
Oracle® Database
2 Day + Performance Tuning Guide

11g Release 1 (11.1)

B28275-01

July 2007

Oracle Database 2 Day + Performance Tuning Guide, 11g Release 1 (11.1)

B28275-01

Copyright © 2007, Oracle. All rights reserved.

Primary Authors: Immanuel Chan, Lance Ashdown

Contributing Author: Sushil Kumar

Contributors: Pete Belknap, Supiti Buranawatanachoke, Nancy Chen, Kakali Das, Karl Dias, Mike Feng,
Yong Feng, Cecilia Grant, Connie Green, William Hodak, Andrew Holdsworth, Sue K. Lee, Herve Lejeune,
Colin McGregor, Mughees Minhas, Valarie Moore, Deborah Owens, Mark Ramacher, Uri Shaft, Susan
Shepard, Janet Stern, Hsiao-Te Su, Minde Sun, Mark Townsend, Stephen Wexler, Graham Wood, Khaled
Yagoub, Michael Zampiceni

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Conventions ... x

What's New in Oracle Performance? .. xi

Part I Getting Started

1 Introduction

About This Guide... 1-1
Common Oracle DBA Tasks... 1-1
Tools for Tuning the Database ... 1-2

2 Oracle Database Performance Method

Gathering Database Statistics Using the Automatic Workload Repository 2-1
Time Model Statistics... 2-2
Wait Event Statistics .. 2-3
Session and System Statistics.. 2-4
Active Session History Statistics .. 2-4
High-Load SQL Statistics .. 2-4

Using the Oracle Performance Method.. 2-5
Preparing the Database for Tuning ... 2-5
Tuning the Database Proactively ... 2-6
Tuning the Database Reactively... 2-6
Tuning SQL Statements... 2-7

Common Performance Problems Found in Oracle Databases .. 2-8

Part II Proactive Database Tuning

3 Automatic Database Performance Monitoring

Overview of Automatic Database Diagnostic Monitor .. 3-1
ADDM Analysis ... 3-2

iv

ADDM Recommendations.. 3-2
ADDM for Oracle Real Application Clusters... 3-3

Configuring Automatic Database Diagnostic Monitor .. 3-3
Setting Initialization Parameters to Enable ADDM .. 3-3
Setting the DBIO_EXPECTED Parameter... 3-4
Managing AWR Snapshots... 3-4

Creating Snapshots ... 3-5
Modifying Snapshot Settings .. 3-5

Reviewing the Automatic Database Diagnostic Monitor Analysis ... 3-7
Interpretation of Automatic Database Diagnostic Monitor Findings ... 3-8
Implementing Automatic Database Diagnostic Monitor Recommendations.............................. 3-9
Viewing Snapshot Statistics.. 3-12

4 Monitoring Real-Time Database Performance

Monitoring User Activity.. 4-2
Monitoring Top SQL.. 4-4
Monitoring Top Sessions... 4-5
Monitoring Top Services ... 4-6
Monitoring Top Modules.. 4-7
Monitoring Top Actions.. 4-7
Monitoring Top Clients ... 4-8
Monitoring Top PL/SQL .. 4-9
Monitoring Top Files ... 4-9
Monitoring Top Objects ... 4-10

Monitoring Instance Activity.. 4-10
Monitoring Throughput... 4-11
Monitoring I/O.. 4-12

Monitoring I/O by Function .. 4-13
Monitoring I/O by Type... 4-14
Monitoring I/O by Consumer Group... 4-15

Monitoring Parallel Execution .. 4-16
Monitoring Services .. 4-16

Monitoring Host Activity .. 4-17
Monitoring CPU Utilization .. 4-19
Monitoring Memory Utilization ... 4-22
Monitoring Disk I/O Utilization .. 4-25

Customizing the Database Performance Page ... 4-27

5 Monitoring Performance Alerts

Setting Metric Thresholds for Performance Alerts.. 5-1
Responding to Alerts ... 5-2
Clearing Alerts .. 5-2

Part III Reactive Database Tuning

v

6 Manual Database Performance Monitoring

Manually Running ADDM to Analyze Current Database Performance 6-1
Manually Running ADDM to Analyze Historical Database Performance 6-3
Accessing Previous ADDM Results ... 6-4

7 Resolving Transient Performance Problems

Overview of Active Session History... 7-1
Running Active Session History Reports .. 7-2
Active Session History Reports ... 7-3

Top Events... 7-3
Top User Events .. 7-4
Top Background Events... 7-4

Load Profile... 7-4
Top SQL... 7-5
Top Sessions.. 7-5
Top DB Objects ... 7-6
Top DB Files .. 7-6
Activity Over Time .. 7-7

8 Resolving Performance Degradation Over Time

Managing Baselines ... 8-1
Creating a Baseline... 8-2

Creating a Single Baseline.. 8-2
Creating a Repeating Baseline... 8-4

Deleting a Baseline ... 8-5
Computing Threshold Statistics for Baselines ... 8-6
Setting Metric Thresholds for Baselines.. 8-7

Setting Metric Thresholds for the Default Moving Baseline .. 8-7
Setting Metric Thresholds for Selected Baselines... 8-8

Running the AWR Compare Periods Reports... 8-9
Comparing a Baseline to Another Baseline or Pair of Snapshots .. 8-10
Comparing Two Pairs of Snapshots ... 8-12

Using the AWR Compare Periods Reports ... 8-15
Summary of the AWR Compare Periods Report.. 8-16

Snapshot Sets .. 8-16
Host Configuration Comparison ... 8-17
System Configuration Comparison... 8-17
Load Profile... 8-17
Top Timed Events .. 8-17

Details of the AWR Compare Periods Report... 8-18
Supplemental Information in the AWR Compare Periods Report .. 8-18

Part IV SQL Tuning

vi

9 Identifying High-Load SQL Statements

Identification of High-Load SQL Statements Using ADDM Findings ... 9-1
Identifying High-Load SQL Statements Using Top SQL ... 9-2

Viewing SQL Statements by Wait Class ... 9-3
Viewing Details of SQL Statements... 9-4

Viewing SQL Statistics ... 9-5
Viewing Session Activity ... 9-6
Viewing the SQL Execution Plan.. 9-7
Viewing the SQL Tuning Information ... 9-8

10 Tuning SQL Statements

Tuning SQL Statements Using SQL Tuning Advisor... 10-2
Tuning SQL Manually Using SQL Tuning Advisor .. 10-2
Viewing Automatic SQL Tuning Results .. 10-5

Managing SQL Tuning Sets .. 10-8
Creating a SQL Tuning Set .. 10-8

Creating a SQL Tuning Set: Options ... 10-9
Creating a SQL Tuning Set: Load Method ... 10-10
Creating a SQL Tuning Set: Filter Options... 10-13
Creating a SQL Tuning Set: Schedule ... 10-15

Dropping a SQL Tuning Set .. 10-16
Transporting SQL Tuning Sets.. 10-16

Exporting a SQL Tuning Set... 10-16
Importing a SQL Tuning Set .. 10-18

Managing SQL Profiles.. 10-19
Managing SQL Execution Plans ... 10-20

11 Optimizing Data Access Paths

Running SQL Access Advisor... 11-1
Running SQL Access Advisor: Initial Options ... 11-2
Running SQL Access Advisor: Workload Source .. 11-3

Using SQL Statements from the Cache... 11-3
Using an Existing SQL Tuning Set .. 11-4
Using a Hypothetical Workload .. 11-4

Running SQL Access Advisor: Filter Options... 11-5
Defining Filters for Resource Consumption .. 11-5
Defining Filters for Users.. 11-6
Defining Filters for Tables .. 11-6
Defining Filters for SQL Text ... 11-6
Defining Filters for Modules .. 11-7
Defining Filters for Actions .. 11-7

Running SQL Access Advisor: Recommendation Options... 11-7
Running SQL Access Advisor: Schedule ... 11-9

Reviewing the SQL Access Advisor Recommendations ... 11-13
Reviewing the SQL Access Advisor Recommendations: Summary...................................... 11-14
Reviewing the SQL Access Advisor Recommendations: Recommendations 11-15

vii

Reviewing the SQL Access Advisor Recommendations: SQL Statements 11-18
Reviewing the SQL Access Advisor Recommendations: Details... 11-19

Implementing the SQL Access Advisor Recommendations... 11-20

12 Analyzing SQL Performance Impact

SQL Performance Analyzer Usage... 12-1
SQL Performance Analyzer Methodology ... 12-2

Capturing and Transporting a SQL Workload... 12-3
Setting Up the Database Environment on the Test System .. 12-4
Executing a SQL Workload.. 12-5

Running SQL Performance Analyzer.. 12-5
Performing an Optimizer Upgrade Simulation with SQL Performance Analyzer 12-7
Testing an Initialization Parameter Change with SQL Performance Analyzer 12-10
Following a Guided Workflow with SQL Performance Analyzer... 12-12

Creating a SQL Performance Analyzer Task Based on a SQL Tuning Set 12-13
Establishing the Initial Environment .. 12-14
Collecting SQL Performance Data Before the Change ... 12-14
Making the System Change.. 12-16
Collecting SQL Performance Data After the Change ... 12-16
Comparing SQL Performance Before and After the Change .. 12-17

Reviewing the SQL Performance Analyzer Report .. 12-19
Reviewing the SQL Performance Analyzer Report: General Information 12-19
Reviewing the SQL Performance Analyzer Report: Global Statistics 12-20
Reviewing the SQL Performance Analyzer Report: Global Statistics Details 12-21

Index

viii

ix

Preface

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for Oracle database administrators (DBAs) who want to tune
and optimize the performance of Oracle Database. Before using this document, you
should complete Oracle Database 2 Day DBA.

In particular, this guide is targeted toward the following groups of users:

■ Oracle DBAs who want to acquire database performance tuning skills

■ DBAs who are new to Oracle Database

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

x

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information about the topics covered in this document, see the following
documents:

■ Oracle Database 2 Day DBA

■ Oracle Database Administrator's Guide

■ Oracle Database Concepts

■ Oracle Database Performance Tuning Guide

Conventions
The following conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

What's New in Oracle Performance?

This section describes new performance features of Oracle Database 11g Release 1
(11.1) and provides pointers to additional information. The features and enhancements
described in this section comprise the overall effort to optimize database performance.

For a summary of all new features for Oracle Database 11g Release 1 (11.1), see Oracle
Database New Features Guide.

The new and updated performance features in Oracle Database 11g Release 1 (11.1)
include:

■ Automatic Database Diagnostic Monitor (ADDM) enhancements

ADDM has been enhanced to perform global analysis on all instances of an Oracle
Real Application Clusters (Oracle RAC) cluster.

For more information, see "ADDM for Oracle Real Application Clusters" on
page 3-3.

■ Wait activity details

You can view wait activity details for services, modules, and actions from the Top
Activity page.

For more information, see "Monitoring User Activity" on page 4-2.

■ Improved Automatic Workload Repository (AWR) baselines

You can create a single, fixed-time AWR baseline or a repeating baseline.
Additionally, improved manageability of AWR baselines is now available,
including the ability to compute threshold statistics.

For more information, see "Managing Baselines" on page 8-1.

■ Improved manageability of SQL Advisor, SQL Access Advisor, and SQL Tuning
Sets

Significant improvements were made to managing SQL Tuning Advisor, SQL
Access Advisor, and SQL Tuning Sets.

For more information, see Chapter 10, "Tuning SQL Statements" and Chapter 11,
"Optimizing Data Access Paths".

■ SQL Performance Analyzer

SQL Performance Analyzer enables you to measure the impact of system changes
on SQL performance by testing these changes using a SQL workload on a test
system.

For more information, see Chapter 12, "Analyzing SQL Performance Impact".

xii

■ Active Session History (ASH) enhancements

The ASH report has been enhanced to include row-level tracking of top SQL
statements, top PL/SQL procedures, top Java workload, top phases of execution,
and other session-related information.

For more information, see Chapter 7, "Resolving Transient Performance Problems".

■ Automated Maintenance Tasks

Key maintenance tasks such as optimizer statistics collection, Automatic SQL
Tuning, and Segment Advisor are now managed through the Automatic
Maintenance Task framework. This framework enables you to exercise finer
control over the scheduling of maintenance tasks and on their CPU consumption.

For more information, see "Viewing Automatic SQL Tuning Results" on page 10-5.

■ Customizable Performance page

You can customize the Performance page to show only the graphs and charts that
you want displayed. You can also choose whether to include AWR baselines in the
performance charts.

For more information, see "Customizing the Database Performance Page" on
page 4-27.

■ I/O Statistics

The Performance page now contains charts for Throughput, I/O, Parallel
Execution, and Services. You can use the I/O charts to monitor I/O throughput
and latency information based on various criteria such as function (for example,
Recovery Manager), consumer groups, and file types.

For more information, see "Monitoring Instance Activity" on page 4-10.

Part I
Getting Started

Part I provides an introduction to this guide and explains the Oracle Database
performance method. This part contains the following chapters:

■ Chapter 1, "Introduction"

■ Chapter 2, "Oracle Database Performance Method"

Introduction 1-1

1
Introduction

As an Oracle database administrator (DBA), you are responsible for the performance
of your Oracle database. Tuning a database to reach a desirable performance level may
be a daunting task, especially for DBAs who are new to Oracle Database. Oracle
Database 2 Day + Performance Tuning Guide is a quick start guide that teaches you how
to perform day-to-day database performance tuning tasks using features provided by
Oracle Diagnostics Pack, Oracle Tuning Pack, and Oracle Enterprise Manager
(Enterprise Manager).

This chapter contains the following sections:

■ About This Guide

■ Common Oracle DBA Tasks

■ Tools for Tuning the Database

About This Guide
Before using this guide, you need to do the following:

■ Read Oracle Database 2 Day DBA in its entirety.

■ Obtain the necessary products and tools described in "Tools for Tuning the
Database" on page 1-2.

Oracle Database 2 Day + Performance Tuning Guide is task-oriented. The objective is to
describe why and when tuning tasks need to be performed.

This guide is not an exhaustive discussion of all Oracle Database concepts. For this
type of information, see Oracle Database Concepts.

This guide does not describe basic Oracle Database administrative tasks. For this type
of information, see Oracle Database 2 Day DBA. For a complete discussion of
administrative tasks, see Oracle Database Administrator's Guide.

The primary interface used in this guide is the Enterprise Manager Database Control
console. This guide is not an exhaustive discussion of all Oracle Database performance
tuning features and does not cover available application programming interfaces
(APIs) that provide comparable tuning options to those presented in this guide. For
this type of information, see Oracle Database Performance Tuning Guide.

Common Oracle DBA Tasks
As an Oracle DBA, you can expect to be involved in the following tasks:

■ Installing Oracle software

Tools for Tuning the Database

1-2 Oracle Database 2 Day + Performance Tuning Guide

■ Creating an Oracle database

■ Upgrading the database and software to new releases

■ Starting up and shutting down the database

■ Managing the storage structures of the database

■ Managing user accounts and security

■ Managing schema objects, such as tables, indexes, and views

■ Making database backups and performing database recovery, when necessary

■ Proactively monitoring the condition of the database and taking preventive or
corrective actions, as required

■ Monitoring and tuning database performance

In a small-to-midsize database environment, you might be the sole person performing
these tasks. In large, enterprise environments, the job is often divided among several
DBAs—each with his or her own specialty—such as database security or database
tuning. Oracle Database 2 Day + Performance Tuning Guide describes how to accomplish
the last two tasks in this list.

Tools for Tuning the Database
The intent of this guide is to allow you to quickly and efficiently tune and optimize the
performance of Oracle Database.

To achieve the goals of this guide, you will need to acquire the following products,
tools, features, and utilities:

■ Oracle Database 11g Enterprise Edition

Oracle Database 11g Enterprise Edition offers enterprise-class performance,
scalability and reliability on clustered and single-server configurations. It includes
many performance features that are used in this guide.

■ Oracle Enterprise Manager

The primary tool to manage your database is Enterprise Manager, a Web-based
interface. After you install the Oracle software, create or upgrade a database, and
configure the network, you can use Oracle Enterprise Manager to manage your
database. In addition, Enterprise Manager provides an interface for performance
advisors and for database utilities, such as SQL*Loader and Recovery Manager
(RMAN).

■ Oracle Diagnostics Pack

Oracle Diagnostics Pack offers a complete, cost-effective, and easy-to-use solution
to manage the performance of Oracle Database environments by providing unique
features, such as automatic identification of performance bottlenecks, guided
problem resolution, and comprehensive system monitoring. Key features of Oracle
Diagnostics Pack that are used in this guide include Automatic Database
Diagnostic Monitor (ADDM) and Automatic Workload Repository (AWR).

■ Oracle Database Tuning Pack

Oracle Database Tuning Pack automates the database application tuning process,
thereby significantly lowering database management costs while enhancing
performance and reliability. Key features of Oracle Database Tuning Pack that are
used in this guide include the following:

Tools for Tuning the Database

Introduction 1-3

– SQL Tuning Advisor

This feature enables you to submit one or more SQL statements as input and
receive output in the form of specific advice or recommendations for how to
tune statements, along with a rationale for each recommendation and its
expected benefit. A recommendation relates to collection of statistics on
objects, creation of new indexes, restructuring of the SQL statements, or
creation of SQL Profiles.

– SQL Access Advisor

This feature enables you to optimize data access paths of SQL queries by
recommending the proper set of materialized views and view logs, indexes,
and partitions for a given SQL workload.

■ Oracle Real Application Testing

Oracle Real Application Testing consists of two key features: Database Replay and
SQL Performance Analyzer. Database Replay enables you to capture the database
workload on a production system, and replay it on a test system with the exact
same timing and concurrency as the production system on the same or newer
release of Oracle Database. SQL Performance Analyzer enables you to assess the
effect of system changes on SQL performance by identifying SQL statements that
have regressed, improved, or remained unchanged.

Note: Some of the products and tools in the preceding list, including
Oracle Diagnostics Pack and Oracle Database Tuning Pack, require
separate licenses. For more information, see Oracle Database Licensing
Information.

Tools for Tuning the Database

1-4 Oracle Database 2 Day + Performance Tuning Guide

Oracle Database Performance Method 2-1

2
Oracle Database Performance Method

Performance improvement is an iterative process. Removing the first bottleneck (a
point where resource contention is at its highest) might not lead to performance
improvement immediately because another bottleneck might be revealed that has an
even greater performance impact on the system. For this reason, the Oracle
performance method is iterative. Accurately diagnosing the performance problem is
the first step toward ensuring that the changes you make to the system will result in
improved performance.

Performance problems generally result from a lack of throughput, unacceptable user
or job response time, or both. The problem might be localized to specific application
modules, or it might span the entire system. Before looking at any database or
operating system statistics, it is crucial to get feedback from the most important
components of the system: the users of the system and the people ultimately paying
for the application. Getting feedback from users makes determining the performance
goal easier, and improved performance can be measured in terms of real business
goals, rather than system statistics.

The Oracle performance method can be applied until performance goals are met or
deemed impractical. Because this process is iterative, it is likely that some
investigations will be made that have little impact on the performance of the system. It
takes time and experience to accurately pinpoint critical bottlenecks in a timely
manner. Automatic Database Diagnostic Monitor (ADDM) implements the Oracle
performance method and analyzes statistics to provide automatic diagnosis of major
performance problems. Using ADDM can significantly shorten the time required to
improve the performance of a system, and it is the method used in this guide.

This chapter discusses the Oracle Database performance method and contains the
following sections:

■ Gathering Database Statistics Using the Automatic Workload Repository

■ Using the Oracle Performance Method

■ Common Performance Problems Found in Oracle Databases

Gathering Database Statistics Using the Automatic Workload Repository
Database statistics provide information about the type of load on the database and the
internal and external resources used by the database. To accurately diagnose
performance problems with the database using ADDM, statistics must be available.

Oracle Database generates many types of cumulative statistics for the system, sessions,
and individual SQL statements. Oracle Database also tracks cumulative statistics about
segments and services. Automatic Workload Repository (AWR) automates database

Gathering Database Statistics Using the Automatic Workload Repository

2-2 Oracle Database 2 Day + Performance Tuning Guide

statistics gathering by collecting, processing, and maintaining performance statistics
for database problem detection and self-tuning purposes.

By default, the statistics gathering process repeats every hour and results in an AWR
snapshot, which is a set of data for a specific time that is used for performance
comparisons. The delta values captured by the snapshot represent the changes for each
statistic over the time period. Statistics gathered by AWR are queried from memory.
The gathered data can be displayed in both reports and views.

Gathering database statistics using AWR is enabled by default and is controlled by the
STATISTICS_LEVEL initialization parameter. The STATISTICS_LEVEL parameter
should be set to TYPICAL or ALL to enable statistics gathering by AWR. The default
setting is TYPICAL. Setting the STATISTICS_LEVEL parameter to BASIC disables
many Oracle Database features, including AWR, and is not recommended. For
information about the STATISTICS_LEVEL initialization parameter, see Oracle
Database Reference.

The CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter should be set to
DIAGNOSTIC+TUNING (default) or DIAGNOSTIC to enable automatic database
diagnostic monitoring. Setting CONTROL_MANAGEMENT_PACK_ACCESS to NONE
disables many Oracle Database features, including ADDM, and is strongly
discouraged. For information about the CONTROL_MANAGEMENT_PACK_ACCESS
initialization parameter, see Oracle Database Reference.

The database statistics collected and processed by AWR include:

■ Time Model Statistics

■ Wait Event Statistics

■ Session and System Statistics

■ Active Session History Statistics

■ High-Load SQL Statistics

Time Model Statistics
Time model statistics measure the time spent in the database by operation type. The
most important time model statistic is database time, or DB time. Database time
represents the total time spent in database calls, and is an indicator of the total instance
workload. As shown in Figure 2–1, database time makes up a portion of an
application's overall user response time.

Figure 2–1 DB Time in Overall User Response Time

A session is a specific connection of a user to an Oracle Database instance through a
user process. Database time is calculated by aggregating the CPU time and wait time
of all user sessions not waiting for idle wait events (user sessions that are not idle). For
example, a user session may involve an online transaction made at a bookseller's Web
site consisting of the actions shown in Figure 2–2.

Gathering Database Statistics Using the Automatic Workload Repository

Oracle Database Performance Method 2-3

Figure 2–2 DB Time in User Transaction

1. Query for novels by author

The user performs a search for novels by a particular author. This action causes the
application to perform a database query for novels by the author.

2. Browse results of query

The user browses the returned list of novels by the author and accesses additional
details, such as user reviews and inventory status. This action causes the
application to perform additional database queries.

3. Add item to cart

After browsing details about the novels, the user decides to add one of the novels
to the shopping cart. This action causes the application to make a database call to
update the shopping cart.

4. Checkout

The user completes the transaction by checking out, using the address and
payment information previously saved at the bookseller's Web site from a
previous purchase. This action causes the application to perform various database
operations to retrieve the user's information, add a new order, update the
inventory, and generate an E-mail confirmation.

For each of the preceding actions, the user makes a request to the database, as
represented by the down arrow in Figure 2–2 on page 2-3. The CPU time spent by the
database processing the request and the wait time spent waiting for the database are
considered DB time, as represented by the shaded areas. After the request is
completed, the results are returned to the user, as represented by the up arrow. The
space between the up and down arrows represents the total user response time for
processing the request, which contains other components besides DB time, as
illustrated in Figure 2–1 on page 2-2.

The objective of database tuning is to reduce the time that users spend performing
actions on the database, or reducing database time. In this way, you can improve the
overall response time of user transactions on the application.

Wait Event Statistics
Wait events are incremented by a session to indicate that the session had to wait for an
event to complete before being able to continue processing. When a session has to wait
while processing a user request, the database records the wait by using one of a set of
predefined wait events. The events are then grouped into wait classes, such as User
I/O and Network. Wait event data reveals symptoms of problems that might be
affecting performance, such as latch, buffer, and I/O contention.

See Also:

■ Oracle Database Performance Tuning Guide

■ Oracle Database Reference

Gathering Database Statistics Using the Automatic Workload Repository

2-4 Oracle Database 2 Day + Performance Tuning Guide

Session and System Statistics
A large number of cumulative database statistics are available on a system and session
level. Some of these statistics are collected by AWR.

Active Session History Statistics
The Active Session History (ASH) statistics are samples of session activity in the
database. The database samples active sessions every second and stores them in a
circular buffer in the System Global Area (SGA). Any session that is connected to the
database and using CPU, or is waiting for an event that does not belong to the idle
wait class, is considered an active session. By capturing only active sessions, a
manageable set of data is represented. The size of the data is directly related to the
work being performed, rather than the number of sessions allowed on the system.

Using the DB time example described in "Time Model Statistics" on page 2-2, samples
of session activity are collected from the online transaction made at the bookseller's
Web site, represented as vertical lines below the horizontal arrow in Figure 2–3.

Figure 2–3 Active Session History

The light vertical lines represent samples of inactive session activity that are not
captured in the ASH statistics. The bold vertical lines represent samples of active
sessions that are captured at:

■ 7:38, while novels by the author are being queried

■ 7:42, while the user is browsing the query results

■ 7:50, when one of the novels is added to the shopping cart

■ 7:52, during the checkout process

Table 2–1 lists the ASH statistics that are collected for the active sessions, along with
examples of the session ID (SID), module, SQL ID, session state, and wait events that
are sampled.

High-Load SQL Statistics
SQL statements that are consuming the most resources produce the highest load on the
system, based on criteria such as elapsed time and CPU time.

Table 2–1 Active Session History

Time SID Module SQL ID State Event

7:38 213 Book by author qa324jffritcf Waiting db file sequential read

7:42 213 Get review ID aferv5desfzs5 CPU

7:50 213 Add item to cart hk32pekfcbdfr Waiting buffer busy wait

7:52 213 Checkout abngldf95f4de Waiting log file sync

Using the Oracle Performance Method

Oracle Database Performance Method 2-5

Using the Oracle Performance Method
Performance tuning using the Oracle performance method is driven by identifying
and eliminating bottlenecks in the database, and by developing efficient SQL
statements. Database tuning is performed in two phases: proactively and reactively.

In the proactive tuning phase, you must perform tuning tasks as part of your daily
database maintenance routine, such as reviewing ADDM analysis and findings,
monitoring the real-time performance of the database, and responding to alerts.

In the reactive tuning phase, you must respond to issues reported by the users, such as
performance problems that may occur for only a short duration of time, or
performance degradation to the database over a period of time.

SQL tuning is an iterative process to identify, tune, and improve the efficiency of
high-load SQL statements.

Applying the Oracle performance method involves the following:

■ Performing pre-tuning preparations, as described in "Preparing the Database for
Tuning" on page 2-5

■ Tuning the database proactively on a regular basis, as described in "Tuning the
Database Proactively" on page 2-6

■ Tuning the database reactively when performance problems are reported by the
users, as described in "Tuning the Database Reactively" on page 2-6

■ Identifying, tuning, and optimizing high-load SQL statements, as described in
"Tuning SQL Statements" on page 2-7

To improve the performance of your database, you will need to apply these principles
iteratively.

Preparing the Database for Tuning
This section lists and describes the steps that must be performed before the database
can be properly tuned.

To prepare the database for tuning:
1. Get feedback from users.

Determine the scope of the performance project and subsequent performance
goals, and determine performance goals for the future. This process is key for
future capacity planning.

2. Check the operating systems of all systems involved with user performance.

Check for hardware or operating system resources that are fully utilized. List any
overused resources as possible concerns for later analysis. In addition, ensure that
all hardware is functioning properly.

3. Ensure that the STATISTICS_LEVEL initialization parameter is set to TYPICAL
(default) or ALL to enable the automatic performance tuning features of Oracle
Database, including AWR and ADDM.

4. Ensure that the CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter is
set to DIAGNOSTIC+TUNING (default) or DIAGNOSTIC to enable ADDM.

Using the Oracle Performance Method

2-6 Oracle Database 2 Day + Performance Tuning Guide

Tuning the Database Proactively
This section lists and describes the steps required to keep the database properly tuned
on a regular basis. These tuning procedures are considered proactive and should be
performed as part of your daily maintenance of Oracle Database.

To tune the database proactively:
1. Review the ADDM findings, as described in Chapter 3, "Automatic Database

Performance Monitoring".

ADDM automatically detects and reports on performance problems with the
database, including most of the "Common Performance Problems Found in Oracle
Databases" on page 2-8. The results are displayed as ADDM findings on the
Database Home page in Oracle Enterprise Manager (Enterprise Manager).
Reviewing these findings enables you to quickly identify the performance
problems that require your attention.

2. Implement the ADDM recommendations, as described in Chapter 3, "Automatic
Database Performance Monitoring".

ADDM automatically provides a list of recommendations for reducing the impact
of the performance problem with each ADDM finding. Implementing a
recommendation applies the suggested changes to improve the database
performance.

3. Monitor performance problems with the database in real time, as described in
Chapter 4, "Monitoring Real-Time Database Performance".

The Performance page in Enterprise Manager enables you to identify and respond
to real-time performance problems. By drilling down to the appropriate pages,
you can identify and resolve performance problems with the database in real time,
without having to wait until the next ADDM analysis.

4. Respond to performance-related alerts, as described in Chapter 5, "Monitoring
Performance Alerts".

The Database Home page in Enterprise Manager enables you to view
performance-related alerts generated by the system. Typically, these alerts reveal
performance problems whose resolutions will improve the performance of your
database.

5. Validate that the changes made have produced the desired effect, and verify that
the users perceive performance improvements.

6. Repeat these steps until your performance goals are met or become impossible to
achieve because of other constraints.

Tuning the Database Reactively
This section lists and describes the steps required to tune the database based on user
feedback. This tuning procedure is considered reactive. Perform this procedure
periodically when performance problems are reported by the users.

See Also:

■ "Gathering Database Statistics Using the Automatic Workload
Repository" on page 2-1 for information about configuring AWR

■ "Configuring Automatic Database Diagnostic Monitor" on
page 3-3

Using the Oracle Performance Method

Oracle Database Performance Method 2-7

To tune the database reactively:
1. Run ADDM manually to diagnose current and historical database performance

when performance problems are reported by the users, as described in Chapter 6,
"Manual Database Performance Monitoring".

This task is useful if you want to analyze current database performance before the
next ADDM analysis, or to analyze historical database performance when you
were not proactively monitoring the system.

2. Resolve transient performance problems, as described in Chapter 7, "Resolving
Transient Performance Problems".

The Active Session History (ASH) reports enable you to analyze transient
performance problems with the database that are short-lived and do not appear in
the ADDM analysis.

3. Resolve performance degradation over time, as described in Chapter 8, "Resolving
Performance Degradation Over Time".

The Automatic Workload Repository (AWR) Compare Periods report enables you
to compare database performance between two periods of time, and resolve
performance degradation that may happen from one time period to another.

4. Validate that the changes made have produced the desired effect, and verify that
the users perceive performance improvements.

5. Repeat these steps until your performance goals are met or become impossible to
achieve due to other constraints.

Tuning SQL Statements
This section lists and describes the steps required to identify, tune, and optimize
high-load SQL statements.

To tune SQL statements:
1. Identify high-load SQL statements, as described in Chapter 9, "Identifying

High-Load SQL Statements".

Use the ADDM findings and the Top SQL section to identify high-load SQL
statements that are causing the greatest contention.

2. Tune high-load SQL statements, as described in Chapter 10, "Tuning SQL
Statements".

You can improve the efficiency of high-load SQL statements by tuning them using
SQL Tuning Advisor.

3. Optimize data access paths, as described in Chapter 11, "Optimizing Data Access
Paths".

You can optimize the performance of data access paths by creating the proper set
of materialized views, materialized view logs, and indexes for a given workload
by using SQL Access Advisor.

4. Analyze the SQL performance impact of SQL tuning and other system changes, as
described in Chapter 12, "Analyzing SQL Performance Impact".

You can analyze the performance impact of your SQL tuning activities or other
system changes on a given SQL workload by using SQL Performance Analyzer.

5. Repeat these steps until all high-load SQL statements are tuned for greatest
efficiency.

Common Performance Problems Found in Oracle Databases

2-8 Oracle Database 2 Day + Performance Tuning Guide

Common Performance Problems Found in Oracle Databases
This section lists and describes common performance problems found in Oracle
databases. By following the Oracle performance method, you should be able to avoid
these problems. If you have these problems, then repeat the steps in the Oracle
performance method, as described in "Using the Oracle Performance Method" on
page 2-5, or consult the appropriate section that addresses these problems:

■ CPU bottlenecks

Is the application performing poorly because the system is CPU-bound?
Performance problems caused by CPU bottlenecks are diagnosed by ADDM, as
described in Chapter 3, "Automatic Database Performance Monitoring". You can
also identify CPU bottlenecks by using the Performance page in Enterprise
Manager, as described in "Monitoring CPU Utilization" on page 4-19.

■ Undersized memory structures

Are the Oracle memory structures—such as the System Global Area (SGA),
Program Global Area (PGA), and buffer cache—adequately sized? Performance
problems caused by undersized memory structures are diagnosed by ADDM, as
described in Chapter 3, "Automatic Database Performance Monitoring". You can
also identify memory usage issues by using the Performance page in Enterprise
Manager, as described in "Monitoring Memory Utilization" on page 4-22.

■ I/O capacity issues

Is the I/O subsystem performing as expected? Performance problems caused by
I/O capacity issues are diagnosed by ADDM, as described in Chapter 3,
"Automatic Database Performance Monitoring". You can also identify disk I/O
issues by using the Performance page in Oracle Enterprise Manager, as described
in "Monitoring Disk I/O Utilization" on page 4-25.

■ Suboptimal use of Oracle Database by the application

Is the application making suboptimal use of Oracle Database? Problems such as
establishing new database connections repeatedly, excessive SQL parsing, and
high levels of contention for a small amount of data (also known as
application-level block contention) can degrade the application performance
significantly. Performance problems caused by suboptimal use of Oracle Database
by the application are diagnosed by ADDM, as described in Chapter 3, "Automatic
Database Performance Monitoring". You can also monitor top activity in various
dimensions—including SQL, session, services, modules, and actions—by using the
Performance page in Enterprise Manager, as described in "Monitoring User
Activity" on page 4-2.

■ Concurrency issues

Is the database performing suboptimally due to a high degree of concurrent
activities in the database? A high degree of concurrent activities might result in
contention for shared resources that can manifest in the forms of locks or waits for
buffer cache. Performance problems caused by concurrency issues are diagnosed
by ADDM, as described in Chapter 3, "Automatic Database Performance
Monitoring". You can also identify concurrency issues by using Top Sessions in
Enterprise Manager, as described in "Monitoring Top Sessions" on page 4-5.

■ Database configuration issues

Is the database configured optimally to provide desired performance levels? For
example, is there evidence of incorrect sizing of log files, archiving issues,
excessive number of checkpoints, or suboptimal parameter settings? Performance

Common Performance Problems Found in Oracle Databases

Oracle Database Performance Method 2-9

problems caused by database configuration issues are diagnosed by ADDM, as
described in Chapter 3, "Automatic Database Performance Monitoring".

■ Short-lived performance problems

Are users complaining about short-lived or intermittent performance problems?
Depending on the interval between snapshots taken by AWR, performance
problems that have a short duration may not be captured by ADDM. You can
identify short-lived performance problems by using the Active Session History
report, as described in Chapter 7, "Resolving Transient Performance Problems".

■ Degradation of database performance over time

Is there evidence that the database performance has degraded over time? For
example, are you or your users noticing that the database is not performing as well
as it was 6 months ago? You can generate an AWR Compare Periods report to
compare the period when the performance was poor to a period when the
performance is stable to identify configuration settings, workload profile, and
statistics that are different between these two time periods. This technique will
help you identify the cause of the performance degradation, as described in
Chapter 8, "Resolving Performance Degradation Over Time".

■ Inefficient or high-load SQL statements

Are any SQL statements using excessive system resources that impact the system?
Performance problems caused by high-load SQL statements are diagnosed by
ADDM, as described in Chapter 3, "Automatic Database Performance Monitoring"
and "Identification of High-Load SQL Statements Using ADDM Findings" on
page 9-1. You can also identify high-load SQL statements by using Top SQL in
Enterprise Manager, as described in "Identifying High-Load SQL Statements
Using Top SQL" on page 9-2. After they have been identified, you can tune the
high-load SQL statements using SQL Tuning Advisor, as described in Chapter 10,
"Tuning SQL Statements".

■ Object contention

Are any database objects the source of bottlenecks because they are continuously
accessed? Performance problems caused by object contention are diagnosed by
ADDM, as described in Chapter 3, "Automatic Database Performance
Monitoring". You can also optimize the data access path to these objects using SQL
Access Advisor, as described in Chapter 11, "Optimizing Data Access Paths" on
page 4-25.

■ Unexpected performance regression after tuning SQL statements

Is the performance of SQL statements degrading after they have been tuned?
Tuning SQL statements may cause changes to execution plans of SQL statements,
resulting in a significant impact on SQL performance. In some cases, the changes
may result in the improvement of SQL performance. In other cases, the changes
may cause SQL statements to regress, resulting in a degradation of SQL
performance. Before making changes on a production system, you can analyze the
performance impact from tuning SQL statements on a test system by using SQL
Performance Analyzer, as described in Chapter 12, "Analyzing SQL Performance
Impact".

Common Performance Problems Found in Oracle Databases

2-10 Oracle Database 2 Day + Performance Tuning Guide

Part II
Proactive Database Tuning

Part II describes how to tune Oracle Database proactively on a regular basis and
contains the following chapters:

■ Chapter 3, "Automatic Database Performance Monitoring"

■ Chapter 4, "Monitoring Real-Time Database Performance"

■ Chapter 5, "Monitoring Performance Alerts"

Automatic Database Performance Monitoring 3-1

3
Automatic Database Performance Monitoring

Automatic Database Diagnostic Monitor (ADDM) automatically detects and reports
performance problems with the database. The results are displayed as ADDM findings
on the Database Home page in Oracle Enterprise Manager (Enterprise Manager).
Reviewing the ADDM findings enables you to quickly identify the performance
problems that require your attention.

Each ADDM finding provides a list of recommendations for reducing the impact of the
performance problem. Reviewing ADDM findings and implementing the
recommendations are tasks that you should perform daily as part of the regular
database maintenance. Even when the database is operating at an optimal
performance level, you should continue to use ADDM to monitor database
performance on an ongoing basis.

This chapter contains the following sections:

■ Overview of Automatic Database Diagnostic Monitor

■ Configuring Automatic Database Diagnostic Monitor

■ Reviewing the Automatic Database Diagnostic Monitor Analysis

■ Interpretation of Automatic Database Diagnostic Monitor Findings

■ Implementing Automatic Database Diagnostic Monitor Recommendations

■ Viewing Snapshot Statistics

Overview of Automatic Database Diagnostic Monitor
ADDM is self-diagnostic software built into Oracle Database. ADDM examines and
analyzes data captured in the Automatic Workload Repository (AWR) to determine
possible performance problems in Oracle Database. ADDM then locates the root
causes of the performance problems, provides recommendations for correcting them,
and quantifies the expected benefits. ADDM also identifies areas where no action is
necessary.

This section contains the following topics:

■ ADDM Analysis

■ ADDM Recommendations

See Also:

■ Oracle Database Performance Tuning Guide for information about
using the DBMS_ADVISOR package to diagnose and tune the
database with the Automatic Database Diagnostic Monitor

Overview of Automatic Database Diagnostic Monitor

3-2 Oracle Database 2 Day + Performance Tuning Guide

■ ADDM for Oracle Real Application Clusters

ADDM Analysis
An ADDM analysis is performed after each AWR snapshot (every hour by default),
and the results are saved in the database. You can then view the results by means of
Oracle Enterprise Manager. Before using another performance tuning method
described in this guide, first review the results of the ADDM analysis.

The ADDM analysis is performed from the top down, first identifying symptoms and
then refining the analysis to reach the root causes of performance problems. ADDM
uses the DB time statistic to identify performance problems. DB time is the cumulative
time spent by the database in processing user requests, including both the wait time
and CPU time of all user sessions that are not idle.

The goal of database performance tuning is to reduce the DB time of the system for a
given workload. By reducing DB time, the database is able to support more user
requests by using the same or a smaller amount of resources. ADDM reports system
resources that are using a significant portion of DB time as problem areas and sorts
them in descending order by the amount of related DB time spent. For more
information about the DB time statistic, see "Time Model Statistics" on page 2-2.

ADDM Recommendations
In addition to diagnosing performance problems, ADDM recommends possible
solutions. When appropriate, ADDM recommends multiple solutions from which you
can choose. ADDM recommendations include the following:

■ Hardware changes

Adding CPUs or changing the I/O subsystem configuration

■ Database configuration

Changing initialization parameter settings

■ Schema changes

Hash partitioning a table or index, or using automatic segment space management
(ASSM)

■ Application changes

Using the cache option for sequences or using bind variables

■ Using other advisors

Running SQL Tuning Advisor on high-load SQL statements or running the
Segment Advisor on hot objects

ADDM benefits apply beyond production systems. Even on development and test
systems, ADDM can provide an early warning of potential performance problems.

Performance tuning is an iterative process. Fixing one problem can cause a bottleneck
to shift to another part of the system. Even with the benefit of the ADDM analysis, it
can take multiple tuning cycles to reach a desirable level of performance.

See Also:

■ Oracle Database 2 Day DBA for information the Segment Advisor

Configuring Automatic Database Diagnostic Monitor

Automatic Database Performance Monitoring 3-3

ADDM for Oracle Real Application Clusters
In an Oracle Real Application Clusters (Oracle RAC) environment, you can use ADDM
to analyze the throughput performance of a database cluster. ADDM for Oracle RAC
considers DB time as the sum of database times for all database instances and reports
findings that are significant at the cluster level. For example, the I/O levels of each
cluster node may be insignificant when considered locally, but the aggregate I/O level
may be a significant problem for the cluster as a whole.

Configuring Automatic Database Diagnostic Monitor
This section describes how to configure ADDM and contains the following topics:

■ Setting Initialization Parameters to Enable ADDM

■ Setting the DBIO_EXPECTED Parameter

■ Managing AWR Snapshots

Setting Initialization Parameters to Enable ADDM
Automatic database diagnostic monitoring is enabled by default and is controlled by
the CONTROL_MANAGEMENT_PACK_ACCESS and the STATISTICS_LEVEL
initialization parameters.

The CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter should be set to
DIAGNOSTIC+TUNING (default) or DIAGNOSTIC to enable automatic database
diagnostic monitoring. Setting CONTROL_MANAGEMENT_PACK_ACCESS to NONE
disables many Oracle Database features, including ADDM, and is strongly
discouraged.

The STATISTICS_LEVEL initialization parameter should be set to the TYPICAL
(default) or ALL to enable automatic database diagnostic monitoring. Setting
STATISTICS_LEVEL to BASIC disables many Oracle Database features, including
ADDM, and is strongly discouraged.

To determine whether ADDM is enabled:
1. From the Database Home page, click Server.

The Server subpage appears.

2. In the Database Configuration section, click Initialization Parameters.

The Initialization Parameters page appears.

3. In the Name field, enter statistics_level and then click Go.

The table shows the setting of this initialization parameter.

4. Do one of the following:

■ If the Value column shows ALL or TYPICAL, then do nothing.

■ If the Value column shows BASIC, then select ALL or TYPICAL and click
Apply.

5. In the Name field, enter control_management_pack_access and then click
Go.

See Also:

■ Oracle Database 2 Day + Real Application Clusters Guide for
information about using ADDM for Oracle RAC

Configuring Automatic Database Diagnostic Monitor

3-4 Oracle Database 2 Day + Performance Tuning Guide

The table shows the setting of this initialization parameter.

6. Do one of the following:

■ If the Value column shows DIAGNOSTIC or DIAGNOSTIC+TUNING, then
do nothing.

■ If the Value column shows NONE, then select DIAGNOSTIC or
DIAGNOSTIC+TUNING and click Apply.

Setting the DBIO_EXPECTED Parameter
ADDM analysis of I/O performance partially depends on a single argument,
DBIO_EXPECTED, that describes the expected performance of the I/O subsystem. The
value of DBIO_EXPECTED is the average time it takes to read a single database block,
in microseconds. Oracle Database uses the default value of 10 milliseconds, which is
an appropriate value for most hard drives. If your hardware is significantly different,
then consider using a different value.

To determine the correct setting for the DBIO_EXPECTED initialization parameter:
1. Measure the average read time of a single database block for your hardware.

This measurement needs to be taken for random I/O, which includes seek time if
you use standard hard drives. Typical values for hard drives are between 5000 and
20000 microseconds.

2. Set the value one time for all subsequent ADDM executions.

For example, if the measured value is 8000 microseconds, then execute the
following PL/SQL code as the SYS user:

EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(
 'ADDM', 'DBIO_EXPECTED', 8000);

Managing AWR Snapshots
By default, the Automatic Workload Repository (AWR) generates snapshots of
performance data once every hour, and retains the statistics in the workload repository
for 8 days. You can change the default values for both the snapshot interval and the
retention period.

Oracle recommends that you adjust the AWR retention period to at least a month. You
can also extend the period to one business cycle so you can compare data across time
frames such as the close of the fiscal quarter. You can also create AWR baselines to
retain snapshots indefinitely for important time periods.

The data in the snapshot interval is analyzed by ADDM. ADDM compares the
difference between snapshots to determine which SQL statements to capture, based on
the effect on the system load. The ADDM analysis shows the number of SQL
statements that need to be captured over time.

This section contains the following topics:

■ Creating Snapshots

See Also:

■ Oracle Database Reference for information about the
STATISTICS_LEVEL initialization parameter

■ Oracle Database Reference for information about the
CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter

Configuring Automatic Database Diagnostic Monitor

Automatic Database Performance Monitoring 3-5

■ Modifying Snapshot Settings

Creating Snapshots
Manually creating snapshots is usually not necessary because AWR generates
snapshots of the performance data once every hour by default. In some cases,
however, it may be necessary to manually create snapshots to capture different
durations of activity, such as when you want to compare performance data over a
shorter period of time than the snapshot interval.

To create snapshots:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Under Additional Monitoring Links, click Snapshots.

The Snapshots page appears with a list of the most recent snapshots.

3. Click Create.

The Confirmation page appears.

4. Click Yes.

The Processing: Create Snapshot page is displayed while the snapshot is being
taken.

After the snapshot is taken, the Snapshots page reappears with a Confirmation
message.

In this example, the ID of the snapshot that was created is 249.

Modifying Snapshot Settings
By default, AWR generates snapshots of performance data once every hour.
Alternatively, you can modify the default values of both the interval between
snapshots and their retention period.

To modify the snapshot settings:
1. From the Database Home page, click Server.

The Server subpage appears.

2. In the Statistics Management section, click Automatic Workload Repository.

The Automatic Workload Repository page appears.

Configuring Automatic Database Diagnostic Monitor

3-6 Oracle Database 2 Day + Performance Tuning Guide

In this example, snapshot retention is set to 8 days and snapshot interval is set to
60 minutes.

3. Click Edit.

The Edit Settings page appears.

4. For Snapshot Retention, do one of the following:

■ Select Use Time-Based Retention Period (Days), and in the associated field
enter the number of days to retain the snapshots.

■ Select Retain Forever to retain snapshots indefinitely.

It is recommended that you increase the snapshot retention period whenever
possible based on the available disk space.

In this example, the snapshot retention period is changed to 30 days.

5. For Snapshot Collection, do one of the following:

■ Select System Snapshot Interval and, in the Interval list, select the desired
interval to change the interval between snapshots.

■ Select Turn off Snapshot Collection to disable snapshot collection.

In this example, the snapshot collection interval is changed to 30 minutes.

6. Click the link next to Collection Level.

The Initialization Parameter page appears.

To change the statistics level, select the desired value in the Value list for the
statistics_level parameter. Click Save to File to set the value in the server
parameter file.

In this example, the default value of Typical is used.

Reviewing the Automatic Database Diagnostic Monitor Analysis

Automatic Database Performance Monitoring 3-7

7. Click OK to apply the changes.

The Automatic Workload Repository page appears and displays the new settings.

Reviewing the Automatic Database Diagnostic Monitor Analysis
By default, ADDM runs every hour to analyze snapshots taken by AWR during that
period. If the database finds performance problems, then it displays the results of the
analysis under Diagnostic Summary on the Database Home page.

The ADDM Findings link shows how many ADDM findings were found in the most
recent ADDM analysis.

To view ADDM findings:
1. On the Database Home page, under Diagnostic Summary, click the link next to

ADDM Findings.

The Automatic Database Diagnostic Monitor (ADDM) page appears. The results of
the ADDM run are displayed.

On the Automatic Database Diagnostic Monitor (ADDM) page, the Database
Activity chart shows the database activity during the ADDM analysis period.
Database activity types are defined in the legend based on their corresponding
colors in the chart. Each icon below the chart represents a different ADDM task,
which in turn corresponds to a pair of individual Oracle Database snapshots saved
in the Workload Repository.

Interpretation of Automatic Database Diagnostic Monitor Findings

3-8 Oracle Database 2 Day + Performance Tuning Guide

In this example, the largest block of activity from 8:00 onwards appears in green
and corresponds to CPU usage, as described in the legend. This data suggests that
CPU may be a performance bottleneck during the ADDM analysis period.

In the ADDM Performance Analysis section, the ADDM findings are listed in
descending order, from highest impact to least impact. The Informational Findings
section lists the areas that do not have a performance impact and are for
informational purpose only.

2. Optionally, click the Zoom icons to shorten or lengthen the analysis period
displayed on the chart.

3. To view the ADDM findings in a report, click View Report.

The View Report page appears.

You can click Save to File to save the report for later access.

Interpretation of Automatic Database Diagnostic Monitor Findings
The ADDM analysis results are represented as a set of findings. Each ADDM finding
belongs to one of three types:

■ Problem

Findings that describe the root cause of a database performance issue.

■ Symptom

Findings that contain information that often leads to one or more problem
findings.

■ Information

Findings that are used to report areas of the system that do not have a
performance impact.

Each problem finding is quantified with an estimate of the portion of DB time that
resulted from the performance problem.

When a specific problem has multiple causes, ADDM may report multiple findings. In
this case, the impacts of these multiple findings can contain the same portion of DB
time. Because the performance problems can overlap, summing all the impacts of the
reported findings can yield a number higher than 100 percent of DB time. For example,
if a system performs many read I/O operations, ADDM may report a SQL statement
responsible for 50 percent of DB time due to I/O activity as one finding, and an
undersized buffer cache responsible for 75 percent of DB time as another finding.

A problem finding can be associated with a list of recommendations for reducing the
impact of a performance problem. Each recommendation has a benefit that is an
estimate of the portion of DB time that can be saved if the recommendation is
implemented. When multiple recommendations are associated with an ADDM
finding, the recommendations may contain alternatives for solving the same problem.
In this case, the sum of the benefits may be higher than the impact of the finding. You
do not need to apply all the recommendations to solve the same problem.

Implementing Automatic Database Diagnostic Monitor Recommendations

Automatic Database Performance Monitoring 3-9

Recommendations are composed of actions and rationales. You must apply all the
actions of a recommendation to gain the estimated benefit of that recommendation.
The rationales explain why the set of actions was recommended, and provide
additional information for implementing the suggested recommendation. An ADDM
action may present multiple solutions to you. If this is the case, then choose the easiest
solution to implement.

Implementing Automatic Database Diagnostic Monitor Recommendations
This section describes how to implement ADDM recommendations. ADDM findings
are displayed in the Automatic Database Diagnostic Monitor (ADDM) page under
ADDM Performance Analysis.

To implement ADDM recommendations:
1. On the Database Home page, under Diagnostic Summary, click the link next to

ADDM Findings.

The Automatic Database Diagnostic Monitor (ADDM) page appears.

2. In the ADDM Performance Analysis section, click the ADDM finding that has the
greatest impact.

In this example, the finding with the greatest impact is Top SQL by DB Time.

The Performance Finding Details page appears.

3. Under Recommendations, review the recommendations and required actions for
each recommendation.

The Category column displays the category of the recommendation. The Benefit
(%) column displays the estimated benefit of implementing the recommendation.

Implementing Automatic Database Diagnostic Monitor Recommendations

3-10 Oracle Database 2 Day + Performance Tuning Guide

In this example, two recommendations are displayed for this finding. The first
recommendation contains one action and is estimated to have a maximum benefit
of up to 84.6% of DB time in the analysis period. The second recommendation
contains one action and is estimated to have a maximum benefit of up to 78.3% of
DB time in the analysis period.

4. If additional information about why the set of actions was recommended is
available, then click Additional Information, or review the content displayed
under Additional Information.

For example, the Undersized Buffer Cache finding contains additional information
to indicate the value of the DB_CACHE_SIZE initialization parameter.

5. To view the history of a finding, click Finding History.

The Finding History page appears.

The Finding History page shows how often a particular finding has occurred in a
selected 3-hour interval. You can use this information to determine whether the
finding was a transient or a persistent problem on the system. Based on this
information, you can determine whether the actions associated with the finding
should be implemented.

Implementing Automatic Database Diagnostic Monitor Recommendations

Automatic Database Performance Monitoring 3-11

The Active Sessions chart shows the impact of the finding and of the other load on
the system. You can change the display as follows:

a. To move the 3-hour interval, click and drag the shaded box in the Active
Sessions chart to the time period in which you are interested.

b. To change dates, enter the desired date in the View field and click Go.

c. To view details about a finding, under Detail for Selected 3 Hour Interval, click
the link in the Finding Details column to display the Performance Finding
Details page for the corresponding ADDM finding.

6. Optionally, create a filter to suppress known findings that have been tuned or
cannot be tuned further. To create filters for this ADDM finding:

a. Click Filters.

The Filters for Finding page appears.

b. Click Create.

The Create Filter for Finding page appears.

c. In the Name field, enter a name for the ADDM filter.

d. In the Active Sessions field, specify the filter criteria, in terms of the number
of active sessions, for this finding.

The ADDM finding will be filtered for future ADDM runs if the number of
active sessions for this finding is less than the specified filter criteria.

e. In the % Active Sessions field, specify the filter criteria, in terms of percentage
of active sessions, for this finding.

The ADDM finding will be filtered for future ADDM runs if the number of
active sessions for this finding is less than the specified filter criteria.

f. Click OK.

7. Perform the required action of a chosen recommendation.

Depending on the type of action you choose to perform, various buttons may be
available, such as Implement or Run Advisor Now. These buttons enable you to
implement the recommendation immediately with only a single mouse click.

In this example, the simplest solution is to click Run Advisor Now to immediately
run a SQL Tuning Advisor task on the SQL statement.

See Also:

■ Chapter 10, "Tuning SQL Statements"

Viewing Snapshot Statistics

3-12 Oracle Database 2 Day + Performance Tuning Guide

Viewing Snapshot Statistics
You can view the data contained in snapshots taken by AWR using Enterprise
Manager. Typically, it is not necessary to review snapshot data because it consists
primarily of raw statistics. Instead, you should rely on ADDM, which analyzes these
statistics to identify performance problems. Snapshot statistics should be used
primarily by advanced users, or by DBAs who are accustomed to using Statspack for
performance analysis.

To view snapshot statistics:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Under Additional Monitoring Links, click Snapshots.

The Snapshots page appears with a list of the most recent snapshots.

3. To view the statistics gathered in a snapshot, click the ID link of the snapshot you
want to view.

The Snapshot Details appears, showing the Details subpage.

In this example, statistics gathered from the previous snapshot (snapshot 161) to
the selected snapshot (snapshot 162) are displayed.

4. To view a Workload Repository report of the statistics, click Report.

The Workload Repository report appears.

5. Optionally, click Save to File to save the report for later access.

See Also:

■ Chapter 8, "Resolving Performance Degradation Over Time"

Monitoring Real-Time Database Performance 4-1

4
Monitoring Real-Time Database Performance

The Performance page in Oracle Enterprise Manager (Enterprise Manager) displays
information in three sections that you can use to assess the overall performance of the
database in real time.

Figure 4–1 Performance Page

Typically, you should use the automatic diagnostic feature of Automatic Database
Diagnostic Monitor (ADDM) to identify performance problems with the database, as
described in Chapter 3, "Automatic Database Performance Monitoring". In some cases,
however, you may want to monitor the database performance in real time to identify
performance problems as they happen. For example, ADDM performs its analysis
after each Automatic Workload Repository (AWR) snapshot, which by default is once
every hour. However, if you notice a sudden spike in database activity on the
Performance page, then you may want to investigate the incident before the next
ADDM analysis.

By drilling down to appropriate pages from the Performance page, you can identify
performance problems with the database in real time. If you find a performance
problem, then you can choose to run ADDM manually to analyze it immediately,
without having to wait until the next ADDM analysis. To learn how to run ADDM

Monitoring User Activity

4-2 Oracle Database 2 Day + Performance Tuning Guide

manually to analyze performance in real time, see "Manually Running ADDM to
Analyze Current Database Performance" on page 6-1.

This chapter contains the following sections:

■ Monitoring User Activity

■ Monitoring Instance Activity

■ Monitoring Host Activity

■ Customizing the Database Performance Page

Monitoring User Activity
The Average Active Sessions chart of the Performance page shows potential problems
inside the database, including how much CPU users are consuming. The wait classes
show how much of the database activity is consumed by waiting for a resource such as
disk I/O.

Figure 4–2 Monitoring User Activity

By following the performance method explained in Chapter 2, "Oracle Database
Performance Method", you can drill down from the charts to identify the cause of
instance-related performance issues and resolve them.

To monitor user activity:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Locate the spikes in the Average Active Sessions chart.

When the CPU Used value reaches the Maximum CPU line (shown as a dotted
line), the database instance is running at 100 percent of CPU time on the host
system.

All other values in the chart represent users waiting and contention for resources,
which are categorized by wait classes in the legend. Values that use a larger block
of active sessions represent bottlenecks caused by a particular wait class, as
indicated by the corresponding color in the legend.

In the chart shown in Figure 4–2 on page 4-2, the largest block of activity appears
in green and corresponds to the CPU Used wait class as described in the legend.

3. To identify each wait class, move your cursor over the block in the Average Active
Sessions chart corresponding to the class.

The corresponding wait class is highlighted in the chart legend.

4. Click the largest block of color on the chart or its corresponding wait class in the
legend to drill down to the wait class with the most active sessions.

Monitoring User Activity

Monitoring Real-Time Database Performance 4-3

If you click CPU Used, then the Active Sessions Working page for the wait class
appears. If you click a different wait class, such as User I/O, then the Active
Sessions Waiting page appears.

Figure 4–3 Active Sessions Working page

The Active Sessions Working page shows a 1-hour time line. Details for each wait
class are shown in 5-minute intervals under Detail for Selected 5 Minute Interval.

You can view the details of wait classes in different dimensions by proceeding to
one of the following sections:

■ "Monitoring Top SQL" on page 4-4

■ "Monitoring Top Sessions" on page 4-5

■ "Monitoring Top Services" on page 4-6

■ "Monitoring Top Modules" on page 4-7

■ "Monitoring Top Actions" on page 4-7

■ "Monitoring Top Clients" on page 4-8

■ "Monitoring Top PL/SQL" on page 4-9

■ "Monitoring Top Files" on page 4-9

■ "Monitoring Top Objects" on page 4-10

5. To change the time selected interval, move the slider below the chart to a different
interval.

The information contained in the Detail for Selected 5 Minute Interval section is
automatically updated to display the selected time period.

In the example shown in Figure 4–3, the 5 -minute interval from 5:03 to 5:08 is
selected for the CPU Used wait class.

6. If you discover a performance problem, then you can attempt to resolve it in real
time. On the Performance page, do one of the following:

Monitoring User Activity

4-4 Oracle Database 2 Day + Performance Tuning Guide

■ Click a snapshot below the chart that corresponds to the time when the
performance problem occurred to run ADDM for that time period.

For information about ADDM analysis, see "Reviewing the Automatic
Database Diagnostic Monitor Analysis" on page 3-7.

■ Create a snapshot manually by clicking Run ADDM Now.

For information about creating snapshots manually, see "Creating Snapshots"
on page 3-5. For information about running ADDM manually, see "Manually
Running ADDM to Analyze Current Database Performance" on page 6-1.

■ Click Run ASH Report to create an ASH report to analyze transient
performance problems that last for only a short period of time.

For information about ASH reports, see "Active Session History Reports" on
page 7-3.

Monitoring Top SQL
On the Active Sessions Working page, the Top Working SQL table shows the database
activity for actively running SQL statements that are consuming CPU resources. The
Activity (%) column shows the percentage of this activity consumed by each SQL
statement. If one or several SQL statements are consuming a majority of the activity,
then you should investigate them.

Figure 4–4 Monitoring Top SQL

In the example shown in Figure 4–4, the SELECT statement is consuming over 90% of
database activity and should be investigated.

To monitor the top working SQL statements:
1. On the Performance page, in the Average Active Sessions chart, click the CPU

block on the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, click the SQL ID link of the most
active SQL statement in the Top Working SQL table.

The SQL Details page appears.

For SQL statements that are using the majority of the wait time, use SQL Tuning
Advisor or create a SQL Tuning Set to tune the problematic SQL statements.

Monitoring User Activity

Monitoring Real-Time Database Performance 4-5

Monitoring Top Sessions
On the Active Sessions Working page, the Top Working Sessions table displays the top
sessions waiting for the corresponding wait class during the selected time period.
Sessions represent specific user connections to the database through a user process.

Figure 4–5 Monitoring Top Sessions

A session lasts from the time the user connects to the database until the time the user
disconnects or exits the database application. For example, when a user starts
SQL*Plus, the user must provide a valid database user name and password to
establish a session. If a single session is using the majority of the wait time, then you
should investigate it.

To monitor the top working sessions:
1. On the Performance page, in the Average Active Sessions chart, click the CPU

Used block on the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, click the Session ID link of the
session consuming the most database activity.

The Session Details page appears.

This page contains information such as session activity, session statistics, open
cursors, blocking sessions, wait events, and parallel SQL for the selected session.

In the example shown in Figure 4–5, the SQL*Plus session for user sh is
consuming over 96% of database activity and should be investigated.

See Also:

■ "Viewing Details of SQL Statements" on page 9-4

■ "Tuning SQL Statements Using SQL Tuning Advisor" on page 10-2

Monitoring User Activity

4-6 Oracle Database 2 Day + Performance Tuning Guide

Figure 4–6 Viewing Session Details

In this example, because the session is consuming 100 percent of database activity,
consider ending the session by clicking Kill Session, and proceeding to tune the
SQL statement that this session is running.

Monitoring Top Services
The Top Services table displays the top services waiting for the corresponding wait
event during the selected time period.

Services represent groups of applications with common attributes, service-level
thresholds, and priorities. For example, the SYS$USERS service is the default service
name used when a user session is established without explicitly identifying its service
name. The SYS$BACKGROUND service consists of all Oracle Database background
processes. If a single service is using the majority of the wait time, then you should
investigate it.

To monitor a service:
1. On the Performance page, in the Average Active Sessions chart, click a block on

the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Services from the View list.

The Top Services table appears.

Figure 4–7 Monitoring Top Services

In the example shown in Figure 4–7, the SYS$USERS service is consuming 97.32%
of database activity. This service corresponds to the SQL*Plus session for user sh
shown in Figure 4–5.

See Also:

■ Chapter 10, "Tuning SQL Statements"

Monitoring User Activity

Monitoring Real-Time Database Performance 4-7

3. Click the Service link of the most active service.

The Service page appears.

This page contains information about the modules, activity, and statistics for the
selected service.

Monitoring Top Modules
The Top Modules table displays the top modules waiting for the corresponding wait
event during the selected time period.

Modules represent the applications that set the service name as part of the workload
definition. For example, the DBMS_SCHEDULER module may assign jobs that run
within the SYS$BACKGROUND service. If a single module is using the majority of the
wait time, then it should be investigated.

To monitor a module:
1. On the Performance page, in the Average Active Sessions chart, click a block on

the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Modules from the View
list.

The Top Modules table appears.

Figure 4–8 Monitoring Top Modules

3. Click the Module link of the module that is showing the highest percentage of
activity.

The Module page appears.

This page contains information about the actions, activity, and statistics for the
selected module.

In the example shown in Figure 4–8, the SQL*Plus module is consuming over 95%
of database activity and should be investigated. As shown in Figure 4–5, the
SQL*Plus session for user sh is consuming a huge percentage of database activity.

Monitoring Top Actions
The Top Actions table displays the top actions waiting for the corresponding wait
event during the selected time period.

Actions represent the jobs that are performed by a module. For example, the
DBMS_SCHEDULER module can run the GATHER_STATS_JOB action to gather statistics
on all database objects. If a single action is using the majority of the wait time, then
you should investigate it.

Monitoring User Activity

4-8 Oracle Database 2 Day + Performance Tuning Guide

To monitor an action:
1. On the Performance page, in the Average Active Sessions chart, click a block on

the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Actions from the View list.

The Top Actions table appears.

Figure 4–9 Monitoring Top Actions

3. Click the Action link of the most active action.

The Action page appears.

This page contains statistics for the selected action.

In the example shown in Figure 4–9, the action associated with the SQL*Plus
module and SALES_INFO action is consuming 96% of the database activity. This
information is consistent with Figure 4–5, which shows that the SQL*Plus session
for user sh is consuming over 96% of database activity.

Monitoring Top Clients
The Top Clients table displays the top clients waiting for the corresponding wait event
during the selected time period. A client can be a Web browser or any end-user
process that initiates requests for an operation to be performed on the database. If a
single client is using the majority of the wait time, then you should investigate it.

To monitor a client:
1. On the Performance page, in the Average Active Sessions chart, click a block on

the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Clients from the View list.

The Top Clients table appears.

Figure 4–10 Monitoring Top Clients

3. Click the Client ID link of the most active client.

The Clients page appears.

Monitoring User Activity

Monitoring Real-Time Database Performance 4-9

This page contains statistics for the selected user process.

Monitoring Top PL/SQL
The Top PL/SQL table displays the top PL/SQL subprograms waiting for the
corresponding wait event during the selected time period. If a single PL/SQL
subprogram is using the majority of the wait time, then you should investigate it.

To monitor a PL/SQL subprogram:
1. On the Performance page, in the Average Active Sessions chart, click a block on

the chart or its corresponding wait class in the legend.

The Active Sessions Working page appears.

2. Under Detail for Selected 5 Minute Interval, select Top PL/SQL from the View list.

The Top PL/SQL table appears.

Figure 4–11 Monitoring Top PL/SQL

3. Click the PL/SQL Subprogram link of the most active subprogram.

The PL/SQL Subprogram page appears.

This page contains statistics for the selected subprogram.

In Figure 4–11, the SYSMAN.MGMT_JOB_EXEC_UPDATE subprogram is consuming
100% of database activity.

Monitoring Top Files
The Top Files table displays the average wait time for specific files during the selected
time period. This data is available from the Active Sessions Waiting: User I/O page.

To monitor a file:
1. On the Performance page, in the Average Active Sessions chart, click the User I/O

block on the chart or its corresponding wait class in the legend.

The Active Sessions Waiting: User I/O page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Files from the View list.

The Top Files table appears.

Figure 4–12 Monitoring Top Files

3. Click the Tablespace link of the file with the highest average wait time.

The View Tablespace page appears.

Monitoring Instance Activity

4-10 Oracle Database 2 Day + Performance Tuning Guide

In the example shown in Figure 4–12, the wait times are all associated with I/O for
the file in the SYSTEM tablespace.

Monitoring Top Objects
The Top Objects table displays the top database objects waiting for the corresponding
wait event during the selected time period. This data is available from the Active
Sessions Waiting: User I/O page.

To monitor an object:
1. On the Performance page, in the Average Active Sessions chart, click the User I/O

block on the chart or its corresponding wait class in the legend.

The Active Sessions Waiting: User I/O page appears.

2. Under Detail for Selected 5 Minute Interval, select Top Objects from the View list.

The Top Objects table appears.

Figure 4–13 Monitoring Top Objects

3. Click the Object Name link of the object with the highest average wait time.

The View page for the object appears.

This example in Figure 4–13 shows that all the waits are for the SYS.I_SYSAUTH1
index. Given the information in Figure 4–4 and Figure 4–5, you can conclude that
the performance problem is caused by the SELECT statement executed by user sh,
which is waiting for access to the SYS.I_SYSAUTH1 index.

Monitoring Instance Activity
In the Average Active Sessions section of the Performance page, you can use the
Throughput, I/O, Parallel Execution, and Services charts to monitor database instance
activity. As explained in "Customizing the Database Performance Page" on page 4-27,
you can also customize the Performance page so that the most useful charts are
displayed by default.

Figure 4–14 Monitoring Instance Activity

You can use the instance activity charts to perform the following tasks:

■ Monitoring Throughput

■ Monitoring I/O

Monitoring Instance Activity

Monitoring Real-Time Database Performance 4-11

■ Monitoring Parallel Execution

■ Monitoring Services

Monitoring Throughput
The Throughput charts show any contention that appears in the Average Active
Sessions chart. The charts indicate how much work the database is performing for the
user. The Throughput charts on the Performance page display:

■ Number of physical reads, redo size, logons, and transactions per second

■ Number of physical reads and redo size per transaction

Figure 4–15 Monitoring Throughput

Compare the peaks on the Throughput charts with the peaks on the Average Active
Sessions chart. If the Average Active Sessions chart displays a large number of sessions
waiting, indicating internal contention, but throughput is high, then the situation may
be acceptable. The database is probably also performing efficiently if internal
contention is low but throughput is high. However, if internal contention is high but
throughput is low, then consider tuning the database.

To monitor throughput:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click Throughput.

The Throughput charts are shown with Instance Throughput Rate set to the
default value of Per Second. You can select Per Transaction to show the
throughput rate per transaction.

In the example in shown in Figure 4–15, the number of transactions and physical
reads per second spiked at around 10:45 a.m. The number of transactions per
second has remained between 1000 and 2000 for 25 minutes. The physical reads
have remained between 500 and 1000 KB per second.

3. To view the top consumers for each type of activity, click the corresponding link in
the legend.

The Top Consumers page appears. This page shows the top sessions for the
selected activity.

Monitoring Instance Activity

4-12 Oracle Database 2 Day + Performance Tuning Guide

In this example, a SQL*Plus session created by operating system user lashdown is
responsible for the increase in database throughput.

4. Select any session and click View to obtain more information.

After you analyze the information, you can choose to end the session by clicking
Kill Session, or return to the Performance page.

Monitoring I/O
The I/O charts show I/O statistics collected from all database clients. The I/O wait
time for a database process represents the amount of time that the process could have
been doing useful work if a pending I/O had completed. Oracle Database captures the
I/O wait times for all important I/O components in a uniform fashion so that every
I/O wait by any Oracle process can be deduced from the I/O statistics.

Figure 4–16 Monitoring I/O

The Latency for Synchronous Single Block Reads chart shows the total perceived I/O
latency for a block read, which is the time difference between when an I/O is issued
and when it is processed by the database. Most systems are performing satisfactorily if

Monitoring Instance Activity

Monitoring Real-Time Database Performance 4-13

latency is fewer than 10 milliseconds. This type of I/O request is the best indicator of
I/O performance for the following reasons:

■ Write operations may exhibit good performance because of write caches in
storage.

■ Because multiblock I/O requests have varying sizes, they can take different
amounts of time.

■ The latency of asynchronous I/O requests does not represent the full I/O wait
time.

The other charts shown depend on your selection for I/O Breakdown, as described in
the following sections:

■ Monitoring I/O by Function

■ Monitoring I/O by Type

■ Monitoring I/O by Consumer Group

Monitoring I/O by Function
The I/O Function charts determine I/O usage level by application or job. The
component-level statistics give a detailed view of the I/O bandwidth usage, which
you can then use in scheduling jobs and I/O provisioning. The component-level
statistics fall in the following categories:

■ Background type

This category includes ARCH, LGWR, and DBWR.

■ Activity

This category includes XML DB, Streams AQ, Data Pump, Recovery, and RMAN.

■ I/O type

The category includes Direct Write, which is a write issued by a foreground
process that is not from the buffer cache; Direct Read, which is a physical I/O from
a datafile that bypasses the buffer cache and reads the data block directly into
process-private memory; and Buffer Cache Read.

■ Others

This category includes I/Os such as control file I/Os.

To monitor I/O by function:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click I/O.

The I/O Megabytes per Second and I/O Requests per Second charts appear.

3. For I/O Breakdown, select I/O Function.

The I/O Megabytes per Second by I/O Function and I/O Requests per Second by
I/O Function charts appear.

The example in Figure 4–16 shows that a significant amount of I/O is being
performed by the log writer. The log writer activity peaked at around 550 I/O
requests per second.

Monitoring Instance Activity

4-14 Oracle Database 2 Day + Performance Tuning Guide

4. Click the largest block of color on the chart or its corresponding function in the
legend to drill down to the function with the highest I/O rate.

The I/O Details page appears.

You can view real-time or historical data for details on I/O megabytes or I/O
requests.

Monitoring I/O by Type
The I/O Type charts enable you to monitor I/O by the types of read and write
operations. Small I/Os are requests smaller than 128 KB and are typically single
database block I/O operations. Large I/Os are requests greater than or equal to 128
KB. Large reads are generated by database operations such as table/index scans, direct
data loads, backups, restores, and archiving.

If you are optimizing for low transaction times, then monitor the rate at which I/O
requests are completed. Single-block performance is optimal when there is low I/O
latency. High latencies typically indicate that the storage system is a bottleneck.
Performance is negatively impacted by large I/O workloads.

If you are optimizing for large queries, such as in a data warehouse, then performance
is dependent on the maximum throughput your storage system can achieve rather
than the latency of the I/O requests. In this case, monitor the I/O megabytes per
second rather than the synchronous single-block read latencies.

To monitor I/O by type:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click I/O.

The I/O Megabytes per Second and I/O Requests per Second charts appear

3. For I/O Breakdown, select I/O Type.

See Also:

■ Oracle Database Concepts to learn about database background
processes such as ARCH, LGWR, and DBWR

Monitoring Instance Activity

Monitoring Real-Time Database Performance 4-15

The I/O Megabytes per Second by I/O Type and I/O Requests per Second by I/O
Type charts appear.

In this example, the number of small writes per second increased to 550. These
writes correspond to the log writer I/O requests shown in Figure 4–16.

4. Click the largest block of color on the chart or its corresponding function in the
legend to drill down to the function with the highest I/O rate.

The I/O Details page appears.

You can view real-time or historical data for details on I/O megabytes or I/O
requests.

Monitoring I/O by Consumer Group
When Oracle Database Resource Manager is enabled, the database collects I/O
statistics for all consumer groups that are part of the currently enabled resource plan.
The Consumer Group charts enable you to monitor I/O by consumer group.

A resource plan specifies how the resources are to be distributed among various users
(resource consumer groups). Resource consumer groups let you group user sessions
together by resource requirements. Note that the _ORACLE_BACKGROUND_GROUP_
consumer group contains I/O requests issued by background processes.

To monitor I/O requests by consumer group:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click I/O.

The I/O Megabytes per Second and I/O Requests per Second charts appear.

3. For I/O Breakdown, select Consumer Group.

The I/O Megabytes per Second by Consumer Group and I/O Requests per Second
by Consumer Group charts appear.

Monitoring Instance Activity

4-16 Oracle Database 2 Day + Performance Tuning Guide

Monitoring Parallel Execution
The Parallel Execution charts show system metrics related to parallel queries. A
parallel query divides the work of executing a SQL statement across multiple
processes. The charts show parallel queries that were waiting for a particular wait
event that accounted for the highest percentages of sampled session activity.

Figure 4–17 Monitoring Parallel Execution

To monitor parallel execution:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click Parallel Execution.

The Parallel Execution charts appear.

Two pairs of charts are displayed. The first pair of charts shows the number of
sessions on the y-axis, whereas the second pair shows the per second rate on the
y-axis.

In the example shown in Figure 4–17, query parallelization was active between
11:30 a.m. to 12:20 p.m.

Monitoring Services
The Services charts show services waiting for the corresponding wait event during the
time period shown. Services represent groups of applications with common attributes,
service-level thresholds, and priorities. For example, the SYS$USERS service is the
default service name used when a user session is established without explicitly
identifying its service name. Only active services are shown.

Monitoring Host Activity

Monitoring Real-Time Database Performance 4-17

Figure 4–18 Monitoring Services

To monitor services:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the instance activity chart, click Services.

The Services chart appears.

In Figure 4–18, the emdc and SYS$USERS services have the greatest number of
active sessions.

3. Click the largest block of color on the chart or its corresponding service in the
legend to drill down to the service with the highest number of active sessions.

The Service page appears, showing the Activity subpage.

You can view real-time data showing the session load for all wait classes
associated with the service.

Monitoring Host Activity
The Host chart on the Performance page displays utilization information about the
system hosting the database.

Figure 4–19 Monitoring Host Activity

Monitoring Host Activity

4-18 Oracle Database 2 Day + Performance Tuning Guide

To determine if the host system has enough resources available to run the database,
establish appropriate expectations for the amount of CPU, memory, and disk resources
that your system should be using. You can then verify that the database is not
consuming too many of these resources.

To view details about CPU, memory, and disk utilization:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Click Load Average in the legend for the Host chart.

The Host page appears, showing the Performance subpage.

Figure 4–20 Performance Summary

The Performance Summary view is shown by default. The Performance Summary
view displays metric values for CPU utilization, memory utilization, disk I/O
utilization, and the top 10 processes ordered by both CPU and memory utilization.

3. Determine whether sufficient resources are available and whether when your
system is using too many resources.

Determine the amount of CPU, memory, and disk resources the database uses in
the following scenarios:

■ When your system is idle, or when little database and nondatabase activity
exists

■ At average workloads

■ At peak workloads

Workload is an important factor when evaluating the level of resource utilization
for your system. During peak workload hours, 90 percent utilization of a resource,
such as a CPU with 10 percent idle and waiting time, can be acceptable. However,
if your system shows high utilization at normal workload, then there is no room
for additional workload.

Monitoring Host Activity

Monitoring Real-Time Database Performance 4-19

Use the procedures in the following sections to monitor the host activity for your
database:

■ Monitoring CPU Utilization

■ Monitoring Memory Utilization

■ Monitoring Disk I/O Utilization

4. Set the appropriate threshold values for the performance metrics so the system can
automatically generate alerts when these thresholds are exceeded.

For information about setting metric thresholds, see "Setting Metric Thresholds for
Performance Alerts" on page 5-1.

Monitoring CPU Utilization
To address CPU problems, first establish appropriate expectations for the amount of
CPU resources your system should be using. You can then determine whether
sufficient CPU resources are available and recognize when your system is consuming
too many resources. This section describes how to monitor CPU utilization.

To monitor CPU utilization:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the Host chart, click Load Average in the legend.

The Host page appears, showing the Performance subpage.

3. Select CPU Details from the View list.

The CPU Details view appears.

This view contains statistics about CPU utilization, I/O wait times, and load
gathered over the last hour. The top 10 processes are also listed ordered by CPU
utilization.

4. Verify the current CPU utilization using the CPU Utilization chart.

The CPU Utilization chart shows CPU utilization over the last hour. The current
value is displayed below the chart. During standard workload hours, the value
should not exceed the critical threshold.

5. Click CPU Utilization.

The CPU Utilization page appears.

This page contains CPU utilization statistics and related alerts generated over the
last 24 hours.

Monitoring Host Activity

4-20 Oracle Database 2 Day + Performance Tuning Guide

In this example, the CPU utilization crossed the critical threshold value at 9:56
p.m., so an alert for CPU utilization is generated to indicate that a CPU
performance problem may exist.

If you notice an unexpected spike in this value that is sustained through normal
workload hours, then the CPU performance problem should be investigated.

6. Verify the current CPU I/O wait time using the CPU I/O Wait chart.

The CPU I/O Wait chart shows CPU I/O wait time over the last hour. The current
value is displayed below the chart. During normal workload hours, the value of
CPU I/O wait should not exceed the warning threshold.

CPU I/O wait represents the average number of jobs waiting for I/O during an
interval.

7. Click CPU I/O Wait.

The CPU in I/O Wait page appears.

This page contains CPU I/O wait statistics and related alerts generated over the
last 24 hours.

If you notice an unexpected spike in this value that is sustained through standard
workload hours, then a CPU performance problem might exist.

8. Verify the current CPU load using the CPU Load chart.

Monitoring Host Activity

Monitoring Real-Time Database Performance 4-21

The CPU Load chart shows the CPU load over the last hour. The current value is
displayed below the chart. During standard workload hours, the value of CPU
load should not exceed the warning threshold.

CPU load represents the average number of processes waiting to be scheduled for
CPU resources in the previous minute, or the level of CPU contention time over
time.

9. Click CPU Load.

The Run Queue Length page appears.

This page contains CPU load statistics and related alerts generated over the last 24
hours.

In this example, the CPU load crossed the warning threshold, but it is still below
the critical threshold, so an alert was not generated.

If you notice an unexpected spike in this value that is sustained through normal
workload hours, then a CPU performance problem might exist.

10. Return to the CPU Details view of the Host Performance subpage and review the
Top 10 Processes table.

If a process is consuming too much of the CPU utilization percentage, then this
process should be investigated.

In this example, the database is consuming 100 percent of CPU utilization.
Therefore, the database is the likely source of a potential CPU performance
problem and should be investigated.

11. If a CPU performance problem is identified, then you can try to resolve the issue
by doing the following:

Monitoring Host Activity

4-22 Oracle Database 2 Day + Performance Tuning Guide

■ Using Oracle Database Resource Manager to reduce the impact of
peak-load-use patterns by prioritizing CPU resource allocation

■ Avoiding running too many processes that use a lot of CPU

■ Increasing hardware capacity, including changing the system architecture

Monitoring Memory Utilization
Operating system performance issues commonly involve process management,
memory management, and scheduling. This section describes how to monitor memory
utilization and identify problems such as paging and swapping.

To monitor memory utilization:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the Host chart, click Load Average in the legend.

The Host page appears, showing the Performance subpage.

3. Select Memory Details from the View list.

The Memory Details view of the Performance subpage appears.

This view contains statistics about memory utilization, page scan rates, and swap
utilization gathered over the last hour. The top 10 processes are also listed ordered
by memory utilization.

4. Verify the current memory page scan rate using the Memory Page Scan Rate chart.

The current value of the memory page scan rate is displayed below the chart. On
UNIX-based systems, this value represents the number of pages scanned per
second. On Microsoft Windows, this value represents the rate at which pages are
read from or written to disk to resolve hard page faults. This value is a primary
indicator of the kinds of faults that may be causing systemwide delays.

5. Click Memory Scan Rate.

The Memory Page Scan Rate page appears.

See Also:

■ Oracle Database Performance Tuning Guide for information about
resolving CPU issues

■ Oracle Database Administrator's Guide for information about Oracle
Database Resource Manager

Monitoring Host Activity

Monitoring Real-Time Database Performance 4-23

This page contains memory page scan rate statistics and related alerts over the last
24 hours.

In this example, an alert is not generated because a threshold is not defined.

If you notice an unexpected spike in this value that is sustained through standard
workload hours, then a memory performance problem might exist.

6. Verify the current memory utilization using the Memory Utilization chart.

The Memory Utilization chart shows how much memory is being used. The
current value of memory utilization is displayed below the chart. During standard
workload hours, the value should not exceed the warning threshold (shown in
yellow).

7. Click Memory Utilization.

The Memory Utilization page appears.

This page contains memory utilization statistics and related alerts generated over
the last 24 hours.

In this example, memory utilization is near, but does not exceed, the warning
threshold value (99 percent), so an alert is not generated.

If you notice an unexpected spike in this value that is sustained through normal
workload hours, then a memory performance problem might exist.

Monitoring Host Activity

4-24 Oracle Database 2 Day + Performance Tuning Guide

8. Verify current swap utilization using the Swap Utilization chart.

The Swap Utilization chart shows how much swap space is being used. The
current value of swap utilization is displayed below the chart. During normal
workload hours, the value should not exceed the warning threshold.

9. Click Swap Utilization.

The Swap Utilization page appears.

This page contains swap utilization statistics and related alerts generated over the
last 24 hours.

In this example, swap utilization is below the warning threshold, so an alert is not
generated.

If you notice an unexpected spike in this value that is sustained through normal
workload hours, then a memory performance problem might exist.

10. On the Memory Details view of the Host Performance subpage, verify the top
processes in the Top 10 Processes table.

If a process is taking up too much memory, then this process should be
investigated.

In this example, the database is consuming 82.86 percent of the CPU. The resident
size is 259 MB, while the virtual size is 391 MB. Therefore, the database is the
likely source of a potential memory problem and should be investigated.

11. If a memory performance problem is identified, you can attempt to resolve the
issue by doing the following:

■ Using Automatic Memory Management to automatically manage and
distribute memory between the System Global Area (SGA) and the aggregate
program global area (PGA aggregate)

Monitoring Host Activity

Monitoring Real-Time Database Performance 4-25

■ Using the Memory Advisor to set SGA and PGA memory target values

■ Using Automatic PGA Management to manage SQL memory execution

■ Avoiding running too many processes that use a lot of memory

■ Reducing paging or swapping

■ Reducing the number of open cursors and hard parsing with cursor sharing

Monitoring Disk I/O Utilization
Because the database resides on a set of disks, the performance of the I/O subsystem is
very important to the performance of the database. Important disk statistics include
the disk I/Os per second and the length of the service times. These statistics show if
the disk is performing optimally or if the disk is being overworked. This section
describes how to monitor disk I/O utilization.

To monitor disk I/O utilization:
1. From the Database Home page, click Performance.

The Performance page appears.

2. In the Host chart, click Load Average in the legend.

The Host page appears, showing the Performance subpage.

3. Select Disk Details from the View list.

The Disk Details view appears.

This view contains disk I/O utilization and service time statistics gathered over
the last hour, and the top disk devices ordered by busy percentage.

4. Verify the current disk I/O utilization using the Disk I/O Utilization chart.

See Also:

■ Oracle Database Administrator's Guide for information about using
Automatic Memory Management

■ Oracle Database 2 Day DBA for information about using the
Memory Advisor

■ Oracle Database Performance Tuning Guide for information about
resolving memory issues

Monitoring Host Activity

4-26 Oracle Database 2 Day + Performance Tuning Guide

The Disk I/O Utilization chart shows how many disk I/Os are being performed
per second. The current value for total I/Os per second is displayed below the
chart.

5. Click Total I/Os per Second.

The Total Disk I/O Per Second page appears.

This page contains disk utilization statistics and related alerts generated over the
last 24 hours.

In this example, an alert is not generated because a threshold is not defined.

If you notice an unexpected spike in this value that is sustained through standard
workload hours, then a disk I/O performance problem might exist and should be
investigated.

6. Verify the current I/O service time using the Longest I/O Service Time chart.

The Longest I/O Service Time chart shows the longest service time for disk I/Os
in milliseconds. The current value for longest I/O service time is displayed below
the chart.

7. Click Longest I/O Service Time.

The Longest Service Time page appears.

This page contains I/O service time statistics and related alerts generated over the
last 24 hours.

In this example, an alert is not generated because a threshold is not defined.

Customizing the Database Performance Page

Monitoring Real-Time Database Performance 4-27

If you notice an unexpected spike in this value that is sustained through normal
workload hours, then a disk I/O performance problem might exist and should be
investigated.

8. On the Disk Details page, verify the disk devices in the Top Disk Devices table.

If a particular disk is busy a high percentage of the time, then this disk should be
investigated.

In this example, the drive that hosts Oracle Database (drive C) is only busy about
2.82 percent of the time, and there does not appear to be a disk performance
problem.

9. If a disk I/O performance problem is identified, you can attempt to resolve the
problem by doing the following:

■ Using Automatic Storage Management (ASM) to manage database storage

■ Striping everything across every disk to distribute I/O

■ Moving files such as archived redo logs and online redo logs to separate disks

■ Storing required data in memory to reduce the number of physical I/Os

Customizing the Database Performance Page
You can customize the Performance page so that it specifically addresses your
requirements. As explained in "Monitoring Instance Activity" on page 4-10, you can
specify which charts you want to appear by default in the Performance page, and how
you want them to appear. You can also decide whether to include baseline values in
the Throughput and Services charts.

Enterprise Manager stores persistent customization information for each user in the
repository. Enterprise Manager retrieves the customization data when you access the
Performance page and caches it for the remainder of the browser session until you
change the settings.

To customize the Performance page:
1. From the Database Home page, click Performance.

The Performance page appears.

2. On the Performance page, click Settings.

The Performance Page Settings page appears.

See Also:

■ Oracle Database Performance Tuning Guide for information about
resolving disk I/O issues

Customizing the Database Performance Page

4-28 Oracle Database 2 Day + Performance Tuning Guide

3. In the Detailed Chart Settings section, choose the defaults for display of the
instance activity charts. Complete the following steps:

a. In Default View, select the instance activity chart to appear by default in the
Average Active Session section.

See "Monitoring Instance Activity" on page 4-10 for a description of the
Throughput, I/O, Parallel Execution, and Services charts.

b. In Throughput Chart Settings, select Per Second or Per Transaction as the
default instance throughput rate to be displayed in the Throughput chart.

See "Monitoring Throughput" on page 4-11 to learn how to use the
Throughput charts.

c. In I/O Chart Settings, select the default I/O breakdown to be displayed in the
I/O chart.

See "Monitoring I/O" on page 4-12 to learn how to use the I/O charts.

4. In the Baseline Display section, choose how Automatic Workload Repository
(AWR) baselines will be displayed in the performance charts. Do one of the
following:

■ Select Do not show the baseline values to prevent baselines from appearing.

■ Select Show the 99th percentile line using the system moving window
baseline to specify a percentile to display for the Throughput and Services
charts.

Note that the 99th percentile is a very high significance level.

■ Select Show the 99th percentile line using a static baseline with computed
statistics and then select a baseline name from the Baseline Name list.

Note that you can select only baselines that have undergone schedule statistics
computation, as described in "Computing Threshold Statistics for Baselines"
on page 8-6.

5. Click OK.

The Performance page reappears.

The charts are now displayed according to your customization settings.

Monitoring Performance Alerts 5-1

5
Monitoring Performance Alerts

Oracle Database includes a built-in alerts infrastructure to notify you of impending
problems with the database. By default, Oracle Database enables the following alerts:

■ Tablespace Usage

■ Snapshot Too Old

■ Recovery Area Low on Free Space

■ Resumable Session Suspended

For information about alerts and how to manage them, see Oracle Database 2 Day DBA.

In addition to these default alerts, you can use performance alerts to detect any
unusual changes in database performance.

This chapter contains the following sections:

■ Setting Metric Thresholds for Performance Alerts

■ Responding to Alerts

■ Clearing Alerts

Setting Metric Thresholds for Performance Alerts
A metric is defined as the rate of change in some cumulative statistic. This rate can be
measured against a variety of units, including time, transactions, or database calls. For
example, the number database calls per second is a metric.

Performance alerts are based on metrics that are performance-related. These alerts are
either environment-dependent or application-dependent.

Environment-dependent performance alerts may not be relevant on all systems. For
example, the AVERAGE_FILE_READ_TIME metric generates an alert when the average
time to read a file exceeds the metric threshold. This alert may be useful on a system
with only one disk. On a system with multiple disks, however, the alert may not be
relevant because I/O processing is spread across the entire subsystem.

Application-dependent performance alerts are typically relevant on all systems. For
example, the BLOCKED_USERS metric generates a performance alert when the number
of users blocked by a particular session exceeds the metric threshold. This alert is
relevant regardless of how the environment is configured.

To obtain the most relevant information from performance alerts, set the threshold
values of performance metrics to values that represent desirable boundaries for your
system. You can then fine-tune these values over time until an equilibrium is reached.

Responding to Alerts

5-2 Oracle Database 2 Day + Performance Tuning Guide

To set thresholds for performance metrics:
1. On the Database Home page, under Related Links, click Metric and Policy

Settings.

The Metric and Policy Settings page appears, showing the Metric Thresholds
subpage.

2. For each performance metric relevant for your system, click the Edit icon.

The Edit Advanced Settings page appears.

3. Follow the steps of the wizard to set the threshold value.

Responding to Alerts
When an alert is generated by Oracle Database, it appears under Alerts on the
Database Home page.

Oracle Enterprise Manager enables you to configure alerts to be sent by means of
e-mail, pager, or cellular phone text messaging.

To respond to an alert:
1. On the Database Home page, under Alerts, locate the alert that you want to

investigate and click the Message link.

A page that contains further information about the alert appears.

2. Do one of the following:

■ Follow the recommendations.

■ Run Automatic Database Diagnostic Monitor (ADDM) or another advisor to
get more detailed diagnostics of the system or object behavior.

Clearing Alerts
Most alerts, such as the CPU Utilization alert, are cleared automatically when the
cause of the problem disappears. However, other alerts, such as the Generic Alert Log
Error alert, must be acknowledged.

After taking the necessary corrective measures, you can acknowledge an alert by
clearing or purging it. Clearing an alert sends the alert to the Alert History, which can

See Also:

■ "Setting Metric Thresholds for Baselines" on page 8-7

■ Oracle Database 2 Day DBA to learn how to set metric thresholds

See Also:

■ Oracle Database 2 Day DBA for information about how to configure
the alert notification method

Clearing Alerts

Monitoring Performance Alerts 5-3

be viewed from the Database Home page under Related Links. Purging an alert
removes it from the Alert History.

To clear alerts:
1. On the Database Home page, under Diagnostic Summary, click the Alert Log link.

The Alert Log Errors page appears.

2. Do one of the following:

■ Select the alerts that you want to clear and click Clear.

■ To clear all open alerts, click Clear Every Open Alert.

3. Do one of the following:

■ Select the alerts that you want to purge and click Purge.

■ To purge all alerts, click Purge Every Alert.

See Also:

■ Oracle Database 2 Day DBA to learn how to manage alerts

Clearing Alerts

5-4 Oracle Database 2 Day + Performance Tuning Guide

Part III
Reactive Database Tuning

Part III describes how to tune Oracle Database in response to a reported problem, such
as when the user reports a performance problem with the database that needs to be
tuned immediately.

This part contains the following chapters:

■ Chapter 6, "Manual Database Performance Monitoring"

■ Chapter 7, "Resolving Transient Performance Problems"

■ Chapter 8, "Resolving Performance Degradation Over Time"

Manual Database Performance Monitoring 6-1

6
Manual Database Performance Monitoring

You can run the Automatic Database Diagnostic Monitor (ADDM) manually to
monitor current and historical database performance. Typically, you use the automatic
diagnostic feature of ADDM to identify performance problems with the database. As
described in Chapter 3, "Automatic Database Performance Monitoring", ADDM runs
once every hour by default. It is possible to configure ADDM to run more or less
frequently. However, in some cases you may want to run ADDM manually.

One reason for running ADDM manually is to analyze a time period longer than one
ADDM analysis period. For example, you may want to analyze database performance
in a full workday by analyzing 8 consecutive hours of activity. One technique is to
analyze each of the individual ADDM analyses within this 8-hour period. However,
this approach may become complicated if performance problems exist for only part of
the 8-hour period, because they may appear in only some of the individual ADDM
analyses. Alternatively, you can run ADDM manually with a pair of Automatic
Workload Repository (AWR) snapshots that encompass the 8-hour period. In this case,
ADDM will identify the most critical performance problems in the entire time period.

This chapter contains the following sections:

■ Manually Running ADDM to Analyze Current Database Performance

■ Manually Running ADDM to Analyze Historical Database Performance

■ Accessing Previous ADDM Results

Manually Running ADDM to Analyze Current Database Performance
By default, ADDM runs every hour to analyze snapshots taken by AWR during this
period. In some cases you may notice performance degradation that did not exist in
the previous ADDM analysis period, or a sudden spike in database activity on the
Performance page, as described in Chapter 4, "Monitoring Real-Time Database
Performance". If the next ADDM analysis is not scheduled to run for 30 minutes, then
you may want to run ADDM manually to identify and resolve the performance
problem.

When you run ADDM manually, a manual AWR snapshot is created automatically.
This manual run may affect the ADDM run cycle. For example, if you scheduled
ADDM to run hourly at the start of each hour and the last ADDM run was at 8:00 p.m.,
running ADDM manually at 8:30 p.m. will cause the next scheduled ADDM run to
start at 9:30 p.m., not 9:00 p.m. All subsequent ADDM runs will continue on the new
run cycle, occurring hourly at the half-hour instead of the start of each hour.

To analyze current database performance by manually running ADDM:
1. On the Database Home page, under Related Links, click Advisor Central.

Manually Running ADDM to Analyze Current Database Performance

6-2 Oracle Database 2 Day + Performance Tuning Guide

The Advisor Central page appears.

2. Under Advisors, click ADDM.

The Run ADDM page appears.

In this example, CPU usage spiked in the last 10 minutes.

3. Select Run ADDM to analyze current instance performance and click OK.

The Confirmation page appears.

4. Click Yes.

The Processing: Run ADDM Now page appears while the database takes a new
AWR snapshot.

An ADDM run occurs for the time period between the new and the previous
snapshot. After ADDM completes the analysis, the Automatic Database Diagnostic
Monitor (ADDM) page appears with the results.

5. Click View Report.

The View Report page appears.

6. Optionally, click Save to File to save the results of the ADDM task in a report for
later access.

See Also:

■ "Reviewing the Automatic Database Diagnostic Monitor Analysis"
on page 3-7

Manually Running ADDM to Analyze Historical Database Performance

Manual Database Performance Monitoring 6-3

Manually Running ADDM to Analyze Historical Database Performance
You can run ADDM manually to analyze historical database performance by selecting
a pair or range of AWR snapshots as the analysis period. This technique is useful when
you have identified a time period in the past when database performance was poor.

In the Performance page, you can monitor historical performance by selecting
Historical from the View Data list. In Historical view, you can monitor database
performance in the past, up to the duration defined by the AWR retention period. If
you notice performance degradation, then you can drill down to appropriate pages
from the Performance page to identify historical performance problems with the
database, as described in Chapter 4, "Monitoring Real-Time Database Performance". If
you identify a problem, then you can run ADDM manually to analyze a particular
time period.

To analyze historical database performance by manually running ADDM:
1. On the Database Home page, under Related Links, click Advisor Central.

The Advisor Central page appears.

2. Under Advisors, click ADDM.

The Run ADDM page appears.

3. Select Run ADDM to analyze past instance performance.

4. Specify a time period for analysis by selecting a pair of AWR snapshots. Complete
the following steps:

a. Select Period Start Time.

b. Below the chart for the starting snapshot, click the snapshot you want to use
for the start time.

A play icon (displayed as an arrow) appears over the snapshot icon.

In this example, database activity peaked from 10 p.m. to 11 p.m., so the
snapshot taken at 10:00 p.m. is selected for the start time.

c. Select Period End Time.

d. Below the chart for the ending snapshot, click the snapshot you want to use
for the end time.

A stop icon (displayed as a square) appears over the snapshot icon.

In this example, the snapshot taken at 10:00 p.m. is selected.

5. Click OK.

Accessing Previous ADDM Results

6-4 Oracle Database 2 Day + Performance Tuning Guide

After ADDM completes the analysis, the Automatic Database Diagnostic Monitor
(ADDM) page appears with the results of the ADDM run.

Figure 6–1 Analyzing Historical Database Performance

6. Click View Report.

The View Report page appears.

7. Optionally, click Save to File.

Accessing Previous ADDM Results
If you ran ADDM manually to analyze current or historical database performance, the
results are displayed on the Automatic Database Diagnostic Monitor (ADDM) page
after the ADDM run has completed.

You can access the ADDM results at a later time, or access the ADDM results from
previous executions.

To access the ADDM results:
1. On the Database Home page, under Related Links, click Advisor Central.

The Advisor Central page appears.

2. Complete the following steps:

a. Under Advisor Tasks, select ADDM from the Advisory Type list.

b. Select the appropriate search criteria.

For example, you can select All in the Advisor Runs list to view all ADDM
tasks.

c. Click Go.

See Also:

■ "Reviewing the Automatic Database Diagnostic Monitor Analysis"
on page 3-7

Accessing Previous ADDM Results

Manual Database Performance Monitoring 6-5

The ADDM tasks are displayed under Results.

3. To view an ADDM result, select the desired ADDM task and click View Result.

The results from the selected ADDM task are shown in the Automatic Database
Diagnostic Monitor (ADDM) page.

See Also:

■ "Reviewing the Automatic Database Diagnostic Monitor Analysis"
on page 3-7

Accessing Previous ADDM Results

6-6 Oracle Database 2 Day + Performance Tuning Guide

Resolving Transient Performance Problems 7-1

7
Resolving Transient Performance Problems

Transient performance problems are short-lived and do not appear in the Automatic
Database Diagnostic Monitor (ADDM) analysis. ADDM tries to report the most
significant performance problems during an analysis period in terms of their effect on
DB time. If a problem lasts for a brief time, then its severity might be averaged out or
minimized by other performance problems in the entire analysis period. Therefore, the
problem may not appear in the ADDM findings. Whether or not a performance
problem is captured by ADDM depends on its duration compared to the interval
between the Automatic Workload Repository (AWR) snapshots.

If a performance problem lasts for a significant portion of the time between snapshots,
then it will be captured by ADDM. For example, if the snapshot interval is one hour, a
performance problem that lasts 30 minutes should not be considered a transient
performance problem because its duration represents a significant portion of the
snapshot interval and will likely be captured by ADDM.

On the other hand, a performance problem that lasts 2 minutes could be a transient
performance problem because its duration represents a small portion of the snapshot
interval and will likely not show up in the ADDM findings. For example, if the system
was slow between 10:00 p.m. and 10:10 p.m., but the ADDM analysis for the time
period between 10:00 p.m. and 11:00 p.m. does not show a performance problem, a
transient performance problem may have occurred for only a few minutes of the
10-minute interval reported by the user.

This chapter contains the following sections:

■ Overview of Active Session History

■ Running Active Session History Reports

■ Active Session History Reports

Overview of Active Session History
To capture a detailed history of database activity, Oracle Database samples active
sessions each second with the Active Session History (ASH) sampler. The Automatic
Workload Repository (AWR) snapshot processing collects the sampled data into
memory and writes it to persistent storage. ASH is an integral part of the Oracle
Database self-management framework and is extremely useful for diagnosing
performance problems.

Unlike instance-level statistics gathered by AWR, sampled data is gathered at the
session level by ASH. By capturing statistics for only active sessions, a manageable set
of data is represented. The size of this data is directly related to the work being
performed, rather than to the entire database instance.

Running Active Session History Reports

7-2 Oracle Database 2 Day + Performance Tuning Guide

Sampled data captured by ASH can be aggregated based on the various dimensions
that it captures, including the following:

■ SQL identifier of a SQL statement

■ Object number, file number, and block number

■ Wait event identifier and parameters

■ Session identifier and session serial number

■ Module and action name

■ Client identifier of the session

■ Service hash identifier

You can run ASH reports to analyze transient performance problems with the database
that only occur during specific times. This technique is especially useful when you are
trying to do either of the following:

■ Resolve transient performance problems that may last for only a short period of
time, such as why a particular job or session is not responding when the rest of the
instance is performing as usual

■ Perform scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL identifier

Running Active Session History Reports
This section describes how to generate ASH reports using Oracle Enterprise Manager
(Enterprise Manager).

To run ASH reports:
1. On the Performance page, under Average Active Sessions, click Run ASH Report.

The Run ASH Report page appears.

2. Enter the date and time for the start and end of the time period when the transient
performance problem occurred.

In this example, database activity increased between 1:45 p.m. and 2:00 p.m., so an
ASH report needs to be created for that time period.

3. Click Generate Report.

The Processing: View Report page appears while the report is being generated.

After the report is generated, the ASH report appears under Report Results on the
Run ASH Report page.

See Also:

■ "Active Session History Statistics" on page 2-4

Active Session History Reports

Resolving Transient Performance Problems 7-3

4. Optionally, click Save to File to save the report in HTML for future analysis.

Active Session History Reports
You can use an ASH report to identify the source of transient performance problems.
The report is divided into titled sections. The following sections of the ASH report are
a useful place to begin the investigation:

■ Top Events

■ Load Profile

■ Top SQL

■ Top Sessions

■ Top DB Objects

■ Top DB Files

■ Activity Over Time

Top Events
The Top Events section of the report describes the top wait events of the sampled
session activity categorized by user, background, and priority. Use this information to
identify the wait events that may be the cause of the transient performance problem.

The Top Events section of the report contains the following subsections:

■ Top User Events

See Also:

■ Oracle Database Performance Tuning Guide for more detailed
information about the ASH report

Active Session History Reports

7-4 Oracle Database 2 Day + Performance Tuning Guide

■ Top Background Events

Top User Events
The Top User Events subsection of the report lists the top wait events from user
processes that accounted for the highest percentages of sampled session activity.

The example in Figure 7–1 shows that 84 percent of database activity is consumed by
the CPU + Wait for CPU event. In this example, the Load Profile section should be
examined next to determine the type of activity that is causing this wait event.

Figure 7–1 Top User Events

Top Background Events
The Top Background Events subsection of the report lists the top wait events from the
background events that accounted for the highest percentages of sampled session
activity.

The example in Figure 7–2 shows that 17.65 percent of sampled session activity is
consumed by the CPU + Wait for CPU event.

Figure 7–2 Top Background Events

Load Profile
The Load Profile section of the report describes the load analyzed in the sampled
session activity. Use the information in this section to identify the service, client, or
SQL command type that may be the cause of the transient performance problem. The
Top Service/Module subsection lists the services and modules that accounted for the
highest percentages of sampled session activity.

The example in Figure 7–3 shows that 81 percent of database activity is consumed by
the SYS$USERS service running the SQL*Plus module. In this example, it appears that
the user is running a high-load SQL statement that is causing the performance
problem indicated in Figure 7–1. The Top SQL section of the report should be analyzed
next to determine whether a particular type of SQL statement makes up the load.

Active Session History Reports

Resolving Transient Performance Problems 7-5

Figure 7–3 Top Service/Module

Top SQL
The Top SQL section of the report describes the top SQL statements of the sampled
session activity. Use this information to identify high-load SQL statements that may be
the cause of the transient performance problem. One useful subsection is Top SQL
with Top Events, which lists the SQL statements that accounted for the highest
percentages of sampled session activity. The Sampled # of Executions column shows
how many distinct executions of a particular SQL statement were sampled. To view
the text of the SQL statements, click the SQL ID link.

The example in Figure 7–4 shows that 75 percent of database activity is consumed by a
particular SELECT statement. This statement was executed in the SQL*Plus module
shown in Figure 7–3. It appears that this high-load SQL statement is causing the
performance problem. The Top Sessions section should be analyzed to identify the
session running this SQL statement.

Figure 7–4 Top SQL with Top Events

Top Sessions
The Top Sessions section lists the sessions that were waiting for the wait event that
accounted for the highest percentages of sampled session activity. Use this information
to identify the sessions that accounted for the highest percentages of sampled session
activity, which may be the cause of the performance problem.

The example in Figure 7–5 shows that 81 percent of database activity is used by the
user SH with the session ID of 147. Thus, it appears that this user was running the
high-load SQL statement identified in Figure 7–4. You should investigate this session
to determine whether it is performing a legitimate operation and tune the SQL
statement if possible. If tuning the SQL is not possible and the session is causing an
unacceptable performance impact on the system, consider terminating the session.

See Also:

■ "Monitoring Top Services" on page 4-6

■ "Monitoring Top Modules" on page 4-7

See Also:

■ "Monitoring Top SQL" on page 4-4

Active Session History Reports

7-6 Oracle Database 2 Day + Performance Tuning Guide

Figure 7–5 Top Sessions

Top DB Objects
The Top DB Objects subsection lists the database objects (such as tables and indexes)
that accounted for the highest percentages of sampled session activity.

The example in Figure 7–6 shows that the objects accounting for the most session
activity are in the SYSTEM and SYSAUX tablespaces. In each row of the table, the event
is db file sequential read, which signifies that a user process is reading a
buffer into the system global area (SGA) buffer cache and is waiting for a physical I/O
call to return.

Figure 7–6 Top DB Objects

Top DB Files
The Top DB Files subsection lists the database files that accounted for the highest
percentages of sampled session activity.

The example in Figure 7–7 shows that most of the session activity involves the datafile
in the SYSTEM tablespace. This information is consistent with Figure 7–6, which shows
that the objects accounting for the most session activity are located in the SYSTEM and
SYSAUX tablespaces.

Figure 7–7 Top DB Files

See Also:

■ "Monitoring Top Sessions" on page 4-5

■ Chapter 10, "Tuning SQL Statements"

Active Session History Reports

Resolving Transient Performance Problems 7-7

Activity Over Time
The Activity Over Time section of the ASH report is particularly useful for longer time
periods because it provides in-depth details about activities and workload profiles
during the analysis period. The Activity Over Time section is divided into multiple
time slots.

Figure 7–8 Activity Over Time

Each of the time slots contains information regarding that particular time slot, as
described in Table 7–1.

All inner slots are 2 minutes each and can be compared to each other. The first and last
slots, which are also called the outer slots, are odd-sized because they are the only slots
that do not have a fixed slot time.

When comparing the inner slots, perform a skew analysis by identifying spikes in the
Event Count and Slot Count columns. A spike in the Event Count column indicates an
increase in the number of sampled sessions waiting for a particular event. A spike in
the Slot Count column indicates an increase in active sessions, because ASH data is
sampled from active sessions only and a relative increase in database workload.
Typically, when the number of active session samples and the number of sessions

Table 7–1 Activity Over Time

Column Description

Slot Time (Duration) Duration of the slot

Slot Count Number of sampled sessions in the slot

Event Top three wait events in the slot

Event Count Number of ASH samples waiting for the wait event

% Event Percentage of ASH samples waiting for wait events in the entire
analysis period

Active Session History Reports

7-8 Oracle Database 2 Day + Performance Tuning Guide

associated with a wait event increase, the slot may be the cause of the transient
performance problem.

The example in Figure 7–8 indicates that the number of sampled sessions rose sharply
in the first inner slot and fell sharply in the last inner slot. The slot count and event
count peaked in the 13:54 p.m. time slot.

Resolving Performance Degradation Over Time 8-1

8
Resolving Performance Degradation Over

Time

Performance degradation of the database over time happens when your database was
performing optimally in the past, such as 6 months ago, but has gradually degraded to
a point where it becomes noticeable to the users. The Automatic Workload Repository
(AWR) Compare Periods report enables you to compare database performance
between two periods of time.

While an AWR report shows AWR data between two snapshots (or two points in
time), the AWR Compare Periods report shows the difference between two periods (or
two AWR reports, which equates to four snapshots). Using the AWR Compare Periods
report helps you to identify detailed performance attributes and configuration settings
that differ between two time periods. The two time periods selected for the AWR
Compare Periods report can be of different durations. The report normalizes the
statistics by the amount of time spent on the database for each time period and
presents statistical data ordered by the largest difference between the periods.

For example, a batch workload that historically completed in the maintenance window
between 10:00 p.m. and midnight is currently showing poor performance and
completing at 2 a.m. You can generate an AWR Compare Periods report from 10:00
p.m. to midnight on a day when performance was good and from 10:00 a.m. to 2 a.m.
on a day when performance was poor. The comparison of these reports should identify
configuration settings, workload profile, and statistics that were different in these two
time periods. Based on the differences identified, you can more easily diagnose the
cause of the performance degradation.

This chapter contains the following sections:

■ Managing Baselines

■ Running the AWR Compare Periods Reports

■ Using the AWR Compare Periods Reports

Managing Baselines
Baselines are an effective way to diagnose performance problems. AWR supports the
capture of baseline data by enabling you to specify and preserve a pair or a range of
snapshots as a baseline. The snapshots contained in a baseline are excluded from the
automatic AWR purging process and are retained indefinitely.

See Also:

■ "Gathering Database Statistics Using the Automatic Workload
Repository" on page 2-1

Managing Baselines

8-2 Oracle Database 2 Day + Performance Tuning Guide

A moving window baseline corresponds to all AWR data that exists within the AWR
retention period. Oracle Database automatically maintains a system-defined moving
window baseline. The default size of the window is the current AWR retention period,
which by default is 8 days.

This section contains the following topics:

■ Creating a Baseline

■ Deleting a Baseline

■ Computing Threshold Statistics for Baselines

■ Setting Metric Thresholds for Baselines

Creating a Baseline
Before creating a baseline, carefully consider the time period you choose as a baseline
because it should represent the database operating at an optimal level. In the future,
you can compare these baselines with other baselines or snapshots captured during
periods of poor performance to analyze performance degradation over time.

You can create the following types of baseline:

■ Creating a Single Baseline

■ Creating a Repeating Baseline

Creating a Single Baseline
A single baseline is captured at a single, fixed time interval. For example, a single
baseline may be captured on March 5, 2007 from 5:00 p.m. to 8:00 p.m.

You can choose a start time and an end time that are in the future to create a baseline
that captures future database activity. If both the start time and the end time are in the
future, a baseline template with the same name as the baseline will also be created. A
baseline template is a specification that enables Oracle Database to automatically
generate a baseline for a future time period.

To create a single baseline:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click AWR Baselines.

The AWR Baselines page appears with a list of existing baselines displayed.

3. Click Create.

The Create Baseline: Baseline Interval Type page appears.

4. Select Single.

Managing Baselines

Resolving Performance Degradation Over Time 8-3

5. Click Continue.

The Create Baseline: Single Baseline page appears.

6. In the Baseline Name field, enter a name for the baseline.

7. Under Baseline Interval, select whether to use a snapshot range or a time range for
the baseline. Do one of the following:

■ To use a snapshot range, select Snapshot Range. Complete the following
steps:

– Optionally, to view older snapshots that are not displayed below the
Active Sessions chart, expand Change Chart Time Period. Enter the
desired start date in the Chart Start Date field and the desired end date in
the Chart End Date field, and click Go.

– Under Select Time Period, select a start time for the baseline by selecting
Period Start Time and the snapshot icon below the Active Sessions chart
that corresponds to the desired start time.

– Select an end time for the baseline by selecting Period End Time and the
snapshot icon below the Active Sessions chart that corresponds to the
desired end time.

In this example, a snapshot range on March 5, 2007 from 5:00 p.m. to 8:00 p.m.
is selected.

Managing Baselines

8-4 Oracle Database 2 Day + Performance Tuning Guide

■ To use a time range, select Time Range. Complete the following steps:

– In the Start Time fields, select a start time for the baseline.

– In the End Time fields, select an end time for the baseline.

In this example, a time range from 5:00 p.m. to 8:00 p.m. on March 5, 2007 is
selected.

8. Click Finish.

The AWR Baselines page reappears with the newly created baseline displayed.

Creating a Repeating Baseline
A repeating baseline is a baseline that repeats during a time interval over a specific
period. For example, a repeating baseline may repeat every Monday from 5:00 p.m. to
8:00 p.m. for the year 2007.

To create a repeating baseline:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click AWR Baselines.

The AWR Baselines page appears with a list of existing baselines displayed.

3. Click Create.

The Create Baseline: Baseline Interval Type page appears.

4. Select Repeating and then click Continue.

The Create Baseline: Repeating Baseline Template page appears.

5. In the Baseline Name Prefix field, enter a name prefix for the baseline.

Managing Baselines

Resolving Performance Degradation Over Time 8-5

6. Under Baseline Time Period, specify the time of the day that you want the baseline
to begin collecting AWR data and the duration of the baseline collection.

7. Under Frequency, do one of the following:

■ Select Daily if you want the baseline to repeat on a daily basis.

■ Select Weekly if you want the baseline to repeat on a weekly basis and select
the day of the week on which the baseline will repeat.

8. Under Interval of Baseline Creation, complete the following steps:

a. In the Start Time fields, select a date and time in the future when the data
collection should begin.

b. In the End Time fields, select a date and time in the future when the data
collection should end.

9. Under Purge Policy, enter the number of days to retain baselines that have been
captured.

10. Click Finish.

A baseline template with the same name as the baseline name prefix will also be
created. A baseline template is a specification that enables Oracle Database to
automatically generate a baseline for a future time period.

In this example, a repeating baseline that repeats weekly on Mondays from 5:00
p.m. to 8:00 p.m. for the year 2007 will be created.

Deleting a Baseline
To conserve storage space, you may want to periodically delete unused baselines
stored in the database.

To delete a baseline:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click AWR Baselines.

The AWR Baselines page appears with a list of existing baselines displayed.

3. Select a baseline and click Delete.

The Confirmation page appears.

Managing Baselines

8-6 Oracle Database 2 Day + Performance Tuning Guide

4. Select whether to purge the underlying data associated with the baseline.

The underlying data includes the individual snapshots preserved in the baseline
and any statistics that are computed for the baseline. Do one of the following:

■ To delete the underlying data, select Purge the underlying data associated
with the baseline.

■ To preserve the underlying data, select Do not purge the underlying data
associated with the baseline.

5. Click Yes.

The AWR Baselines page reappears. A message informs you that the baseline was
deleted successfully.

Computing Threshold Statistics for Baselines
Computing threshold statistics for baselines enables you to graphically display the
computed statistics in the charts on the Performance page.

To compute threshold statistics for baselines:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click AWR Baselines.

The AWR Baselines page appears with a list of existing baselines displayed.

3. Select the baseline for which you want to compute statistics.

Select a baseline that does not already have computed statistics. These baselines
are identified by No in the Statistics Computed column.

4. From the Actions list, select Schedule Statistics Computation, and then click Go.

The Compute Threshold Statistics page appears.

5. In the Name field, enter a name for the task.

Alternatively, you can choose to use the system-generated name.

Managing Baselines

Resolving Performance Degradation Over Time 8-7

6. In the Description field, enter a description for the task.

Alternatively, you can choose to use the system-generated description.

7. Under Start, do one of the following:

■ Select Immediately to run the task immediately after it has been submitted.

■ Select Later to run the task at a later time as specified using the Date and Time
fields.

8. Click Submit.

The AWR Baselines page appears. A message informs you that statistics
computation has been scheduled for the selected baseline.

Setting Metric Thresholds for Baselines
As explained in "Setting Metric Thresholds for Performance Alerts" on page 5-1, a
metric is the rate of change in a cumulative statistic. Alerts notify you when particular
metric thresholds are crossed. When the metric thresholds are crossed, the system is in
an undesirable state. You can edit the threshold settings for baseline metrics.

You can create the following types of baseline:

■ Setting Metric Thresholds for the Default Moving Baseline

■ Setting Metric Thresholds for Selected Baselines

Setting Metric Thresholds for the Default Moving Baseline
This section describes the easiest technique for setting the metric thresholds for the
default moving baseline. You can choose a group of basic metric threshold settings
based on common database workload profiles: OLTP, data warehousing, and OLTP
with nighttime batch jobs. After choosing a workload profile, you can expand or
change the threshold values as needed.

To set metric thresholds for the default moving baseline:
1. On the Database Home page, under Related Links, click Baseline Metric

Thresholds.

The Threshold Configuration tab of the Baseline Metric Thresholds page appears.

2. Click Quick Configuration.

The Quick Configuration: Baseline Metric Thresholds page appears.

3. In Workload Profile, select one of the following options, depending on how you
are using the database:

■ Primarily OLTP (pure transaction processing 24 hours a day)

■ Primarily Data Warehousing (query and load intensive)

■ Alternating (OLTP during the daytime and batch during the nighttime)

See Also:

■ "Customizing the Database Performance Page" on page 4-27 for
information about displaying computed statistics on the
Performance page

■ Oracle Database 2 Day DBA for information about thresholds and
how to manage them

Managing Baselines

8-8 Oracle Database 2 Day + Performance Tuning Guide

In this example, select Primarily OLTP.

4. Click Continue.

The Quick Configuration: Review OLTP Threshold Settings page appears.

5. Review the metric threshold settings and click Finish.

You are returned to the Baseline Metric Thresholds page, with the Threshold
Configuration tab selected. The metric threshold settings are displayed.

Setting Metric Thresholds for Selected Baselines
This section explains how to select a baseline and edit its thresholds. You can configure
the type of threshold, for example, whether it is based on significance levels,
percentage of maximum values, or fixed values. You can also configure the threshold
levels that determine when the system generates critical alerts and warnings.

You can edit thresholds for the default moving baseline or a baseline that you created
in the AWR Baselines page. You can select a baseline in the Edit Thresholds page after
you have scheduled statistics computation from the AWR Baselines page and the
statistics have finished computing on the static baseline.

To set a metric threshold for the default moving baseline:
1. On the Database Home page, under Related Links, click Baseline Metric

Thresholds.

The Threshold Configuration tab of the Baseline Metric Thresholds page appears.

2. In the View list, select Basic Metrics.

The Baseline Metric Thresholds page appears.

3. In the Category/Name column, click the link for the metric whose threshold you
want to set or change. For example, click Number of Transactions (per second).

The Edit Thresholds: Number of Transactions (per second) appears.

Running the AWR Compare Periods Reports

Resolving Performance Degradation Over Time 8-9

The charts on this page provide thumbnail and detailed views of metric activity
for a 24-hour period. In the top thumbnail chart, click a day to view the value of
the metric plotted against a 24-hour period.

4. Under AWR Baseline, in the Name list, select either the default
SYSTEM_MOVING_WINDOW or the name of a baseline created in the AWR
Baselines page.

A baseline appears in the AWR Baseline list after you have scheduled statistics
computation from the AWR Baselines page and the statistics have finished
computing on the static baseline.

In this example, select AWR_BASELINES_2007.

The page refreshes to show the charts for the baseline that you selected.

5. In the Threshold Settings section, complete the following steps:

a. In Threshold Type, leave Significance Level selected.

b. In Critical, select Extreme.

c. In Warning, select Very High.

d. In Occurrences, leave the current value.

6. Click Apply Thresholds.

You are returned to the Baseline Metric Thresholds page. This page shows the
altered metric threshold settings.

Running the AWR Compare Periods Reports
This section describes how to run the Automatic Workload Repository (AWR)
Compare Periods reports using Oracle Enterprise Manager.

Running the AWR Compare Periods Reports

8-10 Oracle Database 2 Day + Performance Tuning Guide

You can use AWR Compare Periods reports to compare the database performance
between two time periods by:

■ Comparing a Baseline to Another Baseline or Pair of Snapshots

■ Comparing Two Pairs of Snapshots

Comparing a Baseline to Another Baseline or Pair of Snapshots
When performance degradation happens to a database over time, you should run the
AWR Compare Periods report to compare the degraded performance, captured as a
new baseline or a pair of snapshots, to an existing baseline. You will need a baseline
that represents the system operating at an optimal level. If an existing baseline is not
available, then you can compare database performance between two periods of time
by using two arbitrary pairs of snapshots, as described in "Comparing Two Pairs of
Snapshots" on page 8-12.

To compare a baseline to another baseline:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click Automatic Workload Repository.

The Automatic Workload Repository page appears.

3. Under Manage Snapshots and Baselines, click the link next to Baselines.

The AWR Baselines page appears.

4. Complete the following steps:

a. Select the baseline to use for the report.

At least one existing baseline must be available.

b. From the Actions list, select Compare Periods and click Go.

The Compare Periods: Second Period Start page appears. Under First Period, the
selected baseline is displayed.

Running the AWR Compare Periods Reports

Resolving Performance Degradation Over Time 8-11

In this example, the baseline named AWR_BASELINE_2007 is selected.

5. Compare the baseline selected in the first period to another baseline or a pair of
snapshots. Do one of the following:

■ To compare to another baseline, select Select a Baseline and the baseline you
want to use in the second period, and then click Next.

In this example, the baseline named SYSTEM_MOVING_WINDOW is selected.

The Compare Periods: Review page appears. Go to Step 7.

■ To compare to a pair of snapshots, select Select Beginning Snapshot and the
beginning snapshot to use in the second period, and then click Next.

In this example, snapshot 102, taken on March 22, 2007 at 5:00 p.m., is selected.

The Compare Periods: Second Period End appears. Proceed to the next step.

6. Select the ending snapshot for the snapshot period that will be included in the
report and click Next.

In this example, snapshot 103, taken on March 22, 2007 at 5:30 p.m., is selected.

The Compare Periods: Review page appears.

Running the AWR Compare Periods Reports

8-12 Oracle Database 2 Day + Performance Tuning Guide

7. Review the periods to be included in the report and click Finish.

The Compare Periods: Results page appears.

Data from the selected periods appears under the General subpage. You can view
data per second or per transaction by selecting an option from the View Data list.

In this example, parse time in the second period is much higher than the first.

8. Click Report to view the report.

The Processing: View Report page appears while the report is being generated.
After it completes, the report will appear. To change periods, click Change
Periods. To save the report as an HTML file, click Save to File.

Comparing Two Pairs of Snapshots
If an existing baseline is not available, then you can compare the database performance
by using two arbitrary pairs of snapshots, one pair taken when the database is

See Also:

■ "Creating a Baseline" on page 8-2

■ "Using the AWR Compare Periods Reports" on page 8-15

Running the AWR Compare Periods Reports

Resolving Performance Degradation Over Time 8-13

performing optimally, and another pair when the database is performing poorly. At
least four existing snapshots must be available.

To compare performance using two pairs of snapshots:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Statistics Management, click Automatic Workload Repository.

The Automatic Workload Repository page appears.

3. Under Manage Snapshots and Baselines, click the link next to Snapshots.

The Snapshots page appears.

4. From the Go To Time list, select the time for the starting snapshot and click Go.

This action filters the snapshots and displays only the snapshot taken at the start
of the comparison period. The time in this example is 5:00 p.m. on March 21, 2007.

5. Under Select Beginning Snapshot, select the starting point for the first snapshot
period to be included in the report.

In this example, snapshot 53, taken on Mar 21, 2007 5:00 p.m., is selected.

6. From the Actions list, select Compare Periods and click Go.

Running the AWR Compare Periods Reports

8-14 Oracle Database 2 Day + Performance Tuning Guide

The Compare Periods: First Period End page appears.

7. Select the ending point for the first snapshot period to be included in the report
and click Next.

In this example, snapshot 55, taken on Mar 21, 2007 6:00 p.m., is selected.

The Compare Periods: Second Period Start page appears.

8. Select the starting point for the second snapshot period to be included in the
report and click Next.

In this example, snapshot 104, taken on March 22, 2007 at 6:00 p.m., is selected.

The Compare Periods: Second Period End page appears.

9. Select the end point for the second period that will be included in the report and
click Next.

In this example, snapshot 106, taken on March 22, 2007 at 7:00 p.m., is selected.

The Compare Periods: Review page appears.

10. Review the selected periods that will be included in the report and click Finish.

The Compare Periods: Results page appears.

Data from the selected periods appears under the General subpage. You can view
data per second or per transaction by selecting an option from the View Data list.

Using the AWR Compare Periods Reports

Resolving Performance Degradation Over Time 8-15

In this example, the first period shows significantly more activity, especially in
session reads, than the second period.

11. To view the report, click the Report tab.

The Processing: View Report page appears while the report is being generated.
After it completes, the report will appear. To change periods, click Change
Periods. To save the report as an HTML file, click Save to File.

Using the AWR Compare Periods Reports
After an AWR Compare Periods report is generated for the time periods you want to
compare, you can use it to perform an analysis of performance degradation with
Oracle Database that may have happened over time. To learn how to generate AWR
Compare Periods reports, see "Running the AWR Compare Periods Reports" on
page 8-9.

Figure 8–1 shows an example of an AWR Compare Periods report.

Using the AWR Compare Periods Reports

8-16 Oracle Database 2 Day + Performance Tuning Guide

Figure 8–1 AWR Compare Periods Report

The AWR Compare Periods report is divided into the following sections:

■ Summary of the AWR Compare Periods Report

■ Details of the AWR Compare Periods Report

■ Supplemental Information in the AWR Compare Periods Report

Summary of the AWR Compare Periods Report
The report summary is at the beginning of the AWR Compare Periods report, and
summarizes information about the snapshot sets and loads used in the report. The
report summary contains the following sections:

■ Snapshot Sets

■ Host Configuration Comparison

■ System Configuration Comparison

■ Load Profile

■ Top Timed Events

Snapshot Sets
The Snapshot Sets section displays information about the snapshot sets used for this
report, such as instance, host, and snapshot information.

Using the AWR Compare Periods Reports

Resolving Performance Degradation Over Time 8-17

In the example shown in Figure 8–1 on page 8-16, the first snapshot period
corresponds to the time when performance was stable on March 21, 2007 from 1:59
p.m. to 4:00 p.m. The second snapshot period corresponds to the time when
performance degradation occurred on March 22, 2007 from 9:00 p.m. to 11:00 p.m.

Host Configuration Comparison
The Host Configuration Comparison section compares the host configurations used in
the two snapshot sets. For example, the report compares physical memory and
number of CPUs. Any differences in the configurations are quantified as percentages
in the %Diff column.

System Configuration Comparison
The System Configuration Comparison section compares the database configurations
used in the two snapshot sets. For example, the report compares the SGA and log
buffer size. Any differences in the configurations are quantified as percentages in the
%Diff column.

Load Profile
The Load Profile section compares the loads used in the two snapshot sets. Any
differences in the loads are quantified as percentages in the %Diff column.

Top Timed Events
The Top 5 Timed Events section displays the five timed events or operations that
consumed the highest percentage of total DB time in each of the snapshot sets.

Using the AWR Compare Periods Reports

8-18 Oracle Database 2 Day + Performance Tuning Guide

In this example, CPU time is over eight times higher in the second period than in the
first. The number of waits for the db file sequential read event in the second
period is over double the number in the first.

Details of the AWR Compare Periods Report
The details section follows the summary of the AWR Compare Periods report, and
provides statistics about the snapshot sets and loads used in the report. For example,
the section includes statistics for database time, wait events, SQL execution time, and
instance activity.

Supplemental Information in the AWR Compare Periods Report
The supplemental information is at the end of the AWR Compare Periods report, and
provides additional information about initialization parameters and SQL statements.
The init.ora Parameters section lists all the initialization parameter values for the first
snapshot set. The Complete List of SQL Text section lists each statement by SQL ID
and shows the text of the SQL statement.

Part IV
SQL Tuning

Part IV describes how to effectively tune SQL statements and contains the following
chapters:

■ Chapter 9, "Identifying High-Load SQL Statements"

■ Chapter 10, "Tuning SQL Statements"

■ Chapter 11, "Optimizing Data Access Paths"

■ Chapter 12, "Analyzing SQL Performance Impact"

Identifying High-Load SQL Statements 9-1

9
Identifying High-Load SQL Statements

High-load SQL statements may consume a disproportionate amount of system
resources. These SQL statements often cause a large impact on database performance
and must be tuned to optimize their performance and resource consumption. Even
when a database itself is properly tuned, inefficient SQL statements can significantly
degrade database performance.

Identifying high-load SQL statements is an important SQL tuning activity that you
must perform regularly. Automatic Database Diagnostic Monitor (ADDM) automates
this task by proactively identifying potential high-load SQL statements. Additionally,
you can use Oracle Enterprise Manager (Enterprise Manager) to identify high-load
SQL statements that require further investigation. After you have identified the
high-load SQL statements, you can tune them with SQL Tuning Advisor and SQL
Access Advisor.

This chapter describes how to identify high-load SQL statements and contains the
following sections:

■ Identification of High-Load SQL Statements Using ADDM Findings

■ Identifying High-Load SQL Statements Using Top SQL

Identification of High-Load SQL Statements Using ADDM Findings
By default, ADDM runs proactively once every hour. It analyzes key statistics gathered
by the Automatic Workload Repository (AWR) over the last hour to identify any
performance problems, including high-load SQL statements. When the system finds
performance problems, it displays them as ADDM findings in the Automatic Database
Diagnostic Monitor (ADDM) page.

ADDM provides recommendations with each ADDM finding. When a high-load SQL
statement is identified, ADDM gives appropriate recommendations, such as running
SQL Tuning Advisor on the SQL statement. You can begin tuning as described in
Chapter 10, "Tuning SQL Statements".

See Also:

■ "Overview of Automatic Database Diagnostic Monitor" on
page 3-1

■ "Interpretation of Automatic Database Diagnostic Monitor
Findings" on page 3-8

■ "Implementing Automatic Database Diagnostic Monitor
Recommendations" on page 3-9

Identifying High-Load SQL Statements Using Top SQL

9-2 Oracle Database 2 Day + Performance Tuning Guide

Identifying High-Load SQL Statements Using Top SQL
ADDM automatically identifies high-load SQL statements that may be causing
systemwide performance degradation. Under normal circumstances, manual
identification of high-load SQL statements is not necessary. In some cases, however,
you may want to monitor SQL statements at a more granular level. The Top SQL
section of the Top Activity page in Enterprise Manager enables you to identify
high-load SQL statements for any 5-minute interval.

Figure 9–1 shows an example of the Top Activity page.

Figure 9–1 Top Activity Page

To access the Top Activity page:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Under Additional Monitoring Links, click Top Activity.

The Top Activity page appears.

This page shows a 1-hour time line of the top activity running on the database.
SQL statements that are using the highest percentage of database activity are listed
under the Top SQL section, and are displayed in 5-minute intervals.

3. To move the 5-minute interval, drag and drop the shaded box to the time of
interest.

The information contained in the Top SQL section will be automatically updated
to reflect the selected time period. Use this page to identify high-load SQL
statements that may be causing performance problems.

Identifying High-Load SQL Statements Using Top SQL

Identifying High-Load SQL Statements 9-3

4. To monitor SQL statements for a longer duration than one hour, select Historical
from the View Data list.

In Historical view, you can view the top SQL statements for the duration defined
by the AWR retention period.

This section contains the following topics:

■ Viewing SQL Statements by Wait Class

■ Viewing Details of SQL Statements

Viewing SQL Statements by Wait Class
The SQL statements that appear in the Top SQL section of the Top Activity page are
categorized into various wait classes, based on their corresponding color as described
in the legend on the Top Activity chart.

To view the SQL statements for a particular wait class, click the block of color on the
chart for the wait class, or its corresponding wait class in the legend. The Active
Sessions Working page for the selected wait class appears, and the Top SQL section
will be automatically updated to show only the SQL statements for that wait class.

The example in Figure 9–2 shows the Active Sessions Working page for the CPU Used
wait class. Only SQL statements that are consuming the most CPU time are displayed
in the Top Working SQL section.

Figure 9–2 Viewing SQL Statement by Wait Class

See Also:

■ "Monitoring User Activity" on page 4-2 for information about
using the Active Sessions Working page

Identifying High-Load SQL Statements Using Top SQL

9-4 Oracle Database 2 Day + Performance Tuning Guide

Viewing Details of SQL Statements
The Top SQL section of the Top Activity page displays the SQL statements executed
within the selected 5-minute interval in descending order based on their resource
consumption. The SQL statement at the top of this table represents the most
resource-intensive SQL statement during that time period, followed by the second
most resource-intensive SQL statement, and so on.

In the example shown in Figure 9–1 on page 9-2, the SQL statement with SQL_ID
05b6pvb81dg8b is consuming 89.7 percent of database activity and should be
investigated.

To view details of SQL statements:
1. From the Database Home page, click Performance.

The Performance page appears.

2. Under Additional Monitoring Links, click Top Activity.

The Top Activity page appears.

3. In the Top SQL section, click the SQL ID link of the SQL statement.

The SQL Details page for the selected SQL statement appears.

4. To view SQL details for a longer time period, select Historical from the View Data
list.

You can now view SQL details in the past, up to the duration defined by the AWR
retention period.

5. Review the SQL text for the SQL statement.

The Text section contains the SQL text for the selected SQL statement.

If only part of the SQL statement is displayed, then a plus sign (+) icon will appear
next to the Text heading. To view the SQL text for the entire SQL statement, click
the plus sign (+) icon.

6. If the SQL statement has multiple plans, then select All from the Plan Hash Value
list to show SQL details for all plans.

Alternatively, you can select a particular plan to display SQL details for that plan
only.

7. Access the subpages from the SQL Details page to gather more information about
the SQL statement, as described in the following sections:

■ Viewing SQL Statistics

■ Viewing Session Activity

■ Viewing the SQL Execution Plan

■ Viewing the SQL Tuning Information

Identifying High-Load SQL Statements Using Top SQL

Identifying High-Load SQL Statements 9-5

8. If the SQL statement is a high-load SQL statement, then tune it as described in
Chapter 10, "Tuning SQL Statements".

Viewing SQL Statistics
The Statistics subpage of the SQL Details page displays statistical information about
the SQL statement.

To view statistics for the SQL statement:
1. On the SQL Details page, under Details, click Statistics.

The Statistics subpage appears.

2. View the statistics for the SQL statement, as described in the following sections:

■ SQL Statistics Summary

■ General SQL Statistics

■ Activity by Wait Statistics and Activity by Time Statistics

■ Elapsed Time Breakdown Statistics

■ Shared Cursors Statistics and Execution Statistics

■ Other SQL Statistics

SQL Statistics Summary The Summary section displays SQL statistics and activity on a
chart.

In the Real Time view, the Active Sessions chart shows the average number of active
sessions executing the SQL statement in the last hour. If the SQL statement has
multiple plans and All is selected in the Plan Hash Value list, then the chart will
display each plan in different colors, enabling you to easily spot if the plan changed
and whether this may be the cause of the performance degradation. Alternatively, you
can select a particular plan to display that plan only.

Identifying High-Load SQL Statements Using Top SQL

9-6 Oracle Database 2 Day + Performance Tuning Guide

In the Historical view, the chart shows execution statistics in different dimensions. To
view execution statistics, select the desired dimension from the View list:

■ Elapsed time per execution

■ Executions per hour

■ Disk reads per execution

■ Buffer gets per execution

This enables you to track the response time of the SQL statement using different
dimensions and determine if the performance of the SQL statement has degraded
based on the dimension selected.

To view statistics of the SQL statement for a particular time interval, click the snapshot
icon below the chart. You can also use the arrows to scroll the chart to locate a desired
snapshot.

General SQL Statistics The General section enables you to identify the origin of the SQL
statement by listing the following information:

■ Module, if specified using the DBMS_APPLICATION_INFO package

■ Action, if specified using the DBMS_APPLICATION_INFO package

■ Parsing schema, or the database users account that is used to execute the SQL
statement

■ PL/SQL source, or the code line if the SQL statement is part of a PL/SQL program
unit

Activity by Wait Statistics and Activity by Time Statistics The Activity by Wait and Activity
by Time sections enable you to identify where the SQL statement spent most of its
time. The Activity by Wait section contains a graphical representation of how much
elapsed time is consumed by CPU and by remaining waits. The Activity by Time
section breaks out the total elapsed time into CPU time and wait time by seconds.

Elapsed Time Breakdown Statistics The Elapsed Time Breakdown section enables you to
identify if the SQL statement itself is consuming a lot of time, or if the total elapsed
time is inflated due to the amount of time the originating program or application is
spending with the PL/SQL or Java engine. If the PL/SQL time or Java time makes up
a significant portion of the elapsed time, then there may be minimal benefit gained by
tuning the SQL statement. Instead, you should examine the application to determine
how the PL/SQL time or Java time can be reduced.

Shared Cursors Statistics and Execution Statistics The Shared Cursors Statistics and
Execution Statistics sections provide information about the efficiency of various stages
of the SQL execution process.

Other SQL Statistics The Other Statistics section provides additional information about
the SQL statement, such as average persistent and run-time memory.

Viewing Session Activity
To view session activity for the SQL statement, in the Details section, click Activity.

The Activity subpage contains a graphical representation of the session activity.

Identifying High-Load SQL Statements Using Top SQL

Identifying High-Load SQL Statements 9-7

The Activity subpage displays details of various sessions executing the SQL statement.
The Active Sessions chart profiles the average number of active sessions over time.
You can drag the shaded box to select a 5-minute interval. The Detail for Selected 5
Minute Interval section lists the sessions that executed the SQL statement during the
selected 5-minute interval. The multicolored bar in the Activity % column depicts how
the database time is divided for each session while executing the SQL statement. To
view more details for a particular session, click the link in the SID column of the
session you want to view to display the Session Details page.

Viewing the SQL Execution Plan
To view the execution plan for the SQL statement, in the Details section, click Plan.
The execution plan for a SQL statement is the sequence of operations Oracle performs
to run the statement.

The Plan subpage displays the execution plan for the SQL statement in a graph view
and a table view.

To view the SQL execution in a graph view, click Graph.

See Also:

■ "Monitoring Top Sessions" on page 4-5 for information about
monitoring session activity and details

Identifying High-Load SQL Statements Using Top SQL

9-8 Oracle Database 2 Day + Performance Tuning Guide

In the graph view, you can display details about the operations shown in the execution
plan by selecting the operation in the graph. Details about the selected operations are
displayed under Selection Details. If the selected operation is on a particular database
object (such as a table), then you can view further details about the database object by
clicking the Object link.

To view the SQL execution in a table view, click Table.

Oracle Database compares the cost for the query, with and without query rewrite, and
selects the least costly alternative. If a rewrite is necessary, then the query rewrite and
its cost benefit are displayed in the Explain Rewrite section.

Viewing the SQL Tuning Information
To view the tuning information for the SQL statement, in the Details section, click
Tuning Information.

The Tuning Information subpage contains information about the SQL tuning tasks and
the SQL profiles recommended by SQL Tuning Advisor for the SQL statement.

The SQL Profiles and Outlines section displays SQL profiles and outlines associated
with the SQL statement. A SQL profile contains additional statistics of the SQL
statement. An outline contains hints for the SQL statement for the query optimizer.
Both are used by the query optimizer to generate a better execution plan for the SQL
statement.

The SQL Tuning History section displays a history of SQL Tuning Advisor or SQL
Access Advisor tasks.

The ADDM Findings for this SQL During Historic Period section displays the number
of occurrences of ADDM findings that are associated with the SQL statement.

See Also:

■ Chapter 10, "Tuning SQL Statements" for information about
execution plan and the query optimizer

Identifying High-Load SQL Statements Using Top SQL

Identifying High-Load SQL Statements 9-9

See Also:

■ Chapter 10, "Tuning SQL Statements" for information about SQL
Tuning Advisor and SQL profiles

■ "Managing SQL Profiles" on page 10-19

■ Chapter 11, "Optimizing Data Access Paths" for information about
SQL Access Advisor

Identifying High-Load SQL Statements Using Top SQL

9-10 Oracle Database 2 Day + Performance Tuning Guide

Tuning SQL Statements 10-1

10
Tuning SQL Statements

A SQL statement expresses the data you want Oracle Database to retrieve. For
example, you can use a SQL statement to retrieve the names of all employees in a
department. When Oracle Database executes the SQL statement, the query optimizer
(also called simply the optimizer) first determines the best and most efficient way to
retrieve the results.

The optimizer determines whether it is more efficient to read all data in the table,
called a full table scan, or use an index. It compares the cost of all possible approaches
and chooses the approach with the least cost. The access method for physically
executing a SQL statement is called an execution plan, which the optimizer is
responsible for generating. The determination of an execution plan is an important
step in the processing of any SQL statement, and can greatly affect execution time.

The query optimizer can also help you tune SQL statements. By using SQL Tuning
Advisor and SQL Access Advisor, you can invoke the query optimizer in advisory
mode to examine a SQL statement or set of statements and determine how to improve
their efficiency. SQL Tuning Advisor and SQL Access Advisor can make various
recommendations, such as creating SQL profiles, restructuring SQL statements,
creating additional indexes or materialized views, and refreshing optimizer statistics.
Additionally, Oracle Enterprise Manager (Enterprise Manager) enables you to accept
and implement many of these recommendations with just a few mouse clicks.

SQL Access Advisor is primarily responsible for making schema modification
recommendations, such as adding or dropping indexes and materialized views. SQL
Tuning Advisor makes other types of recommendations, such as creating SQL profiles
and restructuring SQL statements. If significant performance improvements can be
gained by creating a new index, then SQL Tuning Advisor may recommend it.
However, such recommendations should be verified by running SQL Access Advisor
using a SQL workload that contains a set of representative SQL statements.

This chapter describes how to tune SQL statements using the SQL Tuning Advisor and
contains the following sections:

■ Tuning SQL Statements Using SQL Tuning Advisor

■ Managing SQL Tuning Sets

■ Managing SQL Profiles

■ Managing SQL Execution Plans

See Also:

■ Chapter 9, "Identifying High-Load SQL Statements"

■ Chapter 11, "Optimizing Data Access Paths" for information about
SQL Access Advisor

Tuning SQL Statements Using SQL Tuning Advisor

10-2 Oracle Database 2 Day + Performance Tuning Guide

Tuning SQL Statements Using SQL Tuning Advisor
You can use SQL Tuning Advisor to tune one or more SQL statements. When tuning
multiple statements, keep in the mind that SQL Tuning Advisor does not recognize
interdependencies between the SQL statements. Instead, it is intended as a convenient
way to run SQL Tuning Advisor for a large number of SQL statements.

Besides enabling you to tune SQL statements manually, Oracle Database generates
SQL tuning reports automatically. Automatic SQL Tuning runs during system
maintenance windows as an automated maintenance task, searching for ways to
improve the execution plans of high-load SQL statements.

Tuning SQL Manually Using SQL Tuning Advisor
As described in Chapter 9, "Identifying High-Load SQL Statements", ADDM
automatically identifies high-load SQL statements. In such cases, simply click
Schedule/Run SQL Tuning Advisor on the Recommendation Detail page to invoke
SQL Tuning Advisor.

To tune SQL statements manually using SQL Tuning Advisor:
1. On the Database Home page, under Related Links, click Advisor Central.

The Advisor Central page appears.

2. Under Advisors, click SQL Advisors.

The SQL Advisors page appears.

3. Under SQL Tuning Advisor, click SQL Tuning Advisor.

The Schedule SQL Tuning Advisor page appears.

4. In the Name field, enter a name for the SQL tuning task.

If unspecified, a system-generated name is used.

5. Do one of the following:

■ To run a SQL tuning task for one or more high-load SQL statements, under
SQL Tuning Advisor Data Source Links, click Top Activity.

Tuning SQL Statements Using SQL Tuning Advisor

Tuning SQL Statements 10-3

The Top Activity page appears.

Under Top SQL, select the SQL statement you want to tune and click Schedule
SQL Tuning Advisor. For information about identifying high-load SQL
statements using the Top Activity page, see "Identifying High-Load SQL
Statements Using Top SQL" on page 9-2.

■ To run a SQL tuning task for historical SQL statements from the Automatic
Workload Repository (AWR), under SQL Tuning Advisor Data Source Links,
click Historical SQL (AWR).

The Historical SQL (AWR) page appears.

Under Historical SQL (AWR), click the band below the chart, and select the
24-hour interval for which you want to view SQL statements that ran on the
database. Under Detail for Selected 24 Hour Interval, select the SQL statement
you want to tune, and click Schedule SQL Tuning Advisor.

■ To run a SQL tuning task for a SQL Tuning Set, click SQL Tuning Sets.

The SQL Tuning Sets page appears.

Select the SQL Tuning Set that contains the SQL statements you want to tune
and click Schedule SQL Tuning Advisor. For information about creating SQL
Tuning Sets, see "Creating a SQL Tuning Set" on page 10-8.

The Schedule SQL Tuning Advisor page reappears.

6. To display the SQL text of the selected statement, expand SQL Statements.

7. Under Scope, select the scope of tuning to perform. Do one of the following:

■ Select Limited.

A limited scope takes approximately 1 second to tune each SQL statement but
does not recommend a SQL profile.

■ Select Comprehensive, and then set a time limit (in minutes) for each SQL
statement in the Time Limit per Statement field, and a total time limit (in
minutes) in the Total Time Limit field.

A comprehensive scope performs a complete analysis and recommends a SQL
profile, when appropriate, but may take much longer. Note that setting the
time limit too small may affect the quality of the recommendations.

Running a SQL Tuning Advisor task in comprehensive mode may take several
minutes to tune a single SQL statement. This mode is both time and resource
intensive because each time a query must be hard-parsed. Thus, you should
only use comprehensive scope for high-load SQL statements that have a
significant impact on the entire system.

For information about SQL profiles, see "Managing SQL Profiles" on page 10-19.

Tuning SQL Statements Using SQL Tuning Advisor

10-4 Oracle Database 2 Day + Performance Tuning Guide

8. Under Schedule, do one of the following:

■ Select Immediately to run the SQL tuning task immediately, and then proceed
to Step 10 after the SQL Tuning Results page appears.

■ Select Later to schedule a specific time in the future, and click OK.

9. Optionally, on the Advisor Central page, do one of the following:

■ To view results for the SQL tuning task after it completes, select the SQL
Tuning Advisor task and click View Result.

The SQL Tuning Results page appears. Select the recommendation you want
to implement and click View.

Proceed to the next step.

■ To delete a SQL tuning task, select the SQL Tuning Advisor task and click
Delete.

■ To reschedule a SQL tuning task, select the SQL Tuning Advisor task. From the
Actions list, select Re-schedule and click Go.

■ To interrupt a SQL tuning task that is running, select the SQL Tuning Advisor
task. From the Actions list, select Interrupt and click Go.

■ To cancel a scheduled SQL tuning task, select the SQL Tuning Advisor task.
From the Actions list, select Cancel and click Go.

■ To change the expiration of a SQL tuning task, select the SQL Tuning Advisor
task. From the Actions list, select Change Expiration and click Go.

Results of each advisor run are stored in the database so that they can be
referenced later. This data is stored until it expires, at which point it will be
deleted by the AWR purging process.

■ To edit a scheduled SQL tuning task, select the SQL Tuning Advisor task.
From the Actions list, select Edit and click Go.

10. On the SQL Tuning Results page, click View.

The Recommendations for SQL ID page appears.

If you used a SQL Tuning Set, then multiple recommendations may be displayed.
To help you decide whether or not to implement a recommendation, an estimated
benefit of implementing the recommendation is displayed in the Benefit (%)
column. The Rationale column displays an explanation of why the
recommendation is made.

Tuning SQL Statements Using SQL Tuning Advisor

Tuning SQL Statements 10-5

11. Optionally, if multiple recommendations are displayed, then do one of the
following:

■ To view the original execution plan for the SQL statement, click Original
Explain Plan.

■ To compare the new and original execution plans, click the icon in the
Compare Explain Plans column.

■ To view the new execution plan for the SQL statement, click the icon in the
New Explain Plan column.

For information about viewing execution plans, see "Viewing the SQL Execution
Plan" on page 9-7.

12. To implement the recommendation, click Implement.

The SQL Tuning Results page appears with a confirmation that the recommended
action was completed.

Viewing Automatic SQL Tuning Results
By analyzing information stored in the Automatic Workload Repository (AWR), the
database can identify routine maintenance tasks that need to be run. The automated
maintenance tasks infrastructure (known as AutoTask) schedules these tasks to run in
Oracle Scheduler time periods known as maintenance windows. By default, one
window is scheduled for each day of the week. You can customize attributes of these
maintenance windows, including start and end time, frequency, and days of the week.

AutoTask automatically schedules SQL Tuning Advisor to run during the maintenance
windows. You can view the results of automated execution of SQL Tuning Advisor on
observed high-load SQL statements.

To view automatic SQL tuning results:
1. On the Database Home page, under Related Links, click Advisor Central.

The Advisor Central page appears.

2. Under Advisors, click SQL Advisors.

Tuning SQL Statements Using SQL Tuning Advisor

10-6 Oracle Database 2 Day + Performance Tuning Guide

The SQL Advisors page appears.

3. Under SQL Tuning Advisor, click Automatic SQL Tuning Results.

The Automatic SQL Tuning Result Summary page appears.

The top half of the page includes sections for the status and activity summary of
the SQL Tuning task.

The bottom half of the Automatic SQL Tuning Result Summary page shows
statistics for the overall task and the profile effect.

The Tuned SQL DB Time Benefit chart estimates the weekly DB time saved by SQL
profiles that were automatically implemented. The chart also shows time that
could be saved if other recommended SQL profiles were implemented. For
example, the Before bar in the Implemented set aggregates the DB times during
the week before tuning for all SQL statements with profiles implemented. The
After bar projects the new weekly cumulative DB time, calculated by lowering the
time of each SQL statement according to the benefit found by test execution. Thus,
the Implemented set shows DB time benefit that has already been realized,
whereas the Recommended set shows the potential benefit of profiles that were
not automatically accepted by the SQL Tuning Advisor.

4. Optionally, in the Task Status section, click Configure to change the attributes of
the Automatic SQL Tuning task.

The Automated Maintenance Tasks Configuration page appears.

Tuning SQL Statements Using SQL Tuning Advisor

Tuning SQL Statements 10-7

In this page, you can enable or disable the Automatic SQL Tuning task and specify
which days it should run. Click Apply or Revert to return to the previous page.

5. In the Task Activity Summary section, leave All selected for the Time Period and
then click View Report.

The Automatic SQL Tuning Result Details page appears.

The page lists SQL statements that have been automatically selected by the
database as candidates for SQL tuning.

6. Under Recommendations, select a SQL statement and then click View
Recommendations.

The Recommendations for SQL ID page appears.

This page can include recommendations for SQL profiles and indexes. See "Tuning
SQL Manually Using SQL Tuning Advisor" on page 10-2 to learn how to
implement recommendations made by SQL Tuning Advisor.

Managing SQL Tuning Sets

10-8 Oracle Database 2 Day + Performance Tuning Guide

Managing SQL Tuning Sets
A SQL Tuning Set is a database object that includes one or more SQL statements and
their execution statistics and execution context. You can use the set as an input source
for various advisors, such as SQL Tuning Advisor, SQL Access Advisor, and SQL
Performance Analyzer. You can load SQL statements into a SQL Tuning Set from
different SQL sources, such as AWR, the cursor cache, or high-load SQL statements
that you identified.

A SQL Tuning Set includes the following:

■ A set of SQL statements

■ Associated execution context, such as user schema, application module name and
action, list of bind values, and the cursor compilation environment

■ Associated basic execution statistics, such as elapsed time, CPU time, buffer gets,
disk reads, rows processed, cursor fetches, the number of executions, the number
of complete executions, optimizer cost, and the command type

■ Associated execution plans and row source statistics for each SQL statement
(optional)

SQL statements can be filtered using the application module name and action, or any
of the execution statistics. In addition, SQL statements can be ranked based on any
combination of execution statistics.

SQL Tuning Sets are transportable across databases and can be exported from one
system to another, allowing SQL workloads to be transferred between databases for
remote performance diagnostics and tuning. When high-load SQL statements are
identified on a production system, it may not be desirable to perform investigation
and tuning activities on the production system directly. This feature enables you to
transport the high-load SQL statements to a test system, where they can be safely
analyzed and tuned. For information about transporting SQL Tuning Sets, see Oracle
Database Performance Tuning Guide.

Using Oracle Enterprise Manager, you can manage SQL Tuning Sets by doing the
following:

■ Creating a SQL Tuning Set

■ Dropping a SQL Tuning Set

■ Transporting SQL Tuning Sets

Creating a SQL Tuning Set
This section describes how to create a SQL Tuning Set by using Oracle Enterprise
Manager.

To create a SQL Tuning Set:
1. Specify the initial options for the SQL Tuning Set, as described in "Creating a SQL

Tuning Set: Options" on page 10-9.

2. Select the load method to use for collecting and loading SQL statements into the
SQL Tuning Set, as described in "Creating a SQL Tuning Set: Load Method" on
page 10-10.

3. Specify the filter options for the SQL Tuning Set, as described in "Creating a SQL
Tuning Set: Filter Options" on page 10-13.

Managing SQL Tuning Sets

Tuning SQL Statements 10-9

4. Schedule and submit a job to collect the SQL statements and load them into the
SQL Tuning Set, as described in "Creating a SQL Tuning Set: Schedule" on
page 10-15.

Creating a SQL Tuning Set: Options
The first step in creating a SQL Tuning Set is to specify initial options for the set such
as name, owner, and description.

To specify options for creating a SQL Tuning Set:
1. On the Database Performance page, under Additional Monitoring Links, click

SQL Tuning Sets.

The SQL Tuning Sets page appears. Existing SQL Tuning Sets are displayed on this
page.

2. Click Create.

The Create SQL Tuning Set: Options page appears.

3. In the SQL Tuning Set Name field, enter a name for the SQL Tuning Set.

4. In the Owner field, enter the owner of the SQL Tuning Set.

5. In the Description field, enter a description of the SQL Tuning Set.

6. Optionally, if you want to create an empty SQL Tuning Set and add SQL
statements to it at a later time, then complete the following steps:

a. Enable Create an empty SQL tuning set.

b. Click Next.

The Create SQL Tuning Set: Review page appears.

c. Review the SQL Tuning Set options that you have selected and click Submit.

The empty SQL Tuning Set is created. You can add SQL statements to it at a
later time.

7. Click Next.

The Create SQL Tuning Set: Load Methods page appears.

Managing SQL Tuning Sets

10-10 Oracle Database 2 Day + Performance Tuning Guide

8. Proceed to the next step, as described in "Creating a SQL Tuning Set: Load
Method" on page 10-10.

Creating a SQL Tuning Set: Load Method
After options are specified for the SQL Tuning Set, select the load method to use for
collecting and loading SQL statements into the SQL Tuning Set, as described in the
following sections:

■ Loading Active SQL Statements Incrementally from the Cursor Cache

■ Loading SQL Statements from the Cursor Cache

■ Loading SQL Statements from AWR Snapshots

■ Loading SQL Statements from AWR Baselines

■ Loading SQL Statements from a User-Defined Workload

Loading Active SQL Statements Incrementally from the Cursor Cache You can load active SQL
statements from the cursor cache into the SQL Tuning Set incrementally over a
specified period of time. This enables you to not only collect current and recent SQL
statements stored in the SQL cache, but also SQL statements that will run during the
specified time period in the future.

To load active SQL statements incrementally from the cursor cache:
1. On the Create SQL Tuning Set: Load Methods page, select Incrementally capture

active SQL statements over a period of time from the cursor cache.

2. In the Duration field, specify how long active SQL statements will be captured.

3. In the Frequency field, specify how often active SQL statements will be captured
during the specified duration.

4. Click Next.

The Create SQL Tuning Set: Filter Options page appears.

5. Proceed to the next step, as described in "Creating a SQL Tuning Set: Filter
Options" on page 10-13.

Loading SQL Statements from the Cursor Cache You can load SQL statements from the
cursor cache into the SQL Tuning Set. However, because only current and recent SQL
statements are stored in the SQL cache, collecting these SQL statements only once may

Tip: Before selecting the load method for the SQL Tuning Set, create
a SQL Tuning Set and specify the initial options, as described in
"Creating a SQL Tuning Set: Options" on page 10-9

Managing SQL Tuning Sets

Tuning SQL Statements 10-11

result in a SQL Tuning Set this is not representative of the entire workload on your
database.

To load SQL statements from the cursor cache:
1. On the Create SQL Tuning Set: Load Methods page, select Load SQL statements

one time only.

2. In the Data Source field, select Cursor Cache.

3. Click Next.

The Create SQL Tuning Set: Filter Options page is shown.

4. Proceed to the next step, as described in "Creating a SQL Tuning Set: Filter
Options" on page 10-13.

Loading SQL Statements from AWR Snapshots You can load SQL statements captured in
AWR snapshots. This is useful when you want to collect SQL statements for specific
snapshot periods of interest that can be used for later comparison or tuning purposes.

To load SQL statements from AWR snapshots:
1. On the Create SQL Tuning Set: Load Methods page, select Load statements one

time only.

2. In the Data Source field, select AWR Snapshots.

3. In the AWR Snapshots field, select the snapshots to include. Do one of the
following:

■ Select Last 24 hours and then go to Step 5.

Only snapshots that are captured and stored in AWR in the last 24 hours will
be included.

■ Select Last 7 days and then go to Step 5.

Only snapshots that are captured and stored in AWR in the last 7 days will be
included.

■ Select Last 31 days and then go to Step 5.

Only snapshots that are captured and stored in AWR in the last 31 days will be
included.

■ Select ALL and then go to Step 5.

All snapshots that are captured and stored in AWR will be included.

■ Select Customize and then proceed to Step 4.

Only snapshots that are captured and stored in AWR during a customized
time period that you specify will be included.

4. To select a customized time period of snapshots to include, complete the following
steps:

a. Select Customize and click Go.

Managing SQL Tuning Sets

10-12 Oracle Database 2 Day + Performance Tuning Guide

The Select Time Period window opens.

b. For the starting snapshot, select Period Start Time and click the snapshot icon
below the Active Session graph that corresponds to the desired start time.

c. For the ending snapshot, select Period End Time and click the snapshot icon
below the Active Session graph that corresponds to the desired end time.

d. Click Select.

In this example, the snapshot taken on March 4, 2007 at 9:01 p.m. is selected as the
start time, and the snapshot taken on March 5, 2007 at 1:00 a.m. is selected as the
end time.

5. Click Next.

The Create SQL Tuning Set: Filter Options page is shown.

6. Proceed to the next step, as described in "Creating a SQL Tuning Set: Filter
Options" on page 10-13.

Loading SQL Statements from AWR Baselines You can load SQL statements captured in
AWR baselines. This is useful when you want to collect SQL statements that are
representative of a time period during known performance levels that can be used for
later comparison or tuning purposes.

To load SQL statements from AWR baselines:
1. On the Create SQL Tuning Set: Load Methods page, select Load SQL statements

one time only.

2. In the Data Source field, select AWR Baseline.

3. In the AWR Baseline field, select the baseline to include.

4. Click Next.

The Create SQL Tuning Set: Filter Options page is shown.

Managing SQL Tuning Sets

Tuning SQL Statements 10-13

5. Proceed to the next step, as described in "Creating a SQL Tuning Set: Filter
Options" on page 10-13.

Loading SQL Statements from a User-Defined Workload You can load SQL statements by
importing from a table or view. This is useful if the workload you want to analyze is
not currently running on the database or captured in an existing AWR snapshot or
AWR baseline.

There are no restrictions on which schema the workload resides in, the name of the
table, or the number of tables that you can define. The only requirement is that the
format of the table must match format of the USER_WORKLOAD table.

To load SQL statements from a user-defined workload:
1. On the Create SQL Tuning Set: Load Methods page, select Load statements one

time only.

2. In the Data Source field, select User-Defined Workload.

3. In the User-Defined Workload field, select the table or view to include.

4. Click Next.

The Create SQL Tuning Set: Filter Options page is shown.

5. Proceed to the next step, as described in "Creating a SQL Tuning Set: Filter
Options" on page 10-13.

Creating a SQL Tuning Set: Filter Options
After the load method is selected, you can apply filters to reduce the scope of the SQL
statements found in the SQL Tuning Set. While using filters is optional, it can be very
beneficial due to the following:

■ Using filters directs the various advisors that use the SQL Tuning Set as a
workload source—such as SQL Tuning Advisor, SQL Access Advisor, and SQL
Performance Analyzer—to make recommendations based on a specific subset of
SQL statements, which may lead to better recommendations.

■ Using filters removes extraneous SQL statements from the SQL Tuning Set, which
may greatly reduce processing time when it is used as a workload source for the
various advisors.

To specify filter options for a SQL Tuning Set:
1. On the Create SQL Tuning Set: Filter Options page, specify the values of filter

conditions that you want use in the search in the Value column, and an operator or
a condition in the Operator column.

Tip: Before you can specify the filter options for the SQL Tuning Set,
do the following:

■ Create a SQL Tuning Set and specify the initial options, as
described in "Creating a SQL Tuning Set: Options" on page 10-9

■ Select the load method, as described in "Creating a SQL Tuning
Set: Load Method" on page 10-10

Managing SQL Tuning Sets

10-14 Oracle Database 2 Day + Performance Tuning Guide

Only the SQL statements that meet all of the specified filter conditions will be
added to the SQL Tuning Set. Unspecified filter values will not be included as
filter conditions in the search.

By default, the following filter conditions are displayed:

■ Parsing Schema Name

■ SQL Text

■ SQL ID

■ Elapsed Time (sec)

2. To add filter conditions, under Filter Conditions, select the filter condition you
want to add and click Add a Filter or Column.

The available filter conditions include the following:

■ Plan hash value

■ Module

■ Action

■ Buffer gets

■ Disk reads

■ Disk writes

■ Rows processed

■ Fetches

■ Executions

■ End of fetch count

■ Command type

After the desired filter conditions have been added, specify their values in the
Value column, and an operator or a condition in the Operator column.

3. To remove any unused filter conditions, click the icon in the Remove column for
the corresponding filter condition you want to remove.

4. Click Next.

The Create SQL Tuning Set: Schedule page appears.

5. Proceed to the next step, as described in "Creating a SQL Tuning Set: Schedule" on
page 10-15.

Managing SQL Tuning Sets

Tuning SQL Statements 10-15

Creating a SQL Tuning Set: Schedule
After the filter options are specified for the SQL Tuning Set, you can schedule and
submit a job to collect the SQL statements and load them into the SQL Tuning Set.

To schedule and submit a job to create a SQL Tuning Set:
1. On the Create SQL Tuning Set: Schedule page, under Job Parameters, enter a name

in the Job Name field if you do not want to use the system-generated job name.

2. In the Description field, enter a description of the job.

3. Under Schedule, do one of the following:

■ Immediately to run the job immediately after it has been submitted

■ Later to run the job at a later time as specified using the Time Zone, Date, and
Time fields

4. Click Next.

The Create SQL Tuning Set: Review page appears.

Tip: Before you can schedule a job to create the SQL Tuning Set, do
the following:

■ Create a SQL Tuning Set and specify the initial options, as
described in "Creating a SQL Tuning Set: Options" on page 10-9.

■ Select the load method, as described in "Creating a SQL Tuning
Set: Load Method" on page 10-10.

■ Specify the filter options, as described in "Creating a SQL Tuning
Set: Filter Options" on page 10-13.

Managing SQL Tuning Sets

10-16 Oracle Database 2 Day + Performance Tuning Guide

5. Review the SQL Tuning Set options that you have selected.

To view the SQL statements used by the job, expand Show SQL.

6. Click Submit.

The SQL Tuning Sets page appears.

If the job was scheduled to run immediately, then a message is displayed to inform
you that the job and the SQL Tuning Set were created successfully. If the job was
scheduled to run at a later time, a message is displayed to inform you that the job
was created successfully.

7. To view details about the job, such as operation status, click View Job Details.

The View Job page appears to display details about the job.

Dropping a SQL Tuning Set
This section describes how to drop a SQL Tuning Set. To conserve storage space, you
may want to periodically drop unused SQL Tuning Sets stored in the database.

To drop a SQL Tuning Set:
1. On the Database Performance page, under Additional Monitoring Links, click

SQL Tuning Sets.

The SQL Tuning Sets page appears.

Existing SQL Tuning Sets are displayed on this page.

2. Select the SQL Tuning Set you want to drop and click Drop.

The Confirmation page appears to verify if you want to delete the selected SQL
Tuning Set.

3. Click Yes.

The SQL Tuning Sets page appears.

A confirmation message is displayed to indicate that the SQL Tuning Set was
successfully deleted.

Transporting SQL Tuning Sets
You can transport SQL Tuning Sets from one system to another by first exporting a
SQL Tuning Set from one system, then importing it into another system.

This section contains the following topics:

■ Exporting a SQL Tuning Set

■ Importing a SQL Tuning Set

Exporting a SQL Tuning Set
This section describes how to export a SQL Tuning Set, thereby enabling it to be
transported to another system.

To export a SQL Tuning Set:
1. On the Database Performance page, under Additional Monitoring Links, click

SQL Tuning Sets.

The SQL Tuning Sets page appears.

Managing SQL Tuning Sets

Tuning SQL Statements 10-17

Existing SQL Tuning Sets are displayed on this page.

2. Select the SQL Tuning Set you want to export and click Export.

The Export SQL Tuning Set page appears.

3. In the Directory Object field, select a directory where the export file will be
created.

For example, to use the Oracle Data Pump directory, select DATA_PUMP_DIR. The
Directory Name field refreshes automatically to indicate the selected directory.

4. In the Export File field, enter a name for the dump file that will be exported.

Alternatively, you can accept the name generated by the system.

5. In the Log File field, enter a name for the log file for the export operation.

Alternatively, you can accept the name generated by the system.

6. Select a tablespace to temporarily store the data for the export operation.

By default, SYSAUX is used.

7. Under Job Parameters, in the Job Name field, enter a name for the job.

Alternatively, you can accept the name generated by the system.

8. Under Schedule, do one of the following:

■ Select Immediately to run the job immediately after it has been submitted.

■ Select Later to run the job at a later time as specified by selecting or entering
values in the Time Zone, Date, and Time fields.

9. Click OK.

The SQL Tuning Sets page appears.

A confirmation message is displayed to indicate that the job was successfully
created.

10. Optionally, transport the export file to another system using the mechanism of
choice (such as Oracle Data Pump or a database link).

Managing SQL Tuning Sets

10-18 Oracle Database 2 Day + Performance Tuning Guide

Importing a SQL Tuning Set
Before a SQL Tuning Set can be imported, you must first export a SQL Tuning Set from
another system and transport it to your current system. For more information, see
"Exporting a SQL Tuning Set" on page 10-16.

To import a SQL Tuning Set:
1. On the Database Performance page, under Additional Monitoring Links, click

SQL Tuning Sets.

The SQL Tuning Sets page appears.

2. Click Import.

The Import SQL Tuning Set page appears.

3. In Directory Object, select a directory where the import file is stored.

The directory should contain the export file that was transported to your current
system. For example, if the file resides in the Data Pump directory, then select
DATA_PUMP_DIR. The Directory Name field refreshes automatically to indicate
the selected directory.

4. In the Import File field, enter the name of the dump file that will be imported.

5. In the Log File field, enter a name for the log file for the import operation.

6. To replace an existing SQL Tuning Set with the one that you are importing, select
Replace the existing SQL tuning set if one exists.

7. Select a tablespace to temporarily store the data for the import operation.

By default, SYSAUX is used.

8. Under Job Parameters, in the Job Name field, enter a name for the job.

Alternatively, you can accept the name generated by the system.

9. Under Schedule, do one of the following:

■ Select Immediately to run the job immediately after it has been submitted.

Managing SQL Profiles

Tuning SQL Statements 10-19

■ Select Later to run the job at a later time as specified by selecting or entering
values in the Time Zone, Date, and Time fields.

10. Click OK.

The SQL Tuning Sets page appears.

A confirmation message is displayed to indicate that the job was successfully
created. If the job is scheduled to run immediately, then the imported SQL Tuning
Set will be displayed on this page. You may need to refresh the page.

Managing SQL Profiles
When running a SQL Tuning Advisor task with a limited scope, the query optimizer
makes estimates about cardinality, selectivity, and cost. These estimates can sometimes
be off by a significant amount, resulting in poor execution plans.

To address this problem, consider running a SQL Tuning Advisor task with a
comprehensive scope to collect additional information using sampling and partial
execution techniques to verify and, if necessary, adjust these estimates. These auxiliary
statistics about the SQL statement are collected into a SQL profile.

During SQL profiling, the query optimizer uses the execution history information
about the SQL statement to create appropriate settings for optimizer parameters. After
the SQL profiling completes, the query optimizer uses the information stored in the
SQL profile, in conjunction with regular database statistics, to generate execution
plans. The availability of the additional information makes it possible to produce
well-tuned plans for corresponding SQL statements.

After running a SQL Tuning Advisor task with a comprehensive scope, a SQL profile
may be recommended. If you accept the recommendation, then the SQL profile will be
created and enabled for the SQL statement.

In some cases, you may want to disable a SQL profile. For example, you may want to
test the performance of a SQL statement without using a SQL profile to determine if
the SQL profile is actually beneficial. If the SQL statement is performing poorly after
the SQL profile is disabled, then you should enable it again to avoid performance
degradation. If the SQL statement is performing optimally after you have disabled the
SQL profile, you may want to remove the SQL profile from your database.

To enable, disable, or delete a SQL profile:
1. On the Performance page, click Top Activity.

The Top Activity page appears.

2. Under Top SQL, click the SQL ID link of the SQL statement that is using a SQL
profile.

The SQL Details page appears.

3. Click the Tuning Information tab.

A list of SQL profiles is displayed under SQL Profiles and Outlines.

4. Select the SQL profile you want to manage. Do one of the following:

Managing SQL Execution Plans

10-20 Oracle Database 2 Day + Performance Tuning Guide

■ To enable a SQL profile that is disabled, click Disable/Enable.

■ To disable a SQL profile that is enabled, Disable/Enable.

■ To remove a SQL profile, click Delete.

A confirmation page appears.

5. Click Yes to continue, or No to cancel the action.

Managing SQL Execution Plans
SQL plan management records and evaluates the execution plans of SQL statements
over time. This mechanism builds SQL plan baselines composed of a set of existing
plans known to be efficient. If the same SQL statement is run repeatedly, and if the
optimizer generates a new plan that differs from the baseline, then the database
compares the new plan with the baseline and chooses the best one.

Some events can cause changes to SQL execution plans, such as new optimizer
statistics, changes to initialization parameter values, a database upgrade that causes a
change to the optimizer, and so on. These changes can cause regressions in SQL
performance, which can be difficult and time-consuming to fix manually. As a
preventative measure, you can fix SQL plan baselines to preserve performance of
corresponding SQL statements, regardless of changes occurring in the system.

To load SQL execution plans:
1. From the Database Home page, click Server.

The Server subpage appears.

2. Under Query Optimizer, click SQL Plan Control.

The SQL Profile subpage of the SQL Plan Control page appears.

3. Click SQL Plan Baseline.

The SQL Plan Baseline subpage appears.

4. Under Settings, click the link next to Capture SQL Plan Baselines.

The Initialization Parameters page appears.

5. In the Value column of the table, select TRUE and then click OK.

You are returned to the SQL Plan Baseline subpage, which now shows Capture
SQL Baselines set to TRUE.

Managing SQL Execution Plans

Tuning SQL Statements 10-21

Because you configured baselines to be captured, the database automatically keeps
a history of execution plans for all SQL statements executed more than once.

6. Click Load.

The SQL Plan Control page appears.

7. Select the SQL plan baselines to be loaded. Complete the following steps:

a. Under Load SQL Plan Baselines, select Load plans from SQL Tuning Set
(STS).

In this example, load plans from the SQL Tuning Set that you created in
"Creating a SQL Tuning Set" on page 10-8.

b. In Job Name, enter a name for the job. In this example, enter
SPM_LOAD_TEST.

c. Under Schedule, select Immediately.

d. Click OK.

The SQL Profile subpage of the SQL Plan Control page appears. The table displays
a list of SQL plans that are stored as SQL plan baselines.

Managing SQL Execution Plans

10-22 Oracle Database 2 Day + Performance Tuning Guide

8. Optionally, fix the execution plan of a baseline so that the database will not use
any alternative SQL plan baseline. Complete the following steps:

a. Select a SQL plan baseline that is not fixed.

b. Select Fixed - Yes from the list preceding the baseline table.

c. Click Go.

The table is refreshed to show the SQL execution plan with the value YES in the
Fixed column of the table.

See Also:

■ Oracle Database Performance Tuning Guide to learn how to use SQL
plan management

Optimizing Data Access Paths 11-1

11
Optimizing Data Access Paths

To achieve optimum performance for data-intensive queries, materialized views and
indexes are essential when tuning SQL statements. Implementing these objects,
however, does not come without a cost. Creation and maintenance of these objects can
be time-consuming, and space requirements can be significant. SQL Access Advisor
enables you to optimize data access paths of SQL queries by recommending the proper
set of materialized views and view logs, indexes, SQL profiles, and partitions for a
given workload.

A materialized view provides access to table data by storing query results in a separate
schema object. Unlike an ordinary view, which does not take up storage space or
contain data, a materialized view contains the rows resulting from a query against one
or more base tables or views. A materialized view log is a schema object that records
changes to a master table's data, so that a materialized view defined on the master
table can be refreshed incrementally. SQL Access Advisor recommends how to
optimize materialized views so that they can be rapidly refreshed and take advantage
of the general query rewrite feature. For more information about materialized views
and view logs, see Oracle Database Concepts.

SQL Access Advisor also recommends bitmap, function-based, and B-tree indexes. A
bitmap index provides a reduced response time for many types of ad hoc queries and
reduced storage requirements compared to other indexing techniques. A
function-based index derives the indexed value from the table data. For example, to
find character data in mixed cases, a function-based index can be used to look for the
values as if they were all in uppercase characters. B-tree indexes are most commonly
used to index unique or near-unique keys.

Using SQL Access Advisor involves the following tasks:

■ Running SQL Access Advisor

■ Reviewing the SQL Access Advisor Recommendations

■ Implementing the SQL Access Advisor Recommendations

Running SQL Access Advisor
This section describes how to run SQL Access Advisor to make recommendations on a
SQL workload.

See Also:

■ Chapter 9, "Identifying High-Load SQL Statements"

■ Chapter 10, "Tuning SQL Statements" for information about SQL
Tuning Advisor

Running SQL Access Advisor

11-2 Oracle Database 2 Day + Performance Tuning Guide

To run SQL Access Advisor:
1. Select the initial options, as described in "Running SQL Access Advisor: Initial

Options" on page 11-2.

2. Select the workload source you want to use for the analysis, as described in
"Running SQL Access Advisor: Workload Source" on page 11-3.

3. Define the filters options, as described in "Running SQL Access Advisor: Filter
Options" on page 11-5.

4. Choose the types of recommendations, as described in "Running SQL Access
Advisor: Recommendation Options" on page 11-7.

5. Schedule the SQL Access Advisor task, as described in "Running SQL Access
Advisor: Schedule" on page 11-9.

Running SQL Access Advisor: Initial Options
The first step in running SQL Access Advisor is to select the initial options on the SQL
Access Advisor: Initial Options page.

To select initial options:
1. On the Database Home page, under Related Links, click Advisor Central.

The Advisor Central page appears.

2. Under Advisors, click SQL Advisors.

The SQL Advisors page appears.

3. Click SQL Access Advisor.

The SQL Access Advisor: Initial Options page appears.

4. Select the initial options. Do one of the following:

■ Select Verify use of access structures (indexes, materialized views,
partitioning, and so on) only to verify existing structures.

■ Select Recommend new access structures to use the recommended options
defined in the Oracle Enterprise Manager default template.

If you select this option, then you can optionally complete the following
additional steps:

– Select Inherit Options from a previously saved Task or Template to use
the options defined in an existing SQL Access Advisor task or another
template.

– In Tasks and Templates, select the task or template that you want to use.

In this example, Recommend new access structures is selected.

Running SQL Access Advisor

Optimizing Data Access Paths 11-3

5. Click Continue.

The SQL Access Advisor: Workload Source page appears.

6. Proceed to the next step, as described in "Running SQL Access Advisor: Workload
Source" on page 11-3.

Running SQL Access Advisor: Workload Source
After initial options are specified for SQL Access Advisor, select the workload source
that you want to use for the analysis, as described in the following sections:

■ Using SQL Statements from the Cache

■ Using an Existing SQL Tuning Set

■ Using a Hypothetical Workload

Using SQL Statements from the Cache
You can use SQL statements from the cache as the workload source. However, because
only current and recent SQL statements are stored in the SQL cache, this workload
source may not be representative of the entire workload on your database.

To use SQL statements from the cache as the workload source:
1. On the SQL Access Advisor: Workload Source page, select Current and Recent

SQL Activity.

In this example, Use Default Options is selected.

2. Proceed to the next step, as described in "Running SQL Access Advisor: Filter
Options" on page 11-5.

Tip: Before you can select the workload source for SQL Access
Advisor, select the initial options, as described in "Running SQL
Access Advisor: Initial Options" on page 11-2.

Running SQL Access Advisor

11-4 Oracle Database 2 Day + Performance Tuning Guide

Using an Existing SQL Tuning Set
You can use an existing SQL Tuning Set as the workload source. This option is useful
because SQL Tuning Sets can be used repeatedly as the workload source for not only
SQL Access Advisor, but also SQL Tuning Advisor.

To use a SQL Tuning Set as the workload source:
1. On the SQL Access Advisor: Workload Source page, select Use an existing SQL

Tuning Set.

2. Click the SQL Tuning Set search icon to use an existing SQL Tuning Set.

The Search and Select: SQL Tuning Set dialog box appears.

3. In the Schema field, enter the name of the schema containing the SQL Tuning Set
you want to use and click Go.

A list of SQL Tuning Sets contained in the selected schema appears.

4. Select the SQL Tuning Set to be used for the workload source and click Select.

The Search and Select: SQL Tuning Set dialog box closes and the selected SQL
Tuning Set now appears in the SQL Tuning Set field.

5. Proceed to the next step, as described in "Running SQL Access Advisor: Filter
Options" on page 11-5.

Using a Hypothetical Workload
A dimension table stores all or part of the values for a logical dimension in a star or
snowflake schema. You can create a hypothetical workload from dimension tables
containing primary or foreign key constraints. This option is useful if the workload to
be analyzed does not exist. In this case, SQL Access Advisor examines the current
logical schema design, and provides recommendations based on the defined
relationships between tables.

To use a hypothetical workload as the workload source:
1. On the SQL Access Advisor: Workload Source page, select Create a Hypothetical

Workload from the Following Schemas and Tables.

2. Leave Schemas and Tables empty and click Add to search for tables.

The Workload Source: Search and Select Schemas and Tables page appears.

3. In the Tables section, enter a schema name in the Schema field and click Search.

A list of tables in the selected schema is displayed.

4. Select the tables to be used in creating the hypothetical workload and click Add
Tables.

The selected tables now appear in the Schemas and Tables field.

5. Click OK.

The SQL Access Advisor: Workload Source page appears with the selected tables
now added.

6. Proceed to the next step, as described in "Running SQL Access Advisor: Filter
Options" on page 11-5.

See Also:

■ "Managing SQL Tuning Sets" on page 10-8

Running SQL Access Advisor

Optimizing Data Access Paths 11-5

Running SQL Access Advisor: Filter Options
After the workload source is selected, you can apply filters to reduce the scope of the
SQL statements found in the workload. While using filters is optional, it can be very
beneficial due to the following:

■ Using filters directs SQL Access Advisor to make recommendations based on a
specific subset of SQL statements from the workload, which may lead to better
recommendations.

■ Using filters removes extraneous SQL statements from the workload, which may
greatly reduce processing time.

To apply filters to the workload source:
1. On the SQL Access Advisor: Workload Source page, click Filter Options.

The Filter Options section expands.

2. Select Filter Workload Based on these Options.

The Filter Options section is enabled.

3. Define the filters you want to apply, as described in the following sections:

■ Defining Filters for Resource Consumption

■ Defining Filters for Users

■ Defining Filters for Tables

■ Defining Filters for SQL Text

■ Defining Filters for Modules

■ Defining Filters for Actions

4. Click Next.

The Recommendation Options page appears.

5. Proceed to the next step, as described in "Running SQL Access Advisor:
Recommendation Options" on page 11-7.

Defining Filters for Resource Consumption
The resource consumption filter restricts the workload to include only the number of
high-load SQL statements that you specify.

To define a filter for resource consumption:
1. On the SQL Access Advisor: Workload Source page, under User Resource

Consumption, enter the number of high-load SQL statements in the Number of
Statements field.

2. From the Order by list, select one of the methods by which the SQL statements are
to be ordered.

Tip: Before you can select the filter options for the workload, do the
following:

■ Select initial options, as described in "Running SQL Access
Advisor: Initial Options" on page 11-2.

■ Select the workload source, as described in "Running SQL Access
Advisor: Workload Source" on page 11-3.

Running SQL Access Advisor

11-6 Oracle Database 2 Day + Performance Tuning Guide

Defining Filters for Users
The users filter restricts the workload to include or exclude SQL statements executed
by users that you specify.

To define a filter for users:
1. On the SQL Access Advisor: Workload Source page, under Users, select Include

only SQL statements executed by these users or Exclude all SQL statements
executed by these users.

2. To search for available users, click the Users search icon.

The Search and Select: Users dialog box appears.

3. Select the users for which you want to include or exclude SQL statements and
click Select.

The Search and Select: Users dialog box closes and the selected tables now appear
in the Users field.

In this example, a filter is defined to include only SQL statements executed by the
user SH.

Defining Filters for Tables
The tables filter restricts the workload to include or exclude SQL statements that access
a list of tables that you specify. Table filters are not permitted if you selected the Create
a Hypothetical Workload from the Following Schemas and Tables option, as
described in "Using a Hypothetical Workload" on page 11-4.

To define a filter for tables:
1. To include only SQL statements that access a specific list of tables, enter the table

names in the Include only SQL statements that access any of these tables field.

2. To exclude all SQL statements that access a specific list of tables, enter the table
names in the Exclude all SQL statements that access any of these tables field.

3. To search for available tables, click the Tables search icon.

The Search and Select: Schema and Table dialog box appears.

4. Select the tables for which you want to include or exclude SQL statements and
click Select.

The Search and Select: Schema and Table dialog box closes and the selected tables
now appear in the corresponding Tables field.

Defining Filters for SQL Text
The SQL text filter restricts the workload to include or exclude SQL statements that
contains SQL text substrings that you specify.

To define a filter for SQL text:
1. To include only SQL statements that contains specific SQL text, enter the SQL text

to be included in the Include only SQL statements containing these SQL text
substrings field.

Running SQL Access Advisor

Optimizing Data Access Paths 11-7

2. To exclude all SQL statements that contain specific SQL text, enter the SQL text to
be excluded in the Exclude all SQL statements containing these SQL text
substrings field.

Defining Filters for Modules
The module filter restricts the workload to include or exclude SQL statements that are
associated with modules that you specify.

To define a filter for module ID:
1. To include only SQL statements associated with a specific module ID in the

workload, select Include only SQL statements associated with these modules.

2. To exclude all SQL statements associated to a specific module ID from the
workload, select Exclude all SQL statements associated with these modules.

3. In the Modules field, enter the names of the modules for which associated SQL
statements will be included or excluded.

Defining Filters for Actions
The actions filter restricts the workload to include or exclude SQL statements that are
associated with actions that you specify.

To define a filter for actions:
1. To include only SQL statements associated with a specific action in the workload,

select Include only SQL statements associated with these actions.

2. To exclude all SQL statements associated with a specific action from the workload,
select Exclude all SQL statements associated with these actions.

3. In the Actions field, enter the actions for which associated SQL statements will be
included or excluded.

Running SQL Access Advisor: Recommendation Options
To improve the underlying data access methods chosen by the optimizer for the
workload, SQL Access Advisor provides recommendation for indexes, materialized
views, and partitioning. Using these access structures can significantly improve the
performance of the workload by reducing the time required to read data from the
database. However, you must balance the benefits of using these access structures
against the cost to maintain them.

To specify recommendation options:
1. On the SQL Access Advisor: Recommendation Options page, under Access

Structures to Recommend, select the type of access structures to be recommended
by SQL Access Advisor:

Tip: Before you can select the recommendation options for SQL
Access Advisor, do the following:

■ Select initial options, as described in "Running SQL Access
Advisor: Initial Options" on page 11-2.

■ Select the workload source, as described in "Running SQL Access
Advisor: Workload Source" on page 11-3.

■ Define the filter options, as described in "Running SQL Access
Advisor: Filter Options" on page 11-5.

Running SQL Access Advisor

11-8 Oracle Database 2 Day + Performance Tuning Guide

■ Indexes

■ Materialized Views

■ Partitioning

In this example, all of the preceding access types are selected.

2. Under Scope, select the mode in which SQL Access Advisor will run. Do one of
the following:

■ Select Limited Mode.

In limited mode, SQL Access Advisor focuses on SQL statements with the
highest cost in the workload. The analysis is quicker, but the recommendations
may be limited.

■ Select Comprehensive Mode.

In comprehensive mode, SQL Access Advisor analyzes all SQL statements in
the workload. The analysis can take much longer, but the recommendations
will be exhaustive.

In this example, Limited Mode is selected.

3. Optionally, click Advanced Options.

The Advanced Options section expands. This section contains the following
subsections:

■ Workload Categorization

In this section, you can specify the type of workload for which you want a
recommendation. The following categories are available:

– Workload Volatility

Select Consider only queries if the workload contains primarily read-only
operations, as in data warehouses. Volatility data is useful for online trans-
action processing (OLTP) systems, where the performance of INSERT,
UPDATE, and DELETE operations is critical.

– Workload Scope

Select Recommend dropping unused access structures if the workload
represents all access structure use cases.

■ Space Restrictions

Indexes and materialized views increase performance at the cost of space. Do
one of the following:

Running SQL Access Advisor

Optimizing Data Access Paths 11-9

– Select No, show me all recommendations (unlimited space) to specify no
space limits. When SQL Access Advisor is invoked with no space limits, it
makes the best possible performance recommendations.

– Select Yes, limit additional space to and then enter the space limit in
megabytes, gigabytes, or terabytes. When SQL Access Advisor is invoked
with a space limit, it produces only recommendations with space
requirements that do not exceed the specified limit.

■ Tuning Prioritization

This section enables you to specify how SQL statements will be tuned.
Complete the following steps:

– From the Prioritize tuning of SQL statements by list, select a method by
which SQL statements are to be tuned and then click Add.

– Optionally, select Allow Advisor to consider creation costs when
forming recommendations to weigh the cost of creating access structures
against the frequency and potential improvement of SQL statement
execution time. Otherwise, creation cost will be ignored. You should select
this option if you want specific recommendations generated for SQL
statements that are executed frequently.

■ Default Storage Locations

Use this section to override the defaults defined for schema and tablespace
locations. By default, indexes are in the schema and tablespace of the table
they reference. Materialized views are in the schema and tablespace of the first
table referenced in the query. Materialized view logs are in the default
tablespace of the schema of the table that they reference.

4. Click Next.

The SQL Access Advisor: Schedule page appears.

5. Proceed to the next step, as described in "Running SQL Access Advisor: Schedule"
on page 11-9.

Running SQL Access Advisor: Schedule
Use the SQL Access Advisor Schedule page to set or modify the schedule parameters
for the SQL Access Advisor task.

Running SQL Access Advisor

11-10 Oracle Database 2 Day + Performance Tuning Guide

Figure 11–1 Scheduling a SQL Access Advisor Task

To schedule a SQL Access Advisor task:
1. On the SQL Access Advisor: Schedule page, under Advisor Task Information,

enter a name in the Task Name field if you do not want to use the
system-generated task name.

In the example shown in Figure 11–1, SQLACCESS9084523 is entered.

2. In the Task Description field, enter a description of the task.

In the example shown in Figure 11–1, SQL Access Advisor is entered.

3. From the Journaling Level list, select the level of journaling for the task.

Journaling level controls the amount of information that is logged to the SQL
Access Advisor journal during task execution. This information appears on the
Details subpage when viewing task results.

Tip: Before you can schedule a SQL Access Advisor task, do the
following:

■ Select initial options, as described in "Running SQL Access
Advisor: Initial Options" on page 11-2.

■ Select the workload source, as described in "Running SQL Access
Advisor: Workload Source" on page 11-3.

■ Define the filter options, as described in "Running SQL Access
Advisor: Filter Options" on page 11-5.

■ Specify the recommendation options, as described in "Running
SQL Access Advisor: Recommendation Options" on page 11-7.

Running SQL Access Advisor

Optimizing Data Access Paths 11-11

In the example shown in Figure 11–1 on page 11-10, Basic is selected.

4. In the Task Expiration (Days) field, enter the number of days the task will be
retained in the database before it is purged.

In the example shown in Figure 11–1 on page 11-10, 30 is entered.

5. In the Total Time Limit (minutes) field, enter the maximum number of minutes
that the job is permitted to run.

You must enter a time in this field rather than use the default of UNLIMITED. In
the example shown in Figure 11–1 on page 11-10, 10 is entered.

6. Under Scheduling Options, in the Schedule Type list, select a schedule type for the
task and a maintenance window in which the task should run. Do one of the
following:

■ Click Standard.

This schedule type enables you to select a repeating interval and start time for
the task. Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– In the Repeat list, select Do Not Repeat to perform the task only once, or
select a unit of time and enter the number of units in the Interval field.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

■ Click Use predefined schedule.

This schedule type enables you to select an existing schedule. Do one of the
following:

– In the Schedule field, enter the name of the schedule to be used for the
task.

– To search for a schedule, click the search icon.

The Search and Select: Schedule dialog box appears.

Select the desired schedule and click Select. The selected schedule now
appears in the Schedule field.

■ Click Standard using PL/SQL for repeated interval.

This schedule types enables you to select a repeating interval and an execution
time period (window) for the task. Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Available to Start, select Immediately to start the task now, or Later
to schedule the task to start at a time specified using the Date and Time
fields.

– In the Repeat list, select Do Not Repeat to perform the task only once, or
select a unit of time and enter the number of units in the Interval field.

– In the Repeated Interval field, enter a PL/SQL schedule expression, such
as SYSDATE+1.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

Running SQL Access Advisor

11-12 Oracle Database 2 Day + Performance Tuning Guide

■ Click Use predefined window.

This schedule type enables you to select an existing window. Select Stop on
Window Close to stop the job when the window closes. Do one of the
following:

– In the Window field, enter the name of the window to be used for the task.

– To search for a window, click the search icon.

The Search and Select: Window and Window Groups dialog box appears.

Select the desired window and click Select. The selected window now
appears in the Schedule field.

■ Click Event.

Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Event Parameters, enter values in the Queue Name and Condition
fields.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

■ Click Calendar.

Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Calendar Expression, enter a calendar expression.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

In the example shown in Figure 11–1 on page 11-10, Standard is selected for
schedule type. The task will not repeat and is scheduled to start immediately.

7. Click Next.

The SQL Access Advisor: Review page appears.

Reviewing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-13

Under Options, a list of modified options for the SQL Access Advisor task is
shown. To display both modified and unmodified options, click Show All
Options. To view the SQL text for the task, click Show SQL.

8. Click Submit.

The Advisor Central page appears. A message informs you that the task was
created successfully.

Reviewing the SQL Access Advisor Recommendations
SQL Access Advisor graphically displays the recommendations and provides
hyperlinks so that you can quickly see which SQL statements benefit from a
recommendation. Each recommendation produced by the SQL Access Advisor is
linked to the SQL statement it benefits.

To review the SQL Access Advisor recommendations:
1. On the Advisor Central page, select the SQL Access Advisor task for review and

click View Result.

In this example, Limited Mode is selected.

If the task is not displayed, then you may need to refresh the screen. The Results
for Task page appears.

2. Review the Summary subpage, which provides an overview of the SQL Access
Advisor analysis, as described in "Reviewing the SQL Access Advisor
Recommendations: Summary" on page 11-14.

3. Review the Recommendations subpage, which enables you to view the
recommendations ranked by cost improvement, as described in "Reviewing the
SQL Access Advisor Recommendations: Recommendations" on page 11-15.

Tip: Before reviewing the SQL Access Advisor recommendations,
run SQL Access Advisor to make the recommendations, as described
in "Running SQL Access Advisor" on page 11-1.

Reviewing the SQL Access Advisor Recommendations

11-14 Oracle Database 2 Day + Performance Tuning Guide

4. Review the SQL statements analyzed in the workload, as described in "Reviewing
the SQL Access Advisor Recommendations: SQL Statements" on page 11-18.

5. Review the details of the workload, task options, and the SQL Access Advisor
task, as described in "Reviewing the SQL Access Advisor Recommendations:
Details" on page 11-19.

Reviewing the SQL Access Advisor Recommendations: Summary
The Summary subpage displays an overview of the SQL Access Advisor analysis.

In this example, Limited Mode is selected.

To review the recommendations summary:
1. On the Results for Tasks page, click Summary.

The Summary subpage appears.

In this example, Limited Mode is selected.

2. Under Overall Workload Performance, assess the potential for improvement in
implementing the recommendations.

3. Use the Workload I/O Cost chart to compare the original workload I/O cost (in
red) with the new cost (in blue).

In this example, the workload I/O cost will decrease from 877 to 867 by
implementing the recommendations.

4. Use the Query Execution Time Improvement chart to compare the improvement in
query execution time.

This chart shows the percentage of SQL statements in the workload whose
execution time will improve by accepting the recommendations. The SQL
statements are grouped by the projected improvement factor along the horizontal
axis on the chart (1x to >10x). The percentage of SQL statements that will improve
by the projected improvement factor are along the vertical axis (0% to 100%).

In this example, approximately 75 percent of SQL statements in the workload will
gain no performance improvement in execution time, but about 25 percent will
have the potential for improvement of over 4x or more.

Reviewing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-15

5. Under Recommendations, click Show Recommendation Action Counts.

In this example, creating 1 index, 4 materialized views, and 6 materialized view
logs is recommended.

In this example, Limited Mode is selected.

6. Under SQL Statements, click Show Statement Counts to display the type of SQL
statement.

In this example, 19 SELECT statements are analyzed.

In this example, Limited Mode is selected.

Reviewing the SQL Access Advisor Recommendations: Recommendations
The Recommendations subpage ranks the SQL Access Advisor recommendations by
cost improvement. You can also view details about each recommendation.

To review recommendation details:
1. On the Results for Tasks page, click Recommendations.

The Recommendations subpage appears.

Reviewing the SQL Access Advisor Recommendations

11-16 Oracle Database 2 Day + Performance Tuning Guide

2. Use the Recommendations by Cost Improvement chart to view recommendations
ordered by the cost improvement.

Under Select Recommendations for Implementation, each recommendation is
listed with its implementation status, recommendation ID, cost improvement,
space consumption, and the number of affected SQL statements for each
recommendation. Implementing the top recommendation will have the biggest
benefit to the total performance of the workload.

3. To view details for a particular recommendation, select the recommendation and
click Recommendation Details.

The Recommendation Details page appears.

Reviewing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-17

The Recommendation Details page displays all actions for the specified
recommendation.

Under Actions, you can choose to modify the schema name, tablespace name, and
storage clause for each action. To view the SQL text of an action, click the link in
the Action column for the specified action.

Under SQL Affected by Recommendation, the SQL text of the SQL statement and
cost improvement information are displayed.

4. Click OK.

The Recommendations subpage appears.

5. To view the SQL text of a recommendation, select the recommendation and click
Show SQL.

The Show SQL page for the selected recommendation appears.

Reviewing the SQL Access Advisor Recommendations

11-18 Oracle Database 2 Day + Performance Tuning Guide

Reviewing the SQL Access Advisor Recommendations: SQL Statements
The SQL Statements subpage ranks SQL statements in the workload by cost
improvement. You can use this page to view details about the SQL statements
analyzed in the workload.

To review SQL statements:
1. On the Results for Tasks page, click SQL Statements.

The SQL Statements subpage appears.

Reviewing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-19

2. Use the SQL Statements by Cost Improvement chart to view SQL statements in the
workload ordered by the cost improvement.

Under Select SQL Statements to be Improved, each SQL statement is listed with its
statement ID, SQL text, associated recommendation, cost improvement, and
execution count.

Implementing the recommendation associated with the top SQL statement will
have the biggest benefit to the total performance of the workload. In this example,
implementing the recommendation with ID 1 will produce the biggest benefit, a
cost improvement of 57.14 percent, for the SQL statement with ID 2421.

3. To view the SQL text of a recommendation, select the recommendation and click
Show SQL.

The Show SQL page for the selected recommendation appears.

Reviewing the SQL Access Advisor Recommendations: Details
The Details subpage displays a list of all the workload and task options used in the
analysis. You can also use this subpage to view a list of journal entries for the task,
based on the journaling level used when the task was created.

To review workload and task details:
■ On the Results for Tasks page, click Details.

The Details subpage appears.

Implementing the SQL Access Advisor Recommendations

11-20 Oracle Database 2 Day + Performance Tuning Guide

Under Workload and Task Options, a list of options that were selected when the
advisor task was created is displayed.

Under Journal Entries, a list of messages that were logged to the SQL Access
Advisor journal while the task was executing is displayed.

Implementing the SQL Access Advisor Recommendations
A SQL Access Advisor recommendation can range from a simple suggestion to a
complex solution that requires partitioning a set of existing base tables and
implementing a set of database objects such as indexes, materialized views, and
materialized view logs. You can select the recommendations for implementation and
schedule when the job should be executed.

To implement the SQL Access Advisor recommendations:
1. On the Results for Tasks page, click Recommendations.

The Recommendations subpage appears.

2. Under Select Recommendations for Implementation, select the recommendation
you want to implement and click Schedule Implementation.

Tip: Before implementing the SQL Access Advisor
recommendations, review them for cost benefits to determine which
ones, if any, should be implemented. For more information, see
"Reviewing the SQL Access Advisor Recommendations" on
page 11-13.

Implementing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-21

In this example, the recommendation with ID value 1 is selected.

The Schedule Implementation page appears.

3. In the Job Name field, enter a name for the job if you do not want to use the
system-generated job name.

4. Determine whether or not the implementation job should stop if an error is
encountered. Do one of the following:

■ To stop processing if an error occurs, select Stop on Error.

■ To continue processing even if an error occurs, deselect Stop on Error.

5. Under Scheduling Options, in the Schedule Type list, select a schedule type for the
task and a maintenance window in which the task should run. Do one of the
following:

■ Click Standard.

This schedule type enables you to select a repeating interval and start time for
the task. Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– In the Repeat list, select Do Not Repeat to perform the task only once, or
select a unit of time and enter the number of units in the Interval field.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

■ Click Use predefined schedule.

This schedule type enables you to select an existing schedule. Do one of the
following:

– In the Schedule field, enter the name of the schedule to be used for the
task.

– To search for a schedule, click the search icon.

The Search and Select: Schedule dialog box appears.

Select the desired schedule and click Select. The selected schedule now
appears in the Schedule field.

■ Click Standard using PL/SQL for repeated interval.

Implementing the SQL Access Advisor Recommendations

11-22 Oracle Database 2 Day + Performance Tuning Guide

This schedule type enables you to select a repeating interval and an execution
window for the task. Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Available to Start, select Immediately to start the task now, or Later
to schedule the task to start at a time specified using the Date and Time
fields.

– In the Repeat list, select Do Not Repeat to perform the task only once, or
select a unit of time and enter the number of units in the Interval field.

– In the Repeated Interval field, enter a PL/SQL schedule expression, such
as SYSDATE+1.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

■ Click Use predefined window.

This schedule type enables you to select an existing window. Select Stop on
Window Close to stop the job when the window closes. Do one of the
following:

– In the Window field, enter the name of the window to be used for the task.

– To search for a window, click the search icon.

The Search and Select: Window and Window Groups dialog box appears.

Select the desired window and click Select. The selected window now
appears in the Schedule field.

■ Click Event.

Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Event Parameters, enter values in the Queue Name and Condition
fields.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

■ Click Calendar.

Complete the following steps:

– Enter your time zone code in the Time Zone field or click the search icon
to locate the code for your area.

– Under Calendar Expression, enter a calendar expression.

– Under Start, select Immediately to start the task now, or Later to schedule
the task to start at a time specified using the Date and Time fields.

– Under Not Available After, select No End Date to indicate that there is no
end date for the execution window, or Specified End Date to specify an
end date using the Date and Time fields.

Implementing the SQL Access Advisor Recommendations

Optimizing Data Access Paths 11-23

In this example, Standard is selected for schedule type. The job will not repeat and
is scheduled to start immediately.

6. Optionally, click Show SQL to view the SQL text for the job.

7. To submit the job, click Submit.

If the job is scheduled to start immediately, then the Results for Tasks page for the
SQL Access Advisor task appears with a confirmation that the job was successfully
created.

8. Do one of the following, depending on whether the job is scheduled to start
immediately or later:

■ If you submitted the job immediately, and if the Results for Task page is
shown, then click the link in the Scheduler Job field to display the View Job
page. Go to Step 10.

■ If the job is scheduled to start at a later time, then proceed to Step 9.

9. Complete the following steps:

a. On the Server page, under Oracle Scheduler, click Jobs.

The Scheduler Jobs page appears.

b. Select the implementation job and click View Job Definition.

The View Job page for the selected job appears.

10. On the View Job page, under Operation Detail, check the status of the operation.

Implementing the SQL Access Advisor Recommendations

11-24 Oracle Database 2 Day + Performance Tuning Guide

11. Optionally, select the operation and click View.

The Operation Detail page appears.

This page contains information (such as start date and time, run duration, CPU
time used, and session ID) that you can use to troubleshoot the failure.

12. On the Schema subpage, verify that the access structure recommended by SQL
Access Advisor is created.

Depending on the type of access structure that is created, you can display the
access structure using the Indexes page, Materialized Views page, or the
Materialized View Logs page.

In this example, a materialized view named MV$$_00690000 is created in the SH
schema.

Analyzing SQL Performance Impact 12-1

12
Analyzing SQL Performance Impact

System changes, such as upgrading a database or adding an index, may cause changes
to execution plans of SQL statements, resulting in a significant impact on SQL
performance. In some cases, the system changes may cause SQL statements to regress,
resulting in performance degradation. In other cases, the system changes may improve
SQL performance. Being able to accurately forecast the potential impact of system
changes on SQL performance enables you to tune the system beforehand in cases
where the SQL statements regress, or to validate and measure the performance gain in
cases where the performance of the SQL statements improves.

SQL Performance Analyzer enables you to forecast the impact of system changes on a
SQL workload by:

■ Measuring the performance before and after the change

■ Generating a report that describes the change in performance

■ Identifying the SQL statements that regressed or improved

■ Providing tuning recommendations for each SQL statement that regressed

■ Enabling you to implement the tuning recommendations when appropriate

This chapter contains the following sections:

■ SQL Performance Analyzer Usage

■ SQL Performance Analyzer Methodology

■ Running SQL Performance Analyzer

■ Reviewing the SQL Performance Analyzer Report

SQL Performance Analyzer Usage
You can use SQL Performance Analyzer to analyze the SQL performance impact of
any type of system changes. Examples of system changes include the following:

■ Database upgrade

When performing a database upgrade, you may not be able to predict how the
system will perform after the upgrade, or if an existing functionality may be
adversely affected. For example, a database upgrade installs a new version of the
optimizer, which has an effect on SQL performance. SQL Performance Analyzer
enables you to compare the SQL performance between two versions of Oracle

See Also:

■ Oracle Database Performance Tuning Guide to learn how to run SQL
Performance Analyzer with the DBMS_SQLPA package

SQL Performance Analyzer Methodology

12-2 Oracle Database 2 Day + Performance Tuning Guide

Database. In this way, you can identify and tune SQL statements that may
potentially regress after the database upgrade without affecting your production
system.

■ Application upgrade

An application upgrade may involve changes to the database, such as redesigning
tables, or adding and removing indexes. As is the case with database upgrades, it
is difficult to predict how the system will perform after the changes, or if an
existing functionality may be adversely affected. SQL Performance Analyzer
enables you to compare the SQL performance between two versions of an
application. Thus, you can tune SQL statements that may potentially regress after
the upgrade.

■ Changes to the operating system, hardware, and database configuration

Changes to the operating systems (such as installing a new operating system),
hardware (such as adding more CPU or memory), or database configuration (such
as moving from a single instance database environment to Oracle Real Application
Clusters) may have a significant effect on SQL performance. SQL Performance
Analyzer enables you to determine the improvement or deterioration to SQL
performance when making these changes.

■ Schema change

Changing a schema, such as altering indexes or creating new ones, almost
inevitably affects SQL performance. SQL Performance Analyzer enables you to
determine the effect on SQL performance when making a schema change.

■ Database initialization parameter change

Changing the value of a database parameter may produce unexpected results. For
example, you may enable a specific initialization parameter to improve
performance, but this change may produce unexpected results because the system
constraints may have changed. SQL Performance Analyzer enables you to
determine the effect on SQL performance when changing a database initialization
parameter.

■ SQL tuning

Accepting recommendations from an advisor (such as ADDM, SQL Tuning
Advisor, or SQL Access Advisor) may require you to tune problematic SQL
statements. For example, SQL Tuning Advisor may recommend that you accept a
SQL profile for a particular SQL statement. SQL Performance Analyzer enables
you to measure the performance improvement that may be gained by tuning SQL
statements as recommended by the advisors, and determine whether to accept
these recommendations.

SQL Performance Analyzer Methodology
You can run SQL Performance Analyzer on a test system that closely resembles the
production system, or on the production system itself. Performing a SQL Performance
Analyzer analysis is resource-intensive, so performing the analysis on the production
system may cause significant performance degradation.

Any global changes made on the system to test the performance effect may also affect
other users of the system. For smaller changes, such as adding or dropping an index,
the effect on other users may be acceptable. However, for systemwide changes, such as
a database upgrade, using a production system is not recommended and should be
considered only if a test system is unavailable. If a separate test system is available,

SQL Performance Analyzer Methodology

Analyzing SQL Performance Impact 12-3

then running SQL Performance Analyzer on the test system enables you to test the
effects of the changes without affecting the production system.

To ensure that SQL Performance Analyzer can accurately analyze the SQL
performance impact, the test system should be as similar to the production system as
possible. For these reasons, running SQL Performance Analyzer on a test system is
recommended and is the methodology described here. If you choose to run SQL
Performance Analyzer on the production system, then substitute the production
system for the test system where applicable.

Analyzing the SQL performance effect of system changes using SQL Performance
Analyzer is an iterative process that involves the following steps:

1. Capture the SQL workload that you want to analyze on the production system, as
described in "Capturing and Transporting a SQL Workload" on page 12-3.

2. Transport the SQL workload from the production system to the test system, as
described in "Capturing and Transporting a SQL Workload" on page 12-3.

3. Create a SQL Performance Analyzer task on the test system using the SQL
workload as its input source, as described in "Following a Guided Workflow with
SQL Performance Analyzer" on page 12-12.

4. Set up the environment on the test system to match the production system as
closely as possible, as described in "Establishing the Initial Environment" on
page 12-14.

5. Build the pre-change performance data by executing the SQL workload on the
system before the change, as described in "Collecting SQL Performance Data
Before the Change" on page 12-14.

6. Perform the system change on the test system, as described in "Making the System
Change" on page 12-16.

7. Build the post-change performance data by executing the SQL workload on the
system after the change, as described in "Collecting SQL Performance Data After
the Change" on page 12-16.

8. Compare and analyze the pre-change and post-change versions of performance
data, as described in "Comparing SQL Performance Before and After the Change"
on page 12-17.

9. Generate and review a report to identify the SQL statements in the SQL workload
that have improved, remain unchanged, or regressed after the system change.

10. Tune any regressed SQL statements that are identified, as described in Chapter 10,
"Tuning SQL Statements".

11. Ensure that the performance of the tuned SQL statements is acceptable by
repeating Step 5 through Step 10 until your performance goals are met.

This section contains the following topics:

■ Capturing and Transporting a SQL Workload

■ Setting Up the Database Environment on the Test System

■ Executing a SQL Workload

Capturing and Transporting a SQL Workload
Before running SQL Performance Analyzer, capture a set of SQL statements on the
production system that represents the SQL workload that you intend to analyze and

SQL Performance Analyzer Methodology

12-4 Oracle Database 2 Day + Performance Tuning Guide

transport to the test system. The captured SQL statements should include the
following information:

■ SQL text

■ Execution environment

– SQL binds, which are bind values needed to execute a SQL statement and
generate accurate execution statistics

– Parsing schema under which a SQL statement can be compiled

– Compilation environment, including initialization parameters under which a
SQL statement is executed

■ Number of times a SQL statement was executed

You can store captured SQL statements in SQL Tuning Sets and use them as an input
source for SQL Performance Analyzer. Capturing a SQL workload using a SQL Tuning
Set enables you to do the following:

■ Store the SQL text and any necessary auxiliary information in a single, persistent
database object

■ Populate, update, delete, and select captured SQL statements in the SQL Tuning
Set

■ Load and merge content from various data sources, such as the Automatic
Workload Repository (AWR) or the cursor cache

■ Export the SQL Tuning Set from the system where the SQL workload is captured
and import it into another system

■ Reuse the SQL workload as an input source for other advisors, such as SQL
Tuning Advisor and SQL Access Advisor

After you have captured the SQL workload into a SQL Tuning Set on the production
system, you must transport it to the test system.

Setting Up the Database Environment on the Test System
Depending on the system change that you intend to analyze, you must set up the
database environment on the test system before and after performing the system
change. Before the system change, set up the database environment on the test system
to match the database environment in the production system as closely as possible. In
this way, SQL Performance Analyzer can more accurately forecast the effect of the
system change on SQL performance.

For example, to test how changing a database initialization parameter will affect SQL
performance, complete the following steps:

1. Set the database initialization parameter on the test system to the same value as
the production system.

2. Build the pre-change SQL performance data.

3. Set the database initialization parameter to the new value you want to test.

4. Build the post-change SQL performance data.

See Also:

■ "Creating a SQL Tuning Set" on page 10-8

■ Oracle Database Performance Tuning Guide for information about
transporting SQL Tuning Sets

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-5

5. Compare the two sets of performance data.

Similarly, to test the performance effect of a database upgrade from release 10g to
release 11g, perform the following tasks:

1. Install Oracle Database 11g on the test system.

2. Revert the OPTIMIZER_FEATURES_ENABLE initialization parameter to the
database version on the production system.

3. Build the pre-change SQL performance data.

4. Set the OPTIMIZER_FEATURES_ENABLE initialization parameter to the database
version to which you are upgrading.

5. Build the post-change SQL performance data.

6. Compare the two sets of performance data.

Executing a SQL Workload
After the SQL workload is captured and transported to the test system, and the initial
database environment is properly configured, execute the SQL workload to build the
pre-change performance data before making the system change. Executing a SQL
workload runs each of the SQL statements contained in the workload to completion.
During execution, SQL Performance Analyzer generates execution plans and
computes execution statistics for each SQL statement in the workload. After the
pre-change performance data is built, you can perform the system change.

After performing the system change, execute the SQL workload again to build the
post-change performance data. SQL Performance Analyzer generates execution plans
and computes execution statistics for each SQL statement in the workload a second
time, resulting in a new set of performance data that can be used to compare to the
pre-change version of the performance data.

Depending on its size, executing a SQL workload can be resource-intensive and cause
a significant performance impact. When executing a SQL workload, you can choose to
generate execution plans only, without collecting execution statistics. This technique
shortens the time to run the execution and lessens the effect on system resources, but
the results of the comparison analysis may not be as accurate. If you are running SQL
Performance Analyzer on the production system, then consider executing the SQL
workload using a private session to avoid affecting the rest of the system.

Running SQL Performance Analyzer
SQL Performance Analyzer enables you to analyze the effects of environmental
changes on execution of SQL statements in SQL Tuning Sets. As explained in
"Managing SQL Tuning Sets" on page 10-8, a SQL Tuning Set is a database object that
includes one or more SQL statements along with their execution statistics and
execution context. In addition to the performance analysis, SQL Performance Analyzer
can invoke SQL Advisor and provide tuning recommendations.

SQL Performance Analyzer guides you through the SQL workload comparison by
means of the following workflows:

■ Optimizer Upgrade Simulation

See Also:

■ Oracle Database Reference to learn about the
OPTIMIZER_FEATURES_ENABLE initialization parameter

Running SQL Performance Analyzer

12-6 Oracle Database 2 Day + Performance Tuning Guide

Use this workflow to simulate a database upgrade and measure its effect on a
workload.

■ Parameter Change

Use this workflow to determine how a database initialization parameter change
will affect SQL performance.

■ Guided Workflow

Use this workflow to compare the performance of SQL execution on different
databases.

In each of the preceding workflows, you must create a SQL Performance Analyzer
task. A task is a container for the results of SQL replay trials. A replay trial captures
the execution performance of a SQL Tuning Set under specific environmental
conditions.

To run SQL Performance Analyzer:
1. On the Database Home page, click Advisor Central.

The Advisor Central page appears.

2. Click SQL Performance Analyzer.

SQL Performance Analyzer page appears. A list of existing SQL Performance
Analyzer tasks are displayed.

3. Do one of the following:

■ Proceed to "Performing an Optimizer Upgrade Simulation with SQL
Performance Analyzer" on page 12-7.

■ Proceed to "Testing an Initialization Parameter Change with SQL Performance
Analyzer" on page 12-10.

■ Proceed to "Following a Guided Workflow with SQL Performance Analyzer"
on page 12-12.

See Also:

■ Oracle Database Performance Tuning Guide for information about
running SQL Performance Analyzer using APIs

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-7

Performing an Optimizer Upgrade Simulation with SQL Performance Analyzer
SQL Performance Analyzer can automatically simulate the effect of a database
upgrade on SQL performance. The simulation is based on changing the
OPTIMIZER_FEATURES_ENABLE initialization parameter. All SQL statements use the
optimizer, which is a part of Oracle Database that determines the most efficient means
of accessing the specified data. You could use SQL Performance Analyzer to compare
the performance of SQL execution when using the 10.2.0.2 and 11.1.0.1 versions of the
optimizer.

After you select a SQL Tuning Set and a comparison metric, SQL Performance
Analyzer creates two replay trials. The first trial captures SQL performance by
simulating the optimizer from the user-selected previous release, whereas the second
trial uses the optimizer from the current release. The system-generated Replay Trial
Comparison report evaluates SQL regression. If performance was degraded, then you
can then use SQL Tuning Advisor to develop SQL profiles for regressed SQL.

To simulate an optimizer upgrade:
1. On the SQL Performance Analyzer page, click Optimizer Upgrade Simulation.

The Optimizer Upgrade Simulation page appears.

2. In the Task Name field, enter the name of the task.

For example, enter 111_UPG_OPT_COST.

3. Select the SQL Tuning Set to use for the comparison. Do one of the following:

■ In SQL Tuning Set, enter the name the SQL Tuning Set that contains the SQL
workload to be analyzed.

■ Click the search icon to search for a SQL Tuning Set, and then select the set.

The tuning set now appears in the SQL Tuning Set field.

4. In the Description field, optionally enter a description of the task.

For example enter the following text: This task simulates an upgrade
from 10.2.0.2 to 11.1.0.1.

5. In the Per-SQL Time Limit list, select the time limit for SQL execution during the
replay. Do one of the following:

Running SQL Performance Analyzer

12-8 Oracle Database 2 Day + Performance Tuning Guide

■ Select UNLIMITED.

The execution will run each of the SQL statements in the SQL Tuning Set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.

■ Select EXPLAIN ONLY.

The task will generate execution plans only. This option shortens the execution
time, but the performance analysis may not be as accurate.

■ Select Customize and then enter the specified number of hours, minutes, or
seconds.

6. In the Optimizer Versions section, select the optimizer versions for comparison in
the Version 1 and Version 2 lists.

In this example, the optimizer versions 10.2.0.2 and 11.1.0.1 are selected for
comparison.

7. In the Comparison Metric list, select the comparison metric to use for the analysis.
Do one of the following:

■ If you selected EXPLAIN ONLY in Step 5, then select Optimizer Cost.

■ If you selected UNLIMITED or Customize in Step 5, then select any of the
following options:

– Elapsed Time

– CPU Time

– Buffer Gets

– Disk Reads

– Direct Writes

– Optimizer Cost

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

8. In the Schedule section, do one of the following:

a. Enter your time zone code in the Time Zone field or click the search icon to
locate the code for your area.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified with the Date and Time fields.

9. Click Submit.

A confirmation message appears.

In the SQL Performance Analyzer Tasks table, the status icon of this task changes
to an arrow while the execution is in progress. To refresh the status icon, click
Refresh. After the task completes, the Status icon changes to a check mark.

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-9

10. In the SQL Performance Analyzer Tasks table, select the optimizer task and click
the link in the SQL Performance Analyzer Task column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

■ SQL Tuning Set

This section summarizes information about the tuning set, including the
name, owner, description, and number of statements in the set.

■ Replay Trials

This section includes a table that lists the replay trials used in the SQL
Performance Analyzer task.

■ Replay Trial Comparisons

This section contains a table lists the results of the workload comparisons.

11. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

12. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report" on page 12-19.

Running SQL Performance Analyzer

12-10 Oracle Database 2 Day + Performance Tuning Guide

Testing an Initialization Parameter Change with SQL Performance Analyzer
The Parameter Change workflow enables you to test the performance effect on a SQL
Tuning Set when you vary a single environment initialization parameter between two
values. For example, you can compare SQL performance when the sort area size is
increased from 1 MB to 2 MB.

After you select a SQL Tuning Set and a comparison metric, SQL Performance
Analyzer creates a task and performs a trial with the initialization parameter set to the
original value. The Analyzer then performs a second trial with the parameter set to the
new value. The system-generated Replay Trial Comparison report evaluates the
regression.

To test an initialization parameter change:
1. On the SQL Performance Analyzer page, click Parameter Change.

The Parameter Change page appears.

2. In the Task Name field, enter the name of the task.

For example, enter SORT_TIME.

3. Select the SQL Tuning Set. Do one of the following:

■ In SQL Tuning Set, enter the name the SQL Tuning Set that contains the SQL
workload to be analyzed.

■ Click the search icon to search for a SQL Tuning Set, and then select the set.

The tuning set now appears in the SQL Tuning Set field.

4. In the Description field, optionally enter a description of the task.

For example enter the following text: Double the value of
sort_area_size.

See Also:

■ Oracle Database Reference for more information about the
OPTIMIZER_FEATURES_ENABLE initialization parameter

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-11

5. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the replay. Do one of the following:

■ Select UNLIMITED.

The execution will run each of the SQL statements in the SQL Tuning Set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.

■ Select EXPLAIN ONLY.

The task will generate execution plans only. This option shortens the execution
time, but the performance analysis may not be as accurate.

■ Select Customize and then enter the specified number of hours, minutes, or
seconds.

6. In the Parameter Change section, complete the following steps:

a. In the Parameter Name field, enter the name of the initialization parameter
whose value you want to modify, or click the Search icon to review the current
parameter settings.

For example, enter sort_area_size.

b. In the Base Value field, enter the current value of the initialization parameter.

For example, enter 1048576.

c. In the Changed Value field, enter the new value of the initialization
parameter.

For example, enter 2097152.

7. In the Comparison Metric list, select the comparison metric to use for the analysis.
Do one of the following:

■ If you selected EXPLAIN ONLY in Step 5, then select Optimizer Cost.

■ If you selected UNLIMITED or Customize in Step 5, then select any of the
following options:

– Elapsed Time

– CPU Time

– Buffer Gets

– Disk Reads

– Direct Writes

– Optimizer Cost

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

8. In the Schedule section, do one of the following:

a. Enter your time zone code in the Time Zone field or click the search icon to
locate the code for your area.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified with the Date and Time fields.

9. Click Submit.

A confirmation message appears.

Running SQL Performance Analyzer

12-12 Oracle Database 2 Day + Performance Tuning Guide

In the SQL Performance Analyzer Tasks table, the status icon of this task changes
to an arrow while the execution is in progress. To refresh the status icon, click
Refresh. After the task completes, the Status icon changes to a check mark.

10. In the SQL Performance Analyzer Tasks table, select the optimizer task and click
the link in the SQL Performance Analyzer Task column.

The SQL Performance Analyzer Task page appears.

This page contains the following sections:

■ SQL Tuning Set

This section summarizes information about the tuning set, including the
name, owner, description, and number of statements in the set.

■ Replay Trials

This section includes a table that lists the replay trials used in the SQL
Performance Analyzer task.

■ Replay Trial Comparisons

This section contains a table lists the results of the workload comparisons.

11. Click the icon in the Comparison Report column.

The SQL Performance Analyzer Task Result page appears.

12. Review the results of the performance analysis, as described in "Reviewing the
SQL Performance Analyzer Report" on page 12-19.

Following a Guided Workflow with SQL Performance Analyzer
You can use the guided workflow to compare the performance of SQL statements
before and after a variety of system changes that can impact the performance of the
SQL workload.

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-13

To initiate a guided workflow:
1. On the SQL Performance Analyzer page, click Guided Workflow.

The Guided Workflow page appears.

This page lists the required steps in the SQL Performance Analyzer task in
sequential order. Each step must be completed in the order displayed before you
can begin the next step.

2. Proceed to the next step, as described in "Creating a SQL Performance Analyzer
Task Based on a SQL Tuning Set" on page 12-13.

Creating a SQL Performance Analyzer Task Based on a SQL Tuning Set
To run SQL Performance Analyzer, you must create a SQL Performance Analyzer task.
The task requires you to select the SQL Tuning Set containing the workload to be used
in the performance analysis.

The SQL Tuning Set remains constant in the SQL Performance Analyzer task and is
executed in isolation during each replay trial. Thus, performance differences between
trials are caused by environmental differences.

To create a task based on a SQL Tuning Set:
1. In the Guided Workflow page, click the Execute icon for the Create SQL

Performance Analyzer Task based on SQL Tuning Set step.

The Create SQL Performance Analyzer Task page appears.

Tip: Before you can create a SQL Performance Analyzer task, capture
the SQL workload to be used in the performance analysis into a SQL
Tuning Set on the production system. Afterward, transport the
workload to the test system where the performance analysis will be
performed, as described in "Capturing and Transporting a SQL
Workload" on page 12-3.

Tip: Before you can create a SQL Performance Analyzer task based
on a SQL Tuning Set, capture the SQL workload for the performance
analysis in a SQL Tuning Set on the production system. Transport the
set to the test system, as described in "Capturing and Transporting a
SQL Workload" on page 12-3.

Running SQL Performance Analyzer

12-14 Oracle Database 2 Day + Performance Tuning Guide

2. In the Name field, enter the name of the task.

3. In the Description field, optionally enter a description of the task.

4. In the SQL Tuning Set section, do one of the following:

■ In Name, enter the name the SQL Tuning Set that contains the SQL workload
to be analyzed.

■ Click the search icon to search for a SQL Tuning Set, and then select the set.

The tuning set now appears in the Name field.

5. Click Create.

The Guided Workflow page appears.

The Status icon of this step has changed to a check mark and the Execute icon for
the next step is now enabled.

6. Proceed to the next step, as described in "Establishing the Initial Environment" on
page 12-14.

Establishing the Initial Environment
After selecting a SQL Tuning Set as the input source, establish the initial environment
on the test system. This step is not included in the Guided Workflow page because you
must perform it manually. For more information about setting up the database
environment, see "Setting Up the Database Environment on the Test System" on
page 12-4.

To establish the initial environment:
1. On the test system, manually make any necessary environmental changes affecting

SQL optimization and performance.

These changes could include changing initialization parameters, gathering or
setting optimizer statistics, and creating indexes.

2. Proceed to the next step, as described in "Collecting SQL Performance Data Before
the Change".

Collecting SQL Performance Data Before the Change
After you have properly configured the initial environment on the test system, build
the pre-change version of performance data by executing the SQL workload before

Tip: Before you establish the initial environment, select a SQL
Tuning Set, as described in "Creating a SQL Performance Analyzer
Task Based on a SQL Tuning Set" on page 12-13.

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-15

performing the system change. For more information about executing a workload, see
"Executing a SQL Workload" on page 12-5.

To collect SQL performance data before the change:
1. On the Guided Workflow page, click the Execute icon for the Replay SQL Tuning

Set in Initial Environment step.

The Create Replay Trial page appears. A summary of the selected SQL Tuning Set
containing the SQL workload is displayed.

2. In the Replay Trial Name field, enter the name of the replay trial.

3. In the Replay Trial Description field, enter a description of the replay trial.

4. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the replay. Do one of the following:

■ Select UNLIMITED.

The execution will run each of the SQL statements in the SQL Tuning Set to
completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but takes a longer time.

■ Select EXPLAIN ONLY.

The task will generate execution plans only. This option shortens the execution
time, but the performance analysis may not be as accurate.

■ Select Customize and then enter the specified number of minutes.

5. Ensure that the database environment on the test system matches the production
environment as closely as possible, and select Trial environment established.

6. In the Schedule section, do one of the following:

a. Enter your time zone code in the Time Zone field or click the search icon to
locate the code for your area.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified with the Date and Time fields.

7. Click OK.

The Guided Workflow page appears when the execution begins.

Tip: Before computing the pre-change version of performance data,
establish the initial environment, as described in "Establishing the
Initial Environment" on page 12-14.

Running SQL Performance Analyzer

12-16 Oracle Database 2 Day + Performance Tuning Guide

The status icon of this step changes to a clock while the execution is in progress. To
refresh the status icon, click Refresh. Depending on the options selected and the
size of the SQL workload, the execution may take a long time to complete. After
the execution is completed, the Status icon will change to a check mark and the
Execute icon for the next step is enabled.

8. Proceed to the next step, as described in "Making the System Change" on
page 12-16.

Making the System Change
After computing the pre-change SQL performance data, perform the system change on
the test system. This step is not included in the Guided Workflow page because you
must perform it manually. Depending on the type of change, it may be necessary to
reconfigure the environment on the test system to match the new environment for
which you want to perform SQL performance analysis, as described in "Setting Up the
Database Environment on the Test System" on page 12-4.

SQL Performance Analyzer can analyze the SQL performance impact of any type of
system change. For example, you may want to test an application upgrade that
involves changes such as database table redesign, adding or removing indexes, and so
on. For examples of different types of system changes that can be analyzed by SQL
Performance Analyzer, see "SQL Performance Analyzer Usage" on page 12-1.

To make the system change:
1. Make the necessary changes to the test system.

2. Proceed to the next step, as described in "Collecting SQL Performance Data After
the Change" on page 12-16.

Collecting SQL Performance Data After the Change
After you have made the system change, build the post-change version of performance
data by executing the SQL workload again. For more information about executing a
workload, see "Executing a SQL Workload" on page 12-5.

To collect SQL performance after the change:
1. On the Guided Workflow page, click the Execute icon for the Replay SQL Tuning

Set in Changed Environment step.

The Create Replay Trial page appears.

2. In the Replay Trial Name field, enter the name of the execution.

3. In the Replay Trial Description field, enter a description of the execution.

4. In the Per-SQL Time Limit list, determine the time limit for SQL execution during
the replay. Do one of the following:

■ Select UNLIMITED.

Tip: Before making the system change, build the pre-change version
of performance data, as described in "Collecting SQL Performance
Data Before the Change" on page 12-14.

Tip: Before you can build the post-change version of performance
data, make the system change, as described in "Making the System
Change" on page 12-16.

Running SQL Performance Analyzer

Analyzing SQL Performance Impact 12-17

The execution will run each of the SQL statements in the selected SQL Tuning
Set to completion and gather performance data. Collecting execution statistics
provides greater accuracy in the performance analysis but take a longer time
to run.

■ Select EXPLAIN ONLY.

The task will generate execution plans only. This option shortens the execution
time but the performance analysis may not be as accurate.

■ Select Customize and then enter the specified number of minutes.

5. Ensure that the database environment on the test system is set up to match the
production environment as closely as possible, and select Trial environment
established.

6. In the Schedule section, complete the following steps:

a. Enter your time zone code in the Time Zone field or click the search icon to
locate the code for your area.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

7. Click OK.

The Guided Workflow page appears when the execution begins.

The status icon of this step changes to an arrow icon while the execution is in
progress. To refresh the status icon, click Refresh. Depending on the options
selected and the size of the SQL workload, the execution may take a long time to
complete. After the execution is completed, the Status icon will change to a check
mark and the Execute icon for the next step is enabled.

8. Proceed to the next step, as described in "Comparing SQL Performance Before and
After the Change" on page 12-17.

Comparing SQL Performance Before and After the Change
After the post-change SQL performance data is built, compare the pre-change version
of performance data to the post-change version by running a comparison analysis.

To analyze SQL performance before and after the change:
1. On the Guided Workflow page, click the Execute icon for Compare Step 2 and Step

3.

The Run Replay Trial Comparison page appears.

Tip: Before you can compare the pre-change version of performance
data with the post-change version, build the post-change version of
performance data, as described in "Collecting SQL Performance Data
After the Change" on page 12-16.

Running SQL Performance Analyzer

12-18 Oracle Database 2 Day + Performance Tuning Guide

In this example, the SQL_REPLAY_1175211780874 and
SQL_REPLAY_1175217780829 trials are selected for comparison.

2. To compare trials other than those listed by default, select the desired trials in the
Trial 1 Name and Trial 2 Name lists.

Note that you cannot compare a statistical trial with a trial that tests the explain
plan only.

3. In the Comparison Metric list, select the comparison metric to use for the
comparison analysis.

The types of comparison metrics you can use include:

■ Elapsed Time

■ CPU Time

■ Buffer Gets

■ Disk Reads

■ Direct Writes

■ Optimizer Cost

To perform the comparison analysis by using more than one comparison metric,
perform separate comparison analyses by repeating this procedure with different
metrics.

4. In the Schedule section, complete the following steps:

a. Enter your time zone code in the Time Zone field or click the search icon to
locate the code for your area.

b. Select Immediately to start the task now, or Later to schedule the task to start
at a time specified using the Date and Time fields.

5. Click Submit.

The Guided Workflow page appears when the comparison analysis begins.

Reviewing the SQL Performance Analyzer Report

Analyzing SQL Performance Impact 12-19

The status icon of this step changes to an arrow icon while the comparison
analysis is in progress. To refresh the status icon, click Refresh. Depending on the
amount of performance data collected from the pre-change and post-change
executions, the comparison analysis may take a long time to complete. After the
comparison analysis is completed, the Status icon changes to a check mark.

6. Click the Execute icon for View Trial Comparison Result.

The SQL Performance Analyzer Task Result page appears.

7. Review the results of the analysis, as described in "Reviewing the SQL
Performance Analyzer Report" on page 12-19.

Reviewing the SQL Performance Analyzer Report
When a SQL Performance Analyzer task is completed, the resulting data is generated
into a report. This section shows a sample of a SQL Performance Analyzer report. This
sample report uses the elapsed time comparison metric to compare the pre-change and
post-change executions of a SQL workload.

To review the SQL Performance Analyzer report:
1. Review the general information about the performance analysis, as described in

"Reviewing the SQL Performance Analyzer Report: General Information" on
page 12-19.

2. Review general statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics" on page 12-20.

3. Optionally, review the detailed statistics, as described in "Reviewing the SQL
Performance Analyzer Report: Global Statistics Details" on page 12-21.

Reviewing the SQL Performance Analyzer Report: General Information
The General Information section contains basic information and metadata about the
workload comparison performed by SQL Performance Analyzer.

Reviewing the SQL Performance Analyzer Report

12-20 Oracle Database 2 Day + Performance Tuning Guide

To review general information:
1. On the SQL Performance Analyzer Task Result page, review the information at the

top of the page.

This summary at the top of the page includes the following information:

■ The name, owner, and description of the SQL Performance Analyzer task

■ The name and owner of the SQL Tuning Set

■ The total number of SQL statements in the tuning set and the number of
failing statements

■ The names of the replay trials and the comparison metric used

2. Optionally, click the link next to SQL Tuning Set Name.

The SQL Tuning Set page appears.

This page contains information the SQL ID, SQL text, and related information
about every SQL statement in the set.

3. Click the link next to SQL Statements With Errors if errors were found.

The SQL Performance Analyzer Task Result page appears.

The Errors table reports all errors that occurred while executing a given SQL
workload. An error may be reported at the SQL Tuning Set level if it is common to
all statements executions in the SQL Tuning Set, or at the execution level if it is
specific to a SQL statement or execution plan.

4. Review general statistics, as described in "Reviewing the SQL Performance
Analyzer Report: Global Statistics" on page 12-20.

Reviewing the SQL Performance Analyzer Report: Global Statistics
The Global Statistics section reports statistics that describe the overall performance of
the entire SQL workload. This section is a very important part of the SQL Performance
Analyzer analysis because it reports on the impact of the system change on the overall
performance of the SQL workload. Use the information in this section to understand
the tendency of the workload performance, and determine how the workload
performance will be affected by the system change.

To review the global statistics:
1. Review the chart in the Projected Workload Execute Elapsed Time subsection.

The chart shows the two replay executions on the x-axis and the execute elapsed
time (in seconds) on the y-axis.

The most important statistic is the overall impact, which is given as a percentage.
The overall impact is the difference between the improvement impact and the

Reviewing the SQL Performance Analyzer Report

Analyzing SQL Performance Impact 12-21

regression impact. You can click the link for any impact statistic to obtain more
details, as described in "Reviewing the SQL Performance Analyzer Report: Global
Statistics Details" on page 12-21.

In this example, the improvement impact is 25%, while the regression impact is
0%, so the overall impact of the system change is an improvement of 25%.

2. Review the chart in the SQL Statement Count subsection.

The x-axis of the chart shows the number of SQL statements that are improved,
regressed, and unchanged after the system change. The y-axis shows the number
of SQL statements. The chart also indicates whether the explain plan was changed
or unchanged for the SQL statements.

This chart enables you to quickly weigh the relative performance of the SQL
statements. You can click any bar in the chart to obtain more details, as described
in "Reviewing the SQL Performance Analyzer Report: Global Statistics Details" on
page 12-21.

In this example, all SQL statements were either improved or unchanged after the
system change. Most statements were unchanged.

Reviewing the SQL Performance Analyzer Report: Global Statistics Details
You can use the SQL Performance Analyzer Report to obtain detailed statistics for the
SQL workload comparison. The details chart enables you to drill down into the
performance of SQL statements that appears in the Result Summary section of the
report. Use the information in this section to investigate why the performance of a
particular SQL statement regressed.

To review the global statistics details:
1. Click the bar in any chart on the SQL Performance Analyzer Task Result page, or

click the impact percentages in the Projected Workload Execute Elapsed Time
subsection.

A table including the detailed statistics appears. Depending on the table, the
following columns are included:

■ SQL ID

This column indicates the ID of the SQL statement.

■ Executions

This column indicates the number of times this SQL statement was executed.

■ Net Impact on Workload (%)

Reviewing the SQL Performance Analyzer Report

12-22 Oracle Database 2 Day + Performance Tuning Guide

This column indicates the impact of the system change relative to the
performance of the SQL workload.

■ Execute Elapsed Time

This column indicates the total time (in seconds) of the SQL statement
execution.

■ Net Impact on SQL (%)

This column indicates the local impact of the change on the performance of a
particular SQL statement.

■ % of Workload

This column indicates the percentage of the total workload consumed by this
SQL statement.

■ Plan Changed

This column indicates whether the SQL execution plan changed.

2. Click SQL ID for any SQL statement in the table.

The SQL Details page appears.

You can use this page to access the text of the SQL statement and obtain low-level
details such as CPU time, buffer gets, and optimizer cost.

Index-1

Index

A
actions

about, 4-7
Active Session History

about, 7-1
report

about, 7-2
activity over time, 7-7
load profile, 7-4
running, 7-2
top events, 7-3
Top SQL, 7-5
using, 7-3

sampled data, 7-1
statistics, 2-4

alerts
clearing, 5-3
default, 5-1
performance, 5-1
purging, 5-3
responding to, 5-2

Automatic Database Diagnostic Monitor
about, 3-1
accessing results, 6-4
analysis, 3-2
configuring, 3-3
DB time, 3-2
enabling, 2-5
findings

about, 3-8
viewing, 3-7

for Oracle RAC, 3-3
identifying high-load SQL, 9-1
recommendations

actions, 3-9
implementing, 3-9
interpreting, 3-8
rationales, 3-9
types, 3-2

report, 3-8
reviewing results, 3-7
running manually

analyzing current database performance, 6-1
analyzing historical database performance, 6-3

Automatic SQL Tuning

modifying task attributes, 10-7
viewing recommendations, 10-7
viewing results, 10-5

Automatic Workload Repository
about, 2-1
baselines, 8-1
compare periods report

about, 8-1
details, 8-18
saving, 8-12, 8-15
summary, 8-16
supplemental information, 8-18
using, 8-15
using another baseline, 8-10
using snapshot pairs, 8-13

configuring, 2-2
enabling, 2-2, 2-5
snapshots, 2-2
statistics collected, 2-2
using, 3-4

B
baselines

about, 8-1
baseline template

about, 8-2, 8-5
comparing, 8-10
computing threshold statistics for, 8-6
creating

single, 8-2
deleting, 8-5

C
clients

about, 4-8
CONTROL_MANAGEMENT_PACK_ACCESS

parameter and ADDM, 3-3
CPU

I/O wait, 4-20
load, 4-21
performance problems, 4-21
utilization

about, 4-18
monitoring, 4-19

Index-2

customizing the Performance page, 4-27

D
data access paths, optimizing, 11-1
database

statistics, 2-1
time, 2-2, 3-2, 3-8

database performance
alerts, 5-1
automatic monitoring, 3-1
comparing, 8-1
current analysis, 6-1
degradation over time, 8-1
historical analysis, 6-3
manual monitoring, 6-1
overview, 2-1

Database Resource Manager
using, 4-22

database tuning
performance degradation over time, 8-1
preparing the database, 2-5
proactive tuning, 2-6
reactive tuning, 2-7
real-time performance problems, 4-1
SQL tuning, 2-7
tools, 1-2
transient performance problems, 7-1
using the Performance page, 4-1

database upgrade
simulating with SQL Performance Analyzer, 12-7

DB time
about, 2-2
and ADDM, 3-2
and ADDM finding, 3-8

DBIO_EXPECTED parameter
about, 3-4
setting, 3-3, 3-4

DBMS_ADVISOR package
configuring ADDM, 3-4
setting DBIO_EXPECTED, 3-4

disk
performance problems, 4-27
utilization

about, 4-18
monitoring, 4-25

E
execution plan

about, 10-1
viewing for a SQL statement, 9-7

H
high-load SQL

about, 9-1
identifying using ADDM, 9-1
identifying using Top SQL, 9-2
identifying using Top SQL by wait class, 9-3
statistics, 2-4

tuning, 10-2, 10-5
viewing details, 9-4
viewing execution plans, 9-7
viewing session activity, 9-6
viewing SQL profiles, 9-8
viewing SQL text, 9-4
viewing SQL Tuning Advisor tasks, 9-8
viewing statistics, 9-5
viewing tuning information, 9-8

host activity, monitoring, 4-17

I
index

about, 11-1
bitmap, 11-1
B-tree, 11-1
creating, 11-2
functional, 11-1

indexes
creating, 2-7

instance activity
monitoring, 4-10
monitoring I/O wait times, 4-12
monitoring parallel execution, 4-16
monitoring services, 4-16
monitoring throughput, 4-11

I/O wait times, monitoring, 4-12

M
materialized view logs

about, 11-1
creating, 2-7, 11-2

materialized views
creating, 2-7, 11-2

memory
performance problems, 4-24
swap utilization, 4-24
utilization

about, 4-18
monitoring, 4-22

metrics, 5-1, 8-7
modules, 4-7

N
new features, list of, xi

O
optimizer, use of SQL profiles in, 10-19
Oracle performance method

about, 2-1
pretuning tasks, 2-5
proactive database tuning tasks, 2-6
reactive database tuning tasks, 2-7
SQL tuning tasks, 2-7
using, 2-5

Index-3

P
parallel execution, monitoring, 4-16
parameters

DBIO_EXPECTED, 3-4
initialization, 8-18
STATISTICS_LEVEL, 2-2, 2-5

Performance page customization, 4-27
performance problems

common, 2-8
CPU, 4-21
diagnosing, 3-1
disk, 4-27
memory, 4-24
real-time, 4-1
transient, 7-1

S
services

about, 4-6, 4-16
monitoring, 4-6, 4-16

sessions, monitoring, 4-5
snapshots

about, 2-2
comparing, 8-13
creating, 3-5
default interval, 3-4
filtering, 8-13
modifying settings, 3-5
viewing statistics, 3-12

SQL Access Advisor
about, 10-1, 11-1
filters, 11-5
initial options, 11-2
recommendations

about, 11-1
details, 11-15
implementing, 11-20
options, 11-7
reviewing, 11-13
SQL, 11-18
summary, 11-14

running, 11-2
scheduling, 11-10
task options, 11-19
workload options, 11-19
workload source, 11-3

SQL Performance Analyzer
about, 12-1
database environment

setting up, 12-4
following guided workflow, 12-12
initial environment

establishing, 12-14
methodology, 12-2
performance data

collecting post-change version, 12-16
collecting pre-change version, 12-14
comparing, 12-17

running, 12-5

simulating database upgrade, 12-7
SQL Performance Analyzer report

general information, 12-19
global statistics, 12-20
global statistics details, 12-21
reviewing, 12-19

SQL Tuning Set
selecting, 12-13

SQL workload
capturing, 12-3
executing, 12-5
transporting, 12-4

system change
making, 12-16

testing parameter change, 12-10
usage, 12-1

SQL profiles
about, 10-19
deleting, 10-19
disabling, 10-19
enabling, 10-19
viewing information, 9-8

SQL Tuning Advisor
about, 10-1
automated maintenance tasks, 10-5
comprehensive scope, 10-3
implementing recommendations, 10-5
limited scope, 10-3
using, 10-2, 10-5
viewing information, 9-8
viewing results, 10-4

SQL Tuning Sets
about, 10-8, 12-5
creating, 10-8
load method, 10-10
transporting, 10-8

statistics
Active Session History, 2-4
baselines, 8-1
databases, 2-1
DB time, 2-2, 3-2, 3-8
default retention, 3-4
gathered by the Automatic Workload

Repository, 2-2
gathering, 2-1
high-load SQL, 2-4, 9-5, 9-6
sampled data, 7-1
session, 2-4
system, 2-4
time model, 2-2
wait events, 2-3

STATISTICS_LEVEL parameter
and ADDM, 3-3
and the Automatic Workload Repository, 2-2
setting, 2-5

T
throughput, monitoring, 4-11
time model statistics

Index-4

about, 2-2
Top Actions

user activity, 4-7
top activity

top SQL, 9-2, 9-4
Top Clients

user activity, 4-8
Top Files

user activity, 4-9
Top Modules

user activity, 4-7
Top Objects

user activity, 4-10
Top PL/SQL

user activity, 4-9
Top Services

user activity, 4-6
Top SQL

Active Session History report, 7-5
by wait class, 9-3
identifying high-load SQL, 9-2
user activity, 4-4

Top Working Sessions
user activity, 4-5

U
user activity

Top Actions, 4-7
Top Clients, 4-8
Top Files, 4-9
Top Modules, 4-7
Top Objects, 4-10
Top PL/SQL, 4-9
Top Services, 4-6
top services, 4-6
Top SQL, 4-4
Top Working Sessions, 4-5

W
wait class

about, 4-2
legend, 4-2
viewing high-load SQL by, 9-3

wait events
statistics, 2-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Performance?
	Part I Getting Started
	1 Introduction
	About This Guide
	Common Oracle DBA Tasks
	Tools for Tuning the Database

	2 Oracle Database Performance Method
	Gathering Database Statistics Using the Automatic Workload Repository
	Time Model Statistics
	Wait Event Statistics
	Session and System Statistics
	Active Session History Statistics
	High-Load SQL Statistics

	Using the Oracle Performance Method
	Preparing the Database for Tuning
	Tuning the Database Proactively
	Tuning the Database Reactively
	Tuning SQL Statements

	Common Performance Problems Found in Oracle Databases

	Part II Proactive Database Tuning
	3 Automatic Database Performance Monitoring
	Overview of Automatic Database Diagnostic Monitor
	ADDM Analysis
	ADDM Recommendations
	ADDM for Oracle Real Application Clusters

	Configuring Automatic Database Diagnostic Monitor
	Setting Initialization Parameters to Enable ADDM
	Setting the DBIO_EXPECTED Parameter
	Managing AWR Snapshots
	Creating Snapshots
	Modifying Snapshot Settings

	Reviewing the Automatic Database Diagnostic Monitor Analysis
	Interpretation of Automatic Database Diagnostic Monitor Findings
	Implementing Automatic Database Diagnostic Monitor Recommendations
	Viewing Snapshot Statistics

	4 Monitoring Real-Time Database Performance
	Monitoring User Activity
	Monitoring Top SQL
	Monitoring Top Sessions
	Monitoring Top Services
	Monitoring Top Modules
	Monitoring Top Actions
	Monitoring Top Clients
	Monitoring Top PL/SQL
	Monitoring Top Files
	Monitoring Top Objects

	Monitoring Instance Activity
	Monitoring Throughput
	Monitoring I/O
	Monitoring I/O by Function
	Monitoring I/O by Type
	Monitoring I/O by Consumer Group

	Monitoring Parallel Execution
	Monitoring Services

	Monitoring Host Activity
	Monitoring CPU Utilization
	Monitoring Memory Utilization
	Monitoring Disk I/O Utilization

	Customizing the Database Performance Page

	5 Monitoring Performance Alerts
	Setting Metric Thresholds for Performance Alerts
	Responding to Alerts
	Clearing Alerts

	Part III Reactive Database Tuning
	6 Manual Database Performance Monitoring
	Manually Running ADDM to Analyze Current Database Performance
	Manually Running ADDM to Analyze Historical Database Performance
	Accessing Previous ADDM Results

	7 Resolving Transient Performance Problems
	Overview of Active Session History
	Running Active Session History Reports
	Active Session History Reports
	Top Events
	Top User Events
	Top Background Events

	Load Profile
	Top SQL
	Top Sessions
	Top DB Objects
	Top DB Files
	Activity Over Time

	8 Resolving Performance Degradation Over Time
	Managing Baselines
	Creating a Baseline
	Creating a Single Baseline
	Creating a Repeating Baseline

	Deleting a Baseline
	Computing Threshold Statistics for Baselines
	Setting Metric Thresholds for Baselines
	Setting Metric Thresholds for the Default Moving Baseline
	Setting Metric Thresholds for Selected Baselines

	Running the AWR Compare Periods Reports
	Comparing a Baseline to Another Baseline or Pair of Snapshots
	Comparing Two Pairs of Snapshots

	Using the AWR Compare Periods Reports
	Summary of the AWR Compare Periods Report
	Snapshot Sets
	Host Configuration Comparison
	System Configuration Comparison
	Load Profile
	Top Timed Events

	Details of the AWR Compare Periods Report
	Supplemental Information in the AWR Compare Periods Report

	Part IV SQL Tuning
	9 Identifying High-Load SQL Statements
	Identification of High-Load SQL Statements Using ADDM Findings
	Identifying High-Load SQL Statements Using Top SQL
	Viewing SQL Statements by Wait Class
	Viewing Details of SQL Statements
	Viewing SQL Statistics
	SQL Statistics Summary
	General SQL Statistics
	Activity by Wait Statistics and Activity by Time Statistics
	Elapsed Time Breakdown Statistics
	Shared Cursors Statistics and Execution Statistics
	Other SQL Statistics

	Viewing Session Activity
	Viewing the SQL Execution Plan
	Viewing the SQL Tuning Information

	10 Tuning SQL Statements
	Tuning SQL Statements Using SQL Tuning Advisor
	Tuning SQL Manually Using SQL Tuning Advisor
	Viewing Automatic SQL Tuning Results

	Managing SQL Tuning Sets
	Creating a SQL Tuning Set
	Creating a SQL Tuning Set: Options
	Creating a SQL Tuning Set: Load Method
	Loading Active SQL Statements Incrementally from the Cursor Cache
	Loading SQL Statements from the Cursor Cache
	Loading SQL Statements from AWR Snapshots
	Loading SQL Statements from AWR Baselines
	Loading SQL Statements from a User-Defined Workload

	Creating a SQL Tuning Set: Filter Options
	Creating a SQL Tuning Set: Schedule

	Dropping a SQL Tuning Set
	Transporting SQL Tuning Sets
	Exporting a SQL Tuning Set
	Importing a SQL Tuning Set

	Managing SQL Profiles
	Managing SQL Execution Plans

	11 Optimizing Data Access Paths
	Running SQL Access Advisor
	Running SQL Access Advisor: Initial Options
	Running SQL Access Advisor: Workload Source
	Using SQL Statements from the Cache
	Using an Existing SQL Tuning Set
	Using a Hypothetical Workload

	Running SQL Access Advisor: Filter Options
	Defining Filters for Resource Consumption
	Defining Filters for Users
	Defining Filters for Tables
	Defining Filters for SQL Text
	Defining Filters for Modules
	Defining Filters for Actions

	Running SQL Access Advisor: Recommendation Options
	Running SQL Access Advisor: Schedule

	Reviewing the SQL Access Advisor Recommendations
	Reviewing the SQL Access Advisor Recommendations: Summary
	Reviewing the SQL Access Advisor Recommendations: Recommendations
	Reviewing the SQL Access Advisor Recommendations: SQL Statements
	Reviewing the SQL Access Advisor Recommendations: Details

	Implementing the SQL Access Advisor Recommendations

	12 Analyzing SQL Performance Impact
	SQL Performance Analyzer Usage
	SQL Performance Analyzer Methodology
	Capturing and Transporting a SQL Workload
	Setting Up the Database Environment on the Test System
	Executing a SQL Workload

	Running SQL Performance Analyzer
	Performing an Optimizer Upgrade Simulation with SQL Performance Analyzer
	Testing an Initialization Parameter Change with SQL Performance Analyzer
	Following a Guided Workflow with SQL Performance Analyzer
	Creating a SQL Performance Analyzer Task Based on a SQL Tuning Set
	Establishing the Initial Environment
	Collecting SQL Performance Data Before the Change
	Making the System Change
	Collecting SQL Performance Data After the Change
	Comparing SQL Performance Before and After the Change

	Reviewing the SQL Performance Analyzer Report
	Reviewing the SQL Performance Analyzer Report: General Information
	Reviewing the SQL Performance Analyzer Report: Global Statistics
	Reviewing the SQL Performance Analyzer Report: Global Statistics Details

	Index
	A
	B
	C
	D
	E
	H
	I
	M
	N
	O
	P
	S
	T
	U
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF suitable for publishing as Oracle documentation.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

