

Oracle® Database

VLDB and Partitioning Guide

11

g

 Release 1 (11.1)

B32024-01

July 2007

Oracle Database VLDB and Partitioning Guide, 11

g

 Release 1 (11.1)

B32024-01

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Tony Morales

Contributors: Hermann Baer, Steve Fogel, Lilian Hobbs, Paul Lane, Diana Lorentz, Valarie Moore, Mark
Van de Wiel

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface

..

xi

Audience..

xi

Documentation Accessibility ..

xi

Related Documents ..

xii

Conventions ..

xii

1 Introduction to Very Large Databases

Introduction to Partitioning

...

1-1

VLDB and Partitioning

...

1-2

Partitioning As the Foundation for Information Lifecycle Management

.....................................

1-3

Partitioning for Every Database

..

1-3

2 Partitioning Concepts

Basics of Partitioning

...

2-1

Partitioning Key..

2-2

Partitioned Tables ..

2-2

When to Partition a Table ..

2-3

When to Partition an Index..

2-3

Partitioned Index-Organized Tables ...

2-3

System Partitioning..

2-3

Partitioning for Information Lifecycle Management ..

2-3

Partitioning and LOB Data ...

2-4

Benefits of Partitioning

...

2-4

Partitioning for Performance..

2-4

Partition Pruning...

2-4

Partition-Wise Joins ..

2-5

Partitioning for Manageability ...

2-5

Partitioning for Availability..

2-5

Partitioning Strategies

...

2-5

Single-Level Partitioning...

2-6

Range Partitioning ..

2-6

Hash Partitioning ..

2-7

List Partitioning...

2-7

Composite Partitioning ...

2-7

Composite Range-Range Partitioning..

2-8

iv

Composite Range-Hash Partitioning ...

2-8

Composite Range-List Partitioning ..

2-8

Composite List-Range Partitioning ..

2-8

Composite List-Hash Partitioning..

2-8

Composite List-List Partitioning...

2-9

Partitioning Extensions

...

2-9

Manageability Extensions ...

2-9

Interval Partitioning ...

2-9

Partition Advisor...

2-9

Partitioning Key Extensions ..

2-10

Reference Partitioning ...

2-10

Virtual Column-Based Partitioning...

2-11

Overview of Partitioned Indexes

...

2-11

Local Partitioned Indexes...

2-12

Global Partitioned Indexes ..

2-13

Global Range Partitioned Indexes ...

2-13

Global Hash Partitioned Indexes...

2-13

Maintenance of Global Partitioned Indexes...

2-13

Global Non-Partitioned Indexes ...

2-14

Miscellaneous Information about Creating Indexes on Partitioned Tables

2-14

Partitioned Indexes on Composite Partitions ...

2-14

3 Partition Administration

Creating Partitions

...

3-1

Creating Range-Partitioned Tables and Global Indexes ..

3-2

Creating a Range Partitioned Table ...

3-2

Creating a Range-Partitioned Global Index ..

3-3

Creating Interval-Partitioned Tables...

3-4

Creating Hash-Partitioned Tables and Global Indexes ..

3-4

Creating a Hash Partitioned Table ...

3-5

Creating a Hash-Partitioned Global Index..

3-5

Creating List-Partitioned Tables ..

3-6

Creating Reference-Partitioned Tables ...

3-7

Creating Composite Partitioned Tables..

3-8

Creating Composite Range-Hash Partitioned Tables..

3-8

Creating Composite Range-List Partitioned Tables...

3-9

Creating Composite Range-Range Partitioned Tables ...

3-12

Creating Composite List-* Partitioned Tables ...

3-13

Creating Composite Interval-* Partitioned Tables ..

3-16

Using Subpartition Templates to Describe Composite Partitioned Tables

3-18

Specifying a Subpartition Template for a *-Hash Partitioned Table

3-18

Specifying a Subpartition Template for a *-List Partitioned Table

3-19

Using Multicolumn Partitioning Keys ...

3-20

Using Virtual Column-Based Partitioning ..

3-23

Using Table Compression with Partitioned Tables..

3-23

Using Key Compression with Partitioned Indexes ..

3-24

Creating Partitioned Index-Organized Tables..

3-24

v

Creating Range-Partitioned Index-Organized Tables ..

3-25

Creating Hash-Partitioned Index-Organized Tables ..

3-25

Creating List-Partitioned Index-Organized Tables...

3-26

Partitioning Restrictions for Multiple Block Sizes..

3-26

Maintaining Partitions

...

3-27

Updating Indexes Automatically..

3-30

Adding Partitions..

3-32

Adding a Partition to a Range-Partitioned Table..

3-32

Adding a Partition to a Hash-Partitioned Table..

3-32

Adding a Partition to a List-Partitioned Table ..

3-33

Adding a Partition to an Interval-Partitioned Table...

3-33

Adding Partitions to a Composite [Range | List | Interval]-Hash Partitioned Table...

3-34

Adding Partitions to a Composite [Range | List | Interval]-List Partitioned Table

3-34

Adding Partitions to a Composite [Range | List | Interval]-Range Partitioned Table.

3-35

Adding a Partition or Subpartition to a Reference-Partitioned Table..............................

3-36

Adding Index Partitions..

3-36

Coalescing Partitions ..

3-37

Coalescing a Partition in a Hash-Partitioned Table ..

3-37

Coalescing a Subpartition in a *-Hash Partitioned Table...

3-37

Coalescing Hash-partitioned Global Indexes ..

3-37

Dropping Partitions ..

3-38

Dropping Table Partitions ..

3-38

Dropping Interval Partitions ..

3-40

Dropping Index Partitions..

3-40

Exchanging Partitions...

3-40

Exchanging a Range, Hash, or List Partition ...

3-41
Exchanging a Partition of an Interval Partitioned Table.. 3-42
Exchanging a Partition of a Reference Partitioned Table... 3-42
Exchanging a Partition of a Table with Virtual Columns .. 3-42
Exchanging a Hash-Partitioned Table with a *-Hash Partition... 3-43
Exchanging a Subpartition of a *-Hash Partitioned Table ... 3-43
Exchanging a List-Partitioned Table with a *-List Partition .. 3-43
Exchanging a Subpartition of a *-List Partitioned Table .. 3-44
Exchanging a Range-Partitioned Table with a *-Range Partition 3-44
Exchanging a Subpartition of a *-Range Partitioned Table ... 3-45

Merging Partitions .. 3-45
Merging Range Partitions ... 3-46
Merging Interval Partitions .. 3-47
Merging List Partitions.. 3-48
Merging *-Hash Partitions.. 3-48
Merging *-List Partitions... 3-49
Merging *-Range Partitions .. 3-50

Modifying Default Attributes.. 3-51
Modifying Default Attributes of a Table .. 3-51
Modifying Default Attributes of a Partition .. 3-51
Modifying Default Attributes of Index Partitions... 3-51

Modifying Real Attributes of Partitions .. 3-51

vi

Modifying Real Attributes for a Range or List Partition.. 3-51
Modifying Real Attributes for a Hash Partition .. 3-52
Modifying Real Attributes of a Subpartition ... 3-52
Modifying Real Attributes of Index Partitions .. 3-52

Modifying List Partitions: Adding Values .. 3-53
Adding Values for a List Partition .. 3-53
Adding Values for a List Subpartition.. 3-53

Modifying List Partitions: Dropping Values... 3-53
Dropping Values from a List Partition .. 3-54
Dropping Values from a List Subpartition .. 3-54

Modifying a Subpartition Template ... 3-54
Moving Partitions.. 3-55

Moving Table Partitions.. 3-56
Moving Subpartitions.. 3-56
Moving Index Partitions ... 3-56

Redefining Partitions Online ... 3-56
Rebuilding Index Partitions... 3-56

Rebuilding Global Index Partitions... 3-57
Rebuilding Local Index Partitions ... 3-57

Renaming Partitions ... 3-58
Renaming a Table Partition .. 3-58
Renaming a Table Subpartition ... 3-58
Renaming Index Partitions ... 3-58

Splitting Partitions .. 3-58
Splitting a Partition of a Range-Partitioned Table .. 3-59
Splitting a Partition of a List-Partitioned Table ... 3-60
Splitting a Partition of an Interval-Partitioned Table ... 3-60
Splitting a *-Hash Partition... 3-61
Splitting Partitions in a *-List Partitioned Table.. 3-61
Splitting a *-Range Partition... 3-63
Splitting Index Partitions .. 3-65
Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations...................... 3-65

Truncating Partitions .. 3-66
Truncating a Table Partition... 3-66
Truncating a Subpartition... 3-67

Dropping Partitioned Tables... 3-68
Partitioned Tables and Indexes Example .. 3-68
Viewing Information About Partitioned Tables and Indexes .. 3-69

4 Partitioning for Availability, Manageability, and Performance

Partition Pruning .. 4-1
Information that can be Used for Partition Pruning ... 4-2
How to Identify Whether Partition Pruning has been Used.. 4-2
Static Partition Pruning ... 4-3
Dynamic Partition Pruning... 4-3

Dynamic Pruning with Bind Variables.. 4-3
Dynamic Pruning with Subqueries .. 4-4

vii

Dynamic Pruning with Star Transformation .. 4-5
Dynamic Pruning with Nested Loop Joins ... 4-6

Partition Pruning Tips ... 4-7
Datatype Conversions .. 4-7
Function Calls .. 4-9

Partition-Wise Joins .. 4-10
Full Partition-Wise Joins .. 4-10

Full Partition-Wise Joins: Single-Level - Single-Level .. 4-11
Full Partition-Wise Joins: Composite - Single-Level... 4-13
Full Partition-Wise Joins: Composite - Composite.. 4-15

Partial Partition-Wise Joins.. 4-15
Partial Partition-Wise Joins: Single-Level Partitioning... 4-16
Partial Partition-Wise Joins: Composite ... 4-17

Index Partitioning ... 4-19
Local Partitioned Indexes... 4-19

Local Prefixed Indexes .. 4-20
Local Nonprefixed Indexes... 4-20

Global Partitioned Indexes .. 4-21
Prefixed and Nonprefixed Global Partitioned Indexes .. 4-21
Management of Global Partitioned Indexes .. 4-21

Summary of Partitioned Index Types .. 4-22
The Importance of Nonprefixed Indexes... 4-23
Performance Implications of Prefixed and Nonprefixed Indexes.. 4-23
Guidelines for Partitioning Indexes ... 4-24
Physical Attributes of Index Partitions .. 4-24

Partitioning and Table Compression... 4-25
Table Compression and Bitmap Indexes ... 4-26
Example of Table Compression and Partitioning .. 4-26

Recommendations for Choosing a Partitioning Strategy .. 4-27
When to Use Range or Interval Partitioning ... 4-27
When to Use Hash Partitioning .. 4-28
When to Use List Partitioning ... 4-30
When to Use Composite Partitioning... 4-30

When to Use Composite Range-Hash Partitioning... 4-31
When to Use Composite Range-List Partitioning ... 4-31
When to Use Composite Range-Range Partitioning... 4-32
When to Use Composite List-Hash Partitioning ... 4-33
When to Use Composite List-List Partitioning.. 4-33
When to Use Composite List-Range Partitioning ... 4-34

When to Use Interval Partitioning.. 4-35
When to Use Reference Partitioning .. 4-36
When to Partition on Virtual Columns .. 4-36

5 Using Partitioning for Information Lifecycle Management

What Is ILM? ... 5-1
Oracle Database for ILM ... 5-2

Oracle Database Manages All Types of Data.. 5-2

viii

Regulatory Requirements ... 5-2
Implementing ILM Using Oracle Database .. 5-3

Step 1: Define the Data Classes .. 5-3
Partitioning .. 5-4
The Lifecycle of Data .. 5-4

Step 2: Create Storage Tiers for the Data Classes .. 5-5
Assigning Classes to Storage Tiers ... 5-6
The Costs Savings of using Tiered Storage ... 5-6

Step 3: Create Data Access and Migration Policies ... 5-7
Controlling Access to Data .. 5-7
Moving Data using Partitioning ... 5-7

Step 4: Define and Enforce Compliance Policies ... 5-8
Data Retention ... 5-8
Immutability .. 5-8
Privacy .. 5-8
Auditing ... 5-8
Expiration... 5-8

The Benefits of an Online Archive.. 5-9
Oracle ILM Assistant .. 5-10

Lifecycle Setup... 5-11
Logical Storage Tiers ... 5-12
Lifecycle Definitions .. 5-12
Lifecycle Tables .. 5-13
Preferences .. 5-19

Lifecycle Management.. 5-20
Lifecycle Events Calendar... 5-20
Lifecycle Events.. 5-20
Event Scan History... 5-21

Compliance & Security... 5-22
Current Status... 5-22
Digital Signatures and Immutability... 5-22
Privacy & Security.. 5-22
Auditing .. 5-23

Reports .. 5-24
Implementing an ILM System Manually ... 5-24

6 Using Partitioning in a Data Warehouse Environment

What Is a Data Warehouse? .. 6-1
Scalability .. 6-1

Bigger Databases .. 6-2
Bigger Individual tables: More Rows in Tables... 6-2
More Users Querying the System.. 6-2
More Complex Queries ... 6-2

Performance... 6-2
Partition Pruning.. 6-3

Basic Partition Pruning Techniques ... 6-3
Advanced Partition Pruning Techniques .. 6-3

ix

Partition-Wise Joins ... 6-5
Full Partition-Wise Joins .. 6-5
Partial Partition-Wise Joins.. 6-7
Benefits of Partition-Wise Joins... 6-8
Performance Considerations for Parallel Partition-Wise Joins .. 6-9

Indexes and Partitioned Indexes.. 6-9
Local Partitioned Indexes ... 6-10
Non-Partitioned Indexes... 6-11
Global Partitioned Indexes ... 6-11
Partitioning and Data Compression.. 6-12
Materialized Views and Partitioning .. 6-12

Manageability .. 6-14
Partition Exchange Load .. 6-14
Partitioning and Indexes .. 6-15
Partitioning and Materialized View Refresh Strategies .. 6-15
Removing Data from Tables .. 6-15
Partitioning and Data Compression... 6-16
Gathering Statistics on Large Partitioned Tables ... 6-16

7 Using Partitioning in an Online Transaction Processing Environment

What is an OLTP System? ... 7-1
Performance... 7-3

Deciding Whether or not to Partition Indexes ... 7-3
Using Index-Organized Tables ... 7-4

Manageability ... 7-5
Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes 7-5
Impact of a Partition Maintenance Operation on Global Indexes... 7-6
Common Partition Maintenance Operations in OLTP Environments 7-6

Removing (Purging) Old Data .. 7-6
Moving and/or Merging Older Partitions to a Low Cost Storage Tier Device 7-6

8 Backing Up and Recovering VLDBs

Data Warehousing .. 8-1
Data Warehouse Characteristics .. 8-2

Oracle Backup and Recovery ... 8-2
Physical Database Structures Used in Recovering Data... 8-3

Datafiles.. 8-3
Redo Logs... 8-3
Control Files... 8-3

Backup Type ... 8-4
Backup Tools... 8-4

Recovery Manager (RMAN).. 8-5
Oracle Enterprise Manager.. 8-5
Oracle Data Pump... 8-5
User-Managed Backups ... 8-6

Data Warehouse Backup and Recovery.. 8-6

x

Recovery Time Objective (RTO)... 8-6
Recovery Point Objective (RPO) .. 8-7

More Data Means a Longer Backup Window... 8-7
Divide and Conquer ... 8-7

The Data Warehouse Recovery Methodology .. 8-8
Best Practice 1: Use ARCHIVELOG Mode .. 8-8

Is Downtime Acceptable? ... 8-8
Best Practice 2: Use RMAN... 8-9
Best Practice 3: Use Block Change Tracking.. 8-9
Best Practice 4: Use RMAN Multi-Section Backups .. 8-9
Best Practice 5: Leverage Read-Only Tablespaces.. 8-9
Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy 8-10

Extract, Transform, and Load.. 8-11
The ETL Strategy ... 8-11
Incremental Backup .. 8-12
The Incremental Approach .. 8-12
Flashback Database and Guaranteed Restore Points... 8-13

Best Practice 7: Not All Tablespaces Are Created Equal .. 8-13

9 Storage Management for VLDBs

High Availability .. 9-1
Hardware-Based Mirroring .. 9-2

RAID 1 Mirroring.. 9-2
RAID 5 Mirroring.. 9-2

Mirroring using ASM .. 9-2
Performance... 9-3

Hardware-Based Striping ... 9-3
RAID 0 Striping ... 9-3
RAID 5 Striping ... 9-3

Striping Using ASM... 9-4
ILM ... 9-4
Partition Placement.. 9-4
Bigfile Tablespaces ... 9-5

Scalability and Manageability... 9-5
Stripe and Mirror Everything (S.A.M.E.).. 9-5
S.A.M.E. and Manageability ... 9-5

ASM Settings Specific to VLDBs .. 9-6
Monitoring Database Storage Using Database Control ... 9-6

Index

xi

Preface

This book contains an overview of very large database (VLDB) topics, with emphasis
on partitioning as a key component of the VLDB strategy. Partitioning enhances the
performance, manageability, and availability of a wide variety of applications and
helps reduce the total cost of ownership for storing large amounts of data.

Audience
This document is intended for DBAs and developers who create, manage, and write
applications for very large databases (VLDB).

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xii

Related Documents
For more information, see the following documents in the Oracle Database
documentation set:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference

■ Oracle Database Data Warehousing Guide

■ Oracle Database Performance Tuning Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to Very Large Databases 1-1

1
Introduction to Very Large Databases

Modern enterprises frequently run mission-critical databases containing upwards of
several hundred gigabytes and, in many cases, several terabytes of data. These
enterprises are challenged by the support and maintenance requirements of very large
databases (VLDB), and must devise methods to meet those challenges.

This chapter contains an overview of VLDB topics, with emphasis on partitioning as a
key component of the VLDB strategy.

■ Introduction to Partitioning

■ VLDB and Partitioning

■ Partitioning As the Foundation for Information Lifecycle Management

■ Partitioning for Every Database

Introduction to Partitioning
Partitioning addresses key issues in supporting very large tables and indexes by
letting you decompose them into smaller and more manageable pieces called
partitions, which are entirely transparent to an application. SQL queries and DML
statements do not need to be modified in order to access partitioned tables. However,
after partitions are defined, DDL statements can access and manipulate individual
partitions rather than entire tables or indexes. This is how partitioning can simplify the
manageability of large database objects.

Each partition of a table or index must have the same logical attributes, such as
column names, datatypes, and constraints, but each partition can have separate
physical attributes such as compression enabled or disabled, physical storage settings,
and tablespaces.

Partitioning is useful for many different types of applications, particularly applications
that manage large volumes of data. OLTP systems often benefit from improvements in
manageability and availability, while data warehousing systems benefit from
performance and manageability.

Partitioning offers these advantages:

■ It enables data management operations such as data loads, index creation and
rebuilding, and backup/recovery at the partition level, rather than on the entire
table. This results in significantly reduced times for these operations.

Note: Partitioning functionality is available only if you purchase the
Partitioning option.

VLDB and Partitioning

1-2 Oracle Database VLDB and Partitioning Guide

■ It improves query performance. In many cases, the results of a query can be
achieved by accessing a subset of partitions, rather than the entire table. For some
queries, this technique (called partition pruning) can provide order-of-magnitude
gains in performance.

■ It significantly reduces the impact of scheduled downtime for maintenance
operations.

Partition independence for partition maintenance operations lets you perform
concurrent maintenance operations on different partitions of the same table or
index. You can also run concurrent SELECT and DML operations against partitions
that are unaffected by maintenance operations.

■ It increases the availability of mission-critical databases if critical tables and
indexes are divided into partitions to reduce the maintenance windows, recovery
times, and impact of failures.

■ Parallel execution provides specific advantages to optimize resource utilization,
and minimize execution time. Parallel execution against partitioned objects is key
for scalability in a clustered environment. Parallel execution is supported for
queries as well as for DML and DDL.

Partitioning enables faster data access within an Oracle database. Whether a database
has 10 GB or 10 TB of data, partitioning can improve data access by orders of
magnitude. Partitioning can be implemented without requiring any modifications to
your applications. For example, you could convert a nonpartitioned table to a
partitioned table without needing to modify any of the SELECT statements or DML
statements which access that table. You do not need to rewrite your application code to
take advantage of partitioning.

VLDB and Partitioning
A very large database has no minimum absolute size. Although a VLDB is a database
like smaller databases, there are specific challenges in managing a VLDB. These
challenges are related to the sheer size, and the cost-effectiveness of performing
operations against a system that size, taken for granted on smaller databases.

Several trends have been responsible for the steady growth in database size:

■ For a long time, systems have been developed in isolation. Companies have
started to see the benefits of combining these systems to enable cross-departmental
analysis while reducing system maintenance costs. Consolidation of databases and
applications is a key factor in the ongoing growth of database size.

■ Many companies face regulations that set specific requirements for storing data for
a minimum amount of time. The regulations generally result in more data being
stored for longer periods of time.

■ Companies grow organically and through mergers and acquisitions, causing the
amount of generated and processed data to increase. At the same time, the user
population that relies on the database for daily activities increases.

Partitioning is a critical feature for managing very large databases. Growth is the basic
challenge that partitioning addresses for very large databases, and partitioning enables
a "divide and conquer" technique for managing the tables and indexes in the database,
especially as those tables and indexes grow. Partitioning is the feature that allows a
database to scale for very large datasets while maintaining consistent performance,
without unduly increasing administrative or hardware resources. Chapter 4 provides
availability, manageability, and performance considerations for partitioning
implementations.

Partitioning for Every Database

Introduction to Very Large Databases 1-3

Chapter 8 addresses the challenges surrounding backup and recovery for a VLDB.

Storage is a key component of a very large database. Chapter 9 focuses on best
practices for storage in a VLDB.

Partitioning As the Foundation for Information Lifecycle Management
Information Lifecycle Management (ILM) is a set of processes and policies for
managing data throughout its useful life. One important component of an ILM
strategy is determining the most appropriate and cost-effective medium for storing
data at any point during its life time: newer data used in day-to-day operations is
stored on the fastest, most highly-available storage tier, while older data which is
accessed infrequently may be stored on a less-expensive and less-performant storage
tier. Older data may also be updated less frequently in which case it makes sense to
compress and store the data as read-only.

Oracle Database provides the ideal environment for implementing your ILM solution.
Oracle supports multiple storage tiers, and since all of the data remains in the Oracle
database, the use of multiple storage tiers is completely transparent to the application
and the data continues to be completely secure. Partitioning provides the fundamental
technology that enables data in tables to be stored in different partitions.

Although multiple storage tiers and sophisticated ILM policies are most often found in
enterprise-level systems, most companies and most databases need some degree of
information lifecycle management. The most basic of ILM operations, archiving older
data and purging or removing that data from the database, can be orders of magnitude
faster when using partitioning.

Partitioning for Every Database
The benefits of partitioning are not just for very large databases; every database, even
small databases, can benefit from partitioning. While partitioning is a necessity for the
largest databases in the world, partitioning is obviously beneficial for the smaller
database as well. Even a database whose size is measured in megabytes will see the
same type of performance and manageability benefits from partitioning as the largest
multi-terabyte systems.

See Also: Chapter 5, "Using Partitioning for Information Lifecycle
Management" for more details on ILM

See Also:

■ Chapter 6, "Using Partitioning in a Data Warehouse Environment"
for more details on how partitioning can provide benefits in a data
warehouse environment

■ Chapter 7, "Using Partitioning in an Online Transaction
Processing Environment" for more details on how partitioning can
provide benefits in an OLTP environment

Partitioning for Every Database

1-4 Oracle Database VLDB and Partitioning Guide

Partitioning Concepts 2-1

2
Partitioning Concepts

Partitioning enhances the performance, manageability, and availability of a wide
variety of applications and helps reduce the total cost of ownership for storing large
amounts of data. Partitioning allows tables, indexes, and index-organized tables to be
subdivided into smaller pieces, enabling these database objects to be managed and
accessed at a finer level of granularity. Oracle provides a rich variety of partitioning
strategies and extensions to address every business requirement. Moreover, since it is
entirely transparent, partitioning can be applied to almost any application without the
need for potentially expensive and time consuming application changes.

This chapter contains the following topics:

■ Basics of Partitioning

■ Benefits of Partitioning

■ Partitioning Strategies

■ Overview of Partitioned Indexes

Basics of Partitioning
Partitioning allows a table, index, or index-organized table to be subdivided into
smaller pieces, where each piece of such a database object is called a partition. Each
partition has its own name, and may optionally have its own storage characteristics.

From the perspective of a database administrator, a partitioned object has multiple
pieces that can be managed either collectively or individually. This gives the
administrator considerable flexibility in managing partitioned objects. However, from
the perspective of the application, a partitioned table is identical to a non-partitioned
table; no modifications are necessary when accessing a partitioned table using SQL
queries and DML statements.

Figure 2–1 offers a graphical view of how partitioned tables differ from
non-partitioned tables.

Basics of Partitioning

2-2 Oracle Database VLDB and Partitioning Guide

Figure 2–1 A View of Partitioned Tables

Partitioning Key
Each row in a partitioned table is unambiguously assigned to a single partition. The
partitioning key is comprised of one or more columns that determine the partition
where each row will be stored. Oracle automatically directs insert, update, and delete
operations to the appropriate partition through the use of the partitioning key.

Partitioned Tables
Any table can be partitioned into a million separate partitions except those tables
containing columns with LONG or LONG RAW datatypes. You can, however, use tables
containing columns with CLOB or BLOB datatypes.

Note: All partitions of a partitioned object must reside in tablespaces
of a single block size.

See Also: Oracle Database Concepts for more information about
multiple block sizes

Note: To reduce disk usage and memory usage (specifically, the
buffer cache), you can store tables and partitions of a partitioned table
in a compressed format inside the database. This often leads to a
better scaleup for read-only operations. Table compression can also
speed up query execution. There is, however, a slight cost in CPU
overhead.

See Also: Oracle Database Concepts for more information about table
compression

A nonpartitioned table
can have partitioned or
nonpartitioned indexes.

A partitioned table
can have partitioned or
nonpartitioned indexes.

Table 1

January - March January

Table 2

February March

Basics of Partitioning

Partitioning Concepts 2-3

When to Partition a Table
Here are some suggestions for when to partition a table:

■ Tables greater than 2 GB should always be considered as candidates for
partitioning.

■ Tables containing historical data, in which new data is added into the newest
partition. A typical example is a historical table where only the current month's
data is updatable and the other 11 months are read only.

■ When the contents of a table need to be distributed across different types of
storage devices.

When to Partition an Index
Here are some suggestions for when to consider partitioning an index:

■ Avoid rebuilding the entire index when data is removed.

■ Perform maintenance on parts of the data without invalidating the entire index.

■ Reduce the impact of index skew caused by an index on a column with a
monotonically increasing value.

Partitioned Index-Organized Tables
Partitioned index-organized tables are very useful for providing improved
performance, manageability, and availability for index-organized tables.

For partitioning an index-organized table:

■ Partition columns must be a subset of the primary key columns

■ Secondary indexes can be partitioned (both locally and globally)

■ OVERFLOW data segments are always equi-partitioned with the table partitions

System Partitioning
System partitioning enables application-controlled partitioning without having the
database controlling the data placement. The database simply provides the ability to
break down a table into partitions without knowing what the individual partitions are
going to be used for. All aspects of partitioning have to be controlled by the
application. For example, an insertion into a system partitioned table without the
explicit specification of a partition will fail.

System partitioning provides the well-known benefits of partitioning (scalability,
availability, and manageability), but the partitioning and actual data placement are
controlled by the application.

Partitioning for Information Lifecycle Management
Information Lifecycle Management (ILM) is concerned with managing data during its
lifetime. Partitioning plays a key role in ILM because it enables groups of data (that is,
partitions) to be distributed across different types of storage devices and managed
individually.

See Also: Oracle Database Concepts for more information about
index-organized tables

See Also: Oracle Database Data Cartridge Developer's Guide for more
information about system partitioning

Benefits of Partitioning

2-4 Oracle Database VLDB and Partitioning Guide

Partitioning and LOB Data
Unstructured data (such as images and documents) which is stored in a LOB column
in the database can also be partitioned. When a table is partitioned, all the columns
will reside in the tablespace for that partition, with the exception of LOB columns,
which can be stored in their own tablespace.

This technique is very useful when a table is comprised of large LOBs because they
can be stored separately from the main data. This can be beneficial if the main data is
being frequently updated but the LOB data isn't. For example, an employee record
may contain a photo which is unlikely to change frequently. However, the employee
personnel details (such as address, department, manager, and so on) could change.
This approach also means that cheaper storage can be used for storing the LOB data
and more expensive, faster storage used for the employee record.

Benefits of Partitioning
Partitioning can provide tremendous benefit to a wide variety of applications by
improving performance, manageability, and availability. It is not unusual for
partitioning to improve the performance of certain queries or maintenance operations
by an order of magnitude. Moreover, partitioning can greatly simplify common
administration tasks.

Partitioning also enables database designers and administrators to tackle some of the
toughest problems posed by cutting-edge applications. Partitioning is a key tool for
building multi-terabyte systems or systems with extremely high availability
requirements.

Partitioning for Performance
By limiting the amount of data to be examined or operated on, and by providing data
distribution for parallel execution, partitioning provides a number of performance
benefits. These features include:

■ Partition Pruning

■ Partition-Wise Joins

Partition Pruning
Partition pruning is the simplest and also the most substantial means to improve
performance using partitioning. Partition pruning can often improve query
performance by several orders of magnitude. For example, suppose an application
contains an Orders table containing a historical record of orders, and that this table
has been partitioned by week. A query requesting orders for a single week would only
access a single partition of the Orders table. If the Orders table had 2 years of
historical data, then this query would access one partition instead of 104 partitions.
This query could potentially execute 100 times faster simply because of partition
pruning.

Partition pruning works with all of Oracle's other performance features. Oracle will
utilize partition pruning in conjunction with any indexing technique, join technique, or
parallel access method.

See Also: Chapter 5, "Using Partitioning for Information Lifecycle
Management" for more information about Information Lifecycle
Management

Partitioning Strategies

Partitioning Concepts 2-5

Partition-Wise Joins
Partitioning can also improve the performance of multi-table joins by using a
technique known as partition-wise joins. Partition-wise joins can be applied when two
tables are being joined together and both tables are partitioned on the join key, or
when a reference partitioned table is joined with its parent table. Partition-wise joins
break a large join into smaller joins that occur between each of the partitions,
completing the overall join in less time. This offers significant performance benefits
both for serial and parallel execution.

Partitioning for Manageability
Partitioning allows tables and indexes to be partitioned into smaller, more manageable
units, providing database administrators with the ability to pursue a "divide and
conquer" approach to data management. With partitioning, maintenance operations
can be focused on particular portions of tables. For example, a database administrator
could back up a single partition of a table, rather than backing up the entire table. For
maintenance operations across an entire database object, it is possible to perform these
operations on a per-partition basis, thus dividing the maintenance process into more
manageable chunks.

A typical usage of partitioning for manageability is to support a "rolling window" load
process in a data warehouse. Suppose that a DBA loads new data into a table on a
weekly basis. That table could be partitioned so that each partition contains one week
of data. The load process is simply the addition of a new partition using a partition
exchange load. Adding a single partition is much more efficient than modifying the
entire table, since the DBA does not need to modify any other partitions.

Partitioning for Availability
Partitioned database objects provide partition independence. This characteristic of
partition independence can be an important part of a high-availability strategy. For
example, if one partition of a partitioned table is unavailable, then all of the other
partitions of the table remain online and available. The application can continue to
execute queries and transactions against the available partitions for the table, and
these database operations will run successfully, provided they do not need to access
the unavailable partition.

The database administrator can specify that each partition be stored in a separate
tablespace; the most common scenario is having these tablespaces stored on different
storage tiers. Storing different partitions in different tablespaces allows the database
administrator to do backup and recovery operations on each individual partition,
independent of the other partitions in the table. Thus allowing the active parts of the
database to be made available sooner so access to the system can continue, while the
inactive data is still being restored. Moreover, partitioning can reduce scheduled
downtime. The performance gains provided by partitioning may enable database
administrators to complete maintenance operations on large database objects in
relatively small batch windows.

Partitioning Strategies
Oracle Partitioning offers three fundamental data distribution methods as basic
partitioning strategies that control how data is placed into individual partitions:

■ Range

■ Hash

Partitioning Strategies

2-6 Oracle Database VLDB and Partitioning Guide

■ List

Using these data distribution methods, a table can either be partitioned as a single list
or as a composite partitioned table:

■ Single-Level Partitioning

■ Composite Partitioning

Each partitioning strategy has different advantages and design considerations. Thus,
each strategy is more appropriate for a particular situation.

Single-Level Partitioning
A table is defined by specifying one of the following data distribution methodologies,
using one or more columns as the partitioning key:

■ Range Partitioning

■ Hash Partitioning

■ List Partitioning

For example, consider a table with a column of type NUMBER as the partitioning key
and two partitions less_than_five_hundred and less_than_one_thousand.
The less_than_one_thousand partition contains rows where the following
condition is true:

500 <= partitioning key < 1000

Figure 2–2 offers a graphical view of the basic partitioning strategies for a single-level
partitioned table.

Figure 2–2 List, Range, and Hash Partitioning

Range Partitioning
Range partitioning maps data to partitions based on ranges of values of the
partitioning key that you establish for each partition. It is the most common type of
partitioning and is often used with dates. For a table with a date column as the
partitioning key, the January-2005 partition would contain rows with partitioning
key values from 01-Jan-2005 to 31-Jan-2005.

Range
Partitioning

List
Partitioning

Hash
Partitioning

h1

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri

January and
February

March and
April

May and
June

July and
August

h2
h3
h4

Partitioning Strategies

Partitioning Concepts 2-7

Each partition has a VALUES LESS THAN clause, which specifies a non-inclusive upper
bound for the partitions. Any values of the partitioning key equal to or higher than
this literal are added to the next higher partition. All partitions, except the first, have
an implicit lower bound specified by the VALUES LESS THAN clause of the previous
partition.

A MAXVALUE literal can be defined for the highest partition. MAXVALUE represents a
virtual infinite value that sorts higher than any other possible value for the
partitioning key, including the NULL value.

Hash Partitioning
Hash partitioning maps data to partitions based on a hashing algorithm that Oracle
applies to the partitioning key that you identify. The hashing algorithm evenly
distributes rows among partitions, giving partitions approximately the same size.

Hash partitioning is the ideal method for distributing data evenly across devices. Hash
partitioning is also an easy-to-use alternative to range partitioning, especially when
the data to be partitioned is not historical or has no obvious partitioning key.

List Partitioning
List partitioning enables you to explicitly control how rows map to partitions by
specifying a list of discrete values for the partitioning key in the description for each
partition. The advantage of list partitioning is that you can group and organize
unordered and unrelated sets of data in a natural way. For a table with a region
column as the partitioning key, the North America partition might contain values
Canada, USA, and Mexico.

The DEFAULT partition enables you to avoid specifying all possible values for a
list-partitioned table by using a default partition, so that all rows that do not map to
any other partition do not generate an error.

Composite Partitioning
Composite partitioning is a combination of the basic data distribution methods; a table
is partitioned by one data distribution method and then each partition is further
subdivided into subpartitions using a second data distribution method. All
subpartitions for a given partition together represent a logical subset of the data.

Composite partitioning supports historical operations, such as adding new range
partitions, but also provides higher degrees of potential partition pruning and finer
granularity of data placement through subpartitioning. Figure 2–3 offers a graphical
view of range-hash and range-list composite partitioning, as an example.

Note: You cannot change the hashing algorithms used by
partitioning.

Partitioning Strategies

2-8 Oracle Database VLDB and Partitioning Guide

Figure 2–3 Composite Partitioning

■ Composite Range-Range Partitioning

■ Composite Range-Hash Partitioning

■ Composite Range-List Partitioning

■ Composite List-Range Partitioning

■ Composite List-Hash Partitioning

■ Composite List-List Partitioning

Composite Range-Range Partitioning
Composite range-range partitioning enables logical range partitioning along two
dimensions; for example, partition by order_date and range subpartition by
shipping_date.

Composite Range-Hash Partitioning
Composite range-hash partitioning partitions data using the range method, and within
each partition, subpartitions it using the hash method. Composite range-hash
partitioning provides the improved manageability of range partitioning and the data
placement, striping, and parallelism advantages of hash partitioning.

Composite Range-List Partitioning
Composite range-list partitioning partitions data using the range method, and within
each partition, subpartitions it using the list method. Composite range-list partitioning
provides the manageability of range partitioning and the explicit control of list
partitioning for the subpartitions.

Composite List-Range Partitioning
Composite list-range partitioning enables logical range subpartitioning within a given
list partitioning strategy; for example, list partition by country_id and range
subpartition by order_date.

Composite List-Hash Partitioning
Composite list-hash partitioning enables hash subpartitioning of a list-partitioned
object; for example, to enable partition-wise joins.

Composite Partitioning
Range-Hash

h1
h2

h3
h4

h1
h2

h3
h4

h2
h3

h1

h4

h1
h2

h3
h4

March and
April

Composite Partitioning
Range - List

January and
February

May and
June

East Sales Region
New York
Virginia
Florida

West Sales Region
California
Oregon
Hawaii

Central Sales Region
Illinois
Texas
Missouri

Partitioning Extensions

Partitioning Concepts 2-9

Composite List-List Partitioning
Composite list-list partitioning enables logical list partitioning along two dimensions;
for example, list partition by country_id and list subpartition by sales_channel.

Partitioning Extensions
In addition to the basic partitioning strategies, Oracle Database provides partitioning
extensions:

■ Manageability Extensions

■ Partitioning Key Extensions

Manageability Extensions
These extensions significantly enhance the manageability of partitioned tables:

■ Interval Partitioning

■ Partition Advisor

Interval Partitioning
Interval partitioning is an extension of range partitioning which instructs the database
to automatically create partitions of a specified interval when data inserted into the
table exceeds all of the existing range partitions. You must specify at least one range
partition. The range partitioning key value determines the high value of the range
partitions, which is called the transition point, and the database creates interval
partitions for data beyond that transition point. The lower boundary of every interval
partition is the non-inclusive upper boundary of the previous range or interval
partition.

For example, if you create an interval partitioned table with monthly intervals and the
transition point at January 1, 2007, then the lower boundary for the January 2007
interval is January 1, 2007. The lower boundary for the July 2007 interval is July 1,
2007, regardless of whether the June 2007 partition was already created.

When using interval partitioning, consider the following restrictions:

■ You can only specify one partitioning key column, and it must be of NUMBER or
DATE type.

■ Interval partitioning is not supported for index-organized tables.

■ You cannot create a domain index on an interval-partitioned table.

You can create single-level interval partitioned tables as well as the following
composite partitioned tables:

■ Interval-range

■ Interval-hash

■ Interval-list

Partition Advisor
The Partition Advisor is part of the SQL Access Advisor. The Partition Advisor can
recommend a partitioning strategy for a table based on a supplied workload of SQL
statements which can be supplied by the SQL Cache, a SQL Tuning set, or be defined
by the user.

Partitioning Extensions

2-10 Oracle Database VLDB and Partitioning Guide

Partitioning Key Extensions
These extensions extend the flexibility in defining partitioning keys:

■ Reference Partitioning

■ Virtual Column-Based Partitioning

Reference Partitioning
Reference partitioning allows the partitioning of two tables related to one another by
referential constraints. The partitioning key is resolved through an existing
parent-child relationship, enforced by enabled and active primary key and foreign key
constraints.

The benefit of this extension is that tables with a parent-child relationship can be
logically equi-partitioned by inheriting the partitioning key from the parent table
without duplicating the key columns. The logical dependency will also automatically
cascade partition maintenance operations, thus making application development
easier and less error-prone.

An example of reference partitioning is the Orders and OrderItems tables related to
each other by a referential constraint orderid_refconstraint. Namely,
OrderItems.OrderID references Orders.OrderID. The Orders table is range
partitioned on OrderDate. Reference partitioning on orderid_refconstraint for
OrderItems leads to creation of the following partitioned table, which is
equi-partitioned with respect to the Orders table, as shown in Figure 2–4 and
Figure 2–5.

Figure 2–4 Before Reference Partitioning

Table ORDERS

.

Table LINEITEMS

.

Jan 2006 Feb 2006

Jan 2006 Feb 2006

· Redundant storage of order_date
· Redundant maintenance

RANGE(order_date)
Primary Key order_id
Foreign Key order_id

Overview of Partitioned Indexes

Partitioning Concepts 2-11

Figure 2–5 With Reference Partitioning

All basic partitioning strategies are available for reference Partitioning. Interval
partitioning cannot be used with reference partitioning.

Virtual Column-Based Partitioning
In previous releases of the Oracle Database, a table could only be partitioned if the
partitioning key physically existed in the table. In Oracle Database 11g, virtual
columns remove that restriction and allow the partitioning key to be defined by an
expression, using one or more existing columns of a table. The expression is stored as
metadata only.

Oracle Partitioning has been enhanced to allow a partitioning strategy to be defined on
virtual columns. For example, a 10 digit account ID can include account branch
information as the leading 3 digits. With the extension of virtual column based
Partitioning, an ACCOUNTS table containing an ACCOUNT_ID column can be extended
with a virtual (derived) column ACCOUNT_BRANCH that is derived from the first three
digits of the ACCOUNT_ID column, which becomes the partitioning key for this table.

Virtual column-based Partitioning is supported with all basic partitioning strategies,
including interval and interval-* composite partitioning.

Overview of Partitioned Indexes
Just like partitioned tables, partitioned indexes improve manageability, availability,
performance, and scalability. They can either be partitioned independently (global
indexes) or automatically linked to a table's partitioning method (local indexes). In
general, you should use global indexes for OLTP applications and local indexes for
data warehousing or DSS applications. Also, whenever possible, you should try to use
local indexes because they are easier to manage. When deciding what kind of
partitioned index to use, you should consider the following guidelines in order:

1. If the table partitioning column is a subset of the index keys, use a local index. If
this is the case, you are finished. If this is not the case, continue to guideline 2.

Table ORDERS

.

Table LINEITEMS

.

Jan 2006 Feb 2006

Jan 2006 Feb 2006

PARTITION BY REFERENCE
· Partitioning key inherited through
 PK-FK relationship

RANGE(order_date)
Primary Key order_id
Foreign Key order_id

Overview of Partitioned Indexes

2-12 Oracle Database VLDB and Partitioning Guide

2. If the index is unique and does not include the partitioning key columns, then use
a global index. If this is the case, then you are finished. Otherwise, continue to
guideline 3.

3. If your priority is manageability, use a local index. If this is the case, you are
finished. If this is not the case, continue to guideline 4.

4. If the application is an OLTP one and users need quick response times, use a
global index. If the application is a DSS one and users are more interested in
throughput, use a local index.

Local Partitioned Indexes
Local partitioned indexes are easier to manage than other types of partitioned indexes.
They also offer greater availability and are common in DSS environments. The reason
for this is equipartitioning: each partition of a local index is associated with exactly one
partition of the table. This enables Oracle to automatically keep the index partitions in
sync with the table partitions, and makes each table-index pair independent. Any
actions that make one partition's data invalid or unavailable only affect a single
partition.

Local partitioned indexes support more availability when there are partition or
subpartition maintenance operations on the table. A type of index called a local
nonprefixed index is very useful for historical databases. In this type of index, the
partitioning is not on the left prefix of the index columns.

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

A local index can be unique. However, in order for a local index to be unique, the
partitioning key of the table must be part of the index’s key columns.

Figure 2–6 offers a graphical view of local partitioned indexes.

Figure 2–6 Local Partitioned Index

See Also: Chapter 6, "Using Partitioning in a Data Warehouse
Environment" and Chapter 7, "Using Partitioning in an Online
Transaction Processing Environment" for more information about
partitioned indexes and how to decide which type to use

See Also: Chapter 4 for more information about prefixed indexes

Partitioned
Indexes

Partitioned
Tables

Overview of Partitioned Indexes

Partitioning Concepts 2-13

Global Partitioned Indexes
Oracle offers two types of global partitioned indexes: range partitioned and hash
partitioned.

Global Range Partitioned Indexes
Global range partitioned indexes are flexible in that the degree of partitioning and the
partitioning key are independent from the table's partitioning method.

The highest partition of a global index must have a partition bound, all of whose
values are MAXVALUE. This ensures that all rows in the underlying table can be
represented in the index. Global prefixed indexes can be unique or nonunique.

You cannot add a partition to a global index because the highest partition always has a
partition bound of MAXVALUE. If you wish to add a new highest partition, use the
ALTER INDEX SPLIT PARTITION statement. If a global index partition is empty, you
can explicitly drop it by issuing the ALTER INDEX DROP PARTITION statement. If a
global index partition contains data, dropping the partition causes the next highest
partition to be marked unusable. You cannot drop the highest partition in a global
index.

Global Hash Partitioned Indexes
Global hash partitioned indexes improve performance by spreading out contention
when the index is monotonically growing. In other words, most of the index insertions
occur only on the right edge of an index.

Maintenance of Global Partitioned Indexes
By default, the following operations on partitions on a heap-organized table mark all
global indexes as unusable:

ADD (HASH)
COALESCE (HASH)
DROP
EXCHANGE
MERGE
MOVE
SPLIT
TRUNCATE

These indexes can be maintained by appending the clause UPDATE INDEXES to the
SQL statements for the operation. The two advantages to maintaining global indexes:

■ The index remains available and online throughout the operation. Hence no other
applications are affected by this operation.

■ The index doesn't have to be rebuilt after the operation.

Figure 2–7 offers a graphical view of global partitioned indexes.

Note: This feature is supported only for heap-organized tables.

Overview of Partitioned Indexes

2-14 Oracle Database VLDB and Partitioning Guide

Figure 2–7 Global Partitioned Index

Global Non-Partitioned Indexes
Global non-partitioned indexes behave just like a non-partitioned index.

Figure 2–8 offers a graphical view of global non-partitioned indexes.

Figure 2–8 Global Non-Partitioned Index

Miscellaneous Information about Creating Indexes on Partitioned Tables
You can create bitmap indexes on partitioned tables, with the restriction that the
bitmap indexes must be local to the partitioned table. They cannot be global indexes.

Global indexes can be unique. Local indexes can only be unique if the partitioning key
is a part of the index key.

Partitioned Indexes on Composite Partitions
Here are a few points to remember when using partitioned indexes on composite
partitions:

■ Subpartitioned indexes are always local and stored with the table subpartition by
default.

■ Tablespaces can be specified at either index or index subpartition levels.

Partitioned
Indexes

Partitioned
Tables

Index

Partitioned
Tables

Partition Administration 3-1

3
Partition Administration

Partition administration is one of the most important tasks when working with
partitioned tables and indexes. This chapter describes various aspects of creating and
maintaining partitioned tables and indexes, and contains the following topics:

■ Creating Partitions

■ Maintaining Partitions

■ Dropping Partitioned Tables

■ Partitioned Tables and Indexes Example

■ Viewing Information About Partitioned Tables and Indexes

Creating Partitions
Creating a partitioned table or index is very similar to creating a non-partitioned table
or index (as described in Oracle Database Administrator's Guide), but you include a
partitioning clause in the CREATE TABLE statement. The partitioning clause, and
subclauses, that you include depend upon the type of partitioning you want to
achieve.

Partitioning is possible on both regular (heap organized) tables and index-organized
tables, except for those containing LONG or LONG RAW columns. You can create
non-partitioned global indexes, range or hash-partitioned global indexes, and local
indexes on partitioned tables.

When you create (or alter) a partitioned table, a row movement clause (either ENABLE
ROW MOVEMENT or DISABLE ROW MOVEMENT) can be specified. This clause either
enables or disables the migration of a row to a new partition if its key is updated. The
default is DISABLE ROW MOVEMENT.

The following sections present details and examples of creating partitions for the
various types of partitioned tables and indexes:

■ Creating Range-Partitioned Tables and Global Indexes

■ Creating Interval-Partitioned Tables

■ Creating Hash-Partitioned Tables and Global Indexes

■ Creating List-Partitioned Tables

Note: Before you attempt to create a partitioned table or index, or
perform maintenance operations on any partitioned table, it is
recommended that you review the information in Chapter 2,
"Partitioning Concepts".

Creating Partitions

3-2 Oracle Database VLDB and Partitioning Guide

■ Creating Reference-Partitioned Tables

■ Creating Composite Partitioned Tables

■ Using Subpartition Templates to Describe Composite Partitioned Tables

■ Using Multicolumn Partitioning Keys

■ Using Virtual Column-Based Partitioning

■ Using Table Compression with Partitioned Tables

■ Using Key Compression with Partitioned Indexes

■ Creating Partitioned Index-Organized Tables

■ Partitioning Restrictions for Multiple Block Sizes

Creating Range-Partitioned Tables and Global Indexes
The PARTITION BY RANGE clause of the CREATE TABLE statement specifies that the
table or index is to be range-partitioned. The PARTITION clauses identify the
individual partition ranges, and the optional subclauses of a PARTITION clause can
specify physical and other attributes specific to a partition segment. If not overridden
at the partition level, partitions inherit the attributes of their underlying table.

Creating a Range Partitioned Table
The following example creates a table of four partitions, one for each quarter of sales.
The columns sale_year, sale_month, and sale_day are the partitioning
columns, while their values constitute the partitioning key of a specific row. The
VALUES LESS THAN clause determines the partition bound: rows with partitioning
key values that compare less than the ordered list of values specified by the clause are
stored in the partition. Each partition is given a name (sales_q1, sales_q2, ...), and
each partition is contained in a separate tablespace (tsa, tsb, ...).

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 TABLESPACE tsa

See Also:

■ Oracle Database SQL Language Reference for the exact syntax of the
partitioning clauses for creating and altering partitioned tables
and indexes, any restrictions on their use, and specific privileges
required for creating and altering tables

■ Oracle Database Large Objects Developer's Guide for information
specific to creating partitioned tables containing columns with
LOBs or other objects stored as LOBs

■ Oracle Database Object-Relational Developer's Guide for information
specific to creating tables with object types, nested tables, or
VARRAYs

Creating Partitions

Partition Administration 3-3

 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 TABLESPACE tsb
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 TABLESPACE tsc
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 TABLESPACE tsd
);

A row with time_id=17-MAR-2006 would be stored in partition sales_q1_2006.

In the following example, more complexity is added to the example presented earlier
for a range-partitioned table. Storage parameters and a LOGGING attribute are
specified at the table level. These replace the corresponding defaults inherited from the
tablespace level for the table itself, and are inherited by the range partitions. However,
because there was little business in the first quarter, the storage attributes for partition
sales_q1_2006 are made smaller. The ENABLE ROW MOVEMENT clause is specified
to allow the automatic migration of a row to a new partition if an update to a key
value is made that would place the row in a different partition.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 STORAGE (INITIAL 100K NEXT 50K) LOGGING
 PARTITION BY RANGE (time_id)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 TABLESPACE tsa STORAGE (INITIAL 20K NEXT 10K)
 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 TABLESPACE tsb
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 TABLESPACE tsc
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 TABLESPACE tsd
)
 ENABLE ROW MOVEMENT;

Creating a Range-Partitioned Global Index
The rules for creating range-partitioned global indexes are similar to those for creating
range-partitioned tables. The following is an example of creating a range-partitioned
global index on sale_month for the tables created in the preceding examples. Each
index partition is named but is stored in the default tablespace for the index.

CREATE INDEX amount_sold_ix ON sales(amount_sold)
 GLOBAL PARTITION BY RANGE(sale_month)
 (PARTITION p_100 VALUES LESS THAN (100)
 , PARTITION p_1000 VALUES LESS THAN (1000)
 , PARTITION p_10000 VALUES LESS THAN (10000)
 , PARTITION p_100000 VALUES LESS THAN (100000)
 , PARTITION p_1000000 VALUES LESS THAN (1000000)
 , PARTITION p_greater_than_1000000 VALUES LESS THAN (maxvalue)
);

See Also: "Using Multicolumn Partitioning Keys" on page 3-20

Creating Partitions

3-4 Oracle Database VLDB and Partitioning Guide

Creating Interval-Partitioned Tables
The INTERVAL clause of the CREATE TABLE statement establishes interval
partitioning for the table. You must specify at least one range partition using the
PARTITION clause. The range partitioning key value determines the high value of the
range partitions, which is called the transition point, and the database automatically
creates interval partitions for data beyond that transition point. The lower boundary of
every interval partition is the non-inclusive upper boundary of the previous range or
interval partition.

For example, if you create an interval partitioned table with monthly intervals and the
transition point at January 1, 2007, then the lower boundary for the January 2007
interval is January 1, 2007. The lower boundary for the July 2007 interval is July 1,
2007, regardless of whether the June 2007 partition was already created.

For interval partitioning, the partitioning key can only be a single column name from
the table and it must be of NUMBER or DATE type. The optional STORE IN clause lets
you specify one or more tablespaces into which the database will store interval
partition data using a round-robin algorithm for subsequently created interval
partitions.

The following example specifies four partitions with varying widths. It also specifies
that above the transition point of January 1, 2007, partitions are created with a width of
one month.

CREATE TABLE interval_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
 (PARTITION p0 VALUES LESS THAN (TO_DATE('1-1-2005', 'DD-MM-YYYY')),
 PARTITION p1 VALUES LESS THAN (TO_DATE('1-1-2006', 'DD-MM-YYYY')),
 PARTITION p2 VALUES LESS THAN (TO_DATE('1-7-2006', 'DD-MM-YYYY')),
 PARTITION p3 VALUES LESS THAN (TO_DATE('1-1-2007', 'DD-MM-YYYY')));
The high bound of partition p3 represents the transition point. p3 and all partitions
below it (p0, p1, and p2 in this example) are in the range section while all partitions
above it fall into the interval section.

Creating Hash-Partitioned Tables and Global Indexes
The PARTITION BY HASH clause of the CREATE TABLE statement identifies that the
table is to be hash-partitioned. The PARTITIONS clause can then be used to specify the
number of partitions to create, and optionally, the tablespaces to store them in.
Alternatively, you can use PARTITION clauses to name the individual partitions and
their tablespaces.

Note: If your enterprise has or will have databases using different
character sets, use caution when partitioning on character columns,
because the sort sequence of characters is not identical in all character
sets. For more information, see Oracle Database Globalization Support
Guide.

Creating Partitions

Partition Administration 3-5

The only attribute you can specify for hash partitions is TABLESPACE. All of the hash
partitions of a table must share the same segment attributes (except TABLESPACE),
which are inherited from the table level.

Creating a Hash Partitioned Table
The following example creates a hash-partitioned table. The partitioning column is id,
four partitions are created and assigned system generated names, and they are placed
in four named tablespaces (gear1, gear2, ...).

CREATE TABLE scubagear
 (id NUMBER,
 name VARCHAR2 (60))
 PARTITION BY HASH (id)
 PARTITIONS 4
 STORE IN (gear1, gear2, gear3, gear4);

The following examples illustrate two methods of creating a hash-partitioned table
named dept. In the first example the number of partitions is specified, but system
generated names are assigned to them and they are stored in the default tablespace of
the table.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
 PARTITION BY HASH(deptno) PARTITIONS 16;

In the following example, names of individual partitions, and tablespaces in which
they are to reside, are specified. The initial extent size for each hash partition (segment)
is also explicitly stated at the table level, and all partitions inherit this attribute.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
 STORAGE (INITIAL 10K)
 PARTITION BY HASH(deptno)
 (PARTITION p1 TABLESPACE ts1, PARTITION p2 TABLESPACE ts2,
 PARTITION p3 TABLESPACE ts1, PARTITION p4 TABLESPACE ts3);

If you create a local index for this table, the database constructs the index so that it is
equipartitioned with the underlying table. The database also ensures that the index is
maintained automatically when maintenance operations are performed on the
underlying table. The following is an example of creating a local index on the table
dept:

CREATE INDEX loc_dept_ix ON dept(deptno) LOCAL;

You can optionally name the hash partitions and tablespaces into which the local index
partitions are to be stored, but if you do not do so, the database uses the name of the
corresponding base partition as the index partition name, and stores the index
partition in the same tablespace as the table partition.

Creating a Hash-Partitioned Global Index
Hash-partitioned global indexes can improve the performance of indexes where a
small number of leaf blocks in the index have high contention in multiuser OLTP
environments. Hash-partitioned global indexes can also limit the impact of index skew
on monotonously increasing column values. Queries involving the equality and IN
predicates on the index partitioning key can efficiently use hash-partitioned global
indexes.

See Also: "Using Multicolumn Partitioning Keys" on page 3-20

Creating Partitions

3-6 Oracle Database VLDB and Partitioning Guide

The syntax for creating a hash partitioned global index is similar to that used for a
hash partitioned table. For example, the following statement creates a hash-partitioned
global index:

CREATE INDEX hgidx ON tab (c1,c2,c3) GLOBAL
 PARTITION BY HASH (c1,c2)
 (PARTITION p1 TABLESPACE tbs_1,
 PARTITION p2 TABLESPACE tbs_2,
 PARTITION p3 TABLESPACE tbs_3,
 PARTITION p4 TABLESPACE tbs_4);

Creating List-Partitioned Tables
The semantics for creating list partitions are very similar to those for creating range
partitions. However, to create list partitions, you specify a PARTITION BY LIST
clause in the CREATE TABLE statement, and the PARTITION clauses specify lists of
literal values, which are the discrete values of the partitioning columns that qualify
rows to be included in the partition. For list partitioning, the partitioning key can only
be a single column name from the table.

Available only with list partitioning, you can use the keyword DEFAULT to describe
the value list for a partition. This identifies a partition that will accommodate rows
that do not map into any of the other partitions.

As with range partitions, optional subclauses of a PARTITION clause can specify
physical and other attributes specific to a partition segment. If not overridden at the
partition level, partitions inherit the attributes of their parent table.

The following example creates a list-partitioned table. It creates table q1_sales_by_
region which is partitioned by regions consisting of groups of U.S. states.

CREATE TABLE q1_sales_by_region
 (deptno number,
 deptname varchar2(20),
 quarterly_sales number(10, 2),
 state varchar2(2))
 PARTITION BY LIST (state)
 (PARTITION q1_northwest VALUES ('OR', 'WA'),
 PARTITION q1_southwest VALUES ('AZ', 'UT', 'NM'),
 PARTITION q1_northeast VALUES ('NY', 'VM', 'NJ'),
 PARTITION q1_southeast VALUES ('FL', 'GA'),
 PARTITION q1_northcentral VALUES ('SD', 'WI'),
 PARTITION q1_southcentral VALUES ('OK', 'TX'));

A row is mapped to a partition by checking whether the value of the partitioning
column for a row matches a value in the value list that describes the partition.

For example, some sample rows are inserted as follows:

■ (10, 'accounting', 100, 'WA') maps to partition q1_northwest

■ (20, 'R&D', 150, 'OR') maps to partition q1_northwest

■ (30, 'sales', 100, 'FL') maps to partition q1_southeast

■ (40, 'HR', 10, 'TX') maps to partition q1_southwest

■ (50, 'systems engineering', 10, 'CA') does not map to any partition in the table and
raises an error

Unlike range partitioning, with list partitioning, there is no apparent sense of order
between partitions. You can also specify a default partition into which rows that do

Creating Partitions

Partition Administration 3-7

not map to any other partition are mapped. If a default partition were specified in the
preceding example, the state CA would map to that partition.

The following example creates table sales_by_region and partitions it using the list
method. The first two PARTITION clauses specify physical attributes, which override
the table-level defaults. The remaining PARTITION clauses do not specify attributes
and those partitions inherit their physical attributes from table-level defaults. A
default partition is also specified.

CREATE TABLE sales_by_region (item# INTEGER, qty INTEGER,
 store_name VARCHAR(30), state_code VARCHAR(2),
 sale_date DATE)
 STORAGE(INITIAL 10K NEXT 20K) TABLESPACE tbs5
 PARTITION BY LIST (state_code)
 (
 PARTITION region_east
 VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')
 STORAGE (INITIAL 20K NEXT 40K PCTINCREASE 50)
 TABLESPACE tbs8,
 PARTITION region_west
 VALUES ('CA','AZ','NM','OR','WA','UT','NV','CO')
 NOLOGGING,
 PARTITION region_south
 VALUES ('TX','KY','TN','LA','MS','AR','AL','GA'),
 PARTITION region_central
 VALUES ('OH','ND','SD','MO','IL','MI','IA'),
 PARTITION region_null
 VALUES (NULL),
 PARTITION region_unknown
 VALUES (DEFAULT)
);

Creating Reference-Partitioned Tables
To create a reference-partitioned table, you specify a PARTITION BY REFERENCE
clause in the CREATE TABLE statement. This clause specifies the name of a referential
constraint and this constraint becomes the partitioning referential constraint that is
used as the basis for reference partitioning in the table. The referential constraint must
be enabled and enforced.

As with other partitioned tables, you can specify object-level default attributes, and
you can optionally specify partition descriptors that override the object-level defaults
on a per-partition basis.

The following example creates a parent table orders which is range-partitioned on
order_date. The reference-partitioned child table order_items is created with four
partitions, Q1_2005, Q2_2005, Q3_2005, and Q4_2005, where each partition
contains the order_items rows corresponding to orders in the respective parent
partition.

CREATE TABLE orders
 (order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT orders_pk PRIMARY KEY(order_id)

Creating Partitions

3-8 Oracle Database VLDB and Partitioning Guide

)
 PARTITION BY RANGE(order_date)
 (PARTITION Q1_2005 VALUES LESS THAN (TO_DATE('01-APR-2005','DD-MON-YYYY')),
 PARTITION Q2_2005 VALUES LESS THAN (TO_DATE('01-JUL-2005','DD-MON-YYYY')),
 PARTITION Q3_2005 VALUES LESS THAN (TO_DATE('01-OCT-2005','DD-MON-YYYY')),
 PARTITION Q4_2005 VALUES LESS THAN (TO_DATE('01-JAN-2006','DD-MON-YYYY'))
);

CREATE TABLE order_items
 (order_id NUMBER(12) NOT NULL,
 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT order_items_fk
 FOREIGN KEY(order_id) REFERENCES orders(order_id)
)
 PARTITION BY REFERENCE(order_items_fk);

If partition descriptors are provided, then the number of partitions described must
exactly equal the number of partitions or subpartitions in the referenced table. If the
parent table is a composite partitioned table, then the table will have one partition for
each subpartition of its parent; otherwise the table will have one partition for each
partition of its parent.

Partition bounds cannot be specified for the partitions of a reference-partitioned table.

The partitions of a reference-partitioned table can be named. If a partition is not
explicitly named, then it will inherit its name from the corresponding partition in the
parent table, unless this inherited name conflicts with one of the explicit names given.
In this case, the partition will have a system-generated name.

Partitions of a reference-partitioned table will collocate with the corresponding
partition of the parent table, if no explicit tablespace is specified for the
reference-partitioned table's partition.

Creating Composite Partitioned Tables
To create a composite partitioned table, you start by using the PARTITION BY [
RANGE | LIST] clause of a CREATE TABLE statement. Next, you specify a
SUBPARTITION BY [RANGE | LIST | HASH] clause that follows similar syntax
and rules as the PARTITION BY [RANGE | LIST | HASH] clause. The
individual PARTITION and SUBPARTITION or SUBPARTITIONS clauses, and
optionally a SUBPARTITION TEMPLATE clause, follow.

Creating Composite Range-Hash Partitioned Tables
The following statement creates a range-hash partitioned table. In this example, four
range partitions are created, each containing eight subpartitions. Because the
subpartitions are not named, system generated names are assigned, but the STORE IN
clause distributes them across the 4 specified tablespaces (ts1, ...,ts4).

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)

Creating Partitions

Partition Administration 3-9

)
 PARTITION BY RANGE (time_id) SUBPARTITION BY HASH (cust_id)
 SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
 (PARTITION sales_q1_2006 VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
 , PARTITION sales_q2_2006 VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
 , PARTITION sales_q3_2006 VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 , PARTITION sales_q4_2006 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
);

The partitions of a range-hash partitioned table are logical structures only, as their data
is stored in the segments of their subpartitions. As with partitions, these subpartitions
share the same logical attributes. Unlike range partitions in a range-partitioned table,
the subpartitions cannot have different physical attributes from the owning partition,
although they are not required to reside in the same tablespace.

Attributes specified for a range partition apply to all subpartitions of that partition.
You can specify different attributes for each range partition, and you can specify a
STORE IN clause at the partition level if the list of tablespaces across which the
subpartitions of that partition should be spread is different from those of other
partitions. All of this is illustrated in the following example.

CREATE TABLE emp (deptno NUMBER, empname VARCHAR(32), grade NUMBER)
 PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
 SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000)
 STORE IN (ts2, ts4, ts6, ts8),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
 (SUBPARTITION p3_s1 TABLESPACE ts4,
 SUBPARTITION p3_s2 TABLESPACE ts5));

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

The following statement is an example of creating a local index on the emp table where
the index segments are spread across tablespaces ts7, ts8, and ts9.

CREATE INDEX emp_ix ON emp(deptno)
 LOCAL STORE IN (ts7, ts8, ts9);

This local index is equipartitioned with the base table as follows:

■ It consists of as many partitions as the base table.

■ Each index partition consists of as many subpartitions as the corresponding base
table partition.

■ Index entries for rows in a given subpartition of the base table are stored in the
corresponding subpartition of the index.

Creating Composite Range-List Partitioned Tables
The range partitions of a range-list composite partitioned table are described as for
non-composite range partitioned tables. This allows that optional subclauses of a
PARTITION clause can specify physical and other attributes, including tablespace,
specific to a partition segment. If not overridden at the partition level, partitions
inherit the attributes of their underlying table.

The list subpartition descriptions, in the SUBPARTITION clauses, are described as for
non-composite list partitions, except the only physical attribute that can be specified is

Creating Partitions

3-10 Oracle Database VLDB and Partitioning Guide

a tablespace (optional). Subpartitions inherit all other physical attributes from the
partition description.

The following example illustrates how range-list partitioning might be used. The
example tracks sales data of products by quarters and within each quarter, groups it
by specified states.

CREATE TABLE quarterly_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 TABLESPACE ts4
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('1-APR-1999','DD-MON-YYYY'))
 (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q1_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('1-JUL-1999','DD-MON-YYYY'))
 (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY'))
 (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q3_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q3_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q3_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q3_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
 (SUBPARTITION q4_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q4_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q4_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q4_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q4_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q4_1999_southcentral VALUES ('OK', 'TX')
)
);
A row is mapped to a partition by checking whether the value of the partitioning
column for a row falls within a specific partition range. The row is then mapped to a
subpartition within that partition by identifying the subpartition whose descriptor
value list contains a value matching the subpartition column value.

For example, some sample rows are inserted as follows:

■ (10, 4532130, '23-Jan-1999', 8934.10, 'WA') maps to subpartition q1_1999_
northwest

■ (20, 5671621, '15-May-1999', 49021.21, 'OR') maps to subpartition q2_1999_
northwest

■ (30, 9977612, '07-Sep-1999', 30987.90, 'FL') maps to subpartition q3_1999_
southeast

Creating Partitions

Partition Administration 3-11

■ (40, 9977612, '29-Nov-1999', 67891.45, 'TX') maps to subpartition q4_1999_
southcentral

■ (40, 4532130, '5-Jan-2000', 897231.55, 'TX') does not map to any partition in the
table and raises an error

■ (50, 5671621, '17-Dec-1999', 76123.35, 'CA') does not map to any subpartition in the
table and raises an error

The partitions of a range-list partitioned table are logical structures only, as their data
is stored in the segments of their subpartitions. The list subpartitions have the same
characteristics as list partitions. You can specify a default subpartition, just as you
specify a default partition for list partitioning.

The following example creates a table that specifies a tablespace at the partition and
subpartition levels. The number of subpartitions within each partition varies, and
default subpartitions are specified.

CREATE TABLE sample_regional_sales
 (deptno number, item_no varchar2(20),
 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('1-APR-1999','DD-MON-YYYY'))
 TABLESPACE tbs_1
 (SUBPARTITION q1_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('1-JUL-1999','DD-MON-YYYY'))
 TABLESPACE tbs_2
 (SUBPARTITION q2_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q2_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q2_1999_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q2_1999_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q2_1999_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q2_1999_southcentral VALUES ('OK', 'TX')
),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('1-OCT-1999','DD-MON-YYYY'))
 TABLESPACE tbs_3
 (SUBPARTITION q3_1999_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q3_1999_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q3_others VALUES (DEFAULT) TABLESPACE tbs_4
),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
 TABLESPACE tbs_4
);

This example results in the following subpartition descriptions:

■ All subpartitions inherit their physical attributes, other than tablespace, from
tablespace level defaults. This is because the only physical attribute that has been
specified for partitions or subpartitions is tablespace. There are no table level
physical attributes specified, thus tablespace level defaults are inherited at all
levels.

■ The first 4 subpartitions of partition q1_1999 are all contained in tbs_1, except
for the subpartition q1_others, which is stored in tbs_4 and contains all rows
that do not map to any of the other partitions.

Creating Partitions

3-12 Oracle Database VLDB and Partitioning Guide

■ The 6 subpartitions of partition q2_1999 are all stored in tbs_2.

■ The first 2 subpartitions of partition q3_1999 are all contained in tbs_3, except
for the subpartition q3_others, which is stored in tbs_4 and contains all rows
that do not map to any of the other partitions.

■ There is no subpartition description for partition q4_1999. This results in one
default subpartition being created and stored in tbs_4. The subpartition name is
system generated in the form SYS_SUBPn.

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables".

Creating Composite Range-Range Partitioned Tables
The range partitions of a range-range composite partitioned table are described as for
non-composite range partitioned tables. This allows that optional subclauses of a
PARTITION clause can specify physical and other attributes, including tablespace,
specific to a partition segment. If not overridden at the partition level, partitions
inherit the attributes of their underlying table.

The range subpartition descriptions, in the SUBPARTITION clauses, are described as
for non-composite range partitions, except the only physical attribute that can be
specified is an optional tablespace. Subpartitions inherit all other physical attributes
from the partition description.

The following example illustrates how range-range partitioning might be used. The
example tracks shipments. The service level agreement with the customer states that
every order will be delivered in the calendar month after the order was placed. The
following types of orders are identified:

■ E (EARLY): orders that are delivered before the the middle of the next month after
the order was placed. These orders likely exceed customers' expectations.

■ A (AGREED): orders that are delivered in the calendar month after the order was
placed (but not early orders).

■ L (LATE): orders that were only delivered starting the second calendar month after
the order was placed.

CREATE TABLE shipments
(order_id NUMBER NOT NULL
, order_date DATE NOT NULL
, delivery_date DATE NOT NULL
, customer_id NUMBER NOT NULL
, sales_amount NUMBER NOT NULL
)
PARTITION BY RANGE (order_date)
SUBPARTITION BY RANGE (delivery_date)
(PARTITION p_2006_jul VALUES LESS THAN (TO_DATE('01-AUG-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_jul_e VALUES LESS THAN (TO_DATE('15-AUG-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_jul_a VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_jul_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_aug VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_aug_e VALUES LESS THAN (TO_DATE('15-SEP-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_aug_a VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_aug_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_sep VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_sep_e VALUES LESS THAN (TO_DATE('15-OCT-2006','dd-MON-yyyy'))

Creating Partitions

Partition Administration 3-13

 , SUBPARTITION p06_sep_a VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_sep_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_oct VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_oct_e VALUES LESS THAN (TO_DATE('15-NOV-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_oct_a VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_oct_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_nov VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
 (SUBPARTITION p06_nov_e VALUES LESS THAN (TO_DATE('15-DEC-2006','dd-MON-yyyy'))
 , SUBPARTITION p06_nov_a VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_nov_l VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_2006_dec VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
 (SUBPARTITION p06_dec_e VALUES LESS THAN (TO_DATE('15-JAN-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_dec_a VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy'))
 , SUBPARTITION p06_dec_l VALUES LESS THAN (MAXVALUE)
)
);

A row is mapped to a partition by checking whether the value of the partitioning
column for a row falls within a specific partition range. The row is then mapped to a
subpartition within that partition by identifying whether the value of the
subpartitioning column falls within a specific range. For example, a shipment with an
order date in September 2006 and a delivery date of October 28, 2006 falls in partition
p06_oct_a.

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

Creating Composite List-* Partitioned Tables
The concepts of list-hash, list-list, and list-range composite partitioning are similar to
the concepts for range-hash, range-list, and range-range partitioning. This time,
however, you specify PARTITION BY LIST to define the partitioning strategy.

The list partitions of a list-* composite partitioned table are described as for
non-composite range partitioned tables. This allows that optional subclauses of a
PARTITION clause can specify physical and other attributes, including tablespace,
specific to a partition segment. If not overridden at the partition level, then partitions
inherit the attributes of their underlying table.

The subpartition descriptions, in the SUBPARTITION or SUBPARTITIONS clauses, are
described as for range-* composite partitioning methods.

See Also:

■ "Creating Composite Range-Hash Partitioned Tables" on page 3-8
for more details on the subpartition definition of a list-hash
composite partitioning method

■ "Creating Composite Range-List Partitioned Tables" on page 3-9
for more details on the subpartition definition of a list-list
composite partitioning method

■ "Creating Composite Range-Range Partitioned Tables" on
page 3-12 for more details on the subpartition definition of a
list-range composite partitioning method

Creating Partitions

3-14 Oracle Database VLDB and Partitioning Guide

The following sections show examples for the different list-* composite partitioning
methods.

Creating Composite List-Hash Partitioned Tables The following example shows an
accounts table that is list partitioned by region and subpartitioned using hash by
customer identifier.

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, balance NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY HASH (customer_id) SUBPARTITIONS 8
(PARTITION p_northwest VALUES ('OR', 'WA')
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
, PARTITION p_southeast VALUES ('FL', 'GA')
, PARTITION p_northcentral VALUES ('SD', 'WI')
, PARTITION p_southcentral VALUES ('OK', 'TX')
);

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

Creating Composite List-List Partitioned Tables The following example shows an
accounts table that is list partitioned by region and subpartitioned using list by
account status.

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, balance NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY LIST (status)
(PARTITION p_northwest VALUES ('OR', 'WA')
 (SUBPARTITION p_nw_bad VALUES ('B')
 , SUBPARTITION p_nw_average VALUES ('A')
 , SUBPARTITION p_nw_good VALUES ('G')
)
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 (SUBPARTITION p_sw_bad VALUES ('B')
 , SUBPARTITION p_sw_average VALUES ('A')
 , SUBPARTITION p_sw_good VALUES ('G')
)
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 (SUBPARTITION p_ne_bad VALUES ('B')
 , SUBPARTITION p_ne_average VALUES ('A')
 , SUBPARTITION p_ne_good VALUES ('G')
)

Creating Partitions

Partition Administration 3-15

, PARTITION p_southeast VALUES ('FL', 'GA')
 (SUBPARTITION p_se_bad VALUES ('B')
 , SUBPARTITION p_se_average VALUES ('A')
 , SUBPARTITION p_se_good VALUES ('G')
)
, PARTITION p_northcentral VALUES ('SD', 'WI')
 (SUBPARTITION p_nc_bad VALUES ('B')
 , SUBPARTITION p_nc_average VALUES ('A')
 , SUBPARTITION p_nc_good VALUES ('G')
)
, PARTITION p_southcentral VALUES ('OK', 'TX')
 (SUBPARTITION p_sc_bad VALUES ('B')
 , SUBPARTITION p_sc_average VALUES ('A')
 , SUBPARTITION p_sc_good VALUES ('G')
)
);

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

Creating Composite List-Range Partitioned Tables The following example shows an
accounts table that is list partitioned by region and subpartitioned using range by
account balance. Note that row movement is enabled. Subpartitions for different list
partitions could have different ranges specified.

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, balance NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY RANGE (balance)
(PARTITION p_northwest VALUES ('OR', 'WA')
 (SUBPARTITION p_nw_low VALUES LESS THAN (1000)
 , SUBPARTITION p_nw_average VALUES LESS THAN (10000)
 , SUBPARTITION p_nw_high VALUES LESS THAN (100000)
 , SUBPARTITION p_nw_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 (SUBPARTITION p_sw_low VALUES LESS THAN (1000)
 , SUBPARTITION p_sw_average VALUES LESS THAN (10000)
 , SUBPARTITION p_sw_high VALUES LESS THAN (100000)
 , SUBPARTITION p_sw_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 (SUBPARTITION p_ne_low VALUES LESS THAN (1000)
 , SUBPARTITION p_ne_average VALUES LESS THAN (10000)
 , SUBPARTITION p_ne_high VALUES LESS THAN (100000)
 , SUBPARTITION p_ne_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southeast VALUES ('FL', 'GA')
 (SUBPARTITION p_se_low VALUES LESS THAN (1000)
 , SUBPARTITION p_se_average VALUES LESS THAN (10000)
 , SUBPARTITION p_se_high VALUES LESS THAN (100000)
 , SUBPARTITION p_se_extraordinary VALUES LESS THAN (MAXVALUE)

Creating Partitions

3-16 Oracle Database VLDB and Partitioning Guide

)
, PARTITION p_northcentral VALUES ('SD', 'WI')
 (SUBPARTITION p_nc_low VALUES LESS THAN (1000)
 , SUBPARTITION p_nc_average VALUES LESS THAN (10000)
 , SUBPARTITION p_nc_high VALUES LESS THAN (100000)
 , SUBPARTITION p_nc_extraordinary VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_southcentral VALUES ('OK', 'TX')
 (SUBPARTITION p_sc_low VALUES LESS THAN (1000)
 , SUBPARTITION p_sc_average VALUES LESS THAN (10000)
 , SUBPARTITION p_sc_high VALUES LESS THAN (100000)
 , SUBPARTITION p_sc_extraordinary VALUES LESS THAN (MAXVALUE)
)
) ENABLE ROW MOVEMENT;

To learn how using a subpartition template can simplify the specification of a
composite partitioned table, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

Creating Composite Interval-* Partitioned Tables
The concepts of interval-* composite partitioning are similar to the concepts for
range-* partitioning. However, you extend the PARTITION BY RANGE clause to
include the INTERVAL definition. You must specify at least one range partition using
the PARTITION clause. The range partitioning key value determines the high value of
the range partitions, which is called the transition point, and the database
automatically creates interval partitions for data beyond that transition point.

The subpartitions for intervals in an interval-* partitioned table will be created when
the database creates the interval. You can specify the definition of future subpartitions
only through the use of a subpartition template. To learn more about how to use a
subpartition template, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

Creating Composite Interval-Hash Partitioned Tables You can create an interval-hash
partitioned table with multiple hash partitions using one of the following methods:

■ Specify a number of hash partitions in the PARTITIONS clause.

■ Use a subpartition template.

If you do not use either of these methods, then future interval partitions will only get a
single hash subpartition.

The following example shows the sales table, interval partitioned using monthly
intervals on time_id, with hash subpartitions by cust_id. Note that this example
specifies a number of hash partitions, without any specific tablespace assignment to
the individual hash partitions.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY HASH (cust_id) SUBPARTITIONS 4
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy')))

Creating Partitions

Partition Administration 3-17

PARALLEL;

The following example shows the same sales table, interval partitioned using
monthly intervals on time_id, again with hash subpartitions by cust_id. This time,
however, individual hash partitions will be stored in separate tablespaces. Note that
the subpartition template is used in order to define the tablespace assignment for
future hash subpartitions. To learn more about how to use a subpartition template, see
"Using Subpartition Templates to Describe Composite Partitioned Tables" on
page 3-18.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY hash(cust_id)
 SUBPARTITION template
 (SUBPARTITION p1 TABLESPACE ts1
 , SUBPARTITION p2 TABLESPACE ts2
 , SUBPARTITION p3 TABLESPACE ts3
 , SUBPARTITION P4 TABLESPACE ts4
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy'))
) PARALLEL;

Creating Composite Interval-List Partitioned Tables The only way to define list subpartitions
for future interval partitions is through the use of the subpartition template. If you do
not use the subpartitioning template, then the only subpartition that will be created for
every interval partition is a DEFAULT subpartition. To learn more about how to use a
subpartition template, see "Using Subpartition Templates to Describe Composite
Partitioned Tables" on page 3-18.

The following example shows the sales table, interval partitioned using daily
intervals on time_id, with list subpartitions by channel_id.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY RANGE(amount_sold)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_low VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (4000)
 , SUBPARTITION p_high VALUES LESS THAN (8000)
 , SUBPARTITION p_ultimate VALUES LESS THAN (maxvalue)
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy')))
PARALLEL;

Creating Partitions

3-18 Oracle Database VLDB and Partitioning Guide

Creating Composite Interval-Range Partitioned Tables The only way to define range
subpartitions for future interval partitions is through the use of the subpartition
template. If you do not use the subpartition template, then the only subpartition that
will be created for every interval partition is a range subpartition with the MAXVALUE
upper boundary. To learn more about how to use a subpartition template, see "Using
Subpartition Templates to Describe Composite Partitioned Tables" on page 3-18.

The following example shows the sales table, interval partitioned using daily
intervals on time_id, with range subpartitions by amount_sold.

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
 SUBPARTITION BY LIST (channel_id)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_catalog VALUES ('C')
 , SUBPARTITION p_internet VALUES ('I')
 , SUBPARTITION p_partners VALUES ('P')
 , SUBPARTITION p_direct_sales VALUES ('S')
 , SUBPARTITION p_tele_sales VALUES ('T')
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy')))
PARALLEL;

Using Subpartition Templates to Describe Composite Partitioned Tables
You can create subpartitions in a composite partitioned table using a subpartition
template. A subpartition template simplifies the specification of subpartitions by not
requiring that a subpartition descriptor be specified for every partition in the table.
Instead, you describe subpartitions only once in a template, then apply that
subpartition template to every partition in the table. For interval-* composite
partitioned tables, the subpartition template is the only way to define subpartitions for
interval partitions.

The subpartition template is used whenever a subpartition descriptor is not specified
for a partition. If a subpartition descriptor is specified, then it is used instead of the
subpartition template for that partition. If no subpartition template is specified, and no
subpartition descriptor is supplied for a partition, then a single default subpartition is
created.

Specifying a Subpartition Template for a *-Hash Partitioned Table
In the case of [range | interval | list]-hash partitioned tables, the subpartition template
can describe the subpartitions in detail, or it can specify just the number of hash
subpartitions.

The following example creates a range-hash partitioned table using a subpartition
template:

CREATE TABLE emp_sub_template (deptno NUMBER, empname VARCHAR(32), grade NUMBER)

Creating Partitions

Partition Administration 3-19

 PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
 SUBPARTITION TEMPLATE
 (SUBPARTITION a TABLESPACE ts1,
 SUBPARTITION b TABLESPACE ts2,
 SUBPARTITION c TABLESPACE ts3,
 SUBPARTITION d TABLESPACE ts4
)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2000),
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

This example produces the following table description:

■ Every partition has four subpartitions as described in the subpartition template.

■ Each subpartition has a tablespace specified. It is required that if a tablespace is
specified for one subpartition in a subpartition template, then one must be
specified for all.

■ The names of the subpartitions, unless you use interval-* subpartitioning, are
generated by concatenating the partition name with the subpartition name in the
form:

partition name_subpartition name

For interval-* subpartitioning, the subpartition names are system-generated in the
form:

SYS_SUBPn

The following query displays the subpartition names and tablespaces:

SQL> SELECT TABLESPACE_NAME, PARTITION_NAME, SUBPARTITION_NAME
 2 FROM DBA_TAB_SUBPARTITIONS WHERE TABLE_NAME='EMP_SUB_TEMPLATE'
 3 ORDER BY TABLESPACE_NAME;

TABLESPACE_NAME PARTITION_NAME SUBPARTITION_NAME
--------------- --------------- ------------------
TS1 P1 P1_A
TS1 P2 P2_A
TS1 P3 P3_A
TS2 P1 P1_B
TS2 P2 P2_B
TS2 P3 P3_B
TS3 P1 P1_C
TS3 P2 P2_C
TS3 P3 P3_C
TS4 P1 P1_D
TS4 P2 P2_D
TS4 P3 P3_D

12 rows selected.

Specifying a Subpartition Template for a *-List Partitioned Table
The following example, for a range-list partitioned table, illustrates how using a
subpartition template can help you stripe data across tablespaces. In this example a
table is created where the table subpartitions are vertically striped, meaning that
subpartition n from every partition is in the same tablespace.

CREATE TABLE stripe_regional_sales
 (deptno number, item_no varchar2(20),

Creating Partitions

3-20 Oracle Database VLDB and Partitioning Guide

 txn_date date, txn_amount number, state varchar2(2))
 PARTITION BY RANGE (txn_date)
 SUBPARTITION BY LIST (state)
 SUBPARTITION TEMPLATE
 (SUBPARTITION northwest VALUES ('OR', 'WA') TABLESPACE tbs_1,
 SUBPARTITION southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE tbs_2,
 SUBPARTITION northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE tbs_3,
 SUBPARTITION southeast VALUES ('FL', 'GA') TABLESPACE tbs_4,
 SUBPARTITION midwest VALUES ('SD', 'WI') TABLESPACE tbs_5,
 SUBPARTITION south VALUES ('AL', 'AK') TABLESPACE tbs_6,
 SUBPARTITION others VALUES (DEFAULT) TABLESPACE tbs_7
)
 (PARTITION q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION q4_1999 VALUES LESS THAN (TO_DATE('1-JAN-2000','DD-MON-YYYY'))
);

If you specified the tablespaces at the partition level (for example, tbs_1 for partition
q1_1999, tbs_2 for partition q2_1999, tbs_3 for partition q3_1999, and tbs_4 for
partition q4_1999) and not in the subpartition template, then the table would be
horizontally striped. All subpartitions would be in the tablespace of the owning
partition.

Using Multicolumn Partitioning Keys
For range-partitioned and hash-partitioned tables, you can specify up to 16
partitioning key columns. Multicolumn partitioning should be used when the
partitioning key is composed of several columns and subsequent columns define a
higher granularity than the preceding ones. The most common scenario is a
decomposed DATE or TIMESTAMP key, consisting of separated columns, for year,
month, and day.

In evaluating multicolumn partitioning keys, the database uses the second value only
if the first value cannot uniquely identify a single target partition, and uses the third
value only if the first and second do not determine the correct partition, and so forth.
A value cannot determine the correct partition only when a partition bound exactly
matches that value and the same bound is defined for the next partition. The nth
column will therefore be investigated only when all previous (n-1) values of the
multicolumn key exactly match the (n-1) bounds of a partition. A second column, for
example, will be evaluated only if the first column exactly matches the partition
boundary value. If all column values exactly match all of the bound values for a
partition, then the database will determine that the row does not fit in this partition
and will consider the next partition for a match.

In the case of nondeterministic boundary definitions (successive partitions with
identical values for at least one column), the partition boundary value becomes an
inclusive value, representing a "less than or equal to" boundary. This is in contrast to
deterministic boundaries, where the values are always regarded as "less than"
boundaries.

The following example illustrates the column evaluation for a multicolumn
range-partitioned table, storing the actual DATE information in three separate columns:
year, month, and day. The partitioning granularity is a calendar quarter. The
partitioned table being evaluated is created as follows:

CREATE TABLE sales_demo (
 year NUMBER,
 month NUMBER,

Creating Partitions

Partition Administration 3-21

 day NUMBER,
 amount_sold NUMBER)
PARTITION BY RANGE (year,month)
 (PARTITION before2001 VALUES LESS THAN (2001,1),
 PARTITION q1_2001 VALUES LESS THAN (2001,4),
 PARTITION q2_2001 VALUES LESS THAN (2001,7),
 PARTITION q3_2001 VALUES LESS THAN (2001,10),
 PARTITION q4_2001 VALUES LESS THAN (2002,1),
 PARTITION future VALUES LESS THAN (MAXVALUE,0));

REM 12-DEC-2000
INSERT INTO sales_demo VALUES(2000,12,12, 1000);
REM 17-MAR-2001
INSERT INTO sales_demo VALUES(2001,3,17, 2000);
REM 1-NOV-2001
INSERT INTO sales_demo VALUES(2001,11,1, 5000);
REM 1-JAN-2002
INSERT INTO sales_demo VALUES(2002,1,1, 4000);

The year value for 12-DEC-2000 satisfied the first partition, before2001, so no
further evaluation is needed:

SELECT * FROM sales_demo PARTITION(before2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2000 12 12 1000

The information for 17-MAR-2001 is stored in partition q1_2001. The first partitioning
key column, year, does not by itself determine the correct partition, so the second
partitioning key column, month, must be evaluated.

SELECT * FROM sales_demo PARTITION(q1_2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2001 3 17 2000

Following the same determination rule as for the previous record, the second column,
month, determines partition q4_2001 as correct partition for 1-NOV-2001:

SELECT * FROM sales_demo PARTITION(q4_2001);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2001 11 1 5000

The partition for 01-JAN-2002 is determined by evaluating only the year column,
which indicates the future partition:

SELECT * FROM sales_demo PARTITION(future);

 YEAR MONTH DAY AMOUNT_SOLD
---------- ---------- ---------- -----------
 2002 1 1 4000

If the database encounters MAXVALUE in one of the partitioning key columns, then all
other values of subsequent columns become irrelevant. That is, a definition of partition
future in the preceding example, having a bound of (MAXVALUE,0) is equivalent to a
bound of (MAXVALUE,100) or a bound of (MAXVALUE,MAXVALUE).

Creating Partitions

3-22 Oracle Database VLDB and Partitioning Guide

The following example illustrates the use of a multicolumn partitioned approach for
table supplier_parts, storing the information about which suppliers deliver which
parts. To distribute the data in equal-sized partitions, it is not sufficient to partition the
table based on the supplier_id, because some suppliers might provide hundreds of
thousands of parts, while others provide only a few specialty parts. Instead, you
partition the table on (supplier_id, partnum) to manually enforce equal-sized
partitions.

CREATE TABLE supplier_parts (
 supplier_id NUMBER,
 partnum NUMBER,
 price NUMBER)
PARTITION BY RANGE (supplier_id, partnum)
 (PARTITION p1 VALUES LESS THAN (10,100),
 PARTITION p2 VALUES LESS THAN (10,200),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE));

The following three records are inserted into the table:

INSERT INTO supplier_parts VALUES (5,5, 1000);
INSERT INTO supplier_parts VALUES (5,150, 1000);
INSERT INTO supplier_parts VALUES (10,100, 1000);

The first two records are inserted into partition p1, uniquely identified by supplier_
id. However, the third record is inserted into partition p2; it matches all range
boundary values of partition p1 exactly and the database therefore considers the
following partition for a match. The value of partnum satisfies the criteria < 200, so it
is inserted into partition p2.

SELECT * FROM supplier_parts PARTITION (p1);

SUPPLIER_ID PARTNUM PRICE
----------- ---------- ----------
 5 5 1000
 5 150 1000

SELECT * FROM supplier_parts PARTITION (p2);

SUPPLIER_ID PARTNUM PRICE
----------- ---------- ----------
 10 100 1000

Every row with supplier_id < 10 will be stored in partition p1, regardless of the
partnum value. The column partnum will be evaluated only if supplier_id =10,
and the corresponding rows will be inserted into partition p1, p2, or even into p3
when partnum >=200. To achieve equal-sized partitions for ranges of supplier_
parts, you could choose a composite range-hash partitioned table, range partitioned
by supplier_id, hash subpartitioned by partnum.

Defining the partition boundaries for multicolumn partitioned tables must obey some
rules. For example, consider a table that is range partitioned on three columns a, b,
and c. The individual partitions have range values represented as follows:

P0(a0, b0, c0)
P1(a1, b1, c1)
P2(a2, b2, c2)
...
Pn(an, bn, cn)

The range values you provide for each partition must follow these rules:

Creating Partitions

Partition Administration 3-23

■ a0 must be less than or equal to a1, and a1 must be less than or equal to a2, and
so on.

■ If a0=a1, then b0 must be less than or equal to b1. If a0 < a1, then b0 and b1 can
have any values. If a0=a1 and b0=b1, then c0 must be less than or equal to c1. If
b0<b1, then c0 and c1 can have any values, and so on.

■ If a1=a2, then b1 must be less than or equal to b2. If a1<a2, then b1 and b2 can
have any values. If a1=a2 and b1=b2, then c1 must be less than or equal to c2. If
b1<b2, then c1 and c2 can have any values, and so on.

Using Virtual Column-Based Partitioning
In the context of partitioning, a virtual column can be used as any regular column. All
partition methods are supported when using virtual columns, including interval
partitioning and all different combinations of composite partitioning. A virtual column
that you want to use as the partitioning column cannot use calls to a PL/SQL function.

The following example shows the sales table partitioned by range-range using a
virtual column for the subpartitioning key. The virtual column calculates the total
value of a sale by multiplying amount_sold and quantity_sold.

CREATE TABLE sales
 (prod_id NUMBER(6) NOT NULL
 , cust_id NUMBER NOT NULL
 , time_id DATE NOT NULL
 , channel_id CHAR(1) NOT NULL
 , promo_id NUMBER(6) NOT NULL
 , quantity_sold NUMBER(3) NOT NULL
 , amount_sold NUMBER(10,2) NOT NULL
 , total_amount AS (quantity_sold * amount_sold)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY RANGE(total_amount)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_small VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (5000)
 , SUBPARTITION p_large VALUES LESS THAN (10000)
 , SUBPARTITION p_extreme VALUES LESS THAN (MAXVALUE)
)
 (PARTITION sales_before_2007 VALUES LESS THAN
 (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
)
ENABLE ROW MOVEMENT
PARALLEL NOLOGGING;

As the example shows, row movement is also supported with virtual columns. If row
movement is enabled, then a row will migrate from one partition to another partition
if the virtual column evaluates to a value that belongs to another partition.

Using Table Compression with Partitioned Tables
For heap-organized partitioned tables, you can compress some or all partitions using
table compression. The compression attribute can be declared for a tablespace, a table,
or a partition of a table. Whenever the compress attribute is not specified, it is
inherited like any other storage attribute.

See Also: Oracle Database SQL Language Reference for the syntax on
how to create a virtual column

Creating Partitions

3-24 Oracle Database VLDB and Partitioning Guide

The following example creates a list-partitioned table with one compressed partition
costs_old. The compression attribute for the table and all other partitions is
inherited from the tablespace level.

CREATE TABLE costs_demo (
 prod_id NUMBER(6), time_id DATE,
 unit_cost NUMBER(10,2), unit_price NUMBER(10,2))
PARTITION BY RANGE (time_id)
 (PARTITION costs_old
 VALUES LESS THAN (TO_DATE('01-JAN-2003', 'DD-MON-YYYY')) COMPRESS,
 PARTITION costs_q1_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')),
 PARTITION costs_q2_2003
 VALUES LESS THAN (TO_DATE('01-JUN-2003', 'DD-MON-YYYY')),
 PARTITION costs_recent VALUES LESS THAN (MAXVALUE));

Using Key Compression with Partitioned Indexes
You can compress some or all partitions of a B-tree index using key compression. Key
compression is applicable only to B-tree indexes. Bitmap indexes are stored in a
compressed manner by default. An index using key compression eliminates repeated
occurrences of key column prefix values, thus saving space and I/O.

The following example creates a local partitioned index with all partitions except the
most recent one compressed:

CREATE INDEX i_cost1 ON costs_demo (prod_id) COMPRESS LOCAL
 (PARTITION costs_old, PARTITION costs_q1_2003,
 PARTITION costs_q2_2003, PARTITION costs_recent NOCOMPRESS);

You cannot specify COMPRESS (or NOCOMPRESS) explicitly for an index subpartition.
All index subpartitions of a given partition inherit the key compression setting from
the parent partition.

To modify the key compression attribute for all subpartitions of a given partition, you
must first issue an ALTER INDEX...MODIFY PARTITION statement and then
rebuild all subpartitions. The MODIFY PARTITION clause will mark all index
subpartitions as UNUSABLE.

Creating Partitioned Index-Organized Tables
For index-organized tables, you can use the range, list, or hash partitioning method.
The semantics for creating partitioned index-organized tables is similar to that for
regular tables with these differences:

■ When you create the table, you specify the ORGANIZATION INDEX clause, and
INCLUDING and OVERFLOW clauses as necessary.

■ The PARTITION or PARTITIONS clauses can have OVERFLOW subclauses that
allow you to specify attributes of the overflow segments at the partition level.

Specifying an OVERFLOW clause results in the overflow data segments themselves
being equipartitioned with the primary key index segments. Thus, for partitioned
index-organized tables with overflow, each partition has an index segment and an
overflow data segment.

For index-organized tables, the set of partitioning columns must be a subset of the
primary key columns. Because rows of an index-organized table are stored in the
primary key index for the table, the partitioning criterion has an effect on the
availability. By choosing the partitioning key to be a subset of the primary key, an

Creating Partitions

Partition Administration 3-25

insert operation only needs to verify uniqueness of the primary key in a single
partition, thereby maintaining partition independence.

Support for secondary indexes on index-organized tables is similar to the support for
regular tables. Because of the logical nature of the secondary indexes, global indexes
on index-organized tables remain usable for certain operations where they would be
marked UNUSABLE for regular tables.

Creating Range-Partitioned Index-Organized Tables
You can partition index-organized tables, and their secondary indexes, by the range
method. In the following example, a range-partitioned index-organized table sales is
created. The INCLUDING clause specifies that all columns after week_no are to be
stored in an overflow segment. There is one overflow segment for each partition, all
stored in the same tablespace (overflow_here). Optionally, OVERFLOW
TABLESPACE could be specified at the individual partition level, in which case some
or all of the overflow segments could have separate TABLESPACE attributes.

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW TABLESPACE overflow_here
 PARTITION BY RANGE (week_no)
 (PARTITION VALUES LESS THAN (5)
 TABLESPACE ts1,
 PARTITION VALUES LESS THAN (9)
 TABLESPACE ts2 OVERFLOW TABLESPACE overflow_ts2,
 ...
 PARTITION VALUES LESS THAN (MAXVALUE)
 TABLESPACE ts13);

Creating Hash-Partitioned Index-Organized Tables
Another option for partitioning index-organized tables is to use the hash method. In
the following example, the sales index-organized table is partitioned by the hash
method.

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW
 PARTITION BY HASH (week_no)

See Also:

■ Oracle Database Administrator's Guide for more information about
managing index-organized tables

■ "Maintaining Partitions" on page 3-27

■ Oracle Database Concepts for more information about
index-organized tables

Creating Partitions

3-26 Oracle Database VLDB and Partitioning Guide

 PARTITIONS 16
 STORE IN (ts1, ts2, ts3, ts4)
 OVERFLOW STORE IN (ts3, ts6, ts9);

Creating List-Partitioned Index-Organized Tables
The other option for partitioning index-organized tables is to use the list method. In
the following example, the sales index-organized table is partitioned by the list
method. This example uses the example tablespace, which is part of the sample
schemas in your seed database. Normally you would specify different tablespace
storage for different partitions.

CREATE TABLE sales(acct_no NUMBER(5),
 acct_name CHAR(30),
 amount_of_sale NUMBER(6),
 week_no INTEGER,
 sale_details VARCHAR2(1000),
 PRIMARY KEY (acct_no, acct_name, week_no))
 ORGANIZATION INDEX
 INCLUDING week_no
 OVERFLOW TABLESPACE example
 PARTITION BY LIST (week_no)
 (PARTITION VALUES (1, 2, 3, 4)
 TABLESPACE example,
 PARTITION VALUES (5, 6, 7, 8)
 TABLESPACE example OVERFLOW TABLESPACE example,
 PARTITION VALUES (DEFAULT)
 TABLESPACE example);

Partitioning Restrictions for Multiple Block Sizes
Use caution when creating partitioned objects in a database with tablespaces of
different block sizes. The storage of partitioned objects in such tablespaces is subject to
some restrictions. Specifically, all partitions of the following entities must reside in
tablespaces of the same block size:

■ Conventional tables

■ Indexes

■ Primary key index segments of index-organized tables

■ Overflow segments of index-organized tables

■ LOB columns stored out of line

Therefore:

■ For each conventional table, all partitions of that table must be stored in
tablespaces with the same block size.

■ For each index-organized table, all primary key index partitions must reside in
tablespaces of the same block size, and all overflow partitions of that table must

Note: A well-designed hash function is intended to distribute rows
in a well-balanced fashion among the partitions. Therefore, updating
the primary key column(s) of a row is very likely to move that row to
a different partition. Oracle recommends that you explicitly specify
the ENABLE ROW MOVEMENT clause when creating a hash-partitioned
index-organized table with a changeable partitioning key. The default
is that ENABLE ROW MOVEMENT is disabled.

Maintaining Partitions

Partition Administration 3-27

reside in tablespaces of the same block size. However, index partitions and
overflow partitions can reside in tablespaces of different block size.

■ For each index (global or local), each partition of that index must reside in
tablespaces of the same block size. However, partitions of different indexes
defined on the same object can reside in tablespaces of different block sizes.

■ For each LOB column, each partition of that column must be stored in tablespaces
of equal block sizes. However, different LOB columns can be stored in tablespaces
of different block sizes.

When you create or alter a partitioned table or index, all tablespaces you explicitly
specify for the partitions and subpartitions of each entity must be of the same block
size. If you do not explicitly specify tablespace storage for an entity, the tablespaces the
database uses by default must be of the same block size. Therefore you must be aware
of the default tablespaces at each level of the partitioned object.

Maintaining Partitions
This section describes how to perform partition and subpartition maintenance
operations for both tables and indexes.

Table 3–1 lists partition maintenance operations that can be performed on partitioned
tables and composite partitioned tables, and Table 3–2 lists subpartition maintenance
operations that can be performed on composite partitioned tables. For each type of
partitioning and subpartitioning, the specific clause of the ALTER TABLE statement
that is used to perform that maintenance operation is listed.

Table 3–1 ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range

Composite
Range-*

Interval

Composite
Interval-* Hash

List

Composite List-* Reference

Adding Partitions ADD PARTITION ADD PARTITION ADD PARTITION ADD PARTITION N/A1

Coalescing Partitions N/A N/A COALESCE
PARTITION

N/A N/A1

Dropping Partitions DROP
PARTITION

DROP
PARTITION

N/A DROP
PARTITION

N/A1

Exchanging Partitions EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

Merging Partitions MERGE
PARTITIONS

MERGE
PARTITIONS

N/A MERGE
PARTITIONS

N/A1

Modifying Default
Attributes

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

Modifying Real
Attributes of Partitions

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

Modifying List
Partitions: Adding
Values

N/A N/A N/A MODIFY
PARTITION ...
ADD VALUES

N/A

Modifying List
Partitions: Dropping
Values

N/A N/A N/A MODIFY
PARTITION ...
DROP VALUES

N/A

Moving Partitions MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

Maintaining Partitions

3-28 Oracle Database VLDB and Partitioning Guide

Renaming Partitions RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

Splitting Partitions SPLIT
PARTITION

SPLIT
PARTITION

N/A SPLIT
PARTITION

N/A1

Truncating Partitions TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

1 These operations cannot be performed on reference-partitioned tables. If performed on a parent table, then these operations will
cascade to all descendant tables.

Table 3–2 ALTER TABLE Maintenance Operations for Table Subpartitions

Maintenance
Operation Composite *-Range Composite *-Hash Composite *-List

Adding Partitions MODIFY PARTITION
... ADD
SUBPARTITION

MODIFY PARTITION
... ADD
SUBPARTITION

MODIFY PARTITION
... ADD
SUBPARTITION

Coalescing Partitions N/A MODIFY PARTITION
... COALESCE
SUBPARTITION

N/A

Dropping Partitions DROP SUBPARTITION N/A DROP SUBPARTITION

Exchanging Partitions EXCHANGE
SUBPARTITION

N/A EXCHANGE
SUBPARTITION

Merging Partitions MERGE
SUBPARTITIONS

N/A MERGE
SUBPARTITIONS

Modifying Default
Attributes

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of Partitions

MODIFY
SUBPARTITION

MODIFY
SUBPARTITION

MODIFY
SUBPARTITION

Modifying List
Partitions: Adding
Values

N/A N/A MODIFY
SUBPARTITION ...
ADD VALUES

Modifying List
Partitions: Dropping
Values

N/A N/A MODIFY
SUBPARTITION ...
DROP VALUES

Modifying a
Subpartition Template

SET SUBPARTITION
TEMPLATE

SET SUBPARTITION
TEMPLATE

SET SUBPARTITION
TEMPLATE

Moving Partitions MOVE SUBPARTITION MOVE SUBPARTITION MOVE SUBPARTITION

Renaming Partitions RENAME
SUBPARTITION

RENAME
SUBPARTITION

RENAME
SUBPARTITION

Splitting Partitions SPLIT
SUBPARTITION

N/A SPLIT
SUBPARTITION

Truncating Partitions TRUNCATE
SUBPARTITION

TRUNCATE
SUBPARTITION

TRUNCATE
SUBPARTITION

Table 3–1 (Cont.) ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range

Composite
Range-*

Interval

Composite
Interval-* Hash

List

Composite List-* Reference

Maintaining Partitions

Partition Administration 3-29

Table 3–3 lists maintenance operations that can be performed on index partitions, and
indicates on which type of index (global or local) they can be performed. The ALTER
INDEX clause used for the maintenance operation is shown.

Global indexes do not reflect the structure of the underlying table. If partitioned, they
can be partitioned by range or hash. Partitioned global indexes share some, but not all,
of the partition maintenance operations that can be performed on partitioned tables.

Because local indexes reflect the underlying structure of the table, partitioning is
maintained automatically when table partitions and subpartitions are affected by
maintenance activity. Therefore, partition maintenance on local indexes is less
necessary and there are fewer options.

Note: The first time you use table compression to introduce a
compressed partition into a partitioned table that has bitmap indexes
and that currently contains only uncompressed partitions, you must
do the following:

■ Either drop all existing bitmap indexes and bitmap index
partitions, or mark them UNUSABLE.

■ Set the table compression attribute.

■ Rebuild the indexes.

These actions are independent of whether any partitions contain data
and of the operation that introduces the compressed partition.

This does not apply to partitioned tables with B-tree indexes or to
partitioned index-organized tables.

Table 3–3 ALTER INDEX Maintenance Operations for Index Partitions

Maintenance
Operation

Type of
Index

Type of Index Partitioning

Range Hash and List Composite

Adding Index
Partitions

Global - ADD PARTITION (hash
only)

-

Local N/A N/A N/A

Dropping Index
Partitions

Global DROP PARTITION - -

Local N/A N/A N/A

Modifying Default
Attributes of Index
Partitions

Global MODIFY DEFAULT
ATTRIBUTES

- -

Local MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of Index
Partitions

Global MODIFY PARTITION - -

Local MODIFY PARTITION MODIFY PARTITION MODIFY PARTITION

MODIFY SUBPARTITION

Rebuilding Index
Partitions

Global REBUILD PARTITION - -

Local REBUILD PARTITION REBUILD PARTITION REBUILD SUBPARTITION

Maintaining Partitions

3-30 Oracle Database VLDB and Partitioning Guide

Updating Indexes Automatically
Before discussing the individual maintenance operations for partitioned tables and
indexes, it is important to discuss the effects of the UPDATE INDEXES clause that can
be specified in the ALTER TABLE statement.

By default, many table maintenance operations on partitioned tables invalidate (mark
UNUSABLE) the corresponding indexes or index partitions. You must then rebuild the
entire index or, in the case of a global index, each of its partitions. The database lets
you override this default behavior if you specify UPDATE INDEXES in your ALTER
TABLE statement for the maintenance operation. Specifying this clause tells the
database to update the index at the time it executes the maintenance operation DDL
statement. This provides the following benefits:

■ The index is updated in conjunction with the base table operation. You are not
required to later and independently rebuild the index.

■ The index is more highly available, because it does not get marked UNUSABLE. The
index remains available even while the partition DDL is executing and it can be
used to access unaffected partitions in the table.

■ You need not look up the names of all invalid indexes to rebuild them.

Optional clauses for local indexes let you specify physical and storage characteristics
for updated local indexes and their partitions.

■ You can specify physical attributes, tablespace storage, and logging for each
partition of each local index. Alternatively, you can specify only the PARTITION
keyword and let the database update the partition attributes as follows:

– For operations on a single table partition (such as MOVE PARTITION and
SPLIT PARTITION), the corresponding index partition inherits the attributes
of the affected index partition. The database does not generate names for new

Renaming Index
Partitions

Global RENAME PARTITION - -

Local RENAME PARTITION RENAME PARTITION RENAME PARTITION

RENAME SUBPARTITION

Splitting Index
Partitions

Global SPLIT PARTITION - -

Local N/A N/A N/A

Note: The following sections discuss maintenance operations on
partitioned tables. Where the usability of indexes or index partitions
affected by the maintenance operation is discussed, consider the
following:

■ Only indexes and index partitions that are not empty are
candidates for being marked UNUSABLE. If they are empty, the
USABLE/UNUSABLE status is left unchanged.

■ Only indexes or index partitions with USABLE status are updated
by subsequent DML.

Table 3–3 (Cont.) ALTER INDEX Maintenance Operations for Index Partitions

Maintenance
Operation

Type of
Index

Type of Index Partitioning

Range Hash and List Composite

Maintaining Partitions

Partition Administration 3-31

index partitions, so any new index partitions resulting from this operation
inherit their names from the corresponding new table partition.

– For MERGE PARTITION operations, the resulting local index partition inherits
its name from the resulting table partition and inherits its attributes from the
local index.

■ For a composite-partitioned index, you can specify tablespace storage for each
subpartition.

The following operations support the UPDATE INDEXES clause:

■ ADD PARTITION | SUBPARTITION

■ COALESCE PARTITION | SUBPARTITION

■ DROP PARTITION | SUBPARTITION

■ EXCHANGE PARTITION | SUBPARTITION

■ MERGE PARTITION | SUBPARTITION

■ MOVE PARTITION | SUBPARTITION

■ SPLIT PARTITION | SUBPARTITION

■ TRUNCATE PARTITION | SUBPARTITION

SKIP_UNUSABLE_INDEXES Initialization Parameter
SKIP_UNUSABLE_INDEXES is an initialization parameter with a default value of
TRUE. This setting disables error reporting of indexes and index partitions marked
UNUSABLE. If you do not want the database to choose an alternative execution plan to
avoid the unusable elements, then you should set this parameter to FALSE.

Considerations when Updating Indexes Automatically
The following implications are worth noting when you specify UPDATE INDEXES:

■ The partition DDL statement takes longer to execute, because indexes that were
previously marked UNUSABLE are updated. However, you must compare this
increase with the time it takes to execute DDL without updating indexes, and then
rebuild all indexes. A rule of thumb is that it is faster to update indexes if the size
of the partition is less that 5% of the size of the table.

■ The DROP, TRUNCATE, and EXCHANGE operations are no longer fast operations.
Again, you must compare the time it takes to do the DDL and then rebuild all
indexes.

■ When you update a table with a global index:

– The index is updated in place. The updates to the index are logged, and redo
and undo records are generated. In contrast, if you rebuild an entire global
index, you can do so in NOLOGGING mode.

– Rebuilding the entire index manually creates a more efficient index, because it
is more compact with space better utilized.

■ The UPDATE INDEXES clause is not supported for index-organized tables.
However, the UPDATE GLOBAL INDEXES clause may be used with DROP
PARTITION, TRUNCATE PARTITION, and EXCHANGE PARTITION operations to
keep the global indexes on index-organized tables usable. For the remaining

See Also: the update_all_indexes_clause of ALTER TABLE
for the syntax for updating indexes

Maintaining Partitions

3-32 Oracle Database VLDB and Partitioning Guide

operations in the above list, global indexes on index-organized tables remain
usable. In addition, local index partitions on index-organized tables remain usable
after a MOVE PARTITION operation.

Adding Partitions
This section describes how to manually add new partitions to a partitioned table and
explains why partitions cannot be specifically added to most partitioned indexes.

Adding a Partition to a Range-Partitioned Table
Use the ALTER TABLE ... ADD PARTITION statement to add a new partition to the
"high" end (the point after the last existing partition). To add a partition at the
beginning or in the middle of a table, use the SPLIT PARTITION clause.

For example, consider the table, sales, which contains data for the current month in
addition to the previous 12 months. On January 1, 1999, you add a partition for
January, which is stored in tablespace tsx.

ALTER TABLE sales
 ADD PARTITION jan99 VALUES LESS THAN ('01-FEB-1999')
 TABLESPACE tsx;

Local and global indexes associated with the range-partitioned table remain usable.

Adding a Partition to a Hash-Partitioned Table
When you add a partition to a hash-partitioned table, the database populates the new
partition with rows rehashed from an existing partition (selected by the database) as
determined by the hash function. As a result, if the table contains data, then it may
take some time to add a hash partition.

The following statements show two ways of adding a hash partition to table
scubagear. Choosing the first statement adds a new hash partition whose partition
name is system generated, and which is placed in the default tablespace. The second
statement also adds a new hash partition, but that partition is explicitly named p_
named and is created in tablespace gear5.

ALTER TABLE scubagear ADD PARTITION;

ALTER TABLE scubagear
 ADD PARTITION p_named TABLESPACE gear5;

Indexes may be marked UNUSABLE as explained in the following table:

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

■ The local indexes for the new partition, and for the existing
partition from which rows were redistributed, are marked
UNUSABLE and must be rebuilt.

■ All global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

Index-organized ■ For local indexes, the behavior is the same as for heap
tables.

■ All global indexes remain usable.

Maintaining Partitions

Partition Administration 3-33

Adding a Partition to a List-Partitioned Table
The following statement illustrates how to add a new partition to a list-partitioned
table. In this example physical attributes and NOLOGGING are specified for the
partition being added.

ALTER TABLE q1_sales_by_region
 ADD PARTITION q1_nonmainland VALUES ('HI', 'PR')
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE tbs_3
 NOLOGGING;

Any value in the set of literal values that describe the partition being added must not
exist in any of the other partitions of the table.

You cannot add a partition to a list-partitioned table that has a default partition, but
you can split the default partition. By doing so, you effectively create a new partition
defined by the values that you specify, and a second partition that remains the default
partition.

Local and global indexes associated with the list-partitioned table remain usable.

Adding a Partition to an Interval-Partitioned Table
You cannot explicitly add a partition to an interval-partitioned table unless you first
lock the partition, which triggers the creation of the partition. The database
automatically creates a partition for an interval when data for that interval is inserted.
In general, you only need to explicitly create interval partitions for a partition
exchange load scenario.

To change the interval for future partitions, use the SET INTERVAL clause of the
ALTER TABLE statement. This clause changes the interval for partitions beyond the
current highest boundary of all materialized interval partitions.

You also use the SET INTERVAL clause to migrate an existing range partitioned or
range-* composite partitioned table into an interval or interval-* partitioned table. If
you want to disable the creation of future interval partitions, and effectively revert
back to a range-partitioned table, then use an empty value in the SET INTERVAL
clause. Created interval partitions will then be transformed into range partitions with
their current high values.

To increase the interval for date ranges, then you need to ensure that you are at a
relevant boundary for the new interval. For example, if the highest interval partition
boundary in your daily interval partitioned table transactions is January 30, 2007 and
you want to change to a monthly partition interval, then the following statement
results in an error:

ALTER TABLE transactions SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH');

ORA-14767: Cannot specify this interval with existing high bounds

You need to create another daily partition with a high bound of February 1, 2007 in
order to successfully change to a monthly interval:

LOCK TABLE transactions PARTITION FOR(TO_DATE('31-JAN-2007','dd-MON-yyyy') IN
SHARE MODE;

ALTER TABLE transactions SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH');

The lower partitions of an interval-partitioned table are range partitions. You can split
range partitions in order to add more partitions in the range portion of the
interval-partitioned table.

Maintaining Partitions

3-34 Oracle Database VLDB and Partitioning Guide

In order to disable interval partitioning on the transactions table, use:

ALTER TABLE transactions SET INTERVAL ();

Adding Partitions to a Composite [Range | List | Interval]-Hash Partitioned Table
Partitions can be added at both the partition level and at the hash subpartition level.

Adding a Partition to a [Range | List | Interval]-Hash Partitioned Table Adding a new partition
to a [range | list | interval]-hash partitioned table is as described previously. For an
interval-hash partitioned table, interval partitions are automatically created. You can
specify a SUBPARTITIONS clause that lets you add a specified number of
subpartitions, or a SUBPARTITION clause for naming specific subpartitions. If no
SUBPARTITIONS or SUBPARTITION clause is specified, then the partition inherits
table level defaults for subpartitions. For an interval-hash partitioned table, you can
only add subpartitions to range or interval partitions that have been materialized.

This example adds a range partition q1_2000 to the range-hash partitioned table
sales, which will be populated with data for the first quarter of the year 2000. There
are eight subpartitions stored in tablespace tbs5. The subpartitions cannot be set
explicitly to use table compression. Subpartitions inherit the compression attribute
from the partition level and are stored in a compressed form in this example:

ALTER TABLE sales ADD PARTITION q1_2000
 VALUES LESS THAN (2000, 04, 01) COMPRESS
 SUBPARTITIONS 8 STORE IN tbs5;

Adding a Subpartition to a [Range | List | Interval]-Hash Partitioned Table You use the MODIFY
PARTITION ... ADD SUBPARTITION clause of the ALTER TABLE statement to add a
hash subpartition to a [range | list | interval]-hash partitioned table. The newly added
subpartition is populated with rows rehashed from other subpartitions of the same
partition as determined by the hash function. For an interval-hash partitioned table,
you can only add subpartitions to range or interval partitions that have been
materialized.

In the following example, a new hash subpartition us_loc5, stored in tablespace us1,
is added to range partition locations_us in table diving.

ALTER TABLE diving MODIFY PARTITION locations_us
 ADD SUBPARTITION us_locs5 TABLESPACE us1;

Index subpartitions corresponding to the added and rehashed subpartitions must be
rebuilt unless you specify UPDATE INDEXES.

Adding Partitions to a Composite [Range | List | Interval]-List Partitioned Table
Partitions can be added at both the partition level and at the list subpartition level.

Adding a Partition to a [Range | List | Interval]-List Partitioned Table Adding a new partition to
a [range | list | interval]-list partitioned table is as described previously. The database
automatically creates interval partitions as data for a specific interval is inserted. You
can specify SUBPARTITION clauses for naming and providing value lists for the
subpartitions. If no SUBPARTITION clauses are specified, then the partition inherits
the subpartition template. If there is no subpartition template, then a single default
subpartition is created.

The following statement adds a new partition to the quarterly_regional_sales
table that is partitioned by the range-list method. Some new physical attributes are

Maintaining Partitions

Partition Administration 3-35

specified for this new partition while table-level defaults are inherited for those that
are not specified.

ALTER TABLE quarterly_regional_sales
 ADD PARTITION q1_2000 VALUES LESS THAN (TO_DATE('1-APR-2000','DD-MON-YYYY'))
 STORAGE (INITIAL 20K NEXT 20K) TABLESPACE ts3 NOLOGGING
 (
 SUBPARTITION q1_2000_northwest VALUES ('OR', 'WA'),
 SUBPARTITION q1_2000_southwest VALUES ('AZ', 'UT', 'NM'),
 SUBPARTITION q1_2000_northeast VALUES ('NY', 'VM', 'NJ'),
 SUBPARTITION q1_2000_southeast VALUES ('FL', 'GA'),
 SUBPARTITION q1_2000_northcentral VALUES ('SD', 'WI'),
 SUBPARTITION q1_2000_southcentral VALUES ('OK', 'TX')
);

Adding a Subpartition to a [Range | List | Interval]-List Partitioned Table You use the MODIFY
PARTITION ... ADD SUBPARTITION clause of the ALTER TABLE statement to add a list
subpartition to a [range | list | interval]-list partitioned table. For an interval-list
partitioned table, you can only add subpartitions to range or interval partitions that
have been materialized.

The following statement adds a new subpartition to the existing set of subpartitions in
the range-list partitioned table quarterly_regional_sales. The new subpartition
is created in tablespace ts2.

ALTER TABLE quarterly_regional_sales
 MODIFY PARTITION q1_1999
 ADD SUBPARTITION q1_1999_south
 VALUES ('AR','MS','AL') tablespace ts2;

Adding Partitions to a Composite [Range | List | Interval]-Range Partitioned Table
Partitions can be added at both the partition level and at the range subpartition level.

Adding a Partition to a [Range | List | Interval]-Range Partitioned Table Adding a new partition
to a [range | list | interval]-range partitioned table is as described previously. The
database automatically creates interval partitions for an interval-range partitioned
table when data is inserted in a specific interval. You can specify a SUBPARTITION
clause for naming and providing ranges for specific subpartitions. If no
SUBPARTITION clause is specified, then the partition inherits the subpartition
template specified at the table level. If there is no subpartition template, then a single
subpartition with a maximum value of MAXVALUE is created.

This example adds a range partition p_2007_jan to the range-range partitioned table
shipments, which will be populated with data for the shipments ordered in January
2007. There are three subpartitions. Subpartitions inherit the compression attribute
from the partition level and are stored in a compressed form in this example:

ALTER TABLE shipments
 ADD PARTITION p_2007_jan
 VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy')) COMPRESS
 (SUBPARTITION p07_jan_e VALUES LESS THAN (TO_
DATE('15-FEB-2007','dd-MON-yyyy'))
 , SUBPARTITION p07_jan_a VALUES LESS THAN (TO_
DATE('01-MAR-2007','dd-MON-yyyy'))
 , SUBPARTITION p07_jan_l VALUES LESS THAN (TO_
DATE('01-APR-2007','dd-MON-yyyy'))
) ;

Maintaining Partitions

3-36 Oracle Database VLDB and Partitioning Guide

Adding a Subpartition to a [Range | List | Interval]-Range Partitioned Table You use the MODIFY
PARTITION ... ADD SUBPARTITION clause of the ALTER TABLE statement to add a
range subpartition to a [range | list | interval]-range partitioned table. For an
interval-range partitioned table, you can only add partitions to range or interval
partitions that have already been materialized.

The following example adds a range subpartition to the shipments table that will
contain all values with an order_date in January 2007 and a delivery_date on or
after April 1, 2007.

ALTER TABLE shipments
 MODIFY PARTITION p_2007_jan
 ADD SUBPARTITION p07_jan_vl VALUES LESS THAN (MAXVALUE) ;

Adding a Partition or Subpartition to a Reference-Partitioned Table
A partition or subpartition can be added to a parent table in a reference partition
definition just as partitions and subpartitions can be added to a range, hash, list, or
composite partitioned table. The add operation will automatically cascade to any
descendant reference partitioned tables. The DEPENDENT TABLES clause can be used
to set specific properties for dependent tables when you add partitions or
subpartitions to a master table.

Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, a new partition is added
to a local index only when you add a partition to the underlying table. Specifically,
when there is a local index defined on a table and you issue the ALTER TABLE
statement to add a partition, a matching partition is also added to the local index. The
database assigns names and default physical storage attributes to the new index
partitions, but you can rename or alter them after the ADD PARTITION operation is
complete.

You can effectively specify a new tablespace for an index partition in an ADD
PARTITION operation by first modifying the default attributes for the index. For
example, assume that a local index, q1_sales_by_region_locix, was created for
list partitioned table q1_sales_by_region. If before adding the new partition q1_
nonmainland, as shown in "Adding a Partition to a List-Partitioned Table" on
page 3-33, you had issued the following statement, then the corresponding index
partition would be created in tablespace tbs_4.

ALTER INDEX q1_sales_by_region_locix
 MODIFY DEFAULT ATTRIBUTES TABLESPACE tbs_4;

Otherwise, it would be necessary for you to use the following statement to move the
index partition to tbs_4 after adding it:

ALTER INDEX q1_sales_by_region_locix
 REBUILD PARTITION q1_nonmainland TABLESPACE tbs_4;

You can add a partition to a hash-partitioned global index using the ADD PARTITION
syntax of ALTER INDEX. The database adds hash partitions and populates them with
index entries rehashed from an existing hash partition of the index, as determined by
the hash function. The following statement adds a partition to the index hgidx shown
in "Creating a Hash-Partitioned Global Index" on page 3-5:

ALTER INDEX hgidx ADD PARTITION p5;

See Also: Oracle Database SQL Language Reference

Maintaining Partitions

Partition Administration 3-37

You cannot add a partition to a range-partitioned global index, because the highest
partition always has a partition bound of MAXVALUE. If you want to add a new highest
partition, use the ALTER INDEX ... SPLIT PARTITION statement.

Coalescing Partitions
Coalescing partitions is a way of reducing the number of partitions in a
hash-partitioned table or index, or the number of subpartitions in a *-hash partitioned
table. When a hash partition is coalesced, its contents are redistributed into one or
more remaining partitions determined by the hash function. The specific partition that
is coalesced is selected by the database, and is dropped after its contents have been
redistributed. If you coalesce a hash partition or subpartition in the parent table of a
reference-partitioned table definition, then the reference-partitioned table
automatically inherits the new partitioning definition.

Index partitions may be marked UNUSABLE as explained in the following table:

Coalescing a Partition in a Hash-Partitioned Table
The ALTER TABLE ... COALESCE PARTITION statement is used to coalesce a partition
in a hash-partitioned table. The following statement reduces by one the number of
partitions in a table by coalescing a partition.

ALTER TABLE ouu1
 COALESCE PARTITION;

Coalescing a Subpartition in a *-Hash Partitioned Table
The following statement distributes the contents of a subpartition of partition us_
locations into one or more remaining subpartitions (determined by the hash
function) of the same partition. Note that for an interval-partitioned table, you can
only coalesce hash subpartitions of materialized range or interval partitions. Basically,
this operation is the inverse of the MODIFY PARTITION ... ADD SUBPARTITION clause
discussed in "Adding a Subpartition to a [Range | List | Interval]-Hash Partitioned
Table" on page 3-34.

ALTER TABLE diving MODIFY PARTITION us_locations
 COALESCE SUBPARTITION;

Coalescing Hash-partitioned Global Indexes
You can instruct the database to reduce by one the number of index partitions in a
hash-partitioned global index using the COALESCE PARTITION clause of ALTER

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

■ Any local index partition corresponding to the selected
partition is also dropped. Local index partitions
corresponding to the one or more absorbing partitions are
marked UNUSABLE and must be rebuilt.

■ All global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

Index-organized ■ Some local indexes are marked UNUSABLE as noted for heap
indexes.

■ All global indexes remain usable.

Maintaining Partitions

3-38 Oracle Database VLDB and Partitioning Guide

INDEX. The database selects the partition to coalesce based on the requirements of the
hash partition. The following statement reduces by one the number of partitions in the
hgidx index, created in "Creating a Hash-Partitioned Global Index" on page 3-5:

ALTER INDEX hgidx COALESCE PARTITION;

Dropping Partitions
You can drop partitions from range, interval, list, or composite *-[range | list]
partitioned tables. For interval partitioned tables, you can only drop range or interval
partitions that have been materialized. For hash-partitioned tables, or hash
subpartitions of composite *-hash partitioned tables, you must perform a coalesce
operation instead.

You cannot drop a partition from a reference-partitioned table. Instead, a drop
operation on a parent table will cascade to all descendant tables.

Dropping Table Partitions
Use one of the following statements to drop a table partition or subpartition:

■ ALTER TABLE ... DROP PARTITION to drop a table partition

■ ALTER TABLE ... DROP SUBPARTITION to drop a subpartition of a composite
*-[range | list] partitioned table

If you want to preserve the data in the partition, then use the MERGE PARTITION
statement instead of the DROP PARTITION statement.

If local indexes are defined for the table, then this statement also drops the matching
partition or subpartitions from the local index. All global indexes, or all partitions of
partitioned global indexes, are marked UNUSABLE unless either of the following is
true:

■ You specify UPDATE INDEXES (Cannot be specified for index-organized tables.
Use UPDATE GLOBAL INDEXES instead.)

■ The partition being dropped or its subpartitions are empty

The following sections contain some scenarios for dropping table partitions.

Dropping a Partition from a Table that Contains Data and Global Indexes If the partition
contains data and one or more global indexes are defined on the table, then use one of
the following methods to drop the table partition.

Method 1
Leave the global indexes in place during the ALTER TABLE ... DROP PARTITION
statement. Afterward, you must rebuild any global indexes (whether partitioned or
not) because the index (or index partitions) will have been marked UNUSABLE. The

Note:

■ You cannot drop the only partition in a table. Instead, you must
drop the table.

■ You cannot drop the highest range partition in the
range-partitioned section of an interval-partitioned or interval-*
composite partitioned table.

Maintaining Partitions

Partition Administration 3-39

following statements provide an example of dropping partition dec98 from the sales
table, then rebuilding its global non-partitioned index.

ALTER TABLE sales DROP PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

If index sales_area_ix were a range-partitioned global index, then all partitions of
the index would require rebuilding. Further, it is not possible to rebuild all partitions
of an index in one statement. You must issue a separate REBUILD statement for each
partition in the index. The following statements rebuild the index partitions jan99_
ix, feb99_ix, mar99_ix, ..., dec99_ix.

ALTER INDEX sales_area_ix REBUILD PARTITION jan99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION feb99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION mar99_ix;
...
ALTER INDEX sales_area_ix REBUILD PARTITION dec99_ix;

This method is most appropriate for large tables where the partition being dropped
contains a significant percentage of the total data in the table.

Method 2
Issue the DELETE statement to delete all rows from the partition before you issue the
ALTER TABLE ... DROP PARTITION statement. The DELETE statement updates the
global indexes.

For example, to drop the first partition, issue the following statements:

DELETE FROM sales partition (dec98);
ALTER TABLE sales DROP PARTITION dec98;

This method is most appropriate for small tables, or for large tables when the partition
being dropped contains a small percentage of the total data in the table.

Method 3
Specify UPDATE INDEXES in the ALTER TABLE statement. Doing so causes the global
index to be updated at the time the partition is dropped.

ALTER TABLE sales DROP PARTITION dec98
 UPDATE INDEXES;

Dropping a Partition Containing Data and Referential Integrity Constraints If a partition
contains data and the table has referential integrity constraints, choose either of the
following methods to drop the table partition. This table has a local index only, so it is
not necessary to rebuild any indexes.

Method 1
If there is no data referencing the data in the partition you want to drop, then you can
disable the integrity constraints on the referencing tables, issue the ALTER TABLE ...
DROP PARTITION statement, then re-enable the integrity constraints.

This method is most appropriate for large tables where the partition being dropped
contains a significant percentage of the total data in the table. If there is still data
referencing the data in the partition to be dropped, then make sure to remove all the
referencing data in order to be able to re-enable the referential integrity constraints.

Maintaining Partitions

3-40 Oracle Database VLDB and Partitioning Guide

Method 2
If there is data in the referencing tables, then you can issue the DELETE statement to
delete all rows from the partition before you issue the ALTER TABLE ... DROP
PARTITION statement. The DELETE statement enforces referential integrity
constraints, and also fires triggers and generates redo and undo logs. The delete can
succeed if you created the constraints with the ON DELETE CASCADE option, deleting
all rows from referencing tables as well.

DELETE FROM sales partition (dec94);
ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the partition
being dropped contains a small percentage of the total data in the table.

Dropping Interval Partitions
You can drop interval partitions in an interval-partitioned table. This operation will
drop the data for the interval only and leave the interval definition in tact. If data is
inserted in the interval just dropped, then the database will again create an interval
partition.

You can also drop range partitions in an interval-partitioned table. The rules for
dropping a range partition in an interval-partitioned table follow the rules for
dropping a range partition in a range-partitioned table. If you drop a range partition in
the middle of a set of range partitions, then the lower boundary for the next range
partition shifts to the lower boundary of the range partition you just dropped. You
cannot drop the highest range partition in the range-partitioned section of an
interval-partitioned table.

The following example drops the September 2007 interval partition from the sales
table. There are only local indexes so no indexes will be invalidated.

ALTER TABLE sales DROP PARTITION FOR(TO_DATE('01-SEP-2007','dd-MON-yyyy'));

Dropping Index Partitions
You cannot explicitly drop a partition of a local index. Instead, local index partitions
are dropped only when you drop a partition from the underlying table.

If a global index partition is empty, then you can explicitly drop it by issuing the
ALTER INDEX ... DROP PARTITION statement. But, if a global index partition contains
data, then dropping the partition causes the next highest partition to be marked
UNUSABLE. For example, you would like to drop the index partition P1, and P2 is the
next highest partition. You must issue the following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Exchanging Partitions
You can convert a partition (or subpartition) into a non-partitioned table, and a
non-partitioned table into a partition (or subpartition) of a partitioned table by
exchanging their data segments. You can also convert a hash-partitioned table into a
partition of a composite *-hash partitioned table, or convert the partition of a
composite *-hash partitioned table into a hash-partitioned table. Similarly, you can
convert a [range | list]-partitioned table into a partition of a composite *-[range | list]

Note: You cannot drop the highest partition in a global index.

Maintaining Partitions

Partition Administration 3-41

partitioned table, or convert a partition of the composite *-[range | list] partitioned
table into a [range | list]-partitioned table.

Exchanging table partitions is most useful when you have an application using
non-partitioned tables that you want to convert to partitions of a partitioned table. For
example, in data warehousing environments, exchanging partitions facilitates
high-speed data loading of new, incremental data into an already existing partitioned
table. Generically, OLTP as well as data warehousing environments benefit from
exchanging old data partitions out of a partitioned table. The data is purged from the
partitioned table without actually being deleted and can be archived separately
afterwards.

When you exchange partitions, logging attributes are preserved. You can optionally
specify if local indexes are also to be exchanged (INCLUDING INDEXES clause), and if
rows are to be validated for proper mapping (WITH VALIDATION clause).

Unless you specify UPDATE INDEXES, the database marks UNUSABLE the global
indexes or all global index partitions on the table whose partition is being exchanged.
Global indexes or global index partitions on the table being exchanged remain
invalidated. (You cannot use UPDATE INDEXES for index-organized tables. Use
UPDATE GLOBAL INDEXES instead.)

Exchanging a Range, Hash, or List Partition
To exchange a partition of a range, hash, or list-partitioned table with a
non-partitioned table, or the reverse, use the ALTER TABLE ... EXCHANGE PARTITION
statement. An example of converting a partition into a non-partitioned table follows.
In this example, table stocks can be range, hash, or list partitioned.

ALTER TABLE stocks
 EXCHANGE PARTITION p3 WITH TABLE stock_table_3;

Note: When you specify WITHOUT VALIDATION for the exchange
partition operation, this is normally a fast operation because it
involves only data dictionary updates. However, if the table or
partitioned table involved in the exchange operation has a primary
key or unique constraint enabled, then the exchange operation will be
performed as if WITH VALIDATION were specified in order to
maintain the integrity of the constraints.

To avoid the overhead of this validation activity, issue the following
statement for each constraint before doing the exchange partition
operation:

ALTER TABLE table_name
 DISABLE CONSTRAINT constraint_name KEEP INDEX

Then, enable the constraints after the exchange.

If you specify WITHOUT VALIDATION, then you have to make sure
that the data to be exchanged belongs in the partition you exchange.

See Also: "Viewing Information About Partitioned Tables and
Indexes" on page 3-69

Maintaining Partitions

3-42 Oracle Database VLDB and Partitioning Guide

Exchanging a Partition of an Interval Partitioned Table
You can exchange interval partitions in an interval-partitioned table. However, you
have to make sure the interval partition has been created before you can exchange the
partition. You can let the database create the partition by locking the interval partition.

The following example shows a partition exchange for the interval_sales table,
interval-partitioned using monthly partitions as of January 1, 2004. This example
shows how to add data for June 2007 to the table using partition exchange load.
Assume there are only local indexes on the interval_sales table, and equivalent
indexes have been created on the interval_sales_june_2007 table.

LOCK TABLE interval_sales
PARTITION FOR (TO_DATE('01-JUN-2007','dd-MON-yyyy'))
IN SHARE MODE;

ALTER TABLE interval_sales
EXCHANGE PARTITION FOR (TO_DATE('01-JUN-2007','dd-MON-yyyy'))
WITH TABLE interval_sales_jun_2007
INCLUDING INDEXES;

Note the use of the FOR syntax to identify a partition that was system-generated. The
partition name can be used by querying the *_TAB_PARTITIONS data dictionary
view to find out the system-generated partition name.

Exchanging a Partition of a Reference Partitioned Table
You can exchange partitions in a reference-partitioned table, but you have to make
sure that data you reference is available in the respective partition in the parent table.

The following example shows a partition exchange load scenario for the
range-partitioned orders table, and the reference partitioned order_items table.
Note that the data in the order_items_dec_2006 table only contains order item
data for orders with an order_date in December 2006.

ALTER TABLE orders
EXCHANGE PARTITION p_2006_dec
WITH TABLE orders_dec_2006
UPDATE GLOBAL INDEXES;

ALTER TABLE order_items_dec_2006
ADD CONSTRAINT order_items_dec_2006_fk
FOREIGN KEY (order_id)
REFERENCES orders(order_id) ;

ALTER TABLE order_items
EXCHANGE PARTITION p_2006_dec
WITH TABLE order_items_dec_2006;

Note that you have to use the UPDATE GLOBAL INDEXES or UPDATE INDEXES on
the exchange partition of the parent table in order for the primary key index to remain
usable. Note also that you have to create or enable the foreign key constraint on the
order_items_dec_2006 table in order for the partition exchange on the
reference-partitioned table to succeed.

Exchanging a Partition of a Table with Virtual Columns
You can exchange partitions in the presence of virtual columns. In order for a partition
exchange on a partitioned table with virtual columns to succeed, you have to create a
table that matches the definition of all non-virtual columns in a single partition of the

Maintaining Partitions

Partition Administration 3-43

partitioned table. You do not need to include the virtual column definitions, unless
constraints or indexes have been defined on the virtual column.

In this case, you have to include the virtual column definition in order to match the
partitioned table's constraint and index definitions. This scenario also applies to
virtual column-based partitioned tables.

Exchanging a Hash-Partitioned Table with a *-Hash Partition
In this example, you are exchanging a whole hash-partitioned table, with all of its
partitions, with the partition of a *-hash partitioned table and all of its hash
subpartitions. The following example illustrates this concept for a range-hash
partitioned table.

First, create a hash-partitioned table:

CREATE TABLE t1 (i NUMBER, j NUMBER)
 PARTITION BY HASH(i)
 (PARTITION p1, PARTITION p2);

Populate the table, then create a range-hash partitioned table as shown:

CREATE TABLE t2 (i NUMBER, j NUMBER)
 PARTITION BY RANGE(j)
 SUBPARTITION BY HASH(i)
 (PARTITION p1 VALUES LESS THAN (10)
 SUBPARTITION t2_pls1
 SUBPARTITION t2_pls2,
 PARTITION p2 VALUES LESS THAN (20)
 SUBPARTITION t2_p2s1
 SUBPARTITION t2_p2s2));

It is important that the partitioning key in table t1 is the same as the subpartitioning
key in table t2.

To migrate the data in t1 to t2, and validate the rows, use the following statement:

ALTER TABLE t2 EXCHANGE PARTITION p1 WITH TABLE t1
 WITH VALIDATION;

Exchanging a Subpartition of a *-Hash Partitioned Table
Use the ALTER TABLE ... EXCHANGE SUBPARTITION statement to convert a hash
subpartition of a *-hash partitioned table into a non-partitioned table, or the reverse.
The following example converts the subpartition q3_1999_s1 of table sales into the
non-partitioned table q3_1999. Local index partitions are exchanged with
corresponding indexes on q3_1999.

ALTER TABLE sales EXCHANGE SUBPARTITION q3_1999_s1
 WITH TABLE q3_1999 INCLUDING INDEXES;

Exchanging a List-Partitioned Table with a *-List Partition
The semantics of the ALTER TABLE ... EXCHANGE PARTITION statement are the same
as described previously in "Exchanging a Hash-Partitioned Table with a *-Hash
Partition" on page 3-43. The example below shows an exchange partition scenario for a
list-list partitioned table.

CREATE TABLE customers_apac
(id NUMBER
, name VARCHAR2(50)
, email VARCHAR2(100)

Maintaining Partitions

3-44 Oracle Database VLDB and Partitioning Guide

, region VARCHAR2(4)
, credit_rating VARCHAR2(1)
)
PARTITION BY LIST (credit_rating)
(PARTITION poor VALUES ('P')
, PARTITION mediocre VALUES ('C')
, PARTITION good VALUES ('G')
, PARTITION excellent VALUES ('E')
);

Populate the table with APAC customers. Then create a list-list partitioned table:

CREATE TABLE customers
(id NUMBER
, name VARCHAR2(50)
, email VARCHAR2(100)
, region VARCHAR2(4)
, credit_rating VARCHAR2(1)
)
PARTITION BY LIST (region)
SUBPARTITION BY LIST (credit_rating)
SUBPARTITION TEMPLATE
(SUBPARTITION poor VALUES ('P')
, SUBPARTITION mediocre VALUES ('C')
, SUBPARTITION good VALUES ('G')
, SUBPARTITION excellent VALUES ('E')
)
(PARTITION americas VALUES ('AMER')
, PARTITION emea VALUES ('EMEA')
, PARTITION apac VALUES ('APAC')
);

It is important that the partitioning key in the customers_apac table matches the
subpartitioning key in the customers table.

Next, exchange the apac partition.

ALTER TABLE customers
EXCHANGE PARTITION apac
WITH TABLE customers_apac
WITH VALIDATION;

Exchanging a Subpartition of a *-List Partitioned Table
The semantics of the ALTER TABLE ... EXCHANGE SUBPARTITION are the same as
described previously in "Exchanging a Subpartition of a *-Hash Partitioned Table" on
page 3-43.

Exchanging a Range-Partitioned Table with a *-Range Partition
The semantics of the ALTER TABLE ... EXCHANGE PARTITION statement are the same
as described previously in "Exchanging a Hash-Partitioned Table with a *-Hash
Partition" on page 3-43. The example below shows the orders table, which is interval
partitioned by order_date, and subpartitioned by range on order_total. The
example shows how to exchange a single monthly interval with a range-partitioned
table.

CREATE TABLE orders_mar_2007
(id NUMBER
, cust_id NUMBER

Maintaining Partitions

Partition Administration 3-45

, order_date DATE
, order_total NUMBER
)
PARTITION BY RANGE (order_total)
(PARTITION p_small VALUES LESS THAN (1000)
, PARTITION p_medium VALUES LESS THAN (10000)
, PARTITION p_large VALUES LESS THAN (100000)
, PARTITION p_extraordinary VALUES LESS THAN (MAXVALUE)
);

Populate the table with orders for March 2007. Then create an interval-range
partitioned table:

CREATE TABLE orders
(id NUMBER
, cust_id NUMBER
, order_date DATE
, order_total NUMBER
)
PARTITION BY RANGE (order_date) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY RANGE (order_total)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_small VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (10000)
 , SUBPARTITION p_large VALUES LESS THAN (100000)
 , SUBPARTITION p_extraordinary VALUES LESS THAN (MAXVALUE)
)
(PARTITION p_before_2007 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-
MON-yyyy')));

It is important that the partitioning key in the orders_mar_2007 table matches the
subpartitioning key in the orders table.

Next, exchange the partition. Note that since an interval partition is to be exchanged,
the partition is first locked to ensure that the partition is created.

LOCK TABLE orders PARTITION FOR (TO_DATE('01-MAR-2007','dd-MON-yyyy'))
IN SHARE MODE;

ALTER TABLE orders
EXCHANGE PARTITION
FOR (TO_DATE('01-MAR-2007','dd-MON-yyyy'))
WITH TABLE orders_mar_2007
WITH VALIDATION;

Exchanging a Subpartition of a *-Range Partitioned Table
The semantics of the ALTER TABLE ... EXCHANGE SUBPARTITION are the same as
described previously in "Exchanging a Subpartition of a *-Hash Partitioned Table" on
page 3-43.

Merging Partitions
Use the ALTER TABLE ... MERGE PARTITION statement to merge the contents of two
partitions into one partition. The two original partitions are dropped, as are any
corresponding local indexes.

You cannot use this statement for a hash-partitioned table or for hash subpartitions of
a composite *-hash partitioned table.

Maintaining Partitions

3-46 Oracle Database VLDB and Partitioning Guide

You cannot merge partitions for a reference-partitioned table. Instead, a merge
operation on a parent table will cascade to all descendant tables. However, you can use
the DEPENDENT TABLES clause to set specific properties for dependent tables when
you issue the merge operation on the master table to merge partitions or subpartitions.

If the involved partitions or subpartitions contain data, then indexes may be marked
UNUSABLE as explained in the following table:

Merging Range Partitions
You are allowed to merge the contents of two adjacent range partitions into one
partition. Nonadjacent range partitions cannot be merged. The resulting partition
inherits the higher upper bound of the two merged partitions.

One reason for merging range partitions is to keep historical data online in larger
partitions. For example, you can have daily partitions, with the oldest partition rolled
up into weekly partitions, which can then be rolled up into monthly partitions, and so
on.

The following scripts create an example of merging range partitions.

First, create a partitioned table and create local indexes.

-- Create a Table with four partitions each on its own tablespace
-- Partitioned by range on the data column.
--
CREATE TABLE four_seasons
(
 one DATE,
 two VARCHAR2(60),
 three NUMBER
)
PARTITION BY RANGE (one)
(
PARTITION quarter_one
 VALUES LESS THAN (TO_DATE('01-apr-1998','dd-mon-yyyy'))
 TABLESPACE quarter_one,
PARTITION quarter_two
 VALUES LESS THAN (TO_DATE('01-jul-1998','dd-mon-yyyy'))
 TABLESPACE quarter_two,
PARTITION quarter_three
 VALUES LESS THAN (TO_DATE('01-oct-1998','dd-mon-yyyy'))
 TABLESPACE quarter_three,
PARTITION quarter_four
 VALUES LESS THAN (TO_DATE('01-jan-1999','dd-mon-yyyy'))

See Also: Oracle Database SQL Language Reference

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

■ The database marks UNUSABLE all resulting corresponding
local index partitions or subpartitions.

■ Global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

Index-organized ■ The database marks UNUSABLE all resulting corresponding
local index partitions.

■ All global indexes remain usable.

Maintaining Partitions

Partition Administration 3-47

 TABLESPACE quarter_four
);
--
-- Create local PREFIXED index on Four_Seasons
-- Prefixed because the leftmost columns of the index match the
-- Partitioning key
--
CREATE INDEX i_four_seasons_l ON four_seasons (one,two)
LOCAL (
PARTITION i_quarter_one TABLESPACE i_quarter_one,
PARTITION i_quarter_two TABLESPACE i_quarter_two,
PARTITION i_quarter_three TABLESPACE i_quarter_three,
PARTITION i_quarter_four TABLESPACE i_quarter_four
);

Next, merge partitions.

--
-- Merge the first two partitions
--
ALTER TABLE four_seasons
MERGE PARTITIONS quarter_one, quarter_two INTO PARTITION quarter_two
UPDATE INDEXES;

If you omit the UPDATE INDEXES clause from the preceding statement, then you must
rebuild the local index for the affected partition.

-- Rebuild index for quarter_two, which has been marked unusable
-- because it has not had all of the data from Q1 added to it.
-- Rebuilding the index will correct this.
--
ALTER TABLE four_seasons MODIFY PARTITION
quarter_two REBUILD UNUSABLE LOCAL INDEXES;

Merging Interval Partitions
The contents of two adjacent interval partitions can be merged into one partition.
Nonadjacent interval partitions cannot be merged. The first interval partition can also
be merged with the highest range partition. The resulting partition inherits the higher
upper bound of the two merged partitions.

Merging interval partitions always results in the transition point being moved to the
higher upper bound of the two merged partitions. This means that the range section of
the interval-partitioned table will be extended to the upper bound of the two merged
partitions. Any materialized interval partitions with boundaries lower than the newly
merged partition will automatically be converted into range partitions, with their
upper boundaries defined by the upper boundaries of their intervals.

For example, consider the following interval-partitioned table transactions:

CREATE TABLE transactions
(id NUMBER
, transaction_date DATE
, value NUMBER
)
PARTITION BY RANGE (transaction_date)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
(PARTITION p_before_2007 VALUES LESS THAN (TO_
DATE('01-JAN-2007','dd-MON-yyyy')));

Maintaining Partitions

3-48 Oracle Database VLDB and Partitioning Guide

Insert data into the interval section of the table. This will create the interval partitions
for these days. Note that January 15, 2007 and January 16, 2007 are stored in adjacent
interval partitions.

INSERT INTO transactions VALUES (1,TO_DATE('15-JAN-2007','dd-MON-yyyy'),100);
INSERT INTO transactions VALUES (2,TO_DATE('16-JAN-2007','dd-MON-yyyy'),600);
INSERT INTO transactions VALUES (3,TO_DATE('30-JAN-2007','dd-MON-yyyy'),200);

Next, merge the two adjacent interval partitions. The new partition will again have a
system-generated name.

ALTER TABLE transactions
MERGE PARTITIONS FOR(TO_DATE('15-JAN-2007','dd-MON-yyyy'))
, FOR(TO_DATE('16-JAN-2007','dd-MON-yyyy'));

The transition point for the transactions table has now moved to January 17, 2007.
The range section of the interval-partitioned table contains two range partitions:
values less than January 1, 2007 and values less than January 17, 2007. Values greater
than January 17, 2007 fall in the interval portion of the interval-partitioned table.

Merging List Partitions
When you merge list partitions, the partitions being merged can be any two partitions.
They do not need to be adjacent, as for range partitions, because list partitioning does
not assume any order for partitions. The resulting partition consists of all of the data
from the original two partitions. If you merge a default list partition with any other
partition, the resulting partition will be the default partition.

The following statement merges two partitions of a table partitioned using the list
method into a partition that inherits all of its attributes from the table-level default
attributes. MAXEXTENTS is specified in the statement.

ALTER TABLE q1_sales_by_region
 MERGE PARTITIONS q1_northcentral, q1_southcentral
 INTO PARTITION q1_central
 STORAGE(MAXEXTENTS 20);

The value lists for the two original partitions were specified as:

PARTITION q1_northcentral VALUES ('SD','WI')
PARTITION q1_southcentral VALUES ('OK','TX')

The resulting sales_west partition value list comprises the set that represents the
union of these two partition value lists, or specifically:

('SD','WI','OK','TX')

Merging *-Hash Partitions
When you merge *-hash partitions, the subpartitions are rehashed into the number of
subpartitions specified by SUBPARTITIONS n or the SUBPARTITION clause. If neither
is included, table-level defaults are used.

Note that the inheritance of properties is different when a *-hash partition is split
(discussed in "Splitting a *-Hash Partition" on page 3-61), as opposed to when two
*-hash partitions are merged. When a partition is split, the new partitions can inherit
properties from the original partition because there is only one parent. However, when
partitions are merged, properties must be inherited from the table level.

For interval-hash partitioned tables, you can only merge two adjacent interval
partitions, or the highest range partition with the first interval partition. As described

Maintaining Partitions

Partition Administration 3-49

in "Merging Interval Partitions" on page 3-47, the transition point will move when you
merge intervals in an interval-hash partitioned table.

The following example merges two range-hash partitions:

ALTER TABLE all_seasons
 MERGE PARTITIONS quarter_1, quarter_2 INTO PARTITION quarter_2
 SUBPARTITIONS 8;

Merging *-List Partitions
Partitions can be merged at the partition level and subpartitions can be merged at the
list subpartition level.

Merging Partitions in a *-List Partitioned Table Merging partitions in a *-list partitioned table
is as described previously in "Merging Range Partitions" on page 3-46. However, when
you merge two *-list partitions, the resulting new partition inherits the subpartition
descriptions from the subpartition template, if one exists. If no subpartition template
exists, then a single default subpartition is created for the new partition.

For interval-list partitioned tables, you can only merge two adjacent interval
partitions, or the highest range partition with the first interval partition. As described
in "Merging Interval Partitions" on page 3-47, the transition point will move when you
merge intervals in an interval-list partitioned table.

The following statement merges two partitions in the range-list partitioned stripe_
regional_sales table. A subpartition template exists for the table.

ALTER TABLE stripe_regional_sales
 MERGE PARTITIONS q1_1999, q2_1999 INTO PARTITION q1_q2_1999
 STORAGE(MAXEXTENTS 20);

Some new physical attributes are specified for this new partition while table-level
defaults are inherited for those that are not specified. The new resulting partition q1_
q2_1999 inherits the high-value bound of the partition q2_1999 and the subpartition
value-list descriptions from the subpartition template description of the table.

The data in the resulting partitions consists of data from both the partitions. However,
there may be cases where the database returns an error. This can occur because data
may map out of the new partition when both of the following conditions exist:

■ Some literal values of the merged subpartitions were not included in the
subpartition template

■ The subpartition template does not contain a default partition definition.

This error condition can be eliminated by always specifying a default partition in the
default subpartition template.

Merging Subpartitions in a *-List Partitioned Table You can merge the contents of any two
arbitrary list subpartitions belonging to the same partition. The resulting subpartition
value-list descriptor includes all of the literal values in the value lists for the partitions
being merged.

The following statement merges two subpartitions of a table partitioned using
range-list method into a new subpartition located in tablespace ts4:

ALTER TABLE quarterly_regional_sales
 MERGE SUBPARTITIONS q1_1999_northwest, q1_1999_southwest
 INTO SUBPARTITION q1_1999_west
 TABLESPACE ts4;

Maintaining Partitions

3-50 Oracle Database VLDB and Partitioning Guide

The value lists for the original two partitions were:

■ Subpartition q1_1999_northwest was described as ('WA','OR')

■ Subpartition q1_1999_southwest was described as ('AZ','NM','UT')

The resulting subpartition value list comprises the set that represents the union of
these two subpartition value lists:

■ Subpartition q1_1999_west has a value list described as
('WA','OR','AZ','NM','UT')

The tablespace in which the resulting subpartition is located and the subpartition
attributes are determined by the partition-level default attributes, except for those
specified explicitly. If any of the existing subpartition names are being reused, then the
new subpartition inherits the subpartition attributes of the subpartition whose name is
being reused.

Merging *-Range Partitions
Partitions can be merged at the partition level and subpartitions can be merged at the
range subpartition level.

Merging Partitions in a *-Range Partitioned Table Merging partitions in a *-range partitioned
table is as described previously in "Merging Range Partitions" on page 3-46. However,
when you merge two *-range partitions, the resulting new partition inherits the
subpartition descriptions from the subpartition template, if one exists. If no
subpartition template exists, then a single subpartition with an upper boundary
MAXVALUE is created for the new partition.

For interval-range partitioned tables, you can only merge two adjacent interval
partitions, or the highest range partition with the first interval partition. As described
in "Merging Interval Partitions" on page 3-47, the transition point will move when you
merge intervals in an interval-range partitioned table.

The following statement merges two partitions in the monthly interval-range
partitioned orders table. A subpartition template exists for the table.

ALTER TABLE orders
MERGE PARTITIONS FOR(TO_DATE('01-MAR-2007','dd-MON-yyyy')),
FOR(TO_DATE('01-APR-2007','dd-MON-yyyy'))
INTO PARTITION p_pre_may_2007;

If the March 2007 and April 2007 partitions were still in the interval section of the
interval-range partitioned table, then the merge operation would move the transition
point to May 1, 2007.

The subpartitions for partition p_pre_may_2007 inherit their properties from the
subpartition template. The data in the resulting partitions consists of data from both
the partitions. However, there may be cases where the database returns an error. This
can occur because data may map out of the new partition when both of the following
conditions are met:

■ Some range values of the merged subpartitions were not included in the
subpartition template.

■ The subpartition template does not have a subpartition definition with a
MAXVALUE upper boundary.

The error condition can be eliminated by always specifying a subpartition with an
upper boundary of MAXVALUE in the subpartition template.

Maintaining Partitions

Partition Administration 3-51

Modifying Default Attributes
You can modify the default attributes of a table, or for a partition of a composite
partitioned table. When you modify default attributes, the new attributes affect only
future partitions, or subpartitions, that are created. The default values can still be
specifically overridden when creating a new partition or subpartition. You can modify
the default attributes of a reference-partitioned table.

Modifying Default Attributes of a Table
You can modify the default attributes that will be inherited for range, hash, list,
interval, or reference partitions using the MODIFY DEFAULT ATTRIBUTES clause of
ALTER TABLE.

For hash-partitioned tables, only the TABLESPACE attribute can be modified.

Modifying Default Attributes of a Partition
To modify the default attributes inherited when creating subpartitions, use the ALTER
TABLE ... MODIFY DEFAULT ATTRIBUTES FOR PARTITION. The following statement
modifies the TABLESPACE in which future subpartitions of partition p1 in range-hash
partitioned table emp will reside.

ALTER TABLE emp
 MODIFY DEFAULT ATTRIBUTES FOR PARTITION p1 TABLESPACE ts1;

Because all subpartitions of a range-hash partitioned table must share the same
attributes, except TABLESPACE, it is the only attribute that can be changed.

You cannot modify default attributes of interval partitions that have not yet been
created. If you want to change the way in which future subpartitions in an
interval-partitioned table are created, then you have to modify the subpartition
template.

Modifying Default Attributes of Index Partitions
In similar fashion to table partitions, you can alter the default attributes that will be
inherited by partitions of a range-partitioned global index, or local index partitions of
partitioned tables. For this you use the ALTER INDEX ... MODIFY DEFAULT
ATTRIBUTES statement. Use the ALTER INDEX ... MODIFY DEFAULT ATTRIBUTES
FOR PARTITION statement if you are altering default attributes to be inherited by
subpartitions of a composite partitioned table.

Modifying Real Attributes of Partitions
It is possible to modify attributes of an existing partition of a table or index.

You cannot change the TABLESPACE attribute. Use ALTER TABLESPACE ... MOVE
PARTITION/SUBPARTITION to move a partition or subpartition to a new tablespace.

Modifying Real Attributes for a Range or List Partition
Use the ALTER TABLE ... MODIFY PARTITION statement to modify existing attributes
of a range partition or list partition. You can modify segment attributes (except
TABLESPACE), or you can allocate and deallocate extents, mark local index partitions
UNUSABLE, or rebuild local indexes that have been marked UNUSABLE.

If this is a range partition of a *-hash partitioned table, then note the following:

■ If you allocate or deallocate an extent, this action is performed for every
subpartition of the specified partition.

Maintaining Partitions

3-52 Oracle Database VLDB and Partitioning Guide

■ Likewise, changing any other attributes results in corresponding changes to those
attributes of all the subpartitions for that partition. The partition level default
attributes are changed as well. To avoid changing attributes of existing
subpartitions, use the FOR PARTITION clause of the MODIFY DEFAULT
ATTRIBUTES statement.

The following are some examples of modifying the real attributes of a partition.

This example modifies the MAXEXTENTS storage attribute for the range partition
sales_q1 of table sales:

ALTER TABLE sales MODIFY PARTITION sales_q1
 STORAGE (MAXEXTENTS 10);

All of the local index subpartitions of partition ts1 in range-hash partitioned table
scubagear are marked UNUSABLE in the following example:

ALTER TABLE scubagear MODIFY PARTITION ts1 UNUSABLE LOCAL INDEXES;
For an interval-partitioned table you can only modify real attributes of range partitions
or interval partitions that have been created.

Modifying Real Attributes for a Hash Partition
You also use the ALTER TABLE ... MODIFY PARTITION statement to modify attributes
of a hash partition. However, because the physical attributes of individual hash
partitions must all be the same (except for TABLESPACE), you are restricted to:

■ Allocating a new extent

■ Deallocating an unused extent

■ Marking a local index subpartition UNUSABLE

■ Rebuilding local index subpartitions that are marked UNUSABLE

The following example rebuilds any unusable local index partitions associated with
hash partition P1 of table dept:

ALTER TABLE dept MODIFY PARTITION p1
 REBUILD UNUSABLE LOCAL INDEXES;

Modifying Real Attributes of a Subpartition
With the MODIFY SUBPARTITION clause of ALTER TABLE you can perform the same
actions as listed previously for partitions, but at the specific composite partitioned
table subpartition level. For example:

ALTER TABLE emp MODIFY SUBPARTITION p3_s1
 REBUILD UNUSABLE LOCAL INDEXES;

Modifying Real Attributes of Index Partitions
The MODIFY PARTITION clause of ALTER INDEX lets you modify the real attributes of
an index partition or its subpartitions. The rules are very similar to those for table
partitions, but unlike the MODIFY PARTITION clause for ALTER INDEX, there is no
subclause to rebuild an unusable index partition, but there is a subclause to coalesce
an index partition or its subpartitions. In this context, coalesce means to merge index
blocks where possible to free them for reuse.

You can also allocate or deallocate storage for a subpartition of a local index, or mark it
UNUSABLE, using the MODIFY PARTITION clause.

Maintaining Partitions

Partition Administration 3-53

Modifying List Partitions: Adding Values
List partitioning allows you the option of adding literal values from the defining value
list.

Adding Values for a List Partition
Use the MODIFY PARTITION ... ADD VALUES clause of the ALTER TABLE statement to
extend the value list of an existing partition. Literal values being added must not have
been included in any other partition value list. The partition value list for any
corresponding local index partition is correspondingly extended, and any global
indexes, or global or local index partitions, remain usable.

The following statement adds a new set of state codes ('OK', 'KS') to an existing
partition list.

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 ADD VALUES ('OK', 'KS');

The existence of a default partition can have a performance impact when adding
values to other partitions. This is because in order to add values to a list partition, the
database must check that the values being added do not already exist in the default
partition. If any of the values do exist in the default partition, then an error is raised.

You cannot add values to a default list partition.

Adding Values for a List Subpartition
This operation is essentially the same as described for "Modifying List Partitions:
Adding Values", however, you use a MODIFY SUBPARTITION clause instead of the
MODIFY PARTITION clause. For example, to extend the range of literal values in the
value list for subpartition q1_1999_southeast, use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 ADD VALUES ('KS');

Literal values being added must not have been included in any other subpartition
value list within the owning partition. However, they can be duplicates of literal
values in the subpartition value lists of other partitions within the table.

For an interval-list composite partitioned table, you can only add values to
subpartitions of range partitions or interval partitions that have been created. If you
want to add values to subpartitions of interval partitions that have not yet been
created, then you have to modify the subpartition template.

Modifying List Partitions: Dropping Values
List partitioning allows you the option of dropping literal values from the defining
value list.

Note: The database executes a query to check for the existence of
rows in the default partition that correspond to the literal values being
added. Therefore, it is advisable to create a local prefixed index on the
table. This speeds up the execution of the query and the overall
operation.

Maintaining Partitions

3-54 Oracle Database VLDB and Partitioning Guide

Dropping Values from a List Partition
Use the MODIFY PARTITION ... DROP VALUES clause of the ALTER TABLE statement to
remove literal values from the value list of an existing partition. The statement is
always executed with validation, meaning that it checks to see if any rows exist in the
partition that corresponds to the set of values being dropped. If any such rows are
found then the database returns an error message and the operation fails. When
necessary, use a DELETE statement to delete corresponding rows from the table before
attempting to drop values.

The partition value list for any corresponding local index partition reflects the new
value list, and any global index, or global or local index partitions, remain usable.

The following statement drops a set of state codes ('OK' and 'KS') from an existing
partition value list.

ALTER TABLE sales_by_region
 MODIFY PARTITION region_south
 DROP VALUES ('OK', 'KS');

You cannot drop values from a default list partition.

Dropping Values from a List Subpartition
This operation is essentially the same as described for "Modifying List Partitions:
Dropping Values", however, you use a MODIFY SUBPARTITION clause instead of the
MODIFY PARTITION clause. For example, to remove a set of literal values in the value
list for subpartition q1_1999_southeast, use the following statement:

ALTER TABLE quarterly_regional_sales
 MODIFY SUBPARTITION q1_1999_southeast
 DROP VALUES ('KS');
For an interval-list composite partitioned table, you can only drop values from
subpartitions of range partitions or interval partitions that have been created. If you
want to drop values from subpartitions of interval partitions that have not yet been
created, then you have to modify the subpartition template.

Modifying a Subpartition Template
You can modify a subpartition template of a composite partitioned table by replacing it
with a new subpartition template. Any subsequent operations that use the
subpartition template (such as ADD PARTITION or MERGE PARTITIONS) will now use
the new subpartition template. Existing subpartitions remain unchanged.

Note: You cannot drop all literal values from the value list describing
the partition. You must use the ALTER TABLE ... DROP
PARTITION statement instead.

Note: The database executes a query to check for the existence of
rows in the partition that correspond to the literal values being
dropped. Therefore, it is advisable to create a local prefixed index on
the table. This speeds up the execution of the query and the overall
operation.

Maintaining Partitions

Partition Administration 3-55

If you modify a subpartition template of an interval-* composite partitioned table, then
interval partitions that have not yet been created will use the new subpartition
template.

Use the ALTER TABLE ... SET SUBPARTITION TEMPLATE statement to specify a new
subpartition template. For example:

ALTER TABLE emp_sub_template
 SET SUBPARTITION TEMPLATE
 (SUBPARTITION e TABLESPACE ts1,
 SUBPARTITION f TABLESPACE ts2,
 SUBPARTITION g TABLESPACE ts3,
 SUBPARTITION h TABLESPACE ts4
);

You can drop a subpartition template by specifying an empty list:

ALTER TABLE emp_sub_template
 SET SUBPARTITION TEMPLATE ();

Moving Partitions
Use the MOVE PARTITION clause of the ALTER TABLE statement to:

■ Re-cluster data and reduce fragmentation

■ Move a partition to another tablespace

■ Modify create-time attributes

■ Store the data in compressed format using table compression

Typically, you can change the physical storage attributes of a partition in a single step
using an ALTER TABLE/INDEX ... MODIFY PARTITION statement. However, there are
some physical attributes, such as TABLESPACE, that you cannot modify using MODIFY
PARTITION. In these cases, use the MOVE PARTITION clause. Modifying some other
attributes, such as table compression, affects only future storage, but not existing data.

If the partition being moved contains any data, indexes may be marked UNUSABLE
according to the following table:

Note: ALTER TABLE...MOVE does not permit DML on the partition
while the command is executing. If you want to move a partition and
leave it available for DML, see "Redefining Partitions Online" on
page 3-56.

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

■ The matching partition in each local index is marked
UNUSABLE. You must rebuild these index partitions after
issuing MOVE PARTITION.

■ Any global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE.

Index-organized Any local or global indexes defined for the partition being
moved remain usable because they are primary-key based
logical rowids. However, the guess information for these rowids
becomes incorrect.

Maintaining Partitions

3-56 Oracle Database VLDB and Partitioning Guide

Moving Table Partitions
Use the MOVE PARTITION clause to move a partition. For example, to move the most
active partition to a tablespace that resides on its own set of disks (in order to balance
I/O), not log the action, and compress the data, issue the following statement:

ALTER TABLE parts MOVE PARTITION depot2
 TABLESPACE ts094 NOLOGGING COMPRESS;

This statement always drops the old partition segment and creates a new segment,
even if you do not specify a new tablespace.

If you are moving a partition of a partitioned index-organized table, then you can
specify the MAPPING TABLE clause as part of the MOVE PARTITION clause, and the
mapping table partition will be moved to the new location along with the table
partition.

For an interval or interval-* partitioned table, you can only move range partitions or
interval partitions that have been created. A partition move operation does not move
the transition point in an interval or interval-* partitioned table.

You can move a partition in a reference-partitioned table independent of the partition
in the master table.

Moving Subpartitions
The following statement shows how to move data in a subpartition of a table. In this
example, a PARALLEL clause has also been specified.

ALTER TABLE scuba_gear MOVE SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);
You can move a subpartition in a reference-partitioned table independent of the
subpartition in the master table.

Moving Index Partitions
The ALTER TABLE ... MOVE PARTITION statement for regular tables, marks all
partitions of a global index UNUSABLE. You can rebuild the entire index by rebuilding
each partition individually using the ALTER INDEX ... REBUILD PARTITION
statement. You can perform these rebuilds concurrently.

You can also simply drop the index and re-create it.

Redefining Partitions Online
Oracle Database provides a mechanism to move a partition or to make other changes
to the partition's physical structure without significantly affecting the availability of
the partition for DML. The mechanism is called online table redefinition.

For information on redefining a single partition of a table, see Oracle Database
Administrator's Guide.

Rebuilding Index Partitions
Some reasons for rebuilding index partitions include:

■ To recover space and improve performance

■ To repair a damaged index partition caused by media failure

■ To rebuild a local index partition after loading the underlying table partition with
SQL*Loader or an import utility

Maintaining Partitions

Partition Administration 3-57

■ To rebuild index partitions that have been marked UNUSABLE

■ To enable key compression for B-tree indexes

The following sections discuss options for rebuilding index partitions and
subpartitions.

Rebuilding Global Index Partitions
You can rebuild global index partitions in two ways:

■ Rebuild each partition by issuing the ALTER INDEX ... REBUILD PARTITION
statement (you can run the rebuilds concurrently).

■ Drop the entire global index and re-create it. This method is more efficient because
the table is scanned only once.

For most maintenance operations on partitioned tables with indexes, you can
optionally avoid the need to rebuild the index by specifying UPDATE INDEXES on
your DDL statement.

Rebuilding Local Index Partitions
Rebuild local indexes using either ALTER INDEX or ALTER TABLE as follows:

■ ALTER INDEX ... REBUILD PARTITION/SUBPARTITION

This statement rebuilds an index partition or subpartition unconditionally.

■ ALTER TABLE ... MODIFY PARTITION/SUBPARTITION ... REBUILD UNUSABLE
LOCAL INDEXES

This statement finds all of the unusable indexes for the given table partition or
subpartition and rebuilds them. It only rebuilds an index partition if it has been
marked UNUSABLE.

Using ALTER INDEX to Rebuild a Partition The ALTER INDEX ... REBUILD PARTITION
statement rebuilds one partition of an index. It cannot be used for
composite-partitioned tables. Only real physical segments can be rebuilt with this
command. When you re-create the index, you can also choose to move the partition to
a new tablespace or change attributes.

For composite-partitioned tables, use ALTER INDEX ... REBUILD SUBPARTITION to
rebuild a subpartition of an index. You can move the subpartition to another
tablespace or specify a parallel clause. The following statement rebuilds a subpartition
of a local index on a table and moves the index subpartition is another tablespace.

ALTER INDEX scuba
 REBUILD SUBPARTITION bcd_types
 TABLESPACE tbs23 PARALLEL (DEGREE 2);

Using ALTER TABLE to Rebuild an Index Partition The REBUILD UNUSABLE LOCAL
INDEXES clause of ALTER TABLE ... MODIFY PARTITION does not allow you to
specify any new attributes for the rebuilt index partition. The following example finds
and rebuilds any unusable local index partitions for table scubagear, partition p1.

ALTER TABLE scubagear
 MODIFY PARTITION p1 REBUILD UNUSABLE LOCAL INDEXES;

There is a corresponding ALTER TABLE ... MODIFY SUBPARTITION clause for
rebuilding unusable local index subpartitions.

Maintaining Partitions

3-58 Oracle Database VLDB and Partitioning Guide

Renaming Partitions
It is possible to rename partitions and subpartitions of both tables and indexes. One
reason for renaming a partition might be to assign a meaningful name, as opposed to a
default system name that was assigned to the partition in another maintenance
operation.

All partitioning methods support the FOR(value) method to identify a partition. You
can use this method to rename a system-generated partition name into a more
meaningful name. This is particularly useful in interval or interval-* partitioned tables.

You can independently rename partitions and subpartitions for reference-partitioned
master and child tables. The rename operation on the master table is not cascaded to
descendant tables.

Renaming a Table Partition
Rename a range, hash, or list partition, using the ALTER TABLE ... RENAME
PARTITION statement. For example:

ALTER TABLE scubagear RENAME PARTITION sys_p636 TO tanks;

Renaming a Table Subpartition
Likewise, you can assign new names to subpartitions of a table. In this case you would
use the ALTER TABLE ... RENAME SUBPARTITION syntax.

Renaming Index Partitions
Index partitions and subpartitions can be renamed in similar fashion, but the ALTER
INDEX syntax is used.

Renaming an Index Partition Use the ALTER INDEX ... RENAME PARTITION statement to
rename an index partition.

The ALTER INDEX statement does not support the use of FOR(value) to identify a
partition. You have to use the original partition name in the rename operation.

Renaming an Index Subpartition This next statement simply shows how to rename a
subpartition that has a system generated name that was a consequence of adding a
partition to an underlying table:

ALTER INDEX scuba RENAME SUBPARTITION sys_subp3254 TO bcd_types;

Splitting Partitions
The SPLIT PARTITION clause of the ALTER TABLE or ALTER INDEX statement is
used to redistribute the contents of a partition into two new partitions. Consider doing
this when a partition becomes too large and causes backup, recovery, or maintenance
operations to take a long time to complete or it is felt that there is simply too much
data in the partition. You can also use the SPLIT PARTITION clause to redistribute the
I/O load.

This clause cannot be used for hash partitions or subpartitions.

If the partition you are splitting contains any data, then indexes may be marked
UNUSABLE as explained in the following table:

Maintaining Partitions

Partition Administration 3-59

You cannot split partitions or subpartitions in a reference-partitioned table. When you
split partitions or subpartitions in the parent table then the split is cascaded to all
descendant tables. However, you can use the DEPENDENT TABLES clause to set
specific properties for dependent tables when you issue the SPLIT statement on the
master table to split partitions or subpartitions.

Splitting a Partition of a Range-Partitioned Table
You split a range partition using the ALTER TABLE ... SPLIT PARTITION statement.
You specify a value of the partitioning key column within the range of the partition at
which to split the partition. The first of the resulting two new partitions includes all
rows in the original partition whose partitioning key column values map lower that
the specified value. The second partition contains all rows whose partitioning key
column values map greater than or equal to the specified value.

You can optionally specify new attributes for the two partitions resulting from the
split. If there are local indexes defined on the table, this statement also splits the
matching partition in each local index.

In the following example fee_katy is a partition in the table vet_cats, which has a
local index, jaf1. There is also a global index, vet on the table. vet contains two
partitions, vet_parta, and vet_partb.

To split the partition fee_katy, and rebuild the index partitions, issue the following
statements:

ALTER TABLE vet_cats SPLIT PARTITION
 fee_katy at (100) INTO (PARTITION
 fee_katy1, PARTITION fee_katy2);
ALTER INDEX JAF1 REBUILD PARTITION fee_katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_katy2;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_partb;

Table Type Index Behavior

Regular (Heap) Unless you specify UPDATE INDEXES as part of the ALTER TABLE
statement:

■ The database marks UNUSABLE the new partitions (there are
two) in each local index.

■ Any global indexes, or all partitions of partitioned global
indexes, are marked UNUSABLE and must be rebuilt.

Index-organized ■ The database marks UNUSABLE the new partitions (there are
two) in each local index.

■ All global indexes remain usable.

See Also: Oracle Database SQL Language Reference

Note: If you do not specify new partition names, the database
assigns names of the form SYS_Pn. You can examine the data
dictionary to locate the names assigned to the new local index
partitions. You may want to rename them. Any attributes you do not
specify are inherited from the original partition.

Maintaining Partitions

3-60 Oracle Database VLDB and Partitioning Guide

Splitting a Partition of a List-Partitioned Table
You split a list partition by using the ALTER TABLE ... SPLIT PARTITION statement.
The SPLIT PARTITION clause enables you to specify a list of literal values that define
a partition into which rows with corresponding partitioning key values are inserted.
The remaining rows of the original partition are inserted into a second partition whose
value list contains the remaining values from the original partition.

You can optionally specify new attributes for the two partitions that result from the
split.

The following statement splits the partition region_east into two partitions:

ALTER TABLE sales_by_region
 SPLIT PARTITION region_east VALUES ('CT', 'MA', 'MD')
 INTO
 (PARTITION region_east_1
 TABLESPACE tbs2,
 PARTITION region_east_2
 STORAGE (NEXT 2M PCTINCREASE 25))
 PARALLEL 5;

The literal value list for the original region_east partition was specified as:

PARTITION region_east VALUES ('MA','NY','CT','NH','ME','MD','VA','PA','NJ')

The two new partitions are:

■ region_east_1 with a literal value list of ('CT','MA','MD')

■ region_east_2 inheriting the remaining literal value list of
('NY','NH','ME','VA','PA','NJ')

The individual partitions have new physical attributes specified at the partition level.
The operation is executed with parallelism of degree 5.

You can split a default list partition just like you split any other list partition. This is
also the only means of adding a partition to a list-partitioned table that contains a
default partition. When you split the default partition, you create a new partition
defined by the values that you specify, and a second partition that remains the default
partition.

The following example splits the default partition of sales_by_region, thereby
creating a new partition:

ALTER TABLE sales_by_region
 SPLIT PARTITION region_unknown VALUES ('MT', 'WY', 'ID')
 INTO
 (PARTITION region_wildwest,
 PARTITION region_unknown);

Splitting a Partition of an Interval-Partitioned Table
You split a range or a materialized interval partition using the ALTER TABLE ...
SPLIT PARTITION statement in an interval-partitioned table. Splitting a range
partition in the interval-partitioned table is the same as described in "Splitting a
Partition of a Range-Partitioned Table" on page 3-59.

To split a materialized interval partition, you specify a value of the partitioning key
column within the interval partition at which to split the partition. The first of the
resulting two new partitions includes all rows in the original partition whose
partitioning key column values map lower than the specified value. The second
partition contains all rows whose partitioning key column values map greater than or

Maintaining Partitions

Partition Administration 3-61

equal to the specified value. The split partition operation will move the transition
point up to the higher boundary of the partition you just split, and all materialized
interval partitions lower than the newly split partitions are implicitly converted into
range partitions, with their upper boundaries defined by the upper boundaries of the
intervals.

You can optionally specify new attributes for the two range partitions resulting from
the split. If there are local indexes defined on the table, then this statement also splits
the matching partition in each local index. You cannot split interval partitions that
have not yet been created.

The following example shows splitting the May 2007 partition in the monthly interval
partitioned table transactions.

ALTER TABLE transactions
SPLIT PARTITION FOR(TO_DATE('01-MAY-2007','dd-MON-yyyy'))
AT (TO_DATE('15-MAY-2007','dd-MON-yyyy'));

Splitting a *-Hash Partition
This is the opposite of merging *-hash partitions. When you split *-hash partitions, the
new subpartitions are rehashed into either the number of subpartitions specified in a
SUBPARTITIONS or SUBPARTITION clause. Or, if no such clause is included, the new
partitions inherit the number of subpartitions (and tablespaces) from the partition
being split.

Note that the inheritance of properties is different when a *-hash partition is split,
versus when two *-hash partitions are merged. When a partition is split, the new
partitions can inherit properties from the original partition because there is only one
parent. However, when partitions are merged, properties must be inherited from table
level defaults because there are two parents and the new partition cannot inherit from
either at the expense of the other.

The following example splits a range-hash partition:

ALTER TABLE all_seasons SPLIT PARTITION quarter_1
 AT (TO_DATE('16-dec-1997','dd-mon-yyyy'))
 INTO (PARTITION q1_1997_1 SUBPARTITIONS 4 STORE IN (ts1,ts3),
 PARTITION q1_1997_2);
The rules for splitting an interval-hash partitioned table follow the rules for splitting
an interval-partitioned table. As described in "Splitting a Partition of an
Interval-Partitioned Table" on page 3-60, the transition point will be changed to the
higher boundary of the split partition.

Splitting Partitions in a *-List Partitioned Table
Partitions can be split at both the partition level and at the list subpartition level.

Splitting a *-List Partition Splitting a partition of a *-list partitioned table is similar to
what is described in "Splitting a Partition of a Range-Partitioned Table" on page 3-59.
No subpartition literal value list can be specified for either of the new partitions. The
new partitions inherit the subpartition descriptions from the original partition being
split.

The following example splits the q1_1999 partition of the quarterly_regional_
sales table:

ALTER TABLE quarterly_regional_sales SPLIT PARTITION q1_1999

Maintaining Partitions

3-62 Oracle Database VLDB and Partitioning Guide

 AT (TO_DATE('15-Feb-1999','dd-mon-yyyy'))
 INTO (PARTITION q1_1999_jan_feb
 TABLESPACE ts1,
 PARTITION q1_1999_feb_mar
 STORAGE (NEXT 2M PCTINCREASE 25) TABLESPACE ts2)
 PARALLEL 5;

This operation splits the partition q1_1999 into two resulting partitions: q1_1999_
jan_feb and q1_1999_feb_mar. Both partitions inherit their subpartition
descriptions from the original partition. The individual partitions have new physical
attributes, including tablespaces, specified at the partition level. These new attributes
become the default attributes of the new partitions. This operation is run with
parallelism of degree 5.

The ALTER TABLE ... SPLIT PARTITION statement provides no means of specifically
naming subpartitions resulting from the split of a partition in a composite partitioned
table. However, for those subpartitions in the parent partition with names of the form
partition name_subpartition name, the database generates corresponding
names in the newly created subpartitions using the new partition names. All other
subpartitions are assigned system generated names of the form SYS_SUBPn. System
generated names are also assigned for the subpartitions of any partition resulting from
the split for which a name is not specified. Unnamed partitions are assigned a system
generated partition name of the form SYS_Pn.

The following query displays the subpartition names resulting from the previous split
partition operation on table quarterly_regional_sales. It also reflects the results
of other operations performed on this table in preceding sections of this chapter since
its creation in "Creating Composite Range-List Partitioned Tables" on page 3-9.

SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLESPACE_NAME
 FROM DBA_TAB_SUBPARTITIONS
 WHERE TABLE_NAME='QUARTERLY_REGIONAL_SALES'
 ORDER BY PARTITION_NAME;

PARTITION_NAME SUBPARTITION_NAME TABLESPACE_NAME
-------------------- ------------------------------ ---------------
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_WEST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHEAST TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_NORTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTHCENTRAL TS2
Q1_1999_FEB_MAR Q1_1999_FEB_MAR_SOUTH TS2
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_WEST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHEAST TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_NORTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTHCENTRAL TS1
Q1_1999_JAN_FEB Q1_1999_JAN_FEB_SOUTH TS1
Q1_2000 Q1_2000_NORTHWEST TS3
Q1_2000 Q1_2000_SOUTHWEST TS3
Q1_2000 Q1_2000_NORTHEAST TS3
Q1_2000 Q1_2000_SOUTHEAST TS3
Q1_2000 Q1_2000_NORTHCENTRAL TS3
Q1_2000 Q1_2000_SOUTHCENTRAL TS3
Q2_1999 Q2_1999_NORTHWEST TS4
Q2_1999 Q2_1999_SOUTHWEST TS4
Q2_1999 Q2_1999_NORTHEAST TS4
Q2_1999 Q2_1999_SOUTHEAST TS4
Q2_1999 Q2_1999_NORTHCENTRAL TS4
Q2_1999 Q2_1999_SOUTHCENTRAL TS4

Maintaining Partitions

Partition Administration 3-63

Q3_1999 Q3_1999_NORTHWEST TS4
Q3_1999 Q3_1999_SOUTHWEST TS4
Q3_1999 Q3_1999_NORTHEAST TS4
Q3_1999 Q3_1999_SOUTHEAST TS4
Q3_1999 Q3_1999_NORTHCENTRAL TS4
Q3_1999 Q3_1999_SOUTHCENTRAL TS4
Q4_1999 Q4_1999_NORTHWEST TS4
Q4_1999 Q4_1999_SOUTHWEST TS4
Q4_1999 Q4_1999_NORTHEAST TS4
Q4_1999 Q4_1999_SOUTHEAST TS4
Q4_1999 Q4_1999_NORTHCENTRAL TS4
Q4_1999 Q4_1999_SOUTHCENTRAL TS4

36 rows selected.

Splitting a *-List Subpartition Splitting a list subpartition of a *-list partitioned table is
similar to what is described in "Splitting a Partition of a List-Partitioned Table" on
page 3-60, but the syntax is that of SUBPARTITION rather than PARTITION. For
example, the following statement splits a subpartition of the quarterly_regional_
sales table:

ALTER TABLE quarterly_regional_sales SPLIT SUBPARTITION q2_1999_southwest
 VALUES ('UT') INTO
 (SUBPARTITION q2_1999_utah
 TABLESPACE ts2,
 SUBPARTITION q2_1999_southwest
 TABLESPACE ts3
)
 PARALLEL;

This operation splits the subpartition q2_1999_southwest into two subpartitions:

■ q2_1999_utah with literal value list of ('UT')

■ q2_1999_southwest which inherits the remaining literal value list of
('AZ','NM')

The individual subpartitions have new physical attributes that are inherited from the
subpartition being split.

You can only split subpartitions in an interval-list partitioned table for range partitions
or materialized interval partitions. If you want to change subpartition values for future
interval partitions, then you have to modify the subpartition template.

Splitting a *-Range Partition
Splitting a partition of a *-range partitioned table is similar to what is described in
"Splitting a Partition of a Range-Partitioned Table" on page 3-59. No subpartition range
values can be specified for either of the new partitions. The new partitions inherit the
subpartition descriptions from the original partition being split.

The following example splits the May 2007 interval partition of the interval-range
partitioned orders table:

ALTER TABLE orders
SPLIT PARTITION FOR(TO_DATE('01-MAY-2007','dd-MON-yyyy'))
AT (TO_DATE('15-MAY-2007','dd-MON-yyyy'))
INTO (PARTITION p_fh_may07,PARTITION p_sh_may2007);

This operation splits the interval partition FOR('01-MAY-2007') into two resulting
partitions: p_fh_may07 and p_sh_may_2007. Both partitions inherit their

Maintaining Partitions

3-64 Oracle Database VLDB and Partitioning Guide

subpartition descriptions from the original partition. Any interval partitions before the
June 2007 partition have been converted into range partitions, as described in
"Merging Interval Partitions" on page 3-47.

The ALTER TABLE ... SPLIT PARTITION statement provides no means of
specifically naming subpartitions resulting from the split of a partition in a composite
partitioned table. However, for those subpartitions in the parent partition with names
of the form partition name_subpartition name, the database generates
corresponding names in the newly created subpartitions using the new partition
names. All other subpartitions are assigned system generated names of the form SYS_
SUBPn. System generated names are also assigned for the subpartitions of any
partition resulting from the split for which a name is not specified. Unnamed
partitions are assigned a system generated partition name of the form SYS_Pn.

The following query displays the subpartition names and high values resulting from
the previous split partition operation on table orders. It also reflects the results of
other operations performed on this table in preceding sections of this chapter since its
creation.

BREAK ON partition_name

SELECT partition_name, subpartition_name, high_value
FROM user_tab_subpartitions
WHERE table_name = 'ORCERS'
ORDER BY partition_name, subpartition_position;

PARTITION_NAME SUBPARTITION_NAME HIGH_VALUE
------------------------- ------------------------------ ---------------
P_BEFORE_2007 P_BEFORE_2007_P_SMALL 1000
 P_BEFORE_2007_P_MEDIUM 10000
 P_BEFORE_2007_P_LARGE 100000
 P_BEFORE_2007_P_EXTRAORDINARY MAXVALUE
P_FH_MAY07 SYS_SUBP2985 1000
 SYS_SUBP2986 10000
 SYS_SUBP2987 100000
 SYS_SUBP2988 MAXVALUE
P_PRE_MAY_2007 P_PRE_MAY_2007_P_SMALL 1000
 P_PRE_MAY_2007_P_MEDIUM 10000
 P_PRE_MAY_2007_P_LARGE 100000
 P_PRE_MAY_2007_P_EXTRAORDINARY MAXVALUE
P_SH_MAY2007 SYS_SUBP2989 1000
 SYS_SUBP2990 10000
 SYS_SUBP2991 100000
 SYS_SUBP2992 MAXVALUE

Splitting a *-Range Subpartition Splitting a range subpartition of a *-range partitioned
table is similar to what is described in "Splitting a Partition of a Range-Partitioned
Table" on page 3-59, but the syntax is that of SUBPARTITION rather than PARTITION.
For example, the following statement splits a subpartition of the orders table:

ALTER TABLE orders
SPLIT SUBPARTITION p_pre_may_2007_p_large AT (50000)
INTO (SUBPARTITION p_pre_may_2007_med_large TABLESPACE TS4
 , SUBPARTITION p_pre_may_2007_large_large TABLESPACE TS5
);

This operation splits the subpartition p_pre_may_2007_p_large into two
subpartitions:

Maintaining Partitions

Partition Administration 3-65

■ p_pre_may_2007_med_large with values between 10000 and 50000

■ p_pre_may_2007_large_large with values between 50000 and 100000

The individual subpartitions have new physical attributes that are inherited from the
subpartition being split.

You can only split subpartitions in an interval-range partitioned table for range
partitions or materialized interval partitions. If you want to change subpartition
boundaries for future interval partitions, then you have to modify the subpartition
template.

Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split
only when you split a partition in the underlying table. However, you can split a
global index partition as is done in the following example:

ALTER INDEX quon1 SPLIT
 PARTITION canada AT (100) INTO
 PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;
ALTER INDEX quon1 REBUILD PARTITION canada2;

The index being split can contain index data, and the resulting partitions do not
require rebuilding, unless the original partition was previously marked UNUSABLE.

Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations
Oracle Database implements a SPLIT PARTITION operation by creating two new
partitions and redistributing the rows from the partition being split into the two new
partitions. This is an expensive operation because it is necessary to scan all the rows of
the partition being split and then insert them one-by-one into the new partitions.
Further if you do not use the UPDATE INDEXES clause, both local and global indexes
also require rebuilding.

Sometimes after a split operation, one of the new partitions contains all of the rows
from the partition being split, while the other partition contains no rows. This is often
the case when splitting the first partition of a table. The database can detect such
situations and can optimize the split operation. This optimization results in a fast split
operation that behaves like an add partition operation.

Specifically, the database can optimize and speed up SPLIT PARTITION operations if
all of the following conditions are met:

■ One of the two resulting partitions must be empty.

■ The non-empty resulting partition must have storage characteristics identical to
those of the partition being split. Specifically:

– If the partition being split is composite, then the storage characteristics of each
subpartition in the new non-empty resulting partition must be identical to
those of the subpartitions of the partition being split.

– If the partition being split contains a LOB column, then the storage
characteristics of each LOB (sub)partition in the new non-empty resulting
partition must be identical to those of the LOB (sub)partitions of the partition
being split.

– If a partition of an index-organized table with overflow is being split, then the
storage characteristics of each overflow (sub)partition in the new nonempty

Maintaining Partitions

3-66 Oracle Database VLDB and Partitioning Guide

resulting partition must be identical to those of the overflow (sub)partitions of
the partition being split.

– If a partition of an index-organized table with mapping table is being split,
then the storage characteristics of each mapping table (sub)partition in the
new nonempty resulting partition must be identical to those of the mapping
table (sub)partitions of the partition being split.

If these conditions are met after the split, then all global indexes remain usable, even if
you did not specify the UPDATE INDEXES clause. Local index (sub)partitions
associated with both resulting partitions remain usable if they were usable before the
split. Local index (sub)partition(s) corresponding to the non-empty resulting partition
will be identical to the local index (sub)partition(s) of the partition that was split.

The same optimization holds for SPLIT SUBPARTITION operations.

Truncating Partitions
Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows from a
table partition. Truncating a partition is similar to dropping a partition, except that the
partition is emptied of its data, but not physically dropped.

You cannot truncate an index partition. However, if local indexes are defined for the
table, the ALTER TABLE ... TRUNCATE PARTITION statement truncates the matching
partition in each local index. Unless you specify UPDATE INDEXES, any global indexes
are marked UNUSABLE and must be rebuilt. (You cannot use UPDATE INDEXES for
index-organized tables. Use UPDATE GLOBAL INDEXES instead.)

Truncating a Table Partition
Use the ALTER TABLE ... TRUNCATE PARTITION statement to remove all rows from a
table partition, with or without reclaiming space. Truncating a partition in an
interval-partitioned table does not move the transition point. You can truncate
partitions and subpartitions in a reference-partitioned table.

Truncating Table Partitions Containing Data and Global Indexes If the partition contains data
and global indexes, use one of the following methods to truncate the table partition.

Method 1
Leave the global indexes in place during the ALTER TABLE ... TRUNCATE PARTITION
statement. In this example, table sales has a global index sales_area_ix, which is
rebuilt.

ALTER TABLE sales TRUNCATE PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

This method is most appropriate for large tables where the partition being truncated
contains a significant percentage of the total data in the table.

Method 2
Issue the DELETE statement to delete all rows from the partition before you issue the
ALTER TABLE ... TRUNCATE PARTITION statement. The DELETE statement updates
the global indexes, and also fires triggers and generates redo and undo logs.

For example, to truncate the first partition, issue the following statements:

DELETE FROM sales PARTITION (dec98);
ALTER TABLE sales TRUNCATE PARTITION dec98;

Maintaining Partitions

Partition Administration 3-67

This method is most appropriate for small tables, or for large tables when the partition
being truncated contains a small percentage of the total data in the table.

Method 3
Specify UPDATE INDEXES in the ALTER TABLE statement. This causes the global
index to be truncated at the time the partition is truncated.

ALTER TABLE sales TRUNCATE PARTITION dec98
 UPDATE INDEXES;

Truncating a Partition Containing Data and Referential Integrity Constraints If a partition
contains data and has referential integrity constraints, then you cannot truncate the
partition. If no other data is referencing any data in the partition you want to remove,
then choose either of the following methods to truncate the table partition.

Method 1
Disable the integrity constraints, issue the ALTER TABLE ... TRUNCATE PARTITION
statement, then re-enable the integrity constraints. This method is most appropriate for
large tables where the partition being truncated contains a significant percentage of the
total data in the table. If there is still referencing data in other tables, then you have to
remove that data in order to be able to re-enable the integrity constraints.

Method 2
Issue the DELETE statement to delete all rows from the partition before you issue the
ALTER TABLE ... TRUNCATE PARTITION statement. The DELETE statement enforces
referential integrity constraints, and also fires triggers and generates redo and undo
logs. Data in referencing tables will be deleted if the foreign key constraints were
created with the ON DELETE CASCADE option.

DELETE FROM sales partition (dec94);
ALTER TABLE sales TRUNCATE PARTITION dec94;

This method is most appropriate for small tables, or for large tables when the partition
being truncated contains a small percentage of the total data in the table.

Truncating a Subpartition
You use the ALTER TABLE ... TRUNCATE SUBPARTITION statement to remove all rows
from a subpartition of a composite partitioned table. Corresponding local index
subpartitions are also truncated.

The following statement shows how to truncate data in a subpartition of a table. In this
example, the space occupied by the deleted rows is made available for use by other
schema objects in the tablespace.

ALTER TABLE diving
 TRUNCATE SUBPARTITION us_locations
 DROP STORAGE;

Note: You can substantially reduce the amount of logging by setting
the NOLOGGING attribute (using ALTER TABLE ... TRUNCATE
PARTITION ... NOLOGGING) for the partition before deleting all of its
rows.

Dropping Partitioned Tables

3-68 Oracle Database VLDB and Partitioning Guide

Dropping Partitioned Tables
Oracle Database processes a DROP TABLE statement for a partitioned table in the same
way that it processes the statement for a non-partitioned table. One exception that was
introduced in Oracle Database 10g Release 2 is when you use the PURGE keyword.

To avoid running into resource constraints, the DROP TABLE...PURGE statement for a
partitioned table drops the table in multiple transactions, where each transaction drops
a subset of the partitions or subpartitions and then commits. The table becomes
completely dropped at the conclusion of the final transaction. This behavior comes
with some changes to the DROP TABLE statement that you should be aware of.

First, if the DROP TABLE...PURGE statement fails, you can take corrective action, if any,
and then reissue the statement. The statement resumes at the point where it failed.

Second, while the DROP TABLE...PURGE statement is in progress, the table is marked as
unusable by setting the STATUS column to the value UNUSABLE in the following data
dictionary views:

■ USER_TABLES, ALL_TABLES, DBA_TABLES

■ USER_PART_TABLES, ALL_PART_TABLES, DBA_PART_TABLES

■ USER_OBJECT_TABLES, ALL_OBJECT_TABLES, DBA_OBJECT_TABLES

You can list all UNUSABLE partitioned tables by querying the STATUS column of these
views.

Queries against other data dictionary views pertaining to partitioning, such as DBA_
TAB_PARTITIONS and DBA_TAB_SUBPARTITIONS, exclude rows belonging to an
UNUSABLE table. A complete list of these views is available in "Viewing Information
About Partitioned Tables and Indexes" on page 3-69.

After a table is marked UNUSABLE, the only statement that can be issued against it is
another DROP TABLE...PURGE statement, and only if the previous DROP TABLE...PURGE
statement failed. Any other statement issued against an UNUSABLE table results in an
error. The table remains in the UNUSABLE state until the drop operation is complete.

Partitioned Tables and Indexes Example
This section presents an example of moving the time window in a historical table.

A historical table describes the business transactions of an enterprise over intervals of
time. Historical tables can be base tables, which contain base information; for example,
sales, checks, and orders. Historical tables can also be rollup tables, which contain
summary information derived from the base information using operations such as
GROUP BY, AVERAGE, or COUNT.

The time interval in a historical table is often a rolling window. DBAs periodically
delete sets of rows that describe the oldest transactions, and in turn allocate space for
sets of rows that describe the most recent transactions. For example, at the close of
business on April 30, 1995, the DBA deletes the rows (and supporting index entries)
that describe transactions from April 1994, and allocates space for the April 1995
transactions.

See Also:

■ Oracle Database SQL Language Reference for the syntax of the DROP
TABLE statement

■ Oracle Database Reference for a description of the data dictionary
views mentioned in this section.

Viewing Information About Partitioned Tables and Indexes

Partition Administration 3-69

Now consider a specific example. You have a table, order, which contains 13 months
of transactions: a year of historical data in addition to orders for the current month.
There is one partition for each month. These monthly partitions are named order_
yymm, as are the tablespaces in which they reside.

The order table contains two local indexes, order_ix_onum, which is a local,
prefixed, unique index on the order number, and order_ix_supp, which is a local,
non-prefixed index on the supplier number. The local index partitions are named with
suffixes that match the underlying table. There is also a global unique index, order_
ix_cust, for the customer name. order_ix_cust contains three partitions, one for
each third of the alphabet. So on October 31, 1994, change the time window on order
as follows:

1. Back up the data for the oldest time interval.

ALTER TABLESPACE order_9310 BEGIN BACKUP;
...
ALTER TABLESPACE order_9310 END BACKUP;

2. Drop the partition for the oldest time interval.

ALTER TABLE order DROP PARTITION order_9310;

3. Add the partition to the most recent time interval.

ALTER TABLE order ADD PARTITION order_9411;

4. Re-create the global index partitions.

ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_AH;
ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_IP;
ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust_QZ;

Ordinarily, the database acquires sufficient locks to ensure that no operation (DML,
DDL, or utility) interferes with an individual DDL statement, such as ALTER TABLE ...
DROP PARTITION. However, if the partition maintenance operation requires several
steps, it is the database administrator's responsibility to ensure that applications (or
other maintenance operations) do not interfere with the multistep operation in
progress. Some methods for doing this are:

■ Bring down all user-level applications during a well-defined batch window.

■ Ensure that no one is able to access table order by revoking access privileges from
a role that is used in all applications.

Viewing Information About Partitioned Tables and Indexes
The following views display information specific to partitioned tables and indexes:

View Description

DBA_PART_TABLES

ALL_PART_TABLES

USER_PART_TABLES

DBA view displays partitioning information for all partitioned tables in
the database. ALL view displays partitioning information for all
partitioned tables accessible to the user. USER view is restricted to
partitioning information for partitioned tables owned by the user.

DBA_TAB_PARTITIONS

ALL_TAB_PARTITIONS

USER_TAB_PARTITIONS

Display partition-level partitioning information, partition storage
parameters, and partition statistics generated by the DBMS_STATS
package or the ANALYZE statement.

Viewing Information About Partitioned Tables and Indexes

3-70 Oracle Database VLDB and Partitioning Guide

DBA_TAB_SUBPARTITIONS

ALL_TAB_SUBPARTITIONS

USER_TAB_SUBPARTITIONS

Display subpartition-level partitioning information, subpartition
storage parameters, and subpartition statistics generated by the DBMS_
STATS package or the ANALYZE statement.

DBA_PART_KEY_COLUMNS

ALL_PART_KEY_COLUMNS

USER_PART_KEY_COLUMNS

Display the partitioning key columns for partitioned tables.

DBA_SUBPART_KEY_COLUMNS

ALL_SUBPART_KEY_COLUMNS

USER_SUBPART_KEY_COLUMNS

Display the subpartitioning key columns for composite-partitioned
tables (and local indexes on composite-partitioned tables).

DBA_PART_COL_STATISTICS

ALL_PART_COL_STATISTICS

USER_PART_COL_STATISTICS

Display column statistics and histogram information for the partitions
of tables.

DBA_SUBPART_COL_STATISTICS

ALL_SUBPART_COL_STATISTICS

USER_SUBPART_COL_STATISTICS

Display column statistics and histogram information for subpartitions
of tables.

DBA_PART_HISTOGRAMS

ALL_PART_HISTOGRAMS

USER_PART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table partitions.

DBA_SUBPART_HISTOGRAMS

ALL_SUBPART_HISTOGRAMS

USER_SUBPART_HISTOGRAMS

Display the histogram data (end-points for each histogram) for
histograms on table subpartitions.

DBA_PART_INDEXES

ALL_PART_INDEXES

USER_PART_INDEXES

Display partitioning information for partitioned indexes.

DBA_IND_PARTITIONS

ALL_IND_PARTITIONS

USER_IND_PARTITIONS

Display the following for index partitions: partition-level partitioning
information, storage parameters for the partition, statistics collected by
the DBMS_STATS package or the ANALYZE statement.

DBA_IND_SUBPARTITIONS

ALL_IND_SUBPARTITIONS

USER_IND_SUBPARTITIONS

Display the following information for index subpartitions:
partition-level partitioning information, storage parameters for the
partition, statistics collected by the DBMS_STATS package or the
ANALYZE statement.

DBA_SUBPARTITION_TEMPLATES

ALL_SUBPARTITION_TEMPLATES

USER_SUBPARTITION_TEMPLATES

Display information about existing subpartition templates.

See Also:

■ Oracle Database Reference for complete descriptions of these views

■ Oracle Database Performance Tuning Guide and Oracle Database
Performance Tuning Guide for information about histograms and
generating statistics for tables

■ Oracle Database Administrator's Guide for more information about
analyzing tables, indexes, and clusters

View Description

Partitioning for Availability, Manageability, and Performance 4-1

4
Partitioning for Availability, Manageability,

and Performance

This chapter provides high-level insight into how partitioning enables availability,
manageability, and performance. This chapter presents guidelines on when to use a
given partitioning strategy. The main focus of this chapter is the use of table
partitioning, though most of the recommendations and considerations apply to index
partitioning as well.

This chapter contains the following topics:

■ Partition Pruning

■ Partition-Wise Joins

■ Index Partitioning

■ Partitioning and Table Compression

■ Recommendations for Choosing a Partitioning Strategy

Partition Pruning
Partition pruning is an essential performance feature for data warehouses. In partition
pruning, the optimizer analyzes FROM and WHERE clauses in SQL statements to
eliminate unneeded partitions when building the partition access list. This enables
Oracle Database to perform operations only on those partitions that are relevant to the
SQL statement.

Partition pruning dramatically reduces the amount of data retrieved from disk and
shortens processing time, thus improving query performance and optimizing resource
utilization. If you partition the index and table on different columns (with a global
partitioned index), then partition pruning also eliminates index partitions even when
the partitions of the underlying table cannot be eliminated.

Depending upon the actual SQL statement, Oracle Database may use static or dynamic
pruning. Static pruning occurs at compile-time, with the information about the
partitions accessed beforehand while dynamic pruning occurs at run-time, meaning
that the exact partitions to be accessed by a statement are not known beforehand. A
sample scenario for static pruning would be a SQL statement containing a WHERE
condition with a constant literal on the partition key column. An example of dynamic
pruning is the use of operators or functions in the WHERE condition.

Partition pruning affects the statistics of the objects where pruning will occur and will
therefore also affect the execution plan of a statement.

Partition Pruning

4-2 Oracle Database VLDB and Partitioning Guide

Information that can be Used for Partition Pruning
Oracle Database prunes partitions when you use range, LIKE, equality, and IN-list
predicates on the range or list partitioning columns, and when you use equality and
IN-list predicates on the hash partitioning columns.

On composite partitioned objects, Oracle can prune at both levels using the relevant
predicates. Examine the table sales_range_hash, which is partitioned by range on
the column s_saledate and subpartitioned by hash on the column s_productid,
and consider the following example:

CREATE TABLE sales_range_hash(
 s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE (s_saledate)
SUBPARTITION BY HASH (s_productid) SUBPARTITIONS 8
 (PARTITION sal99q1 VALUES LESS THAN
 (TO_DATE('01-APR-1999', 'DD-MON-YYYY')),
 PARTITION sal99q2 VALUES LESS THAN
 (TO_DATE('01-JUL-1999', 'DD-MON-YYYY')),
 PARTITION sal99q3 VALUES LESS THAN
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')),
 PARTITION sal99q4 VALUES LESS THAN
 (TO_DATE('01-JAN-2000', 'DD-MON-YYYY')));

SELECT * FROM sales_range_hash
WHERE s_saledate BETWEEN (TO_DATE('01-JUL-1999', 'DD-MON-YYYY'))
 AND (TO_DATE('01-OCT-1999', 'DD-MON-YYYY')) AND s_productid = 1200;

Oracle uses the predicate on the partitioning columns to perform partition pruning as
follows:

■ When using range partitioning, Oracle accesses only partitions sal99q2 and
sal99q3, representing the partitions for the third and fourth quarters of 1999.

■ When using hash subpartitioning, Oracle accesses only the one subpartition in
each partition that stores the rows with s_productid=1200. The mapping
between the subpartition and the predicate is calculated based on Oracle's internal
hash distribution function.

A reference-partitioned table can take advantage of partition pruning through the join
with the referenced table. Virtual column-based partitioned tables benefit from
partition pruning for statements that use the virtual column-defining expression in the
SQL statement.

How to Identify Whether Partition Pruning has been Used
Whether Oracle uses partition pruning or not is reflected in the execution plan of a
statement, either in the plan table for the EXPLAIN PLAN statement or in the shared
SQL area.

The partition pruning information is reflected in the plan columns PSTART
(PARTITION_START) and PSTOP (PARTITION_STOP). In the case of serial statements,
the pruning information is also reflected in the OPERATION and OPTIONS columns.

See Also: Oracle Database Performance Tuning Guide for more
information about EXPLAIN PLAN and how to interpret it

Partition Pruning

Partitioning for Availability, Manageability, and Performance 4-3

Static Partition Pruning
For a number of cases, Oracle determines the partitions to be accessed at compile time.
Static partition pruning will occur if you use static predicates, except for the following
cases:

■ Partition pruning occurs using the result of a subquery.

■ The optimizer rewrites the query with a star transformation and pruning occurs
after the star transformation.

■ The most efficient execution plan is a nested loop.

These three cases result in the use of dynamic pruning.

If at parse time Oracle can identify which contiguous set of partitions will be accessed,
then the PSTART and PSTOP columns in the execution plan will show the begin and
the end values of the partitions being accessed. Any other cases of partition pruning,
including dynamic pruning, will show the KEY value in PSTART and PSTOP,
optionally with an additional attribute.

The following is an example:

SQL> explain plan for select * from sales where time_id = to_date('01-jan-2001', 'dd-mon-yyyy');
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 3971874201
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		673	19517	27 (8)	00:00:01		
1	PARTITION RANGE SINGLE		673	19517	27 (8)	00:00:01	17	17
* 2	TABLE ACCESS FULL	SALES	673	19517	27 (8)	00:00:01	17	17
--
Predicate Information (identified by operation id):

 2 - filter("TIME_ID"=TO_DATE('2001-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

This plan shows that Oracle accesses partition number 17, as shown in the PSTART
and PSTOP columns. The OPERATION column shows PARTITION RANGE SINGLE,
indicating that only a single partition is being accessed. If OPERATION shows
PARTITION RANGE ALL, then all partitions are being accessed and effectively no
pruning takes place. PSTART then shows the very first partition of the table and
PSTOP shows the very last partition.

An execution plan with a full table scan on an interval-partitioned table shows 1 for
PSTART, and 1048575 for PSTOP, regardless of how many interval partitions were
created.

Dynamic Partition Pruning
Dynamic pruning occurs if pruning is possible and static pruning is not possible. The
following examples show a number of dynamic pruning cases.

Dynamic Pruning with Bind Variables
Statements that use bindvariables against partition columns result in dynamic
pruning. For example:

Partition Pruning

4-4 Oracle Database VLDB and Partitioning Guide

SQL> explain plan for select * from sales s where time_id in (:a, :b, :c, :d);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT

Plan hash value: 513834092

| Id | Operation | Name |Rows|Bytes|Cost (%CPU)| Time | Pstart| Pstop|

0	SELECT STATEMENT		2517	72993	292 (0)	00:00:04		
1	INLIST ITERATOR							
2	PARTITION RANGE ITERATOR		2517	72993	292 (0)	00:00:04	KEY(I)	KEY(I)
3	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	2517	72993	292 (0)	00:00:04	KEY(I)	KEY(I)
4	BITMAP CONVERSION TO ROWIDS							
* 5	BITMAP INDEX SINGLE VALUE	SALES_TIME_BIX					KEY(I)	KEY(I)

Predicate Information (identified by operation id):

5 - access("TIME_ID"=:A OR "TIME_ID"=:B OR "TIME_ID"=:C OR "TIME_ID"=:D)

For parallel plans, only the partition start and stop columns contain the partition
pruning information; the operation column will contain information for the parallel
operation, as shown in the following example:

SQL> explain plan for select * from sales where time_id in (:a, :b, :c, :d);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT

Plan hash value: 4058105390

| Id| Operation | Name |Rows|Bytes|Cost(%CP| Time |Pstart| Pstop| TQ |INOUT| PQ Dis|

0	SELECT STATEMENT		2517	72993	75(36)	00:00:01					
1	PX COORDINATOR										
2	PX SEND QC(RANDOM)	:TQ10000	2517	72993	75(36)	00:00:01			Q1,00	P->S	QC(RAND
3	PX BLOCK ITERATOR		2517	72993	75(36)	00:00:01	KEY(I)	KEY(I)	Q1,00	PCWC	
* 4	TABLE ACCESS FULL	SALES	2517	72993	75(36)	00:00:01	KEY(I)	KEY(I)	Q1,00	PCWP	

Predicate Information (identified by operation id):

 4 - filter("TIME_ID"=:A OR "TIME_ID"=:B OR "TIME_ID"=:C OR "TIME_ID"=:D)

Dynamic Pruning with Subqueries
Statements that explicitely use subqueries against partition columns result in dynamic
pruning. For example:

SQL> explain plan for select sum(amount_sold) from sales where time_id in
 (select time_id from times where fiscal_year = 2000);
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
PLAN_TABLE_OUTPUT
--

See Also: Oracle Database Performance Tuning Guide for more
information about EXPLAIN PLAN and how to interpret it

Partition Pruning

Partitioning for Availability, Manageability, and Performance 4-5

Plan hash value: 3827742054

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	25	523 (5)	00:00:07		
1	SORT AGGREGATE		1	25				
* 2	HASH JOIN		191K	4676K	523 (5)	00:00:07		
* 3	TABLE ACCESS FULL	TIMES	304	3648	18 (0)	00:00:01		
4	PARTITION RANGE SUBQUERY		918K	11M	498 (4)	00:00:06	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	SALES	918K	11M	498 (4)	00:00:06	KEY(SQ)	KEY(SQ)
--

Predicate Information (identified by operation id):

 2 - access("TIME_ID"="TIME_ID")
 3 - filter("FISCAL_YEAR"=2000)

Dynamic Pruning with Star Transformation
Statements that get transformed by the database using the star transformation result in
dynamic pruning. For example:

SQL> explain plan for select p.prod_name, t.time_id, sum(s.amount_sold)
 from sales s, times t, products p
 where s.time_id = t.time_id and s.prod_id = p.prod_id and t.fiscal_year = 2000
 and t.fiscal_week_number = 3 and p.prod_category = 'Hardware'
 group by t.time_id, p.prod_name;
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 4020965003

--
| Id | Operation | Name | Rows | Bytes | Pstart| Pstop |
--
0	SELECT STATEMENT		1	79		
1	HASH GROUP BY		1	79		
* 2	HASH JOIN		1	79		
* 3	HASH JOIN		2	64		
* 4	TABLE ACCESS FULL	TIMES	6	90		
5	PARTITION RANGE SUBQUERY		587	9979	KEY(SQ)	KEY(SQ)
6	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	587	9979	KEY(SQ)	KEY(SQ)
7	BITMAP CONVERSION TO ROWIDS					
8	BITMAP AND					
9	BITMAP MERGE					
10	BITMAP KEY ITERATION					
11	BUFFER SORT					
* 12	TABLE ACCESS FULL	TIMES	6	90		
* 13	BITMAP INDEX RANGE SCAN	SALES_TIME_BIX			KEY(SQ)	KEY(SQ)
14	BITMAP MERGE					
15	BITMAP KEY ITERATION					
16	BUFFER SORT					
17	TABLE ACCESS BY INDEX ROWID	PRODUCTS	14	658		
* 18	INDEX RANGE SCAN	PRODUCTS_PROD_CAT_IX	14			
* 19	BITMAP INDEX RANGE SCAN	SALES_PROD_BIX			KEY(SQ)	KEY(SQ)
20	TABLE ACCESS BY INDEX ROWID	PRODUCTS	14	658		
* 21	INDEX RANGE SCAN	PRODUCTS_PROD_CAT_IX	14			
--

See Also: Oracle Database Performance Tuning Guide for more
information about EXPLAIN PLAN and how to interpret it

Partition Pruning

4-6 Oracle Database VLDB and Partitioning Guide

Predicate Information (identified by operation id):

 2 - access("S"."PROD_ID"="P"."PROD_ID")
 3 - access("S"."TIME_ID"="T"."TIME_ID")
 4 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 12 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 13 - access("S"."TIME_ID"="T"."TIME_ID")
 18 - access("P"."PROD_CATEGORY"='Hardware')
 19 - access("S"."PROD_ID"="P"."PROD_ID")
 21 - access("P"."PROD_CATEGORY"='Hardware')

Note

 - star transformation used for this statement

Dynamic Pruning with Nested Loop Joins
Statements that are most efficiently executed using a nested loop join use dynamic
pruning. For example:

SQL> explain plan for select t.time_id, sum(s.amount_sold)
 from sales s, times t
 where s.time_id = t.time_id and t.fiscal_year = 2000 and t.fiscal_week_number = 3
 group by t.time_id;
Explained.

SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--
Plan hash value: 50737729

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		6	168	126 (4)	00:00:02		
1	HASH GROUP BY		6	168	126 (4)	00:00:02		
2	NESTED LOOPS		3683	100K	125 (4)	00:00:02		
* 3	TABLE ACCESS FULL	TIMES	6	90	18 (0)	00:00:01		
4	PARTITION RANGE ITERATOR		629	8177	18 (6)	00:00:01	KEY	KEY
* 5	TABLE ACCESS FULL	SALES	629	8177	18 (6)	00:00:01	KEY	KEY
--

Predicate Information (identified by operation id):

 3 - filter("T"."FISCAL_WEEK_NUMBER"=3 AND "T"."FISCAL_YEAR"=2000)
 5 - filter("S"."TIME_ID"="T"."TIME_ID")

Note: The Cost (%CPU) and Time columns were removed from the
plan table output in this example.

See Also: Oracle Database Performance Tuning Guide for more
information about EXPLAIN PLAN and how to interpret it

See Also: Oracle Database Performance Tuning Guide for more
information about EXPLAIN PLAN and how to interpret it

Partition Pruning

Partitioning for Availability, Manageability, and Performance 4-7

Partition Pruning Tips
When using partition pruning, you should consider the following:

■ Datatype Conversions

■ Function Calls

Datatype Conversions
In order to get the maximum performance benefit from partition pruning, you should
avoid constructs that require the database to convert the datatype you specify.
Datatype conversions typically result in dynamic pruning when static pruning would
have otherwise been possible. SQL statements that benefit from static pruning perform
better than statements that benefit from dynamic pruning.

A common case of datatype conversions occurs when using the Oracle DATE datatype.
An Oracle DATE datatype is not a character string but is only represented as such
when querying the database; the format of the representation is defined by the NLS
setting of the instance or the session. Consequently, the same reverse conversion has to
happen when inserting data into a DATE field or specifying a predicate on such a field.

A conversion can either happen implicitly or explicitly by specifying a TO_DATE
conversion. Only a properly applied TO_DATE function guarantees that the database is
capable of uniquely determining the date value and using it potentially for static
pruning, which is especially beneficial for single partition access.

Consider the following example that runs against the sample SH schema in an Oracle
Database. You would like to know the total revenue number for the year 2000. There
are multiple ways you can retrieve the answer to the query, but not every method is
equally efficient.

explain plan for SELECT SUM(amount_sold) total_revenue
FROM sales,
WHERE time_id between '01-JAN-00' and '31-DEC-00';

The plan should now be similar to the following:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	525 (8)	00:00:07		
1	SORT AGGREGATE		1	13				
* 2	FILTER							
3	PARTITION RANGE ITERATOR		230K	2932K	525 (8)	00:00:07	KEY	KEY
* 4	TABLE ACCESS FULL	SALES	230K	2932K	525 (8)	00:00:07	KEY	KEY
--

Predicate Information (identified by operation id):

 2 - filter(TO_DATE('01-JAN-00')<=TO_DATE('31-DEC-00'))
 4 - filter("TIME_ID">='01-JAN-00' AND "TIME_ID"<='31-DEC-00')

In this case, the keyword KEY for both PSTART and PSTOP means that dynamic
partition pruning occurs at run-time. Consider the following case.

explain plan for select sum(amount_sold)
from sales
where time_id between '01-JAN-2000' and '31-DEC-2000' ;

The execution plan now shows the following:

--

Partition Pruning

4-8 Oracle Database VLDB and Partitioning Guide

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	127 (4)		
1	SORT AGGREGATE		1	13			
2	PARTITION RANGE ITERATOR		230K	2932K	127 (4)	13	16
* 3	TABLE ACCESS FULL	SALES	230K	2932K	127 (4)	13	16
--
Predicate Information (identified by operation id):

 3 - filter("TIME_ID"<=TO_DATE(' 2000-12-31 00:00:00', "syyyy-mm-dd hh24:mi:ss'))

The execution plan shows static partition pruning. The query accesses a contiguous list
of partitions 13 to 16. In this particular case the way the date format was specified
matches the NLS date format setting. Though this example shows the most efficient
execution plan, you cannot rely on the NLS date format setting to define a certain
format.

alter session set nls_date_format='fmdd Month yyyy';

explain plan for select sum(amount_sold)
from sales
where time_id between '01-JAN-2000' and '31-DEC-2000' ;

The execution plan now shows the following:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |

0	SELECT STATEMENT		1	13	525 (8)		
1	SORT AGGREGATE		1	13			
* 2	FILTER						
3	PARTITION RANGE ITERATOR		230K	2932K	525 (8)	KEY	KEY
* 4	TABLE ACCESS FULL	SALES	230K	2932K	525 (8)	KEY	KEY

Predicate Information (identified by operation id):

 2 - filter(TO_DATE('01-JAN-2000')<=TO_DATE('31-DEC-2000'))
 4 - filter("TIME_ID">='01-JAN-2000' AND "TIME_ID"<='31-DEC-2000')

This plan, which uses dynamic pruning, again is less efficient than the static pruning
execution plan. In order to guarantee a static partition pruning plan, you should
explicitly convert datatypes to match the partition column datatype. For example:

explain plan for select sum(amount_sold)
from sales
where time_id between to_date('01-JAN-2000','dd-MON-yyyy')
 and to_date('31-DEC-2000','dd-MON-yyyy') ;

Note: The Time column was removed from the execution plan.

Note: The Time column was removed from the execution plan.

Partition Pruning

Partitioning for Availability, Manageability, and Performance 4-9

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	127 (4)		
1	SORT AGGREGATE		1	13			
2	PARTITION RANGE ITERATOR		230K	2932K	127 (4)	13	16
* 3	TABLE ACCESS FULL	SALES	230K	2932K	127 (4)	13	16
--

Predicate Information (identified by operation id):

 3 - filter("TIME_ID"<=TO_DATE(' 2000-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Function Calls
There are several cases when the optimizer cannot perform any pruning. One of the
most common reasons is when an operator is used on top of a partitioning column.
This could be an explicit operator (for example, a function) or even an implicit
operator introduced by Oracle as part of the necessary data type conversion for
executing the statement. For example, consider the following query:

EXPLAIN PLAN FOR
SELECT SUM(quantity_sold)
FROM sales
WHERE time_id = TO_TIMESTAMP('1-jan-2000', 'dd-mon-yyyy');

Because time_id is of type DATE and Oracle needs to promote it to the TIMESTAMP
type to get the same datatype, this predicate is internally rewritten as:

TO_TIMESTAMP(time_id) = TO_TIMESTAMP('1-jan-2000', 'dd-mon-yyyy')

The explain plan for this statement is as follows:

--
|Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	11	6 (17)	00:00:01		
1	SORT AGGREGATE		1	11				
2	PARTITION RANGE ALL		10	110	6 (17)	00:00:01	1	16
*3	TABLE ACCESS FULL	SALES	10	110	6 (17)	00:00:01	1	16
--

Predicate Information (identified by operation id):

3 - filter(INTERNAL_FUNCTION("TIME_ID")=TO_TIMESTAMP('1-jan-2000',:B1))

15 rows selected

Note: The Time column was removed from the execution plan.

See Also:

■ Oracle Database SQL Language Reference for details about the DATE
datatype

■ Oracle Database Globalization Support Guide for details about NLS
settings and globalization issues

Partition-Wise Joins

4-10 Oracle Database VLDB and Partitioning Guide

The SELECT statement accesses all partitions even though pruning down to a single
partition could have taken place. Consider the example to find the total sales revenue
number for 2000. Another way to construct the query would be:

explain plan for select sum(amount_sold)
from sales
where to_char(time_id,'yyyy') = '2000';

This query applies a function call to the partition key column, which generally
disables partition pruning. The execution plan shows a full table scan with no partition
pruning:

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		1	13	527 (9)	00:00:07		
1	SORT AGGREGATE		1	13				
2	PARTITION RANGE ALL		9188	116K	527 (9)	00:00:07	1	28
* 3	TABLE ACCESS FULL	SALES	9188	116K	527 (9)	00:00:07	1	28
--

Predicate Information (identified by operation id):

 3 - filter(TO_CHAR(INTERNAL_FUNCTION("TIME_ID"),'yyyy')='2000')

Avoid using implicit or explicit functions on the partition columns. If your queries
commonly use function calls, then consider using a virtual column and virtual column
partitioning to benefit from partition pruning in these cases.

Partition-Wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources. In Oracle Real Application Clusters (RAC) environments, partition-wise
joins also avoid or at least limit the data traffic over the interconnect, which is the key
to achieving good scalability for massive join operations.

Partition-wise joins can be full or partial. Oracle decides which type of join to use.

Full Partition-Wise Joins
A full partition-wise join divides a large join into smaller joins between a pair of
partitions from the two joined tables. To use this feature, you must equipartition both
tables on their join keys, or use reference partitioning. For example, consider a large
join between a sales table and a customer table on the column customerid. The
query "find the records of all customers who bought more than 100 articles in Quarter
3 of 1999" is a typical example of a SQL statement performing such a join. The
following is an example of this:

SELECT c.cust_last_name, COUNT(*)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND
s.time_id BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY'))
GROUP BY c.cust_last_name HAVING COUNT(*) > 100;

Partition-Wise Joins

Partitioning for Availability, Manageability, and Performance 4-11

Such a large join is typical in data warehousing environments. In this case, the entire
customer table is joined with one quarter of the sales data. In large data warehouse
applications, this might mean joining millions of rows. The join method to use in that
case is obviously a hash join. You can reduce the processing time for this hash join
even more if both tables are equipartitioned on the cust_id column. This enables a
full partition-wise join.

When you execute a full partition-wise join in parallel, the granule of parallelism is a
partition. As a result, the degree of parallelism is limited to the number of partitions.
For example, you require at least 16 partitions to set the degree of parallelism of the
query to 16.

You can use various partitioning methods to equipartition both tables. These methods
are described at a high level in the following subsections.

Full Partition-Wise Joins: Single-Level - Single-Level
This is the simplest method: two tables are both partitioned by the join column. In the
example, the customers and sales tables are both partitioned on the cust_id
columns. This partitioning method enables full partition-wise joins when the tables are
joined on cust_id, both representing the same customer identification number. This
scenario is available for range-range, list-list, and hash-hash partitioning.
Interval-range and interval-interval full partition-wise joins are also supported and
can be compared to range-range.

In serial, this join is performed between pairs of matching hash partitions, one at a
time. When one partition pair has been joined, the join of another partition pair begins.
The join completes when all partition pairs have been processed. To ensure a good
workload distribution, you should either have many more partitions than the
requested degree of parallelism or use equi-size partitions with as many partitions as
the requested degree of parallelism. Using hash partitioning on a unique or
almost-unique column, with the number of partitions equal to a power of 2, is a good
way to create equi-sized partitions.

Parallel execution of a full partition-wise join is a straightforward parallelization of the
serial execution. Instead of joining one partition pair at a time, partition pairs are
joined in parallel by the query servers. Figure 4–1 illustrates the parallel execution of a
full partition-wise join.

Note:

■ A pair of matching hash partitions is defined as one partition with
the same partition number from each table. For example, with full
partition-wise joins based on hash partitioning, the database joins
partition 0 of sales with partition 0 of customers, partition 1 of
sales with partition 1 of customers, and so on.

■ Reference partitioning is an easy way to co-partition two tables so
that the optimizer can always consider a full partition-wise join if
the tables are joined in a statement.

Partition-Wise Joins

4-12 Oracle Database VLDB and Partitioning Guide

Figure 4–1 Parallel Execution of a Full Partition-wise Join

The following example shows the execution plan for sales and customers
co-partitioned by hash with the same number of partitions. The plan shows a full
partition-wise join.

explain plan for SELECT c.cust_last_name, COUNT(*)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND
s.time_id BETWEEN TO_DATE('01-JUL-1999', 'DD-MON-YYYY') AND
 (TO_DATE('01-OCT-1999', 'DD-MON-YYYY'))
GROUP BY c.cust_last_name HAVING COUNT(*) > 100;

| Id | Operation | Name | Rows | Bytes | Pstart| Pstop | TQ |IN-OUT| PQ Distrib |

0	SELECT STATEMENT		46	1196					
1	PX COORDINATOR								
2	PX SEND QC (RANDOM)	:TQ10001	46	1196			Q1,01	P->S	QC (RAND)
* 3	FILTER						Q1,01	PCWC	
4	HASH GROUP BY		46	1196			Q1,01	PCWP	
5	PX RECEIVE		46	1196			Q1,01	PCWP	
6	PX SEND HASH	:TQ10000	46	1196			Q1,00	P->P	HASH
7	HASH GROUP BY		46	1196			Q1,00	PCWP	
8	PX PARTITION HASH ALL		59158	1502K	1	16	Q1,00	PCWC	
* 9	HASH JOIN		59158	1502K			Q1,00	PCWP	
10	TABLE ACCESS FULL	CUSTOMERS	55500	704K	1	16	Q1,00	PCWP	
* 11	TABLE ACCESS FULL	SALES	59158	751K	1	16	Q1,00	PCWP	

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 9 - access("S"."CUST_ID"="C"."CUST_ID")
 11 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

In Oracle Real Application Clusters environments running on MPP platforms, placing
partitions on nodes is critical to achieving good scalability. To avoid remote I/O, both
matching partitions should have affinity to the same node. Partition pairs should be

Note: The Cost (%CPU) and Time columns were removed from the
plan table output in this example.

Server

P1

P1

Server

P2

P2

Server

P3

P3

Server

P16

P16

. . .
sales

customers

Parallel
Execution
Servers

Partition-Wise Joins

Partitioning for Availability, Manageability, and Performance 4-13

spread over all nodes to avoid bottlenecks and to use all CPU resources available on
the system.

Nodes can host multiple pairs when there are more pairs than nodes. For example,
with an 8-node system and 16 partition pairs, each node receives two pairs.

Full Partition-Wise Joins: Composite - Single-Level
This method is a variation of the single-level - single-level method. In this scenario,
one table (typically the larger table) is composite partitioned on two dimensions, using
the join columns as the subpartition key. In the example, the sales table is a typical
example of a table storing historical data. Using range partitioning is a logical initial
partitioning method for a table storing historical information.

For example, assume you want to partition the sales table into eight partitions by
range on the column time_id. Also assume you have two years and that each
partition represents a quarter. Instead of using range partitioning, you can use
composite partitioning to enable a full partition-wise join while preserving the
partitioning on time_id. For example, partition the sales table by range on time_
id and then subpartition each partition by hash on cust_id using 16 subpartitions
for each partition, for a total of 128 subpartitions. The customers table can use hash
partitioning with 16 partitions.

When you use the method just described, a full partition-wise join works similarly to
the one created by a single-level - single-level hash-hash method. The join is still
divided into 16 smaller joins between hash partition pairs from both tables. The
difference is that now each hash partition in the sales table is composed of a set of 8
subpartitions, one from each range partition.

Figure 4–2 illustrates how the hash partitions are formed in the sales table. Each cell
represents a subpartition. Each row corresponds to one range partition, for a total of 8
range partitions. Each range partition has 16 subpartitions. Each column corresponds
to one hash partition for a total of 16 hash partitions; each hash partition has 8
subpartitions. Note that hash partitions can be defined only if all partitions have the
same number of subpartitions, in this case, 16.

Hash partitions are implicit in a composite table. However, Oracle does not record
them in the data dictionary, and you cannot manipulate them with DDL commands as
you can range or list partitions.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for more information on data affinity

Partition-Wise Joins

4-14 Oracle Database VLDB and Partitioning Guide

Figure 4–2 Range and Hash Partitions of a Composite Table

The following example shows the execution plan for the full partition-wise join with
the sales table range partitioned by time_id, and subpartitioned by hash on cust_
id.

--
| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10001			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10000			P->P	HASH
7	HASH GROUP BY				PCWP	
8	PX PARTITION HASH ALL		1	16	PCWC	
* 9	HASH JOIN				PCWP	
10	TABLE ACCESS FULL	CUSTOMERS	1	16	PCWP	
11	PX PARTITION RANGE ITERATOR		8	9	PCWC	
* 12	TABLE ACCESS FULL	SALES	113	144	PCWP	
--

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 9 - access("S"."CUST_ID"="C"."CUST_ID")
 12 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01

1999 - Q1

1999 - Q2

1999 - Q3

1999 - Q4

2000 - Q1

2000 - Q2

2000 - Q3

2000 - Q4

Hash partition #9

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

sa
le

sd
at

e

customerid

Partition-Wise Joins

Partitioning for Availability, Manageability, and Performance 4-15

 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Composite - single-level partitioning is effective because it lets you combine pruning
on one dimension with a full partition-wise join on another dimension. In the previous
example query, pruning is achieved by scanning only the subpartitions corresponding
to Q3 of 1999, in other words, row number 3 in Figure 4–2. Oracle then joins these
subpartitions with the customer table, using a full partition-wise join.

All characteristics of the single-level - single-level partition-wise join apply to the
composite - single-level partition-wise join. In particular, for this example, these two
points are common to both methods:

■ The degree of parallelism for this full partition-wise join cannot exceed 16. Even
though the sales table has 128 subpartitions, it has only 16 hash partitions.

■ The rules for data placement on MPP systems apply here. The only difference is
that a subpartition is now a collection of subpartitions. You must ensure that all
these subpartitions are placed on the same node as the matching hash partition
from the other table. For example, in Figure 4–2, store hash partition 9 of the
sales table shown by the eight circled subpartitions, on the same node as hash
partition 9 of the customers table.

Full Partition-Wise Joins: Composite - Composite
If needed, you can also partition the customer table by the composite method. For
example, you partition it by range on a postal code column to enable pruning based on
postal codes. You then subpartition it by hash on cust_id using the same number of
partitions (16) to enable a partition-wise join on the hash dimension.

You can get full partition-wise joins on all combinations of partition and subpartition
partitions: partition - partition, partition - subpartition, subpartition - partition, and
subpartition - subpartition.

Partial Partition-Wise Joins
Oracle Database can perform partial partition-wise joins only in parallel. Unlike full
partition-wise joins, partial partition-wise joins require you to partition only one table
on the join key, not both tables. The partitioned table is referred to as the reference
table. The other table may or may not be partitioned. Partial partition-wise joins are
more common than full partition-wise joins.

To execute a partial partition-wise join, the database dynamically repartitions the other
table based on the partitioning of the reference table. Once the other table is
repartitioned, the execution is similar to a full partition-wise join.

The performance advantage that partial partition-wise joins have over joins in
non-partitioned tables is that the reference table is not moved during the join
operation. Parallel joins between non-partitioned tables require both input tables to be
redistributed on the join key. This redistribution operation involves exchanging rows
between parallel execution servers. This is a CPU-intensive operation that can lead to
excessive interconnect traffic in Oracle Real Application Clusters environments.
Partitioning large tables on a join key, either a foreign or primary key, prevents this
redistribution every time the table is joined on that key. Of course, if you choose a

Note: The Rows, Cost (%CPU), Time, and TQ columns were
removed from the plan table output in this example.

Partition-Wise Joins

4-16 Oracle Database VLDB and Partitioning Guide

foreign key to partition the table, which is the most common scenario, select a foreign
key that is involved in many queries.

To illustrate partial partition-wise joins, consider the previous sales/customer
example. Assume that customers is not partitioned or is partitioned on a column
other than cust_id. Because sales is often joined with customers on cust_id,
and because this join dominates our application workload, partition sales on cust_
id to enable partial partition-wise joins every time customers and sales are joined.
As with full partition-wise joins, you have several alternatives:

Partial Partition-Wise Joins: Single-Level Partitioning
The simplest method to enable a partial partition-wise join is to partition sales by
hash on cust_id. The number of partitions determines the maximum degree of
parallelism, because the partition is the smallest granule of parallelism for partial
partition-wise join operations.

The parallel execution of a partial partition-wise join is illustrated in Figure 4–3, which
assumes that both the degree of parallelism and the number of partitions of sales are
16. The execution involves two sets of query servers: one set, labeled set 1 in
Figure 4–3, scans the customers table in parallel. The granule of parallelism for the
scan operation is a range of blocks.

Rows from customers that are selected by the first set, in this case all rows, are
redistributed to the second set of query servers by hashing cust_id. For example, all
rows in customers that could have matching rows in partition P1 of sales are sent
to query server 1 in the second set. Rows received by the second set of query servers
are joined with the rows from the corresponding partitions in sales. Query server
number 1 in the second set joins all customers rows that it receives with partition P1
of sales.

Figure 4–3 Partial Partition-Wise Join

The example below shows the execution plan for the partial partition-wise join
between sales and customers.

Server

P1

Server

P2

Server

P16

. . .

. . .

. . .

sales

Parallel
execution
server
set 2

Parallel
execution
server
set 1

customers

re-distribution
hash(c_customerid)

JOIN

SELECT

Partition-Wise Joins

Partitioning for Availability, Manageability, and Performance 4-17

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10002			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10001			P->P	HASH
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	PX RECEIVE				PCWP	
11	PX SEND PARTITION (KEY)	:TQ10000			P->P	PART (KEY)
12	PX BLOCK ITERATOR				PCWC	
13	TABLE ACCESS FULL	CUSTOMERS			PCWP	
14	PX PARTITION HASH JOIN-FILTER		:BF0000	:BF0000	PCWC	
* 15	TABLE ACCESS FULL	SALES	:BF0000	:BF0000	PCWP	

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 8 - access("S"."CUST_ID"="C"."CUST_ID")
 15 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Considerations for full partition-wise joins also apply to partial partition-wise joins:

■ The degree of parallelism does not need to equal the number of partitions. In
Figure 4–3, the query executes with two sets of 16 query servers. In this case,
Oracle assigns 1 partition to each query server of the second set. Again, the
number of partitions should always be a multiple of the degree of parallelism.

■ In Oracle Real Application Clusters environments on shared-nothing platforms
(MPPs), each hash partition of sales should preferably have affinity to only one
node in order to avoid remote I/Os. Also, spread partitions over all nodes to avoid
bottlenecks and use all CPU resources available on the system. A node can host
multiple partitions when there are more partitions than nodes.

Partial Partition-Wise Joins: Composite
As with full partition-wise joins, the prime partitioning method for the sales table is
to use the range method on column time_id. This is because sales is a typical

Note: The Rows, Cost (%CPU), Time, and TQ columns were
removed from the plan table output in this example.

Note: This section is based on hash partitioning, but it also applies
for range, list, and interval partial partition-wise joins.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for more information on data affinity

Partition-Wise Joins

4-18 Oracle Database VLDB and Partitioning Guide

example of a table that stores historical data. To enable a partial partition-wise join
while preserving this range partitioning, subpartition sales by hash on column
cust_id using 16 subpartitions for each partition. Pruning and partial partition-wise
joins can be used together if a query joins customers and sales and if the query has
a selection predicate on time_id.

When the sales table is composite partitioned, the granule of parallelism for a partial
partition-wise join is a hash partition and not a subpartition. Refer to Figure 4–2 for an
illustration of a hash partition in a composite table. Again, the number of hash
partitions should be a multiple of the degree of parallelism. Also, on an MPP system,
ensure that each hash partition has affinity to a single node. In the previous example,
the eight subpartitions composing a hash partition should have affinity to the same
node.

The following example shows the execution plan for the query between sales and
customers with sales range partitioned by time_id and subpartitioned by hash on
cust_id.

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10002			P->S	QC (RAND)
* 3	FILTER				PCWC	
4	HASH GROUP BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND HASH	:TQ10001			P->P	HASH
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	PX RECEIVE				PCWP	
11	PX SEND PARTITION (KEY)	:TQ10000			P->P	PART (KEY)
12	PX BLOCK ITERATOR				PCWC	
13	TABLE ACCESS FULL	CUSTOMERS			PCWP	
14	PX PARTITION RANGE ITERATOR		8	9	PCWC	
15	PX PARTITION HASH ALL		1	16	PCWC	
* 16	TABLE ACCESS FULL	SALES	113	144	PCWP	

Predicate Information (identified by operation id):

 3 - filter(COUNT(SYS_OP_CSR(SYS_OP_MSR(COUNT(*)),0))>100)
 8 - access("S"."CUST_ID"="C"."CUST_ID")
 16 - filter("S"."TIME_ID"<=TO_DATE(' 1999-10-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss') AND
"S"."TIME_ID">=TO_DATE(' 1999-07-01
 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Note: This section is based on range-hash, but it also applies for all
other combinations of composite partial partition-wise joins.

Note: The Rows, Cost (%CPU), Time, and TQ columns were
removed from the plan table output in this example.

Index Partitioning

Partitioning for Availability, Manageability, and Performance 4-19

Index Partitioning
The rules for partitioning indexes are similar to those for tables:

■ An index can be partitioned unless:

– The index is a cluster index.

– The index is defined on a clustered table.

■ You can mix partitioned and nonpartitioned indexes with partitioned and
nonpartitioned tables:

– A partitioned table can have partitioned or nonpartitioned indexes.

– A nonpartitioned table can have partitioned or nonpartitioned indexes.

■ Bitmap indexes on nonpartitioned tables cannot be partitioned.

■ A bitmap index on a partitioned table must be a local index.

However, partitioned indexes are more complicated than partitioned tables because
there are three types of partitioned indexes:

■ Local prefixed

■ Local nonprefixed

■ Global prefixed

These types are described in the following section. Oracle supports all three types.

Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a
single underlying table partition. A local index is created by specifying the LOCAL
attribute.

Oracle constructs the local index so that it is equipartitioned with the underlying table.
Oracle partitions the index on the same columns as the underlying table, creates the
same number of partitions or subpartitions, and gives them the same partition bounds
as corresponding partitions of the underlying table.

Oracle also maintains the index partitioning automatically when partitions in the
underlying table are added, dropped, merged, or split, or when hash partitions or
subpartitions are added or coalesced. This ensures that the index remains
equipartitioned with the table.

A local index can be created UNIQUE if the partitioning columns form a subset of the
index columns. This restriction guarantees that rows with identical index keys always
map into the same partition, where uniqueness violations can be detected.

Local indexes have the following advantages:

■ Only one index partition needs to be rebuilt when a maintenance operation other
than SPLIT PARTITION or ADD PARTITION is performed on an underlying table
partition.

■ The duration of a partition maintenance operation remains proportional to
partition size if the partitioned table has only local indexes.

■ Local indexes support partition independence.

■ Local indexes support smooth roll-out of old data and roll-in of new data in
historical tables.

Index Partitioning

4-20 Oracle Database VLDB and Partitioning Guide

■ Oracle can take advantage of the fact that a local index is equipartitioned with the
underlying table to generate better query access plans.

■ Local indexes simplify the task of tablespace incomplete recovery. In order to
recover a partition or subpartition of a table to a point in time, you must also
recover the corresponding index entries to the same point in time. The only way to
accomplish this is with a local index. Then you can recover the corresponding
table and index partitions or subpartitions together.

Local Prefixed Indexes
A local index is prefixed if it is partitioned on a left prefix of the index columns. For
example, if the sales table and its local index sales_ix are partitioned on the
week_num column, then index sales_ix is local prefixed if it is defined on the
columns (week_num, xaction_num). On the other hand, if index sales_ix is
defined on column product_num then it is not prefixed.

Local prefixed indexes can be unique or nonunique.

Figure 4–4 illustrates another example of a local prefixed index.

Figure 4–4 Local Prefixed Index

Local Nonprefixed Indexes
A local index is nonprefixed if it is not partitioned on a left prefix of the index
columns.

You cannot have a unique local nonprefixed index unless the partitioning key is a
subset of the index key.

Figure 4–5 illustrates an example of a local nonprefixed index.

See Also: Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_PCLXUTIL package

DEPTNO 0-9Index IX1 on DEPTNO
Range Partitioned
on DEPTNO

Table EMP
Range Partitioned
on DEPTNO

DEPTNO
0-9

DEPTNO 10-19

DEPTNO
10-19

DEPTNO 90-99. . .

. . .

DEPTNO
90-99

Index Partitioning

Partitioning for Availability, Manageability, and Performance 4-21

Figure 4–5 Local Nonprefixed Index

Global Partitioned Indexes
In a global partitioned index, the keys in a particular index partition may refer to rows
stored in more than one underlying table partition or subpartition. A global index can
be range or hash partitioned, though it can be defined on any type of partitioned table.

A global index is created by specifying the GLOBAL attribute. The database
administrator is responsible for defining the initial partitioning of a global index at
creation and for maintaining the partitioning over time. Index partitions can be
merged or split as necessary.

Normally, a global index is not equipartitioned with the underlying table. There is
nothing to prevent an index from being equipartitioned with the underlying table, but
Oracle does not take advantage of the equipartitioning when generating query plans
or executing partition maintenance operations. So an index that is equipartitioned with
the underlying table should be created as LOCAL.

A global partitioned index contains a single B-tree with entries for all rows in all
partitions. Each index partition may contain keys that refer to many different
partitions or subpartitions in the table.

The highest partition of a global index must have a partition bound all of whose
values are MAXVALUE. This insures that all rows in the underlying table can be
represented in the index.

Prefixed and Nonprefixed Global Partitioned Indexes
A global partitioned index is prefixed if it is partitioned on a left prefix of the index
columns. See Figure 4–6 for an example. A global partitioned index is nonprefixed if it
is not partitioned on a left prefix of the index columns. Oracle does not support global
nonprefixed partitioned indexes.

Global prefixed partitioned indexes can be unique or nonunique.

Nonpartitioned indexes are treated as global prefixed nonpartitioned indexes.

Management of Global Partitioned Indexes
Global partitioned indexes are harder to manage than local indexes:

ACCTNO 31
ACCTNO 82Index IX3 on ACCTNO

Range Partitioned
on CHKDATE

Table CHECKS
Range Partitioned
on CHKDATE

CHKDATE
1/97

ACCTNO 54
ACCTNO 82

CHKDATE
2/97

ACCTNO 15
ACCTNO 35. . .

. . .

CHKDATE
12/97

Index Partitioning

4-22 Oracle Database VLDB and Partitioning Guide

■ When the data in an underlying table partition is moved or removed (SPLIT,
MOVE, DROP, or TRUNCATE), all partitions of a global index are affected.
Consequently global indexes do not support partition independence.

■ When an underlying table partition or subpartition is recovered to a point in time,
all corresponding entries in a global index must be recovered to the same point in
time. Because these entries may be scattered across all partitions or subpartitions
of the index, mixed in with entries for other partitions or subpartitions that are not
being recovered, there is no way to accomplish this except by re-creating the entire
global index.

Figure 4–6 Global Prefixed Partitioned Index

Summary of Partitioned Index Types
Table 4–1 summarizes the types of partitioned indexes that Oracle supports. The key
points are:

■ If an index is local, it is equipartitioned with the underlying table. Otherwise, it is
global.

■ A prefixed index is partitioned on a left prefix of the index columns. Otherwise, it
is nonprefixed.

Table 4–1 Types of Partitioned Indexes

Type of Index

Index
Equipartitioned
with Table

Index
Partitioned on
Left Prefix of
Index Columns

UNIQUE
Attribute
Allowed

Example:
Table
Partitioning
Key

Example:
Index
Columns

Example:
Index
Partitioning
Key

Local Prefixed (any
partitioning method)

Yes Yes Yes A A, B A

Local Nonprefixed
(any partitioning
method)

Yes No Yes1

1 For a unique local nonprefixed index, the partitioning key must be a subset of the index key.

A B, A A

Global Prefixed
(range partitioning
only)

No2

2 Although a global partitioned index may be equipartitioned with the underlying table, Oracle does not take advantage of the
partitioning or maintain equipartitioning after partition maintenance operations such as DROP or SPLIT PARTITION.

Yes Yes A B B

EMPNO 15
EMPNO 31Index IX3 on EMPNO

Range Partitioned
on EMPNO

Table EMP
Range Partitioned
on DEPTNO

EMPNO
0-39

EMPNO 54

EMPNO
40-69

EMPNO 73
EMPNO 82
EMPNO 96. . .

. . .

EMPNO
70-MAXVALUE

DEPTNO
0-9

DEPTNO
10-19

DEPTNO
90-99

Index Partitioning

Partitioning for Availability, Manageability, and Performance 4-23

The Importance of Nonprefixed Indexes
Nonprefixed indexes are particularly useful in historical databases. In a table
containing historical data, it is common for an index to be defined on one column to
support the requirements of fast access by that column, but partitioned on another
column (the same column as the underlying table) to support the time interval for
rolling out old data and rolling in new data.

Consider a sales table partitioned by week. It contains a year's worth of data,
divided into 13 partitions. It is range partitioned on week_no, four weeks to a
partition. You might create a nonprefixed local index sales_ix on sales. The
sales_ix index is defined on acct_no because there are queries that need fast
access to the data by account number. However, it is partitioned on week_no to match
the sales table. Every four weeks, the oldest partitions of sales and sales_ix are
dropped and new ones are added.

Performance Implications of Prefixed and Nonprefixed Indexes
It is more expensive to probe into a nonprefixed index than to probe into a prefixed
index.

If an index is prefixed (either local or global) and Oracle is presented with a predicate
involving the index columns, then partition pruning can restrict application of the
predicate to a subset of the index partitions.

For example, in Figure 4–4 on page 4-20, if the predicate is deptno=15, the optimizer
knows to apply the predicate only to the second partition of the index. (If the predicate
involves a bind variable, the optimizer will not know exactly which partition but it
may still know there is only one partition involved, in which case at run time, only one
index partition will be accessed.)

When an index is nonprefixed, Oracle often has to apply a predicate involving the
index columns to all N index partitions. This is required to look up a single key, or to
do an index range scan. For a range scan, Oracle must also combine information from
N index partitions. For example, in Figure 4–5 on page 4-21, a local index is partitioned
on chkdate with an index key on acctno. If the predicate is acctno=31, Oracle
probes all 12 index partitions.

Of course, if there is also a predicate on the partitioning columns, then multiple index
probes might not be necessary. Oracle takes advantage of the fact that a local index is
equipartitioned with the underlying table to prune partitions based on the partition
key. For example, if the predicate in Figure 4–4 on page 4-20 is chkdate<3/97, Oracle
only has to probe two partitions.

So for a nonprefixed index, if the partition key is a part of the WHERE clause but not of
the index key, then the optimizer determines which index partitions to probe based on
the underlying table partition.

When many queries and DML statements using keys of local, nonprefixed, indexes
have to probe all index partitions, this effectively reduces the degree of partition
independence provided by such indexes.

Table 4–2 Comparing Prefixed Local, Nonprefixed Local, and Global Indexes

Index
Characteristics Prefixed Local

Nonprefixed
Local Global

Unique possible? Yes Yes Yes. Must be global if using indexes
on columns other than the
partitioning columns

Index Partitioning

4-24 Oracle Database VLDB and Partitioning Guide

Guidelines for Partitioning Indexes
When deciding how to partition indexes on a table, consider the mix of applications
that need to access the table. There is a trade-off between performance on the one hand
and availability and manageability on the other. Here are some of the guidelines you
should consider:

■ For OLTP applications:

– Global indexes and local prefixed indexes provide better performance than
local nonprefixed indexes because they minimize the number of index
partition probes.

– Local indexes support more availability when there are partition or
subpartition maintenance operations on the table. Local nonprefixed indexes
are very useful for historical databases.

■ For DSS applications, local nonprefixed indexes can improve performance because
many index partitions can be scanned in parallel by range queries on the index
key.

For example, a query using the predicate "acctno between 40 and 45" on the table
checks of Figure 4–4 on page 4-20 causes parallel scans of all the partitions of the
nonprefixed index ix3. On the other hand, a query using the predicate deptno
BETWEEN 40 AND 45 on the table deptno of Figure 4–5 on page 4-21 cannot be
parallelized because it accesses a single partition of the prefixed index ix1.

■ For historical tables, indexes should be local if possible. This limits the impact of
regularly scheduled drop partition operations.

■ Unique indexes on columns other than the partitioning columns must be global
because unique local nonprefixed indexes whose key does not contain the
partitioning key are not supported.

Physical Attributes of Index Partitions
Default physical attributes are initially specified when a CREATE INDEX statement
creates a partitioned index. Because there is no segment corresponding to the
partitioned index itself, these attributes are only used in derivation of physical
attributes of member partitions. Default physical attributes can later be modified using
ALTER INDEX MODIFY DEFAULT ATTRIBUTES.

Physical attributes of partitions created by CREATE INDEX are determined as follows:

■ Values of physical attributes specified (explicitly or by default) for the index are
used whenever the value of a corresponding partition attribute is not specified.
Handling of the TABLESPACE attribute of partitions of a LOCAL index constitutes
an important exception to this rule in that in the absence of a user-specified
TABLESPACE value (at both partition and index levels), that of the corresponding
partition of the underlying table is used.

Manageability Easy to manage Easy to manage Harder to manage

OLTP Good Bad Good

Long Running
(DSS)

Good Good Not Good

Table 4–2 (Cont.) Comparing Prefixed Local, Nonprefixed Local, and Global Indexes

Index
Characteristics Prefixed Local

Nonprefixed
Local Global

Partitioning and Table Compression

Partitioning for Availability, Manageability, and Performance 4-25

■ Physical attributes (other than TABLESPACE, as explained in the preceding) of
partitions of local indexes created in the course of processing ALTER TABLE ADD
PARTITION are set to the default physical attributes of each index.

Physical attributes (other than TABLESPACE) of index partitions created by ALTER
TABLE SPLIT PARTITION are determined as follows:

■ Values of physical attributes of the index partition being split are used.

Physical attributes of an existing index partition can be modified by ALTER INDEX
MODIFY PARTITION and ALTER INDEX REBUILD PARTITION. Resulting attributes
are determined as follows:

■ Values of physical attributes of the partition before the statement was issued are
used whenever a new value is not specified. Note that ALTER INDEX REBUILD
PARTITION can be used to change the tablespace in which a partition resides.

Physical attributes of global index partitions created by ALTER INDEX SPLIT
PARTITION are determined as follows:

■ Values of physical attributes of the partition being split are used whenever a new
value is not specified.

■ Physical attributes of all partitions of an index (along with default values) may be
modified by ALTER INDEX, for example, ALTER INDEX indexname NOLOGGING
changes the logging mode of all partitions of indexname to NOLOGGING.

Partitioning and Table Compression
You can compress several partitions or a complete partitioned heap-organized table.
You do this by either defining a complete partitioned table as being compressed, or by
defining it on a per-partition level. Partitions without a specific declaration inherit the
attribute from the table definition or, if nothing is specified on table level, from the
tablespace definition.

To decide whether or not a partition should be compressed or stay uncompressed
adheres to the same rules as a nonpartitioned table. However, due to the capability of
range and composite partitioning to separate data logically into distinct partitions,
such a partitioned table is an ideal candidate for compressing parts of the data
(partitions) that are mainly read-only. It is, for example, beneficial in all rolling
window operations as a kind of intermediate stage before aging out old data. With
data segment compression, you can keep more old data online, minimizing the burden
of additional storage consumption.

You can also change any existing uncompressed table partition later on, add new
compressed and uncompressed partitions, or change the compression attribute as part
of any partition maintenance operation that requires data movement, such as MERGE
PARTITION, SPLIT PARTITION, or MOVE PARTITION. The partitions can contain
data or can be empty.

The access and maintenance of a partially or fully compressed partitioned table are the
same as for a fully uncompressed partitioned table. Everything that applies to fully
uncompressed partitioned tables is also valid for partially or fully compressed
partitioned tables.

See Also: Chapter 3, "Partition Administration" for more detailed
examples of adding partitions and examples of rebuilding indexes

Partitioning and Table Compression

4-26 Oracle Database VLDB and Partitioning Guide

Table Compression and Bitmap Indexes
If you want to use table compression on partitioned tables with bitmap indexes, you
need to do the following before you introduce the compression attribute for the first
time:

1. Mark bitmap indexes unusable.

2. Set the compression attribute.

3. Rebuild the indexes.

The first time you make a compressed partition part of an already existing, fully
uncompressed partitioned table, you must either drop all existing bitmap indexes or
mark them UNUSABLE prior to adding a compressed partition. This must be done
irrespective of whether any partition contains any data. It is also independent of the
operation that causes one or more compressed partitions to become part of the table.
This does not apply to a partitioned table having B-tree indexes only.

This rebuilding of the bitmap index structures is necessary to accommodate the
potentially higher number of rows stored for each data block with table compression
enabled and must be done only for the first time. All subsequent operations, whether
they affect compressed or uncompressed partitions, or change the compression
attribute, behave identically for uncompressed, partially compressed, or fully
compressed partitioned tables.

To avoid the recreation of any bitmap index structure, Oracle recommends creating
every partitioned table with at least one compressed partition whenever you plan to
partially or fully compress the partitioned table in the future. This compressed
partition can stay empty or even can be dropped after the partition table creation.

Having a partitioned table with compressed partitions can lead to slightly larger
bitmap index structures for the uncompressed partitions. The bitmap index structures
for the compressed partitions, however, are in most cases smaller than the appropriate
bitmap index structure before table compression. This highly depends on the achieved
compression rates.

Example of Table Compression and Partitioning
The following statement moves and compresses an already existing partition sales_
q1_1998 of table sales:

ALTER TABLE sales
MOVE PARTITION sales_q1_1998 TABLESPACE ts_arch_q1_1998 COMPRESS;

If you use the MOVE statement, the local indexes for partition sales_q1_1998 become
unusable. You have to rebuild them afterward, as follows:

ALTER TABLE sales
MODIFY PARTITION sales_q1_1998 REBUILD UNUSABLE LOCAL INDEXES;

See Also: Oracle Database Data Warehousing Guide for a generic
discussion of table compression and Oracle Database Performance
Tuning Guide for an example of calculating the compression ratio

Note: Oracle Database will raise an error if compression is
introduced to an object for the first time and there are usable bitmap
index segments.

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-27

You can also include the UPDATE INDEXES clause in the MOVE statement in order for
the entire operation to be completed automatically without any negative impact on
users accessing the table.

The following statement merges two existing partitions into a new, compressed
partition, residing in a separate tablespace. The local bitmap indexes have to be rebuilt
afterward, as follows:

ALTER TABLE sales MERGE PARTITIONS sales_q1_1998, sales_q2_1998
INTO PARTITION sales_1_1998 TABLESPACE ts_arch_1_1998
COMPRESS FOR ALL OPERATIONS UPDATE INDEXES;

Recommendations for Choosing a Partitioning Strategy
The following sections provide recommendations for choosing a partitioning strategy:

■ When to Use Range or Interval Partitioning

■ When to Use Hash Partitioning

■ When to Use List Partitioning

■ When to Use Composite Partitioning

■ When to Use Interval Partitioning

■ When to Use Reference Partitioning

■ When to Partition on Virtual Columns

When to Use Range or Interval Partitioning
Range partitioning is a convenient method for partitioning historical data. The
boundaries of range partitions define the ordering of the partitions in the tables or
indexes.

Interval partitioning is an extension to range partitioning in which, beyond a point in
time, partitions are defined by an interval. Interval partitions are automatically created
by the database when data is inserted into the partition.

Range or interval partitioning is often used to organize data by time intervals on a
column of type DATE. Thus, most SQL statements accessing range partitions focus on
timeframes. An example of this is a SQL statement similar to "select data from a
particular period in time." In such a scenario, if each partition represents data for one
month, the query "find data of month 06-DEC" needs to access only the December
partition of year 2006. This reduces the amount of data scanned to a fraction of the
total data available, an optimization method called partition pruning.

Range partitioning is also ideal when you periodically load new data and purge old
data, because it is easy to add or drop partitions.

It is common to keep a rolling window of data, for example keeping the past 36
months' worth of data online. Range partitioning simplifies this process. To add data
from a new month, you load it into a separate table, clean it, index it, and then add it

See Also:

■ Chapter 3, "Partition Administration" for more details and
examples for the partition management operations

■ Oracle Database Performance Tuning Guide for details regarding how
to estimate the compression ratio when using table compression

Recommendations for Choosing a Partitioning Strategy

4-28 Oracle Database VLDB and Partitioning Guide

to the range-partitioned table using the EXCHANGE PARTITION statement, all while
the original table remains online. Once you add the new partition, you can drop the
trailing month with the DROP PARTITION statement. The alternative to using the
DROP PARTITION statement can be to archive the partition and make it read only, but
this works only when your partitions are in separate tablespaces. You can also
implement a rolling window data using inserts into the partitioned table.

Interval partitioning provides an easy way for interval partitions to be automatically
created as data arrives. Interval partitions can also be used for all other partition
maintenance operations. Refer to Chapter 3, "Partition Administration" for more
details on the partition maintenance operations on interval partitions.

In conclusion, consider using range or interval partitioning when:

■ Very large tables are frequently scanned by a range predicate on a good
partitioning column, such as ORDER_DATE or PURCHASE_DATE. Partitioning the
table on that column enables partition pruning.

■ You want to maintain a rolling window of data.

■ You cannot complete administrative operations, such as backup and restore, on
large tables in an allotted time frame, but you can divide them into smaller logical
pieces based on the partition range column.

The following example creates the table salestable for a period of two years, 2005
and 2006, and partitions it by range according to the column s_salesdate to
separate the data into eight quarters, each corresponding to a partition. Future
partitions are created automatically through the monthly interval definition. Interval
partitions are created in the provided list of tablespaces in a round-robin manner.
Analysis of sales figures by a period of time can take advantage of partition pruning.
The sales table also supports a rolling window approach.

CREATE TABLE salestable
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY RANGE(s_saledate)
INTERVAL(NUMTOYMINTERVAL(1,'MONTH')) STORE IN (tbs1,tbs2,tbs3,tbs4)
 (PARTITION sal05q1 VALUES LESS THAN (TO_DATE('01-APR-2005', 'DD-MON-YYYY'))
 TABLESPACE tbs1,
 PARTITION sal05q2 VALUES LESS THAN (TO_DATE('01-JUL-2005', 'DD-MON-YYYY'))
 TABLESPACE tbs2,
 PARTITION sal05q3 VALUES LESS THAN (TO_DATE('01-OCT-2005', 'DD-MON-YYYY'))
 TABLESPACE tbs3,
 PARTITION sal05q4 VALUES LESS THAN (TO_DATE('01-JAN-2006', 'DD-MON-YYYY'))
 TABLESPACE tbs4,
 PARTITION sal06q1 VALUES LESS THAN (TO_DATE('01-APR-2006', 'DD-MON-YYYY'))
 TABLESPACE tbs1,
 PARTITION sal06q2 VALUES LESS THAN (TO_DATE('01-JUL-2006', 'DD-MON-YYYY'))
 TABLESPACE tbs2,
 PARTITION sal06q3 VALUES LESS THAN (TO_DATE('01-OCT-2006', 'DD-MON-YYYY'))
 TABLESPACE tbs3,
 PARTITION sal06q4 VALUES LESS THAN (TO_DATE('01-JAN-2007', 'DD-MON-YYYY'))
 TABLESPACE tbs4);

When to Use Hash Partitioning
There are times when it is not obvious into which partition data should reside,
although the partitioning key can be identified. Rather than group similar data

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-29

together, there are times when it is desirable to distribute data such that it does not
correspond to a business or a logical view of the data, as it does in range partitioning.
With hash partitioning, a row is placed into a partition based on the result of passing
the partitioning key into a hashing algorithm.

Using this approach, data is randomly distributed across the partitions rather than
grouped together. Hence, this is a good approach for some data, but may not be an
effective way to manage historical data. However, hash partitions share some
performance characteristics with range partitions. For example, partition pruning is
limited to equality predicates. You can also use partition-wise joins, parallel index
access, and parallel DML. See "Partition-Wise Joins" on page 4-10 for more
information.

As a general rule, use hash partitioning for the following purposes:

■ To enable partial or full parallel partition-wise joins with very likely equi-sized
partitions.

■ To distribute data evenly among the nodes of an MPP platform that uses Oracle
Real Application Clusters. As a result, you can minimize interconnect traffic when
processing internode parallel statements.

■ To use partition pruning and partition-wise joins according to a partitioning key
that is mostly constrained by a distinct value or value list.

■ To randomly distribute data to avoid I/O bottlenecks if you do not use a storage
management technique that stripes and mirrors across all available devices.

For optimal data distribution, the following requirements should be satisfied:

■ Choose a column or combination of columns that is unique or almost unique.

■ Create a number of partitions and subpartitions for each partition that is a power
of two. For example, 2, 4, 8, 16, 32, 64, 128, and so on.

The following example creates four hash partitions for the table sales_hash using
the column s_productid as the partitioning key. Parallel joins with the products
table can take advantage of partial or full partition-wise joins. Queries accessing sales
figures for only a single product or a list of products will benefit from partition
pruning.

CREATE TABLE sales_hash
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
PARTITION BY HASH(s_productid)
(PARTITION p1 TABLESPACE tbs1
, PARTITION p2 TABLESPACE tbs2
, PARTITION p3 TABLESPACE tbs3
, PARTITION p4 TABLESPACE tbs4
);

See Also: Chapter 9, "Storage Management for VLDBs" for more
information

Note: With hash partitioning, only equality or IN-list predicates are
supported for partition pruning.

Recommendations for Choosing a Partitioning Strategy

4-30 Oracle Database VLDB and Partitioning Guide

If you do not explicitly specify partition names, but rather the number of hash
partitions, then Oracle automatically generates internal names for the partitions. Also,
you can use the STORE IN clause to assign hash partitions to tablespaces in a
round-robin manner.

When to Use List Partitioning
You should use list partitioning when you want to specifically map rows to partitions
based on discrete values. For example, all the customers for states Oregon and
Washington are stored in one partition and customers in other states are stored in
different partitions. Account managers who analyze their accounts by region can take
advantage of partition pruning.

CREATE TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, region VARCHAR(2)
, status VARCHAR2(1)
)
PARTITION BY LIST (region)
(PARTITION p_northwest VALUES ('OR', 'WA')
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
, PARTITION p_southeast VALUES ('FL', 'GA')
, PARTITION p_northcentral VALUES ('SD', 'WI')
, PARTITION p_southcentral VALUES ('OK', 'TX')
);

Unlike range and hash partitioning, multi-column partition keys are not supported for
list partitioning. If a table is partitioned by list, the partitioning key can only consist of
a single column of the table.

When to Use Composite Partitioning
Composite partitioning offers the benefits of partitioning on two dimensions. From a
performance perspective you can take advantage of partition pruning on one or two
dimensions depending on the SQL statement, and you can take advantage of the use
of full or partial partition-wise joins on either dimension.

You can take advantage of parallel backup and recovery of a single table. Composite
partitioning also increases the number of partitions significantly, which may be
beneficial for efficient parallel execution. From a manageability perspective, you can
implement a rolling window to support historical data and still partition on another
dimension if many statements can benefit from partition pruning or partition-wise
joins.

You can split up backups of your tables and you can decide to store data differently
based on identification by a partitioning key. For example, you may decide to store
data for a specific product type in a read-only, compressed format, and keep other
product type data uncompressed.

See Also:

■ Oracle Database SQL Language Reference for partitioning syntax

■ Chapter 3, "Partition Administration" for more examples

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-31

The database stores every subpartition in a composite partitioned table as a separate
segment. Thus, the subpartitions may have properties that differ from the properties of
the table or from the partition to which the subpartitions belong.

When to Use Composite Range-Hash Partitioning
Composite range-hash partitioning is particularly common for tables that store history,
are very large as a result, and are frequently joined with other large tables. For these
types of tables (typical of data warehouse systems), composite range-hash partitioning
provides the benefit of partition pruning at the range level with the opportunity to
perform parallel full or partial partition-wise joins at the hash level. Specific cases can
benefit from partition pruning on both dimensions for specific SQL statements.

Composite range-hash partitioning can also be used for tables that traditionally use
hash partitioning, but also use a rolling window approach. Over time, data can be
moved from one storage tier to another storage tier, compressed, stored in a read-only
tablespace, and eventually purged. Information Lifecycle Management (ILM)
scenarios often use range partitions to implement a tiered storage approach. See
Chapter 5, "Using Partitioning for Information Lifecycle Management" for more
details.

The following is an example of a range-hash partitioned page_history table of an
Internet service provider. The table definition is optimized for historical analysis for
either specific client_ip values (in which case queries benefit from partition
pruning) or for analysis across many IP addresses, in which case queries can take
advantage of full or partial partition-wise joins.

CREATE TABLE page_history
(id NUMBER NOT NULL
, url VARCHAR2(300) NOT NULL
, view_date DATE NOT NULL
, client_ip VARCHAR2(23) NOT NULL
, from_url VARCHAR2(300)
, to_url VARCHAR2(300)
, timing_in_seconds NUMBER
) PARTITION BY RANGE(view_date) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY HASH(client_ip)
SUBPARTITIONS 32
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2006','dd-MON-yyyy')))
PARALLEL 32 COMPRESS;

This example shows the use of interval partitioning. Interval partitioning can be used
in addition to range partitioning in order for interval partitions to be created
automatically as data is inserted into the table.

When to Use Composite Range-List Partitioning
Composite range-list partitioning is commonly used for large tables that store
historical data and are commonly accessed on more than one dimension. Often the
historical view of the data is one access path, but certain business cases add another
categorization to the access path. For example, regional account managers are very
interested in how many new customers they signed up in their region in a specific time
period. ILM and its tiered storage approach is a common reason to create range-list
partitioned tables so that older data can be moved and compressed, but partition
pruning on the list dimension is still available.

See Also: Oracle Database SQL Language Reference for details
regarding syntax and restrictions

Recommendations for Choosing a Partitioning Strategy

4-32 Oracle Database VLDB and Partitioning Guide

The following example creates a range-list partitioned call_detail_records table.
A telecom company can use this table to analyze specific types of calls over time. The
table uses local indexes on from_number and to_number.

CREATE TABLE call_detail_records
(id NUMBER
, from_number VARCHAR2(20)
, to_number VARCHAR2(20)
, date_of_call DATE
, distance VARCHAR2(1)
, call_duration_in_s NUMBER(4)
) PARTITION BY RANGE(date_of_call)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY LIST(distance)
SUBPARTITION TEMPLATE
(SUBPARTITION local VALUES('L') TABLESPACE tbs1
, SUBPARTITION medium_long VALUES ('M') TABLESPACE tbs2
, SUBPARTITION long_distance VALUES ('D') TABLESPACE tbs3
, SUBPARTITION international VALUES ('I') TABLESPACE tbs4
)
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2005','dd-MON-yyyy')))
PARALLEL;

CREATE INDEX from_number_ix ON call_detail_records(from_number)
LOCAL PARALLEL NOLOGGING;

CREATE INDEX to_number_ix ON call_detail_records(to_number)
LOCAL PARALLEL NOLOGGING;

This example shows the use of interval partitioning. Interval partitioning can be used
in addition to range partitioning in order for interval partitions to be created
automatically as data is inserted into the table.

When to Use Composite Range-Range Partitioning
Composite range-range partitioning is useful for applications that store
time-dependent data on more than one time dimension. Often these applications do
not use one particular time dimension to access the data, but rather another time
dimension, or sometimes both at the same time. For example, a web retailer wants to
analyze its sales data based on when orders were placed, and when orders were
shipped (handed over to the shipping company).

Other business cases for composite range-range partitioning include ILM scenarios,
and applications that store historical data and want to categorize its data by range on
another dimension.

The following example shows a range-range partitioned table account_balance_
history. A bank may use access to individual subpartitions to contact its customers
for low-balance reminders or specific promotions relevant to a certain category of
customers.

CREATE TABLE account_balance_history
(id NUMBER NOT NULL
, account_number NUMBER NOT NULL
, customer_id NUMBER NOT NULL
, transaction_date DATE NOT NULL
, amount_credited NUMBER
, amount_debited NUMBER
, end_of_day_balance NUMBER NOT NULL
) PARTITION BY RANGE(transaction_date)
INTERVAL (NUMTODSINTERVAL(7,'DAY'))

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-33

SUBPARTITION BY RANGE(end_of_day_balance)
SUBPARTITION TEMPLATE
(SUBPARTITION unacceptable VALUES LESS THAN (-1000)
, SUBPARTITION credit VALUES LESS THAN (0)
, SUBPARTITION low VALUES LESS THAN (500)
, SUBPARTITION normal VALUES LESS THAN (5000)
, SUBPARTITION high VALUES LESS THAN (20000)
, SUBPARTITION extraordinary VALUES LESS THAN (MAXVALUE)
)
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy')));

This example shows the use of interval partitioning. Interval partitioning can be used
in addition to range partitioning in order for interval partitions to be created
automatically as data is inserted into the table. In this case 7-day (weekly) intervals are
created, starting Monday, January 1, 2007.

When to Use Composite List-Hash Partitioning
Composite list-hash partitioning is useful for large tables that are usually accessed on
one dimension, but (due to their size) still need to take advantage of parallel full or
partial partition-wise joins on another dimension in joins with other large tables.

The following example shows a credit_card_accounts table. The table is
list-partitioned on region in order for account managers to quickly access accounts in
their region. The subpartitioning strategy is hash on customer_id so that queries
against the transactions table, also subpartitioned on customer_id, can take
advantage of full partition-wise joins. Joins with the hash-partitioned customers table
can also benefit from full partition-wise joins. The table has a local bitmap index on the
is_active column.

CREATE TABLE credit_card_accounts
(account_number NUMBER(16) NOT NULL
, customer_id NUMBER NOT NULL
, customer_region VARCHAR2(2) NOT NULL
, is_active VARCHAR2(1) NOT NULL
, date_opened DATE NOT NULL
) PARTITION BY LIST (customer_region)
SUBPARTITION BY HASH (customer_id)
SUBPARTITIONS 16
(PARTITION emea VALUES ('EU','ME','AF')
, PARTITION amer VALUES ('NA','LA')
, PARTITION apac VALUES ('SA','AU','NZ','IN','CH')
) PARALLEL;

CREATE BITMAP INDEX is_active_bix ON credit_card_accounts(is_active)
LOCAL PARALLEL NOLOGGING;

When to Use Composite List-List Partitioning
Composite list-list partitioning is useful for large tables that are often accessed on
different dimensions. You can specifically map rows to partitions on those dimensions
based on discrete values.

The following example shows an example of a very frequently accessed current_
inventory table. The table is constantly updated with the current inventory in the
supermarket supplier's local warehouses. Potentially perishable foods are supplied
from those warehouses to supermarkets, and it is important to optimize supplies and
deliveries. The table has local indexes on warehouse_id and product_id.

CREATE TABLE current_inventory
(warehouse_id NUMBER

Recommendations for Choosing a Partitioning Strategy

4-34 Oracle Database VLDB and Partitioning Guide

, warehouse_region VARCHAR2(2)
, product_id NUMBER
, product_category VARCHAR2(12)
, amount_in_stock NUMBER
, unit_of_shipping VARCHAR2(20)
, products_per_unit NUMBER
, last_updated DATE
) PARTITION BY LIST (warehouse_region)
SUBPARTITION BY LIST (product_category)
SUBPARTITION TEMPLATE
(SUBPARTITION perishable VALUES ('DAIRY','PRODUCE','MEAT','BREAD')
, SUBPARTITION non_perishable VALUES ('CANNED','PACKAGED')
, SUBPARTITION durable VALUES ('TOYS','KITCHENWARE')
)
(PARTITION p_northwest VALUES ('OR', 'WA')
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
, PARTITION p_southeast VALUES ('FL', 'GA')
, PARTITION p_northcentral VALUES ('SD', 'WI')
, PARTITION p_southcentral VALUES ('OK', 'TX')
);

CREATE INDEX warehouse_id_ix ON current_inventory(warehouse_id)
LOCAL PARALLEL NOLOGGING;

CREATE INDEX product_id_ix ON current_inventory(product_id)
LOCAL PARALLEL NOLOGGING;

When to Use Composite List-Range Partitioning
Composite list-range partitioning is useful for large tables that are accessed on
different dimensions. For the most commonly used dimension, you can specifically
map rows to partitions on discrete values. List-range partitioning is commonly used
for tables that use range values within a list partition, whereas range-list partitioning is
commonly used for discrete list values within a range partition. List-range partitioning
is less commonly used to store historical data, even though equivalent scenarios all
work. Range-list partitioning can be implemented using interval-list partitioning,
whereas list-range partitioning does not support interval partitioning.

The following example shows a donations table that stores donations in different
currencies. The donations are categorized into small, medium, and high, depending on
the amount. Due to currency differences, the ranges are different.

CREATE TABLE donations
(id NUMBER
, name VARCHAR2(60)
, beneficiary VARCHAR2(80)
, payment_method VARCHAR2(30)
, currency VARCHAR2(3)
, amount NUMBER
) PARTITION BY LIST (currency)
SUBPARTITION BY RANGE (amount)
(PARTITION p_eur VALUES ('EUR')
 (SUBPARTITION p_eur_small VALUES LESS THAN (8)
 , SUBPARTITION p_eur_medium VALUES LESS THAN (80)
 , SUBPARTITION p_eur_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_gbp VALUES ('GBP')
 (SUBPARTITION p_gbp_small VALUES LESS THAN (5)

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-35

 , SUBPARTITION p_gbp_medium VALUES LESS THAN (50)
 , SUBPARTITION p_gbp_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_aud_nzd_chf VALUES ('AUD','NZD','CHF')
 (SUBPARTITION p_aud_nzd_chf_small VALUES LESS THAN (12)
 , SUBPARTITION p_aud_nzd_chf_medium VALUES LESS THAN (120)
 , SUBPARTITION p_aud_nzd_chf_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_jpy VALUES ('JPY')
 (SUBPARTITION p_jpy_small VALUES LESS THAN (1200)
 , SUBPARTITION p_jpy_medium VALUES LESS THAN (12000)
 , SUBPARTITION p_jpy_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_inr VALUES ('INR')
 (SUBPARTITION p_inr_small VALUES LESS THAN (400)
 , SUBPARTITION p_inr_medium VALUES LESS THAN (4000)
 , SUBPARTITION p_inr_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_zar VALUES ('ZAR')
 (SUBPARTITION p_zar_small VALUES LESS THAN (70)
 , SUBPARTITION p_zar_medium VALUES LESS THAN (700)
 , SUBPARTITION p_zar_high VALUES LESS THAN (MAXVALUE)
)
, PARTITION p_default VALUES (DEFAULT)
 (SUBPARTITION p_default_small VALUES LESS THAN (10)
 , SUBPARTITION p_default_medium VALUES LESS THAN (100)
 , SUBPARTITION p_default_high VALUES LESS THAN (MAXVALUE)
)
) ENABLE ROW MOVEMENT;

When to Use Interval Partitioning
Interval partitioning can be used for every table that is range partitioned and uses
fixed intervals for new partitions. The database automatically creates interval
partitions as data for that partition arrives. Until this happens, the interval partition
exists but no segment is created for the partition.

The benefit of interval partitioning is that you do not need to create your range
partitions explicitly. You should consider using interval partitioning unless you create
range partitions with different intervals, or if you always set specific partition
attributes when you create range partitions. Note that you can specify a list of
tablespaces in the interval definition. The database will create interval partitions in the
provided list of tablespaces in a round-robin manner.

If you upgrade your application and you use range partitioning or composite range-*
partitioning, then you can easily change your existing table definition to use interval
partitioning. Note that you cannot manually add partitions to an interval-partitioned
table. If you have automated the creation of new partitions, then you have to change
your application code to prevent the explicit creation of range partitions going
forward.

The following example shows how to change the sales table in the sample sh
schema from range partitioning to start using monthly interval partitioning.

ALTER TABLE sales SET INTERVAL (NUMTOYMINTERVAL(1,'MONTH'));

You cannot use interval partitioning with reference partitioned tables.

Recommendations for Choosing a Partitioning Strategy

4-36 Oracle Database VLDB and Partitioning Guide

When to Use Reference Partitioning
Reference partitioning is useful in the following scenarios:

■ If you have denormalized, or would denormalize, a column from a master table
into a child table in order to get partition pruning benefits on both tables.

For example, your orders table stores the order_date, but the order_items
table, which stores one or more items per order, does not. In order to get good
performance for historical analysis of orders data, you would traditionally
duplicate the order_date column in the order_items table to get partition
pruning on the order_items table.

You should consider reference partitioning in such a scenario and avoid having to
duplicate the order_date column. Queries that join both tables and use a
predicate on order_date automatically benefit from partition pruning on both
tables.

■ If two large tables are joined frequently, then the tables are not partitioned on the
join key, but you want to take advantage of partition-wise joins.

Reference partitioning implicitly enables full partition-wise joins.

■ If data in multiple tables has a related life cycle, then reference partitioning can
provide significant manageability benefits.

Partition management operations against the master table are automatically
cascaded to its descendents. For example, when you add a partition to the master
table, that creation is automatically propagated to all its descendents.

In order to use reference partitioning, you have to enable and enforce the foreign
key relationship between the master table and the reference table in place. You can
cascade reference-partitioned tables.

When to Partition on Virtual Columns
Virtual column partitioning enables you to partition on an expression, which may use
data from other columns, and perform calculations with these columns. PL/SQL
function calls are not supported in virtual column definitions that are to be used as a
partitioning key.

Virtual column partitioning supports all partitioning methods as well as performance
and manageability features. You should consider using virtual columns if tables are
frequently accessed using a predicate that is not directly captured in a column, but can
be derived, in order to get partition pruning benefits. Traditionally, in order to get
partition pruning benefits, you would have to add a separate column in order to
capture and calculate the correct value and make sure the column is always populated
correctly in order to ensure correct query retrieval.

The following example shows a car_rentals table. The customer's confirmation
number contains a two-character country name as the location where the rental car is
picked up. Rental car analyses usually evaluate regional patterns, so it makes sense to
partition by country.

CREATE TABLE car_rentals
(id NUMBER NOT NULL
, customer_id NUMBER NOT NULL
, confirmation_number VARCHAR2(12) NOT NULL
, car_id NUMBER
, car_type VARCHAR2(10)
, requested_car_type VARCHAR2(10) NOT NULL
, reservation_date DATE NOT NULL

Recommendations for Choosing a Partitioning Strategy

Partitioning for Availability, Manageability, and Performance 4-37

, start_date DATE NOT NULL
, end_date DATE
, country as (substr(confirmation_number,9,2))
) PARTITION BY LIST (country)
SUBPARTITION BY HASH (customer_id)
SUBPARTITIONS 16
(PARTITION north_america VALUES ('US','CA','MX')
, PARTITION south_america VALUES ('BR','AR','PE')
, PARTITION europe VALUES ('GB','DE','NL','BE','FR','ES','IT','CH')
, PARTITION apac VALUES ('NZ','AU','IN','CN')
) ENABLE ROW MOVEMENT;

In this example, the column country is defined as a virtual column derived from the
confirmation number. The virtual column does not require any storage. As the
example illustrates, row movement is supported with virtual columns. The database
will migrate a row to a different partition if the virtual column evaluates to a different
value in another partition.

Recommendations for Choosing a Partitioning Strategy

4-38 Oracle Database VLDB and Partitioning Guide

Using Partitioning for Information Lifecycle Management 5-1

5
Using Partitioning for Information Lifecycle

Management

Although most organizations have long regarded their stores of data as one of their
most valuable corporate assets, how this data was managed and maintained varies
enormously. Originally, data was used to help achieve operational goals, run the
business, and help identify the future direction and success of the company.

However, new government regulations and guidelines are a key driving force in how
and why data is being retained, as they are now requiring organizations to retain and
control information for very long periods of time. Consequently, today there are two
additional objectives IT managers are trying to satisfy: to store vast quantities of data,
for the lowest possible cost; and to meet the new regulatory requirements for data
retention and protection.

This chapter discusses the components in the Oracle Database which can be used to
build an Information Lifecycle Management (ILM) strategy. This chapter contains the
following topics:

■ What Is ILM?

■ Implementing ILM Using Oracle Database

■ The Benefits of an Online Archive

■ Oracle ILM Assistant

■ Implementing an ILM System Manually

What Is ILM?
Information today comes in a wide variety of types, for example an E-mail message, a
photograph, or an order in an Online Transaction Processing System. Therefore, once
you know the type of data and how it will be used, you already have an
understanding of what its evolution and final destiny is likely to be.

One of the challenges facing each organization is to understand how its data evolves
and grows, monitor how its usage changes over time, and decide how long it should
survive, while adhering to all the rules and regulations that now apply to that data.
Information Lifecycle Management (ILM) is designed to address these issues, with a
combination of processes, policies, software, and hardware so that the appropriate
technology can be used for each stage in the lifecycle of the data.

What Is ILM?

5-2 Oracle Database VLDB and Partitioning Guide

Oracle Database for ILM
The Oracle Database provides the ideal platform for implementing an ILM solution,
because it offers:

■ Application Transparency

Application Transparency is very important in ILM because it means that there is
no need to customize applications and it also allows various changes to be made
to the data without any impact on the applications that are using that data.
Therefore, data can easily be moved at the different stages of its lifecycle and
access to the data can be optimized via the database. Another important benefit is
that application transparency offers the flexibility required to quickly adapt to any
new regulatory requirements, again without any impact on the existing
applications.

■ Fine-grained

Oracle is able to view data at a very fine-grained level as well as group related
data together, whereas storage devices only see bytes and blocks.

■ Low-Cost

With so much data to retain, using low cost storage is a key factor in implementing
ILM. Since Oracle can take advantage of many types of storage devices, the
maximum amount of data can be held for the lowest possible cost.

■ Enforceable Compliance Policies

When information is kept for compliance reasons, it is imperative to show to
regulatory bodies that data is being retained and managed in accordance with the
regulations. Within Oracle, it is possible to define security and audit policies,
which enforce and log all access to data.

Oracle Database Manages All Types of Data
Information Lifecycle Management is concerned with all data in an organization. This
includes not just structured data, such as orders in an OLTP system or a history of
sales in a data warehouse, but also unstructured data, such as E-mail, documents, and
images.

Although the Oracle Database already supports the storing of unstructured data
through the use of BLOBs and Oracle Fast Files (available in Oracle Database 11g), a
sophisticated document management system is available in Oracle Content Database,
when used in conjunction with the Enterprise Edition. It includes role-based security
to ensure that content is only accessed by authorized personnel and policies which
describe what happens to the content during its lifetime.

Therefore, if all of the information in your organization is contained in an Oracle
database, then you can take advantage of the features and functionality provided by
the database to manage and move the data as it evolves during its lifetime, without
having to manage multiple types of data stores.

Regulatory Requirements
Today, many organizations must retain specific data for a specific period of time.
Failure to comply with these regulations could result in organizations having to pay
very heavy fines. Therefore, around the world, a number of regulatory requirements,
such as Sarbanes-Oxley, HIPAA, DOD5015.2-STD in the US and the European Data
Privacy Directive in the European Union, are changing how organizations manage
their data. These regulations specify what data must be retained, whether it can be

Implementing ILM Using Oracle Database

Using Partitioning for Information Lifecycle Management 5-3

changed, and for how long it must be retained, which could be for a period of 30 years
or longer.

These regulations frequently demand that electronic data is secure from unauthorized
access and changes, and that there is an audit trail of all changes to data and by whom.
The Oracle Database can retain huge quantities of data without impacting application
performance. It also contains the features required to restrict access and prevent
unauthorized changes to data, and can be further enhanced with Oracle Database
Vault and Oracle Audit Vault. The Oracle Database also provides cryptographic
functions that can be used to demonstrate that a highly privileged user has not
intentionally modified data. Flashback Data Archive can be used to show all the
versions of a row during its lifetime.

Implementing ILM Using Oracle Database
Building an Information Lifecycle Management solution using the Oracle Database is
quite straightforward and can be completed by following these four simple steps,
although Step 4 is optional if ILM is not being implemented for compliance:

■ Step 1: Define the Data Classes

■ Step 2: Create Storage Tiers for the Data Classes

■ Step 3: Create Data Access and Migration Policies

■ Step 4: Define and Enforce Compliance Policies

Step 1: Define the Data Classes
In order to make effective use of Information Lifecycle Management, the first step is to
look at all the data in your organization and determine:

■ What data is important, where is it stored, and what needs to be retained

■ How this data flows within the organization

■ What happens to this data over time and whether it is still needed

■ The degree of data availability and protection that is needed

■ Data retention for legal and business requirements

Once there is an understanding of how the data is used, it can then be classified on this
basis. The most common type of classification is by age or date, but other types are
possible, such as by product or privacy. A hybrid classification could also be used,
such as by privacy and age.

In order to treat the data classes differently, the data needs to be physically separated.
When information is first created, it is often frequently accessed, but then over time it
may be referenced very infrequently. For instance, when a customer places an order,
they regularly look at the order to see its status and whether it has been shipped. Once
it arrives, they may never reference that order again. This order would also be
included in regular reports that are run to see what goods are being ordered, but, over
time, would not figure in any of the reports and may only be referenced in the future if
someone does a detailed analysis that involves this data. Therefore, orders could be
classified by the Financial Quarters Q1, Q2, Q3, and Q4, and as Historical Orders.

The advantage of using this approach is that when the data is grouped at the row level
by its class, which in this example would be the date of the order, all orders for Q1 can
be managed as a self contained unit, where as the orders for Q2 would reside in a
different class. This can be achieved by using partitioning. Since partitions are

Implementing ILM Using Oracle Database

5-4 Oracle Database VLDB and Partitioning Guide

completely transparent to the application, the data is physically separated but the
application still sees all of the orders.

Partitioning
Partitioning involves physically placing data according to a data value, and a
frequently used technique is to partition information by date. Figure 5–1 illustrates a
scenario where the orders for Q1, Q2, Q3, and Q4 are stored in individual partitions
and the orders for previous years are stored in other partitions.

Figure 5–1 Allocating Data Classes to a Partition

Oracle offers several different partitioning methods. Range partitioning is one of the
most frequently used partitioning methods for ILM. Interval and reference
partitioning (introduced in Oracle Database 11g) are also particularly suited for use in
an ILM environment.

There are a number of benefits to partitioning data. Partitioning provides an easy way
to distribute the data across appropriate storage devices depending on its usage, while
still keeping the data online and stored on the most cost-effective device. Since
partitioning is completely transparent to anyone accessing the data, no application
changes are required, thus partitioning can be implemented at any time. When new
partitions are required, they are simply added using the ADD PARTITION clause or
they can be created automatically if interval partitioning is being used.

Among other benefits, each partition can have its own local index. When the optimizer
uses partition pruning, queries will only access the relevant partitions instead of all
partitions, thus improving query response times.

The Lifecycle of Data
An analysis of your data is likely to reveal that initially, it is accessed and updated on a
very frequent basis. As the age of the data increases, its access frequency diminishes to
almost negligible, if any. Therefore, most organizations find themselves in the situation
where many users are accessing current data while very few users are accessing older
data, as illustrated in Figure 5–2. Thus, data can be considered to be one of the
following: active, less active, historical, or ready to be archived.

With so much data being held, during its lifetime the data should be moved to
different physical locations. Depending on where the data is in its lifecycle, it needs to
be located on the most appropriate storage device.

Implementing ILM Using Oracle Database

Using Partitioning for Information Lifecycle Management 5-5

Figure 5–2 Data Usage Over Time

Step 2: Create Storage Tiers for the Data Classes
Since Oracle Database can take advantage of many different storage options, the next
step is to establish the required storage tiers. Although you can create as many storage
tiers as you require, a suggested starting point are the following tiers:

■ High Performance

The high performance storage tier is where all the important and frequently
accessed data would be stored, such as the partition holding our Q1 orders. This
would utilize smaller, faster disks on high performance storage devices.

■ Low Cost

The low cost storage tier is where the less frequently accessed data is stored, such
as the partitions holding the orders for Q2, Q3, and Q4. This tier would be built
using large capacity disks, such as those found in modular storage arrays or the
low costs ATA disks, which offer the maximum amount of inexpensive storage.

■ Online Archive

The online archive storage tier is where all the data that is seldom accessed or
modified would be stored. It is likely to be extremely large and to store the
maximum quantity of data. Various techniques can be used to compress the data.
This tier could be located in the database or it could be in another database, which
serves as a central archive database for all information within the enterprise.
Stored on low cost storage devices, such as ATA drives, the data would still be
online and available, for a cost that is only slightly higher than storing this
information on tape, without the disadvantages that come with archiving data to
tape. If the Online Archive storage tier is identified as read-only, then it would be
impossible to change the data and subsequent backups would not be required
after the initial database backup.

■ Offline Archive (optional)

The offline archive storage tier is an optional tier because it is only used when
there is a requirement to remove data from the database and store it in some other
format, such as XML on a tape.

Figure 5–2 illustrates how data is used over a period of time. Using this information, it
can be determined that to retain all this information, several storage tiers are required
to hold all of the data, which also has the benefit of significantly reducing total storage
costs.

Once the storage tiers have been created, the data classes identified in "Step 1: Define
the Data Classes" on page 5-3 will be physically implemented inside the database

Implementing ILM Using Oracle Database

5-6 Oracle Database VLDB and Partitioning Guide

using partitions. This approach provides an easy way to distribute the data across the
appropriate storage devices depending on its usage, while still keeping the data online
and readily available, and stored on the most cost-effective device.

Assigning Classes to Storage Tiers
Once the storage tiers have been defined, the data classes (partitions) identified in Step
1 can be assigned to the appropriate storage tiers. This provides an easy way to
distribute the data across the appropriate storage devices depending on its usage,
keeping the data online and available, and stored on the most cost-effective device.
This is illustrated in Figure 5–3. Using this approach, no application changes are
required because the data is still seen.

Figure 5–3 Data Lifecycle

The Costs Savings of using Tiered Storage
One of the benefits of implementing an ILM strategy is the cost savings that can result
from using multiple tiered storage. Assume that we have 3 TB worth of data to store,
comprised of: 200 GB on High Performance, 800 GB on Low Cost, and 2 TB on Online
Archive. Assume the cost per GB is $72 on the High Performance tier, $14 on the Low
Cost tier, and $7 on the Online Archive tier.

Table 5–1 illustrates the possible cost savings using tiered storage, rather than storing
all data on one class of storage. As you can see, the cost savings can be quite significant
and, if the data is suitable for database compression, then even further cost savings are
possible.

Note: Automatic Storage Management (ASM) can also be used to
manage the data across the storage tiers.

Table 5–1 Cost Savings Using Tiered Storage

Storage Tier
Single Tier using High
Performance Disks Multiple Storage Tiers

Multiple Tiers with
Database Compression

High Performance (200 GB) $14,400 $14,400 $14,400

Low Cost (800 GB) $57,600 $11,200 $11,200

Online Archive (2 TB) $144,000 $14,000 $5,600

$216,000 $39,600 $31,200

Implementing ILM Using Oracle Database

Using Partitioning for Information Lifecycle Management 5-7

Step 3: Create Data Access and Migration Policies
The next step is to ensure that only authorized users have access to the data and to
specify how to move the data during its lifetime. As the data ages, there are a number
of techniques that can be used to migrate the data between the storage tiers.

Controlling Access to Data
The security of your data is another very important part of Information Lifecycle
Management because the access rights to the data may change during its lifetime. In
addition, there may be regulatory requirements that place exacting demands on how
the data can be accessed.

The data in an Oracle Database can be secured using database features, such as:

■ Database Security

■ Views

■ Virtual Private Database

Virtual Private Database (VPD) defines a very fine-grained level of access to the
database. Security policies determine which rows may be viewed and the columns that
are visible. Multiple policies can be defined so that different users and applications see
different views of the same data. For example, the majority of users could see the
information for Q1, Q2, Q3, and Q4, while only authorized users would be able to
view the historical data.

A security policy is defined at the database level and is transparently applied to all
database users. The benefit of this approach is that it provides a secure and controlled
environment for accessing the data, which cannot be overridden and can be
implemented without requiring any application changes. In addition, read-only
tablespaces can be defined which ensures that the data will not change.

Moving Data using Partitioning
During its lifetime, data will need to be moved. This may occur for the following
reasons:

■ For performance, only a limited number of orders are held on high performance
disks

■ Data is no longer frequently accessed and is using valuable high performance
storage, and needs to be moved to a low-cost storage device

■ Legal requirements demand that the information is always available for a given
period of time, and it needs to be held safely for the lowest possible cost

There are a number of ways that data can be physically moved in the Oracle Database
to take advantage of the different storage tiers. For example, if the data is partitioned,
then a partition containing the orders for Q2 could be moved online from the high
performance storage tier to the low cost storage tier. Since the data is being moved
within the database, it can be physically moved, without affecting the applications that
require it or causing disruption to regular users.

Sometimes individual data items, rather than a group of data, must be moved. For
example, suppose data was classified according to a level of privacy and a report,
which was once secret, is now to be made available to the public. If the classification
changed from secret to public and the data was partitioned on its privacy
classification, then the row would automatically move to the partition containing
public data.

Implementing ILM Using Oracle Database

5-8 Oracle Database VLDB and Partitioning Guide

Whenever data is moved from its original source, then it is very important to ensure
that the process selected adheres to any regulatory requirements, such as, the data
cannot be altered, is secure from unauthorized access, easily readable, and stored in an
approved location.

Step 4: Define and Enforce Compliance Policies
The last step in an Information Lifecycle Management solution is the creation of
policies for compliance. When data is decentralized and fragmented, compliance
policies have to be defined and enforced in every data location, which could easily
result in a compliance policy being overlooked. However, using the Oracle Database to
provide a central location for storing data means that it is very easy to enforce
compliance policies as they are all managed and enforced from one central location.

When defining compliance policies, consider the following areas:

■ Data Retention

■ Immutability

■ Privacy

■ Auditing

■ Expiration

Data Retention
The retention policy describes how the data is to be retained, how long it must be kept,
and what happens at the end of life. An example of a retention policy is a record must
be stored in its original form, no modifications are allowed, it must be kept for seven
years, and then it may be deleted. Using Oracle Database security, it is possible to
ensure that data remains unchanged and that only authorized processes can remove
the data at the appropriate time. Retention policies can also be defined via a lifecycle
definition in the ILM Assistant.

Immutability
Immutability is concerned with proving to an external party that data is complete and
has not been modified. Cryptographic or digital signatures can be generated by the
Oracle Database and retained either inside or outside of the database, to show that
data has not been altered.

Privacy
The Oracle Database provides several ways to ensure data privacy. Access to data can
be strictly controlled through the use of security policies defined using Virtual Private
Database (VPD). In addition, individual columns can be encrypted so that anyone
looking at the raw data cannot see its contents.

Auditing
The Oracle Database has the ability to track all access and changes to data. These
auditing capabilities can be defined either at the table level or through fine-grained
auditing, which specifies the criteria for when an audit record is generated. Auditing
can be further enhanced using Audit Vault.

Expiration
Ultimately, data may expire for business or regulatory reasons and would need to be
removed from the database. The Oracle Database can remove data very quickly and

The Benefits of an Online Archive

Using Partitioning for Information Lifecycle Management 5-9

efficiently by simply dropping the partition which contains the information identified
for removal.

The Benefits of an Online Archive
There usually comes a point during the lifecycle of the data when it is no longer being
regularly accessed and is considered eligible for archiving. Traditionally, at this time,
the data would have been removed from the database and stored on tape, because it is
capable of storing vast quantities of information for a very low cost. Today it is no
longer necessary to archive that data to tape, instead it can remain in the database, or
transferred to a central online archive database. All this information would be stored
using low-cost storage devices whose cost per gigabyte is very close to that of tape.

There are a number of benefits to keeping all of the data in a database for archival
purposes. The most important benefit is that the data will always be instantly
available. Therefore, time is not wasted locating the tapes where the data was archived
and determining whether the tape is readable and still in a format that can be loaded
into the database.

If the data has been archived for many years, then development time may also be
needed to write a program to reload the data into the database from the tape archive.
This could prove to be expensive and time consuming, especially if the data is
extremely old. If the data is retained in the database, then this is not a problem,
because it is already online, and in the latest database format.

Holding the historical data in the database no longer impacts the time required to
backup the database and the size of the backup. When RMAN is used to back up the
database, it will only include in the backup the data that has changed. Since historical
data is less likely to change, once the data has been backed up, it will not be backed up
again.

Another important factor to consider is how the data is to be physically removed from
the database, especially if it is to be transferred from a production system to a central
database archive. Oracle provides the capability to move this data rapidly between
databases by using transportable tablespaces or partitions, which moves the data as a
complete unit.

When it is time to remove data from the database, the fastest way is to remove a set of
data. This is achieved by keeping the data in its own partition. The partition can be
dropped, which is a very fast operation. However, if this approach is not possible
because data relationships must be maintained, then a conventional SQL delete
statement must be issued. You should not underestimate the time required to issue the
delete statement.

If there is a requirement to remove data from the database and there is a possibility
that the data may need to be returned to the database in the future, then consider
removing the data in a database format such as a transportable tablespace, or use the
XML capability of the Oracle Database to extract the information in an open format.

Consider an online archive of your data into an Oracle database for the following
reasons:

■ The cost of disk is approaching that of tape, eliminate the time to find the tape that
contains the data and the cost of restoring that data

■ Data remains online when needed, faster access to meet business requirements

■ Data online means immediate access, so cannot be fined by regulatory body for
failing to produce data

Oracle ILM Assistant

5-10 Oracle Database VLDB and Partitioning Guide

■ Use the current application to access the data, no need to waste resources to build
a new application

Oracle ILM Assistant
The Oracle ILM Assistant provides a graphical user interface (GUI) for managing your
ILM environment. Figure 5–4 shows the first screen of the ILM Assistant, which lists
the outstanding tasks that should be performed.

Figure 5–4 ILM Assistant Initial Screen

The ILM Assistant provides the ability to create lifecycle definitions, which are
assigned to tables in the database. Using this lifecycle definition, the ILM Assistant
advises when it is time to move, archive, or delete data, as shown by the calendar. It
will also illustrate the storage requirements and cost savings associated with moving
the data.

The ILM Assistant can manage only partitioned tables. For non-partitioned tables, the
ILM Assistant generates a script to show how the table could be partitioned, and it
also provides the capability to simulate partitioning on a table to view the actions that
would arise if the table were partitioned.

The ILM Assistant will not execute any commands for the tasks it recommends to be
performed, such as migrating data to different storage tiers. Instead, it generates a
script of the commands that need to be executed.

To assist with managing compliance issues, the ILM Assistant shows all Virtual Private
Databases (VPD) and Fine-Grained Audit (FGA) policies that have been defined on
tables under ILM control. In addition, both Database and FGA audit records can be
viewed and digital signatures generated and compared.

The Oracle ILM Assistant requires that Oracle Application Express is installed in the
database where the tables to be managed by the ILM Assistant reside.

The ILM Assistant provides capability in the following areas:

■ Lifecycle Setup

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-11

■ Lifecycle Management

■ Compliance & Security

■ Reports

Lifecycle Setup
The Lifecycle Setup area of the ILM Assistant is comprised of the following tasks that
need to be performed to prepare for managing your data:

■ Logical Storage Tiers

■ Lifecycle Definitions

■ Lifecycle Tables

■ Preferences

If this is the first time that you have used the ILM Assistant, then it is here where you
specify exactly how the data is to be managed by the ILM Assistant. The following
steps must be completed before the ILM Assistant is able to give advice on data
placement, as illustrated in Figure 5–5.

1. Define the logical storage tiers

2. Define the lifecycle definitions

3. Select tables to be managed by the lifecycle definitions

Figure 5–5 ILM Assistant: Specifying How Data is Managed

Other options available within setup include the ability to:

■ View partition simulation

■ View a lifecycle summary of mapped tables and their logical storage tiers and
lifecycle definitions

■ View storage costs

■ Define policy notes

■ Customize the ILM Assistant via preferences

Oracle ILM Assistant

5-12 Oracle Database VLDB and Partitioning Guide

Logical Storage Tiers
A logical storage tier is a name given to a logical group of storage devices; typically all
disks of the same type will be identified by that name. For example, the group called
High Performance could refer to all the high performance disks. Any number of
logical storage tiers may be defined and the devices are identified by the assigned
tablespaces, which reside upon them.

The Cost per GB value must be a value greater than zero. The value is used by the ILM
Assistant to project storage costs when data is mapped to the tier. It is recommended
that you enter a value that represents a reasonably accurate cost of storing data on the
tier. This would include the physical purchase price of a device. However, you might
also want to consider other associated costs, such as maintenance and running costs.

Each storage tier will have a set of assigned tablespaces that are labeled as a read-write
preferred tablespace, read-only preferred tablespace, or a secondary tablespace. If
read-write data can be migrated onto the tier, then the read-write preferred tablespace
is required. If the storage tier will accept read-only data, then a read-only preferred
tablespace must also be identified.

In addition to the preferred tablespaces, one or more secondary tablespaces may be
assigned to the tier. Secondary tablespaces are typically located in the same location as
the read-write preferred tablespace for the storage tier.

Since the ILM Assistant only supports a single preferred tablespace, any read-write
data that must reside on the tier would generate a migration event to move the data to
the read-write preferred tablespace. To avoid unnecessary data migration events, the
ILM Assistant allows existing data to remain on a secondary tablespace for the storage
tier.

Lifecycle Definitions
A lifecycle definition describes how data migrates across the logical storage tiers
during its lifetime. It is comprised of one or more lifecycle stages that select a logical
storage tier, data attributes such as compression and read only, and a duration for data
residing on that lifecycle stage.

A lifecycle definition is valid if it contains at least one lifecycle stage. There must be a
final stage, which is either user specified or automatically generated by the ILM
Assistant upon completion of the lifecycle definition process. For the final stage you
must specify what happens to data at lifecycle end.

A lifecycle definition is comprised of a number of stages that describes what happens
to data during its lifetime. Lifecycle stages are initially created in reverse time order
(that is, working backwards in time from the current date). Every stage must have a
unique name; an optional description can be supplied.

If the stage is not the final stage, then you must specify how long the data is to remain
on this stage and any stage attributes such as whether the data should be compressed
or set to read only. Note that it is only possible to specify a read only stage if a
preferred read only tablespace has been defined for the logical storage tier for this
stage.

The current stage represents the present time but can span any length of time. A
lifecycle can only have one current stage. The final stage is required as it describes
what happens when data reaches its end-of-life. A lifecycle can only have one final
stage and it is automatically created if the user does not create one. Possible actions
are:

■ Purge the data

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-13

■ Archive the data off-line

■ Allow the data to remain on-line

Stages that store data on-line also permit several attributes to be defined that affect the
data. The supported attributes are:

■ Compress

■ Compress and Read-Only

■ Read-Only

Each stage is comprised of the following information:

■ Stage Type

A stage is classified as a current stage, final stage, or unclassified.

■ Stage Name

Displays the user-supplied name of the stage.

■ Stage Description

Displays the user-supplied stage description.

■ Action

Displays the action performed when data maps to the stage. Possible actions are:

– Remain Online

– Archive Offline

– Purge

■ Tier Name

Displays the storage tier associated with the stage. For a stage that purges data or
moves data offline, a tier is not specified.

■ Attributes

Displays the optional data attributes that will be applied to data when it maps to
the stage. Possible values are:

– Compress

– Compress and Read-Only

– Read-Only

■ Stage Duration

Displays the length of time the data can remain mapped to the stage.

■ Stage Start Date

Displays the actual calendar date for the beginning of the stage. The date is
computed based on the adjacent stages and the user-specified fiscal start date.

■ Stage End Date

Displays the actual calendar date for the end of the stage. The date is computed
based on the adjacent stages and the user-specified fiscal start date.

Lifecycle Tables
The Lifecycle Tables area identifies those tables that may be managed by the ILM
Assistant, and it is here where these tables are mapped to a lifecycle definition, as

Oracle ILM Assistant

5-14 Oracle Database VLDB and Partitioning Guide

illustrated in Figure 5–6. A database may contain many tables, only some of which you
wish to consider as candidates for ILM. A table is automatically eligible if it is range
partitioned on a date column. When the table is associated with a lifecycle definition,
the ILM Assistant can manage its data. For tables having no partitioning, storage cost
savings and storage tier migration can be modeled using a simulated partitioning
strategy.

Figure 5–6 ILM Assistant: Lifecycle Tables

If the table is not yet partitioned, then you will be directed to a Partition Simulation
page where you can setup a full simulation. Similar to setting up a managed table, a
simulation can be previewed and accepted on this page. Upon returning from the
simulation page, the table is now eligible for full lifecycle management in simulation
mode.

The difference between a managed table and a simulated table is that a managed table
contains actual partitions while a simulated table only contains fake partitioning data.
All reports and event detection work with both types of lifecycle tables. However, any
table upon which partitioning is being simulated will only be seen as being partitioned
from within the ILM Assistant. All other tools will continue to see it as a
non-partitioned table.

Though the lifecycle tables view shows all accessible tables, the ILM Assistant may not
be able to manage every table. In those cases, the table will be marked as ineligible and
a link will be provided to explain the exception. Some examples of ineligible tables are:

■ Tables having no date column

■ Tables partitioned on non-date columns

■ Tables partitioned using a partition type other than range

■ Tables containing a LONG column

■ Index-organized tables

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-15

The display for Lifecycle Tables can be customized to show managed, simulated,
candidate, and ineligible tables, and is comprised of the following information:

■ Table Owner

The Oracle schema that owns the table

■ Table Name

The table that may allow ILM management

■ Storage Size

The current estimated size of the table. The value is scaled according to the Size
Metric as specified within the Filter Options.

■ Data Reads

The current sum of all logical and physical reads for the table.

■ Data Writes

The current sum of all physical writes for the table.

■ Lifecycle Definition

If the ILM Assistant is managing the table, then the required lifecycle definition is
displayed here.

■ Lifecycle Status

Provides the current status of the table. This will indicate whether the table is
eligible, is managed, or is simulated. For tables that are ineligible, the status link
provides an explanation regarding its incompatibility with the ILM Assistant.

■ Table Partitioning

Provides a status of the table partitioning. A table can have partitioning
implemented, simulated, or none.

■ Cost Savings

When the ILM Assistant is managing a table, a total cost-savings value is
computed and displayed here.

■ Partition Map

Indicates that the current table partitioning scheme is compatible with the lifecycle
definition. Clicking on the icon displays a detailed report of the table partitions.

Lifecycle Table List For installations having many tables, the ILM Assistant provides a
table list caching system to prevent long page waits and possible browser timeouts.
The table list is a snapshot of all user tables on the system that should be periodically
refreshed to maintain consistency within the ILM Assistant. Typically, the table list
should be refreshed when application tables have been added, changed, or removed
outside of the ILM Assistant, or when up-to-date table statistics are desired.

By default, a table list refresh operation will attempt to scan for every table defined in
the database. For large application environments, this can take a long time to
complete. Typically, ILM Assistant management of tables is limited to a small number
of tables. To avoid refreshing the table list with the entire set of tables found in the
database, filtering may be used to narrow the number of tables to be scanned. For
example, if the user was only interested in managing tables in the SH schema, the Table
Owner Filter can be set to SH. To estimate the time it may take to do refresh, click
Estimate Refresh Statistics. This will return the projected number of tables that match
the filters as well as the time it will take to process the data.

Oracle ILM Assistant

5-16 Oracle Database VLDB and Partitioning Guide

Purging unused entries in the cache will clean up a cache that contains any entries that
are not currently managed by the ILM Assistant. It will not affect any of the tables that
currently match the filters.

As a guideline, the ILM Assistant can refresh the table list at a rate of 300 to 350 tables
per minute. The operation may be interrupted from the Lifecycle Tables screen. An
interrupt will stop the refresh operation as if it has reached the normal end of the table
scan. Because of the nature of the process, an interrupt can take up to 30 seconds to
stop the actual scan operation.

Partition Map The Partition Map column in the Lifecycle Tables Report indicates
whether all the partitions in the table will fit inside a stage and do not overlap stages.
The Mapping Status indicates the quality of the partition-to-stage relationship. A green
checkmark indicates the partition resides completely within the stage without
violating date boundaries. A warning icon indicates some type of mismatch. Possible
exceptions for the stage mapping are:

■ Misaligned partitions

A partition can be misaligned when it cannot fit into an entire stage. This can
happen if the lifecycle stage duration is smaller than the smallest partition range.
To resolve this, either choose a better lifecycle definition to manage the table or
adjust the stage duration by editing the lifecycle definition.

■ Tablespace is not associated with a logical storage tier

This is very common for new ILM Assistant users. In order to perform cost
analysis, the ILM Assistant needs to associate all referenced tablespaces with a tier.
Typically, the easiest correction is to edit a logical storage tier and add the missing
tablespace as a secondary tablespace.

Storage Costs The ILM Assistant provides a comprehensive storage cost and savings
report associated with the managed or simulated table, as illustrated in Figure 5–7.

Figure 5–7 ILM Assistant: Partitioning for Simulated Tables

The report is divided into two main areas. The top portion of the report is a rollup
showing the totals for the managed or simulated tables. For managed tables, there are

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-17

two subsections that show data for a non-ILM environment using a single storage tier
and an ILM managed, multi-tier environment. For simulated tables, a third section is
provided that shows an ILM managed, multi-tier environment that includes the
estimated effects of compression.

The bottom section of the storage costs page is the detail section that breaks up the cost
areas by logical storage tier:

■ Single-Tier Size

Displays the total size of the entities. For a lifecycle-based report, the value
represents the sum of all table sizes that are assigned the current lifecycle
definition. For managed tables, the size is the actual size as indicated by the
database storage statistics. For simulated tables, the size is the projected size as
calculated by the user-specified number of rows and average row length.

■ Single-Tier Cost

Displays the single-tier cost, which is calculated by multiplying the single-tier size
of the current entities by the cost of storing the data on the most expensive tier
within the lifecycle definition.

■ Cost per GB

Displays the user-specified cost when setting up the storage tier. The value is used
to calculate the storage costs for partitions that are assigned to the tier.

■ Multi-Tier Size

Displays the total size of the entities that reside on that tier. For lifecycles, it
represents all table partitions that are associated with the current tier. For a table, it
represents the sum of all partitions that are associated with the tier. The size does
not include any projected compression.

■ Multi-Tier Cost

Displays the cost, which is calculated by multiplying the cost per gigabyte for the
current tier by the space occupied by the entities. For lifecycles, it represents all
table partitions that are associated with the current tier. For a table, it represents
the sum of all partitions that are associated with the tier.

■ Multi-Tier Savings

Displays the savings, which is computed by subtracting the multi-tier cost from
the calculated cost of storing the same data using the single-tier approach.

■ Percent Savings

Displays the ratio of multi-tier savings to the single-tier cost for the same data.

■ Multi-Tier Compressed Size

Displays the total size of the entities that reside on that tier. For lifecycles, it
represents all table partitions that are associated with the current tier. For a table, it
represents the sum of all partitions that are associated with the tier. The size
includes projected compression based on the estimated compression factor
assigned by the user.

This report item is only present when viewing simulated table data.

■ Multi-Tier Compressed Cost

Displays the cost, which is calculated by multiplying the cost per gigabyte for the
current tier by the space occupied by the entities. For lifecycles, it represents all
table partitions that are associated with the current tier. For a table, it represents

Oracle ILM Assistant

5-18 Oracle Database VLDB and Partitioning Guide

the sum of all partitions that are associated with the tier. The size includes
projected compression based on the estimated compression factor assigned by the
user.

This report item is only present when viewing simulated table data.

■ Multi-Tier Compressed Savings

Displays the savings, which is computed by subtracting the multi-tier compressed
cost from the calculated cost of storing the same data using the single-tier
approach.

This report item is only present when viewing simulated table data.

■ Percent Savings

Displays the ratio of multi-tier compressed savings to the single-tier cost for the
same data.

This report item is only present when viewing simulated table data.

■ Lifecycle Stages Compressed

When setting up lifecycle stages, the user has the option of requiring the partitions
to be compressed when assigned to the stage. This value shows the number of
stages assigned to the storage tier that have the compressed attribute set.

■ Partitions Compression

Displays the number of partitions on the storage tier that are currently
compressed.

Partition Simulation Implementing Partitioning is likely to be a major task for any
organization and the ILM Assistant allows you to model the impact before actually
reorganizing the data. To achieve this, the ILM Assistant requires the following
information in simulation mode:

■ Lifecycle Definition

Select a lifecycle definition that will be used to manage the simulated table. The
simulated partitions will be derived from the lifecycle stages defined in the
lifecycle. The ILM Assistant will determine the optimal date range based on the
stage duration information supplied.

■ Partitioning Column

Select a suitable date column as the partitioning key. If the current table has only
one date column, then the column will automatically be selected and displayed in
read-only form.

■ Partition Date Interval

Displays the optimal partition range interval based on the selected lifecycle
definition. The ILM Assistant will compute an interval that will guarantee that all
generated partitions will properly align with the lifecycle stages.

■ Number of Rows

Provide the number of rows in the current table. The default value is retrieved
from the current tables database statistics. If the default value is unavailable, or
you wish to project future growth, you may enter any value greater than zero.

■ Average Row Length

Provide the average row length for the table. The default value is retrieved from
the current tables database statistics. If the statistics are not valid, then the ILM

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-19

Assistant will query the table and calculate a maximum row size. If the default
value is unsuitable, or you wish to project future growth, then you may enter any
value greater than zero.

■ Estimated Compression Factor

Provide a compression factor. The compression factor is used exclusively by the
ILM Assistant to estimate storage costs and savings. The factor is purely an
estimate, but can give you savings potential. A value of one indicates no
compression is projected. A value greater than one indicates a reduction in space
using the formula reduction = 1 / factor. The default value is calculated by
sampling a small percentage of the table for compression potential.

An additional option after previewing the simulation is Migration Script generation, as
illustrated in Figure 5–7 on page 5-16. This allows the user to create a script that can be
used to convert the existing non-partitioned table to a partitioned counterpart. It
should be noted that the script contains a simple create operation and a command to
migrate the existing data; however, parts of the script have been commented out to
prevent accidental operation. A conversion of a table to a partitioned table should be
carefully planned.

Preferences
Preferences control various aspects of the ILM Assistant's behavior and display of data
(for example, the default date format for most entered values and reports, or the
default number of rows to display). The following preferences can be set:

■ Compression sample block count

■ Compression sample percent

■ Date format (Long form)

■ Date format (Short form)

■ Demonstration Mode

Specifies a factor that amplifies the actual table sizes. A value of one effectively
disables the mode since multiplying a number by one does not change the original
value.

■ Language preference

■ Lifecycle table view filter

Specifies the default selection to view when visiting the Lifecycle Tables page.
Values can be combined to indicate multiple types of tables. For example, 3
indicates that both managed and simulated tables are to be shown. Possible values
are:

1 - Managed Tables
2 - Simulated Tables
4 - Candidate Tables
8 - Ineligible Tables

The default value is 7, which excludes ineligible tables.

■ Maximum report rows to display

■ Maximum viewable tables

■ Refresh rate for progress monitoring

■ Report column maximum display length

Oracle ILM Assistant

5-20 Oracle Database VLDB and Partitioning Guide

■ Start page for lifecycle setup

Possible values are:

– Logical Storage Tiers

– Lifecycle Definitions

– Lifecycle Tables

■ Storage size metric

Specifies the default size metric to be used when viewing storage size values.
Possible values are:

KB - Kilobytes
MB - Megabytes
GB - Gigabytes
TB - Terabytes

The value is case sensitive.

Lifecycle Management
Lifecycle Management is concerned with the tasks that must be performed to move
data to the correct place in the Information Lifecycle. Information is available on the
following:

■ Lifecycle Events Calendar

■ Lifecycle Events

■ Event Scan History

Lifecycle Events Calendar
The Lifecycle Events Calendar shows the calendar of previous, current, and
(optionally,) future lifecycle events that must be performed to place data at the
appropriate place in the information lifecycle, as illustrated in Figure 5–5 on page 5-11.
You can use the Previous Month with Events button to navigate to previous months
containing lifecycle events.

To identify which data must be moved, click on the Scan for Events button which will
ask whether to scan for all events up to the current day, or into the future.
Additionally, you may choose to evaluate all tables or selected tables. The ILM
Assistant will then compare the current location of data with where it should be stored
in accordance with the lifecycle definition and recommend the appropriate movement.
It will also advise if data should be compressed or set to read only as defined by the
lifecycle definition. All the recommendations made by the ILM Assistant are applied
to partitions only.

Lifecycle Events
The Lifecycle Events report shows details about data migration events and provides a
way to generate scripts to perform their actions. You can select some or all of the
displayed events by clicking the checkboxes in the first column. You need to select
events to generate scripts or to dismiss events. To generate a script on the selected
events, click the Generate Script button. To dismiss the selected events to make them
permanently disappear, click the Dismiss Selected Events button.

The event summary shows the following pieces of information:

■ Recommended Action

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-21

Indicates the type of event that was detected by the scan operation. Possible event
types are:

– MOVE PARTITION

Indicates that a partition should be moved from its current logical storage tier
to a new logical storage tier. The movement is achieved by moving the
partition from one tablespace to another.

– COMPRESSION

Indicates that the partition should have data compression enabled.

– READ-ONLY

Indicates that the partition should be set to read-only.

– PURGE

Indicates that the partition should be physically deleted.

■ Partition Name

Describes the affected partition.

■ Current Tier

Describes the current location of the partition.

■ Recommended Tier

Describes the target storage tier for move operations.

■ Cost Savings

Indicates the potential storage cost savings if the event action were to be
implemented.

■ Table Owner and Name

Describes the partition table owner and name.

■ Event Date

Indicates the date on which the action should be performed. For events that
should have been resolved in the past, a single keyword Past is shown; fore events
in the future, a calendar date is displayed.

■ Event Details

Provides a link to event details. This area describes lifecycle details that affected
the scan operation.

When a partition requires several logical operations such as move and compress, the
ILM Assistant displays the operations as separate events. However, in the script, the
operations may be combined into a single SQL DDL statement.

The ILM Assistant currently does not have any archive capability. Therefore, selecting
archive events generates a script that identifies which partitions should now be
archived and lists them as comments.

Event Scan History
Any authorized user can invoke event scanning via the Lifecycle Events Calendar.
Over time, tracking the scan activity can be quite difficult, so a history is made
available.

The history report shows the following pieces of information:

Oracle ILM Assistant

5-22 Oracle Database VLDB and Partitioning Guide

■ Scan Date

■ Submitted by User

■ Lowest Event Date

■ Highest Event Date

■ Table Owner and Name

■ Number of Events

■ Lifecycle Status

Compliance & Security
The Compliance & Security area shows everything that can be used to enforce
security and help maintain compliance with the numerous regulations from around
the world. It provides an area to:

■ View Current Status

■ Prove Immutability

■ View Privacy & Security Policies

■ View Auditing

■ Manage Policy Notes

Current Status
Current status summarizes the status of all the various Compliance & Security
features that are available. For example, it advises how many Virtual Private Database
(VPD) policies have been defined, when a digital signature was last generated, and
when a comparison of digital signatures was last performed.

Digital Signatures and Immutability
Some regulations stipulate that it must be shown that data has not changed since it
was entered into the database. One of the techniques that can be used to prove that
data has not been altered is to generate a digital signature.

Oracle Database provides the capability to generate a digital signature for a SQL result
set. This can be generated inside the ILM Assistant and is achieved by creating a
named SQL result set which includes the query to describe the collection of records.
The digital signature is generated and is initially saved in a text file.

To show that the data records in a query have not been altered, a digital signature can
be presented for a previously defined SQL query, and re-generated on today's data and
the signatures compared, to show that the data has not changed since the digital
signature was originally generated.

Privacy & Security
The Privacy & Security area enables you to view:

■ A summary of privacy and security definitions for each ILM table

■ Virtual Private Database (VPD) policies

■ Security views on tables managed by the ILM Assistant

■ Reports on the access privileges granted to users for tables managed by the ILM
Assistant

Oracle ILM Assistant

Using Partitioning for Information Lifecycle Management 5-23

By default, the Lifecycle Table Summary is shown and VPD policies and user access
information are available by selecting the appropriate links.

Lifecycle Table Summary The Lifecycle Table Summary provides an overview for each
table as to which features are being used in terms of VPD policies and table grants
issued.

Virtual Private Database (VPD) Policies Using standard database privileges, it is possible to
limit access to a table to certain users. However,such access allows users to read all
information in that table. VPD Policies provide a finer level of control on who can
access information. Using a VPD Policy, it is possible to write sophisticated functions,
which define exactly which data is visible to a user.

For example, a policy could say that certain users can only view the last 12 months of
data, while other users can view all of the data. Another policy could say that the only
data visible is in the state where the office is located. Therefore, VPD Policies are an
extremely powerful tool in controlling access to information. Only VPD policies that
have been defined on tables that are being managed by the ILM Assistant are shown
on the VPD Policies report.

Table Access by User The Table Access by User report provides a list of all the access
privileges granted to users for tables that have been assigned to Lifecycle Definitions.

Auditing
Some regulations require that an audit trail be maintained of all access and changes to
data. In the Oracle Database, several types of auditing are available: database and
fine-grained. They each create their own audit records, which can be viewed as one
consolidated report in the ILM Assistant that can be filtered on several criteria.

Within the auditing area on the ILM Assistant, it is possible to:

■ View the Current Audit Status

■ Manage Fine-Grained Audit Policies

■ View Audit Records

Fine-Grained Auditing Policies Standard Auditing within the Oracle Database logs all
types of access to a table. However, there may be instances when it is desirable to only
audit an event when a certain condition is met (for example, the value of the
transaction being altered is greater than $10,000). This type of auditing is possible
using Fine-Grained Audit policies where an audit condition can be specified and an
optional function can be called for more sophisticated processing.

View Auditing Records It is possible within the ILM Assistant to view both database and
fine-grained audit records for tables mapped to Lifecycle Definitions in the ILM
Assistant. An icon represents the type of audit record: database (indicated by a disc) or
FGA. Use the Filter condition to filter the audit records that are displayed and click on
the report heading to sort the data on that column.

By default, the ILM Assistant only displays audit records for the current day. To see
audit records for previous days, you must use the filter options to specify a date range
of records to display.

Policy Notes Policy notes provide textual documentation of your data management
policies or anything that you wish to document with respect to managing data during
its lifetime. Policy notes are informational only; they do not affect the tasks performed
by the ILM Assistant. They can be used as a central place to describe your policies, as

Implementing an ILM System Manually

5-24 Oracle Database VLDB and Partitioning Guide

reminders, and as a way to prove that your policies are documented. They can also be
used to document SLA (Service Level Agreements) and to document the compliance
rules that you are trying to enforce.

Reports
The ILM Assistant offers a variety of reports on all aspects of managing the ILM
environment, which include the following:

■ Multi-Tier Storage Costs by Lifecycle or Table

■ Logical Storage Tier Summary

■ Partitions by Table or Storage Tier

■ Lifecycle Retention Summary

■ Data Protection Summary

Implementing an ILM System Manually
The following example illustrates how to manually create storage tiers and partition a
table across those storage tiers and then setup a VPD policy on that database to restrict
access to the online archive tier data.

REM Setup the tablespaces for the data

REM These tablespaces would be placed on a High Performance Tier
CREATE SMALLFILE TABLESPACE q1_orders DATAFILE 'q1_orders'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE q2_orders DATAFILE 'q2_orders'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE q3_orders DATAFILE 'q3_orders'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE q4_orders DATAFILE 'q4_orders'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on a Low Cost Tier
CREATE SMALLFILE TABLESPACE "2006_ORDERS" DATAFILE '2006_orders'
SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE "2005_ORDERS" DATAFILE '2005_orders'
SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on the Online Archive Tier
CREATE SMALLFILE TABLESPACE "2004_ORDERS" DATAFILE '2004_orders'
SIZE 5M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE old_orders DATAFILE 'old_orders'
SIZE 15M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

Implementing an ILM System Manually

Using Partitioning for Information Lifecycle Management 5-25

REM Now create the Partitioned Table
CREATE TABLE allorders (
 prod_id NUMBER NOT NULL,
 cust_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 channel_id NUMBER NOT NULL,
 promo_id NUMBER NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL)
 --
 -- table wide physical specs
 --
 PCTFREE 5 NOLOGGING
 --
 -- partitions
 --
 PARTITION BY RANGE (time_id)
 (partition allorders_pre_2004 VALUES LESS THAN
 (TO_DATE('2004-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE old_orders,
 partition allorders_2004 VALUES LESS THAN
 (TO_DATE('2005-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2004_ORDERS",
 partition allorders_2005 VALUES LESS THAN
 (TO_DATE('2006-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2005_ORDERS",
 partition allorders_2006 VALUES LESS THAN
 (TO_DATE('2007-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE "2006_ORDERS",
 partition allorders_q1_2007 VALUES LESS THAN
 (TO_DATE('2007-04-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q1_orders,
 partition allorders_q2_2007 VALUES LESS THAN
 (TO_DATE('2007-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q2_orders,
 partition allorders_q3_2007 VALUES LESS THAN
 (TO_DATE('2007-10-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q3_orders,
 partition allorders_q4_2007 VALUES LESS THAN
 (TO_DATE('2008-01-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE q4_orders);

ALTER TABLE allorders ENABLE ROW MOVEMENT;

Implementing an ILM System Manually

5-26 Oracle Database VLDB and Partitioning Guide

REM Here is another example using INTERVAL partitioning

REM These tablespaces would be placed on a High Performance Tier
CREATE SMALLFILE TABLESPACE cc_this_month DATAFILE 'cc_this_month'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

CREATE SMALLFILE TABLESPACE cc_prev_month DATAFILE 'cc_prev_month'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on a Low Cost Tier
CREATE SMALLFILE TABLESPACE cc_prev_12mth DATAFILE 'cc_prev_12'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM These tablespaces would be placed on the Online Archive Tier
CREATE SMALLFILE TABLESPACE cc_old_tran DATAFILE 'cc_old_tran'
SIZE 2M AUTOEXTEND ON NEXT 1M MAXSIZE UNLIMITED LOGGING
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ;

REM Credit Card Transactions where new partitions automatically are placed on the
high performance tier
CREATE TABLE cc_tran (
 cc_no VARCHAR2(16) NOT NULL,
 tran_dt DATE NOT NULL,
 entry_dt DATE NOT NULL,
 ref_no NUMBER NOT NULL,
 description VARCHAR2(30) NOT NULL,
 tran_amt NUMBER(10,2) NOT NULL)
 --
 -- table wide physical specs
 --
 PCTFREE 5 NOLOGGING
 --
 -- partitions
 --
 PARTITION BY RANGE (tran_dt)
 INTERVAL (NUMTOYMINTERVAL(1,'month')) STORE IN (cc_this_month)
 (partition very_old_cc_trans VALUES LESS THAN
 (TO_DATE('1999-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_old_tran ,
 partition old_cc_trans VALUES LESS THAN
 (TO_DATE('2006-07-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_old_tran ,
 partition last_12_mths VALUES LESS THAN
 (TO_DATE('2007-06-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_prev_12mth,
 partition recent_cc_trans VALUES LESS THAN
 (TO_DATE('2007-07-01 00:00:00'

Implementing an ILM System Manually

Using Partitioning for Information Lifecycle Management 5-27

 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_prev_month,
 partition new_cc_tran VALUES LESS THAN
 (TO_DATE('2007-08-01 00:00:00'
 ,'SYYYY-MM-DD HH24:MI:SS'
 ,'NLS_CALENDAR=GREGORIAN'
)) TABLESPACE cc_this_month);

REM Create a Security Policy to allow user SH to see all credit card data,
REM PM only sees this years data,
REM and all other uses cannot see the credit card data

CREATE OR REPLACE FUNCTION ilm_seehist
 (oowner IN VARCHAR2, ojname IN VARCHAR2)
 RETURN VARCHAR2 AS con VARCHAR2 (200);
BEGIN
 IF SYS_CONTEXT('USERENV','CLIENT_INFO') = 'SH'
 THEN -- sees all data
 con:= '1=1';
 ELSIF SYS_CONTEXT('USERENV','CLIENT_INFO') = 'PM'
 THEN -- sees only data for 2007
 con := 'time_id > ''31-Dec-2006''';
 ELSE
 -- others nothing
 con:= '1=2';
 END IF;
 RETURN (con);
END ilm_seehist;
/

REM Then the policy is added with the DBMS_RLS package as follows:

BEGIN
 DBMS_RLS.ADD_POLICY (object_schema=>'SYSTEM'
 , object_name=>'cc_tran'
 , policy_name=>'ilm_view_history_data'
 , function_schema=>'SYSTEM'
 , policy_function=>'ilm_seehist'
 , sec_relevant_cols=>'tran_dt'
);
END;
/

Implementing an ILM System Manually

5-28 Oracle Database VLDB and Partitioning Guide

Using Partitioning in a Data Warehouse Environment 6-1

6
Using Partitioning in a Data Warehouse

Environment

Data warehouses often contain large tables and require techniques both for managing
these large tables and for providing good query performance across these large tables.
This chapter describes the partitioning features that significantly enhance data access
and improve overall application performance. This is especially true for applications
that access tables and indexes with millions of rows and many gigabytes of data.

This chapter contains the following topics:

■ What Is a Data Warehouse?

■ Scalability

■ Performance

■ Manageability

What Is a Data Warehouse?
A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but can include data from other sources. Data warehouses separate
analysis workload from transaction workload and enable an organization to
consolidate data from several sources.

In addition to a relational database, a data warehouse environment can include an
extraction, transportation, transformation, and loading (ETL) solution, analytical
processing and data mining capabilities, client analysis tools, and other applications
that manage the process of gathering data and delivering it to business users.

Scalability
Partitioning helps scaling a data warehouse by dividing database objects into smaller
pieces, enabling access to smaller, more manageable objects. Having direct access to
smaller objects addresses the scalability requirements of data warehouses:

■ Bigger Databases

■ Bigger Individual tables: More Rows in Tables

■ More Users Querying the System

■ More Complex Queries

See Also: Oracle Database Data Warehousing Guide

Performance

6-2 Oracle Database VLDB and Partitioning Guide

Bigger Databases
The ability to split a large database object into smaller pieces transparently provides
benefits to manage a larger total database size. You can identify and manipulate
individual partitions and subpartitions in order to cope with large database objects.
Consider the following advantages of partitioned objects:

■ Backup and recovery can be performed on a low level of granularity to cope with
the size of the database.

■ Part of a database object can be stored compressed while other parts can remain
uncompressed.

■ Partitioning can be used to store data transparently on different storage tiers to
lower the cost of storing vast amounts of data. Refer to Chapter 5, "Using
Partitioning for Information Lifecycle Management".

Bigger Individual tables: More Rows in Tables
It takes longer to scan a big table than it takes to scan a small table. Queries against
partitioned tables may access one or more partitions that are small compared with the
total size of the table. Similarly, queries may take advantage of partition elimination on
indexes. It takes less time to read a smaller portion of an index from disk than to read
the entire index. Index structures that share the partitioning strategy with the table,
local partitioned indexes, can be accessed and maintained on a partition-by-partition
basis.

The database can take advantage of the distinct data sets in separate partitions if you
use parallel execution to speed up queries, DML, and DDL statements. Individual
parallel execution servers can work on their own data set, identified by the partition
boundaries.

More Users Querying the System
With partitioning, users are more likely to hit isolated and smaller data sets. As a
result, the database will be able to return results faster than if all users hit the same
and much larger data sets. Data contention is less likely.

More Complex Queries
Smaller data sets help perform complex queries faster. If smaller data sets are being
accessed, then complex calculations are more likely to be processed in memory which
is beneficial from a performance perspective and which reduces the application's I/O
requirements. A larger set may have to be written to the temporary tablespace in order
to complete, in which case additional I/O against the database storage occurs.

Performance
Good performance is a key to success for a data warehouse. Analyses run against the
database should return within a reasonable amount of time, even if the queries access
large amounts of data in tables that are terabytes in size. Partitioning provides
fundamental functionality to enable successful data warehouses that are not
prohibitively expensive in terms of hardware cost.

Performance

Using Partitioning in a Data Warehouse Environment 6-3

Partition Pruning
Partition pruning is an essential performance feature for data warehouses. In partition
pruning, the optimizer analyzes FROM and WHERE clauses in SQL statements to
eliminate unneeded partitions when building the partition access list. This enables
Oracle Database to perform operations only on those partitions that are relevant to the
SQL statement.

Partition pruning dramatically reduces the amount of data retrieved from disk and
shortens processing time, thus improving query performance and optimizing resource
utilization.

Basic Partition Pruning Techniques
The optimizer uses a wide variety of predicates for pruning. The three predicate types,
equality, range, and IN-list, are the most commonly used cases of partition pruning. As
an example, consider the following query:

SELECT SUM(amount_sold) day_sales
FROM sales
WHERE time_id = TO_DATE('02-JAN-1998', 'DD-MON-YYYY');

Because there is an equality predicate on the partitioning column of sales, this query
will prune down to a single predicate and this will be reflected in the explain plan, as
shown:

| Id | Operation | Name | Rows| Bytes | Cost (%CPU)| Time |Pstart| Pstop |

0	SELECT STATEMENT				21 (100)			
1	SORT AGGREGATE		1	13				
2	PARTITION RANGE SINGLE		485	6305	21 (10)	00:00:01	5	5
* 3	TABLE ACCESS FULL	SALES	485	6305	21 (10)	00:00:01	5	5

Predicate Information (identified by operation id):

 3 - filter("TIME_ID"=TO_DATE('1998-01-02 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

Similarly, a range or an IN-list predicate on the time_id column and the optimizer
would be used to prune to a set of partitions. The partitioning type plays a role in
which predicates can be used. Range predicates cannot be used for pruning on hash
partitioned tables while they can be used for all other partitioning strategies. However,
on list-partitioned tables, range predicates may not map to a contiguous set of
partitions. Equality and IN-list predicates can be used to prune with all the
partitioning methods.

Advanced Partition Pruning Techniques
Oracle also prunes in the presence of more complex predicates or SQL statements
involving partitioned tables. A common situation is when a partitioned table is joined
to the subset of another table, limited by a WHERE condition. For example, consider the
following query:

SELECT t.day_number_in_month, SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id

See Also: Chapter 4, "Partitioning for Availability, Manageability,
and Performance" for more information about partition pruning and
the difference between static and dynamic partition pruning

Performance

6-4 Oracle Database VLDB and Partitioning Guide

 AND t.calendar_month_desc='2000-12'
GROUP BY t.day_number_in_month;

If the database performed a nested loop join with times on the right hand side, then
the query would only access the partition corresponding to this row from the times
table, so pruning would implicitly take place. But, if the database performed a hash or
sort merge join, this would not be possible. If the table with the WHERE predicate is
relatively small compared to the partitioned table, and the expected reduction of
records or partitions for the partitioned table is significant, then the database will
perform dynamic partition pruning using a recursive subquery. The decision whether
or not to invoke subquery pruning is an internal cost-based decision of the optimizer.

A sample plan using a hash join operation would look like the following:

--
| Id| Operation | Name | Rows | Bytes| Cost (%CPU)| Time | Pstart | Pstop |
--
0	SELECT STATEMENT				761 (100)			
1	HASH GROUP BY		20	640	761 (41)	00:00:10		
* 2	HASH JOIN		19153	598K	749 (40)	00:00:09		
* 3	TABLE ACCESS FULL	TIMES	30	570	17 (6)	00:00:01		
4	PARTITION RANGE SUBQUERY		918K	11M	655 (33)	00:00:08	KEY(SQ)	KEY(SQ)
5	TABLE ACCESS FULL	SALES	918	11M	655 (33)	00:00:08	KEY(SQ)	KEY(SQ)
--
Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT
--
 2 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - filter("T"."CALENDAR_MONTH_DESC"='2000-12')

This plan shows that dynamic partition pruning occurred on the sales table using a
subquery, as can be seen from the KEY(SQ) value in the PSTART and PSTOP columns.

Another example using advanced pruning is the following, which uses an OR
predicate:

SELECT p.promo_name promo_name, (s.profit - p.promo_cost) profit
FROM
 promotions p,
 (SELECT
 promo_id,
 SUM(sales.QUANTITY_SOLD * (costs.UNIT_PRICE - costs.UNIT_COST)) profit
 FROM
 sales, costs
 WHERE
 ((sales.time_id BETWEEN TO_DATE('01-JAN-1998','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = American') AND
 TO_DATE('01-JAN-1999','DD-MON-YYYY', 'NLS_DATE_LANGUAGE = American')
OR
 (sales.time_id BETWEEN TO_DATE('01-JAN-2001','DD-MON-YYYY',
 'NLS_DATE_LANGUAGE = American') AND
 TO_DATE('01-JAN-2002','DD-MON-YYYY', 'NLS_DATE_LANGUAGE = American')))
 AND sales.time_id = costs.time_id
 AND sales.prod_id = costs.prod_id
 GROUP BY
 promo_id) s
WHERE s.promo_id = p.promo_id
ORDER BY profit
DESC;

Performance

Using Partitioning in a Data Warehouse Environment 6-5

This query joins the sales and costs tables in the sh sample schema. The sales
table is partitioned by range on the column time_id. One of the conditions in the
query are two predicates on time_id, which are combined with an OR operator. This
OR predicate is used to prune the partitions in sales table and a single join between
the sales and costs table is performed. The plan is as follows:

--
| Id| Operation | Name |Rows |Bytes |TmpSp|Cost(%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		4	200		3556 (14)	00:00:43		
1	SORT ORDER BY		4	200		3556 (14)	00:00:43		
* 2	HASH JOIN		4	200		3555 (14)	00:00:43		
3	TABLE ACCESS FULL	PROMOTIONS	503	16599		16 (0)	00:00:01		
4	VIEW		4	68		3538 (14)	00:00:43		
5	HASH GROUP BY		4	164		3538 (14)	00:00:43		
6	PARTITION RANGE OR		314K	12M		3321 (9)	00:00:40	KEY(OR)	KEY(OR)
* 7	HASH JOIN		314K	12M	440K	3321 (9)	00:00:40		
* 8	TABLE ACCESS FULL	SALES	402K	7467K		400 (39)	00:00:05	KEY(OR)	KEY(OR)
9	TABLE ACCESS FULL	COSTS	82112	1764K		77 (24)	00:00:01	KEY(OR)	KEY(OR)
--
Predicate Information (identified by operation id):

 2 - access("S"."PROMO_ID"="P"."PROMO_ID")
 7 - access("SALES"."TIME_ID"="COSTS"."TIME_ID" AND "SALES"."PROD_ID"="COSTS"."PROD_ID")
 8 - filter("SALES"."TIME_ID"<=TO_DATE('1999-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') AND
 "SALES"."TIME_ID">=TO_DATE('1998-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
 "SALES"."TIME_ID">=TO_DATE('2001-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') AND
 "SALES"."TIME_ID"<=TO_DATE('2002-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))

The database also does additional pruning when a column is range partitioned on
multiple columns. As long as the database can guarantee that a particular predicate
cannot be satisfied in a particular partition, the partition will be skipped. This allows
the database to optimize cases where there are range predicates on more than one
column or in the case where there are no predicates on a prefix of the partitioning
columns.

Partition-Wise Joins
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources.

Partition-wise joins can be full or partial. Oracle decides which type of join to use.

Full Partition-Wise Joins
Full partition-wise joins can occur if two tables that are co-partitioned on the same key
are joined in a query. The tables can be co-partitioned at the partition level, or at the
subpartition level, or at a combination of partition and subpartition levels. Reference
partitioning is an easy way to guarantee co-partitioning. Full partition-wise joins can
be executed in serial and in parallel.

See Also: "Partition Pruning Tips" on page 4-7 for tips on partition
pruning

See Also: Chapter 4, "Partitioning for Availability, Manageability,
and Performance" for more information on partition-wise joins

Performance

6-6 Oracle Database VLDB and Partitioning Guide

The following example shows a full partition-wise join on orders and order_
items, in which the order_items table is reference partitioned.

CREATE TABLE orders
(order_id NUMBER(12) NOT NULL
, order_date DATE NOT NULL
, order_mode VARCHAR2(8)
, order_status VARCHAR2(1)
, CONSTRAINT orders_pk PRIMARY KEY (order_id)
)
PARTITION BY RANGE (order_date)
(PARTITION p_before_jan_2006 VALUES LESS THAN (TO_
DATE('01-JAN-2006','dd-MON-yyyy'))
, PARTITION p_2006_jan VALUES LESS THAN (TO_DATE('01-FEB-2006','dd-MON-yyyy'))
, PARTITION p_2006_feb VALUES LESS THAN (TO_DATE('01-MAR-2006','dd-MON-yyyy'))
, PARTITION p_2006_mar VALUES LESS THAN (TO_DATE('01-APR-2006','dd-MON-yyyy'))
, PARTITION p_2006_apr VALUES LESS THAN (TO_DATE('01-MAY-2006','dd-MON-yyyy'))
, PARTITION p_2006_may VALUES LESS THAN (TO_DATE('01-JUN-2006','dd-MON-yyyy'))
, PARTITION p_2006_jun VALUES LESS THAN (TO_DATE('01-JUL-2006','dd-MON-yyyy'))
, PARTITION p_2006_jul VALUES LESS THAN (TO_DATE('01-AUG-2006','dd-MON-yyyy'))
, PARTITION p_2006_aug VALUES LESS THAN (TO_DATE('01-SEP-2006','dd-MON-yyyy'))
, PARTITION p_2006_sep VALUES LESS THAN (TO_DATE('01-OCT-2006','dd-MON-yyyy'))
, PARTITION p_2006_oct VALUES LESS THAN (TO_DATE('01-NOV-2006','dd-MON-yyyy'))
, PARTITION p_2006_nov VALUES LESS THAN (TO_DATE('01-DEC-2006','dd-MON-yyyy'))
, PARTITION p_2006_dec VALUES LESS THAN (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
)
PARALLEL;

CREATE TABLE order_items
(order_id NUMBER(12) NOT NULL
, product_id NUMBER NOT NULL
, quantity NUMBER NOT NULL
, sales_amount NUMBER NOT NULL
, CONSTRAINT order_items_orders_fk FOREIGN KEY (order_id) REFERENCES
orders(order_id)
)
PARTITION BY REFERENCE (order_items_orders_fk)
PARALLEL;

A typical data warehouse query would scan a large amount of data. Note that in the
underlying plan, the columns Rows, Bytes, Cost (%CPU), Time, and TQ have been
removed.

EXPLAIN PLAN FOR
SELECT o.order_date
, sum(oi.sales_amount) sum_sales
FROM orders o
, order_items oi
WHERE o.order_id = oi.order_id
AND o.order_date BETWEEN TO_DATE('01-FEB-2006','DD-MON-YYYY')
 AND TO_DATE('31-MAY-2006','DD-MON-YYYY')
GROUP BY o.order_id
, o.order_date
ORDER BY o.order_date;

| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |

0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (ORDER)	:TQ10001			P->S	QC (ORDER)

Performance

Using Partitioning in a Data Warehouse Environment 6-7

3	SORT GROUP BY				PCWP	
4	PX RECEIVE				PCWP	
5	PX SEND RANGE	:TQ10000			P->P	RANGE
6	SORT GROUP BY				PCWP	
7	PX PARTITION RANGE ITERATOR		3	6	PCWC	
* 8	HASH JOIN				PCWP	
* 9	TABLE ACCESS FULL	ORDERS	3	6	PCWP	
10	TABLE ACCESS FULL	ORDER_ITEMS	3	6	PCWP	

Predicate Information (identified by operation id):

 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 9 - filter("O"."ORDER_DATE"<=TO_DATE(' 2006-05-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Partial Partition-Wise Joins
Oracle Database can perform partial partition-wise joins only in parallel. Unlike full
partition-wise joins, partial partition-wise joins require you to partition only one table
on the join key, not both tables. The partitioned table is referred to as the reference
table. The other table may or may not be partitioned. Partial partition-wise joins are
more common than full partition-wise joins.

To execute a partial partition-wise join, the database dynamically repartitions the other
table based on the partitioning of the reference table. Once the other table is
repartitioned, the execution is similar to a full partition-wise join.

The following example shows a call detail records table, cdrs, in a typical data
warehouse scenario. The table is interval-hash partitioned.

CREATE TABLE cdrs
(id NUMBER
, cust_id NUMBER
, from_number VARCHAR2(20)
, to_number VARCHAR2(20)
, date_of_call DATE
, distance VARCHAR2(1)
, call_duration_in_s NUMBER(4)
) PARTITION BY RANGE(date_of_call)
INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY HASH(cust_id)
SUBPARTITIONS 16
(PARTITION p0 VALUES LESS THAN (TO_DATE('01-JAN-2005','dd-MON-yyyy')))
PARALLEL;

The cdrs table is joined with the non-partitioned callers table on cust_id to rank
the customers who spent most time calling.

EXPLAIN PLAN FOR
SELECT c.cust_id
, c.cust_last_name
, c.cust_first_name
, AVG(call_duration_in_s)
, COUNT(1)
, DENSE_RANK() OVER
 (ORDER BY (AVG(call_duration_in_s) * COUNT(1)) DESC) ranking
FROM callers c
, cdrs cdr
WHERE cdr.cust_id = c.cust_id

Performance

6-8 Oracle Database VLDB and Partitioning Guide

AND cdr.date_of_call BETWEEN TO_DATE('01-JAN-2006','dd-MON-yyyy')
 AND TO_DATE('31-DEC-2006','dd-MON-yyyy')
GROUP BY c.cust_id
, c.cust_last_name
, c.cust_first_name
ORDER BY ranking;

The execution shows a partial partition-wise join. Note that the columns Rows, Bytes,
Cost (%CPU), Time, and TQ have been removed.

--
| Id | Operation | Name | Pstart| Pstop |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT					
1	WINDOW NOSORT					
2	PX COORDINATOR					
3	PX SEND QC (ORDER)	:TQ10002			P->S	QC (ORDER)
4	SORT ORDER BY				PCWP	
5	PX RECEIVE				PCWP	
6	PX SEND RANGE	:TQ10001			P->P	RANGE
7	HASH GROUP BY				PCWP	
* 8	HASH JOIN				PCWP	
9	PART JOIN FILTER CREATE	:BF0000			PCWP	
10	BUFFER SORT				PCWC	
11	PX RECEIVE				PCWP	
12	PX SEND PARTITION (KEY)	:TQ10000			S->P	PART (KEY)
13	TABLE ACCESS FULL	CALLERS				
14	PX PARTITION RANGE ITERATOR		367	731	PCWC	
15	PX PARTITION HASH ALL		1	16	PCWC	
* 16	TABLE ACCESS FULL	CDRS	5857	11696	PCWP	
--

Predicate Information (identified by operation id):

 8 - access("CDR"."CUST_ID"="C"."CUST_ID")
 16 - filter("CDR"."DATE_OF_CALL">=TO_DATE(' 2006-01-01 00:00:00', 'syyyy-mm-dd
hh24:mi:ss') AND "CDR"."DATE_OF_CALL"<=TO_DATE('
 2006-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Benefits of Partition-Wise Joins
Partition-wise joins offer benefits described in the following sections:

■ Reduction of Communications Overhead

■ Reduction of Memory Requirements

Reduction of Communications Overhead When executed in parallel, partition-wise joins
reduce communications overhead. This is because, in the default case, parallel
execution of a join operation by a set of parallel execution servers requires the
redistribution of each table on the join column into disjoint subsets of rows. These
disjoint subsets of rows are then joined pair-wise by a single parallel execution server.

The database can avoid redistributing the partitions because the two tables are already
partitioned on the join column. This enables each parallel execution server to join a
pair of matching partitions. This improved performance from using parallel execution
is even more noticeable in Oracle Real Application Clusters configurations with
internode parallel execution.

Performance

Using Partitioning in a Data Warehouse Environment 6-9

Partition-wise joins dramatically reduce interconnect traffic. Using this feature is key
for large DSS configurations that use Oracle Real Application Clusters. Currently, most
Oracle Real Application Clusters platforms, such as MPP and SMP clusters, provide
limited interconnect bandwidths compared with their processing powers. Ideally,
interconnect bandwidth should be comparable to disk bandwidth, but this is seldom
the case. As a result, most join operations in Oracle Real Application Clusters
experience high interconnect latencies without parallel execution of partition-wise
joins.

Reduction of Memory Requirements Partition-wise joins require less memory than the
equivalent join operation of the complete data set of the tables being joined. In the case
of serial joins, the join is performed at the same time on a pair of matching partitions.
If data is evenly distributed across partitions, then the memory requirement is divided
by the number of partitions. There is no skew.

In the parallel case, memory requirements depend on the number of partition pairs
that are joined in parallel. For example, if the degree of parallelism is 20 and the
number of partitions is 100, then 5 times less memory is required because only 20 joins
of two partitions are performed at the same time. The fact that partition-wise joins
require less memory has a direct effect on performance. For example, the join probably
does not need to write blocks to disk during the build phase of a hash join.

Performance Considerations for Parallel Partition-Wise Joins
The optimizer weighs the advantages and disadvantages when deciding whether or
not to use partition-wise joins.

■ In range partitioning where partition sizes differ, data skew increases response
time; some parallel execution servers take longer than others to finish their joins.
Oracle recommends the use of hash partitioning and subpartitioning to enable
partition-wise joins because hash partitioning, if the number of partitions is a
power of two, limits the risk of skew. Ideally the hash partitioning key is unique or
almost unique to minimize the risk of skew.

■ The number of partitions used for partition-wise joins should, if possible, be a
multiple of the number of query servers. With a degree of parallelism of 16, for
example, you can have 16, 32, or even 64 partitions. If there is an odd number of
partitions, then some parallel execution servers are used less than others. For
example, if there are 17 evenly distributed partition pairs, only one pair will work
on the last join, while the other pairs will have to wait. This is because, in the
beginning of the execution, each parallel execution server works on a different
partition pair. At the end of this first phase, only one pair is left. Thus, a single
parallel execution server joins this remaining pair while all other parallel
execution servers are idle.

Sometimes, parallel joins can cause remote I/Os. For example, on Oracle Real
Application Clusters environments running on MPP configurations, if a pair of
matching partitions is not collocated on the same node, a partition-wise join requires
extra internode communication due to remote I/O. This is because Oracle must
transfer at least one partition to the node where the join is performed. In this case, it is
better to explicitly redistribute the data than to use a partition-wise join.

Indexes and Partitioned Indexes
Indexes are optional structures associated with tables that allow SQL statements to
execute more quickly against a table. Even though table scans are very common in
many data warehouses, indexes can often speed up queries. The most commonly used
indexes in a data warehouse are B-tree and bitmap indexes.

Performance

6-10 Oracle Database VLDB and Partitioning Guide

Both B-tree and bitmap indexes can be created as LOCAL indexes on a partitioned
table, in which case they inherit the table's partitioning strategy. B-tree indexes can be
created as global partitioned indexes on partitioned and on non-partitioned tables.

Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a
single underlying table partition. A local index is equipartitioned with the underlying
table. Oracle partitions the index on the same columns as the underlying table, creates
the same number of partitions or subpartitions, and gives them the same partition
bounds as corresponding partitions of the underlying table.

Oracle also maintains the index partitioning automatically when partitions in the
underlying table are added, dropped, merged, or split, or when hash partitions or
subpartitions are added or coalesced. This ensures that the index remains
equipartitioned with the table.

For data warehouse applications, local nonprefixed indexes can improve performance
because many index partitions can be scanned in parallel by range queries on the
index key. The following example creates a local B-tree index on a partitioned
customers table.

ALTER SESSION enable parallel ddl;

CREATE INDEX cust_last_name_ix
ON customers(last_name) LOCAL
PARALLEL NOLOGGING ;

Bitmap indexes use a very efficient storage mechanism for low cardinality columns.
Bitmap indexes are commonly used in data warehouses, especially in data warehouses
that implement so-called star schemas. A single star schema consists of a central large
fact table and multiple smaller dimension tables that describe the data in the fact table.

For example, the sales table in the sample sh schema in the Oracle Database is a fact
table, that is described by dimension tables customers, products, promotions,
times, and channels. Bitmap indexes enable the so-called star transformation, an
optimization for fast query retrieval against star or star look-a-like schemas.

Fact table foreign key columns are ideal candidates for bitmap indexes, because
generally there are relatively few distinct values relative to the total number of rows.
Fact tables are often range or range-* partitioned, in which case you have to create
local bitmap indexes. Global bitmap indexes on partitioned tables are not supported.

The following example creates a local partitioned bitmap index on the sales table.

ALTER SESSION enable parallel ddl;

CREATE BITMAP INDEX prod_id_ix
ON sales(prod_id) LOCAL
PARALLEL NOLOGGING;

See Also: Chapter 4, "Partitioning for Availability, Manageability,
and Performance" for more information about partitioned indexes

See Also: Oracle Database Data Warehousing Guide for more
information about the star transformation

Performance

Using Partitioning in a Data Warehouse Environment 6-11

Non-Partitioned Indexes
You can create non-partitioned indexes on non-partitioned tables and on partitioned
tables. Non-partitioned indexes are primarily used on non-partitioned tables in data
warehouse environments. You can use a non-partitioned global index on a partitioned
table to enforce a primary or unique key. A non-partitioned (global) index can be
useful for queries that commonly retrieve very few rows based on equality predicates
or in-list on a column or set of columns that is not included in the partitioning key. In
those cases, it can be faster to scan a single index than to scan many index partitions to
find all matching rows.

Unique indexes on columns other than the partitioning columns must be global
because unique local nonprefixed indexes whose key does not contain the partitioning
key are not supported. Unique keys are not always enforced in data warehouses due
to the controlled data load processes and the performance cost of enforcing the unique
constraint. Global indexes can grow very large on tables with billions of rows.

The following example creates a global unique index on the sales table. Note that
very few queries will benefit from this index. In systems with a very limited data load
window, you should consider not to create and maintain it.

ALTER SESSION enable parallel ddl;

CREATE UNIQUE INDEX sales_unique_ix
ON sales(cust_id, prod_id, promo_id, channel_id, time_id)
PARALLEL NOLOGGING;

Global Partitioned Indexes
You can create global partitioned indexes on non-partitioned tables and on partitioned
tables. In a global partitioned index, the keys in a particular index partition may refer
to rows stored in more than one underlying table partition or subpartition. A global
index can be range or hash partitioned, though it can be defined on any type of
partitioned table.

A global index is created by specifying the GLOBAL attribute. The database
administrator is responsible for defining the initial partitioning of a global index at
creation and for maintaining the partitioning over time. Index partitions can be
merged or split as necessary.

Global indexes can be useful if there is a class of queries that uses an access path to the
table to retrieve a few rows via an index, and by partitioning the index you can
eliminate large portions of the index for the majority of queries that use the index. On
a partitioned table you would consider a global partitioned index if the column or
columns you should include to achieve partition pruning do not include the table
partitioning key.

The following example creates a global hash-partitioned index on the sales table.

CREATE INDEX cust_id_prod_id_global_ix
ON sales(cust_id,prod_id)
GLOBAL PARTITION BY HASH (cust_id)
(PARTITION p1 TABLESPACE tbs1
, PARTITION p2 TABLESPACE tbs2
, PARTITION p3 TABLESPACE tbs3
, PARTITION p4 TABLESPACE tbs4

Note: Most partition maintenance operations invalidate
non-partitioned indexes, forcing an index rebuild.

Performance

6-12 Oracle Database VLDB and Partitioning Guide

)
PARALLEL NOLOGGING;

Partitioning and Data Compression
Data in a partitioned table can be compressed on a partition-by-partition basis. Using
compressed data is most efficient for data that does not change frequently. Although
Oracle Database 11g supports compression for all DML operations, it is still more
efficient to modify data in a non-compressed table.

Common data warehouse scenarios often see few data changes as data ages and other
scenarios only insert data. Using the partition management features, you can compress
data on a partition-by-partition basis. Note that altering a partition to enable
compression only applies to future data to be inserted into the partition. If you want to
compress the existing data in the partition, then you have to move the partition.
Enabling compression and moving a partition can be done in a single operation.

If you want to use table compression on partitioned tables with bitmap indexes, then
you need to do the following before you introduce the compression attribute for the
first time:

1. Mark bitmap indexes unusable.

2. Set the compression attribute.

3. Rebuild the indexes.

The first time you make a compressed partition part of an already existing, fully
uncompressed partitioned table, you must either drop all existing bitmap indexes or
mark them UNUSABLE prior to adding a compressed partition. This must be done
regardless of whether any partition contains data. It is also independent of the
operation that causes one or more compressed partitions to become part of the table.
This does not apply to a partitioned table having B-tree indexes only.

The following example shows how to compress the SALES_1995 partition in the
sales table.

ALTER SESSION enable parallel ddl;

ALTER TABLE sales
MOVE PARTITION sales_1995
COMPRESS FOR ALL OPERATIONS
PARALLEL NOLOGGING;

If a table or a partition takes less space on disk, then the performance of large table
scans in an I/O-constraint environment may improve.

Materialized Views and Partitioning
One technique employed in data warehouses to improve performance is the creation
of summaries. Summaries are special types of aggregate views that improve query
execution times by precalculating expensive joins and aggregation operations prior to
execution and storing the results in a table in the database. For example, you can create
a summary table to contain the sums of sales by region and by product.

Note: Most partition maintenance operations invalidate global
partitioned indexes, forcing an index rebuild.

Performance

Using Partitioning in a Data Warehouse Environment 6-13

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a
materialized view. Materialized views in a data warehouse are meant to speed up
query performance.

The database supports transparent rewrites against materialized views, so that you do
not need to modify the original queries to take advantage of precalculated results in
materialized views. Instead of executing the query, the database will retrieve
precalculated results from one or more materialized views, perform any necessary
additional operations on the data, and return the query results. The database
guarantees correct results in line with your setting of the QUERY_REWRITE_
INTEGRITY initialization parameter.

Partitioned Materialized Views The underlying storage for a materialized view is a table
structure. You can partition materialized views like you can partition tables. When the
database rewrites a query to run against materialized views, the query can take
advantage of the same performance features that queries running against tables
directly benefit from. The rewritten query may eliminate materialized view partitions.
If joins back to tables or with other materialized views are necessary to retrieve the
query result, then the rewritten query can take advantage of partition-wise joins.

The following example shows how to create a compressed partitioned materialized
view that aggregates sales results to country level. This materialized view benefits
from queries that summarize sales numbers by country level or higher to subregion or
region level.

ALTER SESSION ENABLE PARALLEL DDL;

CREATE MATERIALIZED VIEW country_sales
PARTITION BY HASH (country_id)
PARTITIONS 16
COMPRESS FOR ALL OPERATIONS
PARALLEL NOLOGGING
ENABLE QUERY REWRITE
AS SELECT co.country_id
, co.country_name
, co.country_subregion
, co.country_region
, sum(sa.quantity_sold) country_quantity_sold
, sum(sa.amount_sold) country_amount_sold
FROM sales sa
, customers cu
, countries co
WHERE sa.cust_id = cu.cust_id
AND cu.country_id = co.country_id
GROUP BY co.country_id
, co.country_name
, co.country_subregion
, co.country_region;

See Also: Oracle Database Data Warehousing Guide

See Also: Oracle Database Data Warehousing Guide

Manageability

6-14 Oracle Database VLDB and Partitioning Guide

Manageability
Data Warehouses store historical data. An important part of a data warehouse is the
data load and purge. Partitioning is powerful technology that can help data
management for data warehousing.

Partition Exchange Load
Partitions can be added using Partition Exchange Load (PEL). When you use PEL you
create a separate table that looks exactly like a single partition, including the same
indexes and constraints, if any. If you use a composite partitioned table, then your
separate table must use a partitioning strategy that matches the subpartitioning
strategy of your composite partitioned table. You can then swap out an existing table
partition with this separate table. In a data load scenario, data can be loaded into the
separate table. Build indexes and implement constraints on the separate table, without
impacting the table users query. Then perform the PEL, which is a very low-impact
transaction compared to the data load. Daily loads, in conjunction with a range
partition strategy by day, are common in data warehouse environments.

The following example shows a partition exchange load for the sales table.

ALTER TABLE sales ADD PARTITION p_sales_jun_2007
VALUES LESS THAN (TO_DATE('01-FEB-2007','dd-MON-yyyy'));

CREATE TABLE sales_jun_2007 COMPRESS FOR ALL OPERATIONS
AS SELECT * FROM sales WHERE 1=0;

Next, populate table sales_jun_2007 with sales numbers for June 2007, and create
the equivalent bitmap indexes and constraints that have been implemented on the
sales table.

CREATE BITMAP INDEX time_id_jun_2007_bix ON sales_jun_2007(time_id)
NOLOGGING;
CREATE BITMAP INDEX cust_id_jun_2007_bix ON sales_jun_2007(cust_id)
NOLOGGING;
CREATE BITMAP INDEX prod_id_jun_2007_bix ON sales_jun_2007(prod_id)
NOLOGGING;
CREATE BITMAP INDEX promo_id_jun_2007_bix ON sales_jun_2007(promo_id)
NOLOGGING;
CREATE BITMAP INDEX channel_id_jun_2007_bix ON sales_jun_2007(channel_id)
NOLOGGING;

ALTER TABLE sales_jun_2007 ADD CONSTRAINT prod_id_fk FOREIGN KEY (prod_id)
REFERENCES products(prod_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT cust_id_fk FOREIGN KEY (cust_id)
REFERENCES customers(cust_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT promo_id_fk FOREIGN KEY (promo_id)
REFERENCES promotions(promo_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT time_id_fk FOREIGN KEY (time_id)
REFERENCES times(time_id);
ALTER TABLE sales_jun_2007 ADD CONSTRAINT channel_id_fk FOREIGN KEY
(channel_id) REFERENCES channels(channel_id);

Next, exchange the partition.

ALTER TABLE sales
EXCHANGE PARTITION p_sales_jun_2007
WITH TABLE sales_jun_2007
INCLUDING INDEXES;

Manageability

Using Partitioning in a Data Warehouse Environment 6-15

Partitioning and Indexes
Local indexes are easiest when performing partition maintenance operations. Local
indexes do not invalidate a global index when partition management takes place. Use
INCLUDING INDEXES in the PEL statement in order to exchange the local indexes
with the equivalent indexes on the separate table so that no index partitions get
invalidated. In the case of PEL, you can update global indexes as part of the load. Use
the UPDATE GLOBAL INDEXES extension to the PEL command. If an index requires
updating, then the PEL takes much longer.

Partitioning and Materialized View Refresh Strategies
There are different ways to keep materialized views updated:

■ Full refresh

■ Fast (incremental) refresh based on materialized view logs against the base tables

■ Manually using DML, followed by ALTER MATERIALIZED VIEW CONSIDER
FRESH

In order to enable query rewrites, set the QUERY_REWRITE_INTEGRITY initialization
parameter. If you manually keep materialized views up to date, then you must set
QUERY_REWRITE_INTEGRITY to either TRUSTED or STALE_TOLERATED.

If your materialized views and base tables use comparable partitioning strategies, then
PEL can be an extremely powerful way to keep materialized views up-to-date
manually. For example, if both your base table and your materialized view use range
partitioning, then you can consider PEL to keep your base table and materialized view
up-to-date. The total data refresh scenario would work as follows:

■ Create tables to enable PEL against the tables and materialized views

■ Load data into the tables, build the indexes, and implement any constraints

■ Update the base tables using PEL

■ Update the materialized views using PEL

■ Execute ALTER MATERIALIZED VIEW CONSIDER FRESH for every materialized
view you updated using this strategy

Note that this strategy implies a short period of time, in between PEL against the base
table and PEL against the materialized view, in which the materialized view does not
reflect the current data in the underlying tables. Take into account the QUERY_
REWRITE_INTEGRITY setting and the activity on your system to identify whether you
can cope with this situation.

Removing Data from Tables
Data Warehouses commonly keep a time window of data. For example, 3 years worth
of historical data is stored.

See Also: Chapter 3, "Partition Administration" for more
information about partition exchange load

See Also: Oracle Database Data Warehousing Guide

See Also: Oracle Database 2 Day + Data Warehousing Guide for an
example of this refresh scenario

Manageability

6-16 Oracle Database VLDB and Partitioning Guide

Partitioning makes it very easy to purge data from a table. You can use the DROP
PARTITION or TRUNCATE PARTITION statements in order to purge data. Common
strategies also include using a partition exchange load to unload the data from the
table and replacing the partition with an empty table before dropping the partition.
Archive the separate table you exchanged before emptying or dropping it.

Note that a drop or truncate operation would invalidate a global index or a global
partitioned index. Local indexes remain valid. The local index partition is dropped
when you drop the table partition.

The following example shows how to drop partition sales_1995 from the sales
table.

ALTER TABLE sales
DROP PARTITION sales_1995
UPDATE GLOBAL INDEXES PARALLEL;

Partitioning and Data Compression
Data in a partitioned table can be compressed on a partition-by-partition basis. Using
compressed data is most efficient for data that does not change frequently. Common
data warehouse scenarios often see few data changes as data ages and other scenarios
only insert data. Using the partition management features, you can compress data on a
partition-by-partition basis.

If a table takes less space on disk, then performance of large table scans in an
I/O-constraint environment may improve.

Gathering Statistics on Large Partitioned Tables
In order to get good SQL execution plans, it is important to have reliable table
statistics. Oracle automatically gathers statistics using the statistics job that is activated
upon database installation, or you can manually gather statistics using the DBMS_
STATS package. Managing statistics on large tables is more challenging than
managing statistics on smaller tables.

If a query accesses only a single table partition, then it is best to have partition-level
statistics. If queries perform some partition elimination, but not down to a single
partition, then you should gather both partition-level statistics and global statistics.
Oracle Database 11g can maintain global statistics for a partitioned table incrementally.
Only partitions that have changed are scanned and not the entire table.

A typical scenario for statistics management on a partitioned table is the use of
Partition Exchange Load (PEL). If you add data using PEL and you do not plan to
update the global-level statistics as part of the data load, then you should gather
statistics on the table the data was initially loaded into, before you exchange it with the
partition. Your global-level statistics will become stale after the partition exchange.
When you re-gather the global-level statistics, or when the automatic statistics gather
job regathers the global-level statistics, only the new partition, and not the entire table,
will be scanned.

Using Partitioning in an Online Transaction Processing Environment 7-1

7
Using Partitioning in an Online Transaction

Processing Environment

Partitioning was initially adopted to cope with the performance requirements for data
warehouses. With the explosive growth of OLTP systems and their user populations,
partitioning is particularly useful for OLTP systems as well.

Partitioning is often used for OLTP systems to reduce contention in order to support a
very large user population. It also helps in addressing regulatory requirements facing
OLTP systems, including storing larger amounts of data in a cost-effective manner.
This chapter contains the following topics:

■ What is an OLTP System?

■ Performance

■ Manageability

What is an OLTP System?
Online Transaction Processing (OLTP) systems are one of the most common data
processing systems in today's enterprises. Classical examples of OLTP systems are
order entry, retail sales, and financial transaction systems.

OLTP systems are primarily characterized through a specific data usage that is
different from data warehousing environments, yet some of the characteristics, such as
having large volumes of data and lifecycle-related data usage and importance, are
identical.

The main characteristics of an OLTP environment are:

■ Short response time

The nature of OLTP environments is predominantly any kind of interactive ad hoc
usage, such as telemarketeers entering telephone survey results. OLTP systems
require short response times in order for users to remain productive.

■ Small transactions

OLTP systems normally read and manipulate highly selective, small amounts of
data; the data processing is mostly simple and complex joins are relatively rare.
There is always a mix of queries and DML workload. For example, one of many
call center employees retrieves customer details for every call and enters customer
complaints while reviewing past communication with the customer.

■ Data maintenance operations

What is an OLTP System?

7-2 Oracle Database VLDB and Partitioning Guide

It is not uncommon to have reporting programs and data updating programs that
need to run either periodically or on an ad hoc basis. These programs, which run
in the background while users continue to work on other tasks, may require a
large number of data-intensive computations. For example, a University may start
batch jobs assigning students to classes while students can still sign up online for
classes themselves.

■ Large user populations

OLTP systems can have immeasurably large user populations where many users
are trying to access the same data at once. For example, an online auction Web site
can have hundreds of thousands (if not millions) of users accessing data on its
Web site at the same time.

■ High concurrency

Due to the large user population, the short response times, and small transactions,
the concurrency in OLTP environments is very high. A requirement for thousands
of concurrent users is not uncommon.

■ Large data volumes

Depending on the application type, the user population, and the data retention
time, OLTP systems can become very large. For example, every customer of a bank
could have access to the online banking system which shows all their transactions
for the last 12 months.

■ High availability

The availability requirements for OLTP systems are often extremely high. An
unavailable OLTP system can impact a very large user population, and
organizations can suffer major losses if OLTP systems are unavailable. For
example, a stock exchange system has extremely high availability requirements
during trading hours.

■ Lifecycle related data usage

Similar to data warehousing environments, OLTP systems often experience
different data access patterns over time. For example, at the end of the month,
monthly interest is calculated for every active account.

The following are benefits of partitioning for OLTP environments:

■ Support for bigger databases

Backup and recovery, as part of a high availability strategy, can be performed on a
low level of granularity to cope with the size of the database. OLTP systems
usually remain online during backups and users may continue to access the
system while the backup is running. The backup process should not introduce
major performance degradation for the online users.

Partitioning helps to reduce the space requirements for the OLTP system because
part of a database object can be stored compressed while other parts can remain
uncompressed. Update transactions against uncompressed rows are more efficient
than updates on compressed data.

Partitioning can be used to store data transparently on different storage tiers to
lower the cost of storing vast amounts of data.

■ Partition maintenance operations for data maintenance (instead of DML)

In the case of data maintenance operations (purging being the most common
operation), you can leverage partition maintenance operations in conjunction with

Performance

Using Partitioning in an Online Transaction Processing Environment 7-3

Oracle's capability of online index maintenance. A partition management
operation generates less redo than the equivalent DML operations.

■ Potential higher concurrency through elimination of hot spots

A common scenario for OLTP environments is to have monotonically increasing
index values that are used to enforce primary key constraints, thus creating areas
of high concurrency and potential contention: every new insert tries to update the
same set of index blocks. Partitioned indexes, in particular hash-partitioned
indexes, can help to alleviate this situation.

Performance
Performance in OLTP environments heavily relies on performant index access, thus
the choice of the most appropriate index strategy becomes crucial. The following
section discusses best practices for deciding whether or not to partition indexes in an
OLTP environment.

Deciding Whether or not to Partition Indexes
Due to the selectivity of queries and high concurrency of OLTP applications, the choice
of the right index strategy is indisputably one of the most important decisions for the
use of partitioning in an OLTP environment. The following basic rules help to
understand the main benefits and trade-offs for the various possible index structures:

■ A non-partitioned index, while larger than individual partitioned index segments,
always leads to a single index probe (or scan) if an index access path is chosen;
there is only one segment for a table. The data access time and number of blocks
being accessed is identical for both a partitioned and a non-partitioned table.

A non-partitioned index does not provide partition autonomy and requires an
index maintenance operation for every partition maintenance operation that
affects rowids (for example, drop, truncate, move, merge, coalesce, or split
operations).

■ With partitioned indexes, there are always multiple segments. Whenever the
Oracle Database cannot prune down to a single index segment, the database has to
touch more than one segment. This potentially leads to higher I/O requirements (n
index segment probes compared with one probe with a nonpartitioned index) and
can have an impact (measurable or not) on the runtime performance. This is true
for all partitioned indexes.

Partitioned indexes can either be local partitioned indexes or global partitioned
indexes. Local partitioned indexes always inherit the partitioning key from the
table and are fully aligned with the table partitions. Consequently, any kind of
partition maintenance operation requires little to no index maintenance work. For
example, dropping or truncating a partition does not incur any measurable
overhead for index maintenance; the local index partitions will be either dropped
or truncated.

Partitioned indexes that are not aligned with the table are called global partitioned
indexes. Unlike local indexes, there is no relation between a table and an index
partition. Global partitioned indexes give the flexibility to choose a partitioning
key that is most optimal for a performant partition index access. Partition
maintenance operations normally affect more (if not all) partitions of a global
partitioned index, depending on the operation and partitioning key of the index.

■ Under some circumstances, having multiple segments for an index can be
beneficial for performance. It is very common in OLTP environments to leverage

Performance

7-4 Oracle Database VLDB and Partitioning Guide

sequences to create artificial keys; consequently you create key values that are
monotonically increasing, which results in many insert processes competing for
the same index blocks. Introducing a global partitioned index (for example, using
global hash partitioning on the key column) can alleviate this situation. If you
have, for example, four hash partitions for such an index, then you now have four
index segments you are inserting data into, reducing the concurrency on these
segments by a factor of four for the insert processes.

With less contention, the application can support a larger user population. The
following example shows the creation of a unique index on the order_id column of
the orders table. The order_id in the OLTP application is filled using a sequence
number. The unique index uses hash partitioning in order to reduce contention for the
monotonically increasing order_id values. The unique key is then used to create the
primary key constraint.

CREATE UNIQUE INDEX orders_pk
ON orders(order_id)
GLOBAL PARTITION BY HASH (order_id)
(PARTITION p1 TABLESPACE tbs1
, PARTITION p2 TABLESPACE tbs2
, PARTITION p3 TABLESPACE tbs3
, PARTITION p4 TABLESPACE tbs4
) NOLOGGING;

ALTER TABLE orders ADD CONSTRAINT orders_pk
PRIMARY KEY (order_id)
USING INDEX;

Enforcing uniqueness is important database functionality for OLTP environments.
Uniqueness can be enforced with non-partitioned as well as with partitioned indexes.
However, since partitioned indexes provide partition autonomy, the following
requirements must be met to implement unique indexes:

■ A non-partitioned index can enforce uniqueness for any given column or
combination of columns. The behavior of a non-partitioned index is no different
for a partitioned table compared to a non-partitioned table.

■ Each partition of a partitioned index is considered an autonomous segment. To
enforce the autonomy of these segments, you always have to include the
partitioning key columns as a subset of the unique key definition.

– Unique global partitioned indexes must always be prefixed with the
partitioning columns.

– Unique local indexes must have the partitioning key of the table as a subset of
the unique key definition.

Using Index-Organized Tables
When your workload fits the use of index-organized tables, then you have to consider
how to use partitioning on your index-organized table and on any secondary indexes.

See Also:

■ Oracle Database Administrator's Guide for more information about
index-organized tables

■ Chapter 3, "Partition Administration" for more information on
how to create partitioned index-organized tables

Manageability

Using Partitioning in an Online Transaction Processing Environment 7-5

Whether or not to partition secondary indexes on index-organized tables follows the
same considerations as indexes on regular heap tables. You can partition an
index-organized table, but the partitioning key must be a subset of the primary key. A
common reason to partition an index-organized table is to reduce contention; this is
typically achieved using hash partitioning.

Another reason to partition an index-organized table is to be able to physically
separate data sets based on one of the primary key columns. For example, an
application hosting company can physically separate application instances for
different customers by list partitioning on the company identifier. Queries in such a
scenario can often take advantage of index partition pruning, shortening the time for
the index scan. ILM scenarios with index-organized tables and partitioning are less
common because they require a date column to be part of the primary key.

Manageability
In addition to the performance benefits, Partitioning also enables the optimal data
management for large objects in an OLTP environment. Every partition maintenance
operation in the Oracle Database can be extended to atomically include global and
local index maintenance, enabling the execution of any partition maintenance
operation without affecting the 24x7 availability of an OLTP environment.

Partition maintenance operations in OLTP systems occur often because of ILM
scenarios. In these scenarios, [range | interval] partitioned tables, or [range |
interval]-* composite partitioned tables, are common.

Other business cases for partition maintenance operations include scenarios
surrounding the separation of application data. For example, a retail company runs the
same application for multiple branches in a single schema. Depending on the branch
revenues, the application (as separate partitions) is stored on more performant storage.
List partitioning, or list-* composite partitioning, is a common partitioning strategy for
this type of business case.

Hash partitioning, or hash subpartitioning for tables, can be used in OLTP systems to
obtain similar performance benefits to the performance benefits achieved in data
warehouse environments. The majority of the daily OLTP workload consists of
relatively small operations, executed in serial. Periodic batch operations, however,
may execute in parallel and benefit from the distribution benefits hash partitioning
and subpartitioning can provide for partition-wise joins. For example,
end-of-the-month interest calculation may be executed in parallel in order to complete
within a nightly batch window.

Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes
Whenever a partition maintenance operation takes place, Oracle locks the affected
table partitions for any DML operation. Data in the affected partitions, with the
exception of a DROP or TRUNCATE operation, is still fully accessible for any SELECT
operation. Since local indexes are logically coupled with the table (data) partitions,
only the local index partitions of the affected table partitions have to be maintained as
part of a partition maintenance operation, enabling the most optimal processing for
the index maintenance.

For example, when you move an older partition from a high end storage tier to a low
cost storage tier, the data and the index are always available for SELECT operations;

See Also: Chapter 4, "Partitioning for Availability, Manageability,
and Performance" for more information about the performance
benefits of partitioning

Manageability

7-6 Oracle Database VLDB and Partitioning Guide

the necessary index maintenance is either to update the existing index partition to
reflect the new physical location of the data or, more commonly, a move and rebuild of
the index partition to a low cost storage tier as well. If you drop an older partition after
you have archived it, then its local index partitions get dropped as well, enabling a
split-second partition maintenance operation that only affects the data dictionary.

Impact of a Partition Maintenance Operation on Global Indexes
Whenever a global index is defined on a partitioned or non-partitioned table, there is
no correlation between a distinct table partition and the index. Consequently, any
partition maintenance operation affects all global indexes or index partitions. As with
tables containing local indexes, the affected partitions are locked to prevent DML
operations against the affected table partitions. However, unlike the index
maintenance for local indexes, any global index will still be fully available for DML
operations and will not affect the online availability of the OLTP system. Conceptually
and technically, the index maintenance for global indexes for a partition maintenance
operation is comparable to the index maintenance that would become necessary for a
semantically identical DML operation.

For example, dropping an old partition is semantically equivalent to deleting all the
records of the old partition using the SQL DELETE statement. In both cases, all index
entries of the deleted data set have to be removed from any global index as a normal
index maintenance operation which will not affect the availability of an index for
SELECT and DML operations. In this scenario, a drop operation represents the most
optimal approach: data is removed without the overhead of a conventional DELETE
operation and the global indexes are maintained in a non-intrusive manner.

Common Partition Maintenance Operations in OLTP Environments
The two most common partition maintenance operations are the removal of data and
the relocation of data onto lower cost storage tier devices.

Removing (Purging) Old Data
Using either a DROP or TRUNCATE operation will remove older data based on the
partitioning key criteria. The drop operation will remove the data as well as the
partition metadata, while a truncate operation will only remove the data but preserve
the metadata. All local index partitions are dropped respectively, as well as truncated.
Normal index maintenance will be done for partitioned or non-partitioned global
indexes and is fully available for select and DML operations.

The following example drops all data older than January 2006 from the orders table.
Note that as part of the drop statement, an UPDATE GLOBAL INDEXES statement is
executed, so that the global index remains usable throughout the maintenance
operation. Any local index partitions are dropped as part of this operation.

ALTER TABLE orders DROP PARTITION p_before_jan_2006
UPDATE GLOBAL INDEXES;

Moving and/or Merging Older Partitions to a Low Cost Storage Tier Device
Using a MOVE or MERGE operation as part of an Information lifecycle Management
strategy, you can relocate older partitions to the most cost-effective storage tier. The
data is available for SELECT but not for DML operations during the operation. Local
indexes are maintained and you will most likely relocate those as part of the merge or
move operation as well. Normal index maintenance will be done for partitioned or
non-partitioned global indexes and is fully available for select and DML operations.

Manageability

Using Partitioning in an Online Transaction Processing Environment 7-7

The following example shows how to merge the January 2006 and February 2006
partitions in the orders table, and store them in a different tablespace. Any local
index partitions are also moved to the ts_low_cost tablespace as part of this
operation. The UPDATE INDEXES clause ensures that all indexes remain usable
throughout and after the operation without additional rebuilds.

ALTER TABLE orders
MERGE PARTITIONS p_2006_jan,p_2006_feb
INTO PARTITION p_before_mar_2006 COMPRESS
TABLESPACE ts_low_cost
UPDATE INDEXES;

See Also: Chapter 5, "Using Partitioning for Information Lifecycle
Management" for more information about the benefits of partition
maintenance operations for Information Lifecycle Management

Manageability

7-8 Oracle Database VLDB and Partitioning Guide

Backing Up and Recovering VLDBs 8-1

8
Backing Up and Recovering VLDBs

Backup and recovery is one of the most crucial and important jobs for a DBA to protect
business data. As the data store grows larger each year, DBAs are continually
challenged to ensure that critical data is backed up and that it can be recovered quickly
and easily to meet business needs. Very large databases are unique in that they are
large and data may come from a myriad of resources. OLTP and data warehouse
systems have some distinct characteristics. Generally the availability considerations
for a very large OLTP system are no different from the considerations for a small OLTP
system. Assuming a fixed allowed downtime, a large OLTP system requires more
hardware resources than a small OLTP system.

This chapter proposes an efficient backup and recovery strategy for very large
databases to reduce the overall resources necessary to support backup and recovery by
leveraging some of the special characteristics that differentiate data warehouses from
OLTP systems. This chapter contains the following topics:

■ Data Warehousing

■ Oracle Backup and Recovery

■ Data Warehouse Backup and Recovery

■ The Data Warehouse Recovery Methodology

■ Best Practice 1: Use ARCHIVELOG Mode

■ Best Practice 2: Use RMAN

■ Best Practice 3: Use Block Change Tracking

■ Best Practice 4: Use RMAN Multi-Section Backups

■ Best Practice 5: Leverage Read-Only Tablespaces

■ Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery
Strategy

■ Best Practice 7: Not All Tablespaces Are Created Equal

Data Warehousing
A data warehouse is a system which is designed to support analysis and
decision-making. In a typical enterprise, hundreds or thousands of users may rely on
the data warehouse to provide the information to help them understand their business
and make better decisions. Therefore, availability is a key requirement for data
warehousing. This chapter will address one key aspect of data warehousing
availability: the recovery of data after a data loss.

Oracle Backup and Recovery

8-2 Oracle Database VLDB and Partitioning Guide

Before looking at the backup and recovery techniques in detail, it is important to
discuss specific techniques for backup and recovery of a data warehouse. In particular,
one legitimate question might be: why shouldn't a data warehouse's backup and
recovery strategy be just like that of every other database system?

A DBA should initially approach the task of data warehouse backup and recovery by
applying the same techniques that are used in OLTP systems: the DBA must decide
what information to protect and quickly recover when media recovery is required,
prioritizing data according to its importance and the degree to which it changes.
However, the issue that commonly arises for data warehouses is that an approach that
is efficient and cost-effective for a 100 GB OLTP system may not be viable for a 10 TB
data warehouse. The backup and recovery may take 100 times longer or require 100
times more storage.

Data Warehouse Characteristics
There are four key differences between data warehouses and OLTP systems that have
significant impacts on backup and recovery:

1. A data warehouse is typically much larger than an OLTP system. Data warehouses
over 10's of terabytes are not uncommon and the largest data warehouses grow to
orders of magnitude larger. Thus, scalability is a particularly important
consideration for data warehouse backup and recovery.

2. A data warehouse often has lower availability requirements than an OLTP system.
While data warehouses are mission critical, there is also a significant cost
associated with the ability to recover multiple terabytes in a few hours compared
to recovering in a day. Some organizations may determine that in the unlikely
event of a failure requiring the recovery of a significant portion of the data
warehouse, they may tolerate an outage of a day or more if they can save
significant expenditures in backup hardware and storage.

3. A data warehouse is typically updated via a controlled process called the ETL
(Extract, Transform, Load) process, unlike in OLTP systems where end-users are
modifying data themselves. Because the data modifications are done in a
controlled process, the updates to a data warehouse are often known and
reproducible from sources other than redo logs.

4. A data warehouse contains historical information, and often, significant portions
of the older data in a data warehouse are static. For example, a data warehouse
may track five years of historical sales data. While the most recent year of data
may still be subject to modifications (due to returns, restatements, and so on), the
last four years of data may be entirely static. The advantage of static data is that it
does not need to be backed up frequently.

These four characteristics are key considerations when devising a backup and
recovery strategy that is optimized for data warehouses.

Oracle Backup and Recovery
In general, backup and recovery refers to the various strategies and procedures
involved in protecting your database against data loss and reconstructing the database
after any kind of data loss. A backup is a representative copy of data. This copy can
include important parts of a database such as the control file, archived redo logs, and
data files. A backup protects data from application error and acts as a safeguard
against unexpected data loss, by providing a way to restore original data.

Oracle Backup and Recovery

Backing Up and Recovering VLDBs 8-3

Physical Database Structures Used in Recovering Data
Before you begin to think seriously about a backup and recovery strategy, the physical
data structures relevant for backup and recovery operations must be identified. The
files and other structures that make up an Oracle database store data and safeguard it
against possible failures. Three basic components are required for the recovery of an
Oracle database:

■ Datafiles

■ Redo logs

■ Control file

Datafiles
An Oracle database consists of one or more logical storage units called tablespaces.
Each tablespace in an Oracle database consists of one or more files called datafiles,
which are physical files located on or attached to the host operating system in which
Oracle is running.

The data in a database is collectively stored in the datafiles that constitute each
tablespace of the database. The simplest Oracle database would have one tablespace,
stored in one datafile. Copies of the datafiles of a database are a critical part of any
backup strategy. The sheer size of the datafiles is the main challenge from a VLDB
backup and recovery perspective.

Redo Logs
Redo logs record all changes made to a database's datafiles. With a complete set of
redo logs and an older copy of a datafile, Oracle can reapply the changes recorded in
the redo logs to re-create the database at any point between the backup time and the
end of the last redo log. Each time data is changed in an Oracle database, that change
is recorded in the online redo log first, before it is applied to the datafiles.

An Oracle database requires at least two online redo log groups. In each group there is
at least one online redo log member, an individual redo log file where the changes are
recorded. At intervals, Oracle rotates through the online redo log groups, storing
changes in the current online redo log while the groups not in use can be copied to an
archive location, where they are called archived redo logs (or, collectively, the archived
redo log). For high availability reasons, production systems should always use
multiple online redo members per group, preferably on different storage systems.
Preserving the archived redo log is a major part of your backup strategy, as it contains
a record of all updates to datafiles. Backup strategies often involve copying the
archived redo logs to disk or tape for longer-term storage.

Control Files
The control file contains a crucial record of the physical structures of the database and
their status. Several types of information stored in the control file are related to backup
and recovery:

■ Database information required to recover from crashes or to perform media
recovery

■ Database structure information, such as datafile details

■ Redo log details

■ Archived log records

■ A record of past RMAN backups

Oracle Backup and Recovery

8-4 Oracle Database VLDB and Partitioning Guide

Oracle's datafile recovery process is in part guided by status information in the control
file, such as the database checkpoints, current online redo log file, and the datafile
header checkpoints for the datafiles. Loss of the control file makes recovery from a
data loss much more difficult. The control file should be backed up regularly, to
preserve the latest database structural changes, and to simplify recovery.

Backup Type
Backups are divided into physical backups and logical backups:

■ Physical backups are backups of the physical files used in storing and recovering
your database, such as datafiles, control files, and archived redo logs. Ultimately,
every physical backup is a copy of files storing database information to some other
location, whether on disk or offline storage, such as tape.

■ Logical backups contain logical data (for example, tables or stored procedures)
extracted from a database with the Oracle Data Pump (export/import) utilities.
The data is stored in a binary file that can be imported into an Oracle database.

Physical backups are the foundation of any backup and recovery strategy. Logical
backups are a useful supplement to physical backups in many circumstances but are
not sufficient protection against data loss without physical backups.

Reconstructing the contents of all or part of a database from a backup typically
involves two phases: retrieving a copy of the datafile from a backup, and reapplying
changes to the file since the backup, from the archived and online redo logs, to bring
the database to the desired recovery point in time. To restore a datafile or control file
from backup is to retrieve the file from the backup location on tape, disk, or other
media, and make it available to the Oracle Database. To recover a datafile, is to take a
restored copy of the datafile and apply to it the changes recorded in the database's
redo logs. To recover a whole database is to perform recovery on each of its datafiles.

Backup Tools
Oracle provides the following tools to manage backup and recovery of Oracle
databases. Each tool gives you a choice of several basic methods for making backups.
The methods include:

■ Recovery Manager (RMAN)

RMAN reduces the administration work associated with your backup strategy by
maintaining an extensive record of metadata about all backups and needed
recovery-related files. In restore and recovery operations, RMAN uses this
information to eliminate the need for the user to identify needed files. RMAN is
performant, supporting file multiplexing and parallel streaming, and verifies
blocks for physical and (optionally) logical corruptions, on backup and restore.

Backup activity reports can be generated using V$BACKUP views and also through
Enterprise Manager.

■ Oracle Enterprise Manager

Enterprise Manager is Oracle's management console that utilizes Recovery
Manager for its backup and recovery features. Backup and restore jobs can be
intuitively set up and run, with notification of any problems to the user.

■ Oracle Data Pump

Data Pump provides high speed, parallel, bulk data and metadata movement of
Oracle database contents. This utility makes logical backups by writing data from

Oracle Backup and Recovery

Backing Up and Recovering VLDBs 8-5

an Oracle database to operating system files. This data can later be imported into
an Oracle database.

■ User-Managed Backups

The database is backed up manually by executing commands specific to your
operating system.

Recovery Manager (RMAN)
Oracle Recovery Manager (RMAN), a command-line and Enterprise Manager-based
tool, is the Oracle-preferred method for efficiently backing up and recovering your
Oracle database. RMAN is designed to work intimately with the server, providing
block-level corruption detection during backup and restore. RMAN optimizes
performance and space consumption during backup with file multiplexing and
backup set compression, and integrates with leading tape and storage media products
via the supplied Media Management Library (MML) API.

RMAN takes care of all underlying database procedures before and after backup or
restore, freeing dependency on operating system and SQL*Plus scripts. It provides a
common interface for backup tasks across different host operating systems, and offers
features not available through user-managed methods, such as data file and
tablespace-level backup and recovery, parallelization of backup/recovery data
streams, incremental backups, autobackup of control file upon database structural
changes, backup retention policy, and detailed history of all backups.

Oracle Enterprise Manager
Although Recovery Manager is commonly used as a command line utility, Oracle
Enterprise Manager enables backup and recovery using a GUI. Oracle Enterprise
Manager (EM) supports commonly used Backup and Recovery features:

■ Backup Configurations to customize and save commonly used configurations for
repeated use

■ Backup and Recovery wizards to walk the user through the steps of creating a
backup script and submitting it as a scheduled job

■ Backup Job Library to save commonly used Backup jobs that can be retrieved and
applied to multiple targets

■ Backup Job Task to submit any RMAN job using a user-defined RMAN script

Backup Management Enterprise Manager provides the ability to view and perform
maintenance against RMAN backups. You can view the RMAN backups, archive logs,
control file backups, and image copies. If you select the link on the RMAN backup,
then it will display all files that are located in that backup. Extensive statistics about
backup jobs, including average throughput, compression ratio, start/end time, and
files composing the backup piece can also be viewed from the console.

Oracle Data Pump
Physical backups can be supplemented by using the Data Pump (export/import)
utilities to make logical backups of data. Logical backups store information about the
schema objects created for a database. Data Pump loads data and metadata into a set
of operating system files that can be imported on the same system or moved to
another system and imported there.

See Also: Oracle Database Backup and Recovery User's Guide for more
information on RMAN

Data Warehouse Backup and Recovery

8-6 Oracle Database VLDB and Partitioning Guide

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a binary format.
During an import operation, the Data Pump Import utility uses these files to locate
each database object in the dump file set.

User-Managed Backups
If you do not want to use Recovery Manager, operating system commands can be
used, such as the UNIX dd or tar commands to make backups. In order to create a
user-managed online backup, the database must manually be placed into hot backup
mode. Hot backup mode causes additional writes to the online log files, increasing
their size.

Backup operations can also be automated by writing scripts. You can make a backup
of the entire database at once or back up individual tablespaces, datafiles, control files,
or archived logs. An entire database backup can be supplemented with backups of
individual tablespaces, datafiles, control files, and archived logs.

Operating system commands or third party backup software can be used to perform
database backups. Conversely, the third party software must be used to restore the
backups of the database.

Data Warehouse Backup and Recovery
Data warehouse recovery is not any different from an OLTP system. However, a data
warehouse may not require all of the data to be recovered from a backup, or in the
event of a complete failure, restoration of the entire database before user access can
commence. An efficient and fast recovery of a data warehouse begins with a
well-planned backup.

The next several sections will help you to identify what data should be backed up and
guide you to the method and tools that will allow you to recover critical data in the
shortest amount of time.

Recovery Time Objective (RTO)
A Recovery Time Objective, or RTO, is the time duration in which you want to be able
to recover your data. Your backup and recovery plan should be designed to meet RTOs
your company chooses for its data warehouse. For example, you may determine that
5% of the data must be available within 12 hours, 50% of the data must be available
after a complete loss of the Oracle Database within 2 days, and the remainder of the
data be available within 5 days. In this case you have two RTOs. Your total RTO is 7.5
days.

To determine what your RTO should be, you must first identify the impact of the data
not being available. To establish an RTO, follow these four steps:

1. Analyze and Identify: Understand your recovery readiness, risk areas, and the
business costs of unavailable data. In a data warehouse, you should identify
critical data that must be recovered in the n days after an outage.

2. Design: Transform the recovery requirements into backup and recovery strategies.
This can be accomplished by organizing the data into logical relationships and
criticality.

3. Build and Integrate: Deploy and integrate the solution into your environment to
backup and recover your data. Document the backup and recovery plan.

Data Warehouse Backup and Recovery

Backing Up and Recovering VLDBs 8-7

4. Manage and Evolve: Test your recovery plans at regular intervals. Implement
change management processes to refine and update the solution as your data, IT
infrastructure, and business processes change.

Recovery Point Objective (RPO)
A Recovery Point Objective, or RPO, is the maximum amount of data that can be lost
before causing detrimental harm to the organization. RPO indicates the data loss
tolerance of a business process or an organization in general. This data loss is often
measured in terms of time, for example, 5 hours or 2 days worth of data loss. A zero
RPO means that no committed data should be lost when media loss occurs, while a 24
hour RPO can tolerate a day's worth of data loss.

More Data Means a Longer Backup Window
The most obvious characteristic of the data warehouse is the size of the database. This
can be upwards of 100's of terabytes. Hardware is the limiting factor to a fast backup
and recovery. However, today's tape storage continues to evolve to accommodate the
amount of data that may need to be offloaded to tape (for example, advent of Virtual
Tape Libraries which utilize disk internally with the standard tape access interface).
RMAN can fully utilize, in parallel, all available tape devices to maximize backup and
recovery performance.

Essentially, the time required to back up a large database can be derived from the
minimum throughput among: production disk, HBA/network to tape devices, and
tape drive streaming specifications * the number of tape drives. The host CPU can also
be a limiting factor to overall backup performance, if RMAN backup encryption or
compression is used. Backup and recovery windows can be adjusted to fit any
business requirements, given adequate hardware resources.

Divide and Conquer
In a data warehouse, there may be times when the database is not being fully utilized.
While this window of time may be several contiguous hours, it is not enough to
backup the entire database. Therefore, you may want to consider breaking up the
database backup over a number of days. RMAN allows you to specify how long a
given backup job is allowed to run. When using BACKUP ... DURATION, you can
choose between running the backup to completion as quickly as possible and running
it more slowly to minimize the load the backup may impose on your database.

In the following example, RMAN will backup all database files that have not been
backed up in the last 7 days first, run for 4 hours, and read the blocks as fast as
possible.

BACKUP DATABASE NOT BACKED UP SINCE 'sysdate - 7' PARTIAL DURATION 4:00 MINIMIZE
TIME;

Each time this RMAN command is run, it will backup the datafiles that have not been
backed up in the last 7 days first. You do not need to manually specify the tablespaces
or datafiles to be backed up each night. Over the course of several days, all of your
database files will be backed up.

While this is a simplistic approach to database backup, it is easy to implement and
provides more flexibility in backing up large amounts of data. Do note that in case of a
recovery, RMAN may point you to multiple different storage devices in order to
perform the restore. As a result, your recovery time may be longer.

The Data Warehouse Recovery Methodology

8-8 Oracle Database VLDB and Partitioning Guide

The Data Warehouse Recovery Methodology
Devising a backup and recovery strategy can be a daunting task. When you have 100's
of terabytes of data that must be protected and recovered in the case of a failure, the
strategy can be very complex. The remainder of this chapter contains several best
practices that can be implemented to ease the administration of backup and recovery.

Best Practice 1: Use ARCHIVELOG Mode
Archived redo logs are crucial for recovery when no data can be lost, since they
constitute a record of changes to the database. Oracle can be run in either of two
modes:

■ ARCHIVELOG

Oracle archives the filled online redo log files before reusing them in the cycle.

■ NOARCHIVELOG

Oracle does not archive the filled online redo log files before reusing them in the
cycle.

Running the database in ARCHIVELOG mode has the following benefits:

■ The database can be completely recovered from both instance and media failure.

■ Backups can be performed while the database is open and available for use.

■ Oracle supports multiplexed archive logs to avoid any possible single point of
failure on the archive logs.

■ More recovery options are available, such as the ability to perform tablespace
point-in-time recovery (TSPITR).

■ Archived redo logs can be transmitted and applied to the physical standby
database, which is an exact replica of the primary database.

Running the database in NOARCHIVELOG mode has the following consequences:

■ The database can only be backed up while it is completely closed after a clean
shutdown.

■ Typically, the only media recovery option is to restore the whole database to the
point-in-time in which the full or incremental backups were made, which can
result in the loss of recent transactions.

Is Downtime Acceptable?
Oracle Database backups can be made while the database is open or closed. Planned
downtime of the database can be disruptive to operations, especially in global
enterprises that support users in multiple time zones, up to 24-hours per day. In these
cases, it is important to design a backup plan to minimize database interruptions.

Depending on the business, some enterprises can afford downtime. If the overall
business strategy requires little or no downtime, then the backup strategy should
implement an online backup. The database needs never to be taken down for a
backup. An online backup requires the database to be in ARCHIVELOG mode.

Given the size of a data warehouse (and consequently the amount of time to back up a
data warehouse), it is generally not viable to make an offline backup of a data
warehouse, which would be necessitated if one were using NOARCHIVELOG mode.

Best Practice 5: Leverage Read-Only Tablespaces

Backing Up and Recovering VLDBs 8-9

Best Practice 2: Use RMAN
Many data warehouses, which were developed on earlier releases of the Oracle
Database, may not have integrated RMAN for backup and recovery. However, just as
there is a preponderance of reasons to leverage ARCHIVELOG mode, there is a
similarly compelling list of reasons to adopt RMAN. Consider the following:

1. Trouble-free backup and recovery

2. Corrupt block detection

3. Archive log validation and management

4. Block Media Recovery (BMR)

5. Easily integrates with Media Managers

6. Backup and restore optimization

7. Backup and restore validation

8. Downtime free backups

9. Incremental backups

10. Extensive reporting

Best Practice 3: Use Block Change Tracking
Enabling block change tracking allows incremental backups to be completed faster, by
only reading and writing the changed blocks since the last full or incremental backup.
For data warehouses, this can be extremely helpful if the database typically undergoes
a low to medium percentage of changes.

Best Practice 4: Use RMAN Multi-Section Backups
With the advent of bigfile tablespaces, data warehouses have the opportunity to
consolidate a large number of datafiles into fewer, better managed data files. For
backing up very large datafiles, RMAN provides multi-section backups as a way to
parallelize the backup operation within the file itself, such that sections of a file are
backed up in parallel, rather than backing up on a per-file basis.

For example, a 1 TB data file can be sectioned into 10 100 GB backup pieces, with each
section backed up in parallel, rather than the entire 1 TB file backed up at once. Thus,
the overall backup time for large datafiles can be dramatically reduced.

Best Practice 5: Leverage Read-Only Tablespaces
One of the biggest issues facing a data warehouse is the sheer size of a typical data
warehouse. Even with powerful backup hardware, backups may still take several
hours. Thus, one important consideration in improving backup performance is
minimizing the amount of data to be backed up. Read-only tablespaces are the
simplest mechanism to reduce the amount of data to be backed up in a data
warehouse. Even with incremental backups, both backup and recovery will be faster if
tablespaces are set to read-only.

See Also: Oracle Database Backup and Recovery User's Guide for more
information on block change tracking

See Also: Oracle Database Backup and Recovery User's Guide for more
information on configuring multi-section backups

Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy

8-10 Oracle Database VLDB and Partitioning Guide

The advantage of a read-only tablespace is that data only needs to be backed up once.
If a data warehouse contains five years of historical data and the first four years of
data can be made read-only, then theoretically the regular backup of the database
would only back up 20% of the data. This can dramatically reduce the amount of time
required to back up the data warehouse.

Most data warehouses store their data in tables that have been range-partitioned by
time. In a typical data warehouse, data is generally active for a period ranging
anywhere from 30 days to one year. During this period, the historical data can still be
updated and changed (for example, a retailer may accept returns up to 30 days beyond
the date of purchase, so that sales data records could change during this period).
However, once data reaches a certain age, it is often known to be static.

By leveraging partitioning, users can make the static portions of their data read-only.
Currently, Oracle supports read-only tablespaces rather than read-only partitions or
tables. To take advantage of the read-only tablespaces and reduce the backup window,
a strategy of storing constant data partitions in a read-only tablespace should be
devised. Here are two strategies for implementing a rolling window.

1. Implement a regularly scheduled process to move partitions from a read-write
tablespace to a read-only tablespace when the data matures to the point where it is
entirely static.

2. Create a series of tablespaces, each containing a small number of partitions and
regularly modify one tablespace from read-write to read-only as the data in that
tablespace ages.

One consideration is that backing up data is only half of the recovery process. If you
configure a tape system so that it can backup the read-write portions of a data
warehouse in 4 hours, the corollary is that a tape system might take 20 hours to
recover the database if a complete recovery is necessary when 80% of the database is
read-only.

Best Practice 6: Plan for NOLOGGING Operations in Your
Backup/Recovery Strategy

In general, one of the highest priorities for a data warehouse is performance. Not only
must the data warehouse provide good query performance for online users, but the
data warehouse must also be efficient during the ETL process so that large amounts of
data can be loaded in the shortest amount of time.

One common optimization leveraged by data warehouses is to execute bulk-data
operations using the NOLOGGING mode. The database operations which support
NOLOGGING modes are direct-path loads and inserts, index creation, and table
creation. When an operation runs in NOLOGGING mode, data is not written to the redo
log (or more precisely, only a small set of metadata is written to the redo log). This
mode is widely used within data warehouses and can improve the performance of
bulk data operations by up to 50%.

However, the tradeoff is that a NOLOGGING operation cannot be recovered using
conventional recovery mechanisms, since the necessary data to support the recovery
was never written to the log file. Moreover, subsequent operations to the data upon
which a NOLOGGING operation has occurred also cannot be recovered even if those
operations were not using NOLOGGING mode. Because of the performance gains
provided by NOLOGGING operations, it is generally recommended that data
warehouses utilize NOLOGGING mode in their ETL process.

Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy

Backing Up and Recovering VLDBs 8-11

The presence of NOLOGGING operations must be taken into account when devising the
backup and recovery strategy. When a database is relying on NOLOGGING operations,
the conventional recovery strategy (of recovering from the latest tape backup and
applying the archived logfiles) is no longer applicable because the log files will not be
able to recover the NOLOGGING operation.

The first principle to remember is, don't make a backup when a NOLOGGING operation
is occurring. Oracle does not currently enforce this rule, so DBAs must schedule the
backup jobs and the ETL jobs such that the NOLOGGING operations do not overlap
with backup operations.

There are two approaches to backup and recovery in the presence of NOLOGGING
operations; ETL or incremental backups. If you are not using NOLOGGING operations
in your data warehouse, then you do not have to choose either of the following
options: you can recover your data warehouse using archived logs. However, the
following options may offer some performance benefits over an archive log-based
approach in the event of recovery. You can also use flashback logs and guaranteed
restore points to flashback your database to a previous point in time.

Extract, Transform, and Load
The ETL process uses several Oracle features and a combination of methods to load
(re-load) data into a data warehouse. These features consist of:

■ Transportable Tablespaces

Transportable Tablespaces allow users to quickly move a tablespace across Oracle
databases. It is the most efficient way to move bulk data between databases.
Oracle Database provides the ability to transport tablespaces across platforms. If
the source platform and the target platform are of different endianness, then
RMAN will convert the tablespace being transported to the target format.

■ SQL*Loader

SQL*Loader loads data from external flat files into tables of an Oracle Database. It
has a powerful data parsing engine that puts little limitation on the format of the
data in the datafile.

■ Data Pump (export/import)

Oracle Data Pump enables high speed movement of data and metadata from one
Oracle database to another. This technology is the basis for Oracle's Data Pump
Export and Data Pump Import utilities.

■ External Tables

External Tables is a complement to existing SQL*Loader functionality. It enables
you to access data in external sources as if it were in a table in the database.
External tables can also be used with the Data Pump driver in order to export data
from an Oracle database, using CREATE TABLE ... AS SELECT * FROM, and
then import data into an Oracle database.

The ETL Strategy
One approach is to take regular database backups and also store the necessary data
files to re-create the ETL process for that entire week. In the event where a recovery is
necessary, the data warehouse could be recovered from the most recent backup. Then,
instead of rolling forward by applying the archived redo logs (as would be done in a
conventional recovery scenario), the data warehouse could be rolled forward by
re-running the ETL processes. This paradigm assumes that the ETL processes can be

Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy

8-12 Oracle Database VLDB and Partitioning Guide

easily replayed, which would typically involve storing a set of extract files for each
ETL process.

A sample implementation of this approach is to make a backup of the data warehouse
every weekend, and then store the necessary files to support the ETL process each
night. Thus, at most, 7 days of ETL processing would need to be re-applied in order to
recover a database. The data warehouse administrator can easily project the length of
time to recover the data warehouse, based upon the recovery speeds from tape and
performance data from previous ETL runs.

Essentially, the data warehouse administrator is gaining better performance in the ETL
process via NOLOGGING operations, at a price of slightly more complex and a less
automated recovery process. Many data warehouse administrators have found that
this is a desirable trade-off.

One downside to this approach is that the burden is on the data warehouse
administrator to track all of the relevant changes that have occurred in the data
warehouse. This approach will not capture changes that fall outside of the ETL
process. For example, in some data warehouses, end-users may create their own tables
and data structures. Those changes will be lost in the event of a recovery.

This restriction needs to be conveyed to the end-users. Alternatively, one could also
mandate that end-users create all private database objects in a separate tablespace, and
during recovery, the DBA could recover this tablespace using conventional recovery
while recovering the rest of the database using the approach of replaying the ETL
process.

Incremental Backup
A more automated backup and recovery strategy in the presence of NOLOGGING
operations leverages RMAN's incremental backup capability. Incremental backups
provide the capability to backup only the changed blocks since the previous backup.
Incremental backups of datafiles capture data changes on a block-by-block basis,
rather than requiring the backup of all used blocks in a datafile. The resulting backup
sets are generally smaller and more efficient than full datafile backups, unless every
block in the datafile is change.

When you enable block change tracking, Oracle tracks the physical location of all
database changes. RMAN automatically uses the change tracking file to determine
which blocks need to be read during an incremental backup. The block change
tracking file is approximately 1/30000 of the total size of the database.

The Incremental Approach
A typical backup and recovery strategy using this approach is to backup the data
warehouse every weekend, and then take incremental backups of the data warehouse
every night following the completion of the ETL process. Note that incremental
backups, like conventional backups, must not be run concurrently with NOLOGGING
operations. In order to recover the data warehouse, the database backup would be
restored, and then each night's incremental backups would be re-applied.

Although the NOLOGGING operations were not captured in the archivelogs, the data
from the NOLOGGING operations is present in the incremental backups. Moreover,
unlike the previous approach, this backup and recovery strategy can be completely
managed using RMAN.

See Also: Oracle Database Backup and Recovery User's Guide for more
information on block change tracking and how to enable it

Best Practice 7: Not All Tablespaces Are Created Equal

Backing Up and Recovering VLDBs 8-13

Flashback Database and Guaranteed Restore Points
Flashback Database is a fast, continuous point-in-time recovery method to repair
widespread logical errors. Flashback Database relies on additional logging, called
flashback logs, which are created in the Flash Recovery Area and retained for a
user-defined period of time according to the recovery needs. These logs track the
original block images when they are updated.

When a Flashback Database operation is executed, just the block images
corresponding to the changed data are restored and recovered, versus traditional data
file restore where all blocks from the backup need to be restored before recovery can
start. Flashback logs are created proportionally to redo logs.

For very large and active databases, it may be infeasible to keep all needed flashback
logs for continuous point-in-time recovery. However, there may be a need to create a
specific point-in-time snapshot (for example, right before a nightly batch job) in the
event of logical errors during the batch run. For this scenario, guaranteed restore
points (GRP) can be created without enabling flashback logging.

When the GRP is created, flashback logs are maintained just to satisfy flashback
database to the GRP and no other point in time, thus saving space. For example, a GRP
can be created followed by a nologging batch job. As long as there are no prior
nologging operations within the last hour of the creation time of the GRP, flashback
database to the GRP will undo the nologging batch job. To flash back to a time after the
nologging batch job finishes, then create the GRP at least one hour away from the end
of the batch job.

Estimating flashback log space for GRP in this scenario depends on how much of the
database will change over the number of days you intend to keep GRP. For example,
to keep a GRP for 2 days and you expect 100 GB of the database to change, then plan
for 100 GB for the flashback logs. Note that the 100 GB refers to the subset of the
database changed after the GRP is created and not the frequency of changes.

Best Practice 7: Not All Tablespaces Are Created Equal
Not all of the tablespaces in a data warehouse are equally significant from a backup
and recovery perspective. DBA's can leverage this information to devise more efficient
backup and recovery strategies when necessary. The basic granularity of backup and
recovery is a tablespace, so different tablespaces can potentially have different backup
and recovery strategies.

On the most basic level, temporary tablespaces never need to be backed up (a rule
which RMAN enforces). Moreover, in some data warehouses, there may be tablespaces
dedicated to scratch space for end-users to store temporary tables and incremental
results. These tablespaces are not explicit temporary tablespaces but are essentially
functioning as temporary tablespaces. Depending upon the business requirements,
these tablespaces may not need to be backed up and restored; instead, in the case of a
loss of these tablespaces, the end-users would re-create their own data objects.

In many data warehouses, some data is more important than other data. For example,
the sales data in a data warehouse may be crucial and in a recovery situation this data
must be online as soon as possible. But, in the same data warehouse, a table storing
clickstream data from the corporate website may be much less mission-critical. The
business may tolerate this data being offline for a few days or may even be able to
accommodate the loss of several days of clickstream data in the event of a loss of
database files. In this scenario, the tablespaces containing sales data must be backed
up often, while the tablespaces containing clickstream data need only to be backed up
once every week or two.

Best Practice 7: Not All Tablespaces Are Created Equal

8-14 Oracle Database VLDB and Partitioning Guide

While the simplest backup and recovery scenario is to treat every tablespace in the
database the same, Oracle provides the flexibility for a DBA to devise a backup and
recovery scenario for each tablespace as needed.

Storage Management for VLDBs 9-1

9
Storage Management for VLDBs

Storage performance in data warehouse environments often translates into I/O
throughput (MB/s). For OLTP systems the number of I/O requests Per Second (IOPS)
is a key measure for performance.

This chapter discusses storage management for the database files in a VLDB
environment only. Non-database files, including the Oracle Database software, are not
discussed because management of those files is no different from a non-VLDB
database. Therefore, the focus is on the high availability, performance, and
manageability aspects of storage systems for VLDB environments.

This chapter contains the following topics:

■ High Availability

■ Performance

■ Scalability and Manageability

High Availability
High availability can be achieved by implementing storage redundancy. In storage
terms, these are mirroring techniques. There are three options for mirroring in a
database environment:

■ Hardware-based mirroring

■ Using ASM for mirroring

■ Software-based mirroring not using ASM

Oracle does not recommend software-based mirroring that is not using ASM. The
following sections discuss hardware mirroring and mirroring using ASM.

Note: Oracle supports the use of database files on raw devices and
on file systems, and supports the use of Automatic Storage Manager
(ASM) on top of raw devices or logical volumes. Oracle recommends
that ASM be used whenever possible.

Note: In a cluster configuration, the software you use must support
cluster capabilities. ASM is a cluster file system for Oracle database
files.

High Availability

9-2 Oracle Database VLDB and Partitioning Guide

Hardware-Based Mirroring
Most external storage devices provide support for different RAID (Redundant Array
of Inexpensive Disks) levels. The most commonly used high availability hardware
RAID levels in VLDB environments are RAID 1 and RAID 5. Though less commonly
used in VLDB environments, other high availability RAID levels can also be used.

RAID 1 Mirroring
RAID 1 is a basic mirroring technique. Every storage block that is written to storage
will be stored twice on different physical devices as defined by the RAID setup. RAID
1 provides fault tolerance because if one device fails, then there is another, mirrored,
device that can respond to the request for data. The two writes in a RAID 1 setup are
generated at the storage level. RAID 1 requires at least two physical disks to be
effective.

Storage devices generally provide capabilities to read either the primary or the mirror
in case a request comes in, which may result in better performance compared to other
RAID configurations designed for high availability. RAID 1 is the simplest hardware
high availability implementation but will require double the amount of storage needed
to store the data. RAID 1 is often combined with RAID 0 (striping) in RAID 0+1
configurations. In the simplest RAID 0+1 configuration, individual stripes are
mirrored across two physical devices.

RAID 5 Mirroring
RAID 5 requires at least 3 storage devices, but commonly 4 to 6 devices are used in a
RAID 5 group. When using RAID 5, for every data block written to a device, parity is
calculated and stored on a different device. On reads, the parity is checked. The parity
calculation takes place in the storage layer. RAID 5 provides high availability because
in case of a device failure, the device's contents can be rebuilt based on the parities
stored on other devices.

RAID 5 provides good read performance. Writes may be slowed down by the parity
calculation in the storage layer. RAID 5 does not require double the amount of storage
but rather a smaller percentage depending on the number of devices in the RAID 5
group. RAID 5 is relatively complex and as a result, not all storage devices support a
RAID 5 setup.

Mirroring using ASM
Automatic Storage Manager (ASM) provides software-based mirroring capabilities.
ASM provides support for normal redundancy (mirroring) and high redundancy
(triple mirroring). ASM also supports the use of external redundancy, in which case
ASM will not perform additional mirroring. ASM normal redundancy can be
compared to RAID 1 hardware mirroring.

With ASM mirroring, the mirror is produced by the database servers. As a result writes
require more I/O throughput when using ASM mirroring compared to using
hardware-based mirroring. Depending on your configuration and the speed of the
hardware RAID controllers, ASM mirroring or hardware RAID may introduce a
bottleneck for data loads.

In ASM, the definition of failure groups enables redundancy, as ASM will mirror data
across the boundaries of the failure group. For example, in a VLDB environment, you
can define one failure group per disk array, in which case ASM will make sure to place
mirrored data on a different disk array. That way, you could not only survive a failure
of a single disk in a disk array, but you could even survive the crash of an entire disk

Performance

Storage Management for VLDBs 9-3

array or failure of all channels to that disk array. Hardware RAID configurations
typically do not support this kind of fault tolerance.

ASM using normal redundancy requires double the amount of disk space needed to
store the data. High redundancy requires triple the amount of disk space.

Performance
In order to achieve the optimum throughput from storage devices, multiple disks must
work in parallel. This can be achieved using a technique called striping, which stores
data blocks in equi-sized slices (stripes) across multiple devices. Striping enables
storage configurations for good performance and throughput.

Optimum storage device performance is a trade-off between seek time and accessing
consecutive blocks on disk. In a VLDB environment, a 1 MB stripe size provides a
good balance for optimal performance and throughput, both for OLTP systems and
data warehouse systems. There are three options for striping in a database
environment:

■ Hardware-based striping

■ Software-based striping using ASM

■ Software-based striping not using ASM

It is possible to use a combination of striping techniques but you have to make sure
you physically store stripes on different devices in order to get the performance
advantages out of striping. From a conceptual perspective, software-based striping not
using ASM is very similar to hardware-based striping. The following sections discuss
hardware-based striping and striping using ASM.

Hardware-Based Striping
Most external storage devices provide striping capabilities. The most commonly used
striping techniques to improve storage performance are RAID 0 and RAID 5.

RAID 0 Striping
RAID 0 requires at least 2 devices to implement. Data blocks written to the devices are
split up and alternatively stored across the devices using the stripe size. This technique
enables the use of multiple devices and multiple channels to the devices.

RAID 0, despite its RAID name, is not redundant. Loss of a device in a RAID 0
configuration results in data loss, and should always be combined with some
redundancy in a mission-critical environment. Database implementations using RAID
0 are often combined with RAID 1, basic mirroring, in RAID 0+1 configurations.

RAID 5 Striping
RAID 5 configurations spread data across the available devices in the raid group using
a hardware-specific stripe size. As a result, multiple devices and channels are used to
read and write data. Due to its more complex parity calculation, not all storage devices
support RAID 5 configurations.

See Also: Oracle Database Storage Administrator's Guide

Note: In a cluster configuration, the software you use must support
cluster capabilities. ASM is a cluster file system for Oracle database
files.

Performance

9-4 Oracle Database VLDB and Partitioning Guide

Striping Using ASM
Automatic Storage Manager (ASM) always stripes across all devices presented to it in
the context of a disk group. A disk group is a logical storage pool in which you create
data files. The default ASM stripe size is 1 MB, which is a good stripe size for a VLDB.

Oracle recommends that you use disks with the same performance characteristics in a
disk group. All disks in a disk group should also be the same size for optimum data
distribution and hence optimum performance and throughput. The disk group should
span as many physical spindles as possible in order to get the best performance. The
disk group configuration for a VLDB does not have to be different from the disk group
configuration for a non-VLDB.

ASM can be used on top of already striped storage devices. If you use such a
configuration, then make sure not to introduce hotspots by defining disk groups that
span logical devices which physically may be using the same resource (disk, controller,
or channel to disk) rather than other available resources. Always make sure that ASM
stripes are distributed equally across all physical devices.

ILM
In an Information Lifecycle Management environment, you cannot use striping across
all devices, because all data would then be distributed across all storage pools. In an
ILM environment, different storage pools typically have different performance
characteristics. Therefore, tablespaces should not span storage pools, and hence data
files for the same tablespace should not be stored in multiple storage pools.

Storage in an ILM environment should be configured to use striping across all devices
in a storage pool. If you use ASM, then separate disk groups for different storage pools
should be created. Using this approach, tablespaces will not store data files in different
disk groups. Data can be moved online between tablespaces using partition movement
operations in the case of partitioned tables, or using the DBMS_REDEFINITION
package when the tables are not partitioned.

Partition Placement
Partition placement is not a concern if you stripe across all available devices and
distribute the load across all available resources. If you cannot stripe data files across
all available devices, then consider partition placement to optimize the use of all
available resources (physical disk spindles, disk controllers, and channels to disk).

I/O-intensive queries or DML operations should make optimal use of all available
resources. Storing database object partitions in specific tablespaces, each of which uses
a different set of hardware resources, enables you to use all resources for operations
against a single partitioned database object. Make sure that I/O-intensive operations
can use all resources by using an appropriate partitioning technique.

Hash partitioning and hash subpartitioning on a unique or almost unique column or
set of columns with the number of hash partitions equal to a power of 2 is the only

See Also: Oracle Database Storage Administrator's Guide for more
information about ASM configuration

See Also: Oracle Database Storage Administrator's Guide for more
details

See Also: Chapter 5, "Using Partitioning for Information Lifecycle
Management"

Scalability and Manageability

Storage Management for VLDBs 9-5

technique likely to result in an even workload distribution when using partition
placement to optimize I/O resource utilization. Other partitioning and subpartitioning
techniques may yield similar benefits depending on your application.

Bigfile Tablespaces
Oracle Database enables the creation of bigfile tablespaces. A bigfile tablespace
consists of a single data or temp file which can be up to 128 TB in size. The use of
bigfile tablespaces can significantly reduce the number of data files for your database.
Oracle Database 11g introduces parallel RMAN backup and restore on single data files.

As a result, there is no disadvantage to using bigfile tablespaces and you may choose
to use bigfile tablespaces in order to significantly reduce the number of data and temp
files.

File allocation is a serial process. If you use automatic allocation for your tables and
automatically extensible data files, then a large data load can be impacted by the
amount of time it takes to extend the file, regardless of whether you use BigFile
tablespaces. However, if you pre-allocate data files and you use multiple data files,
then you can spawn multiple processes to add data files concurrently.

Scalability and Manageability
A very important characteristic of a VLDB is its large size. Storage scalability and
management is an important factor in a VLDB environment. The large size introduces
the following challenges:

■ Simple statistics suggest that storage components are more likely to fail because
VLDBs use more components.

■ A small relative growth in a VLDB may amount to a significant absolute growth,
resulting in possibly many devices to be added.

■ Despite its size, performance and (often) availability requirements are not different
from smaller systems.

The storage configuration you choose should be able to cope with these challenges.
Regardless of whether storage is added or removed, deliberately or accidentally, your
system should remain in an optimal state from a performance and high availability
perspective.

Stripe and Mirror Everything (S.A.M.E.)
The S.A.M.E. (Stripe and Mirror Everything) methodology has been recommended by
Oracle for many years and is an approach to optimize high availability, performance,
and manageability. In order to simplify the configuration further, a fixed stripe size of
1 MB is recommended in the S.A.M.E. methodology as a good starting point for both
OLTP and data warehouse systems. ASM implements the S.A.M.E. methodology and
adds automation on top of it.

S.A.M.E. and Manageability
In order to achieve maximum performance, the S.A.M.E. methodology proposes to
stripe across as many physical devices as possible. This can be achieved without ASM,
but if the storage configuration changes, for example, by adding or removing devices,

See Also: Oracle Database Backup and Recovery User's Guide

ASM Settings Specific to VLDBs

9-6 Oracle Database VLDB and Partitioning Guide

then the layout of the database files on the devices should change. ASM performs this
task automatically in the background. In most non-ASM environments, re-striping is a
major task that often involves manual intervention.

In an ILM environment, you apply the S.A.M.E. methodology to every storage pool.

ASM Settings Specific to VLDBs
Configuration of Automatic Storage Manager for VLDBs is not very different from
ASM configuration for non-VLDBs. Certain parameter values, such as the memory
allocation to the ASM instance, may need a higher value.

Oracle Database 11g, introduces ASM variable allocation units. Large variable
allocation units are beneficial for environments that use large sequential I/Os. VLDBs
in general, and large data warehouses in particular, are good candidate environments
to take advantage of large allocation units. Allocation units can be set between 1 MB
and 64 MB in powers of two (that is, 1, 2, 4, 8, 16, 32, and 64). If your workload
contains a significant number of queries scanning large tables, then you should use
large ASM allocation units. Use 64 for a very large data warehouse system. Large
allocation units also reduce the memory requirements for ASM and improve the ASM
startup time.

Monitoring Database Storage Using Database Control
Database Control provides I/O performance overviews. These pages are useful to
monitor performance and throughput of the storage configuration. The I/O
performance pages can be accessed through the Performance page in Database
Control. The main page shows three aspects that define I/O performance:

■ Single-block I/O latency: production systems should not show latency of more
than ten milliseconds. High latency points to a potential bottleneck in the storage
configuration and possibly hotspots.

■ I/O megabytes per second: this metric shows the I/O throughput. I/O throughput
is an important measure in data warehouse performance.

■ I/O per second: this metric, commonly referred to as IOPS, is key in an OLTP
application. Large OLTP applications with many concurrent users see a lot of
IOPS.

The I/O tab on the main performance page enables breakdown of the I/O overview:

■ Function: the function issuing the I/O requests (see Figure 9–1).

See Also: Oracle Database Storage Administrator's Guide for more
details

See Also: Oracle Database Storage Administrator's Guide for details on
how to set up and configure ASM

Monitoring Database Storage Using Database Control

Storage Management for VLDBs 9-7

Figure 9–1 System I/O by Function

■ I/O type: large reads, small reads, large writes, small writes (see Figure 9–2).

Monitoring Database Storage Using Database Control

9-8 Oracle Database VLDB and Partitioning Guide

Figure 9–2 System I/O by Type of I/O

■ Consumer Group: if you configured Oracle Database Resource Manager consumer
groups, then you can view I/O performance per group.

You can drill down on the I/O performance views to get an overview of all metrics on
a dedicated I/O performance page.

Index-1

Index

A
ADD PARTITION clause, 3-32
ADD SUBPARTITION clause, 3-34, 3-35, 3-36
ALTER INDEX statement

for maintaining partitioned indexes, 3-27
partition attributes, 4-24

ALTER TABLE
MODIFY DEFAULT ATTRIBUTES FOR

PARTITION clause, 3-51
ALTER TABLE statement

for maintaining partitions, 3-27
MODIFY DEFAULT ATTRIBUTES clause, 3-51

C
clusters

cannot be partitioned, 1-1
indexes on

cannot be partitioned, 1-1
COALESCE PARTITION clause, 3-37
composite list-hash partitioning, 2-8
composite list-list partitioning, 2-9
composite list-range partitioning, 2-8
composite partitioning, 2-7

default partition, 3-11
interval-hash, 3-16
interval-list, 3-17
interval-range, 3-18
list-hash, 3-14
list-list, 3-14
list-range, 3-15
range-hash, 3-8
range-list, 3-9
range-range, 3-12
subpartition template, modifying, 3-54

composite range-hash partitioning, 2-8
composite range-list partitioning, 2-8
composite range-range partitioning, 2-8
CREATE INDEX statement

partition attributes, 4-24
partitioned indexes, 3-3

CREATE TABLE statement
creating partitioned tables, 3-2

D
data

partitioning, 6-1
data segment compression

bitmap indexes, 4-26
partitioning, 4-25

data warehouse
partitioned tables, 4-28

DEFAULT keyword
list partitioning, 3-6

default partitions, 3-6
default subpartition, 3-11
DISABLE ROW MOVEMENT clause, 3-1
DROP PARTITION clause, 3-38
dropping partitioned tables, 3-68
DSS database

partitioning indexes, 4-24

E
ENABLE ROW MOVEMENT clause, 3-1, 3-3
equipartitioning

examples, 4-20
local indexes, 4-19

EXCHANGE PARTITION clause, 3-41, 3-43, 3-44,
3-45

EXCHANGE SUBPARTITION clause, 3-43

F
FOR PARTITION clause, 3-52
full partition-wise joins, 4-10

G
global indexes

partitioning, 4-21
managing partitions, 4-21
summary of index types, 4-22

global partitioned indexes
maintenance, 2-13

H
hash partitioning, 2-7

creating tables using, 3-4

Index-2

index-organized tables, 3-25, 3-26
multicolumn partitioning keys, 3-20

historical tables
moving time window, 3-68

I
indexes

cluster
cannot be partitioned, 1-1

global partitioned indexes, 4-21
managing partitions, 4-21

local indexes, 4-19
partitioning, 4-24
partitions, 1-1, 4-19
updating global indexes, 3-30

index-organized tables
partitioning, 3-1, 3-24
partitioning secondary indexes, 3-25

interval partitioned tables
dropping partitions, 3-40

interval partitioning, 2-9
creating tables using, 3-4
performance considerations, 4-27

interval-hash partitioning
creating tables using, 3-16
subpartitioning template, 3-18

interval-list partitioning
creating tables using, 3-17
subpartitioning template, 3-19

interval-range partitioning
creating tables using, 3-18

J
joins

full partition-wise, 4-10
partial partition-wise, 4-15
partition-wise, 4-10

L
list partitioning, 2-7

adding values to value list, 3-53
creating tables using, 3-6
DEFAULT keyword, 3-6
dropping values from value-list, 3-53

list-hash partitioning
creating tables using, 3-14
subpartitioning template, 3-18

list-list partitioning
creating tables using, 3-14
subpartitioning template, 3-19

list-range partitioning
creating tables using, 3-15

local indexes, 4-19, 4-22
equipartitioning, 4-19

M
materialized views

partitioned, 1-1
MODIFY DEFAULT ATTRIBUTES clause, 3-52

using for partitioned tables, 3-51
MODIFY DEFAULT ATTRIBUTES FOR PARTITION

clause
of ALTER TABLE, 3-51

MODIFY PARTITION clause, 3-51, 3-52, 3-55, 3-57
MODIFY SUBPARTITION clause, 3-52
MOVE PARTITION clause, 3-51, 3-55
MOVE SUBPARTITION clause, 3-51, 3-56

N
nonprefixed indexes, 2-12, 4-20, 4-23

global partitioned indexes, 4-21

O
OLTP database

partitioning indexes, 4-24
optimization

partition pruning
indexes, 4-23

partitioned indexes, 4-23

P
PARTITION BY HASH clause, 3-4
PARTITION BY LIST clause, 3-6
PARTITION BY RANGE clause, 3-2

for composite-partitioned tables, 3-8
PARTITION BY REFERENCE clause, 3-7
PARTITION clause

for composite-partitioned tables, 3-8
for hash partitions, 3-4
for list partitions, 3-6
for range partitions, 3-2

partition pruning, 4-1
dynamic, 4-3
static, 4-3

partitioned indexes, 3-1
adding partitions, 3-36
creating local index on composite partitioned

table, 3-9
creating local index on hash partitioned table, 3-5
creating range partitions, 3-3
dropping partitions, 3-40
maintenance operations, 3-27
maintenance operations, table of, 3-29
modifying partition default attributes, 3-51
modifying real attributes of partitions, 3-52
moving partitions, 3-56
rebuilding index partitions, 3-56
renaming index partitions/subpartitions, 3-58
secondary indexes on index-organized

tables, 3-25
splitting partitions, 3-65

partitioned tables, 3-1
adding partitions, 3-32
adding subpartitions, 3-34, 3-35, 3-36
coalescing partitions, 3-37

Index-3

creating hash partitions, 3-4
creating interval partitions, 3-4
creating interval-hash partitions, 3-16
creating interval-list partitions, 3-17
creating interval-range partitions, 3-18
creating list partitions, 3-6
creating list-hash partitions, 3-14
creating list-list partitions, 3-14
creating list-range partitions, 3-15
creating range partitions, 3-2, 3-3
creating range-hash partitions, 3-8
creating range-list partitions, 3-9
creating range-range partitions, 3-12
creating reference partitions, 3-7
data warehouses, 4-28
DISABLE ROW MOVEMENT, 3-1
dropping, 3-68
dropping partitions, 3-38
ENABLE ROW MOVEMENT, 3-1
exchanging partitions, 3-40
exchanging subpartitions, 3-43, 3-44, 3-45
index-organized tables, 3-1, 3-25, 3-26
maintenance operations, 3-27
marking indexes UNUSABLE, 3-32, 3-37, 3-38,

3-40, 3-41, 3-46, 3-51, 3-52, 3-55, 3-58, 3-66
merging partitions, 3-45
modifying default attributes, 3-51
modifying real attributes of partitions, 3-51
modifying real attributes of subpartitions, 3-52
moving partitions, 3-55
moving subpartitions, 3-56
multicolumn partitioning keys, 3-20
rebuilding index partitions, 3-56
redefining partitions online, 3-56
renaming partitions, 3-58
renaming subpartitions, 3-58
splitting partitions, 3-58
truncating partitions, 3-66
truncating subpartitions, 3-67
updating global indexes automatically, 3-30

partitioning
composite, 2-7
composite list-hash, 2-8
composite list-list, 2-9
composite list-range, 2-8
composite range-hash, 2-8
composite range-list, 2-8
composite range-range, 2-8
creating partitions, 3-1
data, 6-1
data segment compression, 4-25

bitmap indexes, 4-26
default partition, 3-6
default subpartition, 3-11
hash, 2-7
index-organized tables, 3-1, 3-25, 3-26
interval, 2-9
interval-hash, 3-16
interval-list, 3-17
interval-range, 3-18

list, 2-7, 3-53
list-hash, 3-14
list-list, 3-14
list-range, 3-15
maintaining partitions, 3-27
range, 2-6
range-hash, 3-8
range-list, 3-9
range-range, 3-12
reference, 2-10
subpartition templates, 3-18
system, 2-3
virtual columns, 2-11

partitions, 1-1
equipartitioning

examples, 4-20
local indexes, 4-19

global indexes, 4-21
local indexes, 4-19
materialized views, 1-1
nonprefixed indexes, 2-12, 4-20, 4-23
partition pruning

indexes, 4-23
partitioning indexes, 4-19, 4-24
physical attributes, 4-24
prefixed indexes, 4-20
pruning, 4-1

PARTITIONS clause
for hash partitions, 3-4

partition-wise joins, 4-10
full, 4-10
partial, 4-15

performance
prefixed and nonprefixed indexes, 4-23

predicates
partition pruning

indexes, 4-23
prefixed indexes, 4-20, 4-22
pruning

partition, 4-1
pruning partitions

indexes, 4-23

R
range partitioning, 2-6

creating tables using, 3-2
index-organized tables, 3-25
multicolumn partitioning keys, 3-20
performance considerations, 4-27

range-hash partitioning
creating tables using, 3-8
subpartitioning template, 3-18

range-list partitioning
creating tables using, 3-9
subpartitioning template, 3-19

range-range partitioning
creating tables using, 3-12

REBUILD PARTITION clause, 3-56, 3-57
REBUILD UNUSABLE LOCAL INDEXES

Index-4

clause, 3-57
reference partitioning, 2-10

creating tables using, 3-7
RENAME PARTITION clause, 3-58
RENAME SUBPARTITION clause, 3-58
row movement clause for partitioned tables, 3-1

S
SET INTERVAL clause, 3-33
SPLIT PARTITION clause, 3-32, 3-58
storage

index partitions, 4-24
STORE IN clause, 3-9
SUBPARTITION BY HASH clause

for composite-partitioned tables, 3-8
SUBPARTITION clause, 3-34, 3-35, 3-61

for composite-partitioned tables, 3-8
subpartition templates, 3-18

modifying, 3-54
SUBPARTITIONS clause, 3-34, 3-61

for composite-partitioned tables, 3-8
system partitioning, 2-3

T
tables

index-organized, partitioning, 3-24
moving time windows in historical, 3-68
partitions, 1-1

TRUNCATE PARTITION clause, 3-66
TRUNCATE SUBPARTITION clause, 3-67

U
UPDATE GLOBAL INDEX clause

of ALTER TABLE, 3-30

V
virtual column-based partitioning, 2-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Very Large Databases
	Introduction to Partitioning
	VLDB and Partitioning
	Partitioning As the Foundation for Information Lifecycle Management
	Partitioning for Every Database

	2 Partitioning Concepts
	Basics of Partitioning
	Partitioning Key
	Partitioned Tables
	When to Partition a Table
	When to Partition an Index

	Partitioned Index-Organized Tables
	System Partitioning
	Partitioning for Information Lifecycle Management
	Partitioning and LOB Data

	Benefits of Partitioning
	Partitioning for Performance
	Partition Pruning
	Partition-Wise Joins

	Partitioning for Manageability
	Partitioning for Availability

	Partitioning Strategies
	Single-Level Partitioning
	Range Partitioning
	Hash Partitioning
	List Partitioning

	Composite Partitioning
	Composite Range-Range Partitioning
	Composite Range-Hash Partitioning
	Composite Range-List Partitioning
	Composite List-Range Partitioning
	Composite List-Hash Partitioning
	Composite List-List Partitioning

	Partitioning Extensions
	Manageability Extensions
	Interval Partitioning
	Partition Advisor

	Partitioning Key Extensions
	Reference Partitioning
	Virtual Column-Based Partitioning

	Overview of Partitioned Indexes
	Local Partitioned Indexes
	Global Partitioned Indexes
	Global Range Partitioned Indexes
	Global Hash Partitioned Indexes
	Maintenance of Global Partitioned Indexes

	Global Non-Partitioned Indexes
	Miscellaneous Information about Creating Indexes on Partitioned Tables
	Partitioned Indexes on Composite Partitions

	3 Partition Administration
	Creating Partitions
	Creating Range-Partitioned Tables and Global Indexes
	Creating a Range Partitioned Table
	Creating a Range-Partitioned Global Index

	Creating Interval-Partitioned Tables
	Creating Hash-Partitioned Tables and Global Indexes
	Creating a Hash Partitioned Table
	Creating a Hash-Partitioned Global Index

	Creating List-Partitioned Tables
	Creating Reference-Partitioned Tables
	Creating Composite Partitioned Tables
	Creating Composite Range-Hash Partitioned Tables
	Creating Composite Range-List Partitioned Tables
	Creating Composite Range-Range Partitioned Tables
	Creating Composite List-* Partitioned Tables
	Creating Composite Interval-* Partitioned Tables

	Using Subpartition Templates to Describe Composite Partitioned Tables
	Specifying a Subpartition Template for a *-Hash Partitioned Table
	Specifying a Subpartition Template for a *-List Partitioned Table

	Using Multicolumn Partitioning Keys
	Using Virtual Column-Based Partitioning
	Using Table Compression with Partitioned Tables
	Using Key Compression with Partitioned Indexes
	Creating Partitioned Index-Organized Tables
	Creating Range-Partitioned Index-Organized Tables
	Creating Hash-Partitioned Index-Organized Tables
	Creating List-Partitioned Index-Organized Tables

	Partitioning Restrictions for Multiple Block Sizes

	Maintaining Partitions
	Updating Indexes Automatically
	Adding Partitions
	Adding a Partition to a Range-Partitioned Table
	Adding a Partition to a Hash-Partitioned Table
	Adding a Partition to a List-Partitioned Table
	Adding a Partition to an Interval-Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-Hash Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-List Partitioned Table
	Adding Partitions to a Composite [Range | List | Interval]-Range Partitioned Table
	Adding a Partition or Subpartition to a Reference-Partitioned Table
	Adding Index Partitions

	Coalescing Partitions
	Coalescing a Partition in a Hash-Partitioned Table
	Coalescing a Subpartition in a *-Hash Partitioned Table
	Coalescing Hash-partitioned Global Indexes

	Dropping Partitions
	Dropping Table Partitions
	Dropping Interval Partitions
	Dropping Index Partitions

	Exchanging Partitions
	Exchanging a Range, Hash, or List Partition
	Exchanging a Partition of an Interval Partitioned Table
	Exchanging a Partition of a Reference Partitioned Table
	Exchanging a Partition of a Table with Virtual Columns
	Exchanging a Hash-Partitioned Table with a *-Hash Partition
	Exchanging a Subpartition of a *-Hash Partitioned Table
	Exchanging a List-Partitioned Table with a *-List Partition
	Exchanging a Subpartition of a *-List Partitioned Table
	Exchanging a Range-Partitioned Table with a *-Range Partition
	Exchanging a Subpartition of a *-Range Partitioned Table

	Merging Partitions
	Merging Range Partitions
	Merging Interval Partitions
	Merging List Partitions
	Merging *-Hash Partitions
	Merging *-List Partitions
	Merging *-Range Partitions

	Modifying Default Attributes
	Modifying Default Attributes of a Table
	Modifying Default Attributes of a Partition
	Modifying Default Attributes of Index Partitions

	Modifying Real Attributes of Partitions
	Modifying Real Attributes for a Range or List Partition
	Modifying Real Attributes for a Hash Partition
	Modifying Real Attributes of a Subpartition
	Modifying Real Attributes of Index Partitions

	Modifying List Partitions: Adding Values
	Adding Values for a List Partition
	Adding Values for a List Subpartition

	Modifying List Partitions: Dropping Values
	Dropping Values from a List Partition
	Dropping Values from a List Subpartition

	Modifying a Subpartition Template
	Moving Partitions
	Moving Table Partitions
	Moving Subpartitions
	Moving Index Partitions

	Redefining Partitions Online
	Rebuilding Index Partitions
	Rebuilding Global Index Partitions
	Rebuilding Local Index Partitions

	Renaming Partitions
	Renaming a Table Partition
	Renaming a Table Subpartition
	Renaming Index Partitions

	Splitting Partitions
	Splitting a Partition of a Range-Partitioned Table
	Splitting a Partition of a List-Partitioned Table
	Splitting a Partition of an Interval-Partitioned Table
	Splitting a *-Hash Partition
	Splitting Partitions in a *-List Partitioned Table
	Splitting a *-Range Partition
	Splitting Index Partitions
	Optimizing SPLIT PARTITION and SPLIT SUBPARTITION Operations

	Truncating Partitions
	Truncating a Table Partition
	Truncating a Subpartition

	Dropping Partitioned Tables
	Partitioned Tables and Indexes Example
	Viewing Information About Partitioned Tables and Indexes

	4 Partitioning for Availability, Manageability, and Performance
	Partition Pruning
	Information that can be Used for Partition Pruning
	How to Identify Whether Partition Pruning has been Used
	Static Partition Pruning
	Dynamic Partition Pruning
	Dynamic Pruning with Bind Variables
	Dynamic Pruning with Subqueries
	Dynamic Pruning with Star Transformation
	Dynamic Pruning with Nested Loop Joins

	Partition Pruning Tips
	Datatype Conversions
	Function Calls

	Partition-Wise Joins
	Full Partition-Wise Joins
	Full Partition-Wise Joins: Single-Level - Single-Level
	Full Partition-Wise Joins: Composite - Single-Level
	Full Partition-Wise Joins: Composite - Composite

	Partial Partition-Wise Joins
	Partial Partition-Wise Joins: Single-Level Partitioning
	Partial Partition-Wise Joins: Composite

	Index Partitioning
	Local Partitioned Indexes
	Local Prefixed Indexes
	Local Nonprefixed Indexes

	Global Partitioned Indexes
	Prefixed and Nonprefixed Global Partitioned Indexes
	Management of Global Partitioned Indexes

	Summary of Partitioned Index Types
	The Importance of Nonprefixed Indexes
	Performance Implications of Prefixed and Nonprefixed Indexes
	Guidelines for Partitioning Indexes
	Physical Attributes of Index Partitions

	Partitioning and Table Compression
	Table Compression and Bitmap Indexes
	Example of Table Compression and Partitioning

	Recommendations for Choosing a Partitioning Strategy
	When to Use Range or Interval Partitioning
	When to Use Hash Partitioning
	When to Use List Partitioning
	When to Use Composite Partitioning
	When to Use Composite Range-Hash Partitioning
	When to Use Composite Range-List Partitioning
	When to Use Composite Range-Range Partitioning
	When to Use Composite List-Hash Partitioning
	When to Use Composite List-List Partitioning
	When to Use Composite List-Range Partitioning

	When to Use Interval Partitioning
	When to Use Reference Partitioning
	When to Partition on Virtual Columns

	5 Using Partitioning for Information Lifecycle Management
	What Is ILM?
	Oracle Database for ILM
	Oracle Database Manages All Types of Data

	Regulatory Requirements

	Implementing ILM Using Oracle Database
	Step 1: Define the Data Classes
	Partitioning
	The Lifecycle of Data

	Step 2: Create Storage Tiers for the Data Classes
	Assigning Classes to Storage Tiers
	The Costs Savings of using Tiered Storage

	Step 3: Create Data Access and Migration Policies
	Controlling Access to Data
	Moving Data using Partitioning

	Step 4: Define and Enforce Compliance Policies
	Data Retention
	Immutability
	Privacy
	Auditing
	Expiration

	The Benefits of an Online Archive
	Oracle ILM Assistant
	Lifecycle Setup
	Logical Storage Tiers
	Lifecycle Definitions
	Lifecycle Tables
	Preferences

	Lifecycle Management
	Lifecycle Events Calendar
	Lifecycle Events
	Event Scan History

	Compliance & Security
	Current Status
	Digital Signatures and Immutability
	Privacy & Security
	Auditing

	Reports

	Implementing an ILM System Manually

	6 Using Partitioning in a Data Warehouse Environment
	What Is a Data Warehouse?
	Scalability
	Bigger Databases
	Bigger Individual tables: More Rows in Tables
	More Users Querying the System
	More Complex Queries

	Performance
	Partition Pruning
	Basic Partition Pruning Techniques
	Advanced Partition Pruning Techniques

	Partition-Wise Joins
	Full Partition-Wise Joins
	Partial Partition-Wise Joins
	Benefits of Partition-Wise Joins
	Performance Considerations for Parallel Partition-Wise Joins

	Indexes and Partitioned Indexes
	Local Partitioned Indexes
	Non-Partitioned Indexes
	Global Partitioned Indexes
	Partitioning and Data Compression
	Materialized Views and Partitioning

	Manageability
	Partition Exchange Load
	Partitioning and Indexes
	Partitioning and Materialized View Refresh Strategies
	Removing Data from Tables
	Partitioning and Data Compression
	Gathering Statistics on Large Partitioned Tables

	7 Using Partitioning in an Online Transaction Processing Environment
	What is an OLTP System?
	Performance
	Deciding Whether or not to Partition Indexes
	Using Index-Organized Tables

	Manageability
	Impact of a Partition Maintenance Operation on a Partitioned Table with Local Indexes
	Impact of a Partition Maintenance Operation on Global Indexes
	Common Partition Maintenance Operations in OLTP Environments
	Removing (Purging) Old Data
	Moving and/or Merging Older Partitions to a Low Cost Storage Tier Device

	8 Backing Up and Recovering VLDBs
	Data Warehousing
	Data Warehouse Characteristics

	Oracle Backup and Recovery
	Physical Database Structures Used in Recovering Data
	Datafiles
	Redo Logs
	Control Files

	Backup Type
	Backup Tools
	Recovery Manager (RMAN)
	Oracle Enterprise Manager
	Oracle Data Pump
	User-Managed Backups

	Data Warehouse Backup and Recovery
	Recovery Time Objective (RTO)
	Recovery Point Objective (RPO)
	More Data Means a Longer Backup Window
	Divide and Conquer

	The Data Warehouse Recovery Methodology
	Best Practice 1: Use ARCHIVELOG Mode
	Is Downtime Acceptable?

	Best Practice 2: Use RMAN
	Best Practice 3: Use Block Change Tracking
	Best Practice 4: Use RMAN Multi-Section Backups
	Best Practice 5: Leverage Read-Only Tablespaces
	Best Practice 6: Plan for NOLOGGING Operations in Your Backup/Recovery Strategy
	Extract, Transform, and Load
	The ETL Strategy
	Incremental Backup
	The Incremental Approach
	Flashback Database and Guaranteed Restore Points

	Best Practice 7: Not All Tablespaces Are Created Equal

	9 Storage Management for VLDBs
	High Availability
	Hardware-Based Mirroring
	RAID 1 Mirroring
	RAID 5 Mirroring

	Mirroring using ASM

	Performance
	Hardware-Based Striping
	RAID 0 Striping
	RAID 5 Striping

	Striping Using ASM
	ILM
	Partition Placement
	Bigfile Tablespaces

	Scalability and Manageability
	Stripe and Mirror Everything (S.A.M.E.)
	S.A.M.E. and Manageability

	ASM Settings Specific to VLDBs
	Monitoring Database Storage Using Database Control

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

