ORACLE

Oracle® Warehouse Builder
User's Guide

11gRelease 1 (11.1)
B31278-02

September 2007

Oracle Warehouse Builder User’s Guide, 11¢ Release 1 (11.1)
B31278-02
Copyright © 2000, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

This program contains Batik version 1.6.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

For additional information about the terms and conditions, search for "Apache License" in Oracle Warehouse
Builder online help.

Contents

PUrOIACE ...ttt XVii
AN S Lo 1= VLT T T RRRR TR XVii
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiicc s XVii
(@) 721 415 [0 1< IR XViii
Getting HEIPcvvieee e Xviii
ReELAtEd PUDLICATIONSccvviiieeieeeeee ettt ettt et e ettt e e eat e e e eaaeeseaeeeesaaeeseaseessnssesssssessnseeessseessseeesssseeas XiX

WAL 'S INEOW ...ttt nas s nassnasen XXi
New in Oracle Warehouse Builder 11g Release 1 (11.1)ccccovuviviviviiininiiininiiniiinnneccccccenee XXi

Part| Introduction and Concepts

1 Introduction to Oracle Warehouse Builder

Overview of Oracle Warehouse Builder.............c..cocoouiiiiiiiiicicce et 1-1
Data Consolidation and INtegration..........c.cccccccceiiiiiiieeiiiiicireeeerceeee e 1-1
Product Options and Licensing ... 1-2
Warehouse Builder Core FUNCHONALILY ... 1-3
Warehouse Builder Enterprise ETL Option ... 1-3
Warehouse Builder Data Quality Optionc.ccccciiiiiiiiiiiiiiiiiies 1-5
Warehouse Builder Connector - E-Business SUIte.........c.ccueeieirieirinienieneniesieieeeeeeeeee e 1-5
Warehouse Builder Connector - PeopleSoft...........coiiiiiiiiiiiiiiiiceeeeeens 1-6
Warehouse Builder Connector - SAP R/3 CONNECEOT.......ccoouiiieeieiiiieeeeee et saee e 1-6
Warehouse Builder Connector - S1€Delocveiiiriiiiieieeeieeeee et 1-7

2 Getting Started with Oracle Warehouse Builder

Understanding the Basic CONCEPLScoovviiiiiiiiiiiiiiiic e 2-1
Implementing a Data Integration Solution...............cccocooiiiiiiii 2-3
Before You Begin ... 2-3
Preparing the Warehouse Builder Design Centerccooeuviieiiinicneiniiccieeccee e 2-4
Importing the Source Metadatac.couoiiiiiiiiiiii 2-6
Profiling Data and Ensuring Data QUalitycccooeeioiiiiiiiiiiic e 2-6
Designing the Target SChema...........cccccciiiiiiiiiiiiiii e 2-6
Designing ETL LOZIC ...c.ouiuiiiiiiiiiiiiiiniiiciniciiiiti bbb 2-7
Deploying the Design and Executing the Data Integration Solutioncccccccevvivininiinninns 2-8

Monitoring and Reporting on the Data Warehousecooooeieiiiiiiiiiiiiicc 2-8

3 Setting Up Warehouse Builder

Organizing Design Objects into Projects.............ccccooiiiiiiiiiiicce, 3-1
Setting Preferences.............oiiiiiiiiiii s 3-2
APPEATance PreferenCescooiuiiviiiriiirrcrrre et 3-2
Control Center Monitor Preferences ..., 3-2
Data Profiling Preferences ...t 3-4
Deployment PreferenCesccocciuiiiiiiiiieiicicceeececeeeee e 3-4
Environment Preferences ... 3-5
Generation/ Validation PreferEnCeS ...ttt ettt e st e e sae e s saeeessnaeeenns 3-6
LOgEING Preferences.......cccoiiiiiiiiiiiiiciicicicec e 3-6
Naming Preferences. ... 3-7
About Naming MOdes.........c.c.ouiruiiiiiieiece e 3-7
SECUTILY PreferenCeSc.vviiiiiiiciciicctc et 3-8
Defining Collections..............cccoviiiiiiiiiiiiiiii s 3-9
Creating @ COleCHONooiiiiii e 3-9
Name and Description Page..........cccococeiiiiiiiiiiiiccceeeeeeeeeee e 3-10
CoNteNts Pageooiieiiici s 3-10
SUMMATY Page.....cocoiiiiiiiiii s 3-10

Editing Collection Definitions..........ccccciiiiiiiiiiiiiiceeecceee e 3-10
INAME TaD ..o 3-10
Contents Tabcccoiiiiiiiiiii s 3-11
Alternative INterfaces ..o 3-11

4 Identifying Data Sources and Importing Metadata

About Source Data and Metadataccccoooveiiiiiii 4-1
Supported Sources and Targetsccoociiiiiiiiiiiii 4-2
General Steps for Importing Metadata from Sources..............cccccoeiiiiiiiiiiiie, 4-3
Example: Importing Metadata from Flat Files..........cccccoooiiiiiiiiiiiicccceccceeeees 4-4
ADOULt MOAUIES ..o 4-5
Creating MOAULES..........cccouiiiiiiiii e 4-5

Using the Import Metadata Wizard ..., 4-6
Importing Definitions from a Database............c.ccooeruiiiiiiiiiiiic 4-6
Filter Information Pagecccccceuiiiiiiiiiiiiiiiic s 4-6

ODbject SElection Page........c.cccuiuiueiiiiiiiciiciiicicicieieeie et 4-7
Summary and Import PAgecccccuiiririeiiii e 4-7

Import ReSults Page.........ccccciuiiiiiiiiiiiiiiiciicc e 4-8
Importing Definitions from Flat FIles ... 4-8
Reimporting Definitions from an Oracle Databasecccccoooiiiiiiiiiiniiie 4-9
Advanced IMport OPtiONS...........ccciiiiiiiiiiii s 4-10
Advanced Import Options for Views and External Tables...........ccccccovuvvrinnnnnnncnnes 4-10
Advanced Import Options for Tables ... 4-10
Advanced Import Options for Object TYPes........cccoovueviiviiiiiiiieieice e 4-11
Advanced Import Options for SQL Collectionsc.ccococueeueecceeecceeeceeeeeenenens 4-11
Updating Oracle Database Source Definitions ..., 4-11
Integrating with E-Business Suite ... 4-12

5

Importing E-Business Suite Metadata Definitionsc.cccccooiieieiiiiiiiiiicce, 4-12

Filtering E-Business Suite Metadata............ccoouoioiiiiiiiii 4-13
Filtering E-Business Suite Metadata by Business Domainccccccceevurrnncenenne. 4-13
Filtering E-Business Suite Metadata by Text String...........cccoooeiiiiiiiiccne 4-14

Selecting the ODJects.........ccciiiiiiiiiiiiiiiii s 4-14

Reviewing Import SUMMATY ... 4-15

Integrating with PeopleSoft ... 4-15
Importing PeopleSoft Metadata Definitions ..o 4-15

Filtering PeopleSoft Metadata...........ccccceueueuiuiiciiiiiiiiiiiiciicieecceeeeeeeeeeeeeeeeeeeeee s 4-16
Filtering PeopleSoft Metadata by Business Domainccccoeueiiiciiiiiciccne, 4-16
Filtering PeopleSoft Metadata by Text String ..o 4-17

Selecting the ODJECtSc.ccuiuiiiiiiiiiciciieieccce e 4-17

Reviewing Import SUMMATIY ..o 4-18

Integrating with Siebel ... 4-18
Importing Siebel Metadata Definitions ... 4-18
Creating a Siebel Source Module............ccooiiieiiiiiiii e 4-18
Importing Siebel Metadata ..o 4-19
Integrating with SAP R/3 ... 4-20
About SAP Business DOMAINSccccoeuiiiiiiiiiiiiiiiiiiic s 4-21
SAP Table TYPES ...ouoveiiieee et 4-21
Required Files FOr SAP CONMNECLOTc.ceuiuiiiuimimiiiieiiiieieieieieieieieieie et nenenenaes 4-22
Creating SAP Module Definitionscccceuieiiiiiiiiciiece s 4-22
Connecting to an SAP Source Application..........ccoceueioiiiiiiiiiccicecc e 4-23
Importing SAP Metadata Definitionscccccceurieiiirirniriiirrinncereecrreeeeeeeeeeeeeeeeeeees 4-24

Filtering SAP Metadatacooiueieiiiiiiciii 4-25
Filtering SAP Metadata by Business Domain.............cccoceiiiiiiiiicce 4-25
Filtering SAP Metadata by Text String.........c.cccoceeiiiiiiiiiciccceceeeceeeenenees 4-26

Selecting the ObJectSccueiiiii s 4-26

Reviewing Import SUMMATY ..o 4-27

Reimporting SAP ODJECESc.ccucuimiuiiiiiiciiiicieeeicicee e 4-27

Updating SAP Source ModULES ... 4-27
Defining the ETL Process for SAP ODbjJECtSccccceuiiiiiiiiiiiiiiiiiiciicicececcccees 4-28

Defining Mappings Containing SAP ODbjectscccccoeeurrniiineiicereececeeceeeeeeees 4-28

Configuring Code Generation for SAP ObjJects..........cccouvviiimiiiiiiiiiiiiiieines 4-28

Generating SAP Definitions ... 4-30

Loading SAP Data into the Workspace.........ccccccuciiiiiiiiiiiiicccececceeeeceeeeeeeeeeeees 4-30
Deploying and Executing an SAP Mappingccccceeeeeeneieineiieeieeeeeeeeeeennes 4-32
Deploying PL/SQL Scripts for Transparent Tables ..., 4-32

Integrating with Business Intelligence Toolsccccoviiiniiiiiiiie, 4-33

Introduction to Business Intelligence Objects in Warehouse Builderccccccoeennnnn 4-33

Introduction to Business Definitions.............ccooiiiiiiiiiiiiiiicceccceeeees 4-33

About Business Definitionscccccvuviiiiiiniiiiiiiiiic e 4-34

Understanding Data Quality Management

About the Data Quality Management Processcccococeoiviviiiiiiiiiiiiecns 5-1
Phases in the Data Quality Lifecycle ..., 5-2
Quality ASSESSINENLcuviiiiiiiciici s 5-3

QUALity DESIGN.....cooviiiiiiiieiiiiiicicce s 5-3

Quality Transformation ... s 5-4
Quality MONIEOTINEcoevevviiiiicieieicicicieieeiee et 5-4
About Data Profiling ... 5-4
Benefits of Data Profilingcccoouiiiiii 5-4
Types of Data Profiling........c.cccccciiiiiiiiiiiiiiccecccceeeeeeeeeee e 5-5
Attribute ANALYSIS ...ocucvoiiiicie e 5-5
Functional Dependencycocoiiiicic s 5-6
Referential ANalYSiS......cccccociiiiiiiiiiiiiiciciceieeeee e 5-7
Data Rule PrOfilingc.coieiiiiiiii e 5-8
ADOUL SIX SIZIMA ..ot 5-8
WHhat iS5 SIX SIZIMAT ..ot 5-8

Six Sigma Metrics for Data Profiling..........cccceuoiiiiiiiiiiiic 5-8
About Data Correction and Augmentation ..o, 5-9
About the Match-Merge Operator.........c.cccccuicuiiiiiiiiiiieiiiecceee et 5-10
Example of Matching and Merging Customer Data.............cooooeieiiiiiiiii, 5-10
Overview of the Matching and Merging Process............cccoeueuoiiricieiiiccieiciiceecce 5-11
Matching and Merging ReCOTAScccccciuiiiiiiiiiiiiiiiiiicccceiceeee s 5-12
Constructing Match Bins ... 5-12
Constructing Match Record Sets ... 5-12
Constructing Merge Recordscccccoeueuiiiiiiiiiiiicccececeeeeeeeeeeeene s 5-12

MatCh RULES......oviiiiiii s 5-13
Conditional Match Rules...........cccooiiiiiiiiiiiii s 5-13
Comparison AIGOTItRIMSc.cccoiiiiiiiiiiicccc e 5-13
Creating Conditional Match Rules...........cooooiiiiiii 5-15
Weight Match RULES.........cooiii 5-16
Example of Weight Match RUlescccccooiiiiiiiicccccceececeeees 5-16
Creating Weight Match Rules ..o 5-16
Person Match RULES..........cccoiiiiiiiiiiiiiiiic s 5-17
Persomn ROLES........cuiuimiiiiiiiiiiic s 5-17
Person Details ..o 5-18
Creating Person Match Rules............ccccccoiiiiiiiiiiiiiiics 5-18
Firm Match RUIES ..o 5-19
FIrm ROLES ...ttt s 5-19
FIrm Details......oucuiiiiiieiiiicce ettt 5-19
Creating Firm Match Rules..........cccccoooiiiiiiiiiiiiicccccccceeeeeee s 5-20
Address Match RUIES...........ccooiiiiiiiiiiiiiiicc s 5-20
AAIess ROLESc.coiiiiiiiiiiiec ettt et 5-21
Address Detailscoiiiviiiiiiiiiii s 5-22
Creating Address Match RuUles ... 5-22
Custom Match RULES........c.ccuiiiiiiiiccc e s 5-22
Creating Custom Match RUles ... 5-23
METZE RUIES ...t s 5-23
Using a Match-Merge Operatorcccccviiiiiiiiiniiiiiiiiiiicee s 5-24
About the Name and Address Operator ... 5-26
Example: Correcting Address Informationcccccovviivviiiiniininicns 5-27
Example INPULccoiiiiiiiiiii s 5-27

vi

EXamPLe StEPS......cvviiiiiiiiiiiiciiciicccccc s 5-28

Example OULPUL ..o 5-29
Handling Errors in Name and Address Datacccccoeiirrnniinnniirrceccreeeeeeeeeeees 5-30
About Postal REPOTHNGcueviiieiieieiiiici e 5-30

United States Postal Service CASS Certificationcccceveiivivniiiiiiiiiicciine, 5-31

Canada Post SERP Certification.........cccovvviiiiiiiiiniiiiiiiiiiccec e 5-31

Australia Post AMAS Certification ..o 5-31

About Data RUIEScccoiiiiiiiiiiiiiic s 5-31
About Quality MONGtOringccoviiiiiiiiiii s 5-32
About Data AUAItOIScouiiiiiiiiiiicii s 5-32
Performing Data Profiling............ccccoooiiiiiiiiii e 5-32
Import or Select the Metadatacccoceiiiiiiiiiiicccce s 5-33
Create a Data Profile ... 5-33
Profile the Data........ccccciiiiiiiiiii s 5-34

Configuring Data Profiles..........cccooiiiiiiiiiiiicccceeeeeeeeee e 5-35

Steps to Profile Data ... 5-35
View Profile RESUILS.........cccoiiiiiiiiiiiicc s 5-36
Derive Data RULEScociiiiiiiiiiiiic s 5-37
Generate COrreCtioNnScuiviuiiiiiiiiiiiii s 5-38
Define and Edit Data Rules Manuallyccccoooiiiiiiiiiicec e 5-40
Generate, Deploy, and EXECULEcccccciiiiiiiiiiiicccccccece s 5-40

Tuning the Data Profiling Processcccoooviiiiiiiiiniiniiiiiiccec s 5-40
Tuning the Data Profile for Better Data Profiling Performancec.cccooooeeiiiiiniiinininnnan, 5-40
Tuning the Oracle Database for Better Data Profiling Performancec.cccccccoeueueunccncnnee. 5-41

Multiple PrOCESSOTScvoviviiiiiiiiiiiciciciciciciceec s 5-41

IMEIMOTY ..ottt 5-41

I/ O SYSEEIML.....cviiiiiiciicc s 5-41

Using Data Rules ... 5-42
Creating Data RUIES ... 5-42
Applying Data Rules t0 ODJECESc.cceuiuiuiiiiiiiiiiiiicecccceeeee e 5-43

Monitoring Data Quality Using Data Auditorscccccoviiiiiiiii 5-44
Creating Data AUdItOrSccccciuiiiiiiiiiii s 5-44
Auditing Data Objects Using Data AUditorsccccooveviiiirniiiiiicccrcecceeeeeees 5-45

Manually Running Data AUditOrs..........cceuoviiieiiiiiii 5-45

Automatically Running Data AUditors ... 5-45

Data Auditor Execution ReSUILSccoeviiiiiiiiiiiiiiicc s 5-46

Designing Target Schemas

About Data ODbjJects..........ccocoiiiiiiiiiiiiiii e 6-1
Supported Data TYPeS.......ccoiiieiiici 6-3
Naming Conventions for Data Objectscccccceviiiiiiviniiiiiiiininnc e 6-6

About the Data Object EAItorcccoouiiiiiiiiiiiii e 6-6
Data VIEWET ..ottt 6-8
Using the Data Object Editor to Create Data Objectscccocoeivivivininnininiinniicccccae, 6-8

Creating Data Objects Using the Menu Bar ... 6-8
Creating a Data Object Using the Canvascccocoviiiiiiiiiincciceceeeenas 6-9
Creating a Data Object Using the Data Object Editor Palette.............cccccceeiiiiivriinnnnne. 6-10

vii

About Dimensional Objects............cccccoviiiiiiiiiiiiiiiiiiii s 6-10

Defining Dimensional ObJects..........cccoicurieiiiirieiiiicieie e 6-11
Implementing Dimensional ODbJects..........ccccceuiiiiuiiiiiiiiiiceeceeeee e 6-12
Relational Implementation of Dimensional Objectsc.cccoviiiiiiiciniiiiiiccnen, 6-12
BINAING oot s 6-12
ROLAP Implementation of Dimensional Objectsc.cccccoecuiueiiciinciiccrceeeene 6-14
MOLAP Implementation of Dimensional Objects..........c.cccocoeeniiiiiiiiiiiiiinn, 6-14
Analytic WOTKSPacec.cocuiiiiiiiic e 6-14

OLAP Catalogccovviviiiiiiiiiiiiiic s 6-14
Deploying Dimensional ObJects ...t 6-15
Loading Dimensional ODJECtSccouicueieiiiiicieieiiciee et 6-16
About DIimenSionsccccoeeiiiiiiiiiiiiiice s 6-16
Rules for Dimension ODJects ... 6-17
Limitations of Deploying Dimensions to the OLAP Catalogcccccoeueiiiinieiiiiciiieicnan, 6-17
Defining a DIMeNSION. ..ot eseees 6-18
Defining Dimension Attributes..........ccooeuieiiiiiiiiiicc 6-18
Defining Levels........ciiii s 6-18
Surrogate Identifiers.c.cccociiiiiiiiiiiccccee s 6-19
Business Identifiers..........coovvieiiiiiiiiiniiiiic s 6-19

Parent Identifier ... 6-19
Defining Level AHIIDULESc.ccciiuiiiiiiiiccccccccee s 6-19
Defining Hierarchies ... 6-20
Dimension ROIES ... 6-20
Level RelationShips.......c.cccuiuiiiiiiiiiiiiiiiccccceeeee e 6-20
Dimension EXample.........coviiiiiiiiiiiiiiiiiii s 6-21
CONIOL ROWS ..ottt s 6-21
Value-based Hierarchies ..o 6-22
Implementing a DIMeNSIiONcc.cviiuiiiiiiiiee e 6-22
Relational and ROLAP Implementation of a Dimension...........ccooieeiiiieiiiiinceiaes 6-22
Star SChEMIA.ovvieiii s 6-23
Snowflake Schema ..o 6-24
BINAING ..ottt s 6-24
MOLAP Implementationc.cccccccuceieiiiierciceeeeeieeeeeeee e seseeaes 6-25
About Slowly Changing Dimensionscccccoeeviiiiiiiiniiiii s 6-25
About Type 1 Slowly Changing DImensions...........c.ccccceeiiieininiiiiiciniiiincesecceenes 6-26
About Type 2 Slowly Changing Dimensions...........c.cccoceecccieieiiiieieeeceneeeeeeeeeeeeeeeeees 6-26
Defining a Type 2 Slowly Changing Dimension..........ccccococvurieimniireinieiceceeceenas 6-27
Updating Type 2 Slowly Changing Dimensions............cccccciiiiiiiiiiceccieeiceenennens 6-28
About Type 3 Slowly Changing Dimensions...........cccccoccceecirieiiieeneecneeeeeeeeeeeeeeeeaes 6-30
Defining a Type 3 Slowly Changing DIimensioncocoevvviiiiniiiniiiniiennes 6-30
About Time DIMEeNnSIONS.........cooccuiiiiiiiiiiiiiiciecee ettt 6-31
Best Practices for Creating a Time DIimension..........cccccceeiiiiciiiiniiiceccceeeeeeeees 6-31
Defining a Time DIMeNSION........ccccviviiiiiiiiiiiiiii s 6-32
LEVELS .t 6-32
Dimension AttTiDULESccocvviviiiiiiiiic e 6-32
Level AtIIDULES.....c.ccviviiiiiciicc s 6-33
HIETAICRIES ...ttt 6-33

viii

Implementing a Time Dimensioncoiiuiiiiiic 6-34

Using a Time Dimension in a Cube Mappingcccooumeieiiiicieieiiccceccie e 6-34
Populating a Time DIMeNnSion.c.ccociiiiiiiiiiiiieeeccceeee e 6-34
Overlapping Data POpulations ... 6-36

ADOUL CUDES.......ooiiiiii s 6-36
Defining @ CUDE.......c.cocviiiiiicieiiccce s 6-36
CUDE MEASUTIES ... s 6-36

Cube DIimensionalityccceeiiiiieiiiicee 6-37

CUDbE EXAMIPLE. ..ot 6-37
Implementing @ CUDEccuoiiiiii e 6-38
Relational and ROLAP Implementation of a Cube.........c.cccooiiiiiiiii 6-38
BINAING ¢ttt 6-39
MOLAP Implementation of @ CUDEcccevviiiiiiiieiiiiiiiciciciccces 6-39

Solve Dependency Order of Cubec.ooiiviiiiii 6-40
Designing the Target Schema ... 6-40
Designing a Relational Target Schema............ccccooiiiiiiiiiiii e, 6-40
Designing a Dimensional Target Schema.............oooiiii e, 6-41
Creating Oracle Data Objects ..o 6-41
Creating Relational Data ObjJects...........cccooiiieiiiiiiiiiiiic 6-42
Creating DImeNSIONScooiiiuiiiiiiiiitiict ittt 6-42
Creating Time Dimensionsccccvviiiiiiiiiiiiiiic s 6-44
Creating CUDESoouiie s 6-45
Configuring Data ODbjJects............ccccoiiiiiiiiiii e 6-46
Validating Data Objectscccccoiiiiiiiiiiiii s 6-46
Editing Invalid ObJECtS........ccueiiiciic 6-47
Generating Data ODbjects.............coooiiiiiiiiii e 6-47
Viewing Generated SCIIPLSccoiiiiiiiiiiiiieecceceee e 6-48
Saving Generated Scripts to @ File ... 6-48
Deriving Business Intelligence Metadatacccccooviiiiiiiiii 6-49

Creating Mappings

About Mappings and OPerators..............ccoouviviiiiiiniiininiiiii s 7-1
Instructions for Defining Mappingsccccccoeiiiiiiiiii e 7-2
Instructions for Using Flat File Sources or Targets in a Mappingcccccoeveueiniiccieiiinnnnan. 7-3
Creating @ MapPing ... 7-4
About the Mapping EdItOrcccccociiiiiiiiiiccecccce e 7-5
Mapping Editor WINAOWScccceiiiiiiiiiiiiicccccccc 7-6
EXPLOTET ..ot 7-7
Properties INSPeCtOr ..o 7-7

Palette ...cocvoviiicii 7-7

Bird’s EYe VIEW ..o 7-7

Data VIEWET ..ottt s 7-7
GENETAtION......cviiiiii s 7-7
Mapping Editor TOOIDATS........c.cccccuiiiiiiiiiiiiiiiiccic e 7-7
Mapping Editor Display OPtionscccccococueueiciiiiieiiiiicccccceeieieeeeeeeeeseeeeeeeeeee e 7-8
TYPes Of OPEIatorS.......ccuviiviiiiiiiiiiiiciiic s 7-8
Oracle Source/Target OPeratorsccovveereieiniicieiiiieicee s 7-8

Data FIOW OPeratorscocviiiiiiiiiiiiiiiiiiieeee s 7-9

Pre/Post Processing Operators...........cocucueuiieieiiiicicieiceee i 7-10
Pluggable Mapping OPerators..........cccccucucueueueueuiuemeieieieieieeieieeieieneieiereseaeeeeeneneseaeeeseseneaenees 7-11
Adding OPerators.........ccccouiuiiiiiiiiiiiiii s 7-11
Adding Operators that Bind to Workspace Objects.........c.coooieieieiiiiciiiiiiccce, 7-12
Add Operator Dialog BOX........cccccciuiiiiiiiiiiicceicieceeeee e 7-12

Create Unbound Operator with No Attributes ..o 7-12

Select from Existing Repository Object and Bind..........cccooooii 7-13
Editing OPerators ... s 7-13
INAME TAD ..o s 7-13
GIOUPS TAD ... 7-14
Input and OUEPUL Tabs.....c.c.couiiiiiiiiiicc s 7-14
Mapping Naming CONVENtiONSccccoiurieiiiiiieieiicicte it 7-15
USINg DISPlay Setsc.cueuiiuiieiiicice 7-16
Defining DISPlay Setsccccvviiiiiiiriciereececeeee s 7-16
Selecting a Display Setc.couiiuiiiiiiiciec 7-18
Connecting OPerators.............ccciiiiiiiiiiiiicc s 7-18
Connecting AttribULES ..o 7-18
CoNNECING GIOUPS ...ovviiiiiiieiiicectcte et 7-19
Example: Using the Mapping Editor to Create Staging Area Tables..........cccccccccoceeie 7-19

Using the Connect Operators Dialog BoX ..o 7-20

Copy Source Attributes to Target Group and Match ..., 7-21

Match by Position of Source and Target Attributes...........ccoooriiiiiiiiii 7-21

Match by Name of Source and Target Attributesccocovvevvvviiiiinvvniicrccceeene 7-21

Using Pluggable Mappings..........ccccoiiiiiiiiiiiiiiic s 7-21
Creating a Pluggable Mappingccccocueiiiriiiiiiicc e 7-22
Standalone Pluggable Mapping..........ccococeiiiiiciiiiiiiincineceereeeeeeeeeees s 7-22
Pluggable Mapping FOIAers ..o 7-22
SIgNAtUTE GIOUPS ..voviivititctitetctciete ittt 7-23

INPut SIGNAtUTE.......ccoiviiiiiii s 7-23

OUtPUL SIZNALUTE ... s 7-24
Pluggable Mapping EdItOr..........ccccciiiiiiiiiiiiiiic s 7-24
Setting Mapping Properties ... 7-24
Target Load Order ... 7-24
Reset t0 Defatltccooviuiuiiiiiiiiiicecc e 7-26

Setting Operator, Group, and Attribute Properties...............cccooviiinniinnnic, 7-26
Synchronizing Operators and Workspace Objects............c.ccooviiiiiiiiiiiiciees 7-26
Synchronizing AN OPETator ... 7-27
Synchronizing From a Workspace Object to an Operatorcccccceecceeccicerceeccnenennn 7-27
Synchronizing Operators based on Workspace Objectsccovveviiiiiiiiiiiiniennnn, 7-27
Synchronizing from an Operator to a Workspace Objectc.ccccceueiiiiininiiininininine, 7-28
Advanced Options for SyNchronizingccccccccceeeiiinnnniieerrrre s 7-29
Matching Strategies ... 7-30

Match by Object Identifiercccciiiiiiiiiiiiiiices 7-30

Match by Bound NamMecccoiiiiiiiiiiiiccceceeeeee e 7-31

Match by POSIHONocuiiiiiiii e 7-31

Using DML Error LOGGINg..........ccocoiiiiiiiiiiiiicceeeee e 7-31

AN oTo YLl 0’y Lo) il =1 o) L= JR USRS 7-32

Error Tables and DML Error LOGZINgc.ccoeueiiiiirieiiiiicieieieccicie i 7-32
Error Tables and Data RULES.........cc.ccuiieieiriiiieceeieeeet ettt eseeseenans 7-32
Using Error Tables for DML Error Logging and Data Rules.............ccccooeiiiiiiinnnnnnnn 7-33
Enabling DML Error LOZZINgcccccoiiiiiiiiiiiiiiiiiiiccises s 7-33
DML Error Logging and ETL........cccccoiiiiiiiiiceeeeeereee s 7-33
DML Error Logging Limitations..........ccccoevveiiiiiiiiiiciiiccccc s 7-34
Debugging a MapPingcccccoviiiiiiiiiiiiiiir s 7-34
Starting @ Debug SESSION.......cccuiuiuiiiiiiiiicccccccc s 7-35
The Debug Panels of the Mapping Editorc.cccoeiviiiiiiiiiiiiic 7-35
Debug INfo Panel..........ccoiiiiiiiiii s 7-35
Debug Data Panelcccccciiiiiiiiiiccecceee s 7-35
Defining Test Dataccccoiiiiiiiiiiiii s 7-36
Creating New Tables to Use as Test Dataccccccoeuiiiiiiiiiiiiniiiicce 7-36
Editing the Test Data........cccccciiiiiiiiiiiiiccecc s 7-37
Setting Breakpoints ..ot 7-37
Setting WatChesccooiiiiiiiiiiiiiic s 7-37
RUNNING the MaPPingccocciiiiiiiiiicccceeeeeie et sees 7-38
Selecting the First Source and Path to Debug..........cccccovvviiiiiiiiiiiiiiii, 7-38
Debugging Mappings with Correlated Commit.........cccoovviviiiiniiiiiiiiii, 7-38
Setting a Starting POINt...........cccoviiiiiiiiiii e 7-39
Debugging Pluggable Submap Operatorscccovvevviiiiiiiiiiiiiiiiicccecses 7-39
Re-Initializing a Debug SESSIONcccciiiiiiiiiiiiiiiiic s 7-40
SCALADILIEY ...t s 7-40

Designing Process Flows

ADbout Process FIOWS...........cccooviiiiiiiiiic 8-1
About Process Flow Modules and Packages..........c.cccoviurieiiiiiiciiiicicicc e 8-2
Instructions for Defining Process FIOWS ... 8-3
Creating Process FIOW ModUles...........cccccciiiiiiiiiicccceeeeeeeeeeee e 8-3
Creating Process FIOW Packages..........cccouiiieiiiiiciiiiicic 8-4
Creating Process FIOWS ... 8-4
About the Process FIOW Editor...............ccccoovoiiiiiiiiii 8-5
Standard Editor COMPONENtS..........cccvviiiiiiiiiiiiiiiiiiiiicic s 8-5
Process FIow Editor WINAOWSc.ccvuiuiiiininiiiciiiniciciireecctesreeice et 8-5
Opening the Process FIOW EdIOrcccoviviiiiiiiiiiiiicccrcc e 8-6
Navigating the Process FIOw Editor...........cooeuoiiiiiiii 8-6
Adding Activities to Process FIOWSccccccoviiiiiiiiniiiiii e 8-7
ADOUL ACHIVIHIES.....viveveiieiieeee s 8-7
AddINg ACHVITIES ...ooeviii 8-8
Parameters fOr ACVILIES......c.courueuiiiriiieieirietcc et e 8-9
Creating and Using Activity Templates..............cccoviiiiiiiiiiiiie 8-10
Name and Description Pagecccouiriiiiiiiiiicie 8-11
Parameters PAgecocovvuiuiiiiiiiiiiiccc s 8-12
Using Activity TEMPLAtescocviiiiiiiiiiiciccceccee e 8-13
About TranSitions..........ccccoiviiiiiiiiiii s 8-14
Rules for Valid Transitionsccccveecinirieieininiiceeneeces et 8-15

xi

Connecting ACtIVILIESoiiiiiiiii s 8-15

Configuring ACVITIESveuiieiiicice 8-16
Using Parameters and Variables............cccoiiiiiiiiiiiiiecceee e enenens 8-16
USING NAMESPACE.cucviviiitiieieieiitcieii bbb 8-17
USING BINAINES ... 8-17
EXPI@SSIONNS ...ttt ettt ettt e et e s a et e et nne e 8-17
Global EXpression ValUes ... 8-18
Defining Transition Conditions ... 8-18

9 Understanding Performance and Advanced ETL Concepts

Best Practices for Designing PL/SQL Mappings..........ccccccceveiiiiiiiiiiiiiiieesiennnes 9-1
Set Based Versus Row Based Operating Modes..........ccccceciuiiuiiiiiiiiiciieeicecceeeeeeeeeeennes 9-5

St BaSEU.......cviiiiiiiiii s 9-5

ROW BaSed ..o 9-6

Row Based (Target ONly).......cccccciiiriiicireeeeeeeeeeeereee s 9-7

About Committing Data in Warehouse Builder ..o, 9-7
Committing Data Based on Mapping Design..........cc.cocuoiiiiiiiiiiiiieccc e 9-8
Committing Data from a Single Source to Multiple Targets..........cccccoevururivcevriicrnnnnnne 9-8
Automatic Commit versus Automatic Correlated Commitccccooovviviriiiinnnnnninne, 9-9
Embedding Commit Logic into the Mapping........ccccoovreieioiiiciiiic 9-10
Committing Data Independently of Mapping Designcccccceuvvvrviiernvnnincrreceeene 9-11
Running Multiple Mappings Before Committing Data...........ccooeueiiiiiiiiiiiiicie, 9-11
Committing Data at RUNTMEooiiiiiiiiii e 9-12
Committing Mappings through the Process Flow Editor..........cccccocevviininnnnncnccnes 9-13
Ensuring Referential Integrity in PL/SQL Mappingscccocoeoeurieviiinieisiicieieiiceieeeee, 9-14
Best Practices for Designing SQL*Loader Mappingscccooviiiiiiiiiniiiiiececieiennes 9-15
Using Conventional Loading to Ensure Referential Integrity in SQL*Loader Mappings.... 9-15
Maintaining Relationships Between Master and Detail Records..........ccccoooeueiniiricnnnnne. 9-15
Extracting and Loading Master-Detail Recordscoooreiiiiiiiiniiiiic 9-16

Error Handling SUGZeStiONSc.cccuiuiiiiiiiiiiiiiicicceicieicceee e 9-19
Subsequent OPerationsccveeiiiiiieiiiiniii s 9-20

Using Direct Path Loading to Ensure Referential Integrity in SQL*Loader Mappings........ 9-20
Improved Performance through Partition Exchange Loading..............cccccoviiiniinninne 9-24
About Partition Exchange Loadingc.ccooiriiiiiiiiiiiii 9-24
Configuring a Mapping for PEL ... 9-25
Direct and Indirect PEL..........ccocooiiiiiiiiiiiiiiiic e 9-26
Using Indirect PEL........c.ooiriiii e 9-26
Example: Using Direct PEL to Publish Fact Tables...........ccccccceiiiiiiiiiiiiiiicnee, 9-27

USINg PEL EfeCtiVELYc.oiiiiiiiic e 9-27
Configuring Targets in @ MappPingcccocoeurueiriniciiiciice s 9-28
Step 1: Create All Partitions..........ccccccciiiiiiiiiiiiiiiiccces 9-28

Step 2: Create All Indexes Using the LOCAL Optionccccccccueueuiiciiinniciccrcieeene 9-28

Step 3: Primary/Unique Keys Use "USING INDEX" Option........ccccccevvvinininnnninininnn 9-29
Restrictions for Using PEL in Warehouse Builder ..., 9-29
High Performance Data Extraction from Remote Sources ..., 9-29

Xii

10 Introducing Oracle Warehouse Builder Transformations

About Transforming Data Using Warehouse Builder.................cccocoovniinnn 10-1
Benefits of Using Warehouse Builder for Transforming Datac.cccccoceeeeccciceccennnee. 10-2
About Transformations ... 10-2
Types of Transformations ... 10-2
Predefined Transformations. ..o s 10-2
Custom Transformations ... 10-3

About Transformation Libraries.............cccoviiiiiiiiiniii 10-4
Types of Transformation LIDraries ... 10-4
Accessing Transformation Libraries............ccoceuoiiiiiiiicieiics s 10-4
Defining Custom Transformations.............cccccocevviiiiiiiii s 10-5
Defining Functions and Procedures............cccccoceeiiuiiiiiiiiecieeeeeeeeeieeeeeneseneeeneeeneees 10-7
Name and Description Page...........ccooireieiiiiiiiiiice s 10-7
Parameters Pageococuiiiiiiiiii 10-7
Implementation Page ... 10-7
SUMMATY PAGe....oiuieiiiiiiiei s 10-8
Defining PL/SQL TYPEScucviiiieiieiiecie ettt 10-8
ADOUL PL/SQL TYPES...vviiiiiiieiciciececieieieeeeee et 10-8

Usage Scenario for PL/SQL TYPeS.......coociioiiiiiieiiiiei i 10-9
Creating PL/SQL TYPES ..ottt 10-11

Name and Description Page.........ccccceurirviriiirnniiirrre e 10-11
ATIDULES PAZR ..o 10-11

Return Type Page.......coooiiiiiii s 10-11
SUMMATY PaGE....cviiiiiiiiiiii e 10-12

Editing Custom Transformations..............ccoooiiiiiiiiiiii e 10-12
Editing Function or Procedure Definitionscccouiiiiiiiiiiiic 10-12
INAME TaAD ..o s 10-13
Parameters Tab ..o 10-13
Implementation Tab ... 10-13

Editing PL/SQL TYPESccruiiiiiiiiiiciicisic it 10-13
INamME TaD ..o 10-14
ARLIDULES TaD ...t 10-14

RetUIN TYPE TaD.....oeieii et 10-14
Importing PL/SQL........cooooiiiiiiic sttt 10-14
Restrictions on Using Imported PL/SQL ..o 10-15

11 Deploying to Target Schemas and Executing ETL Logic

About Deployment and Execution in Warehouse Builder...............ccccccovvnnninnnnnnnnn. 11-1
About Deploymentccoiiiiiiiiiiiiiiiii s 11-1
Deployment ACHONS.........c.oueuiiiiiiiicice s 11-2
Deployment SEatUS........ccoccuiiiiiiiiiiiic s 11-3

ADOUL EXECULIONovviiiite s 11-3
About the Warehouse Builder Implementation Environment...........c.ccccovenininiinnennnnn, 11-3
ADOUL CONETOL CONLETS ...ttt sttt 11-4
Creating a Control CENter ..ot aaees 11-5
Activating a Control Center ..ot 11-5

xiii

AN o YoYU Ll 0 Yoz (o) o 1< JPU SRR 11-5

Creating LOCAtIONSccuiuiiiiiiiiiiciciciccctt s 11-5
Registering and Unregistering Locations..........ccccoevueueiirviniiinnniccrrceeceeeceeeeeeaes 11-6
Deleting LOCAtIONSc.cueiiiieieiiiicieisctci s 11-7

ADOUL CONNECLOTS ...ttt 11-7
The Deployment and Execution Process ... 11-7
Deploying ObJECESc.cueviieiieieiicicte ettt 11-8
Deploying Business Definitions to Oracle DiSCOVerer...........ccooiuiiniicieiiiicieeicccieee 11-9
Deploying Business Definitions Directly to Oracle Discoverercccccccocceeicrerenennne. 11-9
Deploying Business Definitions to Earlier Versions of Oracle Discoverer.................... 11-10
Deploying Business Definitions Using the Core Functionality.........ccccccoooiiiiiiiineines 11-10
Reviewing the Deployment RESULLSc.ccccoeuiiiiiiiriiiiiiiiccccrcre s 11-11
Starting ETL JODSciuiiiiiieiecte e 11-12
Viewing the Data.........coo 11-12
Scheduling ETL JODS ... 11-12
Configuring the Physical Details of Deployment ..., 11-12
About Configurations..........couiiriiieiic e 11-13
Creating New Configurations..........cocoveeeeeiriiiiinininiicii e 11-13
Activating Configurationscoooeiieiieiiieic 11-14
Creating Additional Configurationscccceueiiiiiieiiiciecc e 11-14
Scenario Requiring Multiple Configurations............cccceceeueucuevrirennrnnrrrere e 11-14

Setting Configuration Properties for a Named Configuration...........cccccooveieirininnnnen. 11-15
Deploying a Design to Multiple Target Systems..........ccccoouoeiriiiiiiiiiiiccc 11-15

Benefit of Creating Additional Configurationscccecevvvvnrrnnnnnnrreeeecees 11-16

About Schedules.............cccooiiiiiiiiiiii s 11-17
Process for Defining and Using Schedules................cccooiiiiiiia, 11-18
Example SChedULESsccoiiiiiiiii e 11-19

Partll Example Cases

12 Loading Data Stored in a Microsoft Excel File

CaSE STUAY ..o s 12-2
TroubleshOOting...........cccooviiiiiiiiii s 12-5

13 Connecting to SQL Server and Importing Metadata

Creating an ODBC Data SOUICE ... 13-1
Configuring the Oracle Database Server..............ccccooiiiiiiiiiiiiiiiicceeeeeee e 13-2

Creating a Heterogeneous Service Configuration Filec.cccccccovviiiinnninnniine 13-2

Editing the listener.ora file..........ccoouoiiiiiiiii 13-2
Adding the SQL Server as a Source in Warehouse Builder ..o, 13-3
WRAE'S IN@XE....oooiviii s 13-3
TroubleShOOting...........ccccoviiiiiiiiiii s 13-3

Xiv

14 Loading Transaction Data

15 The Fastest Way to Load Data from Flat Files

SOL FLOAAET ...ttt ettt ettt ettt ettt et s e s e st e bt e b e be et e be ke et et et et et entebeebeebeebebesen
WHhen To Use SQLFLOAAETcuiiuierierieteeeecte ettt ettt et ettt e te e etee s e ete et eseenseeseensenseessen
External Tables ..o s
Benefits of Using External Tables ..o
When To Use External Tables ...t seneeeneees
Solution 1: Using SQL*Loader............ccccoiiiiiiiiiiiic s
Solution 2: Using External Tablesccccooiiiiiiiiiiiiic e

16 Importing from CA ERwin and Other Third-Party Design Tools
17 Reusing Existing PL/SQL Code

18 Sourcing from Flat Files with Variable Names

Creating the Process FIOW............ccccoooiiiiiiiii e
Setting Parameters for the External Process Activitycccccooiiiiniiii,
Method 1: Write a script within Warehouse Builder............c.ccoccoiiniiiniincnnenncncncenn
Method 2: Call a script maintained outside of Warehouse Builder ...
Configuring the External Process ActiVity ...,
Designing the Mapping ..o s
Deploying and EXeCUting ..o
SUDSEQUENE STEPS ...ttt s
Creating a Schedule ...

19 Transferring Remote Files

Creating the Process FIOW...........c.ccocooiiiiiiiiiiii s
Setting Parameters for the FIP Activity ..o

Example: Writing a Script in Warehouse Builder for the FTP Activityc.ccccceovuvvvvvenenne.

Using Substitution Variables.............ooiiioiiiii
Configuring the FIP ActiVity ...
Registering the Process Flow for Deploymentccccocoiiiniiiiniine,
Defining LOCAtioNs.ccciiiiiiiiiiiii s

20 Inspecting Error Logs in Warehouse Builder
21 Updating the Target Schema

22 Managing Multiple Versions of a Bl Implementation

APPIOACH ... s
TNIHAL PRASE....viiviiiectieieeeeeteet ettt ettt ettt et ebe et e e be e beebeeabeebaesbesasenseeseensesasensensean
Case SUAY ..o

A =N Gy I i =T TSP PRTRP

XV

Index

XVi

Case Study

Audience

Preface

This preface includes the following topics:
= Audience

= Documentation Accessibility

= Conventions

= Getting Help

s Related Publications

This manual is written for Oracle Database administrators and others who create
warehouses using Oracle Warehouse Builder.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xvii

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Conventions

In this manual, Windows refers to the Windows NT, Windows 2000, and Windows XP
operating systems. The SQL*Plus interface to Oracle Database may be referred to as
SQL.

In the examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following table lists the conventions used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text refers to interface buttons and links. Boldface
type also serves as emphasis to set apart main ideas.

italicized text Italicized text applies to new terms introduced for the first time.
Italicized text also serves as an emphasis on key concepts.

unicode text Unicode text denotes exact code, file directories and names, and
literal commands.

italicized unicode Italicized unicode text refers to parameters whose value is

text specified by the user.
[Brackets enclose optional clauses from which you can choose one
or none.

Getting Help
Help is readily available throughout Warehouse Builder:

= Menus: Menu bars throughout Warehouse Builder contain a Help menu. For
context-sensitive information, choose Topic from the Help menu.

= Wizards and Dialog Boxes: Detailed instructions are provided on the pages of the
wizards, which take you step-by-step through the process of creating an object.
Click the Help button for additional information about completing a specific
dialog box or a page of a wizard.

= Tools: You can identify the tools on a toolbar by the tooltips that appear when you
rest the mouse over the icon.

Some toolbars include a Help icon, which displays the Contents page of the Help
system.

= Lists: For items presented in lists, a description of the selected item displays
beneath the list.

xviii

s Popup menus: Click the arrow icon on the right side of the title bar for a window.
Then choose Help from the popup menu for context-sensitive information.

You may also want to follow the Oracle By Example tutorials at

http://www.oracle.com/technology/products/warehouse/selfserv__
edu/self service_ education.html

Related Publications
The Warehouse Builder documentation set includes these manuals:
» Oracle Warehouse Builder User’s Guide
» Oracle Warehouse Builder Installation and Administration Guide
» Oracle Warehouse Builder API and Scripting Reference

In addition to the Warehouse Builder documentation, you can reference Oracle
Database Data Warehousing Guide.

Xix

XX

What's New

This preface includes the following topics:

= New in Oracle Warehouse Builder 11g Release 1 (11.1) on page xxi

New in Oracle Warehouse Builder 11g Release 1 (11.1)

Changes in the Installation Requirements and Instructions

Previously, if you wanted to utilize Oracle Workflow to manage job dependencies or if
you wanted to deploy process flows, it was necessary to install Oracle Workflow.
Beginning in this release, these additional installation steps are no longer required as
Oracle Workflow components are embedded within Warehouse Builder.

Previously, each Oracle Database utilized as a repository for this product required a
user with SYSDBA privileges. Beginning in this release, this is no longer required. A
schema OWBSYS is created while installing Oracle Database 11g Release 1 (11.1).
OWBSYS holds the metadata which is divided into workspaces. To start using
Warehouse Builder, you just need to create a new workspace. You do not need SYSDBA
privileges.

Previously, users accessed the repository as a whole. Therefore, users were referred to
as repository users and repository owners. Beginning with this release, repository is
replaced with workspace. Thus, instead of granting access to a repository, you grant
access to a workspace. Because of the usage of workspaces in a single schema, creating
workspaces is simplified.

Beginning with Warehouse Builderllg Release 1 (11.1), the preferred method of
implementing metadata security is through the user interface available in the Design
Center and described in the Oracle Warehouse Builder User’s Guide. If, in a previous
release, you implemented security using a PL/SQL package, Warehouse Builder 11g
Release 1 (11.1) does support that implementation.

For additional information, refer to the Oracle Warehouse Builder Installation and
Administration Guide.

Connectivity to Siebel

With Oracle Warehouse Builder 11g Release 1 (11.1), an application connector to Siebel
is added. This connector allows you to connect to the Siebel metadata as could be done
in previous versions with Oracle E-Business Suite, PeopleSoft, and SAP. For more
information, see "Integrating with Siebel" on page 4-18.

XXi

XXii

Additions to Dimensional Objects

There are some modifications to the functionality for updating records in a Type 2
Slowly Changing Dimension (SCD). For more information, see "Updating Type 2
Slowly Changing Dimensions" on page 6-28.

You can now version hierarchies in a Type 2 SCD. For information about enabling
hierarchy versioning, see "Hierarchy Versioning" on page 6-28.

Improvements to the Documentation Set
In this release, the documentation set has been reorganized and revised.

The book formerly entitled the Oracle Warehouse Builder Installation and
Configuration Guide is now entitled the Oracle Warehouse Builder Installation and
Administration Guide and includes administration information such as implementing
security.

The Oracle Warehouse Builder User's Guide now includes enhanced introductory and
conceptual information. Related reference material organized by subject matter is now
contained in the Oracle Warehouse Builder Online Help.

The Oracle Warehouse Builder API and Scripting Reference now includes information
on using experts and the Expert Editor, which was formerly contained in the Oracle
Warehouse Builder User's Guide.

Part |

Introduction and Concepts

This part contains the following chapters:

Chapter 1, "Introduction to Oracle Warehouse Builder"

Chapter 2, "Getting Started with Oracle Warehouse Builder"

Chapter 3, "Setting Up Warehouse Builder"

Chapter 4, "Identifying Data Sources and Importing Metadata"
Chapter 5, "Understanding Data Quality Management"

Chapter 6, "Designing Target Schemas"

Chapter 7, "Creating Mappings"

Chapter 8, "Designing Process Flows"

Chapter 9, "Understanding Performance and Advanced ETL Concepts"
Chapter 10, "Introducing Oracle Warehouse Builder Transformations"

Chapter 11, "Deploying to Target Schemas and Executing ETL Logic"

1

Introduction to Oracle Warehouse Builder

Oracle Warehouse Builder provides enterprise solutions for end-to-end data
integration. This chapter introduces you to the range of functionality provided by
Warehouse Builder.

This chapter includes the following topics:
m Overview of Oracle Warehouse Builder

s Product Options and Licensing

Overview of Oracle Warehouse Builder

Oracle Warehouse Builder is a single, comprehensive tool for all aspects of data
integration. Warehouse Builder leverages Oracle Database to transform data into
high-quality information. It provides data quality, data auditing, fully integrated
relational and dimensional modeling, and full lifecycle management of data and
metadata. Warehouse Builder enables you to create data warehouses, migrate data
from legacy systems, consolidate data from disparate data sources, clean and
transform data to provide quality information, and manage corporate metadata.

Data Consolidation and Integration

Many global corporations have data dispersed on different platforms using a wide
variety of data reporting and analysis tools. Customer and supplier data may be
stored in applications, databases, spreadsheets, flat files, and legacy systems. This
diversity may be caused by organizational units working independently over a period
of time, or it may be the result of business mergers. Whatever the cause of diversity,
this diversity typically results in poor quality data that provides an incomplete and
inconsistent view of the business.

Transforming poor quality data into high quality information requires:
= Access to a wide variety of data sources

Warehouse Builder leverages Oracle Database to establish transparent connections
to numerous third-party databases, applications, files, and data stores as listed in
"Supported Sources and Targets" on page 4-2.

= Ability to profile, transform, and cleanse data

Warehouse Builder provides an extensive library of data transformations for data
types such as text, numeric, date, and others. Use these transformations to
reconcile the data from many different sources as described in "Introducing Oracle
Warehouse Builder Transformations" on page 10-1.

Introduction to Oracle Warehouse Builder 1-1

Product Options and Licensing

Before loading data into a new data store, you can optionally profile the data to
evaluate its quality and appropriateness. Subsequently, you can match and merge
records using rules that you devise. You can validate name and address data
against postal databases. This process of changing poor quality data into high
quality information is introduced in "About the Data Quality Management
Process" on page 5-1.

= Ability to implement designs for diverse applications

Using Warehouse Builder, you can design and implement any data store required
by your applications, whether relational or dimensional. The process of designing
your data store is described in "Designing Target Schemas" on page 6-1.

s Audit trails

After consolidating data from a variety of sources into a single data store, you are
likely to face the challenge of verifying the validity of the output information. For
instance, can you track and verify how a particular number was derived? This is a
question often posed by decision makers within your organization and by
government regulators.

Product Options and Licensing

A significant portion but not all of the Warehouse Builder features are included in
Oracle Database editions at no additional cost and enable you to design, deploy, and
manage a basic Oracle data warehouse. If you intend to extract from applications or
intend to perform data profiling or advanced Extraction, Transform, and Load (ETL)
processes, consider licensing additional options available only with the Oracle
Database Enterprise Edition.

Table 1-1 can help you understand the difference between the options and determine
the combination of database edition and Warehouse Builder options that addresses
your requirements. The table lists the features available in Oracle Database Standard
Edition One (SE1), Standard Edition (SE), and Enterprise Edition (EE). The Y valuein a
column indicates that the feature is available in the specified release; N indicates that it
is not available.

Note: Depending on how you utilize Warehouse Builder, you may
require licenses for additional database options and, or technologies
such as Oracle Partitioning, Oracle OLAP, and Oracle Transparent
Gateways.

Table 1-1 Warehouse Builder Options Availability in Oracle Database Editions

Option/ Feature SE1 | SE | EE | Comments
Warehouse Builder Core Y Y Y Enables the design, deployment, execution,
Functionality and management of common data integration

or data warehouse projects.

Warehouse Builder Enterprise ETL | N N Y Enables higher developer productivity in
Option (larger) projects. Also allows for reuse of
transformation logic and for certain fast
extraction methods in large volume data
movements.

1-2 Oracle Warehouse Builder User’'s Guide

Product Options and Licensing

Table 1-1 (Cont.) Warehouse Builder Options Availability in Oracle Database Editions

Option/ Feature SE1 | SE | EE | Comments

Warehouse Builder Data Quality N N Y Enables profiling of data to detect information
Option quality issues in the source. Once the issues are
documented, developers can generate business
rules and automatically cleanse data using
these business rules in the data integration
process. In addition to this, the Data Quality
option allows monitoring of quality on a
regular basis using methods such as Six Sigma.

Warehouse Builder Connector - N N Y Enables access to technical and business
E-Business Suite metadata within Oracle E-Business Suite.
Facilitates deployment to Oracle Concurrent
Manager and access to Oracle E-Business Suite
at execution-time.

Warehouse Builder Connector - N N Y Enables access to data and metadata in
PeopleSoft PeopleSoft applications.

Warehouse Builder Connector - N N Y Enables uploading of generated ABAP code to
SAP R/3 Connector the SAP system and executing ABAP programs

from the Control Center Manager. For
production systems, it allows the execution of
registered ABAP programs from process flows.

Warehouse Builder Connector - N N Y Enables access to data and metadata in Siebel
Siebel applications.

Warehouse Builder Core Functionality

The core Oracle Warehouse Builder functionality enables Extraction, Transformation,
and Loading (ETL) of data from heterogeneous sources into heterogeneous targets.
You can load data into relational, multidimensional, flat file, and XML storage
systems.

If you licensed and used earlier versions of this product, note that the core
functionality equates to the functionality available in Oracle Warehouse Builder 10g
Release 1.

The core Warehouse Builder functionality is included in the Oracle Database license at
no additional cost. If a feature is not specifically mentioned in one of the following
options, you can safely assume that the feature is part of the core functionality:

Warehouse Builder Enterprise ETL Option
Warehouse Builder Data Quality Option
Warehouse Builder Connector - E-Business Suite
Warehouse Builder Connector - PeopleSoft
Warehouse Builder Connector - SAP R/3 Connector

Warehouse Builder Connector - Siebel

Warehouse Builder Enterprise ETL Option

The Enterprise ETL option enables large-scale, complex ETL deployments. Developers
can incorporate advanced functionality, such as retaining history for dimensions,
reusing mapping code, performing interactive lineage and impact analysis, and
defining custom types of objects in a repository. This option also enables the rapid
movement of large amounts of data, and the construction of advanced process flows.

Introduction to Oracle Warehouse Builder 1-3

Product Options and Licensing

Table 1-2 lists the functionality available with the Enterprise ETL option. The
functionality is grouped into areas. For example, the area Schema Modeling includes
functionality for slowly changing dimensions and business intelligence.

Table 1-2 Warehouse Builder Enterprise ETL Option

Area and Functionality

Comments

Schema Modeling

Available in the Data Object Editor.

Slowly changing dimensions

Includes support for Slowly Changing Dimension (SCD) types 2 and 3.

Sources and Targets

Available in the Design Center

XML file as target Supported through the flat file operator.
ETL Design Available in the Mapping, Process Flow, and Schedule Editors
Advanced ETL features Includes the following ETL features: transportable modules, multiple

configurations, and pluggable mappings.

Includes the following operators associated with reusing mapping code:
pluggable mapping, pluggable mapping input signature, pluggable
mapping output signature.

Real Applications Cluster
(RAC) support

Includes maintaining the Warehouse Builder design environment in a
Real Applications Cluster environment. Without the Enterprise ETL
option, you can install the Warehouse Builder repository in a Real
Applications Cluster environment for the limited purposes of executing
in that environment.

Mapping operators

Includes the operators for handling complex types: varray iterator,
construct object, and expand object.

Target load ordering

For mappings with multiple targets, includes functionality to specify the
order in which the targets are loaded.

Transformations

Seeded Spatial and Streams transformations.

Process flows

Includes the following advanced process flow functionality:
= Activity templates

= Variables support: Using variables in process flows to pass
information across activities, including the Assign and Set Status
activities.

= Looping activities such as For Loop and While Loop
= Route and Notification activities, but not the Email activity

The Data Auditor activity requires the Warehouse Builder Data Quality
Option.

Metadata Management

Available in the Design Center

Lineage and impact analysis

Includes interactive analysis available in the Design Center.

Change propagation Includes automatic propagation of property changes to impacted objects
through the Lineage and Impact Analyzer.
Extensibility Includes project based and public based user-defined objects,

user-defined associations, and user-defined modules. Includes creating
icon sets and assigning custom icons to objects.

Deployment and Execution

Available in the Control Center Manager

Schedules

Includes functionality to model schedules for mappings and process
flows.

1-4 Oracle Warehouse Builder User’'s Guide

Product Options and Licensing

Table 1-2 (Cont.) Warehouse Builder Enterprise ETL Option

Area and Functionality Comments
Business intelligence Includes direct deployment to the Discoverer End User Layer (EUL).
deployment targets

Warehouse Builder Data Quality Option

The Data Quality option enables you to convert raw data into quality information.
Developers and data librarians can gain insight into their data and identify previously
unknown data quality problems. Subsequently, developers can define rules and
generate mappings that correct the data. Based on the data rules, developers can also
create data auditors to ensure the quality of incoming data on a repeated basis.

Table 1-3 lists the Warehouse Builder functionality available in the Data Quality
option.

Table 1-3 Warehouse Builder Functionality in the Data Quality Option

Area and Functionality Comments

Data Profiling Available in the Data Profile Editor and the Mapping Editor

Data profiling Includes functionality for data profiling and data drill-down.

Data rules Includes functionality for data rule derivation and data rule profiling.

Includes support for custom and predefined data rules and support for
apply data rules to data objects.

Data corrections Includes the generation of mappings that correct data based on data rules.

ETL Design Available in the Process Flow Editor

Process flows Includes the use of the Data Auditor Monitor activity in the Process Flow
Editor.

Warehouse Builder Connector - E-Business Suite

The Warehouse Builder Connector to E-Business Suite provides access to the technical
and business metadata within Oracle E-Business Suite. Subsequently, you can build
mappings and process flows that either source or target Oracle E-Business Suite. The
connector also facilitates deployment to Oracle Concurrent Manager and access to
Oracle E-Business Suite at execution-time.

With the E-Business Suite Connector for Warehouse Builder, you can use the
functionality listed in Table 1-4 in addition to the Warehouse Builder Core
Functionality.

Table 1-4 Warehouse Builder Functionality in the E-Business Suite Connector

Area and Functionality Comments

Metadata Management Available in the Design Center

Oracle E-Business Suite Includes access to technical and business metadata in E-Business Suite.
ETL Design Available in the Mapping Editor and Process Flow Editor

ETL support Enables the inclusion of E-Business Suite data objects into mappings and

process flows.

Deployment and Execution | Available in the Control Center Manager

Deploying ETL objects Includes deploying mappings and process flows designed with E-Business
Suite objects.

Introduction to Oracle Warehouse Builder 1-5

Product Options and Licensing

Table 1-4 (Cont.) Warehouse Builder Functionality in the E-Business Suite Connector

Area and Functionality Comments

Deployment targets Includes deployment to Oracle Concurrent Manager. This also available in
the Warehouse Builder Enterprise ETL Option.

Warehouse Builder Connector - PeopleSoft

With Warehouse Builder Connector to PeopleSoft, you can connect to and then extract
data and metadata from PeopleSoft applications. The connection to the PeopleSoft
application using database users with the appropriate privileges set by the DBA.

After you import metadata from PeopleSoft applications, you can work with packaged
applications as you would with other SQL based systems. You can include PeopleSoft
objects as sources or targets in Warehouse Builder mappings, create process flows, and
generate SQL code.

This connector can operate with non-Oracle databases after you establish a connection
to those databases. Table 1-5 lists the functionality available in the Warehouse Builder
Connector to PeopleSoft.

Table 1-5 Warehouse Builder Functionality in the PeopleSoft Connector

Area and Functionality Comments

Metadata Management Available in the Design Center

PeopleSoft Includes access to technical and business metadata in PeopleSoft.

ETL Design Available in the Mapping Editor and Process Flow Editor

ETL support Enables the inclusion of PeopleSoft objects into mappings and process
flows.

Deployment and Execution Available in the Control Center Manager

Deploying ETL objects Includes deploying mappings and process flows designed with
PeopleSoft objects.

Warehouse Builder Connector - SAP R/3 Connector

With the Warehouse Builder Connector to SAP R/3, you can connect to and then
extract data and metadata from SAP R/3. You can access both the technical and
business metadata in the SAP R/3 application. The connector masks the complexities
of the SAP metadata by displaying pool tables and cluster tables as regular tables. To
access SAP metadata, you use an RFC call with a SAP GUI account as authentication.

After you import SAP metadata and understand relationships, you can use the SAP
objects like any other objects in Warehouse Builder. You can include SAP R/3 objects
in Warehouse Builder mappings and process flows and generate ABAP code. The
connector allows direct deployment and execution of ABAP in SAP and execution of
generated and uploaded ABAP from production process flows. The connector also
supports the use of substitution variables to facilitate transporting of ABAP code
between development and production systems by the SAP administrator. Variable
support in ABAP also allows you to easily create change data capture flows, either
based on dates or based on ID ranges.

Table 1-6 lists the functionality available in the Warehouse Builder Connector to SAP
R/3.

1-6 Oracle Warehouse Builder User’s Guide

Product Options and Licensing

Table 1-6 Warehouse Builder Functionality in the SAP R/3Connector

Area and Functionality

Comments

Metadata Management

Available in the Design Center

SAPR/3 Includes access to technical and business metadata in SAP R/3.
ETL Design Available in the Mapping Editor and Process Flow Editor
ETL support Enables the inclusion of SAP R/3 objects in mappings and process

flows. Generates ABAP code. Includes parameterization and tuning of
ABAP code. To enable migration between SAP R/3 environments
such as development versus production environments, this connector
supports the use of substitution variables to facilitate transporting
ABAP code.

Deployment and Execution

Available in the Control Center Manager

Deploying ETL objects

Includes deploying mappings and process flows designed with SAP
R/3 objects.

Warehouse Builder Connector - Siebel

The Warehouse Builder Connector to Siebel enables you to connect to and extract data
and metadata from Siebel applications. The connection to the Siebel applications is
using database users with the appropriate privileges set by the DBA.

After you import metadata from Siebel applications, you can use Siebel objects in
mappings, create process flows containing Siebel objects, and generate SQL code.

You can use this connector with non-Oracle databases after you establish a connection
to those databases. Table 1-7 lists the functionality available in the Warehouse Builder

Connector to Siebel.

Table 1-7 Warehouse Builder Functionality in the Siebel Connector

Area and Functionality

Comments

Metadata Management

Available in the Design Center

Siebel Includes access to technical and business metadata in Siebel.
ETL Design Available in the Mapping Editor and Process Flow Editor
ETL support Enables the inclusion of Siebel objects into mappings and process

flows.

Deployment and Execution

Available in the Control Center Manager

Deploying ETL objects

Includes deploying mappings and process flows designed with Siebel
objects.

Introduction to Oracle Warehouse Builder 1-7

Product Options and Licensing

1-8 Oracle Warehouse Builder User’'s Guide

2

Getting Started with Oracle Warehouse
Builder

Oracle Warehouse Builder is a flexible tool that enables you to design and deploy
various types of data integration strategies. Projects commonly implemented using
Warehouse Builder involve mission critical operational systems, migration scenarios,
integration of disparate operational systems, and traditional data warehousing. This
chapter provides an introduction to using Warehouse Builder. It provides a starting
point for using Warehouse Builder for the first time user and serves as a road map to
the documentation.

If you have already read the Oracle Database 2 Day + Data Warehousing Guide, you may
recognize some of the same content repeated here in an expanded format and with
additional information for long-term planning and maintenance of not only data
warehouses but data integration solutions in general.

This chapter includes the following topics:
= Understanding the Basic Concepts

= Implementing a Data Integration Solution

Understanding the Basic Concepts

Oracle Warehouse Builder is comprised of a set of graphical user interfaces to assist
you in implementing solutions for integrating data. In the process of designing
solutions, you create various objects that are stored as metadata in a centralized
repository, known as a workspace.

The workspace is hosted on an Oracle Database. As a general user, you do not have
full access to the workspace. Instead, you can access those workspaces to which you
have been granted access.

You log in to a workspace by starting the Design Center, which is the primary
graphical user interface. Use the Design Center to import source objects, design ETL
processes such as mappings, and ultimately define the integration solution.

A mapping is an object in which you define the flow of data from sources to targets.
Based on a mapping design, Warehouse Builder generates the code required to
implement the ETL logic. In a data warehousing project, for example, the integration
solution is a target warehouse. In that case, the mappings you create in the Design
Center ultimately define a target warehouse.

After you complete the design of a mapping and prompt Warehouse Builder to
generate the code, the next step is to deploy the mapping. Deployment is the process
of copying the relevant metadata and code you generated in the Design Center to a

Getting Started with Oracle Warehouse Builder 2-1

Implementing a Data Integration Solution

target schema. The target schema is generically defined as the Oracle Database which
will execute the ETL logic you designed in the Design Center. Specifically, in a
traditional data warehousing implementation, the data warehouse is the target schema
and the two terms are interchangeable.

Figure 21 illustrates the Warehouse Builder components.

As previously noted, the Design Center is the primary user interface. It is also a
centralized interface in that you can start from it all the client based tools, including
the Control Center Manager. A secondary user interface is the web-based Repository
Browser. In addition to browsing design metadata and auditing execution data, you
can view and create reports.

For the purposes of this illustration, the target schema and the repository exist on the
same Oracle Database; however, in practice, target schemas often exist on separate
databases. To deploy design objects and subsequently execute the generated code, use
the Control Center Manager, which is the client interface that interacts with the target
schema through the control center service.

Figure 2-1 Warehouse Builder Components

CLIENT

SERVER

I

ORACLE DATABASE

Control Center

Control Center
Manager

Design Center

Repository
Browser

Service -
Deployment
Y
Warehouse Builder Target Schema
Repository
Generated Code,
] Cubes, Dimensions,
Language Setting, Tables, Views, Mappings,
Table Space Settings Packages to execute
ETL Processes
L 1
Workspaces
Design Metadata,
Control Center Data

N

Implementing a Data Integration Solution

Use Warehouse Builder to create a data warehouse in the following recommended
order:

1. Before You Begin
2. Preparing the Warehouse Builder Design Center
3. Importing the Source Metadata

2-2 Oracle Warehouse Builder User's Guide

Implementing a Data Integration Solution

©® N o a &

Before You Begin

Profiling Data and Ensuring Data Quality

Designing the Target Schema

Designing ETL Logic

Deploying the Design and Executing the Data Integration Solution

Monitoring and Reporting on the Data Warehouse

Before you can use any of the Warehouse Builder client components, first ensure you
have access to a Warehouse Builder workspace.

To begin using Warehouse Builder, take the following steps:

1.

Install the Warehouse Builder software and create the necessary workspaces as
described in the Oracle Warehouse Builder Installation and Administration Guide.

If an administrator has previously completed the installation, contact that person
for the required connection information.

Start the Design Center.

On a Windows platform, from the Start menu, select Programs. Select the Oracle
home in which Warehouse Builder is installed, then Warehouse Builder, and then
Design Center.

On a Linux platform, run owbclient. sh located in the owb/bin/unix directory
in the Oracle home for Warehouse Builder.

Figure 2-2 shows the Design Center with the top level folders in each of its three
explorers expanded.

Figure 2-2 The Design Center

[Design Center: User SALES_USER - 10l x|

Desi

gn Edit Wieww Toolz Wincdow Help

B9 Y S_2HE ?

¥ Project Explorer F ¥ Connection Explorer ¥

&

SR ¢ _PROJECT E}Eé Locations
5 Detabazes Eﬂ Databazes
g Fies

]E% Applications

----- [0 Data Profiles

f-;|§L| Data Rules

]f:;'r Fluggahle Mappings
]%‘g Process Flows

----- B%g Schedules

]E:‘I Business Inteligence
""" f;f User Defined Modules

..... @% Experts
]%I Configurations * Global Explarer F
..... El—'l‘l_j Collections %\ Public Transformations

@% Public Experts

=i Public User Defined Modules
- (2] Public Data Rules

i 5 active Configuration: DEFAULT_CONFIGURATION

Getting Started with Oracle Warehouse Builder 2-3

Implementing a Data Integration Solution

Use the Project Explorer to manage design objects for a given workspace. The design

objects are organized into projects which provide a means for structuring the objects

for security and reusability. Each project contains nodes for each type of design object
that you can create or import.

Use the Connection Explorer to establish connections between the Warehouse Builder
workspace and databases, data files, and applications.

Use the Global Explorer to manage objects that are common to all projects in a
workspace and to administer security. Note that the Security node is visible to users
who have an administrator role as discussed in the Oracle Warehouse Builder
Installation and Administration Guide.

Preparing the Warehouse Builder Design Center

To prepare the Design Center, complete the following steps:
1. In the Project Explorer, identify the project to be used.

If you are satisfied with the single default project, MY_PROJECT, continue with
the next step.

Alternatively, you can rename MY_PROJECT or define more projects. Each project
you define is organized in the same fashion with nodes for databases, files,
applications, and so on. For a different organization, consider creating optional
collections as described in "Defining Collections" on page 3-9.

2. Connect to source and target data objects.

In the Connection Explorer, establish these connections by defining locations.
Expand the Location node and the nodes within it to gain a general understanding
of the types of source and targets you can access from Warehouse Builder.

To create a location, right-click the appropriate node and select New. Fill in the
requested connection information and select Test Connection. In this step, you
merely establish connections to sources and targets. You do not move data or
metadata until subsequent steps.

For more information about locations see "About Locations" on page 11-5.
3. Identify the target schema.

Although you can use a flat file as a target, the most common and recommended
scenario is to use the Oracle Database as the target schema.

To define the target schema, begin by creating a module. Modules are grouping
mechanisms in the Project Explorer that correspond to locations in the Connection
Explorer. The Oracle target module is the first of several modules you create in
Warehouse Builder.

In the Project Explorer, expand the Databases node. Right-click Oracle and select
New. The Create Module wizard displays. Set the module type to Warehouse
Target and specify whether the module will be used in development, quality
assurance, or production. This module status is purely descriptive and has no
bearing on subsequent steps you take.

When you complete the wizard, the target module displays with nodes for
mappings, transformations, tables, cubes and the various other types of objects
you utilize to design the target warehouse.

4. Create a separate Oracle module for the data sources. (Optional)

2-4 Oracle Warehouse Builder User's Guide

Implementing a Data Integration Solution

At your discretion, you can either create another Oracle module to contain Oracle
source data or proceed to the next step.

Identify the execution environment.

Under the Connection Explorer, notice the Control Centers node. A control center
is an Oracle Database schema that manages the execution of the ETL jobs you
design in the Design Center in subsequent steps.

During installation, Warehouse Builder creates the DEFAULT_CONTROL_CENTER
schema on the same database as the workspace.

If you choose to utilize the default execution environment, continue to the next
step. Alternatively, you can define new control centers at any time. For more
information and instructions, see "Deploying to Target Schemas and Executing
ETL Logic" on page 11-1.

Prepare development, test, and production environments. (Optional)

Thus far, these instructions describe the creation of a single project corresponding
to a single execution environment. You can, however, reuse the logical design of
this project in different physical environments such as testing or production
environments.

Deploy a single data system to several different host systems or to various
environments, by "Creating Additional Configurations" on page 11-14.

Adjust the client preference settings as desired or accept the default preference
settings and proceed to the next step.

From the main menu in the Design Center, select Tools and then Preferences.

As a new user, you may be interested in setting the Environment Preferences, the
locale under Appearance Preferences, and the naming mode under Naming
Preferences. For information on all the preferences, see "Setting Preferences" on
page 3-2.

Importing the Source Metadata

1.

Create modules for each type of design object you intend to import metadata.

In the Project Explorer, select a node such as Files. For that node, determine the
locations from which you intend to ultimately extract data. Now create a module
for each relevant location by right-clicking on the node and select New.

Import metadata from the various data sources.

Right-click the module and select Import to extract metadata from the associated
location. Warehouse Builder displays a wizard to guide you through the process of
importing data.

For an example and additional information on importing data objects, see
"Identifying Data Sources and Importing Metadata" on page 4-1.

For the metadata you imported, profile its corresponding data. (Optional)

Before continuing to the next step, consider using the data profiling option to
ensure data quality as described in "Understanding Data Quality Management" on
page 5-1.

Getting Started with Oracle Warehouse Builder 2-5

Implementing a Data Integration Solution

Profiling Data and Ensuring Data Quality

Data can only be transformed into actionable information when you are confident of
its reliability. Before you load data into your target system, you must first understand
the structure and the meaning of your data, and then assess the quality.

Consider using the data profiling option to better understand the quality of your
source data. Next, correct the source data and establish a means to detect and correct
errors that may arise in future loads. For more information, on data profiling and data
quality, see "Understanding Data Quality Management" on page 5-1.

Designing the Target Schema

1.

Create and design the data objects for the Oracle target module.

In previous steps, you may have already imported existing target objects. For new
target objects, design any of the dimensional or relational objects listed in
Table 6-1 on page 6-2.

To create data objects, you can either start the appropriate wizard or use the Data
Object Editor. To use a wizard, right-click the node for the desired object and
select New. After using a wizard, you may want to modify the object in the editor.
In that case, right-click the object and select Open Editor.

For additional information, see "Designing the Target Schema" on page 6-40.
As you design objects, be sure to frequently validate the design objects.

You can validate objects as you create them, or validate a group of objects
together. In the Project Explorer, select one or more objects or modules, then click
the Validate icon.

Examine the messages in the Validation Results window. Correct any errors and
try validating again.

To redisplay the most recent validation results at a later time, select Validation
Messages from the View menu.

For additional information, see "Validating Data Objects" on page 6-46.
Configure the data objects.

Configuring data objects sets the physical properties of the object. You must not
generate and deploy data objects without specifying the physical property values.

When you create data objects, Warehouse Builder assigns default configuration
property values based on the type of object. In most cases, these default values are
appropriate. You can edit and modify the configuration property values of objects
according to your requirement. For example, you configure a table to specify the
name of the tablespace in which it is created.

To configure a data object, select the data object in the Project Explorer and click
the Configure icon. Or right-click the data object in the Project Explorer and select
Configure.

When satisfied with the design of the target objects, generate the code.

Generation produces a DDL or PL/SQL script to be used in subsequent steps to
create the data objects in the target schema. For more information about
generation, see "Generating Data Objects" on page 6-47.

In the Data Object Editor, you can generate code for a single object by clicking the
Generate icon.

2-6 Oracle Warehouse Builder User's Guide

Implementing a Data Integration Solution

In the Project Explorer, select one or more objects or modules, then click the
Generate icon. Examine the messages in the Generation Results window. To
redisplay the most recent generation results at a later time, select Generated
Scripts from the View menu.

You can save the generated script as a file and optionally deploy it outside
Warehouse Builder.

Designing ETL Logic

1.

Design mappings that define the flow of data from a source to target objects.

In the Project Explorer, expand the Oracle target module, right-click the Mappings
node and select New.

The Mapping Editor enables you to define the flow of data visually. You can
drag-and-drop operators onto the canvas, and draw lines that connect the
operators. Operators represent both data objects and functions such as filtering,
aggregating, and so on.

Follow the Instructions for Defining Mappings, concluding with generating the
code for the mapping.

To manage dependencies between mappings, see "Designing Process Flows" on
page 8-1.

Deploying the Design and Executing the Data Integration Solution

Recall that deployment is the process of copying the relevant metadata and code you
generated in the Design Center to a target schema. This step is necessary to enable the
target schema to execute ETL logic such as mappings.

To deploy and execute, complete the following steps:

1.

Deploy objects from either the Design Center or Control Center Manager.

In this step, you define the objects in the target schema. You need do this only
once.

The simplest approach is to deploy directly from the Design Center by selecting an
object and clicking the Deploy icon. In this case, Warehouse Builder deploys the
objects with the default deployment settings.

Alternatively, if you want more control and feedback on how Warehouse Builder
deploys objects, from the Design Center menu select Tools, then Control Center
Manager.

Whether you deploy objects from the Design Center or the Control Center
Manager, be sure to deploy all associated objects. For example, when deploying a
mapping, also deploy the target data objects such as tables that you defined and
any associated process flows or other mappings.

For more information, see "Deploying to Target Schemas and Executing ETL
Logic" on page 11-1.

Execute the ETL logic to populate the target warehouse.

In this step, you move data for the first time. Repeat this step each time you want
to refresh the target with new data.

You have two options for executing the ETL logic in mappings and process flows.
You can create and deploy a schedule as described in "Process for Defining and

Getting Started with Oracle Warehouse Builder 2-7

Implementing a Data Integration Solution

Using Schedules" on page 11-18. Or you can execute jobs manually as described in
"Starting ETL Jobs" on page 11-12.

Monitoring and Reporting on the Data Warehouse

It is essential to ensure the quality of data entering your data warehouse over time.
Data auditors enable you to monitor the quality of incoming data by validating
incoming data against a set of data rules and determining if the data confirms to the
business rules defined for your data warehouse. For more information about data
auditors and data rules, see "Understanding Data Quality Management" on page 5-1.

Although the Control Center Manager displays histories for both deployment and
execution, the Repository Browser is the preferred interface for monitoring and
reporting on Warehouse Builder operations.

2-8 Oracle Warehouse Builder User's Guide

3

Setting Up Warehouse Builder

This chapter includes additional and optional steps that you may take when initially
designing your data system. This chapter covers the following topics:

= Organizing Design Objects into Projects
= Setting Preferences
= Defining Collections

m Alternative Interfaces

Organizing Design Objects into Projects

Projects are the largest storage objects within a Warehouse Builder workspace. Projects
store and organize related metadata definitions. You should include all the objects in a
project that you think can or will share information. These definitions include data
objects, mappings, and transformation operations. The definitions are organized into
folders within the project. By creating multiple projects, you can organize the design
and deployment of a large system.

To create a project:

1. In the Project Explorer, right-click a project, such as MY_PROJECT, and select
New.

The Create Project dialog box is displayed.
2. Click Help for additional instructions.

Each Warehouse Builder workspace has a default project called MY_PROJECT. You can
rename MY_PROJECT, or you can delete it after you create other projects. However, a
workspace must contain at least one project at all times.

Because projects are the main design component in Warehouse Builder, some
restrictions are enforced to prevent you from deleting them unintentionally. You
cannot delete:

s The currently active or expanded project.
s The only project in a workspace.
To delete a project:

1. In the Project Explorer, collapse the project that you want to delete. You cannot
delete the project when it is expanded.

2. Select and expand any other project.

3. Highlight the project you want to delete and, from the Edit menu, select Delete.

Setting Up Warehouse Builder 3-1

Setting Preferences

or
Right-click the project and select Delete.

The Warehouse Builder Warning dialog box provides the option of putting the
project in the recycle bin.

4. Click OK to delete the project.

Setting Preferences

Warehouse Builder provides a set of user preferences that enable you to customize
your user interface environment. To set user preferences, select Tools and then
Preferences from the Design Center menu. The Preferences dialog box that is used to
set preferences is displayed.

The Preferences dialog box contains two sections. The section on the left lists the
categories of preferences. The section on the right displays the preferences and their
corresponding values. Click a category on the left panel to display the preferences it
contains and its value in the right panel.

Warehouse Builder enables you to set the following types of preferences:
= Appearance Preferences

= Control Center Monitor Preferences

= Data Profiling Preferences

= Deployment Preferences

» Environment Preferences

s Generation/Validation Preferences

= Logging Preferences

= Naming Preferences

= Security Preferences

Appearance Preferences

The Appearance category contains the Locale preference. Use the Locale list to set the
language you want the client text to display. This list displays the language options.
Warehouse Builder prompts you to restart the computer in order to use the new
language setting.

The Locale selection does not define the character set of your repository; it only affects
the text and menu options on the client user interface. The repository character set is
determined by the database.

Control Center Monitor Preferences

Use the Control Center Monitor category to set preferences that control the display of
components in the control center. When you use the control center to deploy or
execute objects, the Job Details window displays the results of deployment or
execution. The Control Center Monitor preferences enable you to control the display of
components in the object tree of the Job Details window.

3-2 Oracle Warehouse Builder User's Guide

Setting Preferences

Note: Warehouse Builder displays the Job Details window only if
you select the Show Monitor preference under the Process node of the
Deployment preferences category.

If this option is not selected, view the Job Details window by
double-clicking the row representing the deployment or execution job
in the Control Center Jobs panel of the Control Center.

You can set the following Control Center Monitor preferences:

Show Project: Select this option to display the project name in the Job Details
window object tree. When this option is selected, the object tree displays a node
for the project name. All the objects are displayed under the project node.

Show Module: Select this option to display the name of the module to which the
object being deployed or executed belongs in the Job Details window. When this
option is selected, the object tree displays a node for the module. Expand the
module node to view the object details.

Show Location: Select this option to display the location name in the object tree of
the Job Details window.

Show Action: Select this option to display the action performed on the object in
the object tree of the Job Details window. The actions performed include Create,
Drop, Deploy, and Upgrade.

Show Type: Select this option to display the type of object in the object tree of the
Job Details window. When you select this option, a node is displayed for the type
of object and the objects are listed under the respective nodes.

Figure 3-1 displays the object tree of the Job Details window in which the following
Control Center Monitor preferences were selected: Show Project, Show Module, Show
Action, and Show Type.

Figure 3—1 Job Details Window with Control Center Monitor Preferences

&, Job Details: TIME_MOLAP (63)

File “iew Help

g |AIIObjeds v| bE 9

=54y provECT
B-X pn o

i oas
B2 USREEE_MODLILE

Data Profiling Preferences

Use the Data Profiling category to set the preferences for data profiling. This section
contains the following preferences:

Data Rule Folder Name: Use this option to set the name of the folder that contains
the data rules as a result of data profiling.

Default Profile Location: Use this option to set the default location that is used to
store the data profiling results. You can override this setting by selecting a

Setting Up Warehouse Builder 3-3

Setting Preferences

different location as your profile location. In the Data Profile Editor, from the Edit
menu, select Properties. Use the Data Locations tab to change the default profile
location.

Deployment Preferences

The Deployment category enables you to set deployment preferences such as
displaying the deployment monitor, prompting for execution parameters, and
showing completion messages. This enables you to control some of the popup
windows that are displayed by the Control Center Manager during object deployment.

Deployment preferences are divided into two sections: Process and Tools. Expand the
Deployment node in the Preferences dialog box. Two nodes called Process and Tools
are displayed. Click the node for which you want to set preferences.

Process
Set the following deployment options in this section:

Allow Undo/Redo: Select this option to allow the user to undo and redo a
deployment upgrade job. You can undo or redo a deployment upgrade job using
the Job Details window. To display the Job Details window for a job, double-click
the job in the Control Center Jobs panel of the Control Center Manager.

Pause After Compile: Select this option to pause deployment after script
generation. This means that you must explicitly deploy an object after it is
successfully generated.

Prompt for Commit: Select this option to prompt the user to commit design time
changes before a deployment. When you deploy objects from the Design Center, if
there are any unsaved design changes, Warehouse Builder prompts you to save
these changes by displaying the Warehouse Builder Warning dialog box. Click
Save to commit unsaved design changes. Click Cancel to terminate the
deployment.

If you do not set this option, Warehouse Builder saves any design changes before
the deployment job.

Prompt for Job Name: Select this option to prompt the user for the name of a
deployment job. When this option is not selected, Warehouse Builder assigns a
default job name.

Prompt for Execution Parameters: Select this option to prompt the user for the
values of execution parameters. If you do not select this option, Warehouse Builder
uses the default value of parameters during the execution. The user is not
prompted to provide the parameter values.

Show Monitor: Select this option to display the Job Details window when you
deploy or execute an object. This dialog box displays details of the objects being
deployed, deployment progress, and deployment status.

Show Deployment Completion Message: Select this option to display an alert
indicating that the deployment job has completed.

Show Design Center Deployment Job: Select this option to display the Control
Center Jobs dialog box when you deploy an object from the Design Center. The
Control Center Jobs dialog box, which is similar to the Jobs panel of the Control
Center Manager, contains the Deployment, Execution, and Scheduled tabs. Use
this option to view the status of a deployment job while deploying using the
Design Center.

3-4 Oracle Warehouse Builder User's Guide

Setting Preferences

Tools
Set the following deployment options:

Show Monitor Tree: Select this option to show the Job Details window when you
perform a deployment or execution.

Show Monitor Results: Select this option to display the deployment or execution
results in Control Center Manager.

Show Monitor Logfile: Select this option to display the log file in the Control
Center Manager.

Environment Preferences

The Environment category enables you to set generic preferences that control the client
environment such as displaying welcome pages for wizards and recycle bin
preferences.

Set the following environment preferences:

Personality: For the standard installation, set the value of this preference to
Default. For a customized installation, this preference tailors the types of objects
shown in the Project Explorer tree. Oracle recommends that you change the value
of this preference, from Default, only after discussion with your Oracle system
administrator. This feature is reserved for future use.

Allow Optimize Repository Warning on Startup: Select this option to collect
schema statistics when you log in to Warehouse Builder. Collecting schema
statistics improves repository performance. If this option is selected, at log on,
Warehouse Builder determines if statistics must be gathered for the repository
schema. If statistics must be gathered, a warning dialog box is displayed asking if
you want to gather statistics now. Click Yes to collect schema statistics and
optimize the repository.

If you do not select this option, you can still collect schema statistics from the
Design Center by selecting Optimize Repository from Tools menu.

Hide All Wizard Welcome pages: Select this option to hide the welcome page of
all wizards. Every wizard in Warehouse Builder starts with a Welcome page that
summarizes the steps to follow to complete that task. To display the Welcome page
for all wizards, deselect this preference.

Show Delete Confirmation Dialog Box: Select this option to display a dialog box
that asks for a confirmation before deleting an object. When this option is selected,
if you delete an object, the Warehouse Builder Warning dialog box is displayed.
Click Yes to delete the object. Click No to cancel the Delete operation and retain
the object.

Recycle Deleted Objects: Select this option to move deleted objects to the recycle
bin. If this option is not selected, any objects you delete are lost and you have no
way of recovering them.

Empty Recycle Bin on Exit: Select this option to empty the contents of the recycle
bin when you exit the Warehouse Builder client. Deselect this option to save the
recycle bin objects across sessions.

Generation/Validation Preferences

The Generation/Validation category enables you to set preferences related to
generation and validation of Warehouse Builder design objects. Use these preferences
to control what is displayed in the Generation Results window or Validation Results

Setting Up Warehouse Builder 3-5

Setting Preferences

window. These dialog boxes are displayed when you generate or validate an object
from the design center. You can set the following preferences:

Show Project: Select this option to display the project node in Validation Results
window or the Generation Results window.

Show Module: Select this option to display the module node in Validation Results
window or the Generation Results window.

Show Location: Select this option to display the location node in Validation
Results window or the Generation Results window.

Show Action: Select this option to display the action node in Validation Results
window or the Generation Results window.

Show Type: Select this option to display the type node in Validation Results
window or the Generation Results window.

Logging Preferences

The Logging Preferences category enables you to set log file options such as file
location, file size, and types of messages saved to any log file. The log file contains
messages relating to your design process. By default a message log is saved to the
default location. Following are the logging preferences that you can set:

File Path: Represents the location where the log files are saved. Type the complete
path or use the Browse button to select the location. The default location is OWB_
ORACLE_HOME\owb\bin\admin.

File Name: Represents the name of the log file. Do not include a file extension
when you specify a file name.

Maximum Size (Kb): Indicate the maximum file size for the log file(s) in KB.
There are two log files: <logfilename>.0, and <logfilename>.1. When the
maximum size of the first log file <logfilename>.0 is reached, Warehouse Builder
starts writing to the second, <logfilename>.1. When the maximum size of the
second one is reached, Warehouse Builder starts overwriting the first.

Log Error Messages: Select this option to write all error messages to the log file.

Log Warning Messages: Select this option to write all warning messages to the log
file.

Log Information Messages: Select this option to write all information messages to
the log file.

Naming Preferences

The Naming Preferences category enables you to set naming preferences by selecting
whether you want to view objects in business or physical name mode. You can also set
up how you want to propagate object name changes.

Set the following naming preferences:

Naming Mode: Select whether to display objects using their physical or business
names.

Propagate Name Changes: Propagate Name Changes from the current naming
mode to the other naming mode.

3-6 Oracle Warehouse Builder User's Guide

Setting Preferences

About Naming Modes

Warehouse Builder maintains a business and a physical name for each object stored in
the repository. A business name is a descriptive logical name for an object.

When you generate DDL scripts for a named object, the physical names are used.
Physical names must conform to the syntax rules for basic elements as defined in the
Oracle Database SQL Language Reference.

Names must be unique within their category:
= Module names must be unique within a project.

= Warehouse object names must be unique within a warehouse module. This
includes the names of tables, dimensions, cubes, mappings, materialized views,
sequences, views and indexes.

s Transformation names must be unique within a transformation package.

Business Name Mode You can create a business name for an object or change the
business name of an existing object when Warehouse Builder is in business name
mode. Warehouse Builder editors, wizards, and property sheets display the business
names of objects in this mode.

A business name must conform to these rules:
s The length of a name cannot exceed 200 characters.
= The name must be unique within its category.

= All source modules reflect the case of the imported source and are subject to the
double-quotes rules as defined in the Oracle Database SQL Language Reference.

Copy operations from a source to a target in a mapping do not propagate case.

When you create a business name, Warehouse Builder generates a valid physical name
that resembles the business name. If you create a business name that duplicates an
existing physical name, Warehouse Builder appends an underscore and a number in
order to create a unique name.

Physical Name Mode You can create a physical name for an object or change the
physical name of an existing object when Warehouse Builder is in the Physical name
mode. Warehouse Builder editors, wizards, and property sheets display physical
names of objects in this mode. Physical names are converted to uppercase.

A physical name must:
s Contain no more than 30 characters.

= Conform with the basic syntax rules for schema objects defined by the Oracle
Database SQL Language Reference.

Note: A collection can have a physical name containing up to 200
characters.

Warehouse Builder prevents you from entering an invalid physical name. For example,
you cannot enter a duplicate name, a name with too many characters, or a name that is
a reserved word.

Setting the Name Mode To create or change a business name for an object, Warehouse
Builder must be in business name mode. To create or change a physical name for an
object, Warehouse Builder must be in physical name mode.

The default naming preferences for Warehouse Builder are as follows:

Setting Up Warehouse Builder 3-7

Setting Preferences

= Mode: The default setting for the mode is physical name mode.

= Propagation: The default propagation setting is to propagate physical name to
business name.

Icons for the name mode and name propagation settings are located in the lower-left
corner of the editors. These icons indicate the current naming preference setting.

Warehouse Builder saves your naming preferences across sessions. The name mode
preference is stored in a file on the client workstation. If you use Warehouse Builder
from another workstation, your preferences may be different.

Security Preferences

Only administrators can edit the security preferences. Administrators can set the
following preferences:

Persist Location Password in Metadata

This option determines whether or not location passwords are persisted across
Warehouse Builder design sessions.

By default, this option is deselected, which is the more secure option. Warehouse
Builder retains location passwords for the length of the design session only. That is, the
first time you start tools such as the Data Viewer or Debugger, you must enter the
appropriate location passwords.

If selected, Warehouse Builder persists encrypted versions of location passwords in the
workspace. You can start tools such as the Data Viewer and Debugger without
entering passwords each time.

Share Location Password During Runtime

This preference determines whether or not the location passwords users enter during
the design phase can be shared with other users. For example, assume that user Dev1l
designs mapping MAP1. To access the sources and targets for this mapping, Dev1
defines the locations to each source and target including a username and password.
When other users subsequently attempt to execute MAP1 or view data associated with
it, the Share Location Password During Runtime preference determines whether or not
each user must enter the password each time in the Design Center or the first time in
the Control Center.

Share Location Password During Runtime works in conjunction with Persist Location
Password in Metadata. The most secure mode, and therefore the default behavior, is
for both options to be deactivated. In this case, each user including Dev1 must enter
their password once for each Design Center session and the first time they attempt to
use that location in the Control Center. Depending on your security requirements, you
may want each user to define their own location for a given source or target

If both Share Location Password During Runtime and Persist Location Password in
Metadata are activated, then any user can access a schema given that any user
previously defined the location. Therefore, user Oper2 can execute MAP1 given that
Dev1l or any other user previously defined the location with valid credentials.

Default Metadata Security Policy

Specify the default security policy to be applied. Minimum security allows all users
full control over objects any newly registered user creates. Maximum security,
however, restricts access to the newly registered user that created the object and
Warehouse Builder administrators.

3-8 Oracle Warehouse Builder User's Guide

Defining Collections

This setting is not retroactive. That is, if you change this setting in an existing
Warehouse Builder implementation, the setting does not affect existing users and
existing objects. You must change the security on existing objects manually.

Defining Collections

Collections are structures in Warehouse Builder that store the metadata you want to
export to other tools and systems. Collections enable you to perform the following
tasks:

s Organize a large logical warehouse
= Validate and generate a group of objects

When you create a collection, you do not create new objects or copies of existing
objects. You create shortcuts pointing to objects already existing in the project. You can
use a collection to quickly access a base object and make changes to it.

You can define more than one collection within a project and an object can be
referenced by more than one collection. For example, each user that accesses a project
can create his own collection of frequently used objects. The users can also add the
same objects (such as mappings, tables, or process flows) to their separate collections.

Each user can also delete either the shortcut or the base object. Shortcuts to deleted
objects are deleted in the collection.

When you open an object in a collection, you obtain a lock on that object. Warehouse
Builder prevents other users from editing the same object from another collection.

Creating a Collection

Use the Create Collection Wizard to define a collection.

To define a new collection:

1. Select and expand a project node on the Project Explorer.
2. Right-click the Collections node and select New.

Warehouse Builder displays the Welcome page for the Create Collections Wizard.
This page lists the steps to create a collection. Click Next to proceed.

3. Provide information on the following pages of the Create Collection wizard:
= Name and Description Page
= Contents Page

= Summary Page

Name and Description Page

Use the Name and Description page to provide a name and an optional description for
the collection. The name should be unique within the module. In physical naming
mode, type a name between 1 to 200 characters. Spaces are not allowed. In logical
mode, the maximum number of characters is 200 and spaces are allowed.

Contents Page

The Contents page enables you to select the data objects that you want to refer to in
the collection. Use the following steps:

1. Select and expand the project node in the left panel.

Setting Up Warehouse Builder 3-9

Defining Collections

The wizard displays a list of objects you can add to the collection.
2. Select objects from Available section in the left panel.

Use the Ctrl key to select multiple objects. You can select objects at the object level
or the module level. For example, under the Files node, you can add a specific file
or add all the files in a given flat file module.

If you add a module or another collection, Warehouse Builder creates references to
the module or collection and also creates references to objects contained in the
module or collection.

3. (Click the right arrow.

The wizard displays the list of objects under the Selected section on the right
panel. You can remove objects from the list by selecting objects and clicking the
left arrow.

Summary Page

The Summary page displays the objects selected for the collection. Review the objects
and click Back to make changes to your selections. Click Finish to complete the
collection definition. Warehouse Builder creates the collection and adds it to the Project
Explorer.

Editing Collection Definitions

Use the Edit Collection dialog box to edit a collection. You can perform the following
actions when you edit a collection definition:

= Rename the collection
= Add data objects to the collection
= Remove data objects that the collection references.

From the Project Explorer, right-click the collection and select Open Editor.
Warehouse Builder displays the Edit Collection dialog box that contains the following
two tabs: Name Tab and Contents Tab. Use these tabs to edit the collection definition.

Name Tab

Use the Name tab to rename a collection or modify its description. To rename a
collection, select the name in the Name field and enter the new name. The name must
be unique within the project. In physical naming mode, type a name between 1 to 200
characters. Spaces are not allowed. In logical mode, the maximum number of
characters is 200 and spaces are allowed.

You can also modify the description of the collection using the Description field.

Contents Tab
Use the Contents tab to modify the contents of the collection. Use the following steps:

1. Select and expand the project node in the left panel.

The wizard displays a list of objects you can add to the collection.
2. Select and expand the collection node in the right panel.

The list of objects that are referenced in the collection are displayed.

3. Add new objects to the collection by selecting the objects in the Available section
and clicking the right arrow.

3-10 Oracle Warehouse Builder User’'s Guide

Alternative Interfaces

4. Remove objects referenced in the collection by selecting the objects in the Selected
section and clicking the left arrow.

Alternative Interfaces

In addition to the Design Center, Warehouse Builder provides other interfaces to create
and implement your data integration solution. One such interface is OMB Plus.

OMB Plus, an extension of the Tcl programming language, is the scripting language
provided by Warehouse Builder. It is a flexible, high-level command line metadata
access tool for Warehouse Builder. With OMB Plus, you can write the syntactic
constructs such as variable support, conditional and looping control structures, error
handling, and standard library procedures.

Use OMB Plus to create, modify, delete, and retrieve object metadata in Warehouse
Builder repository. You can use this scripting interface to:

s Perform complex actions directly in Warehouse Builder, without launching the
client user interface.

= Define sets of routine operations to be executed in Warehouse Builder.

s Perform batch operations in Warehouse Builder.

= Automate a series of conditional operations in Warehouse Builder.

To access OMB Plus:

Select Start, Programs, Oracle - OWB_HOME, Warehouse Builder, then OMB Plus.
or

From the Design Center, select Window, then OMB*Plus.

The Design Center displays the OMB*Plus panel.

Setting Up Warehouse Builder 3-11

Alternative Interfaces

3-12 Oracle Warehouse Builder User’s Guide

4

Identifying Data Sources and Importing
Metadata

In Oracle Warehouse Builder you can access data from a variety of sources. You can
interpret and extract metadata from custom as well as packaged applications and
databases. As a precursor to extracting any data set, you first import its metadata.

This chapter includes the following topics:

= About Source Data and Metadata

= Supported Sources and Targets

= General Steps for Importing Metadata from Sources
= Using the Import Metadata Wizard

= Reimporting Definitions from an Oracle Database

» Integrating with E-Business Suite

» Integrating with PeopleSoft

» Integrating with Siebel

s Integrating with SAP R/3

» Integrating with Business Intelligence Tools

About Source Data and Metadata

The source systems for a data warehouse are typically transaction processing
applications. For example, a sales analysis data warehouse typically extracts data from
an order entry system that records current order activities.

Designing the extraction process can be problematic. If the source system is complex
and poorly documented, then determining which data to extract can be difficult.
Moreover, the source system typically cannot be modified, nor can its performance or
availability be adjusted. You can overcome these problems by first importing the
metadata.

Metadata is the data that describes the contents of a given object in a data set. For
example, the metadata for a table would indicate the data type for each column. After
you import the metadata into Warehouse Builder, you can annotate the metadata and
design an extraction strategy independently from the transaction processing
application.

Before you import source metadata into Warehouse Builder, first create a module that
will contain these metadata definitions. The type of module you create depends on the

Identifying Data Sources and Importing Metadata 4-1

Supported Sources and Targets

source from which you are importing metadata. For example, to import metadata
definitions from an Oracle database, create an Oracle module. To import metadata
definitions from flat files, create a flat file module.

Supported Sources and Targets

Table 4-1 lists the data storage systems and applications that Warehouse Builder 11.1
can access. The table lists the supported sources and targets for each Location node as
displayed in the Connection Explorer.

Table 4-1

Sources and Targets Supported in Warehouse Builder 11.1

Location Node in the
Connection Explorer

Supported Sources

Supported Targets

Databases/Oracle

Oracle DB 8.1,9.0,9.2,10.1,10.2,11.1

Oracle DB 9.2,10.1,10.2, 11.1

Databases/Non-Oracle

Any database accessible through Oracle
Heterogeneous Services, including but not
limited to DB2, DRDA, Informix, SQL Server,
Sybase, and Teradata.

Any data store accessible through the ODBC
Data Source Administrator, including but not
limited to Excel and MS Access.

See "Loading Data Stored in a Microsoft Excel
File" on page 12-1 and "Connecting to SQL
Server and Importing Metadata" on page 13-1.

Oracle E-Business Suite, see "Integrating with
E-Business Suite" on page 4-12

PeopleSoft 8,9, see "Integrating with PeopleSoft"
on page 4-15

Siebel, see "Integrating with Siebel"” on page 4-18

Any database accessible through
Oracle Heterogeneous Services,
including but not limited to DB2,
DRDA, Informix, SQL Server,
Sybase, and Teradata.

Any data store accessible through
the ODBC Data Source
Administrator, including but not
limited to Excel and MS Access.

To load data into spreadsheets or
third-party databases, first deploy
to a comma-delimited or XML
format flat file.

Files Delimited and fixed-length flat files. Comma-delimited and XML format
See "Importing Definitions from Flat Files" on flat files.
page 4-8. See "Defining Flat Files and
External Tables" in the Warehouse
Builder Online Help.
Applications SAP R/3:3.x,4.0x, 4.6x, 4.7, 5.0, mySAP ERP None

2004; mySAP ERP 2005 (with SAP NetWeaver
2004, SAP BASIS 700 Components)

See "Integrating with SAP R/3" on page 4-20.

Process Flows and None Oracle Workflow 2.6.2,2.6.3,2.6.4,
Schedules/Oracle 11i

Workflow

Process Flows and None In general, you can deploy a
Schedules/Concurrent schedule in any Oracle database
Manager location, version 10g or later.

To deploy a schedule in Concurrent
Manager, version 11i or 12i is
required. However, for both
versions, you must select 11i as the
version when you create a location
in Warehouse Builder.

4-2 Oracle Warehouse Builder User's Guide

General Steps for Importing Metadata from Sources

Table 4-1 (Cont.) Sources and Targets Supported in Warehouse Builder 11.1

Location Node in the
Connection Explorer Supported Sources Supported Targets

Business

None Discoverer 10.1

Intelligence /Discoverer

Databases/Transportable ~ See "Moving Large Volumes of Data" in the N/A

Module Source Warehouse Builder Online Help.

Databases/Transportable N/A See "Moving Large Volumes of
Module Target Data" in the Warehouse Builder

Online Help.

Oracle Heterogeneous Services

Warehouse Builder communicates with non-Oracle systems using Oracle Database
Heterogeneous Services and a complementary agent. Heterogeneous Services make a
non-Oracle system appear as a remote Oracle Database server. The agent can be an
Oracle Transparent Gateway or the generic connectivity agent included with Oracle
Database.

= A transparent gateway agent is a system-specific source. For example, for a Sybase
data source, the agent is a Sybase-specific transparent gateway. You must install
and configure this agent to support the communication between the two systems.

= Generic connectivity is intended for low-end data integration solutions and the
transfer of data is subject to the rules of specific ODBC or OLE DB drivers installed
on the client computer. In this case, you do not need to purchase a separate
transparent gateway; you can use the generic connectivity agent included with the
Oracle Database server. You must still create and customize an initialization file for
your generic connectivity agent.

General Steps for Importing Metadata from Sources

Whether you want to import metadata from a table, file, or application, the general
process is the same and you always import metadata through a module.

1. Review the list of supported sources and targets in Table 4-1 to determine if the
source from which you want to extract data is supported in Warehouse Builder.

2. If you have not already done so, create a location and module for the source
metadata as described in "Creating Modules" on page 4-5.

3. Right-click the module and select Import.
4. Follow the prompts in the Import Metadata Wizard.

The wizard prompts you for information based on the type of source you selected.
For more information, see "Using the Import Metadata Wizard" on page 4-6.

5. (Optional) For Oracle data objects, view the data stored in the data object using the
Data Viewer. Right-click the object and select Data.

Subsequent Steps

After successfully importing the metadata, you can design ETL logic to extract the
data from the source, transform the data, and load it into a target schema.

Over a period of time, the source metadata may change. If this occurs, you can use
Warehouse Builder to identify the ETL logic that would be impacted and potentially
made invalid due to a change in metadata.

Identifying Data Sources and Importing Metadata 4-3

General Steps for Importing Metadata from Sources

See Also:

= "Managing Metadata Dependencies" in the Warehouse Builder
Online Help

s "Updating the Target Schema" on page 21-1

To introduce the changed metadata into Warehouse Builder, right-click the desired
module and select Import. As described in "Reimporting Definitions from an Oracle
Database" on page 4-9, Warehouse Builder recognizes when you are reimporting
metadata.

Example: Importing Metadata from Flat Files

Assume that there are numerous flat files stored across two different drives and
directories on your source system. In the Connection Explorer, you create two
locations that reference the directories in which the source data is stored. Now in the
Project Explorer, right-click the Files node and select New to create a new module.
Repeat this for each of the two directories. For each of the two modules, select Import.
A wizard directs you on how to import one or more files into each module.

Figure 4-1 provides a diagrammatic representation of accessing flat file data stored in
different drives or directories on your source system. Each location maps to a
particular directory on your source system.

Figure 4-1 Importing Data From Flat File Sources

Flat File Source System

orderas_sne maod e crders are boo o T e S
- onders. it
- orders_det.tut

- products ot

ship_zare_ mod —* ship s loc |

™ Directory dlshipments
- shipment_det tat
- customerstat

About Modules

Modules are grouping mechanisms in the Project Explorer that correspond to locations
in the Connection Explorer. A single location can correspond to one or more modules.
However, a given module can correspond to only a single location at a time.

The association of a module to a location enables you to perform certain actions more
easily in Warehouse Builder. For example, you can reimport metadata by reusing an
existing module. Furthermore, when you deploy ETL processes in subsequent steps,
modules enable you to deploy related objects together such as process flows.

Creating Modules
To create a module:

1. Expand the Project Explorer until you find the node for the appropriate metadata
type.

4-4 Oracle Warehouse Builder User's Guide

Using the Import Metadata Wizard

For example, if the source data is stored in an Oracle Database, then expand the
Databases node to view the Oracle node. If the source data is in an SAP R/3
system, expand the Applications node to view the SAP node.

2. Right-click the desired node and select New.

The Create Module wizard opens. The wizard determines the correct integrator to
use to enable access to the data store you selected.

3. On the Name and Description page, provide a name and an optional description
for the module.

4. Click Next.
The Connection Information page is displayed.
5. Provide details about the location that is associated with this module.

The contents of the Connection Information page depend on the type of module
you create. For more information about providing information on this page, click
Help.

6. Click Next to display the Summary page.
Review the information you provided and click Back to modify entered values.
7. Click Finish.

During the course of using Warehouse Builder, you may need to associate a module
with a new location. For example, assuming your production environment utilizes
different locations than your development environment, you need to reassociate the
modules.

To change the location associated with a module:
1. In the Project Explorer, select the module.
2. Click the Configure icon.
The Configuration Properties dialog box is displayed.

3. In the Identification folder, select a new value for the Locations property.

Using the Import Metadata Wizard

Importing is also known as reverse engineering. It saves design time by bringing
metadata definitions of existing database objects into Warehouse Builder. You use the
Import Metadata Wizard to import metadata definitions into modules.

The Import Metadata Wizard supports importing of tables, views, materialized views,
dimensions, cubes, external tables, sequences, user-defined types, and PL/SQL
transformations directly or through object lookups using synonyms.

Importing a table includes importing its columns, primary keys, unique keys, and
foreign keys, which enable import of secondary tables. When you import an external
table, Warehouse Builder also imports the associated location and directory
information for the associated flat file.

You can import metadata definitions either from the Oracle Database catalog or
Designer/2000 (Oracle Designer).

This section contains the following topics:
= Importing Definitions from a Database

= Importing Definitions from Flat Files

Identifying Data Sources and Importing Metadata 4-5

Using the Import Metadata Wizard

Importing Definitions from a Database

Use the Import Metadata Wizard to import metadata from a database into a module.
You can import metadata from an Oracle Database, a non-Oracle Database, or a
Designer repository.

To import definitions from an Oracle Data Dictionary:
1. Right-click a data source module name and select Import.

The Welcome page of the Import Metadata Wizard is displayed. This page lists the
steps to import object metadata. Click Next to proceed with the import.

If you did not specify the location details for the Oracle module, Warehouse
Builder displays a warning dialog box. This dialog box informs you that you must
first specify the location details. Click OK. The Edit Oracle Database Location
dialog box for the Oracle module is displayed. Use this dialog box to specify the
location information. Clicking OK on this dialog box displays the Welcome page
of Import Metadata Wizard.

2. Complete the following pages:
s Filter Information Page
» Object Selection Page
= Summary and Import Page

= Import Results Page

Filter Information Page

Use the Filter Information page to limit the search of the data dictionary. Use one of
the following methods to limit the search:

Selecting the Object Types The Object Type section displays the types of database
objects that you can import. This include tables, dimensions, external tables,
sequences, materialized views, cubes, views, PL/SQL transformations, and
user-defined types. Select the types of objects you want to import. For example, to
import three tables and one view, select Tables and Views.

Search Based on the Object Name Use the Only select objects that match the
pattern option to type a search pattern. Warehouse Builder searches for objects whose
names match the pattern specified. Use % as a wild card match for multiple characters
and _ as a wild card match for a single character. For example, you can type a
warehouse project name followed by a % to import objects that begin with that project
name.

Click Next and Warehouse Builder retrieves names that meet the filter conditions from
the data dictionary and displays the Object Selection page.

Object Selection Page

Select items to import from the Available list and click the right arrow to move them to
the Selected list.

To search for specific items by name, click the Find Objects icon that displays as a
flashlight.

To move all items to the Selected Objects list, click Move All.

4-6 Oracle Warehouse Builder User's Guide

Using the Import Metadata Wizard

Importing Dependent Objects The Import Metadata wizard enables you to import
the dependent objects of the object being imported. If you are reimporting definitions,
previously imported objects appear in bold.

Select one of the following options to specify if dependent objects should be included
in the import:

= None: Moves only the selected object to the Selected list. No dependencies are
imported when you select this option.

= One Level: Moves the selected object and the objects it references to the Selected
list. This is the default selection.

= All Levels: Moves the selected object and all its references, direct or indirect, to the
Selected list.

Click Next to display the Summary and Import page.

Importing Dimensions When you import a dimension that uses a relational
implementation, the implementation table that stores the dimension data is not
imported. You must explicitly import this table by moving the table from the Available
list to the Selected list on the Object Selection page. Also, after the import, you must
bind the dimension to its implementation table. For more information on how to
perform binding, see "Binding" on page 6-12.

Summary and Import Page

This page summarizes your selections in a spreadsheet listing the name, type of object,
and whether the object will be reimported or created. Verify the contents of this page
and add descriptions, if required, for each of the objects.

If the objects you selected on the Object Selection page already exist in the module into
which you are attempting to import them, you can specify additional properties
related to the reimport. Click Advanced Import Options to specify options related to
reimporting objects. The Advanced Import Options dialog box is displayed. For more
information on the contents of this dialog box, see "Advanced Import Options" on
page 4-10.

Click Finish to import the selected objects. The Importing Progress dialog box shows
the progress of the import activity. After the import completes, the Import Results
page is displayed.

Import Results Page

This page summarizes the import and lists the objects and details about whether the
object was created or synchronized.

Click OK to accept the changes. To save an MDL file associated with this import, click
Save. Click Undo to cancel the import. Warehouse Builder stores the definitions in the
database module from which you performed the import.

Importing Definitions from Flat Files

If you have existing flat files to use as sources, you can import and then sample the
metadata from these flat files. Use the Import Metadata Wizard to import metadata
from flat files. This metadata must be imported into a file module.

To import flat file definitions:

1. Establish network connectivity to the files you wish to import.

Identifying Data Sources and Importing Metadata 4-7

Using the Import Metadata Wizard

If you are accessing the data files directly, and if the client and the data files reside
on different types of operating systems, contact your system administrator to
establish the required connectivity through NFS or other network protocol.

If the client and data files reside on Windows operating systems, store the data
files on any drive the client computer can access.

2. Create a flat file module that will contain the imported flat file definitions.

Create a module for each folder in your file system from which you want to
import files. See "Example: Importing Metadata from Flat Files" on page 4-4.

When you create a flat file module, the location corresponding to this module is a
folder in the file system from which metadata is being imported. Use the
Connection Information Page of the Create Module Wizard to specify the folder
that contains the source metadata.

Note that a flat file location does not include subfolders of the specified folder.
3. Right-click the flat file module and select Import.
The Import Metadata Wizard is displayed.

4. On the Filter Information page, filter file names by selecting one of the following
options:

All Data Files: This option returns all the data files available for the directory you
specified for the flat file module.

Data files matching this pattern: Use this option to select only data files that
match the pattern you type. For example, if you select this option and enter (*.dat),
only files with .dat file extensions will be displayed on the next wizard page. If
you type % as part of a filter string, it is interpreted as a wild card match for
multiple characters. If you type '_' as part of a filter string, it is interpreted as a
wild card match for a single character.

5. On the Object Selection page, move the names of the files to be imported from
Available Objects on the left to the Selected Objects section on the right.

Because inbound synchronization for flat files is not permitted, the available
objects will never appear in bold like other objects when they are reimported.
When you reimport flat files, you always need to sample the flat file objects again.

6. On the Summary and Import page, ensure that metadata for the selected flat files
is available in the workspace. You cannot complete the import if the metadata is
not present.

If the Status field contains a red x, metadata is not available in the workspace. For
all such files, either select a file with a matching format in the workspace or
sample the file.

Use the Same As field to select a file with a matching format.

To sample a file, select the file and click Sample. The Flat File Sample Wizard is
launches. The Flat File Sample Wizard enables you to view a sample of the flat file
and define record organization and file properties. You can sample and define
common flat file formats such as string and ascii.

For files with complex record structures, the Flat File Sample Wizard may not be
suitable for sampling the data. In such cases, see "Adding Existing Binary Files to
the Workspace" in the Warehouse Builder Online Help.

7. Once you provide metadata information for all files you want to import, click
Finish.

4-8 Oracle Warehouse Builder User's Guide

Reimporting Definitions from an Oracle Database

The wizard creates definitions for the files, stores the definitions in the flat file
module, and inserts the file names under the flat file module in the Project
Explorer.

Reimporting Definitions from an Oracle Database

Reimporting your source database definitions enables you to import changes made to
your source metadata since your previous import. You do not have to remove the
original definitions from the workspace. Warehouse Builder provides you with options
that also enable you to preserve any changes you may have made to the definitions
since the previous import. This includes any new objects, foreign keys, relationships,
and descriptions you may have created in Warehouse Builder.

To reimport definitions:
1. Right-click a data source module name and select Import.

The Welcome page for the Import Metadata Wizard is displayed.
2. Click Next.

The Filter Information page is displayed.

3. Complete the Filter Information Page and Object Selection Page, selecting the
same settings used in the original import to ensure that the same objects are
reimported.

4, The Summary and Import page displays. For objects that already exist in the
workspace or ones that you are reimporting, the Reimport action is displayed in
the Action column.

If the source contains new objects related to the object you are reimporting, the
wizard requires that you import the new objects at the same time. For these
objects, the Create action displays in the Action column.

5. Click Advanced Import Options and make selections. (Optional)
6. Click Finish.

Warehouse Builder reconciles and creates objects. When this is complete, the
Import Results dialog box displays.

The report lists the actions performed by Warehouse Builder for each object.

Click Save to save the report. You should use a naming convention that is specific
to the reimport.

7. Click OK to proceed.

Click Undo to undo all changes to your workspace.

Advanced Import Options

The Advanced Import Options dialog box displays the options that you can configure
while importing objects. This dialog box enables you to preserve any edits and
additions made to the object definitions in the Warehouse Builder workspace.

By default, all options on this dialog box are checked. Clear boxes to have these objects
replaced and not preserved.

For example, after importing tables or views for the first time, you manually add
descriptions to the table or view definitions. If you want to make sure that these
descriptions are not overwritten while reimporting the table or view definitions, you

Identifying Data Sources and Importing Metadata 4-9

Reimporting Definitions from an Oracle Database

must select the Preserve Existing Definitions option. This ensures that your
descriptions are not overwritten.

The contents of this dialog box depend on the type of objects being imported. For more
information about the advanced import options for each type of objects, refer to the
following sections:

= Advanced Import Options for Views and External Tables
= Advanced Import Options for Tables

s Advanced Import Options for Object Types

s Advanced Import Options for SQL Collections

Advanced Import Options for Views and External Tables
Select these options for reconciling views or external tables:

s Import descriptions: The descriptions of the view or external table are imported.
Existing descriptions are not preserved.

» Preserve repository added columns: The columns you added to the object in the
workspace are preserved.

Advanced Import Options for Tables
Select these options for reconciling tables:

» Preserve repository added columns: Select this option to retain any columns
added to the table in the workspace.

n Preserve repository added constraints: The constraints you added to the table in
Warehouse Builder are preserved.

= Import indexes: Select this option to specify additional details about how indexes
should be imported. Importing indexes consists of the following options:

— DPreserve repository added indexes: Select this option to retain any indexes
added to the workspace table.

— Import physical properties of indexes: Select this option to indicate how
indexes should be imported. Select the Preserve repository added physical
properties of indexes option below this option to specify that any physical
properties added to the indexes should be preserved.

— Import index partitioning: Select this option to indicate how index partitions
should be imported. Select the Preserve repository added index partitioning
option to specify that any index partitions added to the workspace table must
be preserved.

= Import Partitioning: Select this option to specify additional details about how
partitions should be imported. Importing partitions contains the following
options:
— DPreserve repository added partitioning: Select this option to retain all
partitions added to the workspace table.

— Import physical properties of partitioning: Use this option to indicate how
the physical properties of partitions should be imported. Select Preserve
repository added physical properties of partitioning to indicate that all
physical properties of the partitions in the workspace table should be retained.

» Import physical properties: Select this option to indicate how the physical
properties of the table should be imported. Select the Preserve repository added

4-10 Oracle Warehouse Builder User’s Guide

Integrating with E-Business Suite

physical properties option to specify that all physical properties added to the
workspace table must be preserved.

s Import descriptions: Select this option to import the descriptions of the table.

Advanced Import Options for Object Types

Select these options for reconciling object types:

s Import descriptions: Select this option to import the descriptions of the object
type.

s Preserve repository added attributes: Select this option to retain the attributes
added to the object type in the workspace.

Advanced Import Options for SQL Collections
SQL collection includes nested tables and Varrays.

Import descriptions: Select this option to import the descriptions of nested tables and
Varrays.

Updating Oracle Database Source Definitions

The Edit Module dialog box enables you to edit the name, metadata location, and the
data location of a source module.

To update the database definitions:
1. Double-click any Oracle module.

The Edit Module dialog box displays. You can edit the metadata location as well as
the data location of the database.

2. To edit the metadata location, click the Metadata Locations tab and specify the
following:

= Source Type: The source type identifies the location of the data and the
metadata. It can be either Oracle Data Dictionary or Oracle Designer
Repository. Select Oracle Data Dictionary if the metadata is stored in the
default workspace of the Oracle Database. Select Oracle Designer Repository if
the metadata is stored in an Oracle Designer repository.

s Location: Identifies the location of the module. You can select a location from
the list.

3. To edit the data location, click the Data Locations tab. You can either select from
the existing locations or create a new location. To create a new location, click New.
The Edit Oracle Database Location dialog box displays. Specify the details of the
data location here.

Integrating with E-Business Suite

Warehouse Builder enables you to import metadata stored in an E-Business Suite
database using the Import Metadata Wizard.

Before You Begin

Contact the database administrator for the E-Business Suite database and request a
user name and password for accessing the APPS schema. The DBA may have
previously created a user by running the script owbebs . sql as described in the Oracle
Warehouse Builder Installation and Administration Guide. If not, you will need to provide

Identifying Data Sources and Importing Metadata 4-11

Integrating with E-Business Suite

the DBA with a list of the tables, views, sequences, and keys from which you want to
extract data.

Depending on the preference of the DBA, there may be a single user who extracts both,
the metadata as well as the data. Or, there may be two separate users to access the
metadata and data respectively.

Importing E-Business Suite Metadata Definitions

After creating the E-Business Suite source module, you can import metadata
definitions from E-Business Suite objects using the Import Metadata Wizard. This
wizard enables you to filter the E-Business Suite objects you want to import and verify
those objects. You can import metadata for tables, views, and sequences.

To import E-Business Suite metadata:
1. From the Project Explorer, expand the Applications node.

2. If you have not already done so, create an E-Business Suite module and that will
contain the imported metadata.

To create an E-Business Suite module, right-click ORACLE_EBUSINESS_SUITE
under the Applications node and select New. The Create Module Wizard is
displayed. Follow the prompts in the wizard. Click Help on a wizard page for
more information about that page.

Ensure that the location associated with the E-Business Suite module contains
information needed to connect to the E-Business Suite source. If you created a
location earlier, associate that location with the module being created by selecting
that location on the Connection Information page. Or create a new location by
clicking Edit on the Connection Information page of the Create Module Wizard.
For more information about the details to be entered on this page, click Help.

3. Right-click the E-Business Suite source module into which you want to import
metadata and select Import.

Warehouse Builder displays the Welcome page for the Import Metadata Wizard.
4. Click Next.
5. Complete the following tasks:

s Filtering E-Business Suite Metadata

= Selecting the Objects

= Reviewing Import Summary

Filtering E-Business Suite Metadata

The Import Metadata Wizard includes a Filter Information page that enables you to
select the metadata. Warehouse Builder provides two filtering methods:

= Business Domain

This filter enables you to browse E-Business Suite business domains to locate the
metadata you want to import. You can view a list of objects contained in the
business domain and the names of the objects in the E-Business Suite application.
For more information, see "Filtering E-Business Suite Metadata by Business
Domain" on page 4-13.

s Text String Matching

4-12 Oracle Warehouse Builder User’s Guide

Integrating with E-Business Suite

This filter enables you to search tables, views, and sequences by typing text string
information in the field provided in the Filter Information page. This is a more
specific search method if you are familiar with the contents of your E-Business
Suite application database. For more information, see "Filtering E-Business Suite
Metadata by Text String" on page 4-14.

Select a filtering method and click Next to proceed with the importing of metadata.

Filtering E-Business Suite Metadata by Business Domain

1.

Select Business Domain and click Browse to open the Business Component
Hierarchy dialog box.

The Business Component Hierarchy dialog box lists the available E-Business Suite
business domains.

Note: It may take two to ten minutes to list the business domains
depending on the network location of the E-Business Suite application
server, the type of LAN used, or the size of the E-Business Suite
application database.

Use the Business Component Hierarchy dialog box to select the E-Business Suite
business domains that contain the metadata objects you want to import.

Select a business domain and click Show Entities.

The Folder dialog box displays a list of objects available in the selected business
domain.

Review this dialog box to ensure that you are selecting the required objects and
click OK to go back to the Business Component Hierarchy dialog box.

Some business domains can contain more than 1000 objects. Importing such a
large amount of metadata can take from one to three hours or more, depending on
the network connection speed and the processing power of the source and target
systems.

Click OK.

The wizard displays the Filter Information page with the E-Business Suite
business domain displayed in the Business Domain field.

Filtering E-Business Suite Metadata by Text String

1.
2.

Select Text String, where object.
Select the objects you wish to import. You can select Tables, Views, and Sequences.

If you wish to select specific objects, type the object name in the text field. Create a
filter for object selection by using the wildcard characters (%) for zero or more
matching characters, and (_) for a single matching character.

For example, if you want to search the business domain for tables whose names
contain the word CURRENCY, then type $CURRENCY% . If you want to refine the
search to include only tables named CURRENCY and followed by a single digit,
then type $CURRENCY_ .

Identifying Data Sources and Importing Metadata 4-13

Integrating with E-Business Suite

Selecting the Objects

The Object Selection page contains a description of the objects and enables you to
select the objects you want to import into the E-Business Suite module. To select the
objects:

1. Move the objects from the available list to the selected list.

The Import Wizard also enables you to choose whether you want to import tables
with foreign key relationships for each object that you choose to import. You can
select one of the following:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

2. Click Next.

If you select One Level or All Levels, the Confirm Import Selection dialog box is
displayed.

Review this dialog box to ensure that you are selecting the required tables.
3. Click OK.

The selected objects appear in the right pane of the Object Selection page.
4, Click Next.

The wizard displays the Summary and Import page.

Reviewing Import Summary

The wizard imports definitions for the selected objects from the E-Business Suite
Application Server, stores them in the E-Business Suite source module, and then
displays the Summary and Import page.

You can edit the descriptions for each object by selecting the description field and
typing a new description.

Review the information on the Summary and Import page and click Finish.

The E-Business Suite integrator reads the table definitions from the E-Business Suite
application server and creates the metadata objects in the workspace.

The time it takes to import the E-Business Suite metadata to the workspace depends
on the size and number of tables and the connection between the E-Business Suite
application server and the workspace. Importing 500 or more objects could take one to
three hours or more, especially if you are connecting servers in separate Local Area
Networks (LANSs).

When the import completes, the Import Results dialog box displays. Click OK to finish
importing.

4-14 Oracle Warehouse Builder User’s Guide

Integrating with PeopleSoft

Integrating with PeopleSoft

PeopleSoft applications provide ERP solutions. A PeopleSoft application consists of
numerous modules, each pertaining to a specific area in an enterprise, such as Human
Resource Management System (HRMS), Financials, and Material Management. You
can use the Import Metadata Wizard to import metadata from Peoplesoft applications
into Warehouse Builder.

Importing PeopleSoft Metadata Definitions

After creating the PeopleSoft source module, you can import metadata definitions
from PeopleSoft objects using the Import Metadata Wizard. This wizard enables you to
filter the PeopleSoft objects you want to import and verify those objects. You can
import metadata for tables, views, and sequences.

To import PeopleSoft metadata:
1. From the Project Explorer, expand the Applications node.

2. If you have not already done so, create a Peoplesoft module that will contain the
imported metadata.

Right-click PEOPLESOFT8_9 and select New. The Create Module wizard is
displayed. Click Help on a wizard page for more information about the page.

Ensure that the location associated with the PeopleSoft module contains
information needed to connect to the PeopleSoft source. If you created a location
earlier, associate that location with the module being created by selecting the
location on the Connection Information page. Or create a new location by clicking
Edit on the Connection Information page of the Create Module Wizard. For more
information about the details to be entered on this page, click Help.

3. Right-click the PeopleSoft source module into which you want to import metadata
and select Import.

Warehouse Builder displays the Welcome page for the Import Metadata Wizard.
4. Click Next.
5. Complete the following tasks:

= Filtering PeopleSoft Metadata

= Selecting the Objects

s Reviewing Import Summary

Filtering PeopleSoft Metadata
The Import Metadata Wizard includes a Filter Information page that enables you to
select the metadata. Warehouse Builder provides two filtering methods:

» Business Domain

This filter enables you to browse PeopleSoft business domains to locate the
metadata you want to import. You can view a list of objects contained in the
business domain. For more information, see "Filtering PeopleSoft Metadata by
Business Domain" on page 4-16.

» Text String Matching

This filter enables you to search tables, views, and sequences by typing text string
information in the field provided in the Filter Information page. This is a more
specific search method if you are familiar with the contents of your PeopleSoft

Identifying Data Sources and Importing Metadata 4-15

Integrating with PeopleSoft

application database. For more information, see "Filtering PeopleSoft Metadata by
Text String" on page 4-17.

Select a filtering method and click Next to proceed with the importing of metadata.

Filtering PeopleSoft Metadata by Business Domain

1. Select Business Domain and click Browse to open the Business Component
Hierarchy dialog box.

The Import Metadata Wizard displays Loading Progress dialog box while it is
retrieving the business domains.

2. The Business Component Hierarchy dialog box lists the available PeopleSoft
business domains.

Note: It may take two to ten minutes to list the business domains
depending on the network location of the PeopleSoft application
server, the type of LAN used, or the size of the PeopleSoft application
database.

Use the Business Component Hierarchy dialog box to select the PeopleSoft
business domains that contain the metadata objects you want to import.

3. Select a folder and click Show Entities.

The Import Wizard displays a list of objects in the selected business domain in the
Folder dialog box.

4. Review this dialog box to ensure that you are selecting the required objects.

Some business domains can contain more than 1000 objects. Importing such a
large amount of metadata can take from one to three hours or more, depending on
the network connection speed and the processing power of the source and target
systems.

5. Click OK.

The wizard displays the Filter Information page with the PeopleSoft business
domain displayed in the Business Domain field.

Filtering PeopleSoft Metadata by Text String
1. Select Text String, where object.

2. In the Object Type section, select the types of objects you wish to import. You can
select Tables, Views, and Sequences.

If you wish to select specific objects, type the object name in the text field. Create a
filter for object selection by using the wildcard characters (%) for zero or more
matching characters, and (_) for a single matching character.

For example, if you want to search the business domain for tables whose names
contain the word CURRENCY, then type $CURRENCY% . If you want to refine the
search to include only tables named CURRENCY and followed by a single digit,
then type $CURRENCY_ .

Selecting the Objects

The Object Selection page contains a description of the objects and enables you to
select the objects you want to import into the PeopleSoft module. To select the objects:

4-16 Oracle Warehouse Builder User’s Guide

Integrating with PeopleSoft

1. Move the objects from the Available list to the Selected list.

The Import Wizard also enables you to choose whether you want to import tables
with foreign key relationships for each object that you choose to import. You can
select one of the following:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

2. Click Next.

If you select One Level or All Levels, the Confirm Import Selection dialog box is
displayed.

Review this dialog box to ensure that you are selecting an appropriate number of
tables.

3. Click OK.

The selected objects appear in the Selected pane of the Object Selection page.
4. Click Next.

The wizard displays the Summary and Import page.

Reviewing Import Summary

The wizard imports definitions for the selected tables from the PeopleSoft Application
Server, stores them in the PeopleSoft source module, and then displays the Summary
and Import page.

You can edit the descriptions for each object by selecting the description field and
typing a new description.

Review the information on the Summary and Import page and click Finish.

The PeopleSoft Connector reads the table definitions from the PeopleSoft application
server and creates the metadata objects in the workspace.

The time taken to import PeopleSoft metadata to the workspace depends on the size
and number of tables and the connection between the PeopleSoft application server
and the workspace. Importing 500 or more objects could take one to three hours or
more, especially if you are connecting to servers in separate Local Area Networks
(LANS).

When the import completes, the Import Results dialog box displays. Click OK to finish
importing metadata.

Identifying Data Sources and Importing Metadata 4-17

Integrating with Siebel

Integrating with Siebel

Siebel applications provide Customer Relationship Management (CRM) solutions.
Warehouse Builder provides a Connector for Siebel systems that enables you to extract
both metadata and data from your Siebel systems.

The Siebel Connector enables you to connect to any Siebel application, read its
metadata, import the metadata into Warehouse Builder, and extract data from the
system.

Importing Siebel Metadata Definitions

Before you import metadata definitions from Siebel, you must create a Siebel module.
You can then import metadata definitions from Siebel using the Import Metadata
Wizard. This wizard enables you to filter the Siebel objects you want to import and
verify those objects. You can import metadata for tables, views, and sequences.

To import metadata definitions from Siebel:

1. Create a Siebel source module, as described in "Creating a Siebel Source Module"
on page 4-18.

2. Import metadata from Siebel, as described in "Importing Siebel Metadata" on
page 4-19.

Creating a Siebel Source Module
1. From the Project Explorer, expand the Applications node.

2. Right-click Siebel and select New.
The Create Module wizard is displayed.
3. Click Next to display the Name and Description page.

4. Specify a name and an optional description for the Siebel source module and click
Next.

The Connection Information page is displayed.
5. Specify the connection information for the Siebel source module and click Next.

Ensure that the location associated with the Siebel module contains information
needed to connect to the Siebel source. If you created a location earlier, associate
that location with the module being created by selecting the location on the
Connection Information page. Or create a new location by clicking Edit on the
Connection Information page of the Create Module Wizard.

For more information about the details to be entered on this page, click Help.

6. On the Summary page, review the options entered on the previous wizard pages.
Click Back to modify any selections. Click Finish to create the Siebel source
module.

Importing Siebel Metadata

1. Right-click the Siebel source module into which you want to import metadata and
select Import.

Warehouse Builder displays the Welcome page for the Import Metadata Wizard.
2. Click Next.
The Filter Information page is displayed.

4-18 Oracle Warehouse Builder User’s Guide

Integrating with Siebel

Select the objects to be imported and click Next.
Warehouse Builder provides two filtering methods:
= Business Domain

This filter enables you to browse Siebel business domains to locate the
metadata you want to import. You can view a list of objects contained in the
business domain. For more information, see "Filtering Siebel Metadata by
Business Domain" on page 4-20.

s Text String Matching

This filter enables you to search tables, views, and sequences by typing text
string information in the field provided in the Filter Information page. This is
a more specific search method if you are familiar with the contents of your
Siebel application database. For more information, see "Filtering Siebel
Metadata by Text String" on page 4-20.

On the Objects Selection page, select the objects to be imported into the Siebel
module and click Next.

You can choose whether you want to import tables with foreign key relationships
for each object that you choose to import using the following options on this page:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

Review the summary information and click Finish to complete the import. To
modify any selections, click Back.

After you import metadata for tables, views, or sequences from Siebel applications,
you can use these objects in mappings.

Filtering Siebel Metadata by Business Domain

1.

Select Business Domain and click Browse to open the Business Component
Hierarchy dialog box.

The Import Metadata Wizard displays Loading Progress dialog box while it is
retrieving the business domains.

The Business Component Hierarchy dialog box lists the available Siebel business
domains.

Note: It may take two to ten minutes to list the business domains
depending on the network location of the Siebel application server,
the type of LAN used, or the size of the Siebel application database.

Identifying Data Sources and Importing Metadata 4-19

Integrating with SAP R/3

Use the Business Component Hierarchy dialog box to select the Siebel business
domains that contain the metadata objects you want to import.

Select a folder and click Show Entities.

The Import Wizard displays a list of objects in the selected business domain in the
Folder dialog box.

Review this dialog box to ensure that you are selecting the required objects.

Some business domains can contain more than 1000 objects. Importing such a
large amount of metadata can take from one to three hours or more, depending on
the network connection speed and the processing power of the source and target
systems.

Click OK.

The wizard displays the Filter Information page with the Siebel business domain
displayed in the Business Domain field.

Filtering Siebel Metadata by Text String

1.
2

Select Text String, where object.

In the Object Type section, select the objects you wish to import. You can select
Tables, Views, and Sequences.

If you wish to select specific objects, type the object name in the text field. Create a
filter for object selection by using the wildcard characters (%) for zero or more
matching characters, and (_) for a single matching character.

For example, if you want to search the business domain for tables whose names
contain the word CURRENCY, then type $CURRENCY% . If you want to refine the
search to include only tables named CURRENCY and followed by a single digit,
then type $CURRENCY_ .

Integrating with SAP R/3

The SAP Connector enables you to connect to SAP application source systems and
import the SAP source definitions into a project in the workspace.

You can then generate ABAP or PL/SQL code to extract, transform, and load data
from SAP systems to your target system.

The SAP Connector enables you to import metadata object definitions from SAP
Application data sources into the workspace. This chapter describes how to use SAP
objects in a mapping, generate PL/SQL and ABAP code for the mappings, and deploy
them to a target. This section also describes how to extract and load SAP data into
your target.

This section contains the following topics:

About SAP Business Domains

SAP Table Types

Required Files For SAP Connector
Creating SAP Module Definitions
Importing SAP Metadata Definitions
Updating SAP Source Modules

Defining the ETL Process for SAP Objects

4-20 Oracle Warehouse Builder User’s Guide

Integrating with SAP R/3

s Loading SAP Data into the Workspace

About SAP Business Domains

SAP application systems logically group database and metadata objects under
different business domains. In SAP, a business domain is an organizational unit in an
enterprise that groups product and market areas. For example, the Financial
Accounting (FI) business domain represents data describing financial accounting
transactions. These transactions might include General Ledger Accounting, Accounts
Payable, Accounts Receivable, and Closing and Reporting.

When you import SAP definitions, you can use a graphical navigation tree in the
Business Domain Hierarchy dialog box to search the business domain structure in the
SAP source application. This navigation tree enables you to select SAP metadata
objects from the SAP application server.

SAP Table Types

The SAP Connector enables you to import metadata for SAP Business Domains or any
of their related ABAP Dictionary objects.

With the SAP Connector, you can import definitions and generate deployment code
for the following SAP table types:

» Transparent: A transparent table is first defined in the ABAP Dictionary and then
created in the database. You can also use transparent tables independently of the
R/3 System. You can generate either PL/SQL or ABAP code for transparent tables.

» Cluster: A cluster table is an ABAP Dictionary table type. It contains information
pertaining to any group of database tables and it is not created in the SAP
database. Because cluster tables are data dictionary tables and not database tables,
you can only generate ABAP code.

= Pooled: The data from several tables is stored together as a table pool in the
database. Pooled tables exist in the ABAP Dictionary and are not known to the
database. You can only generate ABAP code for pooled tables.

Required Files For SAP Connector

Required Files for Windows

The SAP Connector requires a dynamic link library file named 1ibrfc32.d11 to use
remote function calls on the client computer. This file is available on the SAP
Application Installation CD. You need to copy this file to the following directory on
your client system:

OWB_ORACLE_HOME\bin\admin

If you create an SAP source module and import SAP tables but cannot see the columns
in the tables, then you have an incompatible 1ibrfc32.d11 file. Check the version or
build number of your .d11 file from your NT Explorer window.

The following version is currently supported:
File Version: 4640,5,123,2956

Build: Wednesday, August 09 23:46:33 2000
File Size: 1,945,138 bytes

Product Version: 46D,123

Identifying Data Sources and Importing Metadata 4-21

Integrating with SAP R/3

You can locate this version of the .d11 file on the Installation CD.

Required Files for Unix

The SAP Connector requires a dynamic link library file named 1ibrfccm. so to use
remote function calls on the client computer. This file is available on the SAP
Application Installation CD. You need to copy this file to the following directory on
your client system:

OWB_ORACLE_HOME\ owb\bin\admin

You also need to add OWB_ORACLE_HOME\owb\bin\admin to the Unix environment
variable path: LD_LIBRARY_PATH.

Creating SAP Module Definitions

Use the Create Module Wizard to create an SAP source module that stores data from
an SAP source. You can choose either SAP R/3 version 3.x or SAP R/3 version 4.x
system type as your source. After you select the application version, you need to set
the connection information between the workspace and the SAP application server.
You can set the connection either by selecting from existing SAP locations or by
creating a new SAP location.

Note: To create a connection to an SAP source, you must first
obtain the connection information to your SAP Application server
from your system administrator.

When you set the connection information, you can choose the following connection
types:
= Remote Function Call (RFC)

This is the default connection type. A remote function call locates a function
module running in a system different from that of the caller. The remote function
can also be called from within the same system (as a remote call), but usually the
caller and the called are located in different systems. This method requires specific
IP Address information for the SAP application server.

= SAP Remote Function Call (SAPRFC.INI)

SAP can use its own initialization file to track the IP Address information for you.
The SAPRFC.INI enables remote calls between two SAP Systems (R/3 or R/4), or
between an SAP System and a non-SAP System. This method is useful when you
know the SAP-specific connection information and want to automate the IP
connection information.

Note: To use the SAPRFC.INI connection type, the file
SAPRFC.INI must be installed in the directory:

OWB_ORACLE_HOME\ owb\bin\admin

This file is available in the SAP Application client installation CD.
Consult your system administrator for more information.

The Create Module Wizard creates the module for you based on the metadata
contained in the SAP application server.

4-22 Oracle Warehouse Builder User’s Guide

Integrating with SAP R/3

Connecting to an SAP Source Application

1.

Select one of the following connection types:
s Remote Function Call (RFC)

This is the default connection type.
s SAP Remote Function Call (SAPRFC.INI)

For more information about these connection types, see "Creating SAP Module
Definitions" on page 4-22.

Type the connection information in the appropriate fields. The fields displayed on
this page depend on the connection type you choose.

Note: You mustload the 1ibrfc32.d11 file before you can set the
connection details. For more information, see "Required Files For SAP
Connector” on page 4-22.

You must obtain the connection information to your SAP Application server from
your system administrator before you can complete this step.

RFC Connection type requires the following connection information:

Application Server: Type the alias name or the IP address of the SAP application
server.

System Number: Type the SAP system number for SAP user interface login. This
number is required in the SAP application configuration and is supplied by the
SAP system administrator.

Client: Type the SAP client number. This number is required in the SAP
application configuration and is supplied by the SAP system administrator.

User Name: Type the user name for the SAP user interface. This name is required
in the SAP application configuration and is supplied by the SAP system
administrator.

Language: EN for English or DE for German. If you select DE, the description text
displays in German and all other text displays in English.

SAPRFC.INI File connection type requires the following connection information:
RFC Destination: Type the alias for the SAP connection information.

In addition, both the connection types require the following connection
information:

Host Login User Name: A valid user name on the system that hosts the SAP
application server. This user must have access rights to copy the SAP extraction
file using FIP.

FTP Directory: The directory where the SAP extraction file is stored. For systems
where the ftp directory structure is identical to the operating system directory
structure, this field can be left blank. For systems where the file system directory
structure is mapped to the ftp directory structure, enter the ftp directory path that
is mapped to staging file directory in the file system directory structure. For
example, on a computer that runs Windows, the staging file directory "C:\temp"
is mapped to " /" in the FIP directory structure, then enter " /" in this field.

Execution Function Module: In a SAP instance, if a remote function module other
than the SAP delivered function module: RFC_ABAP_INSTALL_AND_RUN is

Identifying Data Sources and Importing Metadata 4-23

Integrating with SAP R/3

used to remotely execute ABAP reports through RFC connections, then enter the
remote function module name here.

3. (Click Test Connection to verify that the connection information you provided are
correct.

4. Click OK to go back to the Connection Information page of the Create Module
wizard.

Importing SAP Metadata Definitions

After creating the SAP source module, you can import metadata definitions from SAP
tables using the Import Metadata Wizard. This wizard enables you to filter the SAP
objects you want to import, verify those objects, and reimport them. You can import
metadata for transparent tables, cluster tables, or pool tables.

Perform the following steps to import SAP metadata:
1. From the Project Explorer, expand the Applications node.

2. If you have not already done so, create an SAP module that will contain the
imported metadata.

Right-click the SAP node and select New. The Create Module Wizard is displayed.
Follow the prompts and create an SAP module. Click Help on a wizard page for
details about the information you must provide on that page.

Ensure that the location associated with the E-Business Suite module contains
information needed to connect to the E-Business Suite source. If you created a
location earlier, associate that location with the module being created by selecting
that location on the Connection Information page. Or create a new location by
clicking Edit on the Connection Information page of the Create Module Wizard.
For more information about the details to be entered on this page, click Help.

3. Right-click the SAP source module into which you want to import metadata and
select Import.

Warehouse Builder displays the Welcome page for the Import Metadata Wizard.
4. Click Next.
5. Complete the following tasks:

= Filtering SAP Metadata

= Selecting the Objects

= Reviewing Import Summary

Filtering SAP Metadata

The Import Metadata Wizard includes a Filter Information page that enables you to
select the metadata. Warehouse Builder provides two filtering methods:

s Business Domain

This filter enables you to browse SAP business domains to locate the metadata you
want to import. You can view a list of tables contained in the business domain and
the names of the tables in the SAP application. For more information, see "Filtering
SAP Metadata by Business Domain" on page 4-25.

s Text String Matching

This filter enables you to search for tables by typing text string information in
fields provided in the Filter Information page. This is a more specific search

4-24 Oracle Warehouse Builder User’s Guide

Integrating with SAP R/3

method if you are familiar with the contents of your SAP application database. For
more information, see "Filtering SAP Metadata by Text String" on page 4-26.

Select a filtering method and click Next to proceed with the importing of metadata.

Filtering SAP Metadata by Business Domain

1.

Select Business Domain and click Browse to display the SAP R/3 Business
Domain Hierarchy dialog box.

The Import Metadata wizard displays the Loading Progress dialog box while it is
retrieving the business domains.

The Business Domain Hierarchy dialog box lists the available SAP business
domains.

Note: It may take two to ten minutes to list the business domains
depending on the network location of the SAP application server, the
type of LAN used, or the size of the SAP application database.

Use the Business Domain Hierarchy dialog box to select the SAP business domains
that contain the metadata objects you want to import.

Select a folder and click Show Tables to view the tables available in a business
domain.

The Import Wizard displays a list of tables in the selected business domain in the
Folder dialog box.

Review this dialog box to ensure that you are selecting the required tables.

Some business domains can contain more than 1000 tables. Importing such a large
amount of metadata can take from one to three hours or more, depending on the
network connection speed and the processing power of the source and target
systems.

Click OK.

The wizard displays the Filter Information page with the SAP business domain
displayed in the Business Domain field.

Filtering SAP Metadata by Text String

1.

Select Text String, where object and choose the Name matches entry field or the
Description matches entry field to type a string and obtain matching tables from
the SAP data source.

The Name matches field is not case sensitive, while the Description matches field
is case sensitive.

You must type a text string in the selected Text String entry field. It cannot be
empty.

Create a filter for object selection by using the wildcard characters (%) for zero or
more matching characters, and (_) for a single matching character.

For example, if you want to search the business domain for tables whose
descriptions contain the word CURRENCY, then select Description matches and
type $CURRENCY% . You can also search for tables by their names.

Identifying Data Sources and Importing Metadata 4-25

Integrating with SAP R/3

Note: Description searches are case sensitive whereas name searches
are not case sensitive.

2. Specify the number of tables you want to import in the Maximum number of
objects displayed field.

Selecting the Objects

The Object Selection page contains a description of the objects and enables you to
select the objects you want to import into the SAP module. To select the objects:

1. Move the objects from the available list to the selected list.

The Import Metadata Wizard also enables you to choose whether you want to
import tables with foreign key relationships for each object that you choose to
import. You can select one of the following:

None: Import only the objects in the Selected list.

One Level: Import the objects in the Selected list and any tables linked to it
directly through a foreign key relationship.

All Levels: Import the objects in the Selected list and all tables linked to it through
foreign key relationships.

The foreign key level you select is the same for all tables selected for importing.

Note: Selecting All Levels increases the time it takes to import the
metadata because you are directing the wizard to import tables that
are related to each other through foreign key constraints. Select this
option only if it is necessary.

2. Click Next.

If you select One Level or All Levels, the Confirm Import Selection dialog box is
displayed.

Review this dialog box to ensure that you are selecting the required tables.
3. Click OK.

The selected objects appear in the Selected list of the Object Selection page.
4. Click Next.

The wizard displays the Summary and Import page.

Reviewing Import Summary

The wizard imports definitions for the selected tables from the SAP Application
Server, stores them in the SAP source module, and then displays the Summary and
Import page.

You can edit the descriptions for each table by selecting the Description field and
typing a new description.

Review the information on the Summary and Import page and click Finish.

The SAP Connector reads the table definitions from the SAP application server and
creates the metadata objects in the workspace.

4-26 Oracle Warehouse Builder User’s Guide

Integrating with SAP R/3

The time it takes to import the SAP metadata into the workspace depends on the size
and number of tables and the connection between the SAP application server and the
workspace. Importing 500 or more objects could take one to three hours or more,
especially if you are connecting servers in separate Local Area Networks (LANs).

When the import completes, the Import Results dialog box displays. Click OK to finish
importing metadata.

Reimporting SAP Objects

To reimport SAP objects, follow the importing procedure using the Import Metadata
Wizard. Prior to starting the import, the wizard checks the source for tables with the
same name as those you are importing. The tables that have already been imported
appear in bold in the Object Selection page. In the Summary and Import page, the
Action column indicates that these tables will be reimported. The wizard then
activates the Advanced Synchronize Options button so that you can control the
reimport options.

Updating SAP Source Modules

You must update existing SAP source module definitions whenever you upgrade SAP
application versions, migrate SAP servers, and change network connection
configurations. You also need to check this information when you reimport metadata.

You can update an SAP module by editing its properties using the Edit Module dialog
box.

To update SAP object definition:
1. From the Project Explorer, expand the Applications node and then the SAP node.
2. Right-click the SAP source object and select Open Editor.
The Edit Module dialog box is displayed.
3. Select the appropriate tab to edit the SAP object properties.

Name: Use the Name tab to specify a name and an optional description for the
table. Use the description field, for example, to note the purpose of the module
and how it relates to the information required by the end-users of the project. In
addition to the rules listed in "Naming Conventions for Data Objects" on page 6-6,
the name must be unique across the module.

If necessary, change the status of the SAP object. Select Development, Quality
Assurance, or Production.

Data Source: Use this tab to modify the application type.
Metadata Location: Use this tab to change the location of the metadata.

Data Locations: Use this tab to change the data location. You can either select from
an existing list of available locations or specify a new location.

Defining the ETL Process for SAP Objects

After you define the SAP source module and import the metadata, you can define the
ETL mappings to extract and load the data from your SAP source to the target. The
SAP Connector features a special mapping tool for SAP objects. Warehouse Builder
enables you to configure mappings to generate ABAP or PL/SQL code to deploy your
metadata.

This section contains the following topics:

Identifying Data Sources and Importing Metadata 4-27

Integrating with SAP R/3

= Defining Mappings Containing SAP Objects
s Configuring Code Generation for SAP Objects
= Generating SAP Definitions

Defining Mappings Containing SAP Objects

You can use the Mapping Editor to define mappings for SAP sources. While SAP
mappings are similar to other types of mappings, there is one important difference,
which is that only Table, Filter, Joiner, and Mapping Input Parameter mapping
operators are available for SAP objects.

Adding SAP Objects to a Mapping
To add an SAP object to a mapping;:

1. From the Mapping Editor Palette, drag and drop the Table operator onto the
Mapping Editor canvas.

The Add Table Operator dialog box displays.
2. Choose Select from existing repository objects and bind.

The field at the bottom of the dialog box displays a list of SAP tables whose
definitions were previously imported into the SAP source module.

3. Select a source table name and click OK.

The editor places a Table operator on the mapping canvas to represent the SAP
table.

You can define it as you would with any other type of mapping operator.

Configuring Code Generation for SAP Objects
Configuring a mapping containing an SAP source is similar to configuring a mapping
containing any other source:

» Use the Operator properties panel of the Mapping Editor to set the loading
properties.

= Use the Configuration Properties dialog box to define the code generation
properties.

= If youintend to generate ABAP code, set the directory and initialization file
settings in the Configuration Properties dialog box.

Setting the Loading Type
To set the loading type for an SAP operator:

1. On the Mapping Editor, select the SAP source operator. The Table Operator
Properties panel displays the properties of the SAP table operator.

2. Select a loading type from the Loading Type list. If you specify ABAP code as the
language for the mapping, the SQL*Loader code is generated as indicated in
Table 4-2.

Table 4-2 Loading Types in ABAP Code

Loading Type SQL* Loader Code Generated in ABAP Code
INSERT APPEND
CHECK/INSERT INSERT

4-28 Oracle Warehouse Builder User’s Guide

Integrating with SAP R/3

Table 4-2 (Cont.) Loading Types in ABAP Code

Loading Type SQL* Loader Code Generated in ABAP Code
TRUNCATE/INSERT TRUNCATE

DELETE/INSERT REPLACE

All other types APPEND

Setting the Language Parameter

This parameter enables you to choose the type of code you want to generate for your
SAP mappings. If your source includes clustered or pooled tables, then you must
select ABAP as the generated code.

To choose the language:
1. Right-click the mapping and select Configure.
The Configuration Properties dialog box is displayed.

2. From the list in the Language field, select the type of code you want to generate:
ABAP, SQL*LOADER, or PL/SQL scripts (available for transparent tables only).

3. Click OK.

Setting the Runtime Parameters

If you set the language to ABAP, then you can expand the Runtime Parameters node in
the Configuration Properties dialog box to display settings specific to ABAP code
generation. These settings come with preset properties that optimize code generation
and should not be changed. Altering these settings can result in a slowing down of the
code generation process.

The following runtime parameters are available for SAP mappings:

= SAP System Version: Specifies the SAP system version number to which you
want to deploy the ABAP code. For MySAP ERP instances, select SAP R/3 4.7.

» Staging File Directory: Specifies the location of the directory where the data
generated by ABAP code resides.

= Data File Name: Specifies the name of the data file created during code
generation.

» File Delimiter for Staging File: Specifies the column separator in a SQL data file.

= SOL Join Collapsing: Specifies the following hint, if possible, to generate ABAP
code.

SELECT < > INTO < > FROM (Tl as Tl inner join T2 as T2) ON <condition >

The default setting is TRUE.
s Primary Foreign Key for Join: Specify the primary key to be used for a join.
= Nested Loop: Specifies a hint to generate nested loop code for a join, if possible.
» Use Select Single: Indicates whether Select Single is generated, if possible.

s SAP Location: The location of the SAP instance from where the data can be
extracted.

= Background Job: Select this option if you wish to run the ABAP report as a
background job in the SAP system.

Identifying Data Sources and Importing Metadata 4-29

Integrating with SAP R/3

Generating SAP Definitions

You can generate PL/SQL code for a mapping containing an SAP transparent table
just as you generated code for any other PL/SQL mapping. However, you must
generate ABAP code for pooled and cluster tables.

Warehouse Builder validates and generates the scripts required to create and populate
the SAP source object.

When you generate code, a single script is generated for each physical object you want
to create. For example, there is one script for each index you are creating. This is useful
if you need to re-deploy a single object at a later time without re-deploying the entire
warehouse.

To generate the scripts for SAP mappings:

1. Right-click the SAP mapping and select Generate.
The Generation Results window is displayed.

2. On the Script tab, select the script name and select View Code.
The generated code displays in the Code Viewer.

You can edit, print, or save the file using the code editor. Close the Code Viewer to
return to the Generation Results window.

3. From the Generation Results window, click Save as File to save the ABAP code to
your hard drive.

4. Click Save to save the generated scripts to a file system. You can save the ABAP
code with any file extension. You can use the suffix .abap (for example,
MAP1.abap) or any other naming convention.

Loading SAP Data into the Workspace

When you generate an ABAP code for an SAP mapping, Warehouse Builder creates an
ABAP program that loads the data. You must run this program from the SAP user
interface. The program uploads the generated code and executes it on your SAP
system. You can then load the data into your staging area before using SQL*Loader to
upload the data into your warehouse tables.

To upload and execute the ABAP code on your SAP system using the SAP user
interface:

1. Open the SAP user interface and specify op-code SE38.

2. Create a program to execute the ABAP code (for example, ZOWBTEST1). For
detailed instructions on creating a program, refer to your SAP documentation. If

you already have a program created for testing purposes, you can use it to execute
the ABAP code.

The default selection is set to Source Code.

Figure 4-2 shows the SAP ABAP editor.

4-30 Oracle Warehouse Builder User’'s Guide

Integrating with SAP R/3

Figure 4-2 SAP ABAP Editor

ABAP Editor: initial Screen

@ | @I \El | Execute with variant | | Debugging

powetest [(00 cresle

| Sub-ohjects -
@ Source code
) Variants

) Attributes
) Documentation
) Textelements

|¢¢ Display & Change

3. Click Change.

4. From the ABAP Editor menu, select Utilities, then Upload/Download, and then
Upload.

The Import from a Local File dialog box is displayed.
5. In the File Name field, specify the location of the generated ABAP code.
6. Click Transfer.

7. Press F8 to execute the ABAP code. Or you can also select Program and then
Check before selecting Program and then Execute to run the code.

The ABAP code is executed in the SAP application server.

8. Use FIP to fetch data from the SAP application server and send it to the staging
area.

9. Use SQL*Loader to upload data into your warehouse tables. The following is an
example of a command line:

SQLLDR scott CONTROL=abap_datactlfile.dat LOG=yourlogfile.log
Username: scott
Password: password

Deploying and Executing an SAP Mapping

After you create an SAP mapping, you must deploy the mapping to create the logical
objects in the target location. Deploying an SAP mapping is similar to deploying any
other object. To deploy an SAP mapping, right-click the mapping and select Deploy.
You can also deploy the mapping from Control Center Manager. For detailed
information about deployment, see "Deploying to Target Schemas and Executing ETL
Logic" on page 11-1.

Identifying Data Sources and Importing Metadata 4-31

Integrating with Business Intelligence Tools

When an SAP mapping is deployed, an ABAP mapping is created and stored it in the
workspace.

It also saves the . abap file under OWB_ORACLE_HOME\owb\deployed_files,
where OWB_ORACLE_HOME is the location of the oracle home directory of your
installation.

Executing an SAP mapping is similar to executing other objects. Before executing the
mapping, make sure that the mapping has been deployed successfully.

To execute an SAP mapping, you need to perform the following steps:

1. From Control Center Manager, right-click the deployed SAP mapping and select
Start.

The ABAP mapping is executed on the remote SAP instance and the resultant file
is stored under the file system of the SAP instance.

2. Use FIP to transfer the file from the remote SAP system to the local system. Make
sure that you provide the correct user name and password for the FIP connection.

3. Use SQL*Loader to upload the file into Warehouse Builder.

The auditing information is written onto the workspace and can be viewed from the
Repository Browser. For more information about auditing, see "Auditing Deployments
and Executions” in the Warehouse Builder Online Help.

Deploying PL/SQL Scripts for Transparent Tables

Deployment of PL/SQL scripts for SAP transparent tables is the same as deployment
of PL/SQL scripts for Oracle Database sources. The PL/SQL scripts run in your Oracle
data warehouse and perform remote queries to extract table data from the SAP
application. For more information about deployment, see "Deploying to Target
Schemas and Executing ETL Logic" on page 11-1.

Integrating with Business Intelligence Tools

Warehouse Builder provides an end-to-end business intelligence solution by enabling
you to integrate metadata from different data sources, designing and deploying it to a
data warehouse, and making that information available to analytical tools for decision
making and business reporting.

Warehouse Builder introduces Business Intelligence (BI) objects that enable you to
integrate with Oracle Business Intelligence tools such as Discoverer. You can define BI
objects in Warehouse Builder that enable you to store definitions of business views.
You can then deploy these definitions to the Oracle Business Intelligence tools and
extend the life-cycle of your data warehouse. The method you use to deploy business
definitions depends on the version of Discoverer to which you want to deploy and the
Warehouse Builder licensing option you purchased. For more information, see
"Deploying Business Definitions to Oracle Discoverer" on page 11-9.

This section contains the following topics:
» Introduction to Business Intelligence Objects in Warehouse Builder
= Introduction to Business Definitions

m About Business Definitions

4-32 Oracle Warehouse Builder User’s Guide

Integrating with Business Intelligence Tools

Introduction to Business Intelligence Objects in Warehouse Builder

Warehouse Builder enables you to derive and define Business Intelligence (BI) objects
that integrate with analytical business intelligence tools, such as Oracle Discoverer. By
deploying these BI definitions to your analytical tools, you can perform ad hoc queries
on top of the relational data warehouse or define a dashboard on top of
multidimensional data marts.

The BI objects you derive or define in Warehouse Builder represent equivalent objects
in Oracle Discoverer. These definitions are stored under the Business Intelligence node
on the Warehouse Builder Project Explorer.

The Business Intelligence node contains an additional node called Business
Definitions. You start by first creating a Business Definition module to store the
definitions to be deployed to Discoverer. For details, see "About Business Definitions"
on page 4-34.

Introduction to Business Definitions

Business intelligence is the ability to analyze data to answer business questions and
predict future trends. Oracle Discoverer is a BI tool that enables users to analyze data
and retrieve information necessary to take business decisions. Discoverer also enables
users to share the results of their data analysis in different formats, including charts
and Excel spreadsheets.

Discoverer uses the End User Layer (EUL) metadata view to insulate its end users
from the complexity and physical structure of the database. You can tailor the EUL to
suit your analytical and business requirements and produce queries by generating
SQL. The EUL provides a rich set of default settings to aid report building.

Through BI objects, Warehouse Builder enables you to design a data structure that
facilitates this data analysis. Business Intelligence objects in Warehouse Builder
provide the following benefits:

s Complete and seamless integration with Oracle Discoverer

= Advanced deployment control of metadata objects using the Warehouse Builder
Control Center

s Complete, end-to-end lineage and impact analysis of Discoverer objects based on
information in the Warehouse Builder workspace

= Ability to utilize Warehouse Builder metadata management features such as
snapshots, multilanguage support, and command-line interaction

About Business Definitions

You can integrate with Discoverer by deriving business definitions directly from your
warehouse design metadata. Alternatively, you can also create your own customized
business definitions in Warehouse Builder.

The business definition objects in Warehouse Builder are equivalent to the Discoverer
EUL objects. When you derive business definitions from your existing design
metadata, Warehouse Builder organizes the definitions in Item Folders that correspond
to Folders in Discoverer. You can define joins and conditions for the Items Folders and
select the Items they contain using the Warehouse Builder wizards and editors.
Additionally, you can define Drill Paths, Alternative Sort Orders, Drills to Detail, and
Lists of Values for the Items within the Item Folders.

Warehouse Builder also enables you to define any functions registered with
Discoverer. You can also sort your definitions by subject area by defining Business

Identifying Data Sources and Importing Metadata 4-33

Integrating with Business Intelligence Tools

Areas that reference multiple Item Folders. You can then deploy these Business Areas
along with the business definitions to a Discoverer EUL using the Control Center.
See Also:
= "Deriving Business Intelligence Metadata" on page 6-49

= "Defining Business Intelligence Objects" in the Warehouse Builder
Online Help

= "Deploying Business Definitions to Oracle Discoverer" on
page 11-9

4-34 Oracle Warehouse Builder User’s Guide

O

Understanding Data Quality Management

Today, more than ever, organizations realize the importance of data quality. By
ensuring that quality data is stored in your data warehouse or business intelligence
application, you also ensure the quality of information for dependent applications and
analytics.

Oracle Warehouse Builder offers a set of features that assist you in creating data
systems that provide high quality information to your business users. You can
implement a quality process that assesses, designs, transforms, and monitors quality.
Within these phases, you will use specific functionality from Warehouse Builder to
create improved quality information.

This chapter contains the following topics:

= About the Data Quality Management Process
= About Data Profiling

= About Data Correction and Augmentation

= About Data Rules

= About Quality Monitoring

s Performing Data Profiling

s Tuning the Data Profiling Process

= Using Data Rules

= Monitoring Data Quality Using Data Auditors

About the Data Quality Management Process

Quality data is crucial to decision-making and planning. The aim of building a data
warehouse is to have an integrated, single source of data that can be used to make
business decisions. Since the data is usually sourced from a number of disparate
systems, it is important to ensure that the data is standardized and cleansed before
loading into the data warehouse.

Warehouse Builder provides functionality that enables you to effectively manage data
quality by assessing, transforming, and monitoring your data. Using Warehouse
Builder for data management provides the following benefits:

= Provides an end-to-end data quality solution.

= Enables you to include data quality and data profiling as an integral part of your
data integration process.

Understanding Data Quality Management 5-1

About the Data Quality Management Process

= Stores metadata regarding the quality of your data alongside your data
definitions.

= Automatically generates the mappings that you can use to correct data. These
mappings are based on the business rules that you choose to apply to your data
and decisions you make on how to correct data.

Phases in the Data Quality Lifecycle

Ensuring data quality involves the following phases:
s Quality Assessment

s Quality Design

s Quality Transformation

s Quality Monitoring

Figure 5-1 shows the phases involved in providing high quality information to your
business users.

Figure 5-1 Phases Involved in Providing Quality Information

Process
=0

Quality Assessment

In the quality assessment phase, you determine the quality of the source data. The first
step in this phase is to import the source data, which could be stored in different
sources, into Warehouse Builder. You can import metadata and data from both Oracle
and non-Oracle sources.

After you load the source data, you use data profiling to assess its quality. Data
profiling is the process of uncovering data anomalies, inconsistencies, and
redundancies by analyzing the content, structure, and relationships within the data.
The analysis and data discovery techniques form the basis for data monitoring.

5-2 Oracle Warehouse Builder User’'s Guide

About Data Profiling

See Also:
= "About Data Profiling" on page 5-4 for data profiling concepts

s '"Performing Data Profiling" on page 5-32 for the steps to perform
data profiling

= "Tuning the Data Profiling Process" on page 5-40 for information
about tuning the profiling process

Quality Design

The quality design phase consists of designing your quality processes. You can specify
the legal data within a data object or legal relationships between data objects using
data rules.

See Also:
"About Data Rules" on page 5-31 for data rules concepts

s "Using Data Rules" on page 5-42 for information about creating
and applying data rules

You also correct and augment your data. You can use data quality operators to correct
and augment data.

See Also:

= "About Data Correction and Augmentation” on page 5-9 for
information about the data quality operators

= "Generate Corrections" on page 5-38 for information about
generating corrections based on the results of data profiling

As part of the quality design phase, you also design the transformations that ensure
data quality. These transformations could be mappings that are generated by
Warehouse Builder as a result of data profiling or mappings you create.

Quality Transformation

The quality transformation phase consists of running the correction mappings you
designed to correct the source data.

Quality Monitoring

Data monitoring is the process of examining warehouse data over time and alerting
you when the data violates business rules set for the data.
See Also:

"About Quality Monitoring" on page 5-32 for concepts about
quality monitoring

= "Monitoring Data Quality Using Data Auditors" on page 5-44 for
information about creating and using data auditors to monitor
data quality

About Data Profiling

Data profiling is the first step for any organization to improve information quality and
provide better decisions. It is a robust data analysis method available in Warehouse

Understanding Data Quality Management 5-3

About Data Profiling

Builder that you can use to discover and measure defects in your data before you start
working with it. Because of its integration with the ETL features in Warehouse Builder
and other data quality features, such as data rules and built-in cleansing algorithms,
you can also generate data cleansing mappings and schema correction scripts. This
enables you to automatically correct any inconsistencies, redundancies, and
inaccuracies in both the data and metadata.

Data profiling enables you to discover many important things about your data. Some
common findings include the following:

= A domain of valid product codes

= Arange of product discounts

s Columns that hold the pattern of an e-mail address
= A one-to-many relationship between columns

= Anomalies and outliers within columns

= Relations between tables even if they are not documented in the database

Benefits of Data Profiling

Using the data profiling functionality in Warehouse Builder enables you to:

= Profile data from any source or combination of sources that Warehouse Builder can
access.

= Explore data profiling results in tabular or graphical format.
= Drill down into the actual data related to any profiling result.

s Derive data rules, either manually or automatically, based on the data profiling
results.

= Attach any data rule to a target object and select an action to perform if the rule
fails.

» Create a data auditor from a data rule to continue monitoring the quality of data
being loaded into an object.

s Derive quality indices such as six-sigma valuations.

= Profile or test any data rules you want to verify before putting in place.

Types of Data Profiling

Following the selection of data objects, determine the aspects of your data that you
want to profile and analyze. Data profiling offers three main types of analysis:
attribute analysis, functional dependency, and referential analysis. You can also create
custom profiling processes using data rules, allowing you to validate custom rules
against the actual data and get a score of their accuracy.

Figure 5-2 displays a representation of the types of data profiling and how you can
perform each type.

5-4 Oracle Warehouse Builder User's Guide

About Data Profiling

Figure 5-2 Data Profiling Overview

Data prafiling | . Custom Profiling '
/‘r\‘

Attribute Analysis Functional Dependency Referential Analysis

A/ y F Y
| Genera | | Datatvoe | Unique | orohans | | Childless |

h 4 ¥
| Pattern | | Darnain ‘ ' ¥ -
|J|:u|ns | | Redundant Attributes |
Attribute Analysis

Attribute analysis seeks to discover both general and detailed information about the
structure and content of data stored within a given column or attribute. Attribute
analysis looks for information about patterns, domains, data types, and unique values.

Pattern analysis attempts to discover patterns and common types of records by
analyzing the string of data stored in the attribute. It identifies the percentages of your
data that comply with a certain regular expression format pattern found in the
attribute. Using these pattern results, you can create data rules and constraints to help
clean up current data problems. Some commonly identified patterns include dates,
e-mail addresses, phone numbers, and social security numbers.

Table 5-1 shows a sample attribute, Job Code, that could be used for pattern analysis.

Table 5-1 Sample Columns Used for Pattern Analysis

Job ID Job Code
7 337-A-55
9 740-B-74
10 732-C-04
20 43-D-4

Table 5-2 shows the possible results from pattern analysis, where D represents a digit
and X represents a character. After looking at the results and knowing that it is
company policy for all job codes be in the format of DDD-X-DD, you can derive a data
rule that requires all values in this attribute to conform to this pattern.

Table 5-2 Pattern Analysis Results

Job Code % Occurred
DDD-X-DD 75%
DD-X-D 25%

Domain analysis identifies a domain or set of commonly used values within the
attribute by capturing the most frequently occurring values. For example, the Status
column in the Customers table is profiled and the results reveal that 90% of the values
are among the following: "M ARRIED", "SINGLE", "DIVORCED". Further analysis and
drilling down into the data reveal that the other 10% contains misspelled versions of
these words with few exceptions. Configuration of the profiling determines when
something is qualified as a domain, so review the configuration before accepting

Understanding Data Quality Management 5-5

About Data Profiling

domain values. You can then let Warehouse Builder derive a rule that requires the data
stored in this attribute to be one of the three values that were qualified as a domain.

Data type analysis enables you to discover information about the data types found in
the attribute. This type of analysis reveals metrics such as minimum and maximum
character length values as well as scale and precision ranges. In some cases, the
database column is of data type VARCHAR2, but the values in this column are all
numbers. Then you may want to ensure that you only load numbers. Using data type
analysis, you can have Warehouse Builder derive a rule that requires all data stored
within an attribute to be of the same data type.

Unique key analysis provides information to assist you in determining whether or not
an attribute is a unique key. It does this by looking at the percentages of distinct values
that occur in the attribute. You might determine that attributes with a minimum of
70% distinct values should be flagged for unique key analysis. For example, using
unique key analysis you could discover that 95% of the values in the EMP_ID column
are unique. Further analysis of the other 5% reveals that most of these values are either
duplicates or nulls. You could then derive a rule that requires that all entries into the
EMP_ID column be unique and not null.

Functional Dependency

Functional dependency analysis reveals information about column relationships. This
enables you to search for things such as one attribute determining another attribute
within an object.

Table 5-3 shows the contents of the Employees table in which the attribute Dept.
Location is dependent on the attribute Dept. Number. Note that the attribute Dept.
Number is not dependent on the attribute Dept. Location.

Table 5-3 Employees Table

ID Name Salary Dept Number Dept Location
10 Alison 1000 10 SF

20 Rochnik 1000 11 London

30 Meijer 300 12 LA

40 John 500 13 London

50 George 200 13 London

60 Paul 600 13 London

70 Ringo 100 13 London

80 Yoko 600 13 London

90 Jones 1200 10 SF

Referential Analysis

Referential analysis attempts to detect aspects of your data objects that refer to other
objects. The purpose behind this type of analysis is to provide insight into how the
object you are profiling is related or connected to other objects. Because you are
comparing two objects in this type of analysis, one is often referred to as the parent
object and the other as the child object. Some of the common things detected include
orphans, childless objects, redundant objects, and joins. Orphans are values that are
found in the child object, but not found in the parent object. Childless objects are
values that are found in the parent object, but not found in the child object. Redundant
attributes are values that exist in both the parent and child objects.

5-6 Oracle Warehouse Builder User's Guide

About Data Profiling

Table 5-4 and Table 5-5 show the contents of two tables that are candidates for
referential analysis. Table 54 is the child object and Table 5-5 is the parent object.

Table 5-4 Employees Table (Child)

ID Name Dept. Number City
10 Alison 17 NY
20 Rochnik 23 SF
30 Meijer 23 SF
40 Jones 15 SD

Table 5-5 Department Table (Parent)

Dept. Number Location
17 NY

18 London
20 SF

23 SF

55 HK

Referential analysis of these two objects would reveal that Dept. Number 15 from the
Employees table is an orphan and Dept. Numbers 18, 20, and 55 from the Department
table are childless. It would also reveal a join on the Dept. Number column.

Based on these results, you could derive referential rules that determine the
cardinality between the two tables.

Data Rule Profiling

In addition to attribute analysis, functional dependency, and referential analysis,
Warehouse Builder offers data rule profiling. Data rule profiling enables you to create
rules to search for profile parameters within or between objects.

This is very powerful as it enables you to validate rules that apparently exist and are
defined by the business users. By creating a data rule, and then profiling with this rule
you can verify if the data actually complies with the rule, and whether or not the rule
needs amending or the data needs cleansing.

For example, you could create a rule that Income = Salary + Bonus for the Employee
table shown in Table 5-6. You can then catch errors such as the one for employee
Alison.

Table 5-6 Sample Employee Table

ID Name Salary Bonus Income
10 Alison 1000 50 1075 X
20 Rochnik 1000 75 1075

30 Meijer 300 35 335

40 Jones 1200 500 1700

Understanding Data Quality Management 5-7

About Data Profiling

About Six Sigma

Warehouse Builder provides Six Sigma results embedded within the other data
profiling results to provide a standardized approach to data quality.

What is Six Sigma?

Six Sigma is a methodology that attempts to standardize the concept of quality in
business processes. It achieves this goal by statistically analyzing the performance of
business processes. The goal of Six Sigma is to improve the performance of these
processes by identifying the defects, understanding them, and eliminating the
variables that cause these defects.

Six Sigma metrics give a quantitative number for the number of defects for each
1,000,000 opportunities. The term "opportunities” can be interpreted as the number of
records. The perfect score is 6.0. The score of 6.0 is achieved when there are only 3.4
defects for each 1,000,000 opportunities. The score is calculated using the following
formula:

Defects Per Million Opportunities (DPMO) = (Total Defects / Total Opportunities)
*1,000,000

Defects (%) = (Total Defects / Total Opportunities)* 100%
Yield (%) = 100 - %Defects
Process Sigma = NORMSINV (1-((Total Defects) / (Total Opportunities))) + 1.5

where NORMSINYV is the inverse of the standard normal cumulative distribution.

Six Sigma Metrics for Data Profiling

Six Sigma metrics are also provided for data profiling in Warehouse Builder. When
you perform data profiling, the number of defects and anomalies discovered are
shown as Six Sigma metrics. For example, if data profiling finds that a table has a row
relationship with a second table, the number of records in the first table that do not
adhere to this row-relationship can be described using the Six Sigma metric.

Six Sigma metrics are calculated for the following measures in the Data Profile Editor:

Aggregation: For each column, the number of null values (defects) to the total
number of rows in the table (opportunities).

Data Types: For each column, the number of values that do not comply with the
documented data type (defects) to the total number of rows in the table
(opportunities).

Data Types: For each column, the number of values that do not comply with the
documented length (defects) to the total number of rows in the table
(opportunities).

Data Types: For each column, the number of values that do not comply with the
documented scale (defects) to the total number of rows in the table
(opportunities).

Data Types: For each column, the number of values that do not comply with the
documented precision (defects) to the total number of rows in the table
(opportunities).

Patterns: For each column, the number of values that do not comply with the
common format (defects) to the total number of rows in the table (opportunities).

5-8 Oracle Warehouse Builder User's Guide

About Data Correction and Augmentation

= Domains: For each column, the number of values that do not comply with the
documented domain (defects) to the total number of rows in the table
(opportunities).

= Referential: For each relationship, the number of values that do not comply with
the documented foreign key (defects) to the total number of rows in the table
(opportunities).

s Referential: For each column, the number of values that are redundant (defects) to
the total number of rows in the table (opportunities).

s Unique Key: For each unique key, the number of values that do not comply with
the documented unique key (defects) to the total number of rows in the table
(opportunities).

= Unique Key: For each foreign key, the number of rows that are childless (defects)
to the total number of rows in the table (opportunities).

= Data Rule: For each data rule applied to the data profile, the number of rows that
fail the data rule to the number of rows in the table.

About Data Correction and Augmentation

Warehouse Builder enables you to automatically create correction mappings based on
the results of data profiling. On top of these automated corrections that make use of
the underlying Warehouse Builder architecture for data quality, you can create your
own data quality mappings.

Warehouse Builder provides functionality that enables you to correct and augment
source data. While transforming the source data, you can use the following operators
to ensure data quality:

= Match-Merge Operator
See "About the Match-Merge Operator” on page 5-10
= Name and Address Operator
See "About the Name and Address Operator" on page 5-26

About the Match-Merge Operator

Duplicate records can obscure your understanding of who your customers and
suppliers really are. Eliminating duplicate records is an important activity in the data
correction process. The Match-Merge operator enables you to identify matching
records and merge them into a single record. You can define the business rules used
by the Match-Merge operator to identify records in a table that refer to the same data.
Master data management working on various systems will make use of this operator
to ensure that records are created and matched with a master record.

The Match-Merge operator enables you to:
= Use weights to determine matches between records.

s Determine matches using built-in algorithms, including the Jaro-Winkler and edit
distance algorithms.

s Cross reference data to track and audit matches.

» Create custom rules combining built-in rules for matching and merging.

Understanding Data Quality Management 5-9

About Data Correction and Augmentation

Example of Matching and Merging Customer Data

Consider how you could utilize the Match-Merge operator to manage a customer
mailing list. Use matching to find records that refer to the same person in a table of
customer data containing 10,000 rows.

For example, you can define a match rule that screens records that have similar first
and last names. Through matching, you may discover that 5 rows could refer to the
same person. You can then merge those records into one new record. For example, you
can create a merge rule to retain the values from the one of the five matched records
with the longest address. The newly merged table now contains one record for each
customer.

Table 5-7 shows records that refer to the same person prior to using the Match-Merge
operator.

Table 5-7 Sample Records

Row First Name Last Name SSN Address Unit Zip

1 Jane Doe NULL 123 Main Street NULL 22222
2 Jane Doe 111111111 NULL NULL 22222
3 J. Doe NULL 123 Main Street ~ Apt4 22222
4 NULL Smith 111111111 123 Main Street Apt4 22222
5 Jane Smith-Doe 111111111 NULL NULL 22222

Table 5-8 shows the single record for Jane Doe after using the Match-Merge operator.
Notice that the new record retrieves data from different rows in the sample.

Table 5-8 Match-Merge Results

First N\ame Last Name SSN Address Unit Zip
Jane Doe 111111111 123 Main Street Apt4 22222

Restrictions on Using the Match-Merge Operator

= Because the Match-Merge operator only accepts SQL input, you cannot map the
output of the Name and Address operator directly to the Match-Merge operator.
You must use a staging table.

= Because the Match-Merge generates only PL/SQL, you cannot map the Merge or
XREF output groups of the Match-Merge operator to a SQL only operator such as
a Sort operator or another Match-Merge operator.

Overview of the Matching and Merging Process

Matching determines which records refer to the same logical data. Warehouse Builder
provides a variety of match rules to compare records. Match rules range from an exact
match to sophisticated algorithms that can discover and correct common data entry
errors.

See Also: "Match Rules" on page 5-13 for more information about
match rules

Merging consolidates matched records into a single record that is free from duplicate

records, omissions, misspellings, and unnecessary variations. You can define merge
rules to select the preferred data values for use in the consolidated record.

5-10 Oracle Warehouse Builder User’'s Guide

About Data Correction and Augmentation

See Also: "Merge Rules" on page 5-23 for more information about
merge rules

Warehouse Builder uses the following in the matching and merging process.

Match Bins

Match bins are containers for similar records and are used to identify potential
matches. The match bin attributes are used to determine how records are grouped into
match bins. While performing matching, only records within the same match bin are
compared. Match bins limit the number of potential matches in a data set, thus
improving performance of the match algorithm.

Match Bin Attributes

Before performing matching, Warehouse Builder divides the source records into
smaller groups of similar records. Match bin attributes are the source attributes used to
determine how records are grouped. Records having the same match bin attributes
reside in the same match bin. Match bin attributes also limit match bins to manageable
sets.

Select match bin attributes carefully to fulfill the following two conflicting needs:
s Ensure that any records that match reside in the same match bin.
= Keep the size of the match bin as small as possible.

A small match bin is desirable for efficiency.

Match Record Sets

A match record set consists of one or more similar records. After matching records, a
match record set is created for each match bin. You can define the match rules that
determine if two records are similar.

Merged Records

A merged record contains data that is merged using multiple records in the match
record set. Each match record set generates its own merged record.

Matching and Merging Records

You use the Match-Merge operator to match and merge records. This operator accepts
records from an input source, determines the records that are logically the same, and
constructs a new merged record from the matched records.

Figure 5-3 describes the matching and merging process. The high-level tasks involved
in the process are:

» Constructing Match Bins
s Constructing Match Record Sets

s Constructing Merge Records

Understanding Data Quality Management 5-11

About Data Correction and Augmentation

Figure 5-3 Match-Merge Process

] ‘ Merge Rules .
-7 W Match Rules }
- | Merge Rules

Data Valid Merged
Sources Matched Sets Objects

Constructing Match Bins

The match bin is constructed using the match bin attributes. Records with the same
match bin attribute values will reside in the same match bin. A small match bin is
desirable for efficiency. For more information about match rules, see "Match Rules" on
page 5-13.

Constructing Match Record Sets

Match rules are applied to all the records in each match bin to generate one or more
match record sets. Match rules determine if two records match. A match rule is an n X
n algorithm where all records in the match bin are compared.

One important point of this algorithm is the transitive matching. Consider three
records A, B, and C. If record A is equal to record B and record B is equal to record C,
this means that record A is equal to record C.

Constructing Merge Records

A single merge record is constructed from each match record set. You can create
specific rules to define merge attributes by using merge rules. For more information
about merge rules, see "Merge Rules" on page 5-23.

Match Rules

Match rules are used to determine if two records are logically similar. Warehouse
Builder enables you to use different types of rules to match source records. You can
define match rules using the MatchMerge Wizard or the MatchMerge Editor. Use the
editor to edit existing match rules or add new rules.

Match rules can be active or passive. Active rules are generated and executed in the
order specified. Passive rules are generated but not executed.

Table 5-9 describes the types of match rules.

Table 5-9 Types of Match Rules

Match Rule Description

All Match Matches all rows within a match bin.

None Match Turns off matching. No rows match within the match bin.
Conditional Matches rows based on the algorithm you set. For more

information about Conditional match rules and how to create
one, see Conditional Match Rules on page 5-13.

Weight Matches row based on scores that you assign to the attributes.
For more information about Weight match rules and how to
create one, see "Weight Match Rules" on page 5-16.

5-12 Oracle Warehouse Builder User’s Guide

About Data Correction and Augmentation

Table 5-9 (Cont.) Types of Match Rules

Match Rule Description

Person Matches records based on the names of people. For more
information about Person match rules and how to create one, see
"Person Match Rules" on page 5-17.

Firm Matches records based on the name of the organization or firm.
For more information about Firm match rules and how to create
one, see "Firm Match Rules" on page 5-19.

Address Matches records based on postal addresses. For more
information about Address match rules and how to create one,
see "Address Match Rules" on page 5-20.

Custom Matches records based on a custom comparison algorithm that
you define. For more information about Custom match rules and
how to create one, see "Custom Match Rules" on page 5-22.

Conditional Match Rules

Conditional match rules specify the conditions under which records match.

A conditional match rule allows you to combine multiple attribute comparisons into
one composite rule. When more than one attribute is involved in a rule, two records
are considered to be a match only if all comparisons are true.

You can specify how attributes are compared using comparison algorithms.

Comparison Algorithms

Each attribute in a conditional match rule is assigned a comparison algorithm, which
specifies how the attribute values are compared. Multiple attributes may be compared
in one rule with a separate comparison algorithm selected for each.

Table 5-10 describes the types of comparisons.

Table 5-10 Types of Comparison Algorithms for Conditional Match Rules

Algorithm Description

Exact Attributes match if their values are exactly the same. For
example, "Dog" and "dog!" would not match, because the second
string is not capitalized and contains an extra character.

For data types other than STRING, this is the only type of
comparison allowed.

Standardized Exact Standardizes the values of the attributes before comparing for an
exact match. With standardization, the comparison ignores case,
spaces, and non-alphanumeric characters. Using this algorithm,
"Dog" and "dog!" would match.

Soundex Converts the data to a Soundex representation and then
compares the text strings. If the Soundex representations match,
then the two attribute values are considered matched.

Edit Distance A "similarity score" in the range 0-100 is entered. If the similarity
of the two attributes is equal or greater to the specified value, the
attribute values are considered matched.

The similarity algorithm computes the edit distance between
two strings. A value of 100 indicates that the two values are
identical; a value of zero indicates no similarity whatsoever.

For example, if the string "tootle" is compared with the string
"tootles", then the edit distance is 1. The length of the string
"tootles" is 7. The similarity value is therefore (6/7)*100 or 85.

Understanding Data Quality Management 5-13

About Data Correction and Augmentation

Table 5-10 (Cont.) Types of Comparison Algorithms for Conditional Match Rules

Algorithm

Description

Standardized Edit Distance

Partial Name

Abbreviation

Acronym

Jaro-Wrinkler

Standardized Jaro-Wrinkler

5-14 Oracle Warehouse Builder User’s Guide

Standardizes the values of the attribute before using the
Similarity algorithm to determine a match. With
standardization, the comparison ignores case, spaces, and
non-alphanumeric characters.

The values of a string attribute are considered a match if the
value of one entire attribute is contained within the other,
starting with the first word. For example, "Midtown Power"
would match "Midtown Power and Light", but would not match
"Northern Midtown Power". The comparison ignores case and
non-alphanumeric characters.

The values of a string attribute are considered a match if one
string contains words that are abbreviations of corresponding
words in the other. Before attempting to find an abbreviation,
this algorithm performs a Std Exact comparison on the entire
string. The comparison ignores case and non-alphanumeric
character.

For each word, the match rule will look for abbreviations, as
follows. If the larger of the words being compared contains all of
the letters from the shorter word, and the letters appear in the
same order as the shorter word, then the words are considered a
match.

For example, "Intl. Business Products" would match
"International Bus Prd".

The values of a string attribute are considered a match if one
string is an acronym for the other. Before attempting to identify
an acronym, this algorithm performs a Std Exact comparison on
the entire string. If no match is found, then each word of one
string is compared to the corresponding word in the other
string. If the entire word does not match, each character of the
word in one string is compared to the first character of each
remaining word in the other string. If the characters are the
same, the names are considered a match.

For example, "Chase Manhattan Bank NA" matches "CMB North
America". The comparison ignores case and non-alphanumeric
characters.

Matches strings based on their similarity value using an
improved comparison system over the Edit Distance algorithm.
It accounts for the length of the strings and penalizes more for
errors at the beginning. It also recognizes common
typographical errors.

The strings match when their similarity value is equal to or
greater than the Similarity Score that you specify. A similarity
value of 100 indicates that the two strings are identical. A value
of zero indicates no similarity whatsoever. Note that the value
actually calculated by the algorithm (0.0 to 1.0) is multiplied by
100 to correspond to the Edit Distance scores.

Eliminates case, spaces, and non-alphanumeric characters before
using the Jaro-Winkler algorithm to determine a match.

About Data Correction and Augmentation

Table 5-10 (Cont.) Types of Comparison Algorithms for Conditional Match Rules

Algorithm Description

Double Metaphone Matches phonetically similar strings using an improved coding
system over the Soundex algorithm. It generates two codes for
strings that could be pronounced in multiple ways. If the
primary codes match for the two strings, or if the secondary
codes match, then the strings match. The Double Metaphone
algorithm accounts for alternate pronunciations in Italian,
Spanish, French, and Germanic and Slavic languages. Unlike the
Soundex algorithm, Double Metaphone encodes the first letter,
so that 'Kathy' and 'Cathy’ evaluate to the same phonetic code.

Creating Conditional Match Rules
To define a conditional match rule, complete the following steps:

1. On the top portion of the Match Rules tab or the Match Rules page, select
Conditional in the Rule Type column.

A Details section is displayed.
2. Click Add to add a new row.
3. Select an attribute in the Attribute column.

4. In the Algorithm column, select a comparison algorithm. See Table 5-10 for
descriptions.

5. Specify a similarity score for the Edit Distance, Standardized Edit Distance,
Jaro-Winkler, or Standardized Jaro-Winkler algorithms.

6. Select a method for handling blanks.

Weight Match Rules

A weighted match rule allows you to assign an integer weight to each attribute
included in the rule. You must also specify a threshold. For each attribute, the
Match-Merge operator multiplies the weight by the similarity score, and sums the
scores. If the sum equals or exceeds the threshold, the two records being compared are
considered a match.

Weight match rules are most useful when you need to compare a large number of
attributes, without having a single attribute that is different causing a non-match, as
can happen with conditional rules.

Weight rules implicitly invoke the similarity algorithm to compare two attribute
values. This algorithm returns an integer, percentage value in the range 0-100, which
represents the degree to which two values are alike. A value of 100 indicates that the
two values are identical; a value of zero indicates no similarity whatsoever.

Example of Weight Match Rules

Table 5-11 displays the attribute values contained in two separate records that are
read in the following order.

Table 5-11 Example of Weight Match Rule

Record Number First Name Middle Name Last Name
Record 1 Robert Steve Paul
Record 2 Steven Paul

Understanding Data Quality Management 5-15

About Data Correction and Augmentation

You define a match rule that uses the Edit Distance similarity algorithm. The Required
Score to Match is 120. The attributes for first name and middle name are defined with
a Maximum Score of 50 and Score When Blank of 20. The attribute for last name has a
Maximum Score of 80 and a Score When Blank of 0.

Consider an example of the comparison of Record 1 and Record 2 using the weight
match rule.

» Since first name is blank for Record 2, the Blank Score = 20.

s The similarity of middle name in the two records is 0.83. Since the weight assigned
to this attribute is 50, the similarity score for this attribute is 43 (0.83 X 50).

= Since the last name attributes are the same, the similarity score for the last name is
1. The weighted score is 80 (1 X 80).

The total score for this comparison is 143 (20+43+80). Since this is more than the value
defined for Required Score to Match, the records are considered a match.

Creating Weight Match Rules

To use the Weight match rule, complete the following steps:

1. On the Match Rules tab or the Match Rules page, select Weight as the Rule Type.
The Details tab is displayed at the bottom of the page.

2. Select Add at the bottom of the page to add a new row.

3. For each row, select an attribute to add to the rule using the Attribute column.

4. In Maximum Score, assign a weight to each attribute. Warehouse Builder
compares each attribute using a similarity algorithm that returns a score between 0
and 100 to represent the similarity between the rows.

5. In Score When Blank, assign a value to be used when the attribute is blank in one
of the records.

6. In Required score to match, assign an overall score for the match.

For two rows to be considered a match, the total counts must be greater than the
value specified in the Required score to match parameter.

Person Match Rules

Built-in Person rules provide an easy and convenient way for matching names of
individuals. Person match rules are most effective when the data has first been
corrected using the Name and Address operator.

When you use Person match rules, you must specify which data within the record
represents the name of the person. The data can come from multiple columns. Each
column must be assigned an input role that specifies what the data represents.

To define a Person match rule, you must define the Person Attributes that are part of
the rule. For example, you can create a Person match rule that uses the Person
Attributes first name and last name for comparison. For each Person Attribute, you
must define the Person Role that the attribute uses. Next you define the rule options
used for the comparison. For example, while comparing last names, you can specify
that hyphenated last names should be considered a match.

5-16 Oracle Warehouse Builder User's Guide

About Data Correction and Augmentation

Person Roles

Table 5-12 describes the roles for different parts of a name that are used for matching.
On the Match Rules page or Match Rules page, use the Roles column on the Person
Attributes tab to define person details.

Table 5-12 Name Roles for Person Match Rules

Role Description

Prename Prenames are compared only if the following are true:

= The Last_name and, if present, the middle name (Middle_
name_std, Middle_name_2_std, and Middle_name_3_std
roles) in both records match.

s The "Mrs. Match" option is selected.

» Either record has a missing First_name_std.

First Name Standardized Compares the first names. By default, the first names must
match exactly, but you can specify other comparison options
as well.

First names match if both are blank. A blank first name will
not match a non-blank first name unless the Prename role has
been assigned and the "Mrs. Match" option is set. If a Last_
name role has not been assigned, a role of First_name_std
must be assigned.

Middle Name Standardized, = Compares the middle names. By default, the middle names

Middle Name 2 Standardized, must match exactly, but other comparison options can be

Middle Name 3 Standardized specified. If more than one middle name role is assigned,
attributes assigned to the different roles are cross-compared.

For example, values for Middle_name_std will be compared
not only against other Middle_name_std values, but also
against Middle_name_2_std, if that role is also assigned.
Middle names match if either or both are blank. If any of the
middle name roles are assigned, the First_name_std role must
also be assigned.

Last Name Compares the last names. By default, the last names must
match exactly, but you can specify other comparison options.
The last names match if both are blank, but not if only one is
blank.

Maturity Post Name Compares the post name, such as "Jr.", "III," and so on. The
post names match if the values are exactly the same, or if
either value is blank.

Person Details

Table 5-13 describes the options that determine a match for person match rules. Use
the Details tab of the Match Rules tab or the Match Rules page to define person details.

Table 5-13 Options for Person Match Rule

Option Description
Detect switched name Detects switched name orders such as matching 'Elmer Fudd' to
order 'Fudd Elmer'. You can select this option if you selected First Name

and Last Name roles for attributes on the Person Attributes tab.

Match on initials Matches initials to names such as 'R.' and 'Robert". You can select
this option for first name and middle name roles.

Match on substrings Matches substrings to names such as 'Rob' to 'Robert'. You can
select this option for first name and middle name roles.

Understanding Data Quality Management 5-17

About Data Correction and Augmentation

Table 5-13 (Cont.) Options for Person Match Rule

Option Description

Similarity Score Records are considered a match if the similarity is greater than or
equal to score. For example, "Susan" will match "Susen" if the score
is less than or equal to 80.

Uses a similarity score to determine a match, as calculated by the
Edit Distance or Jaro-Winkler algorithms. A value of 100 requires
an exact match, and a value of 0 requires no similarity whatsoever.

Match on Phonetic Codes Determines a match using either the Soundex or the Double
Metaphone algorithms.

Detect compound name Matches compound names to names such as 'De Anne' to 'Deanne’.
You can select this option for the first name role.

"Mrs" Match Matches prenames to first and last names such as 'Mrs. Washington'
to 'George Washington'. You can select this option for the prename
role.

Match hyphenated Matches hyphenated names to unhyphenated names such as

names "Reese-Jones" to "Reese". You can select this option for the last name
role.

Detect missing hyphen The operator detects missing hyphens, such as matching "Hillary
Rodham Clinton" to "Hillary Rodham-Clinton". You can select this
option for the last name role.

Creating Person Match Rules
To define a Person match rule, complete the following steps:

1. On the Match Rules tab, select Person as the Rule Type.
The Person Attributes tab and Details tab are displayed at the bottom of the page.

2. In the left panel of the Person Attributes tab, select the attributes that describe a
full name and use the right arrow to move them to Name Roles Attributes.

3. For each attribute, select the role it plays in a name.

You must define either the Last Name or First Name Standardized for the match
rule to be effective. See Table 5-12 for the types of roles you can assign.

4. Select the Details tab and select the applicable options as listed in Table 5-13.

Firm Match Rules

Built-in Firm match rules provide an easy and convenient way for matching business
names. Firm match rules are most effective when the data has first been corrected
using the Name and Address operator. Similar to the Person rule, this rule requires
users to set what data within the record represents the name of the firm. The data can
come from multiple columns and each column specified must be assigned an input
role that indicates what the data represents.

Note that you need not assign a firm role to every attribute, and not every role needs
to be assigned to an attribute. The attributes assigned to firm roles are used in the
match rule to compare the records. The attributes are compared based on the role they
have been assigned and other comparison options have you set. For a complete list of
firm roles and how each role is treated in a firm match rule, see "Firm Roles" on

page 5-19.

5-18 Oracle Warehouse Builder User's Guide

About Data Correction and Augmentation

Firm Roles

Firm roles define the parts of a firm name that are used for matching. The options you
can select for firm role are Firm1 or Firm?2. If you select one attribute, for firm name,
select Firm1 as the role. If you selected two attributes, designate one of them as Firm1
and the other as Firm2.

» Firm1: If this role is assigned, the business names represented by Firm1 are
compared. Firm1 names will not be compared against Firm2 names unless if the
Cross-match firm1 and firm2 box is checked. By default, the firm names must
match exactly; but other comparison options can also be specified. Firm1 names do
not match if either or both names are blank.

» Firm2: If this role is assigned, the values of the attribute assigned to Firm2 will be
compared. Firm2 names will not be compared against Firm1 names unless if the
Cross-match firm1 and firm2 box is checked. By default, the firm names must
match exactly; but other comparison options can also be specified. Firm2 names do
not match if either or both names are blank. If a Firm1 role is not assigned, a Firm2
roles must be assigned.

Firm Details

Table 5-14 describes the rule options you can specify for each component of the firm
name.

Table 5-14 Options for Firm Rules

Option Description

Strip noise words Removes the following words from Firm1 and Firm2 before
matching: THE, AND, CORP, CORPORATION, CO,
COMPANY, INC, INCORPORATED, LTD, TO, OF, and BY.

Cross-match firm 1 and firm When comparing two records for matching, in addition to
2 matching firm1 to firm1 and firm?2 to firm?2 of the respective
records, match firm1 against firm2 for the records.

Match on partial firm name Uses the Partial Name algorithm to determine a match. For
example, match "Midtown Power" to "Midtown Power and
Light".

Match on abbreviations Uses the Abbreviation algorithm to determine a match. For
example, match "International Business Machines" to "IBM".

Match on acronyms Uses the Acronym algorithm to determine a match. For example,
match "CMB, North America" to "Chase Manhattan Bank, NA".

Similarity score Uses a similarity score to determine a match, as calculated by the
Edit Distance or Jaro-Winkler algorithms. Enter a value between
0 and 100 as the minimum similarity value required for a match.
A value of 100 requires an exact match, and a value of 0 requires
no similarity whatsoever.

Two records are considered as a match if the similarity is greater
than or equal to the value of similarity score.

Creating Firm Match Rules
To define a Firm match rule, complete the following steps:

1. On the Match Rules tab or the Match Rules page, select Firm as the Rule Type.
The Firm Attributes tab and Details tab are displayed at the bottom of the page.

2. In the left panel of the Firm Attributes tab, select one or two attributes that
represent the firm name and click the right shuttle button.

Understanding Data Quality Management 5-19

About Data Correction and Augmentation

The attributes are moved to the Firm Roles box.

3. For each attribute, click Roles. From the list, select Firm 1 for the first attribute,
and Firm 2 for the second attribute, if it exists.

4. On the Details tab, select the applicable options. For more details, see "Firm
Details" on page 5-19.

Address Match Rules

Address Match rules provide a method of matching records based on postal
addresses. Address match rules are most effective when the data has first been
corrected using a Name and Address operator.

Address Rules work differently depending on whether the address being processed
has been corrected or not. Generally, corrected addresses have already been identified
in a postal matching database, and are therefore not only syntactically correct, but are
legal and existing addresses according to the Postal Service of the country containing
the address. Corrected addresses can be processed more quickly, since the match rule
can make certain assumptions about their format.

Uncorrected addresses may be syntactically correct, but have not been found in a
postal matching database. Addresses may have not been found because they are not in
the database, or because there is no postal matching database installed for the country
containing the address. Address match rules determine whether an address has been
corrected based on the Is_found role. If Is_found role is not assigned, then the match
rule performs the comparisons for both the corrected and uncorrected addresses.

To create an Address match rule, assign address roles to the various attributes. The
attributes assigned to address roles are used in the match rule to compare the records.
Attributes are compared depending on which role they have been assigned, and what
other comparison options have been set.

Address Roles
Table 5-15 describes the address roles you can select for each part of an address.

Table 5-15 Address Roles

Role Description

Primary Address =~ Compares the primary addresses. Primary addresses can be, for example,
street addresses (100 Main Street") or PO boxes ("PO Box 100"). By
default, the primary addresses must match exactly, but a similarity
option can also be specified.

The Primary_address role must be assigned.

Unit Number Unit numbers (such as suite numbers, floor numbers, or apartment
numbers) are compared if the primary addresses match. The unit
numbers match if both are blank, but not if one is blank, unless the
Match on blank secondary address option is set. If the Allow differing
secondary address is set, the unit numbers are ignored.

PO Box Compares the Post Office Boxes. The PO Box is just the number portion
of the PO Box ("100"), and is a subset of the primary address, when the
primary address represents a PO Box ("PO Box 100"). If the primary
address represents a street address, the PO Box will be blank.

Dual Primary The Dual_primary_address is compared against the other record's Dual
Address primary_address and Primary_address to determine a match.

5-20 Oracle Warehouse Builder User’'s Guide

About Data Correction and Augmentation

Table 5-15 (Cont.) Address Roles

Role Description

Dual Unit Number Compares the Dual_unit_number address with the Dual_unit_number
and Unit_number of the other record. The unit numbers will match if one
or both are blank. To assign the Dual_unit_number role, the Dual_
primary_address role must also be assigned.

Dual PO Box Dual_PO_Box address of a record is compared with the Dual_PO_Box
and the PO_Box of the other record. To assign the Dual_PO_Box role, the
Dual_primary_address role must also be assigned.

City Compeares the cities for uncorrected addresses. For corrected addresses,
the cities are only compared if the postal codes do not match. If both City
and State roles match, then the address line roles, such as Primary_
address, can be compared.

By default, the cities must match exactly. But you may specify a last line
similarity option. The cities match if both are blank, but not if only one is
blank. If the City role is assigned, then the State role must also be
assigned.

State Assign this role only when also assigning the City role.

The states are compared for uncorrected addresses. For corrected
addresses, the states are only compared if the postal codes do not match.
If both State and City roles match, then the address line roles, such as
Primary_address, can be compared. By default, the states must match
exactly, but a last line similarity option may be specified. The states
match if both are blank, but not if only one is blank. If the State role is
assigned, then the City role must also be assigned.

Postal Code For uncorrected address data, the operator does not use Postal Code.

The postal codes are compared for corrected addresses. For uncorrected
addresses, the Postal_code role is not used. To match, the postal codes
must be exactly the same. The postal codes are not considered a match if
one or both are blank. If the postal codes match, then the address line
roles, such as Primary_address, can be compared. If the postal codes do
not match, City and State roles are compared to determine whether the
address line roles should be compared.

Is Found The Is_found_flag attributes are not compared, but instead are used to
determine whether an address has been found in a postal matching
database, and therefore represents a legal address according to the postal
service of the country containing the address. This determination is
important because the type of comparison done during matching
depends on whether the address has been found in the postal database
or not.

Address Details
Table 5-16 describes the options for determining a match for an address rule.

Table 5-16 Options for Address Roles

Option Description

Allow differing secondary Allow addresses to match even if the unit numbers are not
address null and are different.

Match on blank secondary Allow addresses to match even if exactly one unit number is
address null.

Match on either street or post Matches records if either the street address or the post office
office box box match.

Understanding Data Quality Management 5-21

About Data Correction and Augmentation

Table 5-16 (Cont.) Options for Address Roles

Option Description

Address line similarity Match if address line similarity >= the score. All spaces and
non-alpanumeric characters are removed before the similarity
is calculated.

Last line similarity Match is the last line similarity >= score. The last line consists
of city and state. All spaces and non-alphanumeric characters
are removed before the similarity is calculated.

Creating Address Match Rules

To define an Address match rule, complete the following steps:
1. On the Match Rules tab or the Match Rules page, select Address as the Rule Type.

The Address Attributes tab and Details tab are displayed at the bottom of the
page.
2. In the left panel of the Address Attributes tab, select the attribute that represents

the primary address. Use the right shuttle key to move it to the Address Roles
Attributes column.

3. Click Role Required and designate that attribute as the Primary Address.

You must designate one attribute as the primary address. If you do not assign the
Primary Address role, the match rule is invalid.

4. Add other attributes and designate their roles as necessary. See Table 5-15 for the
types of roles you can assign.

5. Select the Details tab and select the applicable options as listed in Table 5-16.

Custom Match Rules

Custom match rules enable you to write your own comparison algorithms to match
records. You can use any input attributes or match functions within this comparison.
You can use an active custom rule to control the execution of passive rules.

Consider the following three passive built-in rules:
s NAME_MATCH: built-in name rule.

s ADDRESS_MATCH: built-in address rule.

s TN_MATCH: built-in conditional rule.

You can create a custom rule to specify that two records can be considered a match if
any two of these rules are satisfied. Example 5-1 describes the PL/SQL code used to
create the custom match rule that implements this example.

Example 5-1 Creating a Custom Rule Using Existing Passive Rules

BEGIN
RETURN (
(NAME_MATCH (THIS_, THAT) AND ADDRESS_MATCH (THIS_, THAT))
OR
(NAME_MATCH (THIS_, THAT) AND TN_MATCH (THIS_, THAT))
OR
(ADDRESS_MATCH (THIS_, THAT) AND TN_MATCH (THIS_, THAT_))
)
END;

5-22 Oracle Warehouse Builder User’s Guide

About Data Correction and Augmentation

Merge Rules

Creating Custom Match Rules
To define a Custom match rule, complete the following steps:

1.

On the Match Rules tab or the Match Rules page, select Custom as the Rule Type.

A Details field is displayed at the bottom of the page with the skeleton of a
PL/SQL program.

Click Edit to open the Custom Match Rules Editor.

For more information about using the editor, select Help Topic from the Help
menu.

To enter PL/SQL code, use any combination of the following:
= Toread in a file, select Open File from the Code menu.

= To enter text, first position the cursor using the mouse or arrow keys, then
begin typing. You can also use the commands on the Edit and Search menus.

s To reference any function, parameter, or transformation in the navigation tree,
first position the cursor, then double-click or drag-and-drop the object onto
the Implementation field.

To validate your code, select Validate from the Test menu.
The validation results appear on the Messages tab.
To save your code, select Save from the Code menu.

To close the Custom Match Rules Editor, select Close from the Code menu.

Matching produces a set of records that are logically the same. Merging is the process
of creating one record from the set of matched records. A Merge rule is applied to
attributes in the matched record set to obtain a single value for the attribute in the
merged record.

You can define one Merge rule for all the attributes in the Merge record or define a
rule for each attribute.

Table 5-17 describes the types of merge rules.

Table 5-17 Merge Rule Types

Merge Rule Description

Any Uses the first non-blank value.

Match ID Merges records that have already been output from another Match-Merge
operator.

Rank Ranks the records from the match set. The associated attribute from the

highest ranked record will be used to populate the merge attribute value.

Sequence Specify a database sequence for this rule. The next value of the sequence

will be used for the value.

Min Max Specify an attribute and a relation to choose the record to be used as a

source for the merge attribute.

Copy Choose a value from a different previously merged value.

Understanding Data Quality Management 5-23

About Data Correction and Augmentation

Table 5-17 (Cont.) Merge Rule Types

Merge Rule Description

Custom Create a PL/SQL package function to select the merge value. The operator
will provide the signature of this function. The user is responsible for the
implementation of the rule from "BEGIN" to "END;" The matched records
and merge record are parameters for this function.

Any Record Identical to the Any rule, except that an Any Record rule applies to
multiple attributes.

Rank Record Identical to the Rank rule, except that a Rank Record rule applies to
multiple attributes.

Min Max Record Identical to the Min Max rule, except that a Min Max Record rule applies
to multiple attributes.

Custom Record Identical to the Custom rule, except that a Custom Record rule applies to
multiple attributes.

Using a Match-Merge Operator

The Match-Merge operator has one input group and two output groups, Merge and
Xref. The source data is mapped to the input group. The Merge group contains records
that have been merged after the matching process is complete. The Xref group
provides a record of the merge process. Every record in the input group will have a
corresponding record in the Xref group. This record may contain the original attribute
values and the merged attributes.

The Match-Merge operator uses an ordered record stream as input. From this stream,
it constructs the match bins. From each match bin, matched sets are constructed. From
each matched set, a merged record is created. The initial query will contain an ORDER
BY clause consisting of the match bin attributes.

To match and merge source data using the Match-Merge operator:

1. Drag and drop the operator the operators representing the source data and the
operator representing the merged data onto the mapping editor canvas:

For example, if your source data is stored in a table, and the merged data will be
stored in another table, drag and drop two Table operators that are bound to the
tables onto the canvas.

2. Drag and drop a Match-Merge operator onto the mapping editor canvas.
The MatchMerge wizard is displayed.

3. On the Name and Address page, the Name field contains a default name for the
operator. You can change this name or accept the default name.

You can enter an optional description for the operator.

4. On the Groups page, you can rename groups or provide descriptions for them.
This page contains the following three groups:
= INGRP1: Contains input attributes.

= MERGE: Contains the merged records (usually this means fewer records than
INGRP1).

= XREF: Contains the link between the original and merged data sets. This is the
tracking mechanism used when a merge is performed.

5. On the Input Connections page, select the attributes that will be used as input to
the Match-Merge operator.

5-24 Oracle Warehouse Builder User’s Guide

About Data Correction and Augmentation

10.

11.

The Available Attributes section of this page displays nodes for each operator on
the canvas. Expand a node to display the attributes contained in the operator,
select the attributes, and use the shuttle arrows to move selected attributes to the
Mapped Attributes section.

Note: The Match-Merge operator requires an ordered input data set. If you have
source data from more than one operators, use a Set Operation operator to
combine the data and obtain an ordered data set.

On the Input Attributes page, review the attribute data types and lengths.

In general, if you go through the wizard, you need not change any of these values.
Warehouse Builder populates them based on the output attributes.

On the Merge Output page, select the attributes to be merged from the input
attributes.

These attributes appear in the Merge output group (the cleansed group). The
attributes in this group retain the name and properties of the input attributes.

On the Cross Reference Output page, select attributes for the XREF output group.

The Source Attributes section contains all the input attributes and the Merge
attributes you selected on the Merge Output page. The attributes from the Merge
group are prefixed with MM. The other attributes define the unmodified input
attribute values. Ensure that you select at least one attribute from the Merge group
that will provide a link between the input and Merge groups.

On the Match Bins page, specify the match bin attributes. These attributes are used
to group source data into match bins.

After the first deployment, you can choose whether to match and merge all
records or only new records. To match and merge only the new records, select
Match New Records Only.

You must designate a condition that identifies new records. The match-merge
operator treats the new records in the following way:

= No matching is performed for any records in a match bin unless the match bin
contains new record.

s Old records will not be compared with each other.

= A matched record set will not be presented to the merge processing unless the
matched record set contains a new record.

= An old record will not be presented to the Xref output unless the record is
matched to a new record.

For more information about match bin attributes and match bins, see "Overview of
the Matching and Merging Process" on page 5-11.

On the Define Match Rules page, define the match rules that will be used to match
the source data.

Match rules can be active or passive. A passive match rule is generated but not
automatically invoked. You must define at least one active match rule.

For more information about the match rules, the types of match rules you can
define, and the steps used to define them, see "Match Rules" on page 5-13.

On the Merge Rules page, define the rules that will be used to merge the sets of
matched records created from the source data.

Understanding Data Quality Management 5-25

About Data Correction and Augmentation

You can define Merge rules for each attribute in a record or for the entire record.
Warehouse Builder provides different types of Merge rules.

For more information about the type of Merge rules and the steps to create Merge
rules, see "Merge Rules" on page 5-23.

12. On the Summary page, review your selections. Click Back to modify any selection
you made. Click Next to complete creating the Match-Merge operator.

13. Map the Merge group of the Match-Merge operator to the input group of the
operator that stores the merged data.

About the Name and Address Operator

After matching and merging records, you can further validate information about your
customers and suppliers, and discover additional errors and inconsistencies.
Warehouse Builder parses the names and addresses, and uses methods specific to this
type of data, such as matching common nicknames and abbreviations. You can
compare the input data to the data libraries supplied by third-party name and address
cleansing software vendors, which can augment your records with information such
as postal routes and geographic coordinates.

Successful delivery and lower postage rates are not the only reasons to cleanse name
and address data. You will get better results from data analysis when the results are
not skewed by duplicate records and incomplete information.

Warehouse Builder enables you to perform name and address cleansing on data using
the Name and Address operator. The Name and Address operator identifies and
corrects errors and inconsistencies in name and address source data by comparing
input data to the data libraries supplied by third-party name and address cleansing
software vendors. You can purchase the data libraries directly from these vendors.

Note: The Name and Address operator requires separate licensing
and installation of third-party name and address cleansing
software. Refer to the Oracle Warehouse Builder Installation and
Administration Guide for more information.

The errors and inconsistencies corrected by the Name and Address operator include
variations in address formats, use of abbreviations, misspellings, outdated
information, inconsistent data, and transposed names. The operator fixes these errors
and inconsistencies by:

= Parsing the name and address input data into individual elements.

» Standardizing name and address data, using standardized versions of nicknames
and business names and standard abbreviations of address components, as
approved by the postal service of the appropriate country. Standardized versions
of names and addresses facilitate matching and householding, and ultimately help
you obtain a single view of your customer.

» Correcting address information such as street names and city names. Filtering out
incorrect or undeliverable addresses can lead to savings on marketing campaigns.

= Augmenting names and addresses with additional data such as gender, postal
code, country code, apartment identification, or business and consumer
identification. You can use this and other augmented address information, such as
census geocoding, for marketing campaigns that are based on geographical
location.

5-26 Oracle Warehouse Builder User’'s Guide

About Data Correction and Augmentation

Augmenting addresses with geographic information facilitates geography-specific
marketing initiatives, such as marketing only to customers in large metropolitan
areas (for example, within an n-mile radius from large cities); marketing only to
customers served by a company's stores (within an x-mile radius from these
stores). Oracle Spatial, an option with Oracle Database, and Oracle Locator,
packaged with Oracle Database, are two products that you can use with this
feature.

The Name and Address operator also enables you to generate postal reports for
countries that support address correction and postal matching. Postal reports often
qualify you for mailing discounts. For more information, see "About Postal Reporting"
on page 5-30.

Example: Correcting Address Information

This example follows a record through a mapping using the Name and Address
operator. This mapping also uses a Splitter operator to demonstrate a highly
recommended data quality error handling technique.

Example Input

In this example, the source data contains a Customer table with the row of data shown
in Table 5-18.

Table 5-18 Sample Input to Name and Address Operator

Address Column Address Component

Name Joe Smith

Street Address 8500 Normandale Lake Suite 710
City Bloomington

ZIP Code 55437

The data contains a nickname, a last name, and part of a mailing address, but it lacks
the customer's full name, complete street address, and the state in which he lives. The
data also lacks geographic information such as latitude and longitude, which can be
used to calculate distances for truckload shipping.

Example Steps

This example uses a mapping with a Name and Address operator to cleanse name and
address records, followed by a Splitter operator to load the records into separate
targets depending on whether they were successfully parsed. This section explains the
general steps required to design such a mapping.

To make the listed changes to the sample record:
1. In the Mapping Editor, begin by adding the following operators to the canvas:

= A CUSTOMERS table from which you extract the records. This is the data
source. It contains the data in Table 5-18.

= A Name and Address operator. This action starts the Name and Address
Wizard. Follow the steps of the wizard.

= A Splitter operator. For information on using this operator, see "Splitter
Operator” in the Warehouse Builder Online Help.

Understanding Data Quality Management 5-27

About Data Correction and Augmentation

s Three target operators into which you load the successfully parsed records,
the records with parsing errors, and the records whose addresses are parsed
but not found in the postal matching software.

2. Map the attributes from the CUSTOMERS table to the Name and Address operator
ingroup. Map the attributes from the Name and Address operator outgroup to the
Splitter operator ingroup.

You are not required to use the Splitter operator, but it provides an important
function in separating good records from problematic records.

3. Define the split conditions for each of the outgroups in the Splitter operator and
map the outgroups to the targets.

Figure 5-4 shows a mapping designed for this example. The data is mapped from the
source table to the Name and Address operator, and then to the Splitter operator. The
Splitter operator separates the successfully parsed records from those that have errors.
The output from OUTGRP1 is mapped to the CUSTOMERS_GOOD target. The split
condition for OUTGRP2 is set such that records whose Is Parsed flagis False are
loaded to the NOT_PARSED target. That is, the Split Condition for OUTGRP2 is set as
INGRP1.ISPARSED="F'. The Records in the REMAINING_RECORDS group are
successfully parsed, but their addresses are not found by the postal matching software.
These records are loaded to the PARSED_NOT_FOUND target.

Figure 5-4 Name and Address Operator Used with a Splitter Operator in a Mapping

E | B customERS_GoOD 7]
FUSTOMERS = |BINOUTGRPI = B
» FIRSTHAME >[4
» LASTMAME &, o
“Tnane_min_sooress 72| [Eeruri =rs / » PRIMARYA.. %, o |7
l 1 | 1 | /
= BINGRP 5 INGRP 4| /7 [E notrarsen <]
- "-" = . > BINOUTGRPY 5 B
FIRSTMAME %, = e = W OIUTG RP =
LASTHAME %: » = = w > FIRSTMAME % © |
d » LASTNAME 3 © |4
B PARSED_HOT FOUnD 71 |
» FIRSTHAME 2, o |4
» LASTNAME %, @
Example Output

If you run the mapping designed in this example, the Name and Address operator
standardizes, corrects, and completes the address data from the source table. In this
example, the target table contains the address data as shown in Table 5-19. Compare it
with the input record from Table 5-18 on page 5-27.

Table 5-19 Sample Output from Name and Address Operator

Address Column Address Component

First Name JOSEPH
Standardized
Last Name SMITH

Primary Address 8500 NORMANDALE LAKE BLVD
Secondary Address STE 710

5-28 Oracle Warehouse Builder User’'s Guide

About Data Correction and Augmentation

Table 5-19 (Cont) Sample Output from Name and Address Operator

Address Column

Address Component

City BLOOMINGTON

State MN

Postal Code 55437-3813

Latitude 44.849194

Longitude -093.356352

Is Parsed True or False. Indicates whether a record can be separated into
individual elements.

Is Good Name True or False. Indicates whether the name was found in a postal
database.

Is Good Address True or False. Indicates whether the address was found in a postal
database or was parsed successfully.

Is Found True or False. Indicates whether the address was found in a postal

database.

Name Warning True or False. Indicates whether problems occurred in parsing the

name.

Street Warning True or False. Indicates whether problems occurred in parsing the
address.

City Warning True or False. Indicates whether problems occurred in parsing the city

name.

In this example, the following changes were made to the input data:

= Joe Smith was separated into separate columns for First_Name_Standardized
and Last_Name.

s Joe was standardized into JOSEPH and Suite was standardized into STE.
s Normandale Lake was corrected to NORMANDALE LAKE BLVD.

= The first portion of the postal code, 55437, was augmented with the ZIP+4 code to
read 55437-3813.

» Latitude and longitude locations were added.

= The records were tested in various ways, and the good records are directed to a
different target from the ones that have problems.

Handling Errors in Name and Address Data

Name and Address parsing, like any other type of parsing, depends on identification
of keywords and patterns containing those keywords. Free-form name and address
data difficult to parse because the keyword set is large and it is never 100% complete.
Keyword sets are built by analyzing millions of records, but each new data set is likely
to contain some undefined keywords.

Because most free-form name and address records contain common patterns of
numbers, single letters, and alphanumeric strings, parsing can often be performed
based on just the alphanumeric patterns. However, alphanumeric patterns may be
ambiguous or a particular pattern may not be found. Name and Address parsing
errors set parsing status codes that you can use to control data mapping.

Understanding Data Quality Management 5-29

About Data Correction and Augmentation

Since the criteria for quality vary among applications, numerous flags are available to
help you determine the quality of a particular record. For countries with postal
matching support, use the Is Good Group flag, because it verifies that an address is
a valid entry in a postal database. Also use the Is Good Group flag for U.S. Coding
Accuracy Support System (CASS) and Canadian Software Evaluation and Recognition
Program (SERP) certified mailings.

Unless you specify postal reporting, an address does not have to be found in a postal
database to be acceptable. For example, street intersection addresses or building
names may not be in a postal database, but they may still be deliverable. If the Is
Good Group flag indicates failure, additional error flags can help determine the
parsing status.

The Is Parsed flag indicates success or failure of the parsing process. If Is Parsed
indicates parsing success, you may still wish to check the parser warning flags, which
indicate unusual data. You may want to check those records manually.

If Is Parsed indicates parsing failure, you must preserve the original data to
prevent data loss.

Use the Splitter operator to map successful records to one target and failed records to
another target.

About Postal Reporting

All address lists used to produce mailings for discounted automation postal rates must
be matched by postal report-certified software. Certifications depend on the
third-party vendors of name and address software and data. The certifications may
include the following:

= United States Postal Service: Coding Accuracy Support System (CASS)
= Canada Post: Software Evaluation and Recognition Program (SERP)

= Australia Post: Address Matching Approval System (AMAS)

United States Postal Service CASS Certification

The Coding Accuracy Support System (CASS) was developed by the United States
Postal Service (USPS) in cooperation with the mailing industry. The system provides
mailers a common platform to measure the quality of address-matching software,
focusing on the accuracy of five-digit ZIP Codes, ZIP+4 Codes, delivery point codes,
and carrier route codes applied to all mail. All address lists used to produce mailings
for automation rates must be matched by CASS-certified software.

To meet USPS requirements, the mailer must submit a CASS report in its original form
to the USPS.

Canada Post SERP Certification

Canada Post developed a testing program called Software Evaluation and Recognition
Program (SERP), which evaluates software packages for their ability to validate, or
validate and correct, mailing lists to Canada Post requirements. Postal programs that
meet SERP requirements are listed on the Canada Post Web site.

Canadian postal customers who use Incentive Lettermail, Addressed Admail, and
Publications Mail must meet the Address Accuracy Program requirements. Customers
can obtain a Statement of Accuracy by comparing their databases to Canada Post's
address data.

5-30 Oracle Warehouse Builder User's Guide

About Quality Monitoring

Australia Post AMAS Certification

The Address Matching Approval System (AMAS) was developed by Australia Post to
improve the quality of addressing. It provides a standard by which to test and
measure the ability of address-matching software to:

» Correct and match addresses against the Postal Address File (PAF).

= Append a unique Delivery Point Identifier (DPID) to each address record, which is
a step toward barcoding mail.

AMAS enables companies to develop address matching software which:
» Prepares addresses for barcode creation.

= Ensures quality addressing.

= Enables qualification for discounts on PreSort letter lodgements.

PreSort Letter Service prices are conditional upon customers using AMAS Approved
Software with Delivery Point Identifiers (DPIDs) being current against the latest
version of the PAF.

A declaration that the mail was prepared appropriately must be made when using the
Presort Lodgement Document, available from post offices.

About Data Rules

Data rules are definitions for valid data values and relationships that can be created in
Warehouse Builder. They determine legal data within a table or legal relationships
between tables. Data rules help ensure data quality. They can be applied to tables,
views, dimensions, cubes, materialized views, and external tables. Data rules are used
in many situations including data profiling, data and schema cleansing, and data
auditing.

The metadata for a data rule is stored in the workspace. To use a data rule, you apply
the data rule to a data object. For example, you create a data rule called gender_rule
that specifies that valid values are 'M' and 'F'. You can apply this data rule to the emp_
gender column of the Employees table. Applying the data rule ensures that the
values stored for the emp_gender column are either 'M' or 'F'. You can view the
details of the data rule bindings on the Data Rule tab of the Data Object Editor for the
Employees table.

There are two ways to create a data rule. A data rule can be derived from the results of
data profiling, or it can be created using the Data Rule Wizard. For more information
about data rules, see "Using Data Rules" on page 5-42.

About Quality Monitoring

Quality monitoring builds on your initial data profiling and data quality initiatives. It
enables you to monitor the quality of your data over time. You can define the business
rules to which your data should adhere.

To monitor data using Warehouse Builder you need to create data auditors. Data
auditors ensure that your data complies with the business rules you defined. You can
define the business rules that your data should adhere to using a feature called data
rules.

Understanding Data Quality Management 5-31

Performing Data Profiling

About Data Auditors

Data auditors are processes that validate data against a set of data rules to determine
which records comply and which do not. Data auditors gather statistical metrics on
how well the data in a system complies with a rule by auditing and marking how
many errors are occurring against the audited data.

Data auditors have thresholds that allow you to create logic based on the fact that too
many non-compliant records can divert the process flow into an error or notification
stream. Based on this threshold, the process can choose actions. In addition, the audit
results can be captured and stored for analysis purposes.

Data auditors can be deployed and executed ad-hoc, but they are typically run to
monitor the quality of the data in an operational environment like a data warehouse or
ERP system and, therefore, can be added to a process flow and scheduled.

When executed, the data auditor sets several output values. One of these output
values is called the audit result. If the audit result is 0, then there were no errors. If the
audit result is 1, at least one error occurred. If the audit result is 2, then at least one
data rule failed to meet the specified error threshold. Data auditors also set the actual
measured values such as Error Percent and Six Sigma values.

Data auditors are a very important tool in ensuring that data quality levels are up to
the standards set by the users of the system. It also helps determine spikes in bad data
allowing events to the tied to these spikes.

For information about creating and using data auditors, see "Monitoring Data Quality
Using Data Auditors" on page 5-44.

Performing Data Profiling

Data profiling is, by definition, a resource-intensive process that requires forethought
and planning. It analyzes data and columns and performs many iterations to detect
defects and anomalies in your data. So it warrants at least some forethought and
planning in order to be as effective as possible.

Before you begin profiling data, first reduce the data set by doing a random sampling.
Next identify the data objects that you want to target. Instead of profiling everything,
choose objects that are deemed crucial. You should not select an entire source system
for profiling at the same time. Not only is it a waste of resources, but it is also often
unnecessary. Select areas of your data where quality is essential and has the largest
fiscal impact.

For example, you have a data source that contains five tables: CUSTOMERS, REGIONS,
ORDERS, PRODUCTS, and PROMOTIONS. You decide that the two most important tables
with respect to data quality are CUSTOMERS and ORDERS. The CUSTOMERS table is
known to contain many duplicate and erroneous entries that cost your company
money on wasted marketing efforts. The ORDERS table is known to contain data about
orders in an incorrect format. In this case, you would select only these two tables for
data profiling.

Steps to Perform Data Profiling

After you have chosen the objects you want to profile, use the following steps to guide
you through the profiling process:

1. Import or Select the Metadata
2. Create a Data Profile
3. Profile the Data

5-32 Oracle Warehouse Builder User’'s Guide

Performing Data Profiling

View Profile Results

Derive Data Rules

4

5

6. Generate Corrections

7. Define and Edit Data Rules Manually
8

Generate, Deploy, and Execute

The data profiling process ends at step 4. Steps 5 to 7 are optional and can be
performed if you want to perform data correction after the data profiling. Step 8 is
required when you perform both data profiling and data correction along with data
profiling.

Import or Select the Metadata

Data profiling requires the profiled objects to be present in the project in which you
are performing data profiling. Ensure that these objects are either imported into this
project or created in it. Also ensure that the data is loaded into the objects. Having the
data loaded is essential to data profiling.

Also, because data profiling uses mappings to run the profiling, you must ensure that
all locations that you are using are registered. Data profiling attempts to register your
locations. If, for some reason, data profiling cannot register your locations, you must
explicitly register the locations before you begin profiling.

Note: You can only profile data in the default configuration.

Create a Data Profile

After your system is set up, you can create a data profile using the Design Center. A
data profile is a metadata object in the workspace. It includes the set of data objects
you want profiled, the settings controlling the profiling operations, the results
returned after you profile the data, and correction information (if you decide to use
these corrections).

To create a data profile:

1. From the Project Explorer, expand the project node in which you want to create a
data profile.

2. Right-click Data Profiles and select New.
The Welcome page of the Create Data Profile Wizard is displayed.

3. On the Name and Description page, enter a name and an optional description for
the data profile. Click Next.

4. On the Select Objects page, specify the objects that you want to include in the data
profile and click Next.

The Available section displays the objects available for profiling. Select the objects
to include in the data profile and use the shuttle buttons to move them to the
Selected section. To select multiple objects, hold down the Ctrl key while selecting
objects. You can include tables, views, materialized views, external tables,
dimensions, and cubes in your data profile.

When you select tables, views or materialized views that contain attribute sets, the
Choose Attribute Set dialog box is displayed. The list at the bottom of this dialog
box displays the attribute sets defined on the data object. You can select an

Understanding Data Quality Management 5-33

Performing Data Profiling

attribute set to profile only the columns included in that attribute set. To profile all
columns in the data object, select <all columns>.

When you select a dimensional object in the Available section, a warning is
displayed informing you that the relational objects bound to these dimensional
objects will also be added to the profile. Click Yes to proceed.

5. On the Summary page, review the choices you made on the previous wizard
pages. Click Back to change any selected values. Click Finish to create the data
profile.

The data profile is added to the Data Profiles node in the navigation tree.

If this is the first data profile you have created in the current project, the
Connection Information dialog box for the selected control center is displayed.
Enter the connection information and click OK. The Data Profile Editor is
displayed.

Note: You cannot profile a source table that contains complex data
types if the source module and the data profile are located on different
database instances.

Profile the Data

Data profiling is achieved by performing deep scans of the selected objects. This can be
a time-consuming process, depending on the number of objects and type of profiling
you are running. However, profiling is run as an asynchronous job, and the client can
be closed during this process. You will see the job running in the job monitor and
Warehouse Builder prompts you when the job is complete.

Configuring Data Profiles

You can, and should, configure the profile before running it if there are specific types
of analysis you do, or do not, want to run. To configure a data profile, you set its
configuration parameters in the Property Inspector panel of the Data Profile Editor.

Configuration of the profile and its objects is possible at the following levels:
» The entire profile (all the objects it contains)

Select the data profile in the Profile Objects tab of the Data Profile Editor. In the
Property Inspector, set the values of the configuration parameters. These
parameters are set for all the objects in the data profile.

= Anindividual object in the data profile (for example, a table)

Select the object in the Profile Objects tab of the Data Profile Editor. In the
Property Inspector, set the configuration parameters. These parameters are set for
the selected object.

= An attribute within an object (for example, a column within a table)

In the Profile Objects tab of the Data Profile Editor, expand the object node to
display the attributes it contains. For example, you can expand a table node to
display its columns. Select the attribute for which you want to specify
configuration parameters. In the Property Inspector, set the configuration
parameters.

For example, if you know you only have one problematic column in a table and
you already know that most of the records should conform to values within a
certain domain, then you can focus your profiling resources on domain discovery

5-34 Oracle Warehouse Builder User's Guide

Performing Data Profiling

and analysis. By narrowing down the type of profiling necessary, you use less
resources and obtain the results faster.

For more information about the configuration parameters you can set for data profiles,
see "Configuration Parameters for Data Profiles" in the Warehouse Builder Online Help.

Steps to Profile Data

After you have created a data profile, you can open it in the Data Profile Editor to
profile the data or review profile results from a previous run. The objects you selected
when creating the profile are displayed in the object tree of the Data Profile Editor.
You can add objects to the profile by selecting Profile and then Add.

To profile the data:

1. Expand the Data Profiles node in the Project Explorer, right-click a data profile,
and select Open Editor.

The Data Profile Editor opens the selected data profile.
2. From the Profile menu, select Profile.

If this is the first time you are profiling data, the Data Profile Setup dialog box is
displayed. Enter the details of the profiling workspace in this dialog box. For more
information about the information to be entered, click Help.

Warehouse Builder begins preparing metadata for profiling. The progress window
containing the name of the object being created to profile the data is displayed.
After the metadata preparation is complete, the Profiling Initiated dialog box is
displayed informing you that the profiling job has started. Click OK.

Once the profiling job starts, the data profiling is asynchronous and you can
continue working or even close the client. Your profiling process will continue to
run until it is completed.

3. View the status of the profiling job in the Monitor Panel of the Data Profile Editor.

You can continue to monitor the progress of your profiling job in the Monitor
panel. After the profiling job is complete, the status displays as complete.

4. After the profiling is complete, the Retrieve Profile Results dialog box is displayed
and you are prompted to refresh the results.

You can use this option if you have previously profiled data in the same data
profile. It allows you to control when the new profiling results become visible in
the Data Profile Editor.

Note: Data profiling results are overwritten on subsequent profiling
executions.

View Profile Results

After the profile operation is complete, you can open the data profile in the Data
Profile Editor to view and analyze the results. The profiling results contain a variety of
analytical and statistical information about the data profiled. You can immediately
drill down into anomalies and view the data that caused them. You can then
determine what data must be corrected.

To view the profile results:

1. Select the data profile in the navigation tree, right-click, and select Open Editor.

Understanding Data Quality Management 5-35

Performing Data Profiling

The Data Profile Editor opens and displays the data profile.

2. If you have previous data profiling results displayed in the Data Profile Editor,
refresh the view when prompted so that the latest results are shown.

The results of the profiling are displayed in the Profile Results Canvas.

3. Minimize the Data Rule and Monitor panels by clicking on the arrow symbol in
the upper left corner of the panel.

This maximizes your screen space.

4. Select objects in the Profile Objects tab of the object tree to focus the results on a
specific object.

The results of the selected object are displayed in the Profile Results Canvas. You
can switch between objects. The tab that you had selected for the previous object
remains selected.

The Profile Results Canvas contains the following tabs that display the results of data
profiling:

» Data Profile

= Profile Object

= Aggregation

= Data Type

»s Pattern

= Domain

= Unique Key

= Functional Dependency
= Referential

= Data Rule

For more information about the contents of these tabs, click the arrow on the right of
the Profile Results Canvas panel and select Help.

Derive Data Rules

Based on the results of data profiling, you can derive data rules that can be used to
clean up your data. A data rule is an expression that determines the set of legal data
that can be stored within a data object. Use data rules to ensure that only values
compliant with the data rules are allowed within a data object. Data rules will form the
basis for correcting or removing data if you decide to cleanse the data. You can also
use data rules to report on non-compliant data.

Although you can create data rules and apply them manually to your data profile,
derived data rules allow you to move quickly and seamlessly between data profiling
and data correction.

For example, if you have a table called Employees with the following columns:
Employee_Number, Gender, Employee_Name. The profiling result shows that 90%
of the values in the Employee_Number column are unique, making it a prime
candidate for the unique key. The results also show that 85% of the values in the
Gender column are either 'M' or 'F', making it a good candidate for a domain. You can
then derive these rules directly from the Profile Results Canvas.

To derive a data rule:

5-36 Oracle Warehouse Builder User’'s Guide

Performing Data Profiling

1. Select a data profile in the navigation tree, right-click, and select Open Editor.
The Data Profile Editor is displayed with the profiling results.

2. Review the profiling results and determine which findings you want derived into
data rules.

The types of results that warrant data rules vary. Some results commonly derived
into data rules include a detected domain, a functional dependency between two
attributes, or a unique key.

3. Select the tab that displays the results from which you want to derive a data rule.

For example, to create a data rule that enforces a unique key rule for the
EMPLOYEE_NUMBER column, navigate to the Unique Key tab.

4. Select the cell that contains the results you want derived into a data rule and then
from the Profile menu select Derive Data Rule. Or click the Derive Data Rule
button.

For example, to create a Unique Key rule on the EMPLOYEE_NUMBER column,
select this column and click Derive Data Rule.

The Derive Data Rule Wizard opens and displays the Welcome page.
5. Click Next.
The Name and Description page is displayed.

6. The Name field displays a default name for the data rule. You can either accept
the default name or enter a new name.

7. Click Next.
The Define Rule page is displayed.
8. Provide details about the data rule parameters.

The Type field that represents the type of data rule is populated based on the tab
from which you derived the data rule. You cannot edit the type of data rule.

Additional fields in the lower portion of this page define the parameters for the
data rule. Some of these fields are populated with values based on the result of
data profiling. The number and type of fields depends on the type of data rule.

9. Click Next.

The Summary page is displayed. Review the options you set in the wizard using
this page. Click Back if you want to change any of the selected values.

10. Click Finish.

The data rule is created and it appears in the Data Rule panel of the Data Profile
Editor. The derived data rule is also added to the Derived_Data_Rules node under
the Data Rules node in the Project Explorer. You can reuse this data rule by
attaching it to other data objects.

Generate Corrections

After you have derived data rules from the profiling results, you can automate the
process of correcting source data based on profiling results. You can create the schema
and mapping corrections.

The schema correction creates scripts that you can use to create a corrected set of
source data objects with the derived data rules applied. The mapping correction

Understanding Data Quality Management 5-37

Performing Data Profiling

creates new correction mappings to take your data from the source objects and load
them into new objects.

As part of the correction process, the following are created:
s Corrected tables that adhere to the newly derived data rules

The correction tables have names that are prefixed with TMP__. For example,
when you profile the EMPLOYEES table, the correction table will be called TMP___
EMPLOYEES.

s Correction mappings that you use to cleanse the data

The correction mappings enforce the data rules. While moving data from the old
"dirty" tables in the profile source tables into the corrected tables, these mappings
correct records that do not comply with the data rules. The name of the correction
mapping is the object name prefixed with M_. For example, the correction
mapping for the EMPLOYEE table is called M_EMPLOYEE.

Steps to Create Corrections
Use the Data Profile Editor to create corrections based on the profiling results.

To create corrections:

1. If the Data Profile is not already open, open it by right-clicking the data profile in
the Project Explorer and selecting Open Editor.

2. From the Profile menu, select Create Correction.

The Create Correction Wizard is displayed. Click Help on any wizard page for
more information about the page.

3. On the Select Target Module page, specify the target module that will contain the
corrections. You can create a new module or select and existing module.

If you choose to create a new target module, the Create Module Wizard is
displayed that enables you to create a new module.

You can remove correction objects created as a result of previous corrections by
selecting Remove previous correction objects.

4. On the Select Objects page, select the objects that you want to correct by moving
them to the Selected list.

5. On the Select Data Rules and Data Types page, specify the corrections that you
want to implement for each object. The navigation tree on the left displays the
objects. Select each object in the navigation tree and specify corrections for that
object on the Data Rules and Data Types tabs.

The Data Rules tab displays the data rules that will be applied to the corrected
object. Select the rules to be applied. For each rule, in the Bindings section at the
bottom of the page, select the column to which the rule must be bound.

The Data Types tab displays the new data type and the documented data type for
each column. To use the new data type determined as a result of the data
correction actions, select the column by clicking the box to the right of the column.
Columns which are not selected will retain their existing data types.

6. On the Verify and Accept Corrected Tables page, select the objects that you want
to correct.

On the top of this page, the objects selected for corrections are listed. Select Create
to the right of the table name to generate corrected objects for the object.

5-38 Oracle Warehouse Builder User's Guide

Performing Data Profiling

The bottom part of this page contains the columns, Constraints, and Data Rules
tabs. These tabs contain the definitions used for the corrected objects. You can
make modifications to these tabs, if required.

7. On the Choose Data Correction Actions page, specify the correction actions to be
taken for objects.

Select an object by clicking the Correct to the left of the object and use the Choose
Data Correction Actions section to specify the correction action and cleansing
strategy. For more information about correction actions, click Help on this page.

8. On the Summary page, click Finish to create the correction objects.

At this stage, the corrections objects are only defined and their metadata is stored in
the workspace. To implement the correction objects in your target schema, you must
deploy the correction tables and correction mappings.

Before you deploy a correction mapping, ensure that you do the following;:
= Deploy the correction tables created as a result of data profiling.
= Grant the SELECT privilege on the source tables to PUBLIC.

For example, your correction mapping contains the table EMPLOYEES from the HR
schema. You can successfully deploy this correction mapping only if the SELECT
privilege is granted to PUBLIC on the HR . EMPLOYEES table.

Viewing the Correction Tables and Mappings

You can review the correction tables in the Data Object Editor to see the data rules and
constraints created as part of the design of your table.

To view the correction mappings:
1. Double-click the table or mapping to open the object in their respective editors.

2. After the mapping is open, select View and then Auto Layout to view the entire
mapping.

3. Select the submapping ATTR_VALUE_1 and click the Visit Child Graph icon from
the toolbar to view the submapping.

The submapping is displayed. The submapping is the element in the mapping that
performs the actual correction cleansing you specified in the Create Correction
Wizard.

Define and Edit Data Rules Manually

Data rules can be derived or manually created. Before and after you have created the
corrections, you can define additional data rules manually.

For more information about defining and editing data rules manually, see "Creating
Data Rules" on page 5-42.

Generate, Deploy, and Execute

Finally, you can generate, deploy, and execute the correction mappings and data rules.
After you run the correction mappings with the data rules, your data is corrected. The
derived data rules remain attached to the objects in the corrected schema for optional
use in data monitors.

Understanding Data Quality Management 5-39

Tuning the Data Profiling Process

Tuning the Data Profiling Process

Data profiling is a highly processor and 1/0 intensive process and the execution time
for profiling ranges from a few minutes to a few days. You can achieve the best
possible data profiling performance by ensuring that the following conditions are
satisfied:

= Your database is set up correctly for data profiling.

s The appropriate data profiling configuration parameters are used when you
perform data profiling.

Tuning the Data Profile for Better Data Profiling Performance

You can configure a data profile to optimize data profiling results. Use the
configuration parameters to configure a data profile. For more information about
configuration parameters, see "Configuration Parameters for Data Profiles" in the
Warehouse Builder Online Help.

Use the following guidelines to make your data profiling process faster:
= Perform only the types of analysis that you require

If you know that certain types of analysis are not required for the objects that you
are profiling, use the configuration parameters to turn off these types of data
profiling.

= Analyze lesser amount of data
Use the WHERE clause and Sample Rate configuration parameters.

If the source data for profiling is stored in an Oracle Database, it is recommended that
the source schema be located on the same database instance as the profile workspace.
You can do this by installing the workspace into the same Oracle instance as the
source schema location. This avoids using a database link to move data from source to
profiling workspace.

Tuning the Oracle Database for Better Data Profiling Performance

To ensure good data profiling performance, the computer that runs the Oracle
Database must have certain hardware capabilities. In addition to this, you must
optimize the Oracle Database instance on which you are performing data profiling.

For efficient data profiling, the following considerations are applicable:
= Multiple Processors
= Memory

s I/O System

Multiple Processors

The computer that runs the Oracle Database needs multiple processors. Data profiling
has been designed and tuned to take maximum advantage of the parallelism provided
by the Oracle Database. While profiling large tables (more than 10 million rows), it is
highly recommended to use a multiple processor computer.

Hints are used in queries required to perform data profiling. It picks up the degree of
parallelism from the initialization parameter file of the Oracle Database. The default
initialization parameter file contains parameters that take advantage of parallelism.

5-40 Oracle Warehouse Builder User’'s Guide

Using Data Rules

Memory

It is important that you ensure a high memory hit ratio during data profiling. You can
ensure this by assigning a larger size of the System Global Area. It is recommended
that the size of the System Global Area be at least 500 MB. If possible, configure it to 2
GB or 3 GB.

For advanced database users, it is recommended that you observe the buffer cache hit
ratio and library cache hit ratio. Set the buffer cache hit ratio to higher than 95% and
the library cache hit ratio to higher than 99%.

I/0 System

The capabilities of the I/O system have a direct impact on the data profiling
performance. Data profiling processing frequently performs full table scans and
massive joins. Since today's CPUs can easily out-drive the I/O system, you must
carefully design and configure the I/O subsystem. Keep in mind the following
considerations that aid better I/O performance:

= You need a large number of disk spindles to support uninterrupted CPU and I/O
cooperation. If you have only a few disks, the I/O system is not geared towards a
high degree of parallel processing. It is recommended to have a minimum of two
disks for each CPU.

= Configure the disks. It is recommended that you create logical stripe volumes on
the existing disks, each striping across all available disks. Use the following
formula to calculate the stripe width:

MAX (1,DB_FILE_MULTIBLOCK_READ_COUNT/number_of_disks) X DB_
BLOCK_SIZE

Here, DB_FILE_MULTIBLOCK_SIZE and DB_BLOCK_SIZE are parameters that
you set in your database initialization parameter file. You can also use a stripe
width that is a multiple of the value returned by the formula.

To create and maintain logical volumes, you need a volume management software
such as Veritas Volume Manager or Sun Storage Manager. If you are using Oracle
Database 10g or a higher version and you do not have any volume management
software, you can use the Automatic Storage Management feature of the Oracle
Database to spread the workload to disks.

» Create different stripe volumes for different tablespaces. It is possible that some of
the tablespaces occupy the same set of disks.

For data profiling, the USERS and the TEMP tablespaces are normally used at the
same time. So you can consider placing these tablespaces on separate disks to
reduce interference.

Using Data Rules

In addition to deriving data rules based on the results of data profiling, you can define
your own data rules. You can bind a data rule to multiple tables within the project in
which the data rule is defined. An object can contain any number of data rules.

Use the Design Center to create and edit data rules. Once you create a data rule, you

can use it in any of the following scenarios.

Using Data Rules in Data Profiling

When you are using data profiling to analyze tables, you can use data rules to analyze
how well data complies with a given rule and to collect statistics. From the results, you

Understanding Data Quality Management 5-41

Using Data Rules

can derive a new data rule. If data profiling determines that the majority of records
have a value of red, white, and blue for a particular column, a new data rule can be
derived that defines the color domain (red, white, and blue). This rule can then be
reused to profile other tables, or reused in cleansing, and auditing.

Using Data Rules in Data Cleansing and Schema Correction

Data rules can be used in two ways to cleanse data and correct schemas. The first way
is to convert a source schema into a new target schema where the structure of the new
tables strictly adheres to the data rules. The new tables would then have the right data
types, constraints would be enforced, and schemas would be normalized. The second
way data rules are used is in a correction mapping that validates the data in a source
table against the data rules, to determine which records comply and which do not. The
analyzed data set is then corrected (for example, orphan records are removed, domain
value inaccuracies are corrected, and so on) and the cleansed data set is loaded into the
corrected target schema.

Using Data Rules in Data Auditing

Data rules are also used in data auditing. Data auditors are processes that validate
data against a set of data rules to determine which records comply and which do not.
Data auditors gather statistical metrics on how well the data in a system complies with
a rule, and they report defective data into auditing and error tables. In that sense they
are like data-rule-based correction mappings, which also offer a report-only option for
data that does not comply with the data rules. For more information about data
auditors, see "About Data Auditors" on page 5-32.

Creating Data Rules

The Data Rules folder in the Project Explorer contains the data rules. Every data rule
must belong to a data rule folder. The subfolder DERIVED_DATA_RULES contains
the data rules derived as a result of data profiling. You can create additional data rule
folders to contain any data rules that you create.

To create a data rule:

1. Right-click the Data Rule folder in which the data rule should be created and
select New.

The Create Data Rule Wizard is displayed.

2. On the Name and Description page, enter a name and an optional description for
the data rule. Click Next.

3. On the Define Rule page, specify the type of data rule to create. Also specify any
additional information required to create the data rule. Click Next.

For example, when you create a Domain Range rule, you must specify the values
that represent the valid domain values.

For more information about the types of rules, see "Types of Data Rules" in the
Warehouse Builder Online Help.

4. On the Summary page, review the selections you made in the wizard. Click Back
to modify any selected values. Click Finish to create the data rule.

The data rule is added to the data rule folder under which you created the data
rule.

5-42 Oracle Warehouse Builder User’s Guide

Monitoring Data Quality Using Data Auditors

Applying Data Rules to Objects

Applying a data rule to an object binds the definition of the data rule to the object. For
example, binding a rule to the table Dept ensures that the rule is implemented for the
specified attribute in the table. You apply a data rule using the Data Object Editor. You
can also apply a derived data rule from the Data Rule panel of the Data Profile Editor.

The Apply Data Rule Wizard enables you to apply a data rule to a data object. You can
apply precreated data rules or any data rule you created to data objects. The types of
data objects to which you can apply data rules are tables, views, materialized views,
and external tables.

To apply a data rule to a data object:

1. In the Project Explorer, right-click the object to which the data rule must be
applied and select Open Editor.

The Data Object Editor for the data object is displayed.
2. Navigate to the Data Rules tab.

If any data rules are bound to the data object, these are displayed on this tab.
3. Click Apply Rule.

The Apply Data Rule wizard is displayed.

4. On the Select Rule page, select the data rule that you want to apply to the data
object. Click Next.

5. On the Name and Description page, enter a name and an optional description for
the applied data rule. Click Next.

6. On the Bind Rule Parameters page, bind the data rule to the column in the data
object to which the data rule must be applied. Click Next.

7. On the Summary page, review the sections you made on the previous wizard
pages. Click Back to modify selected values. Click Finish to apply the data rule.

The data rule is bound to the data object and is listed on the Data Rules folder.

Monitoring Data Quality Using Data Auditors

Data auditors are objects that you can use to continuously monitor your source
schema to ensure that the data adheres to the defined data rules. You can monitor an
object only if you have defined data rules for the object. You can create data auditors
for tables, views, materialized views, and external tables.

See Also: "About Data Auditors" on page 5-32 for more information
about data auditors
To monitor data quality, perform the following steps:
1. Create a data auditor containing the data objects that you want monitor.
See "Creating Data Auditors" on page 5-44

2. Run the data auditor to identify the records that do not comply with the data rules
defined on the data objects. You can either run data auditors manually or schedule
them to run at specified times.

See "Auditing Data Objects Using Data Auditors" on page 5-45 for information
about running data auditors.

Understanding Data Quality Management 5-43

Monitoring Data Quality Using Data Auditors

Note: You cannot import metadata for data auditors in Merge mode.
For more information about import mode options, see "Import
Option" in the Warehouse Builder Online Help.

Creating Data Auditors

Use the Create Data Auditor Wizard to create data auditors. Data auditors are part of
an Oracle module in a project.

To create a data auditor:

1.
2.

Expand the Oracle module in which you want to create the data auditor.
Right-click Data Auditors and select New.
The Create Data Auditor Wizard is displayed.

On the Name and Description page, enter a name and an optional description for
the data auditor. Click Next.

On the Select Objects page, select the data objects that you want to audit. Use the
shuttle buttons to move objects to the Selected section and click Next.

You can select multiple objects by holding down the Ctrl key while selecting
objects.

On the Choose Actions page, specify the action to be taken for records that do not
comply with data rules bound to the selected objects. Click Next.

The Choose Actions page contains two sections, Error threshold mode and Data
Rules.

Error threshold mode

Error threshold mode is used to determine the compliance of data to data rules in
the objects. Select one of the following options:

» Percent: The data auditor will set the audit result based on the percentage of
records that do not comply with the data rule. This percentage is specified in
the rule's Defect Threshold value.

= Six Sigma: The data auditor will set the audit result based on the Six Sigma
values for the data rules. If the calculated Six Sigma value for any rule is less
than the specified Sigma Threshold value, then the data auditor will set the
AUDIT RESULT to 2.

Data Rules

The Data Rules section lists the data rules applied to the objects selected on the
Select Object page. For each rule, specify the following:

= Action: The action to be performed if data in the source object does not
comply with the data rule. Select Report to ensure that the data rule is
audited. Select Ignore if you want the data rule to be ignored.

»s Defect Threshold: The percent of records that should comply with the data
rules to ensure successful auditing. Specify a value between 1 and 100. This
value is ignored if you select Six Sigma in the Error threshold mode section.

= Sigma Threshold: The required success rate. Specify a number between 0 and
7.1f you set the value to 7, no failures are allowed. This value is ignored if you
select Percent in the Error threshold mode section.

5-44 Oracle Warehouse Builder User’s Guide

Monitoring Data Quality Using Data Auditors

6. On the Summary page, review the selections you made. Click Back to modify any
selected values. Click Finish to create the data auditor.

The created data auditor is added to the Data Auditors node. At this stage, only
the metadata for the data auditor is stored in your workspace. To use this data
auditor to monitor the quality of data in your data objects, you must run the data
auditor.

Auditing Data Objects Using Data Auditors

After you create a data auditor, you can use it to monitor the data in your data objects.
This ensures that the data rule violations for the objects are detected. When you run a
data auditor, any records that violate the data rules defined on the data objects are
written to the error tables.

There are two ways of using data auditors:
= Manually Running Data Auditors

= Automatically Running Data Auditors

Manually Running Data Auditors

To check if the data in the data object adheres to the data rules defined for the object,
you must run the data auditor. You can run data auditors from the Design Center or
the Control Center Manager. To run a data auditor from the Design Center, right-click
the data auditor and select Start. In the Control Center Manager, select the data
auditor, and from the File menu, select Start. The results are displayed in the Job
Details window as described in "Data Auditor Execution Results" on page 5-46.

Automatically Running Data Auditors
You can automate the process of running a data auditor using the following steps:

1. Create a process flow that contains a Data Auditor Monitor activity.
2. Schedule this process flow to run at a predefined time.

For more information about scheduling objects, see "Process for Defining and
Using Schedules" on page 11-18.

Figure 5-5 displays a process flow that contains a Data Auditor Monitor activity. In
this process flow, LOAD_EMP_MAP is a mapping that loads data into the EMP table. If
the data load is successful, the data auditor EMP_DATA_AUDIT is run. The data auditor
monitors the data in the EMP table based on the data rules defined for the table.

Figure 5-5 Data Auditor Monitor Activity in a Process Flow

.
= w4
:

2 o EMAIL

-
EMP_DATA_AUDIT;Q;\.
el
\-\‘
: - 2|
E& M -+ - END_SICCESS
STARTA LD,L\D_Er\.u:'_n.mp\I=

m"j

EHD_ERROR

Understanding Data Quality Management 5-45

Monitoring Data Quality Using Data Auditors

Data Auditor Execution Results

After you run a data auditor, the Job Details window displays the details of the
execution. The Job Details window contains two tabs: Input Parameters and Execution
Results. Note that the Job Details window is displayed only when you set the
deployment preference Show Monitor to true. For more information about
deployment preferences, see "Deployment Preferences" on page 3-4.

Figure 5-6 displays the Execution Results tab of the Job Details window.

Figure 5-6 Data Auditor Execution Results

r Input Parameter s |/ Execution Resultts |

Riow Activity

| nserted | Updated | Deleted| Marged|
"NEW_EMP_DA™E_NOT_NULL (E_NOT_MULL) 1 0 0 0
Output Parameters

ALDIT_RESULT
EQ_PEWY_EMP_NOT_MULL
SO_MEW_EMP_MOT_MULL

The Input Parameters tab contains the values of input parameters used to run the data
auditor. The Execution Results tab displays the results of running the data auditor.
This tab contains two sections: Row Activity and Output Parameters.

The Row Activity section contains details about the inserts into the error table for each
step. Note that when more than one data rule is specified, multi-table insert may be
used in the data auditor. In this case, the count of the number of rows will not be
accurate.

In Figure 5-6, the data rule called E_NOT_NULL inserted one record into the error
table.

The Output Parameters section contains the following three parameters:

= AUDIT_RESULT: Indicates the result of running the data auditor. The possible
values for this parameter are as follows:

0: No data rule violations occurred.

1: At least one data rule violation occurred, but no data rule failed to meet the
minimum quality threshold as defined in the data auditor.

2: At least one data rule failed to meet the minimum quality threshold.

For more information about setting the threshold, see the step on choosing actions
in "Creating Data Auditors" on page 5-44.

s EO_<data_rule_name>: Represents the calculated error quality for the specified
data rule. 0 indicates all errors and 100 indicates no errors.

= SO_<data_rule_name>: Represents the Six Sigma quality calculated for the
specified data rule.

5-46 Oracle Warehouse Builder User’'s Guide

6

Designhing Target Schemas

Warehouse Builder is also a design tool that enables you to design your data
warehouse. Target schemas contain all the necessary data objects in your data
warehouse such as tables, views, dimensions, and cubes. In a traditional data
warehousing implementation, there is typically only one target schema, which is the
data warehouse target. You can design target schemas, both relational and
dimensional, using the Data Object Editor.

This chapter includes the following topics:
= About Data Objects

= About the Data Object Editor

= About Dimensional Objects

= About Dimensions

= About Slowly Changing Dimensions
= About Time Dimensions

= About Cubes

= Designing the Target Schema

s Creating Oracle Data Objects

s Configuring Data Objects

= Validating Data Objects

= Generating Data Objects

= Deriving Business Intelligence Metadata

About Data Objects

The Oracle module contains nodes for each type of data object that you can define in
Warehouse Builder. In the Project Explorer, under the Oracle node, expand the module
node to view all the supported data objects.

Warehouse Builder supports relational and dimensional data objects. Relational
objects, like relational databases, rely on tables and table-derived objects to store and
link all of their data. The relational objects you define are physical containers in the
database that are used to store data. It is from these relational objects that you run
queries after the warehouse has been created. Relational objects include tables, views,
materialized views, and sequences. You can also create optional structures associated
with relational objects such as constraints, indexes, partitions, and attribute sets. For
more information about these structures, refer to the online help.

Designing Target Schemas 6-1

About Data Objects

Dimensional objects contain additional metadata to identify and categorize your data.
When you define dimensional objects, you describe the logical relationships that help
store the data in a more structured format. Dimensional objects include dimensions
and cubes. This chapter provides specific information about each type of dimensional
object and how they are used in Warehouse Builder.

In addition to relational and dimensional objects, Warehouse Builder supports
intelligence objects. Intelligence objects are not part of Oracle modules. They are
displayed under the Business Intelligence node in the Project Explorer. Intelligence
objects enable you to store definitions of business views. You can deploy these
definitions to analytical tools such as Oracle Discoverer and perform ad hoc queries on
the warehouse. For more information about intelligence objects, see "Defining Business
Intelligence Objects" in the Warehouse Builder Online Help.

Table 6-1 describes the types of data objects you can use in Warehouse Builder.

Table 6—1 Data Objects in Warehouse Builder

Data Object Type Description

Tables Relational The basic unit of storage in a relational database management
system. Once a table is created, valid rows of data can be
inserted into it. Table information can then be queried, deleted,
or updated. To enforce defined business rules on a table's data,
integrity constraints can be defined for a table.

See "Using Tables" in the Warehouse Builder Online Help for
more information.

External Relational External tables are tables that represent data from

Tables non-relational flat files in a relational format. Use an external
table as an alternative to using a flat file operator and SQL*
Loader.

See "Using External Tables" in the Warehouse Builder Online
Help for more information.

Views Relational A view is a custom-tailored presentation of data in one or more
tables. Views do not actually contain or store data; they derive
their data from the tables on which they are based. Like tables,
views can be queried, updated, inserted into, and deleted from,
with some restrictions. All operations performed on a view
affect the base tables of the view. Use views to simplify the
presentation of data or to restrict access to data.

See "Using Views" in the Warehouse Builder Online Help for
more information.

Materialized Relational Materialized views are pre-computed tables comprising

Views aggregated or joined data from fact and possibly dimension
tables. Also known as a summary or aggregate table. Use
materialized views to improve query performance.

See "Using Materialized Views" in the Warehouse Builder Online
Help for more information.

Sequences Relational Sequences are database objects that generate lists of unique
numbers. You can use sequences to generate unique surrogate
key values.

See "Using Sequences" in the Warehouse Builder Online Help for
more information.

Dimensions ~ Dimensional A general term for any characteristic that is used to specify the
members of a data set. The three most common dimensions in
sales-oriented data warehouses are time, geography, and
product. Most dimensions have hierarchies.

See "About Dimensions" on page 6-16 for more information.

6-2 Oracle Warehouse Builder User's Guide

About Data Objects

Table 6—-1 (Cont.) Data Objects in Warehouse Builder

Data Object Type

Description

Cubes Dimensional

Advanced Relational
Queues

Queue Tables Relational

Object Types Relational

Varrays Relational

Nested Tables Relational

Cubes contain measures and links to one or more dimension
tables. They are also known as facts.

See "About Cubes" on page 6-36 for more information.

Advanced Queues enable message management and
communication required for application integration.

Currently, you cannot create advanced queues using
Warehouse Builder. You can only import advanced queues that
were exported into an .mdl file using a previous version of the
product.

Queue tables are tables that store queues. Each queue table
contains a payload whose data type can be an object type or
RAW.

You cannot create a queue table using Warehouse Builder. A
queue table is imported as part of an advanced queue payload.
An object type is made up of one or more user-defined types or
scalar types.

See "About Object Types" in the Warehouse Builder Online Help
for more information.

A varray is an ordered collection of elements.

See "About Varrays" in the Warehouse Builder Online Help for
more information.

A nested table complements the functionality of the varray
data type. A nested table permits a row to have multiple
‘mini-rows' of related data contained within the one object.

See "About Nested Tables" in the Warehouse Builder Online Help
for more information.

Supported Data Types

Table 6-2 displays the data types you can use to create and edit columns.

Table 6-2 Data Types

Data Type

Description

BINARY_DOUBLE

BINARY_FLOAT

BLOB

CHAR

Stores double-precision IEEE 754-format single precision
floating point numbers. Used primarily for high-speed
scientific computation. Literals of this type end with d.
For example, 3.0235d.

Stores single-precision IEEE 754-format single precision
floating point numbers. Used primarily for high-speed
scientific computation. Literals of this type end with £.
For example, 2.07£.

Stores large binary objects in the database, in-line or
out-of-line. Every BLOB variable stores a locator, which
points to a large binary object. The size of a BLOB cannot
exceed four gigabytes.

Stores fixed-length character data to a maximum size of
4000 characters. How the data is represented internally
depends on the database character set. You can specify
the size in terms of bytes or characters, where each
character contains one or more bytes, depending on the
character set encoding.

Designing Target Schemas 6-3

About Data Objects

Table 6-2 (Cont.) Data Types

Data Type

Description

CLOB

DATE

FLOAT

INTEGER

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

LONG

MDSYS.

MDSYS.

MDSYS.

MDSYS.

MDSYS.

MDSYS.

MDSYS.

NCHAR

NCLOB

SDOAGGRTYPE

SDO_DIM_ARRAY

SDO_DIM_ELEMENT

SDO_ELEM_INFO_ARRAY

SDO_GEOMETRY

SDO_ORDINATE_ARRAY

SDO_POINT_TYPE

6-4 Oracle Warehouse Builder User's Guide

Stores large blocks of character data in the database,
in-line or out-of-line. Both fixed-width and
variable-width character sets are supported. Every CLOB
variable stores a locator, which points to a large block of
character data. The size of a CLOB cannot exceed four
gigabytes.

Stores fixed-length date times, which include the time of
day in seconds since midnight. The date defaults to the
first day of the current month; the time defaults to
midnight. The date function SYSDATE returns the
current date and time.

Stores a single-precision, floating-point, number. FLOAT
can be loaded with correct results only between systems
where the representation of a FLOAT is compatible and of
the same length.

A NUMBER subtype that stores integer values with a
maximum precision of 38 decimal digits.

Stores intervals of days, hours, minutes, and seconds.
Stores intervals of years and months.

Stores fixed-length character strings. The LONG data type
is like the VARCHAR?2 data type, except that the
maximum length of a LONG value is 2147483647 bytes
(two gigabytes).

Stores the geometric description of a spatial object and
the tolerance. Tolerance is used to determine when two
points are close enough to be considered as the same
point.

Stores an array of type MDSYS . SDO_DIM_ELEMENT.

Stores the dimension name, lower boundary, upper
boundary and tolerance.

Stores an array of type MDSYS . SDO_ORDINATE_ARRAY.

Stores Geographical Information System (GIS) or spatial
data in the database. For more information, refer to the
Oracle Spatial Users Guide and Reference.

Stores the list of all vertices that define the geometry.
Stores two dimensional and three dimensional points.

Stores fixed-length (blank-padded, if necessary) national
character data. Because this type can always
accommodate multibyte characters, you can use it to
hold any Unicode character data. How the data is
represented internally depends on the national character
set specified when the database was created, which
might use a variable-width encoding (UTF8) or a
fixed-width encoding (AL16UTF16).

Stores large blocks of NCHAR data in the database, in-line
or out-of-line.

About Data Objects

Table 6-2 (Cont.) Data Types

Data Type

Description

NUMBER

NVARCHAR2

RAW

SYS.ANYDATA

SYS.LCRS_ROW_RECORD

TIMESTAMP

TIMESTAMP WITH LOCAL

TIMEZONE

TIMESTAMP WITH TIMEZONE

VARCHAR

VARCHAR2

XMLFORMAT

Stores real numbers in a fixed-point or floating-point
format. Numbers using this data type are guaranteed to
be portable among different Oracle platforms, and offer
up to 38 decimal digits of precision. You can store
positive and negative numbers, as well as zero, in a
NUMBER column.

Stores variable-length Unicode character data. Because
this type can always accommodate multibyte characters,
you can use it to hold any Unicode character data. How
the data is represented internally depends on the
national character set specified when the database was
created, which might use a variable-width encoding
(UTES8) or a fixed-width encoding (AL16UTF16).

Stores binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or
a digitized picture. Raw data is like VARCHAR?2 data,
except that PL/SQL does not interpret raw data.

An Oracle-supplied type that can contain an instance of a
given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and
lets you store heterogeneous values in a single column.
The values can be of SQL built-in types as well as
user-defined types.

This type represents a data manipulation language
(DML) change to a row in a table. This type uses the
LCR$_ROW_LIST type.

Extends the DATE data type and stores the year, month,
day, hour, minute, and second. The default timestamp
format is set by the Oracle initialization parameter NLS_
TIMESTAMP_FORMAT.

Extends the TIMESTAMP data type and includes a
time-zone displacement. The time-zone displacement is
the difference (in hours and minutes) between local time
and Coordinated Universal Time (UTC)—formerly
Greenwich Mean Time. You can also use named time
zones, as with TIMESTAMP WITH TIME ZONE.

Extends the data type TIMESTAMP and includes a
time-zone displacement. The time-zone displacement is
the difference (in hours and minutes) between local time
and Coordinated Universal Time (UTC)—formerly
Greenwich Mean Time.

Stores a length-value data type consisting of a binary
length subfield followed by a character string of the
specified length. The length is in bytes unless
character-length semantics are used for the data file. In
that case, the length is in characters.

Stores variable-length character data. How the data is
represented internally depends on the database character
set. The VARCHAR?2 data type takes a required parameter
that specifies a maximum size up to 4000 characters.

This is an object type that is used to specify formatting
arguments for SYS_XMLGEN() and SYS_XMLAGG()
functions.

Designing Target Schemas 6-5

About the Data Object Editor

Table 6-2 (Cont.) Data Types

Data Type Description

XMLTYPE An Oracle-supplied type that can be used to store and
query XML data in the database. It has member
functions you can use to access, extract, and query the
XML data using XPath expressions. XPath is another
standard developed by the W3C committee to traverse
XML documents.

Naming Conventions for Data Objects

The rules for naming data objects depend on the naming mode you set for Warehouse
Builder in the Naming Preferences section of the Preferences dialog box. Warehouse
Builder maintains a business and a physical name for each object stored in a
workspace. The business name for an object is its descriptive logical name and the
physical name is the name used when Warehouse Builder generates code. See
"Naming Preferences" on page 3-7 for details on how to specify a naming mode.

When you name or rename data objects, use the following naming conventions.

Naming Data Objects

In the physical naming mode, the name can be from 1 to 30 alphanumeric characters.
Blank spaces are not allowed. Do not use any of the reserved words as a name of an
object.

In the business naming mode, the limit is 200 characters. The name should be unique
across the object category that owns the object. For example, since all tables belong to a
module, table names should be unique across the module to which they belong.
Similarly, module names should be unique across the project to which they belong.

Describing Data Objects

Edit the description of the data object as necessary. The description can be between 2
and 2,000 alphanumeric characters and can contain blank spaces. Specifying a
description for a data object is optional.

About the Data Object Editor

The Data Object Editor provides a centralized interface to create, edit, configure,
validate, and deploy Oracle data objects. You can use the Data Object Editor with
relational, dimensional, and business intelligence objects. You can also view the data
stored in these objects.

The Data Object Editor enables you to build your warehouse schema designs. It also
provides an intuitive user interface that supports fast entry of design details. The Data
Object Editor contains a menu bar, multiple toolbars, and multiple panels. All the
panels are dockable. You can resize the panels or relocate them anywhere in the editor
window. You can also choose to display or hide any of the panels. For more
information about the Data Object Editor components, refer to the online help.

To relocate a panel, hold down the mouse button on the panel title, drag to the new

location and release the mouse button. Resize a panel by placing your mouse on the
panel border, pressing the mouse button when the double sided arrow appears, and
dragging your mouse to indicate the desired size.

Figure 6-1 displays the Data Object Editor.

6-6 Oracle Warehouse Builder User's Guide

About the Data Object Editor

Data Viewer

Figure 6—1 Data Object Editor Window

[pata Object Editor -10] x|
Diagram Object Edit “iew Window Help
| il g s
aaSTE 9 (B]mag i @ o & g B
¥ Explorer F T Canvas E
@j} Databazes Relational r Dimengional » r EBusiness Definition |
-4 MoD1
-5 L45_MODULE ~J PrRODUCTS_DIM i
L L |
Awailable Objects | £ 1| ¥ =l Attributes R
* Configuration ¥ D Ty E
MAME £
Y = DESCRIPTION
= Lewals
EIPRODU... % Ll «] e
Genera... = - =
~ Dimension Details: U4s_MODULE PRODUCTS_DiIM i
~ Palette ¥ Mame r Storage r Aftributes |/ Levels r Hierarchies r sch |/ Drata Yiewer |
; ; -
Dimensiane! Natte: |PRODUCTS D
:XT Ditnenzion
Ij Cube Description:
Specify roles for the dimension:
Rale Description
¥ Bird's Eye View ¥
4] R [»
w0l (35 5% %

Use the Data Object Editor to:

» Create, edit, and delete relational and dimensional objects.

» Create, edit, and delete the following business intelligence objects: Business Areas

and Item Folders.
= Define relationships between Oracle data objects.
= Validate, generate, and deploy Oracle data objects.

= Define and edit all aspects of a data object such as its columns, constraints,
indexes, partitions, data rules, and attribute sets.

= View impact analysis and lineage information for a data object.

= Define implementation details for dimensional objects with a relational
implementation.

= View the data stored in a data object.

Starting the Data Object Editor
Use one of the following methods to start the Data Object Editor:

= Select a data object in the Project Explorer. From the Design Center menu select
Edit, then Open Editor.

= Right-click a data object in the Project Explorer and select Open Editor.
= Double-click a data object in the Project Explorer.

The Data Viewer enables you to view the data stored in the data object. For example,
the data viewer for a table enables you to view the table data. You can access the Data
Viewer using one of the following methods:

Designing Target Schemas 6-7

About the Data Object Editor

s From the Project Explorer, right-click a data object and select Data.

= In the Data Object Editor for the data object, navigate to the Data Viewer tab of the
Details panel. Click Execute Query.

The Data Viewer tab contains the following buttons: Execute Query, Get More, Where
Clause, and More. The More button is displayed at the bottom of the tab.

Click Execute Query to execute a query on the data object and fetch its data.

By default, the Data Viewer displays the first hundred rows of data. To retrieve the
next set of rows, click Get More. Alternatively, you can click More to perform the
same action.

Click Where Clause to specify a condition that is used to restrict the data displayed by
the Data Viewer. Clicking this button displays the Where Clause dialog box. Use this
dialog box to specify the condition used to filter data. You can use this option for
tables and views only.

The columns and column names displayed in the Data Object Editor are taken directly
from the location in which the actual table is deployed. If the table definition in the
Data Viewer does not match with what you see in the Data Object Editor, it is because
the changes you made in the editor have not yet been deployed.

Using the Data Object Editor to Create Data Objects

Use the Data Object Editor to create relational, dimensional, and certain business
intelligence objects. There are multiple methods of creating data objects using the Data
Object Editor.

Use one of the following editor components to create a data object:
= Menu Bar
See Creating Data Objects Using the Menu Bar on page 6-8.
s Canvas
See Creating a Data Object Using the Canvas on page 6-9.
= Data Object Editor Palette
See Creating a Data Object Using the Data Object Editor Palette on page 6-10.

Creating Data Objects Using the Menu Bar
To create a data object using the menu bar:

1. Ifitis not already open, open the Data Object Editor.

2. Navigate to the tab that corresponds to the type of data object that you want to
create.

For example, to create a table, select the Relational tab. To create a business area,
select the Business Intelligence tab. To create dimensions and cube, select the
Dimensional tab.

3. From the Diagram menu, select Add, then select the type of data object to create.

Warehouse Builder displays the Add a New or Existing <Object> dialog box. For
more information about this dialog box, click Help.

Notice that the list of data objects in the Add menu contains some disabled items.
Only the data objects that you can create from the current editor context are
enabled.

6-8 Oracle Warehouse Builder User's Guide

About the Data Object Editor

4. Select the Create a new <object> option.
For example, to add a table, select the Create a new Table option.
5. Specify the name of the data object using the New <Object> Name field.

The New <Object> Name field displays a default name for the object. You can
choose to retain this default name or specify a different name.

6. Click OK.
Warehouse Builder adds a node for the new data object to the canvas.

7. Use the tabs of the Details panel to define the data object.

Creating a Data Object Using the Canvas
To create a data object using the canvas:

1. Ifitis not already open, open the Data Object Editor.

2. Navigate to the tab that corresponds to the type of data object that you want to
create.

For example, to create a materialized view, select the Relational tab. To create a
dimension, select the Dimensional tab.

3. Right-click whitespace (blank area) on the canvas.

Warehouse Builder displays a shortcut menu containing the types of data objects
you can create.

4. Select the option corresponding to the type of object you want to create.

For example, to create a materialized view, select the Add a Materialized View
option.

Warehouse Builder displays the Add a New or Existing <Object> dialog box. For
more information about this dialog box, click Help.

5. Select the Create a new <object> option.
For example, to add a cube, select the Create a new Cube option.
6. Specify the name of the data object using the New <Object> Name field.

The New <Object> Name field displays a default name for the object. You can
choose to retain this default name or specify a different name.

7. Click OK.
Warehouse Builder adds a node for the new data object to the canvas.

8. Use the tabs of the Details panel to define the data object.

Creating a Data Object Using the Data Object Editor Palette

To create a data object using the Palette:
1. Ifitis not already open, open the Data Object Editor.

2. Navigate to the tab that corresponds to the type of data object that you want to
create.

For example, to create a view, select the Relational tab. To create a cube, select the
Dimensional tab.

3. Drag and drop the operator that corresponds to the type of object that you want to
create on to the canvas.

Designing Target Schemas 6-9

About Dimensional Objects

For example, to create a view, drag and drop the View operator from the palette on
to the canvas.

Warehouse Builder displays the Add a New or Existing <Object> dialog box. For
more information about this dialog box, click Help.

4. Select the Create a new <object> option.
For example, to add a cube, select the Create a new Cube option.
5. Specify the name of the data object using the New <Object> Name field.

The New <Object> Name field displays a default name for the object. You can
choose to retain this default name or specify a different name.

6. Click OK.
Warehouse Builder adds a node for the new data object to the canvas.

7. Use the tabs of the Details panel to define the data object.

About Dimensional Objects

This section describes the basic concepts related to dimensional objects. If you are
familiar with dimensional objects concepts and the types of implementations for
dimensional objects in Warehouse Builder, skip the next few sections and continue
with "Designing the Target Schema" on page 6-40.

Objects that contain additional metadata to identify and categorize data are called
dimensional objects. Warehouse Builder enables you to design, deploy, and load two
types of dimensional objects: dimensions and cubes. In this chapter, the word
dimensional object refers to both dimensions and cubes.

Most analytic queries require the use of a time dimension. Warehouse Builder provides
tools that enable you to easily create and populate time dimensions by answering
simple questions.

Design versus Implementation

Warehouse Builder separates the logical design of dimensional objects from their
storage. The logical design (business rules) allow you to focus on the structure and the
content of the dimensional object first. You can then choose a relational, ROLAP, or
MOLAP implementation for the dimensional object.

ROLAP and relational implementations store the dimensional object in a relational
schema in the database.

A MOLAP implementation stores the dimensional object in analytic workspaces in the
database.

Warehouse Builder enables you to use the same metadata to create and manage both
your relational and multidimensional data stores. Separating the design from the
implementation has the following advantages:

= Implementation is easier, because you first design and then implement.

» ETL is transparent as it is always the same for any type of implementation.

Uses of OLAP

Business organizations typically have complex analytic, forecast, and planning
requirements. Analytic Business Intelligence (BI) applications provide solutions by
answering critical business questions using the data available in your database.

6-10 Oracle Warehouse Builder User’'s Guide

About Dimensional Objects

Dimensional objects provide complex analytic power to your data warehouse. After
you load data into dimensional objects, you can use tools and applications to run
complex analytical queries that answer your business questions. These analytic queries
include time-series analysis, inter-row calculations, access to aggregated historical and
current data, and forecasts. Multidimensional objects are more effective in answering
these types of queries quickly.

About Creating Dimensional Objects
Creating dimensional objects consists of four high-level tasks:

1. Defining Dimensional Objects

2. Implementing Dimensional Objects
3. Deploying Dimensional Objects
4

Loading Dimensional Objects

Defining Dimensional Objects

When you define dimensional objects, you describe the logical relationships that help
store data in a more structured format. For example, to define a dimension, you
describe its attributes, levels, and hierarchies.

Warehouse Builder provides the following two methods to define dimensional objects:

= Wizards: Use wizards to create dimensional objects easily. The wizard creates a
fully functional dimensional object along with the implementation objects that
store the dimensional object data. Many options are defaulted to the most common
settings. You can change these settings later using the editors.

You use the Create Dimension Wizard to create dimensions, the Create Time
Dimension Wizard to create time dimensions, and the Create Cube Wizard to
create cubes.

= Editors: Use editors to create or edit dimensional objects. Use editors to create a
dimensional object when you want to specify settings that are different from the
default settings used by the wizards. Also use editors to create dimensional objects
that use certain advanced options that are not available when you use wizards. For
example, to create a relational dimension that uses a snowflake schema
implementation, you must use the editor. When you use the wizard, the default
implementation method used is the star schema. However, you can edit a
dimension that you created using the Create Dimension Wizard and modify it to
use a snowflake schema implementation.

Implementing Dimensional Objects

To implement a dimensional object is to create the physical structure of the
dimensional object. Warehouse Builder provides the following implementations for
dimensional objects:

= Relational Implementation of Dimensional Objects
= ROLAP Implementation of Dimensional Objects
= MOLAP Implementation of Dimensional Objects

Designing Target Schemas 6-11

About Dimensional Objects

Note: To use a MOLAP implementation, you must have the
following:

s Oracle Database 10g Enterprise Edition with the OLAP option
= OLAP 10.1.0.4 or higher

You set the Deployment Option configuration property to specify the type of
implementation for a dimensional object. For more information on setting this
property, see "Configuring Dimensions" and "Configuring Cubes" in the Warehouse
Builder Online Help.

Relational Implementation of Dimensional Objects

A relational implementation stores the dimensional object and its data in a relational
form in the database. The dimensional object data is stored in implementation objects
that are typically tables. Any queries that are executed on the dimensional object
obtain data from these tables. Warehouse Builder creates the DDL scripts that create
the dimensional object. You can then deploy these scripts to the database using the
Control Center.

When you use the wizard to define dimensional objects, Warehouse Builder creates the
database tables that store the dimensional object data. When you define a dimensional
object using the Data Object Editor, you can decide whether you want Warehouse
Builder to create the implementation tables or you want to store the dimensional object
data in your own tables and views. The following section on binding describes how
you specify the relationship between the dimensional object and its implementation
objects.

For a relational implementation, you cannot use the Data Viewer to view the data
stored in the dimensional object. You can however view the data stored in the
implementation tables of the dimensional object using the Data Viewer.

Binding Binding is the process of connecting the attributes of the dimensional object to
the columns in the table or view that store their data. You perform binding only for
dimensional objects that have a relational implementation. For multidimensional
objects, binding is implicit and is resolved in the analytic workspace.

For dimensions, you connect the level attributes and level relationships to the columns
in the implementation objects. For cubes, you connect the measures and dimension
references to implementation table columns.

Warehouse Builder provides two methods of binding:

= Auto binding

= Manual binding

Auto Binding In auto binding, Warehouse Builder creates the implementation tables,
if they do not already exist. The attributes and relationships of the dimensional object

are then bound to the columns that store their data. You can perform auto binding
using both the wizards and the editors.

In the case of a dimension, the number of tables used to store the dimension data
depends on the options you select for the storage. For more information on these
options, see "Relational and ROLAP Implementation of a Dimension" on page 6-22.

When you use the editors to create dimensional objects, you can perform both auto
binding and manual binding.

6-12 Oracle Warehouse Builder User’s Guide

About Dimensional Objects

To perform auto binding:

1. In the Project Explorer, right-click the dimensional object and select Open Editor.
The Data Object Editor for this dimensional object is displayed.

2. On the Dimensional tab, right-click the dimensional object node and select Bind.

Alternatively, select the dimensional object node on the canvas and from the
Object menu select Bind.

If the Bind option is not enabled, verify if the dimensional object uses a relational
or ROLAP implementation. In the case of dimensions, ensure that the Manual
option is not set in the Implementation section of the Storage tab.

Manual Binding In manual binding, you must explicitly bind the attributes of the
dimensional objects to the database columns that store their data. You use manual
binding when you want to bind a dimensional object to existing tables or views.

To perform manual binding for a dimensional object:

1. Create the implementation objects (tables or views) that you will use to store the
dimensional object data.

In the case of relational or ROLAP dimensions, create the sequence used to load
the surrogate identifier of the dimension. You can choose to use an existing
sequence.

2. In the Project Explorer, right-click the dimensional and select Open Editor.

The Data Object Editor for the dimensional object is displayed. On the canvas, the
Dimensional tab is active.

3. Right-click the dimensional object and select Detail View.

Warehouse Builder opens a new tab that has the same name as the dimensional
object.

4. From the palette, drag and drop the operator that represents the implementation
object onto the canvas.

Warehouse Builder displays the Add a New or Existing <Object> dialog box. For
example, if the dimension data is stored in a table, drag a Table operator from the
Palette and drop it onto the canvas. The Add a New or Existing Table dialog box is
displayed.

5. Choose the Select an existing <Object> option and then select the data object
from the list of objects displayed in the selection tree.

6. Click OK.
A node representing the object that you just added is displayed on the canvas.

7. For dimensions, if more than one data object is used to store the dimension data,
perform steps 4 to 6 for each data implementation object.

8. For dimensions, map the attributes in each level of the dimension to the columns
that store their data. Also map the level relationships to the database column that
store their data.

For cubes, map the measures and dimension references to the columns that store
the cube data.

To map to the implementation object columns, hold down your mouse on the
dimension or cube attribute, drag, and then drop on the column that stores the
attribute value.

Designing Target Schemas 6-13

About Dimensional Objects

For example, for the PRODUCTS dimension described in "Dimension Example" on
page 6-21, the attribute NAME in the Groups level of the PRODUCTS dimension is
stored in the GROUP_NAME attribute of the PRODUCTS_TAB table. Hold down the
mouse on the NAME attribute, drag, and drop on the GROUP_NAME attribute of the
PRODUCTS_TAB table.

Unbinding Warehouse Builder also enables you to unbind a dimensional object.
Unbinding removes the connections between the dimensional object and the tables
that store its data.

To unbind a dimensional object from its current implementation, right-click the
dimensional object on the Relational tab of the Canvas and select Unbind. Unbinding
removes the bindings between the dimensional object and its implementation objects.
However, it does not modify the implementation objects.

ROLAP Implementation of Dimensional Objects

A ROLAP implementation, like a relational implementation, stores the dimensional
object and its data in a relational form in the database. In addition to creating DDL
scripts that can be deployed to a database, a ROLAP implementation enables you to
create CWM2 metadata for the dimensional object in the OLAP catalog.

MOLAP Implementation of Dimensional Objects

In a MOLAP implementation, the dimensional object data is stored in an analytic
workspace in Oracle Database 10g. This analytic workspace, in turn, is stored in the
database.

Analytic Workspace An analytic workspace is a container within the Oracle Database
that stores data in a multidimensional format. Analytic workspaces provide the best
support to OLAP processing. An analytic workspace can contain a variety of objects
such as dimensions and variables.

An analytic workspace is stored in a relational database table, which can be
partitioned across multiple disk drives like any other table. You can create many
analytic workspaces within a single schema to share among users. An analytic
workspace is owned by a particular user and other users can be granted access to it.
The name of a dimensional object must be unique within the owner's schema. For
more information about analytic workspaces, see Oracle OLAP User's Guide.

OLAP Catalog The OLAP catalog is the metadata repository provided for the OLAP
option in the Oracle Database. This metadata describes the data stored in both
relational tables and in analytic workspaces.

When you deploy a dimensional object using Warehouse Builder, you can specify if
the dimensional object metadata should be stored in the OLAP catalog.

OLAP metadata is dynamically projected through a series of views called the active
catalog views (views whose names begin with ALL_OLAP2_AW).

In Oracle Database 10g, the OLAP catalog metadata is used by OLAP tools and
applications to access data stored in relational star and snowflake schemas. External
application such as Discoverer use the OLAP catalog to query relational and
multidimensional data. The application does not need to be aware of whether the data
is located in relational tables or in analytic workspaces, nor does it need to know the
mechanism for accessing it.

Figure 6-2 describes how the OLAP catalog enables applications to access data stored
in relational tables and analytic workspaces.

6-14 Oracle Warehouse Builder User’s Guide

About Dimensional Objects

Figure 6—2 Using the OLAP Catalog to Access Dimensional Objects

R DLAP OLAP
Application Bl Beans APT | Catalog
Relational schema
¥]
Table 1 7 AVY
View 1 Dimension
Table 2 Yariable

The OLAP catalog uses the metadata it stores to access data stored in relational tables
or views. The OLAP catalog defines logical multidimensional objects and maps them
to the physical data sources. The logical objects are dimensions and cubes. The
physical data sources are columns of a relational table or view.

Deploying Dimensional Objects

To instantiate the dimensional objects in the database, you must deploy them. To
specify the type of implementation for dimensional objects, you set the deployment
option. The configuration parameter Deployment Options enables you to set the
deployment option.

Warehouse Builder provides the following deployment options for dimensional
objects.

s Deploy All: For a relational or ROLAP implementation, the dimensional object is
deployed to the database and a CWM definition to the OLAP catalog. For a
MOLAP implementation, the dimensional object is deployed to the analytic
workspace.

= Deploy Data Objects Only: Deploys the dimensional object only to the database.
You can select this option only for dimensional objects that use a relational
implementation.

= Deploy to Catalog Only: Deploys the CWM definition to the OLAP catalog only.
Use this option if you want applications such as Discoverer for OLAP to access the
dimensional object data after you deploy data only. Use this option if you
previously deployed with "Data Objects Only" and now want to deploy the CWM
Catalog definitions without re-deploying the data objects again.

= Deploy Aggregation: Deploys the aggregations defined on the cube measures.
This option is available only for cubes.

Deploying Dimensional Objects that Use a MOLAP Implementation

Dimensional objects that use a MOLAP implementation can be deployed just after you
define them. You can use the Design Center or the Control Center Manager to deploy a
dimensional object.

Deploying Dimensional Objects that Use a Relational or ROLAP Implementation

Before you deploy a relational or ROLAP dimensional object, ensure that the
implementation details are specified. This means that the dimensional object should be

Designing Target Schemas 6-15

About Dimensions

bound to its implementation objects. Also ensure that the dimensional object is valid.
For more information on implementing dimensional objects, see "Relational
Implementation of Dimensional Objects" on page 6-12. For more information on
performing binding, see "Binding" on page 6-12.

After you perform binding, deploy the dimensional object. Before you deploy a
dimensional object, ensure that all its implementation objects are deployed. For a
dimension, this includes the sequence that is used to generate the surrogate identifier
of the dimension levels. Alternatively, you can deploy the implementation objects
together with the dimensional object.

Loading Dimensional Objects

After you deploy a dimensional object, you load data into it by creating a mapping.
Use the Mapping Editor to create the mapping that loads data from the source objects
into the dimensional object. You then deploy and execute this mapping.

For more information on loading dimensions, see "Dimension Operator as a Target" in
the Warehouse Builder Online Help. For information on loading cubes, see "Cube
Operator” in the Warehouse Builder Online Help.

About Dimensions

A dimension is a structure that organizes data. Examples of commonly used
dimensions are Customers, Time, and Products.

For relational dimensions, using dimensions improves query performance because
users often analyze data by drilling down on known hierarchies. An example of a
hierarchy is the Time hierarchy of year, quarter, month, day. The Oracle Database uses
these defined hierarchies by rewriting queries that retrieve data from materialized
views rather than detail tables.

Typical relational dimension tables have the following characteristics:
= A single column primary key populated with values called warehouse keys.

Warehouse keys that provide administrative control over the dimension, support
techniques that preserve dimension history, and reduce the size of cubes.

= One or more hierarchies that are explicitly defined as dimension objects.
Hierarchies maximize the number of query rewrites by the Oracle server.

Rules for Dimension Objects

When you create a dimension object using Warehouse Builder, the dimension must
conform to the following rules:

= A dimension must have a surrogate identifier and a business identifier.

= The surrogate identifier can consist of only one attribute. However, the business
identifier can consist of more than one attribute.

= Every dimension level must have at least one attribute.

= A dimension attribute can be either a surrogate identifier, a business identifier, a
parent identifier, or a regular attribute.

= Aregular attribute can also play only one of the following roles at a time: effective
date, expiration date, or triggering attribute.

6-16 Oracle Warehouse Builder User’'s Guide

About Dimensions

A dimension that uses a relational or ROLAP implementation must have at least
one level.

Any database table or view that implements a dimension that uses a relational or
ROLAP implementation must have only one LONG, LONG RAW, or NCLOB column.

For a dimension that uses a relational or ROLAP implementation, all level
attributes must bind to database tables or views only.

A dimension that uses a relational or ROLAP implementation must be associated
with a sequence that is used to load the dimension key attribute.

The dimension key attribute of a dimension that uses a relational or ROLAP
implementation must bind to the primary key of a table.

A Type 2 Slowing Changing Dimension (SCD) must have the effective date,
expiration date, and at least one triggering attribute.

A Type 3 Slowing Changing Dimension (SCD) must have the effective date and at
least one triggering attribute.

Limitations of Deploying Dimensions to the OLAP Catalog

For dimensions with a ROLAP implementation, there are implications and limitations
related to the various dimension structures when either reporting on the underlying
tables or deploying to the OLAP catalog. Although the dimension may be successfully
deployed, errors could occur when other applications, such as Oracle Discoverer
access the OLAP catalog.

The following are items that are affected by this limitation:

No reporting tool has metadata about all aspects of dimensional metadata we
capture, so this must be incorporated into the query/reports. Otherwise you will
see odd information because of the way the data is populated in the
implementation tables.

The dimension and cube implementation tables store solved rows which contain
negative key values. You can filter out these rows in your queries or reports. When
you create a query or report, use the view that is associated with a dimension
instead of the dimension itself. Each dimension has a view that is associated with
it. The view name is specified in the configuration property View Name of the
dimension or cube.

Skip-level hierarchies and ragged hierarchy metadata is not deployed to the OLAP
catalog.

If you create a dimension that contains skip-level or ragged hierarchies, the
metadata for these is stored in the Warehouse Builder repository but is not
deployed to the OLAP catalog.

Dimensions with multiple hierarchies must have all dimension attributes mapped
along all the hierarchies.

Defining a Dimension

A dimension consists of a set of levels and a set of hierarchies defined over these
levels. To create a dimension, you must define the following:

Dimension Attributes
Levels

Level attributes

Designing Target Schemas 6-17

About Dimensions

s Hierarchies

Defining Dimension Attributes

A dimension attribute is a descriptive characteristic of a dimension member. It has a
name and a data type. A dimension attribute is applicable to one or more levels in the
dimension. They are implemented as level attributes to store data.

In Warehouse Builder, you define dimension attributes when you define a dimension.
The list of dimension attributes must include all the attributes that you may need for
any of the levels in the dimension. Dimension attributes are the only attributes that are
visible in Discoverer and other OLAP tools.

For example, the Products dimension has a dimension attribute called Description.
This attribute is applicable to all the levels Total, Groups, and Products and stores the
description for each of the members of these levels.

Defining Levels

The levels in a dimension represent the level of aggregation of data. A dimension must
contain at least one level, except in the case of a dimension that contains a value-based
hierarchy. Every level must have level attributes and a level identifier.

For example, the dimension Products can have the following levels: Total, Groups, and
Product.

Surrogate, Business, and Parent Identifiers

Every level must have two identifiers: a surrogate identifier and a business identifier.
When you create a dimension, each level must implement the dimension attributes
marked as the surrogate identifier and business identifier (attributes, in the case of a
composite business identifier) of the dimension.

Surrogate Identifiers A surrogate identifier uniquely identifies each level record across
all the levels of the dimension. It must be composed of a single attribute. Surrogate
identifiers enable you to hook facts to any dimension level as opposed to the lowest
dimension level only.

For a dimension that has a relational or ROLAP implementation, the surrogate
identifier should be of the data type NUMBER. Because the value of the surrogate
identifier must be unique across all dimension levels, you use the same sequence to
generate the surrogate identifier of all the dimension levels.

For a relational implementation, the surrogate identifier serves the following purposes:

n If a child level is stored in a different table from the parent level, each child level
record stores the surrogate identifier of the parent record.

= Ina fact table, each cube record stores only the surrogate identifier of the
dimension record to which it refers. By storing the surrogate identifier, the size of
the fact table that implements the cube is reduced.

Business Identifiers A business identifier consists of a user-selected list of attributes. The
business identifier must be unique across the level and is always derived from the
natural key of the data source. The business identifier uniquely identifies the member.
For example, the business identifier of a Product level can be its Universal Product
Code (UPC), which is a unique code for each product.

6-18 Oracle Warehouse Builder User’'s Guide

About Dimensions

Note: For a dimension that has a MOLAP implementation, the
business identifier can consist of only one attribute.

The business identifier does the following:

= Identifies a record in business terms

= Provides a logical link between the fact and the dimension or between two levels
= Enables the lookup of a surrogate key

When you populate a child level in a dimension, you must specify the business
identifier of its parent level. When you populate a cube, you must specify the business
identifier of the dimension level to which the cube refers.

Parent Identifier A parent identifier is used to annotate the parent reference in a
value-based hierarchy. For more information on value-based hierarchies, see
"Value-based Hierarchies" on page 6-22.

For example, an EMPLOYEE dimension with a value-based hierarchy, has the following
dimension attributes: ID, FIRST_NAME, LAST NAME, EMAIL, PHONE, JOB_ID, HIRE__
DATE, and MANAGER_ID. In this dimension, ID is the surrogate identifier and
MANAGER_ID is the parent identifier.

Defining Level Attributes

A level attribute is a descriptive characteristic of a level member. Each level in the
dimension has a set of level attributes. To define level attributes, you select the
dimension attributes that the level will implement. A level attribute has a distinct
name and a data type. The data type is inherited from the dimension attribute that the
level attribute implements. The name of the level attribute can be modified to be
different from that of the dimension attribute that it implements.

Every level must implement the attribute marked as the surrogate identifier and the
business identifier in the set of the dimension attributes.

Defining Hierarchies

A dimension hierarchy is a logical structure that uses ordered levels or a set of data
values (for a value-based hierarchy) as a means of organizing data. A hierarchy
describes parent-child relationships among a set of levels. A level-based hierarchy
must have at least one level. A level can be part of more than one hierarchy.

For example, the Time dimension can have the following two hierarchies:
Fiscal Hierarchy: Fiscal Year > Fiscal Quarter > Fiscal Month > Fiscal Week > Day
Calendar Hierarchy: Calendar Year > Calendar Quarter > Calendar Month > Day

All hierarchies must be strict 1:n relationships. One record in a parent level
corresponds to multiple records in a child level. But one record in a child level
corresponds to only one parent record within a hierarchy.

Dimension Roles

A dimension role is an alias for a dimension. In a data warehouse, a cube can refer to
the same dimension multiple times, without requiring the dimension to be stored
multiple times. Multiple references to the same dimension may cause confusion. So
you create an alias for each reference to the dimension, thus allowing the joins to be

Designing Target Schemas 6-19

About Dimensions

instantly understandable. In such cases, the same dimension performs different
dimension roles in the cube.

For example, a sales record can have the following three time values:
s Time the order is booked
» Time the order is shipped
s Time the order is fulfilled

Instead of creating three time dimensions and populating them with data, you can use
dimension roles. Model one time dimension and create the following three roles for
the time dimension: order booked time, order shipped time, and order fulfillment
time. The sales cube can refer to the order time, ship time, and fulfillment time
dimensions.

When the dimension is stored in the database, only one dimension is created and each
dimension role references this dimension. But when the dimension is stored in the
OLAP catalog, Warehouse Builder creates a dimension for each dimension role. Thus,
if a time dimension has three roles, three dimensions are created in the OLAP catalog.
However, all three dimensions are mapped to the same underlying table. This is a
workaround because the OLAP catalog does not support dimension roles.

Note: Dimension roles can be created for dimensions that have a
relational implementation only.

Level Relationships

A level relationship is an association between levels in a dimension hierarchy. Level
relationships are implemented using level attributes that store the reference to the
parent level in the hierarchy.

For example, the Products dimension has the following hierarchy: Total > Groups >
Product. Warehouse Builder creates two level relationships: Product to Groups and
Groups to Total. Two new attributes implement this level relationship: one in the
Product level and one in the Groups level. These attributes store the surrogate ID of
the parent level.

Dimension Example

An example of a dimension is the Products dimension that you use to organize
product data. Table 6-3 lists the levels in the PRODUCTS dimension and the surrogate
identifier and business identifier for each of the levels in the dimension.

Table 6-3 Products Dimension Level Details

Level Attribute Name Identifier

Total ID Surrogate
Name Business
Description

Groups ID Surrogate
Name Business
Description

Product ID Surrogate
UPC Business

6-20 Oracle Warehouse Builder User's Guide

About Dimensions

Table 6-3 (Cont.) Products Dimension Level Details

Level Attribute Name Identifier

Name
Description
Package Type
Package Size

The PRODUCTS dimension contains the following hierarchy:

Hierarchy 1: Total > Groups > Product

Control Rows

Warehouse Builder creates control rows that enable you to link fact data to a
dimension at any level. For example, you may want to reuse a Time dimension in two
different cubes to record the budget data at the month level and the actual data at the
day level. Because of the way dimensions are loaded with control rows, you can
perform this without any additional definitions. Each member in a dimension
hierarchy is represented using a single record.

All control rows have negative dimension key values starting from -2. For each level
value of higher levels, a row is generated that can act as a unique linking row to the
fact table. All the lower levels in this linking or control rows are nulled out.

Consider the Products dimension described in "Dimension Example" on page 6-21.
You load data into this dimension from a table that contains four categories of
products. Warehouse Builder inserts control rows in the dimension as shown in
Table 6-4. These rows enable you to link to a cube at any dimension level. Note that
the table does not contain all the dimension attribute values.

Table 6-4 Control Rows Created for the Products Dimension

Dimension Key Total Name Categories Name Product Name
-3 TOTAL

-9 TOTAL Hardware

-10 TOTAL Software

-11 TOTAL Electronics

-12 TOTAL Peripherals

To obtain the real number of rows in a dimension, count the number of rows by
including a WHERE clause that excludes the NULL rows. For example, to obtain a count
on Products, count the number of rows including a WHERE clause to exclude NULL
rows in Product.

Value-based Hierarchies

A value-based hierarchy is a dimension in which hierarchical relationships are defined
by a parent dimension attribute and a child dimension attribute. This is different from
a level-based hierarchy, referred to as a hierarchy in this chapter, in which the
hierarchical relationships are defined between levels.

You create a value-based hierarchy when the parent-child relationships cannot be
grouped into meaningful levels. A value-based hierarchy has no levels. When you

Designing Target Schemas 6-21

About Dimensions

create the dimension attributes, you must specify which dimension attribute is the
parent attribute.

For example, consider an EMPLOYEE dimension that has the following dimension
attributes: ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE, JOB_ID, HIRE_DATE,
DESCRIPTION, and MANAGER_ID. This dimension contains a parent-child relationship
in which the MANAGER_ID attribute identifies the manager of each employee. But
these relationships may not form meaningful levels across the organization. This is
because the number of levels between an employee and the CEO is not the same for all
employees. There may be four levels between employee A and the CEO, whereas,
there may be six levels between employee B and the CEO. In such cases, you create a
value-based hierarchy with MANAGER_ID as the parent identifier.

You can create value-based hierarchies using the Data Object Editor only. For more
information about specifying a parent attribute, see "Attributes Tab" in the Warehouse
Builder Online Help.

Note: Value-based hierarchies can be created only in dimensions that
use a MOLAP implementation.

Implementing a Dimension

Implementing a dimension consists of specifying how the dimension and its data are
physically stored. You can choose either a relational implementation, ROLAP
implementation, or MOLAP implementation for a dimension. For more information
about setting the implementation method, see "Implementing Dimensional Objects" on
page 6-12.

Relational and ROLAP Implementation of a Dimension

When you store dimension data in a relational form, you can implement the
dimension using one of the following methods:

s Star Schema

s Snowflake Schema

Star Schema In a star schema implementation, Warehouse Builder stores the dimension
data in a single table. Because the same table or view stores data for more than one
dimension level, you must specify a dimension key column in the table. The
dimension key column is the primary key for the dimension. This column also forms
the foreign key reference to the cube.

Each level implements a subset of dimension attributes. By default, the level attribute
name is the same as the dimension attribute name. To avoid name conflicts caused by
all level data being stored in the same table, Warehouse Builder uses the following
guidelines for naming in a star table:

» If the level attribute name is not unique, Warehouse Builder prefixes it with the
name of the level.

» If the level attribute name is unique, Warehouse Builder does not use any prefix.

Note: To ensure that no prefixes are used, you must explicitly change
the level attribute name in the Create Dimension wizard or the Data
Object Editor.

6-22 Oracle Warehouse Builder User’s Guide

About Dimensions

For example, if you implement the Products dimension using a star schema,
Warehouse Builder uses a single table to implement all the levels in the dimension.

Figure 6-3 displays the star schema implementation of the Products dimension. The
attributes in all the levels are mapped to different columns in a single table called
PRODUCTS. The column called DIMENSION_KEY stores the surrogate ID for the
dimension and is the primary key of the table.

Figure 6-3 Star Schema Implementation of Products Dimension

~J pronucts =

i i =

= Dimension key al
oo Dimension Key T oo

FAttributes E1 PRODUCTS X

=llevels I I {1

EITOTAL =IColurmng s
o oo oo DIMEMSION_KEY Ty oo
o zihsngmpﬂow o E @ TOTAL_DESCRIPTI. % ==
oo D oo o TOTAL_MAME dh, oo

EIGROUPS oo TOTALID Ty oo
oo NAME oo e GROUPS_MAME By oo
oo D w o GROUPS_ID Ty oo
oo DESCRIPTION oo s GROUPS_DESCRL.. 3, oo

EIPRODUCT s PRODUCT_DESC.. % oo
oo DESCRIPTION - oo PG i, oo
oo PG o oo PACKAGE_SIZE 3y oo
oo PACKAGE_SIFE on @« PRODUCT_MAME 3y om
oo NAME o o PRODUCT_ID Ty oo
oo D oo oo PACKAGE_TYPE 3y, oo
oo PACKAGE_TYPE o Elkeys |

='Hierarchies HPRODUCTS_1. DI T A

EISTANDARD

TOTAL

EIGROUPS

GROUPS to TOTAL

EIPRODUCT ||

FPRODUCT to GROLIPS i

For relational or ROLAP dimensions that use a star implementation, you can bind
attributes from more than one levels to the same database column. A database column
that is bound to attributes from more than one dimension levels is referred to as a
shared column. For a Type 2 SCD, you cannot set the level attributes that are bound to a
shared column as triggering attributes.

Snowflake Schema In a snowflake schema implementation, Warehouse Builder uses
more than one table to store the dimension data. Separate database tables or views
store the data pertaining to each level in the dimension.

Figure 64 displays the snowflake implementation of the PRODUCTS dimension. Each
level in the dimension is mapped to a different table.

Designing Target Schemas 6-23

About Dimensions

Figure 6-4 Snowflake Schema Implementation of the Products Dimension

L4
~J proDUCTS I EITOT“'— : 21
[| B =
= Dirmension Key - = [?glsu(;g}spﬂ e SR
oo Dimension Key oo = n, o
Hattributes .
o D Tag oo
E‘LB’\"B|S =1 e
ETOTAL
oo DESCRIPTION o [E crours =
oo HWAME oo
oo D on
EGROUPS = e |
oo MAME o ?"’f—/. @ D Ty ool
== 1D o= ?"’/J—. @ DESCRIPTI.. %, |
= DESCRIPTION | et i GROUPS_T.. Tty coo
EPRODUGT Eikeys 4
oo DESCRIPTION o
o UG o
o PACKAGE_SIZE o [E ProDUCT 7
oo HAME o
= 1D oo B Columng |
oo PACKAGE_TYPE o oo DESCRIPTI.. %, oo
=IHierarchies w UPC By oo
EISTANDARD @0 PACKAGE_. % oo|:
TOTAL @ NAME %, ool
EIGROUPS o |0 Tay oo
GROUPS to TOTAL oo PACKAGE_.. % oo
EPRODUCT L e PRODUCT_... T8 oo
PRODUCT to GROUPS b =lKeys -

Binding

When you perform binding, you specify the database columns that will store the data
of each attribute and level relationship in the dimension. You can perform either auto
binding or manual binding for a dimension. For more information about binding, see
"Binding" on page 6-12.

Auto Binding When you perform auto binding, Warehouse Builder binds the
dimension object attributes to the database columns that store their data. When you
perform auto binding for the first time, Warehouse Builder also creates the tables that
are used to store the dimension data.

When you perform auto binding on a dimension that is already bound, Warehouse
Builder uses the following rules:

n If the implementation method of the dimension remains the same, Warehouse
Builder rebinds the dimensional object to the existing implementation objects. The
implementation method can be either Star or Snowflake. For more information on
implementation methods, see "Relational and ROLAP Implementation of a
Dimension" on page 6-22.

For example, you create a Products dimension using the star schema
implementation method and perform auto binding. The dimension data is stored
in a table called Products. You modify the dimension definition at a later date but
retain the implementation method as star. When you now auto bind the Products
dimension, Warehouse Builder rebinds the Products dimension attributes to the
same implementation tables.

= If the implementation method of a dimension is changed, Warehouse Builder
deletes the old implementation objects and creates a new set of implementation
tables. If you want to retain the old implementation objects, you must first unbind
the dimensional object and then perform auto binding. For more information on
implementation methods, see "Relational and ROLAP Implementation of a
Dimension" on page 6-22.

6-24 Oracle Warehouse Builder User’s Guide

About Slowly Changing Dimensions

For example, you create a Products dimension using the star schema
implementation method and bind it to the implementation table. You now edit this
dimension and change its implementation method to snowflake. When you now
perform auto binding for the modified Products dimension, Warehouse Builder
deletes the table that stores the dimension data, creates new implementation
tables, and binds the dimension attributes and relationships to the new
implementation tables.

For information about how to perform auto binding, see "Auto Binding" on page 6-13.
Auto binding uses the implementation settings described in "Relational and ROLAP
Implementation of a Dimension" on page 6-22.

Manual Binding You would typically use manual binding to bind existing tables to a
dimension. Use manual binding if no auto binding or rebinding is required.

For information about how to perform manual binding, see "Manual Binding" on
page 6-13.

MOLAP Implementation

When a dimension is implemented in a MOLAP environment, the dimension
definition and data are stored in an analytic workspace. This is done using analytic
workspace objects such as dimensions, relationships, and so on. You can store multiple
cubes in the same analytic workspace. For more information on MOLAP
implementation, see "MOLAP Implementation of Dimensional Objects" on page 6-14.

About Slowly Changing Dimensions

A Slowly Changing Dimension (SCD) is a dimension that stores and manages both
current and historical data over time in a data warehouse. In data warehousing, there
are three commonly recognized types of SCDs.

With the appropriate licensing, you can use Warehouse Builder to define, deploy, and
load all three types of SCDs. You can create slowly changing dimensions only for
dimensions that use a relational implementation.

Note: Type 1 does not require additional licensing; however, type 2
and type 3 SCDs require the Warehouse Builder Enterprise ETL
Option.

Table 6-5 describes the three types of SCDs.

Table 6-5 Types of Slowly Changing Dimensions

Preserves
Type Use Description History?
Type 1 Overwriting Only one version of the dimension record exists. When a change =~ No
is made, the record is overwritten and no historic data is stored.

Type 2 Creating a new There are multiple versions of the same dimension record, and Yes

version of a new versions are created while the old ones are still kept upon

dimension record modification.
Type 3 Creating a current There is one version of the dimension record. This record stores Yes

value field

the previous value and current value of selected attributes.

Designing Target Schemas 6-25

About Slowly Changing Dimensions

To create a Type 2 SCD or a Type 3 SCD, in addition to the regular dimension
attributes, you need additional attributes that perform the following roles:

» Triggering Attributes: These are attributes for which historical values must be
stored. For example, in the PRODUCTS dimension, the attribute PACKAGE_TYPE of
the Product level can be a triggering attribute. This means that when the value of
this attribute changes, the old value needs to be stored.

» Effective Date: This attribute stores the start date of the record's life span.
s Expiration Date: This attribute stores the end date of the record’s life span.

An attribute can play only one of the above roles. For example, an attribute cannot be a
regular attribute and an effective date attribute. When you use the wizard to create a
Type 2 SCD or a Type 3 SCD, Warehouse Builder creates the required additional
attributes.

About Type 1 Slowly Changing Dimensions

In a Type 1 Slowly Changing Dimension (SCD), the new data overwrites the existing
data. Typically, this type is not considered an SCD and most dimensions are of this
type. Thus the existing data is lost as it is not stored anywhere else. This is the default
type of dimension you create. You need not specify any additional information to
create a Type 1 SCD. Unless there are specific business reasons, you must assume that
a Type 1 SCD is sufficient. For more information on how to define and implement a
Type 1 SCD, refer to the following;:

s Defining a Dimension

= Implementing a Dimension

About Type 2 Slowly Changing Dimensions

A Type 2 Slowly Changing Dimension (SCD) retains the full history of values. When
the value of a triggering attribute changes, the current record is closed. A new record is
created with the changed data values and this new record becomes the current record.
Each record contains the effective date and expiration date to identify the time period
for which the record was active. Warehouse Builder also enables you to set a specific
non-null date value as the expiration date. The current record is the one with a null or
the previously specified value in the expiration date.

All the levels in a dimension need not store historical data. Typically, only the lowest
levels is versioned.

Note: Be aware of the impact that all levels in a dimension not
storing historical data has on query tools.

Defining a Type 2 Slowly Changing Dimension
To define a Type 2 Slowly Changing Dimension (SCD):

= For the level that stores historical data, specify the attributes used as the effective
date and the expiration date.

s Choose the level attribute(s) that will trigger a version of history to be created.

You cannot choose the surrogate ID, effective date attribute or expiration date
attribute as the triggering attribute.

6-26 Oracle Warehouse Builder User’'s Guide

About Slowly Changing Dimensions

Each version of a record is assigned a different surrogate identifier. The business ID
connects the different versions together in a logical sense. Typically, if there is a
business need, Type 2 SCDs are used.

Type 2 SCD Example

Consider the Customers Type 2 SCD that contains two levels, Household and
Customer. Table 6-6 lists level attributes of the Customers Type 2 SCD.

Table 6-6 Customers Type 2 SCD Attributes

Attribute Name Identifier

ID Surrogate identifier
BUSN_ID Business identifier
ADDRESS

ZIP

MARITAL_STATUS

HOME_ PHONE
EFFECTIVE_DATE Effective Date
EXPIRATION_DATE Expiration Date

Customer is the leaf level and Household is the non-leaf level.

The Household level implements the following attributes: ID, BUSN_ID, ADDRESS,
ZIP, EFFECTIVE_DATE, and EXPIRATION_DATE. The Customer level implements the
following attributes: ID, BUSN_ID, MARITAL_STATUS, HOME_PHONE, EFFECTIVE_
DATE, and EXPIRATION_DATE.

The table that implements this Type 2 SCD (for a relational or ROLAP implementation)
contains the following columns: DIMENSION_KEY, H_ID, H_BUSN_ID, H_ADDRESS,
H_ZIP,H_EFFECTIVE_DATE, H_EXPIRATION_DATE, C_ID, C_BUSN_ID, C_
MARITAL_STATUS, C_HOME_PHONE, C_EFFECTIVE_DATE, and C_EXPIRATION_
DATE.

To create the CUSTOMERS Type 2 SCD:

» Specify that the ZIP attribute of the Household level and the MARITAL_STATUS
attribute of the Customer level are the triggering attributes.

= Use two additional attributes to store the effective date and the expiration date of
the level records. When you use the Create Dimension wizard, Warehouse Builder
creates these additional attributes for the lowest level only. If you use the Data
Object Editor, you must explicitly create these attributes and apply them to the
required levels.

Hierarchy Versioning

When the non-leaf level of a dimension contains versioned attributes, the versioning of
this non-leaf level results in the versioning of its corresponding child records, if they
have effective date and expiration date attributes. For example, when the value of the
H_Z7IP is updated in a particular Household level record, the child records
corresponding to this Household level are automatically versioned.

Hierarchy versioning is not enabled by default for Type 2 SCDs. When you create a
Type 2 SCD using the Create Dimension Wizard, hierarchy versioning is disabled. You
must use the Data Object Editor to enable hierarchy versioning.

Designing Target Schemas 6-27

About Slowly Changing Dimensions

To enable hierarchy versioning:
1. Right-click the Type 2 SCD in the Project Explorer and select Open Editor.
The Data Object Editor is displayed.
2. Navigate to the SCD tab.
3. Click Settings to the right of the Type 2: Store the Complete change history option.

The Type 2 slowly changing dimension dialog box is displayed. The attributes of
each level are displayed under the level node.

4. In the child level that should be versioned when its parent attribute changes, for
the attribute that represents the parent attribute of this child level, select Trigger
History in the Record History column.

For example, you create the Customers Type 2 SCD using the Create Dimension
Wizard. Open the Data Object Editor for this Type 2 SCD and navigate to the Type
2 slowly changing dimension dialog box as described in steps 1 to 3. The
Customer level has an attribute called HOUSEHOLD_ID. This attribute represents
the parent attribute of each Customer record. For the HOUSEHOLD_ID attribute,
select Trigger History in the Record History column.

Updating Type 2 Slowly Changing Dimensions

All the levels in a dimension need not store historical data. Typically, only the lowest
level, also called the leaf level, stores historical data. However, you can also store
historical data for other dimension levels.

When a record in a Type 2 SCD is versioned, the old record is marked as closed and a
new record is created with the updated values. The expiration date of the record is set
to indicate that it is closed. The new record is referred to as the current record and, by
default, has a default expiration of NULL. While loading data into the Type 2 SCD,
you can set the expiration date by using the configuration parameters for the
Dimension operator. For more information, see "Dimension Operator” in the Warehouse
Builder Online Help.

You can update the following in a Type 2 SCD:

n Leaf level attribute

» Leaf level versioned attribute

= Non-leaf level attribute

= Non-leaf level versioned attribute

» Leaf level parent attribute

The following sections describe the Warehouse Builder functionality for these update
operations.

Updating a Leaf Level Attribute

When you update a leaf level attribute, the value of this attribute is updated in the
corresponding record.

For example, if you update the value of C_HOME_PHONE in a Customer level record,
the record is updated with the changed phone number.
Updating a Leaf Level Versioned Attribute

When you update a leaf level versioned attribute, the current record is marked as
closed. A new record is created with the updated value of the versioned attribute.

6-28 Oracle Warehouse Builder User’'s Guide

About Slowly Changing Dimensions

For example, if you update the marital status of a customer, the current record is
marked as closed. A new record with the updated marital status is created for that
customer.

Updating a non-leaf Level Attribute

When you update an attribute in a non-leaf level, the open records of the non-leaf level
and the child records corresponding to this non-leaf level are updated with the new
value.

For example, when you update the H_ADDRESS attribute in a Household level record,
the current open record for that household is updated. All open child records
corresponding to that particular household are also updated.

Updating a non-leaf Level Versioned Attribute

The update functionality depends on whether hierarchy versioning is enabled or
disabled.

Hierarchy Versioning Disabled

The non-leaf level record corresponding to the versioned attribute is closed and a new
record is created with the updated value. The child records of this non-leaf level record
are updated with the changed value of the non-leaf level versioned attribute.

For example, when the value of H_ZIP in a Household level record is updated, the
current open record for that household is closed. A new record with the updated value
of H_ZIP is created. The value of H_ZIP is updated in all the child records
corresponding to the updated household record.

Hierarchy Versioning Enabled

The non-leaf level record corresponding to the versioned attribute is closed and a new
record is created with the updated value. Child records corresponding to this non-leaf
level record are also closed and new child records are created with the updated value.

For example, when the value of H_ZIP in a Household level record is updated, the
current open record for that household and its corresponding child records are closed.
New records are created, with the updated value, for the household and for the child
records corresponding to this household.

Updating the Leaf Level Parent Attribute

In addition to updating the level attributes in a Type 2 SCD, you can also update the
parent attribute of a child record. In the Customers Type 2 SCD, the attribute H_
BUSN_ID in a Customer record stores the parent attribute of that customer. The
update functionality for the leaf level parent attribute depends on whether hierarchy
versioning is enabled or disabled.

Hierarchy Versioning Disabled
The child record is updated with the new parent attribute value.

For example, when you update the value of the H_BUSN_1ID attribute representing the
parent record of a Customer record, the Customer record is updated with the new
values.

Hierarchy Versioning Enabled

The child record is closed and a new record with the changed parent attribute value is
created.

Designing Target Schemas 6-29

About Time Dimensions

For example, when you update the H_BUSN_ID attribute of a customer record, the
current customer record is closed. A new customer record with the updated H_BUSN_
IDis created.

About Type 3 Slowly Changing Dimensions

A Type 3 Slowly Changing Dimension (SCD) stores two versions of values for certain
selected level attributes. Each record stores the previous value and the current value of
the versioned attributes. When the value of any of the versioned attributes changes,
the current value is stored as the old value and the new value becomes the current
value. Each record stores the effective date that identifies the date from which the
current value is active. This doubles the number of columns for the versioned
attributes and is used rarely.

Defining a Type 3 Slowly Changing Dimension
To define a Type 3 Slowly Changing Dimension (SCD):

1. For each level, specify which attributes should be versioned. That is, which
attributes should store the previous value as well as the current value.

2. For each versioned attribute, specify the attribute that stores the previous value.
The following restrictions apply to attributes that can have a previous value.

= An attribute specified as a previous value cannot have further previous
values.

= The surrogate ID cannot have previous values.
3. For each level that is versioned, specify the attribute that stores the effective date.

Warehouse Builder recommends that you do not include previous value attributes in
the business identifier of a Type 3 SCD.

Type 3 SCD Example

The PRODUCTS dimension described in "Dimension Example" on page 6-21 can be
created as a Type 3 SCD. The attributes PACKAGE_TYPE and PACKAGE_SIZE of the
Product level should be versioned. You define two additional attributes to store the
previous values, say PREV_PACK_SIZE and PREV_PACK_TYPE in the Product level.
Suppose the value of the PACKAGE_TYPE attribute changes, Warehouse Builder stores
the current value of this attribute in PREV_PACK_TYPE and stores the new value in the
PACKAGE_TYPE attribute. The effective date attribute can be set to the current system
date or to any other specified date.

About Time Dimensions

A time dimension is a dimension that stores temporal data. Time dimensions are used
extensively in data warehouses. Warehouse Builder enables you to create and populate
time dimensions. You can use Warehouse Builder to create both fiscal and calendar
time dimensions.

When you create a time dimension using the wizard, Warehouse Builder creates the
mapping for you to execute to populate the time dimension. Also, the data loaded into
the time dimension conforms to the best practices recommended by Warehouse
Builder for a time dimension.

This section contains the following topics:

» Best Practices for Creating a Time Dimension

6-30 Oracle Warehouse Builder User’'s Guide

About Time Dimensions

s Defining a Time Dimension
= Implementing a Time Dimension
= Using a Time Dimension in a Cube Mapping

s Populating a Time Dimension

Best Practices for Creating a Time Dimension

Warehouse Builder provides an accelerator to create time dimensions. It also specifies
a set of rules as best practices for defining a time dimension. Warehouse Builder
enforces these rules when you use Create Time Dimension wizard to create a time
dimension.

The rules are as follows:

s The time dimension can contain only a subset of the predefined levels specified by
Warehouse Builder.

= Each level in a time dimension must have attributes for the time span and ending
date.

= A time dimension can have one or more hierarchies. Each hierarchy should be
either a fiscal hierarchy or a calendar hierarchy.

= When you deploy a time dimension to the OLAP catalog, you must attach the time
span and end date descriptors related to the levels to the dimension and its levels.
When you create a time dimension using the Create Time Dimension wizard,
Warehouse Builder performs this for you.

If you find these rules too restrictive for your business environment, you can create
your own time dimension by setting the time attributes in the Data Object Editor.
Ensure that you set the descriptors when you create a time dimension using the Data
Object Editor.

Defining a Time Dimension

A time dimension consists of a set of levels and a set of hierarchies defined over these
levels. Dimension roles are used extensively in time dimensions. For more information
about dimension roles see "Dimension Roles" on page 6-20. To create a time dimension
you must define the following:

s Levels
s Dimension Attributes
s Level Attributes

s Hierarchies

Levels

A level represents the level of aggregation of data. A time dimension must contain at
least two levels. You can use a level only once in a time dimension. For example, a time
dimension can contain only one Calendar Month level. Each level must have a
surrogate identifier and a business identifier. The surrogate identifier should be the ID
level attribute.

A Warehouse Builder time dimension can contain only a subset of the following levels:
L] Day

s Fiscal week

Designing Target Schemas 6-31

About Time Dimensions

s Calendar week

= Fiscal month

s Calendar month
s Fiscal quarter

s Calendar quarter
= Fiscal year

= Calendar year

Dimension Attributes

A dimension attribute is an attribute that is implemented by more than one level in the
time dimension. Table 6-7 describes the dimension attributes of the Warehouse
Builder time dimension.

Table 6-7 Dimension-level Attributes of the Time Dimension

Dimension Attribute Description

ID The ID attribute is implemented as level ID in all the levels.

Start Date The start date for the period. It always starts at 00:00:00 of
the first day of the period.

End Date The end date for the period. It always ends on 23:59:59 of the
last day of the period.

Time Span Number of days in the period.

Description Description of the level record.

Level Attributes

A level attribute is a descriptive characteristic of a level value. Warehouse Builder
creates level attributes for the time dimension based on the levels that you decide to
implement for the time dimension.

Table 6-8 lists the attributes of each level in the Warehouse Builder time dimension.
For a description of each attribute, refer to Appendix B.

Table 6-8 Time Dimension Level Attributes

Level Name Attribute Name

DAY ID, DAY, START_DATE, END_DATE, TIME_SPAN, JULIAN_
DATE, DAY_OF_CAL_WEEK, DAY_OF_CAL_MONTH, DAY_OF_
CAL_ QUARTER, DAY_OF_CAL_YEAR, DAY_OF_FISCAL_
WEEK,DAY_OF_FISCAL_MONTH, DAY_OF_FISCAL_QUARTER,
DAY_OF_FISCAL_YEAR. DESCRIPTION.

FISCAL WEEK ID, WEEK_NUMBER, WEEK_OF_FISCAL_MONTH, WEEK_OF_
FISCAL_QUARTER, WEEK_OF_FISCAL_YEAR, START_DATE,
END_DATE, TIME_DATE, DESCRIPTION.

CALENDAR WEEK ID, START_DATE, END_DATE, TIME_SPAN, DESCRIPTION.

FISCAL MONTH ID, MONTH_NUMBER, MONTH_OF_QUARTER, MONTH_OF_
YEAR, START_DATE, END_DATE, TIME_SPAN, DESCRIPTION.

CALENDAR MONTH ID, MONTH_NUMBER, MONTH_OF_QUARTER, MONTH_OF_
YEAR, START DATE, END_DATE, TIME_SPAN, DESCRIPTION.

FISCAL QUARTER ID, QUARTER_NUMBER, QUARTER_OF_YEAR, START_DATE,
END_DATE, TIME_SPAN, DESCRIPTION

6-32 Oracle Warehouse Builder User's Guide

About Time Dimensions

Table 6-8 (Cont.) Time Dimension Level Attributes

Level Name Attribute Name

CALENDAR QUARTER ID, QUARTER_NUMBER, QUARTER_OF_YEAR, START_DATE,
END_DATE, TIME_SPAN, DESCRIPTION.

FISCAL YEAR ID, YESR_NUMBER, START DATE, END_DATE, TIME_SPAN,
DESCRIPTION.

CALENDAR YEAR ID, YEAR_NUMBER, START DATE, END_DATE, TIME_SPAN,
DESCRIPTION

Hierarchies

A hierarchy is a structure that uses ordered levels to organize data. It defines
hierarchical relationships between adjacent levels in a time dimension. A time
dimension can have one or more hierarchies. Each hierarchy must be either a fiscal
hierarchy or a calendar hierarchy. A single time dimension cannot contain both fiscal
and calendar hierarchies.

Calendar Hierarchy A calendar hierarchy must contain at least two of the following
levels: DAY, CALENDAR_WEEK, CALENDAR_MONTH, CALENDAR_QUARTER,
CALENDAR_YEAR.

There is no drill-up path from CALENDAR_WEEK to any other levels. Thus, if a
calendar hierarchy contains CALENDAR_WEEK level, it cannot contain either the
CALENDAR_MONTH, CALENDAR_QUARTER, or CALENDAR_YEAR levels.

Fiscal Hierarchy A fiscal hierarchy should contain at least two of the following
levels: DAY, FISCAL_WEEK, FISCAL_MONTH, FISCAL_QUARTER, FISCAL_YEAR.
When you create a fiscal hierarchy, you must specify the following:
= Start month of the fiscal year
= Start date of the fiscal year
» Start day for the fiscal week
» Fiscal Convention used by the time dimension.
The options that you can select for fiscal convention are:

— 455: Select this option if the first month in the quarter has 4 weeks, the second
month in the quarter has 5 weeks, and the third month in the quarter has 5
weeks.

— 544: Select this option if the first month in the quarter has 5 weeks, the second
month in the quarter has 4 weeks, and the third month in the quarter has 4
weeks.

Implementing a Time Dimension

When you implement a time dimension, you specify how the time dimension and its
data are physically stored. You can store the time dimension data either in a relational
form or multidimensional form in the database.

The implementation of a time dimension is similar to the implementation of a regular
dimension. For more information on implementing a dimension, see "Implementing a
Dimension" on page 6-22.

Designing Target Schemas 6-33

About Time Dimensions

Using a Time Dimension in a Cube Mapping

A time dimension created using the Create Time Dimension wizard uses the attribute
ID as the surrogate identifier and the attribute CODE as the business identifier. The
data type of both these attributes is NUMBER. When you create a cube that references a
time dimension, the cube contains attributes that pertain to the surrogate identifier
and the business identifier of the lowest level of the time dimension. Both these
attributes have a data type of NUMBER.

When loading a cube, if you use a Warehouse Builder created time dimension as the
source, both the source attributes and the cube attributes are of data type NUMBER. For
example, consider a cube ALL_SALES that references two dimensions PRODUCTS and
TIME_FISCAL. TIME_FISCAL is a calendar time dimension created using the Time
Dimension wizard and it contains the levels Year, Month, and Day. When you create a
map to load the ALL_SALES cube, you can directly map the attribute DAY_ CODE of the
Day level of TIME_FISCAL to the attribute ALL_SALES_DAY_ CODE in the cube ALL_
SALES. The data type of both these attributes is NUMBER.

Consider a scenario where you load data into the ALL_SALES cube from a source
object in which the time data is stored as a DATE attribute. In this case, you cannot
directly map the DATE attribute from the source to the attribute ALL_SALES_DAY_
CODE of the ALL_SALES cube. Instead, you use an Expression operator in the mapping
to convert the input DATE attribute to a NUMBER value and then load it into the ALL_
SALES cube. In the Expression operator you convert the input using the following
expression:

TO_NUMBER (TO_CHAR (input, 'YYYYMMDD'))

where input represents the DATE attribute from the source object that needs to be
converted to a NUMBER value. For information on using the Expression operator, see
"Expression Operator" in the Warehouse Builder Online Help.

Populating a Time Dimension

You populate a time dimension by creating a mapping that loads data into the time
dimension. When you create a time dimension using the Create Time Dimension
wizard, Warehouse Builder creates a mapping that populates the time dimension. The
time dimension is populated based on the values of the following parameters:

» Start year of the data

= Number of years of the data

= Start day and month of fiscal year (only for fiscal time dimensions)
= Start day of fiscal week (only for fiscal time dimensions)

= Fiscal type (only for fiscal time dimensions)

The values of these attributes are initialized at the time of creating the time dimension
using the Create Time Dimension wizard. You can alter the values of these parameters
using the Data Object Editor. To change the values of the start date of the calendar year
and the number of calendar years, use the Name tab of the Data Object Editor. To
change the values of the parameters pertaining to fiscal time dimensions, use the Fiscal
Settings button on the Hierarchies tab of Data Object Editor.

6-34 Oracle Warehouse Builder User's Guide

About Cubes

Note: When you alter the values of any of the parameters pertaining
to the data to be loaded into the time dimension, you must re-create
the map that loads the time dimension. For more information on
re-creating the map, see "Hierarchies Tab" in the Warehouse Builder
Online Help.

Figure 6-5 displays a mapping to load a calendar time dimension. The Mapping Input
operator DATE_INPUTS represents the attributes needed to populate the time
dimension.

Figure 6-5 Mapping that Populates a Time Dimension

A

— :
COMSTRUGT... CAL_VERR..

=

TIME_1

[% pate_mpurs N
A

“ DAY_TABLE...
YEAR_START_DATE k=

MUMEER_YEARS Tgg B
L

__v'

CONGT = T
QUETRUCT.. CAL QUART..

CONSTRUCT... - .
CAL_MOMTH...

Overlapping Data Populations

You can run a map that populates the time dimension multiple times. During each run
you specify the attributes required to populate the time dimension. It is possible that a
run of the mapping may overlap with the previous runs, meaning you may attempt to
load data that already exists in the time dimension. In such a case, if a record was
populated by a previous run, Warehouse Builder does not populate the data again.

For example, in the first run, you populate the time dimension with data from the year
2000 for 5 years. In the second run, you populate the time dimension with data from
2003 for 3 years. Since the records from beginning 2003 to end 2004 already exist in the
time dimension, they are not created again.

About Cubes

Cubes contain measures and link to one or more dimensions. The axes of a cube
contain dimension members and the body of the cube contains measure values. Most
measures are additive. For example, sales data can be organized into a cube whose
edges contain values for Time, Products, and Promotions dimensions and whose body
contains values from the measures Value sales, and Dollar sales.

A cube is linked to dimension tables over foreign key constraints. Since data integrity
is vital, these constraints are critical in a data warehousing environment. The
constraints enforce referential integrity during the daily operations of the data
warehouse.

Data analysis applications typically aggregate data across many dimensions. This
enables them to look for anomalies or unusual patterns in the data. Using cubes is the
most efficient way of performing these type of operations. In a relational
implementation, when you design dimensions with warehouse keys, the cube row
length is usually reduced. This is because warehouse keys are shorter than their

Designing Target Schemas 6-35

About Cubes

natural counterparts. This results is lesser amount of storage space needed for the cube
data. For a MOLAP implementation, OLAP uses VARCHAR2 keys.

A typical cube contains:

= A primary key defined on a set of foreign key reference columns or, in the case of a
data list, on an artificial key or a set of warehouse key columns. When the cube is a
data list, the foreign key reference columns do not uniquely identify each row in
the cube.

= A set of foreign key reference columns that link the table with its dimensions.

Defining a Cube

A cube consists of the set of measures defined over a set of dimensions. To create a
cube, you must define the following:

s Cube Measures

s Cube Dimensionality

Cube Measures

A measure is data, usually numeric and additive, that can be examined and analyzed.
Examples of measures include sales, cost, and profit. A cube must have one or more
measures. You can also perform aggregation of measures. Only numeric measures can
be aggregated.

Cube Dimensionality

A cube is defined by a set of dimensions. A cube can refer to a level that is not the
lowest level in a dimension.

For cubes that use a pure relational implementation, you can reuse the same
dimension multiple times with the help of dimension roles. For more information on
dimension roles, see "Dimension Roles" on page 6-20.

Before you validate a cube, ensure that all the dimensions that the cube references are
valid.

To define a dimension reference, specify the following:
s The dimension and the level within the dimension to which the cube refers.

For a cube that uses a relational implementation, you can refer to intermediate
levels in a dimension. However, for cubes that use a MOLAP implementation, you
can only reference the lowest level in the dimension. Warehouse Builder supports
a reference to the non surrogate identifier of a level, for example, the business
keys.

» For dimensions that use a relational or ROLAP implementation, a dimension role
for each dimension to indicate what role the dimension reference is performing in
the cube. Specifying the dimension role is optional.

When you define a MOLAP cube, the order in which you define the dimension
references is important. The physical ordering of dimensions on disk is the same as the
order in which you define the dimension references. The physical ordering is tightly
coupled with the sparsity definition. Define the dimension references in the order of
most dense to least dense. Time is usually a dense dimension, and listing it first
expedites data loading and time-based analysis. For more information on defining
dimension references, see "Dimensions Page" or "Dimensions Tab" in the Warehouse

6-36 Oracle Warehouse Builder User's Guide

About Cubes

Builder Online Help. For more information on sparsity, see Advanced Dialog Box" in the
Warehouse Builder Online Help.

Default Aggregation Method

You can define aggregations that should be performed on the cube. For ROLAP cubes,
you can only define a single aggregation method for the cube. For MOLAP cubes, you
can define a different aggregation method for each dimension of each measure.
Warehouse Builder enables you to use the same aggregation function for all the cube
measures or specify different aggregate functions for each measure.

Warehouse Builder supports the following default aggregation methods: SUM, SSUM
(scaled SUM), AVERAGE, HAVERAGE (hierarchical average), MAX, MIN, FIRST,
LAST, AND, OR, HIERARCHICAL_FIRST and HIERARCHICAL_LAST. If you do not
want to perform aggregation, select NOAGG. The methods AND and OR are not
applicable for cubes that use a multidimensional implementation.

Note: You cannot define aggregation for pure relational cubes.

Cube Example

The Sales cube stores aggregated sales data. It contains the following two measures:
Value_sales and Dollar_sales.

s Value_sales: Stores the amount of the sale in terms of the quantity sold.
m Dollar_ sales: Stores the amount of the sale.
Table 6-9 describes the dimensionality of the Sales cube. It lists the name of the

dimension and the dimension level that the cube references.

Table 6-9 Dimensionality of the Sales Cube

Dimension Name Level Name
Products Product
Customers Customer
Times Day

Implementing a Cube

When you implement a cube, you specify the physical storage details for the cube. You
can implement a cube in a relational form or a multidimensional form in the database.

The types of implementation you can use for cubes are:
= Relational implementation

= ROLAP implementation

= MOLAP implementation

To set the type of implementation for a cube, use the Deployment Option
configuration property. For more details on setting this option, see "Configuring
Cubes" in the Warehouse Builder Online Help.

Relational and ROLAP Implementation of a Cube

The database object used to store the cube data is called a fact table. A cube must be
implemented using only one fact table. The fact table contains columns for the cube
measures and dimension references. For more information on setting the

Designing Target Schemas 6-37

About Cubes

implementation option for a cube, see "Implementing Dimensional Objects" on
page 6-12.

To implement a cube:
m Select a table or materialized view that will store the cube data.
s For each measure, select a column that will store the measure data.

s For each dimension reference, select a column that will store the dimension
reference.

Each dimension reference corresponds to a column on the fact table and optionally
a foreign key from the fact table to dimension table. The 1:n relationships from the
fact tables to the dimension tables must be enforced.

Figure 6-6 displays the bindings for the relational implementation of the SALES cube.
The data for the SALES cube is stored in a table called SALES.

Figure 6-6 Implementation of the Sales Cube

(7 saLes =S F saLes =
I i == i I =]
=IMeasures |~ FlColurmng |~

oo AMOUNT oy o #| oo AMOLUNT Ty oo

oo QUANTITY Toy o #| o0 QLANTITY Tay oo

oo COST oy o #|wo COST Ty oo

oo =Dimension References oo o PRODUCTS Ty oo

PRODUCTS T ?/’_/_. oo TIMES Tay oo
TIMES T ?/_/. o CLUSTOMERS Ty oo
CUSTOMERS T ?‘/_/_. o CHAMMELS g oo
CHAMMNELS T | | ?"/. @ PROMOTIONS Ty oo
PROMOTIONS T %/—/. Elkeys
HEALES_TIMES_FK [
SALES_CHANMELS_FK 9
FISALES_CUSTOMERS_FK 9
ESALES_PROMOTIONS_.. L
FSALES_PRODUCTS_FK -
Binding

When you perform binding, you specify the database columns that will store the data
of each measure and dimension reference of the cube. You can perform auto binding or
manual binding for a cube. For more information on binding, see "Binding" on

page 6-12.

Auto Binding When you perform auto binding, Warehouse Builder creates the table
that stores the cube data and then binds the cube measures and references to the
database columns. For detailed steps on performing auto binding, see "Auto Binding"
on page 6-13.

When you perform auto binding for a cube, ensure that you auto bind the dimensions
that a cube references before you auto bind the cube. You will not be able to deploy the
cube if any dimension that the cube references has been auto bound after the cube was
last auto bound.

For example, you create the SALES cube that references the TIMES and PRODUCTS
dimensions and perform auto binding for the cube. You later modify the definition of
the PRODUCTS dimension. If you now attempt to auto bind the SALES cube again,
Warehouse Builder generates an error. You must first auto bind the PRODUCTS
dimensions and then auto bind the cube.

Manual Binding In manual binding, you must first create the table or view that stores
the cube data and then map the cube references and measures to the database columns

6-38 Oracle Warehouse Builder User's Guide

Designing the Target Schema

that store their data. Alternatively, you can use an existing database table or view to
store the cube data.

For information about how to perform manual binding, see "Manual Binding" on
page 6-13.

MOLAP Implementation of a Cube

Storing the cube and its data in an analytic workspace is called a MOLAP
implementation. You can store multiple cubes in the same analytic workspace. For
more information on OLAP implementation, see "MOLAP Implementation of
Dimensional Objects" on page 6-14.

Solve Dependency Order of Cube

Certain business scenarios may require the dimensions in a cube to be evaluated in a
particular order. The order in which the dimensions are evaluated is called the solve
dependency order of the cube. For example, in the Sales cube, the Time dimension
may need to be evaluated before the Products dimension. For each dimension of the
cube, you can specify a dependency on another dimension of the cube.

The advantage of specifying the dependency order is that it enables Warehouse
Builder to optimize the query speed of calculating the joins of the dimension and
cubes. For example, retrieving results from the sales cube based on Time criteria may
be more selective than retrieving result based on Products criteria. In this case, you can
specify that for the Sales cube, the Products dimension depends on the Time
dimension.

Specifying the solve dependency order is optional. If you do not specify a dependency
order, the optimizer determines the solve-order with additional flexibility.

Designing the Target Schema

To create a target schema, you create any of the dimensional or relational objects listed
in Table 6-1 on page 6-2. You can design a relational target schema or a dimensional
target schema. In this section, the term dimensions refers to both regular dimensions
and Slowly Changing Dimensions (SCDs).

Designing a Relational Target Schema
A relational target schema is one that contains relational data objects such as tables,
views, materialized views, and sequences. All the warehouse data is stored in these
objects.

To design a relational target schema:

1. If you have not already done so, create an Oracle module that will contain the
objects for your target schema. Ensure that the location associated with this
module refers to the target schema.

2. Create the relational data objects.

You may have already imported some existing target objects. To creates additional
data objects, refer to "Creating Relational Data Objects" on page 6-42.

Note that this step only creates the definitions of the objects in the workspace. To
create the objects in the target schema, you must deploy these objects.

3. Configure the data objects.

Designing Target Schemas 6-39

Designing the Target Schema

In this step, you set the physical properties of the data objects. For example, you
specify the name of the tablespace in which a table should be created. Each data
object has a set of default configuration properties. You can choose to modify these
default values.

See "Configuring Data Objects" on page 6-46.
Validate the data objects.

Validation verifies the metadata definitions and configuration properties of data
objects. Correct any errors that are encountered during the validation.

See "Validating Data Objects" on page 6-46.
Generate code that will create these data objects in the target schema.

Generation produces code that is required to create the data objects created in step
2 in the target schema.

See "Generating Data Objects" on page 6-47.

Designing a Dimensional Target Schema

A dimensional target schema uses dimensional objects to store the data warehouse
data. Dimensional objects include dimensions and cubes. Dimensional objects
transform the visualization of the target schema from a table-oriented environment to
a more business-focussed environment. This helps you obtain answers to complex
analytical queries quickly and more efficiently.

To design a dimensional target schema:

1.

If you have not already done so, create the Oracle module that will contain your
dimensional objects. Ensure that the location associated with this module refers to
the target schema.

Create the dimensions required in your target schema.

See "Creating Dimensions" on page 6-42. Note that this step only creates the
definitions of the dimensions in the workspace. To create the objects in the target
schema, you must deploy these dimensions.

Create time dimensions.

Data warehouses use time dimensions extensively to store temporal data. See
"Creating Time Dimensions" on page 6-44.

Create the cubes required for the target schema.
See "Creating Cubes" on page 6-45.
Configure the dimensions and cubes.

Configure the dimensional objects you created in steps 2, 3, and 4 to set physical
properties for these objects. You can accept the default properties or modify them.

See "Configuring Data Objects" on page 6-46.
Validate the dimensions and cubes.

In this step, you verify the metadata definitions and configuration properties of
the dimensional objects created in steps 2, 3, and 4. Correct any errors resulting
from the validation.

See "Validating Data Objects" on page 6-46.

Generate code that will create these dimensions and cubes in the target schema.

6-40 Oracle Warehouse Builder User's Guide

Creating Oracle Data Objects

See "Generating Data Objects" on page 6-47.

Creating Oracle Data Objects

To create data objects, you can either start the appropriate wizard or use the Data
Object Editor. Some objects, such as dimensions and cubes, can be created using a
wizard or the Data Object Editor. Some objects, such as tables, can be created using the
Data Object Editor only.

For objects that can be created using a wizard or the Data Object Editor, you right-click
the node for the object, select New, and then Using Wizard or Using Editor.

After using a wizard, you may want to modify the object in the editor. In that case,
right-click the object and select Open Editor.

Creating Relational Data Objects

Relational data objects include tables, views, materialized views, and sequences. To
create tables, views, and materialized views, use the Data Object Editor. Use the Create
Sequence dialog box to create sequences.

You can create additional structures pertaining to relational objects such as constraints,
indexes, and partitions. For more information about how to create these structures, see
"Reference for Using Oracle Data Objects" in the Warehouse Builder Online Help.

To create relational data objects:

1. In the Project Explorer, expand the Oracle node that corresponds to the target
schema.

2. Right-click the node that represents the type of data object you want to create and
select New.

For example, to create a table, right-click the Tables node and select New. The Data
Object Editor is displayed.

3. Navigate to the Details panel of the Data Object Editor.
4. Use the tabs in the Details panel to define the data object.

For more information about the details to be entered on each tab, click the arrow at
the top of the Details panel and select Help.

Creating Dimensions

You can create dimensions using the Create Dimension Wizard or the Data Object
Editor. Use the wizard to create a fully functional dimension object quickly. If you
choose a relational implementation for the dimension, the wizard creates the
implementation tables in the target schema using auto binding.

The Data Object Editor provides maximum flexibility to create a dimension. You can
perform certain advanced tasks only by using the Data Object Editor.
To create a dimension using the Create Dimension Wizard:

1. In the Project Explorer, expand the Oracle node that corresponds to the target
schema.

2. Right-click the Dimensions node, select New, then Using Wizard.
The Welcome Page of the Create Dimension Wizard is displayed.

Designing Target Schemas 6-41

Creating Oracle Data Objects

3. Click Next.
The Name and Description page is displayed.
4. Enter a name and an optional description for the dimension.

Dimension names should follow the rules specified in "Naming Conventions for
Data Objects" on page 6-6.

5. Enter details on the following wizard pages.
= Storage Type page
See "Implementing a Dimension" on page 6-22
= Dimension Attributes page
See "Defining Dimension Attributes" on page 6-18
= Levels page
See "Defining Levels" on page 6-18
» Level Attributes page
See "Defining Level Attributes" on page 6-19
= Slowly Changing Dimension page
See "About Slowly Changing Dimensions" on page 6-25

For additional information about the information to be provided on each wizard
page, click Help on the page.

6. Click Next.

The Pre Create Settings page is displayed. This page lists the objects created to
implement the dimension. Review the entries on this page.

7. Click Next.

The Dimension Creation Progress page is displayed. The progress bar displays the
progress of the dimension creation. Wait till the progress bar reaches 100%.

8. Click Next.

The Summary page is displayed. This page lists the details of the dimension
created in the previous step.

9. Click Finish.

The definition of the dimension and its implementation objects, if any, are created.
For a relational or ROLAP dimension, the implementation tables and the sequence
used to load the surrogate identifier of the dimension are created. For MOLAP
dimensions, the analytic workspace used to store the dimension is created.

To create a dimension using the Data Object Editor:

1. In the Project Explorer, right-click the Dimensions node in the target module,
select New, then Using Editor.

The Data Object Editor is displayed.
2. Use the following tabs on the Dimension Details panel to define the dimension.
= Name

Dimension names should conform to the rules specified in "Naming
Conventions for Data Objects" on page 6-6.

6-42 Oracle Warehouse Builder User’s Guide

Creating Oracle Data Objects

= Storage

See "Implementing a Dimension" on page 6-22
s Attributes

See "Defining Dimension Attributes" on page 6-18
= Levels

See "Defining Levels" on page 6-18 and "Defining Level Attributes" on
page 6-19

= Hierarchies
See "Defining Hierarchies" on page 6-20
= SCD
See "About Slowly Changing Dimensions" on page 6-25

For more information about the details to be entered on each tab, click the arrow at
the top of the Dimension Details panel and select Help.

When you use the Data Object Editor to create dimensions, the implementation objects
are not automatically created. For relational and ROLAP dimensions, you can create
the implementation tables that store the dimension data by performing Auto Binding.

Creating Time Dimensions

You can create a fully functional time dimension using the Create Time Dimension
Wizard. If you need more flexibility in defining your time dimension, use the Data
Object Editor to create a dimension that stores temporal data. For information about
using the Data Object Editor to create time dimensions, see "Creating Dimensions" on
page 6-42.

To create a time dimension using the Create Time Dimension Wizard:

1.

In the Project Explorer, expand the Oracle node that corresponds to the target
schema.

Right-click the Dimensions node, select New, then Using Time Wizard.
The Welcome Page of the Create Time Dimension Wizard is displayed.
Click Next.

The Name and Description page is displayed.

Enter a name and an optional description for the time dimension.

Time dimension names should follow the rules specified in "Naming Conventions
for Data Objects" on page 6-6.

Enter details on the following wizard pages. For information about the options on
each wizard page, click Help.

= Storage Type page
See "Implementing a Time Dimension" on page 6-34
= Data Generation page

Specify the range of data to be stored in the time dimension. Also indicate the
type of data stored in the time dimension, fiscal or calendar.

= Levels page

Designing Target Schemas 6-43

Creating Oracle Data Objects

Creating Cubes

Select the levels in the time dimension. The levels displayed on this page
depend on the option you chose on the Data Generation page.

Click Next.

The Pre Create Settings page is displayed. This page lists the objects created to
implement the dimension. Review the entries on this page.

Click Next.

The Dimension Creation Progress page is displayed. The progress bar displays the
progress of the dimension creation. Wait till the progress bar reaches 100%.

Click Next.

The Summary page is displayed. This page lists the details of the dimension being
created.

Click Finish.

The definition of the time dimension and its implementation objects, if any, are
created. A mapping that loads the time dimension is also created.

For a relational or ROLAP time dimension, the implementation tables and the
sequence used to load the surrogate identifier of the time dimension are created.
For MOLAP dimensions, the analytic workspace used to store the time dimension
is created.

Use the Create Cube Wizard or the Data Object Editor to create cubes.

To create a cube using the Create Cube Wizard:

1.

In the Project Explorer, expand the Oracle node that corresponds to the target
schema.

Right-click the Cubes node, select New, then Using Wizard.
The Welcome Page of the Create Cube Wizard is displayed.
Click Next.

The Name and Description page is displayed.

Enter a name and an optional description for the cube.

Cube names should follow the rules specified in "Naming Conventions for Data
Objects" on page 6-6.

Enter details on the following wizard pages. For information about the options on
each wizard page, click Help.

= Storage Type page

See "Implementing a Cube" on page 6-38
= Dimensions page

See "Cube Dimensionality" on page 6-37
= Measures page

See "Cube Measures" on page 6-36
Click Next.

6-44 Oracle Warehouse Builder User’s Guide

Validating Data Objects

The Summary page is displayed. This page lists the details of the cube being
created.

7. Click Finish.

The definition of the cube and its implementation objects, if any, are created. For a
relational or ROLAP cube, the implementation tables are created. For MOLAP
cubes, the analytic workspace used to store the time dimension is created.

Configuring Data Objects

Configuration defines the physical characteristics of data objects. For example, you can
define a tablespace and set performance parameters in the configuration of a table. Or
you can specify the type of implementation for dimensional objects. You can change
the configuration of an object any time prior to deployment.

You can define multiple configurations for the same set of objects. This feature is
useful when deploying to multiple environments, such as test and production. For
more information, see "Creating Additional Configurations" on page 11-14.

All objects have a Deployable parameter, which is selected by default. To prevent an
object from being deployed, clear this parameter.

You can configure objects using the Data Object Editor or the Project Explorer. To
configure an object using the Data Object Editor, use the Configuration panel of the
editor. This panel displays the configuration details for the object currently selected on
the canvas. You can even drill down to, say and index in a table in the Selected Objects
tab of the Explorer panel to see those configuration details.

To configure an object using the Project Explorer:

1. In the Project Explorer, select the object and click the Configure icon.
or
Right-click the object and select Configure.
The Configuration Properties dialog box is displayed.

2. Select a parameter to display its description at the bottom of the right panel. Click
Help for additional information.

3. Enter your changes and click OK.

Validating Data Objects

Validation is the process of verifying metadata definitions and configuration
parameters. These definitions must be valid before you proceed to generation and
deployment of scripts.

Warehouse Builder runs a series of validation tests to ensure that data object
definitions are complete and that scripts can be generated and deployed. When these
tests are complete, the results display. Warehouse Builder enables you to open object
editors and make corrections to any invalid objects before continuing. In addition to
being a standalone operation, validation also takes place implicitly when you generate
or deploy objects.

To detect possible problems and deal with them as they arise, you can validate in two
stages: after creating data object definitions, and after configuring objects for
deployment. In this case, validating objects after configuration is more extensive than
validating object definitions.

Designing Target Schemas 6-45

Validating Data Objects

Tip: Validate objects as you create and configure them to resolve
problems as they arise. The same error-checking processes are run
whether you are validating the design or configuration.

When you validate an object after it has been defined, the metadata definitions for the
objects you have designed are checked for errors. For example, if you create a table,
Warehouse Builder requires that columns be defined. When this object is validated,
Warehouse Builder verifies that all components of the table have been defined. If these
components are missing, validation messages display in the Validation Results
window.

If you validate an object after it has been configured, metadata definitions are
re-checked for errors and configuration parameters are checked to ensure that the
object will be generated and deployed without any problems. You can then make edits
to invalid objects.

You can validate a single object or multiple objects at a time. You can also validate
objects that contain objects, such as modules and projects. In this case, all data objects
contained by that object are validated. Use the Project Explorer or the Data Object
Editor to validate data objects.

When you validate objects, Warehouse Builder displays the Validation Results window
that contains the results of the validation. For more information about this dialog box,
click Help and then Topic.

Validating Data Objects Using the Project Explorer

In the Project Explorer, select the data object and click the Validate icon. You can select
multiple objects by holding down the Ctrl key while selecting objects.

or

In the Project Explorer, select the data object or data objects. To select multiple objects,
hold down the Ctrl key while selecting objects. Right-click the data object and select
Validate. If you selected multiple objects, ensure that the Ctrl key is pressed when you
right-click.

Validating Data Objects Using the Data Object Editor

Right-click the icon representing the data object on the Data Object Editor canvas and
select Validate.

or

Select the object on the canvas and either click the Validate icon or select Validate from
the Object menu.

Editing Invalid Objects

The results of validating data objects are displayed in the Validation Results window.
From this window, you can access the editors for objects and rectify errors in their
definition, if any.

To edit invalid definitions:

1. In the Validation Results window, double-click an invalid object from the tree or
from the validation messages grid.

An editor for the selected object is displayed.

6-46 Oracle Warehouse Builder User's Guide

Generating Data Objects

2. Edit the object to correct problems.

3. Close the editor when you are finished and re-validate.

Generating Data Objects

When you generate data objects, Warehouse Builder produces the code required to
create the data objects in the target schema. Warehouse Builder generates the following
types of scripts:

= DDL scripts: Creates or drops database objects.

= SQL*Loader control files: Extracts and transports data from file sources.
s ABAP Scripts: Extracts and loads data from SAP systems.

You can view the generated scripts and also store them to a file system.

When you generate code for a data object, Warehouse Builder first validates the object
and then generates code.You may skip the validation step and directly generate code
for your data objects. However, it is recommended that you validate objects before you
generate them. This enables you to discover and correct any errors in data object
definitions before the code is generated.

Use the Project Explorer or the Data Object Editor to generate code for data objects.
When you generate objects, Warehouse Builder displays the Generation Results
window that contains the results of the generation. For more information about this
window, click Help and then Topic.

Generating Data Objects Using the Project Explorer

To generate a single data object, select the data object and click the Generate icon. Or
right-click the data object and select Generate.

To generate code for multiple objects, select the objects by holding down the Ctrl key
and click the Generate icon. Or select the data objects and, while continuing to hold
down the Ctrl key, right-click and select Generate.

Generating Objects Using the Data Object Editor

Open the Data Object Editor for the data object by right-clicking the object and
selecting Open Editor. The canvas displays a node that represents the data object.

Right-click the data object node on the canvas and select Generate.
or

Select the data object node on the canvas. Click the Generate icon or select Generate
from the Object menu.

Viewing Generated Scripts

To view the generated scripts:

1. From the Generation Results window, select an object in the navigation tree on the
left of the Generation Results window.

2. Select the Scripts tab on the right of this window.
The Scripts tab contains a list of the generated scripts for the object you selected.
3. Select a specific script and click View Code.

The selected script displays in a code viewer, which is read-only.

Designing Target Schemas 6-47

Deriving Business Intelligence Metadata

Saving Generated Scripts to a File

To save generated scripts:

1.

From the Generation Results window, select an object from the navigation tree on
the left.

Select the Scripts tab from the bottom section of the window.
The Scripts tab contains a list of the generated scripts for the object you selected.
Select a specific script and click Save As.

The Save dialog box opens and you can select a location where you want to save
the script file.

Deriving Business Intelligence Metadata

Warehouse Builder enables you to derive business intelligence objects from your
existing relational and dimensional data objects. When you derive intelligence objects,
Warehouse Builder tailors existing definitions to match the definitions used by the
Oracle Discoverer End User Layer.

You can deploy intelligence objects derived from data warehouse design definitions
directly to Oracle Discoverer.

To derive intelligence objects:

1.

If you have not already done so, create a business definition module that will
contain the derived business intelligence objects.

To create a business definition module, expand the Business Intelligence node in
the Project Explorer, right-click Business Definitions and select New. The Create
Business Definition Module Wizard displays. Specify a name and an optional
description for the business definition module. Ensure that the location associated
with this module refers to the Discoverer EUL to which the derived business
definitions will be deployed.

To derive all the objects in an Oracle module, right-click the Oracle module in the
Project Explorer and select Derive.

To derive a particular object, right-click that object in the Project Explorer and
select Derive.

The Welcome page of the Perform Derivation Wizard is displayed. Click Next to
proceed with the derivation.

On the Source Objects page, the Selected section displays the objects you selected
in step 2. To derive additional objects, select the objects and move them from the
Available list to the Selected list.

On the Target page, select the business definition module or business area that will
contain the derived objects.

On the Rules page, specify the rules and parameters for the derivation.
For more information about the rules and parameters, click Help on this page.

On the Pre Derivation page, review the selections you made. Click Back to modify
selected values. Click Next to proceed.

The Derivation page displays a progress bar that indicates the progress of the
derivation. Wait until the progress reaches 100% and click Finish to complete the
derivation.

6-48 Oracle Warehouse Builder User’'s Guide

Deriving Business Intelligence Metadata

Once you derive business definitions, you can directly deploy them to Oracle
Discoverer. For information about deploying to Discoverer, see "Deploying Business
Definitions to Oracle Discoverer" on page 11-9.

Designing Target Schemas 6-49

Deriving Business Intelligence Metadata

6-50 Oracle Warehouse Builder User’'s Guide

7

Creating Mappings

After you create and import data object definitions in Warehouse Builder, you can
design extraction, transformation, and loading (ETL) operations that move data from
sources to targets. In Warehouse Builder, you design these operations in a mapping.

This chapter contains the following topics that describe how to create, edit, and use
mappings:

= About Mappings and Operators

s Instructions for Defining Mappings

s Creating a Mapping

= Adding Operators

= Editing Operators

= Connecting Operators

= Using Pluggable Mappings

s Setting Mapping Properties

= Setting Operator, Group, and Attribute Properties
= Synchronizing Operators and Workspace Objects
s Using DML Error Logging

= Debugging a Mapping

About Mappings and Operators

Mappings describe a series of operations that extract data from sources, transform it,
and load it into targets. They provide a visual representation of the flow of the data
and the operations performed on the data. When you design a mapping in Warehouse
Builder, you use the Mapping Editor interface.

Alternatively, you can create and define mappings using OMB Plus, the scripting
interface for Warehouse Builder as described in the Oracle Warehouse Builder API and
Scripting Reference.

Based on the ETL logic that you define in a mapping, Warehouse Builder generates the
code required to implement your design. Warehouse Builder can generate code for the
following languages:

= PL/SQL: PL/SQL stands for Procedural Language/Standard Query Language. It
extends SQL by adding constructs found in procedural languages, resulting in a
structural language that is more powerful than SQL.

Creating Mappings 7-1

Instructions for Defining Mappings

= SQL*Loader: SQL*Loader is an Oracle tool for loading data from files into Oracle
Database tables. It is the most efficient way to load large amounts of data from flat
files.

= ABAP: ABAP is a programming language for developing applications for the SAP
R/3 system, a business application subsystem.

The basic design element for a mapping is the operator. Use operators to represent
sources and targets in the data flow. Also use operators to define how to transform the
data from source to target. The operators you select as sources have an impact on how
you design the mapping. Based on the operators you select, Warehouse Builder
assigns the mapping to one of the following Mapping Generation Languages:

= PL/SQL
s SQL*Loader
s ABAP

Each of these code languages require you to adhere to certain rules when designing a

mapping.

s PL/SQL Mappings: For all mappings that do not contain either a flat file operator
as a source or a SAP/R3 source, Warehouse Builder generates PL/SQL code.
Design considerations for PL/SQL mappings depend upon whether you specify a
row-based or set-based operating mode as described in "Understanding
Performance and Advanced ETL Concepts" on page 9-1.

= SQL*Loader Mappings: When you define a flat file operator as a source,
Warehouse Builder generates SQL*Loader code. To design a SQL*Loader mapping
correctly, follow the guidelines described in "Flat File Source Operators" in the
Warehouse Builder Online Help.

= ABAP Mappings: When you define a SAP/R3 source, Warehouse Builder
generates ABAP code. For mapping design considerations for SAP sources, see
"Defining the ETL Process for SAP Objects" on page 4-28.

Instructions for Defining Mappings

Before You Begin

First verify that your project contains a warehouse target module with a defined
location.

Also import any existing data you intend to use as sources or targets in the mapping.
To define a mapping, refer to the following sections:

1. Creating a Mapping on page 7-4

2. Adding Operators on page 7-11

To design a mapping to extract from or load to a flat file, refer to "Instructions for
Using Flat File Sources or Targets in a Mapping" on page 7-3.

Editing Operators on page 7-13
Connecting Operators on page 7-18
Using Pluggable Mappings on page 7-21
Setting Mapping Properties on page 7-24

N o a 0

Setting Operator, Group, and Attribute Properties on page 7-26

7-2 Oracle Warehouse Builder User's Guide

Instructions for Defining Mappings

8. Configuring Mappings Reference in the Warehouse Builder Online Help

9. For PL/SQL mappings, you can also refer to "Best Practices for Designing PL/SQL
Mappings" on page 9-1.
10. Debugging a Mapping on page 7-34

11. When you are satisfied with the mapping design, generate the code by selecting
the Generate icon in the toolbar.

Subsequent Steps

After you design a mapping and generate its code, you can next create a process flow
or proceed directly with deployment followed by execution.

Use process flows to interrelate mappings. For example, you can design a process flow
such that the completion of one mapping triggers an email notification and starts
another mapping. For more information, see "Designing Process Flows" on page 8-1.

Deploy the mapping, and any associated process flows you created, and then execute
the mapping as described in "Deploying to Target Schemas and Executing ETL Logic"
on page 11-1.

Instructions for Using Flat File Sources or Targets in a Mapping

In a mapping you can use flat file operators as either sources or targets but not a mix
of both. You can import file definitions from existing flat files and use that data as a
source or target in the mapping. Or you can create your own flat file definition in the
Mapping Editor to load data into a new flat file target.

Creating a New Flat File Target
To create a new flat file definition for a target, complete the following steps:

1. If you have not already done so, create a flat file module.

A flat file module is necessary to enable you to create the physical flat file later in
these instructions.

2. Create the mapping definition as described in "Creating a Mapping" on page 7-4.
3. Drag and drop a flat file operator onto the canvas.

4. On the Add Flat File Operator dialog box, select the option Create Unbound
Operator with No Attributes and assign a name to the new target operator.

5. Edit the new operator as described in "Editing Operators" on page 7-13.

Thus far, you have defined an operator that represents a flat file but have not
created the actual flat file target.

6. To create the flat file in the database, right-click the operator and select Create and
Bind.

The dialog box prompts you to select a flat file module and enables you to assign a
unique name to the flat file. When you click OK, Warehouse Builder displays the
new target in the Project Explorer Files node under the module you specified.

7. Continue to define your mapping as described in "Instructions for Defining
Mappings" on page 7-2.

Creating a Source or Target Based on an Existing Flat File
To use an existing flat file as a source or target, complete the following steps:

Creating Mappings 7-3

Creating a Mapping

In the Project Explorer, right-click the File node and select New to create a module
for the flat files as described in "Creating Flat File Modules" in the Warehouse
Builder Online Help.

Right-click the flat file module and select Import to import file definitions as
described in "Importing Definitions from Flat Files" on page 4-8.

Decide to use the file as either a source or a target.

If you import a file for use as a target, Warehouse Builder generates PL/SQL code
for the mapping. Review the details in "Flat File Target Operators" in the Warehouse
Builder Online Help and then skip to step 7.

If you import a file for use as a source, you must decide whether to maintain the
flat structure of the file using SQL* Loader or to represent the data in PL/SQL
format through an external table. Continue to the next step.

Refer to "External Table Operators versus Flat File Operators" in the Warehouse
Builder Online Help to determine what type of operator to use in your mapping.

If you select external table operator, continue to the next step.
If you select flat file operator, skip to step 7.

Create the external table as described in "Creating a New External Table
Definition" in the Warehouse Builder Online Help.

In the Project Explorer, right-click the external table and select Configure. On the
Data Files node, right-click and select Create.

Enter the name of the flat file from which the external table inherits data. Enter the
file name and the file extension such as myflatfile.dat.

Drag and drop the flat file operator or external table operator onto the canvas.

On the Add Operator dialog box, select the option Select from Existing Repository
Object and Bind.

You can now continue designing your mapping.

Creating a Mapping

To create a mapping:

1.

Navigate to the Mappings node in the Project Explorer. This node is located under
a warehouse target module, under the Databases folder, under the Oracle folder.

Right-click Mappings and then select New.
Warehouse Builder opens the Create Mapping dialog box.
Enter a name and an optional description for the new mapping.

For rules on naming and describing mappings, see "Mapping Naming
Conventions" on page 7-15.

Click OK.

Warehouse Builder stores the definition for the mapping and inserts its name in
the Project Explorer. Warehouse Builder opens a mapping editor for the mapping
and displays the name of the mapping in the title bar.

To open a previously created mapping:

1.

From the Project Explorer, locate a warehouse target module under the Databases
folder and then under the Oracle folder.

7-4 Oracle Warehouse Builder User's Guide

Creating a Mapping

2. Expand the Mappings node.
3. Open the Mapping Editor in one of the following ways:
= Double-click a mapping.
= Select a mapping and then from the Edit menu, select Open Editor.
s Select a mapping and press Ctrl + O.
= Right-click a mapping, and select Open Editor.
Warehouse Builder displays the Mapping Editor.

Note: When you open a mapping that was created using OMB Plus,
despite the mapping having multiple operators, it may appear to
contain only one operator. To view all the operators, click the Auto
Layout icon in the Mapping Editor toolbar.

About the Mapping Editor

The first time you open the Mapping Editor, it displays with a menu bar, multiple
toolbars, multiple windows along the left side, and a canvas on the right.

Figure 7-1 displays the Mapping Editor canvas.

Figure 7-1 Mapping Editor Canvas

H Mapping Editor: EMP_LDAD_MAP =ol x|

Mapping Edit “iew Debug Window Help

REDSETES 9 2426 Bl a o R
® W S I NSEEEE BDRes

~ Explarer F| ¥ Mapping

[r] .«

L
=

S__' Databases

]\ Available Ohjects Selected Objects

¥ Mapping Properties: EMP_LOAD _MAP ¥
Ve =
EEMP_LOAD_M... E

The Target Load Crder property allows you Izl

T Palette k3
[2
> Aggregator
0. Arvydata Cast

C' Constart

5 Construct Ohbject
¥ Bird's Eye View

[z]»] 4

]l

“

[4] [+]

ol Mo @ 100% R

Standard Editor Components

The Mapping Editor has the following standard components common to most editors
in Warehouse Builder:

Creating Mappings 7-5

Creating a Mapping

» Title Bar: At the top of the editor, the title bar displays the name of the mapping
and the access privileges you have on the mapping.

= Menu Bar: Below the title bar, the menu bar provides access to the editor
commands. You can access the menu bar by clicking on one of its options or by
using hot keys. For example, to access the Mapping menu, press Alt +M.

= Toolbar: Below the menu bar, the toolbar provides icons for commonly used
commands.

s Canvas: The canvas provides the work space where you design and modify
mappings.

= Indicator Bar: Along the lower edge of the editor you can see mode icons,
indicators, and descriptions.

Figure 7-2 displays the Indicator Bar of the mapping Editor.

Figure 7-2 Indicator Bar on the Mapping Editor

] ?,‘,’;.‘ Al 100% %

In the left corner are Naming Mode, Rename Mode, Read /Write, and Validation
Mode.

In the right corner are the percent zoom indicator and the navigation mode. In the
preceding figure, the zoom level is at 100% and the navigation mode is set to Select
Mode.

Mapping Editor Windows

You can resize a window by placing your mouse on the border of the window,
pressing the mouse button when the double sided arrow appears, and dragging your
mouse to indicate the desired size.

You can move a window by placing the mouse on the Title Bar, and dragging the
mouse to the desired location.

To show or hide windows, select Window from the menu bar and either activate or
deactivate the check mark corresponding to the window.

Explorer

When you first start the editor, Warehouse Builder displays the explorer in the upper
left corner. The explorer provides a tree listing of all the activities on the canvas and
their parameters. When you select an activity on the canvas, Warehouse Builder
navigates to the activity on the explorer.

Properties Inspector

When you first start the editor, Warehouse Builder displays the properties inspector in
the lower left corner. The properties inspector displays the properties for the mapping,
its operators, and attributes in the operators. Select an object either from the canvas or

the explorer and Warehouse Builder displays the properties in the properties inspector.

Palette

When you first start an editor, Warehouse Builder displays the palette along the left
side and it contains operators that you can drag and drop onto the canvas.You can

7-6 Oracle Warehouse Builder User's Guide

Creating a Mapping

relocate the palette anywhere on the editor. You can choose to hide or display the
palette by clicking on Operator Palette listed under View in the menu bar.

Bird’s Eye View

The Bird's Eye View enables you to move the view of the canvas with a single mouse
dragging operation. You can thus reposition your view of the canvas without using the
scroll bars.

The Bird's Eye View displays a miniature version of the entire canvas. It contains a
blue colored box that represents the portion of the canvas that is currently in focus. In
the case of mappings that span more than the canvas size, you can click the blue box
and drag it to the portion of the canvas that you want to focus on.

Data Viewer

The Data Viewer enables you to view the data stored in the data object. See "Data
Viewer" on page 6-8 for more information about the Data Viewer.

Generation

The Generation panel displays the generation and validation results for a data object.
This panel is hidden when you first open the editor window. It is displayed the first
time you generate or validate a data object. You can to show or hide the Generation
panel by selecting Window and then Generation Results from the editor menu.

The Generation window contains two tabs: Script and Message. The Script tab
displays the generated scripts to implement the data object selected in the canvas. The
Message tab displays the validation messages for the selected data object. Double-click
a message to view the complete message text.

Mapping Editor Toolbars

The Mapping Editor provides the following task oriented toolbars: general, graphic,
generation, and palette. With the exception of the palette, the editor by default
displays the toolbars below the menu bar. You can move, resize, or hide each of the
toolbars.

= General Toolbar: Use this toolbar to call common operations such as save all,
exporting diagram, validating, generating, and printing.

= Diagram Toolbar: Use this toolbar to navigate the canvas and change the
magnification of objects on the canvas.

= Debug Toolbar: Use this toolbar to call commands for debugging the mapping.

» Palette Toolbar: The palette contains operator icons. To include an operator, drag
an operator icon onto the Mapping Editor canvas. As Warehouse Builder includes
over 50 operators, you may want to sort and display the operators based on type.

Mapping Editor Display Options

You can control how the editor displays the mappings on the canvas by selecting View
from the menu bar and selecting Options. Warehouse Builder displays the Options
dialog box that enables you to set display options for the Mapping Editor canvas.

The Options dialog box contains the following options. You can either select or
deselect any of these options.

= Input Connector: Select this option to display an arrow icon on the left of
attributes that you can use as input attributes.

Creating Mappings 7-7

Creating a Mapping

Key Indicator: Select this option to display a key icon to the left of the attribute
that is a foreign key attribute in an operator.

Data Type: Select this option to display the data type of attributes in all operators.

Output Connector: Select this option to display an arrow icon on the right of
attributes that you can use as output attributes.

Enable Horizontal Scrolling: Select this option to enable horizontal scrolling for
operators.

Automatic Layout: Select this option to use an automatic layout for the mapping.

Types of Operators

As you design a mapping, you select operators from the Mapping Editor palette and
drag them onto the canvas.

This section introduces the types of operators and refers you to other chapters in this
manual for detailed information.

Oracle Source/Target Operators: These operators represent Oracle Database
objects in the mapping. It also contains Flat File Source and Target operators.

Remote and Non-Oracle Source and Target Operators: The use of these operator
have special requirements discussed in "Using Remote and non-Oracle Source and
Target Operators” in the Warehouse Builder Online Help.

Data Flow Operators: Data flow operators transform data.

Pre/Post Processing Operators: Calls a function or procedure before or after
executing a mapping

Pluggable Mapping Operators: These are mappings that function as operators in
other mappings.

Oracle Source/Target Operators

Use source and target operators to represent relational database objects and flat file
objects.

Table 7-1 lists each source and target operator alphabetically, gives a brief description.

Table 7-1 Source and Target Operators

Icon Operator Description

@R Y g &l

.4

=

Constant operator Produces a single output group that can contain one or
more constant attributes.

Construct Object Produces object types and collection types.

operator

Cube operator Represents a cube that you previously defined.

Data Generator Provides information such as record number, system date,
operator and sequence values.

Dimension operator ~ Represents a dimension that you previously defined.

Expand Object Expands an object type to obtain the individual attributes
operator that comprise the object type.

7-8 Oracle Warehouse Builder User's Guide

Creating a Mapping

Table 7-1 (Cont.) Source and Target Operators

Icon Operator Description
L External Table Represents an external table that you previously defined
£y operator or imported.
Flat File operator Represents a flat file that you previously defined or

L

123
E
%

i

Materialized View

operator

Sequence operator

Table operator

Varray Iterator
operator

View operator

imported.

Represents a materialized view that you previously
defined.

Generates sequential numbers that increment for each row.

Represents a table that you previously defined or
imported.

Iterates through the values in the table type.

Represents a view that you previously defined or
imported.

Data Flow Operators
Use data flow operators to transform data in a mapping.

Table 7-2 lists each data flow operator alphabetically, gives a brief description. For

more information on these transformation operators, see "Data Flow Operators" in the

Warehouse Builder Online Help.

Table 7-2 Data Flow Operators

Icon Operator Description
Aggregator Performs data aggregations, such as SUM and AVG, and

E operator provides an output row set with aggregated data.

O Anydata Cast Converts an object of type Sys.AnyData to either a primary
O operator type or to a user-defined type.

= Deduplicator Removes duplicate data in a source by placing a DISTINCT
="*= operator clause in the select code represented by the mapping.

... Expression Enables you to write SQL expressions that define

E#] operator non-procedural algorithms for one output parameter of the

Filter operator

Joiner operator

Key Lookup
operator

Match Merge
operator

Name and Address
operator

operator. The expression text can contain combinations of input
parameter names, variable names, and library functions.

Conditionally filters out rows from a row set.

Joins multiple row sets from different sources with different
cardinalities and produces a single output row set.

Performs a lookup of data from a lookup object such as a table,
view, cube, or dimension.

Data quality operator that identifies matching records and
merges them into a single record.

Identifies and corrects errors and inconsistencies in name and
address source data.

Creating Mappings 7-9

Creating a Mapping

Table 7-2 (Cont.) Data Flow Operators

Ilcon Operator Description
ii:_ Pivot operator Transforms a single row of attributes into multiple rows. Use
= this operator to transform data that contained across attributes
instead of rows.
—. Set Operation Performs union, union all, intersect, and minus operations in a
L1! operator mapping.
:_E Sorter operator Sorts attributes in ascending or descending order.
z

o Splitter operator Splits a single input row set into several output row sets using

oo a boolean split condition.
E:.:l Table Function Enables you to develop custom code to manipulate a set of
flx] operator input rows and return a set of output rows of the same or

different cardinality that can be queried like a physical table.

You can use a table function operator as a target.

Transformation Transforms the attribute value data of rows within a row set
% operator using a PL/SQL function or procedure.

Unpivot operator ~ Converts multiple input rows into one output row. It enables
you to extract from a source once and produce one row from a
set of source rows that are grouped by attributes in the source
data.

Pre/Post Processing Operators

Use Pre/Post Processing operators to perform processing before or after executing a
mapping. The Mapping parameter operator is used to provide values to and from a

mapping.
Table 7-3 lists the Pre/Post Process operators and the Mapping Parameter operators.

Table 7-3 Pre/Post Processing Operators

Icon Operator Description

¥ Mapping Input Parameter =~ Passes parameter values into a mapping.
5‘: operator

¥ £ Mapping Output Parameter Sends values out of a mapping.

operator
oy Post-Mapping Process Calls a function or procedure after executing a
% operator mapping.
,«,b Pre-Mapping Process Calls a function or procedure prior to executing a
operator mapping.

Pluggable Mapping Operators

A pluggable mapping is a reusable grouping of mapping operators that behaves as a
single operator.

Table 7—4 lists the Pluggable Mappings operators.

7-10 Oracle Warehouse Builder User’s Guide

Adding Operators

Table 7-4 Pluggable Mapping Operators

Icon Operator Description
|:IE|- Pluggable Mapping Represents a reusable mapping.
operator
- | Pluggable Mapping Input A combination of input attributes that flow into the
+H Signature operator pluggable mapping.

- Eim Pluggable Mapping A combination of output attributes that flow out of the
-+ Output Signature operator pluggable mapping.

Adding Operators

The steps you take to add an operator to a mapping depend on the type of operator
you select. This is because some operators are bound to workspace objects while
others are not. As a general rule, when you add a data source or target operator,
Warehouse Builder creates and maintains a version of that object in the Warehouse
Builder workspace and a separate version for the Mapping Editor. For example, when
you add a table operator to a mapping, Warehouse Builder maintains a separate copy
of the table in the workspace. The separate versions are said to be bound together. That
is, the version in the mapping is bound to the version in the workspace.

To distinguish between the two versions, this chapter refers to objects in the
workspace either generically as workspace objects or specifically as workspace tables,
workspace views, and so on. And this chapter refers to operators in the mapping as table
operators, view operators, and so on. Therefore, when you add a dimension to a
mapping, refer to the dimension in the mapping as the dimension operator and refer to
the dimension in the workspace as the workspace dimension.

Warehouse Builder maintains separate workspace objects for some operators so that
you can synchronize changing definitions of these objects. For example, when you
reimport a new metadata definition for the workspace table, you may want to
propagate those changes to the table operator in the mapping. Conversely, as you
make changes to a table operator in a mapping, you may want to propagate those
changes back to its associated workspace table. You can accomplish these tasks by a
process known as synchronizing. In Warehouse Builder, you can synchronize
automatically as described in "Managing Metadata Dependencies” in the Warehouse
Builder Online Help. Alternatively, synchronize manually from within the Mapping
Editor as described in "Synchronizing Operators and Workspace Objects" on

page 7-26.

To add an operator to a mapping;:
1. Open the Mapping Editor.

2. From the Mapping menu, select Add and select an operator. Alternatively, you
can drag an operator icon from the Palette and drop it onto the Mapping Editor
canvas.

If you select an operator that you can bind to a workspace object, the Mapping
Editor displays the Add Mapping <operator name> dialog box. For details on
how to use this dialog box, see "Add Operator Dialog Box" on page 7-12.

If you select an operator that you cannot bind to a workspace object, Warehouse
Builder may display a wizard or dialog box to assist you in creating the operator.

3. Follow any prompts Warehouse Builder displays and click OK.

The Mapping Editor displays the operator maximized on the canvas. The operator
name appears in the upper left corner. You can view each attribute name and data

Creating Mappings 7-11

Adding Operators

type. If you want to minimize the operator, click the arrow in the upper right
corner and the Mapping Editor displays the operator as an icon on the canvas.

Adding Operators that Bind to Workspace Objects

You can bind the following operators to associated objects in the workspace using the
Add Operator Dialog Box:

s Cube operators

= Dimension operators

= External Table operators

= Flat File operators

= Materialized View operators

s Pre Mapping Process operators
= Post Mapping Process operators
= Sequence operators

= Table operators

= Transformation operators

= View operators

Add Operator Dialog Box

When you add an operator that you can bind to a workspace object, the Mapping
Editor displays the Add <operator name> Operator dialog box. Select one of the
following options:

s Create Unbound Operator with No Attributes

= Select from Existing Repository Object and Bind

Create Unbound Operator with No Attributes
Use this option when you want to use the Mapping Editor to define a new workspace
object such as a new staging area table or a new target table.

After you select Create unbound operator with no attributes, type a name for the new
object. Warehouse Builder displays the operator on the canvas without any attributes.

You can now add and define attributes for the operator as described in "Editing
Operators" on page 7-13. Next, to create the new workspace object in a target module,
right-click the operator and select Create and Bind.

For an example on how to use this option in a mapping design, see "Example: Using
the Mapping Editor to Create Staging Area Tables" on page 7-19.

Select from Existing Repository Object and Bind
Use this option when you want to add an operator based on an object you previously
defined or imported into the workspace.

Either type the prefix to search for the object or select from the displayed list of objects
within the selected module.

To select multiple items, press the Control key as you click each item. To select a group
of items located in a series, click the first object in your selection range, press the Shift
key, and then click the last object.

7-12 Oracle Warehouse Builder User’s Guide

Editing Operators

You can add operators based on workspace objects within the same module as the
mapping or from other modules. If you select a workspace object from another
module, the Mapping Editor creates a connector if one does not already exist. The
connector establishes a path for moving data between the mapping location and the
location of the workspace object.

Editing Operators

Name Tab

Groups Tab

Each operator has an editor associated with it. Use the operator editor to specify
general and structural information for operators, groups, and attributes. In the
operator editor you can add, remove, or rename groups and attributes. You can also
rename an operator.

Editing operators is different from assigning loading properties and conditional
behaviors. To specify loading properties and conditional behaviors, use the properties
windows as described in "Setting Operator, Group, and Attribute Properties” on

page 7-26.

To edit an operator, group, or attribute:

1. Select an operator from the Mapping Editor canvas.
Or select any group or attribute within an operator.

2. Right-click and select Open Details.

The Mapping Editor displays the operator editor with the Name Tab, Groups Tab,
and Input and Output Tabs for each type of group in the operator.

Some operators include additional tabs. For example, the Match-Merge operator
includes tabs for defining Match rules and Merge rules.

3. Follow the prompts on each tab and click OK when you are finished.

The Name tab displays the operator name and an optional description. You can
rename the operator and add a description. Name the operator according to the
conventions listed in "Mapping Naming Conventions" on page 7-15.

Edit group information on the Groups tab.

Each group has a name, direction, and optional description. You can rename groups
for most operators but cannot change group direction for any of the operators. A
group can have one of these directions: Input, Output, Input/Output.

Depending on the operator, you can add and remove groups from the Groups tab. For
example, you add input groups to Joiners and output groups to Splitters.

Input and Output Tabs

The operator editor displays a tab for each type of group displayed on the Groups tab.
Each of these tabs displays the attribute name, data type, length, precision, scale,
seconds precision, and optional description.

Edit attribute information on the each of the remaining tabs.

Creating Mappings 7-13

Editing Operators

Figure 7-3 shows an Input/Output tab on the Operator Editor. In this example, the
operator is a table and therefore has only the Input/Output tab. Other operators can
have an Input tab and an Output tab.

Figure 7-3 Input/Output Tab on the Operator Editor

™ TABLE Editor: EMPLOYEES x|

rName rGroups rlnpm.iomput |

Define the inputioutput sttributes for the TABLE operator:
Aftribute Data type Length Precision | Scale Secand... | Description
EMPLOYEE_ID NUMBER B
FIRST_MNAME YARCHARZ 20
LAST_MAME YARCHARZ 25
EMAIL WVARCHARZ 25
PHOME_MUMBER YARCHARZ 20
HIRE_DATE DATE
JOB_ID YARCHARZ 10
SALARY MUMEBER g 2
COMMISSION_PCT NUMBER 2 2
MAMNAGER_ID MNUMBER G a
DEPARTMENT_ID MUMBER 4 a
DEPARTMEMNT_MAME WVARCHARZ 30
a e [1»]
| Al | | Remave |

| Help | | OK || Cancel|

You can add, remove, and edit attributes. The Mapping Editor grays out properties
that you cannot edit. For example, if the data type is NUMBER, you can edit the
precision and scale but not the length.

To assign correct values for data type, length, precision, and scale in an attribute,
follow PL/SQL rules. When you synchronize the operator, Warehouse Builder checks
the attributes based on SQL rules.

Mapping Naming Conventions

The rules for naming objects in the Mapping Editor depend on the naming mode you
select in "Naming Preferences” on page 3-7. Warehouse Builder maintains a business
and a physical name for each object in the workspace. The business name is its
descriptive business name. The physical name is the name Warehouse Builder uses
when generating code.

When you name objects while working in one naming mode, Warehouse Builder
creates a default name for the other mode. Therefore, when working in the business
name mode, if you assign a mapping a name that includes mixed cases, special
characters and spaces, Warehouse Builder creates a default physical name for you. For
example, if you save a mapping with the business name My Mapping (refer to
doc#12345), the default physical name is MY_MAPPING_REFER_TO_DOC#12345.

When you name or rename objects in the Mapping Editor, use the following naming
conventions.

7-14 Oracle Warehouse Builder User’s Guide

Editing Operators

Naming and Describing Mappings

In the physical naming mode, a mapping name can be from 1 to 30 alphanumeric
characters and blank spaces are not allowed. In the business naming mode, the limit is
2000 characters and blank spaces and special characters are allowed. In both naming
modes, the name should be unique across the project.

Note for scheduling mappings: If you intend to schedule the execution of the
mapping, there is an additional consideration. For any ETL object you want to
schedule, the limit is 25 characters for physical names and 1995 characters for business
names. Follow this additional restriction to enable Warehouse Builder to append to the
mapping name the suffix _job and other internal characters required for deployment
and execution.

After you create the mapping definition, you can view its physical and business name
on the mapping properties sheet. Right-click the mapping from the Design Center,
select Properties, and view the names on the General tab.

Edit the description of the mapping as necessary. The description can be between 2
and 2,000 alphanumeric character and can contain blank spaces.

Naming Conventions for Attributes and Groups

You can rename groups and attributes independent of their sources. Attribute and
group names are logical. Although attribute names of the object are often the same as
the attribute names of the operator to which they are bound, their properties remain
independent of each other. This protects any expression or use of an attribute from
corruption if it is manipulated within the operator.

Naming Conventions for Operators
Business names for operator must meet the following requirements:

» The length of the operator name can be any string of 200 characters.

= The operator name must be unique on its attribute group, attribute and display set
level with respect to its parent.

Physical names must meet the following requirements:

= All objects other than operators can contain a maximum of 30 characters.
However, the limit is 28 for operators since Warehouse Builder reserves two
characters for use when navigating through the OMB Scripting Language.

s The operator name must be unique on its group, attribute and display set level
with respect to its parent.

s The operator name must conform to the syntax rules for basic elements as defined
in the Oracle Database SQL Language Reference.

In addition to physical and business names, some operators also have bound names.
Every operator associated with a workspace object has a bound name. During code
generation, Warehouse Builder uses the bound name to reference the operator to its
workspace object. Bound names have the following characteristics:

= Bound names need not be unique.

= Bound names must conform to the general Warehouse Builder physical naming
rules.

s Typically, you do not change bound names directly but indirectly by
synchronizing from an operator to the workspace.

Creating Mappings 7-15

Editing Operators

= When you rename the business name for an operator or attribute, Warehouse
Builder propagates the new business name as the bound name when you
synchronize. However, business names can be up to 200 character while bound
names are limited to 30 characters. Therefore, Warehouse Builder uses the first 30
characters of the business name for the bound name.

Using Display Sets

A display set is a graphical representation of a subset of attributes. Use display sets to
limit the number of attributes visible in an operator and simplify the display of a
complex mapping.

By default, operators contain three predefined display sets, ALL, MAPPED, and
UNMAPPED. Table 7-5 describes the default display sets.

Table 7-5 Default Sets

Display Set Description
ALL Includes all attributes in an operator.
MAPPED Includes only those attributes in an operator that are connected to

another operator.

UNMAPPED Includes only those attributes that are not connected to other attributes.

Defining Display Sets

You can define display sets for any operator in a mapping.
To define a display set:
1. Right-click an operator, and select Display Set.
The Display Set dialog box is displayed as shown in Figure 7—4.

7-16 Oracle Warehouse Builder User’s Guide

Connecting Operators

Figure 7-4 Display Set Dialog Box

M pisplay set: EMPLOYEES x|

Available display sets:

Predefined
MAPPED Predefined

LINMAFFED Fredefined Dizplay setthatincludes all unconnected attribL

q] B [»]

Attributes of selected display set:

Nammea | Include |

[v]

&1 =1 =1 =1 =131 %1 %1 %1 %1

[«]

| Help | | OK || Cancel |

2. Click the row below UNMAPPED and enter a name and description for the new
display set.

3. All available attributes for the operator appear in Attributes of selected display
set. The Type column is automatically set to User defined.

You cannot edit or delete a Predefined attribute set.
4. In the Include column, select each attribute you want to include in the display set.

Click Select All to include all attributes and Deselect All to exclude all the
attributes.

5. Click OK.

The group for the operator now lists only those attributes contained within the
Attribute Set selected for display.

Selecting a Display Set

If a group contains more than one display set, you can select a different display set
from a list using the View menu.

To select a display set:
1. Right-click a group in an operator.

2. Click Select Display Set and select the desired display set.

Connecting Operators

After you select mapping source operators, operators that transform data, and target
operators, you are ready to connect them. Data flow connections graphically represent
how the data flows from a source, through operators, and to a target.

Creating Mappings 7-17

Connecting Operators

You can connect operators by one of the following methods:

s Connecting Attributes: Connect individual operator attributes to each other one
at a time.

= Connecting Groups: Define criteria for connecting all the attributes between two
groups.

= Using an Operator Wizard: For operators such as the Pivot operator and Name
and Address operator, you can use the wizard to define data flow connections.

Connecting Attributes

You can draw a line from a single output attribute of one operator to a single input
attribute of another operator.

To connect attributes:

1. Click and hold down the mouse button while the pointer is positioned over an
output attribute.

2. Drag the mouse away from the output attribute and toward the input attribute to
which you want data to flow.

As you drag the mouse, a line appears on the Mapping Editor canvas to indicate a
connection.

3. Release the mouse over the input attribute.

4. Repeat steps one through three until you create all the required data flow
connections.

Figure 7-5 displays a mapping with attributes connected.

Figure 7-5 Connected Operators in a Mapping

[E soBs K
> JOB_ID h |
> JOB_TITLE %,
> MIN_SALARY T o
> MAX_SALA.. T o » D), o
- TITLE &, o
» MIN_SA. T &

When connecting attributes, keep the following rules in mind:
= You cannot connect to the same input attribute twice.
= You cannot connect attributes within the same operator.

= You cannot connect out of an input only attribute nor can you connect into an
output only attribute.

= You cannot connect operators in such a way as to contradict an established
cardinality. Instead, use a Joiner operator.

Connecting Groups

When you connect groups, the Mapping Editor assists you by either automatically
copying the attributes or prompts you for more information as described in "Using the
Connect Operators Dialog Box" on page 7-20.

7-18 Oracle Warehouse Builder User’s Guide

Connecting Operators

If you connect from one operator group to a target group with no existing attributes,
the Mapping Editor automatically copies the attributes and connects the attributes.
This is useful for designing mappings such shown in "Example: Using the Mapping
Editor to Create Staging Area Tables" on page 7-19.

Example: Using the Mapping Editor to Create Staging Area Tables

You can use the Mapping Editor with an unbound table operator to quickly create
staging area tables.

The following instructions describe how to create a staging table based on an existing
source table. You can also use these instructions to create views, materialized views,
flat files, and transformations.

To map a source table to a staging table:
1. In the Mapping Editor, add a source table.

From the menu bar, select Mapping, select Add, then select Data Sources/Targets.
In the Data Sources/Targets menu, select Table Operator.

2. Use the Add Table Operator dialog box to select and bind the source table
operator in the mapping. From the Add Table Operator dialog box, select Create
unbound operator with no attributes.

The mapping should now resemble Figure 7-6 with one source table and one
staging area table without attributes.

Figure 7-6 Unbound Staging Table without Attributes and Source Table

| B s TaBLE i
=2 JOB_ID o
o JOB_TITLE %, &
=2 MIN_SALARY T8 &
g MAK_SALA.. T o |

3. With the mouse button positioned over the group in the source operator, click and
hold down the mouse button.

4. Drag the mouse to the staging area table group.

Warehouse Builder copies the source attributes to the staging area table and
connects the two operators.

5. In the Mapping Editor, select the unbound table you added to the mapping.
Right-click and select Create and Bind.

Warehouse Builder displays the Create And Bind dialog box.
6. In the Create in field, specify the target module in which to create the table.

Warehouse Builder creates the new table in the target module you specify.

Using the Connect Operators Dialog Box

If you connect from one operator to a target operator with existing attributes, the
Mapping Editor starts the Connect Operators dialog box.

Select one of the following criteria for copying and connecting attributes:
» Copy Source Attributes to Target Group and Match
= Match by Position of Source and Target Attributes

Creating Mappings 7-19

Connecting Operators

= Match by Name of Source and Target Attributes

After you select one of the three options, select Go. The Connect Operators dialog box
displays a list of connected attributes.

Figure 7-7 displays the Connected attributes section.

Figure 7-7 Connected Attributes

Connected sttributes:

(=T | Source attribute | Target attribute | Comments
oL oL

oLz CoL3

|:| COL3 Source will not be mapped

You can deselect attributes by clearing the Map check box. View the results of your
selections under Comments.

When you select OK, Warehouse Builder copies the source attributes to the target
group and connects the attributes.

Copy Source Attributes to Target Group and Match

Use this option to copy source attributes to a target group that already contains
attributes. Warehouse Builder connects from the source attributes to the new target
attributes based on the selections you make in the Connect Operators dialog box.
Warehouse Builder does not perform this operation on target groups that do not accept
new input attributes such as dimension and cube target operators.

Match by Position of Source and Target Attributes

Use this option to connect existing attributes based on the position of the attributes in
their respective groups. The Mapping Editor connects all attributes in order until all
attributes for the target are matched. If the source operator contains more attributes
than the target, then the remaining source attributes are left unconnected.

Match by Name of Source and Target Attributes

Use this option to connect attributes with matching names. By selecting from the list of
options, you connect between names that do not match exactly. You can combine the
following options:

» Ignore case differences: Considers the same character in lower-case and
upper-case a match. For example, the attributes FIRST_NAME and First Name
match.

= Ignore special characters: Specify characters to ignore during the matching
process. For example, if you specify a hyphen and underscore, the attributes
FIRST_NAME, FIRST-NAME, and FIRSTNAME all match.

= Ignore source prefix, Ignore source suffix, Ignore target prefix, Ignore target
suffix: Specify prefixes and suffixes to ignore during matching. For example, if
you select Ignore source prefix and enter USER _ into the text field, then the source
attribute USER_FIRST_NAME matches the target attribute FIRST_NAME.

After you set the matching criteria, click Go.

The Displayed Mappings field displays the possible connections between attributes
which you can verify and deselect before implementing.

7-20 Oracle Warehouse Builder User’s Guide

Using Pluggable Mappings

Using Pluggable Mappings

You can reuse the data flow of a mapping by creating a pluggable mapping around the
portion of the flow you want to reuse. A pluggable mapping is a reusable grouping of
mapping operators that works as a single operator. It is similar to the concept of a
function in a programming language and is a graphical way to define a function.

Note: The use of pluggable mappings requires the Warehouse
Builder Enterprise ETL Option.

Once defined, a pluggable mapping appears as a single mapping operator, nested
inside a mapping. You can reuse a pluggable mapping more than once in the same
mapping, or in other mappings. You can include pluggable mappings within other
pluggable mappings.

Like any operator, a pluggable mapping has a signature consisting of input and output
attributes that enable you to connect it to other operators in various mappings. The
signature is similar to the input and output requirements of a function in a
programming language.

A pluggable mapping can be either reusable or embedded:

= Reusable pluggable mapping: A pluggable mapping is reusable if the metadata it
references can exist outside of the mapping in question. You can store reusable
pluggable mappings either as standalone pluggable mappings, which are private
for your use, or in folders (libraries). Users who have access to these folders can
use the pluggable mappings as templates for their work.

= Embedded pluggable mapping: A pluggable mapping is embedded if the
metadata it references is owned only by the mapping or pluggable mapping in
question. An embedded pluggable mapping is not stored as either a standalone
mapping or in libraries on the Global Explorer. It is stored only within the
mapping or the pluggable mapping that owns it, and you can access it only by
editing the object that owns it. To validate or generate the code for an embedded
pluggable mapping, you must validate or generate the code for the object that
owns it.

Creating a Pluggable Mapping

Pluggable mappings are usually predefined and used when required.You can create
pluggable mappings either from within a mapping by using the mapping editor, or
from the navigation tree by using the wizard. The wizard is the faster way to create a
pluggable mapping because it makes some default choices and guides you through
fewer choices. You can make additional choices later in the Pluggable Mapping Editor.
The editor presents you with all the settings in a series of tabs.

The Pluggable Mappings node in the navigation tree contains two nodes, Standalone
and Pluggable Mapping Folders. You can create pluggable mappings from either of
these nodes.

Standalone Pluggable Mapping

To create a standalone pluggable mapping:
1. Expand the Pluggable Mappings node in the Project Explorer.
2. Right-click Standalone, and select New.

Creating Mappings 7-21

Using Pluggable Mappings

3. This opens the Create Pluggable Mapping wizard, which guides you through the
process of creating a new pluggable mapping. Click Help for information on the
values to be entered on each page of the wizard.

Once you create a new pluggable mapping, Warehouse Builder opens the pluggable
mapping editor and displays the name of the pluggable mapping on the title bar. The
pluggable mapping editor is similar to the mapping editor, and you can add the
desired operators from the palette to create a mapping.

A pluggable mapping is considered as an operator by the Warehouse Builder. You can
insert it into any mapping. In the mapping editor, drag and drop Pluggable Mapping
from the palette onto the canvas. This opens the Add Pluggable Mapping dialog box.
You can select the desired pluggable mapping and add it to the mapping.

Pluggable Mapping Folders

A folder is a grouping mechanism for pluggable mappings. You can keep your
pluggable mappings private, or you can place them into folders (libraries) and then
publish them so that others can access them for their design work. To create a new
folder to store pluggable mappings:

1. Expand the Pluggable Mappings node in the Project Explorer.

2. Right-click Pluggable Mapping Folders, and select New. This opens the Create
Pluggable Mapping Folder dialog box.

3. Enter a name for the folder and provide a description (optional).
4. Click OK to save the folder and exit the wizard.

The folder appears on the Project Explorer. The Pluggable Mapping Folders node gives
you the option of creating a pluggable mapping either at the time of creating a folder
or after creating the folder. You can also move a pluggable mapping to any folder on
the tree.

At the time of creating the Pluggable Mapping folder, if you select the Proceed to
Pluggable Mapping Wizard option, the Create Pluggable Mapping Wizard opens and
you can create a new pluggable mapping.

If you do not select the option, only the pluggable mapping folder gets created. To
create a pluggable mapping under this folder:

1. Under the Pluggable Mappings Folders node, right-click the folder and select
New.

2. This opens the Create Pluggable Mapping wizard, which guides you through the
process of creating a new pluggable mapping.

Signature Groups

The signature is a combination of input and output attributes flowing to and from the
pluggable mapping. Signature groups are a mechanism for grouping the input and
output attributes.

A pluggable mapping must have at least one input or output signature group. Most
pluggable mappings are used in the middle of a logic flow and have input as well as
output groups.

= To create an additional signature group, click Add. To overwrite the default name
assigned to the group, type over its name in the Group column. Enter its
orientation as an input or output group in the Direction column. Enter an optional
description of the group in the Description column.

7-22 Oracle Warehouse Builder User’s Guide

Using Pluggable Mappings

= Toremove a signature group, select the group you want to remove and click
Remove.

Click Next to continue with the wizard.

Input Signature

The input signature is the combination of input attributes that flow into the pluggable
mapping. Define the input attributes for each input signature group you created.

If you defined multiple input signature groups, select the group to which you want to
add attributes from the Group list box. Then click Add to add attributes. You can
overwrite the default name given to each attribute by typing over the name in the
Attribute column. You can change the data type of each attribute by clicking on its
default data type and selecting a new data type from the resulting drop list. You can
assign the length, precision, scale, and seconds precision by clicking the corresponding
field and using the up and down arrows or typing in a number. Note that some of
these fields are disabled depending on the data type you specify.

You can remove an attribute by selecting the attribute and clicking Remove.

Click Next to continue with the wizard.

Output Signature

The output signature is the combination of output attributes that flow out of the
pluggable mapping. Define the output attributes for each output signature group you
created.

If you defined multiple output signature groups, select the group to which you want
to add attributes from the Group list box. Then click Add to add attributes. You can
overwrite the default name given to each attribute by typing over the name in the
Attribute column. You can change the data type of each attribute by clicking on its
default data type and selecting a new data type from the resulting drop list. You can
assign the length, precision, and scale by clicking the corresponding field and using
the up and down arrows or typing in a number. Note that some of these fields are
disabled depending on the data type you specify.

You can remove an attribute by selecting the attribute and clicking Remove.
Click Next to continue with the wizard.

You can also add an Input Signature or an Output Signature from the palette of the
pluggable mapping editor. Note that a pluggable mapping can have only one Input
Signature and Output Signature. Also, pluggable mapping Input and Output
signatures can only be added within pluggable mappings. They cannot be added to
normal mappings.

Pluggable Mapping Editor

The pluggable mapping editor is similar to the mapping editor. Use the main panel to
select and edit the operators that constitute your pluggable mapping. For more
information on using this editor to design pluggable mappings, consult these topics:

= Using Pluggable Mappings
= About the Mapping Editor
= Adding Operators
= Editing Operators

s Connecting Operators

Creating Mappings 7-23

Setting Mapping Properties

» Setting Operator, Group, and Attribute Properties
= Synchronizing Operators and Workspace Objects

Setting Mapping Properties

When you select white space on the mapping canvas, the editor displays the mapping
properties in the property inspector along the left side. You can set the following
property for the mapping:

» Target Load Order

Target Load Order

If your mapping includes only one target or is a SQL*Loader or ABAP mapping, target
load ordering does not apply. Accept the default settings and continue with your
mapping design.

When you design a PL/SQL mapping with multiple targets, Warehouse Builder
calculates a default ordering for loading the targets. If you define foreign key
relationships between targets, Warehouse Builder creates a default order that loads the
parent and then the child. If you do not create foreign key relationships or if a target
table has a recursive relationship, Warehouse Builder assigns a random ordering as the
default.

You can override the default load ordering by setting the Target Load Order property.
If you make a mistake when reordering the targets, you can restore the default
ordering by selecting the Reset to Default option.

To specify the loading order for multiple targets:

1. Click whitespace in the mapping canvas to view the mapping properties in the
Mapping Properties panel in the upper left corner.

2. Go to the Map Targets Load Order property and click the Ellipsis button on the
right of this property.

Warehouse Builder displays the Targets Load Order dialog box which shows
TARGET?2 loading before TARGET1.

Figure 7-8 displays the Target Load Order dialog box.

7-24 Oracle Warehouse Builder User’s Guide

Synchronizing Operators and Workspace Objects

Figure 7-8 Target Load Order Dialog Box

[Target Load Order x|
Ordered Targets:
|Target Object
il EITARGET_2
2 EITARGET_1
fehii
B
=)
=)
=4
[4] S [Te]
| Reset to Detault |
| Ok | | Cancel |

3. To change the loading order, select a target and use the shuttle buttons on the right
to move the target up or down on the list.

Reset to Default

Use the Reset to Default button to instruct Warehouse Builder to recalculate the target
loading order. You may want to recalculate if you made an error reordering the targets

or if you assigned an order and later change the mapping design such that the original
order became invalid.

Setting Operator, Group, and Attribute Properties

When you select an object on the canvas, the editor displays its associated properties
in the Property panel along the left side.

You can view and set the following types of properties:

= Operator Properties: Properties that affect the operator as a whole. The properties
you can set depend upon the operator type. For example, the steps for using
Oracle source and target operators differ from the steps for using flat file source
and target operators.

= Group Properties: Properties that affect a group of attributes. Most operators do
not have properties for their groups. Examples of operators that do have group
properties include the splitter operator and the deduplicator.

= Attribute Properties: Properties that pertain to attributes in source and target
operators. Examples of attribute properties are data type, precision, and scale.

Synchronizing Operators and Workspace Objects

Many of the operators you use in a mapping have corresponding definitions in the
Warehouse Builder workspace. This is true of source and target operators such as table
and view operators. This is also true of other operators such as sequence and
transformation operators whose definitions you may want to use across multiple

Creating Mappings 7-25

Synchronizing Operators and Workspace Objects

mappings. As you make changes to these operators, you may want to propagate those
changes back to the workspace object.

You have the following choices in deciding the direction in which you propagate
changes:

Synchronizing From a Workspace Object to an Operator: After you begin using
mappings in a production environment, there may be changes to the sources or targets
that impact your ETL designs. Typically, the best way to manage these changes is
through the Warehouse Builder Dependency Manager described in "Managing
Metadata Dependencies” in the Warehouse Builder Online Help. Use the Dependency
Manager to automatically evaluate the impact of changes and to synchronize all
effected mappings at one time. Alternatively, in the Mapping Editor, you can manually
synchronize objects as described in "Synchronizing From a Workspace Object to an
Operator” on page 7-27.

Synchronizing from an Operator to a Workspace Object: When you make changes to
an operator in a mapping, you may want to propagate those changes to its
corresponding workspace defini