposite of NOT (YES) = NO 1
BOOLEAN expression
EQ Equal to 4 EQ 4 = YES 2
NE Not equal to 5 NE 2 = YES 2
GT Greater than 5 GT 7 = NO 2
LT Less than 5 LT 7 = YES 2
GE Greater than or equal to 8 GE 8 = YES 2
LE Less than or equal to 8 LE 9 = YES 2
IN Is a date in a time period? '1Jan02' IN myDimension = YES 2
LIKE Does a text value matcha 'Finance' LIKE '%nan%' = YES 2

specified text pattern?

[°N)

AND Both expressions aretrue 8 GE 8 AND 5 LT 7 = YES

OR Either expression is true 8 GE 8 OR 5 GT 7 = YES 4

Assignment Operator

In the OLAP DML, as in many other programming languages, the = (equal) sign is
used as an assignment operator.

An expression creates temporary data; you can display the resulting values, but these
values are not automatically stored in your analytic workspace for future reference
during a session. You use an assignment statement to store the result of an expression
in an object that has the same data type and dimensions as the expression. If you
update and commit the object, then the values are available to you in future sessions.

Like other programming languages, an assignment statement in the OLAP DML sets
the value of the target expression equal to the results of the source expression.
However, an OLAP DML assignment statement does not work exactly as it does in
other programming languages. Like many other OLAP DML statements it does not
assign a value to a single cell, instead, when the target-expression is a
multidimensional object, Oracle OLAP loops through the cells of the target object
setting each one to the results of the source-expression. Additionally, you can use
UNRAVEL to copy the values of an expression into the cells of a target object when
the dimensions of the expression are not the same as the dimensions of the target
object.

For more information on using assignment statements in the OLAP DML, see SET and
SET1.

OLAP DML Expressions

Expressions represent data values in the syntax of the OLAP DML. This section
provides the following information about OLAP DML expressions:

= "About OLAP DML Expressions" on page 2-21
s "Using Workspace Objects in Expressions" on page 2-23.
= "Working with Empty Cells in Expressions" on page 2-31

s Detailed information about the various types of OLAP DML expressions:

2-20 Oracle OLAP DML Reference

OLAP DML Expressions

Numeric Expressions on page 2-32

Text Expressions on page 2-34

Datetime and Interval Expressions on page 2-35
Date-only Expressions on page 2-37

Boolean Expressions on page 2-38

Conditional Expressions on page 2-43
Substitution Expressions on page 2-45

About OLAP DML Expressions

An OLAP DML expression has a data type and can also have dimensions. You can use
expressions as arguments in statements. An expression often performs a mathematical
or logical operation. It always evaluates to a result in one of the workspace data types.

An expression can be:
= Aliteral value. For example, 10 or 'East'

= An analytic workspace object that contains multiple values. For example, the
variable sales

= A function that returns one or more values. For example, TOTAL or JOINLINES

= Another expression that combines literal values, dimensions, variables, formulas,
and functions with operators. For example, inflation*1.02

You can save an expression as a formula as described in "OLAP DML Formulas" on
page 3-2

How the Data Type of an Expression is Determined

The data type of an expression is the data type of the resulting value. It might not be
the same as the data type of the data objects that make up the expression; it depends
on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN...ELSE operator
is supported. A conditional expression returns a value whose data type depends on
the expressions in the THEN and ELSE clauses, not on the expression in the IF clause,
which must be BOOLEAN.

Note: Do not confuse a conditional expression with the
IE..THEN...ELSE command in a program, which has similar syntax
but a different purpose. The IF statement does not have a data type
and is not evaluated like an expression.

How the Dimensionality of an Expression is Determined

An expression is dimensioned by a union of the dimensions of all of the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression:

» Variables, relations, and formulas are dimensioned by the dimensions listed in the
definition of the object.

Example 1: When the price variable is dimensioned by month and product,
then the expression price * 1.2 is also dimensioned by month and product.

Example 2: When the units variable is dimensioned by month, product, and
district, then the expression units * price is dimensioned by month,

Data Types, Operators, and Expressions 2-21

OLAP DML Expressions

product, and district (even though the dimensions of the price variable are
month and product only).

= Qualified data references (QDRs) are dimensioned by all of the dimensions of the
associated object, except for the dimensions being qualified. (For more information
about qualified data references, see "Limiting a Dimension to a Single Value
Without Changing Status" on page 2-28.)

m The return values of most OLAP DML functions are, in most cases, dimensioned
by the union of the dimensions of the input arguments. However, some functions
(such as aggregation functions) have fewer dimensions than the input arguments.
In these cases, the dimensionality of the return value is documented in the topic
for the function in Chapter 7, "OLAP DML Functions: A - K".

Note: Unless otherwise noted, when you specify breakout
dimensions or relations in an aggregation function, you change the
dimensionality of the expression. The first dimension that you specify
as a breakout dimension is the slowest varying and the last dimension
that you specify is the fastest varying.

Note: You can change the dimensionality of an expression or
subexpression using the CHGDIMS function

Determining the Dimensions of an Expression You can find out the dimensions of an
expression by issuing a PARSE statement, followed by the INFO function. PARSE
evaluates the text of an expression; the INFO indicates how the expression is
interpreted.

This example illustrates the use of the DIMENSION keyword with the INFO function
to retrieve the dimensions of the expression just analyzed by PARSE. Assume that you
issue the following statement.

PARSE 'TOTAL(sales region)'

The statement produces the following output.

SHOW INFO (PARSE DIMENSION)
REGION

How Dimension Status Affects the Number of Values in the Results of Expressions The number
of values an expression yields depends on the dimensions of the expression and the
status of those dimensions. An expression yields one data value for each combination
of dimension values in the current status. For example, when three dimension values
are in status for month, and two for product, then the expression price GT 100
results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an expression
are limited to the range of data you want to consider. In addition, you must consider
any PERMIT statements that might limit access to the dimensions of the data.

When you want to specify a single value without changing the current status you can
use a qualified data reference (QDR). Using a QDR, you can qualify a dimension
(which enables you to specify one dimension value in an expression) or one or more
dimensions of a variable or relation. For more information on dimension status, see
"How to Specify the Set of Data that OLAP DML Operations Work Against"” on

2-22 Oracle OLAP DML Reference

OLAP DML Expressions

page 1-20; for more information on QDRs, see "Limiting a Dimension to a Single Value
Without Changing Status" on page 2-28.

Using Workspace Objects in Expressions

You can use an analytic workspace data object in an expression by specifying its name
as described in "Syntax for Specifying an Object in an Expression" on page 2-24. When
calculating the expression, Oracle OLAP uses the data in the specified object as
described in "How OLAP DML Data Objects Behave in Expressions" on page 2-23.

How OLAP DML Data Objects Behave in Expressions

Table 2-12 summarizes how Oracle OLAP uses the data in an object used as an
argument in an expression.

Table 2-12

Objects in Expressions

Object

Use in Expressions

Variables

Relations

Dimensions

Composites

Valuesets

As a one-dimensional or multi-dimensional array of data, depending on its
definition. For example, as the target or source expression in an assignment
statement.

See also: "Using Variables and Relations in Expressions" on page 2-28 and
"Using Objects in Assignment Statements" on page 10-192.

As a one-dimensional or multi-dimensional of data, depending on its definition.
For example, as the target or source expression in an assignment statement as
outlined in "Using Objects in Assignment Statements" on page 10-192.

= When you use a relation in a text expression, the relation value is referenced
as a text value. The values of the related dimension that is contained in the
relation are converted into text, and you can use these values in an
expression. You can also compare a text literal to a relation.

= When you use a relation in a numeric expression, the relation value is
referenced by its position (an INTEGER) in its related dimension array. You
can use this numeric value in an expression. The position number is based
on the default status list of the dimension, not the current status list of the
dimension.

See also: "Using Variables and Relations in Expressions" on page 2-28, "Using
Related Dimensions in Expressions" on page 2-27.

As a one-dimensional array of data. When you use a TEXT dimension value in a
numeric expression or compare values in a non-numeric dimension, Oracle
OLAP uses the INTEGER position number of the value in the array (as based on
the default status list) rather than the value itself.

See also: "Specifying a Value of a CONCAT Dimension" on page 2-27 and "Using
Related Dimensions in Expressions" on page 2-27.

You can use a composite wherever you can use a dimension.
See also: "Specifying a Value of a Composite" on page 2-27.
As a list of dimension values.

See also: "Using Variables and Relations in Expressions" on page 2-28 and the
DEFINE VALUESET command.

Data Types, Operators, and Expressions 2-23

OLAP DML Expressions

Table 2-12 (Cont.) Objects in Expressions

Object Use in Expressions

Dimension As a one-dimensional array. A surrogate provides an alternative set of values for

surrogates a dimension. When you use a TEXT surrogate value in a numeric expression or
compare values in a non-numeric surrogate, Oracle OLAP uses the INTEGER
position number of the value in the array (as based on the default status list)
rather than the value itself.

Note: You can use a surrogate rather than a dimension in a model, in a LIMIT
command, in a qualified data reference, or in data loading with statements such
as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT. A surrogate cannot
be a participant object in any argument in a DEFINE statement that defines
another object.

Formulas Asa sub—expression Oor as an expression in a statement.

Programs For a program that does not return a value, use the program name as you would
an OLAP DML command. For a program that returns a value, invoke the
program the same way you invoke an OLAP DML function— use the program
name in then expression and enclose the program arguments, if any, in
parentheses.

Syntax for Specifying an Object in an Expression

You can specify an analytic workspace object in an expression using the following
syntax.

[[schema-name.]analytic-workspace-name!]object-name

schema-name

The name of the schema in which the analytic workspace was defined when it was
created. By default, an analytic workspace is created in the schema for the database
user ID of the user issuing the AW CREATE statement. In almost any DML statement,
you can specify the full name of an analytic workspace (for example, Scott .demo).

analytic-workspace-name

The name of the workspace that contains the desired object. By specify the analytic
workspace name along with the object name you create a qualified object name
(QON) for the object. Using a qualified object name for an object is recommended
except in those situations described in "When Not to Use Qualified Object Names" on
page 2-26.

You can specify the value for analytic-workspace-name in any of the following ways:

s The name of an analytic workspace. A workspace name is assigned when an
analytic workspace is created with an AW CREATE statement.

s The alias name of an analytic workspace. An analytic workspace alias is an
alternative name for an attached analytic workspace. You can assign or delete an
alias with an AW ALIAS LIST statement. An alias is in effect from the time it is
assigned to the time that the workspace is detached (or until the alias is deleted).
Therefore, each time you attach an unattached workspace, you must reassign its
aliases.

One reason for assigning an alias is to have a short way to reference an analytic
workspace that belongs to a schema that is not yours. For example, you can use
the alias in qualified object names and statements that reference such an analytic
workspace. Another reason for assigning an alias is to write generic code that
includes a reference to an analytic workspace but does not hard-code its name.
With the alias providing a generic reference, you can assign the alias and run the
code on different workspaces at different times.

2-24 Oracle OLAP DML Reference

OLAP DML Expressions

= Within an aggregation specification, model, or program, you can use THIS_AW to
qualify an object name. When Oracle OLAP compiles an object, it interprets any
occurrence of THIS_AW as the name of the workspace in which the object is being
compiled. Thus if you have an analytic workspace named myworkspace that
contains a program named myprog and a variable named myvar, Oracle OLAP
interprets a statement myvar=1 as though it was written
myworkspace !myvar=1. Within a program, you can retrieve the value of THIS_
AW using the THIS_AW option.

When you do not specify a value for analytic-workspace-name, Oracle OLAP assumes
that the specified object is in the current analytic workspace. The current analytic
workspace is the first analytic workspace in the list of the active analytic workspaces
that you view with an AW LIST statement. You can retrieve the name of the current
analytic workspace by using the AW function with the NAME keyword.

Note: Your session does not have to have a current analytic
workspace. When you start Oracle OLAP without specifying an
analytic workspace name, then the EXPRESS analytic workspace is
first on the list. However, in this case, the EXPRESS analytic
workspace is not current; there is no current analytic workspace until
you specify one with the AW command.

object-name
The name of the object unless the object is an unnamed composite. When the object is
an unnamed composite, use the following syntax.

SPARSE <basedims....>

For the basedims argument, specify the names of the dimensions, separated by spaces,
for which the unnamed composite was created. For an example of using an unnamed
composite in an OLAP DML statement, see Example 10-104, "Reporting Data
Dimensioned by Composites" on page 10-175.

Objects with the same name in different workspaces are treated as completely separate
objects, and no similarity or relationship is assumed to exist between them. Any OLAP
DML language restrictions that apply between objects in different workspaces apply
even when the objects have the same name. For example, you cannot dimension an
object in one workspace by a dimension that resides in another workspace, even when
both workspaces have dimensions with the same name.

Considerations When Creating and Using Qualified Object Names Although the use of
qualified object names for objects is typical, there are a number of considerations to
keep in mind:

» There are some situations where you cannot use a qualified object name or do not
need to use a qualified object name. See "When Not to Use Qualified Object
Names" on page 2-26 for more information

= Before you use ampersand substitution when creating a qualified object name you
need to understand how and when the substitution occurs. See "Using Ampersand
Substitution for Workspace and Object Names" on page 2-26 for more information.

= Special considerations apply when passing a qualified object name as an argument
to a program. See "Passing Qualified Object Names to Programs" on page 2-26 for
more information.

Data Types, Operators, and Expressions 2-25

OLAP DML Expressions

When Not to Use Qualified Object Names

Generally it is good practice to use a qualified object name in an expression. However,
there are some situations where you cannot use a qualified object name or when a
qualified object name is not necessary:

= The following objects cannot have qualified object names:

= An object that is local to a particular program because it was created by an
ARGUMENT or VARIABLE statement.

s The NAME dimension of any given workspace. When you reference the
NAME dimension, Oracle OLAP always uses the NAME dimension of the
current workspace.

= You do not need to use a qualified object name in the following circumstances:

= In the qualifiers of a qualified data reference (QDR). Only the object being
qualified needs to be named with a qualified object name. Any unqualified
names are assumed to apply to objects in the same workspace as the object
being qualified.

» In an unnamed composite, when you specify one base dimension as a
qualified object name, then all the others are assumed to come from the same
workspace.

» In anamed composite, when the name is a qualified object name then its base
dimensions are assumed to come from the same workspace.

= In amodel, when you specify the solution variable as a qualified object name,
then all the dimensions named in DIMENSION statements are assumed to
come from the same workspace.

Using Ampersand Substitution for Workspace and Object Names

The workspace name, or the object name, or both can be supplied using ampersand
substitution. However, take care when using a qualified object name with ampersand
substitution because Oracle OLAP parses the qualified object name (with its
exclamation point) before it resolves the ampersand reference. For example, in the
expression &awname ! objname, the ampersand (&) applies to the entire qualified
object name, not just to the workspace name.

Passing Qualified Object Names to Programs

When you pass a qualified object name as an argument to a program and you use an
ARGUMENT statement and the ARG, ARGFR, and ARGS functions, the entire
qualified object name is considered to be a single argument. Its component parts are
not passed separately.

Specifying Values of Dimensions and Composites in Expressions

In most cases, you refer to the value of a dimension merely by specifying the value
following the conventions for the data type of the value. For example, assume that you
have a TEXT dimension named geog. You can add the value "World" to the dimension
by issuing the following statement.

MAINTAIN geog ADD 'World'

Note, however, that when you use a TEXT dimension value in a numeric expression or
compare values in a non-numeric dimension, Oracle OLAP uses the INTEGER position
number of the value in the array (as based on the default status list) rather than the
value itself.

2-26 Oracle OLAP DML Reference

OLAP DML Expressions

Special considerations apply to specifying the values of composites and concat
dimensions.

Specifying a Value of a Composite You can specify a value of a composite in the following
ways:

= By specifying a set of values of the base dimensions of the composite using the
following syntax.

{composite_name | SPARSE} {<base_dimension_name base_dimension_value}, ...>

= (Named composites only) By specifying just the values of the composite using the
following syntax.

composite_name <base_dimension_value ...>

where base_dimension_value is a set of values of the base dimensions, in the order in
which they were defined in the composite, separated by spaces.

Specifying a Value of a CONCAT Dimension Once you have defined a unique CONCAT
dimension, you can refer to its values simply by specifying the values of the base
dimensions.

However, you must specify a value of a nonunique CONCAT dimension as a
concatenation of the name of the base dimension and the base dimension value
separated by a colon (:) and a space and enclosed in angle brackets(<>). In an
expression, use the following format.

<BASE_DIMENSION_NAME: base_dimension value>

For example, assume that you have defined the base dimensions named city and
state and, a CONCAT dimension for them named geog. When you report on the
geog dimension, the values of geog include the names of the base dimensions along
with the values.

DEFINE city DIMENSION TEXT

DEFINE state DIMENSION TEXT

DEFINE geog DIMENSION CONCAT (city state)
MAINTAIN city ADD 'New York'

MAINTAIN state ADD 'New York'

REPORT geog

<CITY: New York>
<STATE: New York>

Using Related Dimensions in Expressions The syntax of some OLAP DML statements (for
example, some variations of the LIMIT command) include two dimension arguments
referred to as a dimension, and a related dimension. Other OLAP DML statements (for
example, AVERAGE, ANY, COUNT, CUMSUM, NONE, LARGEST, SMALLEST, and
TOTAL) allow you to specify the dimensionality of the result in terms of a related
dimension. In these contexts, the related dimension is any dimension that shares a
relation with another dimension.

Even though the value that you specify for the arguments in these statements is the
name of a dimension, in actuality Oracle OLAP uses a relation between the dimensions
to perform its calculations. When the two dimensions share only one relation, the
behavior is clear. Oracle OLAP performs the calculation based on the values in that
relation.

Data Types, Operators, and Expressions 2-27

OLAP DML Expressions

However, when two dimensions share more than one relation, then the behavior is
less clear. In some cases, as with a LIMIT using LEVELREL command, you can specify
the shared relation you want Oracle OLAP to use. In other cases, the statement syntax
does not allow you to specify the name of a relation. In this case, Oracle OLAP chooses
among the multiple relations as described in "How Oracle OLAP Chooses Between
Multiple Relations" on page 10-159.

Using Variables and Relations in Expressions

In expressions, a variable is referenced as an array containing values of the specified
data type. A relation is referenced as an array containing values of the specified
dimension. In most other respects, variables and relations (both typically
multidimensional objects) share the same characteristics.

In most cases, when you use OLAP DML statements with variables that are defined
with composites, the statements treat those variables as if they were defined with base
dimensions:

= You can access a variable that is dimensioned by a composite by requesting any of
the base dimension values.

s The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and therefore,
they do not have any independent status.

When you use a REPORT statement or any other statement that loops over a variable
that uses a composite, the default behavior is to evaluate all the combinations of the
values of the base dimensions of the composite that are in status. Any combinations
that do not exist in the composite display NA for their associated data.

For example, the following statements create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002. Since
no coupons were issued in March 2002, the report displays NA in that column.

LIMIT month TO 'Jan02' 'Feb02' 'Mar02'
LIMIT market TO 'East'

LIMIT product TO 'Sportswear'

REPORT coupons

MARKET: EAST

———————————— COUPONS------=-=-=-----

————————————— MONTH- - -========-~~
PRODUCT Jan02 Feb02 Mar02
Sportswear 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
statements such as REPORT, ROW, and the assignment statement (SET) so that they
loop over the values in the composite rather than all of the base dimension values.

Limiting a Dimension to a Single Value Without Changing Status

A qualified data reference (QDR) is a way of limiting one or more dimensions of a data
object to a single value. QDRs are useful when you want to specify a single value of a
data object without changing the current status. Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or one
or more dimensions of a variable or relation.

Sometimes the syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error. In this case, you can use the QUAL function to explicitly specify a
qualified data reference (QDR).

2-28 Oracle OLAP DML Reference

OLAP DML Expressions

Syntax of a Qualified Data Reference You specify a qualified data reference using the
following syntax

expression(dimname1 dimexp1 [, dimname2 dimexp2. . .])

The dimname argument is the name of one of the dimensions, or a dimension surrogate
of the dimension, of the expression and the dimexp argument is one of the following:

» A value of dimname.

Note: The setting of the LIMITSTRICT option determines how
Oracle OLAP behaves when a a QDR specifies a nonexistent value. By
default, when you specify a nonexistent value, Oracle OLAP treats the
nonexistent value as an invalid value and issues an error. If, instead,
you want Oracle OLAP to treat a nonexistent value as an NA value, set
the value of LIMITSTRICT to NO

= A text expression whose result is a value of dimname.
= A numeric expression whose result is the logical position of a value of dimname.

s A relation of dimname.

Note: When syntax of a QDR is ambiguous and could either be
misinterpreted or cause a syntax error, use the QUAL function to
explicitly specify a qualified data reference (QDR).

Qualifying a Variable You can qualify any or all of a dimensions of a variable using either
of the following techniques:

s The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

s The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the qualifier.
The dimension is temporarily replaced by the dimension(s) of the relation.

For example, the variable sales has three dimensions, month, product, and
district. You might want to compare total sales in Boston to the total sales in all
cities. In a single statement, you want district to be limited to two different values:

= For the numerator of the expression, you want the status of district to be
Boston.

= For the denominator of the expression, you want the status of district to be
ALL.

The following statement lets you calculate this result by using a QDR.

SHOW sales(district 'Boston')/TOTAL(sales)

You can qualify more than one of the dimensions of a variable. For example, when you
qualify all the dimensions of the sales variable by specifying one dimension value of
each dimension, then you narrow sales down to a single—cell value.

To fetch sales for Jun02, Tents, and Seattle, use the following QDR.

SHOW sales(month 'Jun02', product 'Tents', district 'Seattle')

This statement fetches a single value.

Data Types, Operators, and Expressions 2-29

OLAP DML Expressions

You can use a qualified data reference with the target expression of an assignment
(SET) statement. This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales composite
that is specified in the qualified data reference. When the composite named sales
does not already have a value for the combination Boston and Tents, then this value
combination is added to the composite, thus adding the data cell.

sales (market 'Boston' product 'Tents' month 'Jan99')= 10200

Replacing a Dimension in a Variable When you use a relation as the qualifier in the QDR,
you replace a dimension of the variable with the dimension or dimensions of the
relation. The relation must be related to the dimension that you are qualifying, and it
must be dimensioned by the replacement dimension.

Example 2-1 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by
month, product, and district. A third variable, division.mgr, is dimensioned
by month and division. You also have a relation between division and product,
called division.product. These objects have the following definitions.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue

DEFINE quota VARIABLE DECIMAL <month product district>
DEFINE division.mgr VARIABLE TEXT <month division>
DEFINE division.product RELATION division <product>

LD Division for each product

The following statement produces the report following it.

REPORT division.mgr

Camping Hawley Hawley Jones Jones Jones Jones
Sporting Carey Carey Carey Carey Carey Musgrave
Clothing Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product, as
the qualifier. The QDR replaces the division dimension with product, so that it has
the same dimensions as the other expression in the report sales / quota. The
following statement produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
'MANAGER' division.mgr (division division.product)

DISTRICT: BOSTON

————————————————————————————— PRODUCT - ====== === == mmmmmmmmmmmmmm
----TEnts---- --- canoes---- -- racquets--- --gsportswear-- --- footwear---
Sales/ Sales/ Sales/ Sales/ Sales/

Month Quota Manager Quota Manager Quota Manager Quota Manager Quota Manager

Jan02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
Feb02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
Mar02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave

2-30 Oracle OLAP DML Reference

OLAP DML Expressions

Apr02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave

Qualifying a Relation You can also use a QDR to qualify a relation (which is really a
special kind of variable).

Suppose the region.district relation is dimensioned by district. When you
qualify district with the value Seattle, then the value of the expression is the
value of the relation for Seattle. Because the QDR specifies one value of district,
the expression has a single—cell result.

The definition of region.district is as follows.

DEFINE region.district RELATION region <district>
LD The region for each district

The following statement displays the value WEST.

SHOW region.district(district 'Seattle')

Qualifying a Dimension You can use a QDR to qualify the dimension itself, which enables
you to specify one dimension value in an expression. The following expression
specifies one value of district, the one contained in the single-cell variable
mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying a
value from one of the base dimensions of the concat dimension. The following
expression specifies one value of reg.dist.ccdim, a concat dimension that has
regionand district as its base dimensions. The costs variable is dimensioned by
the division and reg.dist.ccdim dimensions.

SHOW reg.dist.ccdim(district 'Boston')

The preceding expression produces the following result.

<DISTRICT: Boston>

Using Ampersand Substitution with QDRs An ampersand character (&) at the beginning of
an expression substitutes the value of the expression for the expression itself in a
statement.When you use an ampersand with a QDR, you must enclose the whole
expression in parentheses when you want the variable to be qualified before the
substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and
that contains the names of variables. Remember that it is myvar that is dimensioned
by reptype, not the variables named by myvar. Therefore, you must use parentheses
so that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT & (myvar (reptype 'actual'))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptype.

Working with Empty Cells in Expressions

At any given time, some of the cells of an analytic workspace data object may be
empty. An empty cell occurs when a specific data value has not been assigned to it or
when a data value cannot be calculated for the cell. The value of any empty cell in an
object is NA. An NA value has no specific data type. Certain functions (for example, the

Data Types, Operators, and Expressions 2-31

OLAP DML Expressions

aggregation functions) return an NA values when the information that is requested
with the function is not available or cannot be calculated. Similarly, an expression
whose value cannot be calculated has NA as its value.

Note: To support OLAP DML composite-dimensioned variables that
correspond to relational fact tables with null facts, OLAP has a special
NA value which is controlled by an NA2 bit. For more information on
how Oracle OLAP manages NA values controlled by NA2 bits, see
"NAZ2 Bits and Null Tracking" on page 9-209.

Specifying a Value of NA

There are cases in which you might specify an operation for which no data is available.
For example, there might be no appropriate value for a given cell in a variable, for the
return value of a function, or for the value of an expression that includes an arithmetic
operator. In these cases, an NA (Not Available) value is automatically supplied.

To set the values of a variable or relation to NA, you can use an assignment statement
(SET), as shown in the following example.

sales = NA

Controlling how NA values are treated
A number of options and functions control how NA values are treated. For example:

s The NA options listed in "Options by Category" on page 6-4.

s The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function in
an expression to control the format of its value.

= System properties listed in Chapter 5, "OLAP DML Properties".

Numeric Expressions

A numeric expression evaluates to any of the numeric data types. The datain a
numeric expression can be any combination of the following:

= Numeric literals as discussed in "Numeric Data Types" on page 2-4.
= Numeric variables or formulas

= Dimensions

= Functions that yield numeric results

s Date literals, variables, formulas, or functions

In addition, you can join any of these expressions with the arithmetic operators for a
more complex numeric expression. You use arithmetic operators in numeric
expressions with numeric data, which returns a numeric result. You can also use some
arithmetic operators in date expressions with a mix of date and numeric data, to
retrieve either a date or numeric result.

A number of options determine how Oracle OLAP handles numeric expressions.

Mixing Numeric Data Types
You can include any type of numeric data in the same numeric expression.

The data type of the result is determined according to the following rules:

2-32 Oracle OLAP DML Reference

OLAP DML Expressions

s When all the data in the expression is INTEGER or SHORTINTEGER, and the only
operations are addition, subtraction, and multiplication, then the result is
INTEGER.

= When any of the data is NUMBER, then the result is NUMBER.

s When any of the data is DECIMAL or SHORTDECIMAL, and no data is NUMBER, then
the result is DECIMAL.

= When you perform any division or exponentiation operations, then the result is
DECIMAL.

Using Text Dimensions in Arithmetic Expressions

When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an INTEGER) and is used numerically. The
position number is based on the default status list, not on current status.

Limitations of Floating Point Calculations

All decimal data is converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a mantissa
and an exponent. The mantissa and the exponent are stored as binary numbers. The
mantissa is a binary fraction which, when multiplied by a number equal to 2 raised to
the exponent, produces a number that equals or closely approximates the original
decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers can result in further
approximations, and the inaccuracy gradually increases with the number of
operations. In addition to the approximation factor, the available number of significant
digits affects the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable can differ in the least
significant digits from a result you compute by hand. Because the SHORTDECIMAL
data type provides a maximum of only seven significant digits, you see more of these
differences with SHORTDECIMAL data. Therefore, you might want to use the NUMBER
data type when accuracy is more important than computational speed, such as
variables that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type offers
a different and closer approximation than the SHORTDECIMAL data type, because it
has more significant digits. This can lead to problems when SHORTDECIMAL and
DECIMAL data types are mixed in a comparison expression. For information on how to
handle such comparisons, see "Boolean Expressions" on page 2-38.

Controlling Errors During Calculations
You can control the following types of errors:

= Division by zero. When you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non-NA value by zero normally produces an error. When
a divide-by-zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use REPORT or an
assignment statement (SET), values are reported or stored as they are calculated,
so the division by zero halts the loop before it has gone through all the values.

Data Types, Operators, and Expressions 2-33

OLAP DML Expressions

When you want to suppress the divide-by-zero error, then you can change the
value of the DIVIDEBYZERO option to YES. This means that the result of any
division by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

= Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). When
you want to suppress the error message and allow the calculation of roots for
non-negative values of the expression to continue, then set the
ROOTOFNEGATIVE option to YES.

s Overflow errors. The DECIMALOVERFLOW option works in a similar manner to
DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions

A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

n Text literals. For example, 'Boston' or 'Current Sales Report'
s Text dimensions. For example, district or month

n Text variables or formulas. For example, product . name

= Functions that yield text results. For example, JOINLINES ('Product:
product.name)

Language of Text Expressions

Oracle OLAP supports text expressions in all languages that you can identify using the
NLS_LANGUAGE option. It also supports multi-language programs and applications
using a language dimension.

See also: "Working with Language Dimension Status" on page 5-13

Working with DATETIME Values in Text Expressions

When you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is
expected, or when you store a DATETIME value in a text variable, then the DATETIME
value is automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option.
Once a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT setting
has no impact.

Working with NTEXT Data

TEXT and NTEXT data are interchangeable in most cases. However, implicit conversion
can occur, such as when an NTEXT value is assigned to a TEXT variable. When TEXT is
converted to NTEXT, no data loss occurs because the UTF-8 character encoding of the
NTEXT data type encompasses most other data types. However, when NTEXT is
converted to TEXT, data loss occurs when NTEXT characters are not represented in the
workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the
JOINCHARS function, the TEXT value is converted to NTEXT and an NTEXT value is
returned.

2-34 Oracle OLAP DML Reference

OLAP DML Expressions

Datetime and Interval Expressions

As discussed in "Datetime and Interval Data Types" on page 2-8, the OLAP DML
supports the same datetime and interval data types that are supported by SQL. This
section discusses:

s "Datetime Expressions" on page 2-35
= 'Interval Expressions" on page 2-35

= "Datetime/Interval Arithmetic" on page 2-36

Datetime Expressions

A datetime expression yields a value of one of the datetime data types. A datetime
expression has the following syntax.

datetime_value_expr AT LOCAL |
TIME ZONE {'[+ | -] hh:mm' | DBTIMEZONE | 'time_zone_name' | expr}

A datetime_value_ exprcanbea datetime value or a compound expression that
yields a datetime value. Datetimes and intervals can be combined according to the
rules defined in Table 2-7, " Datetime Fields and Values" on page 2-9. The three
combinations that yield datetime values are valid in a datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.
The settings for AT TIME ZONE are interpreted as follows:
s Thestring ' (+|-)HH:MM"' specifies a time zone as an offset from UTC.

= DBTIMEZONE: Oracle uses the database time zone established (explicitly or by
default) during Database creation.

= SESSIONTIMEZONE: Oracle uses the session time zone established by default or in
the most recent ALTER SESSION statement.

s time_ zone name: Oracle returns the datetime_value_expr in the time zone
indicated by time_zone_name. For a listing of valid time zone names, query the
V$TIMEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

» expr: If exprreturns a character string with a valid time zone format, Oracle
returns the input in that time zone. Otherwise, Oracle returns an error.

Interval Expressions

An interval expression yields a value of DSNTERVAL or MY INTERVAL where the
expression has the following syntax.

interval_value_expr DAY [(leading_field_precision)] TO
SECOND [(fractional_second_precision)]l YEAR [(leading_field_precision)] TO MONTH

Data Types, Operators, and Expressions 2-35

OLAP DML Expressions

The interval_value_expr can be a DSNTERVAL or MYINTERVAL value or a
compound expression that yields a DSNTERVAL or MYINTERVAL value. Datetimes and
intervals can be combined according to the rules defined in Table 2-7, " Datetime
Fields and Values" on page 2-9. The six combinations that yield interval values are
valid in an interval expression.

Both leading field precisionand fractional_ second_precision can be
any integer from 0 to 9. If you omit the Jeading field precision for either DAY
or YEAR, then Oracle Database uses the default value of 2. If you omit the
fractional_second_precision for second, then the Database uses the default
value of 6. If the value returned by a query contains more digits that the default
precision, then Oracle Database returns an error. Therefore, it is good practice to
specify a precision that you know will be at least as large as any value returned by the

query.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATETIME), timestamp
(TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP_LTZ) and interval (DSINTERVAL and
YMINTERVAL) data. Oracle calculates the results based on the following rules:

= You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow.
SYSDATE - 7 is one week ago. SYSDATE + (10/1440) is ten minutes from now.
Subtracting the hire_date column of the sample table employees from
SYSDATE returns the number of days since each employee was hired. You cannot
multiply or divide date or timestamp values.

s Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to
NUMBER.

= Each DATETIME value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATETIME data. For example, the MONTHS_
BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

= If one operand is a DATETIME value or a numeric value (neither of which contains
time zone or fractional seconds components), then:

- Oracle implicitly converts the other operand to DATETIME data. (The
exception is multiplication of a numeric value times an interval, which returns
an interval.)

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional seconds
value is lost.

s When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATETIME data type, Oracle implicitly converts the
non-DATETIME value to a DATETIME value.

s When interval calculations return a datetime value, the result must be an actual
datetime value or the Database returns an error.

2-36 Oracle OLAP DML Reference

OLAP DML Expressions

» Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP_LTZ,
Oracle converts the datetime value from the database time zone to UTC and
converts back to the database time zone after performing the arithmetic. For
TIMESTAMP_TZ, the datetime value is always in UTC, so no conversion is

necessary.

Table 2-13, " Matrix of Datetime Arithmetic" is a matrix of datetime arithmetic
operations. Dashes represent operations that are not supported.

Table 2-13 Matrix of Datetime Arithmetic

Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric
DATETIME — — — —
+ - — DATETIME DATETIME
DATETIME DATETIME DATETIME DATETIME
*
/ — — — —
TIMESTAMP — — — —
+ — — TIMESTAMP —
INTERVAL INTERVAL TIMESTAMP TIMESTAMP
*
/ — — — —
INTERVAL — — — —
+ DATETIME TIMESTAMP INTERVAL —
— — INTERVAL —
* - — — INTERVAL
/ — - — INTERVAL
Numeric — — — —
+ DATETIME DATETIME - NA
— — — NA
* — — INTERVAL NA
/ — - — NA

Examples You can add an interval value expression to a start time. Consider the

sample table oe . orders with a column order_date.

Date-only Expressions

A date-only expression is an expression that evaluates to the OLAP DML DATE data
type as discussed in "Date-only Data Type" on page 2-6. The expression might be a
function that returns a date-only value, a date-only literal, or a more complex
expression.

See also: '"Date-only Input Values" on page 2-6, "Date-only
Dimension Values" on page 2-7, and "DATE-only Variable Display
Styles" on page 2-8.

Data Types, Operators, and Expressions 2-37

OLAP DML Expressions

Calculating DATE-only Values

You can add numbers to a DATE value, or subtract numbers from them. Whole
numbers are calculated as days, and decimal values are calculated as fractions of a
day. For example, SYSDATE+1. 5 adds 1 day and 12 hours to the current date and
time. You cannot divide or multiply DATE values, and you cannot subtract them from
numbers. For example, 1-SYSDATE and 1*SYSDATE return errors.

Using DATE-only Values in Arithmetic Expressions

When you use DATE values in arithmetic expressions, the result can be numeric or it
can be a date. The legal operations for dates and the data type of the result are
outlined in Table 2-14, " Legal Operations for DATE Values" on page 2-38.

Table 2-14 Legal Operations for DATE Values

Operation Result

Add or subtract a number froma Future or prior date

date

Subtract a date from a date The number of days between the dates.

Add or subtract a number from a The time period at the appropriate interval in the future

time period. or the past, similar to the return values of the LEAD or
LAG function. The result is NA when there is no
dimension value that corresponds to the result. The
calculation is made based on the positions of the values
in the default status list of the dimension.

Boolean Expressions

A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean
expressions can compare data of any type as long as both parts of the expression have
the same basic data type. You can test data to see if it is equal to, greater than, or less
than other data.

A Boolean expression can consist of Boolean data, such as the following;:

= BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and
FALSE)

= BOOLEAN variables or formulas

= Functions that yield BOOLEAN results

= BOOLEAN values calculated by comparison operators

For example, assume that your code contains the following Boolean expression.
actual GT 20000

When processing this expression, Oracle OLAP compares each value of the variable

actual to the constant 20,000. When the value is greater than 20,000, then the

statement is TRUE; when the value is less than or equal to 20,000, then the statement is
FALSE.

When you are supplying a Boolean value, you can type either YES, ON, or TRUE for a
true value, and NO, OFF, or FALSE for a false value. When the result of a Boolean
calculation is produced, the defaults are YES and NO in the language specified by the
NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options record the
YES and NO values.

Table 2-11, " Comparison and Logical Operators" on page 2-20 shows the comparison
and logical operators. Each operator has a priority that determines its order of

2-38 Oracle OLAP DML Reference

OLAP DML Expressions

evaluation. Operators of equal priority are evaluated left to right, unless parentheses
change the order of evaluation. However, the evaluation is halted when the truth
value is already decided. For example, in the following expression, the TOTAL
function is never executed because the first phrase determines that the whole
expression is true.

yes EQ yes OR TOTAL(sales) GT 20000

Creating Boolean Expressions

A Boolean expression is a three-part clause that consists of two items to be compared,
separated by a comparison operator. You can create a more complex Boolean
expression by joining any of these three-part expressions with the AND and OR logical
operators. Each expression that is connected by AND or OR must be a complete Boolean
expression in itself, even when it means specifying the same variable several times.

For example, the following expression is not valid because the second part is
incomplete.

sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be valid
even when the truth value can be determined by the first part of the expression. The
whole expression is compiled before it is evaluated, so when there are undefined
variables in the second part of a Boolean expression, you get an error.

Use the NOT operator, with parentheses around the expression, to reverse the sense of
a Boolean expression.

The following two expressions are equivalent.

district NE 'BOSTON'
NOT (district EQ 'BOSTON')

Example 2-2 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for each
product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO 'BOSTON'
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT statement returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY: BOSTON
---F.SALES GT 7500---

———————— TIME---------
PRODUCT Jan02 Feb02
Portaudio NO NO
Audiocomp YES YES
v NO NO
VCR NO NO
Camcorder YES YES
Audiotape NO NO
Videotape YES YES

Data Types, Operators, and Expressions 2-39

OLAP DML Expressions

Comparing NA Values in Boolean Expressions

When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, when you test
whether an NA value is equal to a non-NA value, then the result is NO. However,
when the result would be misleading, then NA is returned. For example, testing
whether an NA value is less than or greater than a non—-NA value gives a result of NA.

Table 2-15, " Boolean Expressions with NA Values that Result in non-NA Values"
shows the results of Boolean expressions involving NA values, which yield non-NA
values.

Table 2-15 Boolean Expressions with NA Values that Result in non-NA Values

Expressions Result
NA EQ NA YES
NA NE NA NO
NA EQ non-NA NO
NA NE non-NA YES
NA AND NO NO
NA OR YES YES

Controlling Errors When Comparing Numeric Data

When you get unexpected results when comparing numeric data, then there are
several possible causes to consider:

= One of the numbers you are comparing might have a small decimal part that does
not show in output because of the setting of the DECIMALS option.

= You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

= You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle recommends that you use the ABS and ROUND functions to do approximate
tests for equality and avoid all three causes of unexpected comparison failure. When
using ABS or ROUND, you can adjust the absolute difference or the rounding factor to
values you feel are appropriate for your application. When speed of calculation is
important, then you probably want to use the ABS rather than the ROUND function.

Controlling Errors Due to Numerical Precision Suppose expense is a decimal variable
whose value is set by a calculation. When the result of the calculation is 100.000001
and the number of decimal places is two, then the value appears in output as 100.00.
However, the output of the following statement returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Controlling Errors When Comparing Floating Point Numbers A standard restriction on the
use of floating point numbers in a computer language is that you cannot expect exact
equality in a comparison of two floating point numbers when either number is the
result of an arithmetic operation. For example, on some systems, the following
statement returns a NO instead of the expected YES.

SHOW .1 + .2 EQ .3

2-40 Oracle OLAP DML Reference

OLAP DML Expressions

When you deal with decimal data, you should not code direct comparisons. Instead,
you can use the ABS or the ROUND function to allow a tolerance for approximate
equality. For example, either of the following two statements produce the desired YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types You cannot expect exact
equality between SHORTDECIMAL and DECIMAL or NUMBER representations of a
decimal number with a fractional component, because the DECIMAL and NUMBER data
types have more significant digits to approximate fractional components that cannot
be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a
fractional decimal number, then compare the SHORTDECIMAL number to the fractional
decimal number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the literal
is automatically typed as DECIMAL and converts the SHORTDECIMAL variable sdvar
to DECIMAL, which extends the decimal places with zeros. A bit-by-bit comparison is
then performed, which fails. The same comparison using a variable with a DECIMAL or
a NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

= Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in comparisons.
To avoid mixing these two data types, you should generally avoid defining
variables with decimal components as SHORTDECIMAL.

= Use the ABS or ROUND function to allow for approximate equality. The following
statements both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND (sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values

Values are not compared in the same dimension based on their textual values. Instead,
Oracle OLAP compares the positions of the values in the default status of the
dimension. This enables you to specify statements like the following statement.

REPORT district LT 'Seattle'

Statements are interpreted such as these using the following process:

1. The text literal ' Seattle' is converted to its position in the district default
status list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

3. Asshown by the following report, the value YES is returned for districts that are
positioned before Seattle in the district default status list of the dimension,
and NO for Seattle itself.

REPORT 22 WIDTH district LT 'Seattle'

District DISTRICT LT 'Seattle'’

Data Types, Operators, and Expressions 2-41

OLAP DML Expressions

Boston YES
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the position
of the values in the month dimension. Because it is a time dimension, the values are in
chronological order.

quota = IF month LE 'Jun02' THEN 100 ELSE LAG(quota, 1, month)* 1.15

However, when you compare values from different dimensions, such as in the
expression region 1t district, then the only common denominator is TEXT, and
text values are compared, not dimension positions.

Comparing Dates

You can compare two dates with any of the Boolean comparison operators. For dates,
"less" means before and "greater” means after. The expressions being compared can
include any of the date calculations discussed in Table 2-11, " Comparison and Logical
Operators" on page 2-20. For example, in a billing application, you can determine
whether today is 60 or more days after the billing date in order to send out a more
strongly worded bill.

bill.date + 60 LE SYSDATE

Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE
functions to change a value from a DATE to an INTEGER or an INTEGER to a DATE for
comparison.

Comparing Text Data

When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be enclosed
in single quotes. For example, this expression tests whether the first letter of each
employee's name is greater than the letter "M."

EXTCHARS (employee.name, 1, 1) GT 'M'
You can compare TEXT and ID values, but they can only be equal when they are the

same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text. Ordering is
based on the values of the characters. This can produce unexpected results because the
text is evaluated from left to right. For example, the text literal 1234 is greater than
100,999.00 because 2, the second character in the first text literal, is greater than 0,
the second character in the second text literal.

Suppose name . label is an ID variable whose value is 3-Person and name.desc is
a TEXT variable whose value is 3-Person Tents.

The result of the following SHOW statement is NO.

SHOW name.desc EQ name.label

The result of the following statements is YES.

2-42 Oracle OLAP DML Reference

OLAP DML Expressions

name.desc = '3-Person'
SHOW name.desc EQ name.label

Comparing a Text Value to a Text Pattern The Boolean operator LIKE is designed for
comparing a text value to a text pattern. A text value is like another text value or
pattern when corresponding characters match.

Besides literal matching, LIKE lets you use wildcard characters to match more than
one character in a string:

= Anunderscore (_) character in a pattern matches any single character.
= A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of $AT_ matches any text that contains zero or more characters,
followed by the characters AT, followed by any other single character. Both DATA and
ERRATA return YES when LIKE is used to compare them with the pattern $AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following statement is NO.

SHOW NOT ('Boston' LIKE 'Bo%')

Comparing Text Literals to Relations You can also compare a text literal to a relation. A
relation contains values of the related dimension and the text literal is compared to a
value of that dimension. For example, region.district holds values of region, so
you can do the following comparison.

region.district EQ 'West'

Conditional Expressions

A conditional expression is an expression you can use to select between values based
on a condition. You can use conditional expression as part of any other expression as
long as the data type is appropriate. Oracle OLAP supports the use of the following
conditional expressions:

= IF.THEN..ELSE expression
s SWITCH Expressions

IF...THEN...ELSE expression

An IF expression is an expression you can use to select one of two values based on a
Boolean condition.

Note: Do not confuse the IF expression with the IF...THEN...ELSE
command, which has similar syntax but a different purpose, and
which must be used in an Oracle OLAP program. The

IF.. THEN...ELSE command does not have a data type and is not
evaluated like an expression.

An IF expression has the following syntax.

IF Boolean-expression THEN expression1 ELSE expression2

Data Types, Operators, and Expressions 2-43

OLAP DML Expressions

In most cases, expressionl and expression2 must be of the same basic data type
(numeric, text, or Boolean) and the data type of the whole expression is determined
using the same rules as those for the binary operators. However, when the data type of
either expressionl or expression2 is DATE, it is possible for the other expression to have
a numeric or text data type. Because Oracle OLAP expects both data types to be DATE,
it will convert the numeric or text value to a DATE. Also, when the value of one
expression is a dimension value then the value of the other expression is converted to
a dimension value as it is for QDRs.

You can nest IF expressions; however, in this case, you might want to use a SWITCH
expression instead as discussed in "SWITCH Expressions" on page 2-44.

An IF expression is processed by first evaluating the Boolean expression; then:

= When the result of the Boolean expression is TRUE, then expression] is evaluated
and returns that value.

= When the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expressionl and expression2 arguments are any valid OLAP DML
expressions that evaluate to the same basic data type. However, when the data type of
either value is DATE, it is possible for the other value to have a numeric or text data
type. Because both data types are expected to be DATE, Oracle OLAP converts the
numeric or text value to a DATE. The data type of the whole expression is the same as
the two expressions. When the result of the Boolean expression is NA, then NA is
returned.

Example 2-3 Using an IF Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but when sales in the district are below budget, then the bonus
is zero.

LIMIT month TO 'Jan02' TO 'Jun02'

LIMIT product TO 'Tents'

REPORT DOWN district IF sales-sales.plan LT 0 THEN 0
ELSE .05* (sales-sales.plan)

PRODUCT: TENTS
---IF SALES-SALES.PLAN LT 0 THEN 0 ELSE .05* (SALES-SALES.PLAN)---

—————————————————————— MONTH-----========————mmmm——— - —— - ——
DISTRICT Jan02 Feb02 Mar02 Apr02 May02 Jun02
Boston 229.53 0.00 0.00 0.00 584.51 749.13
Atlanta 0.00 0.00 0.00 190.34 837.62 1,154.87
Chicago 0.00 0.00 0.00 84.06 504.95 786.81

SWITCH Expressions

A SWITCH expression consists of a series of CASE expressions. You can use a
SWITCH expression as an alternative to a complicated, nested IF ... THEN ... ELSE
expression when all the conditions are equality comparisons with a single value.

Note: Do not confuse the SWTICH expression with the SWITCH
command, which has similar syntax but a different purpose, and
which must be used in an Oracle OLAP program. The SWITCH
command is not evaluated like an expression.

2-44 Oracle OLAP DML Reference

OLAP DML Expressions

A SWITCH expression has the following syntax.
SWITCH expression DO { case-label ... exp[,]} ... DOEND
where case-label has the following syntax:

CASE exp: | DEFAULT:

When processing a SWITCH expression, Oracle OLAP compares each CASE
expression in succession until it finds a match. When a match is found, it returns the
value specified after the last label of the current case group. When no match is found
and a DEFAULT label is specified, it returns the value specified for the DEFAULT
case; otherwise it returns NA.

Example 2-4 Using a SWITCH Expression Instead of an IF Expression

Assume that you have coded the following OLAP DML statement which includes
nested IF.. THEN...ELSE statements.

testprogram = IF testtype EQ 0 -
THEN 'program0Q' -
ELSE IF testtype EQ 1 -
THEN 'programl' -
ELSE IF testtype EQ 2 OR testtype EQ 3 -
THEN 'program2'
ELSE NA

You could, instead, code the same behavior using a SWITCH expression as shown
below.

testprogram = SWITCH testtype DO
CASE 0: 'program0',
CASE 1: 'programl',6 -

CASE 2: -

CASE 3: 'program2',6 -
DEFAULT: NA -

DOEND

You could also code the same behavior using a SWITCH statement that spans fewer
lines, omits commas, and omits the DEFAULT case since NA is the default return value
when a match is not found.

testprogram = SWITCH testtype DO CASE 0: 'program(O' CASE 1: 'programl' -
CASE 2: CASE 3: 'program2' DOEND

Substitution Expressions

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that Oracle
OLAP should evaluate an expression containing a substitution expression as follows:

1. Evaluate the expression following the ampersand (the substitution expression).

2. Evaluate the rest of the expression using the result of step 1 (that is, the result of
the substitution expression).

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable that
holds the name of another variable, the value of the expression becomes the data in the
second variable. Ampersand substitution lets you write more general programs that

Data Types, Operators, and Expressions 2-45

OLAP DML Expressions

can operate on data that is chosen when the program is run. Note, however, that,
Oracle OLAP does not compile program lines with ampersand substitution; instead
these lines are interpreted when the program runs. To avoid ampersand substitution
in a program, you can often use an IF or SWITCH command instead.

You cannot use ampersand substitution in model equations.

Example 2-5 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of one of the
dimensions in the analytic workspace (product). When you execute the following
statement, then REPORT produces the single value, product, which is the actual
value stored in the curname variable.

REPORT curname

PRODUCT

However, when you execute the following statement, then REPORT produces the
values of the dimension product.

REPORT &curname

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

Using Ampersand Substitution with QDRs
When you use an ampersand with a QDR, you must enclose the whole expression in
parentheses if you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and
that contains the names of variables. Remember that it is myvar that is dimensioned
by reptype, not the variables named by myvar. Therefore, you must use parentheses
so that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT & (myvar (reptype 'actual'))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptype.

2-46 Oracle OLAP DML Reference

3

Formulas, Models, Aggregations, and

Allocations

Calculation objects are OLAP DML objects that contain OLAP DML statements that
specify analysis that you want performed. Calculation objects include: formulas,
models, aggregation specifications, allocation specifications, and programs.

This chapter contains information on the following

Creating Calculation Objects
OLAP DML Formulas

OLAP DML Model Objects
OLAP DML Aggregation Objects
OLAP DML Allocation Objects

For information on creating OLAP DML programs, see Chapter 4, "OLAP DML
Programs".

Creating Calculation Objects

The general process of creating a calculation specification object is the following two
step process:

1.
2.

Define the calculation object using the appropriate DEFINE statement.

Add the calculation specification to the object definition. You can add the
calculation specification to the definition of a calculation object in the following
ways:

At the command line level of the OLAP Worksheet, in an input file, or as an
argument to a PL/SQL function. In this case, ensure that the object is the
current object (issue a CONSIDER statement, if necessary), and, then, issue the
appropriate statement that includes the specification as a multiline text
argument. To code the specification as a multiline text, you can use a
JOINLINES function where each of the text arguments of JOINLINES is a
statement that specifies the desired processing, and where the final statement
1s END.

In an Edit Window of the OLAP Worksheet. In this case, at the command line
level of the OLAP Worksheet, issue an EDIT statement with the appropriate
keyword. This opens an Edit Window for the specified object. You can then
type each statement as an individual line in the Edit Window. Saving the
specification and closing the Edit Window when you are finished.

Formulas, Models, Aggregations, and Allocations 3-1

OLAP DML Formulas

Table 3-1 outlines the OLAP DML statements that you use to create each type of
calculation specification.

Table 3-1 Commands for Defining calculation objects

Calculations Definition Statement Specification Statement For More Information

Formula DEFINE FORMULA EQ "OLAP DML Formulas" on
page 3-12

Model DEFINE MODEL MODEL "OLAP DML Model
Objects" on page 3-12

Aggregation =~ DEFINE AGGMAP AGGMAP "OLAP DML Aggregation
Objects" on page 3-12

Allocation DEFINE AGGMAP ALLOCMAP "OLAP DML Allocation
Objects" on page 3-12

Program DEFINE PROGRAM PROGRAM Chapter 4, "OLAP DML
Programs"

OLAP DML Formulas

3-2 Oracle OLAP

You can save an expression in a formula. Frequently, you define a formula for ease of
use and to save storage space. Once you have defined a formula for an expression, you
can use the name of the formula takes the place of the text of the expression. Oracle
OLAP does not store the data for a formula in a variable; instead it is calculated at
runtime each time it is requested.

Before you create a formula, decide whether you want to specify the expression when
you first define the formula object or whether you want to specify the expression for
the formula after you define the formula object:

= When you decide to specify the expression when you first define the formula
object, then:

1. Issue a DEFINE FORMULA statement to define the formula object. Include
the expression in the definition. Do not specify values for the datatype or
dimensions arguments.

2. (Optional) Issue a COMPILE statement to compile the formula.

3. When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

= When you decide to specify the expression for the formula after you define the
formula object, then:

1. Issue a DEFINE FORMULA statement to define the formula object. Specify
values for the datatype or dimensions arguments, but do not specify a
value for the expression, itself.

2. Issue a CONSIDER statement to make the formula the current definition and,
then, issue an EQ statement to specify the expression for the formula.

3. (Optional) Issue a COMPILE statement to compile the formula.

4. When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE dollar.sales FORMULA units * price

DML Reference

OLAP DML Model Objects

OLAP DML Model Objects

This topic provides information about creating and executing OLAP DML models. It
includes the following subtopics:

= Whatis an OLAP DML Model?
» Creating Models

= Compiling Models

= Running a Model

= Debugging a Model

What is an OLAP DML Model?

An OLAP DML model is a set of interrelated equations that can assign results either to
a variable or to a dimension value. For example, in a financial model, you can assign
values to specific line items, such as gross .margin or net . income.

gross.margin = revenue - cogs

When an assignment statement assigns data to a dimension value or refers to a
dimension value in its calculations, then it is called a dimension-based equation. A
dimension-based equation does not refer to the dimension itself, but only to the values
of the dimension. Therefore, when the model contains any dimension-based equations,
then you must specify the name of each of these dimensions in a DIMENSION
statement at the beginning of the model.

When a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both a
source of data and the assignment target of model equations. It holds the input data
used in dimension-based equations, and the calculated results are stored in designated
values of the solution variable. For example, when you run a financial model based on
the 1ine dimension, you might specify actual as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Since you do not
need to specify the modeling variable until you solve a model, you can run the same
model with the actual variable, the budget variable, or any other variable that is
dimensioned by 1ine.

Models can be quite complex. You can:

s Include one model within another model as discussed in "Nesting Models" on
page 3-4

= Use data from different time periods as discussed in "Using Data from Past and
Future Time Periods" on page 3-5

= Solve simultaneous equations as discussed in "Solving Simultaneous Equations"
on page 3-6

= Create models for different scenarios as described in "Modeling for Multiple
Scenarios" on page 3-6

Creating Models
To create an OLAP DML model, take the following steps:

1. Issue a DEFINE MODEL command to define the program object.

Formulas, Models, Aggregations, and Allocations 3-3

OLAP DML Model Objects

2, Issue a MODEL command which adds a specification to the model to specify the
processing that you want performed.

3. Compile the model as described in "Compiling Models" on page 3-6.

4. (Optional) If necessary, change the settings of model options listed in "Model
Options" on page 6-5.

5. Execute the model as described in "Running a Model" on page 3-10.
6. Debug the model as described in "Debugging a Model" on page 3-12.

7. When you want the model to be a permanent part of the analytic workspace, save
the model using an UPDATE command followed by COMMIT.

For an example of creating a model, see Example 10-58, "Creating a Model" on
page 10-101.

Nesting Models

You can include one model within another model by using an INCLUDE statement
within a MODEL command. The MODEL command that contains the INCLUDE
statement is referred to as the parent model. The included model is referred to as the
base model. You can nest models by placing an INCLUDE statement in a base model.
For example, model myModel1l can include model myModel2, and model myModel2
can include model myModel3. The nested models form a hierarchy. In this example,
myModell is at the top of the hierarchy, and myMode13 is at the root.

When a model contains an INCLUDE statement, then it cannot contain any
DIMENSION statements. A parent model inherits its dimensions, if any, from the
DIMENSION statements in the root model of the included hierarchy. In the example
just given, models myModell and myModel2 both inherit their dimensions from the
DIMENSION statements in model myModel3.

The INCLUDE statement enables you to create modular models. When certain
equations are common to several models, then you can place these equations in a
separate model and include that model in other models as needed.

The INCLUDE statement also facilitates what-if analyses. An experimental model can
draw equations from a base model and selectively replace them with new equations.
To support what-if analysis, you can use equations in a model to mask previous
equations. The previous equations can come from the same model or from included
models. A masked equation is not executed or shown in the MODEL.COMPRPT
report for a model

Dimension Status and Model Equations

When a model contains an assignment statement to assign data to a dimension value,
then the dimension is limited temporarily to that value, performs the calculation, and
restores the initial status of the dimension.

For example, a model might have the following statements.

DIMENSION line

gross.margin = revenue - Cogs

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

PUSH line

LIMIT line TO gross.margin

actual = actual(line revenue) - actual(line cogs)
POP line

3-4 Oracle OLAP DML Reference

OLAP DML Model Objects

This behind-the-scenes construction lets you perform complex calculations with
simple model equations. For example, line item data might be stored in the actual
variable, which is dimensioned by 1ine. However, detail line item data might be
stored in a variable named detail.data, with a dimension named detail.line.

When your analytic workspace contains a relation between 1ine and detail.line,
which specifies the line item to which each detail item pertains, then you might write
model equations such as the following ones.

revenue = total (detail.data line)
expenses = total (detail.data line)

The relation between detail.line and line is used automatically to aggregate the
detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the 1ine
dimension. For example, while the equation for the revenue item is calculated, 1ine
is temporarily limited to revenue, and the TOTAL function returns the total of detail
items for the revenue value of 1ine.

Using Data from Past and Future Time Periods

Several OLAP DML functions make it easy for you to use data from past or future
time periods. For example, the LAG function returns data from a specified previous
time period, and the LEAD function returns data from a specified future period.

When you run a model that uses past or future data in its calculations, you must make
sure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement that bases an estimate of the
revenue line item for the current month on the revenue line item for the previous
month.

DIMENSION line month
revenue = LAG(revenue, 1, month) * 1.05

When the month dimension is limited to Apr2004 to Jun2004 when you run the
model, then you must be sure that the solution variable contains revenue data for
Mar96.

When your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, when you want to calculate data for the
months of April through June of 2004, and when the model retrieves data from one
month in the future, then the solution variable must contain data for July 2004 when
you run the model.

Handling NA Values in Models

Oracle OLAP observes the NASKIP2 option when it evaluates equations in a model.
NASKIP2 controls how NA values are handled when + (plus) and - (minus) operations
are performed. The setting of NASKIP2 is important when the solution variable
contains NA values.

The results of a calculation may be NA not only when the solution variable contains an
NA value that is used as input, but also when the target of a simultaneous equation is
NA. Values in the solution variable are used as the initial values of the targets in the
first iteration over a simultaneous block. Therefore, when the solution variable
contains NA as the initial value of a target, an NA result may be produced in the first
iteration, and the NA result may be perpetuated through subsequent iterations.

Formulas, Models, Aggregations, and Allocations 3-5

OLAP DML Model Objects

To avoid obtaining NA for the results, you can make sure that the solution variable
does not contain NA values or you can set NASKIP2 to YES before running the model.

Solving Simultaneous Equations

An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation, and compares the new value to the
value from the previous iteration. When the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. When the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

When all the equations in the block converge, then the block is considered solved.
When any equation diverges or fails to converge within a specified number of
iterations, then the solution of the block (and the model) fails and an error occurs.

You can exercise control over the solution of simultaneous equations, use the OLAP
DML options described in "Model Options" on page 6-5. For example, using these
options, you can specify the solution method to use, the factors to use in testing for
convergence and divergence, the maximum number of iterations to perform, and the
action to take when the assignment statement diverges or fails to converge.

Modeling for Multiple Scenarios

Instead of calculating a single set of figures for a month and division, you might want
to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate
profit based on optimistic, pessimistic, and best-guess figures.

To build a scenario model, follow these steps.

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.
3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

For an example of building a scenario model see, Example 10-59, "Building a Scenario
Model" on page 10-102.

Compiling Models

When you finish writing the statements in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.
When you do not use COMPILE before you run the model, then the model is compiled
automatically before it is solved.You can use the OB]J function with the ISCOMPILED
choice to test whether a model is compiled.

SHOW OBJ (ISCOMPILED 'myModel')
When you compile a model, either by using a COMPILE statement or by running the

model, the model compiler checks for problems that are unique to models. You receive
an error message when any of the following occurs:

s The model contains any statements other than DIMENSION, INCLUDE, and
assignment (SET) statements.

3-6 Oracle OLAP DML Reference

OLAP DML Model Objects

s The model contains both a DIMENSION statement and an INCLUDE statement.

= A DIMENSION or INCLUDE statement is placed after the first equation in the
model.

s The dimension values in a single dimension-based equation refer to two or more
different dimensions.

= An equation refers to a name that the compiler cannot identify as an object in any
attached analytic workspace. When this error occurs, it may be because an
equation refers to the value of a dimension, but you have neglected to include the
dimension in a DIMENSION statement. In addition, a DIMENSION statement
may appear to be missing when you are compiling a model that includes another
model and the other model fails to compile. When a root model (the innermost
model in a hierarchy of included models) fails to compile, the parent model is
unable to inherit any DIMENSION commands from the root model. In this case
the compiler may report an error in the parent model when the source of the error
is actually in the root model. See INCLUDE for additional information.

Resolving Names in Equations

The model compiler examines each name in an equation to determine the analytic
workspace object to which the name refers. Since you can use a variable and a
dimension value in exactly the same way in a model equation (basing calculations on
it or assigning results to it), a name might be the name of a variable or it might be a
value of any dimension listed in a DIMENSION statement.

To resolve each name reference, the compiler searches through the dimensions listed
in explicit or inherited DIMENSION statements, in the order they are listed, to
determine whether the name matches a dimension value of a listed dimension. The
search concludes as soon as a match is found.

Therefore, when two or more listed dimensions have a dimension value with the same
name, the compiler assumes that the value belongs to the dimension named earliest in
a DIMENSION statement.

Similarly, the model compiler might misinterpret the dimension to which a literal
INTEGER value belongs. For example, the model compiler will assume that the literal
value '200 "' belongs to the first dimension that contains either a value at position 200
or the literal dimension value 200.

To avoid an incorrect identification, you can specify the desired dimension and
enclose the value in parentheses and single quotes. See "Formatting Ambiguous
Dimension Values" on page 10-196.

When the compiler finds that a name is not a value of any dimension specified in a
DIMENSION statement, it assumes that the name is the name of an analytic
workspace variable. When a variable with that name is not defined in any attached
analytic workspace, an error occurs.

Code for Looping Over Dimensions

The model compiler determines the dimensions over which the statements will loop.
When an equation assigns results to a variable, the compiler constructs code that loops
over the dimensions (or bases of a composite) of the variable.

When you run a model that contains dimension-based equations, the solution variable
that you specify can be dimensioned by more dimensions than are listed in
DIMENSION statements.

Formulas, Models, Aggregations, and Allocations 3-7

OLAP DML Model Objects

Evaluating Program Arguments

When you specify the value of a model dimension as an argument to a user-defined
program, the compiler recognizes a dependence introduced by this argument.

For example, an equation might use a program named weight that tests for certain
conditions and then weights and returns the Taxes line item based on those
conditions. In this example, a model equation might look like the following one.

Net.Income = Opr.Income - weight (Taxes)

The compiler correctly recognizes that Net . Income depends on Opr . Income and
Taxes. However, when the weight program refers to any dimension values or
variables that are not specified as program arguments, the compiler does not detect
any hidden dependencies introduced by these calculations.

Dependencies Between Equations

The model compiler analyzes dependencies between the equations in the model. A
dependence exists when the expression on the right-hand side of the equal sign in one
equation refers to the assignment target of another equation. When an equation
indirectly depends on itself as the result of the dependencies among equations, a cyclic
dependence exists between the equations.

The model compiler structures the model into blocks and orders the equations within
blocks and the blocks themselves to reflect dependencies. When you run the model, it
is solved one block at a time. The model compiler can produce three types of solution
blocks:

= Simple Solution Blocks—Simple blocks include equations that are independent
of each other and equations that have dependencies on each other that are
non-cyclic.

For example, when a block contains equations that solve for values 2, B, and C, a
non-cyclic dependence can be illustrated as A>B>C. The arrows indicate that A
depends on B, and B depends on C.

= Step Solution Blocks—Step blocks include equations that have a cyclic
dependence that is a one-way dimensional dependence. A dimensional
dependence occurs when the data for the current dimension value depends on
data from previous or later dimension values. The dimensional dependence is
one-way when the data depends on previous values only or later values only, but
not both. For more information on one-way dimensional dependence, see
"Ensuring One-Way Dimensional Dependence" on page 3-9.

Dimensional dependence typically occurs over a time dimension. For example, it
is common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. When a block contains equations that
solve for values A and B, a one-way dimensional dependence can be illustrated

as A>B>LAG (A). The arrows indicate that A depends on B, and B depends on the
value of A from a previous time period.

= Simultaneous Solution Blocks—Simultaneous blocks include equations that have
a cyclic dependence that is other than one-way dimensional. The cyclic
dependence may involve no dimensional qualifiers at all, or it may be a two-way
dimensional dependence. For more information on two-way dimensional
dependence, see "Structures for Which the Model Compiler Assumes Two-Way
Dimensional Dependence" on page 3-9.

When a model contains a block of simultaneous equations, COMPILE gives you a
warning message. In this case, you may want to check the settings of the options

3-8 Oracle OLAP DML Reference

OLAP DML Model Objects

that control simultaneous solutions before you run the model. "Model Options" on
page 6-5 lists these options.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as A>B>C>A. The arrows indicate that A depends on B,
B depends on C, and C depends on A.

An example of a cyclic dependence that is a two-way dimensional dependence can
be illustrated as A>LEAD (B) >LAG (A) . The arrows indicate that A depends on the
value of B from a future period, while B depends on the value of A from a previous
period.

Order of Simultaneous Equations The solution of a simultaneous block of equations
is sensitive to the order of the equations. In general, you should rely on the model
compiler to determine the optimal order for the equations. In some cases, however,
you may be able to encourage convergence by placing the equations in a particular
order.

To force the compiler to leave the simultaneous equations in each block in the order in
which you place them, set the MODINPUTORDER option to YES before compiling the
model. (MODINPUTORDER has no effect on the order of equations in simple blocks
or step blocks.)

Structures for Which the Model Compiler Assumes Two-Way Dimensional
Dependence

When dependence is introduced through any of the following structures, the model
compiler assumes that two-way dimensional dependence occurs:

= A two-way dimensional dependence can occur when you use an aggregation
function, such as AVERAGE, TOTAL, ANY, or COUNT.

Opr.Income = Gross.Margin -
(TOTAL (Marketing + Selling + R.D))
Marketing = LAG(Opr.Income, 1, month)

= A two-way dimensional dependence can occur when you use a time-series
function that requires a time-period argument, such as CUMSUM, LAG, or LEAD
(except for the specific functions and conditions described in "Ensuring One-Way
Dimensional Dependence" on page 3-9).

= A two-way dimensional dependence also can occur when you use a financial
function, such as DEPRSL or NPV.

A cyclic dependence across a time dimension that you introduce through a loan or
depreciation function may cause unexpected results. The loan functions include
FINTSCHED, FPMTSCHED, VINTSCHED, and VPMTSCHED. The depreciation
functions include DEPRDECL, DEPRDECLSW, DEPRSL, and DEPRSOYD.

Ensuring One-Way Dimensional Dependence

When dependence between equations is introduced through any of the following
structures, a one-way dimensional dependence occurs:

= A one-way dimensional dependence occurs when you use a LAG or LEAD
function and when the argument for the number of time periods is coded as an
explicit number (either as a value or a constant) or as the result of ABS.
(Otherwise, there may be a two-way dependence, involving both previous and
future dimension values, and the compiler assumes that a simultaneous solution is
required.) The following example illustrates this use of LAG.

Formulas, Models, Aggregations, and Allocations 3-9

OLAP DML Model Objects

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

A one-way dimensional dependence occurs when you use a MOVINGAVERAGE,
MOVINGMAX, MOVINGMIN, or MOVINGTOTAL function, when that the start
and stop arguments are nonzero numbers, and when both the start and top
arguments are positive or both are negative. (Otherwise, two-way dimensional
dependence is assumed.)

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = MOVINGAVERAGE (Opr.Income, -4, -1, 1, month)

Obtaining Analysis Results

After compiling a model, you can use the following tools to obtain information about
the results of the analysis performed by the compiler:

Che
The

The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks
with a cross-dimensional dependence, the report lists the dimensions involved in
the dependence.

The MODEL.DEPRT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

The INFO function lets you obtain specific items of information about the
structure of the model.

cking for Additional Problems
compiler does not analyze the contents of any programs or formulas that are used

in model equations. Therefore, you must check the programs and formulas yourself to
make sure they do not do any of the following;:

Refer to the value of any variable used in the model.
Refer to the solution variable.
Limit any of the dimensions used in the model.

Invoke other models.

When a model or program violates any of these restrictions, the results of the model
may be incorrect.

Running a Model

When you run a model, you should keep these points in mind:

Before you run a model, the input data must be available in the solution variable.

Before running a model that contains a block of simultaneous equations, you
might want to check or modify the values of some OLAP DML options that
control the solution of simultaneous blocks. These options are described briefly in
"Model Options" on page 6-5.

When your model contains any dimension-based equations, then you must
provide a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all of the dimensions on which model equations are based and
also by the other dimensions of the solution variable on which you are not basing
equations.

3-10 Oracle OLAP DML Reference

OLAP DML Model Objects

= When you run a model, a loop is performed automatically over the values in the
current status list of each of the dimensions of the solution variable on which you
have not based equations.

= When a model equation bases its calculations on data from previous time periods,
then the solution variable must contain data for these previous periods. When it
does not, or when the first value of the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is in status, then the results of the calculation are NA.

Syntax for Running a Model
To run or solve a model, use the following syntax.

model-name [solution-variable] NOWARN]
where:
s model-name is the name of the model.

= Solution-variable is the name of a numeric variable that serves as both the source and
the target of data in a model that contains dimension-based equations. The
solution variable is usually dimensioned by all the dimensions on which model
equations are based (as specified in explicit or included DIMENSION commands).
The solution-variable argument is required when the model contains any
dimension-based equations. When all the model equations are based only on
variables, a solution variable is not needed and an error occurs when you supply
this argument. See "Dimensions of Solution Variables" on page 3-11 for more
information on dimensions of solution variables.

= NOWARN is an optional argument that specifies that you do not want to be warned
when the model contains a block of simultaneous equations.

Dimensions of Solution Variables

In a model with dimension-based equations, the solution variable is usually
dimensioned by the dimensions on which model equations are based. Or, when a
solution variable is dimensioned by a composite, the model equations can be based on
base dimensions of the composite. The dimensions on which model equations are
based are listed in explicit or inherited DIMENSION statements.

Special Cases of Solution Variables

The following special cases regarding the dimensions of the solution variable can
occur:

s The solution variable can have dimensions that are not listed in DIMENSION
commands. Oracle OLAP automatically loops over the values in the status of the
extra dimensions. For example, the model might contain a DIMENSION statement
that lists the 1ine and month dimensions, but you might specify a solution
variable dimensioned by 1ine, month, and division. Oracle OLAP
automatically loops over the division dimension when you run the model. The
solution variable can also be dimensioned by a composite that has one or more
base dimensions that are not listed in DIMENSION commands. See "Solution
Variables Dimensioned by a Composite" on page 3-12

s When the solution variable has dimensions that are not listed in DIMENSION
commands and when any of these other dimensions are the dimension of a step or
simultaneous block, an error occurs.

» Oracle OLAP loops over the values in the status of all the dimensions listed in
DIMENSION commands, regardless of whether the solution variable is

Formulas, Models, Aggregations, and Allocations 3-11

OLAP DML Aggregation Objects

dimensioned by them. Therefore, Oracle OLAP will be doing extra, unnecessary
work when the solution variable is not dimensioned by all the listed dimensions.
Oracle OLAP warns you of this situation before it starts solving the model.

s The inclusion of an unneeded dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR in a DIMENSION statement causes incorrect results when
you use a loan, depreciation, or aggregation function in a model equation. This
happens because any component of a model equation that refers to the values of a
model dimension behaves as if that component has all the dimensions of the
model.

Solution Variables Dimensioned by a Composite

When a solution variable contains a composite in its dimension list, Oracle OLAP
observes the sparsity of the composite whenever possible. As it solves the model,
Oracle OLAP confines its loop over the composite to the values that exist in the
composite. It observes the current status of the composite's base dimensions as it
loops.

However, for proper solution of the model, Oracle OLAP must treat the following base
dimensions of the composite as regular dimensions:

» A base dimension that is listed in a DIMENSION statement.

= A base dimension that is implicated in a model equation created using SET (for
example, an equation that assigns data to a variable dimensioned by the base
dimension).

= A base dimension that is also a base dimension of a different composite that is
specified in the ACROSS phrase of an equation. (See SET for more information on
assignment statements and the use of ACROSS phrase.)

When a base dimension of a solution variable's composite falls in any of the preceding
three categories, Oracle OLAP treats that dimension as a regular dimension and loops
over all the values that are in the current status.

When the solution variable's composite has other base dimensions that do not fall in
the special three categories, Oracle OLAP creates a temporary composite of these extra
base dimensions. The values of the temporary composite are the combinations that
existed in the original composite. Oracle OLAP loops over the temporary composite as
it solves the model.

Debugging a Model

The following tools are available for debugging models:

= To see the order in which the equations in a model are solved, you can set the
MODTRACE option to YES before you run the model.When you set MODTRACE
to YES, you can use a DBGOUTFILE statement to send debugging information to a
file. The file produced by DBGOUTFILE interweaves each line of your model with
its corresponding output.

= You can use the MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT
programs and the INFO function to obtain information about the structure of a
compiled model and the solution status of a model you have run.

OLAP DML Aggregation Objects

This topic provides information about aggregating data using the OLAP DML.It
includes the following subtopics:

3-12 Oracle OLAP DML Reference

OLAP DML Aggregation Objects

What is an OLAP DML Aggregation?
Aggregating Data Using the OLAP DML
Compiling Aggregation Specifications
Executing the Aggregation

Creating Custom Aggregates

What is an OLAP DML Aggregation?

Historically, aggregating data was summing detail data to provide subtotals and
totals. However, using OLAP DML aggmap objects you can specify more complex
aggregation calculation:

The summary data dimensioned by hierarchical dimension can be calculated
using many different types of methods (for example, first, last, average, or
weighted average). For an example of this type of aggregation, see Example 9-17,
"Aggregating Up a Hierarchy" on page 9-27.

The summary data dimensioned by a nonhierarchical dimension can be calculated
using a model. This functionality is useful to calculate values for dimensions, such
as line items, that do not have a hierarchical structure. Instead, you create a model
to calculate the values of individual line items from one or more other line items or
workspace objects. For an example of this type of aggregation, see Example 9-16,
"Solving a Model in an Aggregation” on page 9-27.

The detail data used to calculate the summary data can be in the variable that
contains the summary data or in one or more other variables. The variable that
contains the summary data does not have to have exactly the same dimensions as
the variables that contain the detail data. For an examples of this type of
aggregation, see Example 9-14, "Aggregating into a Different Variable" on

page 9-25 and Example 9-31, "Capstone Aggregation" on page 9-66.

The data can be aggregated as a database maintenance procedure, in response to
user requests for summarized data, or you can combine these approaches. See
"Executing the Aggregation" on page 3-14 for more information.

Data that is aggregated in response to user requests can be calculated each time it
is requested or stored or cached in the analytic workspace for future queries.

The specification for the aggregation can be permanent or temporary as described
in "Creating Custom Aggregates” on page 3-15.

Aggregating Data Using the OLAP DML
To aggregate data using the OLAP DML, take the following steps:

1.

Decide if you want to aggregate all of the data as a Database maintenance
procedure using the AGGREGATE command or on-the-fly at runtime using the
AGGREGATE function or the BAGGMAP property, or if you want to combine
these approaches and precalculate some values and calculate others at run time.
For a discussion of the various approaches, see "Executing the Aggregation" on
page 3-14.

Issue a DEFINE AGGMAP statement to define the aggmap object as type
AGGMAP.

3. Write the aggregation specification as described in AGGMAP.

Formulas, Models, Aggregations, and Allocations 3-13

OLAP DML Aggregation Objects

4. When aggregating a partitioned variable, run PARTITIONCHECK to check that
the aggregation specification created in the previous step is compatible with the
variable's partitioning. If it is not, either rewrite the aggregation specification or
repartition the variable using CHGDFN.

5. When some or all of the data is to be aggregated using the AGGREGATE function:

a. Compile the aggmap object as described in "Compiling Aggregation
Specifications" on page 3-14.

b. Add the triggering property, object, or event. For example, add a formula that
has the AGGREGATE function as its expression and add $NATRIGGER
property to the variable to trigger the execution of that formula in response to
a runtime request for data.

6. When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

7. For data that is to be calculated using the AGGREGATE command:

a. (Optional) Set the POUTFILEUNIT option so that you can monitor the
progress of the aggregation.

b. Use the AGGREGATE command, followed by UPDATE and COMMIT to
precalculate the data and store it in the analytic workspace.

Compiling Aggregation Specifications

Compiling the aggmap object is important for aggregation performed at run-time
using the AGGREGATE function. Unless the compiled version of the aggmap has been
saved, the aggmap is recompiled by each session that uses it.

There are two ways you can compile an aggmap objects:
s Issue a COMPILE statement.

A COMPILE statement is the only way to compile an aggmap object that will be
used by an AGGREGATE function. Explicitly compiling an aggmap is also useful
for finding syntax errors in the aggmap before attempting to use it to generate
data. The following statement compiles the sales.agg aggmap.

COMPILE gpct.aggmap
= When you aggregate the data using an AGGREGATE command, include the
FUNCDATA phrase in the statement.

When you use the FUNCDATA phrase in an AGGREGATE command, Oracle
OLAP compiles the aggmap before it aggregates the data. For example, this
statement compiles and precalculates the aggregate data.

AGGREGATE sales USING gpct.aggmap FUNCDATA

Important: When some of the data is calculated on the fly, then you
must compile and save the aggmap after executing the AGGREGATE
command.

Executing the Aggregation
The OLAP DML provides two ways to aggregate data:

3-14 Oracle OLAP DML Reference

OLAP DML Allocation Objects

= As a data maintenance procedure using the AGGREGATE command. If you want
to use this method of aggregating data, then, within an aggregation specification,
identify data that you want to aggregate in this manner using the PRECOMPUTE
statement or PRECOMPUTE clause of the RELATION statement.

= Atrun-time when needed using the AGGREGATE function or adding an
$AGGMAP property to the variable.

You can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria. You can also combine these
approaches and precalculate some values and calculate others at run time. In this case,
frequently, you use the same aggmap with the AGGREGATE command and the
AGGREGATE function. However, in some cases you might use different aggmaps.

One step that you can take to achieve overall good performance is to balance the
amount of the data that you aggregate and store in an analytic workspace with the
amount of data that you specify for calculation on the fly. You can use a
PRECOMPUTE statement or clause within your aggregation specification to ask
Oracle OLAP to use special functionality called the Aggregate Advisor to
automatically determine what values to aggregate as a data maintenance procedure
using the AGGREGATE command, or to explicitly identify the values yourself.

Creating Custom Aggregates

The definitions for most aggregations persist from one session to another. However,
you might need to create session-only aggregates at runtime for forecasting or what-if
analysis, or just because you want to view the data in an unforeseen way. Adding
session-only aggregates is sometimes called creating custom aggregates. You can
create non-persistent aggregated data without permanently changing the specification
for the aggregation in the following ways:

s Using a MAINTAIN ADD SESSION statement, define temporary dimension
members and include an aggregation specification as part of the definition of these
members. The aggregation specification can either be a model or an aggmap. For
an example of using this method to create a temporary aggregation, see
Example 1042, "Creating Calculated Dimension Members with Aggregated
Values" on page 10-82.

s Create a model that specifies the aggregation. Use an AGGMAP ADD statement to
add the model to an aggmap at run time. At the end of a session, Oracle OLAP
automatically removes any models that you have added to an aggmap in this
manner. See AGGMAP ADD or REMOVE model for more information.

OLAP DML Allocation Objects

Allocating data involves creating lower-level data from summary data. This topic
provides an overview of how to allocate data using OLAP DML statements. It includes
the following subtopics:

» Introduction to Allocating Data Using the OLAP DML
= Features of Allocation in Oracle OLAP

= Allocating Data

» Handling NA Values When Allocating Data

Formulas, Models, Aggregations, and Allocations 3-15

OLAP DML Allocation Objects

Introduction to Allocating Data Using the OLAP DML

Allocating data using the OLAP DML involves creating an ALLOCMAP type aggmap
object that specifies how the data should be allocated, and executing that object using
the ALLOCATE command to actually distribute the data from a source object to the
cells of a target. The target is a variable that is dimensioned by one or more
hierarchical dimensions. The source data is specified by dimension values at a higher
level in a hierarchical dimension than the values that specify the target cells.

ALLOCATE uses an aggmap to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some of the allocation operations are based on existing data. The object containing that
data is the basis object for the allocation. In those operations, ALLOCATE distributes
the data from the source based on the values of the basis object.

ALLOCATE has operations that are the inverse of the operations of the AGGREGATE
command. The allocation operation methods range from simple allocations, such as
copying the source data to the cells of the target variable, to very complex allocations,
such as a proportional distribution of data from a source that is a formula, with the
amount distributed being based on another formula, with multiple variables as
targets, and with an aggmap that specifies different methods of allocation for different
dimensions.

Features of Allocation in Oracle OLAP

The Oracle OLAP allocation system is very flexible and has many features, including
the following:

s The source, basis, and target objects can be the same variable or they can be
different objects.

s The source and basis objects can be formulas, so you can perform computations on
existing data and use the result as the source or basis of the allocation.

= You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex.

= You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

= You can specify an amount to add to or multiply by the allocated value before the
result is assigned to the target cell.

= You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. When you
lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can
choose to not normalize the source data.

= You can specify minimum, maximum, floor, or ceiling values for certain
operations.

= You can copy the allocated data to a second variable so that you can have a record
of individual allocations to a cell that is the target of multiple allocations.

= You can specify ways of handling allocations when the basis has a null value.

= You can use the same aggmap in different ALLOCATE commands to use the same
set of dimension hierarchy values, operations, and arguments with different
source, basis, or target objects.

3-16 Oracle OLAP DML Reference

OLAP DML Allocation Objects

Allocating Data

To allocate data using an aggmap object, use the following OLAP DML statements in
the order indicated:

1.

Issue a DEFINE AGGMAP statement to define the aggmap object.

Note: When using the OLAP Worksheet, at the command line level,
immediately after the DEFINE AGGMAP statement, enter an "empty"
allocation specification by coding an ALLOCMAP statement. For
example:

DEFINE myaggmap AGGMAP
ALLOCMAP 'END'

Add a specification to the aggmap object that specifies the allocation that you
want performed. See ALLOCMAP for more information.

When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

(Optional) Set the POUTFILEUNIT option so that you can monitor the progress of
the allocation.

(Optional) Redesign the allocation error log by setting the
ALLOCERRLOGFORMAT and ALLOCERRLOGHEADER options to nondefault
values.

(Optional) Set the SALLOCMAP property on one or more variables to specify that
the aggmap is the default allocation specification for the variables.

(Recommended, but optional) Limit the variable to the target cells (that is, the cells
into which you want to allocate data).

Issue an ALLOCATE statement to allocate the data.

Handling NA Values When Allocating Data

Sometimes you want to overwrite existing data when allocating values to a target
variable and at other times you want to write allocated values to target cells that have
an NA basis before the allocation. For example, when you create a new product in your
product dimension, then no basis exists for the new product in your budget variable.
You want to allocate advertising costs for the entire product line, including the new
product.

You can handle NA values using formulas and hierarchical operators in a RELATION
statement in the following ways:

Handling NA data with formulas—One way to handle the NA values is to
construct a basis that only describes the desired target cells. This is the preferred
method. You can refine your choice of basis values by deriving the basis from a
formula. The following statements define a formula that equates the values of the
new product to twice the value of an existing product. You could use such a
formula as the basis for allocating advertising costs to the new product.

DEFINE formula_basis FORMULA DECIMAL <product>

EQ IF product EQ 'NEWPRODUCT' -
THEN 2 * product.budget (product 'EXISTINGPRODUCT') -
ELSE product.budget

Formulas, Models, Aggregations, and Allocations 3-17

OLAP DML Allocation Objects

= Handling NA data with hierarchical operators—To allocate data to target cells that
currently have NA values, use a hierarchical operator in a RELATION statement in
the allocation specification. The hierarchical operators use the hierarchy of the
dimension rather than existing data as the allocation basis. A danger in using
hierarchical operators is the possibility of densely populating your detail level
data, which can result in a much larger analytic workspace and require much
more time to aggregate the data.

To continue the example of allocating the advertising cost for the new product,
you could use the hierarchical last operator HLAST to specify allocating the cost to
the new (and presumably the last) product in the product dimension hierarchy.

3-18 Oracle OLAP DML Reference

4

OLAP DML Programs

This chapter provides an overview information on how to create OLAP DML
programs. It includes the following topics:

Programs Provided With the OLAP DML
Creating OLAP DML Programs

Specifying Program Contents

Compiling Programs

Testing and Debugging Programs

Executing Programs

Common Types of OLAP DML Programs
User-Written Programs that OLAP Looks For

Programs Provided With the OLAP DML

The following programs are provided with the OLAP DML:

ALLCOMPILE which uses the COMPILE command to compile every compilable
object in your current analytic workspace, one at a time.

ALLSTAT sets the status of all dimensions in the current analytic workspace to the
default status list of the dimension.

AWDESCRIBE sends information about the current analytic workspace to the
current outfile. After a summary page, it provides a report in two parts: An
alphabetic list of analytic workspace objects showing name, type, and description;
and a DESCRIBE of each object by object type.

COPYDEN defines a new object in the analytical workspace by copying the
definition from a already-defined object in the current workspace or in an attached
workspace.

FORECAST.REPORT produces a standard report of a forecast created using the
FORECAST command. The report shows the parameters of the forecast, including
the forecast formula and Mean Absolute Percent Error, followed by a display of
the forecasted values.

FULLDSC produces a report that lists the definition of one or more workspace
objects, including the properties and triggers of the object(s).

ISDATE determines whether a text expression to see if it can be converted to a
DATE value It returns YES when the text expression represents a valid date; NO

OLAP DML Programs 4-1

Creating OLAP DML Programs

when it does not. (Note that, ISDATE does not actually make the conversion. You
must use CONVERT to make the conversion.)

s LISTBY produces a report of the names of all objects in an analytic workspace that
are dimensioned by or related to one or more specified dimensions or composites.
You can use LISTBY with a dimension or composite in any attached workspace.

s LISTNAMES produces a report that lists the names of the objects in an analytic
workspace. You can limit the list to particular types of objects, and you can have
the names for each type of object listed in alphabetical order.

= MODEL.COMPRPT produces a report that shows how model equations are
grouped into blocks. For step blocks and for simultaneous blocks with a
cross-dimensional dependence, the report lists the dimensions involved in the
dependence.

= MODEL.DEPRT produces a report that lists the variables and dimension values on
which each model equation depends. When a dependence is dimensional, the
report gives the name of the dimension.

= MODEL.XEQRPT produces a report about the execution of the model. The report
specifies the block where the solution failed and shows the values of the model
options that were used in solving simultaneous blocks.

s PAGE, commonly used in report programs or with LISTNAMES, forces a page
break in output when PAGING is set to YES. An optional argument to PAGE
specifies a conditional page break based on how many lines are left on the page.

s REGRESS.REPORT produces a standard report of a regression performed using
the REGRESS command.

s STATUS sends to the current outfile the status of one or more dimensions,
dimension surrogates, or valuesets, or the status of all dimensions in an analytic
workspace.

s STDHDR generates the standard Oracle OLAP heading at the top of every page of
report output.

s VALSPERPAGE calculates the maximum number of values for a variable of a
specified width that will fit on one page. Pages are units of storage in the
workspace.

Since the ISDATE and VALSPERPAGE programs are like simple functions because
they return a single value, they are documented in alphabetical sequence along with
OLAP DML functions in Chapter 7, "OLAP DML Functions: A - K" and Chapter 8,
"OLAP DML Functions: L - Z". The other programs provided with the OLAP DML, are
documented in alphabetical sequence along with the OLAP DML commands in
Chapter 9, "OLAP DML Commands: A-G" and Chapter 10, "OLAP DML Commands:
H-Z"

Creating OLAP DML Programs

An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis task.
You can write OLAP DML programs to perform tasks that you must do repeatedly in
the analytic workspace, or you can write them as part of an application that you are
developing.

To create an OLAP DML program, take the following steps:

4-2 Oracle OLAP DML Reference

Specifying Program Contents

Issue a DEFINE PROGRAM statement to define the program object. When the
program that you are defining will be used is a function, include the datatype or the
dimension argument.

Add contents to the program that specify the processing that you want performed
as described in "Specifying Program Contents" on page 4-3.

Compile the program as described in "Compiling Programs" on page 4-11.

Test and debug the program as described in "Testing and Debugging Programs” on
page 4-12.

Execute the program as described in "Executing Programs" on page 4-13.

Specifying Program Contents
The content of a program consists of the following OLAP DML statements:

1.

A PROGRAM statement that indicates the beginning of the program contents.
(Omit when coding the specification in an Edit window of the OLAP Worksheet.)

(Optional) VARIABLE statements that define any local variables.

(Optional) ARGUMENT statements that declare arguments. (See "Passing
Arguments" on page 4-4 for more information.)

Additional OLAP DML statements that specify the processing you want
performed. You can use almost any of the OLAP DML statements in a program.
There are also some OLAP DML statements, such as flow-of-control statements,
that are only used in programs.

Use the following formatting guidelines as you add lines to your program:
= Each line of code can have a maximum of 4000 bytes.

= To continue a single statement on the next line, place a hyphen (-) at the end
of the line to be broken. The hyphen is called a continuation character.

= You cannot use a continuation character in the middle of a text literal.

= To write more than one statement on a single line, separate the statements
with semicolon (;).

= Enclose literal text in single quotation marks ('). To include a single quotation
mark within literal text, precede it with a backslash (\). To specify escape
sequences, see "Escape Sequences" on page 2-5.

= Precede comments with double quotation marks ("). You can place a
comment, preceded by double quotation marks, either at the beginning of a
line or at the end of a line, after some statements.

A final END statement that indicates the end of the contents of the program. (Omit
when coding the specification in an Edit window of the OLAP Worksheet.)

Creating User-Defined Functions

One type of program that is commonly written is a user-define function that you can
use in OLAP DML statements in much the same way as you use an OLAP DML
function. A user-defined function is simply an OLAP DML program that returns a
value. For an example of a user-defined function, see Example 9-43, "Passing an
Argument to a User-Defined Function" on page 9-101.

OLAP DML Programs 4-3

Specifying Program Contents

When you create a user-defined function, you use a DEFINE PROGRAM statement
that includes the datatype and dimension arguments. Within the program, you include a
RETURN statement that returns a value. The return expression in the program should
match the data type that is specified in its definition. When the data type of the return
value does not match the data type that is specified in its definition, then the value is
converted to the data type in the definition.

User-defined functions can accept arguments. A user-defined function returns only a
single value. However, when you supply an argument to a user-defined function in a
context that loops over a dimension (for example, in a REPORT statement), then the
function returns results with the same dimensions as its argument.

You must declare the arguments using an ARGUMENT statement within the program,
and you must specify the arguments in parentheses following the name of the
program.

See Also: "Passing Arguments" on page 4-4 for more information
about using arguments with programs.

Passing Arguments

Use ARGUMENT statements to declare both simple and complex arguments (such as
expressions). ARGUMENT statement also make it convenient to pass arguments from
one program to another, or to create your own user-defined functions since using
these statements you can declare an argument of any data type, dimension, or
valueset. Any ARGUMENT statements must precede the first executable line in the
program. When you run the program, these declared arguments are initialized with
the values you provided as arguments to the program. The program can then use
these arguments in the same way it would use local variables.

Using Multiple Arguments

A program can declare as many arguments as needed. When the program is executed
with arguments specified, the arguments are matched positionally with the declared
arguments in the program. When you run the program, you must separate arguments
with spaces rather than with commas or other punctuation. Punctuation is treated as
part of the arguments. For an example of passing multiple arguments, see

Example 944, "Passing Multiple Arguments" on page 9-101.

Handling Arguments Without Converting Values to a Specific Data Type

Sometimes you want your OLAP DML program to be able to handle arguments
without converting values to a specific data type. In this case, you can specify a data
type of WORKSHEET in the ARGUMENT and VARIABLE statements that define the
arguments and temporary variables for the program. You can use WKSDATA to
determine the actual data type of the argument or variable.

Passing Arguments as Text with Ampersand Substitution

It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to write more general programs or pass a
more complicated text argument, such as an argument that is all of the data in one of
the analytic workspace objects or the results of an expression. In these cases, you can
pass the argument using a substitution expression. Passing an argument in this way is
called ampersand substitution.

For the following types of arguments, you must always use an ampersand to make the
appropriate substitution:

4-4 Oracle OLAP DML Reference

Specifying Program Contents

= Names of workspace objects, such as units or product

= Statement keywords, such as COMMA or NOCOMMA in the REPORT statement, or A
or D in the SORT command

When you use ampersand substitution to pass the names of workspace objects to a
program (rather than their values), the program has access to the objects themselves
because the names are known to the program. This is useful when the program must
manipulate the objects in several operations.

Note: You cannot compile and save any program line that contains
an ampersand. Instead, the line is evaluated at run time, which can
reduce the speed of your programs. Therefore, to maximize
performance, avoid using ampersand substitution when another
technique is available.

For an example of using ampersand substitution to pass multiple dimension values,
see Example 10-18, "Using Ampersand Substitution with LIMIT" on page 10-41. For an
example of using ampersand substitution to pass the text of an expression, see
Example 946, "Passing the Text of an Expression” on page 9-102. For an example of
using ampersand substitution to pass object names and keywords, see Example 947,
"Passing Workspace Object Names and Keywords" on page 9-103.

See Also: "Substitution Expressions” on page 2-45 for more
information about ampersand substitution.

Program Flow-of-Control

Like most programming languages, the OLAP DML has a number of statements that
you can use to determine the flow-of-control within a program. However, you need to
code explicit loops less frequently in an OLAP DML program because of the intrinsic
looping nature of many OLAP DML statements.

Table 4-1, " Statements For Determining Flow-of-Control" on page 4-5 lists OLAP
DML flow-of-control statements. The looping characteristic of OLAP DML statements
is discussed in "OLAP DML Statements Apply to All of the Values of a Data Object" on
page 1-19.

The OLAP DML contains the flow-of-control statements typically found in a
programming language. Table 4-1, " Statements For Determining Flow-of-Control" on
page 4-5 lists these statements.

Table 4-1 Statements For Determining Flow-of-Control

Statement Description

BREAK Transfers program control from within a SWITCH, FOR, or
WHILE statement to the statement immediately following the
DOEND associated with SWITCH, FOR, or WHILE.

CONTINUE Transfers program control to the end of a FOR or WHILE loop
(just before the DO/DOEND statement), allowing the loop to
repeat. You can use CONTINUE only within programs and only
with FOR or WHILE.

DO ... DOEND statements Brackets a group of one or more statements. DO and DOEND are
normally used to bracket a group of statements that are to be
executed under a condition specified by an IF statement, a group
of statements in a repeating loop introduced by FOR or WHILE,
or the CASE labels for a SWITCH statement.

OLAP DML Programs 4-5

Specifying Program Contents

Table 4-1 (Cont.) Statements For Determining Flow-of-Control

Statement Description

FOR statement Specifies one or more dimensions whose status will control the
repetition of one or more statements.

GOTO statement Alters the sequence of statement execution within the program by

IF...THEN...ELSE
command

OKFORLIMIT

RETURN statement

SIGNAL statement

SWITCH command

TEMPSTAT statement

TRAP statement

WHILE statement

indicating the next program statement to execute.

Executes one or more statements in a program if a specified
condition is met. Optionally, it also executes an alternative
statement or group of statements when the condition is not met.

An option that determines whether you can limit the dimension
you are looping over within an explicit FOR loop.

Terminates execution of a program prior to its last line. You can
optionally specify a value that the program will return.

Produces an error message and halts normal execution of the
program. When the program contains an active trap label,
execution branches to the label. Without a trap label, execution of
the program terminates and, if the program was called by another
program, execution control returns to the calling program.

Provides a multipath branch in a program. The specific path
taken during program execution depends on the value of the
control expression that is specified with SWITCH.

Limits the dimension you are looping over, inside a FOR loop or
inside a loop that is generated by a REPORT statement. Status is
restored after the statement following TEMPSTAT. If a DO ...
DOEND phrase follows TEMPSTAT, status is restored when the
matched DOEND or a BREAK or GOTO statement is
encountered.

Causes program execution to branch to a label when an error
occurs in a program or when the user interrupts the program.
When execution branches to the trap label, that label is
deactivated.

Repeatedly executes a statement while the value of a Boolean
expression remains TRUE.

Preserving the Environment Settings

There are two types of environments:

= Session environment. The dimension status, option values, and output destination
that are in effect before a program is run make up the session environment.

= Program environment. The dimension status, option values, and output
destination that you use in a program make up the program environment.

Changing the Program Environment

To perform a task within a program, you often need to change the output destination
or some dimension and option values. For example, you might run a monthly sales
report that always shows the last six months of sales data. You might want to show the
data without decimal places, include the text "No Sales" where the sales figure is zero,
and send the report to a file. To set up this program environment, you can use the
following statements in your program.

LIMIT month TO LAST 6

DECIMALS = 0
ZSPELL = 'No Sales'

4-6 Oracle OLAP DML Reference

Specifying Program Contents

OUTFILE monsales.txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that will be set in the program.
At the end of the program, you can restore the saved environment, so that other
programs do not need to be concerned about whether any values have been changed.
In addition, when you have sent output to a file, then the exit sections should return
the output destination to the default outfile.

Ways to Save and Restore Environments
The following suggestions let you save the environment of a program or a session:

= When you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable that will be changed in the current program, then
use PUSHLEVEL and PUSH statements. You can restore the current status values
using POPLEVEL and POP statements.

= When you want to save, access, or update the current status or value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation for
use in the current session, then use a named context. Use the CONTEXT command
to define the context.

Contexts are the most sophisticated way to save object values for use during a session.
With contexts, you can access, update, and commit the saved object values. In contrast,
PUSH and POP simply allow you to save and restore values. Typically, you use PUSH
and POP statements within a program to make changes that apply only during the
execution of the program.

Saving the Status of a Dimension or the Value of an Option

A PUSH statement saves the current status of a dimension, the value of an option, or
the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the program,
use the following statement in the initialization section.

PUSH DECIMALS

You do not need to know the original value of the option to save it or to restore it later.
You can restore the saved value with a POP statement.

POP DECIMALS

You must make sure a POP statement is executed when errors cause abnormal
termination of the program, as well as when the program ends normally. Therefore,

you should place the POP statement in the normal and abnormal exit sections of the
program.

Saving Several Values at Once

You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH statement, and you can restore the values with
a single POP statement, as shown in the following example.

PUSH month DECIMALS ZSPELL

POP month DECIMALS ZSPELL

OLAP DML Programs 4-7

Specifying Program Contents

Using Level Markers

When you are saving the values of several dimensions and options, then PUSHLEVEL
and POPLEVEL statements provide a convenient way to save and restore the session
environment.

You first use a PUSHLEVEL statement to establish a level marker. Once the level
marker is established, you use a PUSH statement to save the status of dimensions and
the values of options or single-cell variables.

When you place more than one PUSH statement between the PUSHLEVEL and
POPLEVEL statements, then all the objects that are specified in those PUSH statements
are restored with a single POPLEVEL statement.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you only need to type the list of objects once. You also reduce the
risk of omitting an object from the list or misspelling the name of an object.

For an example of creating level markers, see Example 10-86, "Creating Level
Markers" on page 10-147. Example 10-87, "Nesting PUSHLEVEL and POPLEVEL
Commands" on page 10-147 illustrates nesting PUSHLEVEL and POPLEVEL
statements.

Using CONTEXT to Save Several Values at Once

As an alternative to using PUSHLEVEL and POPLEVEL, you can use the CONTEXT
command. After you create a context, you can save the current status of dimensions
and the values of options, single-cell variables, valuesets, and single-cell relations in
the context. You can then restore some or all of the object values from the context. The
CONTEXT function returns information about objects in a context.

Handling Errors

When an error occurs anywhere in a program, Oracle OLAP performs the following
actions:

1. Stores the name of the error in the ERRORNAME option, and the text of the error
message in the ERRORTEXT option.

Note: When the ERRNAMES option is set to the default value of
YES, the ERRORTEXT option contains the name of the error (that is,
the value of the ERRORNAME option) as well as the text of the error
message.

2. When ECHOPROMPT is YES, then Oracle OLAP echoes input lines, error
messages, and output lines, to the current outfile. When you use the OUTFILE or
DBGOUTFILE statement, you can capture the error messages in a file. See
Example 10-70, "Directing Output to a File" on page 10-122 for an example of
directing output to a file.

3. When error trapping is off, then the execution of the program is halted. When
error trapping is on, then the error is trapped.

Trapping an Error

To make sure the program works correctly, you should anticipate errors and set up a
system for handling them. You can use a TRAP statement to turn on an error-trapping
mechanism in a program. When error trapping is on and an error is signaled, then the
execution of the program is not halted. Instead, error trapping does the following:

4-8 Oracle OLAP DML Reference

Specifying Program Contents

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP statement

3. Executes the statements following the label

Passing an Error to a Calling Program

To pass an error to a calling program, you can use one of two methods. The method
you use depends on when you want the error message to be produced. With the first
method, Oracle OLAP produces the message immediately and then the error condition
is passed through the chain of programs. With the second method, Oracle OLAP
passes the error through the chain of programs first and then produces the message.
See "Passing an Error: Method One" on page 4-9 and "Passing an Error: Method Two"
on page 4-9 for details.

With both methods, the appropriate error handling happens in each program in the
chain, and at some point Oracle OLAP sends an error message to the current outfile.

Passing an Error: Method One Using this method, Oracle OLAP produces the message
immediately and then the error condition is passed through the chain of programs.

Use a TRAP statement with the (default) PRINT option. When an error occurs, Oracle
OLAP produces an error message, and execution branches to the trap label. After the
trap label, perform whatever cleanup you want, and then execute the following
statement.

SIGNAL PRGERR

This creates an error condition that is passed up to the program from which the
current program was run. However, PRGERR does not produce an error message.
PRGERR sets the ERRORNAME option to a blank value.

When the calling program contains a trap label, execution branches to the label. When
each of the programs in a sequence of nested programs uses TRAP and SIGNAL in
this way, you can pass the error condition up through the entire sequence of
programs.

Passing an Error: Method Two Using this method, Oracle OLAP passes the error through
the chain of programs first and then produces the message.

Use a TRAP statement with the NOPRINT option. When an error occurs, execution
branches to the trap label, but the error message is suppressed. After the trap label,
perform whatever cleanup you want, then execute the following statement.

SIGNAL ERRORNAME ERRORTEXT

The options ERRORNAME and ERRORTEXT contain the name and message of the
original error, so this SIGNAL statement reproduces the original error. The error is
then passed up to the program from which the current program was run.

When the calling program also contains a trap label, execution branches to its label.
When each of the programs in a sequence of nested programs uses TRAP. . . NOPRINT
and SIGNAL ERRORNAME ERRORTEXT in this way, you can pass the error condition
up through the entire sequence of programs. Oracle OLAP produces the error message
at the end of the chain.

When you reach a level where you want to handle the error and continue the
application, omit the SIGNAL statement. You can display your own message with a
SHOW statement.

OLAP DML Programs 4-9

Specifying Program Contents

Suppressing Error Messages

When you do not want to produce the error message that is normally provided for a
given error, then you can use TRAP statement with a NOPRINT keyword.

TRAP ON error NOPRINT

When you use the NOPRINT keyword with TRAP, control branches to the error label,
and an error message is not issued when an error occurs. The statements following the
error label are then executed.

When you suppress the error message, you might want to produce your own message
in the abnormal exit section. A SHOW statement produces the text you specify but does
not signal an error.

TRAP ON error NOPRINT
error:
SHOW 'The report will not be produced.'

The program continues with the next statement after producing the message.

Creating Your Own Error Messages

All errors that occur when a statement or statement sequence does not conform to its
requirements are signaled automatically. In your program, you can establish
additional requirements for your own application. When a requirement is not met,
you can execute a SIGNAL statement to signal an error.

You can give the error any name. When a SIGNAL statement is executed, the error
name you specify is stored in the ERRORNAME option, just as an OLAP DML error
name is automatically stored. When you specify your own error message in a SIGNAL
statement, then your message is produced just as an OLAP DML error message is
produced. When you are using a TRAP statement to trap errors, a SIGNAL statement
branches to the TRAP label after the error message is produced.

For an example of signaling an error, see Example 10-122, "Signaling an Error" on
page 10-204.

When you want to produce a warning message without branching to an error label,
then you can use a SHOW statement as illustrated in Example 10-120, "Creating Error
Messages Using SHOW" on page 10-203.

Handling Errors in Nested Programs

When handling errors in nested programs, the error-handling section in each program
should restore the environment. It can also handle any special error conditions that are
particular to that program. For example, when your program signals its own error,
then you can include statements that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want the
error message to be produced:

» The error message is produced immediately, and the error condition is then passed
through the chain of programs. This approach is illustrated in Example 10-156,
"Producing a Program Error Message Immediately” on page 10-261.

4-10 Oracle OLAP DML Reference

Compiling Programs

s The error is passed through the chain of programs first, and the error message is
produced at the end of the chain. This approach is illustrated inExample 10-157,
"Producing a Program Error Message at the End of the Chain" on page 10-261.

A SIGNAL statement is used in both methods.

Handling Errors While Saving the Session Environment

To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL statement before the TRAP statement and your
PUSH statements after the TRAP statement.

PUSHLEVEL 'firstlevel'
TRAP ON error
PUSH

In the abnormal exit section of your program, place the error label (followed by a
colon) and the statements that restore the session environment and handle errors. The
abnormal exit section might look like this.

error:
POPLEVEL 'firstlevel'
OUTFILE EOF

These statements restore saved dimension status and option values and reroute output
to the default outfile.

Compiling Programs

You can explicitly compile a program by using a COMPILE statement. If you do not
explicitly compile a program, then it is compiled when you run the program for the
first time.

When a program is compiled, it translates the program statements into efficient
processed code that executes much more rapidly than the original text of the program.
When errors are encountered in the program, then the compilation is not completed,
and the program is considered to be uncompiled.

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic
workspace after compiling a program, the compiled code is saved in your analytic
workspace and used to run the program in future sessions. Therefore, you should be
sure to update and commit after compiling a program. This is particularly critical
when the program is part of an application that is run by many users. Unless the
compiled version of the program is saved in the analytic workspace, the program is
recompiled individually in each user session.

Example 9-68, "Compiling a Program" on page 9-149 illustrates using COMPILE to
compile a program

Finding Out If a Program Has Been Compiled

You can use the ISCOMPILED choice of the OBJ function to determine whether a
specific program in your analytic workspace has been compiled since the last time it
was modified. The function returns a Boolean value.

SHOW OBJ (ISCOMPILED 'myprogram')

OLAP DML Programs 4-11

Testing and Debugging Programs

Programming Methods That Prevent Compilation

Program lines that include ampersand substitution are not compiled. Any syntax
errors are not caught until the program is run. A program whose other lines compiled
correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program cannot be compiled. COMPILE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

Testing and Debugging Programs

Even when your program compiles cleanly, you must also test the program by
running it. Running a program helps you detect errors in statements with ampersand
substitution, errors in logic, and errors in any nested programs.

To test a program by running it, use a full set of test data that is typical of the data that
the program processes. To confirm that you test all the features of the program,
including error-handling mechanisms, run the program several times, using different
data and responses. Use test data that:

= Falls within the expected range
» Falls outside the expected range

= Causes each section of a program to execute

Generating Diagnostic Messages

Each time you run the program, confirm that the program executes its statements in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW statements in the program to
produce diagnostic or status messages. Then delete the SHOW statements after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the rest
of this section.

Identifying Bad Lines of Code

When you set the BADLINE option to YES, additional information is produced, along
with any error message when a bad line of code is encountered. When the error
occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile. You can edit the specified program to
correct the error and then run the original program. See Example 64, "Using the
BADLINE Option" on page 6-11 for an example of using BADLINE.

Sending Output to a Debugging File

When your program contains an error in logic, then the program might execute
without producing an error message, but it executes the wrong set of statements or
produces incorrect results. For example, suppose you write a Boolean expression
incorrectly in an IF statement (for example, you use NE instead of EQ). The program
executes the statements you specified, but it does so under the wrong conditions.

To find an error in program logic, you often need to see the order in which the
statements are being executed. One way you can do this is to create a debugging file

4-12 Oracle OLAP DML Reference

Common Types of OLAP DML Programs

and then examine the file to diagnose any problems in your programs by issuing the
following DML statements:

1. Create a debugging file, by issuing an DBGOUTFILE statement. A V statement
merely creates a file for debugging.

2. Specify that you want each program line to be sent to the debugging file when a
line executes by setting the PRGTRACE option to YES.

3. (Optional) When you want the debugging file to interweave the program lines
with both the program input and error messages, set the ECHOPROMPT option to
YES.

See Also: The following examples of using a debugging file:
= Example 9-75, "Debugging with a Debugging File" on page 9-163

= Example 9-76, "Sending Debugging Information to a File" on
page 9-164

Executing Programs

You can invoke a program that does not return a value by using a CALL statement.
You enclose arguments in parentheses, and they are passed by value. For example,
suppose you create a simple program named addit to add two INTEGER values. You
can use a CALL statement in the main program of your application to invoke the
program.

You can also invoke programs in much the same way as you issue OLAP DML
statements. You invoke user-defined functions in the same way as you use built-in
functions. You merely use the program name in an expression and enclose the
program arguments, if any, in parentheses. For a program that does not return a value
(a user-defined command), you merely use the program name as you would an OLAP
DML command. When you invoke a user-defined program as a function, the program
returns NA.

You can also create programs that execute automatically when Oracle OLAP:

s Executes an AW ATTACH. AW CREATE, AW DELETE, AW DETACH, DEFINE,
MAINTAIN, PROPERTY, UPDATE, or SET statement as described in "Trigger
Programs" on page 4-16.

s Encounters an NA value as described in $NATRIGGER.

Common Types of OLAP DML Programs
This section provides overview information about the following types of programs:
» Startup Programs
s Data Import and Export Programs
» Trigger Programs
= Aggregation, Allocation, and Modeling Programs
» FPorecasting Programs

= Programs to Export and Import Workspace Objects

OLAP DML Programs 4-13

Common Types of OLAP DML Programs

Startup Programs

Startup programs are programs that you write and that Oracle OLAP checks for by
name when an AW ATTACH statement executes. Startup programs do not exist
within an analytic workspace unless you define and write them. In a startup program
you can execute any OLAP DML statements, or run any of your own programs. For
example, a startup program might set options to values appropriate to your
application.

The types of startup programs that are recognized by Oracle OLAP are discussed in
this topic. The order in which these programs are executed is outlined in "Programs
Executed When Attaching Analytic Workspaces" on page 9-109.

There are two major categories of startup programs:

= Startup programs that are defined within the same analytic workspace for which
an AW ATTACH statement triggers their execution. Within this category of
startup programs are:

— Permission Programs
- AUTOGO Programs and ONATTACH Programs

= A program named TRIGGER_AW that is defined in an analytic workspace and
that executes when an AW ATTACH statement is issued for any other analytic
workspace. See TBD for more information.

Permission Programs

Permission programs are programs that you write that give permission to users to
access workspace data. When a user attaches an analytic workspace, Oracle OLAP
checks to see if a permission program that is appropriate for the attachment mode
exists. (The permission program for each attachment mode must have a particular
name as outlined in Table 4-2, " Names of Permission Programs for Different
Attachment Modes".) When an appropriate permission program exists, Oracle OLAP
executes the program. When a user specifies a password when attaching the analytic
workspace, then the password is passed as an argument to the permission program for
processing.

Table 4-2 Names of Permission Programs for Different Attachment Modes

Attachment Modes Name of Program
Read-only PERMIT_READ
Multiwriter, Read /write PERMIT_WRITE

Note: A dimension surrogate has the access permissions of its
dimension. Use a PERMIT on a dimension to grant or deny
permission to access the values of a dimension surrogate for that
dimension.

Permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

» Access at the analytic workspace level—Depending on the return value of the
permission program, the user is or is not granted access to the entire analytic
workspace. You can use the return value to indicate to Oracle OLAP whether or
not the user has the right to attach the workspace.

4-14 Oracle OLAP DML Reference

Common Types of OLAP DML Programs

m Access at the object level —Within a permission program for read-only or
read /write attachment, you can specify PERMIT statements that grant or restrict
access to individual workspace objects. PERMIT programs must be in the same
workspace as the objects for which they issue PERMIT statements.

Note: All of the objects referred to in a given permission program
must exist in the same analytic workspace.

To create a permission program, define a user-defined function (as described in
"Creating User-Defined Functions" on page 4-3) with one of the recognized names,
then define the contents for the program as described in "Specifying Program
Contents" on page 4-3.

AUTOGO Programs and ONATTACH Programs

You can create an Autogo program by defining a program with any name, and
specifying that name in the AW ATTACH statement after the AUTOGO keyword.

You can create an Onattach program in one of two ways:

= You can define a program named ONATTACH. Each time you attach the workspace,
the ONATTACH program executes automatically unless you include a
NOOTTACH keyword in the AW ATTACH statement.

= You can define a program and give it any name you want. When attaching the
workspace using a AW ATTACH statement, you can run the program by
specifying its name after the ONATTACH keyword. This is useful for application
developers; an application can run a different startup program depending on the
users' choices.

Data Import and Export Programs

The OLAP DML provides support for importing data from relational tables, flat files,
and spreadsheets into analytic workspace objects; and for exporting data from analytic
workspace objects to relational tables, flat files, and spreadsheets.

Importing Data to and Exporting Data from Relational Tables

You can embed SQL statements in OLAP DML programs using the OLAP DML SQL
statement. Using the OLAP DML SQL statement you can import data from relational
tables into analytic workspace objects and export data from analytic workspace objects
to relational tables.

Importing Data From Relational Tables to Workspace Objects Using the OLAP DML SQL
statement within an OLAP DML program you can copy relational data into analytic
workspace objects using either an implicit cursor or an explicit cursor:

= To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the SQL SELECT statement. You can use this OLAP DML
statement interactively in the OLAP Worksheet or within an OLAP DML program.

= To copy data from relational tables into analytic workspace objects using an
explicit cursor, use the following statements in the order indicated. You can only
use these statements within an OLAP DML program. You cannot use them
interactively in the OLAP Worksheet.

1. SQL DECLARE CURSOR defines a SQL cursor by associating it with a
SELECT statement or procedure.

OLAP DML Programs 4-15

Common Types of OLAP DML Programs

SQL OPEN activates a SQL cursor.
SQL FETCH and SQL IMPORT retrieve and process data specified by a cursor.
SQL CLOSE closes a SQL cursor.

SQL CLEANUP cancels a SQL cursor declaration and frees the memory
resources of an SQL cursor.

a k& ® N

For examples of programs that copy table data into workspace objects, see SQL
FETCH and SQL IMPORT.

Exporting Data from OLAP DML Objects to Relational Tables Within a program, you can use
an OLAP DML SQL statement with the INSERT keyword to copy data from analytic
workspace objects into relational tables. Typically, you do this by issuing the following
statements in your OLAP DML program:

1. SQL PREPARE statements, to precompile the INSERT and UPDATE statements.

2. SQL EXECUTE statements, to execute the statements that you precompiled in Step
1.

Importing Data to and Exporting Data from Flat Files

Oracle OLAP provides a number of statements that you can use to read data from flat
files or to write data to flat files. These statements are frequently used together in a
special program.

Importing Data to and Exporting Data from Spreadsheets

Within an OLAP DML program you can use an IMPORT statement to import data
from a spreadsheet into analytic workspace objects. You can use an EXPORT
statement to export data from analytic workspace objects into a spreadsheet.

Trigger Programs

DEFINE, MAINTAIN, PROPERTY, SET (=) UPDATE, and AW commands are
recognized by Oracle OLAP as events that can trigger the execution of OLAP DML
programs.

= Programs triggered by DEFINE, MAINTAIN, PROPERTY, UPDATE, or SET
commands, are called object trigger programs and are discussed in this section
and in the topic for the TRIGGER command.

= A program named TRIGGER_AW that is defined within one analytic workspace
and which is triggered when another analytic workspace is created, attached,
detached or deleted. See the discussion of the "TRIGGER_AW" on page 4-28 for
more information.

Trigger programs are frequently written to maintain application-specific metadata.
Trigger programs have certain characteristics depending on the statement that triggers
them. Some trigger programs execute before the triggering statement executes; some
after. Oracle OLAP passes arguments to programs triggered by some statements, but
not others. Oracle OLAP does not change dimension status before most trigger
programs execute, but does change dimension status before some MAINTAIN
statements trigger program execution. In most cases, you can give a trigger program
any name that you choose, but some events require a program with a specific name.
"Characteristics of Object Trigger Programs" on page 4-17 discusses these
characteristics.

4-16 Oracle OLAP DML Reference

Common Types of OLAP DML Programs

See also: The following statements:

s TRIGGER function, DESCRIBE command, and OB]J function that
retrieve information about triggers.

s USETRIGGERS option that you can use to disable all triggers.

Creating an Object Trigger Program

Once an object is defined in an analytic workspace, you can create a trigger program
for that object by following the following procedure:

1.
2.

Define the program as described in DEFINE PROGRAM.

Determine what to name the program and whether the program can be a
user-defined program. (See Table 4-3, " Object Trigger Program Characteristics" on
page 4-19.) If the program can be a user-defined program, decide whether or not
you want to define the trigger program as a user-defined function.

Code the actual program as described in"Specifying Program Contents" on
page 4-3.

Keep the following points in mind when coding trigger programs:

» Use Table 4-3, " Object Trigger Program Characteristics" on page 4-19 to
determine if Oracle OLAP will pass values to the program. If it will, use an
ARGUMENT statement to declare these arguments in your program and the
VARIABLE statement to define program variables for the values. (See
Table 44, " Arguments Passed to Trigger Programs" on page 4-19 for specific
information about the arguments.)

= A program that is triggered by an Assign event is executed each time Oracle
OLAP assigns a value to the object for which the event was defined. Thus, a
program triggered by an Assign event is often executed over and over again
as the assignment statements loops through a object assigning values. You can
use TRIGGERASSIGN to assign a value that is different from the value
specified by the assignment statement that triggered the execution of the
program.

= In some cases, Oracle OLAP changes the status of the dimension being
maintained when a Maintain event triggers the execution of a program. See
Table 4-5, " How Programs Triggered by Maintain Events Effect Dimension
Status" on page 4-20 for details

= Use the CALLTYPE function within a program to identify that the program
was invoked as a trigger.

When the trigger program is not a TRIGGER_AFTER_UPDATE, TRIGGER _
BEFORE_UPDATE, or TRIGGER_DEFINE program, associate the program with
the desired object and event using the TRIGGER command.

There is no support for recursive triggers. You must set the USETRIGGERS option
to NO before you issue the same DML statement within a trigger program that
triggered the program itself. For example, assume that you have written a
program named TRIGGER_MAINTAIN_ADD that is triggered by MAINTAIN ADD
statements. Within the TRIGGER_MAINTAIN_ADD program, you must set the
USETRIGGERS option to NO before you issue a MAINTAIN statement.

Characteristics of Object Trigger Programs

Object trigger programs have certain characteristics depending on the statement that
triggers them. Some trigger programs execute before the triggering statement

OLAP DML Programs 4-17

Common Types of OLAP DML Programs

executes; some after. Oracle OLAP passes arguments to programs triggered by some
statements, but not others. Oracle OLAP does not change dimension status before
most trigger programs execute, but does change dimension status before some
MAINTAIN statements trigger program execution. In most cases, you can give a
trigger program any name that you choose, but some events require a program with a
specific name.

Table 4-3, " Object Trigger Program Characteristics" on page 4-19 lists the OLAP DML
statements that trigger programs, the required name of the program (if any), whether
or not Oracle OLAP uses values returned by the program, and whether or not Oracle

OLAP passes arguments to the program.

Keep the following points in mind when designing trigger programs:

s Triggers that execute before the DML statement—For trigger programs that execute
before the triggering OLAP DML statement executes, you can define the trigger
program as a user-defined function that returns a BOOLEAN value. The value
returned by the program determines whether or not Oracle OLAP executes the
statement that triggered the execution of the trigger program. When the program
returns FALSE, Oracle OLAP does not execute the triggering statement; when it
returns TRUE or NA, the triggering statement executes.

= Arguments passed to trigger programs—Oracle OLAP passes arguments to some
trigger programs. These programs are identified in Table 4-3, " Object Trigger
Program Characteristics" on page 4-19. Descriptions of these arguments are
provided in Table 4—4, " Arguments Passed to Trigger Programs” on page 4-19. Use
the ARGUMENT statement to declare these arguments in your program. Use
VARIABLE to define program variables for the values. Use the WKSDATA
function to retrieve the data type of an argument with a WORKSHEET data type.

= Assign trigger programs—Oracle OLAP executes a program triggered by an
Assign event each time it assigns a value to the object for which the event was
defined. Thus, a program triggered by an Assign event is often executed over and
over again as the assignment statements loops through a object assigning values.
With each execution, the value to be assigned is passed as argumentl to the
Assign trigger program. (See Table 44, " Arguments Passed to Trigger Programs"
on page 4-19 for more information and Example 10-162, "An ASSIGN Trigger on a
Variable" on page 10-267 for an example.) Within the Assign trigger program, you
can use a TRIGGER ASSIGN statement to assign a different value than that
specified by the assignment statement that triggered the execution of the Assign
trigger program.

You can only assign values to a formula when the formula has an Assign trigger
defined for it. When you assign a value to a formula with an Assign event, Oracle
OLAP executes the trigger program for the event for assigned value and passes
the assigned value to the trigger program. The Assign trigger does not change
the definition of the formula itself. See Example 10-164, "An ASSIGN Trigger on a
Formula" on page 10-271 for an example of an Assign trigger on a formula.

= Maintain trigger programs and dimension status —In some cases, Oracle OLAP
changes the status of the dimension being maintained when a Maintain event
triggers the execution of a program. See Table 4-5, " How Programs Triggered by
Maintain Events Effect Dimension Status" on page 4-20 for details.

= Maintain triggers and dimension surrogates—Maintain triggers for dimension
surrogates are different than Maintain triggers for other objects. You can only
successfully issue a MAINTAIN statement against a dimension surrogate, when
the dimension surrogate has a Maintain trigger. Issuing a MAINTAIN statement
for a surrogate dimension that does not have a Maintain trigger, returns an error.

4-18 Oracle OLAP DML Reference

Common Types of OLAP DML Programs

Also, for Maintain Add and Maintain Merge triggers, whether or not an argument
is passed to the program depends on the object on which the trigger is defined:

= For dimension surrogates with a Maintain trigger, Oracle OLAP executes the
trigger program one time for each value added or merged and passes that
value into the program.

= For other objects with a Maintain trigger, Oracle OLAP executes the trigger
program only once after the MAINTAIN statement executes and no values are
passed into the program

Table 4-3 Object Trigger Program Characteristics

Triggering Statement (event) Program Name

Return Passed
Values Arguments

= (assignment) statement (SET) ~ No required name No Yes
DEFINE TRIGGER_DEFINE No No
MAINTAIN ADD No required name No No
MAINTAIN DELETE (not ALL) No required name Yes No
MAINTAIN DELETE ALL No required name Yes No
MAINTAIN MERGE No required name No No
MAINTAIN MOVE No required name Yes Yes
MAINTAIN RENAME No required name Yes Yes
PROPERTY No required name Yes Yes
UPDATE (Update AW) TRIGGER_AFTER_UPDATE No No
UPDATE (Update AW) TRIGGER_BEFORE_UPDATE Yes No
UPDATE (Update Multi) No required name No No

Table 4-4 Arguments Passed to Trigger Programs

Event Argumenti Argument2
Property When the PROPERTY statement is When the value of argument1 is
assigning a property to an object, the DELETE, the name of the property
name of the property. When the or the literal ALL. In all other cases,
PROPERTY statement is deleting oneor the name of the property.
more properties, the literal DELETE. (WORKSHEET data type)
(TEXT data type)
Assignment The value that you want to assign. When = None. Oracle OLAP passes only one
you know the data type of the object to argument to the program.
which the value is assigned, specify that
data type for the argument. When you do
not know the actual data type, specify
WORKSHEET as the data type of the
argument.
Maintain (Dimension surrogates only) The
Add value added. (WORKSHEET data
type)
Maintain The dimension value that you want to The new name of the dimension
Rename rename. (TEXT data type) member. (VORKSHEET data type)

OLAP DML Programs 4-19

Common Types of OLAP DML Programs

Table 4-4 (Cont.) Arguments Passed to Trigger Programs

Event Argumenti Argument2

Maintain (Dimension surrogates only) The

Merge value merged. (WORKSHEET data
type)

Maintain The position of the dimension value that ~ The literal BEFORE or AFTER.

Move you want to move. (TEXT data type) (WORKSHEET data type)

Table 4-5 How Programs Triggered by Maintain Events Effect Dimension Status

Event Subevent Dimension Status Before Program Execution
Maintain Add Status set to dimension values just added.
Maintain Delete Status set to dimension values about to be deleted.
Maintain Delete All Current status is not changed.

Maintain Merge Status set to dimension values just merged.
Maintain Move Status set to dimension values about to be moved.
Maintain Rename Current status is not changed.

Aggregation, Allocation, and Modeling Programs

To aggregate, allocate, or model data using the OLAP DML, you first specify the
calculation that you want performed by defining a calculation specification as outlined
in "Creating Calculation Objects" on page 3-1. Later, if you want to populate variables
with aggregated, allocated or modeled values as a Database maintenance procedure,
you write a program to execute the calculation object. For more information on the
OLAP DML statements that you use in these programs, see "Running a Model" on
page 3-10, "Executing the Aggregation" on page 3-14, and "Allocating Data" on

page 3-17.

Forecasting Programs

The OLAP DML has several related statements that allow you to forecast data using
the Geneva Forecasting engine which is a statistical forecasting engine from Roadmap
Technologies that is used extensively in demand planning applications.

To forecast using the Geneva Forecasting engine, take the following steps:
1. Add the future time values to the time dimension.
2. Create a variable to hold the results of the forecast.

3. Write a forecasting program. Within the program, issue the following statements
in the order indicated:

a. FCOPEN function -- Creates a forecasting context.
b. FCSET command -- Specifies the forecast characteristics.

c. FCEXEC command -- Executes a forecast and populates Oracle OLAP
variables with forecasting data.

d. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

e. FCCLOSE command -- Closes a forecasting context.

4-20 Oracle OLAP DML Reference

User-Written Programs that OLAP Looks For

For examples of using these statements to forecast data see Example 9-118, "A
Forecasting Program" on page 9-245.

Programs to Export and Import Workspace Objects

You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of an analytic workspace object to a specially formatted EIF file.
Then you can import the information into a different workspace within the same
schema or a different one.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, issue an
EXPORT statement to put all the data in an EIF file, create another workspace with a
different name, and then use an IMPORT statement to import the EIF file into the new
workspace. When you have imported into the same Database, you can delete the old
workspace and refer to the new one with the same workspace alias that you used for
the original one.

The following statement copies all the data and definitions from the current analytic
workspace to an EIF file called reorg.eif in a directory object called mydir.

EXPORT ALL TO EIF FILE 'mydir/reorg.eif'

User-Written Programs that OLAP Looks For

ONATTACH

PERMIT_READ
PERMIT_WRITE
TRIGGER_AFTER_UPDATE
TRIGGER_AW
TRIGGER_BEFORE_UPDATE
TRIGGER_DEFINE

OLAP DML Programs 4-21

User-Written Programs Looked For by Oracle OLAP

User-Written Programs Looked For by Oracle OLAP

ONATTACH

ONDETACH

PERMIT_READ
PERMIT_WRITE
TRIGGER_AFTER_UPDATE
TRIGGER_AW
TRIGGER_BEFORE_UPDATE
TRIGGER_DEFINE

4-22 Oracle OLAP DML Reference

User-Written Programs Looked For by Oracle OLAP

ONATTACH

Return Value

Syntax

Arguments

Examples

An ONATTACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH command executes. Depending on the
value returned by the program, Oracle OLAP executes the code within the program
immediately after attaching the analytic workspace. Depending on the statements in
the onattach program, the user is granted or denied access to specific objects or sets
of object values.

For multiwriter attachment, you can use ACQUIRE commands to provide access to
individual workspace objects. For read-only and read /write attachment, you can use
PERMIT commands that grant or restrict access to individual workspace objects. All of
the objects referred to in a given onattach program must exist in the same analytic
workspace.

Note: Oracle OLAP checks for other programs when a user attaches
an analytic workspace. See "Programs Executed When Attaching
Analytic Workspaces" on page 9-109 for more information.

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the onattach program has thrown an exception.

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

To define a program with the name ONATTACH use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

ONATTACH ({READIWRITEIEXCLUSIVEIMULTI} password)

See AW ATTACH for explanations of the attachment modes (that is, READ, WRITE,
EXCLUSIVE, and MULTI) and password.

For examples of how attachment programs behave, see Example 9-49, "Startup
Programs" on page 9-111.

OLAP DML Programs 4-23

ONDETACH

ONDETACH

An ONDETACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW DETACH command executes. Depending on the
value returned by the program, Oracle OLAP executes the code within the program
immediately after detaching the analytic workspace.

Note: Oracle OLAP checks for other programs when a user attaches
an analytic workspace. See "Programs Executed When Attaching
Analytic Workspaces" on page 9-109 for more information.

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully detached the analytic workspace; or FALSE
when it has not or when the detach program has thrown an exception.

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

Syntax

To define a program with the name ONDETACH use the syntax shown in DEFINE
PROGRAM.

4-24 Oracle OLAP DML Reference

User-Written Programs Looked For by Oracle OLAP

PERMIT_READ

Return Value

Syntax

Arguments

Examples

A PERMIT_READ program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read-only command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_read program the user is granted or denied access to specific objects or sets
of object values. Within permit_read program, you can specify PERMIT commands
that grant or restrict access to individual workspace objects. All of the objects referred
to in a given permit_read must exist in the same analytic workspace.

See also: "Startup Programs" on page 4-14

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_read program has thrown an
exception

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

To define a program with the name PERMIT_READ use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_READ (password)

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument to
the program for processing.

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 949, "Startup Programs" on page 9-111.

OLAP DML Programs 4-25

PERMIT_WRITE

PERMIT_WRITE

Return Value

Syntax

Arguments

Examples

A PERMIT_WRITE program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read /write command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_write program, the user is granted or denied access to specific objects or
sets of object values. Within permit_write program, you can specify PERMIT
commands that grant or restrict access to individual workspace object. All of the
objects referred to in a given permit_write program must exist in the same analytic
workspace.

See also: "Startup Programs" on page 4-14

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_write program has thrown an
exception

Note: You are encouraged to use the normal return values rather
than relying on exceptions to create a return value of FALSE.

To define a program with the name PERMIT_WRITE use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_WRITE (password)

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument to
the program for processing.

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 949, "Startup Programs" on page 9-111.

4-26 Oracle OLAP DML Reference

User-Written Programs Looked For by Oracle OLAP

TRIGGER_AFTER_UPDATE

Syntax

Examples

A TRIGGER_AFTER_UPDATE program is a program that you can create in an
analytic workspace and that Oracle OLAP checks for by name when an UPDATE
command for that analytic workspace executes. When the program exists in the same
analytic workspace that you are updating, Oracle OLAP executes the program after
executing the UPDATE.

Note: The USETRIGGERS option must be set to its default value of
TRUE for a TRIGGER_AFTER_UPDATE program to execute

See also: "Trigger Programs" on page 4-16.

To create a program with the name TRIGGER_AFTER_UPDATE, follow the guidelines
presented in "Trigger Programs" on page 4-16.

Example 4-1 TRIGGER_AFTER_UPDATE Program

Assume you have defined the following program in your analytic workspace.

DEFINE TRIGGER_AFTER_UPDATE PROGRAM

PROGRAM

SHOW JOINCHARS ('calltype = ' CALLTYPE)

SHOW JOINCHARS ('triggering event = ' TRIGGER (EVENT))

SHOW JOINCHARS ('triggering subevent = ' TRIGGER (SUBEVENT))
END

When you issue an UPDATE statement the program executes and displays the
following output.

calltype = TRIGGER
triggering event = AFTER_UPDATE
triggering subevent = AW

OLAP DML Programs 4-27

TRIGGER_AW

TRIGGER_AW

A TRIGGER_AW program is a program that you can create in one analytic workspace
and that Oracle OLAP checks for by name when that analytic workspace is current
and you create, attach, detach, or delete any other analytic workspace.

See also: "Trigger Programs” on page 4-16.

Return Value

None.

Syntax
To create a program with the name TRIGGER_AW, follow the guidelines presented
in"How to Create a TRIGGER_AW Program" on page 4-28.

Notes

How to Create a TRIGGER_AW Program
You create a TRIGGER_AW program by following the following procedure:

1. Define the program as described in DEFINE PROGRAM.
2. Name the program TRIGGER_AW.

3. Code the actual program as described in"Specifying Program Contents" on
page 4-3.

Note: There is no support for recursive triggers. You must set the
USETRIGGERS option to NO before you issue an AW statement within
an TRIGGER_AW program

4-28 Oracle OLAP DML Reference

User-Written Programs Looked For by Oracle OLAP

TRIGGER_BEFORE_UPDATE

Return Value

Syntax

Examples

A TRIGGER_BEFORE_UPDATE program is a program that you can create and that
Oracle OLAP checks for by name when an UPDATE command executes. When the
program exists in the same analytic workspace that you are updating, Oracle OLAP
executes the program and then, depending on the value returned by the program (if
any), either does nor does not update the workspace.

Note: The USETRIGGERS option must be set to its default value of
TRUE for a TRIGGER_BEFORE_UPDATE program to execute

See also: "Trigger Programs" on page 4-16.

You can write the program as a function that returns a BOOLEAN value. In this case,
when the program returns FALSE, Oracle OLAP does not execute the UPDATE
statement that triggered the execution of the TRIGGER_BEFORE_UPDATE program;
when the program returns TRUE or NA, the UPDATE statement executes.

To create a program with the name TRIGGER_UPDATE, follow the guidelines
presented in"Trigger Programs” on page 4-16.

Example 4-2 TRIGGER_BEFORE_UPDATE Program

Assume that an analytic workspace named myaw has an TRIGGER_BEFORE_UPDATE
program with the following definition.

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN

PROGRAM

SHOW JOINCHARS ('calltype = ' CALLTYPE)

SHOW JOINCHARS ('triggering event = ' TRIGGER (EVENT))

SHOW JOINCHARS ('triggering subevent = ' TRIGGER (SUBEVENT))
RETURN TRUE

END

Assume that you define a TEXT variable named myvar and, then, issue an UPDATE
statement. The TRIGGER_BEFORE_UPDSATE program executes.

calltype = TRIGGER
triggering event = BEFORE_UPDATE
triggering subevent = AW

Because the program returned TRUE, the definition for myvar exists after you detach
and reattach the workspace.

AW DETACH myaw
AW ATTACH myaw
DESCRIBE

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN

PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)

OLAP DML Programs 4-29

TRIGGER_BEFORE_UPDATE

SHOW JOINCHARS ('triggering event = ' TRIGGER (EVENT))

SHOW JOINCHARS ('triggering subevent = ' TRIGGER (SUBEVENT))
RETURN TRUE

END

DEFINE MYVAR VARIABLE TEXT

However, if you modified the program so that it returned FALSE, then when you
detach and reattach the workspace, not only would the myvar definition not in the
workspace, the definition for the TRIGGER_BEFORE_UPDATE program would also

not be in the workspace.

4-30 Oracle OLAP DML Reference

User-Written Programs Looked For by Oracle OLAP

TRIGGER_DEFINE

A TRIGGER_DEFINE program is a program that you create and that Oracle OLAP
checks for by name when a DEFINE command executes. When the program exists in
the same analytic workspace in which you are defining a new object, Oracle OLAP
executes the program.

Note: The USETRIGGERS option must be set to its default value of
TRUE for a TRIGGER_DEFINE program to execute

See also: "Trigger Programs" on page 4-16.

Syntax

To create a program with the name TRIGGER_DEFINE, follow the guidelines
presented in "Trigger Programs" on page 4-16.

Examples

Example 4-3 A TRIGGER_DEFINE Program

Assume that you have written a TRIGGER_DEFINE program with the following
description in your analytic workspace.

DEFINE TRIGGER_DEFINE PROGRAM

PROGRAM

SHOW JOINCHARS ('calltype = ' CALLTYPE)

SHOW JOINCHARS ('triggering event = ' TRIGGER (EVENT))

SHOW JOINCHARS ('fully-qualified object name ='TRIGGER (NAME))
SHOW JOINCHARS ('type of object = 'OBJ(TYPE TRIGGER (NAME))
DESCRIBE &TRIGGER (NAME)

END

Assume, as shown in the following statements, that you issue a DEFINE VARIABLE
statement to define a variable named myvar. As shown by the output following the
statement, Oracle OLAP defines the variable and executes the TRIGGER_DEFINE
program.

DEFINE myvar VARIABLE TEXT

calltype = TRIGGER

triggering event = DEFINE
fully-qualified object name =MYAW!MYVAR
type of object = VARIABLE

DEFINE MYVAR VARIABLE TEXT

OLAP DML Programs 4-31

TRIGGER_DEFINE

4-32 Oracle OLAP DML Reference

O

OLAP DML Properties

This chapter contains the following topics:
s About OLAP DML Properties

= System Properties: Alphabetical Listing
= System Properties by Category

= One topic for each of the OLAP DML system properties, arranged alphabetically
beginning with SAGGMAP.

For other reference topics for the OLAP DML, see Chapter 6, "OLAP DML Options",
Chapter 7, "OLAP DML Functions: A - K", Chapter 7, "OLAP DML Functions: A - K",
Chapter 9, "OLAP DML Commands: A-G", and Chapter 10, "OLAP DML Commands:
H-Z".

About OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. In particular, you can assign system properties that
interact with the OLAP DML.

System Properties: Alphabetical Listing

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$ALLOCMAP

$COUNTVAR
$DEFAULT_LANGUAGE
$GID_DEPTH

$GID_LIST

$GID_TYPE
$LOOP_AGGMAP
$LOOP_DENSE

$LOOP_VAR

$NATRIGGER

OLAP DML Properties 5-1

System Properties by Category

$STORETRIGGERVAL
$VARCACHE

System Properties by Category

The OLAP DML provides system properties that set or retrieve values that influence
how the OLAP DML performs the following:

Aggregation Properties
Allocation Property
Grouping Id Properties
Formula Properties
Language Property
NA Value Properties

Aggregation Properties
$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$COUNTVAR

$VARCACHE

Allocation Property
$ALLOCMAP

Grouping Id Properties
$GID_DEPTH
$GID_LIST

$GID_TYPE

Formula Properties
$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_VAR

Language Property
$DEFAULT _LANGUAGE

NA Value Properties

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

5-2 Oracle OLAP DML Reference

$AGGMAP

SAGGMAP

Syntax

Arguments

Examples

The $AGGMAP property specifies that Oracle OLAP use the identified aggmap to
automatically aggregate non-precomputed data to substitute for NA values that are in
the dimensioned variable, but not in the session cache for the variable (if any).
Consequently, you do not need to explicitly use the AGGREGATE function to
aggregate nonprecomputed data in a variable that has an SAGGMAP property.

Additionally, the aggmap specified in a variable’s SAGGMAP property, is the aggmap
that Oracle OLAP uses when the variable is the target of an AGGREGATE command
that does not include a USING phrase.

You add or delete an AGGMAP property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$AGGMAP" agggmap-name
= To delete the property, issue the following statement.

PROPERTY DELETE 'SAGGMAP'

aggmap-name
A TEXT expression that is the name of a previously defined aggmap object.

Example 5-1 Using $AGGMAP To Dynamically Aggregate Data

Assume that you have a hierarchical dimension named geog, a simple dimension
named year, and the following variable named sales which is dimensioned by both
and which has data only at the detail level.

Assume that you want to explicitly specify the value of 8000 for the sales cell for
Connecticut in 2005. To do this you issue the following assignment statement and a
report of sales shows the value.

sales (geog 'Connecticut' year '2005') = 8000
REPORT sales;

——————————— SALES-----------

——————————— YEAR----------—~
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA

OLAP DML Properties 5-3

$AGGMAP

Quebec NA NA NA NA
Connecticut NA 8,000 NA NA
Massachusetts NA NA NA NA
Canada NA NA NA NA
USA NA NA NA NA
All Geog NA NA NA NA

Now assume that you define an aggmap for sales. The aggmap has the following
definition which specifies that only the upper-level data for Canada and the top level
(A1l Geog) be aggregated by the AGGREGATE command.

DEFINE MYAGGMAP AGGMAP

AGGMAP

RELATION geogParentrel PRECOMPUTE ('Quebec' 'Ontario' 'Canada' 'All Geog')
END

Now assume you issue the following statements:

CONSIDER sales
PROPERTY '$AGGMAP' 'Myaggmap'

As a result of using the JAGGMAP property to make myaggmap as the default
aggmap for sales, a simple REPORT statement for sales causes Oracle OLAP to
aggregate all of the data for the USA. (Note that only those values that were not
specified as PRECOMPUTE and that previously had NA values are calculated. The
8,000 value for Connecticut in 2005 that was specifically assigned is not recalculated.)

REPORT sales

——————————— SALES---------—--

——————————— YEAR----------—~
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271
Canada NA NA NA NA
USA 6,964 5,699 5,808 6,008
All Geog NA NA NA NA

Once you aggregate sales using the AGGREGATE command, Oracle OLAP
aggregates values for all of the PRECOMPUTE cells in sales.

REPORT sales

——————————— SALES------—-—--

——————————— YEAR------=—-----
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905

5-4 Oracle OLAP DML Reference

$AGGMAP

Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario 2,131 3,200 3,797 3,027
Quebec 3,485 3,482 2,702 3,752
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271
Canada 5,616 6,682 6,499 6,779
USA 6,964 5,699 5,808 6,008
All Geog 12,580 12,381 12,307 12,787

Example 5-2 The $AGGMAP Property Effect on an AGGREGATE Command

Example 5-3, "Using the $AGGREGATE_FROM Property" on page 5-8 illustrates how
the AGGREGATE command shown in Example 9-12, "Using a CACHE Statement in
an Aggregation Specification" on page 9-23 can be simplified to the following
statement.

AGGREGATE sales_by_revenue USING revenue_aggmap
You can further simplify the AGGREGATE command if you place an $AGGMAP

property on the sales_by_revenue variable. To define an $AGGMAP property on
the sales_by_revenue variable, issue the following statements.

CONSIDER sales_by revenue
PROPERTY 'SAGGMAP' 'revenue_aggmap'

Now you can aggregate the data by issuing the following AGGREGATE command
that does not include a USING clause.

AGGREGATE sales_by_revenue

OLAP DML Properties 5-5

$AGGREGATE_FORCECALC

SAGGREGATE_FORCECALC

The $SAGGREGATE_FORCECALC property specifies the same behavior as that
specified by the FORCECALC keyword in an AGGREGATE function. By adding an
$AGGREGATE_FORCECALC property to a variable you can ensure this behavior
when the variable is aggregated using an AGGREGATE function — even when it is
aggregated by an AGGREGATE function does not include the FORCECALC keyword.

The behavior specified by both the SAGGREGATE_FORCECALC property and the
FORCECALC keyword is that when an AGGREGATE function aggregates the
variable, Oracle OLAP recalculates any value that is not specified in a PRECOMPUTE
clause of a RELATION (for aggregation) statement in the aggmap of a variable — even
when there is a value stored in the desired cell. This is the desired behavior when you
want users to be able to change detail data cells and see the changed values reflected
in dynamically-computed aggregate cells.

Syntax

You add or delete an AGGREGATE_FORCECALC property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$AGGREGATE_FORCECALC'

= To delete the property, issue the following statement.

PROPERTY DELETE 'SAGGREGATE_FORCECALC'

5-6 Oracle OLAP DML Reference

$AGGREGATE_FORCEORDER

$AGGREGATE_FORCEORDER

Syntax

The $AGGREGATE_FORCEORDER property specifies the same behavior as that
specified by the FORCEORDER keyword in an AGGREGATE command or an
AGGREGATE function. By adding an AGGREGATE_FORCEORDER property to a
variable you can ensure this behavior when the variable is aggregated — even when it
is aggregated by an AGGREGATE statement does not include the FORCEORDER
keyword.

The behavior specified by both the SAGGREGATE_ORDER property and the
FORCEORDER keyword is that the calculations must be performed in the order in
which the RELATION (for aggregation) statements are listed in the aggmap used for
the aggregation. Typically, you want this behavior when some of the values calculated
through aggregation have changed because, otherwise, the optimization methods used
by AGGREGATE may cause the modified values to be ignored. (Note, however, that
forcing the order of execution can slow performance.)

You add or delete an AGGREGATE_FORCEORDER property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$AGGREGATE_FORCEORDER'

= To delete the property, issue the following statement.

PROPERTY DELETE 'SAGGREGATE_FORCEORDER'

OLAP DML Properties 5-7

$AGGREGATE_FROM

$SAGGREGATE_FROM

The $AGGREGATE_FROM property specifies the same behavior as that specified by a
FROM clause in an AGGREGATE command or an AGGREGATE function. By adding
an SAGGREGATE_FROM property to a variable you can ensure this behavior when
the variable is aggregated — even when it is aggregated by an AGGREGATE
statement does not include the FROM clause.

Both the SAGGREGATE_FROM property and the FROM clause specify an object from
which Oracle OLAP obtains the detail data for the aggregation.

See also: "Ways of Specifying Where to Obtain Detail Data for
Aggregation" on page 9-63.

Syntax

You add or delete an AGGREGATE_FROM property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) by issuing a PROPERTY
statement:

= To add the property, issue the following statement.
PROPERTY '$AGGREGATE_FROM' fromspec

» To delete the property, issue the following statement.
PROPERTY DELETE '$AGGREGATE_FROM'

Arguments

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data
for the aggregation is obtained.

Examples

Example 5-3 Using the $AGGREGATE_FROM Property

Example 9-14, "Aggregating into a Different Variable" on page 9-25 uses the following
AGGREGATE command to populate the total_sales_exclud_north variable
with aggregate values computed from the sales variable.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales
You can place a SAGGREGATE_FROM property on the total_sales_exclud_
north variable by issuing the following statements.

CONSIDER total_sales_exclud_north
PROPERTY 'S$SAGGREGATE_FROM' 'sales'

Now you can aggregate the data by issuing the following AGGREGATE command
that does not include a FROM clause.

AGGREGATE total_sales_exclud _north USING agg_sales_exclud_north

5-8 Oracle OLAP DML Reference

$AGGREGATE_FROMVAR

$SAGGREGATE_FROMVAR

Syntax

Arguments

Examples

The $SAGGREGATE_FROMVAR property specifies the same behavior as that specified
by a FROMVAR clause in an AGGREGATE command or an AGGREGATE function.
By adding an $AGGREGATE_FROMVAR property to a variable you can ensure this
behavior when the variable is aggregated — even when it is aggregated by an
AGGREGATE statement does not include the FROMVAR clause.

Both the SAGGREGATE_FROMVAR property and the FROMVAR clause specify two
or more objects from which Oracle OLAP obtains the detail data for the aggregation.

See: "Ways of Specifying Where to Obtain Detail Data for
Aggregation" on page 9-63.

You add or delete an AGGREGATE_FROMVAR property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$AGGREGATE_FROMVAR' textvar ACROSS dimname

» To delete the property, issue the following statement.

PROPERTY DELETE 'SAGGREGATE_FROMVAR'

textvar

A TEXT expression that specifies an arbitrarily dimensioned variable or formula that
specifies the names of the objects from which to obtain detail data when performing a
capstone aggregation. Specify NA to indicate that a node does not need detail data to
calculate the value.

ACROSS dimname

Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in the objects specified by textvar. Because the objects specified by
textvar can be formulas, you can realize a significant performance advantage by
supplying a looping dimension that eliminates the sparsity.

Example 5-4 Capstone Aggregation Using the SAGGREGATE_FROMVAR Property

Example 9-31, "Capstone Aggregation" on page 9-66 uses the following AGGREGATE
command to perform the final capstone aggregation.

AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source
As the following statements illustrate, you can omit the FROMVAR clause if you
create the appropriate FROMVAR property on sales-capstone76.

CONSIDER sales_capstone76
PROPERTY '$AGGREGATE_FROMVAR' 'capstone_source'
AGGREGATE sales_capstone76 USING capstone_aggmap

OLAP DML Properties 5-9

$ALLOCMAP

SALLOCMAP

Syntax

Arguments

Examples

The $ALLOCMAP property specifies the default aggmap for allocation for a variable.
This is the aggmap that Oracle OLAP uses when the variable is the target variable of
an ALLOCATE statement that does not include a USING phrase.

You add or delete an JALLOCMAP property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY

statement:

= To add the property, issue the following statement.
PROPERTY '$ALLOCMAP' aggmap-name

= To delete the property, issue the following statement.

PROPERTY DELETE '$SAALLOCMAP'

aggmap-name
A TEXT expression that specifies the name of a previously defined ALLOCMAP type
aggmap object.

Example 5-5 Using $ALLOCMAP to Specify a Default Allocation Specification

Example 9-34, "Recursive Even Allocation with a Lock" on page 9-73 uses the
following statement to allocated data in the projbudget variable using the
projbudgmap allocation specification.

ALLOCATE projbudget USING projbudgmap

You can specify that projbudgmap is the default allocation specification for the
projbudget variable by issuing the following statements.

CONSIDER projbudget

PROPERTY '$ALLOCMAP' "projbugmap'

Now, merely by issuing the following statement, you can allocate data in the
projbudget variable using the projbudgmap allocation specification.

ALLOCATE projbudget

5-10 Oracle OLAP DML Reference

$COUNTVAR

$COUNTVAR

Syntax

Arguments

Examples

The $COUNTVAR property specifies the same behavior as that specified by a
COUNTVAR clause in an AGGREGATE command or an AGGREGATE function. By
adding an $COUNTVAR property to a variable you can ensure this behavior when the
variable is aggregated — even when it is aggregated by an AGGREGATE statement
does not include the COUNTVAR clause.

The behavior specified by both the SCOUNTVAR property and the COUNTVAR
clause is that Oracle OLAP uses a variable that you have previously-defined
(sometimes called a Countvar variable) to store the non-NA counts of the number of
leaf nodes that contributed to aggregate values calculated for RELATION (for
aggregation) statements that have an AVERAGE, HAVERAGE, HWAVERAGE, or
WAVERAGE operator.

Note: Typically, you do not use a user-defined Countvar variable to
store the counts for average aggregations; instead, you use an Oracle
OLAP-created Aggcount variable. You cannot use a Countvar variable
when the aggregation specification includes a RELATION (for
aggregation) statement with one of the average operators is for a
compressed composite. See "Aggcount Variables" on page 9-208 for
more information.

You add or delete a SCOUNTVAR property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$COUNTVAR' countvar
» To delete the property, issue the following statement.

PROPERTY DELETE '$COUNTVAR'

countvar

A TEXT expression that specifies the name of a previously defined Countvar variable.
The Countvar variable must be an INTEGER variable with exactly the same
dimensions in exactly the same order as the dimensions as the variable on which you
add the $COUNTVAR property.

Example 5-6 Using $SCOUNTVAR

For a variable named v1, the following statements cause Oracle OLAP to count the
number of leaf nodes that contributed to an aggregate value that is the result of the
execution of the myaggmap aggmap object by a AGGREGATE function.

CONSIDER vl
PROPERTY 'SCOUNTVAR' 'mycountvar'

OLAP DML Properties 5-11

$DEFAULT_LANGUAGE

$DEFAULT_LANGUAGE

Syntax

Arguments

Notes

The $DEFAULT_LANGUAGE property identifies a dimension as the language
dimension for the analytic workspace in which it is defined and specifies the default
language for that language dimension.

Note: There can be only one language dimension in an analytic
workspace and only that dimension can have a $DEFAULT_
LANGUAGE property.

See also: LOCK_LANGUAGE_DIMS, SESSION_NLS_LANGUAGE,
and STATIC_SESSION_LANGUAGE options

Before you add or delete a SDEFAULT_LANGUAGE property to your language
dimension, you must make that dimension the most recently defined or considered
object (see DEFINE and CONSIDER commands). You add $DEFAULT_LANGUAGE
property using a PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$DEFAULT_LANGUAGE' language

» To delete the property, issue the following statement.
PROPERTY DELETE '$DEFAULT_LANGUAGE'

language
A TEXT expression that is one of the values in your language dimension, or an empty
string.

Working with Language Dimensions

A language dimension is a dimension that has a $DEFAULT_LANGUAGE property
defined for it. There can only be one language dimension in an analytic workspace.
Working with language dimensions involves:

s Creating a Language Dimension

s Defining Multi-language Variables that are Dimensioned by the Language
Dimension

= Working with Language Dimension Status

Creating a Language Dimension To create a language dimension, take the following
steps:

1. Define a TEXT dimension using DEFINE DIMENSION.

2. Populate the language dimension with the names of the languages you want to
support. As language names, use valid values for NLS_LANGUAGE.

5-12 Oracle OLAP DML Reference

$DEFAULT_LANGUAGE

3. Add the $DEFAULT_LANGUAGE property to the dimension thereby identifying
the dimension to Oracle OLAP as the language dimension in the analytic
workspace.

Defining Multi-language Variables that are Dimensioned by the Language
Dimension To create multi-language variables, you include the language dimension
as one of the dimensions of the variable as illustrated in Example 5-8, "Attaching a
Language Dimension" on page 5-14.

Working with Language Dimension Status When an analytic workspace with a
language dimension is attached, Oracle OLAP initializes the status of the language
dimension, as follows:

1. Oracle OLAP limits the language dimension to the value of the SESSION_NLS_
LANGUAGE option when the language dimension contains that value.

2. If the language dimension does not contain value to which the SESSION_NLS_
LANGUAGE option is set, then Oracle OLAP limits the language dimension to the
language specified in the dimension's $DEFAULT_LANGUAGE property when
the $DEFAULT_LANGUAGE property contains a value and when that value is a
value of the language dimension.

3. If the language dimension does not contain value to which the SESSION_NLS_
LANGUAGE option is set and if the language dimension's $DEFAULT_
LANGUAGE property is empty or names a nonexistent value, Oracle OLAP limits
the language dimension to the value of the language dimension to the first value
in the dimension's default order.

By default, once initialized, the status of a language dimension cannot be changed.
However, you can change this behavior by changing the value of the LOCK_
LANGUAGE_DIMS option from TRUE to FALSE which changes the status of the
language dimension to ALL and allows you to issue LIMIT statements against the
dimension.

Exporting Language Dimensions

When exporting an analytic workspace using EXPORT (EIF), Oracle OLAP takes the
following steps to determine what values of the language dimension to export:

» If the value of the LOCK_LANGUAGE_DIMS option is FALSE when an EXPORT
statement executes, Oracle OLAP honors the current status of the language
dimension and performs the export accordingly.

» If the value of the LOCK_LANGUAGE_DIMS option is TRUE when an EXPORT
statement executes, Oracle OLAP:

1. Changes the value of the LOCK_LANGUAGE_DIMS option to FALSE
(thereby setting the status to ALL) before executing the EXPORT statement.

2. Executes the EXPORT statement. Oracle OLAP exports all of the values of the
language dimension.

3. Changes the value of the LOCK_LANGUAGE_DIMS option to TRUE and
resets the status of the language dimension according to the value of the
SESSION_NLS_LANGUAGE option.

OLAP DML Properties 5-13

$DEFAULT_LANGUAGE

Examples

Example 5-7 Creating a Language Dimension

This example illustrates creating a language dimension named mylangs that supports
the use of both French and American and that specifies that the default language is
American.

NLS_LANGUAGE = 'AMERICAN'

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD 'FRENCH' 'AMERICAN'
CONSIDER mylangs

PROPERTY 'SDEFAULT_LANGUAGE' 'AMERICAN'

SHOW OBJ (PROPERTY 'SDEFAULT_LANGUAGE' 'mylangs')
AMERICAN

REPORT mylangs
MYLANGS

FRENCH
AMERICAN

Example 5-8 Attaching a Language Dimension

Assume that in an analytic workspace named myaw that you have created a language
dimension named mylangs as described in Example 5-7, "Creating a Language
Dimension" on page 5-14. Assume also that you have created a products dimension
and a prod-desc variable with the following definitions and values.

DEFINE MYLANGS DIMENSION TEXT
SHOW OBJ (PROPERTY 'SDEFAULT_LANGUAGE' 'mylangs')
AMERICAN

DEFINE PRODUCTS DIMENSION TEXT
DEFINE PROD_DESC VARIABLE TEXT <PRODUCTS MYLANGS>

MYLANGS
FRENCH
AMERICAN
PRODUCTS
PRODO1
PROD02
—————— PROD_DESC------
—————— PRODUCTS------~-
MYLANGS PRODO1 PRODO02
FRENCH Pantalons Jupes
AMERICAN Trousers Skirts

Assume that you attach the analytic workspace. By displaying the options for the
analytic workspace and requesting a A report of mylangs and prod_desc, shows
that Oracle OLAP has limited the mylangs dimension to American which is the value
of the SESSION_NLS_LANGUAGE option.

SHOW NLS_LANGUAGE
AMERICAN

5-14 Oracle OLAP DML Reference

$DEFAULT_LANGUAGE

AW ATTACH myaw RW

" Get the default language in our language dimension
SHOW OBJ (PROPERTY 'SDEFAULT_LANGUAGE' 'mylangs')
AMERICAN

SHOW SESSION_NLS_LANGUAGE

AMERICAN

SHOW LOCK_LANGUAGE_DIMS

yes

SHOW STATIC_SESSION_LANGUAGE

no

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc

—————— PROD_DESC------

—————— PRODUCTS-------
MYLANGS PRODO1 PRODO02
AMERICAN Trousers Skirts

Example 5-9 Changing NLS_LANGUAGE

Assume that you have attached the analytic workspace myaw as described in
Example 5-8, "Attaching a Language Dimension" on page 5-14. Now you change the
value of NLS_ LANGUAGE to French. Because the value of STATIC_SESSION_
LANGUAGE is set to NO, making this change effectively changes the value of the
SESSION_NLS_LANGUAGE option to French. When the value of SESSION_NLS_
LANGUAGE option is French, as a report of mylangs and prod_desc illustrates,

Oracle OLAP limits the mylangs dimension to French.

SET NLS_LANGUAGE= 'FRENCH'
SHOW OBJ (PROPERTY 'S$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN

SHOW NLS_LANGUAGE

FRENCH

SHOW SESSION_NLS_LANGUAGE
FRENCH

SHOW LOCK_LANGUAGE_DIMS

oui

SHOW STATIC_SESSION_LANGUAGE
non

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc

—————— PROD_DESC------
—————— PRODUCTS-------

MYLANGS PRODO1 PRODO02

FRENCH Pantalons Jupes

OLAP DML Properties 5-15

$DEFAULT_LANGUAGE

Example 5-10 Setting NLS_LANGUAGE to a Value that is Not in a Language Dimension

Assume that in the analytic workspace named myaw (described in Example 5-9,
"Changing NLS_LANGUAGE" on page 5-15) the value of NLS_ LANGUAGE is set
first to American and then set to Spanish. As illustrated in the following code, since
the language dimension, mylangs, does not include Spanish as one of its values,
Oracle OLAP limits the mylangs dimension using the value of the SDEFAULT_
LANGUAGE property which is American.

"Change the value of NLS_LANGUAGE to AMERICAN
SET NLS_LANGUAGE= 'AMERICAN'

"Change the value of NLS_LANGUAGE to SPANISH
SET NLS_LANGUAGE= 'SPANISH'

SHOW OBJ (PROPERTY 'S$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN

SHOW NLS_LANGUAGE
SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS
si

SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc

—————— PROD_DESC-----~-

—————— PRODUCTS-------
MYLANGS PRODO1 PRODO02
AMERICAN Trousers Skirts

Assume that you had defined the mylangs language dimension without specifying a
default language using the following code.

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD 'FRENCH' 'AMERICAN'
CONSIDER mylangs

PROPERTY 'SDEFAULT_LANGUAGE' "'

In this case, when you set the value of NLS_LANGUAGE to Spanish, since the
language dimension, mylangs does not have a value specified for its $DEFAULT _
LANGUAGE property, Oracle OLAP limits the mylangs dimension using the first
value in the mylangs dimension which is French.

NLS_LANGUAGE = 'SPANISH'
SHOW OBJ (PROPERTY 'SDEFAULT_LANGUAGE' 'mylangs')

SHOW NLS_LANGUAGE

SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

5-16 Oracle OLAP DML Reference

$DEFAULT_LANGUAGE

SHOW LOCK_LANGUAGE_DIMS

si

SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc

—————— PROD_DESC------

—————— PRODUCTS-------
MYLANGS PRODO1 PRODO02
FRENCH Pantalons Jupes

OLAP DML Properties 5-17

$GID_DEPTH

$GID_DEPTH

The $GID_DEPTH property, which is automatically created and set when a
GROUPINGID command populates a grouping id relation, specifies the number of
levels of grouping ids in the grouping id relation to which it is added.

Syntax
You can not explicitly define a $GID_DEPTH property. Oracle OLAP automatically
creates a $GID_DEPTH property on a grouping id relation when the execution of a
GROUPIONGID command creates the relation.
$GID_DEPTH = intlevels

Arguments
intlevels
An INTEGER value that specifies the number of levels of grouping ids.

Examples

See Example 9-144, "Using GROUPINGID Command to Populate a Relation with
Grouping Ids" on page 9-308.

5-18 Oracle OLAP DML Reference

$GID_LIST

$GID_LIST

Syntax

Arguments

The $GID_LIST property contains the names of the levels used to create the grouping
ids in a relation created when the GROUPINGID command with either the ROLLUP
or GROUPSET keyword executes.

You can not explicitly define a $GID_LIST property. Oracle OLAP automatically
creates a $GID_LIST property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_LIST = levels

levels
A TEXT expression which is the levels, sepearated by hypens (-), of the hierarchies of
the dimension for which grouping ids were created.

OLAP DML Properties 5-19

$GID_TYPE

$GID_TYPE

Syntax

Arguments

The $GID_TYPE property, which is automatically created and set when a
GROUPINGID command with either the ROLLUP or GROUPSET keyword populates
a grouping id relation, specifies whether the grouping type of the grouping ids.

You can not explicitly define a $GID_TYPE property. Oracle OLAP automatically
creates a $GID_TYPE property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_TYPE = ROLLUP | GROUPSET

ROLLUP

Specifies that the grouping ids are of the rollup type. For more information on this
type of grouping type, see the discussion of ROLLUP in the GROUPBY clause of a
SQL SELECT statement in the Oracle Database SQL Language Reference.

GROUPSET

Specifies that the grouping ids are of the grouping set type. For more information on
this type of grouping type, see the discussion of grouping sets in the GROUPBY clause
of a SQL SELECT statement in the Oracle Database SQL Language Reference.

5-20 Oracle OLAP DML Reference

$LOOP_AGGMAP

$LOOP_AGGMAP

Syntax

Arguments

The $LOOP_AGGMAP property is used to determine how to loop the formula on
which it is assigned when a SQL OLAP_TABLE function with the LOOP OPTIMIZED
clause is executed. It specifies the the name of an aggmap object to use when Oracle
OLAP generates a UNION subclause that includes the formula. The value that you
specify for this property overrrides all other aggmaps associated with a variable (for
example, aggmaps for which the variable has an SAGGMAP property) and can be
used to clarify which aggmap Oracle OLAP should use when the underlying variables
of a formula are associated with different aggmaps. For more information on looping
in OLAP_TABLE, see the discussion of the LOOP Clause on page A-13.

You add or delete a SLOOP_AGGMAP property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

= To add the property, issue the following statement.
PROPERTY '$LOOP_AGGMAP' agggmap-name
= To delete the property, issue the following statement.

PROPERTY DELETE '$SLOOP_AGGMAP'

aggmap_name
The name of an aggmap object.

OLAP DML Properties 5-21

$LOOP_DENSE

$LOOP_DENSE

The $LOOP_DENSE property is used to determine how to loop the formula on which
it is assigned when a OLAP_TABLE SQL function with the LOOP OPTIMIZED clause
is executed. It specifies that Oracle OLAP loops densely over the formula (that is, that
it loop over every tuple of the formula—even those member cells that do not have
values). For more information, see the discussion of the LOOP Clause on page A-13.

Syntax
You add or delete a SLOOP_DENSE property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:
= To add the property, issue the following statement.
PROPERTY '$LOOP_DENSE' dimension_list
= To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_DENSE'
Arguments

dimension_list
One or more names of the dimensions of the formula separated by commas.

5-22 Oracle OLAP DML Reference

$LOOP_VAR

$SLOOP_VAR

Syntax

Arguments

The $LOOP_VAR property specifies that when a OLAP_TABLE SQL function with the
LOOP OPTIMIZED clause is executed, the formula on which it is assigned is looped in
the same manner as the variable or QDR specified in the property. For more
information on looping in OLAP_TABLE, see the discussion of the LOOP Clause on
page A-13.

You add or delete a SLOOP_VAR property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

= To add the property, issue the following statement.
PROPERTY '$LOOP_VAR' qar | variable

= To delete the property, issue the following statement.

PROPERTY DELETE '$LOOP_VAR'

qdr
A QDR for one of the dimensions of the formula.

variable
A variable with the same dimensions as the formula.

OLAP DML Properties 5-23

$NATRIGGER

SNATRIGGER

The $NATRIGGER property specifies values for Oracle OLAP to substitute for NA
values that are in a dimensioned variable, but not in the session cache for the variable
(if any). To calculate the values, Oracle OLAP takes the steps described in "How Oracle
OLAP Calculates Data for a Variable with NA Values" on page 5-24. The results of the
calculation are either stored in the variable or cached in the session cache for the
variable as described in "How Oracle OLAP Determines Whether to Store or Cache
Results of SINATRIGGER" on page 5-29.

Note: When you want to trigger the aggregation of a variable, you
can use the SAGGMAP property rather than the SNATRIGGER

property.

Syntax

You add or delete a SNATRIGGER property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

= To add the property, issue the following statement.
PROPERTY '$NATRIGGER' value
» To delete the property, issue the following statement.

PROPERTY DELETE '$NATRIGGER'

Arguments

value
A TEXT expression that is the value of the property. The text can be any expression
that is valid for defining a formula

Notes

How Oracle OLAP Calculates Data for a Variable with NA Values

When calculating the data for a dimensioned variable, Oracle OLAP takes the
following steps for each cell in the variable:

1. Is there is a session cache for the variable.
= Yes. Go to step 2.
= No. Go to step 3.
2. Does that cell in the session cache for the variable have an NA value.
= Yes. Go to step 3.
= No.Gotostep7.
3. Does that cell in variable storage have an NA value.
= Yes. Go to step 4.
= No.Gotostep?7.
4. Does the variable have an $AGGMAP property?

5-24 Oracle OLAP DML Reference

$NATRIGGER

= Yes. Aggregate the variable using the aggmap specified for the SAGGMAP
property and, then, go to step 5.

= No. Go to step 6.

5. What is the value of the cell after aggregating the variable?
= NA, gotostep 6.
= Non-NA, go to step 7.

6. Does the variable have a NATRIGGER property?

= Yes. Execute the expression specified for the SNATRIGGER property and,
then, go to step 7.

= No.Gotostep?7.
7. Calculate the data.

8. Apply the NAFILL function or the NASKIP, NASKIP2, or NASPELL options, as
appropriate.

Making NA Triggers Recursive or Mutually Recursive

You can make NA triggers recursive or mutually recursive by including triggered
objects within the value expression. You must set the RECURSIVE option to YES
before a formula, program, or other SNATRIGGER expression can invoke a trigger
expression again while it is executing. For limiting the number of triggers that can
execute simultaneously, see the TRIGGERMAXDEPTH option.

Using SNATRIGGER with Composites

You can set an SNATRIGGER expression on a variable that is dimensioned by a
composite, but Oracle OLAP evaluates the SNATRIGGER expression only for the
dimension-value combinations that exist in the composite.

$NATRIGGER Ignored by EXPORT and AGGREGATE

The AGGREGATE command and the AGGREGATE function ignore the
$NATRIGGER property setting for a variable during an aggregation operation. The
statements fetch the stored value only, and do not invoke the $NATRIGGER
expression. The $NATRIGGER property remains in effect for other operations.

In executing an EXPORT (EIF) statement, Oracle OLAP does not evaluate the
$NATRIGGER property expression on a variable when it simply exports the variable.
However, Oracle OLAP does evaluate the NATRIGGER property expression when
the variable is part of an expression that Oracle OLAP calculates during the export
operation.

Examples

Example 5-11 Adding an $SNATRIGGER Property to a Variable

The following statements define a dimension with three values and define a variable
that is dimensioned by the dimension. They add the SNATRIGGER property to the
variable, then put a value in one cell of the variable and leave the other cells empty so
their values are NA. Finally, they report the values in the cells of the variable.

DEFINE dl INTEGER DIMENSION
MAINTAIN dl ADD 3

DEFINE vl DECIMAL <dl>
PROPERTY 'SNATRIGGER' '500.0'

OLAP DML Properties 5-25

$NATRIGGER

vl(dl 1) = 333.3
REPORT vl

The preceding statements produce the following output.

D1 vl
1 333.3
2 500.0
3 500.0

5-26 Oracle OLAP DML Reference

$STORETRIGGERVAL

$STORETRIGGERVAL

Syntax

Arguments

Examples

The $STORETRIGGERVAL property specifies whether or not, when a $NATRIGGER
expression executes, Oracle OLAP replaces the NA values in the variable with the
results of the expression.

Note: Applications typically use the $VARCACHE property rather
than the $STORETRIGGERVAL property since the functionality of the
$STORETRIGGERVAL property is subsumed within the
$VARCACHE property.

See also: "How Oracle OLAP Determines Whether to Store or Cache
Results of SNATRIGGER" on page 5-29.

You add or delete a $STORETRIGGERVAL property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

= To add the property, issue the following statement.
PROPERTY '$STORETRIGGERVAL' value

» To delete the property, issue the following statement.
PROPERTY DELETE '$ASTORETRIGGERVAL'

value
A BOOLEAN expression that contains the value of the property.

Example 5-12 Storing an $NATRIGGER Property Value

The following statements cause Oracle OLAP to store the SNATRIGGER expression
value in the NA cells of the v1 variable when Oracle OLAP evaluates the expression.

TRIGGERSTOREOK = yes
CONSIDER vl
PROPERTY 'SSTORETRIGGERVAL' yes

OLAP DML Properties 5-27

$VARCACHE

$VARCACHE

The $VARCACHE property specifies whether Oracle OLAP stores or caches variable
data that is the result of the execution of an AGGREGATE function or a SNATRIGGER
expression.

See also: "How Oracle OLAP Determines Whether to Store or Cache
Aggregated Data", "How Oracle OLAP Determines Whether to Store
or Cache Results of SNATRIGGER" on page 5-29, "What is an Oracle
OLAP Session Cache?" on page 6-148, and the description of the NA
keyword of the CACHE statement for information on caching NA
values calculated by the AGGREGATE function.

Syntax
You add or delete a $VARCACHE property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:
= To add the property, issue the following statement.
PROPERTY '$VARCACHE' value
» To delete the property, issue the following statement.
PROPERTY DELETE '$VARCACHE'
Arguments

value

One of the following TEXT expressions that indicate where Oracle OLAP should place
variable data that is the result of calculations performed when the AGGREGATE
function or SNATRIGGER value executes:

= VARIABLE specifies that Oracle OLAP populates the variable with data that is the
result of the execution of the AGGREGATE function or NATRIGGER property.
When you specify this option, the data that is the result of the aggregation is
permanently stored in the variable when the analytic workspace is updated and
committed.

= SESSION specifies that Oracle OLAP caches data that is the result of the execution
of the AGGREGATE function or SNATRIGGER property in the session cache (See
"What is an Oracle OLAP Session Cache?" on page 6-148). When you specify this
option, the data that is the result of the execution of the AGGREGATE function or
$NATRIGGER property is ignored during updates and commits and is discarded
at the end of the session.

Important: When SESSCACHE is set to NO, Oracle OLAP does not
cache the data even when you specify SESSION. In this case,
specifying SESSTON is the same as specifying NONE.

= NONE specifies that Oracle OLAP calculates new variable data each time the
AGGREGATE function or $NATRIGGER value executes; Oracle OLAP does not
store or cache the data.

s DEFAULT specifies that you do not want Oracle OLAP to use the $VARCACHE
property when determining what to do with data that is calculated by the

5-28 Oracle OLAP DML Reference

$VARCACHE

Notes

AGGREGATE function. (See "How Oracle OLAP Determines Whether to Store or
Cache Aggregated Data" on page 5-29.)

How Oracle OLAP Determines Whether to Store or Cache Results of
SNATRIGGER

When a $SNATRIGGER expression executes, what Oracle OLAP does with variable
data that results from the execution of the expression is determined based on whether
or not the variable that has the SNATRIGGER property also has a
$STORETRIGGERVAL property and, if not, if the value of the SNATRIGGER property
is an AGGREGATE function.

When a a $NATRIGGER expression executes, Oracle OLAP goes through the
following process:

1. Does the variable with the $NATRIGGER property also have a
$STORETRIGGERVAL property? If it does, then Oracle OLAP goes to step 1a. If it
does not, then Oracle OLAP goes to step 2.

a. Is the value of the TRIGGERSTOREOK option, YES or NO? If it is YES, then
Oracle OLAP goes to step 1b. If it is NO, then Oracle OLAP goes to step 2.

b. Is the value of the $STORETRIGGERVAL property, YES or NO? If it is YES,
then Oracle OLAP stores the results of the SNATRIGGER expression and end
decision-making process. If it is NO, then Oracle OLAP does not store the
results of the SNATRIGGER expression and end decision-making process.

2. Is the SNATRIGGER expression an AGGREGATE function? If it is, then Oracle
OLAP follows the steps described in "How Oracle OLAP Determines Whether to
Store or Cache Aggregated Data" on page 5-29 to determine what to do with the
result of SNATRIGGER expression execution. If it is not, then Oracle OLAP goes to
step 3.

3. Does the variable with the SNATRIGGER property also have a $VARCACHE
property? If it does, then Oracle OLAP goes to step 4. If it does not, then Oracle
OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then go to
step 5. If it does not, then Oracle OLAP uses the value of the $VARCACHE
property (that is, STORE, CACHE, or NONE) to determine what happens to the
variable data values that are the result of SNATRIGGER expression execution and
end decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data values that are the result of SNATRIGGER expression execution
and end decision-making process.

How Oracle OLAP Determines Whether to Store or Cache Aggregated Data

When an AGGREGATE command executes, Oracle OLAP always stores the results of
the calculation directly in the variable in the same way it stores the results of an
assignment statement. However, when an AGGREGATE function executes, Oracle
OLAP sometimes stores the results of the calculation directly in the variable and
sometimes caches it in the session cache. (See "What is an Oracle OLAP Session
Cache?" on page 6-148 for more information about the session cache.)

To determine where to place the data that is the result of AGGREGATE function
execution, Oracle OLAP goes through the following process to determine whether to
store or cache aggregated variable data:

OLAP DML Properties 5-29

$VARCACHE

1. Is there a CACHE statement in the specification for the aggmap that is being used
by the current AGGREGATE function? If there is, then Oracle OLAP goes to step
2. If there is not, then Oracle OLAP goes to step 3.

2. Isthe CACHE statement a CACHE DEFAULT statement? If it is, then Oracle
OLAP goes to step 3. If it is not, then Oracle OLAP uses the CACHE statement in
the aggregation specification to determine what to do with variable data that is the
result of the calculation and ends the decision-making process.

3. Does the variable being aggregated have a $VARCACHE property? If it does, then
Oracle OLAP goes to Step 4. If it does not, then Oracle OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then
Oracle OLAP goes to step 5. If it does not, then Oracle OLAP uses the value of the
$VARCACHE property determines what happens to the variable data calculated
using the AGGREGATE function, and ends the decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data calculated using the AGGREGATE function. End
decision-making process.

Examples

Example 5-13 Setting the $VARCACHE Property

For a variable named v1, the following statements cause Oracle OLAP to cache the
variable data that is the result of the execution of an AGGREGATE function or
$NATRIGGER expression.

CONSIDER vl
PROPERTY 'SSVARCACHE' 'vl'

5-30 Oracle OLAP DML Reference

6

OLAP DML Options

This chapter contains the following topics:
= About Options

= Options: Alphabetical Listing

= Options by Category

= One topic for each of the OLAP DML options, arranged alphabetically beginning
with ALLOCERRLOGFORMAT.

For other OLAP DML reference topics, see Chapter 5, "OLAP DML Properties",
Chapter 7, "OLAP DML Functions: A - K", Chapter 8, "OLAP DML Functions: L - Z",
Chapter 9, "OLAP DML Commands: A-G", and Chapter 10, "OLAP DML Commands:
H-Z".

About Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read /write options for which you can specify values. Read /write options have default
values.

You can use the SET (=) command to retrieve the value of an option into a predefined
variable and to specify a new value for a read /write option. Use the SHOW command
to display the value of an option.

Options: Alphabetical Listing

ABCDEILMNOPRSTUVWYZ

A

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER
AWWAITTIME

B
BADLINE
BMARGIN

Cc
CALENDARWEEK

OLAP DML Options 6-1

Options: Alphabetical Listing

COLWIDTH
COMMAS
COMPILEMESSAGE
COMPILEWARN

D

DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DECIMALCHAR
DECIMALOVERFLOW
DECIMALS
DEFAULTAWSEGSIZE
DIVIDEBYZERO
DSECONDS

E

ECHOPROMPT
EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION
ERRNAMES
ERRORNAME
ERRORTEXT
ESCAPEBASE
EXPTRACE

|
INF_STOP_ON_ERROR

L

LCOLWIDTH

LIKECASE

LIKEESCAPE

LIKENL

LIMIT.SORTREL
LIMITSTRICT

LINENUM

LINESLEFT
LOCK_LANGUAGE_DIMS
LSIZE

MAXFETCH
MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER
MODMAXITERS

6-2 Oracle OLAP DML Reference

Options: Alphabetical Listing

MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE
MONTHABBRLEN
MONTHNAMES
MULTIPATHHIER

N

NASKIP

NASKIP2

NASPELL
NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY
NOSPELL

o)

OKFORLIMIT
OKNULLSTATUS
OUTFILEUNIT

P

PAGENUM
PAGEPRG
PAGESIZE
PAGING
PARENS
PERMITERROR
POUTFILEUNIT
PRGTRACE

R

RANDOM.SEED.1 and RANDOM.SEED.2
RECURSIVE

ROLE

ROOTOFNEGATIVE

S

SECONDS

SESSCACHE
SESSION_NLS_LANGUAGE
SORTCOMPOSITE
SPARSEINDEX
SQLBLOCKMAX

SQLCODE

OLAP DML Options 6-3

Options by Category

SQLERRM
SQLMESSAGES
STATIC_SESSION_LANGUAGE

T

THIS_AW
THOUSANDSCHAR
TMARGIN
TRACEFILEUNIT
TRIGGERMAXDEPTH
TRIGGERSTOREOK

U

USERID
USETRIGGERS

Vv
VARCACHE

w

WEEKDAYSNEWYEAR
WRAPERRORS

Y

YESSPELL
YRABSTART

z

ZEROROW
ZSPELL

Options by Category

Analytic Workspace Options
Globalization Support
Multi-Language Support Options
Aggregation Options

Allocation Options

Model Options

Compilation Options

Error Options

Debugging Options

SQL Embed Options

File Reading and Writing Options
EIF Options

Report Options

NA Values Options

Date-only Data Type Options
Datetime Options

Numeric Options

RANK Function Monitoring Options

6-4 Oracle OLAP DML Reference

Options by Category

Analytic Workspace Options

AWWAITTIME
DEFAULTAWSEGSIZE

Globalization Support

NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY

Multi-Language Support Options

LOCK_LANGUAGE_DIMS
NLS_DATE_LANGUAGE
NLS_LANG

NLS_LANGUAGE
SESSION_NLS_LANGUAGE
STATIC_SESSION_LANGUAGE

Aggregation Options
MULTIPATHHIER
POUTFILEUNIT
SESSCACHE
VARCACHE

Allocation Options

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER
POUTFILEUNIT

Model Options
MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE

Compilation Options
COMPILEMESSAGE
COMPILEWARN
THIS_AW

OLAP DML Options 6-5

Options by Category

Error Options

BADLINE

ERRNAMES
ERRORNAME
ERRORTEXT
INF_STOP_ON_ERROR
MODERROR
PERMITERROR
SQLERRM
SQLMESSAGES
WRAPERRORS

Debugging Options
EXPTRACE
MODTRACE
PRGTRACE

SQL Embed Options

SQLBLOCKMAX
SQLCODE
SQLERRM
SQLMESSAGES

File Reading and Writing Options
ECHOPROMPT

ESCAPEBASE
INF_STOP_ON_ERROR
OUTFILEUNIT

EIF Options

EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION

Report Options
BMARGIN
COLWIDTH
COMMAS
DECIMALCHAR
DECIMALS
LCOLWIDTH
LINENUM
LINESLEFT
LSIZE
NASPELL
NOSPELL
PAGENUM
PAGEPRG
PAGESIZE

6-6 Oracle OLAP DML Reference

Options by Category

PAGING

PARENS
THOUSANDSCHAR
TMARGIN
YESSPELL
ZEROROW

ZSPELL

NA Values Options

LIMITSTRICT
NASKIP

NASKIP2

NASPELL
RECURSIVE
TRIGGERMAXDEPTH
TRIGGERSTOREOK

Date-only Data Type Options

CALENDARWEEK
DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DSECONDS
MONTHABBRLEN
MONTHNAMES
WEEKDAYSNEWYEAR
YRABSTART

Datetime Options

CALENDARWEEK
DSECONDS
SECONDS

Numeric Options
DECIMALOVERFLOW

DIVIDEBYZERO

RANDOM.SEED.1 and RANDOM.SEED.2
ROOTOFNEGATIVE

RANK Function Monitoring Options
RANK_CALLS
RANK_CELLS
RANK_SORTS

OLAP DML Options 6-7

ALLOCERRLOGFORMAT

ALLOCERRLOGFORMAT

Syntax

Arguments

Examples

The ALLOCERRLOGFORMAT option determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument to the ALLOCATE
command.

ALLOCERRLOGFORMAT = text

text

Characters that determine the contents and formatting of the error log that you specify
with an ERRORLOG statement in an ALLOCMAP command. By placing an INTEGER
value before the formatting character, you can specify the number of characters that
the object occupies in the error log. You can specify escape sequences as formatting
characters. For valid escape sequences, see "Escape Sequences" on page 2-5. Table 6-1,
" Characters for Specify the Contents of the Error Log for ALLOCATE" lists the
characters that specify the contents of the error log. The default value of
ALLOCERRLOGFORMAT is the following.

'38p 28y %8z %e (%n)"

Table 6—1 Characters for Specify the Contents of the Error Log for ALLOCATE

Character Output Specified

b The basis object being processed.

c The child node of the dimension being processed.
d The name of the dimension being processed.

e A description of the error encountered.

n The error code of the error encountered.

P The parent node of the dimension being processed.
r The name of the relation being allocated down.

s The source object being processed.

t The target object being processed.

n The basis value of the child cell receiving the allocation.
y The source value of the parent cell being allocated.
z The basis value of the parent cell being allocated.

Example 6—-1 Setting the ALLOCERRLOGFORMAT Option
This example sets the ALLOCERRLOGFORMAT option and produces the results
shown in the last line.

ALLOCERRLOGFORMAT = '%8p %8y %8z %e (%n)'
SHOW ALLOCERRLOGFORMAT
%8p %8y %8z %e (%n)

6-8 Oracle OLAP DML Reference

ALLOCERRLOGHEADER

ALLOCERRLOGHEADER

Syntax

Arguments

Examples

The ALLOCERRLOGHEADER option determines the column headings for the error
log that you specify with the ERRORLOG argument to the ALLOCATE command. To
specify additional formatting for the error log, use the ALLOCERRLOGFORMAT
option.

ALLOCERRLOGHEADER = text

text

Characters that determine the content and formatting of the column headers that are
the first line of the error log that you specify with the ALLOCATE command. (See
ALLOCERRLOGFORMAT for a list of the characters you can use.)

When you specify NA as the value for this option, then ALLOCATE does not write any
header to the error log. The following is the default value of
ALLOCERRLOGHEADER.

'Dim Source Basis\n%-8d %-8v %-8b Description\n

Example 6-2 Setting the ALLOCERRLOGHEADER Option

The following statements define the heading for the error log specified by an
ALLOCATE statement and show the value of the ALLOCERRLOGHEADER option.

ALLOCERRLOGHEADER = 'Dim Source Basis\n %-8d %$-8v %-8b Description \n

SHOW ALLOCERRLOGHEADER

The preceding statement produces the following results.

Dim Source Basis

o)

%-8d %-8s %-8b Description

An allocation operation that has a variable named budget as both the source and
basis objects and which encounters a deadlock when allocating down the division
dimension produces the following entry in the error log.

Dim Source Basis
Division Budget Budget Description

Accdiv 650000 NA A deadlock occurred allocating data (5)

OLAP DML Options 6-9

AWWAITTIME

AWWAITTIME

Data Type

Syntax

Arguments

Notes

Examples

The AWWAITTIME option holds the number of seconds that a AW ATTACH
command with the WAIT keyword waits for an analytic workspace to become
available for access. The default value of AWWAITTIME is 20 seconds.

INTEGER

AWWAITTIME = seconds

seconds
The number of seconds to wait for an analytic workspace to be available. The default
value is 20 seconds.

Workspace Sharing

When your user ID has the appropriate access rights and that no user has read /write
exclusive access to the workspace, you can get read-only access to an analytic
workspace, no matter how many other users are using it. When another user has
read/write access and commits the workspace, your view of the workspace does not
change; you must detach and reattach the workspace to see the changes.

Example 6-3 Specifying a Wait Time of One Minutes

Assume that you want to wait for 60 seconds when attaching an analytic workspace.
To do wo reset the value of the AWWWAITTIME option by issuing the following
statement.

AWWAITTIME = 60

6-10 Oracle OLAP DML Reference

BADLINE

BADLINE

Data Type

Syntax

Arguments

Examples

When a program, model, or input file is executing, the BADLINE option controls
whether Oracle OLAP records, in the current outfile, the line that caused an error.

See also: PROGRAM, MODEL, and INFILE.

BOOLEAN

BADLINE = {YESINO}

YES

When an error occurs during the execution of a program, model, or input file, Oracle
OLAP records in the current outfile the name of the program, model, or file in which
the error occurred and the line that caused the error. When an error message is
included in the output, the BADLINE information appears immediately after the error
message.

NO
(Default) When an error occurs in a program, model, or input file, Oracle OLAP does
not record the error in the current outfile.

Example 6-4 Using the BADLINE Option
In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM

VARIABLE myintl INTEGER
VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program when the DIVIDEBYZERO option is set to NO, then an
error occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQO1l) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMO!TEST PROGRAM:

myint2 = 250/myintl

Example 6-5 Finding Errors in Program Lines
In a simple program called test, the variable myint1 is divided by 0 (zero).

DEFINE test PROGRAM
PROGRAM
VARIABLE myintl INTEGER

OLAP DML Options 6-11

BADLINE

VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program, an error occurs because division by zero is not allowed
(that is, when DIVIDEBYZERO is set to NO).

When BADLINE is set to NO only the error is recorded in the current outfile.

ERROR: (MXXEQO1l) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When BADLINE is set to YES, the line that causes the error and the name of the
program in which the error occurred are recorded in the current outfile.

ERROR: (MXXEQO1l) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

In TESTBAD PROGRAM:

myint2 = 250/myintl

In EDDE.RUNCMD PROGRAM:

6-12 Oracle OLAP DML Reference

BMARGIN

BMARGIN

Data Type

Syntax

Arguments

Notes

Examples

The BMARGIN option defines the number of blank lines for the bottom margin of
output pages. BMARGIN is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and DESCRIBE. The BMARGIN option is
usually set in the initialization section of report programs.

INTEGER

BMARGIN = n

n
An INTEGER expression that specifies the number of lines that you want to set aside
for the bottom margin in a report. The default is 1.

Setting BMARGIN for a File

To set BMARGIN for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set BMARGIN to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
BMARGIN returns to its default value of 1 for the file.

When you set BMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE statements that send output to a file.
That is, the value of BMARGIN is automatically saved for the default outfile

Example 6-6 Setting the Bottom Margin of a Report Page

Suppose you want to be able to make notes on the bottom of a report page. You can set
a large bottom margin of 5 lines. Here is the statement that you would include in the
initialization section of your report program.

BMARGIN = 5

OLAP DML Options 6-13

CALENDARWEEK

CALENDARWEEK

Data Type

Syntax

Arguments

Notes

Examples

The CALENDARWEEK option determines whether weeks should be aligned with the
actual calendar year.

Note: You can only use this function with dimensions of type WEEK.

BOOLEAN

CALENDARWEEK = {YESINO}

YES

(Default) Specifies that weeks are aligned with the calendar year. For example, if you
have defined a dimension of type WEEK, Oracle OLAP numbers its values so that the
first week in the calendar year is week 1, the second week in the calendar year is week
2, and so on. Weeks are aligned with the calendar year regardless of any beginning or
ending date specified in the WEEK dimension definition.

NO

Specifies that weeks are not aligned with the calendar year. Instead, weeks are
numbered so that they are aligned with the date specified in the dimension definition.
For example, if you have defined a dimension of type WEEK with a beginning or
ending date, its values are numbered so that the week corresponding to the date in the
dimension definition is week 1, the following week is week 2, and so on.

Fiscal Years

Setting CALENDARWEEK to NO causes weeks to be numbered so that the number 1 is
assigned to the week beginning or ending on the date specified in the DEFINE
DIMENSION statement. This week is then assigned to a fiscal year, which is the
calendar year of the first January 1 on or after the week's starting date. For example, if
you define a dimension of type WEEK with a starting date of 02Jan1996 (or,
equivalently, an ending date of 08Jan1996), the week starting 02Jan1996 will be
considered week 1 of fiscal year 1997. If, by contrast, you had given the dimension a
starting date between 02Jan1995 and 01Jan1996, then the week starting on that
date would be week 1 of fiscal year 1996.

Example 6-7 Aligning Weeks with the Calendar Year

The following statements define a dimension of type WEEK, define its ending date,
add values to the dimension, and produce a report.

DEFINE week dimension WEEK ENDING '18Jan97'
MAINTAIN week ADD '21Dec96' '25Jan97'

6-14 Oracle OLAP DML Reference

CALENDARWEEK

REPORT W 22 CONVERT (week DATE)

These statements produce the following output.

WEEK CONVERT (WEEK DATE)
w51.96 21Dec96
w52.96 28Dec96
wl.97 04Jan97
w2.97 11Jan97
w3.97 18Jan97
wd .97 25Jan97

Example 6-8 Aligning Weeks with a Specified Ending Date

The following statements set the CALENDARWEEK option to NO, which aligns the
weeks with the ending date that is specified in the definition of the week dimension in
"Aligning Weeks with the Calendar Year" on page 6-14.

CALENDARWEEK = NO
REPORT W 22 CONVERT (week date)

These statements produce the following output.

WEEK CONVERT (WEEK DATE)
w50.97 21Dec96
w51.97 28Dec96
w52.97 04Jan97
w53.97 11Jan97
wl.98 18Jan97
w2.98 25Jan97

OLAP DML Options 6-15

COLWIDTH

COLWIDTH

The COLWIDTH option controls the default width of data columns in report output.
For output from the ROW command and HEADING command, COLWIDTH affects
all columns except the first column. For output from REPORT, COLWIDTH affects all
data columns, as well as the label columns for a composite or a conjoint dimension.

Note: For an individual column, the COLWIDTH value is always
overridden by a WIDTH attribute in a HEADING, REPORT, or ROW

command
Data Type
INTEGER
Syntax
COLWIDTH =n
Arguments
n
An INTEGER expression that specifies the desired column width in number of
characters. You can set COLWIDTH to any value from 1 to 4000. The default is 10.
Note: The maximum width of a line in a report is 4000 characters.
Therefore, the combined width of all the columns of a report cannot
be greater than 4000 characters.
Examples

Example 6-9 Setting the Default Column Width in a Report

Suppose you want to look at unit sales for six months. Since the data values are not
large, you do not need a width of 10 characters for your data columns. You can set
COLWIDTH to provide a narrower default column.

LIMIT district TO 'Atlanta’

LIMIT month TO 'Oct95' TO 'Mar96'
COLWIDTH = 6

REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA

—————————————————— UNITS------========———~
—————————————————— MONTH----========c--u==
PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

6-16 Oracle OLAP DML Reference

COMMAS

COMMAS

Data Type

Syntax

Arguments

Examples

The COMMAS option controls the use of the character that separates thousands and
millions in numeric output. This character is typically a comma; however, it might be
different depending on your NLS_TERRITORY setting. The THOUSANDSCHAR
option records the character that is currently being used for separating thousands. The
COMMAS option controls whether the character appears in numeric output.

COMMAS affects all commands that produce output, including the ROW command as
well as HEADING, REPORT, and SHOW.

Note: You can use the COMMA and NOCOMMA attributes of a
HEADING, REPORT, or ROW command to override the COMMAS
setting.

BOOLEAN

COMMAS = {NOIYES}

NO
Numeric output does not contain a character that separates thousands, millions, and
SO on.

YES
(Default) Numeric output contains a character that separates thousands, millions, and
SO on.

Example 6-10 Showing Numerical Data Without Commas

Suppose you want to look at the cost of goods sold, without commas in the data
values. You can set COMMAS to NO before producing your report.

COMMAS = NO

LIMIT line TO 'Cogs'

LIMIT month TO 'Jan96' 'Feb96'

REPORT DOWN division ACROSS month: DECIMAL 0 actual

These statements produce the following output.

LINE: COGS
————— ACTUAL------
—————— MONTH------
DIVISION Jan96 Feb96
Camping 368044 385120
Sporting 287558 315299
Clothing 567767 610727

OLAP DML Options 6-17

COMPILEMESSAGE

COMPILEMESSAGE

You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP to
send to the current outfile non-fatal messages during execution of the COMPILE
command. Non-fatal messages are those indicating errors that do not prevent a
program from compiling.

See also: For more information about compiling objects, see

COMPILE.
Data Type
BOOLEAN
Syntax
COMPILEMESSAGE = {YESINC}
Arguments
YES
(Default) Indicates that Oracle OLAP should record non-fatal messages during
execution of the COMPILE command.
NO
Indicates that Oracle OLAP should suppress non-fatal messages during execution of
the COMPILE command.
Examples

Example 6-11 Suppressing Error Messages During Compilation

The following statement specifies that Oracle OLAP should suppress non-fatal
messages during execution of the COMPILE command.

COMPILEMESSAGE = NO

6-18 Oracle OLAP DML Reference

COMPILEWARN

COMPILEWARN

Data Type

Syntax

Arguments

Examples

The COMPILEWARN option controls whether Oracle OLAP records a warning
message in the current outfile when a compilable object, such as a program or a model,
is being compiled automatically. (When you use the COMPILE command to explicitly
compile an object, Oracle OLAP does not display the COMPILEWARN message.)

A compilable object is automatically compiled in the following cases:
» The first time it is executed after being edited.

» The first time it is executed in a session when it was compiled in a previous
session after the last time the analytic workspace was updated and committed.

= After an analytic workspace object referred to in the code has been renamed or
deleted. When the object name in the code has not been redefined, you will receive
an error message.

= When the code refers to objects in another analytic workspace and the objects in
the currently attached analytic workspace do not have the same object type
(variable, relation, and so on), data type (INTEGER, TEXT, and so on), or
dimensions as the objects available when the code was previously compiled.

BOOLEAN

COMPILEWARN = {YESINO}

YES
Oracle OLAP records a message warning you that a compilable object is being
compiled automatically. The message explains why the compilation was necessary.

NO
(Default) Oracle OLAP does not record a message warning you that an object is being
compiled automatically.

Example 6-12 Specifying That You Want Compiler Warnings

When COMPILEWARN is set to YES, when you run the do_report program just
after editing it, Oracle OLAP places the following message in your current outfile
before the do_report output.

DO_REPORT is being automatically compiled.

OLAP DML Options 6-19

DATEFORMAT

DATEFORMAT

Data Type

Syntax

Arguments

The DATEFORMAT option holds the template used for displaying DATE-only data
type values and converting DATE-only values to text values. The template can include
format specifications for any of the four components of a date (day, month, year, and
day of the week). It can also include additional text.

See also: '"Date-only Data Type Options" on page 6-7

TEXT

DATEFORMAT = template

template

A TEXT expression that specifies the template for displaying dates. Each component in
the template must be preceded by a left angle bracket and followed by a right angle
bracket. You can include additional text before, after, or between the components. The
default template is ' <DD><MTXT><YY>"'.

Table 6-2, "DATEFORMAT Templates for Day", Table 6-3, " DATEFORMAT Templates
for Week", Table 64, " DATEFORMAT Templates for Month", and Table 6-5,

" DATEFORMAT Templates for Year" present the valid formats for each component.
The tables provide two display examples, one for March 1, 1990 and another for
November 12, 2051.

Table 6-2 DATEFORMAT Templates for Day

Format Meaning March 1, 1990 November 12, 2051
<D> One digit or two digits 1 12

<DD> Two digits 01 12

<DS> Space-padded, two digits 1 12

<DT> Ordinal, uppercase 1sT 12TH

<DTL> Ordinal, lowercase 1st 12th

Table 6-3, " DATEFORMAT Templates for Week" presents the valid formats for weeks.
The table provides two display examples, one for March 1, 1990 and another for
November 12, 2051.

Table 6-3 DATEFORMAT Templates for Week

Format Meaning March 1, 1990 November 12, 2051
<W> Numeric 4 1
<WT> First letter, uppercase W S
<WTXT> First three letters, WED SUN
uppercase.

6-20 Oracle OLAP DML Reference

DATEFORMAT

Table 6-3 (Cont.) DATEFORMAT Templates for Week

Format Meaning March 1, 1990 November 12, 2051
<WTXTL> First three letters, Wed Sun
lowercase
<WTEXT> Full name, uppercase WEDNESDAY SUNDAY
<WTEXTL> Full name, lowercase Wednesday Sunday

Note that when you specify a format of <WTXT>, <WT'XTL>, <WTEXT>, or <WTEXTL>,
the case in which the value is specified in DAYNAMES affects the displayed value:

s When the name in DAYNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

= When the name in DAYNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name remains
in the case specified in DAYNAMES.

Table 64, " DATEFORMAT Templates for Month" presents the valid formats for
months. The table provides two display examples, one for March 1, 1990 and another
for November 12, 2051.

Table 6-4 DATEFORMAT Templates for Month

Format Meaning March 1, 1990 November 12, 2051
<M> One digit or two digits 1 11

<MM> Two digits 03 11

<MS> Space-padded, two digits 3 11

<MT> First letter, uppercase M N

<MTXT> First three letters, uppercase =~ MAR NOV

<MTXTL> First three letters, lowercase Mar Nov

Note that when you specify a format of <MTXT> or <MTXTL>, the case in which the
value is specified in MONTHNAMES affects the displayed v