ORACLE

Oracle® Database
Utilities

11gRelease 1 (11.1)
B28319-02

September 2007

Oracle Database Ultilities, 11¢ Release 1 (11.1)
B28319-02

Copyright © 1996, 2007, Oracle. All rights reserved.
Primary Author: Kathy Rich

Contributors: Lee Barton, Ellen Batbouta, Janet Blowney, George Claborn, Jay Davison, Steve DiPirro,
Marcus Fallen, Bill Fisher, Steve Fogel, Dean Gagne, John Galanes, John Kalogeropoulos, Jonathan Klein,
Cindy Lim, Eric Magrath, Brian McCarthy, Rod Payne, Ray Pfau, Rich Phillips, Paul Reilly, Mike Sakayeda,
Francisco Sanchez, Marilyn Saunders, Jim Stenoish, Carol Tagliaferri, Hailing Yu

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

[o (=Y = Lo < OO

AUAIEIICE ...ttt ettt ettt et et b e beeas e beesbesbeesbesbeessesssessessaesbesseesseeseanseereenseereanteereenes
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiii e
Related DOCUMENTATIONeovieviiiiiiieieieieie ettt e ettt et et e e eseeseeseesaesesesessessessessessesasassensenses
Syntax DIagramis.........cccuiuiiiiiiiiiiiieeic s
CONVEINTIONS ...vvieiiieiieeiieciee et eeeeeteete e s teeeteessteeseeseesssaassaassseesssaasseansaeassessssessssassasasessssessssessesssseesseennes

What's New in Database UTIHHI@S? ...t

New Features in Oracle Database 11g Release 1ccccooovviiiiiiiciiiiniiccec e,
Part| Oracle Data Pump

1 Overview of Oracle Data Pump

Data Pump COMPONENLSccoviiiiiiiiiiiiic st
How Does Data Pump Move Data?ccoocoiiiiiiiiiiiiiicccccceee e
Using Data File Copying to Move Data.........ccoooiiiiiiiiiiicc
Using Direct Path to Move Datacccccciiiiiiiiiiiiiiiiiiccecne
Using External Tables to Move Data.........ccceuiiiiiiiiiiciec
Using Network Link Import to Move Data...........cooouiic
What Happens During Execution of a Data Pump Job?...........ccooiiinnninnccce,
CoOrdination Of @ JODcoueieiiiiireet ettt sttt et b bbb et
Tracking Progress Within a JOb..........cooi
Filtering Data and Metadata During a JObcccccoeiiiiiiiiiccc e,
Transforming Metadata During a JODcoooiiiii
Maximizing Job Performance ...
Loading and Unloading of Datacccccceriiiiiiiiiiiiiiiiiiicincnnnsenns
Monitoring JOb Satus ...
Monitoring the Progress of Executing JObS ..o
File ATIOCAHIONoiiiiiiiiii s
Specifying Files and Adding Additional Dump Filescccccocoeiiiiiiiiniiin
Default Locations for Dump, Log, and SQL Filesccccccooiiiiie,
Using Directory Objects When Automatic Storage Management Is Enabled.................
Setting ParalleliSIn..........c.oooiiiiiiiiiiiei e
Using Substitution Variables..............cciiiic e
Moving Data Between Different Database Versionscccccoovvvivnninnnnnnniinnn

XXXii
XXXil
XXXiii

XXXV

XXXV

1-2

2 Data Pump Export

What Is Data Pump EXPOIt?ccccoviiiiiiiiiiiiiiiii s 2-1
Invoking Data Pump EXPOrt ... 2-2
Data Pump Export INterfaces ... 2-2
Data Pump EXport Modes.........couiiiiiiiic 2-3
FUull EXPOTt MO ... 2-3
SChEMA MOAE ...t s 2-3
TaADLE MOE ... s 2-3
Tablespace MOde.........covuiiiiiiiiieiccrecr e 2-4
Transportable Tablespace Mode..........coooiiiiiiiiiiiiiiiiii e 2-4
Network Considerations...........cciiiiiiiiiiicie e 2-5
Filtering During Export Operationscccoviiiiiiiiiiiiiiii s 2-5
Data FIlLErScoocviuiiiiiiiiicci s 2-6
Metadata FIIEers........ccooiiiiiii e 2-6
Parameters Available in Export's Command-Line Modecccccocooniininninnnnnniineceee, 2-7
ATTACH ..o 2-8
COMPRESSIONcooiiiiiiiiiiiiiiiiniiiciiit s 2-9
CONTENT ..ottt 2-9
DATA_OPTIONS ..ottt 2-10
DIRECTORY ...ooiiiiiiiiiiiiiiiiiii s 2-11
DUMPEILE ...ttt 2-11
ENCRYPTIONootiiiiiiiiiititeiiee e 2-13
ENCRYPTION_ALGORITHM......cecoiiiiiiiiiiiiiiiininiiiiisiessss s 2-13
ENCRYPTION_MODE........ccoiiiiiiiiiiiiiieetsscs st 2-14
ENCRYPTION_PASSWORDcociiiiiiiiiiiiiiiiiieiieieeee e 2-15
ESTIMATE ...t 2-17
ESTIMATE_ONLY .oviiiiiiieci s 2-17
EXCLUDE ...ttt 2-18
FILESIZE ..o 2-19
FLASHBACK _SCN ..ottt 2-20
FLASHBACK _TIMEcooiiiiiiiiiee s 2-21
FULL oo 2-22
HELP c..onii s 2-22
INCLUDE ..ottt 2-23
JOB_INAME ..ot 2-24
LOGEFILE......oiiiiiiiiieie e 2-25
NETWORK _LINKooitiiitiiiiii s 2-26
INOLOGEILE ..ottt 2-27
PARALLEL. ..ottt 2-27
PARFILEootiiiiiiiiiiiieicee e 2-28
QUERY .. s 2-29
REMAP_DATA ..ot 2-30
REUSE_DUMPEFILEScooiiiiiiiiiiiiiiiccee s 2-31
SAMPLE ... s 2-31
SCHEMAS ...ttt 2-32
STATUS .o 2-33
TABLES......ooiii s 2-33

TABLESPACES ...ttt ettt ettt sttt s 2-35

TRANSPORT_FULL_CHECKcccoiiiiiiiiiiiiiiiinciic e 2-35
TRANSPORT_TABLESPACEScooiiiiiiiiniicc s 2-36
TRANSPORTABLE ...t 2-37
VERSION ..ottt 2-38
How Data Pump Export Parameters Map to Those of the Original Export Utility 2-39
Commands Available in Export's Interactive-Command Modec.cccoceveeneenevnccncccnencne 2-41
ADD _FILE ..ottt 2-41
CONTINUE_CLIENTccriiiiiiiiiiiiin st 2-42
EXIT_CLIENT ...ociiiiiiiiiici s 2-42
FILESIZE ..ottt 2-43
HELP c..oiii s 2-43
KILL_JOB....oitiiiiiiiii s 2-43
PARALLEL. ...ttt 2-44
START _JOB ..ottt 2-44
STATUS .ot 2-44
STOP _JOB....ooiiiiiiiiie bbb 2-45
Examples of Using Data Pump EXport ... 2-45
Performing a Table-Mode EXPOTIt ..o 2-46
Data-Only Unload of Selected Tables and ROWS...........ccoueuiiiiiiiiiiiciciicce 2-46
Estimating Disk Space Needed in a Table-Mode EXPortccccccceviriiiiiinniinicicccnne 2-46
Performing a Schema-Mode EXPOTtcccociiiiiiiiiiiiiiiiiiccics 2-47
Performing a Parallel Full Database EXPOIt..........cccooouiiiiiiiiiiiic 2-47
Using Interactive Mode to Stop and Reattach to @ Jobccoooiiiiiiiiiiccicene 2-47
Syntax Diagrams for Data Pump EXport...........ccoooiiiiiiiiiice 2-48

Data Pump Import

What Is Data Pump IMport?...........ccccooiiiiiiiiiiiic e 3-1
Invoking Data Pump IMport...........ccccoiiiiiiiiii s 3-2
Data Pump Import INterfacesccoouivvieririririiiiiiicccrccerrc e 3-2
Data Pump Import MOdesccovvviiiiiiiiiiiiiiii s 3-3
Full IMport Mode......c.coiiiiiiiiiiciic s 3-3
SChEmMa MOooviiiiiiice e 3-4

TaAbLe MOAE ... s 3-4
Tablespace MoOde.........ccccoiiiiiiiiiiiii e 3-4
Transportable Tablespace MOde.......c.ccccciiiiiiiiiiiiiiiiiccceceeeeeee e 3-4
Network Considerations..........cccociiiiiiiiiiiiii s 3-5
Filtering During Import Operations.............ccccccciviiiieiiininiicinineecieeeee et 3-5
Data FILEETSvviiiiciiiccccc e 3-6
Metadata FIlters.........ccoooiiiiiiiiiiic s 3-6
Parameters Available in Import's Command-Line Mode...............cccccccceiiiiiiiniiniine 3-6
ATTACH et 3-8
CONTENT ..ot 3-9
DATA_OPTIONS ...ttt ettt ettt sttt 3-9
DIRECTORY ...ttt 3-10
DUMPEILE ..ottt ettt seees 3-11
ENCRYPTION_PASSWORD ..ottt 3-12

ESTIMATE ...ttt ettt ettt b et e e 3-12

EXCLUDE......o et 3-13
FLASHBACK _SCN ...ttt seeees 3-15
FLASHBACK _TIMEooiiiiiiiiiiiiiii e s 3-15
FULL bbb 3-16
HELP ..ot 3-17
INCLUDE ...t 3-17
JOB_NAME ..ottt 3-18
LOGEILE......oiiiiiieeecce et 3-19
NETWORK_LINK ...t 3-20
INOLOGEILE ..ottt 3-21
PARALLEL. ..ottt 3-22
PARFILE ..ot 3-22
PARTITION_OPTIONS ..ottt 3-23
QUERY ...ttt 3-24
REMAP_DATA ..ot 3-25
REMAP_DATAFILE ...t 3-26
REMAP _SCHEMAcoiiiiiiiieeeee ettt 3-27
REMAP_TABLE ..ot 3-28
REMAP_TABLESPACE ..ottt 3-29
REUSE_DATAFILES......c.coiiiiiiieeeeeeeee et 3-29
SCHEMAS ...t 3-30
SKIP_UNUSABLE_INDEXESc.ccoiiiiiiiiiiiiicciireiceeie et 3-31
SQLEFILE......oiiieeieeeee et 3-31
STATUS ... bbb s 3-32
STREAMS_CONFIGURATIONccooiiiiiiiiiiiiietceiire et 3-33
TABLE_EXISTS_ACTIONcooiiiiiiiiiiiiiieeiecceeteeieieie ettt seaenes 3-33
TABLES ... s 3-34
TABLESPACES ...t 3-35
TRANSFORM ..ottt 3-36
TRANSPORT_DATAFILES ..ot 3-38
TRANSPORT_FULL_CHECKc.ociiiiiiieiiieeeiietetceereeie ettt es 3-39
TRANSPORT_TABLESPACESc.coiiiiiiiieecceeeeeeeeee e 3-40
TRANSPORTABLE ..ot 3-41
VERSION ...ttt et sttt es 3-41
How Data Pump Import Parameters Map to Those of the Original Import Utility................. 3-42
Commands Available in Import's Interactive-Command Mode..............cccceciiniiiiinnicnnne. 3-44
CONTINUE_CLIENT ..ottt se et es 3-45
EXIT_CLIENT ...ttt 3-45
HELP ..o 3-45
KILL_JOB... ittt ettt 3-46
PARALLEL. ..ottt 3-46
START _JOB.....oiiiiiiii bbb s 3-46
STATUS ...ttt ettt s et es 3-47
STOP_JOB..... ettt s 3-47
Examples of Using Data Pump Import ..o 3-48

Performing a Data-Only Table-Mode IMportccccovvvivivininiiiniiiiiiiinnincncccces 3-48

Performing a Schema-Mode IMpPort ..o 3-48
Performing a Network-Mode IMport...........ccccciiiiiiiiiiiiiiis 3-49
Syntax Diagrams for Data Pump Import ..., 3-49

Data Pump Performance

Data Performance Improvements for Data Pump Export and Import............cccoccceiniviiicnnnn. 4-1
TuNing Performance.............coociiiiiiiiiiiiii 4-2
Controlling Resource CONSUMPHION.........coiurieiiiiicicieecieie e 4-2
Effects of Compression and Encryption on Performanceccccceevvvevvnrncnnnnnncnncnene. 4-2
Initialization Parameters That Affect Data Pump Performanceccccoociviniiinniiinnn, 4-3
Setting the Size Of the Buffer Cache In a Streams Environment.............ccocooeiiiirniiiinninne, 4-3

The Data Pump API

How Does the Client Interface to the Data Pump API Work?...........c.cccooviniiinnnnnninnn, 5-1

JOD SEALES. .. cuvevieiieeietee ettt ettt ettt ettt e et e b bbb b s b e s b e st et b e st st et e et e teeheesebe b enteseeseeseeneetensenes 5-1
What Are the Basic Steps in Using the Data Pump API? ..., 5-3
Examples of Using the Data Pump API ... 5-4

Partll SQL*Loader

6

SQL*Loader Concepts
SQL*L0oAdEr FEALUIESceiiiiiiiiiiiiicente ettt sttt sttt st s 6-1
SQL*Loader ParameEtersSc.cooviiiiiiiieeiieieeeteeieecteeete e aeeveestteeveesaesseesbaeeseeseeenseessessseassesssennses 6-2
SQL*Loader Control Flecoooiiiiiiiiiiieeeeetee ettt sttt ettt 6-3
Input Data and Datafiles ... 6-3
Fixed ReCOTA FOIMALc.ooveiiiiiiiieieeeee ettt ettt 6-4
Variable RecOrd FOTMALco.oiiiiiiiiiiieieeete ettt 6-4
Stream RecOTd FOTMALc.oouiiiiiiieeee ettt sttt sttt b e eaea 6-5
LOGICal RECOTAS ..ottt 6-6
Data FIELAS ..ottt ettt ettt b bbbttt ettt 6-6
LOBFILEs and Secondary Datafiles (SDFs)............ccccccccceiiiiiiiiiiiiiiiiceecs 6-7
Data Conversion and Datatype Specification...............ccccocooiiiiiiii, 6-7
Discarded and Rejected Records.............ccoouevviiiiiiiiiiniiiiniiii 6-8
THE BAA FHlE...eiieieeeeee ettt sttt ettt et e s ese b e eb e bessessenseseeneeseesessennens 6-8
SQLAL0AdET REJECESouviviiiiiiiiciciciciieece ettt 6-8
Oracle Database ReJECtSccvviuiiiiiiiiiiiiiiiiiiice s 6-8
The DHSCATA FAlE....ccueeuieeieiieiieiieieeee ettt ettt eae et e be st et e s e sse e esseneeneeseesesseenens 6-8
Log File and Logging Information..............ccooiiiiiiiiiccccns 6-9
Conventional Path Loads, Direct Path Loads, and External Table Loads...........c..ccccoveevvrrrenrenenne. 6-9
Conventional Path LOadsSc.cceieieiiriririeriesieieietet ettt sttt ese s e sse e ssesensesessessens 6-9
DITECt Path LIOAAS ..c.veveueeviieiiieiiiet ettt ettt ettt ettt b et ebens 6-9
Parallel Direct Pathicoooiiiiiiiii ettt 6-10
EXternal Table LOAdSccueceieieieieieieteeeieee sttt ettt sttt ss et sensenseneeneesenas 6-10
Choosing External Tables Versus SQL*Loaderccccccceeiiiiiiiiieiiceecccceeeeeeeeeeees 6-10
Loading Objects, Collections, and LOBScccccviiiiiiiiiiiiicce 6-10
Supported ObJect TYPESccceuiuiiiiiiiiiiciiicicee e 6-11

vii

viii

COIUMI ODJECES ... 6-11

FOW ODJECES ..ooiieiictct ettt 6-11
Supported COLleCtion TYPESccciiimiiiiiiiiceeceieeeeee et senes 6-11
INESted TaDBIEScooviviiiiiiiiic s 6-11
VARRAYS ..ot 6-11
Supported LOB TYPESccuiuiiiiiiiiiiiiiicii s 6-11
Partitioned ODbject SUPPOTtcccccoouiiiiiiiiiii s 6-12
Application Development: Direct Path Load APc.cccooviininiiiniiii 6-12
SQL*Loader €ase StUAIES........c.ccoviiiiiiiieiiciece ettt et seeeve e aae b e estaesaaeebeessseeeseeseseensaensneas 6-12
Case StUAY Files.......ooiii 6-13
Running the Case StUdies ... 6-14
Case StUAY LOg FIleS. ..o 6-14
Checking the Results of a Case Studycccooeueieiiiiriiiiiicc e, 6-14

SQL*Loader Command-Line Reference

Invoking SQL¥LOAAETcccooiiiiiiiiiiiiii e 7-1
Alternative Ways to Specify Parameterscoooeueiiiiiiiiiiiiicccc 7-2
Command-Line Parameterscccooeeiriririninerinieieeeet ettt ettt ettt ettt be e sbe e 7-2
BAD (DA fI1€) ..vueevinieiiieiiietciettete ettt ettt ettt ettt ettt s e st et e et e st b e st et ene b e s e beneesenes 7-2
BINDSIZE (MaXITMUINL SIZE) c.vveveuirienirieirieieieteientetetetentesetesestesesaesessesessesessesessesessesessensesessesesessenes 7-2
COLUMNARRAYROWS ..ottt ettt ettt ettt ettt sttt et b et beneeseseeseneesenes 7-3
CONTROL (CONEIOL fIl8) .ttt ettt s st st et b e sbe e 7-3
DATA (AATATILE) c.veveveeieieieieeieieteie ettt ettt ettt et se s s e besesseseeseseebeseasesessesassenesenes 7-3
DATE_CACHE ...ttt ettt bbbttt b et st e b e st b e st seneebenes 7-3
DIRECT (data path)cccoiiiiiiiiiiii e 7-4
DISCARD (fILENAIME) ...verveiieiirieiirieirieirtetet ettt ettt ettt ettt bbbt es et s st besebesessesessenessenes 7-4
DISCARDMAX (INEZET) ...ovviviiiiiiiiiiiiceciticic s 7-4
ERRORS (€IT0TS t0 @lLOW) ..ttt ettt st e sttt et be b e 7-4
EXTERNAL_TABLE ...ttt ettt ettt ettt s s ss e s esaebesasansesessesanssanes 7-5
Restrictions When Using EXTERNAL_TABLE ... 7-6
FILE (tablespace file to load into)cccoviiiiiiiiiiiiiiii e 7-6
LOAD (number of records t0 10ad)oeririeriririeiiireieeie ettt 7-7
LOG (I0G fI1€) .t 7-7
MULTITHREADINGctttiiteieieieieirietetetetetete st ete ettt esesse e sesesesesesesseneesenessensesensesensesensesenes 7-7
PARALLEL (parallel 10ad)........ccccceiiiiiiiiiiiiiiiiiiiciiccce e 7-7
PARFILE (parameter file)........cccccciiiiiiiiiiiciiiiceiceiccieeieeeeeeeeeeeee e 7-7
READSIZE (read DULfET SI1Z€)......cctruiririiiiieieieietetee ettt ettt sttt st st saea 7-8
RESUMABLE ...ttt ettt ettt sttt et s ettt assesessesassesassesessesesesebesassasessesansasesanes 7-8
RESUMABLE_INAME ...ttt ettt ettt ettt sttt ettt b st b et sse e senes 7-8
RESUMABLE_TIMEOUTooutiiiietiieiiiettetetetetstei ettt ettt se s s s b sessesessesesseneesenes 7-9
ROWS (TOWS Per COMIMIL)cocviuiiimiiiiiiiiiiiiiiciiiece e 7-9
SILENT (feedback MOMAE)ccciruirririiiiieieieieieieiteeeerestesie e ssessesaesaesseseesessessassessessessessessassesassessens 7-9
SKIP (1ecords t0 SKIP) ..oviviuiuiiiiiiiiiiiiicciicc s 7-10
SKIP_INDEX_MAINTENANCEcoiotetitetirietiteistetteeeierestees oo ssssessese e seseesessesassesassesassens 7-10
SKIP_UNUSABLE_INDEXESooctirttrtitrieieieieieieeieie ettt ettt ettt sttt ebe e b e ene 7-11
STREAMSIZE......ootieiieiiieitiettete ettt ettt ettt s et s et e s et s e b e st ebe st ebeneebenaeseneeseneesaneens 7-11
USERID (username/password) ... sesesesesesenens 7-11

Exit Codes for Inspection and Display ... 7-12

SQL*Loader Control File Reference

Control File CONtENtS............coooiiiiiiiiiiiiiiiic s 8-1
Comments in the Control File ... 8-3
Specifying Command-Line Parameters in the Control File.............ccccccccoiiin 8-3
OPTIONS CIAUSE.....ocveviiiiiieieieieie e 8-3
Specifying Filenames and Object Names..............ccccccocuiiiiiiiiiiiiiiiis 8-4
Filenames That Conflict with SQL and SQL*Loader Reserved Words.......c.cccoeevevveevecveereennnnne. 8-4
Specifying SQL StINEGScoviiiiiieiiiet 8-4
Operating System Considerations.............oceuiicieiiicciec e 8-4
Specifying a Complete Path...........cccccooiiiiiiiiiiiicccee e 8-4
Backslash Escape Character............cccooviiiiiiiiniiiiiicc 8-4
Nonportable StIINGS ..o e 8-5

Using the Backslash as an Escape Character ... 8-5

Escape Character Is Sometimes Disallowedccccoooeiiiiiiiiiiiiniiiiiiis 8-5
Identifying XMLType Tables ... s 8-5
Specifying Datafiles ... 8-6
Examples of INFILE SYNtaX.........ccccoiiiriiiiiiiieiiicie it 8-7
Specifying Multiple Datafilesccoooioiiiiiiiii e 8-8
Identifying Data in the Control File with BEGINDATA..............ccccocoviniiiiiiiiiccs 8-8
Specifying Datafile Format and Buffering...............ccccccoooiiice, 8-9
Specifying the Bad File ... 8-9
Examples of Specifying a Bad File Namec.cccccccceiiiiiniiiccrcceeeceecaes 8-10
How Bad Files Are Handled with LOBFILEs and SDFs ..o, 8-10
Criteria for Rejected ReCOTAS........oouiiiiiiiiii 8-10
Specifying the Discard Fileccooniiiiiii 8-11
Specifying the Discard File in the Control Filec.cccoooiiiiiiiie, 8-11
Specifying the Discard File from the Command Linecccoooooiiiii 8-12
Examples of Specifying a Discard File Namec.ccccccccceiiiiiinniiiirnncneecnceceeenes 8-12
Criteria for Discarded Records............cccoeiiiiiiiiiiiiiiiiiiiiiice s 8-12
How Discard Files Are Handled with LOBFILEs and SDFsccccccccciiiiiniiiiiiniiiiiine 8-12
Limiting the Number of Discarded Records............ccccoeuviiiiininiiininnriiccccirececeenes 8-12
Handling Different Character Encoding Schemesccccccovniiiini 8-13
Multibyte (Asian) Character Sets...........cccociiiiiiiiiiiiiic s 8-13
Unicode Character Sets ... 8-13
Database Character Sets ... 8-14
Datafile Character SEtScoveeiiririciiiiecitre ettt 8-14
Input Character CONVETSIONc.ccueuiuiuiuiiiiiiicicieieieiecte ettt nees 8-14
Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs....... 8-15
CHARACTERSET Parametercccoeoiiiiiiiiiiiiiieceiceeeneeeseeesee e 8-15
Control File Character Set............cocoviiiiiiiiiiiiiiiiic e 8-16
Character-Length Semanticsoouiiieiiiiiiiii 8-17
Shift-sensitive Character Data.........ccccccevreueiiniiieiiiirecrreee et 8-18
INterruPted LOAASc.oovciiiiiiiiiccc ettt s 8-18
Discontinued Conventional Path Loads ... 8-19
Discontinued Direct Path LOadsccceviririiivinniiiciniiicciircceeeeseeeee et 8-19

Load Discontinued Because of Space EITOrs ..o 8-19

Load Discontinued Because Maximum Number of Errors Exceededcccco...... 8-19

Load Discontinued Because of Fatal EITOISccccoeviiiiiiiiiiniiniiiicce 8-20

Load Discontinued Because a Ctrl+C Was Issued ..o, 8-20

Status of Tables and Indexes After an Interrupted Loadcccovoiiiiiniiiiiii, 8-20
Using the Log File to Determine Load Status ... 8-20
Continuing Single-Table Loads.........c.coocriiiiiiiiiiiii 8-20
Assembling Logical Records from Physical Records.............cccocoovviviiiniinniniiiii 8-21
Using CONCATENATE to Assemble Logical Records..........cccccoceuieciiiincciciciciccennee 8-21
Using CONTINUEIF to Assemble Logical Records..........ccooouiiurieiiiiniciniiicecce, 8-21
Loading Logical Records into Tables..............cccooiiiiiiiiiiiiiiiiccee e 8-24
Specifying Table INAMES........ccccciiuiieiiiiiiiicceeeeee e seees 8-24
INTO TABLE CIaUSE ..o 8-24
Table-Specific Loading Methodcoouoiiiiiiii 8-25
Loading Data into Empty Tables ... 8-25
Loading Data into Nonempty Tables...........cccooeuiiiiiiiiiiiic 8-25
Table-Specific OPTIONS Parametercococcueiiiriciiiiicicieiiccie e 8-26
Loading Records Based on a Condition..........c.ccceueucucuiieiiiiiiiciiiieeecceeeeeeicieeeeeeeeenenes 8-27
Using the WHEN Clause with LOBFILEs and SDFs..........ccccooiiiiiiiiccice 8-27
Specifying Default Data Delimiters ... 8-27
FHELAS _SPEC ..ttt 8-28
teIMINAtION_SPEC ..ot 8-28
ENCLOSUTE_SPEC.....uiiiiiiiiiiiiiici bbb 8-28
Handling Short Records with Missing Datac.cccccoeeueeiiieeieeeccceeeeeeeeeeeeeeeens 8-28
TRAILING NULLCOLS ClaUSe......ccoviuiiviiniiiiiiininiiiiiisssssscsssssssssnssssssssessnnss 8-29

INAEX OPLIONS. ... 8-29
SORTED INDEXES CIAUSEcvviviirimriiiiieiiiriisssn s 8-29
SINGLEROW OPHOI. ..ottt 8-30
Benefits of Using Multiple INTO TABLE Clauses............c.cccccooeiiiiiiiiiiiieiieeeeeienennes 8-30
Extracting Multiple Logical ReCOTAS.......ccociiuiiiiiiiiiiiiiiiiiiicccccrcecere s 8-30
Relative Positioning Based on Delimiterscccoooeviiiiieiiiiiiiii 8-31
Distinguishing Different Input Record Formats............ccccccciiiiiiiiiiiiiiiiiccce, 8-31
Relative Positioning Based on the POSITION Parameterccccccocvvverrrnncrerncnccnes 8-32
Distinguishing Different Input Row Object SUbtypes..........cccocovvvviviiiiiiiiiiniiiic, 8-32
Loading Data into Multiple Tables..........cccccccoiiiiiiiiiiiiicceeee s 8-33
SUIMIMATY vt 8-33
Bind Arrays and Conventional Path Loads.............ccccoooiiiiiiiiicc 8-34
Size Requirements for Bind AITays ... 8-34
Performance Implications of BiNd ATTays........c.ccccceiiiiiiiieeeeeeieeeeeeeeeeiereneneeeeeeeneeenes 8-34
Specifying Number of Rows Versus Size of Bind Arrayccoceeiiiiiiiiciiicce, 8-34
Calculations to Determine Bind Array Size ... 8-35
Determining the Size of the Length Indicator ... 8-36
Calculating the Size of Field Buffers ... 8-36
Minimizing Memory Requirements for Bind Arrayscccccccoeeiiiiiiiiiciiiiciccee, 8-38

Calculating Bind Array Size for Multiple INTO TABLE Clauses..........ccccoevueeeivuverveeeverneene 8-38

SQL*Loader Field List Reference

Field List CONENtSccocviiiiiiiiiiiiiiiiic s 9-1
Specifying the Position of a Data Fieldccocoviiiiii, 9-2
Using POSITION with Data Containing Tabscccceiiiiiiiicicc e, 9-3
Using POSITION with Multiple Table Loads.........ccccciiiiininiiiiiiiiciiicsceecceseineas 9-3
Examples of Using POSITIONccccccccciiiiiiiiiicceeieieieeeceeeeeeeeeteeeeeeeeeaseeesee e 9-4
Specifying Columns and Fieldsccccoooiiiiiiii s 9-4
Specifying Filler Fieldsooiiii 9-4
Specifying the Datatype of a Data Field ..., 9-6
SOQL*Loader Datatypes...........cccoriiiiiiiiiiiiiiiiii s 9-6
Nonportable DatatyPescocriiiirieeie e 9-6
INTEGER(2) c.cevviiiiieiiicn st 9-7
SMALLINT oottt 9-7
FLOAT ..o s 9-7
DOUBLE ...ttt 9-8
BYTEINT oo 9-8
ZONED ...t s 9-8
DECIMAL ..ottt e 9-9
VARGRAPHIC ..ot 9-9
VARCHAR ..o 9-10
VARRAW ..ot 9-11

LONG VARRAW ..ottt 9-11
Portable DatatyPescouiiueiiiiecieieiiei e 9-11
CHAR oo 9-12
Datetime and Interval Datatypes........c.cccoeeurieiiiiiiiiiici 9-12
GRAPHIC ...t 9-14
GRAPHIC EXTERNALcooviiiiiiiiiiceti s 9-15
Numeric EXTERNAL ..ottt 9-15

RAW L 9-16
VARCHARC ..o 9-16
VARRAWC ..o 9-17
Conflicting Native Datatype Field Lengthsccccoovniiiiii 9-17

Field Lengths for Length-Value Datatypes.........ccccoeeerivriiiinniicrccccrreceeees 9-17
Datatype CONVETISIONScoouiiiiieiieieiicici et 9-17
Datatype Conversions for Datetime and Interval Datatypescccccoovvvvrieiniicciiicinccnnan, 9-18
Specifying DELIMITETS.........cccoiiuiuimiiiiicieeee et aees 9-19
TERMINATED FLelds......ccooviiimiiiiiiiiiiiiiiiissssssssssssnes 9-19
ENCLOSED FLELASccvviuiiiiiiiiciisiciceeettie ettt 9-20

Syntax for Termination and Enclosure Specification...........c.cccceveveurrvvvnnnnnnncnccnes 9-20
Delimiter Marks in the Data.........cccccocoiiiiiiiiiniis 9-21
Maximum Length of Delimited Dataccccccoeeuiiiiiiiiiiiiiiiiiiiiicccccces 9-21
Loading Trailing Blanks with Delimiters...........ccccocovvirirvninnnciicrceccreeceeeees 9-22
Contflicting Field Lengths for Character Datatypes ..., 9-22
Predetermined Size Fields ... 9-22
Delimited FIeldscoooviiiiiiiiiiiiiiiciic 9-22

Date Field MasKS........cciiiiiiiiiiiiic sttt 9-23
Specifying Field CONdItions ... 9-23

xi

Xii

Comparing Fields to BLANKS..........cccoooiii 9-24

Comparing Fields to Literalsccccouiriiioiiiiiii 9-25
Using the WHEN, NULLIF, and DEFAULTIF Clauses............cccocviiininiiniiccnes 9-25
Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses.........ccccccoovuriiiiiiinennee. 9-27
Loading Data Across Different Platforms ... 9-29
Byte Ordering..........cccooiiiiiiiiiiiiiic s 9-29
Specifying Byte Order ..o 9-30
Using Byte Order Marks (BOMS).........ccouoiiiiiiiiiciecci v 9-31
Suppressing Checks for BOMS........c.ccccciiiiiiiiiiiiiecceeeee e 9-32
Loading All-Blank Fields.............ccoooiiiiiiiiii e 9-33
Trimming WRIteSPACE..........ccccovviiiiiiiiiiii s 9-33
Datatypes for Which Whitespace Can Be Trimmedcccccociiiiiiiiiieiicceccceene 9-35
Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed 9-36
Predetermined Size Fieldscccocoiiiiiiiiiii 9-36
Delimited FIeldScooviiiiiiiiiiiiiiii 9-36
Relative Positioning of Fieldsccccooeuviiiiiiiiiciiicicc s 9-36

No Start Position Specified for a Field ..o 9-36
Previous Field Terminated by a Delimiter..........c.cccccccoeiiiiinnniinicnrccecccees 9-37
Previous Field Has Both Enclosure and Termination Delimiters.............c.ccccceevivniiinnnnn. 9-37
Leading WhiteSpaceccooiiiiiiiiic s 9-37
Previous Field Terminated by Whitespace ..o 9-37
Optional Enclosure Delimiters ...t 9-38
Trimming Trailing WhiteSpaceccooouiiiiiiii 9-38
Trimming Enclosed FIElAdSccooviiiiiiiiiiiceccce s 9-38
How the PRESERVE BLANKS Option Affects Whitespace Trimming................ccceciine. 9-39
How [NO] PRESERVE BLANKS Works with Delimiter Clauses............ccccocevvviviinninnnnn 9-39
Applying SOL Operators to Fields ... 9-40
Referencing Fieldsooviiiiiiiiiii 9-41
Common Uses of SQL Operators in Field Specifications...........ccccooeruiieiiiiiiiiiiceece, 9-42
Combinations of SQL OPerators..........ccccccucuiuiuimiuiiiiiiiiiieieieiceieieeieee et eaeeens 9-42
Using SQL Strings with a Date Maskc.ooiiiiiii e 9-43
Interpreting Formatted Fields ... 9-43
Using SQL Strings to Load the ANYDATA Database Type........ccccoviiiioeiiicncccciccnenen. 9-43
Using SQL*Loader to Generate Data for Input..............ccccccooiiiiiiiii 9-44
Loading Data Without Files ... 9-44
Setting a Column to a Constant Valteccccccccciiiiiiiiiiieeeereeeeeeeeese s 9-44
CONSTANT Parameter ..o 9-44

Setting a Column to an Expression Value ... 9-45
EXPRESSION Parameter.........c.ccoeeueveveieieieieieieiieieie e 9-45

Setting a Column to the Datafile Record Number ..o, 9-45
RECNUM Parameterccocoiiiiriiiiiiiiciienecee ettt 9-45

Setting a Column to the Current Date ... 9-45
SYSDATE Parameterccoceeiiiiiiiiiiiiiiiiiciiciieeeeeeeee s 9-46

Setting a Column to a Unique Sequence NUMDeT............cccoevriiirininiiiiicceeee, 9-46
SEQUENCE Parametercccoveeiiieciieeieeiieecteesteeeiteesteesaeesveeseseeseessseeseessssssessssssssessssesssesnses 9-46
Generating Sequence Numbers for Multiple Tables............ccooiiiiiiiiiiniiice, 9-47
Example: Generating Different Sequence Numbers for Each Insert............ccccceeuvuenennne 9-47

10 Loading Objects, LOBs, and Collections

Loading Colummn ODBJECtS...........ccoiiiiiiiiiiiiiiiiiie e 10-1
Loading Column Objects in Stream Record Format...........cccccoceeececiiiiccciecceccennee 10-2
Loading Column Objects in Variable Record Format............coooueuoiiiiiiiiiiiic, 10-2
Loading Nested Column Objects...........couoiiiiiiiiiiciic e 10-3
Loading Column Objects with a Derived SUDtypeccccovueiviiiiinviiiirccrec e 10-3
Specifying Null Values for ObjJects...........cocorueuiiiiiiiiiiicecc 10-4

Specifying Attribute NUlls ..o 10-4
Specifying Atomic NUILSccooiiiiiiiiii s 10-5
Loading Column Objects with User-Defined Constructors.............cococueveiiiieiiiiniciciiccine, 10-6

Loading Object Tables.............cccooiiiiiiiiiiiiiiii et 10-9
Loading Object Tables with @ SUDLYPEc.ccccceuiuiiiiriiiiiiiircccceccr s 10-10

Loading REF COIUMNS..........ccoooiiiiiiiiiiicccs ettt 10-11
Specifying Table Names in @ REF Clause............ccccoouoioiiriiioiicicieeccicc 10-11
System-Generated OID REF COIUMNSc.couiiiiiiriiiriiiiicrccre s 10-12
Primary Key REF COIUMNS........cooouoiiiiiiiiicc 10-12
Unscoped REF Columns That Allow Primary Keyscoooiiiiiiiiiiiccc 10-13

Loading LOBS.........ccccooiiiiiiiii e 10-14
Loading LOB Data from a Primary Datafile ... 10-14

LOB Data in Predetermined Size Fieldscccccovvvninninniiniiine 10-15
LOB Data in Delimited Fieldscccoooviiiiiiiniiiiiiiccas 10-15
LOB Data in Length-Value Pair Fields..........cccoooiiiiiiiiii 10-16
Loading LOB Data from LOBFILES..........cccccoooiiiiimiiiiccec e 10-17
Dynamic Versus Static LOBFILE Specifications............ccccovieiiiiiccciicicccecenenes 10-18
Examples of Loading LOB Data from LOBFILES...........ccccccevviiiiiiiiiiiis 10-18
Considerations When Loading LOBs from LOBFILEs...........cccccooioiriiiniiiiiicciae 10-21

Loading BFILE COIUMMS.........ccccccoiiiiiiiiiiiiiii s 10-21

Loading Collections (Nested Tables and VARRAYS)cccccooviiiiiiiiiiicicieeeieenes 10-22
Restrictions in Nested Tables and VARRAYS........ccccooviiiiniiiccccine 10-23
Secondary Datafiles (SDFS).......ccccccocuiririiiiiiiriiieiirrreereee et 10-24

Dynamic Versus Static SDF Specifications ..o 10-25

Loading a Parent Table Separately from Its Child Table...............ccccccceiiiiiiiiiiiiiiene. 10-25
Memory Issues When Loading VARRAY ColUmNScccoeuevririrvinrrinnnennrercceceeeeecees 10-26

11 Conventional and Direct Path Loads

Data Loading Methods ... 11-1
Loading ROWID COIUMNScooouiiiiiiieiiiiieiee ettt 11-2
Conventional Path Load...........ccccoviiiiiiiiiiiccceceeecee et 11-3
Conventional Path Load of a Single Partition............ccccoeeieeniiiiieiiccreccreeeeeeeees 11-3
When to Use a Conventional Path Load...........cccooviiiiinice, 11-3
Direct Path Loadcoooiiiiiiiiiiicc ettt e 11-4
Data Conversion During Direct Path Loadscccccoviviiiiiiiiiinicnnccceeeceeeees 11-4
Direct Path Load of a Partitioned or Subpartitioned Tableccccceevvriiniiiiiinnn, 11-5
Direct Path Load of a Single Partition or Subpartition.............ccoooeeiiiiiiiii, 11-5
Advantages of a Direct Path Load..........ccccccociiiiiiiiiiiiiiieeccccceeeceeeeeneeenes 11-5
Restrictions on Using Direct Path Loadscccooiiiiiiiiiii 11-6
Restrictions on a Direct Path Load of a Single Partition............cccoooovviiiinic, 11-7

Xiv

When to Use a Direct Path Loadcoouveeiiiiiiiiiiieieeee e s 11-7

Integrity CONSIAINEScoviviiiieiiiiiciic s 11-7
Field Defaults on the Direct Path.........ccccocovieiiiniiiiiiiiiie 11-7
Loading into SYNONYIMSc.cviiiiiiieiiieie e 11-7
Using Direct Path Loadcccccooiiiiniiic s 11-8
Setting Up for Direct Path Loads ... 11-8
Specifying a Direct Path Loadcoooiiiiiiii 11-8
Building INA@XES.......cucviiiiiiet 11-8
IMProving Performance.........c.cccoeueuciiiiiiieiririciciieeeee e 11-8
Temporary Segment Storage Requirementscccooiiiiioiiiiiiiiincc 11-9
Indexes Left in an Unusable State............ccoociiiiiiiiiiiis 11-9
Using Data Saves to Protect Against Data Loss........cccccoviiiininiiiiiiicc 11-10
Using the ROWS Parameter ..o 11-10

Data Save Versus COMMULcoooiiiiiiiiiiiiiiccec e 11-10

Data Recovery During Direct Path Loadsccccoeiiiiiirnniiiiiiiinccnnreeeeereecaes 11-10
Media Recovery and Direct Path Loadsc.cccooieeiiiiiiiii 11-11
Instance Recovery and Direct Path Loads...........cccooiiiiiiiii 11-11
Loading Long Data Fields........cccccccceiiiiiiiiccrn e 11-11
Loading Data As PIECED.........cccooiiiiiiiie s 11-11
Optimizing Performance of Direct Path Loadsccccoooiiiiiiiiicne, 11-12
Preallocating Storage for Faster Loading.........c.cocoeieiiiiiiiiiiiiiciiccccccccnceeeeenenes 11-12
Presorting Data for Faster INeXingcccoorueiiieiiieiiiciicccce e 11-13
SORTED INDEXES CIaUSEcccuiiimiiiiiiiniieiiiiieeisii s 11-13
UNSorted Data........cc.oiiiiiiiiiiicc s 11-13
Multiple-Column INAXES...........ccoviviieiiiiiiiiiiiiiiiiic s 11-13
Choosing the Best Sort Order...........ooiiiiii s 11-14
Infrequent Data SAVES..........ccccvvuiiiiiiiriiiiirreerre e 11-14
Minimizing Use of the Red0o LOgcccovueiriiiiiiiiiiicc e 11-14
Disabling ArChiVINGcoocuiiiiiicieecc s 11-14
Specifying the SQL*Loader UNRECOVERABLE Clausec.cccocevvvnrrnnencninenerecncnes 11-15

Setting the SQL NOLOGGING Parameter...........cccocoevviniiieiiiniiniiins 11-15
Specifying the Number of Column Array Rows and Size of Stream Buffers...................... 11-15
Specifying a Value for the Date Cache........c.ccccceviviiiiinnnirrrce s 11-16
Optimizing Direct Path Loads on Multiple-CPU Systemsccccccccoviiiinniiiinniicinnnas 11-17
Avoiding Index Maintenance...............cccoiviiiiiiiiiiii e 11-18
Direct Loads, Integrity Constraints, and Triggers.............ccccooeiviiiininiiiinnicces 11-18
Integrity CONSIIAINEScooiieiiicecie e 11-18
Enabled COnStraints........coccioirireieiiinieiiinicieee sttt s 11-18
Disabled CONSLIAINTSccouiviiiiiiiiiiiie s 11-19
Reenable CONSIAINtSccccoeviiiiiiiiiiiiiicicc 11-19
Database INSert TIIGZETSccccouviiiiiririiiiiiiiiiiiiirr e 11-20
Replacing Insert Triggers with Integrity Constraints............ccccccceeueevrernrrcnrenenenes 11-20

When Automatic Constraints Cannot Be Used ..o, 11-20
Preparation.........coiiiiiiic e 11-21

Using an Update Trigger ... 11-21
Duplicating the Effects of Exception Conditionsccccooviiiviiiiiiiiiiiiiiinns 11-21

Using a Stored Procedure ..o 11-21

Permanently Disabled Triggers and Constraintsc.cccoovoeeieioiiciciiiccccceee, 11-22

Increasing Performance with Concurrent Conventional Path Loads..........cccccccevviiiininnne 11-22
Parallel Data Loading Modelsccoviiiiiiiiiiiiiiiic e 11-23
Concurrent Conventional Path Loads.........cccccoiiiiiiiiiiiiccccs 11-23
Intersegment Concurrency with Direct Pathc.oooiiii, 11-23
Intrasegment Concurrency with Direct Pathcccccooviiiiiieceeee 11-23
Restrictions on Parallel Direct Path Loadsccccccocoiiiiiiiiiiiiiiicicccces 11-23
Initiating Multiple SQL*Loader SeSSiONSccocrueiiiicieieiicicie e 11-24
Parameters for Parallel Direct Path Loads..........cccccoceiiiiiiiiiiiiiicrrcccereeeerecenes 11-24
Using the FILE Parameter to Specify Temporary Segmentsccccooerieiiiiieininnnen. 11-24
Enabling Constraints After a Parallel Direct Path Load.........cccoooiiiiiiii 11-25
PRIMARY KEY and UNIQUE KEY CONStraintsccccceeevevieeiieerieeieeceeeeeesveeeeeeveesvneeeneens 11-26
General Performance Improvement Hints ..., 11-26

Part Il External Tables

12

13

External Tables Concepts
How Are External Tables Created? ... 12-1
ACCESS Parameters. ... e 12-2
Location of Datafiles and Output Files ..o 12-3
Example: Creating and Loading an External Table Using ORACLE_LOADER.................... 12-4
Using External Tables to Load and Unload Dataccccccoviviniiniiiii 12-5
Loading Data ..o s 12-5
Unloading Data Using the ORACLE_DATAPUMP Access Driver..........ccccocoevieicieinicnunen. 12-6
Dealing with Colummn ODbJectscoiimiiiii 12-6
Datatype Conversion During External Table Use...............ccccccoviiiinniiiiniie, 12-6
Parallel Access to External Tables ... 12-7
Parallel Access with ORACLE_LOADER........cccccooiiiiiniiiiiicice s 12-7
Parallel Access with ORACLE _DATAPUMDPooo oottt e eeeeeeeeeeeseeneesenees 12-8
Performance Hints When Using External Tables................ccccooooiiiiiiiiiiiicnas 12-8
Performance Hints Specific to the ORACLE_LOADER Access Drivercccccccceviicnennee. 12-8
External Table ReStrictions............cccccoooiiiiiiiiiiiiii s 12-9
Restrictions Specific to the ORACLE_DATAPUMP Access DIiver ..o 12-10
Behavior Differences Between SQL*Loader and External Tables............cccccereviecieinenennenene. 12-10
Multiple Primary Input Datafiles ... 12-10
Syntax and Datatypes ..o 12-10
Byte-Order MArks.........cccovuiiiiiiiiiiiiiiii e 12-11
Default Character Sets, Date Masks, and Decimal Separator............cccccceceveiernvnnnncnnes 12-11
Use of the Backslash Escape Character ... 12-11
The ORACLE_LOADER Access Driver
acCcesS_PArameters CLAUSEcccoveiriiiriiiirieiiricertetrtc ettt ettt ettt be st sae e naenen 13-2
1eCOTd_fOrmMat INFO CLAUSEooeeeeiiieieeeeee ettt ettt et e e et e e et e e s e aeeeseseeesaseeseaseeesnseessans 13-3
FIXED LENGHR ..ot 13-4
VARIABLE SIZE ..ot 13-5
DELIMITED BY ...ouiiiiicce ettt 13-5

XV

XVi

CHARACTERSET ...ttt ettt sttt sttt a e e ne 13-6

LANGUAGE ..o 13-6
TERRITORIEScoooiiiiiiiiiiiic s 13-6
DATA IS..ENDIANc.cooiiiiiiiniii s 13-7
BYTEORDERMARK (CHECK | NOCHECK)......cccceviiiiiiiiiniciicsiiice e 13-7
STRING SIZES ARE INoiiiiiiiiiiiiiiii e 13-8
LOAD WHEN ..ot 13-8
BADFILE | NOBADFILE.......cooiiiiiiiiiiniiirii e 13-8
DISCARDEFILE | NODISCARDEFILEc.ccouoiiiiiiiiiriiiiiiceeesies e 13-9
LOG FILE | NOLOGEFILE........coioiiiiiiiiiiiiiiiiiiics s 13-9
SKIP .o bbb 13-9
READSIZE ...ttt 13-9
DISABLE_DIRECTORY_LINK_CHECKcccceceiiiiniiiiiiniiii s 13-9
DATE_CACHE ...t 13-10
SELIIIE e 13-10
CONAITION_SPEC ...ttt 13-10
[directory object name:] filenamecoorueiiiiiiiiiiiiic 13-11
COMNAIEION ...t 13-12
range start : Tange end ..o 13-12
field _definitions CLAUSEe........oooviiiuiiiieie ettt et e ettt e e et e s e e e saeeessnaeessaaeeesnneeans 13-12
QLN SPEC... ettt 13-14
Example: External Table with Terminating Delimiters..........ccccooooiiiiiiiiiiiniicenn 13-15
Example: External Table with Enclosure and Terminator Delimitersc.ccccoceuce. 13-15
Example: External Table with Optional Enclosure Delimiters.............ccccoovieiiiiinnaes 13-15
ETIIN_SPOC vt 13-16
MISSING FIELD VALUES ARE NULLcccooiiiiiiiiicicce s 13-17
FIELAL TIST ettt ettt e e et e et e e e ateeeeaaeesasaeeeanaeeseaseesenaeeesntesasneesaaseeeennaeesannes 13-17
POS_SPEC CLAUSE.......uitiiiiiiiiiiitiiitet s 13-18
SEATE .o 13-18
OO OO OO OO 13-19
INCTEMENE ..ot 13-19
EIU .ttt 13-19
LENGHR ..o 13-19
datatype_spec ClatSecccvvviiiiiiiiiiiiiiiic 13-19
[UNSIGNED] INTEGER [EXTERNAL] [(I€N)] ...veviviiiiiiiiiiiiiiiciiiccieceiceieeeieceas 13-20
DECIMAL [EXTERNAL] and ZONED [EXTERNAL]......cccccocvumiiiiiiiriiiieeicnenens 13-21
ORACLE_DATE ...ttt sse s 13-21
ORACLE_NUMBERccoceiitieiiniieiersitie ettt 13-21
Floating-Point NUMDETScccccceuiiiiiiiiiiiiiiiccccereee e 13-21
DOUBLE ...t 13-22
FLOAT [EXTERNALJ....cooiiieiiiieiiccertee et 13-22
BINARY_DOUBLE ..ottt 13-22
BINARY_FLOAT ..ot 13-22
RAW et ettt 13-22
CHAR oo 13-22
date_format_SPeC........cccviiiiiiiiiiiii s 13-23
VARCHAR and VARRAW.c.coiiierccie ettt nenees 13-25

VARCHARC and VARRAWECccoviiriireeretneenetnetsietetese sttt seesesee e sesae e e saene 13-26

INit_SPEC CLAUSE ..o 13-26
COIUMN_ TrANSTOIIMNS CLAUSC ... oeeeiiiiieeeeeieee ettt ettt e e s ete e e e esesaaaeeessssasteeesssnsteesesssnseeeas 13-27
L8 =1 g1=) (o) w 0 o USRS 13-27

T&TeY 1000 4h oW 4 V=1 0 o U< IR 13-28

INULL <ottt ettt ettt s s s et aesaeseeseesasse st essessessessessessensessasessessensansenes 13-28
CONSTANT .ottt ettt ettt b e b s bbb e teeseebseteetesbesbesbesbesbessassessassessasassenes 13-28
CONCAT ..ottt ettt ettt et eteetsetseteeteeteste st ese s et essessessersessarenns 13-28
LOBFEILE ..ottt ettt ettt a et se st e s te st e et e b e ssessessessensessesaaseassnsasenes 13-28

o) o3 51 <I= 1 a v ol 1<) SRR 13-28
Reserved Words for the ORACLE_LOADER Access DIIVerc..coocvvivueeiiiiiiieeeeeeeeeeeeene 13-29

14 The ORACLE_DATAPUMP Access Driver

access_parameters CLAUSecccoiiiiiiiiiiiic e 14-1
COMMIMNEIIES ...ttt 14-2
COMPRESSION ...ttt 14-2
ENCRYPTION ..ottt bbb 14-2
LOGFILE | NOLOGEILE.........ccoiiiiiiiiiiiiineieiisccess s 14-3

Filenames for LOGFILE ... s 14-4
VERSION CIAUSE.....cocoviinieiiiiiiiiieiiriiiit st bbb 14-4
Effects of Using the SQL ENCRYPT Clause........c.cccceucueueueueieiiucinirieieeeieeieieeeeeeeeeeieeeeeeeseeeeseees 14-4

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver........................ 14-5
Parallel Loading and Unloading...........ccccueuiiiiiioiiiiiicicc e 14-8
Combining DUMP FIleSc.cccoiiiiiiiiiiiiiccccccce s 14-8

Supported DatatyPes ... s 14-9

Unsupported Datatypes ... 14-10
Unloading and Loading BFILE Datatypescccoeiririnniiiiiicciiicccccccceecenenenens 14-10
Unloading LONG and LONG RAW Datatypesccocoeueuiicieiiiicieieicicsce e 14-12
Unloading and Loading Columns Containing Final Object Typescccccoeviirrieiniennen. 14-13
Tables of Final ObJEct TYPESc.cucuiieiriririieiirirccecrrr e 14-14

Reserved Words for the ORACLE_DATAPUMP Access DIVerccccoovvvveveviiieeeieeeeeeeieeene 14-15

Part IV Other Utilities

15 ADRCI: ADR Command Interpreter

About the ADR Command Interpreter (ADRCI) ... 15-1
DEFINIIONS ...ttt et 15-2
Starting ADRCI and Getting Help ... 15-4

Using ADRCI in Interactive Modecccoouiiiiiniiiiiiiiiiicice s 15-4

Getting HelpP....ocoiiiiiiiccc s 15-5

Using ADRCT in Batch MoOdec.ccoociiiiiiiiiiiicccccceecccee e 15-6
Setting the ADRCI Homepath Before Using ADRCI Commandsccccoevviiriiiiicicinnnnn, 15-6
VieWing the ALEIt LOg ..ottt 15-8
Finding Trace Files ... 15-9
Viewing INCIAENtSccooviiiiiiiiii 15-10
Packaging INCIA@NES ..ottt 15-10

xvii

xviii

About Packaging INCIAents............ceeiviiiiiiiiiiiiiiiiii 15-10

Creating Incident Packagescooocuriiiiiiiiiicccc 15-11
Creating a Logical Incident Packageccccovuvuvieiiiriinniiinnicncnceeeer s 15-12
Adding Diagnostic Information to a Logical Incident Package...........ccccccourruerinnnnnnn 15-13
Generating a Physical Incident Package............coooiuiiiiiiiiii 15-14

ADRCI Command Reference.............oocoovviviiiniiiiniiicscnesscss e 15-14

CREATE REPORT ..ottt e 15-15

ECHO ..t 15-16

EXIT oo 15-16

HOST .o 15-17

IPS bbb 15-17
Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands............... 15-18
IPS ADD ..ot 15-18
IPS ADD FILE ..ottt 15-19
IPS ADD NEW INCIDENTScoiiiiiiiiiniiiiicn s 15-20
IPS COPY IN FILE ..ottt 15-20
IPS COPY OUT FILE ..ottt 15-21
IPS CREATE PACKAGE ... 15-21
IPS DELETE PACKAGEcoooiiiiriiiicc s 15-23
IPS FINALIZE ..ot 15-23
IPS GENERATE PACKAGE ..ot 15-23
IPS GET MANIFEST ..ot s 15-24
IPS GET METADATAcoiiiieeee st 15-24
IPS PACK ..ottt 15-25
IPS REMOVE ..ot s 15-26
IPS REMOVE FILE........cooiiiiiii e 15-27
IPS SET CONFIGURATION......coiiiiiimiiiiiiinii s 15-28
IPS SHOW CONFIGURATIONoouiiiiiiiiniicie et 15-28
IPS SHOW FILESooiiiiieiieiieicti i 15-31
IPS SHOW INCIDENTS........cooviiiiiiiinieiiiecn s 15-32
IPS UNPACK FILE ..ottt 15-33

PURGE ...t 15-33

QUIT o 15-34

RUN ot 15-34

SET BASE......oiiiiiiictct s 15-35

SET BROWSERouiiiiiiiiiiciiccn st 15-35

SET CONTROL......oiiiicict ettt 15-36

SET ECHO ..ottt 15-36

SET EDITOR.....ooiiiiiiiiiiiniicc s 15-36

SET HOMEPATH........coiiiiiticict e 15-37

SET TERMOUT ..ottt 15-37

SHOW ALERT ..ottt 15-37

SHOW BASE ..ottt 15-40

SHOW CONTROL ..ottt 15-40

SHOW HM_RUN ..ottt 15-40

SHOW HOMEPATH ..ottt e 15-41

SHOW HOMES ..ottt 15-42

16

17

18

SHOW INCIDENTcooviiiiiiiiiiiiiiiiii s 15-43
SHOW PROBLEM.......cooiiiiiiiiiiiiiiiise s 15-46
SHOW REPORT ..ottt 15-47
SHOW TRACEFILEccoiiiiiiiiiiiiiiiiiiiiin s 15-48
SPOOL ...ttt 15-48
Troubleshooting ADRCT ..o 15-49
DBVERIFY: Offline Database Verification Utility
Using DBVERIFY to Validate Disk Blocks of a Single Datafile...............cccccocoviinininnnnnn. 16-1
SYIUAX 1ttt s 16-1
Parameters.......ccveuiviviieieieice s 16-2
Sample DBVERIFY Output For a Single Datafile...........ccccccooviiiniiiiiiiiiiice, 16-2
Using DBVERIFY to Validate a Segmentcccccoooviiiiiiiiis 16-3
SYIMEAX .ttt 16-3
Parameters........coeiieiiiiiec s 16-4
Sample DBVERIFY Output For a Validated Segmentccccoooiiiiiiiic, 16-4
DBNEWID Utility
What Is the DBNEWID Utility?.........ccccooiiiniiiiiiiiiiiics 17-1
Ramifications of Changing the DBID and DBNAMEcccccoiiiniiiniicce, 17-1
Considerations for Global Database INames ... 17-2
Changing the DBID and DBNAME of a Database...............ccccocoiiiiiiiiiiiiccces 17-2
Changing the DBID and Database Name...........cccccccciveuiiiiiiiieieccceeeeeeeeeneneneees 17-2
Changing Only the Database IDcccooioiiiiiiiiiii 17-5
Changing Only the Database Name..............cccooiiiiiiiii e 17-5
Troubleshooting DBNEWID.........ccccccoiiiiiiiiiiiicceeeeeeeeiee e 17-7
DBNEWID SYIEAX......ccoiiiiiiimiiiiiiii s 17-8
Parameters.ceiiieiiiiic s 17-8
Restrictions and Usage NOES.............ccviiiiiiiiiiiiiiic e 17-9
Additional Restrictions for Releases Prior to Oracle Database 10gccccooviiiiiiiininnnnes 17-10
Using LogMiner to Analyze Redo Log Files

LogMiner Benefits............coooiiiiiiiiii e 18-1
Introduction t0 LOGIMINET ..o 18-2
LogMiner ConfigUurationc.ccccucueucucucuiueiiiiieieieicieeieieeieieieeeae e ese s senesseeees 18-2
Sample Configurationccooviiieiiiiiciec s 18-3
ReqUITEMENTS......cooiiiiiiiic s 18-3
Directing LogMiner Operations and Retrieving Data of Interest...........c.cccceceeivicinnnnnnne. 18-4
LogMiner Dictionary Files and Redo Log Filesc.cccocooiiiiiiiiiiicees 18-5
LogMiner Dictionary OPptionsc.ccciiviiiiiiiniiiiiiiccrce s 18-5
Using the Online Catalog.........cocovviiiiiiiiiiiiceccccee e seeeees 18-6
Extracting a LogMiner Dictionary to the Redo Log Files..........cccocoiiiiiiiiiiic 18-7
Extracting the LogMiner Dictionary to a Flat Filecccccccccoovviiinniis 18-8

Redo Log File OPtions.......ccccccuiiiuiiiiiiiiiicciciceeeececee et 18-8
Starting LOGIMINETooiiiiiiiicc sttt 18-10

Xix

XX

Querying VS LOGMNR_CONTENTS for Redo Data of Interestcccoeiiinniiinnns 18-10

How the VSLOGMNR_CONTENTS View Is Populatedcccccccoviiiiiiiinnnininiin 18-12
Querying VSLOGMNR_CONTENTS Based on Column Values...........cccocoeirincuicicenne. 18-13
The Meaning of NULL Values Returned by the MINE_VALUE Function................... 18-14

Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions 18-14
Querying VSLOGMNR_CONTENTS Based on XMLType Columns and Tables............... 18-14
Restrictions When Using LogMiner With XMLType Data.........cccccoooeueiniviiiiiiniinienne, 18-17
Example of a PL/SQL Procedure for Assembling XMLType Data..........ccccoeevirnnnne. 18-17
Filtering and Formatting Data Returned to VSLOGMNR_CONTENTScccccccovvvvunnnnne. 18-19
Showing Only Committed Transactionscccceueiirieieiniiicicieicce e 18-20
Skipping Redo Corruptions.........cc.couirueieiiccieeieeie e 18-22
Filtering Data by Time.......c.ccccceueuiiiiiiiiiiiiicrccerre e 18-23
Filtering Data by SCIN........ooouiiiii 18-23
Formatting Reconstructed SQL Statements for Re-executionccccceevvvivivininiiinininnnnnn, 18-24
Formatting the Appearance of Returned Data for Readabilityc.cccccccoeueiinnvininnnne. 18-24
Reapplying DDL Statements Returned to VSLOGMNR_CONTENTSccccccoviiiininns 18-25
Calling DBMS_LOGMNR.START_LOGMNR Multiple Times..........c.ccccoeoininriininnccniccnennes 18-25
Supplemental LOGGING ..o 18-26
Database-Level Supplemental LOZGiNgccccovimiiiiiiieiiiiiicicce e 18-27
Minimal Supplemental LOGZINGccovruiiiiiiiiiiiccc 18-27
Database-Level Identification Key LOGZING.........ccovviiiiiiiiiiiicicccccccccenenes 18-27
Disabling Database-Level Supplemental LOZgINg.........cccccooiirieieiiiiiciiicce, 18-29
Table-Level Supplemental LOZZINGcouoiiiiiiiiii e 18-29
Table-Level Identification Key LOGZINGccovviiiriniiiiiiiiciicccccccccccceennes 18-29
Table-Level User-Defined Supplemental Log Groups..........cccceeveveveiviiiniiinnnnininininnns 18-30

Usage Notes for User-Defined Supplemental Log Groupsccccccoveveueiiiicieinicnnnnnn 18-31
Tracking DDL Statements in the LogMiner Dictionarycccocoeoiiiciiiiicnccccccnenes 18-31
DDL_DICT_TRACKING and Supplemental Logging Settingscccccoooreeiiiiicieininnnen. 18-32
DDL_DICT_TRACKING and Specified Time or SCN Rangesccccccvvvvninninininninnne 18-33
Accessing LogMiner Operational Information in Views ..., 18-34
Querying VSLOGMNR_LOGS.........ccoooviiiiiiiiiisssscs s 18-35
Querying Views for Supplemental Logging Settingscccoooeuevviiininiicneniiceeece, 18-36
Steps in a Typical LogMiner SeSSion ... 18-37
Enable Supplemental LOZGINEccoovuirimiiiiiiiiiiiiiiicicicceice s 18-38
Extract a LogMiner DictiONarycccocociiiiiiiiiininiiciiccc e 18-38
Specify Redo Log Files for ANalysis ... 18-38
Start LOGMINET «......ouiuiieiiiiiieiit st 18-39
Query VSLOGMNR_CONTENTScccoiiieiiicrrcerretice et 18-40
End the LOgMINET SESSIONccovviiiriiiiiirree et 18-40
Examples Using LOGMINETcccooiiiiiiiiiiiiccct st 18-41
Examples of Mining by Explicitly Specifying the Redo Log Files of Interest 18-41
Example 1: Finding All Modifications in the Last Archived Redo Log File.................. 18-41
Example 2: Grouping DML Statements into Committed Transactionsc........ 18-44
Example 3: Formatting the Reconstructed SQL..........cccccccceviiininiinniiiinrne 18-45
Example 4: Using the LogMiner Dictionary in the Redo Log Filesccccccoeienncaes 18-48
Example 5: Tracking DDL Statements in the Internal Dictionaryc.cccooeeveieinnnnen. 18-56
Example 6: Filtering Output by Time Rangeccccccceeiviviiiiiniiiiiniines 18-59

19

20

Examples of Mining Without Specifying the List of Redo Log Files Explicitly 18-61

Example 1: Mining Redo Log Files in a Given Time Rangec.cccccoooeeniiiieninnnne. 18-61
Example 2: Mining the Redo Log Files in a Given SCN Range...........cccccvoviecirecncnes 18-64
Example 3: Using Continuous Mining to Include Future Values in a Query 18-65
EXample SCENATIOScuovovuieiiiiiiitcie ettt 18-66
Scenario 1: Using LogMiner to Track Changes Made by a Specific User...................... 18-66
Scenario 2: Using LogMiner to Calculate Table Access Statistics...........cccoceviviiiiiinnnne. 18-67
Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions......... 18-68
Supported Datatypes and Table Storage Attributesccccccceevviiirvrnvnrrneerreeae 18-68
Unsupported Datatypes and Table Storage Attributes...........cccoovviiiiiiiiiiiiiiin 18-69
Supported Databases and Redo Log File Versionsccccoceueoiicieiniiciciniiceecce, 18-69
Using the Metadata API
Why Use the Metadata API?.............ccccooiiiiiiiiiiiiic s 19-1
Overview of the Metadata AP ... 19-2
Using the Metadata API to Retrieve an Object's Metadata..............ccccooviiiiiiniiiiinn, 19-2
Typical Steps Used for Basic Metadata Retrieval..........c.ccooooiiiiii, 19-3
Retrieving Multiple ODJECtS ..o 19-4
Placing Conditions on Transformscooieiiiiiieic 19-5
Accessing Specific Metadata Attributes...........c..ooooiiiii e, 19-7
Using the Metadata API to Re-Create a Retrieved Objectccccccovviniiiiiiiiinniiiiee, 19-9
Retrieving Collections of Different Object Typescccooeiiiiiiiiiiiiicces 19-12
Filtering the Return of Heterogeneous Object Typescccccevvvvinniinnnnnnincnn 19-13
Performance Tips for the Programmatic Interface of the Metadata API.................................. 19-14
Example Usage of the Metadata APcccocooiiiiiiiic e 19-15
What Does the Metadata API Example DO?ccooooioiiiiiiiiiicc 19-16
Output Generated from the GET_PAYROLL_TABLES Procedurecccceeviiirccnnne. 19-18
Summary of DBMS_METADATA Proceduresccccoccviiiiininiiiininiiiiesneeesnnnes 19-19
Original Export and Import

What Are the Export and Import Utilities? ... 20-2
Before Using Export and IMPort ... 20-3
Running catexp.sql or catalog.sql........cccoceuiiiiiiiiiiiiiiiiicccc s 20-3
Ensuring Sufficient Disk Space for Export Operationscccccceveeveinieiiiiiinciiiineen, 20-3
Verifying Access Privileges for Export and Import Operationscccccceeciiviriinnninnne. 20-4
Invoking Export and IMport ... 20-4
Invoking Export and Import As SYSDBA ... 20-4
Command-Line ENELIEsc.cccoviiiiiiiiiiecccceeceeeee ettt 20-4
Parameter Filescoooiiiiiiiiiiee s 20-5
INteractive MOAE ..o s 20-6
Restrictions When Using Export's Interactive Method.cccoovvviiiiniiiiinii 20-6
Getting Online Help.......c.ccciiiiiiicece s 20-6
Importing Objects into Your Own Schema ..o 20-6
IMPOTtING GIANtS......cooiiiiiiiiiiiiicicc s 20-7
Importing Objects into Other SChemasccccoceiiiiiiiiiieee s 20-8
Importing System ObJECtS.........curueieiiiieiiicci e 20-8
Processing RestriCtiONScccvuiuiiiiiiiiiiicc s 20-8

XXi

XXii

Table Objects: Order of IMPOTIt..........ccccoovvviiiiiiiiiiiiiiiic s 20-9

Importing into Existing Tables ..o 20-9
Manually Creating Tables Before Importing Data..........c.ccceocceiiiiieiiceecicceeceeenees 20-9
Disabling Referential CONStraints.........cccceueviiieiiiiiicicicciec e 20-10
Manually Ordering the Import ..o 20-10

Effect of Schema and Database Triggers on Import Operations............c.cccccovvviiiiniiiinnnes 20-10

Export and IMport MOdes...........cccoiiiiiiiiiiic e 20-11
Table-Level and Partition-Level EXPOrt.......ccccouoiiiiiiicc e, 20-14

Table-Level EXPOTt......cccoiiiiiiirereer et 20-14
Partition-Level EXPOIt.......ccccooiiiiiiiiiiiiiiicc 20-14
Table-Level and Partition-Level IMportc.oooiiiic e 20-14
Guidelines for Using Table-Level IMPoOrtcccccceuivriiiicniiiicncceeeeecereeecaes 20-15
Guidelines for Using Partition-Level Import.........cccoovoiiiiiiiiiiic 20-15
Migrating Data Across Partitions and Tables..........c.c.cooeiiiiiii 20-16

EXPOIt PArameEterscccoeriiiiiiiiiiiiicieeereereeerte ettt ettt e 20-16

BUFEFER ..ot 20-16

Example: Calculating Buffer Size ... 20-16
COMPRESS ..ot 20-17
CONBSISTENT ..o 20-17
CONSTRAINTS. ...t 20-19
DIRECT ...ttt 20-19
FEEDBACK ...ttt 20-19
FILE oo 20-19
FILESIZE ..ottt 20-19
FLASHBACK _SCNooiiiiiiiiiiiiiiin s 20-20
FLASHBACK _TIME ..ottt 20-21
FULL oo 20-21

Points to Consider for Full Database Exports and Imports.........cccccooviiiiiiiiinnnnnes 20-21
GRANTS ..o 20-22
HELP c..onii s 20-22
INDEXES ..ottt 20-22
LOG et 20-22
OBJECT_CONSISTENT ...ttt 20-22
OWNER ...t 20-23
PARFILE ...ttt sttt 20-23
QUERY w.oiii s 20-23

Restrictions When Using the QUERY Parameter............cccooooerieiiiiiciciniiiciciccc 20-24
RECORDLENGTH. ..ottt 20-24
RESUMABLE ... 20-24
RESUMABLE_NAMEccociiiiiiiiiiii s 20-25
RESUMABLE_TIMEOUTocooiiiiiiiiiiniiciererie ettt 20-25
ROWS ..ot 20-25
STATISTICS ...t 20-25
TABLES. ..ottt 20-26

Table Name ReStriCtiONScccociuiviiiiiiiiiiiiic s 20-26
TABLESPACES ..o 20-27
TRANSPORT_TABLESPACE ..ottt 20-27

TRIGGERS ...ttt ettt ettt et be e 20-28

TTS_FULL_CHECK ..ottt ettt ettt senen 20-28
USERID (username/password)c.ccvoeereiiiiieieiiieecceeeseeeeseeesesesessesesesesesesenesenens 20-28
VOLSIZE ...ttt e et ettt eee 20-28
Import Parameters ... 20-29
BUFFER ...ttt 20-29
COMMIIT ...ttt e nen 20-29
COMPILE ..ottt ettt ettt ne 20-29
CONSTRAINTS ..ottt 20-30
DATAFILES ..ottt ettt 20-30
DESTROY ..ottt ettt ettt ettt e sene 20-30
FEEDBACK ...ttt et 20-30
FILE oottt 20-30
FILESIZE ..ottt ettt ettt 20-31
FROMUSER ..ottt ettt 20-31
FULL ettt 20-32
GRANTS ...ttt ettt sene 20-32
HELP ..ottt 20-32
IGINORE ...ttt e 20-32
INDEXES ..ottt ettt ettt ettt 20-33
INDEXFILEoiiiiiieeere ettt 20-33
LOG ettt 20-34
PARFILE ..ottt ettt ettt ettt 20-34
RECORDLENGTH.......ocoiiiiiiiiiiiirrrcr sttt 20-34
RESUMABLE ..ottt ettt 20-34
RESUMABLE_NAME ..ottt ettt sttt 20-34
RESUMABLE_TIMEOUT ..ottt 20-35
ROWS ..ottt 20-35
SHOW .ottt ettt ettt ne 20-35
SKIP_UNUSABLE_INDEXESccoiiiirirrinei e 20-35
STATISTICS ..ottt e 20-36
STREAMS_CONFIGURATIONc.ccitiiiiiiniieiinieteetriete ettt 20-36
STREAMS_INSTANTIATION ..ot 20-36
TABLES ... oottt 20-37
Table Name ReStriCtionsc.cceeueeirinieiiiniiiecireeeeeeeee e 20-38
TABLESPACES. ...ttt 20-39
TOID_NOVALIDATEcooieeeee ettt 20-39
TOUSER ...ttt ettt ettt ettt ettt ettt benen 20-40
TRANSPORT_TABLESPACE.........cooii e 20-40
TTS_OWNERS ..ottt ettt e 20-40
USERID (username/password)ccccceuiuririiiiirininiiiiiiiiiniiessesssses s 20-41
VOLSIZE ...ttt 20-41
Example EXport S@SSIONScccccciiiiiiiiiiiiiiiiici e 20-41
Example Export Session in Full Database Mode...........ccccoouiiiiiiciiniicccceee, 20-41
Example Export Session in User Mode..........cccocvrvviiiiinrnnnirrccereeeee s 20-42
Example Export Sessions in Table Mode...........cccccooiiiniiiiiiiiiiiis 20-42
Example 1: DBA Exporting Tables for Two USers.........cccocovvvinriinnnnnniecaes 20-43

xXiii

XXiv

Example 2: User Exports Tables That He OWNs..........c..ccoooriieiiiciiiii 20-43

Example 3: Using Pattern Matching to Export Various Tables...........c.cccccooenninine. 20-44
Example Export Session Using Partition-Level EXportccccccevuveiiivnniinnnnnirnes 20-45
Example 1: Exporting a Table Without Specifying a Partition...........ccccooooiriiiinnnnn 20-45
Example 2: Exporting a Table with a Specified Partition............cccccoooiiiininnn 20-45
Example 3: Exporting a Composite Partition............cccceceeeerrnnnnnnnrnneeeerenecees 20-46
Example IMport SESSIONSccccoviiiiiiiiiiiiiiiiiici e 20-46
Example Import of Selected Tables for a Specific USerccoviiiiiiiiiiiiciiiicnns 20-47
Example Import of Tables Exported by Another USer ..o 20-47
Example Import of Tables from One User to ANOthercccoevviiniiiiiiniinnn 20-48
Example Import Session Using Partition-Level Importc.ccoooiiiiiiiii 20-48
Example 1: A Partition-Level Import ... 20-48
Example 2: A Partition-Level Import of a Composite Partitioned Table 20-49
Example 3: Repartitioning a Table on a Different Columm.............ccooeeiiiiiiiininenne. 20-50
Example Import Using Pattern Matching to Import Various Tablescccoeciiiinnnnee 20-51
Using Export and Import to Move a Database Between Platforms...............ccooiiinnnnn 20-52
Warning, Error, and Completion MeSSages............c.cococoiiiiiiiiiiiiiiiiccnccecnnnes 20-53
LOG FALE .. 20-53
Warning MeSSAZESccoviuiuiiiiiiiiiiiiiciniii s 20-53
Nonrecoverable Error MEeSSAgescoceuiiurieiiiurieieiicciee et 20-53
COMPLEtION MESSAZESvvveeiiiriririiee ettt 20-53
Exit Codes for Inspection and Display ... 20-53
Network Considerations............ccccooviiiiii e 20-54
Transporting Export Files Across a Networkc.ccccccciiiiiiininircccreeeceeeeenes 20-54
Exporting and Importing with Oracle Net.........c.c.cccoooiii 20-54
Character Set and Globalization Support Considerations..............ccccooeviiiiiiiiiiiiinn. 20-54
USEE DAt ...ececeiecicicicicicictctt sttt e 20-55
Effect of Character Set Sorting Order on CONVersions..........ccccooeuvveeveinieicisicisiicennens 20-55

Data Definition Language (DDL)ccccoiiiiiiiiiiiiieecc e 20-55
Single-Byte Character Sets and Export and Importccccccoceivviiinnninirrcccene 20-56
Multibyte Character Sets and Export and Import ... 20-56
Materialized Views and Snapshots ..o 20-56
SNAPSNOL LOG ..o 20-56
SNAPSNOLS.....cviiiiic 20-57
Importing a SNAPShOtccccuiiiiiiiiiiii e 20-57
Importing a Snapshot into a Different Schemacccoevvvrnninnnnciiccccccnes 20-57
Transportable TableSPaces.............cccociiiiiiiiiiiiiiiiiiiii s 20-57
Read-Only TabIeSPAaCescccoiiimiiiiiiiiiiiiic e 20-58
Dropping a TablesSpace..........ccccoiiiiiiiiiiiiii e 20-58
Reorganizing TableSpaces ... 20-58
Support for Fine-Grained Access CONIol ... 20-59
Using Instance Affinity with Export and Import.............ccccoviiiiiin, 20-59
Reducing Database Fragmentation.............ccccooeiiiiiiiiiiiiicna 20-60
Using Storage Parameters with Export and Import..............cccoiiiicne, 20-60
The OPTIMAL Parameter ..o s 20-60
Storage Parameters for OID Indexes and LOB Columns...........ccooeiiiiiiinicicciccic, 20-60
Overriding Storage Parameters...........cccocvvviiiiininininiii e 20-61

The Export COMPRESS Parameter ..o 20-61

Information Specific t0 EXPOIt ... 20-61
Conventional Path Export Versus Direct Path EXpOrt........ccccoeviviviiiinnniiireeccee 20-61
Invoking a Direct Path EXPOTt........ccooiiiiiiiii 20-61

Security Considerations for Direct Path EXports...........ccoooeieiiiiiiiiiii 20-62
Performance Considerations for Direct Path EXpoOrtsccccccevueevvvinnnninreaes 20-62
Restrictions for Direct Path EXPOItS.......ccccocoviviiiiiiiiiiiccc 20-62
Exporting from a Read-Only Database.............cccoooouiiiiiiiiiiii 20-63
Considerations When Exporting Database ObJectscccovvrrerirerinininincciicccccecennes 20-63
EXPOIting SEQUENCESccvviiiiiiiiiiiiciiiic e 20-63
Exporting LONG and LOB Datatypesccccouoirieiiiiciciiiiccecce e 20-63
Exporting Foreign Function Libraries..........ccccccoeeiiiniiinnniicncecree e 20-64
Exporting Offline Locally Managed Tablespaces...........cccccoeueuiiurieiiiiineieiicciccia 20-64
Exporting Directory ALASeSc.coovrueieiiiiicieiiiicieie s 20-64
Exporting BFILE Columns and Attributes...........cccccevvvivirnrnnnnrcncce e 20-64
Exporting External Tables............cccooiiiiiiiii s 20-64
Exporting Object Type Definitions..........c.cooiiieieiiiiiii e 20-64
Exporting Nested Tables...........cocoviiiicc e 20-65
Exporting Advanced Queue (AQ) Tables ..o 20-65
EXPOrting SYNONYIMSc.coiiiiiiiiii s 20-65
Possible Export Errors Related to Java Synonyms............ccccceeivicnciiincincccincenenes 20-65

Information Specific t0 IMPOrt...........cccocooiiiiiiiiii s 20-66

Error Handling During an Import Operation.............cccooiiiiicceccccc 20-66
ROW EITOTS ..ttt 20-66
Errors Importing Database Objectscccccovviiiiiiiniiii 20-66

Controlling Index Creation and Maintenancecccoceeioireieioicicieciccceec 20-67
Delaying Index Creationc.ccceeiiiiieiiiiiiicirecerecr s 20-67
Index Creation and Maintenance Controls ... 20-68

IMpPOorting Statisticsoeveueiiiiieieici 20-68

Tuning Considerations for Import Operations............coceviiiiiiiiiiiecceceeeeeeeenenes 20-69
Changing System-Level Options ... 20-69
Changing Initialization Parameters ... 20-70
Changing IMport OPHiONSccccceuiiiueiiiriiiiiiirrceeree s 20-70
Dealing with Large Amounts of LOB Data........ccccooooiiiiiiiii 20-71
Dealing with Large Amounts of LONG Data..........cccccovviiivnnnnnnnniniccceaes 20-71

Considerations When Importing Database ObjJECtSccccoeiiiiiiiiiiiiiccceccecenenes 20-71
Importing Object Identifiers..........ccccoviiiiiiiiiiii s 20-71
Importing Existing Object Tables and Tables That Contain Object Types.................... 20-72
Importing Nested Tablescccccociiiiiiiicrcrrre s 20-73
Importing REF Data.......c.cooiiiiiiiiiicice s 20-73
Importing BFILE Columns and Directory ALases..........cccoooeiiiiiiiiiiiiiciicennes 20-73
Importing Foreign Function LiDIaries ... e 20-74
Importing Stored Procedures, Functions, and Packagesccoceuirieiniiciciciinnnnn 20-74
Importing Java ObJECES.......cccccciiiiiiiiiiiiiiiciiiiiccrr e 20-74
Importing External Tables ..o s 20-74
Importing Advanced Queue (AQ) Tables..........cccooviiiiiiiis 20-74
Importing LONG COIUMNSc.ccovuiiiiiiiiiiiiiiiiicirennss s 20-74

XXV

Importing LOB Columns When Triggers Are Present ..o, 20-75

IMPOTtNG VIEWS ...oviiiiiii s 20-75
Importing Partitioned Tablescccccciiiiiiiiiiicccecee s 20-76

Using Export and Import to Partition a Database Migration.............cccoovviiiiiiiiinine, 20-76
Advantages of Partitioning a Migrationcccocoooieiniiciiiiecc 20-76
Disadvantages of Partitioning a Migrationcccecoeuevrvrrnrnnnnnrrresee e 20-76
How to Use Export and Import to Partition a Database Migrationccccccoceevieiiininnnne 20-76
Using Different Releases and Versions of EXport............cccooviiiiniinnnn 20-77
Restrictions When Using Different Releases and Versions of Export and Import.............. 20-77
Examples of Using Different Releases of Export and Import...........ccccceeeiiiiiiiiiinnnn 20-77
Creating Oracle Release 8.0 Export Files from an Oracle9i Databaseccoerrrunnnnnes 20-78

21 Enterprise Manager Configuration Assistant (EMCA)

Configuring Database Control with EMCAccocooiiiiiicce 21-1
Configuring Software Library With EMCA.............c.ccccooiiiniiiii 21-6
Using an Input File for EMCA Parameterscccccocoeiviiiiiiiiniiiiiiiiiiieeseeseenenns 21-6
Using EMCA With Oracle Real Application Clusterscccccovvvviinnininiiii 21-7
Specifying the Ports Used by EMCA............cccoiiiiiniiiiiiii s 21-9
EMCA Troubleshooting Tipsccccooiiiiiiiiiiic e 21-10
Using EMCA After Changing the Database Listener Port............ccocoooooiiiiiiinii, 21-10
Upgrading Database or ASM Instances With 11¢ Release 1 Grid Control Agents 21-10
Using EMCA When Database Host Name or IP Address Changes.........c.c.ccoooeeviiininnne. 21-10
Using EMCA When the TNS Configuration Is Changed...........c.coooooioii, 21-11

PartV Appendixes

A SQL*Loader Syntax Diagrams

Index

XXVi

List of Examples

2-1
2-2
2-3

COCOCOCOCOCX)CX)CX)CX)CX)CX)(I))O)O)CHCHCHOJOJOJI\)I\)I\)
AP ON-_LO0O00RWON—2LON=20WON=2LON=005H

—

2
3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24
10-25
10-26
11-1
11-2

—
TTT

Performing a Table-Mode EXPOrt.........c.ccouiiiiiiii 2-46
Data-Only Unload of Selected Tables and ROWSccooeueiiiiiiiniiicecc 2-46
Estimating Disk Space Needed in a Table-Mode EXport ..o 2-46
Performing a Schema Mode EXPOTt.......ccuiiiiiiiiii 2-47
Parallel FUll EXPOTto.ouiiiieii e 2-47
Stopping and Reattaching t0 @ JOD ... 2-47
Performing a Data-Only Table-Mode Import...........ccoooiiiiiii, 3-48
Performing a Schema-Mode Import...........oooiuiiiiiiii 3-48
Network-Mode Import of Schemas.............oooiiiiiiii 3-49
Performing a Simple Schema EXPoOrt ..o 5-4
Importing a Dump File and Remapping All Schema Objects.........cccooueviirrieiiiiicieieine 5-6
Using Exception Handling During a Simple Schema EXport..........ccccoooviiiiiiinccne 5-7
Loading Data in Fixed Record Format..........ccccooiiiiiiiiiiiic e 6-4
Loading Data in Variable Record Formatccooouoiiiiiiie 6-5
Loading Data in Stream Record Format...........ooooiiiiiiiii 6-6
Sample Control File ... 8-2
Identifying XMLType Tables in the SQL*Loader Control Filec.ccccooooiiiirinnnn. 8-5
CONTINUEIF THIS Without the PRESERVE Parameterccoooovruniininiciniicinicinnns 8-23
CONTINUEIF THIS with the PRESERVE Parameterccccooeuiiriieiniieinicinicinicnns 8-23
CONTINUEIF NEXT Without the PRESERVE Parameter ..o, 8-23
CONTINUEIF NEXT with the PRESERVE Parametercccooevvriininieinicinicinienns 8-24
Field List Section of Sample Control Filecooiiiiiiiiiii 9-1
DEFAULTIF Clause Is Not Evaluated ..o 9-27
DEFAULTIF Clause Is Evaluated ..o 9-27
DEFAULTIF Clause Specifies @ POSItiONccooieiiiiiiiiicccc 9-28
DEFAULTIF Clause Specifies a Field Name............cccoooiiiiiiiiiiccccci 9-28
Loading Column Objects in Stream Record Format...........oooooeiiiiiiiicie, 10-2
Loading Column Objects in Variable Record Formatcccoooiiiiiiiiii 10-2
Loading Nested Column Objects..........ccooeviiiiiiiiiiic 10-3
Loading Column Objects with a Subtype.........ccoooiiiii 10-3
Specifying Attribute Nulls Using the NULLIF Clause.........ccccoeeuoioiiiiieininicieiccieee 10-4
Loading Data Using Filler Fields.........ccccoiiiiiiiiiiic s 10-5
Loading a Column Object with Constructors That Match............ccoooeiiiiiine, 10-6
Loading a Column Object with Constructors That Do Not Match............c.ccccccevuinnnnnn 10-7
Using SQL to Load Column Objects When Constructors Do Not Match........................ 10-8
Loading an Object Table with Primary Key OIDsccccooviiviininiiieceecc 10-9
Loading OIDSc.cciiiiiiiiiiiiiiiiicce s 10-9
Loading an Object Table with a Subtype........cccccoooiiiiiiiiic e 10-10
Loading System-Generated REF COlUMNS..........ccccoooiuiiiiiiiiiniiiceecccee s 10-12
Loading Primary Key REF COIUMNS........cccccccviiiiiiiiiniiiiiiiiinceas 10-12
Loading LOB Data in Predetermined Size Fields..........ccccooviiiiiiiiiiiiiiiicnes 10-15
Loading LOB Data in Delimited Fieldscccccccoeiiiininiinniiiiiinicnccniaes 10-16
Loading LOB Data in Length-Value Pair Fields..........cccccccccoeiiiniinnnnniinne 10-16
Loading LOB DATA with One LOB per LOBFILEcccccoiiiiiiiiiiiiicines 10-18
Loading LOB Data Using Predetermined Size LOBscccccccovuviivinninnnnnnniinnes 10-19
Loading LOB Data Using Delimited LOBScccccccovuviniiiinnniiiiniinnnnccaes 10-19
Loading LOB Data Using Length-Value Pair Specified LOBSsccccocoeniiiininininnnnn. 10-20
Loading Data Using BFILEs: Only Filename Specified Dynamicallycccccoevuneee. 10-22
Loading Data Using BFILEs: Filename and Directory Specified Dynamically 10-22
Loading a VARRAY and a Nested Tablec.cccccooeiiiiiiiiiiiceeecces 10-23
Loading a Parent Table with User-Provided SIDs...........cccccoeeviiiniiiniiiicecne 10-26
Loading a Child Table with User-Provided SIDs...........cccccoeeiiiiiinininiiiccne 10-26
Setting the Date Format in the SQL*Loader Control File..........ccccccccevviivinnnnnnnnnnnne. 11-4
Setting an NLS_DATE_FORMAT Environment Variable.............ccccccccoeeiiiininnnnne. 11-4

XXViii

19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
21-1

Using the DBMS_METADATA Programmatic Interface to Retrieve Data 19-3
Using the DBMS_METADATA Browsing Interface to Retrieve Dataccccooevinencnn 19-4
Retrieving Multiple ODbjects. ... 19-5
Placing Conditions on Transforms. ... 19-6
Modifying an XML DOCUMENTcooiiiiiiiiieieiccie s 19-7
Using Parse Items to Access Specific Metadata Attributes............cccccoevevviiiiiiininnnnn, 19-8
Using the Submit Interface to Re-Create a Retrieved Object..........ccoovviiiiiiinnnns 19-10
Retrieving Heterogeneous Object TYPescccooiiiieiiiiiicieiiccec s 19-12
Filtering the Return of Heterogeneous Object Typesc.cccccocvvvviiiiiininniininnns 19-13
Sample EMCA INput File.......ccoiiiiiiiiiiiiiiici s 21-7

List of Figures

6—1 SQL*L0AAET OVEIVIEW ...cvivieiiiiieiieteeeteettete ettt ete et et e raebesreesseesaessessaessesssessesssessesssensenseanes 6-2
9-1 Example of Field CONVEISIONccooiiuiiiiiiicicieiccei e 9-34
9-2 Relative Positioning After a Fixed Field ... 9-37
9-3 Relative Positioning After a Delimited Fieldccccocoooiiiii 9-37
9-4 Relative Positioning After Enclosure Delimiterscccooooioiiiiiiiiiicceiccciece 9-37
9-5 Fields Terminated by WhiteSpacecccouoiiiiiiiiiieicc 9-38
9-6 Fields Terminated by Optional Enclosure Delimiters..............cccooeuiiimiiiiiiiinininiicc 9-38
11-1 Database Writes on SQL*Loader Direct Path and Conventional Path............cc..ccveeun... 11-2
18-1 Sample LogMiner Database Configurationcccccooeoieiiiiiiiiciiiciciccc 18-3
18-2 Decision Tree for Choosing a LogMiner Dictionaryccccooecueiiiicieisicciceiccccee 18-6

XXiX

List of Tables

XXX

2-1
2-2
3-1
3-2

| |||oljcln(|*)
OO WON—-2OODOAODRLWON—= 2 2 a®

_L_L_L_L—L—L(O(O(OQO(IOQOCXJCXJCXJCXJCXJCXJ\I

—_

|
NO O W=

©

15-10
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
171
19-1
19-2
19-3
20-1
20-2
20-3
20-4
20-5
20-6
20-7
21-1
21-2
21-3

Original Export Parameters and Their Counterparts in Data Pump Export 2-39
Supported Activities in Data Pump Export's Interactive-Command Mode................... 2-41
Valid Object Types For the Data Pump Export TRANSFORM Parameter 3-37
Original Import Parameters and Their Counterparts in Data Pump Import................. 3-42
Supported Activities in Data Pump Import's Interactive-Command Mode.................. 3-44
Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed................. 5-2
Case Studies and Their Related Files ..., 6-13
Exit Codes fOr SQLILOAAET.......c.coiiiirieieeieeiereete st et et e e eesee e e tesreessesseessesseessesssessenseens 7-12
Parameters for the INFILE KeyWordccoooioiiiiiiiiiic 8-7
Parameters for the CONTINUEIF Clausec.cccoviiiiiiiiiiiiieiciiiieeceeeeeeeeeenennan 8-22
Fixed-Length Fieldsccooouiiiiii 8-36
Nongraphic Fields........c.coiiiiiiiiii 8-37
Graphic Fields.........oooiiiiiiiiiiiii 8-37
Variable-Length Fields ..o 8-37
Parameters for the Position Specification Clause............cccccouivviiiiniiinniiii, 9-2
Datatype Conversions for Datetime and Interval Datatypes...........ccccoooiiiiiiiirinnnnn. 9-19
Parameters Used for Specifying Delimiters..........c...cccouruiirininiiiciniicicc e 9-20
Parameters for the Field Condition Clause............cccocovviiiiinininiinnine, 9-24
Behavior Summary for Trimming Whitespace..........ccooooiiiieiiiiiicce 9-35
Parameters Used for Column Specificationccocvvviiiiniiiiiniiiniiin, 9-46
ADRCI Command Line Parameters for Batch Operation............cccccevivviiiiiiinicnnnnn, 15-6
List of ADRCI cOMMANAS.......couiuiiiiiiimiiiiiiiiiiriicssssessssssesnnes 15-14
IPS Command Setccovviiiiiiiiiiiiiici s 15-17
Arguments of IPS ADD commMand.........cc.oveuiriiunininiicinicie e 15-19
Arguments of IPS CREATE commandcccooeurimniiiiiniieice e 15-22
Arguments of IPS PACK command...........cccooeeiiiiiniiniiicc e, 15-25
Arguments of IPS REMOVE command..........cccoeeuiniiiiininieicce e, 15-27
IPS Configuration Parameters............ccccoucueiriiinieicieicic e 15-30
Flags for the PURGE commandccooeuiiiiiiieiiiiiciecc e 15-34
Flags for the SHOW ALERT command.ccccouimieiiiiiieiiiicicec s 15-38
Alert Fields for SHOW ALERTccccooviiiiiiiiiiiiccce 15-38
Fields for Health Monitor RUNScccoiiiiiiiiiiiicicic e 15-41
Flags for SHOW INCIDENT command..........ccccouimieiniiiieiiiiniciecc s 15-43
Incident Fields for SHOW INCIDENTccccccoiviiiiiiiiiiiiccccn, 15-44
Flags for SHOW PROBLEM commandcceoiiueieiiiurieiiineie i 15-46
Problem Fields for SHOW PROBLEM.........ccccccovniiiniiiiniiii e 15-47
Arguments for SHOW TRACEFILE Command...........cccooeueieiiiinieiniinieecnieeeee, 15-48
Flags for SHOW TRACEFILE Command........c.ccooieieiiiniiiiicieiece e 15-48
Parameters for the DBNEWID Utility......cccoooiiiiiiiiiiiic e, 17-9
DBMS_METADATA Procedures Used for Retrieving Multiple Objects 19-19
DBMS_METADATA Procedures Used for the Browsing Interfacecccccceueni. 19-20
DBMS_METADATA Procedures and Functions for Submitting XML Data................ 19-20
Privileges Required to Import Objects into Your Own Schema..........cccccoveuiiniiiiinnnennns 20-6
Privileges Required to Import Grants...........ccceeeeiiinniniiiiniiccceeeeees 20-7
Objects Exported and Imported in Each Mode ..o, 20-12
Sequence of Events During Updates by Two USersccccocoeuereiieiiceicciccice, 20-18
Maximum Size for Dump Files ..., 20-20
Exit Codes for Export and IMport ... 20-54
Using Different Releases of Export and Import ..., 20-77
EMCA Command-Line Operations............ccoceeeveiiiiiieiiiiiiinceenns 21-2
EMCA Command-Line Flags..........ccoouiiiiiiiiiiii 21-4
EMCA Command-Line Parameterscccocevvviiiiiiiiiinininiiiiccnen, 21-5

Preface

This document describes how to use the Oracle Database utilities for data transfer,
data maintenance, and database administration. The preface contains these topics:

Audience

Audience
Documentation Accessibility
Related Documentation

Conventions

The utilities described in this book are intended for database administrators (DBAs),
application programmers, security administrators, system operators, and other Oracle
users who perform the following tasks:

Archive data, back up an Oracle database, or move data between Oracle databases
using the Export and Import utilities (both the original versions and the Data
Pump versions)

Load data into Oracle tables from operating system files using SQL*Loader, or
from external sources using the external tables feature

Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

Maintain the internal database identifier (DBID) and the database name
(DBNAME) for an operational database, using the DBNEWID utility

Extract and manipulate complete representations of the metadata for database
objects, using the Metadata API

Query and analyze redo log files (through a SQL interface), using the LogMiner
utility

To use this manual, you need a working knowledge of SQL and of Oracle
fundamentals. You can find such information in Oracle Database Concepts. In addition,
to use SQL*Loader, you must know how to use the file management facilities of your
operating system.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive

XXXi

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services

within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documentation

XXXii

For more information, see these Oracle resources:

The Oracle Database documentation set, especially:

» Oracle Database Concepts

» Oracle Database SQL Language Reference

» Oracle Database Administrator’s Guide

» Oracle Database PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle Database. Refer to Oracle Database
Sample Schemas for information about how these schemas were created and how you
can use them yourself.

Oracle error message documentation is only available in HTML. If you only have
access to the Oracle Database Documentation CD, you can browse the error messages
by range. Once you find the specific range, use your browser's "find in page" feature to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle online
documentation.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXXxiii

XXXiV

What's New in Database Utilities?

This section describes new features of the Oracle Database 11g utilities, and provides
pointers to additional information. For information about features that were
introduced in earlier releases of Oracle Database, refer to the documentation for those
releases.

New Features in Oracle Database 11¢g Release 1

This section lists the major new features that have been added for Oracle Database 11g
Release 1 (11.1).

Data Pump Export and Data Pump Import

For the Data Pump Export and Data Pump Import products, new features have been
added that allow you to do the following:

Compress both data and metadata, only data, only metadata, or no data during an
export. See COMPRESSION on page 2-9.

Specify additional encryption options in the following areas:

You can choose to encrypt both data and metadata, only data, only metadata,
no data, or only encrypted columns during an export. See ENCRYPTION on
page 2-13.

You can specify a specific encryption algorithm to use during an export. See
ENCRYPTION_ALGORITHM on page 2-13.

You can specify the type of security to use for performing encryption and
decryption during an export. For example, perhaps the dump file set will be
imported into a different or remote database and it must remain secure in
transit. Or perhaps the dump file set will be imported onsite using the Oracle
Encryption Wallet but it may also need to be imported offsite where the
Oracle Encryption Wallet is not available. See ENCRYPTION_MODE on
page 2-14.

Perform table mode exports and imports using the transportable method. For
information on using this feature during export, see the export TRANSPORTABLE
parameter on page 2-37. For information on using this feature during import, see
the import TRANSPORTABLE parameter on page 3-41.

Specify how partitioned tables should be handled during import operations. See
PARTITION_OPTIONS on page 3-23 for a description of using this parameter
during an import.

Overwrite existing dump files during an export operation. See REUSE_
DUMPFILES on page 2-31.

XXXV

XXXVi

= Rename tables during an import operation. See REMAP_TABLE on page 3-28.

= Specify that a data load should proceed even if non-deferred constraint violations
are encountered. This is valid only for import operations that use the external
tables access method. See the import DATA_OPTIONS parameter on page 3-9.

= Specify that XMLIype columns are to be exported in uncompressed CLOB format
regardless of the XMLType storage format that was defined for them. See the
export DATA_OPTIONS parameter on page 2-10.

s During an export, specify a remap function that takes as a source the original
value of the designated column and returns a remapped value that will replace the
original value in the dump file. See the export REMAP_DATA parameter on
page 2-30.

s During an import, remap data as it is being loaded into a new database. See the
import REMAP_DATA parameter on page 3-25.

s Automatic restart of workers on the same instance.

Additionally, Data Pump will now perform a one-time automatic restart of workers
(on the same instance) that have stopped due to certain errors. For example, if
someone manually stops a process, the worker is automatically restarted one time, on
the same instance. If the process stops a second time, it must be manually restarted.

External Tables
For the External Tables functionality, the following new features have been added:

= Ability to compress data before it is written to the dump file set. See
COMPRESSION on page 14-2.

= Ability to encrypt data before it is written to the dump file set. See ENCRYPTION
on page 14-2.

LogMiner Utility
LogMiner now provides the following additional support:

s The LogMiner utility now supports XMLType data when it is stored in CLOB
format.

See Supported Datatypes and Table Storage Attributes on page 18-68.

Automatic Diagnostic Repository Command Interpreter (ADRCI)

The Automatic Diagnostic Repository Command Interpreter (ADRCI) provides a way
for you to work with the diagnostic data contained in the Automatic Diagnostic
Repository (ADR). The ADR is a file-based repository for database diagnostic data,
such as traces, dumps, the alert log, health monitor reports, and more. It has a unified
directory structure across multiple instances and multiple products.

See Chapter 15, "ADRCI: ADR Command Interpreter” for more information.

Enterprise Manager Configuration Assistant (EMCA)

The Enterprise Manager Configuration Assistant (EMCA) is now documented in this
book. Prior to Oracle Database 11g Release 1, it was documented in Oracle Enterprise
Manager Advanced Configuration. The EMCA provides a command-line interface for
configuring Database Control.

See Chapter 21, "Enterprise Manager Configuration Assistant (EMCA)" for more
information.

Part |

Oracle Data Pump

This part contains the following chapters:

Chapter 1, "Overview of Oracle Data Pump"

This chapter provides an overview of Oracle Data Pump technology, which
enables very high-speed movement of data and metadata from one database to
another.

Chapter 2, "Data Pump Export"

This chapter describes the Oracle Data Pump Export utility, which is used to
unload data and metadata into a set of operating system files called a dump file
set.

Chapter 3, "Data Pump Import"

This chapter describes the Oracle Data Pump Import utility, which is used to load
an export dump file set into a target system. It also describes how to perform a
network import to load a target database directly from a source database with no
intervening files.

Chapter 4, "Data Pump Performance"

This chapter discusses why the performance of Data Pump Export and Import is
better than that of original Export and Import. It also suggests specific steps you
can take to enhance performance of export and import operations.

Chapter 5, "The Data Pump API"

This chapter describes how the Data Pump API, DBMS_DATAPUMP, works.

1

Overview of Oracle Data Pump

Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

This chapter discusses the following topics:

s Data Pump Components

s How Does Data Pump Move Data?

= What Happens During Execution of a Data Pump Job?
= Monitoring Job Status

» File Allocation

= Moving Data Between Different Database Versions

Data Pump Components
Oracle Data Pump is made up of three distinct parts:
s The command-line clients, expdp and impdp
» The DBMS_DATAPUMP PL/SQL package (also known as the Data Pump API)
s The DBMS_METADATA PL/SQL package (also known as the Metadata API)

The Data Pump clients, expdp and impdp, invoke the Data Pump Export utility and
Data Pump Import utility, respectively. They provide a user interface that closely
resembles the original Export (exp) and Import (imp) utilities.

Note: Dump files generated by the Data Pump Export utility are not
compatible with dump files generated by the original Export utility.
Therefore, files generated by the original Export (exp) utility cannot
be imported with the Data Pump Import (impdp) utility.

In most cases, Oracle recommends that you use the Data Pump Export
and Import utilities. They provide enhanced data movement
performance in comparison to the original Export and Import utilities.

See Chapter 20, "Original Export and Import" for information about
situations in which you should still use the original Export and Import
utilities.

The expdp and impdp clients use the procedures provided in the DBMS_DATAPUMP
PL/SQL package to execute export and import commands, using the parameters

Overview of Oracle Data Pump 1-1

How Does Data Pump Move Data?

entered at the command-line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the DBMS_
METADATA PL/SQL package. The DBMS_METADATA package provides a centralized
facility for the extraction, manipulation, and resubmission of dictionary metadata.

The DBMS_DATAPUMP and DBMS_METADATA PL/SQL packages can be used
independently of the Data Pump clients.

Note: All Data Pump Export and Import processing, including the
reading and writing of dump files, is done on the system (server)
selected by the specified database connect string. This means that, for
nonprivileged users, the database administrator (DBA) must create
directory objects for the Data Pump files that are read and written
on that server file system. For privileged users, a default directory
object is available. See Default Locations for Dump, Log, and SQL
Files on page 1-10 for more information about directory objects.

Note: Data Pump Export and Import are not supported on physical
or logical standby databases except for initial table instantiation on a
logical standby.

See Also: Oracle Database PL/SQL Packages and Types Reference for
descriptions of the DBMS_DATAPUMP and DBMS_METADATA
packages

How Does Data Pump Move Data?

Data Pump uses four mechanisms for moving data in and out of databases. They are
as follows, in order of decreasing speed:

= Data file copying
s Direct path
s External tables

= Network link import

Note: Data Pump will not load tables with disabled unique indexes.
If the data needs to be loaded into the table, the indexes must be either
dropped or reenabled.

1-2 Oracle Database Utilities

How Does Data Pump Move Data?

Note: There are a few situations in which Data Pump will not be able
to load data into a table using either direct path or external tables. This
occurs when there are conflicting table attributes. For example, a
conflict occurs if a table contains a column of datatype LONG (which
requires the direct path access method) but also has a condition that
prevents use of direct path access. In such cases, an ORA-39242 error
message is generated. To work around this, prior to import, create the
table with a LOB column instead of a LONG column. You can then
perform the import and use the TABLE_EXISTS_ACTION parameter
with a value of either APPEND or TRUNCATE.

The following sections briefly explain how and when each of these data movement
mechanisms is used.

Using Data File Copying to Move Data

The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump
Export is used to unload only structural information (metadata) into the dump file.
This method is used in the following situations:

s The TRANSPORT_TABLESPACES parameter is used to specify a transportable
mode export. Only metadata for the specified tablespaces is exported.

s The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter). Only metadata for the tables, partitions,
and subpartitions specified on the TABLES parameter is exported.

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, you will be loading
both the data files and the export dump file.

When data is moved by using data file copying, the character sets must be identical on
both the source and target databases. Therefore, in addition to copying the data, you
may need to prepare it by using the Recovery Manager (RMAN) CONVERT command
to perform some data conversions. You can generally do this at either the source or
target database.

See Also:

» Oracle Database Backup and Recovery Reference for information
about the RMAN CONVERT command

s Oracle Database Administrator's Guide for a description and
example (including how to convert the data) of transporting
tablespaces between databases

Using Direct Path to Move Data

After data file copying, direct path is the fastest method of moving data. In this
method, the SQL layer of the database is bypassed and rows are moved to and from
the dump file with only minimal interpretation. Data Pump automatically uses the
direct path method for loading and unloading data when the structure of a table
allows it. Note that if the table has any columns of datatype LONG, then direct path
must be used.

The following sections describe situations in which direct path cannot be used for
loading and unloading.

Overview of Oracle Data Pump 1-3

How Does Data Pump Move Data?

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, Data Pump uses external tables
rather than direct path to load the data for that table:

= A global index on multipartition tables exists during a single-partition load. This
includes object tables that are partitioned.

= A domain index exists for a LOB column.

= Atableisina cluster.

» There is an active trigger on a pre-existing table.

= Fine-grained access control is enabled in insert mode on a pre-existing table.
= A table contains BFILE columns or columns of opaque types.

= A referential integrity constraint is present on a pre-existing table.

= A table contains VARRAY columns with an embedded opaque type.

= The table has encrypted columns

= The table into which data is being imported is a pre-existing table and at least one
of the following conditions exists:

— There is an active trigger
— The table is partitioned
- Fine-grained access control is in insert mode
- Areferential integrity constraint exists
- A unique index exists
= Supplemental logging is enabled and the table has at least one LOB column.

s The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, Data Pump uses the external table
method to unload data, rather than direct path:

= Fine-grained access control for SELECT is enabled.
= The table is a queue table.

= The table contains one or more columns of type BFILE or opaque, or an object
type containing opaque columns.

= The table contains encrypted columns.
= The table contains a column of an evolved type that needs upgrading.
= The table contains a column of type LONG or LONG RAW that is not last.

s The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

Using External Tables to Move Data

When data file copying is not selected and the data cannot be moved using direct path,
the external table mechanism is used. The external table mechanism creates an external
table that maps to the dump file data for the database table. The SQL engine is then
used to move the data. If possible, the APPEND hint is used on import to speed the

1-4 Oracle Database Utilities

How Does Data Pump Move Data?

copying of the data into the database. The representation of data for direct path data
and external table data is the same in a dump file. Therefore, Data Pump might use the
direct path mechanism at export time, but use external tables when the data is
imported into the target database. Similarly, Data Pump might use external tables for
the export, but use direct path for the import.

In particular, Data Pump uses external tables in the following situations:

= Loading and unloading very large tables and partitions in situations where
parallel SQL can be used to advantage

= Loading tables with global or domain indexes defined on them, including
partitioned object tables

= Loading tables with active triggers or clustered tables
= Loading and unloading tables with encrypted columns
= Loading tables with fine-grained access control enabled for inserts

= Loading tables that are partitioned differently at load time and unload time

Note: When Data Pump uses external tables as the data access
mechanism, it uses the ORACLE_DATAPUMP access driver. However, it
is important to understand that the files that Data Pump creates when
it uses external tables are not compatible with files created when you
manually create an external table using the SQL CREATE TABLE . ..
ORGANIZATION EXTERNAL statement. One of the reasons for this is
that a manually created external table unloads only data (no
metadata), whereas Data Pump maintains both data and metadata
information for all objects involved.

See Also: Chapter 14, "The ORACLE_DATAPUMP Access Driver"

When the Export NETWORK_LINK parameter is used to specify a network link for an
export operation, a variant of the external tables method is used. In this case, data is

selected from across the specified network link and inserted into the dump file using
an external table.

See Also:

= NETWORK_LINK on page 2-26 for information about using the
Export NETWORK_LINK parameter

» Oracle Database SQL Language Reference for information about
using the APPEND hint

Using Network Link Import to Move Data

When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, SQL is directly used to move the data using an INSERT SELECT
statement. The SELECT clause retrieves the data from the remote database over the
network link. The INSERT clause uses SQL to insert the data into the target database.
There are no dump files involved.

When you perform an export over a database link, the data from the source database
instance is written to dump files on the connected database instance. The source
database can be a read-only database.

Overview of Oracle Data Pump 1-5

What Happens During Execution of a Data Pump Job?

Because the link can identify a remotely networked database, the terms database link
and network link are used interchangeably.

Because reading over a network is generally slower than reading from a disk, network
link is the slowest of the four access methods used by Data Pump and may be
undesirable for very large jobs.

Supported Link Types

The following types of database links are supported for use with Data Pump Export
and Import:

= Public (both public and shared)
» Fixed-user

s Connected user

Unsupported Link Types

The database link type, Current User, is not supported for use with Data Pump Export
or Import:

See Also:

s The Export NETWORK_LINK parameter on page 2-26 for
information about performing exports over a database link

s The Import NETWORK_LINK parameter on page 3-20 for
information about performing imports over a database link

» Oracle Database SQL Language Reference for information about
database links

What Happens During Execution of a Data Pump Jobh?

Data Pump jobs use a master table, a master process, and worker processes to perform
the work and keep track of progress.

Coordination of a Job

For every Data Pump Export job and Data Pump Import job, a master process is
created. The master process controls the entire job, including communicating with the
clients, creating and controlling a pool of worker processes, and performing logging
operations.

Tracking Progress Within a Job

While the data and metadata are being transferred, a master table is used to track the
progress within a job. The master table is implemented as a user table within the
database. The specific function of the master table for export and import jobs is as
follows:

= For export jobs, the master table records the location of database objects within a
dump file set. Export builds and maintains the master table for the duration of the
job. At the end of an export job, the content of the master table is written to a file in
the dump file set.

= For import jobs, the master table is loaded from the dump file set and is used to
control the sequence of operations for locating objects that need to be imported
into the target database.

1-6 Oracle Database Utilities

What Happens During Execution of a Data Pump Job?

The master table is created in the schema of the current user performing the export or
import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the master table. The name of the
master table is the same as the name of the job that created it. Therefore, you cannot
explicitly give a Data Pump job the same name as a preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The master table is either retained or dropped, depending on the circumstances, as
follows:

s Upon successful job completion, the master table is dropped.

= Ifajob is stopped using the STOP_JOB interactive command, the master table is
retained for use in restarting the job.

s Ifajob is killed using the KILL_JOB interactive command, the master table is
dropped and the job cannot be restarted.

s If ajob terminates unexpectedly, the master table is retained. You can delete it if
you do not intend to restart the job.

= Ifajob stops before it starts running (that is, before any database objects have been
copied), the master table is dropped.

See Also: JOB_NAME on page 2-24 for more information about
how job names are formed.

Filtering Data and Metadata During a Job

Within the master table, specific objects are assigned attributes such as name or
owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, or
DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE
and INCLUDE parameters to restrict the types of objects that are exported and
imported. The objects can be based upon the name of the object or the name of the
schema that owns the object. You can also specify data-specific filters to restrict the
rows that are exported and imported.

See Also:
» Filtering During Export Operations on page 2-5
» Filtering During Import Operations on page 3-5

Transforming Metadata During a Job

When you are moving data from one database to another, it is often useful to perform
transformations on the metadata for remapping storage between tablespaces or
redefining the owner of a particular set of objects. This is done using the following
Data Pump Import parameters: REMAP_DATAFILE, REMAP_SCHEMA, REMAP_
TABLE, REMAP_TABLESPACE, TRANSFORM and PARTITION_OPTIONS.

Maximizing Job Performance

Data Pump can employ multiple worker processes, running in parallel, to job increase
performance. Use the PARALLEL parameter to set a degree of parallelism that takes
maximum advantage of current conditions. For example, to limit the effect of a job on
a production system, the database administrator (DBA) might wish to restrict the
parallelism. The degree of parallelism can be reset at any time during a job. For
example, PARALLEL could be set to 2 during production hours to restrict a particular

Overview of Oracle Data Pump 1-7

Monitoring Job Status

job to only two degrees of parallelism, and during nonproduction hours it could be
reset to 8. The parallelism setting is enforced by the master process, which allocates
work to be executed to worker processes that perform the data and metadata
processing within an operation. These worker processes operate in parallel. In general,
the degree of parallelism should be set to no more than twice the number of CPUs on
an instance.

Note: The ability to adjust the degree of parallelism is available
only in the Enterprise Edition of Oracle Database.

Loading and Unloading of Data

The worker processes are the ones that actually unload and load metadata and table
data in parallel. Worker processes are created as needed until the number of worker

processes is equal to the value supplied for the PARALLEL command-line parameter.
The number of active worker processes can be reset throughout the life of a job.

Note: The value of PARALLEL is restricted to 1 in the Standard
Edition of Oracle Database.

When a worker process is assigned the task of loading or unloading a very large table
or partition, it may choose to use the external tables access method to make maximum
use of parallel execution. In such a case, the worker process becomes a parallel
execution coordinator. The actual loading and unloading work is divided among some
number of parallel I/O execution processes (sometimes called slaves) allocated from
the Oracle RAC-wide pool of parallel I/O execution processes.

See Also:
s The Export PARALLEL parameter on page 2-27
s The Import PARALLEL parameter on page 3-22

Monitoring Job Status

The Data Pump Export and Import utilities can be attached to a job in either
interactive-command mode or logging mode. In logging mode, real-time detailed
status about the job is automatically displayed during job execution. The information
displayed can include the job and parameter descriptions, an estimate of the amount
of data to be exported, a description of the current operation or item being processed,
files used during the job, any errors encountered, and the final job state (Stopped or
Completed).

See Also:

» The Export STATUS parameter on page 2-44 for information
about changing the frequency of the status display in
command-line Export

s The Import STATUS parameter on page 3-32 for information
about changing the frequency of the status display in
command-line Import

1-8 Oracle Database Utilities

Monitoring Job Status

Job status can be displayed on request in interactive-command mode. The information
displayed can include the job description and state, a description of the current
operation or item being processed, files being written, and a cumulative status.

See Also:

s The interactive Export STATUS command on page 2-44

» The interactive Import STATUS command on page 3-47

A log file can also be optionally written during the execution of a job. The log file
summarizes the progress of the job, lists any errors that were encountered along the
way, and records the completion status of the job.

See Also:

» The Export LOGFILE parameter on page 2-25 for information on
how to set the file specification for an export log file

s The Import LOGFILE parameter on page 3-19 for information on
how to set the file specification for a import log file

An alternative way to determine job status or to get other information about Data
Pump jobs, would be to query the DBA_DATAPUMP_JOBS, USER_DATAPUMP_JOBS, or
DBA_DATAPUMP_SESSIONS views. See Oracle Database Reference for descriptions of
these views.

Monitoring the Progress of Executing Jobs

Data Pump operations that transfer table data (export and import) maintain an entry
in the V$SESSION_LONGOPS dynamic performance view indicating the job progress
(in megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESST ON, ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_
MODE, ENCRYPTION_PASSWORD, QUERY, REMAP_DATA, and SAMPLE parameters will
not be reflected in the determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if
exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$ SESSION_LONGOPS columns that are relevant to a Data Pump job are as
follows:

= USERNAME - job owner

= OPNAME - job name

= TARGET_DESC -job operation

= SOFAR - megabytes (MB) transferred thus far during the job

= TOTALWORK - estimated number of megabytes (MB) in the job
= UNITS-'MB

= MESSAGE - a formatted status message of the form:

'job_name: operation_name : nnn out of mmm MB done'

Overview of Oracle Data Pump 1-9

File Allocation

File Allocation
Data Pump jobs manage the following types of files:
= Dump files to contain the data and metadata that is being moved
= Log files to record the messages associated with an operation

= SQL files to record the output of a SQLFILE operation. A SQLFILE operation is
invoked using the Data Pump Import SQLFILE parameter and results in all of the
SQL DDL that Import will be executing based on other parameters, being written
to a SQL file.

» Files specified by the DATA_FILES parameter during a transportable import.

An understanding of how Data Pump allocates and handles these files will help you to
use Export and Import to their fullest advantage.

Specifying Files and Adding Additional Dump Files

For export operations, you can specify dump files at the time the job is defined, as well
as at a later time during the operation. For example, if you discover that space is
running low during an export operation, you can add additional dump files by using
the Data Pump Export ADD_FILE command in interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files will overwrite previously existing files. For dump files, you can
use the Export REUSE_DUMPFILES parameter to specify whether or not to overwrite a
preexisting dump file.

Default Locations for Dump, Log, and SQL Files

Because Data Pump is server-based, rather than client-based, dump files, log files, and
SQL files are accessed relative to server-based directory paths. Data Pump requires
you to specify directory paths as directory objects. A directory object maps a name to a
directory path on the file system.

For example, the following SQL statement creates a directory object named dpump_
dirl that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump_dirl AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity.
For example:

s If you were allowed to specify a directory path location for an input file, you
might be able to read data that the server has access to, but to which you should
not.

= If you were allowed to specify a directory path location for an output file, the
server might overwrite a file that you might not normally have privileges to
delete.

On Unix and Windows NT systems, a default directory object, DATA_PUMP_DIR, is
created at database creation or whenever the database dictionary is upgraded. By
default, it is available only to privileged users.

If you are not a privileged user, before you can run Data Pump Export or Data Pump
Import, a directory object must be created by a database administrator (DBA) or by
any user with the CREATE ANY DIRECTORY privilege.

1-10 Oracle Database Utilities

File Allocation

After a directory is created, the user creating the directory object needs to grant READ
or WRITE permission on the directory to other users. For example, to allow the Oracle
database to read and write files on behalf of user hr in the directory named by
dpump_dirl, the DBA must execute the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dirl TO hr;

Note that READ or WRITE permission to a directory object only means that the Oracle
database will read or write that file on your behalf. You are not given direct access to
those files outside of the Oracle database unless you have the appropriate operating
system privileges. Similarly, the Oracle database requires permission from the
operating system to read and write files in the directories.

Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If a directory object is specified as part of the file specification, then the location
specified by that directory object is used. (The directory object must be separated
from the filename by a colon.)

2. If a directory object is not specified for a file, then the directory object named by
the DIRECTORY parameter is used.

3. If a directory object is not specified, and if no directory object was named by the
DIRECTORY parameter, then the value of the environment variable, DATA_PUMP_
DIR, is used. This environment variable is defined using operating system
commands on the client system where the Data Pump Export and Import utilities
are run. The value assigned to this client-based environment variable must be the
name of a server-based directory object, which must first be created on the server
system by a DBA. For example, the following SQL statement creates a directory
object on the server system. The name of the directory object is DUMP_FILES1,
and it is located at ' /usr/apps/dumpfilesl’.

SQL> CREATE DIRECTORY DUMP_FILES1 AS '/usr/apps/dumpfilesl';

Then, a user on a UNIX-based client system using csh can assign the value DUMP_
FILESI to the environment variable DATA_PUMP_DIR. The DIRECTORY
parameter can then be omitted from the command line. The dump file
employees.dmp, as well as the log file export.log, will be written to
'/usr/apps/dumpfilesl’.

%setenv DATA_PUMP_DIR DUMP_FILES1
%expdp hr TABLES=employees DUMPFILE=employees.dmp

4. If none of the previous three conditions yields a directory object and you are a
privileged user, then Data Pump attempts to use the value of the default
server-based directory object, DATA_PUMP_DIR. This directory object is
automatically created at database creation or when the database dictionary is
upgraded. You can use the following SQL query to see the path definition for
DATA_PUMP_DIR:

SQL> SELECT directory_name, directory_path FROM dba_directories

2 WHERE directory_name='DATA_PUMP_DIR’;

If you are not a privileged user, access to the DATA_PUMP_DIR directory object
must have previously been granted to you by a DBA.

Do not confuse the default DATA_PUMP_DIR directory object with the client-based
environment variable of the same name.

Overview of Oracle Data Pump 1-11

File Allocation

Using Directory Objects When Automatic Storage Management Is Enabled

If you use Data Pump Export or Import with Automatic Storage Management (ASM)
enabled, you must define the directory object used for the dump file so that the ASM
disk-group name is used (instead of an operating system directory path). A separate
directory object, which points to an operating system directory path, should be used
for the log file. For example, you would create a directory object for the ASM dump
file as follows:

SQL> CREATE or REPLACE DIRECTORY dpump_dir as '+DATAFILES/';

Then you would create a separate directory object for the log file:

SQL> CREATE or REPLACE DIRECTORY dpump_log as '/homedir/userl/';

To enable user hr to have access to these directory objects, you would assign the
necessary privileges, for example:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump_log TO hr;

You would then use the following Data Pump Export command (you will be
prompted for a password):

> expdp hr DIRECTORY=dpump_dir DUMPFILE=hr.dmp LOGFILE=dpump_log:hr.log

See Also:
s The Export DIRECTORY parameter on page 2-11
s The Import DIRECTORY parameter on page 3-10

» Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY command

s Oracle Database Administrator's Guide for more information
about Automatic Storage Management (ASM)

Setting Parallelism

For export and import operations, the parallelism setting (specified with the
PARALLEL parameter) should be less than or equal to the number of dump files in the
dump file set. If there are not enough dump files, the performance will not be optimal
because multiple threads of execution will be trying to access the same dump file.

The PARALLEL parameter is valid only in the Enterprise Edition of Oracle Database.

Using Substitution Variables

Instead of, or in addition to, listing specific filenames, you can use the DUMPFILE
parameter during export operations to specify multiple dump files, by using a
substitution variable (%U) in the filename. This is called a dump file template. The new
dump files are created as they are needed, beginning with 01 for U, then using 02,
03, and so on. Enough dump files are created to allow all processes specified by the
current setting of the PARALLEL parameter to be active. If one of the dump files
becomes full because its size has reached the maximum size specified by the
FILESIZE parameter, it is closed, and a new dump file (with a new generated name)
is created to take its place.

If multiple dump file templates are provided, they are used to generate dump files in a
round-robin fashion. For example, if expa%U, expb%U, and expc%U were all specified

1-12 Oracle Database Utilities

Moving Data Between Different Database Versions

for a job having a parallelism of 6, the initial dump files created would be
expall.dmp, expb0l.dmp, expc0l.dmp, expal2.dmp, expb02.dmp, and
expc02.dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and
expcsU are specified, then the operation will begin by attempting to open the dump
files expa0l.dmp, expb01l.dmp, and expc0l.dmp. It is possible for the master table to
span multiple dump files, so until all pieces of the master table are found, dump files
continue to be opened by incrementing the substitution variable and looking up the
new filenames (for example, expa02.dmp, expb02.dmp, and expc02.dmp). If a dump
file does not exist, the operation stops incrementing the substitution variable for the
dump file specification that was in error. For example, if expb01.dmp and
expb02.dmp are found but expb03.dmp is not found, then no more files are searched
for using the expb%U specification. Once the entire master table is found, it is used to
determine whether all dump files in the dump file set have been located.

Moving Data Between Different Database Versions

Because most Data Pump operations are performed on the server side, if you are using
any version of the database other than COMPATIBLE, you must provide the server
with specific version information. Otherwise, errors may occur. To specify version
information, use the VERSION parameter.

See Also:
» The Export VERSION parameter on page 2-38
s The Import VERSION parameter on page 3-41

Keep the following information in mind when you are using Data Pump Export and
Import to move data between different database versions:

= If you specify a database version that is older than the current database version,
certain features may be unavailable. For example, specifying VERSION=10. 1 will
cause an error if data compression is also specified for the job because
compression was not supported in 10.1.

s Ona Data Pump export, if you specify a database version that is older than the
current database version, then a dump file set is created that you can import into
that older version of the database. However, the dump file set will not contain any
objects that the older database version does not support. For example, if you
export from a version 10.2 database to a version 10.1 database, comments on
indextypes will not be exported into the dump file set.

= Data Pump Import can always read dump file sets created by older versions of the
database.

= Data Pump Import cannot read dump file sets created by a database version that is
newer than the current database version, unless those dump file sets were created
with the version parameter set to the version of the target database. Therefore, the
best way to perform a downgrade is to perform your Data Pump export with the
VERSION parameter set to the version of the target database.

= When operating across a network link, Data Pump requires that the remote
database version be either the same as the local database or one version older, at
the most. For example, if the local database is version 11.1, the remote database
must be either version 10.2 or 11.1.

Overview of Oracle Data Pump 1-13

Moving Data Between Different Database Versions

1-14 Oracle Database Utilities

2

Data Pump Export

This chapter describes the Oracle Data Pump Export utility. The following topics are
discussed:

= What Is Data Pump Export?

s Invoking Data Pump Export

= Filtering During Export Operations

= Parameters Available in Export's Command-Line Mode

= How Data Pump Export Parameters Map to Those of the Original Export Utility
s Commands Available in Export's Interactive-Command Mode

= Examples of Using Data Pump Export

= Syntax Diagrams for Data Pump Export

What Is Data Pump Export?

Note: Although Data Pump Export (expdp) functionality is
similar to that of the original Export utility (exp), they are
completely separate utilities and their files are not compatible. See
Chapter 20, "Original Export and Import" for a description of the
original Export utility.

Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for
unloading data and metadata into a set of operating system files called a dump file set.
The dump file set can be imported only by the Data Pump Import utility. The dump
file set can be imported on the same system or it can be moved to another system and
loaded there.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary
format. During an import operation, the Data Pump Import utility uses these files to
locate each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, the data
base administrator (DBA) must create directory objects. See Default Locations for
Dump, Log, and SQL Files on page 1-10 for more information about directory objects.

Data Pump Export enables you to specify that a job should move a subset of the data
and metadata, as determined by the export mode. This is done using data filters and

Data Pump Export 2-1

Invoking Data Pump Export

metadata filters, which are specified through Export parameters. See Filtering During
Export Operations on page 2-5.

To see some examples of the various ways in which you can use Data Pump Export,
refer to Examples of Using Data Pump Export on page 2-45.

Invoking Data Pump Export

The Data Pump Export utility is invoked using the expdp command. The
characteristics of the export operation are determined by the Export parameters you
specify. These parameters can be specified either on the command line orin a
parameter file.

Note: Do not invoke Export as SYSDBA, except at the request of
Oracle technical support. SYSDBA is used internally and has
specialized functions; its behavior is not the same as for general
users.

The following sections contain more information about invoking Export:
= Data Pump Export Interfaces on page 2-2
= Data Pump Export Modes on page 2-3

= Network Considerations on page 2-5

Note: It is not possible to start or restart Data Pump jobs on one
instance in an Oracle Real Application Clusters (RAC) environment if
there are Data Pump jobs currently running on other instances in the
Oracle RAC environment.

Data Pump Export Interfaces

You can interact with Data Pump Export by using a command line, a parameter file, or
an interactive-command mode.

s Command-Line Interface: Enables you to specify most of the Export parameters
directly on the command line. For a complete description of the parameters
available in the command-line interface, see Parameters Available in Export's
Command-Line Mode on page 2-7.

» Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter, because parameter
files cannot be nested. The use of parameter files is recommended if you are using
parameters whose values require quotation marks. See Use of Quotation Marks
On the Data Pump Command Line on page 2-7.

s Interactive-Command Interface: Stops logging to the terminal and displays the
Export prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an export operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

For a complete description of the commands available in interactive-command
mode, see Commands Available in Export's Interactive-Command Mode on
page 2-41.

2-2 Oracle Database Utilities

Invoking Data Pump Export

Data Pump Export Modes

Export provides different modes for unloading different portions of the database. The
mode is specified on the command line, using the appropriate parameter. The
available modes are as follows:

s Full Export Mode on page 2-3

s Schema Mode on page 2-3

= Table Mode on page 2-3

s Tablespace Mode on page 2-4

= Transportable Tablespace Mode on page 2-4

Note: A number of system schemas cannot be exported because they
are not user schemas; they contain Oracle-managed data and
metadata. Examples of system schemas that are not exported include
SYS, ORDSYS, and MDSYS.

See Also: Examples of Using Data Pump Export on page 2-45

Full Export Mode

A full export is specified using the FULL parameter. In a full database export, the
entire database is unloaded. This mode requires that you have the EXP_FULL_
DATABASE role.

See Also: FULL on page 2-22 for a description of the Export FULL
parameter

Schema Mode

A schema export is specified using the SCHEMAS parameter. This is the default export
mode. If you have the EXP_FULL_DATABASE role, then you can specify a list of
schemas and optionally include the schema definitions themselves, as well as system
privilege grants to those schemas. If you do not have the EXP_FULL_DATABASE role,
you can export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also
specified in the list of schemas to be exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not explicitly
specified, is not exported. This is also true for external type definitions upon which
tables in the specified schemas depend. In such a case, it is expected that the type
definitions already exist in the target instance at import time.

See Also: SCHEMAS on page 2-32 for a description of the Export
SCHEMAS parameter

Table Mode

A table mode export is specified using the TABLES parameter. In table mode, only a
specified set of tables, partitions, and their dependent objects are unloaded.

If you specify the TRANSPORTABLE=ALWAYS parameter in conjunction with the
TABLES parameter, then only object metadata is unloaded. To move the actual data,
you copy the data files to the target database. This results in quicker export times. If

Data Pump Export 2-3

Invoking Data Pump Export

you are moving data files between versions or platforms, the data files may need to be
processed by Oracle Recovery Manager (RMAN).

See Also: Oracle Database Backup and Recovery User’s Guide for more
information on transporting data across platforms

You must have the EXP_ FULL_DATABASE role to specify tables that are not in your
own schema. All specified tables must reside in a single schema. Note that type
definitions for columns are not exported in table mode. It is expected that the type
definitions already exist in the target instance at import time. Also, as in schema
exports, cross-schema references are not exported.

See Also:

= TABLES on page 2-33 for a description of the Export TABLES
parameter

= TRANSPORTABLE on page 2-37 for a description of the Export
TRANSPORTABLE parameter

Tablespace Mode

A tablespace export is specified using the TABLESPACES parameter. In tablespace
mode, only the tables contained in a specified set of tablespaces are unloaded. If a
table is unloaded, its dependent objects are also unloaded. Both object metadata and
data are unloaded. In tablespace mode, if any part of a table resides in the specified
set, then that table and all of its dependent objects are exported. Privileged users get
all tables. Nonprivileged users get only the tables in their own schemas.

See Also:
s TABLESPACES on page 2-35 for a description of the Export
TABLESPACES parameter

Transportable Tablespace Mode

A transportable tablespace export is specified using the TRANSPORT_TABLESPACES
parameter. In transportable tablespace mode, only the metadata for the tables (and
their dependent objects) within a specified set of tablespaces is exported. The
tablespace datafiles are copied in a separate operation. Then, a transportable
tablespace import is performed to import the dump file containing the metadata and
to specify the datafiles to use.

Transportable tablespace mode requires that the specified tables be completely
self-contained. That is, all storage segments of all tables (and their indexes) defined
within the tablespace set must also be contained within the set. If there are
self-containment violations, Export identifies all of the problems without actually
performing the export.

Transportable tablespace exports cannot be restarted once stopped. Also, they cannot
have a degree of parallelism greater than 1.

Encrypted columns are not supported in transportable tablespace mode.

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

2-4 Oracle Database Utilities

Filtering During Export Operations

See Also:
s TRANSPORT_FULL_CHECK on page 2-35
s TRANSPORT_TABLESPACES on page 2-36

n Oracle Database Administrator’s Guide for more information
about transportable tablespaces

Network Considerations

You can specify a connect identifier in the connect string when you invoke the Data
Pump Export utility. This identifier can specify a database instance that is different
from the current instance identified by the current Oracle System ID (SID). The
connect identifier can be an Oracle*Net connect descriptor or a name that maps to a
connect descriptor. This requires an active listener (to start the listener, enter 1snrctl
start) that can be located using the connect descriptor. The following example
invokes Export for user hr, using the connect descriptor named inst1:

expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp TABLES=employees

Export: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 10:15:45
Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password@instl

Connected to: Oracle Database 1lg Enterprise Edition Release 11.1.0.6.0 -
Production
With the Partitioning, Data Mining and Real Application Testing options

The local Export client connects to the database instance identified by the connect
descriptor inst1 (a simple net service name, usually defined in a tnsnames . ora
file), to export the data on that instance.

Do not confuse invoking the Export utility using a connect identifier with an export
operation specifying the Export NETWORK_LINK command-line parameter. When you
perform an export and use the NETWORK_LINK parameter, the export is initiated over
a database link. Whereas, when you start an export operation and specify a connect
identifier, the local Export client connects to the database instance identified by the
command-line connect string, retrieves the data to be exported from the database
instance identified by the database link, and writes the data to a dump file set on the
connected database instance.

See Also:
= NETWORK_LINK on page 2-26
m Oracle Database Net Services Administrator’s Guide

» Oracle Database Heterogeneous Connectivity Administrator’s Guide

Filtering During Export Operations

Data Pump Export provides much greater data and metadata filtering capability than
was provided by the original Export utility.

Data Pump Export 2-5

Filtering During Export Operations

Data Filters

Data specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be exported.

Data filtering can also occur indirectly as a result of metadata filtering, which can
include or exclude table objects along with any associated row data.

Each data filter can be specified once per table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, the filter
parameter supplied for the specific table will take precedence.

Metadata Filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters.
The EXCLUDE and INCLUDE parameters are mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from an Export or
Import operation. For example, you could request a full export, but without Package
Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For example, if a
filter specifies that an index is to be included in an operation, then statistics from that
index will also be included. Likewise, if a table is excluded by a filter, then indexes,
constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, an implicit AND operation is applied
to them. That is, objects pertaining to the job must pass all of the filters applied to their
object types.

The same metadata filter name can be specified multiple times within a job.

To see which objects can be filtered, you can query the following views: DATABASE_
EXPORT_OBJECTS for Full-mode exports, SCHEMA_EXPORT_OBJECTS for
schema-mode exports, and TABLE_EXPORT_OBJECTS for table-mode and
tablespace-mode exports. For example, you could perform the following query:

SQL> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA EXPORT_OBJECTS
2 WHERE OBJECT_PATH LIKE '%GRANT' AND OBJECT_PATH NOT LIKE '%/%';
The output of this query looks similar to the following:

OBJECT_PATH

GRANT
Object grants on the selected tables

OBJECT_GRANT
Object grants on the selected tables

PROCDEPOBJ_GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

2-6 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

SYSTEM_GRANT
System privileges granted to users associated with the selected schemas

See Also: EXCLUDE on page 2-18 and INCLUDE on page 2-23

Parameters Available in Export's Command-Line Mode

This section provides descriptions of the parameters available in the command-line
mode of Data Pump Export. Many of the descriptions include an example of how to
use the parameter.

Using the Export Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the
following:

= After you enter the username and parameters as shown in the example, Export is
started and you are prompted for a password before a database connection is
made:

Export: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 11:45:35
Copyright (c) 2003, 2007, Oracle. All rights reserved.
Password: password

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production
With the Partitioning, Data Mining and Real Application Testing options

= Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

= The examples assume that the directory objects, dpump_dirl and dpump_dir2,
already exist and that READ and WRITE privileges have been granted to the hr
schema for these directory objects. See Default Locations for Dump, Log, and SQL
Files on page 1-10 for information about creating directory objects and assigning
privileges to them.

= Some of the examples require the EXP_FULL_DATABASE and IMP_FULL_
DATABASE roles. The examples assume that the hr schema has been granted these
roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Syntax diagrams of these parameters are provided in Syntax Diagrams for Data Pump
Export on page 2-48.

Unless specifically noted, these parameters can also be specified in a parameter file.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems require that quotation marks on the command line be
preceded by an escape character, such as the backslash. If the backslashes were not
present, the command-line parser that Export uses would not understand the
quotation marks and would remove them, resulting in an error. In general, Oracle
recommends that you place such statements in a parameter file because escape
characters are not necessary in parameter files.

Data Pump Export 2-7

Parameters Available in Export's Command-Line Mode

ATTACH

See Also:

s Default Locations for Dump, Log, and SQL Files on page 1-10
for information about creating default directory objects

= Examples of Using Data Pump Export on page 2-45

» Oracle Database Sample Schemas

Note: If you are accustomed to using the original Export utility
(exp), you may be wondering which Data Pump parameters are
used to perform the operations you used to perform with original
Export. For a comparison, see How Data Pump Export Parameters
Map to Those of the Original Export Utility on page 2-39.

Default: job currently in the user's schema, if there is only one

Purpose

Attaches the client session to an existing export job and automatically places you in the
interactive-command interface. Export displays a description of the job to which you
are attached and also displays the Export prompt.

Syntax and Description

ATTACH [=[schema_name.]job_name]

The schema_name is optional. To specify a schema other than your own, you must
have the EXP_FULL_DATABASE role.

The job_name is optional if only one export job is associated with your schema and
the job is active. To attach to a stopped job, you must supply the job name. To see a list
of Data Pump job names, you can query the DBA_DATAPUMP_JOBS view or the USER_
DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then
displays the Export prompt.

Restrictions

= When you specify the ATTACH parameter, the only other Data Pump parameter
you can specify on the command line is ENCRYPTION_PASSWORD.

» If the job you are attaching to was initially started using an encryption password,
then when you attach to the job you must again enter the ENCRYPTION_
PASSWORD parameter on the command line to re-specify that password. The only
exception to this is if the job was initially started with the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the
encryption password is not needed when attaching to the job.

= You cannot attach to a job in another schema unless it is already running.

= If the dump file set or master table for the job have been deleted, the attach
operation will fail.

= Altering the master table in any way will lead to unpredictable results.

2-8 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

Example

The following is an example of using the ATTACH parameter. It assumes that the job,
hr.export_job, already exists.

> expdp hr ATTACH=hr.export_job

See Also: Commands Available in Export's Interactive-Command
Mode on page 2-41

COMPRESSION

CONTENT

Default: METADATA_ONLY

Purpose
Specifies which data to compress before writing to the dump file set.

Syntax and Description
COMPRESSION={ALL | DATA_ONLY | METADATA_ONLY | NONE}
= ALL enables compression for the entire export operation.

= DATA_ ONLY results in all data being written to the dump file in compressed
format.

= METADATA_ ONLY results in all metadata being written to the dump file in
compressed format. This is the default.

= NONE disables compression for the entire export operation.

Restrictions

= To make full use of all these compression options, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

s The METADATA_ONLY option can be used even if the COMPATIBLE initialization
parameter is set to 10.2.

Example
The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_comp.dmp
COMPRESSION=METADATA_ONLY

This command will execute a schema-mode export that will compress all metadata

before writing it out to the dump file, hr_comp . dmp. It defaults to a schema-mode
export because no export mode is specified.

Default: ALL

Purpose
Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description
CONTENT={ALL | DATA_ONLY | METADATA_ONLY}

s ALL unloads both data and metadata. This is the default.

Data Pump Export 2-9

Parameters Available in Export's Command-Line Mode

= DATA_ONLY unloads only table row data; no database object definitions are
unloaded.

= METADATA_ONLY unloads only database object definitions; no table row data is
unloaded.

Restrictions

s The CONTENT=METADATA_ONLY parameter cannot be used in conjunction with
the parameter TRANSPORT_TABLESPACES (transportable-tablespace-mode).

Example
The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp CONTENT=METADATA_ONLY

This command will execute a schema-mode export that will unload only the metadata
associated with the hr schema. It defaults to a schema-mode export of the hr schema
because no export mode is specified.

DATA_OPTIONS

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter provides options for how to handle certain types of
data during exports and imports. For export operations, the only valid option for the
DATA_OPTIONS parameter is XML_CLOBS.

Syntax and Description
DATA_OPTIONS=XML_CLOBS

The XML_CLOBS option specifies that XMLType columns are to be exported in
uncompressed CLOB format regardless of the XMLType storage format that was
defined for them.

If a table has XMLType columns stored only as CLOBs, then it is not necessary to
specify the XML_CLOBS option because Data Pump automatically exports them in
CLOB format.

If a table has XMLType columns stored as any combination of object-relational
(schema-based), binary, or CLOB formats, Data Pump exports them in compressed
format, by default. This is the preferred method. However, if you need to export the
data in uncompressed CLOB format, you can use the XML_CLOBS option to override
the default.

See Also: Oracle XML DB Developer's Guide for information specific
to exporting and importing XMLType tables

Restrictions

= Using the XMIL._CLOBS option requires that the same XML schema be used at both
export and import time.

s The Export DATA_OPTIONS parameter requires the job version to be set at 11.0.0
or higher. See VERSION on page 2-38.

2-10 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

DIRECTORY

DUMPFILE

Example

This example shows an export operation in which any XMLType columns in the
hr.xdb_tabl table are exported in uncompressed CLOB format regardless of the
XMLType storage format that was defined for them.

> expdp hr TABLES=hr.xdb_tabl DIRECTORY=dpump_dirl
DUMPFILE=hr_xml.dmp VERSION=11.1 DATA_ OPTIONS=xml_clobs

Default: DATA_PUMP_DIR

Purpose

Specifies the default location to which Export can write the dump file set and the log
file.

Syntax and Description
DIRECTORY=directory object

The directory_object is the name of a database directory object (not the file path of
an actual directory). Upon installation, privileged users have access to a default
directory object named DATA_PUMP_DIR. Users with access to DATA_PUMP_DIR need
not use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any
directory object that you specify for the DIRECTORY parameter.

Example
The following is an example of using the DIRECTORY parameter:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=employees.dmp CONTENT=METADATA_ONLY

The dump file, employees.dmp, will be written to the path that is associated with the
directory object dpump_dirl.

See Also:

s Default Locations for Dump, Log, and SQL Files on page 1-10
for more information about default directory objects

» Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY command

Default: expdat.dmp

Purpose

Specifies the names, and optionally, the directory objects of dump files for an export
job.

Syntax and Description
DUMPFILE=[directory object:]file name [, ...]

The directory_object is optional if one has already been established by the
DIRECTORY parameter. If you supply a value here, it must be a directory object that

Data Pump Export 2-11

Parameters Available in Export's Command-Line Mode

already exists and that you have access to. A database directory object that is specified
as part of the DUMPFILE parameter overrides a value specified by the DIRECTORY
parameter or by the default directory object.

You can supply multiple £i1le name specifications as a comma-delimited list or in
separate DUMPFILE parameter specifications. If no extension is given for the filename,
then Export uses the default file extension of .dmp. The filenames can contain a
substitution variable (%U), which implies that multiple files may be generated. The
substitution variable is expanded in the resulting filenames into a 2-digit, fixed-width,
incrementing integer starting at 01 and ending at 99. If a file specification contains two
substitution variables, both are incremented at the same time. For example,
exp%Uaa%U. dmp would resolve to exp0laall.dmp, exp02aal2.dmp, and so forth.

If the FILESIZE parameter is specified, each dump file will have a maximum of that
size in bytes and be nonextensible. If more space is required for the dump file set and a
template with a substitution variable (3U) was supplied, a new dump file is
automatically created of the size specified by FILESIZE, if there is room on the
device.

As each file specification or file template containing a substitution variable is defined,
it is instantiated into one fully qualified filename and Export attempts to create it. The
file specifications are processed in the order in which they are specified. If the job
needs extra files because the maximum file size is reached, or to keep parallel workers
active, then additional files are created if file templates with substitution variables
were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the
export job may only require a subset of those files to hold the exported data. The
dump file set displayed at the end of the export job shows exactly which files were
used. It is this list of files that is required in order to perform an import operation
using this dump file set.

Restrictions

= Any resulting dump file names that match preexisting dump file names will
generate an error and the preexisting dump files will not be overwritten. You can
override this behavior by specifying the Export parameter REUSE_DUMPFILES=Y.

Example
The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump_dirl DUMPFILE=dpump_dir2:expl.dmp,
exp2%U.dmp PARALLEL=3

The dump file, expl.dmp, will be written to the path associated with the directory
object dpump_dir2 because dpump_dir2 was specified as part of the dump file
name, and therefore overrides the directory object specified with the DIRECTORY
parameter. Because all three parallel processes will be given work to perform during
this job, the exp201. dmp and exp202 . dmp dump files will be created and they will
be written to the path associated with the directory object, dpump_dirl, that was
specified with the DIRECTORY parameter.

See Also:

= File Allocation on page 1-10

2-12 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

ENCRYPTION

Default: The default value depends upon the combination of encryption-related
parameters that are used. To enable encryption, either the ENCRYPTION or
ENCRYPTION_PASSWORD parameter, or both, must be specified. If only the
ENCRYPTION_PASSWORD parameter is specified, then the ENCRYPTION parameter
defaults to ALL. If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified,
then ENCRYPTION defaults to NONE.

Purpose
Specifies whether or not to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTION = {ALL | DATA_ONLY | ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE}

ALL enables encryption for all data and metadata in the export operation.

DATA_ONLY specifies that only data is written to the dump file set in encrypted format.

ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the
dump file set in encrypted format.

METADATA_ONLY specifies that only metadata is written to the dump file set in
encrypted format.

NONE specifies that no data is written to the dump file set in encrypted format.

Note: If the data being exported includes SecureFiles that you want
to be encrypted, then you must specify ENCRYPTION=ALL to encrypt
the entire dump file set. Encryption of the entire dump file set is the
only way to achieve encryption security for SecureFiles during a Data
Pump export operation. For more information about SecureFiles, see
Oracle Database SecureFiles and Large Objects Developer’s Guide.

Restrictions
» To specify the ALL, DATA_ONLY, or METADATA_ONLY options, the COMPATIBLE
initialization parameter must be set to at least 11.0.0.

» This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example
The following example performs an export operation in which only data is encrypted
in the dump file:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_enc.dmp JOB_NAME=encl
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

ENCRYPTION_ALGORITHM

Default: AES128

Purpose
Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description
ENCRYPTION_ALGORITHM = { AES128 \ AES192 | AES256 }

Data Pump Export 2-13

Parameters Available in Export's Command-Line Mode

See Oracle Database Advanced Security Administrator’s Guide for information about
encryption algorithms.

Restrictions

= To use this encryption feature, the COMPATIBLE initialization parameter must be
set to at least 11.0.0.

s The ENCRYPTION_ALGORITHM parameter requires that you also specify either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter; otherwise an error is
returned.

» This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_enc.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES128

ENCRYPTION_MODE

Default: The default mode depends on which other encryption-related parameters are
used. If only the ENCRYPTION parameter is specified, then the default mode is
TRANSPARENT. If the ENCRYPTION_PASSWORD parameter is specified and the Oracle
Encryption Wallet is open, then the default is DUAL. If the ENCRYPTION_PASSWORD
parameter is specified and the Oracle Encryption Wallet is closed, then the default is
PASSWORD.

Purpose
Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description
ENCRYPTION_MODE = { DUAL | PASSWORD \ TRANSPARENT }

DUAL mode creates a dump file set that can later be imported either transparently or
by specifying a password that was used when the dual-mode encrypted dump file set
was created. When you later import the dump file set created in DUAL mode, you can
use either the Oracle Encryption Wallet or the password that was specified with the
ENCRYPTION_PASSWORD parameter. DUAL mode is best suited for cases in which the
dump file set will be imported onsite using the Oracle Encryption Wallet, but which
may also need to be imported offsite where the Oracle Encryption Wallet is not
available.

PASSWORD mode requires that you provide a password when creating encrypted
dump file sets. You will need to provide the same password when you import the
dump file set. PASSWORD mode requires that you also specify the ENCRYPTION_
PASSWORD parameter. The PASSWORD mode is best suited for cases in which the dump
file set will be imported into a different or remote database, but which must remain
secure in transit.

TRANSPARENT mode allows an encrypted dump file set to be created without any
intervention from a database administrator (DBA), provided the required Oracle
Encryption Wallet is available. Therefore, the ENCRYPTION_PASSWORD parameter is
not required, and will in fact, cause an error if it is used in TRANSPARENT mode. This
encryption mode is best suited for cases in which the dump file set will be imported
into the same database from which it was exported.

2-14 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

Restrictions
= To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter
must be set to at least 11.0.0.

= When you use the ENCRYPTION_MODE parameter, you must also use either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter. Otherwise, an error is
returned.

» This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_enc.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=secretwords
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=dual

ENCRYPTION_PASSWORD

Default: There is no default; the value is user-provided.

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in
the export dumpfile. This prevents unauthorized access to an encrypted dump file set.

Note: Data Pump encryption functionality has changed as of Oracle
Database 11g release 1 (11.1). Prior to release 11.1, the ENCRYPTION_
PASSWORD parameter applied only to encrypted columns. However,
as of release 11.1, the new ENCRYPTION parameter provides options
for encrypting other types of data. This means that if you now specify
ENCRYPTION_PASSWORD without also specifying ENCRYPTION and a
specific option, then all data written to the dump file will be encrypted
(equivalent to specifying ENCRYPTION=ALL). If you want to
re-encrypt only encrypted columns, you must now specify
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to
ENCRYPTION_PASSWORD.

Syntax and Description
ENCRYPTION_PASSWORD = password

The password value that is supplied specifies a key for re-encrypting encrypted table
columns, metadata, or table data so that they are not written as clear text in the dump
file set. If the export operation involves encrypted table columns, but an encryption
password is not supplied, then the encrypted columns will be written to the dump file
set as clear text and a warning will be issued.

For export operations, this parameter is required if the ENCRYPTION_MODE parameter
is set to either PASSWORD or DUAL.

Data Pump Export 2-15

Parameters Available in Export's Command-Line Mode

Note: There is no connection or dependency between the key
specified with the Data Pump ENCRYPTION_PASSWORD parameter
and the key specified with the ENCRYPT keyword when the table with
encrypted columns was initially created. For example, suppose a table
is created as follows, with an encrypted column whose key is xyz:

CREATE TABLE emp (coll VARCHAR2(256) ENCRYPT IDENTIFIED BY "xyz");

When you export the emp table, you can supply any arbitrary value
for ENCRYPTION_PASSWORD. It does not have to be xyz.

Restrictions
» This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

» If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified,
then it is not necessary to have the Transparent Data Encryption option set up
since ENCRYPTION_MODE will default to PASSWORD.

s The ENCRYPTION_PASSWORD parameter is not valid if the requested encryption
mode is TRANSPARENT.

= To use the ENCRYPTION_PASSWORD parameter if ENCRYPTION_MODE is set to
DUAL, you must have the Transparent Data Encryption option set up. See Oracle
Database Advanced Security Administrator’s Guide for more information about the
Transparent Data Encryption option.

= For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with
ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external tables
that have encrypted columns. The table will be skipped and an error message will
be displayed, but the job will continue.

= Encryption attributes for all columns must match between the exported table
definition and the target table. For example, suppose you have a table, EMP, and
one of its columns is named EMPNO. Both of the following situations would result
in an error because the encryption attribute for the EMP column in the source table
would not match the encryption attribute for the EMP column in the target table:

— The EMP table is exported with the EMPNO column being encrypted, but prior
to importing the table you remove the encryption attribute from the EMPNO
column.

— The EMP table is exported without the EMPNO column being encrypted, but
prior to importing the table you enable encryption on the EMPNO column.

Example

In the following example, an encryption password, 123456, is assigned to the dump
file, dpcd2bel . dmp.

expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
DUMPFILE=dpcd2bel.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PASSWORD=123456

Encrypted columns in the employee_s_encrypt table, will not be written as clear
text in the dpcd2bel . dmp dump file. Note that in order to subsequently import the
dpcd2bel . dmp file created by this example, you will need to supply the same
encryption password. (See "ENCRYPTION_PASSWORD" on page 3-12 for an example
of an import operation using the ENCRYPTION_PASSWORD parameter.)

2-16 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

ESTIMATE

Default: BLOCKS

Purpose

Specifies the method that Export will use to estimate how much disk space each table
in the export job will consume (in bytes). The estimate is printed in the log file and
displayed on the client's standard output device. The estimate is for table row data
only; it does not include metadata.

Syntax and Description
ESTIMATE={BLOCKS | STATISTICS}

= BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects, times the appropriate block sizes.

m STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently.

Restrictions

= If the Data Pump export job involves compressed tables, the default size
estimation given for the compressed table is inaccurate when ESTIMATE=BLOCKS
is used. This is because the size estimate does not reflect that the data was stored
in a compressed form. To get a more accurate size estimate for compressed tables,
use ESTIMATE=STATISTICS.

» The estimate may also be inaccurate if the QUERY, SAMPLE, or REMAP_DATA
parameter is used.

Example
The following example shows a use of the ESTIMATE parameter in which the estimate
is calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump_dirl
DUMPFILE=estimate_stat.dmp

ESTIMATE_ONLY

Default: n

Purpose

Instructs Export to estimate the space that a job would consume, without actually
performing the export operation.

Syntax and Description
ESTIMATE_ONLY={y | n}

If ESTIMATE_ONLY=y, then Export estimates the space that would be consumed, but
quits without actually performing the export operation.

Example

The following shows an example of using the ESTIMATE_ONLY parameter to
determine how much space an export of the HR schema will take.

Data Pump Export 2-17

Parameters Available in Export's Command-Line Mode

EXCLUDE

> expdp hr ESTIMATE ONLY=y NOLOGFILE=y SCHEMAS=HR

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types that you want excluded from the export operation.

Syntax and Description
EXCLUDE=object_typel:name_clause] [, ...]

All object types for the given mode of export will be included except those specified in
an EXCLUDE statement. If an object is excluded, all of its dependent objects are also
excluded. For example, excluding a table will also exclude all indexes and triggers on
the table.

The name_clauseis optional. It allows selection of specific objects within an object
type. It is a SQL expression used as a filter on the type's object names. It consists of a
SQL operator and the values against which the object names of the specified type are
to be compared. The name clause applies only to object types whose instances have
names (for example, it is applicable to TABLE, but not to GRANT). The name clause
must be separated from the object type with a colon and enclosed in double quotation
marks, because single-quotation marks are required to delimit the name strings. For
example, you could set EXCLUDE=INDEX: "LIKE 'EMP%'" to exclude all indexes
whose names start with EMP.

If no name_clauseis provided, all objects of the specified type are excluded.
More than one EXCLUDE statement can be specified.

Oracle recommends that you place EXCLUDE clauses in a parameter file to avoid
having to use escape characters on the command line.

See Also:

= INCLUDE on page 2-23 for an example of using a parameter
file
= Use of Quotation Marks On the Data Pump Command Line on

page 2-7

If the object_type you specify is CONSTRAINT, GRANT, or USER, you should be
aware of the effects this will have, as described in the following paragraphs.

Excluding Constraints
The following constraints cannot be explicitly excluded:

s NOT NULL constraints

= Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
WITH ROWID constraints for tables with REF columns

This means that the following EXCLUDE statements will be interpreted as follows:

2-18 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

FILESIZE

s EXCLUDE=CONSTRAINT will exclude all (nonreferential) constraints, except for
NOT NULL constraints and any constraints needed for successful table creation and
loading.

= EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key)
constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within users' schemas.

To exclude a specific user and all objects of that user, specify a filter such as the
following (where hr is the schema name of the user you want to exclude):

EXCLUDE=SCHEMA: "="'HR'"

If you try to exclude a user by using a statement such as EXCLUDE=USER: "="'HR"'",
then only the information used in CREATE USER hr DDL statements will be
excluded, and you may not get the results you expect.

Restrictions
s The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This will result in a schema-mode export in which all of the hr schema will be
exported except its views, packages, and functions.

See Also:

s Filtering During Export Operations on page 2-5 for more
information about the effects of using the EXCLUDE parameter

Default: 0 (unlimited)

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member of
the dump file set, that file is closed and an attempt is made to create a new file, if the
file specification contains a substitution variable.

Syntax and Description
FILESIZE=integer[B | K | M | G]

The integer can be followed by B, K, M, or G (indicating bytes, kilobytes, megabytes,
and gigabytes respectively). Bytes is the default. The actual size of the resulting file
may be rounded down slightly to match the size of the internal blocks used in dump
files.

Data Pump Export 2-19

Parameters Available in Export's Command-Line Mode

Restrictions

s The minimum size for a file is ten times the default Data Pump block size, which is
4 kilobytes.

Example
The following shows an example in which the size of the dump file is set to 3
megabytes:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_3m.dmp FILESIZE=3M

If three megabytes had not been sufficient to hold all the exported data, then the
following error would have been displayed and the job would have stopped:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088 bytes

The actual number of bytes that could not be allocated may vary. Also, this number
does not represent the amount of space needed to complete the entire export
operation. It indicates only the size of the current object that was being exported when
the job ran out of dump file space.

This situation can be corrected by first attaching to the stopped job, adding one or
more files using the ADD_FILE command, and then restarting the operation.

FLASHBACK_SCN

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the
Flashback Query utility.

Syntax and Description
FLASHBACK_SCN=scn_value

The export operation is performed with data that is consistent as of the specified SCN.
If the NETWORK_LINK parameter is specified, the SCN refers to the SCN of the source
database.

Restrictions
= FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

s The FLASHBACK_SCN parameter pertains only to the Flashback Query capability
of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Example

The following example assumes that an existing SCN value of 384632 exists. It
exports the hr schema up to SCN 384632.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr_scn.dmp FLASHBACK_SCN=384632

2-20 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

Note: If you are on a logical standby system and using a network
link to access the logical standby primary, the FLASHBACK_SCN
parameter is ignored because SCNs are selected by logical standby.
See Oracle Data Guard Concepts and Administration for information
about logical standby databases.

FLASHBACK_TIME

Default: There is no default

Purpose

The SCN that most closely matches the specified time is found, and this SCN is used to
enable the Flashback utility. The export operation is performed with data that is
consistent as of this SCN.

Syntax and Description
FLASHBACK_TIME="TO_TIMESTAMP (time-value)"

Because the TO_TIMESTAMP value is enclosed in quotation marks, it would be best to
put this parameter in a parameter file. Otherwise, you might need to use escape
characters on the command line in front of the quotation marks. See Use of Quotation
Marks On the Data Pump Command Line on page 2-7.

Restrictions
» FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.
s The FLASHBACK_TIME parameter pertains only to the flashback query capability

of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Example

You can specify the time in any format that the DBMS_FLASHBACK . ENABLE_AT_ TIME
procedure accepts. For example, suppose you have a parameter file, flashback.par,
with the following contents:

DIRECTORY=dpump_dirl

DUMPFILE=hr_time.dmp

FLASHBACK_TIME="TO_TIMESTAMP ('25-08-2003 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"
You could then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation will be performed with data that is consistent with the SCN that
most closely matches the specified time.

Note: If you are on a logical standby system and using a network
link to access the logical standby primary, the FLASHBACK_SCN
parameter is ignored because SCNs are selected by logical standby.
See Oracle Data Guard Concepts and Administration for information
about logical standby databases.

Data Pump Export 2-21

Parameters Available in Export's Command-Line Mode

FULL

HELP

See Also: Oracle Database Advanced Application Developer’s Guide
for information about using Flashback Query

Default: n

Purpose
Specifies that you want to perform a full database mode export.

Syntax and Description
FULL={y | n}

FULL=y indicates that all data and metadata are to be exported. Filtering can restrict
what is exported using this export mode. See Filtering During Export Operations on

page 2-5.

To perform a full export, you must have the EXP_FULL_DATABASE role.

Note: Be aware that when you later import a dump file that was
created by a full-mode export, the import operation attempts to copy
the password for the SYS account from the source database. This
sometimes fails (for example, if the password is in a shared password
file). If it does fail, then after the import completes, you must set the
password for the SYS account at the target database to a password of
your choice

Restrictions

= A full export does not export system schemas that contain Oracle-managed data
and metadata. Examples of system schemas that are not exported include sYs,
ORDSYS, and MDSYS.

= Grants on objects owned by the SYS schema are never exported.
= If you are exporting data that is protected by a realm, you must have authorization

for that realm.

See Also: Oracle Database Vault Administrator’s Guide for information
about configuring realms

Example

The following is an example of using the FULL parameter. The dump file,
expfull.dmp is written to the dpump_dir2 directory.

> expdp hr DIRECTORY=dpump_dir2 DUMPFILE=expfull.dmp FULL=y NOLOGFILE=y

Default: N

Purpose
Displays online help for the Export utility.

2-22 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

INCLUDE

Syntax and Description
HELP = {y | n}

If HELP=y is specified, Export displays a summary of all Export command-line
parameters and interactive commands.

Example
> expdp HELP = y

This example will display a brief description of all Export parameters and commands.

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types for the current export mode. The specified objects and all their dependent objects
are exported. Grants on these objects are also exported.

Syntax and Description
INCLUDE = object_typel:name_clause] [, ...]

Only object types explicitly specified in INCLUDE statements, and their dependent
objects, are exported. No other object types, including the schema definition
information that is normally part of a schema-mode export when you have the EXP_
FULL_DATABASE role, are exported.

To see a list of valid paths for use with the INCLUDE parameter, you can query the
following views: DATABASE_EXPORT_OBJECTS for Full mode, SCHEMA_EXPORT_
OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and tablespace
mode.

The name_clauseis optional. It allows fine-grained selection of specific objects
within an object type. It is a SQL expression used as a filter on the object names of the
type. It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name clause applies only to object types whose
instances have names (for example, it is applicable to TABLE, but not to GRANT). The
optional name clause must be separated from the object type with a colon and
enclosed in double quotation marks, because single-quotation marks are required to
delimit the name strings.

Oracle recommends that INCLUDE statements be placed in a parameter file; otherwise
you might have to use operating system-specific escape characters on the command
line before quotation marks. See Use of Quotation Marks On the Data Pump
Command Line on page 2-7.

For example, suppose you have a parameter file named hr . par with the following
content:

SCHEMAS=HR

DUMPFILE=expinclude.dmp

DIRECTORY=dpump_dirl

LOGFILE=expinclude.log

INCLUDE=TABLE: "IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE

INCLUDE=INDEX: "LIKE 'EMP%'"

Data Pump Export 2-23

Parameters Available in Export's Command-Line Mode

JOB_NAME

You could then use the hr . par file to start an export operation, without having to
enter any other parameters on the command line:

> expdp hr parfile=hr.par

Including Constraints

If the object_type you specify is a CONSTRAINT, you should be aware of the effects
this will have.

The following constraints cannot be explicitly included:

= NOT NULL constraints

= Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
WITH ROWID constraints for tables with REF columns

This means that the following INCLUDE statements will be interpreted as follows:

s INCLUDE=CONSTRAINT will include all (nonreferential) constraints, except for
NOT NULL constraints and any constraints needed for successful table creation and
loading.

= INCLUDE=REF_CONSTRAINT will include referential integrity (foreign key)
constraints.

Restrictions
s The INCLUDE and EXCLUDE parameters are mutually exclusive.

= Grants on objects owned by the SYS schema are never exported.

Example
The following example performs an export of all tables (and their dependent objects)
in the hr schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump_dirl:exp_inc.dmp NOLOGFILE=y

Default: system-generated name of the form SYS_EXPORT_<mode>_NN

Purpose

Used to identify the export job in subsequent actions, such as when the ATTACH
parameter is used to attach to a job, or to identify the job using the DBA_DATAPUMP_
JOBS or USER_DATAPUMP_JOBS views. The job name becomes the name of the master
table in the current user's schema. The master table is used to control the export job.

Syntax and Description
JOB_NAME=jobname_string

The jobname_ string specifies a name of up to 30 bytes for this export job. The bytes
must represent printable characters and spaces. If spaces are included, the name must
be enclosed in single quotation marks (for example, 'Thursday Export’). The job name
is implicitly qualified by the schema of the user performing the export operation.

The default job name is system-generated in the form SYS_EXPORT_<mode>_NN,
where NN expands to a 2-digit incrementing integer starting at 01. An example of a
default name is ' SYS_EXPORT_TABLESPACE_02'.

2-24 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

LOGFILE

Example
The following example shows an export operation that is assigned a job name of exp_
job:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=exp_job.dmp JOB_NAME=exp_job
NOLOGFILE=y

Default: export.log

Purpose
Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description
LOGFILE=[directory object:] file_name

You can specify a database directory._object previously established by the DBA,
assuming that you have access to it. This overrides the directory object specified with
the DIRECTORY parameter.

The file_name specifies a name for the log file. The default behavior is to create a file
named export.log in the directory referenced by the directory object specified in the
DIRECTORY parameter.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is
specified. As with the dump file set, the log file is relative to the server and not the
client.

An existing file matching the filename will be overwritten.

Restrictions

» To perform a Data Pump Export using Automatic Storage Management (ASM),
you must specify a LOGFILE parameter that includes a directory object that does
not include the ASM + notation. That is, the log file must be written to a disk file,
and not written into the ASM storage. Alternatively, you can specify
NOLOGFILE=Y. However, this prevents the writing of the log file.

Example

The following example shows how to specify a log file name if you do not want to use
the default:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp LOGFILE=hr_export.log

Note: Data Pump Export writes the log file using the database
character set. If your client NLS_LANG environment setting sets up
a different client character set from the database character set, then
it is possible that table names may be different in the log file than
they are when displayed on the client output screen.

Data Pump Export 2-25

Parameters Available in Export's Command-Line Mode

See Also:
= STATUS on page 2-33

= Using Directory Objects When Automatic Storage Management Is
Enabled on page 1-12 for information about Automatic Storage
Management and directory objects

NETWORK_LINK

Default: There is no default

Purpose

Enables an export from a (source) database identified by a valid database link. The
data from the source database instance is written to a dump file set on the connected
database instance.

Syntax and Description
NETWORK_LINK=source_ database_ link

The NETWORK_LINK parameter initiates an export using a database link. This means
that the system to which the expdp client is connected contacts the source database
referenced by the source_database_1ink, retrieves data from it, and writes the
data to a dump file set back on the connected system.

The source_database_1link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, you or your DBA must create one. For more information about the CREATE
DATABASE LINK statement, see Oracle Database SQL Language Reference.

If the source database is read-only, then the user on the source database must have a
locally managed tablespace assigned as the default temporary tablespace. Otherwise,
the job will fail. For further details about this, see the information about creating
locally managed temporary tablespaces in the Oracle Database Administrator’s Guide.

Caution: If an export operation is performed over an unencrypted
network link, then all data is exported as clear text even if it is
encrypted in the database. See Oracle Database Advanced Security
Administrator’s Guide for information about network security.

Restrictions
= When the NETWORK_LINK parameter is used in conjunction with the TABLES
parameter, only whole tables can be exported (not partitions of tables).

= The only types of database links supported by Data Pump Export are: public,
fixed-user, and connected-user. Current-user database links are not supported.

Example

The following is an example of using the NETWORK_LINK parameter. The source_
database_1link would be replaced with the name of a valid database link that must
already exist.

> expdp hr DIRECTORY=dpump_dirl NETWORK_LINK=source database_link
DUMPFILE=network_export.dmp LOGFILE=network_export.log

2-26 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

NOLOGFILE

PARALLEL

Default: n

Purpose
Specifies whether to suppress creation of a log file.

Syntax and Description
NOLOGFILE={y | n}

Specify NOLOGFILE=y to suppress the default behavior of creating a log file. Progress
and error information is still written to the standard output device of any attached
clients, including the client that started the original export operation. If there are no
clients attached to a running job and you specify NOLOGFILE=y, you run the risk of
losing important progress and error information.

Example
The following is an example of using the NOLOGFILE parameter:

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp NOLOGFILE=y

This command results in a schema-mode export in which no log file is written.

Default: 1

Purpose

Specifies the maximum number of threads of active execution operating on behalf of
the export job. This execution set consists of a combination of worker processes and
parallel I/O server processes. The master control process and worker processes acting
as query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and
elapsed time.

Syntax and Description
PARALLEL=Integer

The value you specify for integer should be less than, or equal to, the number of
files in the dump file set (or you should specify substitution variables in the dump file
specifications). Because each active worker process or I/O server process writes
exclusively to one file at a time, an insufficient number of files can have adverse
effects. Some of the worker processes will be idle while waiting for files, thereby
degrading the overall performance of the job. More importantly, if any member of a
cooperating group of parallel I/O server processes cannot obtain a file for output, then
the export operation will be stopped with an ORA-39095 error. Both situations can be
corrected by attaching to the job using the Data Pump Export utility, adding more files
using the ADD_FILE command while in interactive mode, and in the case of a stopped
job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use
interactive-command mode. Decreasing parallelism does not result in fewer worker
processes associated with the job; it merely decreases the number of worker processes
that will be executing at any given time. Also, any ongoing work must reach an
orderly completion point before the decrease takes effect. Therefore, it may take a

Data Pump Export 2-27

Parameters Available in Export's Command-Line Mode

while to see any effect from decreasing the value. Idle workers are not deleted until
the job exits.

Increasing the parallelism takes effect immediately if there is work that can be
performed in parallel.

See Also: Controlling Resource Consumption on page 4-2

Restrictions
» This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

The following is an example of using the PARALLEL parameter:
> expdp hr DIRECTORY=dpump_dirl LOGFILE=parallel_export.log
JOB_NAME=par4_job DUMPFILE=par_exp%u.dmp PARALLEL=4

This results in a schema-mode export of the hr schema in which up to four files could
be created in the path pointed to by the directory object, dpump_dirl.

See Also:

= DUMPFILE on page 2-11

s Commands Available in Export's Interactive-Command Mode on
page 2-41

= Performing a Parallel Full Database Export on page 2-47

PARFILE

Default: There is no default

Purpose
Specifies the name of an export parameter file.

Syntax and Description
PARFILE=[directory_path] file name

Unlike dump and log files, which are created and written by the Oracle database, the
parameter file is opened and read by the client running the expdp image. Therefore, a
directory object name is neither required nor appropriate. The directory path is an
operating system-specific directory specification. The default is the user's current
directory.

The use of parameter files is highly recommended if you are using parameters whose
values require the use of quotation marks. See Use of Quotation Marks On the Data
Pump Command Line on page 2-7.

Restrictions
» The PARFILE parameter cannot be specified within a parameter file.

Example
The content of an example parameter file, hr . par, might be as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp

2-28 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

QUERY

DIRECTORY=dpump_dirl
LOGFILE=exp.log

You could then issue the following Export command to specify the parameter file:

> expdp hr parfile=hr.par

Default: There is no default

Purpose
Allows you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schema.] [table_name:] query_clause

The query clauseis typically a SQL WHERE clause for fine-grained row selection,
but could be any SQL clause. For example, an ORDER BY clause could be used to speed
up a migration from a heap-organized table to an index-organized table. If a schema
and table name are not supplied, the query is applied to (and must be valid for) all
tables in the export job. A table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

The query must be enclosed in single or double quotation marks. Double quotation
marks are recommended, because strings within the clause must be enclosed in single
quotation marks. Oracle recommends that you place QUERY specifications in a
parameter file to avoid having to use operating system-specific escape characters on
the command line. See Use of Quotation Marks On the Data Pump Command Line on
page 2-7.

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions

= The QUERY parameter cannot be used in conjunction with the following
parameters:

— CONTENT=METADATA_ONLY
— ESTIMATE_ONLY
— TRANSPORT_TABLESPACES

= When the QUERY parameter is specified for a table, Data Pump uses external tables
to unload the target table. External tables uses a SQL CREATE TABLE AS
SELECT statement. The value of the QUERY parameter is the WHERE clause in the
SELECT portion of the CREATE TABLE statement. If the QUERY parameter
includes references to another table with columns whose names match the table
being unloaded, and if those columns are used in the query, then you will need to
use a table alias to distinguish between columns in the table being unloaded and
columns in the SELECT statement with the same name. The table alias used by
Data Pump for the table being unloaded is KUS.

For example, suppose you want to export a subset of the sh. sales table based on
the credit limit for a customer in the sh. customers table. In the following

Data Pump Export 2-29

Parameters Available in Export's Command-Line Mode

example, KU$ is used to qualify the cust_id field in the QUERY parameter for
unloading sh.sales. As a result, Data Pump exports only rows for customers
whose credit limit is greater than $10,000.

QUERY='sales: "WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If, as in the following query, KUS is not used for a table alias, the result will be that
all rows are unloaded:

QUERY='sales: "WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)""'

Example
The following is an example of using the QUERY parameter:

> expdp hr parfile=emp_query.par

The contents of the emp_query.par file are as follows:

QUERY=employees: "WHERE department_id > 10 AND salary > 10000"
NOLOGFILE=y

DIRECTORY=dpump_dirl

DUMPFILE=expl.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except employees) in the hr schema
will be unloaded. For the employees table, only rows that meet the query criteria are
unloaded.

REMAP_DATA

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to specify a remap function that takes as a
source the original value of the designated column and returns a remapped value that
will replace the original value in the dump file. A common use for this option is to
mask data when moving from a production system to a test system. For example, a
column of sensitive customer data such as credit card numbers could be replaced with
numbers generated by a REMAP_DATA function. This would allow the data to retain its
essential formatting and processing characteristics without exposing private data to
unauthorized personnel.

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.] tablename.column_name: [schema.]pkg. function
The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

schemal -- the schema containing the table to be remapped. By default, this is the
schema of the user doing the export.

tablename -- the table whose column will be remapped.

2-30 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

column_name -- the column whose data is to be remapped.

schema2 -- the schema containing the PL/SQL package you have created that contains
the remapping function. As a default, this is the schema of the user doing the export.

pkg -- the name of the PL/SQL package you have created that contains the remapping
function.

function -- the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions
s The data types of the source argument and the returned value should both match
the data type of the designated column in the table.

= Remapping functions should not perform commits or rollbacks.

Example

The following example assumes a package named remap has been created that
contains functions named minus10 and plusx which change the values for
employee_idand first_name in the employees table.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=remapl.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minusl0
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REUSE_DUMPFILES

SAMPLE

Default: N

Purpose
Specifies whether or not to overwrite a preexisting dump file.

Syntax and Description
REUSE_DUMPFILES={Y \ N}

Normally, Data Pump Export will return an error if you specify a dump file name that
already exists. The REUSE_DUMPFILES parameter allows you to override that
behavior and reuse a dump file name. For example, if you performed an export and
specified DUMPFILE=hr .dmp and REUSE_DUMPFILES=Y, then hr . dmp would be
overwritten if it already existed. Its previous contents would be lost and it would
contain data for the current export instead.

Example

The following export operation creates a dump file named enc1l . dmp, even if a dump
file with that name already exists.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=encl.dmp
TABLES=employees REUSE_DUMPFILES=y

Default: There is no default

Data Pump Export 2-31

Parameters Available in Export's Command-Line Mode

SCHEMAS

Purpose

Allows you to specify a percentage of the data blocks to be sampled and unloaded
from the source database.

Syntax and Description

SAMPLE=[[schema_name.] table_name:]sample_percent

This parameter allows you to export subsets of data by specifying the percentage of
data to be sampled and exported. The sample_percent indicates the probability that
a block of rows will be selected as part of the sample. It does not mean that the
database will retrieve exactly that amount of rows from the table. The value you
supply for sample_percent can be anywhere from .000001 up to, but not including,
100.

The sample_percent can be applied to specific tables. In the following example,
50% of the HR . EMPLOYEES table will be exported:

SAMPLE="HR"."EMPLOYEES" :50

If you specify a schema, you must also specify a table. However, you can specify a
table without specifying a schema; the current user will be assumed. If no table is
specified, then the sample_percent value applies to the entire export job.

Note that you can use this parameter in conjunction with the Data Pump Import
PCTSPACE transform, so that the size of storage allocations matches the sampled data
subset. (See TRANSFORM on page 3-36.)

Restrictions
s The SAMPLE parameter is not valid for network exports.

Example
In the following example, the value 70 for SAMPLE is applied to the entire export job
because no table name is specified.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=sample.dmp SAMPLE=70

Default: current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for
Export.

Syntax and Description
SCHEMAS=schema_name [, ...]

If you have the EXP_FULL_DATABASE role, then you can specify a single schema other
than your own or a list of schema names. The EXP_FULL_DATABASE role also allows
you to export additional nonschema object information for each specified schema so
that the schemas can be re-created at import time. This additional information includes
the user definitions themselves and all associated system and role grants, user
password history, and so on. Filtering can further restrict what is exported using
schema mode (see Filtering During Export Operations on page 2-5).

2-32 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

STATUS

TABLES

Restrictions

= If you do not have the EXP_FULL_DATABASE role, then you can specify only your
own schema.

s The SYS schema cannot be used as a source schema for export jobs.

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is
allowed to specify more than one schema because the EXP_FULL_DATABASE role was
previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be
written to the expdat . dmp dump file located in the dpump_dir1l directory.

Default: 0

Purpose
Specifies the frequency at which the job status display is updated.

Syntax and Description
STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log
file (if one is in effect).

Example
The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump_dirl SCHEMAS=hr,sh STATUS=300

This example will export the hr and sh schemas and display the status of the export
every 5 minutes (60 seconds x 5 = 300 seconds).

Default: There is no default

Purpose
Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema_name.] table_namel[:partition _name] [, ...]

Filtering can restrict what is exported using this mode (see Filtering During Export
Operations on page 2-5). You can filter the data and metadata that is exported, by
specifying a comma-delimited list of tables and partitions or subpartitions. If a

Data Pump Export 2-33

Parameters Available in Export's Command-Line Mode

partition name is specified, it must be the name of a partition or subpartition in the
associated table. Only the specified set of tables, partitions, and their dependent
objects are unloaded.

The table name that you specify can be preceded by a qualifying schema name. All
table names specified must reside in the same schema. The schema defaults to that of
the current user. To specify a schema other than your own, you must have the EXp_
FULL_DATABASE role.

The use of wildcards is supported for one table name per export operation. For
example, TABLES=emp$% would export all tables having names that start with 'EMP'.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the
TRANSPORTABLE=ALWAYS parameter in conjunction with the TABLES parameter.
Metadata for the specified tables, partitions, or subpartitions is exported to the dump
file. To move the actual data, you copy the data files to the target database.

When partitioned tables are exported using the transportable method, each partition
and subpartition is promoted to its own table. During the subsequent import
operation, the new table is automatically named by combining the table and partition
name (that is, tablename_partitionname). You can override this automatic naming by
using the Import REMAP_TABLE parameter.

See Also:

s TRANSPORTABLE on page 2-37

s The Import REMAP_TABLE command on page 3-28
= Using Data File Copying to Move Data on page 1-3

Restrictions

» Cross-schema references are not exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not
explicitly specified, is not exported.

= Types used by the table are not exported in table mode. This means that if you
subsequently import the dump file and the TYPE does not already exist in the
destination database, the table creation will fail.

= The use of synonyms as values for the TABLES parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, it would
not be valid to use TABLES=regn. An error would be returned.

» The export of individual table partitions is not supported when the NETWORK_
LINK parameter is used.

» The export of tables that include wildcards in the table name is not supported if
the table has partitions.

s The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4MB, unless you are using the NETWORK_LINK parameter to a
10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is
4KB.

= You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also
set on the export.

2-34 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

Examples

The following example shows a simple use of the TABLES parameter to export three

tables found in the hr schema: employees, jobs, and departments. Because user
hr is exporting tables found in the hr schema, the schema name is not needed before
the table names.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=tables.dmp
TABLES=employees, jobs, departments

The following example assumes that user hr has the EXP_ FULL_DATABASE role. It
shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=tables_part.dmp
TABLES=sh.sales:sales_Q1_2000,sh.sales:sales_02_2000

This example exports the partitions, sales_Q1_2000 and sales_Q2_2000, from the
table sales in the schema sh.

TABLESPACES

Default: There is no default

Purpose
Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description
TABLESPACES=tablespace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, its dependent objects are also unloaded. Both object
metadata and data are unloaded. If any part of a table resides in the specified set, then
that table and all of its dependent objects are exported. Privileged users get all tables.
Nonprivileged users get only the tables in their own schemas

Filtering can restrict what is exported using this mode (see Filtering During Export
Operations on page 2-5).

Restrictions

» The length of the tablespace name list specified for the TABLESPACES parameter is
limited to a maximum of 4MB, unless you are using the NETWORK_LINK
parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases,
the limit is 4KB.

Example

The following is an example of using the TABLESPACES parameter. The example
assumes that tablespaces tbs_4, tbs_5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=tbs.dmp
TABLESPACES=tbs_4, tbs_5, tbs_6

This results in a tablespace export in which tables (and their dependent objects) from
the specified tablespaces (tbs_4, tbs_5, and tbs_6) will be unloaded.

TRANSPORT_FULL_CHECK

Default: n

Data Pump Export 2-35

Parameters Available in Export's Command-Line Mode

Purpose

Specifies whether or not to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Syntax and Description
TRANSPORT_FULL_CHECK={y | n}

If TRANSPORT_FULL_CHECK=y, then Export verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set but its index is not, a failure is returned and the export operation is
terminated. Similarly, a failure is also returned if an index is in the transportable set
but the table is not.

If TRANSPORT_FULL_CHECK=n, then Export verifies only that there are no objects
within the transportable set that are dependent on objects outside the transportable
set. This check addresses a one-way dependency. For example, a table is not
dependent on an index, but an index is dependent on a table, because an index
without a table has no meaning. Therefore, if the transportable set contains a table, but
not its index, then this check succeeds. However, if the transportable set contains an
index, but not the table, the export operation is terminated.

There are other checks performed as well. For instance, export always verifies that all
storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT_TABLESPACES are actually contained within the tablespace
set.

Example

The following is an example of using the TRANSPORT_FULL_CHECK parameter. It
assumes that tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT FULL_CHECK=y LOGFILE=tts.log

TRANSPORT_TABLESPACES

Default: There is no default

Purpose
Specifies that you want to perform a transportable-tablespace-mode export.

Syntax and Description
TRANSPORT_TABLESPACES=tablespace _name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names
for which object metadata will be exported from the source database into the target
database.

The log file for the export lists the datafiles that are used in the transportable set, the
dump files, and any containment violations.

The TRANSPORT_TABLESPACES parameter exports metadata for all objects within the
specified tablespace. If you want to perform a transportable export of only certain
tables, partitions, or subpartitions, you must use the TABLES parameter in conjunction
with the TRANSPORTABLE=ALWAYS parameter.

2-36 Oracle Database Utilities

Parameters Available in Export's Command-Line Mode

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

Restrictions
= Transportable jobs are not restartable.

» Transportable jobs are restricted to a degree of parallelism of 1.

» Transportable tablespace mode requires that you have the EXP_FULL_DATABASE
role.

» Transportable mode does not support encrypted columns.

» The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

s The SYS and SYSAUX tablespaces are not transportable.

= All tablespaces in the transportable set must be set to read-only.

Example 1

The following is an example of using the TRANSPORT_TABLESPACES parameter in a
file-based job (rather than network-based). The tablespace tbs_1 is the tablespace
being moved. This example assumes that tablespace tbs_1 exists and that it has been
set to read-only. This examples also assumes that the default tablespace was changed
prior to this export command.

> expdp hr DIRECTORY=dpump_dirl DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT FULL_CHECK=y LOGFILE=tts.log

See Also:
» Transportable Tablespace Mode on page 2-4
= Using Data File Copying to Move Data on page 1-3

s Oracle Database Administrator’s Guide for detailed information
about transporting tablespaces between databases

TRANSPORTABLE

Default: NEVER

Purpose

Specifies whether or not the transportable option should be used during a table mode
export (specified with the TABLES parameter) to export metadata for specific tables,
partitions, and subpartitions.

Syntax and Description
TRANSPORTABLE = {ALWAYS | NEVER}
The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is
not possible, the job will fail. The transportable option exports only metadata for the
specified tables, partitions, or subpartitions specified by the TABLES parameter. You

Data Pump Export 2-37

Parameters Available in Export's Command-Line Mode

VERSION

must copy the actual data files to the target database. See Using Data File Copying to
Move Data on page 1-3.

NEVER - Instructs the export job to use either the direct path or external table method
to unload data rather than the transportable option. This is the default.

Note: If you want to export an entire tablespace in transportable
mode, use the TRANSPORT_TABLESPACES parameter.

Restrictions
s The TRANSPORTABLE parameter is only valid in table mode exports.

s The schema performing a transportable export requires the EXP_FULL_DATABASE
privilege.

= Tablespaces associated with tables, partitions, and subpartitions must be
read-only.

= Transportable mode does not export any data. Data is copied when the tablespace
data files are copied from the source system to the target system. The tablespaces
that must be copied are listed at the end of the log file for the export operation.

= To make use of the TRANSPORTABLE parameter, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

s The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

Example

The following example assumes that the sh schema has the EXP_FULL_DATABASE
privilege and that table sales2 is partitioned and contained within tablespace tbs2.
(The tbs2 tablespace must be set to read-only in the source database.)

> expdp sh DIRECTORY=dpump_dirl DUMPFILE=ttol.dmp
TABLES=sh.sales2 TRANSPORTABLE=always

After the export completes successfully, you must copy the data files to the target
database area. You could then perform an import operation using the PARTITION_
OPTIONS and REMAP_SCHEMA parameters to make each of the partitions in sales2
its own table.

> impdp system PARTITION_OPTIONS=departition
TRANSPORT_DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump_dirl
DUMPFILE=ttol.dmp REMAP_SCHEMA=sh:dp

Default: COMPATIBLE

Purpose

Specifies the version of database objects to be exported. This can be used to create a
dump file set that is compatible with a previous release of Oracle Database. Note that
this does not mean that Data Pump Export can be used with versions of Oracle
Database prior to 10.1. Data Pump Export only works with Oracle Database 10g
release 1 (10.1) or later. The VERSION parameter simply allows you to identify the
version of the objects being exported.

2-38 Oracle Database Utilities

How Data Pump Export Parameters Map to Those of the Original Export Utility

Syntax and Description
VERSION={COMPATIBLE | LATEST | version_string}

The legal values for the VERSION parameter are as follows:

m COMPATIBLE - This is the default value. The version of the metadata corresponds
to the database compatibility level. Database compatibility must be set to 9.2 or
higher.

s LATEST - The version of the metadata corresponds to the database version.

» version string - A specific database version (for example, 11.1.0). In Oracle
Database 11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the specified version will not
be exported. For example, tables containing new datatypes that are not supported in
the specified version will not be exported.

See Also: Moving Data Between Different Database Versions on
page 1-13

Example
The following example shows an export for which the version of the metadata will
correspond to the database version:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump_dirl
DUMPFILE=emp.dmp NOLOGFILE=y

How Data Pump Export Parameters Map to Those of the Original Export

Utility

Table 2-1 maps, as closely as possible, Data Pump Export parameters to original
Export parameters. In some cases, because of feature redesign, the original Export
parameter is no longer needed, so there is no Data Pump parameter to compare it to.
Also, as shown in the table, some of the parameter names may be the same, but the
functionality is slightly different.

Table 2-1 Original Export Parameters and Their Counterparts in Data Pump Export

Original Export Parameter = Comparable Data Pump Export Parameter

BUFFER A parameter comparable to BUFFER is not needed.

COMPRESS A parameter comparable to COMPRESS is not needed.

CONSISTENT A parameter comparable to CONSISTENT is not needed.
Use FLASHBACK_SCN and FLASHBACK_TIME for this
functionality.

CONSTRAINTS EXCLUDE=CONSTRAINT

DIRECT A parameter comparable to DIRECT is not needed. Data

Pump Export automatically chooses the best method
(direct path mode or external tables mode).

FEEDBACK STATUS

FILE DUMPFILE
FILESIZE FILESIZE
FLASHBACK_SCN FLASHBACK_SCN
FLASHBACK_TIME FLASHBACK_TIME

Data Pump Export 2-39

How Data Pump Export Parameters Map to Those of the Original Export Utility

Table 2-1 (Cont.) Original Export Parameters and Their Counterparts in Data Pump

Original Export Parameter

Comparable Data Pump Export Parameter

FULL
GRANTS
HELP
INDEXES
LOG

OBJECT_CONSISTENT

OWNER
PARFILE
QUERY

RECORDLENGTH

RESUMABLE

RESUMABLE_NAME

RESUMABLE_TIMEOUT

ROWS=N
ROWS=Y

STATISTICS

TABLES

TABLESPACES

TRANSPORT_TABLESPACE

TRIGGERS
TTS_FULL_CHECK

USERID

VOLSIZE

FULL
EXCLUDE=GRANT
HELP
EXCLUDE=INDEX
LOGFILE

A parameter comparable to OBJECT_CONSISTENT is not
needed.

SCHEMAS
PARFILE
QUERY

A parameter comparable to RECORDLENGTH is not needed
because sizing is done automatically.

A parameter comparable to RESUMABLE is not needed.
This functionality is automatically provided for users who
have been granted the EXP_FULL_DATABASE role.

A parameter comparable to RESUMABLE_NAME is not
needed. This functionality is automatically provided for
users who have been granted the EXP_FULL_DATABASE
role.

A parameter comparable to RESUMABLE_TIMEOUT is not
needed. This functionality is automatically provided for
users who have been granted the EXP_FULL_DATABASE
role.

CONTENT=METADATA_ONLY
CONTENT=ALL

A parameter comparable to STATISTICS is not needed.
Statistics are always saved for tables.

TABLES

TABLESPACES (Same parameter; slightly different
behavior)

TRANSPORT_TABLESPACES (Same parameter; slightly
different behavior)

EXCLUDE=TRIGGER
TRANSPORT_FULL_CHECK

A parameter comparable to USERID is not needed. This
information is supplied as the username and password
when you invoke Export.

A parameter comparable to VOLSIZE is not needed.

This table does not list all Data Pump Export command-line parameters. For
information about all Export command-line parameters, see Parameters Available in
Export's Command-Line Mode on page 2-7.

See Also: Chapter 20, "Original Export and Import" for details
about original Export

2-40 Oracle Database Utilities

Commands Available in Export's Interactive-Command Mode

Commands Available in Export's Interactive-Command Mode

ADD _FILE

In interactive-command mode, the current job continues running, but logging to the

terminal is suspended and the Export prompt (Export>) is displayed.

Note:

Data Pump Export interactive-command mode is different

from the interactive mode for original Export, in which Export
prompted you for input. See Interactive Mode on page 20-6 for
information about interactive mode in original Export.

To start interactive-command mode, do one of the following:

s From an attached client, press Ctrl+C.

s From a terminal other than the one on which the job is running, specify the
ATTACH parameter in an expdp command to attach to the job. This is a useful

feature in situations in which you start a job at one location and need to check on it

at a later time from a different location.

Table 2-2 lists the activities you can perform for the current job from the Data Pump

Export prompt in interactive-command mode.

Table 2-2 Supported Activities in Data Pump Export's Interactive-Command Mode

Activity

Command Used

Add additional dump files.

Exit interactive mode and enter logging mode.

Stop the export client session, but leave the job running.

Redefine the default size to be used for any subsequent
dump files.

Display a summary of available commands.

Detach all currently attached client sessions and kill the
current job.

Increase or decrease the number of active worker processes
for the current job. This command is valid only in the
Enterprise Edition of Oracle Database 11g.

Restart a stopped job to which you are attached.

Display detailed status for the current job and/or set status
interval.

Stop the current job for later restart.

ADD_FILE on page 2-41

CONTINUE_CLIENT on
page 2-42

EXIT_CLIENT on page 2-42
FILESIZE on page 2-43

HELP on page 2-43
KILL_JOB on page 2-43

PARALLEL on page 2-44
START_JOB on page 2-44
STATUS on page 2-44

STOP_JOB on page 2-45

The following are descriptions of the commands available in the interactive-command

mode of Data Pump Export.

Purpose

Adds additional files or substitution variables to the export dump file set.

Data Pump Export

Commands Available in Export's Interactive-Command Mode

Syntax and Description
ADD_FILE=[directory_object:]file_name [,...]

The file name must not contain any directory path information. However, it can
include a substitution variable, $U, which indicates that multiple files may be
generated using the specified filename as a template. It can also specify another
directory._object.

The size of the file being added is determined by the setting of the FILESIZE
parameter.

See Also: File Allocation on page 1-10 for information about the
effects of using substitution variables

Example

The following example adds two dump files to the dump file set. A directory object is
not specified for the dump file named hr2 . dmp, so the default directory object for the
job is assumed. A different directory object, dpump_dir2, is specified for the dump
file named hr3 . dmp.

Export> ADD_FILE=hr2.dmp, dpump_dir2:hr3.dmp

CONTINUE_CLIENT

EXIT_CLIENT

Purpose
Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description
CONTINUE_CLIENT

In logging mode, status is continually output to the terminal. If the job is currently
stopped, then CONTINUE_CLIENT will also cause the client to attempt to start the job.

Example
Export> CONTINUE_CLIENT

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description
EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time.
To see the status of the job, you can monitor the log file for the job or you can query
the USER_DATAPUMP_JOBS view or the V$SESSTON_LONGOPS view.

Example
Export> EXIT_CLIENT

2-42 Oracle Database Utilities

Commands Available in Export's Interactive-Command Mode

FILESIZE

HELP

KILL_JOB

Purpose
Redefines the default size to be used for any subsequent dump files.

Syntax and Description
FILESIZE=number

The file size can be followed by B, K, M, or G to indicate that the size is expressed in
bytes, kilobytes, megabytes, or gigabytes, respectively. The default is B.

A file size of 0 indicates that there will not be any size restrictions on new dump files.
They will be extended as needed until the limits of the containing device are reached.

Example
Export> FILESIZE=100M

Purpose

Provides information about Data Pump Export commands available in
interactive-command mode.

Syntax and Description
HELP

Displays information about the commands available in interactive-command mode.

Example
Export> HELP

Purpose

Detaches all currently attached client sessions and then kills the current job. It exits
Export and returns to the terminal prompt.

Syntax and Description
KILL_JOB

A job that is killed using KILL_JOB cannot be restarted. All attached clients, including
the one issuing the KILL_JOB command, receive a warning that the job is being killed
by the current user and are then detached. After all clients are detached, the job's
process structure is immediately run down and the master table and dump files are
deleted. Log files are not deleted.

Example
Export> KILL_JOB

Data Pump Export 2-43

Commands Available in Export's Interactive-Command Mode

PARALLEL

START_JOB

STATUS

Purpose

Enables you to increase or decrease the number of active processes (worker and
parallel slaves) for the current job.

Syntax and Description
PARALLEL=integer

PARALLEL is available as both a command-line parameter and as an
interactive-command mode parameter. (It is only available in Enterprise Edition.) You
set it to the desired number of parallel processes (worker and parallel slaves). An
increase takes effect immediately if there are sufficient files and resources. A decrease
does not take effect until an existing process finishes its current task. If the value is
decreased, workers are idled but not deleted until the job exits.

See Also: PARALLEL on page 2-27 for more information about
parallelism

Example
Export> PARALLEL=10

Purpose
Starts the current job to which you are attached.

Syntax and Description
START_JOB

The START_JOB command restarts the current job to which you are attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issued a STOP_JOB command, provided the
dump file set and master table have not been altered in any way.

Transportable-tablespace-mode exports are not restartable.

Example
Export> START_JOB

Purpose

Displays cumulative status of the job, along with a description of the current
operation. An estimated completion percentage for the job is also returned. Also
allows resetting the display interval for logging mode status.

Syntax and Description
STATUS [=integer]

2-44 Oracle Database Utilities

Examples of Using Data Pump Export

STOP_JOB

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log
file (even if one is in effect).

Example

The following example will display the current job status and change the logging
mode display interval to five minutes (300 seconds):

Export> STATUS=300

Purpose

Stops the current job either immediately or after an orderly shutdown, and exits
Export.

Syntax and Description
STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, the job can be attached to and restarted at a later time with the
START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job
after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning
requiring confirmation will be issued. All attached clients, including the one issuing
the STOP_JOB command, receive a warning that the job is being stopped by the
current user and they will be detached. After all clients are detached, the process
structure of the job is immediately run down. That is, the master process will not wait
for the worker processes to finish their current tasks. There is no risk of corruption or
data loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were
incomplete at the time of shutdown may have to be redone at restart time.

Example
Export> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Export

This section provides the following examples of using Data Pump Export:
» Performing a Table-Mode Export

= Data-Only Unload of Selected Tables and Rows

» Estimating Disk Space Needed in a Table-Mode Export

s Performing a Schema-Mode Export

» Performing a Parallel Full Database Export

= Using Interactive Mode to Stop and Reattach to a Job

Data Pump Export 2-45

Examples of Using Data Pump Export

For information that will help you to successfully use these examples, see Using the
Export Parameter Examples on page 2-7.

Performing a Table-Mode Export

Example 2-1 shows a table-mode export, specified using the TABLES parameter. Issue
the following Data Pump export command to perform a table export of the tables
employees and jobs from the human resources (hr) schema:

Example 2-1 Performing a Table-Mode Export
expdp hr TABLES=employees, jobs DUMPFILE=dpump_dirl:table.dmp NOLOGFILE=y

Because user hr is exporting tables in his own schema, it is not necessary to specify the
schema name for the tables. The NOLOGFILE=y parameter indicates that an Export log
file of the operation will not be generated.

Data-Only Unload of Selected Tables and Rows

Example 2-2 shows the contents of a parameter file (exp . par) that you could use to
perform a data-only unload of all tables in the human resources (hr) schema except
for the tables countries and regions. Rows in the employees table are unloaded
that have a department_id other than 50. The rows are ordered by employee_id.

Example 2-2 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump_dirl

DUMPFILE=dataonly.dmp

CONTENT=DATA_ONLY

EXCLUDE=TABLE: "IN ('COUNTRIES', 'REGIONS')"

QUERY=employees: "WHERE department_id !=50 ORDER BY employee_id"

You can issue the following command to execute the exp . par parameter file:

> expdp hr PARFILE=exp.par

A schema-mode export (the default mode) is performed, but the CONTENT parameter
effectively limits the export to an unload of just the table's data. The DBA previously
created the directory object dpump_dirl which points to the directory on the server
where user hr is authorized to read and write export dump files. The dump file
dataonly.dmp is created in dpump_dirl.

Estimating Disk Space Needed in a Table-Mode Export

Example 2-3 shows the use of the ESTIMATE_ONLY parameter to estimate the space
that would be consumed in a table-mode export, without actually performing the
export operation. Issue the following command to use the BLOCKS method to estimate
the number of bytes required to export the data in the following three tables located in
the human resource (hr) schema: employees, departments, and locations.

Example 2-3 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump_dirl ESTIMATE_ONLY=y TABLES=employees,
departments, locations LOGFILE=estimate.log

The estimate is printed in the log file and displayed on the client's standard output
device. The estimate is for table row data only; it does not include metadata.

2-46 Oracle Database Utilities

Examples of Using Data Pump Export

Performing a Schema-Mode Export

Example 2—4 shows a schema-mode export of the hr schema. In a schema-mode
export, only objects belonging to the corresponding schemas are unloaded. Because
schema mode is the default mode, it is not necessary to specify the SCHEMAS
parameter on the command line, unless you are specifying more than one schema or a
schema other than your own.

Example 2-4 Performing a Schema Mode Export
> expdp hr DUMPFILE=dpump_dirl:expschema.dmp LOGFILE=dpump_dirl:expschema.log

Performing a Parallel Full Database Export

Example 2-5 shows a full database Export that will have up to 3 parallel processes
(worker or PQ slaves).

Example 2-5 Parallel Full Export

> expdp hr FULL=y DUMPFILE=dpump_dirl:fulll%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dirl:expfull.log JOB_NAME=expfull

Because this is a full database export, all data and metadata in the database will be
exported. Dump files ful1101.dmp, full201.dmp, full102.dmp, and so on will be
created in a round-robin fashion in the directories pointed to by the dpump_dir1l and
dpump_dir2 directory objects. For best performance, these should be on separate I/O
channels. Each file will be up to 2 gigabytes in size, as necessary. Initially, up to three
files will be created. More files will be created, if needed. The job and master table will
have a name of expfull. The log file will be written to expfull. log in the dpump_
dirl directory.

Using Interactive Mode to Stop and Reattach to a Job

To start this example, reexecute the parallel full export in Example 2-5. While the
export is running, press Ctrl+C. This will start the interactive-command interface of
Data Pump Export. In the interactive interface, logging to the terminal stops and the
Export prompt is displayed.

Example 2—-6 Stopping and Reattaching to a Job
At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state and exits the client.
Enter the following command to reattach to the job you just stopped:

> expdp hr ATTACH=EXPFULL

After the job status is displayed, you can issue the CONTINUE_CLIENT command to
resume logging mode and restart the expfull job.

Export> CONTINUE_CLIENT

A message is displayed that the job has been reopened, and processing status is output
to the client.

Data Pump Export 2-47

Syntax Diagrams for Data Pump Export

Syntax Diagrams for Data Pump Export

This section provides syntax diagrams for Data Pump Export. These diagrams use
standard SQL syntax notation. For more information about SQL syntax notation, see

Oracle Database SQL Language Reference.

Explinit

~
username}@{password)

ExpStart

® SVS0eR
ExpStart

ExpModes){ExpOpts){ExpFiIeOpts)

GO
[@ s(job_name)~ f_)l ENCRYPTION_PASSWORD

F@{passwordh }_)

ExpModes

schema_name

()
U
® © |
_ (\
>+ TABLES = (table_name)

TABLESPACES

tablespace_name

Y
ﬁ TRANSPORT_FULL_CHECK a l%'

\| TRANSPORT_TABLESPACES

tablespace_name

2-48 Oracle Database Utilities

Syntax Diagrams for Data Pump Export

ExpOpts

DATA_ONLY
l METADATA_ONLY l

COMPRESSION
NONE

DATA_ONLY

METADATA_ONLY
- DATA_OPTIONS F@—>| XML_CLOBS |————

—| CONTENT g

ESTIMATE_ONLY

—(expencrypt)
(" expfilter)
- FLASHBACK SCN F@{son_value)i
H FLASHBACK_TIME F@—)Ctimestam@i
—| JOB_NAME F@e(jobname_string)i
—| NETWORK_LINK |->@{database_|ink)7
- PARALLEL |—>®—>(integer)
—(expremap)
—| STATUS P@-)Cinteger)

TRANSPORTABLE

| ALWAYS I
NEVER
COMPATIBLE

\| VERSION Q

version_string

Data Pump Export 2-49

Syntax Diagrams for Data Pump Export

ExpEncrypt

DATA_ONLY

METADATA_ONLY

ENCRYPTION

ENCRYPTED_COLUMNS_ONLY |—

m

TRANSPARENT

—|ENCHYPTION_ALGORITHM Q

—| ENCRYPTION_MODE Q

\| ENCRYPTION_PASSWORD F@»{password}—

ExpFilter

-name_clause ’

—J ExcLUDE @{object_type)
-name_clause ’

—{ INCLUDE |—>®{object_typ9)

f (table_name)(: }~
QUERY | = query_clause

—[FRERO

sample_percent

ExpRemap

| - > |

2-50 Oracle Database Utilities

Syntax Diagrams for Data Pump Export

ExpFileOpts

| DIRECTORY @{directory_object)
Y
)
directory_object ‘
DUMPFILE = file_name

FILESIZE a number_of_bytes
directory_object ‘
file_name

ExpDynOpts

—>

M)
(N

‘ directory_object ‘
ADD_FILE = file_name

—| CONTINUE_CLIENT
—| EXIT_CLIENT
—| FILESIZE |—>®—><number_of_bytes)
—| HELP
—| KILL_JOB

(e -

SKIP_CURRENT

—| START_JOB
—| STATUS

¥| STOP_JOB

Data Pump Export

2-51

Syntax Diagrams for Data Pump Export

2-52 Oracle Database Utilities

3

Data Pump Import

This chapter describes the Oracle Data Pump Import utility. The following topics are
discussed:

= What Is Data Pump Import?

= Invoking Data Pump Import

s Filtering During Import Operations

= Parameters Available in Import's Command-Line Mode

= How Data Pump Import Parameters Map to Those of the Original Import Utility
s Commands Available in Import's Interactive-Command Mode

= Examples of Using Data Pump Import

= Syntax Diagrams for Data Pump Import

What Is Data Pump Import?

Note: Although Data Pump Import (impdp) functionality is
similar to that of the original Import utility (imp), they are
completely separate utilities and their files are not compatible. See
Chapter 20, "Original Export and Import" for a description of the
original Import utility.

Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for
loading an export dump file set into a target system. The dump file set is made up of
one or more disk files that contain table data, database object metadata, and control
information. The files are written in a proprietary, binary format. During an import
operation, the Data Pump Import utility uses these files to locate each database object
in the dump file set.

Import can also be used to load a target database directly from a source database with
no intervening dump files. This is known as a network import.

Data Pump Import enables you to specify whether a job should move a subset of the
data and metadata from the dump file set or the source database (in the case of a
network import), as determined by the import mode. This is done using data filters
and metadata filters, which are implemented through Import commands. See Filtering
During Import Operations on page 3-5.

To see some examples of the various ways in which you can use Import, refer to
Examples of Using Data Pump Import on page 3-48.

Data Pump Import 3-1

Invoking Data Pump Import

Invoking Data Pump Import

The Data Pump Import utility is invoked using the impdp command. The
characteristics of the import operation are determined by the import parameters you
specify. These parameters can be specified either on the command line or in a
parameter file.

Note: Do not invoke Import as SYSDBA, except at the request of
Oracle technical support. SYSDBA is used internally and has
specialized functions; its behavior is not the same as for general
users.

Note: Be aware that if you are performing a Data Pump Import into
a table or tablespace created with the NOLOGGING clause enabled, a
redo log file may still be generated. The redo that is generated in such
a case is generally for maintenance of the master table or related to
underlying recursive space transactions, data dictionary changes, and
index maintenance for indices on the table that require logging.

The following sections contain more information about invoking Import:
= Data Pump Import Interfaces on page 3-2
s Data Pump Import Modes on page 3-3

= Network Considerations on page 3-5

Note: It is not possible to start or restart Data Pump jobs on one
instance in an Oracle Real Application Clusters (RAC) environment if
there are Data Pump jobs currently running on other instances in the
Oracle RAC environment.

Data Pump Import Interfaces

You can interact with Data Pump Import by using a command line, a parameter file, or
an interactive-command mode.

s Command-Line Interface: Enables you to specify the Import parameters directly
on the command line. For a complete description of the parameters available in
the command-line interface, see Parameters Available in Import's Command-Line
Mode on page 3-6.

= Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter because parameter
files cannot be nested. The use of parameter files is recommended if you are using
parameters whose values require quotation marks. See Use of Quotation Marks
On the Data Pump Command Line on page 3-7.

s Interactive-Command Interface: Stops logging to the terminal and displays the
Import prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an import operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

3-2 Oracle Database Utilities

Invoking Data Pump Import

For a complete description of the commands available in interactive-command
mode, see Commands Available in Import's Interactive-Command Mode on
page 3-44.

Data Pump Import Modes

One of the most significant characteristics of an import operation is its mode, because
the mode largely determines what is imported. The specified mode applies to the
source of the operation, either a dump file set or another database if the NETWORK_
LINK parameter is specified.

When the source of the import operation is a dump file set, specifying a mode is
optional. If no mode is specified, then Import attempts to load the entire dump file set
in the mode in which the export operation was run.

The mode is specified on the command line, using the appropriate parameter. The
available modes are as follows:

s Full Import Mode on page 3-3

= Schema Mode on page 3-4

= Table Mode on page 3-4

s Tablespace Mode on page 3-4

s Transportable Tablespace Mode on page 3-4

Note: When you import a dump file that was created by a full-mode
export, the import operation attempts to copy the password for the
SYS account from the source database. This sometimes fails (for
example, if the password is in a shared password file). If it does fail,
then after the import completes, you must set the password for the
SYS account at the target database to a password of your choice.

Note: Jobs (created by the Oracle Database job scheduler) are always
imported to the schema of the importing user. After an import, if you
query the DBA_JOBS view you will see that LOG_USER and PRIV_
USER values are set to the importing user, regardless of how they
were set on the export platform.

To work around this, you must perform both the export and the
import as the job owner.

Full Import Mode

A full import is specified using the FULL parameter. In full import mode, the entire
content of the source (dump file set or another database) is loaded into the target
database. This is the default for file-based imports. You must have the IMP_FULL_
DATABASE role if the source is another database.

Cross-schema references are not imported for non-privileged users. For example, a
trigger defined on a table within the importing user's schema, but residing in another
user's schema, is not imported.

The IMP_FULL_DATABASE role is required on the target database and the EXP_FULL_
DATABASE role is required on the source database if the NETWORK_LINK parameter is
used for a full import.

Data Pump Import 3-3

Invoking Data Pump Import

See Also: FULL on page 3-16

Schema Mode

A schema import is specified using the SCHEMAS parameter. In a schema import, only
objects owned by the specified schemas are loaded. The source can be a full, table,
tablespace, or schema-mode export dump file set or another database. If you have the
IMP_FULL_DATABASE role, then a list of schemas can be specified and the schemas
themselves (including system privilege grants) are created in the database in addition
to the objects contained within those schemas.

Cross-schema references are not imported for non-privileged users unless the other
schema is remapped to the current schema. For example, a trigger defined on a table
within the importing user's schema, but residing in another user's schema, is not
imported.

See Also: SCHEMAS on page 3-30

Table Mode

A table-mode import is specified using the TABLES parameter. In table mode, only the
specified set of tables, partitions, and their dependent objects are loaded. The source
can be a full, schema, tablespace, or table-mode export dump file set or another
database. You must have the IMP_FULL_DATABASE role to specify tables that are not
in your own schema.

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter in conjunction with the TABLES parameter. Note
that this requires use of the NETWORK_LINK parameter, as well.

See Also:

s TABLES on page 3-34

= TRANSPORTABLE on page 3-41

= Using Data File Copying to Move Data on page 1-3

Tablespace Mode

A tablespace-mode import is specified using the TABLESPACES parameter. In
tablespace mode, all objects contained within the specified set of tablespaces are
loaded, along with the dependent objects. The source can be a full, schema, tablespace,
or table-mode export dump file set or another database. For unprivileged users,
objects not remapped to the current schema will not be processed.

See Also: TABLESPACES on page 3-35

Transportable Tablespace Mode

A transportable tablespace import is specified using the TRANSPORT_TABLESPACES
parameter. In transportable tablespace mode, the metadata from a transportable
tablespace export dump file set or from another database is loaded. The datafiles,
specified by the TRANSPORT_DATAFILES parameter, must be made available from the
source system for use in the target database, typically by copying them over to the
target system.

Encrypted columns are not supported in transportable tablespace mode.

This mode requires the IMP_FULL_DATABASE role.

3-4 Oracle Database Utilities

Filtering During Import Operations

Note: You cannot export transportable tablespaces and then import
them into a database at a lower release level. The target database must
be at the same or higher release level as the source database.

See Also:

s TRANSPORT_TABLESPACES on page 3-40
s TRANSPORT_FULL_CHECK on page 3-39
s TRANSPORT_DATAFILES on page 3-38

Network Considerations

You can specify a connect identifier in the connect string when you invoke the Data
Pump Import utility. This identifier can specify a database instance that is different
from the current instance identified by the current Oracle System ID (SID). The
connect identifier can be an Oracle*Net connect descriptor or a name that maps to a
connect descriptor. This requires an active listener (to start the listener, enter 1snrctl
start) that can be located using the connect descriptor.

The following example invokes Import for user hr, using the connect descriptor
named inst1:

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp TABLES=employees

Import: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 12:25:57
Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password@instl

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production
With the Partitioning, Data Mining and Real Application Testing options

The local Import client connects to the database instance identified by the connect
descriptor inst1l (a simple net service name, usually defined in a tnsnames. ora
file), to import the data from the dump file set to that database.

Do not confuse invoking the Import utility using a connect identifier with an import
operation specifying the Import NETWORK_LINK command-line parameter, which
initiates an import using a database link. In this case, the local Import client connects
to the database instance identified by the command-line connect string, retrieves the
data to be imported from the database instance identified by the database link, and
writes the data to the connected database instance. There is no dump file set involved.

See Also:

s NETWORK_LINK on page 3-20

s Oracle Database Net Services Administrator's Guide

» Oracle Database Heterogeneous Connectivity Administrator’s Guide

Filtering During Import Operations

Data Pump Import provides much greater data and metadata filtering capability than
was provided by the original Import utility.

Data Pump Import 3-5

Parameters Available in Import's Command-Line Mode

Data Filters

Data specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be imported. Data filtering can
also occur indirectly as a result of Metadata filtering, which can include or exclude
table objects along with any associated row data.

Each data filter can only be specified once per table and once per job. If different filters
using the same name are applied to both a particular table and to the whole job, the
filter parameter supplied for the specific table will take precedence.

Metadata Filters

Data Pump Import provides much greater metadata filtering capability than was
provided by the original Import utility. Metadata filtering is implemented through the
EXCLUDE and INCLUDE parameters. The EXCLUDE and INCLUDE parameters are
mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from a Data Pump
operation. For example, you could request a full import, but without Package
Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For example, if a
filter specifies that a package is to be included in an operation, then grants upon that
package will also be included. Likewise, if a table is excluded by a filter, then indexes,
constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, an implicit AND operation is applied
to them. That is, objects participating in the job must pass all of the filters applied to
their object types.

The same filter name can be specified multiple times within a job.

To see which objects can be filtered, you can query the following views: DATABASE_
EXPORT_OBJECTS for Full-mode imports, SCHEMA_EXPORT_OBJECTS for
schema-mode imports, and TABLE_EXPORT_OBJECTS for table-mode and
tablespace-mode imports. Note that full object path names are determined by the
export mode, not by the import mode.

For an example of this, see Metadata Filters on page 2-6.

See Also:

= Metadata Filters on page 2-6 for an example of using filtering
s The Import EXCLUDE parameter on page 3-13

s The Import INCLUDE parameter on page 3-17

Parameters Available in Import's Command-Line Mode

This section provides descriptions of the parameters available in the command-line
mode of Data Pump Import. Many of the descriptions include an example of how to
use the parameter.

Using the Import Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the
following:

3-6 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

= After you enter the username and parameters as shown in the example, Import is
started and you are prompted for a password before a database connection is
made:

Import: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 12:15:55
Copyright (c) 2003, 2007, Oracle. All rights reserved.
Password: password

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production
With the Partitioning, Data Mining and Real Application Testing options

= Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

= Examples that specify a dump file to import assume that the dump file exists.
Wherever possible, the examples use dump files that are generated when you run
the Export examples in Chapter 2.

s The examples assume that the directory objects, dpump_dirl and dpump_dir2,
already exist and that READ and WRITE privileges have been granted to the hr
schema for these directory objects. See Default Locations for Dump, Log, and SQL
Files on page 1-10 for information about creating directory objects and assigning
privileges to them.

= Some of the examples require the EXP_FULL_DATABASE and IMP_FULL_
DATABASE roles. The examples assume that the hr schema has been granted these
roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Syntax diagrams of these parameters are provided in Syntax Diagrams for Data Pump
Import on page 3-49.

Unless specifically noted, these parameters can also be specified in a parameter file.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems require that quotation marks on the command line be
preceded by an escape character, such as the backslash. If the backslashes were not
present, the command-line parser that Import uses would not understand the
quotation marks and would remove them, resulting in an error. In general, Oracle
recommends that you place such statements in a parameter file because escape
characters are not necessary in parameter files.

See Also:

s Default Locations for Dump, Log, and SQL Files on page 1-10
for information about creating default directory objects

= Examples of Using Data Pump Import on page 3-48

» Oracle Database Sample Schemas

Data Pump Import 3-7

Parameters Available in Import's Command-Line Mode

ATTACH

Note: If you are accustomed to using the original Import utility,
you may be wondering which Data Pump parameters are used to
perform the operations you used to perform with original Import.
For a comparison, see How Data Pump Import Parameters Map to
Those of the Original Import Utility on page 3-42.

Default: current job in user's schema, if there is only one running job.

Purpose

Attaches the client session to an existing import job and automatically places you in
interactive-command mode.

Syntax and Description

ATTACH [=[schema_name.]job_name]

Specify a schema_name if the schema to which you are attaching is not your own.
You must have the IMP_FULL_DATABASE role to do this.

A job_name does not have to be specified if only one running job is associated with
your schema and the job is active. If the job you are attaching to is stopped, you must
supply the job name. To see a list of Data Pump job names, you can query the DBA_
DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Import displays a description of the job and then
displays the Import prompt.

Restrictions

= When you specify the ATTACH parameter, the only other Data Pump parameter
you can specify on the command line is ENCRYPTION_PASSWORD.

» If the job you are attaching to was initially started using an encryption password,
then when you attach to the job you must again enter the ENCRYPTION_
PASSWORD parameter on the command line to re-specify that password. The only
exception to this is if the job was initially started with the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the
encryption password is not needed when attaching to the job.

= You cannot attach to a job in another schema unless it is already running.

= If the dump file set or master table for the job have been deleted, the attach
operation will fail.

= Altering the master table in any way will lead to unpredictable results.

Example
The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import_job
This example assumes that a job named import_job exists in the hr schema.

See Also: Commands Available in Import's
Interactive-Command Mode on page 3-44

3-8 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

CONTENT

Default: ALL

Purpose
Enables you to filter what is loaded during the import operation.

Syntax and Description
CONTENT={ALL | DATA_ONLY | METADATA_ONLY}

= ALL loads any data and metadata contained in the source. This is the default.

= DATA ONLY loads only table row data into existing tables; no database objects
are created.

= METADATA ONLY loads only database object definitions; no table row data is
loaded.

Restrictions

s The CONTENT=METADATA_ONLY parameter and value cannot be used in
conjunction with parameter TRANSPORT TABLESPACES
(transportable-tablespace-mode).

s The CONTENT=ALL and CONTENT=DATA_ONLY parameter and values cannot be
used in conjunction with the SQLFILE parameter.

Example

The following is an example of using the CONTENT parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp CONTENT=METADATA_ONLY
This command will execute a full import that will load only the metadata in the

expfull.dmp dump file. It executes a full import because that is the default for
file-based imports in which no import mode is specified.

DATA_OPTIONS

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter provides options for how to handle certain types of
data during exports and imports. For import operations, the only valid option for the
DATA_OPTIONS parameter is SKIP_CONSTRAINT_ERRORS.

Syntax and Description
DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS

The SKIP_CONSTRAINT_ ERRORS option affects how non-deferred constraint violations
are handled while a data object (table, partition, or subpartition) is being loaded. It has
no effect on the load if deferred constraint violations are encountered. Deferred
constraint violations always cause the entire load to be rolled back.

Data Pump Import 3-9

Parameters Available in Import's Command-Line Mode

The SKIP_CONSTRAINT_ERRORS option specifies that you want the import operation
to proceed even if non-deferred constraint violations are encountered. It logs any rows
that cause non-deferred constraint violations, but does not stop the load for the data
object experiencing the violation.

If SKIP_CONSTRAINT_ERRORS is not set, then the default behavior is to roll back the
entire load of the data object on which non-deferred constraint violations are
encountered.

Restrictions

» If SKIP_CONSTRAINT_ERRORS is used and if a data object has unique indexes or
constraints defined on it at the time of the load, then the APPEND hint will not be
used for loading that data object. Therefore, loading such data objects will take
longer when the SKIP_CONSTRAINT_ERRORS option is used.

= Evenif SKIP_CONSTRAINT_ERRORS is specified, it is not used unless a data
object is being loaded using the external table access method.

Example
This example shows a data-only table mode import with SKIP_ CONSTRAINT_ERRORS
enabled:

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dirl:table.dmp DATA_OPTIONS=skip_constraint_errors

If any non-deferred constraint violations are encountered during this import
operation, they will be logged and the import will continue on to completion.

DIRECTORY

Default: DATA_PUMP_DIR

Purpose

Specifies the default location in which the import job can find the dump file set and
where it should create log and SQL files.

Syntax and Description
DIRECTORY=directory object

The directory_object is the name of a database directory object (not the file path of
an actual directory). Upon installation, privileged users have access to a default
directory object named DATA_PUMP_DIR. Users with access to DATA_PUMP_DIR need
not use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE, LOGFILE, or SQLFILE parameter
overrides any directory object that you specify for the DIRECTORY parameter. You
must have Read access to the directory used for the dump file set and Write access to
the directory used to create the log and SQL files.

Example

The following is an example of using the DIRECTORY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp
LOGFILE=dpump_dir2:expfull.log

3-10 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

DUMPFILE

This command results in the import job looking for the expfull . dmp dump file in the
directory pointed to by the dpump_dir1l directory object. The dpump_dir2 directory
object specified on the LOGFILE parameter overrides the DIRECTORY parameter so
that the log file is written to dpump_dir2.

See Also:

s Default Locations for Dump, Log, and SQL Files on page 1-10
for more information about default directory objects

» Oracle Database SQL Language Reference for more information
about the CREATE DIRECTORY command

Default: expdat.dmp

Purpose

Specifies the names and optionally, the directory objects of the dump file set that was
created by Export.

Syntax and Description
DUMPFILE=[directory object:]file name [, ...]

The directory_object is optional if one has already been established by the
DIRECTORY parameter. If you do supply a value here, it must be a directory object
that already exists and that you have access to. A database directory object that is
specified as part of the DUMPFILE parameter overrides a value specified by the
DIRECTORY parameter.

The file name is the name of a file in the dump file set. The filenames can also be
templates that contain the substitution variable, $U. If U is used, Import examines
each file that matches the template (until no match is found) in order to locate all files
that are part of the dump file set. The $U expands to a 2-digit incrementing integer
starting with 01.

Sufficient information is contained within the files for Import to locate the entire set,
provided the file specifications in the DUMPFILE parameter encompass the entire set.
The files are not required to have the same names, locations, or order that they had at
export time.

Example

The following is an example of using the Import DUMPFILE parameter. You can create
the dump files used in this example by running the example provided for the Export
DUMPFILE parameter. See DUMPFILE on page 2-11.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=dpump_dir2:expl.dmp, exp2%U.dmp
Because a directory object (dpump_dir2) is specified for the expl . dmp dump file, the

import job will look there for the file. It will also look in dpump_dirl for dump files
of the form exp2<nn> . dmp. The log file will be written to dpump_dirl.

See Also:
= File Allocation on page 1-10
» Performing a Data-Only Table-Mode Import on page 3-48

Data Pump Import 3-11

Parameters Available in Import's Command-Line Mode

ENCRYPTION_PASSWORD

ESTIMATE

Default: There is no default; the value is user-supplied.

Purpose

Specifies a password for accessing encrypted column data in the dump file set. This
prevents unauthorized access to an encrypted dump file set.

Syntax and Description
ENCRYPTION_PASSWORD = password

This parameter is required on an import operation if an encryption password was
specified on the export operation. The password that is specified must be the same one
that was specified on the export operation.

Restrictions
s This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

s The ENCRYPTION_PASSWORD parameter is not valid if the dump file set was
created using the transparent mode of encryption.

s The ENCRYPTION_PASSWORD parameter is not valid for network import jobs.

= Encryption attributes for all columns must match between the exported table
definition and the target table. For example, suppose you have a table, EMP, and
one of its columns is named EMPNO. Both of the following situations would result
in an error because the encryption attribute for the EMP column in the source table
would not match the encryption attribute for the EMP column in the target table:

— The EMP table is exported with the EMPNO column being encrypted, but prior
to importing the table you remove the encryption attribute from the EMPNO
column.

— The EMP table is exported without the EMPNO column being encrypted, but
prior to importing the table you enable encryption on the EMPNO column.

Example

In the following example, the encryption password, 123456, must be specified
because it was specified when the dpcd2bel . dmp dump file was created (see
"ENCRYPTION_PASSWORD" on page 2-15).

> impdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
DUMPFILE=dpcd2bel.dmp ENCRYPTION_PASSWORD=123456

During the import operation, any columns in the employee_s_encrypt table that
were encrypted during the export operation are decrypted before being imported.

Default: BLOCKS

Purpose

Instructs the source system in a network import operation to estimate how much data
will be generated.

Syntax and Description
ESTIMATE={BLOCKS | STATISTICS}

3-12 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

EXCLUDE

The valid choices for the ESTIMATE parameter are as follows:

m BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects times the appropriate block sizes.

m STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently.

The estimate that is generated can be used to determine a percentage complete
throughout the execution of the import job.

Restrictions

s The Import ESTIMATE parameter is valid only if the NETWORK_LINK parameter is
also specified.

= When the import source is a dump file set, the amount of data to be loaded is
already known, so the percentage complete is automatically calculated.

» The estimate may be inaccurate if the QUERY, SAMPLE, or REMAP_DATA parameter
is used.

Example

In the following example, source_database_1ink would be replaced with the
name of a valid link to the source database.

> impdp hr TABLES=job_history NETWORK_LINK=source_database_link
DIRECTORY=dpump_dirl ESTIMATE=statistics

The job_history table in the hr schema is imported from the source database. A log
file is created by default and written to the directory pointed to by the dpump_dirl
directory object. When the job begins, an estimate for the job is calculated based on
table statistics.

Default: There is no default

Purpose

Enables you to filter the metadata that is imported by specifying objects and object
types that you want to exclude from the import job.

Syntax and Description
EXCLUDE=object_typel:name_clause] [, ...]

For the given mode of import, all object types contained within the source (and their
dependents) are included, except those specified in an EXCLUDE statement. If an object
is excluded, all of its dependent objects are also excluded. For example, excluding a
table will also exclude all indexes and triggers on the table.

The name_clauseis optional. It allows fine-grained selection of specific objects
within an object type. It is a SQL expression used as a filter on the object names of the
type. It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name clause applies only to object types whose
instances have names (for example, it is applicable to TABLE and VIEW, but not to
GRANT). The optional name clause must be separated from the object type with a colon
and enclosed in double quotation marks, because single-quotation marks are required

Data Pump Import 3-13

Parameters Available in Import's Command-Line Mode

to delimit the name strings. For example, you could set EXCLUDE=INDEX: "LIKE
'DEPT% ' " to exclude all indexes whose names start with dept.

More than one EXCLUDE statement can be specified. Oracle recommends that you
place EXCLUDE statements in a parameter file to avoid having to use operating
system-specific escape characters on the command line.

As explained in the following sections, you should be aware of the effects of specifying
certain objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints
The following constraints cannot be excluded:

s NOT NULL constraints.

= Constraints needed for the table to be created and loaded successfully (for
example, primary key constraints for index-organized tables or REF SCOPE and
WITH ROWID constraints for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

s EXCLUDE=CONSTRAINT will exclude all nonreferential constraints, except for NOT
NULL constraints and any constraints needed for successful table creation and
loading.

= EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key)
constraints.

Excluding Grants and Users
Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within users' schemas.

To exclude a specific user and all objects of that user, specify a filter such as the
following (where hr is the schema name of the user you want to exclude):

EXCLUDE=SCHEMA: "= 'HR' "

If you try to exclude a user by using a statement such as EXCLUDE=USER:"= 'HR", only
CREATE USER hr DDL statements will be excluded, and you may not get the results
you expect.

Restrictions
s The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example

Assume the following is in a parameter file, exclude. par, being used by a DBA or
some other user with the IMP_FULL_DATABASE role. (If you want to try the example,
you will need to create this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE
EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

You could then issue the following command. You can create the expfull.dmp

dump file used in this command by running the example provided for the Export
FULL parameter. See FULL on page 2-22.

3-14 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

> impdp system DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp PARFILE=exclude.par

All data from the expfull . dmp dump file will be loaded except for functions,
procedures, packages, and indexes whose names start with emp.

See Also: Filtering During Import Operations on page 3-5 for
more information about the effects of using the EXCLUDE
parameter

FLASHBACK_SCN

Default: There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description
FLASHBACK_SCN=scn_number

The import operation is performed with data that is consistent as of the specified scn_
number.

Note: If you are on a logical standby system, the FLASHBACK_SCN
parameter is ignored because SCNs are selected by logical standby.
See Oracle Data Guard Concepts and Administration for information
about logical standby databases.

Restrictions

s The FLASHBACK_SCN parameter is valid only when the NETWORK_LINK
parameter is also specified.

s The FLASHBACK_SCN parameter pertains only to the Flashback Query capability
of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

s FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

Example
The following is an example of using the FLASHBACK_SCN parameter.

> impdp hr DIRECTORY=dpump_dirl FLASHBACK_SCN=123456
NETWORK_LINK=source_database_link

The source_database_1linkin this example would be replaced with the name of a
source database from which you were importing data.

FLASHBACK_TIME

Default: There is no default
Purpose

Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Data Pump Import 3-15

Parameters Available in Import's Command-Line Mode

Syntax and Description
FLASHBACK_TIME="TO_TIMESTAMP ()"

The SCN that most closely matches the specified time is found, and this SCN is used to
enable the Flashback utility. The import operation is performed with data that is
consistent as of this SCN. Because the TO_TIMESTAMP value is enclosed in quotation
marks, it would be best to put this parameter in a parameter file. Otherwise, you might
need to use escape characters on the command line in front of the quotation marks. See
Use of Quotation Marks On the Data Pump Command Line on page 3-7.

Note: If you are on a logical standby system, the FLASHBACK_
TIME parameter is ignored because SCNs are selected by logical
standby. See Oracle Data Guard Concepts and Administration for
information about logical standby databases.

Restrictions
s This parameter is valid only when the NETWORK_LINK parameter is also specified.

s The FLASHBACK_TIME parameter pertains only to the flashback query capability
of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

» FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

Example

You can specify the time in any format that the DBMS_FLASHBACK . ENABLE_AT_ TIME
procedure accepts,. For example, suppose you have a parameter file, flashback_
imp.par, that contains the following:

FLASHBACK_TIME="TO_TIMESTAMP('25-08-2003 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> impdp hr DIRECTORY=dpump_dirl PARFILE=flashback_imp.par NETWORK_LINK=source_
database_link

The import operation will be performed with data that is consistent with the SCN that
most closely matches the specified time.

See Also: Oracle Database Advanced Application Developer’s Guide
for information about using flashback

FULL

Default: v

Purpose
Specifies that you want to perform a full database import.

Syntax and Description
FULL=y

A value of FULL=y indicates that all data and metadata from the source (either a
dump file set or another database) is imported.

3-16 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

Filtering can restrict what is imported using this import mode (see Filtering During
Import Operations on page 3-5).

If the NETWORK_LINK parameter is used, the USERID that is executing the import
job has the IMP_FULL_DATABASE role on the target database, then that user must also
have the EXP_FULL_DATABASE role on the source database.

If you are an unprivileged user importing from a file, only schemas that map to your
own schema are imported.

FULL is the default mode when you are performing a file-based import.

Example

The following is an example of using the FULL parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DUMPFILE=dpump_dirl:expfull.dmp FULL=y
LOGFILE=dpump_dir2:full_imp.log

This example imports everything from the expfull.dmp dump file. In this example,
a DIRECTORY parameter is not provided. Therefore, a directory object must be
provided on both the DUMPFILE parameter and the LOGFILE parameter. The
directory objects can be different, as shown in this example.

HELP

Default: n

Purpose
Displays online help for the Import utility.

Syntax and Description
HELP=y

If HELP=y is specified, Import displays a summary of all Import command-line
parameters and interactive commands.

Example
> impdp HELP = Y

This example will display a brief description of all Import parameters and commands.

INCLUDE

Default: There is no default

Purpose

Enables you to filter the metadata that is imported by specifying objects and object
types for the current import mode.

Syntax and Description
INCLUDE = object_typel:name_clause] [, ...]

Only object types in the source (and their dependents) that are explicitly specified in
the INCLUDE statement are imported.

Data Pump Import 3-17

Parameters Available in Import's Command-Line Mode

JOB_NAME

The name_clauseis optional. It allows fine-grained selection of specific objects
within an object type. It is a SQL expression used as a filter on the object names of the
type. It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name clause applies only to object types whose
instances have names (for example, it is applicable to TABLE, but not to GRANT). The
optional name clause must be separated from the object type with a colon and
enclosed in double quotation marks, because single-quotation marks are required to
delimit the name strings.

More than one INCLUDE statement can be specified. Oracle recommends that you
place INCLUDE statements in a parameter file to avoid having to use operating
system-specific escape characters on the command line.

To see a list of valid paths for use with the INCLUDE parameter, you can query the
following views: DATABASE_EXPORT_OBJECTS for Full mode, SCHEMA_EXPORT_
OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and tablespace
mode.

Restrictions
s The INCLUDE and EXCLUDE parameters are mutually exclusive.

Example

Assume the following is in a parameter file, imp_include.par, being used by a DBA
or some other user with the IMP_FULL_DATABASE role:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

You can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp
PARFILE=imp_include.par

You can create the expfull.dmp dump file used in this example by running the
example provided for the Export FULL parameter. See FULL on page 2-22.

The Import operation will load only functions, procedures, and packages from the hr
schema and indexes whose names start with EMP. Although this is a privileged-mode
import (the user must have the IMP_FULL_DATABASE role), the schema definition is
not imported, because the USER object type was not specified in an INCLUDE
statement.

Default: system-generated name of the form SYS_<IMPORT or SQLFILE>_<mode>_
NN

Purpose

The job name is used to identify the import job in subsequent actions, such as when
the ATTACH parameter is used to attach to a job, or to identify the job via the DBA_
DATAPUMP_JOBS or USER_DATAPUMP_JOBS views. The job name becomes the name
of the master table in the current user's schema. The master table controls the import
job.

3-18 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

LOGFILE

Syntax and Description
JOB_NAME=jobname_string

The jobname string specifies a name of up to 30 bytes for this import job. The bytes
must represent printable characters and spaces. If spaces are included, the name must
be enclosed in single quotation marks (for example, Thursday Import’). The job name
is implicitly qualified by the schema of the user performing the import operation.

The default job name is system-generated in the form SYS_IMPORT mode_NN or
SYS_SQLFILE_mode_NN, where NN expands to a 2-digit incrementing integer starting
at 01. An example of a default name is ' SYS_IMPORT_ TABLESPACE_02".

Example

The following is an example of using the JOB_NAME parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp JOB_NAME=impjob01l

Default: import.log

Purpose
Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description
LOGFILE=[directory _object:]file name

If you specify a directory._object, it must be one that was previously established
by the DBA and that you have access to. This overrides the directory object specified
with the DIRECTORY parameter. The default behavior is to create import.log in the
directory referenced by the directory object specified in the DIRECTORY parameter.

If the file_name you specify already exists, it will be overwritten.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created unless the NOLOGFILE parameter is specified. As with the
dump file set, the log file is relative to the server and not the client.

Note: Data Pump Import writes the log file using the database
character set. If your client NLS_LANG environment sets up a
different client character set from the database character set, then it
is possible that table names may be different in the log file than
they are when displayed on the client output screen.

Restrictions

s To perform a Data Pump Import using Automatic Storage Management (ASM),
you must specify a LOGFILE parameter that includes a directory object that does
not include the ASM + notation. That is, the log file must be written to a disk file,
and not written into the ASM storage. Alternatively, you can specify
NOLOGFILE=Y. However, this prevents the writing of the log file.

Data Pump Import 3-19

Parameters Available in Import's Command-Line Mode

Example

The following is an example of using the LOGFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr SCHEMAS=HR DIRECTORY=dpump_dir2 LOGFILE=imp.log
DUMPFILE=dpump_dirl:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is
written to the directory object specified on the DIRECTORY parameter.

See Also:
= STATUS on page 3-47

= Using Directory Objects When Automatic Storage Management
Is Enabled on page 1-12 for information about Automatic
Storage Management and directory objects

NETWORK_LINK

Default: There is no default

Purpose

Enables an import from a (source) database identified by a valid database link. The
data from the source database instance is written directly back to the connected
database instance.

Syntax and Description
NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an import via a database link. This means that
the system to which the impdp client is connected contacts the source database
referenced by the source_database_I1ink, retrieves data from it, and writes the
data to the database on the connected instance. There are no dump files involved.

The source_database_1link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, you or your DBA must create one. For more information about the CREATE
DATABASE LINK statement, see Oracle Database SQL Language Reference.

When you perform a network import using the transportable method, you must copy
the source data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally
managed tablespace assigned as the default temporary tablespace on the source
database. Otherwise, the job will fail. For further details about this, see the information
about creating locally managed temporary tablespaces in the Oracle Database
Administrator’s Guide.

This parameter is required when any of the following parameters are specified:
FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, TRANSPORT_TABLESPACES, or
TRANSPORTABLE.

3-20 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

NOLOGFILE

Caution: If an import operation is performed over an unencrypted
network link, then all data is imported as clear text even if it is
encrypted in the database. See Oracle Database Advanced Security
Administrator’s Guide for more information about network security.

Restrictions

= Network imports do not support the use of evolved types.

s When the NETWORK_LINK parameter is used in conjunction with the TABLES
parameter, only whole tables can be imported (not partitions of tables). The only

exception to this is if TRANSPORTABLE=ALWAYS is also specified, in which case
single or multiple partitions of a specified table can be imported.

» If the USERID that is executing the import job has the IMP_FULL_DATABASE role
on the target database, then that user must also have the EXP_FULL_DATABASE
role on the source database.

= The only types of database links supported by Data Pump Import are: public,
fixed-user, and connected-user. Current-user database links are not supported.

Example

In the following example, the source_database_1ink would be replaced with the
name of a valid database link.

> impdp hr TABLES=employees DIRECTORY=dpump_dirl
NETWORK_LINK=source_database_link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints)
from the source database. The log file is written to dpump_dir1, specified on the
DIRECTORY parameter.

Default: n

Purpose
Specifies whether or not to suppress the default behavior of creating a log file.

Syntax and Description
NOLOGFILE={y | n}

If you specify NOLOGFILE=Y to suppress creation of a log file, progress and error
information is still written to the standard output device of any attached clients,
including the client that started the original export operation. If there are no clients
attached to a running job and you specify NOLOGFILE=Y, you run the risk of losing
important progress and error information.

Example
The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp NOLOGFILE=Y

This command results in a full mode import (the default for file-based imports) of the
expfull.dmp dump file. No log file is written because NOLOGFILE is set to y.

Data Pump Import 3-21

Parameters Available in Import's Command-Line Mode

PARALLEL

PARFILE

Default: 1

Purpose

Specifies the maximum number of threads of active execution operating on behalf of
the import job.

Syntax and Description
PARALLEL=integer

The value you specify for integer specifies the maximum number of threads of
active execution operating on behalf of the import job. This execution set consists of a
combination of worker processes and parallel I/O server processes. The master control
process, idle workers, and worker processes acting as parallel execution coordinators
in parallel I/O operations do not count toward this total. This parameter enables you
to make trade-offs between resource consumption and elapsed time.

If the source of the import is a dump file set consisting of files, multiple processes can
read from the same file, but performance may be limited by I/O contention.

To increase or decrease the value of PARALLEL during job execution, use
interactive-command mode.

Parallelism is used for loading user data and package bodies, and for building indexes.

See Also: Controlling Resource Consumption on page 4-2

Restrictions
s This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example
The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump_dirl LOGFILE=parallel_import.log
JOB_NAME=imp_par3 DUMPFILE=par_exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for
the Export PARALLEL parameter. (See PARALLEL on page 2-27.) The names of the
dump files are par_exp01l.dmp, par_exp02.dmp, and par_exp03.dmp.

Default: There is no default

Purpose
Specifies the name of an import parameter file.

Syntax and Description
PARFILE=[directory_path] file name

Unlike dump files, log files, and SQL files which are created and written by the server,
the parameter file is opened and read by the client running the impdp image.
Therefore, a directory object name is neither required nor appropriate. The default is
the user's current directory. The use of parameter files is highly recommended if you

3-22 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

are using parameters whose values require the use of quotation marks. (See Use of
Quotation Marks On the Data Pump Command Line on page 3-7.)

Restrictions
s The PARFILE parameter cannot be specified within a parameter file.

Example

The content of an example parameter file, hr_imp . par, might be as follows:
TABLES= countries, locations, regions
DUMPFILE=dpump_dir2:expl.dmp, exp2%U.dmp

DIRECTORY=dpump_dirl
PARALLEL=3

You could then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr_imp.par

The tables named countries, locations, and regions will be imported from the
dump file set that is created when you run the example for the Export DUMPFILE
parameter. (See DUMPFILE on page 2-11.) The import job looks for the expl . dmp file
in the location pointed to by dpump_dir2. It looks for any dump files of the form
exp2<nn>.dmp in the location pointed to by dpump_dir1. The log file for the job will
also be written to dpump_dirl.

PARTITION_OPTIONS

Default: The default is departition when partition names are specified on the
TABLES parameter and TRANPORTABLE=ALWAYS is set (whether on the import
operation or during the export). Otherwise, the default is none.

Purpose
Specifies how table partitions should be created during an import operation.

Syntax and Description
PARTITION_OPTIONS={none | departition | merge}

A value of none creates tables as they existed on the system from which the export
operation was performed. You cannot use the none option or the merge option if the
export was performed with the transportable method, along with a partition or
subpartition filter. In such a case, you must use the departition option.

A value of departition promotes each partition or subpartition to a new individual
table. The default name of the new table will be the concatenation of the table and
partition name or the table and subpartition name, as appropriate.

A value of merge combines all partitions and subpartitions into one table.

Restrictions

» If the export operation that created the dump file was performed with the
transportable method and if a partition or subpartition was specified, then the
import operation must use the departition option.

» If the export operation that created the dump file was performed with the
transportable method, then the import operation cannot use PARTITION_
OPTIONS=merge.

Data Pump Import 3-23

Parameters Available in Import's Command-Line Mode

QUERY

= If there are any grants on objects being departitioned, an error message is
generated and the objects are not loaded.

Example

The following example assumes that the sh. sales table has been exported into a
dump file named sales.dmp. It uses the MERGE option to merge all the partitions in
sh.sales into one non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION_OPTIONS=merge
DIRECTORY=dpump_dirl DUMPFILE=sales.dmp REMAP_SCHEMA=sh:scott

See Also: TRANSPORTABLE on page 2-37 for an example of
performing an import operation using PARTITION_
OPTIONS=departition

Default: There is no default

Purpose
Allows you to specify a query clause that filters the data that gets imported.

Syntax and Description

QUERY=[[schema_name.] table name:]query clause

The query clauseis typically a SOL WHERE clause for fine-grained row selection,
but could be any SQL clause. For example, an ORDER BY clause could be used to
speed up a migration from a heap-organized table to an index-organized table. If a
schema and table name are not supplied, the query is applied to (and must be valid
for) all tables in the source dump file set or database. A table-specific query overrides a
query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

The query must be enclosed in single or double quotation marks. Double quotation
marks are recommended, because strings within the clause must be enclosed in single
quotation marks. Oracle recommends that you place QUERY specifications in a
parameter file to avoid having to use operating system-specific escape characters on
the command line. See Use of Quotation Marks On the Data Pump Command Line on
page 3-7.

When the QUERY parameter is used, the external tables method (rather than the direct
path method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions

s The QUERY parameter cannot be used in conjunction with the following
parameters:

— CONTENT=METADATA_ONLY

- SQLFILE

3-24 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

— TRANSPORT_DATAFILES

= When the QUERY parameter is specified for a table, Data Pump uses external tables
to load the target table. External tables uses a SQL INSERT statement with a
SELECT clause. The value of the QUERY parameter is included in the WHERE
clause of the SELECT portion of the INSERT statement. If the QUERY parameter
includes references to another table with columns whose names match the table
being loaded, and if those columns are used in the query, then you will need to
use a table alias to distinguish between columns in the table being loaded and
columns in the SELECT statement with the same name. The table alias used by
Data Pump for the table being loaded is KUS.

For example, suppose you are importing a subset of the sh. sales table based on
the credit limit for a customer in the sh. customers table. In the following
example, KU$ is used to qualify the cust_id field in the QUERY parameter for
loading sh.sales. As a result, Data Pump imports only rows for customers
whose credit limit is greater than $10,000.

QUERY='sales: "WHERE EXISTS (SELECT cust_id FROM customers ¢ WHERE cust_credit_
limit > 10000 AND ku$.cust_id = c.cust_id)""'

If KUs is not used for a table alias, the result will be that all rows are loaded:

QUERY='sales: "WHERE EXISTS (SELECT cust_id FROM customers c¢ WHERE cust_credit_
limit > 10000 AND cust_id = c.cust_id)"'

Example

The following is an example of using the QUERY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22. Because the QUERY value uses
quotation marks, Oracle recommends that you use a parameter file to avoid having to
use escape characters on the command line. (See Use of Quotation Marks On the Data
Pump Command Line on page 3-7.)

Suppose you have a parameter file, query_imp.par, that contains the following;:

QUERY=departments: "WHERE department_id < 120"

You can then enter the following command:
> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp
PARFILE=query_imp.par NOLOGFILE=Y

All tables in expfull.dmp are imported, but for the departments table, only data
that meets the criteria specified in the QUERY parameter is imported.

REMAP_DATA

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to remap data as it is being inserted into a
new database. A common use is to regenerate primary keys to avoid conflict when
importing a table into a pre-existing table on the target database.

You can specify a remap function that takes as a source the value of the designated
column from either the dump file or a remote database. The remap function then
returns a remapped value that will replace the original value in the target database.

Data Pump Import 3-25

Parameters Available in Import's Command-Line Mode

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.] tablename.column_name: [schema.]pkg. function

The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

schema -- the schema containing the table to be remapped. By default, this is the
schema of the user doing the import.

tablename -- the table whose column will be remapped.
column_name -- the column whose data is to be remapped.

schema -- the schema containing the PL/SQL package you created that contains the
remapping function. As a default, this is the schema of the user doing the import.

pkg -- the name of the PL/SQL package you created that contains the remapping
function.

function -- the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions
= The data types of the source argument and the returned value should both match
the data type of the designated column in the table.

= Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

Example

The following example assumes a package named remap has been created that
contains a function named plusx that changes the values for first_name in the
employees table.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REMAP_DATAFILE

Default: There is no default

Purpose

Changes the name of the source datafile to the target datafile name in all SQL
statements where the source datafile is referenced: CREATE TABLESPACE, CREATE
LIBRARY, and CREATE DIRECTORY.

Syntax and Description
REMAP_DATAFILE=source_datafile:target_datafile

Remapping datafiles is useful when you move databases between platforms that have
different file naming conventions. The source_datafileand target_datafile
names should be exactly as you want them to appear in the SQL statements where
they are referenced. Oracle recommends that you enclose datafile names in quotation

3-26 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

marks to eliminate ambiguity on platforms for which a colon is a valid file
specification character.

You must have the IMP_FULL_DATABASE role to specify this parameter.

Example

Because the REMAP_DATAFILE value uses quotation marks, Oracle recommends that
you specify the parameter within a parameter file to avoid having to use escape
characters on the command line. (See Use of Quotation Marks On the Data Pump
Command Line on page 3-7.) For example, suppose you had a parameter file,
payroll.par, with the following content:

DIRECTORY=dpump_dirl

FULL=Y

DUMPFILE=db_full.dmp

REMAP_DATAFILE="'DB1S$: [HRDATA.PAYROLL]tbs6.f':'/dbl/hrdata/payroll/tbs6.f'"

You can then issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps a VMS file specification (DR1$: [HRDATA . PAYROLL] tbs6 . £)
to a UNIX file specification, (/dbl/hrdata/payroll/tbs6. £) for all SQL DDL
statements during the import. The dump file, db_full.dmp, is located by the
directory object, dpump_dirl.

REMAP_SCHEMA

Default: There is no default

Purpose
Loads all objects from the source schema into a target schema.

Syntax and Description
REMAP_SCHEMA=source_schema: target_schema

Multiple REMAP_ SCHEMA lines can be specified, but the source schema must be
different for each one. However, different source schemas can map to the same target
schema. The mapping may not be 100 percent complete, because there are certain
schema references that Import is not capable of finding. For example, Import will not
find schema references embedded within the body of definitions of types, views,
procedures, and packages.

If the schema you are remapping to does not already exist, then the import operation
creates it, provided that the dump file set contains the necessary CREATE USER
metadata for the source schema, and provided that you are importing with enough
privileges. For example, entering the following Export commands creates the dump
file sets with the necessary metadata to create a schema, because the user SYSTEM has
the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

> expdp system FULL=y
Password: password

If your dump file set does not contain the metadata necessary to create a schema, or if
you do not have privileges, then the target schema must be created before the import

Data Pump Import 3-27

Parameters Available in Import's Command-Line Mode

operation is performed. This is because the unprivileged dump files do not contain the
necessary information for the import to create the schema automatically.

If the import operation does create the schema, then after the import is complete, you
must assign it a valid password in order to connect to it. The SQL statement to do this,
which requires privileges, is:

SQL> ALTER USER schema_name IDENTIFIED BY new_password

Restrictions

s Unprivileged users can perform schema remaps only if their schema is the target
schema of the remap. (Privileged users can perform unrestricted schema remaps.)

s For example, SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot
remap SCOTT's objects to BLAKE.

Example

Suppose that, as user SYSTEN, you execute the following Export and Import
commands to remap the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp
> impdp system DIRECTORY=dpump_dirl DUMPFILE=hr.dmp REMAP_SCHEMA=hr.scott

In this example, if user scott already exists before the import, then the Import
REMAP_ SCHEMA command will add objects from the hr schema into the existing
scott schema. You can connect to the scott schema after the import by using the
existing password (without resetting it).

If user scott does not exist before you execute the import operation, Import
automatically creates it with an unusable password. This is possible because the dump
file, hr.dmp, was created by SYSTEM, which has the privileges necessary to create a
dump file that contains the metadata needed to create a schema. However, you cannot
connect to scott on completion of the import, unless you reset the password for
scott on the target database after the import completes.

REMAP_TABLE

Default: There is no default

Purpose

Allows you to rename tables during an import operation performed with the
transportable method.

Syntax and Description
REMAP_TABLE=[schema.]old_tablename|.partition] :new_tablename

You can use the REMAP_TABLE parameter to rename entire tables.

You can also use it to override the automatic naming of table partitions that were
exported using the transportable method. When partitioned tables are exported using
the transportable method, each partition and subpartition is promoted to its own table
and by default the table is named by combining the table and partition name (that is,
tablename_partitionname). You can use REMAP_TABLE to specify a name other than
the default.

3-28 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

Restrictions

= Only objects created by the Import will be remapped. In particular, preexisting
tables will not be remapped if TABLE_EXISTS_ACTION is set to TRUNCATE or
APPEND.

Example

The following is an example of using the REMAP_ TABLE parameter to rename the
employees table to a new name of emps:

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_TABLE=hr.employees:emps

REMAP_TABLESPACE

Default: There is no default

Purpose

Remaps all objects selected for import with persistent data in the source tablespace to
be created in the target tablespace.

Syntax and Description
REMAP_TABLESPACE=source_tablespace: target_tablespace

Multiple REMAP_TABLESPACE parameters can be specified, but no two can have the
same source tablespace. The target schema must have sufficient quota in the target
tablespace.

Note that use of the REMAP_TABLESPACE parameter is the only way to remap a
tablespace in Data Pump Import. This is a simpler and cleaner method than the one
provided in the original Import utility. That method was subject to many restrictions
(including the number of tablespace subclauses) which sometimes resulted in the
failure of some DDL commands.

By contrast, the Data Pump Import method of using the REMAP_ TABLESPACE
parameter works for all objects, including the user, and it works regardless of how
many tablespace subclauses are in the DDL statement.

Restrictions

s Data Pump Import can only remap tablespaces for transportable imports in
databases where the compatibility level is 10.1 or later.

= Only objects created by the Import will be remapped. In particular, the tablespaces
for preexisting tables will not be remapped if TABLE_EXISTS_ACTION is set to
SKIP, TRUNCATE or APPEND.

Example
The following is an example of using the REMAP_ TABLESPACE parameter.

> impdp hr REMAP_TABLESPACE=tbs_1:tbs_6 DIRECTORY=dpump_dirl
DUMPFILE=employees.dmp

REUSE_DATAFILES

Default: n

Data Pump Import 3-29

Parameters Available in Import's Command-Line Mode

Purpose

Specifies whether or not the import job should reuse existing datafiles for tablespace
creation.

Syntax and Description
REUSE_DATAFILES={y | n}

If the default (n) is used and the datafiles specified in CREATE TABLESPACE
statements already exist, an error message from the failing CREATE TABLESPACE
statement is issued, but the import job continues.

If this parameter is specified as y, the existing datafiles are reinitialized. Be aware that
specifying Y can result in a loss of data.

Example

The following is an example of using the REUSE_DATAFILES parameter. You can
create the expfull . dmp dump file used in this example by running the example
provided for the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=Y

This example reinitializes datafiles referenced by CREATE TABLESPACE statements in
the expfull.dmp file.

SCHEMAS

Default: There is no default

Purpose
Specifies that a schema-mode import is to be performed.

Syntax and Description
SCHEMAS=schema_name [, ...]

If you have the IMP_FULL_DATABASE role, you can use this parameter to perform a
schema-mode import by specifying a list of schemas to import. First, the user
definitions are imported (if they do not already exist), including system and role
grants, password history, and so on. Then all objects contained within the schemas are
imported. Nonprivileged users can specify only their own schemas or schemas
remapped to their own schemas. In that case, no information about the schema
definition is imported, only the objects contained within it.

The use of filtering can restrict what is imported using this import mode. See Filtering
During Import Operations on page 3-5.

Schema-mode is the default mode when you are performing a network-based import.

Example

The following is an example of using the SCHEMAS parameter. You can create the
expdat . dmp file used in this example by running the example provided for the
Export SCHEMAS parameter. See SCHEMAS on page 2-32.

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dirl LOGFILE=schemas.log
DUMPFILE=expdat .dmp

3-30 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

The hr schema is imported from the expdat . dmp file. The log file, schemas . log, is
written to dpump_dirl.

SKIP_UNUSABLE_INDEXES

SQLFILE

Default: the value of the Oracle Database configuration parameter, SKIP_UNUSABLE_
INDEXES.

Purpose

Specifies whether or not Import skips loading tables that have indexes that were set to
the Index Unusable state (by either the system or the user).

Syntax and Description
SKIP_UNUSABLE_INDEXES={y | n}

If SKIP_UNUSABLE_INDEXES is set to y, and a table or partition with an index in the
Unusable state is encountered, the load of that table or partition proceeds anyway, as
if the unusable index did not exist.

If SKIP_UNUSABLE_INDEXES is set to n, and a table or partition with an index in the
Unusable state is encountered, that table or partition is not loaded. Other tables, with
indexes not previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE_INDEXES parameter is not specified, then the setting of the
Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES (whose default
value is y), will be used to determine how to handle unusable indexes.

If indexes used to enforce constraints are marked unusable, then the data is not
imported into that table.

Note: This parameter is useful only when importing data into an
existing table. It has no practical effect when a table is created as part
of an import because in that case, the table and indexes are newly
created and will not be marked unusable.

Example

The following is an example of using the SKIP_UNUSABLE_INDEXES parameter. You
can create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE_INDEXES=y

Default: There is no default
Purpose
Specifies a file into which all of the SQL DDL that Import would have executed, based

on other parameters, is written.

Syntax and Description
SQLFILE=[directory_object:]file name

Data Pump Import 3-31

Parameters Available in Import's Command-Line Mode

STATUS

The £ile name specifies where the import job will write the DDL that would be
executed during the job. The SQL is not actually executed, and the target system
remains unchanged. The file is written to the directory object specified in the
DIRECTORY parameter, unless another directory_object is explicitly specified
here. Any existing file that has a name matching the one specified with this parameter
is overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT
statement is part of the DDL that was executed, it will be replaced by a comment with
only the schema name shown. In the following example, the dashes indicate that a
comment follows, and the hr schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can execute the SQL file, you must edit it by removing the
dashes indicating a comment and adding the password for the hr schema.

For Streams and other Oracle database options, anonymous PL/SQL blocks may
appear within the SQLFILE output. They should not be executed directly.

Restrictions
» If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either
ALL or DATA_ONLY.

s To perform a Data Pump Import to a SQL file using Automatic Storage
Management (ASM), the SQLFILE parameter that you specify must include a
directory object that does not use the ASM + notation. That is, the SQL file must be
written to a disk file, not into the ASM storage.

Example

The following is an example of using the SQLFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp
SQLFILE=dpump_dir2:expfull.sqgl

A SQL file named expfull.sgl is written to dpump_dir?2.

Default: 0

Purpose
Specifies the frequency at which the job status will be displayed.

Syntax and Description
STATUS [=integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log
file (if one is in effect).

3-32 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

Example

The following is an example of using the STATUS parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr NOLOGFILE=y STATUS=120 DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

STREAMS_CONFIGURATION

Default: y

Purpose

Specifies whether or not to import any Streams metadata that may be present in the
export dump file.

Syntax and Description
STREAMS_CONFIGURATION={y | n}

Example

The following is an example of using the STREAMS_CONFIGURATION parameter. You
can create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp STREAMS_CONFIGURATION=n

See Also: Oracle Streams Replication Administrator’s Guide

TABLE_EXISTS_ACTION

Default: SKIP (Note that if CONTENT=DATA_ONLY is specified, the default is APPEND,
not SKIP.)

Purpose
Tells Import what to do if the table it is trying to create already exists.

Syntax and Description
TABLE_EXISTS_ACTION={SKIP | APPEND | TRUNCATE | REPLACE}
The possible values have the following effects:

= SKIP leaves the table as is and moves on to the next object. This is not a valid
option if the CONTENT parameter is set to DATA_ONLY.

= APPEND loads rows from the source and leaves existing rows unchanged.
= TRUNCATE deletes existing rows and then loads rows from the source.

= REPLACE drops the existing table and then creates and loads it from the source.
This is not a valid option if the CONTENT parameter is set to DATA_ONLY.

The following considerations apply when you are using these options:

= When you use TRUNCATE or REPLACE, make sure that rows in the affected tables
are not targets of any referential constraints.

Data Pump Import 3-33

Parameters Available in Import's Command-Line Mode

TABLES

= When you use SKIP, APPEND, or TRUNCATE, existing table-dependent objects in
the source, such as indexes, grants, triggers, and constraints, are ignored. For
REPLACE, the dependent objects are dropped and re-created from the source, if
they were not explicitly or implicitly excluded (using EXCLUDE) and they exist in
the source dump file or system.

= When you use APPEND or TRUNCATE, checks are made to ensure that rows from
the source are compatible with the existing table prior to performing any action.

If the existing table has active constraints and triggers, it is loaded using the
external tables access method. If any row violates an active constraint, the load
fails and no data is loaded. You can override this behavior by specifying DATA_
OPTIONS=SKIP_CONSTRAINT_ERRORS on the Import command line.

If you have data that must be loaded, but may cause constraint violations,
consider disabling the constraints, loading the data, and then deleting the problem
rows before reenabling the constraints.

= When you use APPEND, the data is always loaded into new space; existing space,
even if available, is not reused. For this reason, you may wish to compress your
data after the load.

Restrictions
m TRUNCATE cannot be used on clustered tables or over network links.

Example

The following is an example of using the TABLE_EXISTS_ACTION parameter. You
can create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter. See FULL on page 2-22.

> impdp hr TABLES=employees DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp
TABLE_EXISTS_ACTION=REPLACE

Default: There is no default

Purpose
Specifies that you want to perform a table-mode import.

Syntax and Description

TABLES=[schema_name.] table_namel :partition_name]

In a table-mode import, you can filter the data that is imported from the source by
specifying a comma-delimited list of tables and partitions or subpartitions.

If you do not supply a schema_name, it defaults to that of the current user. To specify
a schema other than your own, you must either have the IMP_FULL_DATABASE role
or remap the schema to the current user.

The use of filtering can restrict what is imported using this import mode. See Filtering
During Import Operations on page 3-5.

If a partition_name is specified, it must be the name of a partition or subpartition
in the associated table.

3-34 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

The use of wildcards to specify table names is also supported; however, only one table
expression can be supplied. For example, TABLES=emp% would import all tables
having names that start with 'EMP'.

Restrictions

» The use of synonyms as values for the TABLES parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, it would
not be valid to use TABLES=regn. An error would be returned.

s If you specify more than one table_name, they must all reside in the same
schema.

= You can only specify partitions from one table if PARTITION_
OPTIONS=DEPARTITION is also specified on the import.

s When the NETWORK_LINK parameter is used in conjunction with the TABLES
parameter, only whole tables can be imported (not partitions of tables). The only
exception to this is if TRANSPORTABLE=ALWAYS is also specified, in which case
single or multiple partitions of a specified table can be imported.

s If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the
TABLES parameter must be in the same table.

» The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4MB, unless you are using the NETWORK_LINK parameter to a
10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is
4KB.

Example

The following example shows a simple use of the TABLES parameter to import only
the employees and jobs tables from the expfull . dmp file. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp TABLES=employees, jobs

The following example shows the use of the TABLES parameter to import partitions:

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expdat .dmp
TABLES=sh.sales:sales_Q1 2000,sh.sales:sales_0Q2_ 2000

This example imports the partitions sales_Q1_2000 and sales_Q2_2000 for the
table sales in the schema sh.

TABLESPACES

Default: There is no default

Purpose
Specifies that you want to perform a tablespace-mode import.

Syntax and Description
TABLESPACES=tablespace _name [, ...]

Use TABLESPACES to specify a list of tablespace names whose tables and dependent

objects are to be imported from the source (full, schema, tablespace, or table-mode
export dump file set or another database).

Data Pump Import 3-35

Parameters Available in Import's Command-Line Mode

TRANSFORM

During the following import situations, Data Pump automatically creates the
tablespaces into which the data will be imported:

s The import is being done in FULL or TRANSPORT_TABLESPACES mode
s The import is being done in table mode with TRANSPORTABLE=ALWAYS

In all other cases, the tablespaces for the selected objects must already exist on the
import database. You could also use the Import REMAP_TABLESPACE parameter to
map the tablespace name to an existing tablespace on the import database.

The use of filtering can restrict what is imported using this import mode. See Filtering
During Import Operations on page 3-5.

Restrictions

» The length of the list of tablespace names specified for the TABLESPACES
parameter is limited to a maximum of 4MB, unless you are using the NETWORK_
LINK parameter to a 10.2.0.3 or earlier database or to a read-only database. In such
cases, the limit is 4KB.

Example

The following is an example of using the TABLESPACES parameter. It assumes that the
tablespaces already exist. You can create the expfull . dmp dump file used in this
example by running the example provided for the Export FULL parameter. See FULL
on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp TABLESPACES=tbs_1,tbs_2,tbs_
3,tbs_4

This example imports all tables that have data in tablespaces tbs_1, tbs_2, tbs_3,
and tbs_4.

Default: There is no default

Purpose
Enables you to alter object creation DDL for objects being imported.

Syntax and Description
TRANSFORM = transform name:valuel:object_type]

The transform name specifies the name of the transform. The possible options are
as follows:

= SEGMENT_ATTRIBUTES - If the value is specified as y, then segment attributes
(physical attributes, storage attributes, tablespaces, and logging) are included,
with appropriate DDL. The default is y.

= STORAGE - If the value is specified as y, the storage clauses are included, with
appropriate DDL. The default is y. This parameter is ignored if SEGMENT_
ATTRIBUTES=n.

m OID - If the value is specified as n, the assignment of the exported OID during the
creation of object tables and types is inhibited. Instead, a new OID is assigned.
This can be useful for cloning schemas, but does not affect referenced objects. The
default value is y.

3-36 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

s PCTSPACE - The value supplied for this transform must be a number greater
than zero. It represents the percentage multiplier used to alter extent allocations
and the size of datafiles.

Note that you can use the PCTSPACE transform in conjunction with the Data
Pump Export SAMPLE parameter so that the size of storage allocations matches the
sampled data subset. (See SAMPLE on page 2-31.)

The type of value specified depends on the transform used. Boolean values (y/n) are
required for the SEGMENT_ATTRIBUTES, STORAGE, and OID transforms. Integer
values are required for the PCTSPACE transform.

The object_typeis optional. If supplied, it designates the object type to which the
transform will be applied. If no object type is specified then the transform applies to all
valid object types. The valid object types for each transform are shown in Table 3-1.

Table 3—-1 Valid Object Types For the Data Pump Export TRANSFORM Parameter

SEGMENT _

ATTRIBUTES STORAGE OID PCTSPACE
CLUSTER X X X
CONSTRAINT X X X
INC_TYPE X
INDEX
ROLLBACK_ X X X
SEGMENT
TABLE X X X X
TABLESPACE X X
TYPE X
Example

For the following example, assume that you have exported the employees table in
the hr schema. The SQL CREATE TABLE statement that results when you then import
the table is similar to the following:

CREATE TABLE "HR"."EMPLOYEES"

("EMPLOYEE_ID" NUMBER(6,0),
"FIRST _NAME" VARCHAR2 (20),
"LAST_NAME" VARCHAR2 (25) CONSTRAINT "EMP_LAST NAME_NN" NOT NULL ENABLE,
"EMAIL" VARCHAR2 (25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
"PHONE_NUMBER" VARCHAR2 (20),
"HIRE_DATE" DATE CONSTRAINT "EMP_HIRE DATE_NN" NOT NULL ENABLE,
"JOB_ID" VARCHAR2 (10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
"SALARY" NUMBER(8,2),
"COMMISSION_PCT" NUMBER(2,2),
"MANAGER_ID" NUMBER(6,0),
"DEPARTMENT_ID" NUMBER (4,0)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE (INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "SYSTEM" ;

If you do not want to retain the STORAGE clause or TABLESPACE clause, you can
remove them from the CREATE STATEMENT by using the Import TRANSFORM
parameter. Specify the value of SEGMENT_ATTRIBUTES as n. This results in the
exclusion of segment attributes (both storage and tablespace) from the table.

Data Pump Import 3-37

Parameters Available in Import's Command-Line Mode

> impdp hr TABLES=hr.employees \
DIRECTORY=dpump_dirl DUMPFILE=hr_emp.dmp \
TRANSFORM=SEGMENT_ATTRIBUTES:n:table

The resulting CREATE TABLE statement for the employees table would then look
similar to the following. It does not contain a STORAGE or TABLESPACE clause; the
attributes for the default tablespace for the HR schema will be used instead.

CREATE TABLE "HR"."EMPLOYEES"

("EMPLOYEE_ID" NUMBER(6,0),
"FIRST_NAME" VARCHAR2 (20),
"LAST NAME" VARCHAR2 (25) CONSTRAINT "EMP_LAST NAME_NN" NOT NULL ENABLE,
"EMAIL" VARCHAR2 (25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
"PHONE_NUMBER" VARCHAR2 (20),
"HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE NN" NOT NULL ENABLE,
"JOB_ID" VARCHAR2 (10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
"SALARY" NUMBER(8,2),
"COMMISSION_PCT" NUMBER(2,2),
"MANAGER_ID" NUMBER (6,0),
"DEPARTMENT ID" NUMBER (4,0)

)i

As shown in the previous example, the SEGMENT_ATTRIBUTES transform applies to
both storage and tablespace attributes. To omit only the STORAGE clause and retain the
TABLESPACE clause, you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees \
DIRECTORY=dpump_dirl DUMPFILE=hr_emp.dmp \
TRANSFORM=STORAGE:n:table

The SEGMENT_ATTRIBUTES and STORAGE transforms can be applied to all applicable
table and index objects by not specifying the object type on the TRANSFORM parameter,
as shown in the following command:

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=hr.dmp \
SCHEMAS=hr TRANSFORM=SEGMENT ATTRIBUTES:n

TRANSPORT_DATAFILES

Default: There is no default

Purpose

Specifies a list of datafiles to be imported into the target database by a
transportable-mode import, or by a table mode import if TRANSPORTABLE=ALWAYS
was set during the export. The files must already have been copied from the source
database system to the target database system.

Syntax and Description
TRANSPORT_DATAFILES=datafile_name

The datafile name must include an absolute directory path specification (1ot a
directory object name) that is valid on the system where the target database resides.

Example

The following is an example of using the TRANSPORT_DATAFILES parameter.
Because the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle
recommends that you use a parameter file to avoid having to use escape characters on
the command line. (See Use of Quotation Marks On the Data Pump Command Line on

3-38 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

page 3-7.) Assume you have a parameter file, trans_datafiles.par, with the
following content:

DIRECTORY=dpump_dirl
DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user(0l/data/tbsl.f"'

You can then issue the following command:

> impdp hr PARFILE=trans_datafiles.par

TRANSPORT_FULL_CHECK

Default: n

Purpose

Specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

Syntax and Description
TRANSPORT_FULL_CHECK={y | n}

If TRANSPORT_FULL_CHECK=y, then Import verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set but its index is not, a failure is returned and the import operation is
terminated. Similarly, a failure is also returned if an index is in the transportable set
but the table is not.

If TRANSPORT_FULL_CHECK=n, then Import verifies only that there are no objects
within the transportable set that are dependent on objects outside the transportable
set. This check addresses a one-way dependency. For example, a table is not
dependent on an index, but an index is dependent on a table, because an index
without a table has no meaning. Therefore, if the transportable set contains a table, but
not its index, then this check succeeds. However, if the transportable set contains an
index, but not the table, the import operation is terminated.

In addition to this check, Import always verifies that all storage segments of all tables
(and their indexes) defined within the tablespace set specified by TRANSPORT_
TABLESPACES are actually contained within the tablespace set.

Restrictions

= This parameter is valid for transportable mode (or table mode when
TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK_
LINK parameter is specified.

Example

In the following example, source_database_1ink would be replaced with the
name of a valid database link. The example also assumes that a datafile named
tbsé6. f already exists.

Because the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle
recommends that you use a parameter file to avoid having to use escape characters on
the command line. (See Use of Quotation Marks On the Data Pump Command Line on
page 3-7.) For example, assume you have a parameter file, full_check.par, with
the following content:

Data Pump Import 3-39

Parameters Available in Import's Command-Line Mode

DIRECTORY=dpump_dirl

TRANSPORT _TABLESPACES=tbs_6
NETWORK_LINK=source_ database_ link
TRANSPORT_ FULL_CHECK=y
TRANSPORT_DATAFILES='/wkdir/data/tbs6.f"'

You can then issue the following command:

> impdp hr PARFILE=full_check.par

TRANSPORT_TABLESPACES

Default: There is no default

Purpose

Specifies that you want to perform a transportable-tablespace-mode import over a
network link.

Syntax and Description
TRANSPORT TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names
for which object metadata will be imported from the source database into the target
database.

Because this is a transportable-mode import, the tablespaces into which the data is
imported are automatically created by Data Pump.You do not need to pre-create them.
However, the data files should be copied to the target database prior to starting the
import.

Restrictions

= You cannot export transportable tablespaces and then import them into a database
at a lower release level. The target database into which you are importing must be
at the same or higher release level as the source database.

s The TRANSPORT_TABLESPACES parameter is valid only when the NETWORK_
LINK parameter is also specified.

= Transportable mode does not support encrypted columns.

Example

In the following example, the source_database_1ink would be replaced with the
name of a valid database link. The example also assumes that a datafile named

tbsé6 . £ has already been copied from the source database to the local system. Because
the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle
recommends that you use a parameter file to avoid having to use escape characters on
the command line. (See Use of Quotation Marks On the Data Pump Command Line on
page 3-7.) Suppose you have a parameter file, tablespaces.par, with the following
content:

DIRECTORY=dpump_dirl
NETWORK_LINK=source_database_link
TRANSPORT TABLESPACES=tbs_6
TRANSPORT_FULL_CHECK=n
TRANSPORT_DATAFILES='user(0l/data/tbs6.f"

You can then issue the following command:

3-40 Oracle Database Utilities

Parameters Available in Import's Command-Line Mode

> impdp hr PARFILE=tablespaces.par

TRANSPORTABLE

VERSION

Default: NEVER

Purpose

Specifies whether or not the transportable option should be used when a table-mode
import (specified with the TABLES parameter) is performed.

Syntax and Description
TRANSPORTABLE = {ALWAYS | NEVER}

The definitions of the allowed values are as follows:

ALWAYS - Instructs the import job to use the transportable option. If transportable is
not possible, the job will fail.

NEVER - Instructs the import job to use either the direct path or external table method
to load data rather than the transportable option. This is the default.

Restrictions

s The TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter is
also specified.

s The TRANSPORTABLE parameter is only valid in table mode imports (the tables do
not have to be partitioned or subpartitioned).

s The schema performing a transportable import requires the EXP_FULL _
DATABAGSE role on the source database and the IMP_FULL_DATABASE role on
the target database.

= To make full use of the TRANSPORTABLE parameter, the COMPATIBLE
initialization parameter must be set to at least 11.0.0.

Example
The following example shows the use of the TRANSPORTABLE parameter during a
network link import.

> impdp system TABLES=hr.sales TRANSPORTABLE=always
DIRECTORY=dpump_dirl NETWORK_LINK=dbsl PARTITION_OPTIONS=departition
TRANSPORT DATAFILES=datafile_name

Default: COMPATIBLE

Purpose

Specifies the version of database objects to be imported. Note that this does not mean
that Data Pump Import can be used with versions of Oracle Database prior to 10.1.
Data Pump Import only works with Oracle Database 10g release 1 (10.1) or later. The
VERSION parameter simply allows you to identify the version of the objects being
imported.

Syntax and Description
VERSION={COMPATIBLE | LATEST | version_string}

Data Pump Import 3-41

How Data Pump Import Parameters Map to Those of the Original Import Utility

This parameter can be used to load a target system whose Oracle database is at an
earlier compatibility version than that of the source system. Database objects or
attributes on the source system that are incompatible with the specified version will
not be moved to the target. For example, tables containing new datatypes that are not
supported in the specified version will not be imported. Legal values for this
parameter are as follows:

= COMPATIBLE - This is the default value. The version of the metadata corresponds
to the database compatibility level. Database compatibility must be set to 9.2.0 or
higher.

s LATEST - The version of the metadata corresponds to the database version.

s version_ string- A specific database version (for example, 11.1.0). In Oracle
Database 11g, this value must be 9.2.0 or higher.

See Also: Moving Data Between Different Database Versions on
page 1-13

Example

The following is an example of using the VERSION parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter. See FULL on page 2-22.

> impdp hr DIRECTORY=dpump_dirl DUMPFILE=expfull.dmp TABLES=employees
VERSION=LATEST

How Data Pump Import Parameters Map to Those of the Original Import
Utility
Table 3-2 maps, as closely as possible, Data Pump Import parameters to original
Import parameters. In some cases, because of feature redesign, the original Import
parameter is no longer needed so there is no Data Pump command to compare it to.

Also, as shown in the table, some of the parameter names may be the same, but the
functionality is slightly different.

Table 3-2 Original Import Parameters and Their Counterparts in Data Pump Import

Original Import Parameter = Comparable Data Pump Import Parameter

BUFFER A parameter comparable to BUFFER is not needed.
CHARSET A parameter comparable to CHARSET is not needed.
COMMIT A parameter comparable to COMMIT is not supported.
COMPILE A parameter comparable to COMPILE is not supported.
CONSTRAINTS EXCLUDE=CONSTRAINT

DATAFILES TRANSPORT_DATAFILES

DESTROY REUSE_DATAFILES

FEEDBACK STATUS

FILE DUMPFILE

FILESIZE Not necessary. It is included in the dump file set.
FROMUSER SCHEMAS

FULL FULL

3-42 Oracle Database Utilities

How Data Pump Import Parameters Map to Those of the Original Import Utility

Table 3-2 (Cont.) Original Import Parameters and Their Counterparts in Data Pump

Original Import Parameter

Comparable Data Pump Import Parameter

GRANTS

HELP

IGNORE
INDEXES
INDEXFILE
LOG

PARFILE
RECORDLENGTH

RESUMABLE

RESUMABLE_NAME

RESUMABLE_TIMEOUT

ROWS=N

ROWS=Y

SHOW
SKIP_UNUSABLE_INDEXES

STATISTICS

STREAMS_CONFIGURATION

STREAMS_INSTANTIATION

TABLES
TABLESPACES

TOID_NOVALIDATE

TOUSER

TRANSPORT_TABLESPACE

TRANSPORT_TABLESPACE

TTS_OWNERS

EXCLUDE=GRANT

HELP

TABLE_EXISTS_ACTION

EXCLUDE=INDEX

SQLFILE with INCLUDE INDEX

LOGFILE

PARFILE

A parameter comparable to RECORDLENGTH is not needed.

A parameter comparable to RESUMABLE is not needed.
This functionality is automatically provided for users who
have been granted the IMP_FULL_DATABASE role.

A parameter comparable to RESUMABLE_NAME is not
needed. This functionality is automatically provided for
users who have been granted the IMP_FULL_DATABASE
role.

A parameter comparable to RESUMABLE_TIMEOUT is not
needed. This functionality is automatically provided for
users who have been granted the IMP_FULL_DATABASE
role.

CONTENT=METADATA_ONLY
CONTENT=ALL

SQLFILE
SKIP_UNUSABLE_INDEXES

The STATISTICS parameter in Original Import took four
possible values: ALWAYS, SAFE, RECALCULATE, and NONE.

The Data Pump parameter that is equivalent to Original
Import's STATISTICS=NONE is EXCLUDE=STATISTICS.

A Data Pump Import parameter comparable to
STATISTICS=ALWAYS|SAFE|RECALCULATEiSHOt
needed, because if the source table has statistics, they are
imported by default.

STREAMS_CONFIGURATION

A parameter comparable to STREAMS_INSTANTIATION is
not needed.

TABLES
TABLESPACES

A command comparable to TOID_NOVALIDATE is not
needed. OIDs are no longer used for type validation.

REMAP_SCHEMA

A parameter comparable to TRANSPORT_TABLESPACE is
not needed because metadata is stored in the dump file
set.

A parameter comparable to TTS_OWNERS is not needed
because the information is stored in the dump file set.

Data Pump Import

3-43

Commands Available in Import's Interactive-Command Mode

Table 3-2 (Cont.) Original Import Parameters and Their Counterparts in Data Pump

Original Import Parameter = Comparable Data Pump Import Parameter

USERID A parameter comparable to USERID is not needed. This
information is supplied as the username and password
when you invoke Import.

VOLSIZE A parameter comparable to VOLSIZE is not needed
because tapes are not supported.

Commands Available in Import's Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the
terminal is suspended and the Import prompt (Import>) is displayed.

Note: Data Pump Import interactive-command mode is different
from the interactive mode for original Import, in which Import
prompted you for input. See Interactive Mode on page 20-6 for
information about interactive mode in original Import.

To start interactive-command mode, do one of the following:
s From an attached client, press Ctrl+C.

s From a terminal other than the one on which the job is running, use the ATTACH
parameter to attach to the job. This is a useful feature in situations in which you
start a job at one location and need to check on it at a later time from a different
location.

Table 3-3 lists the activities you can perform for the current job from the Data Pump
Import prompt in interactive-command mode.

Table 3-3 Supported Activities in Data Pump Import's Interactive-Command Mode

Activity Command Used

Exit interactive-command mode CONTINUE_CLIENT on
page 3-45

Stop the import client session, but leave the current job EXIT_CLIENT on page 3-45

running

Display a summary of available commands HELP on page 3-45

Detach all currently attached client sessions and kill the KILL_JOB on page 3-46

current job

Increase or decrease the number of active worker processes PARALLEL on page 3-46
for the current job. This command is valid only in the
Enterprise Edition.

Restart a stopped job to which you are attached START_JOB on page 3-46
Display detailed status for the current job STATUS on page 3-47
Stop the current job STOP_JOB on page 3-47

The following are descriptions of the commands available in the interactive-command
mode of Data Pump Import.

3-44 Oracle Database Utilities

Commands Available in Import's Interactive-Command Mode

CONTINUE_CLIENT

EXIT_CLIENT

HELP

Purpose
Changes the mode from interactive-command mode to logging mode.

Syntax and Description
CONTINUE_CLIENT

In logging mode, the job status is continually output to the terminal. If the job is
currently stopped, then CONTINUE_CLIENT will also cause the client to attempt to
start the job.

Example
Import> CONTINUE_CLIENT

Purpose

Stops the import client session, exits Import, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description
EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time
if it is still executing or in a stopped state. To see the status of the job, you can monitor
the log file for the job or you can query the USER_DATAPUMP_JOBS view or the
VS$SESSION_LONGOPS view.

Example
Import> EXIT_ CLIENT

Purpose

Provides information about Data Pump Import commands available in
interactive-command mode.

Syntax and Description
HELP

Displays information about the commands available in interactive-command mode.

Example
Import> HELP

Data Pump Import 3-45

Commands Available in Import's Interactive-Command Mode

KILL_JOB

PARALLEL

START_JOB

Purpose

Detaches all currently attached client sessions and then kills the current job. It exits
Import and returns to the terminal prompt.

Syntax and Description
KILL_JOB

Ajob that is killed using KILL_JOB cannot be restarted. All attached clients, including
the one issuing the KILL_JOB command, receive a warning that the job is being killed
by the current user and are then detached. After all clients are detached, the job's
process structure is immediately run down and the master table and dump files are
deleted. Log files are not deleted.

Example
Import> KILL_JOB

Purpose

Enables you to increase or decrease the number of active worker processes and/or PQ
slaves for the current job.

Syntax and Description
PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode
parameter. You set it to the desired number of parallel processes. An increase takes
effect immediately if there are enough resources and if there is a sufficient amount of
work requiring parallelization. A decrease does not take effect until an existing
process finishes its current task. If the integer value is decreased, workers are idled but
not deleted until the job exits.

See Also: PARALLEL on page 3-22 for more information about
parallelism

Restrictions
= PARALLEL is available only in Enterprise Edition.

Example
Import> PARALLEL=10

Purpose
Starts the current job to which you are attached.

Syntax and Description
START JOB[=skip_current=y]

3-46 Oracle Database Utilities

Commands Available in Import's Interactive-Command Mode

STATUS

STOP_JOB

The START_JOB command restarts the job to which you are currently attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issue a STOP_JOB command, provided the
dump file set and master table remain undisturbed.

The SKIP_CURRENT option allows you to restart a job that previously failed to restart
because execution of some DDL statement failed. The failing statement is skipped and
the job is restarted from the next work item.

Neither SQLFILE jobs nor transportable-tablespace-mode imports are restartable.

Example
Import> START_JOB

Purpose

Displays the cumulative status of the job, along with a description of the current
operation. A completion percentage for the job is also returned.

Syntax and Description
STATUS [=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log
file (even if one is in effect).

Example
The following example will display the current job status and change the logging
mode display interval to two minutes (120 seconds).

Import> STATUS=120

Purpose

Stops the current job either immediately or after an orderly shutdown, and exits
Import.

Syntax and Description
STOP_JOB [=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, the job can be attached to and restarted at a later time with the
START JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job
after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning
requiring confirmation will be issued. All attached clients, including the one issuing

Data Pump Import 3-47

Examples of Using Data Pump Import

the STOP_JOB command, receive a warning that the job is being stopped by the
current user and they will be detached. After all clients are detached, the process
structure of the job is immediately run down. That is, the master process will not wait
for the worker processes to finish their current tasks. There is no risk of corruption or
data loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were
incomplete at the time of shutdown may have to be redone at restart time.

Example
Import> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Import

This section provides examples of the following ways in which you might use Data
Pump Import:

»s Performing a Data-Only Table-Mode Import
= Performing a Schema-Mode Import
= Performing a Network-Mode Import

For information that will help you to successfully use these examples, see Using the
Import Parameter Examples on page 3-6.

Performing a Data-Only Table-Mode Import

Example 3-1 shows how to perform a data-only table-mode import of the table named
employees. It uses the dump file created in Example 2-1.

Example 3-1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA_ONLY DUMPFILE=dpump_dirl:table.dmp
NOLOGFILE=y

The CONTENT=DATA_ONLY parameter filters out any database object definitions
(metadata). Only table row data is loaded.

Performing a Schema-Mode Import

Example 3-2 shows a schema-mode import of the dump file set created in
Example 24.

Example 3-2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dirl DUMPFILE=expschema.dmp
EXCLUDE=CONSTRAINT, REF_CONSTRAINT, INDEX TABLE_EXISTS_ACTION=REPLACE

The EXCLUDE parameter filters the metadata that is imported. For the given mode of
import, all the objects contained within the source, and all their dependent objects, are
included except those specified in an EXCLUDE statement. If an object is excluded, all
of its dependent objects are also excluded.

The TABLE_EXISTS_ACTION=REPLACE parameter tells Import to drop the table if it
already exists and to then re-create and load it using the dump file contents.

3-48 Oracle Database Utilities

Syntax Diagrams for Data Pump Import

Performing a Network-Mode Import

Example 3-3 performs a network-mode import where the source is the database
specified by the NETWORK_LINK parameter.

Example 3-3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP_SCHEMA=hr:scott DIRECTORY=dpump_dirl
NETWORK_LINK=dblink

This example imports the employees table from the hr schema into the scott
schema. The dblink references a source database that is different than the target
database.

To remap the schema, user hr must have the IMP_FULL_DATABASE role on the local
database and the EXP_FULL_DATABASE role on the source database.

REMAP_ SCHEMA loads all the objects from the source schema into the target schema.

See Also: NETWORK_LINK on page 3-20 for more information
about database links

Syntax Diagrams for Data Pump Import

This section provides syntax diagrams for Data Pump Import. These diagrams use
standard SQL syntax notation. For more information about SQL syntax notation, see
Oracle Database SQL Language Reference.

Implnit

®
username)»@{password) ImpStart

ImpStart

ImpModes)s(ImpOpts)—(ImpFiIeOpts)

G O
ﬁ® (job_name)~ f—)| ENCRYPTION_PASSWORD [5(=)

ATTACH

Data Pump Import 3-49

Syntax Diagrams for Data Pump Import

ImpModes

schema_name

CIITDYe

(M
N\

O - |

[/ \
(table_name)

TABLESPACES

tablespace_name

3-50 Oracle Database Utilities

Syntax Diagrams for Data Pump Import

ImpOpts

,| CONTENT a

DATA_ONLY }

METADATA_ONLY

|

-| DATA_OPTIONS |e®—>| SKIP_CONSTRAINT_ERRORS |
N

- ENCRYPTION_PASSWORD P@»{password)
—(impfilter)
—| JOB_NAME F@s@obname_s’(ring}
- PARALLEL |—>®—>Gnteger)
—(impremap)

—| REUSE_DATAFILES 9

]

o R

—| PARTITION_OPTIONS Q

>+ SKIP_UNUSABLE_INDEXES |x(=)

—| STATUS F@-{integer}

—| STREAMS_CONFIGURATION

|

version_string

Data Pump Import 3-51

Syntax Diagrams for Data Pump Import

ImpkFilter

-name_clause ’

—J ExcLUDE @{object_type)
-name_clause ’

—[INCLUDE @{object_type)

QUERY = query_clause

ImpRemap

| . = |

i| REMAP_DATAFILE @{source_datafi|e)@->(target_dataﬁ|e\)
REMAP ' SCHEMA P@-(source schema)»@{target schema\)

schema name .
REMAP _TABLE (‘old_table_name } :

\il REMAP_TABLESPACE F@{source_tablespace)@{target_tablespace))

ImpFileOpts

DIRECTORY e directory_obiject
NETWORK_LINK a databaseflink)—(lmpNetworkOpts

(M)
‘ N

directory_object ‘

file_name

(o] —

NOLOGFILE
directory_path
PARFILE (= @—

directory_object ‘
SQLFILE (= @—

3-52 Oracle Database Utilities

Syntax Diagrams for Data Pump Import

ImpNetworkOpts

BLOCKS
E=a

FLASHBACK_SCN F@{somnumbe%
FLASHBACK_TIME |—>@a<timestamp>—)

=
’
D)

TRANSPORTABLE

/al TRANSPORT_DATAFILES datafile_name

TRANSPORT_TABLESPACES Q

¥|TRANSPORT7FULL7CHECK e

ImpDynOpts

(=)(integer

SKIP_CURRENT

—| START_JOB
—| STATUS

e O
g, LIMEDTE

Data Pump Import 3-53

Syntax Diagrams for Data Pump Import

3-54 Oracle Database Utilities

4

Data Pump Performance

The Data Pump utilities are designed especially for very large databases. If your site
has very large quantities of data versus metadata, you should experience a dramatic
increase in performance compared to the original Export and Import utilities. This
chapter briefly discusses why the performance is better and also suggests specific
steps you can take to enhance performance of export and import operations.

This chapter contains the following sections:

= Data Performance Improvements for Data Pump Export and Import
» Tuning Performance

» Initialization Parameters That Affect Data Pump Performance

Performance of metadata extraction and database object creation in Data Pump Export
and Import remains essentially equivalent to that of the original Export and Import
utilities.

Data Performance Improvements for Data Pump Export and Import

The improved performance of the Data Pump Export and Import utilities is
attributable to several factors, including the following:

= Multiple worker processes can perform intertable and interpartition parallelism to
load and unload tables in multiple, parallel, direct-path streams.

= For very large tables and partitions, single worker processes can choose
intrapartition parallelism through multiple parallel queries and parallel DML I/O
server processes when the external tables method is used to access data.

s Data Pump uses parallelism to build indexes and load package bodies.

s Dump files are read and written directly by the server and, therefore, do not
require any data movement to the client.

s The dump file storage format is the internal stream format of the direct path APL
This format is very similar to the format stored in Oracle database datafiles inside
of tablespaces. Therefore, no client-side conversion to INSERT statement bind
variables is performed.

s The supported data access methods, direct path and external tables, are faster than
conventional SQL. The direct path API provides the fastest single-stream
performance. The external tables feature makes efficient use of the parallel queries
and parallel DML capabilities of the Oracle database.

s Metadata and data extraction can be overlapped during export.

Data Pump Performance 4-1

Tuning Performance

Tuning Performance

Data Pump technology fully uses all available resources to maximize throughput and
minimize elapsed job time. For this to happen, a system must be well-balanced across
CPU, memory, and I/O. In addition, standard performance tuning principles apply.
For example, for maximum performance you should ensure that the files that are
members of a dump file set reside on separate disks, because the dump files will be
written and read in parallel. Also, the disks should not be the same ones on which the
source or target tablespaces reside.

Any performance tuning activity involves making trade-offs between performance
and resource consumption.

Controlling Resource Consumption

The Data Pump Export and Import utilities enable you to dynamically increase and
decrease resource consumption for each job. This is done using the PARALLEL
parameter to specify a degree of parallelism for the job. (The PARALLEL parameter is
the only tuning parameter that is specific to Data Pump.) For maximum throughput,
do not set PARALLEL to much more than twice the number of CPUs (two workers for
each CPU).

See Also:

= PARALLEL on page 2-27 for more information about the
Export PARALLEL parameter

= PARALLEL on page 3-22 for more information about the
Import PARALLEL parameter

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O
bandwidth usage also increase. You must ensure that adequate amounts of these
resources are available. If necessary, you can distribute files across different disk
devices or channels to get the needed 1/O bandwidth.

To maximize parallelism, you must supply at least one file for each degree of
parallelism. The simplest way of doing this is to use substitution variables in your file
names (for example, file%u.dmp). However, depending upon your disk set up (for
example, simple, non-striped disks), you might not want to put all dump files on one
device. In this case, it is best to specify multiple file names using substitution variables,
with each in a separate directory resolving to a separate disk. Even with fast CPUs and
fast disks, the path between the CPU and the disk may be the constraining factor in the
amount of parallelism that can be sustained.

The PARALLEL parameter is valid only in the Enterprise Edition of Oracle Database
11g.

Effects of Compression and Encryption on Performance

The use of Data Pump parameters related to compression and encryption can possibly
have a negative impact upon performance of export and import operations. This is
because additional CPU resources are required to perform transformations on the raw
data.

4-2 Oracle Database Utilities

Initialization Parameters That Affect Data Pump Performance

Initialization Parameters That Affect Data Pump Performance

The settings for certain initialization parameters can affect the performance of Data
Pump Export and Import. In particular, you can try using the following settings to
improve performance, although the effect may not be the same on all platforms.

m DISK_ASYNCH_TO=TRUE
s DB_BLOCK_CHECKING=FALSE
s DB_BLOCK_CHECKSUM=FALSE

The following initialization parameters must have values set high enough to allow for
maximum parallelism:

s PROCESSES
m SESSIONS
s PARALLEL_MAX SERVERS

Additionally, the SHARED_POOL_SIZE and UNDO_TABLESPACE initialization
parameters should be generously sized. The exact values will depend upon the size of
your database.

Setting the Size Of the Buffer Cache In a Streams Environment

Oracle Data Pump uses Streams functionality to communicate between processes. If
the SGA_TARGET initialization parameter is set, then the STREAMS_POOL_SIZE
initialization parameter is automatically set to a reasonable value.

If the SGA_TARGET initialization parameter is not set and the STREAMS_POOL_SIZE
initialization parameter is not defined, then the size of the streams pool automatically
defaults to 10% of the size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory
allocated to the buffer cache, reducing the size of the cache to less than what was
specified by the DB_CACHE_SIZE initialization parameter. This means that if the
buffer cache was configured with only the minimal required SGA, then Data Pump
operations may not work properly. A minimum size of 10M is recommended for
STREAMS_POOL_SIZE in order to ensure successful Data Pump operations.

See Also: Oracle Streams Concepts and Administration

Data Pump Performance 4-3

Initialization Parameters That Affect Data Pump Performance

4-4 Oracle Database Utilities

O

The Data Pump API

The Data Pump API, DBMS_DATAPUMP, provides a high-speed mechanism to move all
or part of the data and metadata for a site from one database to another. The Data
Pump Export and Data Pump Import utilities are based on the Data Pump APL

You should read this chapter if you want more details about how the Data Pump API
works. The following topics are covered:

s How Does the Client Interface to the Data Pump API Work?
= What Are the Basic Steps in Using the Data Pump API?
» Examples of Using the Data Pump API

See Also:

» Oracle Database PL/SQL Packages and Types Reference for a
detailed description of the procedures available in the DBMS_
DATAPUMP package

» Chapter 1, "Overview of Oracle Data Pump" for additional
explanation of Data Pump concepts

How Does the Client Interface to the Data Pump API Work?

Job States

The main structure used in the client interface is a job handle, which appears to the
caller as an integer. Handles are created using the DBMS_DATAPUMP.OPEN or DBMS_
DATAPUMP.ATTACH function. Other sessions can attach to a job to monitor and control
its progress. This allows a DBA to start up a job before departing from work and then
watch the progress of the job from home. Handles are session specific. The same job
can create different handles in different sessions.

There is a state associated with each phase of a job, as follows:

= Undefined - before a handle is created

= Defining - when the handle is first created

= Executing - when the DBMS_DATAPUMP.START_JOB procedure is executed

s Completing - when the job has finished its work and the Data Pump processes are
ending

» Completed - when the job is completed

= Stop Pending - when an orderly job shutdown has been requested

The Data Pump APl 5-1

How Does the Client Interface to the Data Pump API Work?

= Stopping - when the job is stopping

s Idling - the period between the time that a DBMS_DATAPUMP . ATTACH is executed
to attach to a stopped job and the time that a DBMS_DATAPUMP . START_JOB is
executed to restart that job

= Not Running - when a master table exists for a job that is not running (has no Data
Pump processes associated with it)

Performing DBMS_DATAPUMP.START_JOB on a job in an Idling state will return it to
an Executing state.

If all users execute DBMS_DATAPUMP.DETACH to detach from a job in the Defining
state, the job will be totally removed from the database.

When a job abnormally terminates or when an instance running the job is shut down,
the job is placed in the Not Running state if it was previously executing or idling. It
can then be restarted by the user.

The master control process is active in the Defining, Idling, Executing, Stopping, Stop
Pending, and Completing states. It is also active briefly in the Stopped and Completed
states. The master table for the job exists in all states except the Undefined state.
Worker processes are only active in the Executing and Stop Pending states, and briefly
in the Defining state for import jobs.

Detaching while a job is in the Executing state will not halt the job, and you can
re-attach to an executing job at any time to resume obtaining status information about
the job.

A Detach can occur explicitly, when the DBMS_DATAPUMP . DETACH procedure is
executed, or it can occur implicitly when a Data Pump API session is run down, when
the Data Pump APl is unable to communicate with a Data Pump job, or when the
DBMS_DATAPUMP . STOP_JOB procedure is executed.

The Not Running state indicates that a master table exists outside the context of an
executing job. This will occur if a job has been stopped (probably to be restarted later)
or if a job has abnormally terminated. This state can also be seen momentarily during
job state transitions at the beginning of a job, and at the end of a job before the master
table is dropped. Note that the Not Running state is shown only in the DBA_
DATAPUMP_JOBS view and the USER_DATAPUMP_JOBS view. It is never returned by
the GET_STATUS procedure.

Table 5-1 shows the valid job states in which DBMS_DATAPUMP procedures can be
executed. The states listed are valid for both export and import jobs, unless otherwise
noted.

Table 5-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

Procedure Name Valid States Description

ADD_FILE Defining (valid for both Specifies a file for the dump file set, the
export and import jobs) log file, or the SQL_FILE output.
Executing and Idling (valid
only for specifying dump
files for export jobs)

ATTACH Defining, Executing, Idling, Allows a user session to monitor a job or

DATA_FILTER

Stopped, Completed, to restart a stopped job. The attach will

Completing, Not Running fail if the dump file set or master table
for the job have been deleted or altered
in any way.

Defining Restricts data processed by a job.

5-2 Oracle Database Utilities

What Are the Basic Steps in Using the Data Pump API?

Table 5-1 (Cont.) Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

Procedure Name Valid States Description
DETACH All Disconnects a user session from a job.
GET_DUMPFILE_INFO All Retrieves dump file header information
GET_STATUS All, except Completed, Not ~ Obtains the status of a job.

Running, Stopped, and

Undefined
LOG_ENTRY Defining, Executing, Idling, Adds an entry to the log file.

METADATA_FILTER
METADATA_REMAP
METADATA_TRANSFORM
OPEN

SET_PARALLEL
SET_PARAMETER
START_JOB

STOP_JOB

WAIT_FOR_JOB

Stop Pending, Completing
Defining

Defining

Defining

Undefined

Defining, Executing, Idling
Defining'

Defining, Idling

Defining, Executing, Idling,
Stop Pending

All, except Completed, Not
Running, Stopped, and
Undefined

Restricts metadata processed by a job.
Remaps metadata processed by a job.
Alters metadata processed by a job.
Creates a new job.

Specifies parallelism for a job.

Alters default processing by a job.
Begins or resumes execution of a job.

Initiates shutdown of a job.

Waits for a job to end.

! The ENCRYPTION_PASSWORD parameter can be entered during the Idling state, as well as during the Defining

state.

What Are the Basic Steps in Using the Data Pump API?

To use the Data Pump API, you use the procedures provided in the DBMS_DATAPUMP
package. The following steps list the basic activities involved in using the Data Pump
APL. The steps are presented in the order in which the activities would generally be

performed:

1.

2
3
4
5.
6
7

Start the job.

Optionally, stop the job.

Execute the DBMS_DATAPUMP.OPEN procedure to create a Data Pump job and its
infrastructure.

Define any parameters for the job.

Optionally, monitor the job until it completes.

Optionally, detach from the job and reattach at a later time.

Optionally, restart the job, if desired.

These concepts are illustrated in the examples provided in the next section.

See Also:

Oracle Database PL/SQL Packages and Types Reference for

a complete description of the DBMS_DATAPUMP package

The Data Pump APl 5-3

Examples of Using the Data Pump API

Examples of Using the Data Pump API

This section provides the following examples to help you get started using the Data
Pump API:

= Example 5-1, "Performing a Simple Schema Export"
= Example 5-2, "Importing a Dump File and Remapping All Schema Objects"
» Example 5-3, "Using Exception Handling During a Simple Schema Export"

The examples are in the form of PL/SQL scripts. If you choose to copy these scripts
and run them, you must first do the following, using SQL*Plus:

= Create a directory object and grant READ and WRITE access to it. For example, to
create a directory object named dmpdir to which you have access, do the
following. Replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user

= Ensure that you have the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles.
To see a list of all roles assigned to you within your security domain, do the
following:

SQL> SELECT * FROM SESSION_ROLES;

If you do not have the necessary roles assigned to you, contact your system
administrator for help.

= Turn on server output if it is not already on. This is done as follows:

SQL> SET SERVEROUTPUT ON

If you do not do this, you will not see any output to your screen. You must do this
in the same session in which you invoke the example. If you exit SQL*Plus, this
setting is lost and must be reset when you begin a new session. (It must also be
reset if you connect to a different user name.)

Example 5-1 Performing a Simple Schema Export

The PL/SQL script in this example shows how to use the Data Pump API to perform a
simple schema export of the HR schema. It shows how to create a job, start it, and
monitor it. Additional information about the example is contained in the comments
within the script. To keep the example simple, exceptions from any of the API calls
will not be trapped. However, in a production environment, Oracle recommends that
you define exception handlers and call GET_STATUS to retrieve more detailed error
information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE

ind NUMBER; -- Loop index

hl NUMBER; -- Data Pump job handle

percent_done NUMBER; -- Percentage of job complete

job_state VARCHAR2(30); -- To keep track of job state

le kuS$S_LogEntry; -- For WIP and error messages

js ku$_JobStatus; -- The job status from get_status

jd ku$_JobDesc; -- The job description from get_status

sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

5-4 Oracle Database Utilities

Examples of Using the Data Pump API

hl := DBMS_DATAPUMP.OPEN ('EXPORT', 'SCHEMA',K NULL, 'EXAMPLEl"', 'LATEST');
-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.
DBMS_DATAPUMP.ADD_FILE (hl, 'examplel.dmp', 'DMPDIR') ;
-- A metadata filter is used to specify the schema that will be exported.

DBMS_DATAPUMP .METADATA_FILTER(hl, 'SCHEMA_EXPR', 'IN (''HR'')');

-- Start the job. An exception will be generated if something is not set up
-- properly.

DBMS_DATAPUMP.START JOB (hl) ;
-- The export job should now be running. In the following loop, the job

-- is monitored until it completes. In the meantime, progress information is
-- displayed.

percent_done := 0;
job_state := 'UNDEFINED';
while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop

dbms_datapump.get_status (hl,
dbms_datapump.ku$_status_job_error +
dbms_datapump.ku$_status_job_status +
dbms_datapump.ku$_status_wip, -1, job_state, sts);
js := sts.job_status;

-- If the percentage done changed, display the new value.

if js.percent_done != percent_done
then
dbms_output.put_line('*** Job percent done = ' ||
to_char (js.percent_done)) ;
percent_done := js.percent_done;
end 1if;

-- If any work-in-progress (WIP) or error messages were received for the job,
-- display them.

if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;

while ind is not null loop
dbms_output.put_line(le(ind) .LogText) ;
ind := le.NEXT(ind);

The Data Pump API 5-5

Examples of Using the Data Pump API

end loop;
end 1if;
end loop;

-- Indicate that the job finished and detach from it.

dbms_output.put_line('Job has completed');
dbms_output.put_line('Final job state = ' || job_state);
dbms_datapump.detach(hl) ;

END;

/

Example 5-2 Importing a Dump File and Remapping All Schema Objects

The script in this example imports the dump file created in Example 5-1 (an export of
the hr schema). All schema objects are remapped from the hr schema to the blake
schema. To keep the example simple, exceptions from any of the API calls will not be
trapped. However, in a production environment, Oracle recommends that you define
exception handlers and call GET_STATUS to retrieve more detailed error information
when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE

ind NUMBER; -- Loop index

hl NUMBER; -- Data Pump job handle

percent_done NUMBER; -- Percentage of job complete

job_state VARCHAR2(30); -- To keep track of job state

le kuS_LogEntry; -- For WIP and error messages

js ku$_JobStatus; -- The job status from get_status

jd ku$_JobDesc; -- The job description from get_status

sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import (everything
-- in the dump file without filtering).

hl := DBMS_DATAPUMP.OPEN('IMPORT', 'FULL',NULL, 'EXAMPLE2');
-- Specify the single dump file for the job (using the handle just returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.
DBMS_DATAPUMP.ADD_FILE (hl, 'examplel.dmp', 'DMPDIR') ;
-- A metadata remap will map all schema objects from HR to BLAKE.
DBMS_DATAPUMP .METADATA_REMAP (hl, 'REMAP_SCHEMA', 'HR', 'BLAKE');
-- If a table already exists in the destination schema, skip it (leave
-- the preexisting table alone). This is the default, but it does not hurt
-- to specify it explicitly.
DBMS_DATAPUMP.SET PARAMETER (hl, 'TABLE_EXISTS_ACTION', 'SKIP');
-- Start the job. An exception is returned if something is not set up properly.

DBMS_DATAPUMP.START_JOB (hl) ;

-- The import job should now be running. In the following loop, the job is

5-6 Oracle Database Utilities

Examples of Using the Data Pump API

-- monitored until it completes. In the meantime, progress information is
-- displayed. Note: this is identical to the export example.

percent_done := 0;
job_state := 'UNDEFINED';
while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop

dbms_datapump.get_status (hl,
dbms_datapump.ku$_status_job_error +
dbms_datapump.ku$_status_job_status +
dbms_datapump.ku$_status_wip,-1,job_state,sts);
js := sts.job_status;

-- If the percentage done changed, display the new value.

if js.percent_done != percent_done
then
dbms_output.put_line('*** Job percent done = ' ||
to_char(js.percent_done)) ;
percent_done := js.percent_done;
end 1if;

-- If any work-in-progress (WIP) or Error messages were received for the job,
-- display them.

if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;
while ind is not null loop
dbms_output.put_line(le(ind) .LogText) ;
ind := le.NEXT(ind);
end loop;
end if;
end loop;

-- Indicate that the job finished and gracefully detach from it.

dbms_output.put_line('Job has completed');

dbms_output.put_line('Final job state = ' || job_state);
dbms_datapump.detach(hl) ;
END;

/

Example 5-3 Using Exception Handling During a Simple Schema Export

The script in this example shows a simple schema export using the Data Pump API. It
extends Example 5-1 to show how to use exception handling to catch the SUCCESS_
WITH_INFO case, and how to use the GET_STATUS procedure to retrieve additional
information about errors. If you want to get exception information about a DBMS_
DATAPUMP . OPEN or DBMS_DATAPUMP . ATTACH failure, you can call DBMS_

The Data Pump APl 5-7

Examples of Using the Data Pump API

DATAPUMP .GET_STATUS with a DBMS_DATAPUMP . KUS$_STATUS_JOB_ERROR
information mask and a NULL job handle to retrieve the error details.

Connect as user SYSTEM to use this example.

DECLARE
ind NUMBER; -- Loop index
spos NUMBER; -- String starting position
slen NUMBER; -- String length for output
hl NUMBER; -- Data Pump job handle
percent_done NUMBER; -- Percentage of job complete
job_state VARCHAR2(30); -- To keep track of job state
le kuS$S_LogEntry; -- For WIP and error messages
js ku$_JobStatus; -- The job status from get_status
jd ku$_JobDesc; -- The job description from get_status
sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.
hl := dbms_datapump.open ('EXPORT', 'SCHEMA', NULL, 'EXAMPLE3 "', 'LATEST') ;

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

dbms_datapump.add_file(hl, 'example3.dmp', 'DMPDIR') ;
-- A metadata filter is used to specify the schema that will be exported.
dbms_datapump.metadata_filter (hl, 'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up
-- properly.One possible exception that will be handled differently is the
-- success_with_info exception. success_with_info means the job started

-- successfully, but more information is available through get_status about
-- conditions around the start_job that the user might want to be aware of.

begin
dbms_datapump.start_job(hl);
dbms_output.put_line('Data Pump job started successfully');
exception
when others then
if sglcode = dbms_datapump.success_with_info_num
then
dbms_output.put_line('Data Pump job started with info available:');
dbms_datapump.get_status (hl,
dbms_datapump.ku$_status_job_error, 0,
job_state, sts);
if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
then
le := sts.error;
if le is not null
then
ind := le.FIRST;
while ind is not null loop
dbms_output.put_line(le(ind) .LogText) ;
ind := le.NEXT(ind);
end loop;
end if;
end if;

5-8 Oracle Database Utilities

Examples of Using the Data Pump API

else
raise;
end if;
end;

-- The export job should now be running. In the following loop, we will monitor
-- the job until it completes. In the meantime, progress information is
-- displayed.

percent_done := 0;
job_state := 'UNDEFINED';
while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop

dbms_datapump.get_status (hl,
dbms_datapump.ku$_status_job_error +
dbms_datapump.ku$_status_job_status +
dbms_datapump.ku$_status_wip,-1,job_state,sts);
js := sts.job_status;

-- If the percentage done changed, display the new value.

if js.percent_done != percent_done
then
dbms_output.put_line('*** Job percent done = ' ||
to_char(js.percent_done)) ;
percent_done := js.percent_done;
end 1if;

-- Display any work-in-progress (WIP) or error messages that were received for
-- the job.

if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
then
le := sts.wip;
else
if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
then
le := sts.error;
else
le := null;
end if;
end if;
if le is not null
then

ind := le.FIRST;
while ind is not null loop
dbms_output.put_line(le(ind) .LogText) ;
ind := le.NEXT(ind);
end loop;
end if;
end loop;

-- Indicate that the job finished and detach from it.
dbms_output.put_line('Job has completed');
dbms_output.put_line('Final job state = ' || job_state);

dbms_datapump.detach (hl) ;

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get_status and displayed.

The Data Pump API 5-9

Examples of Using the Data Pump API

exception
when others then
dbms_output.put_line('Exception in Data Pump job');
dbms_datapump.get_status (hl,dbms_datapump.ku$_status_job_error, 0,
job_state, sts);
if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
then
le := sts.error;
if le is not null
then
ind := le.FIRST;
while ind is not null loop
spos := 1;
slen := length(le(ind) .LogText) ;
if slen > 255
then
slen := 255;
end if;
while slen > 0 loop
dbms_output.put_line(substr(le(ind).LogText, spos,slen));
spos := spos + 255;
slen := length(le(ind).LogText) + 1 - spos;

end loop;
ind := le.NEXT(ind);
end loop;
end if;
end if;
END;
/

5-10 Oracle Database Utilities

Part li

SQL*Loader

The chapters in this part describe the SQL*Loader utility:
Chapter 6, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces data
loading concepts (including object support). It discusses input to SQL*Loader,
database preparation, and output from SQL*Loader.

Chapter 7, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses
command-line arguments, suppressing SQL*Loader messages, sizing the bind array,
and more.

Chapter 8, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and to
describe to SQL*Loader how to map your data to Oracle format. It provides detailed
syntax diagrams and information about specifying datafiles, tables and columns, the
location of data, the type and format of data to be loaded, and more.

Chapter 9, "SQL*Loader Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list
provides information about fields being loaded, such as position, datatype, conditions,
and delimiters.

Chapter 10, "Loading Objects, LOBs, and Collections"

This chapter describes how to load column objects in various formats. It also discusses
how to load object tables, REF columns, LOBs, and collections.

Chapter 11, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct
path load. A direct path load is a high-performance option that significantly reduces
the time required to load large quantities of data.

6

SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database with
SQL*Loader. This chapter covers the following topics:

SQL*Loader Features

SQL*Loader Parameters

SQL*Loader Control File

Input Data and Datafiles

LOBFILEs and Secondary Datafiles (SDFs)

Data Conversion and Datatype Specification
Discarded and Rejected Records

Log File and Logging Information

Conventional Path Loads, Direct Path Loads, and External Table Loads
Loading Objects, Collections, and LOBs
Partitioned Object Support

Application Development: Direct Path Load API
SQL*Loader Case Studies

SQL*Loader Features

SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in the
datafile. You can use SQL*Loader to do the following:

Load data across a network if your data files are on a different system than the
database.

Load data from multiple datafiles during the same load session.

Load data into multiple tables during the same load session.

Specify the character set of the data.

Selectively load data (you can load records based on the records' values).
Manipulate the data before loading it, using SQL functions.

Generate unique sequential key values in specified columns.

Use the operating system's file system to access the datafiles.

SQL*Loader Concepts 6-1

SQL*Loader Parameters

Load data from disk, tape, or named pipe.

Generate sophisticated error reports, which greatly aid troubleshooting.
Load arbitrarily complex object-relational data.

Use secondary datafiles for loading LOBs and collections.

Use either conventional or direct path loading. While conventional path loading is
very flexible, direct path loading provides superior loading performance. See
Chapter 11.

A typical SQL*Loader session takes as input a control file, which controls the behavior
of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an Oracle
database (where the data is loaded), a log file, a bad file, and potentially, a discard file.
An example of the flow of a SQL*Loader session is shown in Figure 6-1.

Figure 6—-1 SQL*Loader Overview

—
Loader
Input
Datafiles || C?:?Iterol
v
—
Log * Bad
File SQL*Loader =
—
Discard
Database > Files
Tables

SQL*Loader Parameters

SQL*Loader is invoked when you specify the sgl1dr command and, optionally,
parameters that establish session characteristics.

In situations where you always use the same parameters for which the values seldom
change, it can be more efficient to specify parameters using the following methods,
rather than on the command line:

Parameters can be grouped together in a parameter file. You could then specify
the name of the parameter file on the command line using the PARFILE
parameter.

Certain parameters can also be specified within the SQL*Loader control file by
using the OPTIONS clause.

Parameters specified on the command line override any parameter values specified in
a parameter file or OPTIONS clause.

6-2 Oracle Database Utilities

Input Data and Datafiles

See Also:

s Chapter 7 for descriptions of the SQL*Loader parameters
s PARFILE (parameter file) on page 7-7

= OPTIONS Clause on page 8-3

SQL*Loader Control File

The control file is a text file written in a language that SQL*Loader understands. The
control file tells SQL*Loader where to find the data, how to parse and interpret the
data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.
The first section contains session-wide information, for example:

= Global options such as bindsize, rows, records to skip, and so on

= INFILE clauses to specify where the input data is located

= Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these blocks
contains information about the table into which the data is to be loaded, such as the
table name and the columns of the table.

The third section is optional and, if present, contains input data.
Some control file syntax considerations to keep in mind are:
s The syntax is free-format (statements can extend over multiple lines).

» It is case insensitive; however, strings enclosed in single or double quotation
marks are taken literally, including case.

= In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of the
control file is interpreted as data rather than as control file syntax; consequently,
comments in this section are not supported.

s The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are
therefore reserved. To avoid potential conflicts, Oracle recommends that you do
not use either CONSTANT or ZONE as a name for any tables or columns.

See Also: Chapter 8 for details about control file syntax and
semantics

Input Data and Datafiles

SQL*Loader reads data from one or more files (or operating system equivalents of
files) specified in the control file. From SQL*Loader's perspective, the data in the
datafile is organized as records. A particular datafile can be in fixed record format,
variable record format, or stream record format. The record format can be specified in
the control file with the INFILE parameter. If no record format is specified, the default
is stream record format.

Note: If data is specified inside the control file (that is, INFILE *
was specified in the control file), then the data is interpreted in the
stream record format with the default record terminator.

SQL*Loader Concepts 6-3

Input Data and Datafiles

Fixed Record Format

A file is in fixed record format when all records in a datafile are the same byte length.
Although this format is the least flexible, it results in better performance than variable
or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular datafile as
being in fixed record format where every record is n bytes long.

Example 6-1 shows a control file that specifies a datafile that should be interpreted in
the fixed record format. The datafile in the example contains five physical records.
Assuming that a period (.) indicates a space, the first physical record is [001,...cd,.]
which is exactly eleven bytes (assuming a single-byte character set). The second record
is [0002,fghi,\n] followed by the newline character (which is the eleventh byte), and so
on. Note that newline characters are not required with the fixed record format.

Note that the length is always interpreted in bytes, even if character-length semantics
are in effect for the file. This is necessary because the file could contain a mix of fields,
some of which are processed with character-length semantics and others which are
processed with byte-length semantics. See Character-Length Semantics on page 8-17.

Example 6—1 Loading Data in Fixed Record Format

load data

infile 'example.dat' "fix 11"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll, col2)

example.dat:

001, cd, 0002, fghi,
00003, 1mn,

1, "pgrs",

0005, uvwx,

Variable Record Format

A file is in variable record format when the length of each record in a character field is
included at the beginning of each record in the datafile. This format provides some
added flexibility over the fixed record format and a performance advantage over the
stream record format. For example, you can specify a datafile that is to be interpreted
as being in variable record format as follows:

INFILE "datafile _name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will
result in an error.

Example 6-2 shows a control file specification that tells SQL*Loader to look for data in
the datafile example.dat and to expect variable record format where the record
length fields are 3 bytes long. The example.dat datafile consists of three physical
records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes
long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also
including a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
datafile.

6-4 Oracle Database Utilities

Input Data and Datafiles

The lengths are always interpreted in bytes, even if character-length semantics are in
effect for the file. This is necessary because the file could contain a mix of fields, some
processed with character-length semantics and others processed with byte-length
semantics. See Character-Length Semantics on page 8-17.

Example 6-2 Loading Data in Variable Record Format

load data

infile 'example.dat' ‘"var 3"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll char(5),

col2 char (7))

example.dat:
009%9hello, cd, 010world, im,
012my, name is,

Stream Record Format

A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator. Stream record format
is the most flexible format, but there can be a negative effect on performance. The
specification of a datafile to be interpreted as being in stream record format looks
similar to the following:

INFILE datafile name ["str terminator_string"]
The terminator_stringis specified as either ' char._string' or X'hex_
string' where:

" 'char_string' is a string of characters enclosed in single or double quotation
marks

» X'hex string' isabyte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it should
be specified as an X 'hex_string'. However, some nonprintable characters can be
specified as (' char_string')by using a backslash. For example:

= \nindicates a line feed
=\t indicates a horizontal tab
= \f indicates a form feed

= \vindicates a vertical tab

» \rindicates a carriage return

If the character set specified with the NL.S_LANG parameter for your session is different
from the character set of the datafile, character strings are converted to the character
set of the datafile. This is done before SQL*Loader checks for the default record
terminator.

Hexadecimal strings are assumed to be in the character set of the datafile, so no
conversion is performed.

On UNIX-based platforms, if no terminator._stringis specified, SQL*Loader
defaults to the line feed character, \n.

On Windows NT, if no terminator._stringis specified, then SQL*Loader uses
either \n or \r\n as the record terminator, depending on which one it finds first in the

SQL*Loader Concepts 6-5

Input Data and Datafiles

datafile. This means that if you know that one or more records in your datafile has \n
embedded in a field, but you want \r\n to be used as the record terminator, you must

specify it.

Example 6-3 illustrates loading data in stream record format where the terminator
string is specified using a character string, ' | \n'. The use of the backslash character
allows the character string to specify the nonprintable line feed character.

Example 6-3 Loading Data in Stream Record Format
load data

infile 'example.dat' ‘"str '|\n'"

into table example

fields terminated by ',' optionally enclosed by '"'
(coll char(5),

col2 char (7))

example.dat:
hello,world, |
james, bond, |

Logical Records

SQL*Loader organizes the input data into physical records, according to the specified
record format. By default a physical record is a logical record, but for added flexibility,
SQL*Loader can be instructed to combine a number of physical records into a logical
record.

SQL*Loader can be instructed to follow one of the following logical record-forming
strategies:

= Combine a fixed number of physical records to form each logical record.

= Combine physical records into logical records while a certain condition is true.

See Also:

= Assembling Logical Records from Physical Records on
page 8-21

s Case study 4, Loading Combined Physical Records (see
SQL*Loader Case Studies on page 6-12 for information on how
to access case studies)

Data Fields

Once a logical record is formed, field setting on the logical record is done. Field setting
is a process in which SQL*Loader uses control-file field specifications to determine
which parts of logical record data correspond to which control-file fields. It is possible
for two or more field specifications to claim the same data. Also, it is possible for a
logical record to contain data that is not claimed by any control-file field specification.

Most control-file field specifications claim a particular part of the logical record. This
mapping takes the following forms:

» The byte position of the data field's beginning, end, or both, can be specified. This
specification form is not the most flexible, but it provides high field-setting
performance.

6-6 Oracle Database Utilities

Data Conversion and Datatype Specification

s The strings delimiting (enclosing and/or terminating) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

= The byte offset and/or the length of the data field can be specified. This way each
field starts a specified number of bytes from where the last one ended and
continues for a specified length.

s Length-value datatypes can be used. In this case, the first n number of bytes of the
data field contain information about how long the rest of the data field is.

See Also:
= Specifying the Position of a Data Field on page 9-2
= Specifying Delimiters on page 9-19

LOBFILEs and Secondary Datafiles (SDFs)

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined size,
delimited, length-value), but these fields are not organized into records (the concept of
a record does not exist within LOBFILEs). Therefore, the processing overhead of
dealing with records is avoided. This type of organization of data is ideal for LOB
loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and
employee resumes. You could read the employee names and IDs from the main
datafiles and you could read the resumes, which can be quite lengthy, from LOBFILEs.

You might also use LOBFILE:s to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data can
be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary
datafiles, SDFs are a collection of records, and each record is made up of fields. The
SDFs are specified on a per control-file-field basis. Only a collection_£1d_spec
can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

See Also:

s Loading LOB Data from LOBFILEs on page 10-17

= Secondary Datafiles (SDFs) on page 10-24

Data Conversion and Datatype Specification

During a conventional path load, data fields in the datafile are converted into columns in
the database (direct path loads are conceptually similar, but the implementation is
different). There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the format
of the datafile, parse the input data, and populate the bind arrays that correspond
to a SQL INSERT statement using that data.

2. The Oracle database accepts the data and executes the INSERT statement to store
the data in the database.

SQL*Loader Concepts 6-7

Discarded and Rejected Records

The Oracle database uses the datatype of the column to convert the data into its final,
stored form. Keep in mind the distinction between a field in a datafile and a column in
the database. Remember also that the field datatypes defined in a SQL*Loader control
file are not the same as the column datatypes.

Discarded and Rejected Records

The Bad File

Records read from the input file might not be inserted into the database. Such records
are placed in either a bad file or a discard file.

The bad file contains records that were rejected, either by SQL*Loader or by the Oracle
database. If you do not specify a bad file and there are rejected records, then
SQL*Loader automatically creates one. It will have the same name as the data file,
with a.bad extension. Some of the possible reasons for rejection are discussed in the
next sections.

SQL*Loader Rejects

Datafile records are rejected by SQL*Loader when the input format is invalid. For
example, if the second enclosure delimiter is missing, or if a delimited field exceeds its
maximum length, SQL*Loader rejects the record. Rejected records are placed in the
bad file.

Oracle Database Rejects

After a datafile record is accepted for processing by SQL*Loader, it is sent to the
Oracle database for insertion into a table as a row. If the Oracle database determines
that the row is valid, then the row is inserted into the table. If the row is determined to
be invalid, then the record is rejected and SQL*Loader puts it in the bad file. The row
may be invalid, for example, because a key is not unique, because a required field is
null, or because the field contains invalid data for the Oracle datatype.

See Also:
= Specifying the Bad File on page 8-9

» Case study 4, Loading Combined Physical Records (see
SQL*Loader Case Studies on page 6-12 for information on how
to access case studies)

The Discard File

As SQL*Loader executes, it may create a file called the discard file. This file is created
only when it is needed, and only if you have specified that a discard file should be
enabled. The discard file contains records that were filtered out of the load because
they did not match any record-selection criteria specified in the control file.

The discard file therefore contains records that were not inserted into any table in the
database. You can specify the maximum number of such records that the discard file
can accept. Data written to any database table is not written to the discard file.

6-8 Oracle Database Utilities

Conventional Path Loads, Direct Path Loads, and External Table Loads

See Also:

s Case study 4, Loading Combined Physical Records (see
SQL*Loader Case Studies on page 6-12 for information on how
to access case studies)

» Specifying the Discard File on page 8-11

Log File and Logging Information

When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
execution terminates. The log file contains a detailed summary of the load, including a
description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides the following methods to load data:
= Conventional Path Loads
s Direct Path Loads
= External Table Loads

Conventional Path Loads

During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When the
bind array is full (or no more data is left to read), an array insert is executed.

See Also:
s Data Loading Methods on page 11-1
» Bind Arrays and Conventional Path Loads on page 8-34

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found), the
LOB field is left empty. Note also that because LOB data is loaded after the array insert
has been performed, BEFORE and AFTER row triggers may not work as expected for
LOB columns. This is because the triggers fire before SQL*Loader has a chance to load
the LOB contents into the column. For instance, suppose you are loading a LOB
column, C1, with data and that you want a BEFORE row trigger to examine the
contents of this LOB column and derive a value to be loaded for some other column,
C2, based on its examination. This is not possible because the LOB contents will not
have been loaded at the time the trigger fires.

Direct Path Loads

A direct path load parses the input records according to the field specifications,
converts the input field data to the column datatype, and builds a column array. The
column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to the
database, bypassing much of the data processing that normally takes place. Direct
path load is much faster than conventional path load, but entails several restrictions.

See Also: Direct Path Load on page 11-4

SQL*Loader Concepts 6-9

Loading Objects, Collections, and LOBs

Parallel Direct Path

A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism). Parallel direct path is
more restrictive than direct path.

See Also: DParallel Data Loading Models on page 11-23

External Table Loads

An external table load creates an external table for data that is contained in a datafile.
The load executes INSERT statements to insert the data from the datafile into the
target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

= An external table load attempts to load datafiles in parallel. If a datafile is big
enough, it will attempt to load that file in parallel.

= An external table load allows modification of the data being loaded by using SQL
functions and PL/SQL functions as part of the INSERT statement that is used to
create the external table.

Note: An external table load is not supported using a named pipe on
Windows NT.

See Also:
s Chapter 12, "External Tables Concepts"
» Chapter 13, "The ORACLE_LOADER Access Driver"

Choosing External Tables Versus SQL*Loader

The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However, due
to the different architecture of external tables and SQL*Loader, there are situations in
which one method is more appropriate than the other.

In the following situations, use external tables for the best load performance:
= You want to transform the data as it is being loaded into the database

= You want to use transparent parallel processing without having to split the
external data first

However, in the following situations, use SQL*Loader for the best load performance:
= You want to load data remotely

» Transformations are not required on the data, and the data does not need to be
loaded in parallel

Loading Objects, Collections, and LOBs

You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed that
you are familiar with the concept of objects and with Oracle's implementation of object
support as described in Oracle Database Concepts and in the Oracle Database
Administrator’s Guide.

6-10 Oracle Database Utilities

Loading Objects, Collections, and LOBs

Supported Object Types

SQL*Loader supports loading of the following two object types:

column objects

When a column of a table is of some object type, the objects in that column are referred
to as column objects. Conceptually such objects are stored in their entirety in a single
column position in a row. These objects do not have object identifiers and cannot be
referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.

row objects

These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object. The object tables have an additional
system-generated column, called SYS_NC_OID$, that stores system-generated unique
identifiers (OIDs) for each of the objects in the table. Columns in other tables can refer
to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows
a derived type (or subtype) to be loaded into the row object.

See Also:
s Loading Column Objects on page 10-1
» Loading Object Tables on page 10-9

Supported Collection Types
SQL*Loader supports loading of the following two collection types:

Nested Tables

A nested table is a table that appears as a column in another table. All operations that
can be performed on other tables can also be performed on nested tables.

VARRAYs

VARRAYs are variable sized arrays. An array is an ordered set of built-in types or
objects, called elements. Each array element is of the same type and has an index,
which is a number corresponding to the element's position in the VARRAY .

When creating a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the datatype of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

See Also: Loading Collections (Nested Tables and VARRAYSs) on
page 10-22 for details on using SQL*Loader control file data
definition language to load these collection types

Supported LOB Types
A LOB is a large object type. This release of SQL*Loader supports loading of four LOB
types:
= BLOB: a LOB containing unstructured binary data

= CLOB: a LOB containing character data

SQL*Loader Concepts 6-11

Partitioned Object Support

= NCLOB: a LOB containing characters in a database national character set

= BFILE: a BLOB stored outside of the database tablespaces in a server-side
operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be an
object's attribute datatypes. LOBs can have an actual value, they can be null, or they
can be "empty."

See Also: Loading LOBs on page 10-14 for details on using
SQL*Loader control file data definition language to load these LOB

types

Partitioned Object Support

SQL*Loader supports loading partitioned objects in the database. A partitioned object
in an Oracle database is a table or index consisting of partitions (pieces) that have been
grouped, typically by common logical attributes. For example, sales data for the year
2000 might be partitioned by month. The data for each month is stored in a separate
partition of the sales table. Each partition is stored in a separate segment of the
database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:
= A single partition of a partitioned table
= All partitions of a partitioned table

= A nonpartitioned table

Application Development: Direct Path Load API

Oracle provides a direct path load API for application developers. See the Oracle Call
Interface Programmer’s Guide for more information.

SQL*Loader Case Studies

SQL*Loader features are illustrated in a variety of case studies. The case studies are
based upon the Oracle demonstration database tables, emp and dept, owned by the
user scott. (In some case studies, additional columns have been added.)

The case studies are numbered 1 through 11, starting with the simplest scenario and
progressing in complexity.

The following is a summary of the case studies:

= Case Study 1: Loading Variable-Length Data - Loads stream format records in
which the fields are terminated by commas and may be enclosed by quotation
marks. The data is found at the end of the control file.

» Case Study 2: Loading Fixed-Format Fields - Loads data from a separate datafile.

= Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream
format records with delimited fields and sequence numbers. The data is found at
the end of the control file.

= Case Study 4: Loading Combined Physical Records - Combines multiple physical
records into one logical record corresponding to one database row.

= Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables
in one run.

6-12 Oracle Database Utilities

SQL*Loader Case Studies

s Case Study 6: Loading Data Using the Direct Path Load Method - Loads data
using the direct path load method.

s Case Study 7: Extracting Data from a Formatted Report - Extracts data from a
formatted report.

s Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

s Case Study 9: Loading LOBFILEs (CLOBs) - Adds a CLOB column called resume
to the table emp, uses a FILLER field (res_£file), and loads multiple LOBFILEs
into the emp table.

s Case Study 10: REF Fields and VARRAYSs - Loads a customer table that has a
primary key as its OID and stores order items in a VARRAY. Loads an order table
that has a reference to the customer table and the order items in a VARRAY.

s Case Study 11: Loading Data in the Unicode Character Set - Loads data in the
Unicode character set, UTF16, in little-endian byte order. This case study uses
character-length semantics.

Case Study Files

Generally, each case study is comprised of the following types of files:
» Control files (for example, ulcase5.ctl)

» Datafiles (for example, ulcase5.dat)

» Setup files (for example, ulcase5.sql)

These files are installed when you install Oracle Database. They are located in the
$ORACLE_HOME/rdbms /demo directory.

If the sample data for the case study is contained within the control file, then there will
be no .dat file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that case.
Case study 7 requires that you run both a starting (setup) script and an ending
(cleanup) script.

Table 6-1 lists the files associated with each case.

Table 6-1 Case Studies and Their Related Files

Case .ctl .dat .sql

1 ulcasel.ctl N/A ulcasel.sql
2 ulcase2.ctl ulcase2.dat N/A

3 ulcase3.ctl N/A ulcase3.sql
4 ulcased4.ctl ulcase4.dat ulcase4.sql
5 ulcaseb.ctl ulcaseb.dat ulcaseb5.sql
6 ulcaseb.ctl ulcase6.dat ulcase6.sql
7 ulcase?.ctl ulcase?.dat ulcase7s.sql

ulcase7e.sql

8 ulcase8.ctl ulcase8.dat ulcase8.sql
9 ulcase9.ctl ulcase9.dat ulcase9.sql
10 ulcasel0.ctl N/A ulcasel0.sql
11 ulcasell.ctl ulcasell.dat ulcasell.sql

SQL*Loader Concepts 6-13

SQL*Loader Case Studies

Running the Case Studies

In general, you use the following steps to run the case studies (be sure you are in the
$ORACLE_HOME/ rdbms /demo directory, which is where the case study files are
located):

1.

At the system prompt, type sglplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

At the SQL prompt, execute the SQL script for the case study. For example, to
execute the SQL script for case study 1, enter the following;:

SQL> @ulcasel

This prepares and populates tables for the case study and then returns you to the
system prompt.

At the system prompt, invoke SQL*Loader and run the case study, as follows:
sglldr USERID=scott CONTROL=ulcasel.ctl LOG=ulcasel.log

Substitute the appropriate control file name and log file name for the CONTROL

and LOG parameters and press Enter. When you are prompted for a password,
type tiger and then press Enter.

Be sure to read the control file for any notes that are specific to the particular case
study you are executing. For example, case study 6 requires that you add
DIRECT=TRUE to the SQL*Loader command line.

Case Study Log Files

Log files for the case studies are not provided in the $ORACLE_HOME/ rdbms /demo
directory. This is because the log file for each case study is produced when you
execute the case study, provided that you use the LOG parameter. If you do not wish to
produce a log file, omit the LOG parameter from the command line.

Checking the Results of a Case Study

To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study. This is done, as follows:

1.

At the system prompt, type sgqlplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

At the SQL prompt, use the SELECT statement to select all rows from the table that
the case study loaded. For example, if the table emp was loaded, enter:

SQL> SELECT * FROM emp;

The contents of each row in the emp table will be displayed.

Oracle Database Utilities

7

SQL*Loader Command-Line Reference

This chapter describes the command-line parameters used to invoke SQL*Loader. The
following topics are discussed:

s Invoking SQL*Loader
s Command-Line Parameters

= Exit Codes for Inspection and Display

Invoking SQL*Loader

When you invoke SQL*Loader, you specify parameters to establish session
characteristics. If you wish, you can separate the parameters by commas.

Parameters can be specified either by keyword or by position. Specifying by keyword
means that you provide the name of the parameter and a value. In the following
example, the name of the control file, ulcasel.ctl, is supplied for the CONTROL
parameter. You are prompted for the username and password.

> sglldr CONTROL=ulcasel.ctl
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In
the following example, the username scott is provided and then the name of the
control file, ulcasel.ctl. You are prompted for the password:

> sqglldr scott ulcasel.ctl

Password: password

Once a keyword specification is used, no positional specification is allowed after that.
For example, the following command line would result in an error even though the
position of ulcasel . log is correct:

> sglldr scott CONTROL=ulcasel.ctl ulcasel.log

If you invoke SQL*Loader without specifying any parameters, SQL*Loader displays a
help screen that lists the available parameters and their default values.

See Also: Command-Line Parameters on page 7-2 for
descriptions of all the command-line parameters

SQL*Loader Command-Line Reference 7-1

Command-Line Parameters

Alternative Ways to Specify Parameters

If the length of the command line exceeds the size of the maximum command line on
your system, you can put certain command-line parameters in the control file by using
the OPTIONS clause.

You can also group parameters together in a parameter file. You specify the name of
this file on the command line using the PARFILE parameter when you invoke
SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the
same parameters with the same values.

Parameter values specified on the command line override parameter values specified
in either a parameter file or in the OPTIONS clause.

See Also:
= OPTIONS Clause on page 8-3
= PARFILE (parameter file) on page 7-7

Command-Line Parameters

BAD (bad file)

This section describes each SQL*Loader command-line parameter. The defaults and
maximum values listed for these parameters are for UNIX-based systems. They may
be different on your operating system. Refer to your Oracle operating system-specific
documentation for more information.

Default: The name of the datafile, with an extension of .bad.

BAD specifies the name of the bad file created by SQL*Loader to store records that
cause errors during insert or that are improperly formatted. If you do not specify a
filename, the default is used. A bad file is not automatically created if there are no
rejected records.

A bad file filename specified on the command line becomes the bad file associated
with the first INFILE statement in the control file. If the bad file filename was also
specified in the control file, the command-line value overrides it.

See Also: Specifying the Bad File on page 8-9 for information
about the format of bad files

BINDSIZE (maximum size)

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the bind
array given by BINDSIZE overrides the default size (which is system dependent) and
any size determined by ROWS .

See Also:
» Bind Arrays and Conventional Path Loads on page 8-34
s READSIZE (read buffer size) on page 7-8

Oracle Database Utilities

Command-Line Parameters

COLUMNARRAYROWS

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

Specifies the number of rows to allocate for direct path column arrays. The value for
this parameter is not calculated by SQL*Loader. You must either specify it or accept
the default.

See Also:
= Using CONCATENATE to Assemble Logical Records on
page 8-21

= Specifying the Number of Column Array Rows and Size of
Stream Buffers on page 11-15

CONTROL (control file)

Default: none

CONTROL specifies the name of the SQL*Loader control file that describes how to load
the data. If a file extension or file type is not specified, it defaults to .ct 1. If the
filename is omitted, SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, your operating
system may require that they be preceded by an escape character. Also, if your
operating system uses backslashes in its file system paths, you may need to use
multiple escape characters or to enclose the path in quotation marks. See your Oracle
operating system-specific documentation for more information.

See Also: Chapter 8 for a detailed description of the SQL*Loader
control file

DATA (datafile)

Default: The name of the control file, with an extension of .dat.

DATA specifies the name of the datafile containing the data to be loaded. If you do not
specify a file extension or file type, the default is .dat .

If you specify a datafile on the command line and also specify datafiles in the control
file with INFILE, the data specified on the command line is processed first. The first
datafile specified in the control file is ignored. All other datafiles specified in the
control file are processed.

If you specify a file processing option when loading data from the control file, a
warning message will be issued.

DATE_CACHE

Default: Enabled (for 1000 elements). To completely disable the date cache feature, set
it to 0.

The date cache is used to store the results of conversions from text strings to internal
date format. The cache is useful because the cost of looking up dates is much less than
converting from text format to date format. If the same dates occur repeatedly in the
data file, then using the date cache can improve the speed of a direct path load.

DATE_CACHE specifies the date cache size (in entries). For example,
DATE_CACHE=5000 specifies that each date cache created can contain a maximum of

SQL*Loader Command-Line Reference 7-3

Command-Line Parameters

5000 unique date entries. Every table has its own date cache, if one is needed. A date
cache is created only if at least one date or timestamp value is loaded that requires
datatype conversion in order to be stored in the table.

The date cache feature is only available for direct path loads. It is enabled by default.
The default date cache size is 1000 elements. If the default size is used and the number
of unique input values loaded exceeds 1000, then the date cache feature is
automatically disabled for that table. However, if you override the default and specify
a nonzero date cache size and that size is exceeded, then the cache is not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log file
to tune the size of the cache for future similar loads.

See Also: Specifying a Value for the Date Cache on page 11-16

DIRECT (data path)

Default: false

DIRECT specifies the data path, that is, the load method to use, either conventional
path or direct path. A value of true specifies a direct path load. A value of false
specifies a conventional path load.

See Also: Chapter 11, "Conventional and Direct Path Loads"

DISCARD (filename)

Default: The name of the datafile, with an extension of .dsc.

DISCARD specifies a discard file (optional) to be created by SQL*Loader to store
records that are neither inserted into a table nor rejected.

A discard file filename specified on the command line becomes the discard file
associated with the first INFILE statement in the control file. If the discard file
filename is specified also in the control file, the command-line value overrides it.

See Also: Discarded and Rejected Records on page 6-8 for
information about the format of discard files

DISCARDMAX (integer)

Default: ALL

DISCARDMAX specifies the number of discard records to allow before data loading is
terminated. To stop on the first discarded record, specify one (1).

ERRORS (errors to allow)

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

ERRORS specifies the maximum number of insert errors to allow. If the number of
errors exceeds the value specified for ERRORS, then SQL*Loader terminates the load.
To permit no errors at all, set ERRORS=0. To specify that all errors be allowed, use a
very high number.

On a single-table load, SQL*Loader terminates the load when errors exceed this error
limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore,
multitable loads do not terminate immediately if errors exceed the error limit. When

7-4 Oracle Database Utilities

Command-Line Parameters

SQL*Loader encounters the maximum number of errors for a multitable load, it
continues to load rows to ensure that valid rows previously loaded into tables are
loaded into all tables and rejected rows are filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

EXTERNAL_TABLE

Default: NOT_USED

EXTERNAL_TABLE instructs SQL*Loader whether or not to load data using the
external tables option. There are three possible values:

» NOT_USED - the default value. It means the load is performed using either
conventional or direct path mode.

= GENERATE_ONLY - places all the SQL statements needed to do the load using
external tables, as described in the control file, in the SQL*Loader log file. These
SQL statements can be edited and customized. The actual load can be done later
without the use of SQL*Loader by executing these statements in SQL*Plus.

= EXECUTE - attempts to execute the SQL statements that are needed to do the load
using external tables. However, if any of the SQL statements returns an error, then
the attempt to load stops. Statements are placed in the log file as they are executed.
This means that if a SQL statement returns an error, then the remaining SQL
statements required for the load will not be placed in the log file.

If you use EXTERNAL_TABLE=EXECUTE and also use the SEQUENCE parameter in
your SQL*Loader control file, then SQL*Loader creates a database sequence, loads
the table using that sequence, and then deletes the sequence. The results of doing
the load this way will be different than if the load were done with conventional or
direct path. (For more information about creating sequences, see CREATE
SEQUENCE in Oracle Database SQL Language Reference.)

Note that the external tables option uses directory objects in the database to indicate
where all datafiles are stored and to indicate where output files, such as bad files and
discard files, are created. You must have READ access to the directory objects
containing the datafiles, and you must have WRITE access to the directory objects
where the output files are created. If there are no existing directory objects for the
location of a datafile or output file, SQL*Loader will generate the SQL statement to
create one. Therefore, when the EXECUTE option is specified, you must have the
CREATE ANY DIRECTORY privilege. If you want the directory object to be deleted at
the end of the load, you must also have the DELETE ANY DIRECTORY privilege.

SQL*Loader Command-Line Reference 7-5

Command-Line Parameters

Note: The EXTERNAL_TABLE=EXECUTE qualifier tells
SQL*Loader to create an external table that can be used to load data
and then execute the INSERT statement to load the data. All files in
the external table must be identified as being in a directory object.
SQL*Loader attempts to use directory objects that already exist and
that you have privileges to access. However, if SQL*Loader does
not find the matching directory object, it attempts to create a
temporary directory object. If you do not have privileges to create
new directory objects, then the operation fails.

To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to
create the SQL statements that SQL*Loader would try to execute.
Extract those SQL statements and change references to directory
objects to be the directory object that you have privileges to access.
Then, execute those SQL statements.

When using a multitable load, SQL*Loader does the following:

1. Creates a table in the database that describes all fields in the datafile that will be
loaded into any table.

2. Creates an INSERT statement to load this table from an external table description
of the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5, but add the EXTERNAL_
TABLE=GENERATE_ONLY parameter. To guarantee unique names in the external table,
SQL*Loader uses generated names for all fields. This is because the field names may
not be unique across the different tables in the control file.

See Also:

s SQL*Loader Case Studies on page 6-12 for information on how
to access case studies

s Chapter 12, "External Tables Concepts"
» Chapter 13, "The ORACLE_LOADER Access Driver"

Restrictions When Using EXTERNAL_TABLE
The following restrictions apply when you use the EXTERNAL_TABLE qualifier:

= Julian dates cannot be used when you insert data into a database table from an
external table through SQL*Loader. To work around this, use TO_DATE and TO_
CHAR to convert the Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, 'MM-DD-YYYY'), 'J")

s Built-in functions and SQL strings cannot be used for object elements when you
insert data into a database table from an external table.

FILE (tablespace file to load into)

Default: none

FILE specifies the database file to allocate extents from. It is used only for direct path
parallel loads. By varying the value of the FILE parameter for different SQL*Loader
processes, data can be loaded onto a system with minimal disk contention.

7-6 Oracle Database Utilities

Command-Line Parameters

See Also: DParallel Data Loading Models on page 11-23

LOAD (number of records to load)

LOG (log file)

Default: All records are loaded.

LOAD specifies the maximum number of logical records to load (after skipping the
specified number of records). No error occurs if fewer than the maximum number of
records are found.

Default: The name of the control file, with an extension of .1og.

LOG specifies the log file that SQL*Loader will create to store logging information
about the loading process.

MULTITHREADING

Default: true on multiple-CPU systems, false on single-CPU systems
This parameter is available only for direct path loads.

By default, the multithreading option is always enabled (set to true) on multiple-CPU
systems. In this case, the definition of a multiple-CPU system is a single system that
has more than one CPU.

On single-CPU systems, multithreading is set to false by default. To use
multithreading between two single-CPU systems, you must enable multithreading; it
will not be on by default. This will allow stream building on the client system to be
done in parallel with stream loading on the server system.

Multithreading functionality is operating system-dependent. Not all operating
systems support multithreading.

See Also: Optimizing Direct Path Loads on Multiple-CPU
Systems on page 11-17

PARALLEL (parallel load)

Default: false

PARALLEL specifies whether direct loads can operate in multiple concurrent sessions
to load data into the same table.

See Also: Parallel Data Loading Models on page 11-23

PARFILE (parameter file)

Default: none

PARFILE specifies the name of a file that contains commonly used command-line
parameters. For example, a parameter file named daily_report.par might have
the following contents:

USERID=scott
CONTROL=daily_report.ctl
ERRORS=9999
LOG=daily_report.log

SQL*Loader Command-Line Reference 7-7

Command-Line Parameters

For security reasons, you should not include your USERID password in a parameter
file. SQL*Loader will prompt you for the password after you specify the parameter file
at the command line, for example:

sqlldr PARFILE=daily_report.par
Password: password

Note: Although it is not usually important, on some systems it
may be necessary to have no spaces around the equal sign (=) in the
parameter specifications.

READSIZE (read buffer size)

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

The READSIZE parameter is used only when reading data from datafiles. When
reading records from a control file, a value of 64 kilobytes (KB) is always used as the
READSIZE.

The READSIZE parameter lets you specify (in bytes) the size of the read bulffer, if you
choose not to use the default. The maximum size allowed is platform dependent.

In the conventional path method, the bind array is limited by the size of the read
buffer. Therefore, the advantage of a larger read buffer is that more data can be read
before a commit operation is required.

For example, setting READSIZE to 1000000 enables SQL*Loader to perform reads from
the external datafile in chunks of 1,000,000 bytes before a commit is required.

Note: If the READSIZE value specified is smaller than the
BINDSIZE value, the READSIZE value will be increased.

The READSIZE parameter has no effect on LOBs. The size of the LOB read bulffer is
fixed at 64 kilobytes (KB).

See BINDSIZE (maximum size) on page 7-2.

RESUMABLE

Default: false

The RESUMABLE parameter is used to enable and disable resumable space allocation.
Because this parameter is disabled by default, you must set RESUMABLE=true in
order to use its associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

See Also:
» Oracle Database Concepts

n Oracle Database Administrator’s Guide

RESUMABLE_NAME

Default: 'User USERNAME (USERID), Session SESSIONID, Instance
INSTANCEID'

7-8 Oracle Database Utilities

Command-Line Parameters

The value for this parameter identifies the statement that is resumable. This value is a
user-defined text string that is inserted in either the USER_RESUMABLE or DBA_
RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable
resumable space allocation.

RESUMABLE_TIMEOUT

Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be
fixed. If the error is not fixed within the timeout period, execution of the statement is
terminated, without finishing.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable
resumable space allocation.

ROWS (rows per commit)

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

Keep in mind that if you specify a low value for ROWS and then attempt to compress
data using table compression, your compression ratio will probably be degraded.
Oracle recommends that you either specify a high value or accept the default value
when compressing data.

Conventional path loads only: ROWS specifies the number of rows in the bind array.
See Bind Arrays and Conventional Path Loads on page 8-34.

Direct path loads only: ROWS identifies the number of rows you want to read from the
datafile before a data save. The default is to read all rows and save data once at the end
of the load. See Using Data Saves to Protect Against Data Loss on page 11-10. The
actual number of rows loaded into a table on a save is approximately the value of
ROWS minus the number of discarded and rejected records since the last save.

Note: The ROWS parameter is ignored for direct path loads when
data is loaded into an Index Organized Table (IOT) or into a table
containing VARRAYs, XML columns, or LOBs. This means that the
load will still take place, but no save points will be done.

SILENT (feedback mode)

When SQL*Loader begins, information about the SQL*Loader version being used
appears on the screen and is placed in the log file. As SQL*Loader executes, you also
see feedback messages on the screen, for example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages similar to the following;:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with one or more values.

SQL*Loader Command-Line Reference 7-9

Command-Line Parameters

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

SILENT= (HEADER, FEEDBACK)

Use the appropriate values to suppress one or more of the following:

= HEADER - Suppresses the SQL*Loader header messages that normally appear on
the screen. Header messages still appear in the log file.

= FEEDBACK - Suppresses the "commit point reached" feedback messages that
normally appear on the screen.

= ERRORS - Suppresses the data error messages in the log file that occur when a
record generates an Oracle error that causes it to be written to the bad file. A count
of rejected records still appears.

= DISCARDS - Suppresses the messages in the log file for each record written to the
discard file.

= PARTITIONS - Disables writing the per-partition statistics to the log file during a
direct load of a partitioned table.

= ALL - Implements all of the suppression values: HEADER, FEEDBACK, ERRORS,
DISCARDS, and PARTITIONS.

SKIP (records to skip)
Default: No records are skipped.

SKIP specifies the number of logical records from the beginning of the file that should
not be loaded.

This parameter continues loads that have been interrupted for some reason. It is used
for all conventional loads, for single-table direct loads, and for multiple-table direct
loads when the same number of records was loaded into each table. It is not used for
multiple-table direct loads when a different number of records was loaded into each
table.

If a WHEN clause is also present and the load involves secondary data, the secondary
data is skipped only if the WHEN clause succeeds for the record in the primary data file.

See Also: Interrupted Loads on page 8-18

SKIP_INDEX_MAINTENANCE

Default: false

The SKIP_INDEX_MAINTENANCE parameter stops index maintenance for direct path
loads but does not apply to conventional path loads. It causes the index partitions that
would have had index keys added to them to be marked Index Unusable instead,
because the index segment is inconsistent with respect to the data it indexes. Index
segments that are not affected by the load retain the Index Unusable state they had
prior to the load.

The SKIP_INDEX_ MAINTENANCE parameter:
= Applies to both local and global indexes

s Can be used (with the PARALLEL parameter) to do parallel loads on an object that
has indexes

7-10 Oracle Database Utilities

Command-Line Parameters

s Can be used (with the PARTITION parameter on the INTO TABLE clause) to do a
single partition load to a table that has global indexes

s Puts a list (in the SQL*Loader log file) of the indexes and index partitions that the
load set into Index Unusable state

SKIP_UNUSABLE_INDEXES

STREAMSIZE

Default: The value of the Oracle database configuration parameter, SKIP_UNUSABLE__
INDEXES, as specified in the initialization parameter file. The default database setting
is TRUE.

Both SQL*Loader and the Oracle database provide a SKIP_UNUSABLE_INDEXES
parameter. The SQL*Loader SKIP_UNUSABLE_INDEXES parameter is specified at the
SQL*Loader command line. The Oracle database SKIP_UNUSABLE_INDEXES
parameter is specified as a configuration parameter in the initialization parameter file.
It is important to understand how they affect each other.

If you specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command
line, it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter
in the initialization parameter file.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader
command line, then SQL*Loader uses the database setting for the SKIP_UNUSABLE_
INDEXES configuration parameter, as specified in the initialization parameter file. If
the initialization parameter file does not specify a database setting for SKIP_
UNUSABLE_INDEXES, then the default database setting is TRUE.

A value of TRUE for SKIP_UNUSABLE_INDEXES means that if an index in an Index
Unusable state is encountered, it is skipped and the load operation continues. This
allows SQL*Loader to load a table with indexes that are in an Unusable state prior to
the beginning of the load. Indexes that are not in an Unusable state at load time will be
maintained by SQL*Loader. Indexes that are in an Unusable state at load time will not
be maintained but will remain in an Unusable state at load completion.

Note: Indexes that are unique and marked Unusable are not
allowed to skip index maintenance. This rule is enforced by DML
operations, and enforced by the direct path load to be consistent
with DML.

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct
path loads.

Default: To see the default value for this parameter, invoke SQL*Loader without any
parameters, as described in Invoking SQL*Loader on page 7-1.

Specifies the size, in bytes, for direct path streams.

See Also: Specifying the Number of Column Array Rows and
Size of Stream Buffers on page 11-15

USERID (username/password)

Default: none

SQL*Loader Command-Line Reference 7-11

Exit Codes for Inspection and Display

USERID is used to provide your Oracle username and password. If it is omitted, you
are prompted for it. If only a slash is used, USERID defaults to your operating system
login.

If you connect as user SYS, you must also specify AS SYSDBA in the connect string.

Note: Because the string, AS SYSDBA, contains a blank, some
operating systems may require that the entire connect string be
placed in quotation marks or marked as a literal by some method.
Some operating systems also require that quotation marks on the
command line be preceded by an escape character, such as
backslashes.

See your Oracle operating system-specific documentation for
information about special and reserved characters on your system.

Exit Codes for Inspection and Display

Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion. Depending on the platform, SQL*Loader may report the outcome in a
process exit code as well as recording the results in the log file. This Oracle
SQL*Loader functionality allows for checking the outcome of a SQL*Loader
invocation from the command line or a script. Table 7-1 shows the exit codes for
various results.

Table 7-1 Exit Codes for SQL*Loader

Result Exit Code
All rows loaded successfully EX_SUucc
All or some rows rejected EX_WARN
All or some rows discarded EX_WARN
Discontinued load EX_WARN
Command-line or syntax errors EX_FAIL
Oracle errors nonrecoverable for SQL*Loader EX_FAIL

Operating system errors (such as file open/close and malloc) EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 3

For Windows NT, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 4

If SQL*Loader returns any exit code other than zero, you should consult your system
log files and SQL*Loader log files for more detailed diagnostic information.

In UNIX, you can check the exit code from the shell to determine the outcome of a
load.

7-12 Oracle Database Utilities

8

SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file. The following topics are included:

Control File Contents

Specifying Command-Line Parameters in the Control File
Specifying Filenames and Object Names

Identifying XMLType Tables

Specifying Datafiles

Identifying Data in the Control File with BEGINDATA
Specifying Datafile Format and Buffering

Specifying the Bad File

Specifying the Discard File

Handling Different Character Encoding Schemes
Interrupted Loads

Assembling Logical Records from Physical Records
Loading Logical Records into Tables

Index Options

Benefits of Using Multiple INTO TABLE Clauses

Bind Arrays and Conventional Path Loads

Control File Contents

The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions. DDL is used to control the following aspects of a SQL*Loader session:

Where SQL*Loader will find the data to load
How SQL*Loader expects that data to be formatted

How SQL*Loader will be configured (memory management, rejecting records,
interrupted load handling, and so on) as it loads the data

How SQL*Loader will manipulate the data being loaded

See Appendix A for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.

In general, the control file has three main sections, in the following order:

SQL*Loader Control File Reference 8-1

Control File Contents

m Session-wide information
s Table and field-list information
= Input data (optional section)

Example 8-1 shows a sample control file.

Example 8-1 Sample Control File

-- This is a sample control file
LOAD DATA
INFILE 'sample.dat'
BADFILE 'sample.bad'
DISCARDFILE 'sample.dsc'
APPEND
INTO TABLE emp
WHEN (57) = '.'
TRAILING NULLCOLS
10 (hiredate SYSDATE,
deptno POSITION(1:2) INTEGER EXTERNAL(2)
NULLIF deptno=BLANKS,
job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
NULLIF job=BLANKS "UPPER(:job)",
mgr POSITION(28:31) INTEGER EXTERNAL
TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
ename POSITION(34:41) CHAR
TERMINATED BY WHITESPACE "UPPER/(:ename)",
empno POSITION (45) INTEGER EXTERNAL
TERMINATED BY WHITESPACE,
sal POSITION(51) CHAR TERMINATED BY WHITESPACE
"TO_NUMBER(:sal, '$99,999.99")",
comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
":comm * 100"

W oo o Ul b WN PR

)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the
following list:

1. This is how comments are entered in a control file. See Comments in the Control
File on page 8-3.

2, The LOAD DATA statement tells SQL*Loader that this is the beginning of a new
data load. See Appendix A for syntax information.

3. The INFILE clause specifies the name of a datafile containing data that you want
to load. See Specifying Datafiles on page 8-6.

4. The BADFILE clause specifies the name of a file into which rejected records are
placed. See Specifying the Bad File on page 8-9.

5. The DISCARDFILE clause specifies the name of a file into which discarded records
are placed. See Specifying the Discard File on page 8-11.

6. The APPEND clause is one of the options you can use when loading data into a
table that is not empty. See Loading Data into Nonempty Tables on page 8-25.

To load data into a table that is empty, you would use the INSERT clause. See
Loading Data into Empty Tables on page 8-25.

8-2 Oracle Database Utilities

Specifying Command-Line Parameters in the Control File

7. The INTO TABLE clause enables you to identify tables, fields, and datatypes. It
defines the relationship between records in the datafile and tables in the database.
See Specifying Table Names on page 8-24.

8. The WHEN clause specifies one or more field conditions. SQL*Loader decides
whether or not to load the data based on these field conditions. See Loading
Records Based on a Condition on page 8-27.

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively
positioned columns that are not present in the record as null columns. See
Handling Short Records with Missing Data on page 8-28.

10. The remainder of the control file contains the field list, which provides
information about column formats in the table being loaded. See Chapter 9 for
information about that section of the control file.

Comments in the Control File

Comments can appear anywhere in the command section of the file, but they should
not appear within the data. Precede any comment with two hyphens, for example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line.

Specifying Command-Line Parameters in the Control File

You can specify command-line parameters in the SQL*Loader control file using the
OPTIONS clause. This can be useful when you typically invoke a control file with the
same set of options. The OPTIONS clause precedes the LOAD DATA statement.

OPTIONS Clause

The following command-line parameters can be specified using the OPTIONS clause.
These parameters are described in greater detail in Chapter 7.

BINDSIZE = n

COLUMNARRAYROWS = n

DATE_CACHE = n

DIRECT = {TRUE | FALSE}

ERRORS = n

EXTERNAL_TABEL = {NOT_USED | GENERATE_ONLY | EXECUTE}
FILE

LOAD = n

MULTITHREADING = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n

RESUMABLE = {TRUE | FALSE}
RESUMABLE_NAME = 'text string'
RESUMABLE_TIMEOUT = n

ROWS = n
SILENT = {HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
SKIP = n

SKIP_INDEX MAINTENANCE = {TRUE | FALSE}
SKIP_UNUSABLE_INDEXES = {TRUE | FALSE}
STREAMSIZE = n

The following is an example use of the OPTIONS clause that you could use in a
SQL*Loader control file:

SQL*Loader Control File Reference 8-3

Specifying Filenames and Object Names

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Note: Parameter values specified on the command line override
parameter values specified in the control file OPTIONS clause.

Specifying Filenames and Object Names

In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names). The information in this section discusses the
following topics:

s Filenames That Conflict with SQL and SQL*Loader Reserved Words
s Specifying SQL Strings

s Operating System Considerations

Filenames That Conflict with SQL and SQL*Loader Reserved Words

SQL and SQL*Loader reserved words must be specified within double quotation
marks. The only SQL*Loader reserved word is CONSTANT .

You must use double quotation marks if the object name contains special characters
other than those recognized by SQL ($, #, _), or if the name is case sensitive.

See Also: Oracle Database SQL Language Reference

Specifying SQL Strings
You must specify SQL strings within double quotation marks. The SQL string applies
SQL operators to data fields.

See Also: Applying SQL Operators to Fields on page 9-40

Operating System Considerations

The following sections discuss situations in which your course of action may depend
on the operating system you are using.

Specifying a Complete Path

If you encounter problems when trying to specify a complete path name, it may be
due to an operating system-specific incompatibility caused by special characters in the
specification. In many cases, specifying the path name within single quotation marks
prevents errors.

Backslash Escape Character

In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the escape character, "\" (if the escape
character is allowed on your operating system). The same rule applies when single
quotation marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.
Preceding the double quotation mark with a backslash indicates that the double
quotation mark is to be taken literally:

INFILE 'homedir\data\"norm\mydata'

8-4 Oracle Database Utilities

Identifying XMLType Tables

You can also put the escape character itself into a string by entering it twice.

For example:

"so'\"far" or 'so\'"far' is parsed as so'"far
"'so\\far'" or '\'so\\far\'' 1is parsed as 'so\far'
"so\\\\far" or 'so\\\\far' is parsed as so\\far

Note: A double quotation mark in the initial position cannot be
preceded by an escape character. Therefore, you should avoid
creating strings with an initial quotation mark.

Nonportable Strings

There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings. When
you convert to a different operating system, you will probably need to modify these
strings. All other strings in a SQL*Loader control file should be portable between
operating systems.

Using the Backslash as an Escape Character

If your operating system uses the backslash character to separate directories in a path
name, and if the version of the Oracle database running on your operating system
implements the backslash escape character for filenames and other nonportable
strings, then you must specify double backslashes in your path names and use single
quotation marks.

Escape Character Is Sometimes Disallowed

The version of the Oracle database running on your operating system may not
implement the escape character for nonportable strings. When the escape character is
disallowed, a backslash is treated as a normal character, rather than as an escape
character (although it is still usable in all other strings). Then path names such as the
following can be specified normally:

INFILE 'topdir\mydir\myfile'

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single
quotation marks cannot be embedded inside another string delimited by single
quotation marks. This rule also holds for double quotation marks. A string within
double quotation marks cannot be embedded inside another string delimited by
double quotation marks.

Identifying XMLType Tables

As of Oracle Database 10g, the XMLTYPE clause is available for use in a SQL*Loader
control file. This clause is of the format XMLTYPE (field name).Itis used to identify
XMLType tables so that the correct SQL statement can be constructed. Example 8-2
shows how the XMLTYPE clause can be used in a SQL*Loader control file to load data
into a schema-based XMLType table.

Example 8-2 Identifying XMLType Tables in the SQL*Loader Control File

The XML schema definition is as follows. It registers the XML schema, xdb_
user .xsd, in the Oracle XML DB, and then creates the table, xdb_tab5.

SQL*Loader Control File Reference 8-5

Specifying Datafiles

begin dbms_xmlschema.registerSchema ('xdb_user.xsd',
'<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb">
<xs:element name = "Employee"
xdb:defaultTable="EMP31B_TAB">
<xs:complexType>
<XS:sequence>

<xs:element name = "EmployeeId" type = "xXs:positiveInteger"/>
<xs:element name = "Name" type = "xs:string"/>

<xs:element name = "Salary" type = "xs:positiveInteger"/>
<xs:element name = "DeptId" type = "xs:positiveInteger"

xdb: SQLName="DEPTID" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>',
TRUE, TRUE, FALSE); end;
/

The table is defined as follows:

CREATE TABLE xdb_tab5 OF XMLTYPE XMLSCHEMA "xdb_user.xsd" ELEMENT "Employee";

The control file used to load data into the table, xdb_tab5, looks as follows. It loads
XMLType data using the registered XML schema, xdb_user.xsd. The XMLTYPE
clause is used to identify this table as an XMLType table. Either direct path or
conventional mode can be used to load the data into the table.

LOAD DATA
INFILE *
INTO TABLE xdb_tab5 TRUNCATE
xmltype (xmldata)
(
xmldata char (4000)
)
BEGINDATA
<Employee> <EmployeelId>111</EmployeeId> <Name>Ravi</Name> <Salary>100000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>112</EmployeeId> <Name>John</Name> <Salary>150000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeelId>113</EmployeeId> <Name>Michael</Name> <Salary>75000</S
alary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>114</EmployeelId> <Name>Mark</Name> <Salary>125000</Sal
ary> <DeptId>16</DeptId></Employee>
<Employee> <EmployeeId>115</EmployeeId> <Name>Aaron</Name> <Salary>600000</Sa
lary> <DeptId>16</DeptId></Employee>

Specifying Datafiles

To specify a datafile that contains the data to be loaded, use the INFILE keyword,
followed by the filename and optional file processing options string. You can specify
multiple files by using multiple INFILE keywords.

Note: You can also specify the datafile from the command line,
using the DATA parameter described in Command-Line Parameters
on page 7-2. A filename specified on the command line overrides
the first INFILE clause in the control file.

8-6 Oracle Database Utilities

Specifying Datafiles

If no filename is specified, the filename defaults to the control filename with an
extension or file type of .dat.

If the control file itself contains the data to be loaded, specify an asterisk (*). This
specification is described in Identifying Data in the Control File with BEGINDATA on
page 8-8.

Note: The information in this section applies only to primary
datafiles. It does not apply to LOBFILEs or SDFs.

For information about LOBFILES, see Loading LOB Data from
LOBFILEs on page 10-17.

For information about SDFs, see Secondary Datafiles (SDFs) on
page 10-24.

The syntax for INFILE is as follows:

‘ os_file_proc_clause
INFILE
input_filename

Table 8-1 describes the parameters for the INFILE keyword.

Table 8—1 Parameters for the INFILE Keyword

Parameter Description
INFILE Specifies that a datafile specification follows.
input_filename Name of the file containing the data.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See Specifying Filenames
and Object Names on page 8-4.

* If your data is in the control file itself, use an asterisk instead of
the filename. If you have data in the control file as well as
datafiles, you must specify the asterisk first in order for the
data to be read.

os_file_proc_clause Thisis the file-processing options string. It specifies the datafile
format. It also optimizes datafile reads. The syntax used for
this string is specific to your operating system. See Specifying
Datafile Format and Buffering on page 8-9.

Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax:
= Data contained in the control file itself:

INFILE *

s Data contained in a file named sample with a default extension of .dat :

INFILE sample

= Data contained in a file named datafile.dat with a full path specified:

INFILE 'c:/topdir/subdir/datafile.dat"’

SQL*Loader Control File Reference 8-7

Identifying Data in the Control File with BEGINDATA

Note: Filenames that include spaces or punctuation marks must
be enclosed in single quotation marks.

Specifying Multiple Datafiles

To load data from multiple datafiles in one SQL*Loader run, use an INFILE clause for
each datafile. Datafiles need not have the same file processing options, although the
layout of the records must be identical. For example, two files could be specified with
completely different file processing options strings, and a third could consist of data in
the control file.

You can also specify a separate discard file and bad file for each datafile. In such a
case, the separate bad files and discard files must be declared immediately after each
datafile name. For example, the following excerpt from a control file specifies four
datafiles with separate bad and discard files:

INFILE mydatl.dat BADFILE mydatl.bad DISCARDFILE mydatl.dis
INFILE mydat2.dat

INFILE mydat3.dat DISCARDFILE mydat3.dis

INFILE mydat4.dat DISCARDMAX 10 0

s Formydatl.dat, both abad file and discard file are explicitly specified.
Therefore both files are created, as needed.

s Formydat2.dat, neither a bad file nor a discard file is specified. Therefore, only
the bad file is created, as needed. If created, the bad file has the default filename
and extension mydat2 .bad. The discard file is not created, even if rows are
discarded.

s Formydat3.dat, the default bad file is created, if needed. A discard file with the
specified name (mydat3.dis) is created, as needed.

s Formydat4.dat, the default bad file is created, if needed. Because the
DISCARDMAX option is used, SQL*Loader assumes that a discard file is required
and creates it with the default name mydat4 .dsc.

Identifying Data in the Control File with BEGINDATA

If the data is included in the control file itself, then the INFILE clause is followed by
an asterisk rather than a filename. The actual data is placed in the control file after the
load configuration specifications.

Specify the BEGINDATA statement before the first data record. The syntax is:
BEGINDATA

data

Keep the following points in mind when using the BEGINDATA statement:

s If you omit the BEGINDATA statement but include data in the control file,
SQL*Loader tries to interpret your data as control information and issues an error
message. If your data is in a separate file, do not use the BEGINDATA statement.

= Do not use spaces or other characters on the same line as the BEGINDATA
statement, or the line containing BEGINDATA will be interpreted as the first line of
data.

= Do not put comments after BEGINDATA, or they will also be interpreted as data.

8-8 Oracle Database Utilities

Specifying the Bad File

See Also:

s Specifying Datafiles on page 8-6 for an explanation of using
INFILE

s Case study 1, Loading Variable-Length Data (see SQL*Loader
Case Studies on page 6-12 for information on how to access
case studies)

Specifying Datafile Format and Buffering

When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string (os_file proc_clause) in the control file to specify file
format and buffering.

For example, suppose that your operating system has the following option-string
syntax:

RECSIZE [—>| BUFFERS |—><integeh

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the
number of buffers to use for asynchronous I/0O.

To declare a file named mydata. dat as a file that contains 80-byte records and
instruct SQL*Loader to use 8 1/O buffers, you would use the following control file
entry:

INFILE 'mydata.dat' "RECSIZE 80 BUFFERS 8"

Note: This example uses the recommended convention of single
quotation marks for filenames and double quotation marks for
everything else.

See Also: Oracle Database Platform Guide for Microsoft Windows for
information about using the os_file_proc_clause on Windows
systems.

Specifying the Bad File

When SQL*Loader executes, it can create a file called a bad file or reject file in which it
places records that were rejected because of formatting errors or because they caused
Oracle errors. If you have specified that a bad file is to be created, the following
applies:

= If one or more records are rejected, the bad file is created and the rejected records
are logged.

= If no records are rejected, then the bad file is not created.

» If the bad file is created, it overwrites any existing file with the same name; ensure
that you do not overwrite a file you wish to retain.

Note: On some systems, a new version of the file may be created if
a file with the same name already exists.

SQL*Loader Control File Reference 8-9

Specifying the Bad File

To specify the name of the bad file, use the BADFILE clause, followed by a filename. If
you do not specify a name for the bad file, the name defaults to the name of the
datafile with an extension or file type of . bad. You can also specify the bad file from
the command line with the BAD parameter described in Command-Line Parameters on
page 7-2.

A filename specified on the command line is associated with the first INFILE clause in
the control file, overriding any bad file that may have been specified as part of that
clause.

The bad file is created in the same record and file format as the datafile so that you can
reload the data after you correct it. For datafiles in stream record format, the record
terminator that is found in the datafile is also used in the bad file.

The syntax for the bad file is as follows:

[->| BADFILE Kfilenameh

The BADFILE clause specifies that a filename for the bad file follows.

The f£ilename parameter specifies a valid filename specification for your platform.
Any spaces or punctuation marks in the filename must be enclosed in single quotation
marks.

Examples of Specifying a Bad File Name

To specify a bad file with filename sample and default file extension or file type of
.bad, enter:

BADFILE sample
To specify a bad file with filename bad0001 and file extension or file type of .rej,
enter either of the following lines:

BADFILE bad0001.rej
BADFILE '/REJECT_DIR/bad0001.rej’

How Bad Files Are Handled with LOBFILEs and SDFs

Data from LOBFILEs and SDFs is not written to a bad file when there are rejected
rows. If there is an error loading a LOB, the row is not rejected. Rather, the LOB
column is left empty (not null with a length of zero (0) bytes). However, when the
LOBFILE is being used to load an XML column and there is an error loading this LOB
data, then the XML column is left as null.

Criteria for Rejected Records

A record can be rejected for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a given
datatype).

2. The record is formatted incorrectly so that SQL*Loader cannot find field
boundaries.

3. The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with
unbalanced delimiters), then it is either inserted or rejected.

8-10 Oracle Database Utilities

Specifying the Discard File

Neither a conventional path nor a direct path load will write a row to any table if it is
rejected because of reason number 2 in the previous list.

A conventional path load will not write a row to any tables if reason number 1 or 3 in
the previous list is violated for any one table. The row is rejected for that table and
written to the reject file.

In a conventional path load, if the data file has a record that is being loaded into
multiple tables and that record is rejected from at least one of the tables, then that
record is not loaded into any of the tables.

The log file indicates the Oracle error for each rejected record. Case study 4
demonstrates rejected records. (See SQL*Loader Case Studies on page 6-12 for
information on how to access case studies.)

Specifying the Discard File

During execution, SQL*Loader can create a discard file for records that do not meet
any of the loading criteria. The records contained in this file are called discarded
records. Discarded records do not satisfy any of the WHEN clauses specified in the
control file. These records differ from rejected records. Discarded records do not
necessarily have any bad data. No insert is attempted on a discarded record.

A discard file is created according to the following rules:

= You have specified a discard filename and one or more records fail to satisfy all of
the WHEN clauses specified in the control file. (If the discard file is created, it
overwrites any existing file with the same name, so be sure that you do not
overwrite any files you wish to retain.)

m If no records are discarded, then a discard file is not created.

To create a discard file from within a control file, specify any of the following:
DISCARDFILE filename, DISCARDS, or DISCARDMAX.

To create a discard file from the command line, specify either DISCARD or
DISCARDMAX.

You can specify the discard file directly by specifying its name, or indirectly by
specifying the maximum number of discards.

The discard file is created in the same record and file format as the datafile. For
datafiles in stream record format, the same record terminator that is found in the
datafile is also used in the discard file.

Specifying the Discard File in the Control File

To specify the name of the file, use the DISCARDFILE clause, followed by the
filename.

| DISCARDS q
DISCARDMAX

[->| DISCARDFILE Milenameh

The DISCARDFILE clause specifies that a discard filename follows.

The filename parameter specifies a valid filename specification for your platform.
Any spaces or punctuation marks in the filename must be enclosed in single quotation
marks.

SQL*Loader Control File Reference 8-11

Specifying the Discard File

The default filename is the name of the datafile, and the default file extension or file
type is .dsc. A discard filename specified on the command line overrides one
specified in the control file. If a discard file with that name already exists, it is either
overwritten or a new version is created, depending on your operating system.

Specifying the Discard File from the Command Line

See DISCARD (filename) on page 7-4 for information about how to specify a discard
file from the command line.

A filename specified on the command line overrides any discard file that you may
have specified in the control file.

Examples of Specifying a Discard File Name

The following list shows different ways you can specify a name for the discard file
from within the control file:

» To specify a discard file with filename circular and default file extension or file
type of .dsc:

DISCARDFILE circular
s To specify a discard file named notappl with the file extension or file type of
.may:

DISCARDFILE notappl.may

» To specify a full path to the discard file forget.me:

DISCARDFILE '/discard_dir/forget.me'

Criteria for Discarded Records

If there is no INTO TABLE clause specified for a record, the record is discarded. This
situation occurs when every INTO TABLE clause in the SQL*Loader control file has a
WHEN clause and, either the record fails to match any of them, or all fields are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN clause.
An attempt is made to insert every record into such a table. Therefore, records may be
rejected, but none are discarded.

Case study 7, Extracting Data from a Formatted Report, provides an example of using
a discard file. (See SQL*Loader Case Studies on page 6-12 for information on how to
access case studies.)

How Discard Files Are Handled with LOBFILEs and SDFs

Data from LOBFILEs and SDFs is not written to a discard file when there are
discarded rows.

Limiting the Number of Discarded Records

You can limit the number of records to be discarded for each datafile by specifying an
integer for either the DISCARDS or DISCARDMAX keyword.

When the discard limit is reached, processing of the datafile terminates and continues
with the next datafile, if one exists.

8-12 Oracle Database Utilities

Handling Different Character Encoding Schemes

You can specify a different number of discards for each datafile. Or, if you specify the
number of discards only once, then the maximum number of discards specified
applies to all files.

If you specify a maximum number of discards, but no discard filename, SQL*Loader
creates a discard file with the default filename and file extension or file type.

Handling Different Character Encoding Schemes

SQL*Loader supports different character encoding schemes (called character sets, or
code pages). SQL*Loader uses features of Oracle's globalization support technology to
handle the various single-byte and multibyte character encoding schemes available
today.

See Also: Oracle Database Globalization Support Guide

The following sections provide a brief introduction to some of the supported character
encoding schemes.

Multibyte (Asian) Character Sets

Multibyte character sets support Asian languages. Data can be loaded in multibyte
format, and database object names (fields, tables, and so on) can be specified with
multibyte characters. In the control file, comments and object names can also use
multibyte characters.

Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information from
most languages in a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language. There are two
different encodings for Unicode, UTF-16 and UTEF-8.

Note: In this manual, you will see the terms UTF-16 and UTF16
both used. The term UTF-16 is a general reference to UTF-16
encoding for Unicode. The term UTF16 (no hyphen) is the specific
name of the character set and is what you should specify for the
CHARACTERSET parameter when you want to use UTF-16
encoding. This also applies to UTF-8 and UTES.

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in which the
character codes 0x0000 through 0x007F have the same meaning as the single-byte
ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in which the
character codes 0x00 through 0x7F have the same meaning as ASCIIL. A character in
UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

SQL*Loader Control File Reference 8-13

Handling Different Character Encoding Schemes

See Also:

s Case study 11, Loading Data in the Unicode Character Set (see
SQL*Loader Case Studies on page 6-12 for information on how
to access case studies)

» Oracle Database Globalization Support Guide for more information
about Unicode encoding

Database Character Sets

The Oracle database uses the database character set for data stored in SQL CHAR
datatypes (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table names,
and for SQL statements and PL/SQL source code. Only single-byte character sets and
varying-width character sets that include either ASCII or EBCDIC characters are
supported as database character sets. Multibyte fixed-width character sets (for
example, AL16UTF16) are not supported as the database character set.

An alternative character set can be used in the database for data stored in SQL NCHAR
datatypes (NCHAR, NVARCHAR, and NCLOB). This alternative character set is called the
database national character set. Only Unicode character sets are supported as the
database national character set.

Datafile Character Sets

By default, the datafile is in the character set defined by the NLS_LANG parameter.
The datafile character sets supported with NLS_LANG are the same as those supported
as database character sets. SQL*Loader supports all Oracle-supported character sets in
the datafile (even those not supported as database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as
AL16UTF16 and JA16EUCFIXED) in the datafile. SQL*Loader also supports UTF-16
encoding with little-endian byte ordering. However, the Oracle database supports
only UTF-16 encoding with big-endian byte ordering (AL16UTF16) and only as a
database national character set, not as a database character set.

The character set of the datafile can be set up by using the NL.S_LANG parameter or by
specifying a SQL*Loader CHARACTERSET parameter.

Input Character Conversion

The default character set for all datafiles, if the CHARACTERSET parameter is not
specified, is the session character set defined by the NLS_LANG parameter. The
character set used in input datafiles can be specified with the CHARACTERSET
parameter.

SQL*Loader has the capacity to automatically convert data from the datafile character
set to the database character set or the database national character set, when they
differ.

When data character set conversion is required, the target character set should be a
superset of the source datafile character set. Otherwise, characters that have no
equivalent in the target character set are converted to replacement characters, often a
default character such as a question mark (?). This causes loss of data.

The sizes of the database character types CHAR and VARCHAR2 can be specified in

bytes (byte-length semantics) or in characters (character-length semantics). If they are
specified in bytes, and data character set conversion is required, the converted values
may take more bytes than the source values if the target character set uses more bytes

8-14 Oracle Database Utilities

Handling Different Character Encoding Schemes

than the source character set for any character that is converted. This will result in the
following error message being reported if the larger target value exceeds the size of
the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters and
also by using character sizes in the control file to describe the data. Another way to
avoid this problem is to ensure that the maximum column size is large enough, in
bytes, to hold the c