

Oracle® Database
XStream Guide

11g Release 2 (11.2)

E16545-07

August 2011

Oracle Database XStream Guide, 11g Release 2 (11.2)

E16545-07

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Randy Urbano

Contributors: Lance Ashdown, Vinoth Chandar, Alan Downing, Thuvan Hoang, Richard Huang, Joydip
Kundu, Tianshu Li, Edwina Lu, Rui Mao, Pat McElroy, Valarie Moore, Srikanth Nalla, Partha Raghunathan,
Ashish Ray, Jim Stamos, Byron Wang, Lik Wong, Jun Yuan, Rod Ward, Haobo Xu, Kevin Xu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

Part I XStream Concepts and Use Cases

1 Introduction to XStream

About XStream .. 1-1
Purpose of XStream.. 1-3
Prerequisites for XStream ... 1-3
Tasks and Tools for XStream .. 1-4

XStream Tasks... 1-4
XStream Tools... 1-4

2 XStream Concepts

XStream Out .. 2-1
The Outbound Server .. 2-2

Outbound Servers and Apply Process Features... 2-3
ID Key LCRs.. 2-6

ID Key LCRs Demo... 2-7
Sequence LCRs ... 2-7
Considerations for XStream Outbound Servers .. 2-8
XStream Out and Distributed Transactions ... 2-8

XStream In ... 2-9
The Inbound Server .. 2-10
Considerations for XStream Inbound Servers .. 2-10

Position Order in an LCR Stream... 2-11
About Position Order ... 2-11
Position of LCRs and XStream Out .. 2-12

Additional LCR Attributes Related to Position... 2-12
The Processed Low Position and Restartability for XStream Out 2-12
Streaming Network Transmission... 2-13

Position of LCRs and XStream In.. 2-13

iv

Summary of Position Use in XStream Out and XStream In.. 2-16
XStream and SQL Generation... 2-16

Interfaces for Performing SQL Generation.. 2-16
SQL Generation Formats.. 2-17
Data Types and Character Sets ... 2-17
SQL Generation Demo ... 2-17

XStream and Security ... 2-18
Other Ways to Share Information in a Heterogeneous Environment ... 2-18

3 XStream Use Cases

Introduction to XStream Use Cases .. 3-1
XStream Out Use Cases... 3-1
XStream In Use Cases .. 3-2

Replicating Data Changes with Non-Oracle Databases ... 3-2
Using Files to Store Data Changes.. 3-2

XStream Demo That Replicates Database Changes Using Files.. 3-3
Sharing Data Changes with a Client-Side Memory Cache .. 3-3

Part II XStream Administration

4 Configuring XStream

Preparing for XStream ... 4-1
Granting Privileges for the XStream Administrator ... 4-1
Preparing for XStream Out ... 4-6

Decide How to Configure XStream.. 4-6
Prerequisites for Configuring XStream Out... 4-11

Preparing for XStream In ... 4-14
Configure an XStream Administrator... 4-14
Set the Relevant Initialization Parameters Relevant ... 4-14
Configure the Oracle Streams Pool ... 4-14

Configuring XStream Out.. 4-14
Configuring an XStream Outbound Server... 4-15

Configuring Multiple XStream Out Components Using CREATE_OUTBOUND 4-15
Configuring an Outbound Server Using ADD_OUTBOUND.. 4-17

Adding an Additional Outbound Server to a Capture Process Stream.................................. 4-22
Configuring XStream In... 4-24
Sample XStream Client Application ... 4-26

Sample XStream Client Application for the Oracle Call Interface API 4-27
Sample XStream Client Application for the Java API.. 4-41

5 Managing XStream

About Managing XStream .. 5-1
Managing XStream Out... 5-2

Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process.. 5-2
Managing Rules for an XStream Out Configuration .. 5-4

Adding Rules to an XStream Out Configuration ... 5-4

v

Removing Rules from an XStream Out Configuration ... 5-7
Changing the Connect User for an Outbound Server .. 5-9
Changing the Capture User of the Capture Process for an Outbound Server 5-10
Changing the Start SCN or Start Time of the Capture Process for an Outbound Server 5-11

Changing the Start SCN of the Capture Process for an Outbound Server 5-11
Changing the Start Time of the Capture Process for an Outbound Server 5-12

Dropping Components in an XStream Out Configuration... 5-13
Managing XStream In... 5-14

Changing the Apply User for an Inbound Server .. 5-15
Managing Eager Errors Encountered by an Inbound Server ... 5-16
Dropping Components in an XStream In Configuration.. 5-19

6 Monitoring XStream

About Monitoring XStream.. 6-1
Monitoring Session Information About XStream Components ... 6-2
Monitoring XStream Out .. 6-3

Displaying General Information About an Outbound Server... 6-3
Displaying Status and Error Information for an Outbound Server.. 6-5
Displaying Information About an Outbound Server’s Current Transaction 6-5
Displaying Statistics for an Outbound Server ... 6-6
Displaying the Processed Low Position for an Outbound Server .. 6-8
Determining the Process Information for an Outbound Server.. 6-9

Monitoring XStream In .. 6-10
Displaying General Information About an Inbound Server... 6-10
Displaying the Status and Error Information for an Inbound Server 6-11
Displaying the Position Information for an Inbound Server.. 6-11

Monitoring XStream Rules.. 6-12
XStream and the Oracle Streams Performance Advisor .. 6-13

XStream Components... 6-14
Topology and Stream Paths... 6-14
XStream and Component-Level Statistics ... 6-14
The UTL_SPADV Package... 6-15

Sample Output When an Outbound Server Is the Last Component in a Path 6-16
Sample Output When an Inbound Server Is the Last Component in a Path 6-16

7 Troubleshooting XStream

Diagnosing Problems with XStream .. 7-1
Problems and Solutions for XStream ... 7-1

An OCI Client Application Cannot Attach to the Outbound Server.. 7-2
Changes Are Failing to Reach the Client Application in XStream Out...................................... 7-2
LCRs Streaming from an Outbound Server Are Missing Extra Attributes 7-4
The XStream Out Client Application Is Unresponsive... 7-5
XStream In Cannot Identify an Inbound Server .. 7-6
Changes Are Not Being Applied by an Inbound Server.. 7-7

How to Get More Help with XStream .. 7-8

vi

Part III XStream PL/SQL Packages Reference

8 DBMS_XSTREAM_ADM

9 DBMS_XSTREAM_AUTH

Part IV XStream OCI API Reference

10 Introduction to the OCI Interface for XStream

About the XStream Interface... 10-1
XStream Out... 10-1
XStream In.. 10-2
Position Order and LCR Streams.. 10-2
XStream and Character Sets .. 10-2

Handler and Descriptor Attributes .. 10-2
Conventions ... 10-2
Server Handle Attributes ... 10-3

OCI_ATTR_XSTREAM_ACK_INTERVAL.. 10-3
OCI_ATTR_XSTREAM_IDLE_TIMEOUT ... 10-3

11 OCI XStream Functions

Introduction to XStream Functions.. 11-1
Conventions for OCI Functions .. 11-1
Purpose ... 11-1
Syntax.. 11-1
Parameters.. 11-2
Comments .. 11-2

Part V XStream Data Dictionary Views

12 XStream Static Data Dictionary Views

ALL_APPLY .. 12-1
ALL_APPLY_ERROR.. 12-3
ALL_APPLY_ERROR_MESSAGES ... 12-4
ALL_CAPTURE.. 12-5
ALL_XSTREAM_INBOUND .. 12-6
ALL_XSTREAM_INBOUND_PROGRESS.. 12-7
ALL_XSTREAM_OUTBOUND.. 12-8
ALL_XSTREAM_OUTBOUND_PROGRESS.. 12-9
ALL_XSTREAM_RULES ... 12-10
DBA_APPLY ... 12-11
DBA_APPLY_ERROR... 12-11
DBA_APPLY_ERROR_MESSAGES .. 12-11
DBA_APPLY_SPILL_TXN ... 12-11
DBA_CAPTURE .. 12-12

vii

DBA_XSTREAM_ADMINISTRATOR ... 12-12
DBA_XSTREAM_INBOUND ... 12-12
DBA_XSTREAM_INBOUND_PROGRESS... 12-13
DBA_XSTREAM_OUT_SUPPORT_MODE .. 12-13
DBA_XSTREAM_OUTBOUND... 12-13
DBA_XSTREAM_OUTBOUND_PROGRESS .. 12-14
DBA_XSTREAM_RULES .. 12-14

13 XStream Dynamic Performance (V$) Views

V$STREAMS_APPLY_COORDINATOR... 13-1
V$STREAMS_APPLY_READER .. 13-3
V$STREAMS_APPLY_SERVER ... 13-5
V$XSTREAM_CAPTURE .. 13-6
V$XSTREAM_MESSAGE_TRACKING .. 13-9
V$XSTREAM_OUTBOUND_SERVER... 13-10
V$XSTREAM_TRANSACTION .. 13-13

Index

viii

ix

Preface

Oracle Database XStream Guide describes the features and functionality of XStream. This
document contains conceptual information about XStream, along with information
about configuring and managing an XStream environment. In addition, this document
contains reference information related to XStream.

Audience
This guide is intended for database administrators who configure and manage
XStream environments. To use this document, database administrators must be
familiar with relational database concepts, SQL, distributed database administration,
Oracle Streams concepts, PL/SQL, and the operating systems under which they run an
XStream environment.

This guide is also intended for programmers who develop applications that use
XStream. To use this document, programmers need knowledge of an application
development language and relational database concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Oracle Database XStream Java API Reference

■ Oracle Streams Concepts and Administration

■ Oracle Streams Replication Administrator's Guide

■ Oracle Call Interface Programmer's Guide

■ Oracle Database 2 Day + Java Developer's Guide

x

■ Oracle Database Java Developer's Guide

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Streams Advanced Queuing User's Guide

Many of the examples in this book use the sample schemas of the sample database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information about how these schemas were created and
how you can use them yourself.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I XStream Concepts and Use Cases

This part contains the following chapters:

■ Chapter 2, "XStream Concepts"

■ Chapter 3, "XStream Use Cases"

1

Introduction to XStream 1-1

1Introduction to XStream

This chapter introduces you to XStream, a new feature in Oracle Database 11g
Release 2 (11.2). XStream enables information sharing with outstanding performance
and usability.

This chapter contains the following topics:

■ About XStream

■ Purpose of XStream

■ Prerequisites for XStream

■ Tasks and Tools for XStream

About XStream
XStream consists of Oracle Database components and application programming
interfaces (APIs) that enable client applications to receive data changes from an Oracle
database and send data changes to an Oracle database. These data changes can be
shared between Oracle databases and other systems. The other systems include
non-Oracle databases, non-RDBMS Oracle products, file systems, third party software
applications, and so on. A client application is designed by the user for specific
purposes and use cases.

XStream consists of two major features: XStream Out and XStream In. XStream Out
provides Oracle Database components and APIs that enable you to share data changes
made to an Oracle database with other systems.

Figure 1–1 XStream Out

XStream In provides Oracle Database components and APIs that enable you to share
data changes made to other systems with an Oracle database.

XStream
Out

Data Changes

External Data
Source

Oracle Database

About XStream

1-2 Oracle Database XStream Guide

Figure 1–2 XStream In

XStream is built on the infrastructure of Oracle Streams. Therefore, XStream inherits
the flexibility and functionality of Oracle Streams, including:

■ The logical change record (LCR) format for streaming database changes

An LCR is a message with a specific format that describes a database change. If
the change was a data manipulation language (DML) operation, then a row LCR
encapsulates each row change resulting from the DML operation. One DML
operation might result in multiple row changes, and so one DML operation might
result in multiple row LCRs. If the change was a data definition language (DDL)
operation, then a single DDL LCR encapsulates the DDL change.

■ Filtering of database changes at the database level, schema level, table level, and
row/column level

■ Rules and rule sets that control behavior, including inclusion and exclusion rules

■ Rule-based transformations that modify captured data changes

■ Support for the data types supported by Oracle Streams, including LOBs, LONG,
LONG RAW, and XMLType

■ Customized configurations, including multiple inbound streams to a single
database instance, multiple outbound streams from a single database instance,
multiple outbound streams from a single capture process, and so on

■ Full-featured apply for XStream In, including apply parallelism for optimal
performance, SQL generation, conflict detection and resolution, error handling,
and customized apply with apply handlers

Note: When learning about and using XStream, a general knowledge
of Oracle Streams concepts is helpful. See the following documents for
conceptual information about Oracle Streams:

■ Oracle Database 2 Day + Data Replication and Integration Guide
contains basic conceptual information about Oracle Streams

■ Oracle Streams Concepts and Administration contains detailed
conceptual information about Oracle Streams

See Also:

■ Chapter 4, "Configuring XStream"

■ Chapter 8, "DBMS_XSTREAM_ADM"

Data Changes

External Data
Source

Oracle Database

XStream
In

Prerequisites for XStream

Introduction to XStream 1-3

Purpose of XStream
By using XStream, you can accomplish the following goals:

■ Replicate data changes

Replication is generally used to improve availability and to improve performance
by spreading the network load over multiple regions and servers. XStream enables
you replicate data changes made to an Oracle database with other Oracle
databases and with non-Oracle data sources.

■ Store data changes in files

Some environments use files to store data changes for various reasons. For
example, an environment might use files to store data changes if the environment
does not have a physical network, if the environment uses disconnected
computing, or if the environment uses satellite communications. After data
changes are stored in files, the changes can be processed in any customized way
by applications.

■ Share data changes with a client-side memory cache

Some environments share data changes with a client-side memory cache to
improve performance.

Prerequisites for XStream
Using the XStream APIs requires purchasing a license for the Oracle GoldenGate
product. See the documentation for the Oracle GoldenGate product for more
information:

http://download.oracle.com/docs/cd/E15881_01/index.htm

In addition, this document assumes that you have the following skills:

■ Knowledge of relational database concepts and Oracle Database concepts

XStream includes components that run in an Oracle database. To use XStream
successfully, you must be able to administer an Oracle Database.

See Oracle Database Concepts for information about this topic.

■ Knowledge of distributed databases

An XStream environment includes multiple data sources, including Oracle
databases and non-Oracle data sources. You should understand distributed
database concepts before using XStream.

See Oracle Database Administrator's Guide for information about this topic.

■ Knowledge of SQL and PL/SQL

To administer an Oracle database and the XStream components running in an
Oracle database, you must know how to use SQL and PL/SQL.

See Oracle Database SQL Language Reference, Oracle Database PL/SQL Language
Reference, and Oracle Database PL/SQL Packages and Types Reference for information
about this topic.

■ Knowledge of application programming

XStream Out sends data changes to a client application for processing. XStream In
receives data changes from a client application. You use the Oracle Call Interface

See Also: Chapter 3, "XStream Use Cases"

Tasks and Tools for XStream

1-4 Oracle Database XStream Guide

(OCI) API or the Java API to create a client application that communicates with
XStream.

See Oracle Call Interface Programmer's Guide for information about the OCI API.

See Oracle Database 2 Day + Java Developer's Guide and Oracle Database Java
Developer's Guide for information about the Java API.

Tasks and Tools for XStream
This section describes the common tasks you perform for XStream and the tools to use
to complete the tasks.

This section contains the following topics:

■ XStream Tasks

■ XStream Tools

XStream Tasks
The common tasks for XStream are the following:

■ Configure XStream

Configuring XStream involves preparing an Oracle Database for XStream, creating
the Oracle Database components used by XStream, and creating one or more client
applications that communicate with the Oracle Database.

See Chapter 4, "Configuring XStream" for information about this task.

■ Administer XStream

Administering XStream involves managing the Oracle Database components used
by XStream. It also involves managing the rules and rule sets used by these
components. It might also require modifications to a client application.

See Chapter 5, "Managing XStream" for information about this task.

■ Monitor XStream

Monitoring XStream involves viewing Oracle Enterprise Manager pages related to
XStream and querying data dictionary views related to XStream.

See the Oracle Enterprise Manager online help and Chapter 6, "Monitoring
XStream" for information about this task.

XStream Tools
Use the following tools to complete the tasks for XStream:

■ SQL and PL/SQL

You can use SQL and PL/SQL to configure, administer, and monitor XStream. SQL
enables you to create an XStream administrator and monitor XStream using data
dictionary views. Several Oracle-supplied PL/SQL packages enable you to
configure and manage XStream.

See Oracle Database SQL Language Reference, Oracle Database PL/SQL Language
Reference, and Oracle Database PL/SQL Packages and Types Reference for information
about this topic.

■ Oracle Enterprise Manager

Tasks and Tools for XStream

Introduction to XStream 1-5

You can use Enterprise Manager to manage and monitor XStream components.
You can also use Enterprise Manager to view information about the LCRs that are
streaming in an XStream configuration.

See the Enterprise Manager online help for more information about this topic.

■ The OCI API and Java API

You can use the XStream OCI API and XStream Java API to create client
application that communicate with XStream. These applications can work with
XStream Out to stream LCRs out of an Oracle Database, and these applications can
work with XStream In to stream LCRs into an Oracle Database.

See Part IV, "XStream OCI API Reference" for information about the XStream OCI
API, and see Oracle Call Interface Programmer's Guide for information about the OCI
API.

See Oracle Database XStream Java API Reference for information about the XStream
Java API, and see Oracle Database 2 Day + Java Developer's Guide and Oracle
Database Java Developer's Guide for information about the Java API.

Tasks and Tools for XStream

1-6 Oracle Database XStream Guide

2

XStream Concepts 2-1

2 XStream Concepts

This chapter contains concepts related to XStream.

This chapter contains these topics:

■ XStream Out

■ XStream In

■ Position Order in an LCR Stream

■ XStream and SQL Generation

■ XStream and Security

■ Other Ways to Share Information in a Heterogeneous Environment

XStream Out
XStream Out can capture transactions from the redo log of an Oracle database and
send them efficiently to a client application. XStream Out provides a transaction-based
interface for streaming these changes to client applications. The client application can
interact with other systems, including non-Oracle systems, such as non-Oracle
databases or file systems.

XStream Out has both OCI and Java interfaces and supports all of the data types that
are supported by Oracle Streams, including LOBs, LONG, LONG RAW, and XMLType.

This section contains these topics:

■ The Outbound Server

■ ID Key LCRs

■ Sequence LCRs

■ Considerations for XStream Outbound Servers

■ XStream Out and Distributed Transactions

See Also: Chapter 4, "Configuring XStream"

See Also:

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference

XStream Out

2-2 Oracle Database XStream Guide

The Outbound Server
With XStream Out, an Oracle Streams apply process functions as an outbound server.
An outbound server is an optional Oracle background process that sends database
changes to a client application. Specifically, a client application can attach to an
outbound server and extract database changes from LCRs. A client application
attaches to the outbound server using the OCI or Java interface.

A client application can create multiple sessions. Each session can attach to only one
outbound server, and each outbound server can serve only one session at a time.
However, different client application sessions can connect to different outbound
servers or inbound servers.

In an XStream Out configuration, a capture process captures database changes and
sends these changes to an outbound server. A capture process is an optional Oracle
background process that scans the database redo log to capture DML and DDL
changes made to database objects. When a capture process is configured to capture
changes from the redo log, the database where the changes were generated is called
the source database for the capture process.

Figure 2–1 shows a capture process.

Figure 2–1 Capture Process

Change capture can be performed on the same database as the outbound server or on
a different database. When change capture is performed on a different database from
the one that contains the outbound server, a propagation sends the changes from the
change capture database to the outbound server database. Downstream capture is also
a supported mode to reduce the load on the source database.

When both the capture process and the outbound server are enabled, data changes,
encapsulated in row LCRs and DDL LCRs, are sent to the outbound server. The
outbound server can publish LCRs in various formats, such as OCI and Java. The
client application can process LCRs that are passed to it from the outbound server or
wait for LCRs from the outbound server by using a loop.

User Changes

Database Objects

Redo
Log

Queue

LCR
LCR
User Message
User Message
LCR
User Message
LCR
LCR
.
.
.

Capture
Process

Enqueue
LCRs

Capture
Changes

Log
Changes

XStream Out

XStream Concepts 2-3

An outbound server sends LOB, LONG, LONG RAW, and XMLType data to the client
application in chunks. Several chunks comprise a single column value of LOB, LONG,
LONG RAW, or XMLType data type.

Figure 2–2 shows an outbound server configuration.

Figure 2–2 XStream Out Outbound Server

The client application can detach from the outbound server whenever necessary. When
the client application re-attaches, the outbound server automatically determines where
in the stream of LCRs the client application was when it detached. The outbound
server starts sending LCRs from this point forward.

Outbound Servers and Apply Process Features
An Oracle Streams apply process functions as an outbound server, but some apply
process features are not applicable to an outbound server. The following sections
describe which apply process features are applicable to outbound servers and which
are not:

■ Apply Process Features That Are Applicable to Outbound Servers

■ Apply Process Features That Are Not Applicable to Outbound Servers

Apply Process Features That Are Applicable to Outbound Servers The following apply
process features can be used with outbound servers:

■ Rules and rule sets

See Oracle Streams Concepts and Administration.

■ Rule-based transformations

See Also: Oracle Streams Concepts and Administration for detailed
information about capture processes

See Also: Oracle Streams Concepts and Administration for information
about apply processes

Queue

.

.

.

.

.

.

Capture
Process

Enqueue
Changes

Redo
Log

Record
Changes

Capture
Changes

Database Objects

Oracle Database

Connect

Events
Dequeue
Changes

Acknowledgement

Outbound
Server

Client
Application

Using
XStream Out

Interface

XStream Out

2-4 Oracle Database XStream Guide

When a custom rule-based transformation is specified on a rule used by an
outbound server, the user who calls the transformation function is the connect user
for the outbound server.

See Oracle Streams Concepts and Administration.

■ The following apply process parameters:

– apply_sequence_nextval

– disable_on_limit

– grouptransops

– ignore_transaction

– max_sga_size

– maximum_scn

– startup_seconds

– time_limit

– trace_level

– transaction_limit

– txn_age_spill_threshold

– txn_lcr_spill_threshold

– write_alert_log

These apply process parameters control the behavior of outbound servers.

See Oracle Database PL/SQL Packages and Types Reference.

■ Transaction assembly by reader servers

See Oracle Streams Concepts and Administration.

■ The spilling of unapplied LCRs to hard disk

See Oracle Streams Concepts and Administration.

■ Instantiation system change number (SCN) settings

Instantiation SCNs are not required for database objects processed by an outbound
server. If an instantiation SCN is set for a database object, then the outbound
server only sends the LCRs for the database object with SCN values that are
greater than the instantiation SCN value. If a database object does not have an
instantiation SCN set, then the outbound server skips the instantiation SCN check
and sends all LCRs for that database object. In both cases, the outbound server
only sends LCRs that satisfy its rule sets.

See Oracle Streams Replication Administrator's Guide.

Apply Process Features That Are Not Applicable to Outbound Servers The following apply
process features cannot be used with outbound servers:

■ Apply handlers

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
following parameters are available: apply_sequence_nextval,
ignore_transaction, grouptransops, and max_sga_size.

XStream Out

XStream Concepts 2-5

You cannot specify an apply handler for an outbound server. The client application
can perform custom processing of the LCRs instead if necessary. However, if apply
processes are configured in the same database as the outbound server, then you
can specify apply handlers for these apply processes. In addition, you can
configure general apply handlers for the database. An outbound server ignores
general apply handlers.

See Oracle Streams Concepts and Administration.

■ The following apply process parameters:

– allow_duplicate_rows

– commit_serialization

– compare_key_only

– disable_on_error

– parallelism

– preserve_encryption

– rtrim_on_implicit_conversion

Outbound servers ignore the settings for these apply process parameters.

The commit_serialization parameter is always set to FULL for an outbound
server, and the parallelism parameter is always set to 1 for an outbound server.

See Oracle Database PL/SQL Packages and Types Reference.

■ Apply tags

An outbound server cannot set an apply tag for the changes it processes.

See Oracle Streams Replication Administrator's Guide.

■ Apply database links

Outbound servers cannot use database links.

See Oracle Streams Replication Administrator's Guide.

■ Conflict detection and resolution

An outbound server does not detect conflicts, and conflict resolution cannot be set
for an outbound server.

See Oracle Streams Replication Administrator's Guide.

■ Dependency scheduling

An outbound server does not evaluate dependencies because its parallelism must
be 1.

See Oracle Streams Concepts and Administration.

■ Substitute key column settings

An outbound server ignores substitute key column settings.

See Oracle Streams Concepts and Administration.

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
compare_key_only parameter is available.

XStream Out

2-6 Oracle Database XStream Guide

■ Enqueue directives specified by the SET_ENQUEUE_DESTINATION procedure in the
DBMS_APPLY_ADM package

An outbound server cannot enqueue changes into an Oracle database queue
automatically using the SET_ENQUEUE_DESTINATION procedure.

See Oracle Database PL/SQL Packages and Types Reference.

■ Execute directives specified by the SET_EXECUTE procedure in the DBMS_APPLY_ADM
package

An outbound server ignores execute directives.

See Oracle Database PL/SQL Packages and Types Reference.

■ Error creation and execution

An outbound server does not create an error transaction when it encounters an
error. It records information about errors in the ALL_APPLY and DBA_APPLY views,
but it does not enqueue the transaction into the error queue.

See Oracle Streams Concepts and Administration.

ID Key LCRs

XStream Out does not support the following data types in row LCRs:

■ BFILE

■ ROWID

■ User-defined types (including object types, REFs, varrays, and nested tables)

■ XMLType stored object relationally or as binary XML

■ The following Oracle supplied types: Any types, URI types, spatial types, and
media types

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

ID key LCRs enable an XStream client application to process changes to rows that
include unsupported data types. ID key LCRs do not contain all of the columns for a
row change. Instead, they contain the rowid of the changed row, a group of key
columns to identify the row in the table, and the data for the scalar columns of the
table that are supported by XStream Out. ID key LCRs do not contain columns for
unsupported data types.

An XStream client application can use ID key LCRs in the following ways:

■ If the application does not require the data in the unsupported columns, then the
application can process the values of the supported columns in the ID key LCRs
normally.

■ If the application requires the data in the unsupported columns, then the
application can use the information in an ID key LCR to query the correct row in
the database and consume the unsupported data for the row.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

XStream Out

XStream Concepts 2-7

ID Key LCRs Demo
A demo is available that creates a sample client application that process ID key LCRs.
Specifically, the client application attaches to an XStream outbound server and waits
for LCRs from the outbound server. When the client application receives an ID key
LCR, it can query the appropriate source database table using the rowid in the ID
key LCR.

The demo is available in the following location in both OCI and Java code:

$ORACLE_HOME/rdbms/demo/xstream/idkey

Sequence LCRs

A sequence LCR is a row LCR that includes information about sequence values.
Sequence database objects generate sequence values.

You can stream sequence LCRs in the following ways:

■ To capture sequence LCRs using a capture process, set the capture process
parameter capture_sequence_nextval to Y.

■ To construct sequence LCRs using the OCI interface, use the OCILCRNew function
and the OCILCRHeaderSet function with the OCI_ROWLCR_SEQ_LCR flag.

■ To construct sequence LCRs using the Java interface, use the DefaultRowLCR
constructor and setSequenceLCRFlag method.

An apply process or XStream inbound server can use sequence LCRs to ensure that the
sequence values at a destination database use the appropriate values. For increasing
sequences, the sequence values at the destination are equal to or greater than the
sequence values at the source database. For decreasing sequences, the sequence values
at the destination are less than or equal to the sequence values at the source database.
To instruct an apply process or XStream inbound server to use sequence LCRs, set the
apply_sequence_nextval apply process parameter to Y.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Note: Sequence LCRs are intended for one-way replication
configurations. Sequence LCRs cannot be used in bi-directional
replication configurations.

XStream Out

2-8 Oracle Database XStream Guide

Considerations for XStream Outbound Servers
The following are considerations for XStream outbound servers:

■ LCRs processed by an outbound server must be LCRs that were captured by a
capture process. An outbound server does not support LCRs that were captured
by synchronous captures or LCRs that were constructed by applications.

■ A single outbound server can process captured LCRs from only one source
database. The source database is the database where the changes encapsulated in
the LCRs were generated in the redo log.

■ The source database for the changes captured by a capture process must be at
10.2.0 or higher compatibility level for these changes to be processed by an
outbound server.

■ The capture process for an outbound server must be running on an Oracle
Database 11g Release 2 (11.2) or later database.

■ A single capture process cannot capture changes for both an outbound server and
an apply process. However, a single capture process can capture changes for
multiple outbound servers.

■ An outbound server appears as an Oracle Streams apply process in Oracle
Enterprise Manager.

■ Automatic split and merge of a stream is possible when the capture process and
the outbound server for the stream run on different database instances. However,
when the capture process and outbound server for a stream run on the same
database instance, automatic split and merge of the stream is not possible. See
Oracle Streams Replication Administrator's Guide for information about automatic
split and merge.

XStream Out and Distributed Transactions
You can perform distributed transactions using either of the following methods:

■ Modify tables in multiple databases in a coordinated manner using database links.

■ Use the XA interface, as exposed by the DBMS_XA supplied PL/SQL package or by
the OCI or JDBC libraries. The XA interface implements X/Open Distributed
Transaction Processing (DTP) architecture.

In an XStream Out configuration, changes made to the source database during a
distributed transaction using either of the preceding methods are streamed to an

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for more
information about the capture_sequence_nextval capture
process parameter

■ Oracle Streams Concepts and Administration for information about
setting a capture process parameter

■ Chapter 11, "OCI XStream Functions" for more information about
the OCI interface

■ Oracle Database XStream Java API Reference for more information
about the Java interface

■ Oracle Database Administrator's Guide for information about
sequences

XStream In

XStream Concepts 2-9

XStream outbound server. The outbound server sends the changes in a transaction to
the XStream client application after the transaction has committed.

However, the distributed transaction state is not replicated or sent. The client
application does not inherit the in-doubt or prepared state of such a transaction. Also,
XStream does not replicate or send the changes using the same global transaction
identifier used at the source database for XA transactions.

XA transactions can be performed in two ways:

■ Tightly coupled, where different XA branches share locks

■ Loosely coupled, where different XA branches do not share locks

XStream supports replication of changes made by loosely coupled XA branches
regardless of the COMPATIBLE initialization parameter value. XStream supports
replication of changes made by tightly coupled branches on an Oracle RAC source
database only if the COMPATIBLE initialization parameter is set to 11.2.0 or higher.

XStream In
XStream In enables a remote client application to send information into an Oracle
database from another system, such as a non-Oracle database or a file system. XStream
In provides an efficient, transaction-based interface for sending information to an
Oracle database from client applications. XStream In can consume the information
coming into the Oracle database in several ways, including data replication, auditing,
and change data capture. XStream In supports both OCI and Java interfaces.

When compared with OCI client applications that make DML changes to an Oracle
database directly, XStream In is more efficient for near real-time, transaction-based,
heterogeneous DML changes to Oracle databases.

XStream In uses the following features of Oracle Streams:

■ High performance processing of DML changes using an apply process and,
optionally, apply process parallelism

■ Apply process features such as SQL generation, conflict detection and resolution,
error handling, and customized processing with apply handlers

■ Streaming network transmission of information with minimal network round-trips

■ Rules, rule sets, and rule-based transformations

When a custom rule-based transformation is specified on a rule used by an
inbound server, the user who calls the transformation function is the apply user
for the inbound server.

XStream In supports all of the data types that are supported by Oracle Streams,
including LOBs, LONG, LONG RAW, and XMLType. A client application sends LOB and
XMLType data to the inbound server in chunks. Several chunks comprise a single
column value of LOB, LONG, LONG RAW, or XMLType data type.

This section contains these topics:

■ The Inbound Server

See Also:

■ Oracle Database Administrator's Guide for more information about
distributed transactions

■ Oracle Database Advanced Application Developer's Guide for more
information about Oracle XA

XStream In

2-10 Oracle Database XStream Guide

■ Considerations for XStream Inbound Servers

The Inbound Server
With XStream In, an Oracle Streams apply process functions as an inbound server. An
inbound server is an optional Oracle background process that receives LCRs from a
client application. Specifically, a client application can attach to an inbound server and
send row changes and DDL changes encapsulated in LCRs.

An external client application connects to the inbound server using the OCI or the Java
interface. After the connection is established, the client application acts as the capture
agent for the inbound server by streaming LCRs to it.

A client application can create multiple sessions. Each session can attach to only one
inbound server, and each inbound server can serve only one session at a time.
However, different client application sessions can connect to different inbound servers
or outbound servers. A client application can detach from the inbound server
whenever necessary.

Figure 2–3 shows an inbound server configuration.

Figure 2–3 XStream In Inbound Server

Considerations for XStream Inbound Servers
The following are considerations for XStream inbound servers:

■ You can control a DML or DDL trigger's firing property using the SET_TRIGGER_
FIRING_PROPERTY procedure in the DBMS_DDL package. This procedure lets you
specify whether a trigger always fires, fires once, or fires for apply process changes
only. When a trigger is set to fire once, it fires for changes made by a user process,

See Also:

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference

■ Oracle Streams Concepts and Administration

Note: An inbound server uses a queue that is not shown in
Figure 2–3. An inbound server’s queue is only used to store error
transactions.

External Data
Source

Send
Changes

Oracle Database

Connect

Events

Acknowledgement

Apply
Changes

Database Objects

Inbound
Server

Client
Application

Using
XStream In
Interface

Position Order in an LCR Stream

XStream Concepts 2-11

but it does not fire for changes made by an apply process or inbound server. A
trigger’s firing property works the same for apply processes and inbound servers.
See Oracle Streams Concepts and Administration.

■ An inbound server ignores the setting for the ignore_transaction apply process
parameter because LCRs sent to the inbound server by the client application might
not have transaction ID values.

■ An inbound server ignores the setting for the maximum_scn apply process
parameter because LCRs sent to the inbound server by the client application might
not have SCN values.

■ Currently, an inbound server appears as an Oracle Streams apply process in Oracle
Enterprise Manager.

Position Order in an LCR Stream
The following sections describe the position order in an LCR stream for both XStream
Out and XStream In:

■ About Position Order

■ Position of LCRs and XStream Out

■ Position of LCRs and XStream In

■ Summary of Position Use in XStream Out and XStream In

About Position Order
Both XStream Out and XStream In use LCR streams to share transactions. XStream Out
sends LCR streams to a client application. XStream In receives LCR streams from a
client application.

Each LCR has a position attribute. The position of an LCR identifies its placement in
the stream of LCRs in a transaction. Each LCR position has the following properties:

■ The position is unique for each LCR.

■ The position is of RAW data type.

■ The position is strictly increasing within the LCR stream, within a transaction, and
across transactions.

■ The position is byte-comparable, and the comparison results for multiple positions
determines the ordering of the LCRs in the stream.

■ The position of an LCR remains identical when the database, the client application,
or an XStream component restarts.

■ The position is not affected by any rule changes that might reduce or increase the
number of LCRs in the stream.

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
ignore_transaction parameter is available for outbound servers and
apply processes.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about apply process parameters

Position Order in an LCR Stream

2-12 Oracle Database XStream Guide

XStream Out only sends committed data, and XStream In only receives committed
data.

The following are the properties related to an LCR stream:

■ An LCR stream must be repeatable.

■ An LCR stream must contain a list of assembled, committed transactions. LCRs
from one transaction are contiguous. There is no interleaving of transactions in an
LCR stream.

■ Each transaction within an LCR stream must have an ordered list of LCRs and a
transaction ID.

■ The last LCR in each transaction must be a commit LCR.

■ Each LCR must have a unique position.

■ The position of all LCRs within a single transaction and across transactions must
be strictly increasing.

An LCR stream can batch LCRs from multiple transactions and arrange them in
increasing position order. LCRs from one transaction are contiguous, and the position
must be increasing in the transaction. Also, the position must be nonzero for all LCRs.

Position of LCRs and XStream Out
An XStream Out outbound server streams LCRs that were captured by a capture
process to a client application. This section describes concepts related to the LCR
positions for an outbound server.

Additional LCR Attributes Related to Position
LCRs that were captured by a capture process contain the following additional
attributes related to LCR position:

■ The scn_from_position attribute contains the SCN of the LCR.

■ The commit_scn_from_position attribute contains the commit SCN of the
transaction to which the LCR belongs.

The Processed Low Position and Restartability for XStream Out
If the outbound server or the client application stops abnormally, then the connection
between the two is broken automatically. In this case, the client application must roll
back all incomplete transactions.

The processed low position is a position below which all transactions have been
processed by the client application. The client application must maintain its processed
low position to recover properly after either it or the outbound server (or both) are
restarted. The processed low position indicates that the client application has
processed all LCRs that are less than or equal to this value. The client application can
update the processed low position for each transaction that it consumes.

Note: The scn_from_position and commit_scn_from_position
attributes are not present in row LCRs captured by a synchronous
capture nor in explicitly captured row LCRs.

See Also: Oracle Database PL/SQL Packages and Types Reference

Position Order in an LCR Stream

XStream Concepts 2-13

When the client application attaches to the outbound server, the following conditions
related to the processed low position are possible:

■ The client application can pass a processed low position to the outbound server
that is equal to or greater than the outbound server’s processed low position. In
this case, the outbound server resumes streaming LCRs from the first LCR that has
a position greater than the client application’s processed low position.

■ The client application can pass a processed low position to the outbound server
that is less than the outbound server’s processed low position. In this case, the
outbound server raises an error.

■ The client application can pass NULL to the outbound server. In this case, the
outbound server determines the processed low position automatically and starts
streaming LCRs from the LCR that has a position greater than this processed low
position. When this happens, the client application must suppress or discard each
LCR with a position less than or equal to the client application’s processed low
position.

Streaming Network Transmission
To minimize network latency, the outbound server streams LCRs to the client
application with time-based acknowledgments. For example, the outbound server
might send an acknowledgment every 30 seconds. This streaming protocol fully
utilizes the available network bandwidth, and the performance is unaffected by the
presence of a wide area network (WAN) separating the sender and the receiver. The
outbound server extends the underlying Oracle Streams infrastructure, and the
outbound server maintains the streaming performance rate.

Using OCI, you can control the time period of the interval by setting the OCI_ATTR_
XSTREAM_ACK_INTERVAL attribute through the OCI client application. The default is 30
seconds.

Using Java, you can control the time period of the interval by setting the
batchInterval parameter in the attach method in the XStreamOut class. The client
application can specify this interval when it invokes the attach method.

If the interval is large, then the outbound server can stream out more LCRs for each
acknowledgment interval. However, a longer interval delays how often the client
application can send the processed low position to the outbound server. Therefore, a
longer interval might mean that the processed low position maintained by the
outbound server is not current. In this case, when the outbound server restarts, it must
start processing LCRs at an earlier position than the one that corresponds to the
processed low position maintained by the client application. Therefore, more LCRs
might be retransmitted, and the client application must discard the ones that have
been applied.

Position of LCRs and XStream In
A client application streams LCRs to an XStream In inbound server. This section
describes concepts related to the LCR positions for an inbound server.

Each position must be encoded in a format (such as base-16 encoding) that supports
byte comparison. The position is essential to the total order of the transaction stream
sent by client applications using the XStream In interface.

The following positions are important for inbound servers:

See Also: "Displaying the Processed Low Position for an Outbound
Server" on page 6-8

Position Order in an LCR Stream

2-14 Oracle Database XStream Guide

■ The applied low position indicates that the LCRs less than or equal to this value
have been applied.

An LCR is applied by an inbound server when the LCR has either been executed,
sent to an apply handler, or moved to the error queue.

■ The spill position indicates that the LCRs with positions less than or equal to this
value have either been applied or spilled from memory to hard disk.

■ The applied high position indicates the highest position of an LCR that has been
applied.

When the commit_serialization apply process parameter is set to DEPENDENT_
TRANSACTIONS for an inbound server, an LCR with a higher commit position might
be applied before an LCR with a lower commit position. When this happens, the
applied high position is different from the applied low position.

■ The processed low position is the higher value of either the applied low position
or the spill position.

The processed low position is the position below which the inbound server no
longer requires any LCRs. This position corresponds with the oldest SCN for an
Oracle Streams apply process that applies changes captured by a capture process.

The processed low position indicates that the LCRs with positions less than or
equal to this position have been processed by the inbound server. If the client
re-attaches to the inbound server, then it must send only LCRs with positions
greater than the processed low position because the inbound server discards any
LCRs with positions less than or equal to the processed low position.

If the client application stops abnormally, then the connection between the client
application and the inbound server is automatically broken. Upon restart, the client
application retrieves the processed low position from the inbound server and instructs
its capture agent to retrieve changes starting from this processed low position.

To limit the recovery time of a client application using the XStream In interface, the
client application can send activity, such as empty transactions, periodically to the
inbound server. Row LCRs can include commit transaction control directives. When
there are no LCRs to send to the server, the client application can send a row LCR with
a commit directive to advance the inbound server’s processed low position. This
activity acts as an acknowledgment so that the inbound server’s processed low
position is advanced.

Example 2–1 Advancing the Processed Low Position of an Inbound Server

Consider a client application and an external data source. The client application sends
changes made to the hr.employees table to the inbound server for processing, but the
external data source includes many other tables, including the oe.orders table.

Assume that the following changes are made to the external data source:

Position Change Client Application Activity

1 Insert into the hr.employees table Send row LCR including the change to
the inbound server

2 Insert into the oe.orders table None

3 Commit Send a row LCR with a commit directive
to inbound server

4 Insert into the oe.orders table None

Position Order in an LCR Stream

XStream Concepts 2-15

The client application gets the changes from the external data source, generates
appropriate LCRs, and sends the LCRs to the inbound server. Therefore, the inbound
server receives the following LCRs:

■ Row LCR for position 1

■ Row LCR for position 3

After position 3, there are no relevant changes to send to the inbound server. If the
inbound server restarts when the client application has processed all the changes up to
position 101, then, after restarting, the client application must recheck all of the
external database changes from position 4 forward. The rechecks are required because
the inbound server's processed low position is 3.

Instead, assume that the client application sends commits to the inbound server
periodically, even when there are no relevant changes to the hr.employees table:

In this case, the inbound server moves its processed low position to 101 when it has
processed all of the row LCRs sent by the client application. If the inbound server
restarts, its processed low position is 101, and the client application does not need to
check all of the changes back to position 3.

5 Update the oe.orders table None

6 Commit None

7 Commit None

... ... (Activity on the external data source,
but no changes to the hr.employees
table)

None

100 Insert into the oe.orders table None

101 Commit None

Position Change Client Application Activity

1 Insert into the hr.employees table Send row LCR including the change to
the inbound server

2 Insert into the oe.orders table None

3 Commit Send a row LCR with a commit directive
to inbound server

4 Insert into the oe.orders table None

5 Update the oe.orders table None

6 Commit None

7 Commit None

... ... (Activity on the external data source,
but no changes to the hr.employees
table)

Send several row LCRs, each one with a
commit directive, to the inbound server

100 Insert into the oe.orders table None

101 Commit Send a row LCR with a commit directive
to the inbound server

Position Change Client Application Activity

XStream and SQL Generation

2-16 Oracle Database XStream Guide

The sample applications in "Sample XStream Client Application" on page 4-26 include
code that sends a row LCR with a commit directive to an inbound server. These
commit directives are sometimes called "ping LCRs." Search for the word "ping" in the
sample XStream client applications to find the parts of the applications that include
this code.

Summary of Position Use in XStream Out and XStream In
Table 2–1 compares how an XStream Out outbound server and an XStream In inbound
server use positions.

XStream and SQL Generation
SQL generation is the ability to generate the SQL statement required to perform the
change encapsulated in a row LCR. Apply processes, XStream outbound servers, and
XStream inbound servers can use SQL generation to generate the SQL statement
necessary to perform the insert, update, or delete operation in a row LCR.

This section contains these topics:

■ Interfaces for Performing SQL Generation

■ SQL Generation Formats

■ Data Types and Character Sets

■ Interfaces for Performing SQL Generation

Interfaces for Performing SQL Generation
You can use the following interfaces to perform SQL generation:

■ The PL/SQL interface, which uses the GET_ROW_TEXT and GET_WHERE_CLAUSE
member procedures for row LCRs

■ The OCI for XStream

■ The Java interface for XStream

The PL/SQL interface generates SQL in a CLOB data type, while the OCI and Java
interfaces generate SQL in plain text. In the Java interface, the size of the text is limited
by the size of String data type.

See Also: "Displaying the Position Information for an Inbound
Server" on page 6-11

Table 2–1 Position Use in the Outbound Server and the Inbound Server

XStream Out Outbound Server XStream In Inbound Server

The outbound server exposes the position. The client application sets the position.

If the outbound server or client application
stops abnormally, then all LCRs above the
processed low position are resent. The
processed low position is equivalent to an
apply process low watermark (LWM), and the
apply process obtains the oldest SCN value by
using this value.

If the inbound server or client application
stops abnormally, then the client application
must retransmit all LCRs with a position
greater than or equal to the processed low
position. The processed low position is
equivalent to the apply process low water
mark (LWM).

See Also: Oracle Streams Concepts and Administration

XStream and SQL Generation

XStream Concepts 2-17

SQL Generation Formats
SQL statements can be generated in one of two formats: inline values or bind
variables. Use inline values when the returned SQL statement is relatively small. For
larger SQL statements, use bind variables. In this case, the bind variables are passed to
the client application in a separate list that includes pointers to both old and new
column values.

For information about using bind variables with each interface, refer to the following
documentation:

■ The documentation for the GET_ROW_TEXT and GET_WHERE_CLAUSE row LCR
member procedures in Oracle Database PL/SQL Packages and Types Reference

■ "OCILCRRowStmtWithBindVarGet()" on page 11-16

■ The documentation for DefaultRowLCR.getBinds() in Oracle Database XStream Java
API Reference

Data Types and Character Sets
Regarding data types and character sets, SQL generation works the same way for
XStream Out outbound servers, XStream In inbound servers, and apply processes. For
detailed information, see Oracle Streams Concepts and Administration.

SQL Generation Demo
A demo that performs SQL generation is available. The demo uses the DBMS_XSTREAM_
ADM PL/SQL package to configure an XStream Out environment, and it uses an OCI
client application to perform SQL generation.

The demo uses SQL generation to replicate DML changes from a source database to a
destination database. Specifically, the demo creates the xsdemosg schema in both the
source database and the destination database. It creates various types of tables in the
xsdemosg schema at each database, including tables with LOB columns. It executes a
set of DML statements on the tables in xsdemosg schema in the source database. Oracle
Streams components, such as a capture process and a queue, send the changes in the
form of LCRs to an XStream outbound server that is also running on the source

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about the GET_ROW_TEXT and GET_WHERE_CLAUSE row
LCR member procedures

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference for information about
the Java interface for XStream

Note: For generated SQL statements with the values inline, SQL
injection is possible. SQL injection is a technique for maliciously
exploiting applications that use client-supplied data in SQL
statements, thereby gaining unauthorized access to a database to view
or manipulate restricted data. Oracle strongly recommends using bind
variables if you plan to execute the generated SQL statement. See
Oracle Database PL/SQL Language Reference for more information about
SQL injection.

XStream and Security

2-18 Oracle Database XStream Guide

database. The outbound server makes the LCRs available to the demo client
application.

The demo client application, when run, uses the OCI API to connect to the outbound
server and receive the LCRs. The demo client application uses SQL generation to
execute the changes that are encapsulated in the LCRs. Therefore, the client application
replicates the changes made to xsdemosg schema in the source database to the
xsdemosg in the destination database.

You can modify the demo to replicate changes to any schema. Both the schema and the
replicated tables must exist on both the source database and the destination database.
SQL generation is only possible for DML changes. Therefore, this demo cannot be used
to replicate DDL changes.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/sqlgen

XStream and Security
XStream Out allows a user to receive LCRs. After an XStream Out user receives LCRs,
the user might save the contents of LCRs to a file or generate the SQL statements to
execute the LCRs on a non-Oracle database. XStream In allows a user to update tables
in its own schema. XStream does not assume that the connected user to the outbound
server or inbound server is trusted.

Java and OCI client applications must connect to an Oracle database before attaching
to an XStream outbound server created on that database. The connected user must be
the same as the connect user configured for the outbound server. Otherwise, an error is
raised.

Java and OCI client applications must connect to an Oracle database before attaching
to an XStream inbound server created on that database. The connected user must be
the same as the apply user configured for the inbound server. Otherwise, an error is
raised.

The XStream Java layer API relies on Oracle JDBC security because XStream accepts
the Oracle JDBC connection instance created by client applications in the XStream
attach API. The connected user is validated as an XStream user.

Other Ways to Share Information in a Heterogeneous Environment
Oracle Streams provides other ways to implement heterogeneous information sharing
besides XStream, both in past releases and in the current release. These ways include:

Note: The SQL generation demo is not available for the XStream Java
API.

See Also:

■ "Security Model" on page 8-4 for information about the security
requirements for configuring and managing XStream

■ Chapter 4, "Configuring XStream"

■ Oracle Streams Concepts and Administration for information about
apply users

Other Ways to Share Information in a Heterogeneous Environment

XStream Concepts 2-19

■ Replicating data changes to a non-Oracle database using an Oracle Database
Gateway

■ Dequeuing messages from an Oracle database using a Java Message Service (JMS)
client

■ Enqueuing messages directly into an Oracle database queue with a client
application

See Also:

■ Oracle Streams Replication Administrator's Guide

■ Oracle Database 2 Day + Data Replication and Integration Guide

■ Oracle Streams Advanced Queuing User's Guide

Other Ways to Share Information in a Heterogeneous Environment

2-20 Oracle Database XStream Guide

3

XStream Use Cases 3-1

3 XStream Use Cases

XStream provides a flexible infrastructure for sharing information between Oracle data
sources and non-Oracle data sources. Therefore, you can use XStream in many
different ways to meet the needs of various organizations. This chapter describes the
most common use cases for XStream.

This chapter contains these topics:

■ Introduction to XStream Use Cases

■ Replicating Data Changes with Non-Oracle Databases

■ Using Files to Store Data Changes

■ Sharing Data Changes with a Client-Side Memory Cache

Introduction to XStream Use Cases
Each XStream use case in this chapter contains three main elements:

■ A general description of the use case as it applies to both XStream Out and
XStream In

■ A specific scenario for XStream Out

■ A specific scenario for XStream In

In some cases, a section includes a reference to sample code in the Oracle Database
installation that illustrates a scenario.

XStream Out Use Cases
In each XStream Out use case, the following components and actions send Oracle
Database changes to a client application:

■ Oracle Streams captures data changes made to an Oracle database.

■ Oracle Streams sends these changes, in the form of logical change records (LCRs),
to an outbound server.

See Also:

■ Chapter 2, "XStream Concepts"

■ Chapter 4, "Configuring XStream"

■ Chapter 5, "Managing XStream"

■ Chapter 6, "Monitoring XStream"

■ Chapter 7, "Troubleshooting XStream"

Replicating Data Changes with Non-Oracle Databases

3-2 Oracle Database XStream Guide

■ The outbound server sends the LCRs to a client application.

How the client application processes the LCRs is different for each use case.

XStream In Use Cases
In each XStream In use case, the following components and actions send Oracle
Database changes to an inbound server:

■ A client application gathers data changes from an external data source and sends
them to an inbound server in the form of LCRs.

■ The inbound server receives the LCRs from a client application.

■ The inbound server can apply the data changes to database objects in an Oracle
database. The inbound server can also process the LCRs in a customized way.

How the client application gathers the data changes is different for each use case.

Replicating Data Changes with Non-Oracle Databases
You can configure a heterogeneous replication environment with XStream. Replication
is generally used to improve availability and to improve performance by spreading the
network load over multiple regions and servers. In a heterogeneous replication
environment, data is replicated between databases from different vendors. See Oracle
Streams Replication Administrator's Guide for common reasons to use replication.

XStream Out can send data changes made to an Oracle database to a non-Oracle
database. Specifically, the client application connects to the outbound server and
receives changes made to tables within the Oracle database. The client application then
applies the data changes in the LCRs to the non-Oracle database. The client application
can process the LCRs in any customized way before applying them.

XStream In can receive data changes made to a non-Oracle database. Specifically, the
client application gathers the data changes made to the non-Oracle database, formats
these changes into LCRs, and sends these LCRs to an inbound server. The inbound
server applies the changes in the LCRs to the Oracle database.

Using Files to Store Data Changes
Some environments use files to store data changes. Typically, files store data changes
for the following reasons:

■ To process data changes in an environment that has no physical network or a
limited physical network. For example, some locations do not have a physical
network for security reasons.

■ To process data changes in an environment that uses disconnected computing. For
example, a salesperson might fill orders on a laptop at various locations without a
network connection, and then update a primary database over the network once a
day.

■ To process data changes in an environment that uses satellite communications. In
this case, a bulk transfer of files is more efficient than incremental changes over the
network.

See Also: "XStream Out" on page 2-1

See Also: "XStream In" on page 2-9

Sharing Data Changes with a Client-Side Memory Cache

XStream Use Cases 3-3

XStream Out can send Oracle Database changes to a file in a file system. Specifically,
the client application writes the data changes in LCRs to the file. The client application
can process the LCRs in any customized way before writing them to the file, and the
file can reside on the computer system running the client application or on a different
computer system. Using SQL generation, the client application can also write the SQL
statement required to perform the change encapsulated in a row LCR to a file.

XStream In can send data changes from a file to an Oracle database. Specifically, the
client application reads the data changes from the file and sends the changes, in the
form of LCRs, to an inbound server.

XStream Demo That Replicates Database Changes Using Files
A demo is available that creates sample client applications that perform file-based
replication using the XStream APIs. Specifically, at one database, the demo creates an
XStream Out configuration that captures database changes and sends the LCRs to an
outbound server. A client application attaches to the outbound server and writes the
database changes to a file.

At a different database, the demo creates an XStream In client application that attaches
to an inbound server, reads the changes in the file, and sends them in the form of LCRs
to the inbound server. The inbound server applies the changes to the database objects
at the destination database.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/fbr

Sharing Data Changes with a Client-Side Memory Cache
Some environments cache data in memory to improve performance. Cached data can
provide low response times and high throughput for systems that require the best
possible performance. XStream can share data changes incrementally with a client side
memory cache.

XStream Out can incrementally refresh a client-side memory cache by sending Oracle
database changes to a memory cache. Specifically, the client application applies the
data changes in the LCRs to the memory cache. The client application can process the
LCRs in any customized way before applying them, and the memory cache can reside
on the computer system running the client application or on a different computer
system.

XStream In can incrementally retrieve data changes from a memory cache. Specifically,
the client application retrieves the data changes and sends the changes, in the form of
LCRs, to an inbound server. The memory cache can reside on the computer system
running the client application or on a different computer system.

See Also:

■ "XStream and SQL Generation" on page 2-16

■ Oracle Streams Concepts and Administration

Sharing Data Changes with a Client-Side Memory Cache

3-4 Oracle Database XStream Guide

Part II
Part II XStream Administration

This part describes XStream administration. This part contains the following chapters:

■ Chapter 4, "Configuring XStream"

■ Chapter 5, "Managing XStream"

■ Chapter 6, "Monitoring XStream"

■ Chapter 7, "Troubleshooting XStream"

4

Configuring XStream 4-1

4 Configuring XStream

This chapter describes configuring the Oracle Database components that are used by
XStream. This chapter also includes sample client applications that communicate with
an XStream outbound server and inbound server.

This chapter contains these topics:

■ Preparing for XStream

■ Configuring XStream Out

■ Configuring XStream In

■ Sample XStream Client Application

Preparing for XStream
This section describes preparing for an XStream configuration.

This section contains the following topics:

■ Granting Privileges for the XStream Administrator

■ Preparing for XStream Out

■ Preparing for XStream In

Granting Privileges for the XStream Administrator
An XStream administrator configures and manages XStream components in an
XStream Out or XStream In environment. This section describes configuring an
XStream administrator by granting a user the appropriate privileges. You must
configure an XStream administrator in each Oracle database included in the XStream
configuration.

See Also:

■ Chapter 2, "XStream Concepts"

■ Chapter 3, "XStream Use Cases"

■ Chapter 6, "Monitoring XStream"

■ Chapter 7, "Troubleshooting XStream"

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference

Preparing for XStream

4-2 Oracle Database XStream Guide

Prerequisites
Before configuring an XStream administrator, ensure that the following prerequisites
are met:

■ Ensure that you can log in to each database in the XStream configuration as an
administrative user who can create users, grant privileges, and create tablespaces.

■ Identify a user who will be the XStream administrator. Either create a new user
with the appropriate privileges or grant these privileges to an existing user.

Do not use the SYS or SYSTEM user as an XStream administrator, and ensure that
the XStream administrator does not use the SYSTEM tablespace as its default
tablespace.

■ If a new tablespace is required for the XStream administrator, then ensure that
there is enough disk space on each computer system in the XStream configuration
for the tablespace. The recommended size of the tablespace is 25 MB.

Assumptions
This section makes the following assumptions:

■ The username of the XStream administrator is xstrmadmin.

■ The tablespace used by the XStream administrator is xstream_tbs.

To configure an XStream administrator:

1. In SQL*Plus, connect as an administrative user who can create users, grant
privileges, and create tablespaces. Remain connected as this administrative user
for all subsequent steps.

2. Either create a tablespace for the XStream administrator or use an existing
tablespace.

This tablespace stores any objects created in the XStream administrator’s schema,
including any spillover of messages from the buffered queues owned by the
schema.

For example, the following statement creates a new tablespace for the XStream
administrator:

CREATE TABLESPACE xstream_tbs DATAFILE '/usr/oracle/dbs/xstream_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

3. Create a new user to act as the XStream administrator or identify an existing user.

For example, to create a user named xstrmadmin and specify that this user uses the
xstream_tbs tablespace, run the following statement:

CREATE USER xstrmadmin IDENTIFIED BY password
 DEFAULT TABLESPACE xstream_tbs
 QUOTA UNLIMITED ON xstream_tbs;

See Also: Oracle Database Administrator's Guide for information
about connecting to a database in SQL*Plus

Note: Enter an appropriate password for the administrative user.

Preparing for XStream

Configuring XStream 4-3

4. Grant the Oracle Streams administrator the DBA role:

GRANT DBA TO xstrmadmin;

5. Run the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_XSTREAM_AUTH package.

A user must have explicit EXECUTE privilege on a package to execute a subprogram
in the package inside of a user-created subprogram, and a user must have explicit
SELECT privilege on a data dictionary view to query the view inside of a
user-created subprogram. These privileges cannot be granted through a role. You
can run the GRANT_ADMIN_PRIVILEGE procedure to grant such privileges to the
XStream administrator, or you can grant them directly.

Depending on the parameter settings for the GRANT_ADMIN_PRIVILEGE procedure, it
either grants the privileges for an XStream administrator directly, or it generates a
script that you can edit and then run to grant these privileges.

Use the GRANT_ADMIN_PRIVILEGE procedure to grant privileges directly:

Run the following procedure:

BEGIN
 DBMS_XSTREAM_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'xstrmadmin',
 grant_privileges => TRUE);
END;
/

Use the GRANT_ADMIN_PRIVILEGE procedure to generate a script:

Complete the following steps:

a. Use the SQL statement CREATE DIRECTORY to create a directory object for the
directory into which you want to generate the script. A directory object is
similar to an alias for the directory. For example, to create a directory object
called xstrm_dir for the /usr/admin directory on your computer system, run
the following procedure:

CREATE DIRECTORY xstrm_dir AS '/usr/admin';

b. Run the GRANT_ADMIN_PRIVILEGE procedure to generate a script named grant_
xstrm_privs.sql and place this script in the /usr/admin directory on your
computer system:

See Also: Oracle Database Security Guide for guidelines about
choosing passwords

Note: The DBA role is required for a user to create or alter outbound
servers, inbound servers, capture processes, synchronous captures,
and apply processes. When the user does not need to perform these
tasks, the DBA role can be revoked from the user.

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
DBMS_XSTREAM_AUTH package is available.

See Also: "GRANT_ADMIN_PRIVILEGE Procedure" on page 9-6

Preparing for XStream

4-4 Oracle Database XStream Guide

BEGIN
 DBMS_XSTREAM_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee => 'xstrmadmin',
 grant_privileges => FALSE,
 file_name => 'grant_xstrm_privs.sql',
 directory_name => 'xstrm_dir');
END;
/

Notice that the grant_privileges parameter is set to FALSE so that the
procedure does not grant the privileges directly. Also, notice that the directory
object created in Step a is specified for the directory_name parameter.

c. Edit the generated script if necessary and save your changes.

d. Execute the script in SQL*Plus:

SET ECHO ON
SPOOL grant_xstrm_privs.out
@/usr/admin/grant_xstrm_privs.sql
SPOOL OFF

e. Check the spool file to ensure that all of the grants executed successfully. If
there are errors, then edit the script to correct the errors and rerun it.

6. If necessary, grant the following additional privileges:

■ If you plan to use Oracle Enterprise Manager to manage databases with
XStream components, then configure the XStream administrator to be a
Database Control administrator. Doing so grants additional privileges
required by Oracle Enterprise Manager, such as the privileges required to run
Oracle Enterprise Manager jobs. See Oracle Database 2 Day DBA for
instructions.

■ Grant the privileges for a remote XStream administrator to perform actions in
the local database. Grant these privileges using the GRANT_REMOTE_ADMIN_
ACCESS procedure in the DBMS_XSTREAM_AUTH package. Grant this privilege if a
remote XStream administrator will use a database link that connects to the
local XStream administrator to perform administrative actions. Specifically,
grant these privileges if either of the following conditions are true:

– You plan to configure a downstream capture process at a remote
downstream database that captures changes originating at the local source
database, and the downstream capture process will use a database link to
perform administrative actions at the source database.

– You plan to use a remote XStream administrator to set the instantiation
system change number (SCN) values for replicated database objects at the
local database.

■ If no apply user is specified for an inbound server, then grant the XStream
administrator the necessary privileges to perform DML and DDL changes on
the apply objects owned by other users. If an apply user is specified, then the
apply user must have these privileges. These privileges can be granted directly
or through a role.

■ If no apply user is specified for an inbound server, then grant the XStream
administrator EXECUTE privilege on any PL/SQL subprogram owned by
another user that is executed by an inbound server. These subprograms can be
used in apply handlers or error handlers. If an apply user is specified, then the

Preparing for XStream

Configuring XStream 4-5

apply user must have these privileges. These privileges must be granted
directly. They cannot be granted through a role.

■ Grant the XStream administrator EXECUTE privilege on any PL/SQL function
owned by another user that is specified in a custom rule-based transformation
for a rule used by a capture process, synchronous capture, propagation,
outbound server, or inbound server. For a capture process or synchronous
capture, if a capture user is specified, then the capture user must have these
privileges. For an inbound server, if an apply user is specified, then the apply
user must have these privileges. These privileges must be granted directly.
They cannot be granted through a role.

■ Grant the XStream administrator privileges to alter database objects where
appropriate. For example, if the XStream administrator must create a
supplemental log group for a table in another schema, then the XStream
administrator must have the necessary privileges to alter the table. These
privileges can be granted directly or through a role.

■ If the XStream administrator does not own the queue used by a capture
process, synchronous capture, propagation, outbound server, or inbound
server, and is not specified as the queue user for the queue when the queue is
created, then the XStream administrator must be configured as a secure queue
user of the queue if you want the XStream administrator to be able to enqueue
messages into or dequeue messages from the queue. The XStream
administrator might also need ENQUEUE or DEQUEUE privileges on the queue, or
both. See Oracle Streams Concepts and Administration for information about
managing queues.

■ Grant the XStream administrator EXECUTE privilege on any object types that
the XStream administrator might need to access. These privileges can be
granted directly or through a role.

■ If the XStream administrator will use Data Pump to perform export and
import operations on database objects in other schemas during an
instantiation, then grant the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles
to the XStream administrator.

■ If you are using Oracle Database Vault, then the following additional
privileges are required:

– The XStream administrator must be granted the DV_STREAMS_ADMIN role to
perform the following tasks: create a capture process, create an outbound
server, and modify the capture user for a capture process. When the
XStream administrator is not performing these tasks, you can revoke DV_
STREAMS_ADMIN role from the XStream administrator.

– The apply user for an inbound server must be authorized to apply
changes to realms that include replicated database objects. The replicated
database objects are the objects to which the inbound server applies
changes.

To authorize an apply user for a realm, run the DBMS_MACADM.ADD_AUTH_
TO_REALM procedure and specify the realm and the apply user. For exam-
ple, to authorize apply user xstrmadmin for the sales realm, run the fol-
lowing procedure:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'sales',
 grantee => 'xstrmadmin');
END;

Preparing for XStream

4-6 Oracle Database XStream Guide

/

In addition, the user who performs the following actions must be granted the
BECOME USER system privilege:

– Creates or alters a capture process

– Creates or alters an outbound server

– Creates or alters an inbound server

Granting the BECOME USER system privilege to the user who performs these
actions is not required if Oracle Database Vault is not installed. You can revoke
the BECOME USER system privilege from the user after the completing one of
these actions, if necessary.

See Oracle Database Vault Administrator's Guide.

7. Repeat all of the previous steps at each Oracle database in the environment that
will use XStream.

Preparing for XStream Out
This section describes the decisions to make and the tasks to complete to prepare for
an XStream Out configuration.

■ Decide How to Configure XStream

■ Prerequisites for Configuring XStream Out

Decide How to Configure XStream
When you configure XStream Out, you must configure XStream components to
capture database changes and send these changes to the outbound server in the form
of logical change records (LCRs). These components include a capture process and at
least one queue. The capture process can be a local capture process or a downstream
capture process. For some configurations, you must also configure a propagation.

Local capture means that a capture process runs on the source database. Downstream
capture means that a capture process runs on a database other than the source
database. The source database is the database where the changes were generated. The
primary reason to use downstream capture is to reduce the load on the source
database, thereby improving its performance. The primary reason to use a local
capture is because it is easier to configure and maintain.

The database that captures changes made to the source database is called the capture
database. One of the following databases can be the capture database:

■ Source database (local capture)

■ Destination database (downstream capture)

■ A third database (downstream capture)

If the database running the outbound server is not the capture database, then a
propagation sends changes from the capture database to the database running the
outbound server. If the database running the outbound server is the capture database,
then this propagation between databases is not needed because the capture process
and outbound server use the same queue.

You can configure the components in the following ways:

■ Local capture and outbound server in the same database: The database objects,
capture process, and outbound server are all in the same database. This

Preparing for XStream

Configuring XStream 4-7

configuration is the easiest to configure and maintain because all of the
components are contained in one database. See Figure 4–1 for an overview of this
configuration.

■ Local capture and outbound server in different databases: The database objects
and capture process are in one database, and the outbound server is in another
database. A propagation sends LCRs from the source database to the outbound
server database. This configuration is best when you want easy configuration and
maintenance and when you want to optimize the performance of the outbound
server database. See Figure 4–2 for an overview of this configuration.

■ Downstream capture and outbound server in the same database: The database
objects are in one database, and the capture process and outbound server are in
another database. This configuration is best when you want to optimize the
performance of the database with the database objects and want to offload change
capture to another database. With this configuration, most of the components run
on the database with the outbound server. See Figure 4–3 for an overview of this
configuration.

■ Downstream capture and outbound server in different databases: The database
objects are in one database, the outbound server is in another database, and the
capture process is in a third database. This configuration is best when you want to
optimize the performance of both the database with the database objects and the
database with the outbound server. With this configuration, the capture process
runs on a third database, and a propagation sends LCRs from the capture database
to the outbound server database. See Figure 4–4 for an overview of this
configuration.

The following figures illustrate these different configurations.

Figure 4–1 Local Capture and Outbound Server in the Same Database

Queue

.

.

.

.

.

.

Capture
Process

Enqueue
LCRs

Redo
Log

Record
Changes

Capture
LCRs

Database Objects

Receive LCRs
Dequeue
LCRs Outbound

Server
Client

Application

Oracle Database

Preparing for XStream

4-8 Oracle Database XStream Guide

Figure 4–2 Local Capture and Outbound Server in Different Databases

Queue

.

.

.

.

.

.

Capture
Process

Enqueue
LCRs

Redo
Log

Record
Changes

Capture
LCRs

Database Objects

Receive LCRs
Dequeue
LCRs Outbound

Server
Client

Application

Queue

.

.

.

.

.

.

Propagate
LCRs

Oracle Database

Oracle Database

Preparing for XStream

Configuring XStream 4-9

Figure 4–3 Downstream Capture and Outbound Server in the Same Database

Oracle Database

Oracle Database

Client
Application

Redo
Log

From
Source

Database Objects

Record
Changes

Redo
Log

Send Redo
Data

Capture
Process

Enqueue
LCRs

Dequeue
LCRs

Queue

.

.

.

.

.

.

Outbound
Server

Receive
LCRs

Capture
LCRs

Preparing for XStream

4-10 Oracle Database XStream Guide

Figure 4–4 Downstream Capture and Outbound Server in Different Databases

If you decide to configure a downstream capture process, then you must decide which
type of downstream capture process you want to configure. The following types are
available:

■ A real-time downstream capture process configuration means that redo transport
services use the log writer process (LGWR) at the source database to send redo
data to the downstream database, and a remote file server process (RFS) at the
downstream database receives the redo data over the network and stores the redo
data in the standby redo log.

■ An archived-log downstream capture process configuration means that archived
redo log files from the source database are copied to the downstream database,
and the capture process captures changes in these archived redo log files. These
log files can be transferred automatically using redo transport services, or they can
be transferred manually using a method such as FTP.

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made to the source database. The time is reduced because the

Oracle Database

Oracle Database

Client
Application

Dequeue
LCRs

Queue

.

.

.

.

.

.

Outbound
Server

Receive
LCRs

Propagate
LCRs

Queue

.

.

.

.

.

.

Enqueue
LCRs

Redo
Log

From
Source

Capture
Process

Capture
LCRs

Oracle Database

Redo
Log

Send Redo
Data

Database Objects

Record
Changes

Preparing for XStream

Configuring XStream 4-11

real-time downstream capture process does not need to wait for the redo log file to be
archived before it can capture changes from it. You can configure multiple real-time
downstream capture processes that capture changes from the same source database,
but you cannot configure real-time downstream capture for multiple source databases
at one downstream database.

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes for multiple source databases at a downstream database. You can copy redo
log files from multiple source databases to a single downstream database and
configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

Prerequisites for Configuring XStream Out
Preparing for an XStream Out outbound server is similar to preparing for an Oracle
Streams replication environment. The components used in an Oracle Streams
replication environment to capture changes and send them to an apply process are the
same components used to capture changes and send them to an outbound server.
These components include a capture process and one or more queues. If the capture
process runs on a different database than the outbound server, then a propagation is
also required.

Several of the tasks described in this section are described in more detail in Oracle
Streams Replication Administrator's Guide. This section provides an overview of each
task and specific information about completing the task for an XStream Out
configuration.

Ensure that the following prerequisites are met before configuring XStream Out:

■ Configure an XStream Administrator on All Databases

■ If Required, Configure Network Connectivity and Database Links

■ Ensure That Each Source Database Is in ARCHIVELOG Mode

■ Set the Relevant Initialization Parameters

■ Configure the Oracle Streams Pool

■ If Required, Configure Log File Transfer to a Downstream Database

■ If Required, Add Standby Redo Logs for Real-Time Downstream Capture

Configure an XStream Administrator on All Databases To configure and manage an XStream
Out configuration, create an XStream administrator on each Oracle database that is
involved in the XStream Out configuration.

If Required, Configure Network Connectivity and Database Links Network connectivity and
database links are not required when all of the components run on the same database.
These components include the capture process, queue, and outbound server.

You must configure network connectivity and database links if you decided to
configure XStream in either of the following ways:

■ The capture process and the outbound server will run on different databases.

See Also: Oracle Streams Concepts and Administration

See Also: "Granting Privileges for the XStream Administrator" on
page 4-1

Preparing for XStream

4-12 Oracle Database XStream Guide

■ Downstream capture will be used.

See "Decide How to Configure XStream" on page 4-6 for more information about these
decisions.

If network connectivity is required, then configure your network and Oracle Net so
that the databases can communicate with each other.

The following database links are required:

■ When the capture process runs on a different database from the outbound server,
create a database link from the capture database to the outbound server database.
A propagation uses this database link to send changes from the capture database
to the outbound server database.

■ When you use downstream capture, create a database link from the capture
database to the source database. The source database is the database that generates
the redo data that the capture process uses to capture changes. The capture process
uses this database link to perform administrative tasks at the source database.

The name of each database link must match the global name of the destination
database, and each database link should be created in the XStream administrator's
schema.

For example, assume that you want to create a database link in a configuration with
the following characteristics:

■ The global name of the source database is dbs1.example.com.

■ The global name of the destination database is dbs2.example.com.

■ The XStream administrator is xstrmadmin at each database.

Given these assumptions, the following statement creates a database link from
dbs1.example.com to dbs2.example.com:

CONNECT xstrmadmin@dbs1.example.com
Enter password: password

CREATE DATABASE LINK dbs2.example.com CONNECT TO xstrmadmin
 IDENTIFIED BY password USING 'dbs2.example.com';

Ensure That Each Source Database Is in ARCHIVELOG Mode Each source database that
generates changes that will be captured by a capture process must be in ARCHIVELOG
mode. For downstream capture processes, the downstream database also must be in
ARCHIVELOG mode if you plan to configure a real-time downstream capture process.
The downstream database does not need to be in ARCHIVELOG mode if you plan to run
only archived-log downstream capture processes on it.

If you are configuring XStream in an Oracle Real Application Clusters (Oracle RAC)
environment, then the archived redo log files of all threads from all instances must be

See Also:

■ Oracle Database 2 Day DBA

■ Oracle Database 2 Day + Data Replication and Integration Guide for
instructions about creating database links using Oracle Enterprise
Manager

■ Oracle Database Administrator's Guide for more information about
database links

Preparing for XStream

Configuring XStream 4-13

available to any instance running a capture process. This requirement pertains to both
local and downstream capture processes.

Set the Relevant Initialization Parameters Some initialization parameters are important for
the configuration, operation, reliability, and performance of the components in an
XStream configuration. Set these parameters appropriately.

Oracle Streams Replication Administrator's Guide contains detailed information about all
of the initialization parameters that are important for an Oracle Streams environment.
The guidelines for setting these parameters also apply to an XStream configuration. In
addition to the requirements described in Oracle Streams Replication Administrator's
Guide for all Oracle Streams components, the following requirements apply to XStream
outbound servers:

■ Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the outbound server background processes and all of the other
Oracle Database background processes.

■ Ensure that the SESSIONS initialization parameter is set to a value large enough to
accommodate the sessions used by the outbound server background processes and
all of the other Oracle Database sessions.

Configure the Oracle Streams Pool The Oracle Streams pool is a portion of memory in the
System Global Area (SGA) that is used by Oracle Streams. The Oracle Streams pool
stores buffered queue messages in memory, and it provides memory for capture
processes and outbound servers. The Oracle Streams pool always stores LCRs
captured by a capture process, and it stores LCRs and messages that are enqueued into
a buffered queue by applications. Ensure that there is enough space in the Oracle
Streams pool at each database to store LCRs and run the components properly.

Each outbound server requires 1 MB of memory. The Oracle Streams pool is initialized
the first time an outbound server is started.

If Required, Configure Log File Transfer to a Downstream Database If you decided to use a
local capture process, then log file transfer is not required. However, if you decided to
use downstream capture that uses redo transport services to transfer archived redo log
files to the downstream database automatically, then configure log file transfer from
the source database to the capture database. See "Decide How to Configure XStream"
on page 4-6 for information about this decision.

If Required, Add Standby Redo Logs for Real-Time Downstream Capture If you decided to
configure real-time downstream capture, then add standby redo logs to the capture
database. See "Decide How to Configure XStream" on page 4-6 for information about
this decision.

See Also: Oracle Database Administrator's Guide for instructions about
running a database in ARCHIVELOG mode

See Also: Oracle Streams Replication Administrator's Guide for
information about Oracle Streams pool requirements

See Also: Oracle Streams Replication Administrator's Guide for
instructions

See Also: Oracle Streams Replication Administrator's Guide for
instructions

Configuring XStream Out

4-14 Oracle Database XStream Guide

Preparing for XStream In
Ensure that the following prerequisites are met before configuring XStream In:

■ Configure an XStream Administrator

■ Set the Relevant Initialization Parameters Relevant

■ Configure the Oracle Streams Pool

Configure an XStream Administrator
To configure and manage an XStream In configuration, create an XStream
administrator on the Oracle database that will run the XStream inbound server.

Set the Relevant Initialization Parameters Relevant
Some initialization parameters are important for the configuration, operation,
reliability, and performance of XStream inbound servers. Set these parameters
appropriately.

Oracle Streams Replication Administrator's Guide contains detailed information about all
of the initialization parameters that are important for an Oracle Streams environment.
The guidelines for setting these parameters also apply to an XStream configuration. In
addition to the requirements described in Oracle Streams Replication Administrator's
Guide for all Oracle Streams components, the following requirements apply to XStream
inbound servers:

■ Ensure that the PROCESSES initialization parameter is set to a value large enough to
accommodate the inbound server background processes and all of the other Oracle
Database background processes.

■ Ensure that the SESSIONS initialization parameter is set to a value large enough to
accommodate the sessions used by the inbound server background processes and
all of the other Oracle Database sessions.

Configure the Oracle Streams Pool
The Oracle Streams pool is a portion of memory in the System Global Area (SGA) that
provides memory for inbound servers. Ensure that there is enough space in the Oracle
Streams pool for the inbound server to run properly. An inbound server requires 1 MB
for each inbound server parallelism. For example, if parallelism is set to 10 for an
inbound server, then at least 10 MB of memory is required for the inbound server. The
Oracle Streams pool also must have enough space to store LCRs before they are
applied. The Oracle Streams pool is initialized the first time an inbound server is
started.

Configuring XStream Out
An outbound server in an XStream Out configuration streams Oracle database changes
to a client application. The client application attaches to the outbound server using the
Oracle Call Interface (OCI) or Java interface to receive these changes.

Configuring an outbound server involves creating the components that send captured
database changes to the outbound server. It also involves configuring the outbound

See Also: "Granting Privileges for the XStream Administrator" on
page 4-1

See Also: Oracle Streams Replication Administrator's Guide

Configuring XStream Out

Configuring XStream 4-15

server itself, which includes specifying the connect user that the client application will
use to attach to the outbound server.

This section contains these topics:

■ Configuring an XStream Outbound Server

■ Adding an Additional Outbound Server to a Capture Process Stream

Configuring an XStream Outbound Server
You can create an outbound server using the following procedures in the DBMS_
XSTREAM_ADM package:

■ The CREATE_OUTBOUND procedure creates an outbound server, a queue, and a
capture process in a single database with one procedure call.

■ The ADD_OUTBOUND procedure only creates an outbound server. You must create the
capture process and queue separately, and they must exist before you run the ADD_
OUTBOUND procedure. You can configure the capture process on the same database
as the outbound server or on a different database.

In both cases, you must create the client application that communicates with the
outbound server and receives LCRs from the outbound server.

If you require multiple outbound servers, then you can use the CREATE_OUTBOUND
procedure to create the capture process that captures database changes for the first
outbound server. Next, you can run the ADD_OUTBOUND procedure to add additional
outbound servers that receive the same captured changes. The capture process can
reside on the same database as the outbound servers or on a different database.

This section contains these topics:

■ Configuring Multiple XStream Out Components Using CREATE_OUTBOUND

■ Configuring an Outbound Server Using ADD_OUTBOUND

Configuring Multiple XStream Out Components Using CREATE_OUTBOUND
The CREATE_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates a capture
process, queue, and outbound server in a single database. Both the capture process
and the outbound server use the queue created by the procedure. When you run the
procedure, you provide the name of the new outbound server, while the procedure
generates a name for the capture process and queue. If you want all of the components
to run on the same database, then the CREATE_OUTBOUND procedure is the fastest and
easiest way to create an outbound server.

Prerequisites
Before configuring XStream Out, ensure that the following prerequisites are met:

■ Complete the tasks described in "Prerequisites for Configuring XStream Out" on
page 4-11.

Assumptions
This section makes the following assumptions:

■ The capture process will be a local capture process, and it will run on the same
database as the outbound server.

The instructions in this section can only set up the local capture and outbound
server on the same database configuration described in "Decide How to Configure
XStream" on page 4-6.

Configuring XStream Out

4-16 Oracle Database XStream Guide

■ The name of the outbound server is xout.

■ Data manipulation language (DML) and data definition language (DDL) changes
made to the oe.orders and oe.order_items tables are sent to the outbound server.

■ DML and DDL changes made to the hr schema are sent to the outbound server.

Figure 4–5 provides an overview of this XStream Out configuration.

Figure 4–5 Sample XStream Out Configuration Created Using CREATE_OUTBOUND

To create an outbound server using the CREATE_OUTBOUND procedure:

1. In SQL*Plus, connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the CREATE_OUTBOUND procedure.

Given the assumptions for this section, run the following CREATE_OUTBOUND
procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name => 'xout',

Record
Changes

hr
Schema

Oracle Database

Capture
Process

Enqueue
LCRs

Capture DML and DDL Changes to hr Schema,
oe.orders Table, and oe.order_items Table

Dequeue
LCRs

Receive
LCRs

Outbound
Server

xout

Client
Application

oe.orders Table

oe.orders Tableoe.order_items Table

Redo
Log

Queue

.

.

.

.

.

.

Configuring XStream Out

Configuring XStream 4-17

 table_names => tables,
 schema_names => schemas);
END;
/

Running this procedure performs the following actions:

■ Configures supplemental logging for the oe.orders and oe.order_items
tables and for all of the tables in the hr schema.

■ Creates a queue with a system-generated name that is used by the capture
process and the outbound server.

■ Creates and starts a capture process with a system-generated name with rule
sets that instruct it to capture DML and DDL changes to the oe.orders table,
the oe.order_items table, and the hr schema.

■ Creates and starts an outbound server named xout with rule sets that instruct
it to send DML and DDL changes to the oe.orders table, the oe.order_items
table, and the hr schema to the client application.

■ Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the outbound
server.

3. Create and run the client application that will connect to the outbound server and
receive the LCRs. See "Sample XStream Client Application" on page 4-26 for a
sample application.

4. To add one or more additional outbound servers that receive LCRs from the
capture process created in Step 2, follow the instructions in "Adding an Additional
Outbound Server to a Capture Process Stream" on page 4-22.

Configuring an Outbound Server Using ADD_OUTBOUND
The ADD_OUTBOUND procedure in the DBMS_XSTREAM_ADM package creates an outbound
server. This procedure does not create the capture process or the queue. You must
configure these components manually.

The instructions in this section can set up any of the configurations described in
"Decide How to Configure XStream" on page 4-6. However, if you chose the local
capture and outbound server on the same database configuration, then it is usually
easier to use the CREATE_OUTBOUND procedure to configure all of the components
simultaneously. See "Configuring Multiple XStream Out Components Using CREATE_
OUTBOUND" on page 4-15.

Prerequisites
Before configuring XStream Out, ensure that the following prerequisites are met:

■ Complete the tasks described in "Prerequisites for Configuring XStream Out" on
page 4-11.

Tip: To capture and send all database changes to the outbound
server, specify NULL (the default) for the table_names and schema_
names parameters.

See Also: "CREATE_OUTBOUND Procedure" on page 8-21

Configuring XStream Out

4-18 Oracle Database XStream Guide

Assumptions
This section makes the following assumptions:

■ The name of the outbound server is xout.

■ The queue used by the outbound server is xstrmadmin.xstream_queue.

■ The source database is db1.example.com.

■ DML and DDL changes made to the oe.orders and oe.order_items tables are
sent to the outbound server.

■ DML and DDL changes made to the hr schema are sent to the outbound server.

■ The capture process for the outbound server does not exist. (If the capture process
exists, then skip Steps 1 to 3, and go to Step 4.)

Figure 4–6 provides an overview of this XStream Out configuration.

Configuring XStream Out

Configuring XStream 4-19

Figure 4–6 Sample XStream Out Configuration Created Using ADD_OUTBOUND

Note: If the capture database and the outbound server database are
different databases, then a propagation propagates the LCRs to a
queue at the outbound server database. If the capture database and
outbound server database are the same, then the propagation is not
needed.

Record
Changes

hr
Schema

Source Database

Queue

.

.

.

.

.

.

Capture
Process

Enqueue
LCRs

Propagate
LCRs

Capture Changes
(Downstream)

Redo
Log

Capture Changes
(Local)

Shipped for
Downstream
Capture

Capture Database *

* Capture database can be source database,
outbound server database,
or a third database.

Queue

.

.

.

.

.

.

Dequeue
LCRs

Receive
LCRs

Outbound
Server
Database

Outbound
Server

xout

Client
Application

oe.orders Table

oe.orders Tableoe.order_items Table

Redo
Log

Configuring XStream Out

4-20 Oracle Database XStream Guide

To create an outbound server using the ADD_OUTBOUND procedure:

1. In SQL*Plus, connect to the database that will run the capture process (the capture
database) as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create the queue that will be used by the capture process.

See Oracle Streams Replication Administrator's Guide for instructions.

3. Create the capture process.

Add rules to the capture process’s rule sets to capture changes to the hr schema,
the oe.orders table, and the oe.order_items table. Do not start the capture
process.

See Oracle Streams Replication Administrator's Guide for instructions.

4. If the capture process will run on a different database than the outbound server,
then set the xout_client_exists capture process parameter to Y.

Setting this parameter to Y enables the capture process to send LCRs to an
outbound server.

Skip this step if the capture process will run on the same database as the outbound
server. In this case, the xout_client_exists capture process parameter will be set
to Y automatically.

See Oracle Streams Concepts and Administration for information about setting a
capture process parameter. See Oracle Database PL/SQL Packages and Types Reference
for information about the xout_client_exists capture process parameter.

5. Connect to the source database.

The source database is the database that contains the database objects for which
the capture process will capture changes. The source database and the capture
database might be the same database.

6. Ensure that required supplemental logging is specified for the database objects at
the source database.

Supplemental logging is required for the database objects for which the capture
process will capture changes. If the capture database and the source database are
the same database, then supplemental logging might have been specified during
capture process creation.

Ensure that the following supplemental logging is specified at the source database:

■ Any columns at the source database that are used in a primary key in tables
for which changes are processed by the outbound server must be
unconditionally logged in a log group or by database supplemental logging of
primary key columns.

■ Any columns at the source database that are used by a rule or a rule-based
transformation must be unconditionally logged.

For the example in this section, ensure that supplemental logging is configured for
the hr schema, the oe.orders table, and the oe.order_items table.

See Oracle Streams Replication Administrator's Guide for instructions about
specifying supplemental logging.

7. Connect to the database that will run the outbound server as the XStream
administrator.

Configuring XStream Out

Configuring XStream 4-21

8. Create the queue that will be used by the outbound server.

This step is not required if the capture process and the outbound server run on the
same database and use the same queue.

See Oracle Streams Replication Administrator's Guide for instructions.

9. Run the ADD_OUTBOUND procedure.

Given the assumption for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name => 'xout',
 queue_name => 'xstrmadmin.xstream_queue',
 source_database => 'db1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

If the capture process runs on the same database as the outbound server, then
specify the capture process’s queue for the queue_name parameter.

Running this procedure performs the following actions:

■ Creates an outbound server named xout. The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema to the client application. The rules
specify that these changes must have originated at the db1.example.com
database. The outbound server dequeues LCRs from the queue
xstrmadmin.xstream_queue.

■ Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the outbound
server.

10. Connect to the capture database as the XStream administrator.

11. Create the propagation that sends LCRs from the capture process’s queue on the
local database to the queue used by the outbound server on the outbound server
database.

Add rules to the propagation’s rule sets to send changes to the hr schema, the
oe.orders table, and the oe.order_items table from the source queue to the
destination queue.

This step is not required if the capture process and the outbound server run on the
same database and use the same queue.

See Oracle Streams Replication Administrator's Guide for instructions.

Tip: For the outbound server to receive all of the LCRs sent by the
capture process, specify NULL (the default) for the table_names and
schema_names parameters.

Configuring XStream Out

4-22 Oracle Database XStream Guide

12. Create and run the client application that will connect to the outbound server and
receive the LCRs. See "Sample XStream Client Application" on page 4-26 for a
sample application.

13. Connect to the database that is running outbound server as the XStream
administrator.

14. Start the outbound server if it is disabled. For example:

exec DBMS_APPLY_ADM.START_APPLY('xout');

15. Connect to the capture database as the XStream administrator.

16. Start the capture process created in Step 3.

See Oracle Streams Concepts and Administration for instructions.

17. To add one or more additional outbound servers that receive LCRs from the
capture process created in Step 3, follow the instructions in "Adding an Additional
Outbound Server to a Capture Process Stream" on page 4-22.

Adding an Additional Outbound Server to a Capture Process Stream
XStream Out configurations often require multiple outbound servers that process a
stream of LCRs from a single capture process. This section describes adding an
additional outbound server to a database that already includes at least one outbound
server. The additional outbound server uses the same queue as another outbound
server to receive the LCRs from the capture process. When an XStream Out
environment exists, use the ADD_OUTBOUND procedure in the DBMS_XSTREAM_ADM package
to add another outbound server to a capture process stream.

Prerequisites
Before completing the steps in this section, configure an XStream Out environment
that includes at least one outbound server. The following sections describe configuring
and XStream Out environment:

■ "Configuring Multiple XStream Out Components Using CREATE_OUTBOUND"
on page 4-15

■ "Configuring an Outbound Server Using ADD_OUTBOUND" on page 4-17

Assumptions
This section makes the following assumptions:

■ The name of the outbound server is xout2.

■ The queue used by the outbound server is xstrmadmin.xstream_queue.

■ DML and DDL changes made to the oe.orders and oe.order_items tables are
sent to the outbound server.

■ DML and DDL changes made to the hr schema are sent to the outbound server.

■ The source database for the database changes is db1.example.com.

Figure 4–7 provides an overview of this XStream Out configuration.

See Also: "ADD_OUTBOUND Procedure" on page 8-7

Configuring XStream Out

Configuring XStream 4-23

Figure 4–7 Sample XStream Out Configuration With an Additional Outbound Server

To add another outbound server to a capture process stream using the ADD_OUTBOUND
procedure:

1. In SQL*Plus, connect to the database that will run the additional outbound server
as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Determine the name of the queue used by an existing outbound server that
receives LCRs from the capture process.

Run the query in "Displaying General Information About an Outbound Server" on
page 6-3 to determine the owner and name of the queue. This query also shows
the name of the capture process and the source database name.

3. Run the ADD_OUTBOUND procedure.

Given the assumptions for this section, run the following ADD_OUTBOUND procedure:

DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 schemas DBMS_UTILITY.UNCL_ARRAY;
 BEGIN
 tables(1) := 'oe.orders';
 tables(2) := 'oe.order_items';
 schemas(1) := 'hr';
 DBMS_XSTREAM_ADM.ADD_OUTBOUND(

Record
Changes

hr
Schema

Oracle Database

Queue

xstrmadmin.xstream_queue
.
.
.
.

Capture
Process

Enqueue
LCRs

Capture DML and DDL Changes to hr Schema,
oe.orders Table, and oe.order_items Table

Dequeue
LCRs

Receive
LCRs

Outbound
Server

xout

Client
Application

Dequeue
LCRs

Receive
LCRs

Outbound
Server
xout2

Client
Application

oe.orders Table

oe.orders Tableoe.order_items Table

Redo
Log

Configuring XStream In

4-24 Oracle Database XStream Guide

 server_name => 'xout2',
 queue_name => 'xstrmadmin.xstream_queue',
 source_database => 'db1.example.com',
 table_names => tables,
 schema_names => schemas);
END;
/

Running this procedure performs the following actions:

■ Creates an outbound server named xout2. The outbound server has rule sets
that instruct it to send DML and DDL changes to the oe.orders table, the
oe.order_items table, and the hr schema to the client application. The rules
specify that these changes must have originated at the db1.example.com
database. The outbound server dequeues LCRs from the queue
xstrmadmin.xstream_queue.

■ Sets the current user as the connect user for the outbound server. In this
example, the current user is the XStream administrator. The client application
must connect to the database as the connect user to interact with the outbound
server.

4. If a client application does not exist, then create and run the client application that
will connect to the outbound server and receive the LCRs. See "Sample XStream
Client Application" on page 4-26 for a sample application.

Configuring XStream In
An inbound server in an XStream In configuration receives a stream of changes from a
client application. The inbound server can apply these changes to database objects in
an Oracle database, or it can process the changes in a customized way. A client
application can attach to an inbound server and send row changes and DDL changes
encapsulated in LCRs using the OCI or Java interface.

The CREATE_INBOUND procedure in the DBMS_XSTREAM_ADM package creates an inbound
server. You must create the client application that communicates with the inbound
server and sends LCRs to the inbound server.

Prerequisites
Before configuring XStream In, ensure that the following prerequisites are met:

■ Complete the tasks described in "Preparing for XStream In" on page 4-14.

Assumptions
This section makes the following assumptions:

■ The name of the inbound server is xin.

■ The inbound server applies all of the changes it receives from the XStream client
application.

■ The queue used by the inbound server is xstrmadmin.xin_queue.

Tip: For the outbound server to receive all of the LCRs sent by the
capture process, specify NULL (the default) for the table_names and
schema_names parameters.

See Also: "ADD_OUTBOUND Procedure" on page 8-7

Configuring XStream In

Configuring XStream 4-25

Figure 4–8 provides an overview of this XStream In configuration.

Figure 4–8 Sample XStream In Configuration

To create an inbound server:

1. In SQL*Plus, connect to the database that will run the inbound server as the
XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the CREATE_INBOUND procedure.

For example, the following CREATE_INBOUND procedure configures an inbound
server named xin:

BEGIN
 DBMS_XSTREAM_ADM.CREATE_INBOUND(
 server_name => 'xin',
 queue_name => 'xin_queue');
END;
/

Running this procedure performs the following actions:

■ Creates an inbound server named xin.

■ Sets the queue with the name xin_queue as the inbound server’s queue, and
creates this queue if it does not exist. This queue does not store LCRs sent by
the client application. Instead, it stores error transactions if an LCR raises an
error. The current user is the queue owner. In this example, the current user is
the XStream administrator.

■ Sets the current user as the apply user for the inbound server. In this example,
the current user is the XStream administrator. The client application must
connect to the database as the apply user to interact with the inbound server.

Apply
Changes

Send
LCRs

Inbound
Server

xin

Client
Application

Oracle Database

Database Objects

Queue

xstrmadmin.xin_queue
.
.
.
.

Send Error
Transactions

Sample XStream Client Application

4-26 Oracle Database XStream Guide

3. If necessary, create apply handlers for the inbound server.

Apply handlers are optional. Apply handlers process LCRs sent to an inbound
server in a customized way.

4. Create and run the client application that will connect to the inbound server and
send LCRs to it.

See "Sample XStream Client Application" on page 4-26 for a sample application.

5. If the inbound server is disabled, then start the inbound server.

For example, enter the following:

exec DBMS_APPLY_ADM.START_APPLY('xin');

Sample XStream Client Application
This section contains a sample XStream client application. This application illustrates
the basic tasks that are required of an XStream Out and XStream In application.

The application performs the following tasks:

■ It attaches to an XStream outbound server and inbound server and waits for LCRs
from the outbound server. The outbound server and inbound server are in two
different databases.

■ When it receives an LCR from the outbound server, it immediately sends the LCR
to the inbound server.

■ It periodically gets the processed low position from the inbound server and sends
this value to the outbound server.

■ It periodically sends a "ping" LCR from the outbound server to the inbound server
to move the inbound server’s processed low position forward in times of low
activity.

In an XStream Out configuration that does not send LCRs to an inbound server, the
client application must obtain the processed low position in another way.

This application waits indefinitely for transactions from the outbound server. To
interrupt the application, enter the interrupt command for your operating system. For
example, the interrupt command on some operating systems is control-C. If the
program is restarted, then the outbound server starts sending LCRs from the
processed low position that was set during the previous run.

Figure 4–9 provides an overview of the XStream environment configured in this
section.

Tip: By default, an inbound server does not use rules or rule sets.
Therefore, it processes all LCRs sent to it by the client application. To
add rules and rule sets, use the DBMS_STREAMS_ADM package or the
DBMS_RULE_ADM package. See Oracle Streams Concepts and
Administration.

See Also: Oracle Streams Concepts and Administration

See Also: "CREATE_INBOUND Procedure" on page 8-19

Sample XStream Client Application

Configuring XStream 4-27

Figure 4–9 Sample XStream Configuration

Before running the sample application, ensure that the following components exist:

■ Two Oracle databases with network connectivity between them

■ An XStream administrator on both databases

■ An outbound server configuration on one database, including a capture process,
queue, and outbound server

■ An inbound server configuration on another database

The sample applications in the following sections perform the same tasks. One sample
application uses the OCI API, and the other uses the Java API.

■ Sample XStream Client Application for the Oracle Call Interface API

■ Sample XStream Client Application for the Java API

Sample XStream Client Application for the Oracle Call Interface API
To run the sample XStream client application for the OCI API, compile and link the
application file, and enter the following on a command line:

Note: An Oracle Database installation includes several XStream
demos. These demos are in the following location:

$ORACLE_HOME/rdbms/demo/xstream

See Also:

■ "Position of LCRs and XStream In" on page 2-13

■ "Configuring XStream Out" on page 4-14

■ "Configuring XStream In" on page 4-24

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference

■ "Granting Privileges for the XStream Administrator" on page 4-1

Receive
LCRs

Send
LCRs

Set
Processed
Low Position

Get
Processed
Low Position

Client
Application

Outbound
Server

Inbound
Server

Queue

Dequeue
LCRs

Capture
LCRs

Record
Changes

Equeue
LCRs

Redo
Log

Capture
Process

Database
Objects

Oracle Database Oracle Database

Sample XStream Client Application

4-28 Oracle Database XStream Guide

xio -ob_svr xout_name -ob_db sn_xout_db -ob_usr xout_cu -ob_pwd xout_cu_pass
-ib_svr xin_name -ib_db sn_xin_db -ib_usr xin_au -ib_pwd xin_au_pass

Substitute the appropriate values for the following placeholders:

■ xout_name is the name of the outbound server.

■ sn_xout_db is the service name for the outbound server’s database.

■ xout_cu is the outbound server’s connect user.

■ xout_cu_pass is the password for the outbound server’s connect user.

■ xin_name is the name of the inbound server.

■ sn_xin_db is the service name for the inbound server’s database.

■ xin_au is the inbound server’s apply user.

■ xin_au_pass is the password for the inbound server’s apply user.

When the sample client application is running, it prints information about the row
LCRs it is processing. The output looks similar to the following:

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=17.0.74
 owner=HR oname=COUNTRIES

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=COMMIT txid=17.0.74

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=12.25.77
 owner=OE oname=ORDERS

 ----------- ROW LCR Header -----------------
 src_db_name=DB.EXAMPLE.COM
 cmd_type=UPDATE txid=12.25.77
 owner=OE oname=ORDERS

This output contains the following information for each row LCR:

■ src_db_name shows the source database for the change encapsulated in the row
LCR.

■ cmd_type shows the type of SQL statement that made the change.

■ txid shows the transaction ID of the transaction that includes the row LCR.

■ owner shows the owner of the database object that was changed.

■ oname shows the name of the database object that was changed.

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/oci

The file name for the demo is xio.c. See the README.txt file in the demo directory for
more information about compiling and running the application.

The code for the sample application that uses the OCI API follows:

#ifndef OCI_ORACLE
#include <oci.h>

Sample XStream Client Application

Configuring XStream 4-29

#endif

#ifndef _STDIO_H
#include <stdio.h>
#endif

#ifndef _STDLIB_H
#include <stdlib.h>
#endif

#ifndef _STRING_H
#include <string.h>
#endif

#ifndef _MALLOC_H
#include <malloc.h>
#endif

/*--
 * Internal structures
 --/

#define M_DBNAME_LEN (128)

typedef struct conn_info /* connect info */
{
 oratext * user;
 ub4 userlen;
 oratext * passw;
 ub4 passwlen;
 oratext * dbname;
 ub4 dbnamelen;
 oratext * svrnm;
 ub4 svrnmlen;
} conn_info_t;

typedef struct params
{
 conn_info_t xout; /* outbound info */
 conn_info_t xin; /* inbound info */
} params_t;

typedef struct oci /* OCI handles */
{
 OCIEnv *envp; /* Environment handle */
 OCIError *errp; /* Error handle */
 OCIServer *srvp; /* Server handle */
 OCISvcCtx *svcp; /* Service handle */
 OCISession *authp;
 OCIStmt *stmtp;
 boolean attached;
 boolean outbound;
} oci_t;

static void connect_db(conn_info_t *opt_params_p, oci_t ** ocip, ub2 char_csid,
 ub2 nchar_csid);
static void disconnect_db(oci_t * ocip);
static void ocierror(oci_t * ocip, char * msg);
static void attach(oci_t * ocip, conn_info_t *conn, boolean outbound);
static void detach(oci_t *ocip);

Sample XStream Client Application

4-30 Oracle Database XStream Guide

static void get_lcrs(oci_t *xin_ocip, oci_t *xout_ocip);
static void get_chunks(oci_t *xin_ocip, oci_t *xout_ocip);
static void print_lcr(oci_t *ocip, void *lcrp, ub1 lcrtype,
 oratext **src_db_name, ub2 *src_db_namel);
static void print_chunk (ub1 *chunk_ptr, ub4 chunk_len, ub2 dty);
static void get_inputs(conn_info_t *xout_params, conn_info_t *xin_params,
 int argc, char ** argv);
static void get_db_charsets(conn_info_t *params_p, ub2 *char_csid,
 ub2 *nchar_csid);
static void set_client_charset(oci_t *outbound_ocip);

#define OCICALL(ocip, function) do {\
sword status=function;\
if (OCI_SUCCESS==status) break;\
else if (OCI_ERROR==status) \
{ocierror(ocip, (char *)"OCI_ERROR");\
exit(1);}\
else {printf("Error encountered %d\n", status);\
exit(1);}\
} while(0)

/*---
 * M A I N P R O G R A M
 ---/
main(int argc, char **argv)
{
 /* Outbound and inbound connection info */
 conn_info_t xout_params;
 conn_info_t xin_params;
 oci_t *xout_ocip = (oci_t *)NULL;
 oci_t *xin_ocip = (oci_t *)NULL;
 ub2 obdb_char_csid = 0; /* outbound db char csid */
 ub2 obdb_nchar_csid = 0; /* outbound db nchar csid */

 /* parse command line arguments */
 get_inputs(&xout_params, &xin_params, argc, argv);

 /* Get the outbound database CHAR and NCHAR character set info */
 get_db_charsets(&xout_params, &obdb_char_csid, &obdb_nchar_csid);

 /* Connect to the outbound db and set the client env to the outbound charsets
 * to minimize character conversion when transferring LCRs from outbound
 * directly to inbound server.
 */
 connect_db(&xout_params, &xout_ocip, obdb_char_csid, obdb_nchar_csid);

 /* Attach to outbound server */
 attach(xout_ocip, &xout_params, TRUE);

 /* connect to inbound db and set the client charsets the same as the
 * outbound db charsets.
 */
 connect_db(&xin_params, &xin_ocip, obdb_char_csid, obdb_nchar_csid);

 /* Attach to inbound server */
 attach(xin_ocip, &xin_params, FALSE);

 /* Get lcrs from outbound server and send to inbound server */
 get_lcrs(xin_ocip, xout_ocip);

Sample XStream Client Application

Configuring XStream 4-31

 /* Detach from XStream servers */
 detach(xout_ocip);
 detach(xin_ocip);

 /* Disconnect from both databases */
 disconnect_db(xout_ocip);
 disconnect_db(xin_ocip);

 free(xout_ocip);
 free(xin_ocip);
 exit (0);
}

/*---
 * connect_db - Connect to the database and set the env to the given
 * char and nchar character set ids.
 ---/
static void connect_db(conn_info_t *params_p, oci_t **ociptr, ub2 char_csid,
 ub2 nchar_csid)
{
 oci_t *ocip;

 printf ("Connect to Oracle as %.*s@%.*s ",
 params_p->userlen, params_p->user,
 params_p->dbnamelen, params_p->dbname);

 if (char_csid && nchar_csid)
 printf ("using char csid=%d and nchar csid=%d", char_csid, nchar_csid);

 printf("\n");

 ocip = (oci_t *)malloc(sizeof(oci_t));

 if (OCIEnvNlsCreate(&ocip->envp, OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0, char_csid, nchar_csid))
 {
 ocierror(ocip, (char *)"OCIEnvCreate() failed");
 }

 if (OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIHandleAlloc(OCI_HTYPE_ERROR) failed");
 }

 /* Logon to database */
 OCICALL(ocip,
 OCILogon(ocip->envp, ocip->errp, &ocip->svcp,
 params_p->user, params_p->userlen,
 params_p->passw, params_p->passwlen,
 params_p->dbname, params_p->dbnamelen));

 /* allocate the server handle */
 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->srvp,
 OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0));

Sample XStream Client Application

4-32 Oracle Database XStream Guide

 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->stmtp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 if (*ociptr == (oci_t *)NULL)
 {
 *ociptr = ocip;
 }
}

/*---
 * get_db_charsets - Get the database CHAR and NCHAR character set ids.
 ---/
static const oratext GET_DB_CHARSETS[] = \
 "select parameter, value from nls_database_parameters where parameter = \
 'NLS_CHARACTERSET' or parameter = 'NLS_NCHAR_CHARACTERSET'";

#define PARM_BUFLEN (30)

static void get_db_charsets(conn_info_t *params_p, ub2 *char_csid,
 ub2 *nchar_csid)
{
 OCIDefine *defnp1 = (OCIDefine *) NULL;
 OCIDefine *defnp2 = (OCIDefine *) NULL;
 oratext parm[PARM_BUFLEN];
 oratext value[OCI_NLS_MAXBUFSZ];
 ub2 parm_len = 0;
 ub2 value_len = 0;
 oci_t ocistruct;
 oci_t *ocip = &ocistruct;

 *char_csid = 0;
 *nchar_csid = 0;
 memset (ocip, 0, sizeof(ocistruct));

 if (OCIEnvCreate(&ocip->envp, OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIEnvCreate() failed");
 }

 if (OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->errp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 ocierror(ocip, (char *)"OCIHandleAlloc(OCI_HTYPE_ERROR) failed");
 }

 OCICALL(ocip,
 OCILogon(ocip->envp, ocip->errp, &ocip->svcp,
 params_p->user, params_p->userlen,
 params_p->passw, params_p->passwlen,
 params_p->dbname, params_p->dbnamelen));

 OCICALL(ocip,
 OCIHandleAlloc((dvoid *) ocip->envp, (dvoid **) &ocip->stmtp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

Sample XStream Client Application

Configuring XStream 4-33

 /* Execute stmt to select the db nls char and nchar character set */
 OCICALL(ocip,
 OCIStmtPrepare(ocip->stmtp, ocip->errp,
 (CONST text *)GET_DB_CHARSETS,
 (ub4)strlen((char *)GET_DB_CHARSETS),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 OCICALL(ocip,
 OCIDefineByPos(ocip->stmtp, &defnp1,
 ocip->errp, (ub4) 1, parm,
 PARM_BUFLEN, SQLT_CHR, (void*) 0,
 &parm_len, (ub2 *)0, OCI_DEFAULT));

 OCICALL(ocip,
 OCIDefineByPos(ocip->stmtp, &defnp2,
 ocip->errp, (ub4) 2, value,
 OCI_NLS_MAXBUFSZ, SQLT_CHR, (void*) 0,
 &value_len, (ub2 *)0, OCI_DEFAULT));

 OCICALL(ocip,
 OCIStmtExecute(ocip->svcp, ocip->stmtp,
 ocip->errp, (ub4)0, (ub4)0,
 (const OCISnapshot *)0,
 (OCISnapshot *)0, (ub4)OCI_DEFAULT));

 while (OCIStmtFetch(ocip->stmtp, ocip->errp, 1,
 OCI_FETCH_NEXT, OCI_DEFAULT) == OCI_SUCCESS)
 {
 value[value_len] = '\0';
 if (parm_len == strlen("NLS_CHARACTERSET") &&
 !memcmp(parm, "NLS_CHARACTERSET", parm_len))
 {
 *char_csid = OCINlsCharSetNameToId(ocip->envp, value);
 printf("Outbound database NLS_CHARACTERSET = %.*s (csid = %d) \n",
 value_len, value, *char_csid);
 }
 else if (parm_len == strlen("NLS_NCHAR_CHARACTERSET") &&
 !memcmp(parm, "NLS_NCHAR_CHARACTERSET", parm_len))
 {
 *nchar_csid = OCINlsCharSetNameToId(ocip->envp, value);
 printf("Outbound database NLS_NCHAR_CHARACTERSET = %.*s (csid = %d) \n",
 value_len, value, *nchar_csid);
 }
 }

 disconnect_db(ocip);
}

/*---
 * attach - Attach to XStream server specified in connection info
 ---/
static void attach(oci_t * ocip, conn_info_t *conn, boolean outbound)
{
 sword err;

 printf ("Attach to XStream %s server '%.*s'\n",
 outbound ? "outbound" : "inbound",
 conn->svrnmlen, conn->svrnm);

 if (outbound)

Sample XStream Client Application

4-34 Oracle Database XStream Guide

 {
 OCICALL(ocip,
 OCIXStreamOutAttach(ocip->svcp, ocip->errp, conn->svrnm,
 (ub2)conn->svrnmlen, (ub1 *)0, 0, OCI_DEFAULT));
 }
 else
 {
 OCICALL(ocip,
 OCIXStreamInAttach(ocip->svcp, ocip->errp, conn->svrnm,
 (ub2)conn->svrnmlen,
 (oratext *)"From_XOUT", 9,
 (ub1 *)0, 0, OCI_DEFAULT));
 }

 ocip->attached = TRUE;
 ocip->outbound = outbound;
}

/*---
 * ping_svr - Ping inbound server by sending a commit LCR.
 ---/
static void ping_svr(oci_t *xin_ocip, void *commit_lcr,
 ub1 *cmtpos, ub2 cmtpos_len,
 oratext *source_db, ub2 source_db_len)
{
 OCIDate src_time;
 oratext txid[128];

 OCICALL(xin_ocip, OCIDateSysDate(xin_ocip->errp, &src_time));
 sprintf(txid, "Ping %2d:%2d:%2d",
 src_time.OCIDateTime.OCITimeHH,
 src_time.OCIDateTime.OCITimeMI,
 src_time.OCIDateTime.OCITimeSS);

 /* Initialize LCR with new txid and commit position */
 OCICALL(xin_ocip,
 OCILCRHeaderSet(xin_ocip->svcp, xin_ocip->errp,
 source_db, source_db_len,
 (oratext *)OCI_LCR_ROW_CMD_COMMIT,
 (ub2)strlen(OCI_LCR_ROW_CMD_COMMIT),
 (oratext *)0, 0, /* null owner */
 (oratext *)0, 0, /* null object */
 (ub1 *)0, 0, /* null tag */
 txid, (ub2)strlen((char *)txid),
 &src_time, cmtpos, cmtpos_len,
 0, commit_lcr, OCI_DEFAULT));

 /* Send commit lcr to inbound server. */
 if (OCIXStreamInLCRSend(xin_ocip->svcp, xin_ocip->errp, commit_lcr,
 OCI_LCR_XROW, 0, OCI_DEFAULT) == OCI_ERROR)
 {
 ocierror(xin_ocip, (char *)"OCIXStreamInLCRSend failed in ping_svr()");
 }
}

/*---
 * get_lcrs - Get LCRs from outbound server and send to inbound server.
 ---/
static void get_lcrs(oci_t *xin_ocip, oci_t *xout_ocip)
{

Sample XStream Client Application

Configuring XStream 4-35

 sword status = OCI_SUCCESS;
 void *lcr;
 ub1 lcrtype;
 oraub8 flag;
 ub1 proclwm[OCI_LCR_MAX_POSITION_LEN];
 ub2 proclwm_len = 0;
 ub1 sv_pingpos[OCI_LCR_MAX_POSITION_LEN];
 ub2 sv_pingpos_len = 0;
 ub1 fetchlwm[OCI_LCR_MAX_POSITION_LEN];
 ub2 fetchlwm_len = 0;
 void *commit_lcr = (void *)0;
 oratext *lcr_srcdb = (oratext *)0;
 ub2 lcr_srcdb_len = 0;
 oratext source_db[M_DBNAME_LEN];
 ub2 source_db_len = 0;
 ub4 lcrcnt = 0;

 /* create an lcr to ping the inbound server periodically by sending a
 * commit lcr.
 */
 commit_lcr = (void*)0;
 OCICALL(xin_ocip,
 OCILCRNew(xin_ocip->svcp, xin_ocip->errp, OCI_DURATION_SESSION,
 OCI_LCR_XROW, &commit_lcr, OCI_DEFAULT));

 while (status == OCI_SUCCESS)
 {
 lcrcnt = 0; /* reset lcr count before each batch */

 while ((status =
 OCIXStreamOutLCRReceive(xout_ocip->svcp, xout_ocip->errp,
 &lcr, &lcrtype, &flag,
 fetchlwm, &fetchlwm_len, OCI_DEFAULT))
 == OCI_STILL_EXECUTING)
 {
 lcrcnt++;

 /* print header of LCR just received */
 print_lcr(xout_ocip, lcr, lcrtype, &lcr_srcdb, &lcr_srcdb_len);

 /* save the source db to construct ping lcr later */
 if (!source_db_len && lcr_srcdb_len)
 {
 memcpy(source_db, lcr_srcdb, lcr_srcdb_len);
 source_db_len = lcr_srcdb_len;
 }

 /* send the LCR just received */
 if (OCIXStreamInLCRSend(xin_ocip->svcp, xin_ocip->errp,
 lcr, lcrtype, flag, OCI_DEFAULT) == OCI_ERROR)
 {
 ocierror(xin_ocip, (char *)"OCIXStreamInLCRSend failed");
 }

 /* If LCR has chunked columns (i.e, has LOB/Long/XMLType columns) */
 if (flag & OCI_XSTREAM_MORE_ROW_DATA)
 {
 /* receive and send chunked columns */
 get_chunks(xin_ocip, xout_ocip);
 }

Sample XStream Client Application

4-36 Oracle Database XStream Guide

 }

 if (status == OCI_ERROR)
 ocierror(xout_ocip, (char *)"OCIXStreamOutLCRReceive failed");

 /* clear the saved ping position if we just received some new lcrs */
 if (lcrcnt)
 {
 sv_pingpos_len = 0;
 }

 /* If no lcrs received during previous WHILE loop and got a new fetch
 * LWM then send a commit lcr to ping the inbound server with the new
 * fetch LWM position.
 */
 else if (fetchlwm_len > 0 && source_db_len > 0 &&
 (fetchlwm_len != sv_pingpos_len ||
 memcmp(sv_pingpos, fetchlwm, fetchlwm_len)))
 {
 /* To ensure we don't send multiple lcrs with duplicate position, send
 * a new ping only if we have saved the last ping position.
 */
 if (sv_pingpos_len > 0)
 {
 ping_svr(xin_ocip, commit_lcr, fetchlwm, fetchlwm_len,
 source_db, source_db_len);
 }

 /* save the position just sent to inbound server */
 memcpy(sv_pingpos, fetchlwm, fetchlwm_len);
 sv_pingpos_len = fetchlwm_len;
 }

 /* flush inbound network to flush all lcrs to inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInFlush(xin_ocip->svcp, xin_ocip->errp, OCI_DEFAULT));

 /* get processed LWM of inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInProcessedLWMGet(xin_ocip->svcp, xin_ocip->errp,
 proclwm, &proclwm_len, OCI_DEFAULT));

 if (proclwm_len > 0)
 {
 /* Set processed LWM for outbound server */
 OCICALL(xout_ocip,
 OCIXStreamOutProcessedLWMSet(xout_ocip->svcp, xout_ocip->errp,
 proclwm, proclwm_len, OCI_DEFAULT));
 }
 }

 if (status != OCI_SUCCESS)
 ocierror(xout_ocip, (char *)"get_lcrs() encounters error");
}

/*---
 * get_chunks - Get each chunk for the current LCR and send it to
 * the inbound server.
 ---/

Sample XStream Client Application

Configuring XStream 4-37

static void get_chunks(oci_t *xin_ocip, oci_t *xout_ocip)
{
 oratext *colname;
 ub2 colname_len;
 ub2 coldty;
 oraub8 col_flags;
 ub2 col_csid;
 ub4 chunk_len;
 ub1 *chunk_ptr;
 oraub8 row_flag;
 sword err;
 sb4 rtncode;

 do
 {
 /* Get a chunk from outbound server */
 OCICALL(xout_ocip,
 OCIXStreamOutChunkReceive(xout_ocip->svcp, xout_ocip->errp,
 &colname, &colname_len, &coldty,
 &col_flags, &col_csid, &chunk_len,
 &chunk_ptr, &row_flag, OCI_DEFAULT));

 /* print chunked column info */
 printf(
 " Chunked column name=%.*s DTY=%d chunk len=%d csid=%d col_flag=0x%x\n",
 colname_len, colname, coldty, chunk_len, col_csid, col_flags);

 /* print chunk data */
 print_chunk(chunk_ptr, chunk_len, coldty);

 /* Send the chunk just received to inbound server */
 OCICALL(xin_ocip,
 OCIXStreamInChunkSend(xin_ocip->svcp, xin_ocip->errp, colname,
 colname_len, coldty, col_flags,
 col_csid, chunk_len, chunk_ptr,
 row_flag, OCI_DEFAULT));

 } while (row_flag & OCI_XSTREAM_MORE_ROW_DATA);
}

/*---
 * print_chunk - Print chunked column information. Only print the first
 * 50 bytes for each chunk.
 ---/
static void print_chunk (ub1 *chunk_ptr, ub4 chunk_len, ub2 dty)
{
#define MAX_PRINT_BYTES (50) /* print max of 50 bytes per chunk */

 ub4 print_bytes;

 if (chunk_len == 0)
 return;

 print_bytes = chunk_len > MAX_PRINT_BYTES ? MAX_PRINT_BYTES : chunk_len;

 printf(" Data = ", chunk_len);
 if (dty == SQLT_CHR)
 printf("%.*s", print_bytes, chunk_ptr);
 else
 {

Sample XStream Client Application

4-38 Oracle Database XStream Guide

 ub2 idx;

 for (idx = 0; idx < print_bytes; idx++)
 printf("%02x", chunk_ptr[idx]);
 }
 printf("\n");
}

/*---
 * print_lcr - Print header information of given lcr.
 ---/
static void print_lcr(oci_t *ocip, void *lcrp, ub1 lcrtype,
 oratext **src_db_name, ub2 *src_db_namel)
{
 oratext *cmd_type;
 ub2 cmd_type_len;
 oratext *owner;
 ub2 ownerl;
 oratext *oname;
 ub2 onamel;
 oratext *txid;
 ub2 txidl;
 sword ret;

 printf("\n ----------- %s LCR Header -----------------\n",
 lcrtype == OCI_LCR_XDDL ? "DDL" : "ROW");

 /* Get LCR Header information */
 ret = OCILCRHeaderGet(ocip->svcp, ocip->errp,
 src_db_name, src_db_namel, /* source db */
 &cmd_type, &cmd_type_len, /* command type */
 &owner, &ownerl, /* owner name */
 &oname, &onamel, /* object name */
 (ub1 **)0, (ub2 *)0, /* lcr tag */
 &txid, &txidl, (OCIDate *)0, /* txn id & src time */
 (ub2 *)0, (ub2 *)0, /* OLD/NEW col cnts */
 (ub1 **)0, (ub2 *)0, /* LCR position */
 (oraub8*)0, lcrp, OCI_DEFAULT);

 if (ret != OCI_SUCCESS)
 ocierror(ocip, (char *)"OCILCRHeaderGet failed");
 else
 {
 printf(" src_db_name=%.*s\n cmd_type=%.*s txid=%.*s\n",
 *src_db_namel, *src_db_name, cmd_type_len, cmd_type, txidl, txid);

 if (ownerl > 0)
 printf(" owner=%.*s oname=%.*s \n", ownerl, owner, onamel, oname);
 }
}

/*---
 * detach - Detach from XStream server
 ---/
static void detach(oci_t * ocip)
{
 sword err = OCI_SUCCESS;

 printf ("Detach from XStream %s server\n",
 ocip->outbound ? "outbound" : "inbound");

Sample XStream Client Application

Configuring XStream 4-39

 if (ocip->outbound)
 {
 OCICALL(ocip, OCIXStreamOutDetach(ocip->svcp, ocip->errp, OCI_DEFAULT));
 }
 else
 {
 OCICALL(ocip, OCIXStreamInDetach(ocip->svcp, ocip->errp,
 (ub1 *)0, (ub2 *)0, /* processed LWM */
 OCI_DEFAULT));
 }
}

/*---
 * disconnect_db - Logoff from the database
 ---/
static void disconnect_db(oci_t * ocip)
{
 if (OCILogoff(ocip->svcp, ocip->errp))
 {
 ocierror(ocip, (char *)"OCILogoff() failed");
 }

 if (ocip->errp)
 OCIHandleFree((dvoid *) ocip->errp, (ub4) OCI_HTYPE_ERROR);

 if (ocip->envp)
 OCIHandleFree((dvoid *) ocip->envp, (ub4) OCI_HTYPE_ENV);
}

/*---
 * ocierror - Print error status and exit program
 ---/
static void ocierror(oci_t * ocip, char * msg)
{
 sb4 errcode=0;
 text bufp[4096];

 if (ocip->errp)
 {
 OCIErrorGet((dvoid *) ocip->errp, (ub4) 1, (text *) NULL, &errcode,
 bufp, (ub4) 4096, (ub4) OCI_HTYPE_ERROR);
 printf("%s\n%s", msg, bufp);
 }
 else
 puts(msg);

 printf ("\n");
 exit(1);
}

/*--
 * print_usage - Print command usage
 ---/
static void print_usage(int exitcode)
{
 puts("\nUsage: xio -ob_svr <outbound_svr> -ob_db <outbound_db>\n"
 " -ob_usr <conn_user> -ob_pwd <conn_user_pwd>\n"
 " -ib_svr <inbound_svr> -ib_db <inbound_db>\n"
 " -ib_usr <apply_user> -ib_pwd <apply_user_pwd>\n");

Sample XStream Client Application

4-40 Oracle Database XStream Guide

 puts(" ob_svr : outbound server name\n"
 " ob_db : database name of outbound server\n"
 " ob_usr : connect user to outbound server\n"
 " ob_pwd : password of outbound's connect user\n"
 " ib_svr : inbound server name\n"
 " ib_db : database name of inbound server\n"
 " ib_usr : apply user for inbound server\n"
 " ib_pwd : password of inbound's apply user\n");

 exit(exitcode);
}

/*--
 * get_inputs - Get user inputs from command line
 ---/
static void get_inputs(conn_info_t *xout_params, conn_info_t *xin_params,
 int argc, char ** argv)
{
 char * option;
 char * value;

 memset (xout_params, 0, sizeof(*xout_params));
 memset (xin_params, 0, sizeof(*xin_params));
 while(--argc)
 {
 /* get the option name */
 argv++;
 option = *argv;

 /* check that the option begins with a "-" */
 if (!strncmp(option, (char *)"-", 1))
 {
 option ++;
 }
 else
 {
 printf("Error: bad argument '%s'\n", option);
 print_usage(1);
 }

 /* get the value of the option */
 --argc;
 argv++;

 value = *argv;

 if (!strncmp(option, (char *)"ob_db", 5))
 {
 xout_params->dbname = (oratext *)value;
 xout_params->dbnamelen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ob_usr", 6))
 {
 xout_params->user = (oratext *)value;
 xout_params->userlen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ob_pwd", 6))
 {
 xout_params->passw = (oratext *)value;
 xout_params->passwlen = strlen(value);

Sample XStream Client Application

Configuring XStream 4-41

 }
 else if (!strncmp(option, (char *)"ob_svr", 6))
 {
 xout_params->svrnm = (oratext *)value;
 xout_params->svrnmlen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_db", 5))
 {
 xin_params->dbname = (oratext *)value;
 xin_params->dbnamelen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_usr", 6))
 {
 xin_params->user = (oratext *)value;
 xin_params->userlen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_pwd", 6))
 {
 xin_params->passw = (oratext *)value;
 xin_params->passwlen = strlen(value);
 }
 else if (!strncmp(option, (char *)"ib_svr", 6))
 {
 xin_params->svrnm = (oratext *)value;
 xin_params->svrnmlen = strlen(value);
 }
 else
 {
 printf("Error: unknown option '%s'.\n", option);
 print_usage(1);
 }
 }

 /* print usage and exit if any argument is not specified */
 if (!xout_params->svrnmlen || !xout_params->passwlen ||
 !xout_params->userlen || !xout_params->dbnamelen ||
 !xin_params->svrnmlen || !xin_params->passwlen ||
 !xin_params->userlen || !xin_params->dbnamelen)
 {
 printf("Error: missing command arguments. \n");
 print_usage(1);
 }
}

Sample XStream Client Application for the Java API
To run the sample XStream client application for the Java API, compile and link the
application file, and enter the following on a command line:

java xio xsin_oraclesid xsin_host xsin_port xsin_username
xsin_passwd xin_servername xsout_oraclesid xsout_host xsout_port
xsout_username xsout_passwd xsout_servername

Substitute the appropriate values for the following placeholders:

■ xsin_oraclesid is the Oracle SID of the inbound server’s database.

■ xsin_host is the host name of the computer system running the inbound server.

■ xsin_port is the port number of the listener for the inbound server’s database.

Sample XStream Client Application

4-42 Oracle Database XStream Guide

■ xsin_username is the inbound server’s apply user.

■ xsin_passwd is the password for the inbound server’s apply user.

■ xin_servername is the name of the inbound server.

■ xsout_oraclesid is the Oracle SID of the outbound server’s database.

■ xsout_host is the host name of the computer system running the outbound server.

■ xsout_port is the port number of the listener for the outbound server’s database.

■ xsout_username is the outbound server’s connect user.

■ xsout_passwd is the password for the outbound server’s connect user.

■ xsout_servername is the name of the outbound server.

When the sample client application is running, it prints information about attaching to
the inbound server and outbound server, along with the last position for each server.
The output looks similar to the following:

xsin_host = server2.example.com
xsin_port = 1482
xsin_ora_sid = db2
xsin connection url: jdbc:oracle:oci:@server2.example.com:1482:db2
xsout_host = server1.example.com
xsout_port = 1481
xsout_ora_sid = db1
xsout connection url: jdbc:oracle:oci:@server1.example.com:1481:db1
Attached to inbound server:xin
Inbound Server Last Position is:
0000000920250000000100000001000000092025000000010000000101
Attached to outbound server:xout
Last Position is: 0000000920250000000100000001000000092025000000010000000101

This demo is available in the following location:

$ORACLE_HOME/rdbms/demo/xstream/java

The file name for the demo is xio.java. See the README.txt file in the demo directory
for more information about compiling and running the application.

The code for the sample application that uses the Java API follows:

import oracle.streams.*;
import oracle.jdbc.internal.OracleConnection;
import oracle.jdbc.*;
import oracle.sql.*;
import java.sql.*;
import java.util.*;

public class xio
{
 public static String xsinusername = null;
 public static String xsinpasswd = null;
 public static String xsinName = null;
 public static String xsoutusername = null;
 public static String xsoutpasswd = null;
 public static String xsoutName = null;
 public static String in_url = null;
 public static String out_url = null;
 public static Connection in_conn = null;
 public static Connection out_conn = null;
 public static XStreamIn xsIn = null;

Sample XStream Client Application

Configuring XStream 4-43

 public static XStreamOut xsOut = null;
 public static byte[] lastPosition = null;
 public static byte[] processedLowPosition = null;

 public static void main(String args[])
 {
 // get connection url to inbound and outbound server
 in_url = parseXSInArguments(args);
 out_url = parseXSOutArguments(args);

 // create connection to inbound and outbound server
 in_conn = createConnection(in_url, xsinusername, xsinpasswd);
 out_conn = createConnection(out_url, xsoutusername, xsoutpasswd);

 // attach to inbound and outbound server
 xsIn = attachInbound(in_conn);
 xsOut = attachOutbound(out_conn);

 // main loop to get lcrs
 get_lcrs(xsIn, xsOut);

 // detach from inbound and outbound server
 detachInbound(xsIn);
 detachOutbound(xsOut);
 }

 // parse the arguments to get the conncetion url to inbound db
 public static String parseXSInArguments(String args[])
 {
 String trace, pref;
 String orasid, host, port;

 if (args.length != 12)
 {
 printUsage();
 System.exit(0);
 }

 orasid = args[0];
 host = args[1];
 port = args[2];
 xsinusername = args[3];
 xsinpasswd = args[4];
 xsinName = args[5];

 System.out.println("xsin_host = "+host);
 System.out.println("xsin_port = "+port);
 System.out.println("xsin_ora_sid = "+orasid);

 String in_url = "jdbc:oracle:oci:@"+host+":"+port+":"+orasid;
 System.out.println("xsin connection url: "+ in_url);

 return in_url;
 }

 // parse the arguments to get the conncetion url to outbound db
 public static String parseXSOutArguments(String args[])
 {
 String trace, pref;
 String orasid, host, port;

Sample XStream Client Application

4-44 Oracle Database XStream Guide

 if (args.length != 12)
 {
 printUsage();
 System.exit(0);
 }

 orasid = args[6];
 host = args[7];
 port = args[8];
 xsoutusername = args[9];
 xsoutpasswd = args[10];
 xsoutName = args[11];

 System.out.println("xsout_host = "+host);
 System.out.println("xsout_port = "+port);
 System.out.println("xsout_ora_sid = "+orasid);

 String out_url = "jdbc:oracle:oci:@"+host+":"+port+":"+orasid;
 System.out.println("xsout connection url: "+ out_url);

 return out_url;
 }

 // print out sample program usage message
 public static void printUsage()
 {
 System.out.println("");
 System.out.println("Usage: java xio "+"<xsin_oraclesid> " + "<xsin_host> "
 + "<xsin_port> ");
 System.out.println(" "+"<xsin_username> " + "<xsin_passwd> "
 + "<xsin_servername> ");
 System.out.println(" "+"<xsout_oraclesid> " + "<xsout_host> "
 + "<xsout_port> ");
 System.out.println(" "+"<xsout_username> " + "<xsout_passwd> "
 + "<xsout_servername> ");
 }

 // create a connection to an Oracle Database
 public static Connection createConnection(String url,
 String username,
 String passwd)
 {
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 return DriverManager.getConnection(url, username, passwd);
 }
 catch(Exception e)
 {
 System.out.println("fail to establish DB connection to: " +url);
 e.printStackTrace();
 return null;
 }
 }

 // attach to the XStream Inbound Server
 public static XStreamIn attachInbound(Connection in_conn)
 {

Sample XStream Client Application

Configuring XStream 4-45

 XStreamIn xsIn = null;
 try
 {
 xsIn = XStreamIn.attach((OracleConnection)in_conn, xsinName,
 "XSDEMOINCLIENT" , XStreamIn.DEFAULT_MODE);

 // use last position to decide where should we start sending LCRs
 lastPosition = xsIn.getLastPosition();
 System.out.println("Attached to inbound server:"+xsinName);
 System.out.print("Inbound Server Last Position is: ");
 if (null == lastPosition)
 {
 System.out.println("null");
 }
 else
 {
 printHex(lastPosition);
 }
 return xsIn;
 }
 catch(Exception e)
 {
 System.out.println("cannot attach to inbound server: "+xsinName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 return null;
 }
 }

 // attach to the XStream Outbound Server
 public static XStreamOut attachOutbound(Connection out_conn)
 {
 XStreamOut xsOut = null;

 try
 {
 // when attach to an outbound server, client needs to tell outbound
 // server the last position.
 xsOut = XStreamOut.attach((OracleConnection)out_conn, xsoutName,
 lastPosition, XStreamOut.DEFAULT_MODE);
 System.out.println("Attached to outbound server:"+xsoutName);
 System.out.print("Last Position is: ");
 if (lastPosition != null)
 {
 printHex(lastPosition);
 }
 else
 {
 System.out.println("NULL");
 }
 return xsOut;
 }
 catch(Exception e)
 {
 System.out.println("cannot attach to outbound server: "+xsoutName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 return null;
 }
 }

Sample XStream Client Application

4-46 Oracle Database XStream Guide

 // detach from the XStream Inbound Server
 public static void detachInbound(XStreamIn xsIn)
 {
 byte[] processedLowPosition = null;
 try
 {
 processedLowPosition = xsIn.detach(XStreamIn.DEFAULT_MODE);
 System.out.print("Inbound server processed low Position is: ");
 if (processedLowPosition != null)
 {
 printHex(processedLowPosition);
 }
 else
 {
 System.out.println("NULL");
 }
 }
 catch(Exception e)
 {
 System.out.println("cannot detach from the inbound server: "+xsinName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 // detach from the XStream Outbound Server
 public static void detachOutbound(XStreamOut xsOut)
 {
 try
 {
 xsOut.detach(XStreamOut.DEFAULT_MODE);
 }
 catch(Exception e)
 {
 System.out.println("cannot detach from the outbound server: "+xsoutName);
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 public static void get_lcrs(XStreamIn xsIn, XStreamOut xsOut)
 {
 byte[] ping_pos = null;
 byte[] fetchlwm = null;
 String src_db = null;

 if (null == xsIn)
 {
 System.out.println("xstreamIn is null");
 System.exit(0);
 }

 if (null == xsOut)
 {
 System.out.println("xstreamOut is null");
 System.exit(0);
 }

 try

Sample XStream Client Application

Configuring XStream 4-47

 {
 while(true)
 {
 // receive an LCR from outbound server
 LCR alcr = xsOut.receiveLCR(XStreamOut.DEFAULT_MODE);
 fetchlwm = xsOut.getFetchLowWatermark();

 // save source db for ping lcr
 if (null != alcr)
 src_db = alcr.getSourceDatabaseName();

 if (xsOut.getBatchStatus() == XStreamOut.EXECUTING) // batch is active
 {
 assert alcr != null;
 // send the LCR to the inbound server
 xsIn.sendLCR(alcr, XStreamIn.DEFAULT_MODE);

 // also get chunk data for this LCR if any
 if (alcr instanceof RowLCR)
 {
 // receive chunk from outbound then send to inbound
 if (((RowLCR)alcr).hasChunkData())
 {
 ChunkColumnValue chunk = null;
 do
 {
 chunk = xsOut.receiveChunk(XStreamOut.DEFAULT_MODE);
 xsIn.sendChunk(chunk, XStreamIn.DEFAULT_MODE);
 } while (!chunk.isEndOfRow());
 }
 }
 processedLowPosition = alcr.getPosition();
 ping_pos = processedLowPosition;
 }
 else // batch is end
 {
 assert alcr == null;

 // send ping lcr if we haven't received any lcr in the batch
 // but we got a new fetch lwm, then send a commit lcr to
 // ping the inbound server with the new fetch LWM position
 if (null != src_db && null != fetchlwm &&
 !samePos(fetchlwm,ping_pos))
 {
 xsIn.sendLCR(createPing(src_db, fetchlwm),
 XStreamIn.DEFAULT_MODE);
 ping_pos = fetchlwm;
 }

 // flush the network
 xsIn.flush(XStreamIn.DEFAULT_MODE);
 // get the processed_low_position from inbound server
 processedLowPosition =
 xsIn.getProcessedLowWatermark();
 // update the processed_low_position at oubound server
 if (null != processedLowPosition)
 xsOut.setProcessedLowWatermark(processedLowPosition,
 XStreamOut.DEFAULT_MODE);
 }
 }

Sample XStream Client Application

4-48 Oracle Database XStream Guide

 }
 catch(Exception e)
 {
 System.out.println("exception when processing LCRs");
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 public static void printHex(byte[] b)
 {
 for (int i = 0; i < b.length; ++i)
 {
 System.out.print(
 Integer.toHexString((b[i]&0xFF) | 0x100).substring(1,3));
 }
 System.out.println("");
 }

 // ping lcr is used to bump up the inbound server watermark
 private static RowLCR createPing(String src_db, byte[] pos)
 {
 java.util.Date today = new java.util.Date();
 java.sql.Timestamp now = new java.sql.Timestamp(today.getTime());
 oracle.sql.DATE src_time = new oracle.sql.DATE(now);

 RowLCR alcr = new DefaultRowLCR();
 ((RowLCR)alcr).setSourceDatabaseName(src_db);
 ((RowLCR)alcr).setSourceTime(src_time);
 ((RowLCR)alcr).setPosition(pos);
 ((RowLCR)alcr).setCommandType(RowLCR.COMMIT);
 ((RowLCR)alcr).setTransactionId("Ping: " + src_time.toString());

 return alcr;
 }

 private static boolean samePos(byte[] pos1, byte[] pos2)
 {
 int cmp_len;
 boolean result;

 if (pos1.length != pos2.length)
 return false;

 for (int i = 0; i<pos1.length; i++)
 {
 if (pos1[i] != pos2[i])
 return false;
 }

 return true;
 }
}

5

Managing XStream 5-1

5 Managing XStream

This chapter provides instructions for managing XStream.

This chapter contains these topics:

■ About Managing XStream

■ Managing XStream Out

■ Managing XStream In

About Managing XStream
This chapter describes managing an XStream Out configuration and an XStream In
configuration. This chapter provides instructions for modifying the database
components that are part of an XStream configuration, such as outbound severs,
inbound servers, capture processes, and rules.

The main interface for managing XStream database components is PL/SQL.
Specifically, use the following Oracle supplied PL/SQL packages to manage XStream:

■ DBMS_XSTREAM_ADM

The DBMS_XSTREAM_ADM package is the main package for managing XStream. This
package includes subprograms that enable you to configure, modify, or drop
outbound servers and inbound servers.

See Chapter 8, "DBMS_XSTREAM_ADM" for detailed information about this
package.

■ DBMS_XSTREAM_AUTH

The DBMS_XSTREAM_AUTH package enables you to configure and modify XStream
administrators.

See Chapter 9, "DBMS_XSTREAM_AUTH" for detailed information about this
package.

■ DBMS_APPLY_ADM

See Also:

■ Chapter 2, "XStream Concepts"

■ Chapter 3, "XStream Use Cases"

■ Chapter 4, "Configuring XStream"

■ Chapter 6, "Monitoring XStream"

■ Chapter 7, "Troubleshooting XStream"

Managing XStream Out

5-2 Oracle Database XStream Guide

The DBMS_APPLY_ADM package enables you modify outbound servers and inbound
servers.

See Oracle Database PL/SQL Packages and Types Reference for detailed information
about this package.

■ DBMS_CAPTURE_ADM

The DBMS_CAPTURE_ADM package enables you configure and modify capture
processes.

See Oracle Database PL/SQL Packages and Types Reference for detailed information
about this package.

■ DBMS_STREAMS_ADM

The DBMS_STREAMS_ADM package enables you modify the rules used by capture
processes, outbound servers, and inbound servers.

See Oracle Database PL/SQL Packages and Types Reference for detailed information
about this package.

Managing XStream Out
This section describes managing an XStream Out configuration.

This section contains these topics:

■ Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture
Process

■ Managing Rules for an XStream Out Configuration

■ Changing the Connect User for an Outbound Server

■ Changing the Capture User of the Capture Process for an Outbound Server

■ Changing the Start SCN or Start Time of the Capture Process for an Outbound
Server

■ Dropping Components in an XStream Out Configuration

Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process
In some XStream Out configurations, you can use the DBMS_XSTREAM_ADM package to
manage the capture process that captures changes for an outbound server. However,
other configurations require that you use the DBMS_CAPTURE_ADM package or the DBMS_
STREAMS_ADM package to manage the capture process.

Note: With XStream Out, an Oracle Streams apply process functions
as an outbound server. Therefore, you can use the instructions for
managing an apply process to manage an outbound server. See Oracle
Database 2 Day + Data Replication and Integration Guide and Oracle
Streams Concepts and Administration.

See Also:

■ "XStream Out" on page 2-1

■ "Configuring XStream Out" on page 4-14

■ "Monitoring XStream Out" on page 6-3

Managing XStream Out

Managing XStream 5-3

Specifically, the DBMS_XSTREAM_ADM package can manage an outbound server’s capture
process in the following ways:

■ Add rules to and remove rules from the capture process’s rule sets

■ Change the capture user for the capture process

■ Drop the capture process

The DBMS_XSTREAM_ADM package can manage an outbound server’s capture process in
either of the following cases:

■ The capture process was created by the CREATE_OUTBOUND procedure in the DBMS_
XSTREAM_ADM package.

■ The queue used by the capture process was created by the CREATE_OUTBOUND
procedure.

To check whether an outbound server’s capture process can be managed by the DBMS_
XSTREAM_ADM package:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound Server Name' FORMAT A30
COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30

SELECT SERVER_NAME,
 CAPTURE_NAME
 FROM DBA_XSTREAM_OUTBOUND;

Your output looks similar to the following:

Outbound Server Name Capture Process Name
------------------------------ ------------------------------
XOUT CAP$_XOUT_4

If the Capture Process Name for an outbound server is non-NULL, then the DBMS_
XSTREAM_ADM package can manage the capture process. In this case, you can also
manage the capture process using the DBMS_CAPTURE_ADM package or the DBMS_
STREAMS_ADM package. However, it is usually better to manage the capture process
for an outbound server using the DBMS_XSTREAM_ADM package when it is possible.

If the Capture Process Name for an outbound server is NULL, then the DBMS_
XSTREAM_ADM package cannot manage the capture process. In this case, you must
manage the capture process using the DBMS_CAPTURE_ADM package or the DBMS_
STREAMS_ADM package.

See Also:

■ "ALL_XSTREAM_OUTBOUND" on page 12-8

■ Oracle Streams Concepts and Administration for information about
managing a capture process using the DBMS_CAPTURE_ADM package
or the DBMS_STREAMS_ADM package

Managing XStream Out

5-4 Oracle Database XStream Guide

Managing Rules for an XStream Out Configuration
This section describes managing rules for an XStream Out configuration. Rules control
which database changes are streamed to the outbound server and which database
changes the outbound server streams to the client application.

This section contains these topics:

■ Adding Rules to an XStream Out Configuration

■ Removing Rules from an XStream Out Configuration

Adding Rules to an XStream Out Configuration
This section describes adding schema rules, table rules, and subset rules to an XStream
Out configuration.

This section contains these topics:

■ Adding Schema Rules and Table Rules to an XStream Out Configuration

■ Adding Subset Rules to an Outbound Server’s Positive Rule Set

Adding Schema Rules and Table Rules to an XStream Out Configuration This section describes
adding schema rules and table rules to an XStream Out configuration using the ALTER_
OUTBOUND procedure in the DBMS_XSTREAM_ADM package. The ALTER_OUTBOUND
procedure adds rules for both data manipulation language (DML) and data definition
language (DDL) changes.

When you follow the instructions in this section, the ALTER_OUTBOUND procedure
always adds rules for the specified schemas and tables to one of the outbound server’s
rule sets. If the DBMS_XSTREAM_ADM package can manage the outbound server’s capture
process, then the ALTER_OUTBOUND procedure also adds rules for the specified schemas
and tables to one of the rule sets used by this capture process.

To determine whether the DBMS_XSTREAM_ADM package can manage the outbound
server’s capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package
Can Manage a Capture Process" on page 5-2. If the DBMS_XSTREAM_ADM package cannot
manage the outbound server’s capture process, then the ALTER_OUTBOUND procedure
adds rules to the outbound server’s rule set only. In this case, if rules for same schemas
and tables should be added to the capture process’s rule set as well, then see Oracle
Streams Concepts and Administration for instructions about adding them.

In addition, if the capture process is running on a different database than the
outbound server, then add schema and table rules to the propagation that sends logical
change records (LCRs) to the outbound server’s database. See Oracle Streams Concepts
and Administration for instructions.

To add schema rules and table rules to an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

■ table_names - Specify the tables for which to add rules, or specify NULL to add
no table rules.

See Also: Oracle Streams Concepts and Administration

Managing XStream Out

Managing XStream 5-5

■ schema_name - Specify the schemas for which to add rules, or specify NULL to
add no schema rules.

■ add - Specify TRUE so that the rules are added. (Rules are removed if you
specify FALSE.)

■ inclusion_rule - Specify TRUE to add rules to the positive rule set of the
outbound server, or specify FALSE to add rules to the negative rule set of the
outbound server. If the DBMS_XSTREAM_ADM package can manage the outbound
server’s capture process, then rules are also added to this capture process’s
rule set.

The following examples add rules to the configuration of an outbound server named
xout.

Example 5–1 Adding Rules for the hr Schema, oe.orders Table, and oe.order_items
Table to the Positive Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => 'oe.orders, oe.order_items',
 schema_names => 'hr',
 add => TRUE,
 inclusion_rule => TRUE);
END;
/

Example 5–2 Adding Rules for the hr Schema to the Negative Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => NULL,
 schema_names => 'hr',
 add => TRUE,
 inclusion_rule => FALSE);
END;
/

Adding Subset Rules to an Outbound Server’s Positive Rule Set This section describes adding
subset rules to an outbound server’s positive rule set using the ADD_SUBSET_OUTBOUND_
RULES procedure in the DBMS_XSTREAM_ADM package. The ADD_SUBSET_OUTBOUND_RULES
procedure only adds rules for DML changes to an outbound server’s positive rule set.
It does not add rules for DDL changes, and it does not add rules to a capture process’s
rule set.

To add subset rules to an outbound server’s positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ADD_SUBSET_OUTBOUND_RULES procedure, and specify the following
parameters:

■ server_name - Specify the name of the outbound server.

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Managing XStream Out

5-6 Oracle Database XStream Guide

■ table_name - Specify the table for which you want to capture and stream a
subset of data.

■ condition - Specify the subset condition, which is similar to the WHERE clause
in a SQL statement, to stream changes to a subset of rows in the table.

■ column_list - Specify the subset of columns to keep or discard, or specify
NULL to keep all of the columns.

■ keep - Specify TRUE to keep the columns listed in the column_list parameter,
or specify FALSE to discard the columns in the column_list parameter.

When column_list is non-NULL and keep is set to TRUE, the procedure creates a
keep columns declarative rule-based transformation for the columns listed in
column_list.

When column_list is non-NULL and keep is set to FALSE, the procedure creates a
delete column declarative rule-based transformation for each column listed in
column_list.

3. If subset rules should also be added to the rule set of a capture process or
propagation that streams row LCRs to the outbound server, then see Oracle Streams
Concepts and Administration for information about adding rules to a rule set.

Example 5–3 Adding Rules That Stream Changes to a Subset of Rows in a Table

The following procedure creates rules that only evaluate to TRUE for row changes
where the department_id value is 40 in the hr.employees table:

DECLARE
 cols DBMS_UTILITY.LNAME_ARRAY;
 BEGIN
 cols(1) := 'employee_id';
 cols(2) := 'first_name';
 cols(3) := 'last_name';
 cols(4) := 'email';
 cols(5) := 'phone_number';
 cols(6) := 'hire_date';
 cols(7) := 'job_id';
 cols(8) := 'salary';
 cols(9) := 'commission_pct';
 cols(10) := 'manager_id';
 cols(11) := 'department_id';
 DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',
 table_name => 'hr.employees',
 condition => 'department_id=40',
 column_list => cols);
END;
/

Example 5–4 Adding Rules That Stream Changes to a Subset of Rows and Columns in a
Table

The following procedure creates rules that only evaluate to TRUE for row changes
where the department_id value is 40 for the hr.employees table. The procedure also
creates delete column declarative rule-based transformations for the salary and
commission_pct columns.

BEGIN
 DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',

Managing XStream Out

Managing XStream 5-7

 table_name => 'hr.employees',
 condition => 'department_id=40',
 column_list => 'salary,commission_pct',
 keep => FALSE);
END;
/

Removing Rules from an XStream Out Configuration
This section describes removing schema rules, table rules, and subset rules from an
XStream Out configuration.

This section contains these topics:

■ Removing Schema Rules and Table Rules From an XStream Out Configuration

■ Removing Subset Rules from an Outbound Server’s Positive Rule Set

Removing Schema Rules and Table Rules From an XStream Out Configuration This section
describes removing schema rules and table rules from an XStream Out configuration
using the ALTER_OUTBOUND procedure in the DBMS_XSTREAM_ADM package. The ALTER_
OUTBOUND procedure removes rules for both DML and DDL changes.

When you follow the instructions in this section, the ALTER_OUTBOUND procedure
always removes rules for the specified schemas and tables from one of the outbound
server’s rule sets. If the DBMS_XSTREAM_ADM package can manage the outbound server’s
capture process, then the ALTER_OUTBOUND procedure also removes rules for the
specified schemas and tables from one of the rule sets used by this capture process.

To determine whether the DBMS_XSTREAM_ADM package can manage the outbound
server’s capture process, see "Checking Whether the DBMS_XSTREAM_ADM Package
Can Manage a Capture Process" on page 5-2. If the DBMS_XSTREAM_ADM package cannot
manage the outbound server’s capture process, then the ALTER_OUTBOUND procedure
removes rules from the outbound server’s rule set only. In this case, if you must
remove the rules for same schemas and tables from the capture process’s rule set as
well, then see Oracle Streams Concepts and Administration for instructions.

In addition, if the capture process is running on a different database than the
outbound server, then remove the schema and table rules from the propagation that
sends LCRs to the outbound server’s database. See Oracle Streams Concepts and
Administration for instructions.

To remove schema rules and table rules from an XStream Out configuration:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

■ table_names - Specify the tables for which to remove rules, or specify NULL to
remove no table rules.

See Also:

■ "ADD_SUBSET_OUTBOUND_RULES Procedure" on page 8-11

■ Oracle Streams Concepts and Administration for information about
declarative rule-based transformations

Managing XStream Out

5-8 Oracle Database XStream Guide

■ schema_name - Specify the schemas for which to remove rules, or specify NULL
to remove no schema rules.

■ add - Specify FALSE so that the rules are removed. (Rules are added if you
specify TRUE.)

■ inclusion_rule - Specify TRUE to remove rules from the positive rule set of the
outbound server, or specify FALSE to remove rules from the negative rule set of
the outbound server. If the DBMS_XSTREAM_ADM package can manage the
outbound server’s capture process, then rules are also removed from this
capture process’s rule set.

The following examples remove rules from the configuration of an outbound
server named xout.

Example 5–5 Removing Rules for the hr Schema, oe.orders Table, and oe.order_items
Table from the Positive Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => 'oe.orders, oe.order_items',
 schema_names => 'hr',
 add => FALSE,
 inclusion_rule => TRUE);
END;
/

Example 5–6 Removing Rules for the hr Schema from the Negative Rule Set

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 table_names => NULL,
 schema_names => 'hr',
 add => FALSE,
 inclusion_rule => FALSE);
END;
/

Removing Subset Rules from an Outbound Server’s Positive Rule Set This section describes
removing subset rules from an outbound server’s positive rule set using the REMOVE_
SUBSET_OUTBOUND_RULES procedure in the DBMS_XSTREAM_ADM package. The REMOVE_
SUBSET_OUTBOUND_RULES procedure only removes rules for DML changes. It does not
remove rules for DDL changes, and it does not remove rules from a capture process’s
rule set.

To remove subset rules from an outbound server’s positive rule set:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Determine the rule names for the subset rules by running the following query:

SELECT RULE_OWNER, SUBSETTING_OPERATION, RULE_NAME
 FROM DBA_XSTREAM_RULES
 WHERE SUBSETTING_OPERATION IS NOT NULL;

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Managing XStream Out

Managing XStream 5-9

3. Run the REMOVE_SUBSET_OUTBOUND_RULES procedure, and specify the rules to
remove from the list of rules displayed in Step 2.

For example, assume that Step 2 returned the following results:

RULE_OWNER SUBSET RULE_NAME
------------------------------ ------ ------------------------------
XSTRMADMIN INSERT EMPLOYEES71
XSTRMADMIN UPDATE EMPLOYEES72
XSTRMADMIN DELETE EMPLOYEES73

Example 5–7 Removing Subset Rules From an Outbound Server’s Positive Rule Set

To remove these rules from the positive rule set of the xout outbound server, run the
following procedure:

BEGIN
 DBMS_XSTREAM_ADM.REMOVE_SUBSET_OUTBOUND_RULES(
 server_name => 'xout',
 insert_rule_name => 'xstrmadmin.employees71',
 update_rule_name => 'xstrmadmin.employees72',
 delete_rule_name => 'xstrmadmin.employees73');
END;
/

4. If subset rules should also be removed from the rule set of a capture process and
propagation that streams row LCRs to the outbound server, then see Oracle Streams
Concepts and Administration for information about removing rules.

Changing the Connect User for an Outbound Server
A client application can connect to an outbound server as the connect user. This
section describes changing the connect user for an outbound server using the ALTER_
OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

The connect user is the user who can attach to the outbound server to retrieve the LCR
stream. The client application must attach to the outbound server as the connect user.

You can change the connect user when a client application must connect to an
outbound server as a different user. Ensure that the connect user is granted the
required privileges.

To change the connect user for an outbound server:

1. Connect to the outbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the connect
user for an outbound server.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

See Also: "REMOVE_SUBSET_OUTBOUND_RULES Procedure" on
page 8-30

See Also: "CREATE_OUTBOUND Procedure" on page 8-21 for
information about the privileges required by a connect user

Managing XStream Out

5-10 Oracle Database XStream Guide

■ connect_user - Specify the new connect user.

Example 5–8 Changing the Connect User for an Outbound Server

To change the connect user to hr for an outbound server named xout, run the
following procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 connect_user => 'hr');
END;
/

Changing the Capture User of the Capture Process for an Outbound Server
A capture user is the user in whose security domain a capture process captures
changes from the redo log. This section describes changing the capture user for a
capture process that captures changes for an outbound server using the ALTER_
OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

You can change the capture user when the capture process must capture changes in a
different security domain. Ensure that the capture user is granted the required
privileges. When you change the capture user, the ALTER_OUTBOUND procedure grants
the new capture user enqueue privilege on the queue used by the capture process and
configures the user as a secure queue user.

To change the capture user of the capture process for an outbound server:

1. Connect to the outbound server database as the XStream administrator.

To change the capture user, the user who invokes the ALTER_OUTBOUND procedure
must be granted DBA role. Only the SYS user can set the capture user to SYS.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Determine whether the DBMS_XSTREAM_ADM package can manage the capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process" on page 5-2.

Based on the check, follow the appropriate instructions:

■ If the capture process can be managed using the DBMS_XSTREAM_ADM package,
then proceed to Step 3.

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Note: If Oracle Database Vault is installed, then the user who
changes the capture user must be granted the BECOME USER system
privilege. Granting this privilege to the user is not required if Oracle
Database Vault is not installed. You can revoke the BECOME USER
system privilege from the user after capture user is changed, if
necessary.

See Also: "CREATE_OUTBOUND Procedure" on page 8-21 for
information about the privileges required by a capture user

Managing XStream Out

Managing XStream 5-11

■ If the capture process cannot be managed using the DBMS_XSTREAM_ADM
package, then follow the instructions in Oracle Streams Concepts and
Administration.

3. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

■ capture_user - Specify the new capture user.

Example 5–9 Changing the Capture User of the Capture Process for an Outbound Server

To change the capture user to hq_admin for an outbound server named xout, run the
following procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 capture_user => 'hq_admin');
END;
/

Changing the Start SCN or Start Time of the Capture Process for an Outbound Server

This section describes changing the start system change number (SCN) or start time
for a capture process that captures changes for an outbound server using the ALTER_
OUTBOUND procedure in the DBMS_XSTREAM_ADM package.

The start SCN is the SCN from which a capture process begins to capture changes. The
start time is the time from which a capture process begins to capture changes. When
you reset a start SCN or start time for a capture process, ensure that the required redo
log files are available to the capture process.

Typically, you reset the start SCN or start time for a capture process if point-in-time
recovery was performed on one of the destination databases that receive changes from
the capture process.

This section contains these topics:

■ Changing the Start SCN of the Capture Process for an Outbound Server

■ Changing the Start Time of the Capture Process for an Outbound Server

Changing the Start SCN of the Capture Process for an Outbound Server
This section describes changing the start SCN of the capture process for an outbound
server.

To change the start SCN for a capture process:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Check the first SCN of the capture process:

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Managing XStream Out

5-12 Oracle Database XStream Guide

COLUMN CAPTURE_PROCESS HEADING 'Capture Process Name' FORMAT A30
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999999

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

CAPTURE_NAME First SCN
------------------------------ ---------------
CAP$_XOUT_1 604426

When you reset the start SCN, the specified start SCN must be equal to or greater
than the first SCN for the capture process.

3. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

■ start_scn - Specify the SCN from which the capture process begins to capture
changes.

If the capture process is enabled, then the ALTER_OUTBOUND procedure
automatically stops and restarts the capture process when the start_scn
parameter is non-NULL.

If the capture process is disabled, then the ALTER_OUTBOUND procedure
automatically starts the capture process when the start_scn parameter is
non-NULL.

Example 5–10 Setting the Start SCN of the Capture Process for an Outbound Server

Run the following procedure to set the start SCN to 650000 for the capture process
used by the xout outbound server:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 start_scn => 650000);
END;
/

Changing the Start Time of the Capture Process for an Outbound Server
This section describes changing the start time of the capture process for an outbound
server.

To change the start time for a capture process:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Check the time that corresponds with the first SCN of the capture process:

COLUMN CAPTURE_PROCESS HEADING 'Capture Process Name' FORMAT A30
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT A40

SELECT CAPTURE_NAME, SCN_TO_TIMESTAMP(FIRST_SCN) FIRST_SCN FROM DBA_CAPTURE;

CAPTURE_NAME First SCN
------------------------------ --
CAP$_XOUT_1 05-MAY-10 08.11.17.000000000 AM

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Managing XStream Out

Managing XStream 5-13

When you reset the start time, the specified start time must be greater than or
equal to the time that corresponds with the first SCN for the capture process.

3. Run the ALTER_OUTBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the outbound server.

■ start_time - Specify the time from which the capture process begins to
capture changes.

If the capture process is enabled, then the ALTER_OUTBOUND procedure
automatically stops and restarts the capture process when the start_time
parameter is non-NULL.

If the capture process is disabled, then the ALTER_OUTBOUND procedure
automatically starts the capture process when the start_time parameter is
non-NULL.

The following examples set the start_time parameter for the capture process that
captures changes for an outbound server named xout.

Example 5–11 Set the Start Time to a Specific Time

Run the following procedure to set the start time to 05-MAY-10 11.11.17 AM for the
capture process used by the xout outbound server:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 start_time => '05-MAY-10 11.11.17 AM');
END;
/

Example 5–12 Set the Start Time Using the NUMTODSINTERVAL SQL Function

Run the following procedure to set the start time to four hours earlier than the current
time for the capture process used by the xout outbound server:

DECLARE
 ts TIMESTAMP;
BEGIN
 ts := SYSTIMESTAMP - NUMTODSINTERVAL(4, 'HOUR');
 DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name => 'xout',
 start_time => ts);
END;
/

Dropping Components in an XStream Out Configuration
This section describes dropping an outbound server using the DROP_OUTBOUND
procedure in the DBMS_XSTREAM_ADM package.

This procedure always drops the specified outbound server. This procedure also drops
the queue used by the outbound server if both of the following conditions are met:

■ The queue was created by the ADD_OUTBOUND or CREATE_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

See Also: "ALTER_OUTBOUND Procedure" on page 8-14

Managing XStream In

5-14 Oracle Database XStream Guide

■ The outbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_OUTBOUND procedure
only drops the outbound server. It does not drop the queue.

This procedure also drops the capture process for the outbound server if both of the
following conditions are met:

■ The procedure can drop the outbound server’s queue.

■ The DBMS_XSTREAM_ADM package can manage the outbound server’s capture
process. See "Checking Whether the DBMS_XSTREAM_ADM Package Can
Manage a Capture Process" on page 5-2.

If the procedure can drop the queue but cannot manage the capture process, then it
drops the queue without dropping the capture process.

To drop an outbound server:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_OUTBOUND procedure.

Example 5–13 Dropping an Outbound Server

To drop an outbound server named xout, run the following procedure:

exec DBMS_XSTREAM_ADM.DROP_OUTBOUND('xout');

Managing XStream In
This section describes managing an XStream In inbound server configuration.

This section contains these topics:

■ Changing the Apply User for an Inbound Server

■ Managing Eager Errors Encountered by an Inbound Server

■ Dropping Components in an XStream In Configuration

See Also:

■ "DROP_OUTBOUND Procedure" on page 8-26

■ Oracle Streams Concepts and Administration for information about
dropping a queue or a capture process

Note: With XStream In, an Oracle Streams apply process functions as
an inbound server. Therefore, you can use the instructions for
managing an apply process to manage an inbound server. See Oracle
Database 2 Day + Data Replication and Integration Guide and Oracle
Streams Concepts and Administration.

Managing XStream In

Managing XStream 5-15

Changing the Apply User for an Inbound Server
An inbound server applies messages in the security domain of its apply user, and the
client application must attach to the inbound server as the apply user. This section
describes changing the apply user for an inbound server using the ALTER_INBOUND
procedure in the DBMS_XSTREAM_ADM package.

You can change the apply user when a client application must connect to an inbound
server as a different user or when you want to apply changes using the privileges
associated with a different user. Ensure that the apply user is granted the required
privileges.

To change the apply user for an inbound server:

1. Connect to the inbound server database as the XStream administrator.

The XStream administrator must be granted the DBA role to change the apply user
for an inbound server.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the ALTER_INBOUND procedure, and specify the following parameters:

■ server_name - Specify the name of the inbound server.

■ apply_user - Specify the new apply user.

Example 5–14 Changing the Apply User for an Inbound Server

To change the apply user to hr for an inbound server named xin, run the following
procedure:

BEGIN
 DBMS_XSTREAM_ADM.ALTER_INBOUND(
 server_name => 'xin',
 apply_user => 'hr');
END;
/

See Also:

■ "XStream In" on page 2-9

■ "Configuring XStream In" on page 4-24

■ "Monitoring XStream In" on page 6-10

See Also: "CREATE_INBOUND Procedure" on page 8-19 for
information about the privileges required by an apply user

See Also:

■ "ALTER_INBOUND Procedure" on page 8-13

■ "Security Model" on page 8-4 for information about the security
requirements for configuring and managing XStream

■ Oracle Streams Concepts and Administration

Managing XStream In

5-16 Oracle Database XStream Guide

Managing Eager Errors Encountered by an Inbound Server

An inbound server can encounter an eager error when it cannot access all of the LCRs
in an error transaction. The EAGER ERROR error type typically means that an LCR raised
an error while the inbound server was receiving and applying LCRs in a large
transaction. If an error transaction is not an eager error transaction, then it is referred
to as a normal error transaction.

Normal error transactions and eager error transactions must be managed differently.
An inbound server moves a normal error transaction, including all of its LCRs, to the
error queue, but an inbound server does not move an eager error transaction to the
error queue.

The following statements apply to both normal error transactions and eager error
transactions:

■ The ALL_APPLY_ERROR and the DBA_APPLY_ERROR view contain information
(metadata) about the error transaction.

■ The inbound server does not apply the error transaction.

Table 5–1 explains the options for managing a normal error transaction.

Table 5–2 explains the options for managing an eager error transaction.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Table 5–1 Options Available for Managing a Normal Error Transaction

Action Mechanisms Description

Delete the error
transaction

DBMS_APPLY_ADM.DELETE_ERROR

DBMS_APPLY_ADM.DELETE_ALL_ERRORS

Oracle Enterprise Manager

The error transaction is deleted from the
error queue, and the metadata about the
error transaction is deleted. An inbound
server does not try to reexecute the
transaction when the inbound server is
restarted. The transaction is not applied.

Execute the error
transaction

DBMS_APPLY_ADM.EXECUTE_ERROR

DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS

Oracle Enterprise Manager

The error transaction in the error queue
is executed. If there are no errors during
execution, then the transaction is
applied. If an LCR raises an error
during execution, then the normal error
transaction is moved back to the error
queue.

Retain the error
transaction

None. (The error transaction is retained
automatically.)

The error transaction remains in the
error queue even if the inbound server
is restarted. The metadata about the
error transaction is also retained. The
transaction is not applied.

Managing XStream In

Managing XStream 5-17

To manage an eager error transaction encountered by an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Query the ERROR_TYPE column in the ALL_APPLY_ERROR data dictionary view:

SELECT APPLY_NAME, ERROR_TYPE FROM ALL_APPLY_ERROR;

Follow the appropriate instructions based on the error type:

■ If the ERROR_TYPE column shows EAGER ERROR, then proceed to Step 3.

Table 5–2 Options Available for Managing an Eager Error Transaction

Action Mechanisms Description

Delete error transaction DBMS_APPLY_ADM.DELETE_ERROR

DBMS_APPLY_ADM.DELETE_ALL_ERRORS

Oracle Enterprise Manager

The metadata about the eager error
transaction is deleted. When the
inbound server is restarted, it attempts
to execute the transaction as an eager
transaction. If the inbound server does
not encounter an error during
execution, then the transaction is
applied successfully. If the inbound
server encounters an error during
execution, then the eager error
transaction is recorded.

Retain error transaction None. (The metadata about the error
transaction is retained automatically.)

The metadata about the eager error
transaction is retained. When the
inbound server is restarted, it attempts
to execute the transaction as a normal
transaction.

Specifically, the inbound server spills
the transaction to disk and attempts to
execute the transaction. If the inbound
server does not encounter an error
during execution, then the transaction is
applied successfully. If the inbound
server encounters an error during
execution, then the transaction becomes
a normal error transaction. In this case,
the LCR that raised the error and all of
the other LCRs in the transaction are
moved to the error queue. After the
normal error transaction is moved to
the error queue, you must manage the
error transaction as a normal error
transaction (not an eager error
transaction).

Note: If you attempt to execute an eager error transaction manually
using the DBMS_APPLY_ADM package or Oracle Enterprise Manager,
then the following error is raised:

ORA-26909: cannot reexecute an eager error

An eager error transaction cannot be executed manually. Instead, it is
executed automatically when the inbound server is enabled.

Managing XStream In

5-18 Oracle Database XStream Guide

■ If the ERROR_TYPE column shows NULL, then the apply error is not an eager
error, and you cannot use the instructions in this section to manage it. Instead,
use the instructions in Oracle Database 2 Day + Data Replication and Integration
Guide or Oracle Streams Concepts and Administration.

3. Examine the error message raised by the LCR, and determine the cause of the
error.

See Oracle Database 2 Day + Data Replication and Integration Guide for information
about checking for apply errors using Oracle Enterprise Manager.

See Oracle Streams Concepts and Administration for information about checking for
apply errors using the DBA_APPLY_ERROR data dictionary view.

4. If possible, determine how to avoid the error, and make any changes necessary to
avoid the error.

Oracle Streams Concepts and Administration contains information about common
apply errors.

5. Either retain the error transaction or delete the error transaction:

■ Delete the error transaction only if you have corrected the problem. The
inbound server reexecutes the transaction when it is enabled.

■ Retain the error transaction if you cannot correct the problem now or if you
plan to reexecute it in the future.

See Table 5–2 for more information about these choices.

See Oracle Database 2 Day + Data Replication and Integration Guide for information
about deleting an error transaction using Oracle Enterprise Manager.

See Oracle Streams Concepts and Administration information about deleting an error
transaction using the DBMS_APPLY_ADM package.

6. If the inbound server is disabled, then start the inbound server.

Query the STATUS column in the ALL_APPLY_ERROR view to determine whether the
inbound server is enabled or disabled.

If the disable_on_error apply parameter is set to Y for the inbound server, then
the inbound server becomes disabled when it encounters the error and remains
disabled.

If the disable_on_error apply parameter is set to N for the inbound server, then
the inbound server stops and restarts automatically when it encounters the error.

See Table 5–2 for information about how the inbound server handles the error
transaction based on your choice in Step 5.

See Oracle Database 2 Day + Data Replication and Integration Guide for information
about starting an apply process (or inbound server) using Oracle Enterprise
Manager.

See Oracle Streams Concepts and Administration for information about starting an
apply process (or inbound server) using the DBMS_APPLY_ADM package.

Caution: It might not be possible to recover a normal error
transaction that is deleted. Before deleting the error transaction,
ensure that the error type is EAGER ERROR.

Managing XStream In

Managing XStream 5-19

Dropping Components in an XStream In Configuration
This section describes dropping an inbound server using the DROP_INBOUND procedure
in the DBMS_XSTREAM_ADM package.

This procedure always drops the specified inbound server. This procedure also drops
the queue for the inbound server if both of the following conditions are met:

■ One call to the CREATE_INBOUND procedure created the inbound server and the
queue.

■ The inbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_INBOUND procedure
only drops the inbound server. It does not drop the queue.

To drop an inbound server:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the DROP_INBOUND procedure.

Example 5–15 Dropping an Inbound Server

To drop an inbound server named xin, run the following procedure:

exec DBMS_XSTREAM_ADM.DROP_INBOUND('xin');

Note: If you have both purchased a license for the Oracle
GoldenGate product and have enabled the XStream optimizations for
Oracle Streams by running the DBMS_XSTREAM_ADM.ENABLE_GG_
XSTREAM_FOR_STREAMS procedure, then an apply process in an Oracle
Streams configuration can encounter errors of the EAGER ERROR type.
Use the instructions in this section to manage eager apply process
errors. When the XStream optimizations for Oracle Streams are not
enabled, apply processes cannot encounter eager errors.

See Also:

■ "ALL_APPLY_ERROR" on page 12-3

■ "ENABLE_GG_XSTREAM_FOR_STREAMS Procedure" on
page 8-27

See Also: "DROP_INBOUND Procedure" on page 8-25

Managing XStream In

5-20 Oracle Database XStream Guide

6

Monitoring XStream 6-1

6 Monitoring XStream

This chapter provides instructions for monitoring XStream.

This chapter contains these topics:

■ About Monitoring XStream

■ Monitoring Session Information About XStream Components

■ Monitoring XStream Out

■ Monitoring XStream In

■ Monitoring XStream Rules

■ XStream and the Oracle Streams Performance Advisor

About Monitoring XStream
This chapter describes monitoring an XStream Out configuration and an XStream In
configuration. This chapter provides instructions for querying data dictionary views
related to XStream. The queries provide information about XStream components and
statistics related to XStream.

The main interface for monitoring XStream database components is SQL*Plus,
although you can monitor some aspects of an XStream configuring using Oracle
Enterprise Manager. For example, you can view information about capture processes,
outbound servers, inbound servers, and rules in Enterprise Manager. Outbound
servers and inbound servers appear as apply processes in Enterprise Manager.

This chapter also describes using the Oracle Streams Performance Advisor to monitor
an XStream configuration. The Oracle Streams Performance Advisor consists of the
DBMS_STREAMS_ADVISOR_ADM package and a collection of data dictionary views. The
Oracle Streams Performance Advisor enables you to monitor the topology and
performance of an XStream environment.

See Also:

■ Chapter 2, "XStream Concepts"

■ Chapter 3, "XStream Use Cases"

■ Chapter 4, "Configuring XStream"

■ Chapter 5, "Managing XStream"

■ Chapter 7, "Troubleshooting XStream"

Monitoring Session Information About XStream Components

6-2 Oracle Database XStream Guide

Monitoring Session Information About XStream Components

The query in this section displays the following session information about each
XStream component in a database:

■ The XStream component name

■ The session identifier

■ The serial number

■ The operating system process identification number

■ The XStream process number

This query is especially useful for determining the session information for specific
XStream components when there are multiple XStream Out or XStream In components
configured in a database.

To display this information for each XStream component in a database:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN ACTION HEADING 'XStream Component' FORMAT A30
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A17
COLUMN PROCESS_NAME HEADING 'XStream|Process|Number' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='XStream';

Your output for an XStream Out configuration looks similar to the following:

 Session XStream
 Serial Operating System Process
XStream Component Session ID Number Process Number Number
------------------------------ ---------- --------- ----------------- -------
XOUT - Apply Server 35 33 16386 TNS
XOUT - Apply Coordinator 41 1 14093 AP01
XOUT - Apply Reader 43 1 14095 AS01
XOUT - Apply Server 45 1 14097 AS02
XOUT - Propagation Send/Rcv 47 55 16401 CS01
CAP$_XOUT_1 - Capture 48 7 16399 CP01

The row that shows TNS for the XStream process number contains information about
the session for the XStream client application that is attached to the outbound server.

Your output for an XStream In configuration looks similar to the following:

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Monitoring XStream Out

Monitoring XStream 6-3

 Session XStream
 Serial Operating System Process
XStream Component Session ID Number Process Number Number
------------------------------ ---------- --------- ----------------- -------
XIN - Propagation Receiver 32 21 16386 TNS
XIN - Apply Coordinator 38 23 16414 AP01
XIN - Apply Reader 40 3 16418 AS01
XIN - Apply Server 42 1 16420 AS02
XIN - Apply Server 44 1 16422 AS03
XIN - Apply Server 46 1 16424 AS04
XIN - Apply Server 48 1 16426 AS05

The row that shows TNS for the XStream process number contains information about
the session for the XStream client application that is attached to the inbound server.

Monitoring XStream Out
This section provides sample queries that you can use to monitor XStream Out.

This section contains these topics:

■ Displaying General Information About an Outbound Server

■ Displaying Status and Error Information for an Outbound Server

■ Displaying Information About an Outbound Server’s Current Transaction

■ Displaying Statistics for an Outbound Server

■ Displaying the Processed Low Position for an Outbound Server

■ Determining the Process Information for an Outbound Server

With XStream Out, an Oracle Streams apply process functions as an outbound server.
Therefore, you can also use the data dictionary views for apply processes to monitor
outbound servers. In addition, an XStream Out environment includes capture
processes and queues, and might include other components, such as propagations,
rules, and rule-based transformations.

Displaying General Information About an Outbound Server
You can display the following information for an outbound server by running the
query in this section:

■ The outbound server name

■ The name of the connect user for the outbound server

The connect user is the user who can attach to the outbound server to retrieve the
logical change record (LCR) stream. The client application must attach to the
outbound server as the specified connect user.

■ The name of the capture user for the capture process that captures changes for the
outbound server to process

■ The name of the capture process that captures changes for the outbound server to
process

■ The name of the source database for the captured changes

See Also: Oracle Database Reference for more information about the
V$SESSION view

See Also: Oracle Streams Concepts and Administration

Monitoring XStream Out

6-4 Oracle Database XStream Guide

■ The owner of the queue used by the outbound server

■ The name of the queue used by the outbound server

The DBA_XSTREAM_OUTBOUND view contains information about the capture user, the
capture process, and the source database in either of the following cases:

■ The outbound server was created using the CREATE_OUTBOUND procedure in the
DBMS_XSTREAM_ADM package.

■ The outbound server was created using the ADD_OUTBOUND procedure in the DBMS_
XSTREAM_ADM package, and the capture process for the outbound server runs on the
same database as the outbound server.

If the outbound server was created using the ADD_OUTBOUND procedure, and the capture
process for the outbound server is on a different database, then the DBA_XSTREAM_
OUTBOUND view does not contain information about the capture user, the capture
process, or the source database.

To display this general information about an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN CONNECT_USER HEADING 'Connect|User' FORMAT A10
COLUMN CAPTURE_USER HEADING 'Capture|User' FORMAT A10
COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A11
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A11
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A10

SELECT SERVER_NAME,
 CONNECT_USER,
 CAPTURE_USER,
 CAPTURE_NAME,
 SOURCE_DATABASE,
 QUEUE_OWNER,
 QUEUE_NAME
 FROM DBA_XSTREAM_OUTBOUND;

Your output looks similar to the following:

Outbound Capture
Server Connect Capture Process Source Queue Queue
Name User User Name Database Owner Name
---------- ---------- ---------- ----------- ----------- ---------- ----------
XOUT XSTRMADMIN XSTRMADMIN CAP$_XOUT_1 DB.EXAMPLE. XSTRMADMIN Q$_XOUT_2
 COM

See Also:

■ "ALL_XSTREAM_OUTBOUND" on page 12-8

■ Oracle Streams Concepts and Administration

Monitoring XStream Out

Monitoring XStream 6-5

Displaying Status and Error Information for an Outbound Server
You can monitor an outbound server using the same queries as you use to monitor an
Oracle Streams apply process. See Oracle Streams Concepts and Administration for
instructions.

The ALL_APPLY and DBA_APPLY views show XStream Out in the PURPOSE column for an
apply process that is functioning as an outbound server.

To display detailed information about an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Apply Name' FORMAT A10
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 9999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME,
 STATUS,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY
 WHERE PURPOSE = 'XStream Out';

Your output looks similar to the following:

Apply Name Status Error Number Error Message
---------- -------- ------------ --
XOUT ENABLED

This output shows that XOUT is an apply process that is functioning as an outbound
server. Use the instructions in Oracle Streams Concepts and Administration to display
detailed information about the outbound server.

Displaying Information About an Outbound Server’s Current Transaction

The V$XSTREAM_OUTBOUND_SERVER view contains the following information about the
transaction currently being processed by an XStream outbound server:

■ The name of the outbound server

■ The transaction ID of the transaction currently being processed

■ Commit system change number (SCN) of the transaction currently being
processed

■ Commit position of the transaction currently being processed

■ The position of the last LCR sent to the XStream client application

■ The message number of the current LCR being processed by the outbound server

See Also: "ALL_APPLY" on page 12-1

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Monitoring XStream Out

6-6 Oracle Database XStream Guide

Run this query to determine how many LCRs an outbound server has processed in a
specific transaction. You can query the TOTAL_MESSAGE_COUNT column in the
V$XSTREAM_TRANSACTION view to determine the total number of LCRs in a transaction.

To display information about an outbound server’s current transaction:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN 'Transaction ID' HEADING 'Transaction|ID' FORMAT A11
COLUMN COMMITSCN HEADING 'Commit SCN' FORMAT 9999999999999
COLUMN COMMIT_POSITION HEADING 'Commit Position' FORMAT A15
COLUMN LAST_SENT_POSITION HEADING 'Last Sent|Position' FORMAT A15
COLUMN MESSAGE_SEQUENCE HEADING 'Message|Number' FORMAT 999999999

SELECT SERVER_NAME,
 XIDUSN ||'.'||
 XIDSLT ||'.'||
 XIDSQN "Transaction ID",
 COMMITSCN,
 COMMIT_POSITION,
 LAST_SENT_POSITION,
 MESSAGE_SEQUENCE
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

Outbound
Server Transaction Last Sent Message
Name ID Commit SCN Commit Position Position Number
---------- ----------- -------------- --------------- --------------- ----------
XOUT 17.23.59 645856 00000009DAE0000 00000009DAE0000 4
 000010000000100 000010000000100
 000009DAE000000 000009DAE000000
 0010000000101 0010000000101

Displaying Statistics for an Outbound Server

Note: The COMMITSCN and COMMIT_POSITION values are populated
only if the COMMITTED_DATA_ONLY value is YES in V$XSTREAM_OUTBOUND_
SERVER.

See Also:

■ "V$XSTREAM_OUTBOUND_SERVER" on page 13-10

■ "V$XSTREAM_TRANSACTION" on page 13-13

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Monitoring XStream Out

Monitoring XStream 6-7

The V$XSTREAM_OUTBOUND_SERVER view contains the following statistics about the
database changes processed by an XStream outbound server:

■ The name of the outbound server

■ The number of transactions sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

■ The number of LCRs sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

■ The number of megabytes sent from the outbound server to the XStream client
application since the last time the client application attached to the outbound
server

■ The amount of time the outbound server spent sending LCRs to the XStream client
application since the last time the client application attached to the outbound
server

■ The message number of the last LCR sent by the outbound server to the XStream
client application

■ Creation time at the source database of the last LCR sent by the outbound server to
the client application

To display statistics for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A8
COLUMN TOTAL_TRANSACTIONS_SENT HEADING 'Total|Trans|Sent' FORMAT 9999999
COLUMN TOTAL_MESSAGES_SENT HEADING 'Total|LCRs|Sent' FORMAT 9999999999
COLUMN BYTES_SENT HEADING 'Total|MB|Sent' FORMAT 99999999999999
COLUMN ELAPSED_SEND_TIME HEADING 'Time|Sending|LCRs|(in seconds)' FORMAT
99999999
COLUMN LAST_SENT_MESSAGE_NUMBER HEADING 'Last|Sent|Message|Number' FORMAT
99999999
COLUMN LAST_SENT_MESSAGE_CREATE_TIME HEADING 'Last|Sent|Message|Creation|Time'
FORMAT A10

SELECT SERVER_NAME,
 TOTAL_TRANSACTIONS_SENT,
 TOTAL_MESSAGES_SENT,
 (BYTES_SENT/1024)/1024 BYTES_SENT,
 (ELAPSED_SEND_TIME/100) ELAPSED_SEND_TIME,
 LAST_SENT_MESSAGE_NUMBER,
 LAST_SENT_MESSAGE_CREATE_TIME
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

 Last
 Time Last Sent
Outbound Total Total Total Sending Sent Message
Server Trans LCRs MB LCRs Message Creation
Name Sent Sent Sent (in seconds) Number Time
-------- -------- ----------- --------------- ------------ --------- ----------

Monitoring XStream Out

6-8 Oracle Database XStream Guide

XOUT 2000 216000 56 291 9381070 4-AUG-10
 11:03 A.M.

Displaying the Processed Low Position for an Outbound Server
For an outbound server, the processed low position is the position below which all
transactions have been committed and logged by the client application. The processed
low position is important when the outbound server or the client application is
restarted.

You can display the following information about the processed low position for an
outbound server by running the query in this section:

■ The outbound server name

■ The name of the source database for the captured changes

■ The processed low position, which indicates the low watermark position
processed by the client application

■ The time when the processed low position was last updated by the outbound
server

To display the processed low position for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound|Server|Name' FORMAT A10
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A20
COLUMN PROCESSED_LOW_POSITION HEADING 'Processed|Low LCR|Position' FORMAT A30
COLUMN PROCESSED_LOW_TIME HEADING 'Processed|Low|Time' FORMAT A9

SELECT SERVER_NAME,
 SOURCE_DATABASE,
 PROCESSED_LOW_POSITION,
 TO_CHAR(PROCESSED_LOW_TIME,'HH24:MI:SS MM/DD/YY') PROCESSED_LOW_TIME
FROM DBA_XSTREAM_OUTBOUND_PROGRESS;

Your output looks similar to the following:

Outbound Processed Processed
Server Source Low LCR Low
Name Database Position Time
---------- -------------------- ------------------------------ ---------
XOUT DB.EXAMPLE.COM 00000008F17A000000000000000000 13:39:01
 000008F17A000000000000000001 07/15/09

Note: The TOTAL_TRANSACTIONS_SENT value is populated only if the
COMMITTED_DATA_ONLY value is YES in V$XSTREAM_OUTBOUND_SERVER.

See Also: "V$XSTREAM_OUTBOUND_SERVER" on page 13-10

Monitoring XStream Out

Monitoring XStream 6-9

Determining the Process Information for an Outbound Server

An outbound server is an Oracle background process. This background process runs
only when an XStream client application attaches to the outbound server. The
V$XSTREAM_OUTBOUND_SERVER view contains information about this background
process.

You can display the following information for an outbound server by running the
query in this section:

■ The outbound server name

■ The session ID of the outbound server’s session

■ The serial number of the outbound server's session

■ The process identification number of the operating-system process that sends
LCRs to the client application

To display the process information for an outbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Outbound Server Name' FORMAT A20
COLUMN SID HEADING 'Session ID' FORMAT 9999999999
COLUMN SERIAL# HEADING 'Serial Number' FORMAT 9999999999
COLUMN SPID HEADING 'Operating-System Process' FORMAT A25

SELECT SERVER_NAME,
 SID,
 SERIAL#,
 SPID
 FROM V$XSTREAM_OUTBOUND_SERVER;

Your output looks similar to the following:

Outbound Server Name Session ID Serial Number Operating-System Process
-------------------- ----------- ------------- -------------------------
XOUT 53 406 25783

See Also:

■ "ALL_XSTREAM_OUTBOUND_PROGRESS" on page 12-9

■ "The Processed Low Position and Restartability for XStream Out"
on page 2-12

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Note: The V$STREAMS_APPLY_SERVER view provides additional
information about the outbound server process, and information
about the apply server background processes used by the outbound
server.

Monitoring XStream In

6-10 Oracle Database XStream Guide

Monitoring XStream In
This section provides sample queries that you can use to monitor XStream In.

This section contains these topics:

■ Displaying General Information About an Inbound Server

■ Displaying the Status and Error Information for an Inbound Server

■ Displaying the Position Information for an Inbound Server

With XStream In, an Oracle Streams apply process functions as an inbound server.
Therefore, you can also use the data dictionary views for apply processes to monitor
inbound servers.

Displaying General Information About an Inbound Server
You can display the following information for an inbound server by running the query
in this section:

■ The inbound server name

■ The owner of the queue used by the inbound server

■ The name of the queue used by the inbound server

■ The apply user for the inbound server

To display general information about an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Inbound Server Name' FORMAT A20
COLUMN QUEUE_OWNER HEADING 'Queue Owner' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN APPLY_USER HEADING 'Apply User' FORMAT A15

SELECT SERVER_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 APPLY_USER
 FROM DBA_XSTREAM_INBOUND;

Your output looks similar to the following:

Inbound Server Name Queue Owner Queue Name Apply User
-------------------- --------------- --------------- ---------------
XIN XSTRMADMIN XQUEUE XSTRMADMIN

See Also:

■ "V$XSTREAM_OUTBOUND_SERVER" on page 13-10

■ "V$STREAMS_APPLY_SERVER" on page 13-5

See Also: Oracle Streams Concepts and Administration

See Also: "ALL_XSTREAM_INBOUND" on page 12-6

Monitoring XStream In

Monitoring XStream 6-11

Displaying the Status and Error Information for an Inbound Server
You can monitor an inbound server using the same queries that you use to monitor an
Oracle Streams apply process. See Oracle Streams Concepts and Administration for
instructions.

The ALL_APPLY and DBA_APPLY views show XStream In in the PURPOSE column for an
apply process that is functioning as an inbound server.

To display the status of an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN APPLY_NAME HEADING 'Apply Name' FORMAT A10
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 9999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME,
 STATUS,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY
 WHERE PURPOSE = 'XStream In';

Your output looks similar to the following:

Apply Name Status Error Number Error Message
---------- -------- ------------ --
XIN ENABLED

This output shows that XIN is an apply process that is functioning as an inbound
server. Use the instructions in Oracle Streams Concepts and Administration to display
detailed information about the inbound server.

Displaying the Position Information for an Inbound Server
For an inbound server, you can view position information by querying the DBA_
XSTREAM_INBOUND_PROGRESS view. Specifically, you can display the following position
information by running the query in this section:

■ The inbound server name

■ The applied low position for the inbound server

■ The spill position for the inbound server

■ The applied high position for the inbound server

■ The processed low position for the inbound server

To display the position information for an inbound server:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

See Also: "ALL_APPLY" on page 12-1

Monitoring XStream Rules

6-12 Oracle Database XStream Guide

2. Run the following query:

COLUMN SERVER_NAME HEADING 'Inbound|Server|Name' FORMAT A10
COLUMN APPLIED_LOW_POSITION HEADING 'Applied Low|Position' FORMAT A15
COLUMN SPILL_POSITION HEADING 'Spill Position' FORMAT A15
COLUMN APPLIED_HIGH_POSITION HEADING 'Applied High|Position' FORMAT A15
COLUMN PROCESSED_LOW_POSITION HEADING 'Processed Low|Position' FORMAT A15

SELECT SERVER_NAME,
 APPLIED_LOW_POSITION,
 SPILL_POSITION,
 APPLIED_HIGH_POSITION,
 PROCESSED_LOW_POSITION
 FROM DBA_XSTREAM_INBOUND_PROGRESS;

Your output looks similar to the following:

Inbound
Server Applied Low Applied High Processed Low
Name Position Spill Position Position Position
---------- --------------- --------------- --------------- ---------------
XIN C10A C11D C10A C11D

The values of the positions shown in the output were set by the client application that
attaches to the inbound server. However, the inbound server determines which values
are the current applied low position, spill position, applied high position, and
processed low position.

Monitoring XStream Rules
The ALL_XSTREAM_RULES and DBA_XSTREAM_RULES views contain information about the
rules used by outbound servers and inbound servers. If an outbound server was
created using the CREATE_OUTBOUND procedure in the DBMS_XSTREAM_ADM package, then
these views also contain information about the rules used by the capture process that
sends changes to the outbound server. However, if an outbound server was created
using the ADD_OUTBOUND procedure, then these views do not contain information about
the capture process rules. Also, these views do not contain information about the rules
used by any propagation in the stream from a capture process to an outbound server.

To display information about the rules used by XStream components:

1. Connect to the database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN STREAMS_NAME HEADING 'Oracle|Streams|Name' FORMAT A12
COLUMN STREAMS_TYPE HEADING 'Oracle|Streams|Type' FORMAT A11
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A10
COLUMN RULE_SET_TYPE HEADING 'Rule Set|Type' FORMAT A8
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle|Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4

See Also:

■ "ALL_XSTREAM_INBOUND_PROGRESS" on page 12-7

■ "Position of LCRs and XStream In" on page 2-13

XStream and the Oracle Streams Performance Advisor

Monitoring XStream 6-13

SELECT STREAMS_NAME,
 STREAMS_TYPE,
 RULE_NAME,
 RULE_SET_TYPE,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE
 FROM DBA_XSTREAM_RULES;

Your output looks similar to the following:

Oracle Oracle Streams
Streams Streams Rule Rule Set Rule Schema Object Rule
Name Type Name Type Level Name Name Type
------------ ----------- ---------- -------- ------- ------ ----------- ----
CAP$_XOUT_49 CAPTURE DB52 POSITIVE GLOBAL DML
CAP$_XOUT_49 CAPTURE DB53 POSITIVE GLOBAL DDL
XOUT APPLY DB55 POSITIVE GLOBAL DML
XOUT APPLY DB56 POSITIVE GLOBAL DDL

Notice that the STREAMS_TYPE is APPLY even though the rules are in the positive rule set
for the outbound server xout. You can determine the purpose of an apply process by
querying the PURPOSE column in the DBA_APPLY view.

To view information about the rules used by all components, including capture
processes, propagations, apply processes, outbound servers, and inbound servers, you
can query the ALL_STREAMS_RULES and DBA_STREAMS_RULES views. See Oracle Streams
Concepts and Administration for sample queries that enable you to monitor rules.

XStream and the Oracle Streams Performance Advisor
The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM
PL/SQL package and a collection of data dictionary views. The Oracle Streams
Performance Advisor enables you to monitor the topology and performance of an
XStream environment. The XStream topology includes information about the
components in an XStream environment, the links between the components, and the
way information flows from capture to consumption. The Oracle Streams Performance
Advisor also provides information about how Oracle Streams components are
performing.

Apply processes function as XStream outbound servers and inbound servers. In
general, the Oracle Streams Performance Advisor works the same way for an Oracle
Streams environment with apply processes and an XStream environment with
outbound servers or inbound servers. This section describes important considerations
about using the Oracle Streams Performance Advisor in an XStream environment.

This section contains these topics:

■ XStream Components

■ Topology and Stream Paths

■ XStream and Component-Level Statistics

■ The UTL_SPADV Package

See Also: "ALL_XSTREAM_RULES" on page 12-10

XStream and the Oracle Streams Performance Advisor

6-14 Oracle Database XStream Guide

XStream Components
The Oracle Streams Performance Advisor tracks the following types of components in
an XStream environment:

■ QUEUE

■ CAPTURE

■ PROPAGATION SENDER

■ PROPAGATION RECEIVER

■ APPLY

The preceding types are the same in an Oracle Streams environment and an XStream
environment, except for APPLY. The APPLY component type can be an XStream
outbound server or inbound server.

The following subcomponent types are possible for apply processes, outbound servers,
and inbound servers:

■ PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process directly
to an apply process or outbound server in a combined capture and apply
optimization

■ APPLY READER for a reader server

■ APPLY COORDINATOR for a coordinator process

■ APPLY SERVER for an apply server

In addition, the Oracle Streams Performance Advisor identifies a bottleneck
component as the busiest component or the component with the least amount of idle
time. In an XStream configuration, the XStream client application might be the
bottleneck when EXTERNAL appears in the ACTION_NAME column of the DBA_STREAMS_
TP_PATH_BOTTLENECK view.

Topology and Stream Paths
In the Oracle Streams topology, a stream path is a flow of messages from a source to a
destination. A stream path begins where a capture process, synchronous capture, or
application enqueues messages into a queue. A stream path ends where an apply
process, outbound server, or inbound server dequeues the messages. The stream path
might flow through multiple queues and propagations before it reaches an apply
process, outbound server, or inbound server. Therefore, a single stream path can
consist of multiple source/destination component pairs before it reaches last
component.

The Oracle Streams topology only gathers information about a stream path if the
stream path ends with an apply process, an outbound server, or an inbound server.
The Oracle Streams topology does not track stream paths that end when a messaging
client or an application that dequeues messages.

XStream and Component-Level Statistics
The Oracle Streams Performance Advisor tracks the following component-level
statistics:

See Also: Oracle Streams Concepts and Administration for detailed
information about using the Oracle Streams Performance Advisor

XStream and the Oracle Streams Performance Advisor

Monitoring XStream 6-15

■ The MESSAGE APPLY RATE is the average number of messages applied each second
by the apply process, outbound server, or inbound server.

■ The TRANSACTION APPLY RATE is the average number of transactions applied by the
apply process, outbound server, or inbound server each second. Transactions
typically include multiple messages.

An LCR can be applied in one of the following ways:

■ An apply process or inbound server makes the change encapsulated in the LCR to
a database object.

■ An apply process or inbound server passes the LCR to an apply handler.

■ If the LCR raises an error, then an apply process or inbound server sends the LCR
to the error queue.

■ An outbound server passes the LCR to an XStream client application. If the LCR
raises an error, then the outbound server also reports the error to the client
application.

Also, the Oracle Streams Performance Advisor tracks the LATENCY component-level
statistics. LATENCY is defined in the following ways:

■ For apply processes, the LATENCY is the amount of time between when the message
was created at a source database and when the message was applied by the apply
process at the destination database.

■ For outbound servers, the LATENCY is amount of time between when the message
was created at a source database and when the message was sent to the XStream
client application.

■ For inbound servers, the LATENCY is amount of time between when the message
was created by the XStream client application and when the message was applied
by the apply process.

When a capture process creates an LCR, the message creation time is the time when
the redo entry for the database change was recorded. When an XStream client
application creates an LCR, the message creation time is the time when the LCR was
constructed.

The UTL_SPADV Package
The UTL_SPADV package provides subprograms to collect and analyze statistics for the
XStream components in a distributed database environment. The package uses the
Oracle Streams Performance Advisor to gather statistics, and the output is formatted
so that it can be imported into a spreadsheet easily and analyzed.

The UTL_SPADV package works the same way for an Oracle Streams environment with
apply processes and an XStream environment with outbound servers or inbound
servers. However, there are some differences in the output for the SHOW_STATS
procedure. This section describes the differences between the output for apply
processes and the output for XStream outbound servers and inbound servers.

See Also: Oracle Streams Concepts and Administration for more
information about component-level statistics

XStream and the Oracle Streams Performance Advisor

6-16 Oracle Database XStream Guide

The following sections describe the output for the SHOW_STATS procedure for outbound
servers and inbound servers:

■ Sample Output When an Outbound Server Is the Last Component in a Path

■ Sample Output When an Inbound Server Is the Last Component in a Path

Sample Output When an Outbound Server Is the Last Component in a Path
The following is sample output for when an outbound server is the last component in
a path:

OUTPUT
PATH 1 RUN_ID 2 RUN_TIME 2009-MAY-15 12:20:55 CCA Y
|<C> CAP$_XOUT_1 2733 2730 3392 LMR 8.3% 91.7% 0% "" LMP (1) 8.3% 91.7% 0% ""
LMB 8.3% 91.7% 0% "" CAP 8.3% 91.7% 0% "" |<Q> "XSTRMADMIN"."Q$_XOUT_2" 2730 0.01
4109 |<A> XOUT 2329 2.73 0 -1 PS+PR 8.3% 91.7% 0% "" APR 8.3% 91.7% 0% "" APC
100% 0% 0% "" APS (1) 8.3% 83.3% 8.3% "" | "EXTERNAL"
.
.
.

In this output, the A component is the outbound server XOUT. The output for when an
outbound server is the last component in a path is similar to the output for when an
apply process is the last component in a path. However, the apply server (APS) is not
the last component because the outbound server connects to a client application.
Statistics are not collected for the client application.

In an XStream Out configuration, the output can indicate flow control for the network
because "SQL*Net more data to client" for an apply server is considered as a flow
control event. If the output indicates flow control for an apply server, then either the
network or the client application is considered the bottleneck component. In the
previous output, EXTERNAL indicates that either the network or the client application is
the bottleneck.

Other than these differences, you can interpret the statistics in the same way that you
would for a path that ends with an apply process. Use the legend and the
abbreviations to determine the statistics in the output.

Sample Output When an Inbound Server Is the Last Component in a Path
The following is sample output for when an inbound server is the last component in a
path:

OUTPUT
PATH 1 RUN_ID 2 RUN_TIME 2009-MAY-16 10:11:38 CCA N
|<PR> "clientcap"=> 75% 0% 8.3% "CPU + Wait for CPU" |<Q> "XSTRMADMIN"."QUEUE2" 467 0.01 1
|<A> XIN 476 4.71 0 APR 100% 0% 0% "" APC 100% 0% 0% "" APS (4) 366.7% 0% 33.3% "CPU + Wait for CPU"

Note: The rest of this section assumes that you are familiar with the
UTL_SPADV package and the SHOW_STATS output for apply processes.
See Oracle Streams Concepts and Administration and Oracle Database
PL/SQL Packages and Types Reference for detailed information about
using the UTL_SPADV package.

Note: This output is for illustrative purposes only. Actual
performance characteristics vary depending on individual
configurations and conditions.

XStream and the Oracle Streams Performance Advisor

Monitoring XStream 6-17

| "EXTERNAL"
.
.
.

In this output, the A component is the inbound server XIN. When an inbound server is
the last component in a path, the XStream client application connects to the inbound
server, and the inbound server applies the changes in the LCRs. The client application
is not shown in the output.

The propagation receiver receives the LCRs from the client application. So, the
propagation receiver is the first component shown in the output. In the previous
sample output, the propagation receiver is named clientcap. In this case, clientcap is
the source name given by the client application when it attaches to the inbound server.

If the propagation receiver is idle for a significant percentage of time, then either the
network or the client application is considered a bottleneck component. In the
previous output, EXTERNAL indicates that either the network or the client application is
the bottleneck.

Other than these differences, you can interpret the statistics in the same way that you
would for a path that ends with an apply process. Use the legend and the
abbreviations to determine the statistics in the output.

Note: This output is for illustrative purposes only. Actual
performance characteristics vary depending on individual
configurations and conditions.

XStream and the Oracle Streams Performance Advisor

6-18 Oracle Database XStream Guide

7

Troubleshooting XStream 7-1

7 Troubleshooting XStream

This chapter describes common problems you might encounter while using XStream
and explains how to solve them.

This chapter contains the following topics:

■ Diagnosing Problems with XStream

■ Problems and Solutions for XStream

■ How to Get More Help with XStream

Diagnosing Problems with XStream
With XStream, an Oracle Streams apply process can function as an outbound server or
an inbound server. An XStream configuration can also include other components, such
as capture processes, queues, propagations, rules, and rule-based transformations.

To diagnose problems with XStream, you can use many of the same techniques that are
used to diagnose problems with Oracle Streams components. These techniques include
the following:

■ Viewing Oracle Streams alerts

■ Using the Streams configuration report and health check script

■ Handling performance problems because of an unavailable destination

■ Checking the trace files and alert log for problems

See Oracle Streams Concepts and Administration for detailed information about these
topics.

Problems and Solutions for XStream
In general, you can troubleshoot XStream outbound servers and inbound servers in
the same way that you troubleshoot Oracle Streams apply processes. In addition, an
XStream Out environment includes capture processes and queues, and might include

See Also:

■ Chapter 2, "XStream Concepts"

■ Chapter 3, "XStream Use Cases"

■ Chapter 4, "Configuring XStream"

■ Chapter 5, "Managing XStream"

■ Chapter 6, "Monitoring XStream"

Problems and Solutions for XStream

7-2 Oracle Database XStream Guide

other components, such as propagations, rules, and rule-based transformations. To
troubleshoot these components, see the troubleshooting documentation in Oracle
Streams Concepts and Administration.

This section describes common problems and solutions for XStream.

This section contains the following topics:

■ An OCI Client Application Cannot Attach to the Outbound Server

■ Changes Are Failing to Reach the Client Application in XStream Out

■ LCRs Streaming from an Outbound Server Are Missing Extra Attributes

■ The XStream Out Client Application Is Unresponsive

■ XStream In Cannot Identify an Inbound Server

■ Changes Are Not Being Applied by an Inbound Server

An OCI Client Application Cannot Attach to the Outbound Server
An XStream client application cannot attach to an outbound server using the Oracle
Call Interface (OCI) OCIXStreamOutAttach() function.

The following sections describe possible problems and their solutions.

Problem 1: Client Application Not Connected as Connect User
The client application is not connected as the outbound server’s connect user to the
outbound server’s database. The client application connected to the database as a
different user.

Solution 1
To correct problem 1:

■ Modify the client application to connect to the database as the connect user before
attaching to the outbound server.

Problem 2: Client Application Not Passing Service Handle
The client application is not passing a service handle to the outbound server.

Solution 2
To correct problem 2:

■ Modify the client application so that it passes a service handle using OCISvcCtx
and not OCIServer.

Changes Are Failing to Reach the Client Application in XStream Out
In an XStream Out configuration, database changes that should be captured and
streamed to the XStream client application are not reaching the client application.

The following sections describe possible problems and their solutions.

See Also:

■ "XStream and Security" on page 2-18

■ "OCIXStreamOutAttach()" on page 11-60

Problems and Solutions for XStream

Troubleshooting XStream 7-3

Problem 1: Capture Process Has Fallen Behind
The capture process has fallen behind.

To determine whether the capture process has fallen behind:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN CREATE_MESSAGE HEADING 'Last LCR|Create Time'
COLUMN ENQUEUE_MESSAGE HEADING 'Last|Enqueue Time'

SELECT CAPTURE_NAME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_
MESSAGE,
 TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_
MESSAGE
 FROM V$STREAMS_CAPTURE;

This query displays the time when the capture process last created a logical
change record (LCR) and the time when the capture process last enqueued an
LCR. If the times returned are before the time when the database changes were
made, then the capture process must catch up and capture the changes.

Solution 1
No action is required. Normally, the capture process will catch up on its own without
the need for intervention.

Problem 2: Rules or Rule-Based Transformation Excluding Changes
Rules or rule-based transformations are excluding the changes that should be
captured.

Rules determine which LCRs are captured by a capture process, sent from a source
queue to a destination queue by a propagation, and sent to an XStream client
application by an outbound server. If the rules are not configured properly, then the
client application might not receive the LCRs it should receive. The client application
might also receive LCRs that it should not receive.

Rule-based transformations modify the contents of LCRs. Therefore, if the expected
change data is not reaching the client application, it might be because a rule-based
transformation modified the data or deleted the data. For example, a DELETE_COLUMN
declarative rule-based transformation removes a column from an LCR.

Solution 2
To correct problem 2:

■ Check the rules and rule-based transformations that are configured for each
component in the stream from the capture process to the client application, and
correct any problems.

See Also:

■ "V$XSTREAM_CAPTURE" on page 13-6

■ Oracle Streams Replication Administrator's Guide

Problems and Solutions for XStream

7-4 Oracle Database XStream Guide

Problem 3: LCRs Blocked in the Stream
If the capture process has not fallen behind, and there are no problems with rules or
rule-based transformations, then LCRs might be blocked in the stream for some other
reason. For example, a propagation or outbound server might be disabled, a database
link might be broken, or there might be another problem.

You can track an LCR through a stream using one of the following methods:

■ Setting the message_tracking_frequency capture process parameter to 1 or
another relatively low value

■ Running the SET_MESSAGE_TRACKING procedure in the DBMS_STREAMS_ADM package

After using one of these methods, use the V$STREAMS_MESSAGE_TRACKING view to
monitor the progress of LCRs through the stream. By tracking an LCR through the
stream, you can determine where the LCR is blocked.

Solution 3
To correct problem 3:

■ Take the appropriate action based on the reason that the LCR is blocked. For
example, if a propagation is disabled, then enable it.

LCRs Streaming from an Outbound Server Are Missing Extra Attributes
LCRs streaming from an outbound server are expected to include extra attributes, but
these attributes are not included in the LCRs.

LCRs can contain the following extra attributes related to database changes:

■ row_id

■ serial#

■ session#

■ thread#

■ tx_name

■ username

By default, a capture process does not capture these extra attributes. If you want extra
attributes to be included in LCRs streamed from an outbound server to an XStream
client application, but the LCRs do not contain values for extra attributes, then make
sure the capture process that captures changes for the outbound server is configured to
capture values for the extra attributes.

The following sections describe the possible problem and its solution.

See Also: Oracle Streams Concepts and Administration

See Also:

■ Oracle Streams Replication Administrator's Guide for more
information about tracking LCRs through a stream

■ Oracle Database PL/SQL Packages and Types Reference for
information about the message_tracking_frequency capture
process parameter

■ Oracle Streams Concepts and Administration about troubleshooting
Oracle Streams components

Problems and Solutions for XStream

Troubleshooting XStream 7-5

Problem: Capture Process Not Configured to Capture Extra Attributes
The capture process is not configured to capture the required extra attributes.

To display the extra attributes currently being captured by the capture processes in a
database:

1. Connect to the database running the capture process as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process' FORMAT A30
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME
 FROM DBA_CAPTURE_EXTRA_ATTRIBUTES
 WHERE INCLUDE = 'YES'
 ORDER BY CAPTURE_NAME;

If an extra attribute is not displayed by this query, then it is not being captured.

Solution
To solve the problem, configure the capture process to capture the required extra at-
tributes:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package.

Example 7–1 Including the tx_name Attribute for the Capture Process xcapture

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'xcapture',
 attribute_name => 'tx_name',
 include => TRUE);
END;
/

The XStream Out Client Application Is Unresponsive
The XStream client application in an XStream Out configuration is unresponsive.

The following sections describe the possible problem and its solution.

Problem 1: Streams Pool Size Is Too Small
The Streams pool size might be too small.

To determine whether the Streams pool size is too small:

1. Connect to the outbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

See Also: Oracle Streams Concepts and Administration

Problems and Solutions for XStream

7-6 Oracle Database XStream Guide

2. Run the following queries at the database that contains the outbound server:

■ Query the V$PROPAGATION_RECEIVER view.:

SELECT STATE FROM V$PROPAGATION_RECEIVER;

If the state is WAITING FOR MEMORY, then consider increasing the Streams pool
size.

■ Query the V$STREAMS_POOL_STATISTICS view.:

SELECT TOTAL_MEMORY_ALLOCATED/CURRENT_SIZE FROM V$STREAMS_POOL_STATISTICS;

If the value returned is .90 or greater, then consider increasing the Streams
pool size.

■ If the outbound server receives changes from a capture process that is running
on the same database, then query the V$STREAMS_CAPTURE view.:

SELECT STATE FROM V$STREAMS_CAPTURE;

If the state is WAITING FOR BUFFER QUEUE TO SHRINK, then increase the Streams
pool size.

Solution 1
To correct problem 1:

■ Increase the Streams pool size by modifying the STREAMS_POOL_SIZE initialization
parameter or by modifying other initialization parameters related to memory.

Problem 2: Programming Errors
If there is enough memory in the Streams pool, then check your client application for
programming errors.

Solution 2
To correct problem 2:

■ Correct the programming errors.

XStream In Cannot Identify an Inbound Server
If an XStream In configuration cannot identify an inbound server, then the following
error is returned:

ORA-26840: STREAMS unable to identify an apply for the source database "%s"

The following sections describe the possible problem and its solution.

Problem: Multiple Subscribers to the Inbound Server’s Queue
The ORA-26840 error indicates that there are multiple subscribers to the queue used by
the inbound server. Subscribers can include inbound servers, outbound servers, apply
processes, and propagations.

See Also:

■ "V$XSTREAM_CAPTURE" on page 13-6

■ Oracle Streams Replication Administrator's Guide

■ Oracle Database Administrator's Guide for information about setting
initialization parameters

Problems and Solutions for XStream

Troubleshooting XStream 7-7

To determine whether there are multiple subscribers to the inbound server’s queue:

1. Connect to the inbound server database as the XStream administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the following query:

SELECT APPLY_NAME SUBSCRIBER, QUEUE_NAME FROM DBA_APPLY UNION
 SELECT PROPAGATION_NAME, SOURCE_QUEUE_NAME
 FROM DBA_PROPAGATION
 ORDER BY QUEUE_NAME;

You can add a WHERE clause to the query to limit the output to the inbound server’s
queue.

Solution
To correct the problem:

■ If the query returns multiple subscribers to the inbound server’s queue, then
reconfigure the subscribers so that the inbound server is the only subscriber.

Changes Are Not Being Applied by an Inbound Server
In an XStream In configuration, database changes are sent in the form of LCRs from
the XStream client application to an inbound server.

The following sections describe the possible problem and its solution.

Problem: LCRs Blocked During Apply
If the inbound server is not applying the changes, then the LCRs are blocked during
apply. For example, the inbound server might be disabled, an apply handler might be
processing LCRs incorrectly, or there might be another problem.

You can track an LCR during apply by an inbound server using the following
methods:

■ If the client application uses the XStream OCI API, then use the OCI_LCR_ATTR_
MESSAGE_TRACKING_LABEL attribute in the OCILCRAttributesSet function to set
tracking label, and use the OCIXStreamInLCRSend function to send LCRs.

The following is sample code for setting message tracking for LCRs using the OCI
API:

static void set_msg_tracking(myctx_t *ctx, void *lcr, oratext *label)
{
 oci_t *ocip = ctx->ocip;
 oratext *attr_names[] = {OCI_LCR_ATTR_MESSAGE_TRACKING_LABEL};
 ub2 attr_names_lens[] =

{sizeof(OCI_LCR_ATTR_MESSAGE_TRACKING_LABEL)-1};
 ub2 dty[] = {SQLT_CHR};
 OCIInd ind[] = {OCI_IND_NOTNULL};
 void *data[1];
 ub2 data_lens[1];

 data[0] = label;
 data_lens[0] = strlen(label);

See Also: Chapter 4, "Configuring XStream"

How to Get More Help with XStream

7-8 Oracle Database XStream Guide

 OCICALL(ocip,
 OCILCRAttributesSet(ocip->svcp, ocip->errp, 1, attr_names,
 attr_names_lens, dty, data, ind, data_lens,
 lcr, OCI_DEFAULT));
}

/*---
* send_lcr - Send the given lcr and bump up lcr position.
---/
static void send_lcr(myctx_t *ctx, void *lcr, ub1 lcrtype)
{
 oci_t *ocip = ctx->ocip;

 set_msg_tracking(ctx, lcr, "tracking_label");

 OCICALL(ocip,
 OCIXStreamInLCRSend(ocip->svcp, ocip->errp, lcr, lcrtype,
 0, OCI_DEFAULT));
 ctx->lcr_pos++;
}

Using this sample code, to enable message tracking, add the set_msg_tracking
procedure to the client application, call set_msg_tracking from the send_lcr
procedure when LCRs should be tracked. Replace tracking_label with the string
you want to use for the tracking label.

■ If the client application uses the XStream Java API, then use the
setMessageTrackingLabel method.

The following is sample code for setting message tracking for LCRs using the Java
API:

{
 ((AbstractLCR)lcr).setMessageTrackingLabel("tracking_label");
}

Replace tracking_label with the string you want to use for the tracking label.

After using one of these methods, use the V$STREAMS_MESSAGE_TRACKING view to
monitor the progress of LCRs through a stream. By tracking an LCR, you can
determine where the LCR is blocked.

Solution
To correct the problem:

■ Take the appropriate action based on the reason that the LCR is blocked. For
example, if the inbound server is disabled, then enable it.

How to Get More Help with XStream
You can check My Oracle Support at http://support.oracle.com for more solutions
to your problem.

Note: If the LCRs originated from an XStream Out configuration,
then the easiest way to track the LCRs is by using the methods
described in "Changes Are Failing to Reach the Client Application in
XStream Out" on page 7-2.

How to Get More Help with XStream

Troubleshooting XStream 7-9

You can visit http://www.oracle.com/support/contact.html for more information
about Oracle Support.

How to Get More Help with XStream

7-10 Oracle Database XStream Guide

Part III
Part III XStream PL/SQL Packages Reference

This part contains the XStream PL/SQL packages reference. This part contains the
following chapters:

■ Chapter 8, "DBMS_XSTREAM_ADM"

■ Chapter 9, "DBMS_XSTREAM_AUTH"

8

DBMS_XSTREAM_ADM 8-1

8 DBMS_XSTREAM_ADM

This DBMS_XSTREAM_ADM package provides interfaces for streaming database changes
between an Oracle database and other systems. XStream enables applications to
stream out or stream in database changes.

This chapter contains the following topic:

■ Using DBMS_XSTREAM_ADM

– Overview

– Security Model

– Operational Notes

■ Summary of DBMS_XSTREAM_ADM Subprograms

See Also:

■ Chapter 2, "XStream Concepts"

■ Part IV, "XStream OCI API Reference"

■ Oracle Database XStream Java API Reference

■ Oracle Database PL/SQL Packages and Types Reference

Using DBMS_XSTREAM_ADM

8-2 Oracle Database XStream Guide

Using DBMS_XSTREAM_ADM

This section contains topics which relate to using the DBMS_XSTREAM_ADM package.

■ Overview

■ Security Model

■ Operational Notes

Using DBMS_XSTREAM_ADM

DBMS_XSTREAM_ADM 8-3

Overview

The package provides interfaces for configuring outbound servers that stream
database changes from an Oracle database to other systems. The package also provides
interfaces for configuring inbound servers that stream database changes from other
systems to an Oracle database. In both cases, the database changes are encapsulated in
logical change records (LCRs). Also, the other systems can be Oracle systems or a
non-Oracle systems, such as non-Oracle databases or file systems.

XStream outbound servers can stream out LCRs from an Oracle database
programmatically using C or Java. After receiving the LCRs, the other system can
process them in any customized way. For example, the other system can save the
contents of the LCRs to a file, send the LCRs to an Oracle database through an
XStream inbound server, or generate SQL statements and execute them on any Oracle
or non-Oracle databases.

XStream inbound servers accept LCRs from another system and either apply them to
an Oracle database or process them in a customized way using apply handlers.

See Also: Chapter 2, "XStream Concepts"

Security Model

8-4 Oracle Database XStream Guide

Security Model

To ensure that the user who runs the subprograms in this package has the necessary
privileges, configure an XStream administrator and connect as the XStream
administrator when using this package.

An administrator must be granted the DBA role when the administrator is performing
any of the following actions:

■ Running the ADD_OUTBOUND procedure while connected as a user that is different
from the configured connect user for an outbound server

■ Running the ALTER_OUTBOUND procedure to change the capture user for a capture
process or the connect user for an outbound server

■ Running the CREATE_OUTBOUND procedure, because this procedure creates a capture
process

■ Running the ALTER_INBOUND procedure to change the apply user for an inbound
server

■ Running the ADD_INBOUND procedure while connected as a user that is different
from the configured apply user for an inbound server

When the administrator does not need to perform the preceding tasks, the DBA role is
not required.

See Also:

■ "Granting Privileges for the XStream Administrator" on
page 4-1

■ "XStream and Security" on page 2-18 for more information
about XStream and security

Using DBMS_XSTREAM_ADM

DBMS_XSTREAM_ADM 8-5

Operational Notes

Some subprograms in the DBMS_APPLY_ADM package can manage XStream outbound
servers, and some subprograms in the DBMS_APPLY_ADM package can manage XStream
inbound servers.

See Also: Oracle Database PL/SQL Packages and Types Reference for
details about which subprograms can manage outbound servers and
inbound servers

Summary of DBMS_XSTREAM_ADM Subprograms

8-6 Oracle Database XStream Guide

Summary of DBMS_XSTREAM_ADM Subprograms

Table 8–1 DBMS_XSTREAM_ADM Package Subprograms

Subprogram Description

ADD_OUTBOUND Procedure on
page 8-7

Creates an XStream outbound server that
dequeues LCRs from the specified queue

ADD_SUBSET_OUTBOUND_RULES
Procedure on page 8-11

Adds subset rules to an outbound server
configuration

ALTER_INBOUND Procedure on
page 8-13

Modifies an XStream inbound server

ALTER_OUTBOUND Procedure on
page 8-14

Modifies an XStream outbound server

CREATE_INBOUND Procedure on
page 8-19

Creates an XStream inbound server and its queue

CREATE_OUTBOUND Procedure on
page 8-21

Creates an XStream outbound server, queue, and
capture process to enable XStream client
applications to stream out Oracle database changes
encapsulated in LCRs

DROP_INBOUND Procedure on
page 8-25

Removes an inbound server configuration

DROP_OUTBOUND Procedure on
page 8-26

Removes an outbound server configuration

ENABLE_GG_XSTREAM_FOR_
STREAMS Procedure on page 8-27

Enables XStream performance optimizations for
Oracle Streams components

IS_GG_XSTREAM_FOR_STREAMS
Function on page 8-29

Returns TRUE if XStream performance
optimizations are enabled for Oracle Streams
components, or returns FALSE if XStream
performance optimizations are disabled for Oracle
Streams components

REMOVE_SUBSET_OUTBOUND_RULES
Procedure on page 8-30

Removes subset rules from an outbound server
configuration

Note: All subprograms commit unless specified otherwise.

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-7

ADD_OUTBOUND Procedure

This procedure creates an XStream outbound server that dequeues LCRs from the
specified queue. The outbound server streams out the LCRs to an XStream client
application.

This procedure creates neither a capture process nor a queue. To create an outbound
server, a capture process, and a queue with one procedure call, use the CREATE_
OUTBOUND Procedure.

To create the capture process individually, use one of the following packages:

■ DBMS_STREAMS_ADM

■ DBMS_CAPTURE_ADM

To create a queue individually, use the SET_UP_QUEUE procedure in the DBMS_STREAMS_
ADM package.

This procedure is overloaded. One table_names parameter is type VARCHAR2 and the
other table_names parameter is type DBMS_UTILITY.UNCL_ARRAY. Also, one schema_
names parameter is type VARCHAR2 and the other schema_names parameter is type DBMS_
UTILITY.UNCL_ARRAY. These parameters enable you to enter the lists of tables and
schemas in different ways and are mutually exclusive.

8Syntax
DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name IN VARCHAR2,
 queue_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 table_names IN DBMS_UTILITY.UNCL_ARRAY,
 schema_names IN DBMS_UTILITY.UNCL_ARRAY,
 connect_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 start_scn IN NUMBER DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL);

DBMS_XSTREAM_ADM.ADD_OUTBOUND(
 server_name IN VARCHAR2,
 queue_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 table_names IN VARCHAR2 DEFAULT NULL,

Note:

■ A client application can create multiple sessions. Each session can
attach to only one outbound server, and each outbound server can
serve only one session at a time. However, different client
application sessions can connect to different outbound servers.
See Part IV, "XStream OCI API Reference" and Oracle Database
XStream Java API Reference for information about attaching to an
outbound server.

■ This procedure enables the outbound server that it creates.

■ Starting with Oracle Database 11g Release 2 (11.2.0.2), the
capture_name, start_scn, and start_time parameters are
included in this procedure.

ADD_OUTBOUND Procedure

8-8 Oracle Database XStream Guide

 schema_names IN VARCHAR2 DEFAULT NULL,
 connect_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL,
 start_scn IN NUMBER DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL);

8Parameters

Table 8–2 ADD_OUTBOUND Procedure Parameters

Parameter Description

server_name The name of the outbound server being created. A NULL specification is
not allowed. Do not specify an owner.

The specified name must not match the name of an existing outbound
server, inbound server, apply process, or messaging client.

Note: The server_name setting cannot be altered after the outbound
server is created.

queue_name The name of the local queue from which the outbound server dequeues
LCRs, specified as [schema_name.]queue_name. The current database
must contain the queue, and the queue must be ANYDATA type.

For example, to specify a queue named xstream_queue in the
xstrmadmin schema, enter xstrmadmin.xstream_queue for this
parameter. If the schema is not specified, then the current user is the
default.

If NULL, the procedure raises an error.

source_database The global name of the source database. The source database is where
the changes being captured originated.

If you do not include the domain name, then the procedure appends it
to the database name automatically. For example, if you specify DBS1
and the domain is EXAMPLE.COM, then the procedure specifies
DBS1.EXAMPLE.COM automatically.

If NULL, then this procedure does not add a condition regarding the
source database to the generated rules. Otherwise, a condition regarding
the source database is added.

table_names The tables for which data manipulation language (DML) and data
definition language (DDL) changes are streamed out to the XStream
client application. The tables can be specified in the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY,
where each element is the name of a table. Specify the first table in
position 1. The last position must be NULL.

Each table should be specified as [schema_name.]table_name. For
example, you can specify hr.employees. If the schema is not specified,
then the current user is the default.

See Also: "Usage Notes" on page 8-9 for more information about this
parameter

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-9

8Usage Notes
The following list describes the behavior of the outbound server for various
combinations of the table_names and schema_names parameters:

■ If both the table_names and schema_names parameters are NULL or empty, then the
outbound server streams all DML and DDL changes to the client application.

schema_names The schemas for which DML and DDL changes are streamed out to the
XStream client application. The schemas can be specified in the
following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY,
where each element is the name of a schema. Specify the first
schema in position 1. The last position must be NULL.

Note: This procedure does not concatenate the schema_names parameter
with the table_names parameter. To specify tables, enter fully qualified
table names in the table_names parameter (schema_name.table_name).

See Also: "Usage Notes" on page 8-9 for more information about this
parameter

connect_user The user who can attach to the specified outbound server to retrieve the
LCR stream. The client application must attach to the outbound server
as the specified connect user. See "CREATE_OUTBOUND Procedure" on
page 8-21 for information about the privileges required by a connect
user.

If NULL, then the current user is the default.

comment An optional comment associated with the outbound server.

capture_name The name of the capture process configured to capture changes for the
outbound server. Do not specify an owner.

If the specified name matches the name of an existing capture process
for another outbound server, then the procedure uses the existing
capture process and adds the rules for capturing changes to the
database to the positive capture process rule set.

If the specified name matches the name of an existing capture process
for an apply process, then an error is raised.

If the specified name does not match the name of an existing capture
process, then an error is raised.

If NULL, then the outbound server is created without a capture process.

start_scn A valid system change number (SCN) for the database from which the
capture process starts capturing changes.

If the capture_name parameter is NULL, then this parameter is ignored.

If NULL and the capture_name parameter is non-NULL, then the start SCN
of the capture process is not changed.

An error is returned if an invalid SCN is specified.

The start_scn and start_time parameters are mutually exclusive.

start_time A valid time from which the capture process starts capturing changes.

If the capture_name parameter is NULL, then this parameter is ignored.

If NULL and the capture_name parameter is non-NULL, then the start SCN
of the capture process is not changed.

The start_scn and start_time parameters are mutually exclusive.

Table 8–2 (Cont.) ADD_OUTBOUND Procedure Parameters

Parameter Description

ADD_OUTBOUND Procedure

8-10 Oracle Database XStream Guide

This procedure is overloaded. The table_names and schema_names parameters are
defaulted to NULL. Do not specify NULL for both table_names and schema_names in
the same call; otherwise, error PLS-00307 is returned.

■ If both the table_names and schema_names parameters are specified, then the
outbound server streams DML and DDL changes for the specified tables and
schemas.

■ If the table_names parameter is specified and the schema_names parameter is NULL
or empty, then the outbound server streams DML and DDL changes for the
specified tables.

■ If the table_names parameter is NULL or empty and the schema_names parameter is
specified, then the outbound server streams DML and DDL changes for the
specified schemas.

For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY type for the table_names
and schema_names parameters, both parameters must be specified. To specify only
tables, the schema_names parameter must be specified and empty. To specify only
schemas, the table_names parameter must be specified and empty.

Note: An empty array includes one NULL entry.

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-11

ADD_SUBSET_OUTBOUND_RULES Procedure

This procedure adds subset rules to an outbound server configuration. Subset rules
instruct the outbound server to stream out a subset of the changes to the specified
tables. Outbound servers can stream out a subset of both rows and columns.

This procedure is overloaded. One column_list parameter is type VARCHAR2 and the
other column_list parameter is type DBMS_UTILITY.LNAME_ARRAY. These parameters
enable you to enter the list of columns in different ways and are mutually exclusive.

8Syntax
DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name IN VARCHAR2,
 table_name IN VARCHAR2,
 condition IN VARCHAR2 DEFAULT NULL,
 column_list IN DBMS_UTILITY.LNAME_ARRAY,
 keep IN BOOLEAN DEFAULT TRUE);

DBMS_XSTREAM_ADM.ADD_SUBSET_OUTBOUND_RULES(
 server_name IN VARCHAR2,
 table_name IN VARCHAR2,
 condition IN VARCHAR2 DEFAULT NULL,
 column_list IN VARCHAR2 DEFAULT NULL,
 keep IN BOOLEAN DEFAULT TRUE);

8Parameters

Note: This procedure does not add rules to the outbound server's
capture process.

Table 8–3 ADD_SUBSET_OUTBOUND_RULES Procedure Parameters

Parameter Description

server_name The name of the outbound server to which rules are being added. Specify an
existing outbound server. Do not specify an owner.

table_name The name of the table specified as [schema_name.]object_name. For
example, you can specify hr.employees. If the schema is not specified, then
the current user is the default.

If the outbound server configuration uses a local capture process, then the
table must exist at the local source database. If the outbound server
configuration uses a downstream capture process, then the table must exist
at both the source database and at the downstream capture database.

The specified table cannot have any LOB, LONG, or LONG RAW columns
currently or in the future.

condition The subset condition. Specify this condition similar to the way you specify
conditions in a WHERE clause in SQL.

For example, to specify rows in the hr.employees table where the salary is
greater than 4000 and the job_id is SA_MAN, enter the following as the
condition:

' salary > 4000 and job_id = ''SA_MAN'' '

If NULL, then the procedure raises an error.

Note: The quotation marks in the preceding example are all single quotation
marks.

ADD_SUBSET_OUTBOUND_RULES Procedure

8-12 Oracle Database XStream Guide

8Usage Notes
When the keep parameter is set to TRUE, this procedure creates a keep columns
declarative rule-based transformation for the columns listed in column_list.

When the keep parameter is set to FALSE, this procedure creates a delete column
declarative rule-based transformation for each column listed in column_list.

column_list The list of columns either to include in the outbound server configuration or
to exclude from the outbound server configuration. Whether the columns are
included or excluded depends on the setting for the keep parameter.

The columns can be specified in the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.LNAME_ARRAY, where
each element is the name of a column. Specify the first column in
position 1. The last position must be NULL.

To include or exclude all of the columns in a table, specify each column in
the table in the list or array.

If NULL, then the procedure raises an error.

keep If TRUE, then the columns specified in the column_list parameter are kept as
part of the outbound server configuration. Therefore, changes to these
columns that satisfy the condition in the condition parameter are streamed
to the outbound server’s client application.

If FALSE, then the columns specified in the column_list parameter are
excluded from the outbound server configuration. Therefore, changes to
these columns are not streamed to the outbound server’s client application.

See Also: "Usage Notes" on page 8-12

See Also: Oracle Streams Concepts and Administration for information
about declarative rule-based transformations

Table 8–3 (Cont.) ADD_SUBSET_OUTBOUND_RULES Procedure Parameters

Parameter Description

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-13

ALTER_INBOUND Procedure

This procedure modifies an XStream inbound server.

8Syntax
DBMS_XSTREAM_ADM.ALTER_INBOUND(
 server_name IN VARCHAR2,
 apply_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

8Parameters

Table 8–4 ALTER_INBOUND Procedure Parameters

Parameter Description

server_name The name of the inbound server being altered. Specify an existing inbound
server. Do not specify an owner.

apply_user The user who applies all DML and DDL changes that satisfy the inbound
server rule sets, who runs user-defined apply handlers, and who runs
custom rule-based transformations configured for inbound server rules.

The client application must attach to the inbound server as the apply user.

Specify a user to change the apply user. In this case, the user who invokes
the ALTER_INBOUND procedure must be granted the DBA role. Only the SYS
user can set the apply_user to SYS.

If NULL, then the apply user is not changed.

See "CREATE_INBOUND Procedure" on page 8-19 for information about the
required privileges for an apply user.

comment An optional comment associated with the inbound server.

If non-NULL, then the specified comment replaces the existing comment.

If NULL, then the existing comment is not changed.

ALTER_OUTBOUND Procedure

8-14 Oracle Database XStream Guide

ALTER_OUTBOUND Procedure

This procedure modifies an XStream outbound server configuration.

This procedure always alters the specified outbound server. This procedure can also
alter the outbound server's capture process when either of the following conditions is
met:

■ The capture process was created by the CREATE_OUTBOUND procedure in this
package.

■ The queue used by the capture process was created by the CREATE_OUTBOUND
procedure.

To check whether this procedure can alter the outbound server's capture process,
query the CAPTURE_NAME column in the DBA_XSTREAM_OUTBOUND view. When the name
of the capture process appears in the CAPTURE_NAME column of this view, the ALTER_
OUTBOUND procedure can manage the capture process's rules or change the capture user
for the capture process. When the CAPTURE_NAME column of this view is NULL, the
ALTER_OUTBOUND procedure cannot manage the capture process.

This procedure is overloaded. One table_names parameter is type VARCHAR2 and the
other table_names parameter is type DBMS_UTILITY.UNCL_ARRAY. Also, one schema_
names parameter is type VARCHAR2 and the other schema_names parameter is type DBMS_
UTILITY.UNCL_ARRAY. These parameters enable you to enter the list of tables and
schemas in different ways and are mutually exclusive.

8Syntax
DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name IN VARCHAR2,
 table_names IN DBMS_UTILITY.UNCL_ARRAY,
 schema_names IN DBMS_UTILITY.UNCL_ARRAY,
 add IN BOOLEAN DEFAULT TRUE,
 capture_user IN VARCHAR2 DEFAULT NULL,
 connect_user IN VARCHR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 start_scn IN NUMBER DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL);

DBMS_XSTREAM_ADM.ALTER_OUTBOUND(
 server_name IN VARCHAR2,
 table_names IN VARCHAR2 DEFAULT NULL,
 schema_names IN VARCHAR2 DEFAULT NULL,
 add IN BOOLEAN DEFAULT TRUE,
 capture_user IN VARCHAR2 DEFAULT NULL,
 connect_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 inclusion_rule IN BOOLEAN DEFAULT TRUE,
 start_scn IN NUMBER DEFAULT NULL,
 start_time IN TIMESTAMP DEFAULT NULL);

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
start_scn and start_time parameters are included in this procedure.

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-15

8Parameters

Table 8–5 ALTER_OUTBOUND Procedure Parameters

Parameter Description

server_name The name of the outbound server being altered. Specify an existing
outbound server. Do not specify an owner.

table_names The tables that are either added to or removed from the XStream Out
configuration. Whether the tables are added or removed depends on the
setting for the add parameter.

The tables can be specified in the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY,
where each element is the name of a table. Specify the first table in
position 1. The last position must be NULL.

Each table should be specified as [schema_name.]table_name. For
example, hr.employees. If the schema is not specified, then the current
user is the default.

See Also: "Usage Notes" on page 8-18 for more information about this
parameter

schema_names The schemas that are either added to or removed from the XStream Out
configuration. Whether the schemas are added or removed depends on
the setting for the add parameter.

The schemas can be specified in the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_ARRAY,
where each element is the name of a schema. Specify the first
schema in position 1. The last position must be NULL.

Note: This procedure does not concatenate the schema_names parameter
with the table_names parameter. To specify tables, enter fully qualified
table names in the table_names parameter (schema_name.table_name).

See Also: "Usage Notes" on page 8-18 for more information about this
parameter

add If TRUE, then the procedure adds to the XStream Out configuration the
tables specified in the table_names parameter and the schemas specified
in the schema_names parameter.

If FALSE, then the procedure removes from the XStream Out
configuration the tables specified in the table_names parameter and the
schemas specified in the schema_names parameter.

ALTER_OUTBOUND Procedure

8-16 Oracle Database XStream Guide

capture_user The user in whose security domain a capture process captures changes
that satisfy its rule sets and runs custom rule-based transformations
configured for capture process rules.

Specify a user to change the capture user. In this case, the user who
invokes the ALTER_OUTBOUND procedure must be granted the DBA role.
Only the SYS user can set the capture_user to SYS.

If NULL, then the capture user is not changed.

If you change the capture user, then this procedure grants the new
capture user enqueue privilege on the queue used by the capture
process and configures the user as a secure queue user.

Ensure that the capture user is granted the other required privileges. See
"CREATE_OUTBOUND Procedure" on page 8-21 for information about
the privileges required by a capture user.

The capture process is stopped and restarted automatically when you
change the value of this parameter.

Note: If the capture user for a capture process is dropped using DROP
USER . . . CASCADE, then the capture process is also dropped
automatically.

connect_user The user who can attach to the specified outbound server to retrieve the
change stream. The XStream client application must attach to the
outbound server as the specified connect user.

Specify a user to change the connect user. In this case, the user who
invokes the ALTER_OUTBOUND procedure must be granted the DBA role.
Only the SYS user can set the connect_user to SYS.

If NULL, then the connect user is not changed.

If you change the connect user, then this procedure grants the new
connect user dequeue privileges on the queue used by the outbound
server and configures the user as a secure queue user.

Ensure that the connect user is granted the other required privileges. See
"CREATE_OUTBOUND Procedure" on page 8-21 for information about
the privileges required by a connect user.

comment An optional comment associated with the outbound server.

If non-NULL, then the specified comment replaces the existing comment.

If NULL, then the existing comment is not changed.

Table 8–5 (Cont.) ALTER_OUTBOUND Procedure Parameters

Parameter Description

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-17

inclusion_rule If TRUE and the add parameter is set to TRUE, then the procedure adds
rules for the tables specified in the table_names parameter and the
schemas specified in the schema_names parameter to the positive rule
sets in the XStream Out configuration. When rules for tables and
schemas are in positive rule sets, the XStream Out configuration streams
DML and DDL changes to the tables and schemas out to the client
application.

If TRUE and the add parameter is set to FALSE, then the procedure
removes rules for the tables specified in the table_names parameter and
the schemas specified in the schema_names parameter from the positive
rule sets in the XStream Out configuration.

If FALSE and the add parameter is set to TRUE, then the procedure adds
rules for the tables specified in the table_names parameter and the
schemas specified in the schema_names parameter to the negative rule
sets in the XStream Out configuration. When rules for tables and
schemas are in negative rule sets, the XStream Out configuration does
not stream changes to the tables and schemas out to the client
application.

If FALSE and the add parameter is set to FALSE, then the procedure
removes rules for the tables specified in the table_names parameter and
the schemas specified in the schema_names parameter from the negative
rule sets in the XStream Out configuration.

start_scn A valid SCN for the database from which the capture process starts
capturing changes. To be valid, the SCN value must be greater than or
equal to the first SCN for the capture process.

If a valid SCN is specified, then the capture process captures changes
from the specified SCN when it is restarted.

An error is returned if an invalid SCN is specified.

If NULL and the start_time parameter is NULL, then the start SCN is not
changed.

If NULL and the start_time parameter is non-NULL, then the start SCN is
changed to match the specified start time.

The start_scn and start_time parameters are mutually exclusive.

Note: If the capture process is enabled, then the ALTER_OUTBOUND
procedure automatically stops and restarts the capture process when the
start_scn parameter is non-NULL. If the capture process is disabled,
then the ALTER_OUTBOUND procedure automatically starts the capture
process when the start_scn parameter is non-NULL.

start_time A valid time from which the capture process starts capturing changes.
To be valid, the time must correspond to an SCN value that is greater
than or equal to the first SCN for the capture process.

If a valid time is specified, then the capture process captures changes
from the specified time when it is restarted.

An error is returned if an invalid time is specified.

If NULL and the start_scn parameter is NULL, then the start time is not
changed.

If NULL and the start_scn parameter is non-NULL, then the start time is
changed to match the specified start SCN.

The start_scn and start_time parameters are mutually exclusive.

Note: If the capture process is enabled, then the ALTER_OUTBOUND
procedure automatically stops and restarts the capture process when the
start_time parameter is non-NULL. If the capture process is disabled,
then the ALTER_OUTBOUND procedure automatically starts the capture
process when the start_time parameter is non-NULL.

Table 8–5 (Cont.) ALTER_OUTBOUND Procedure Parameters

Parameter Description

ALTER_OUTBOUND Procedure

8-18 Oracle Database XStream Guide

8Usage Notes
The following list describes the behavior of the outbound server for various
combinations of the table_names and schema_names parameters:

■ If both the table_names and schema_names parameters are NULL or empty, then no
rules are changed for the XStream Out configuration.

This procedure is overloaded. The table_names and schema_names parameters are
defaulted to NULL. Do not specify NULL for both table_names and schema_names in
the same call; otherwise, error PLS-00307 is returned.

■ If both the table_names and schema_names parameters are specified, then the rules
for the tables and schemas are added to or removed from the XStream Out
configuration, depending on the setting of the add parameter.

■ If the table_names parameter is specified and the schema_names parameter is NULL
or empty, then the rules for the tables are added to or removed from the XStream
Out configuration, depending on the setting of the add parameter. The existing
rules for schemas are not changed for the XStream Out configuration.

■ If the table_names parameter is NULL or empty and the schema_names parameter is
specified, then the rules for the schemas are added to or removed from the
XStream Out configuration, depending on the setting of the add parameter. The
existing rules for tables are not changed for the XStream Out configuration.

For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY type for the table_names
and schema_names parameters, both parameters must be specified. To specify only
tables, the schema_names parameter must be specified and empty. To specify only
schemas, the table_names parameter must be specified and empty.

Note: An empty array includes one NULL entry.

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-19

CREATE_INBOUND Procedure

This procedure creates an XStream inbound server and its queue.

8Syntax
DBMS_XSTREAM_ADM.CREATE_INBOUND(
 server_name IN VARCHAR2,
 queue_name IN VARCHAR2,
 apply_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

8Parameters

Note: A client application can create multiple sessions. Each session
can attach to only one inbound server, and each inbound server can
serve only one session at a time. However, different client application
sessions can connect to different inbound servers. See Part IV,
"XStream OCI API Reference" and Oracle Database XStream Java API
Reference for information about attaching to an inbound server.

Table 8–6 CREATE_INBOUND Procedure Parameters

Parameter Description

server_name The name of the inbound server being created. A NULL specification is not
allowed. Do not specify an owner.

The specified name must not match the name of an existing outbound server,
inbound server, apply process, or messaging client.

Note: The server_name setting cannot be altered after the inbound server is
created.

queue_name The name of the local queue used by the inbound server, specified as
[schema_name.]queue_name.

If the specified queue exists, then it is used. If the specified queue does not
exist, then the procedure creates it.

For example, to specify a queue named xstream_queue in the xstrmadmin
schema, enter xstrmadmin.xstream_queue for this parameter. If the schema
is not specified, then the current user is the default.

Note: An inbound server's queue is used only to store error transactions.

CREATE_INBOUND Procedure

8-20 Oracle Database XStream Guide

8Usage Notes
By default, an inbound server does not use rules or rule sets. Therefore, an inbound
server applies all of the LCRs sent to it by an XStream client application. However, to
filter the LCRs sent to an inbound server, you can add rules and rule sets to an
inbound server using the DBMS_STREAMS_ADM and DBMS_RULE_ADM packages.

apply_user The apply user. If NULL, then the current user is the default.

The client application must attach to the inbound server as the apply user.

The apply user is the user in whose security domain an inbound server
evaluates whether LCRs satisfy its rule sets, applies DML and DDL changes
directly to database objects, runs custom rule-based transformations
configured for inbound server rules, and runs apply handlers configured for
the inbound server. This user must have the necessary privileges to perform
these actions. This procedure grants the apply user dequeue privileges on
the queue used by the inbound server and configures the user as a secure
queue user.

In addition to the privileges granted by this procedure, you must grant the
following privileges to the apply user:

■ The necessary privileges to perform DML and DDL changes on the
apply objects

■ EXECUTE privilege on the rule sets used by the inbound server

■ EXECUTE privilege on all rule-based transformation functions used in the
rule set

■ EXECUTE privilege on all apply handler procedures

You can grant these privileges directly to the apply user, or you can grant
them through roles.

In addition, the apply user must be granted EXECUTE privilege on all
packages, including Oracle supplied packages, that are invoked in
subprograms run by the inbound server. These privileges must be granted
directly to the apply user. They cannot be granted through roles.

Note: If the apply user for an inbound server is dropped using DROP
USER . . . CASCADE, then the inbound server is also dropped
automatically.

comment An optional comment associated with the inbound server.

See Also: Oracle Streams Concepts and Administration

Table 8–6 (Cont.) CREATE_INBOUND Procedure Parameters

Parameter Description

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-21

CREATE_OUTBOUND Procedure

This procedure creates an XStream outbound server, queue, and capture process to
enable client applications to stream out Oracle database changes.

This procedure is overloaded. One table_names parameter is type VARCHAR2 and the
other table_names parameter is type DBMS_UTILITY.UNCL_ARRAY. Also, one schema_
names parameter is type VARCHAR2 and the other schema_names parameter is type DBMS_
UTILITY.UNCL_ARRAY. These parameters enable you to enter the list of tables and
schemas in different ways and are mutually exclusive.

8Syntax
DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name IN VARCHAR2,
 source_database IN VARCHAR2 DEFAULT NULL,
 table_names IN DBMS_UTILITY.UNCL_ARRAY,
 schema_names IN DBMS_UTILITY.UNCL_ARRAY,
 capture_user IN VARCHAR2 DEFAULT NULL,
 connect_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL);

DBMS_XSTREAM_ADM.CREATE_OUTBOUND(
 server_name IN VARCHAR2,
 source_database IN VARCHAR2 DEFAULT NULL,
 table_names IN VARCHAR2 DEFAULT NULL,
 schema_names IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL,
 connect_user IN VARCHAR2 DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 capture_name IN VARCHAR2 DEFAULT NULL);

Note:

■ A client application can create multiple sessions. Each session can
attach to only one outbound server, and each outbound server can
serve only one session at a time. However, different client
application sessions can connect to different outbound servers.
See "OCIXStreamOutAttach()" on page 11-60 and Oracle Database
XStream Java API Reference for information about attaching to an
outbound server.

■ If the capture_name parameter is NULL, then this procedure
automatically generates a name for the capture process that it
creates.

■ This procedure automatically generates a name for the queue that
it creates.

■ This procedure enables both the capture process and outbound
server that it creates.

■ Starting with Oracle Database 11g Release 2 (11.2.0.2), the
capture_name parameter is included in this procedure.

CREATE_OUTBOUND Procedure

8-22 Oracle Database XStream Guide

8Parameters

Table 8–7 CREATE_OUTBOUND Procedure Parameters

Parameter Description

server_name The name of the outbound server being created. A NULL
specification is not allowed. Do not specify an owner.

The specified name must not match the name of an existing
outbound server, inbound server, apply process, or messaging
client.

Note: The server_name setting cannot be altered after the
outbound server is created.

source_database The global name of the source database. The source database is
where the changes to be captured originated.

If you do not include the domain name, then the procedure
appends it to the database name automatically. For example, if
you specify DBS1 and the domain is EXAMPLE.COM, then the
procedure specifies DBS1.EXAMPLE.COM automatically.

If NULL, or if the specified name is the same as the global name
of the current database, then local capture is assumed.

If non-NULL and the specified name is different from the global
name of the current database, then downstream capture is
assumed. In this case, configure the transmission of redo data
from the source database to the downstream database before
running the CREATE_OUTBOUND procedure. See Oracle Streams
Replication Administrator's Guide for instructions.

table_names The tables for which DML and DDL changes are streamed out
to the XStream client application. The tables can be specified in
the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_
ARRAY, where each element is the name of a table. Specify
the first table in position 1. The last position must be NULL.

Each table should be specified as [schema_name.]table_name.
For example, hr.employees. If the schema is not specified, then
the current user is the default.

See Also: "Usage Notes" on page 8-24 for more information
about this parameter

schema_names The schemas for which DML and DDL changes are streamed
out to the XStream client application. The schemas can be
specified in the following ways:

■ Comma-delimited list of type VARCHAR2.

■ A PL/SQL associative array of type DBMS_UTILITY.UNCL_
ARRAY, where each element is the name of a schema.
Specify the first schema in position 1. The last position
must be NULL.

Note: This procedure does not concatenate the schema_names
parameter with the table_names parameter. To specify tables,
enter fully qualified table names in the table_names parameter
(schema_name.table_name).

See Also: "Usage Notes" on page 8-24 for more information
about this parameter

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-23

capture_user The user in whose security domain a capture process captures
changes that satisfy its rule sets and runs custom rule-based
transformations configured for capture process rules. If NULL,
then the current user is the default.

This procedure grants the capture user enqueue privilege on
the queue used by the capture process and configures the user
as a secure queue user.

In addition, ensure that the capture user has the following
privileges:

■ EXECUTE privilege on the rule sets used by the capture
process

■ EXECUTE privilege on all rule-based transformation
functions used in the positive rule set

You can grant these privileges directly to the apply user, or you
can grant them through roles.

In addition, the capture user must be granted EXECUTE
privilege on all packages, including Oracle supplied packages,
that are invoked in rule-based transformations run by the
capture process. These privileges must be granted directly to
the capture user. They cannot be granted through roles.

Only a user who is granted the DBA role can set a capture user.
Only the SYS user can set the capture_user to SYS.

A capture user does not require privileges on a database object
to capture changes made to it. The capture process can pass
these changes to a custom rule-based transformation function.
Therefore, ensure that you consider security implications when
you configure a capture process.

connect_user The user who can attach to the specified outbound server to
retrieve the change stream. The client application must attach
to the outbound server as the specified connect user.

If NULL, then the current user is the default.

The connect user is the user in whose security domain an
outbound server dequeues LCRs that satisfy its rule sets and
runs custom rule-based transformations configured for
outbound server rules. This user must have the necessary
privileges to perform these actions. This procedure grants the
connect user dequeue privileges on the queue used by the
outbound server and configures the user as a secure queue
user.

In addition to the privileges granted by this procedure, grant
the following privileges to the connect user:

■ EXECUTE privilege on the rule sets used by the outbound
server

■ EXECUTE privilege on all rule-based transformation
functions used in the rule set

You can grant these privileges directly to the connect user, or
you can grant them through roles.

In addition, the connect user must be granted EXECUTE
privilege on all packages, including Oracle supplied packages,
that are invoked in subprograms run by the outbound server.
These privileges must be granted directly to the apply user.
They cannot be granted through roles.

comment An optional comment associated with the outbound server.

Table 8–7 (Cont.) CREATE_OUTBOUND Procedure Parameters

Parameter Description

CREATE_OUTBOUND Procedure

8-24 Oracle Database XStream Guide

8Usage Notes
The following list describes the behavior of the outbound server for various
combinations of the table_names and schema_names parameters:

■ If both the table_names and schema_names parameters are NULL or empty, then the
outbound server streams all DML and DDL changes to the client application.

This procedure is overloaded. The table_names and schema_names parameters are
defaulted to NULL. Do not specify NULL for both table_names and schema_names in
the same call; otherwise, error PLS-00307 is returned.

■ If both the table_names and schema_names parameters are specified, then the
outbound server streams DML and DDL changes for the specified tables and
schemas.

■ If the table_names parameter is specified and the schema_names parameter is NULL
or empty, then the outbound server streams DML and DDL changes for the
specified tables.

■ If the table_names parameter is NULL or empty and the schema_names parameter is
specified, then the outbound server streams DML and DDL changes for the
specified schema.

For the procedure that uses the DBMS_UTILITY.UNCL_ARRAY type for the table_names
and schema_names parameters, both parameters must be specified. To specify only
tables, the schema_names parameter must be specified and empty. To specify only
schemas, the table_names parameter must be specified and empty.

capture_name The name of the capture process configured to capture changes
for the outbound server. Do not specify an owner.

The capture process must not exist. If the specified name
matches the name of an existing capture process, then an error
is raised.

If the name does not match the name of an existing capture
process, then the procedure creates a new capture process with
the specified name.

If NULL, then the system creates a new capture process with a
system-generated name.

Note: The capture process name cannot be altered after the
capture process is created.

Note: An empty array includes one NULL entry.

Table 8–7 (Cont.) CREATE_OUTBOUND Procedure Parameters

Parameter Description

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-25

DROP_INBOUND Procedure

This procedure removes an inbound server configuration.

This procedure always removes the specified inbound server. This procedure also
removes the queue for the inbound server if all of the following conditions are met:

■ One call to the CREATE_INBOUND procedure created the queue.

■ The inbound server is the only subscriber to the queue.

8Syntax
DBMS_XSTREAM_ADM.DROP_INBOUND(
 server_name IN VARCHAR2);

8Parameters

See Also: "CREATE_INBOUND Procedure" on page 8-19

Table 8–8 DROP_INBOUND Procedure Parameters

Parameter Description

server_name The name of the inbound server being removed. Specify an existing inbound
server. Do not specify an owner.

DROP_OUTBOUND Procedure

8-26 Oracle Database XStream Guide

DROP_OUTBOUND Procedure

This procedure removes an outbound server configuration.

This procedure always drops the specified outbound server. This procedure also drops
the queue used by the outbound server if both of the following conditions are met:

■ The queue was created by the CREATE_OUTBOUND procedure in this package.

■ The outbound server is the only subscriber to the queue.

If either one of the preceding conditions is not met, then the DROP_OUTBOUND procedure
only drops the outbound server. It does not drop the queue.

This procedure also drops the capture process for the outbound server if both of the
following conditions are met:

■ The procedure can drop the outbound server's queue.

■ The capture process was created by the CREATE_OUTBOUND procedure.

If the procedure can drop the queue but cannot manage the capture process, then it
drops the queue without dropping the capture process.

8Syntax
DBMS_XSTREAM_ADM.DROP_OUTBOUND(
 server_name IN VARCHAR2);

8Parameters

See Also:

■ "ADD_OUTBOUND Procedure" on page 8-7

■ "CREATE_OUTBOUND Procedure" on page 8-21

Table 8–9 DROP_OUTBOUND Procedure Parameters

Parameter Description

server_name The name of the outbound server being removed. Specify an existing
outbound server. Do not specify an owner.

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-27

ENABLE_GG_XSTREAM_FOR_STREAMS Procedure

This procedure enables XStream capabilities and performance optimizations for Oracle
Streams components.

This procedure is intended for users of Oracle Streams who want to enable XStream
capabilities and optimizations. For example, you can enable the optimizations for an
Oracle Streams replication configuration that uses capture processes and apply
processes to replicate changes between Oracle databases.

These capabilities and optimizations are enabled automatically for XStream
components, such as outbound servers, inbound servers, and capture processes that
send changes to outbound servers. It is not necessary to run this procedure for
XStream components.

When XStream capabilities are enabled, Oracle Streams components can stream ID key
LCRs and sequence LCRs. The XStream performance optimizations improve efficiency
in various areas, including:

■ LCR processing

■ Handling large transactions

■ DML execution during apply

■ Dependency computation and scheduling

■ Capture process parallelism

8Syntax
DBMS_XSTREAM_ADM.ENABLE_GG_XSTREAM_FOR_STREAMS(
 enable IN BOOLEAN TRUE);

8Parameters

8Usage Notes
The following usage notes apply to this procedure:

■ When you run this procedure, all capture processes and apply processes are
restarted.

■ After you run this procedure, the PURPOSE column in the following views displays
XStream Streams:

– ALL_APPLY

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Table 8–10 ENABLE_GG_XSTREAM_FOR_STREAMS Procedure Parameters

Parameter Description

enable If TRUE, then enable XStream performance optimizations for Oracle Streams
components.

If FALSE, then disable XStream performance optimizations for Oracle Streams
components.

ENABLE_GG_XSTREAM_FOR_STREAMS Procedure

8-28 Oracle Database XStream Guide

– DBA_APPLY

– ALL_CAPTURE

– DBA_CAPTURE

■ A license for the Oracle GoldenGate product is required to enable XStream
performance optimizations for Oracle Streams components.

See Also:

■ "IS_GG_XSTREAM_FOR_STREAMS Function" on page 8-29

■ "Prerequisites for XStream" on page 1-3

Summary of DBMS_XSTREAM_ADM Subprograms

DBMS_XSTREAM_ADM 8-29

IS_GG_XSTREAM_FOR_STREAMS Function

This function returns TRUE if XStream performance optimizations are enabled for
Oracle Streams components, or this function returns FALSE if XStream performance
optimizations are disabled for Oracle Streams components.

8Syntax
DBMS_XSTREAM_ADM.IS_GG_XSTREAM_FOR_STREAMS
RETURN BOOLEAN;

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

See Also: "ENABLE_GG_XSTREAM_FOR_STREAMS Procedure"
on page 8-27

REMOVE_SUBSET_OUTBOUND_RULES Procedure

8-30 Oracle Database XStream Guide

REMOVE_SUBSET_OUTBOUND_RULES Procedure

This procedure removes subset rules from an outbound server configuration.

The names of the specified insert, update, and delete rules must match those generated
by the ADD_SUBSET_OUTBOUND_RULES procedure. To view the rule names for subset
rules, run the following query:

SELECT RULE_OWNER, SUBSETTING_OPERATION, RULE_NAME
 FROM DBA_XSTREAM_RULES
 WHERE SUBSETTING_OPERATION IS NOT NULL;

8Syntax
DBMS_XSTREAM_ADM.REMOVE_SUBSET_OUTBOUND_RULES(
 server_name IN VARCHAR2,
 insert_rule_name IN VARCHAR2,
 update_rule_name IN VARCHAR2,
 delete_rule_name IN VARCHAR2);

8Parameters

Note:

■ This procedure removes the declarative rule-based transformation
associated with each rule it removes.

■ This procedure does not remove rules from the outbound server's
capture process.

See Also: "ADD_SUBSET_OUTBOUND_RULES Procedure" on
page 8-11

Table 8–11 REMOVE_SUBSET_OUTBOUND_RULES Procedure Parameters

Parameter Description

server_name The name of the outbound server from which rules are being removed.
Specify an existing outbound server. Do not specify an owner.

insert_rule_name The name of the insert rule being removed, specified as [schema_
name.]rule_name.

For example, to specify a rule in the hr schema named rule1, enter
hr.rule1. If the schema is not specified, then the current user is the
default.

If NULL, then the procedure raises an error.

update_rule_name The name of the update rule being removed, specified as [schema_
name.]rule_name.

If NULL, then the procedure raises an error.

delete_rule_name The name of the delete rule being removed, specified as [schema_
name.]rule_name.

If NULL, then the procedure raises an error.

9

DBMS_XSTREAM_AUTH 9-1

9 DBMS_XSTREAM_AUTH

The DBMS_XSTREAM_AUTH package provides subprograms for granting privileges to and
revoking privileges from XStream administrators.

This chapter contains the following topic:

■ Using DBMS_XSTREAM_AUTH

– Overview

– Security Model

■ Summary of DBMS_XSTREAM_AUTH Subprograms

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

See Also: "Granting Privileges for the XStream Administrator" on
page 4-1

Using DBMS_XSTREAM_AUTH

9-2 Oracle Database XStream Guide

Using DBMS_XSTREAM_AUTH

This section contains topics which relate to using the DBMS_XSTREAM_AUTH package.

■ Overview

■ Security Model

Using DBMS_XSTREAM_AUTH

DBMS_XSTREAM_AUTH 9-3

Overview

This package provides subprograms for granting privileges to XStream administrators
and revoking privileges from XStream administrators.

See Also: "Granting Privileges for the XStream Administrator" on
page 4-1

Security Model

9-4 Oracle Database XStream Guide

Security Model

Security on this package can be controlled in either of the following ways:

■ Granting EXECUTE on this package to selected users or roles.

■ Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user
who runs the subprograms must be granted EXECUTE privilege on the package directly.
It cannot be granted through a role.

To ensure that the user who runs the subprograms in this package has the necessary
privileges, connect as an administrative user who can create users, grant privileges,
and create tablespaces when using this package.

Summary of DBMS_XSTREAM_AUTH Subprograms

DBMS_XSTREAM_AUTH 9-5

Summary of DBMS_XSTREAM_AUTH Subprograms

Table 9–1 DBMS_XSTREAM_AUTH Package Subprograms

Subprogram Description

GRANT_ADMIN_PRIVILEGE Procedure on
page 9-6

Either grants the privileges needed by a user
to be an XStream administrator directly, or
generates a script that grants these privileges

GRANT_REMOTE_ADMIN_ACCESS
Procedure on page 9-9

Enables a remote XStream administrator to
perform administrative actions at the local
database by connecting to the grantee using
a database link

REVOKE_ADMIN_PRIVILEGE Procedure
on page 9-10

Either revokes XStream administrator
privileges from a user directly, or generates a
script that revokes these privileges

REVOKE_REMOTE_ADMIN_ACCESS
Procedure on page 9-12

Disables a remote XStream administrator
from performing administrative actions by
connecting to the grantee using a database
link

Note: All subprograms commit unless specified otherwise.

GRANT_ADMIN_PRIVILEGE Procedure

9-6 Oracle Database XStream Guide

GRANT_ADMIN_PRIVILEGE Procedure

This procedure either grants the privileges needed by a user to be an XStream
administrator directly, or generates a script that grants these privileges.

9Syntax
DBMS_XSTREAM_AUTH.GRANT_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 grant_privileges IN BOOLEAN DEFAULT TRUE,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

9Parameters

9Usage Notes
The user who runs the procedure must be an administrative user who can grant
privileges to other users.

See Also: "Granting Privileges for the XStream Administrator" on
page 4-1

Table 9–2 GRANT_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

grantee The user to whom privileges are granted

grant_privileges If TRUE, then the procedure grants the privileges to the specified
grantee directly, and adds the grantee to the DBA_XSTREAM_
ADMINISTRATOR data dictionary view with YES for both the LOCAL_
PRIVILEGES column and the ACCESS_FROM_REMOTE column. If the
user already has an entry in this data dictionary view, then the
procedure does not make another entry, and no error is raised. If
TRUE and any of the grant statements fails, then the procedure
raises an error.

If FALSE, then the procedure does not grant the privileges to the
specified grantee directly, and does not add the grantee to the
DBA_XSTREAM_ADMINISTRATOR data dictionary view.

You specify FALSE when the procedure is generating a file that you
will edit and then run. If you specify FALSE and either the file_
name or directory_name parameter is NULL, then the procedure
raises an error.

file_name The name of the file generated by the procedure. The file contains
all of the statements that grant the privileges. If a file with the
specified file name exists in the specified directory name, then the
grant statements are appended to the existing file.

If NULL, then the procedure does not generate a file.

directory_name The directory into which the generated file is placed. The
specified directory must be a directory object created using the
SQL statement CREATE DIRECTORY. If you specify a directory, then
the user who invokes the procedure must have the WRITE privilege
on the directory object.

If the file_name parameter is NULL, then this parameter is
ignored, and the procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then the
procedure raises an error.

Summary of DBMS_XSTREAM_AUTH Subprograms

DBMS_XSTREAM_AUTH 9-7

Specifically, the procedure grants the following privileges to the specified user:

■ The RESTRICTED SESSION system privilege

■ EXECUTE on the following packages:

– DBMS_APPLY_ADM

– DBMS_AQ

– DBMS_AQADM

– DBMS_AQIN

– DBMS_AQELM

– DBMS_CAPTURE_ADM

– DBMS_FLASHBACK

– DBMS_LOCK

– DBMS_PROPAGATION_ADM

– DBMS_RULE_ADM

– DBMS_STREAMS_ADM

– DBMS_STREAMS_ADVISOR_ADM

– DBMS_STREAMS_HANDLER_ADM

– DBMS_STREAMS_MESSAGING

– DBMS_TRANSFORM

– DBMS_XSTREAM_ADM

■ Privileges to enqueue messages into and dequeue messages from any queue

■ Privileges to manage any queue

■ Privileges to create, alter, and execute any of the following types of objects in the
user's own schema and in other schemas:

– Evaluation contexts

– Rule sets

– Rules

In addition, the grantee can grant these privileges to other users.

■ SELECT_CATALOG_ROLE

■ SELECT privilege on data dictionary views related to XStream and Oracle Streams

■ The ability to allow a remote XStream administrator to perform administrative
actions through a database link by connecting to the grantee

This ability is enabled by running the GRANT_REMOTE_ADMIN_ACCESS procedure in
this package.

GRANT_ADMIN_PRIVILEGE Procedure

9-8 Oracle Database XStream Guide

Note:

■ To view all of the statements run by the procedure in detail,
you can use the procedure to generate a script and then view
the script in a text editor.

■ This procedure grants only the privileges necessary to
configure and administer an XStream environment. You can
grant additional privileges to the grantee if necessary.

See Also:

■ "GRANT_REMOTE_ADMIN_ACCESS Procedure" on page 9-9

■ "Granting Privileges for the XStream Administrator" on
page 4-1

■ Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY SQL statement

Summary of DBMS_XSTREAM_AUTH Subprograms

DBMS_XSTREAM_AUTH 9-9

GRANT_REMOTE_ADMIN_ACCESS Procedure

This procedure enables a remote XStream administrator to perform administrative
actions at the local database by connecting to the grantee using a database link.

9Syntax
DBMS_XSTREAM_AUTH.GRANT_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

9Parameters

9Usage Notes
Typically, you run the procedure and specify a grantee at a local source database if a
downstream capture process captures changes originating at the local source database.
The XStream administrator at a downstream capture database administers the source
database using this connection.

Table 9–3 GRANT_REMOTE_ADMIN_ACCESS Procedure Parameter

Parameter Description

grantee The user who allows remote access. The procedure adds the
grantee to the DBA_XSTREAM_ADMINISTRATOR data dictionary view
with YES for the ACCESS_FROM_REMOTE column. If the user already
has an entry in this data dictionary view, then the procedure does
not make another entry. Instead, it updates the ACCESS_FROM_
REMOTE column to YES.

Note: The GRANT_ADMIN_PRIVILEGE procedure in this package
runs this procedure.

See Also: "GRANT_ADMIN_PRIVILEGE Procedure" on page 9-6

REVOKE_ADMIN_PRIVILEGE Procedure

9-10 Oracle Database XStream Guide

REVOKE_ADMIN_PRIVILEGE Procedure

This procedure either revokes XStream administrator privileges from a user directly, or
generates a script that revokes these privileges.

9Syntax
DBMS_XSTREAM_AUTH.REVOKE_ADMIN_PRIVILEGE(
 grantee IN VARCHAR2,
 revoke_privileges IN BOOLEAN DEFAULT TRUE,
 file_name IN VARCHAR2 DEFAULT NULL,
 directory_name IN VARCHAR2 DEFAULT NULL);

9Parameters

9Usage Notes
The user who runs this procedure must be an administrative user who can revoke
privileges from other users. Specifically, this procedure revokes the privileges granted
by running the GRANT_ADMIN_PRIVILEGE procedure in this package.

Table 9–4 REVOKE_ADMIN_PRIVILEGE Procedure Parameters

Parameter Description

grantee The user from whom privileges are revoked

revoke_privileges If TRUE, then the procedure revokes the privileges from the
specified user directly, and removes the user from the DBA_
XSTREAM_ADMINISTRATOR data dictionary view. If the user does not
have a record in this data dictionary view, then the procedure
does not remove a record from the view, and no error is raised. If
TRUE and any of the revoke statements fails, then the procedure
raises an error. A revoke statement fails if the user is not granted
the privilege that is being revoked.

If FALSE, then the procedure does not revoke the privileges from
the specified user directly, and does not remove the user from the
DBA_XSTREAM_ADMINISTRATOR data dictionary view.

You specify FALSE when the procedure is generating a file that you
will edit and then run. If you specify FALSE and either the file_
name or directory_name parameter is NULL, then the procedure
does not raise an error.

file_name The name of the file generated by this procedure. The file contains
all of the statements that revoke the privileges. If a file with the
specified file name exists in the specified directory name, then the
revoke statements are appended to the existing file.

If NULL, then the procedure does not generate a file.

directory_name The directory into which the generated file is placed. The
specified directory must be a directory object created using the
SQL statement CREATE DIRECTORY. If you specify a directory, then
the user who invokes the procedure must have the WRITE privilege
on the directory object.

If the file_name parameter is NULL, then this parameter is ignored,
and the procedure does not generate a file.

If NULL and the file_name parameter is non-NULL, then the
procedure raises an error.

Summary of DBMS_XSTREAM_AUTH Subprograms

DBMS_XSTREAM_AUTH 9-11

Note: To view all of the statements run by this procedure in detail,
you can use the procedure to generate a script and then view the
script in a text editor.

See Also:

■ "GRANT_ADMIN_PRIVILEGE Procedure" on page 9-6

■ Oracle Database SQL Language Reference for information about
the CREATE DIRECTORY SQL statement

REVOKE_REMOTE_ADMIN_ACCESS Procedure

9-12 Oracle Database XStream Guide

REVOKE_REMOTE_ADMIN_ACCESS Procedure

This procedure disables a remote XStream administrator from performing
administrative actions by connecting to the grantee using a database link.

9Syntax
DBMS_XSTREAM_AUTH.REVOKE_REMOTE_ADMIN_ACCESS(
 grantee IN VARCHAR2);

9Parameters

Note: The REVOKE_ADMIN_PRIVILEGE procedure in this package
runs this procedure.

See Also: "REVOKE_ADMIN_PRIVILEGE Procedure" on
page 9-10

Table 9–5 REVOKE_REMOTE_ADMIN_ACCESS Procedure Parameter

Parameter Description

grantee The user for whom access from a remote XStream administrator is
disabled.

If a row for the grantee exists in the DBA_XSTREAM_ADMINISTRATOR
data dictionary view, then the procedure updates the ACCESS_
FROM_REMOTE column for the grantee to NO. If, after this update,
both the LOCAL_PRIVILEGES column and the ACCESS_FROM_REMOTE
column are NO for the grantee, then the procedure removes the
grantee from the view.

If no row for the grantee exists in the DBA_XSTREAM_
ADMINISTRATOR data dictionary view, then the procedure does not
update the view and does not raise an error.

Part IV
Part IV XStream OCI API Reference

This part contains the XStream OCI API reference. This part contains the following
chapters:

■ Chapter 10, "Introduction to the OCI Interface for XStream"

■ Chapter 11, "OCI XStream Functions"

10

Introduction to the OCI Interface for XStream 10-1

10 Introduction to the OCI Interface for XStream

The Oracle Call Interface (OCI) includes an interface for XStream. This chapter
provides an introduction to the OCI interface for XStream.

This chapter contains these topics:

■ About the XStream Interface

■ Handler and Descriptor Attributes

This chapter provides an overview of the OCI interface for XStream. For detailed
information about XStream concepts, see Chapter 2, "XStream Concepts".

About the XStream Interface
Since Oracle Database 11g Release 2, APIs, known as XStream Out and XStream In, are
available. This technology enables high performance, near real-time
information-sharing infrastructure between Oracle databases and non-Oracle
databases, non-RDBMS Oracle products, file systems, third party software
applications, and so on. XStream is built on top of Oracle Streams infrastructure.

XStream Out
XStream Out allows a remote client to attach to an outbound server and extract row
changes in the form of logical change records (LCRs). For the basics of LCRs, see Oracle
Streams Concepts and Administration.

To use XStream Out, a capture process and an outbound server must be created. All
data types supported by Oracle Streams, including LOB, LONG, and XMLType, are
supported by XStream. The capture process and the outbound server need not be on
the same database instance. After the capture process and the outbound server have
started, row changes are captured and sent to the outbound server. An external client
application can connect to this outbound server using OCI. After the connection is
established, the client application can loop while waiting for LCRs from the outbound

See Also:

■ Chapter 11, "OCI XStream Functions"

■ Chapter 4, "Configuring XStream"

■ Chapter 5, "Managing XStream"

■ Chapter 6, "Monitoring XStream"

■ Chapter 7, "Troubleshooting XStream"

See Also: Chapter 11, "OCI XStream Functions"

Handler and Descriptor Attributes

10-2 Oracle Database XStream Guide

server. The client application can register a client-side callback to be invoked each time
an LCR is received. At any time, the client application can detach from the outbound
server as needed. Upon restart, the outbound server knows where in the redo stream
to start streaming LCRs to the client application.

XStream In
To replicate non-Oracle data into Oracle databases, use XStream In. This technology
allows a remote client application to attach to an inbound server and send row and
DDL changes in the form of LCRs.

An external client application connects to the inbound server using OCI. After the
connection is established, the client application acts as the capture agent for the
inbound server by streaming LCRs to it. A client application can attach to only one
inbound server for each database connection, and each inbound server only allows one
client application to attach to it.

Position Order and LCR Streams
Each LCR has a position attribute. The position of an LCR identifies its placement in
the stream of LCRs in a transaction.

XStream and Character Sets
XStream Out implicitly converts character data in LCRs from the outbound server
database character set to the client application character set. XStream In implicitly
converts character data in LCRs from the client application character set to the
inbound server database character set.

To improve performance, complete the following tasks:

■ Analyze the LCR data flow from the source to the destination.

■ Set the client character set of the OCI client application to the one that minimizes
character conversion, incurs no data loss, and takes advantage of the implicit
conversion done by XStream or the destination.

For XStream Out, in general, setting the client application character set to the
outbound server database character set is the best practice.

Handler and Descriptor Attributes
This chapter describes the attributes for OCI handles and descriptors, which can be
read with OCIAttrGet() and modified with OCIAttrSet().

Conventions
For each handle type, the attributes that can be read or changed are listed. Each
attribute listing includes the following information:

Mode
The following modes are valid:

See Also: "XStream Out" on page 2-1

See Also: "XStream In" on page 2-9

See Also: "Position Order in an LCR Stream" on page 2-11

Handler and Descriptor Attributes

Introduction to the OCI Interface for XStream 10-3

READ - The attribute can be read using OCIAttrGet().

WRITE - The attribute can be modified using OCIAttrSet().

READ/WRITE - The attribute can be read using OCIAttrGet(), and it can be modified
using OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Attribute Data Type
This is the data type of the attribute. If necessary, a distinction is made between the
data type for READ and WRITE modes.

Server Handle Attributes
The following server handle attributes are available:

■ OCI_ATTR_XSTREAM_ACK_INTERVAL

■ OCI_ATTR_XSTREAM_IDLE_TIMEOUT

OCI_ATTR_XSTREAM_ACK_INTERVAL

Mode
READ/WRITE

Description
For XStream Out, the ACK interval is the minimum interval in seconds that the
outbound server receives the processed low position from the client application. After
each ACK interval, the outbound server ends any in-progress
OCIXStreamOutLCRReceive() or OCIXStreamOutLCRCallbackReceive() call so that the
processed low position cached at the client application can be sent to the outbound
server.

For XStream In, the ACK interval is the minimum interval in seconds that the inbound
server sends the processed low position to the client application. After each ACK
interval, any in-progress OCIXStreamInLCRSend() or OCIXStreamInLCRCallbackSend()
call is terminated for the inbound server to send a new processed low position to the
client application.

The default value for OCI_ATTR_XSTREAM_ACK_INTERVAL is 30 seconds. This attribute is
checked only during the OCIXStreamOutAttach() or OCIXStreamInAttach() calls.
Thus, it must be set before invoking these APIs; otherwise, the default value is used.

Attribute Data Type
ub4 */ub4

OCI_ATTR_XSTREAM_IDLE_TIMEOUT

Mode
READ/WRITE

Description
The idle timeout is the number of seconds of idle the outbound server waits for an
LCR before terminating the OCIXStreamOutLCRReceive() or
OCIXStreamOutLCRCallbackReceive() call.

Handler and Descriptor Attributes

10-4 Oracle Database XStream Guide

The default for OCI_ATTR_XSTREAM_IDLE_TIMEOUT is one second. This attribute is
checked only during the OCIXStreamOutAttach() or OCIXStreamInAttach() call. Thus,
it must be set before invoking these APIs; otherwise, the default value is used.

Attribute Data Type
ub4 */ub4

11

OCI XStream Functions 11-1

11 OCI XStream Functions

This chapter describes the XStream functions for OCI.

A row logical change record (LCR) is used to encapsulate each row change. It includes
the schema name, table name, DML operation, and the column values. For update
operations, both before and after column values are included. The column data is in
the format specified by the "Program Variable" column in Table 11–3. Character
columns are converted to the client's character set.

A DDL LCR is used to encapsulate each DDL change. It includes the object name, the
DDL text, and the DDL command, for example, ALTER TABLE or TRUNCATE TABLE. See
Oracle Call Interface Programmer's Guide for a list of DDL command codes.

Each LCR also has a transaction ID and position. For transactions captured outside
Oracle databases, any byte-comparable RAW array can be used as the LCR position, if
the position of each LCR in the stream is strictly increasing.

This chapter contains the topic:

■ Introduction to XStream Functions

■ OCI XStream Functions

Introduction to XStream Functions
This section includes the conventions used to describe the functions.

Conventions for OCI Functions
For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
The function declaration.

See Also: Oracle Database Globalization Support Guide for more information
about NLS settings.

XStream sample programs are found in xstream/oci under the $ORACLE_
HOME/demo directory.

Introduction to XStream Functions

11-2 Oracle Database XStream Guide

Parameters
A description of each of the function's parameters. This includes the parameter's
mode. The mode of a parameter has three possible values, as described in Table 11–1.

Comments
More detailed information about the function (if available), which can include return
values, restrictions on the use of the function, examples, or other information that can
be useful when using the function in an application.

Table 11–1 Mode of a Parameter

Mode Description

IN A parameter that passes data to the OCI.

OUT A parameter that receives data from the OCI on this call.

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.

OCI XStream Functions

OCI XStream Functions 11-3

OCI XStream Functions

This section and Table 11–1 describe the OCI XStream functions.

Table 11–2 OCI XStream Functions

Function Purpose

LCR Functions To get and set one or more values of an LCR. Note: These
calls do not require a server round-trip.

"OCILCRAttributesGet()" on page 11-5 Returns existing extra attributes from the LCR

"OCILCRAttributesSet()" on page 11-7 Sets extra attributes in a row or DDL LCR

"OCILCRFree()" on page 11-9 Frees the LCR

"OCILCRHeaderGet()" on page 11-12 Returns the common header fields for a row/DDL LCR

"OCILCRHeaderSet()" on page 11-28 Initializes the common header fields for a row or DDL
LCR

"OCILCRDDLInfoGet()" on page 11-10 Retrieves specific fields in a DDL LCR

"OCILCRDDLInfoSet()" on page 11-25 Populates DDL-specific fields in a DDL LCR

"OCILCRLobInfoGet()" on page 11-31 Returns the LOB information for a piece-wise LOB LCR

"OCILCRLobInfoSet()" on page 11-33 Sets the LOB information for a piece-wise LOB LCR

"OCILCRNew()" on page 11-18 Constructs a new LCR object of the specified type (ROW
or DDL) for the given duration

"OCILCRRowColumnInfoGet()" on page 11-19 Returns the column fields in a row LCR

"OCILCRRowColumnInfoSet()" on page 11-22 Populates column fields in a row LCR

"OCILCRRowStmtGet()" on page 11-15 Returns the generated SQL statement for the row LCR,
with values in-lined

"OCILCRRowStmtWithBindVarGet()" on page 11-16 Returns the generated SQL statement, which uses bind
variables for column values

"OCILCRSCNsFromPosition()" on page 11-35 Gets the SCN and commit SCN from a position value

"OCILCRSCNToPosition()" on page 11-36 Converts SCN to position

"OCILCRWhereClauseGet()" on page 11-37 Gets the WHERE clause statement for the given row LCR

"OCILCRWhereClauseWithBindVarGet()" on
page 11-39

Gets the WHERE clause statement with bind variables for
the given row LCR

XStream In Functions To send an LCR stream to an XStream inbound server

"OCIXStreamInAttach()" on page 11-41 Attaches to an inbound server

"OCIXStreamInChunkSend()" on page 11-55 Sends chunk data to the inbound server

"OCIXStreamInCommit()" on page 11-59 Commits the given transaction

"OCIXStreamInDetach()" on page 11-43 Detaches from the inbound server

"OCIXStreamInErrorGet()" on page 11-52 Returns the first error encountered by the inbound server
since the attach call

"OCIXStreamInFlush()" on page 11-54 Flushes the network while attaching to an XStream
inbound server

"OCIXStreamInLCRCallbackSend()" on page 11-46 Sends the LCR stream to the attached inbound server
using callbacks

OCI XStream Functions

11-4 Oracle Database XStream Guide

"OCIXStreamInLCRSend()" on page 11-44 Sends the LCR stream to the attached inbound server
using callbacks

"OCIXStreamInProcessedLWMGet()" on page 11-51 Gets the local processed low position

XStream Out Functions To receive an LCR stream from an XStream outbound
server

"OCIXStreamOutAttach()" on page 11-60 Attaches to an outbound server

"OCIXStreamOutChunkReceive()" on page 11-71 Retrieves data of each LOB or LONG or XMLType column
one chunk at a time

"OCIXStreamOutDetach()" on page 11-62 Detaches from the outbound server

"OCIXStreamOutLCRCallbackReceive()" on page 11-65 Gets the LCR stream from the outbound server using
callbacks

"OCIXStreamOutLCRReceive()" on page 11-63 Receives an LCR stream from an outbound server
without using callbacks

"OCIXStreamOutProcessedLWMSet()" on page 11-70 Updates the local copy of the processed low-water mark

Table 11–2 (Cont.) OCI XStream Functions

Function Purpose

OCI XStream Functions

OCI XStream Functions 11-5

OCILCRAttributesGet()

11Purpose
Gets extra attribute information in (ROW or DDL) LCR. In addition, it gets any extra
non-first class attributes that are not populated through OCILCRHeaderGet(),
OCILCRDDLInfoGet(), or OCILCRRowColumnInfoGet(), for example, edition name.

11Syntax
sword OCILCRAttributesGet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 *num_attrs,
 oratext **attr_names,
 ub2 *attr_namesl,
 ub2 *attr_dtyp,
 void **attr_valuesp,
 OCIInd *attr_indp,
 ub2 *attr_alensp,
 void *lcrp,
 ub2 array_size,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

num_attrs (OUT)
Number of extra attributes.

attr_names (OUT)
An array of extra attribute name pointers.

attr_namesl (OUT)
An array of extra attribute name lengths.

attr_dtyp (OUT)
An array of extra attribute data types. Valid data types: see Comments.

attr_valuesp (OUT)
An array of extra attribute data value pointers.

attr_indp (OUT)
An indicator array. Each returned element is an OCIInd value (OCI_IND_NULL or OCI_
IND_NOTNULL).

attr_alensp (OUT)
An array of actual extra attribute data lengths. Each element in alensp is the length in
bytes.

lcrp (IN)
Pointer to row or DDL LCR.

OCILCRAttributesGet()

11-6 Oracle Database XStream Guide

array_size (IN)
Size of the array argument in the other parameters. If array_size is not large enough
to accommodate the number of attributes in the requested attribute list, then OCI_
ERROR is returned. Parameter num_attrs returns the expected size.

mode (IN)
Specify OCI_DEFAULT.

11Comments
The valid data types for attr_dtyp are:

SQLT_CHR
SQLT_INT
SQLT_RDD

OCI XStream Functions

OCI XStream Functions 11-7

OCILCRAttributesSet()

11Purpose
Populates extra attribute information in row or DDL LCR. In addition, it populates
any extra non-first class attributes that cannot be set through OCILCRHeaderSet(),
OCILCRDDLInfoSet(), or OCILCRRowColumnInfoSet(), for example, edition name.

11Syntax
sword OCILCRAttributesSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 num_attrs,
 oratext **attr_names,
 ub2 *attr_names_lens,
 ub2 *attr_dtyp,
 void **attr_valuesp,
 OCIInd *attr_indp,
 ub2 *attr_alensp,
 void *lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

num_attrs (IN)
Number of extra attributes.

attr_names (IN)
Pointer to an array of extra attribute names. Attribute names must be canonicalized.

attr_names_lens (IN)
Pointer to an array of extra attribute name lengths.

attr_dtyp (IN)
Pointer to an array of extra attribute data types. See valid data types in Comments of
"OCILCRRowColumnInfoSet()" on page 11-22.

attr_valuesp (IN)
Address of an array of extra attribute data values.

attr_indp (IN)
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd
values (OCI_IND_NULL or OCI_IND_NOTNULL).

attr_alensp (IN)
Pointer to an array of actual extra attribute data lengths. Each element in attr_lensp is
the length in bytes.

lcrp (IN/OUT)
Pointer to a row or DDL LCR.

OCILCRAttributesSet()

11-8 Oracle Database XStream Guide

mode (IN)
Specify OCI_DEFAULT.

11Comments
Valid attributes are:

#define OCI_LCR_ATTR_THREAD_NO "THREAD#"
#define OCI_LCR_ATTR_ROW_ID "ROW_ID"
#define OCI_LCR_ATTR_SESSION_NO "SESSION#"
#define OCI_LCR_ATTR_SERIAL_NO "SERIAL#"
#define OCI_LCR_ATTR_USERNAME "USERNAME"
#define OCI_LCR_ATTR_TX_NAME "TX_NAME"
#define OCI_LCR_ATTR_EDITION_NAME "EDITION_NAME"
#define OCI_LCR_ATTR_MESSAGE_TRACKING_LABEL "MESSAGE_TRACKING_LABEL"

OCI XStream Functions

OCI XStream Functions 11-9

OCILCRFree()

11Purpose
Frees the LCR.

11Syntax
sword OCILCRFree (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

lcrp (IN/OUT)
Streams LCR pointer.

mode (IN)
Specify OCI_DEFAULT.

OCILCRDDLInfoGet()

11-10 Oracle Database XStream Guide

OCILCRDDLInfoGet()

11Purpose
Retrieves specific fields in a DDL LCR.

11Syntax
sword OCILCRDDLInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **object_type,
 ub2 *object_type_len,
 oratext **ddl_text,
 ub4 *ddl_text_len,
 oratext **logon_user,
 ub2 *logon_user_len,
 oratext **current_schema,
 ub2 *current_schema_len,
 oratext **base_table_owner,
 ub2 *base_table_owner_len,
 oratext **base_table_name,
 ub2 *base_table_name_len,
 oraub8 *flag,
 void *ddl_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

object_type (OUT)
The type of object on which the DDL statement was executed. (See
OCILCRDDLInfoSet().) Optional. If not NULL, then both object_type and object_
type_len arguments must not be NULL.

object_type_len (OUT)
Length of the object_type string without the NULL terminator.

ddl_text (OUT)
The text of the DDL statement. Optional. If not NULL, then both ddl_text and ddl_
text_len arguments must not be NULL.

ddl_text_len (OUT)
DDL text length in bytes without the NULL terminator.

logon_user (OUT)
Canonicalized (follows a rule or procedure) name of the user whose session executed
the DDL statement. Optional. If not NULL, then both logon_user and logon_user_len
arguments must not be NULL.

logon_user_len (OUT)
Length of the logon_user string without the NULL terminator.

OCI XStream Functions

OCI XStream Functions 11-11

current_schema (OUT)
The canonicalized schema name that is used if no schema is specified explicitly for the
modified database objects in ddl_text. Optional. If not NULL, then both current_
schema and current_schema_len arguments must not be NULL.

current_schema_len (OUT)
Length of the current_schema string without the NULL terminator.

base_table_owner (OUT)
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE),
or if the DDL statement involves a table (such as creating a trigger on a table), then
base_table_owner specifies the canonicalized owner of the table involved. Otherwise,
base_table_owner is NULL. Optional. If not NULL, then both base_table_owner and
base_table_owner_len arguments must not be NULL.

base_table_owner_len (OUT)
Length of the base_table_owner string without the NULL terminator.

base_table_name (OUT)
If the DDL statement is a table-related DDL (such as CREATE TABLE and ALTER TABLE),
or if the DDL statement involves a table (such as creating a trigger on a table), then
base_table_name specifies the canonicalized name of the table involved. Otherwise,
base_table_name is NULL. Optional. If not NULL, then both base_table_name and base_
table_name_len arguments must not be NULL.

base_table_name_len (OUT)
Length of the base_table_name string without the NULL terminator.

flag (OUT)
DDL LCR flag. Optional. Data not returned if argument is NULL. Future extension not
used currently.

ddl_lcrp (IN)
DDL LCR. Cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

OCILCRHeaderGet()

11-12 Oracle Database XStream Guide

OCILCRHeaderGet()

11Purpose
Returns the common header fields for row or DDL LCR. All returned pointers point
directly to the corresponding LCR fields.

11Syntax
sword OCILCRHeaderGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **src_db_name,
 ub2 *src_db_name_len,
 oratext **cmd_type,
 ub2 *cmd_type_len,
 oratext **owner,
 ub2 *owner_len,
 oratext **oname,
 ub2 *oname_len,
 ub1 **tag,
 ub2 *tag_len,
 oratext **txid,
 ub2 *txid_len,
 OCIDate *src_time,
 ub2 *old_columns,
 ub2 *new_columns,
 ub1 **position,
 ub2 *position_len,
 oraub8 *flag,
 void *lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

src_db_name (OUT)
Canonicalized source database name. Must be non-NULL.

src_db_name_len (OUT)
Length of the src_db_name string in bytes excluding the NULL terminator.

cmd_type (OUT)
For row LCRs: One of the following values:

#define OCI_LCR_ROW_CMD_INSERT
#define OCI_LCR_ROW_CMD_DELETE
#define OCI_LCR_ROW_CMD_UPDATE

Note: The values, #define OCI_LCR_ROW_CMD_ROLLBACK and #define
OCI_LCR_ROW_CMD_START_TX, is functionality that is available starting
with Oracle Database 11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-13

#define OCI_LCR_ROW_CMD_COMMIT
#define OCI_LCR_ROW_CMD_ROLLBACK
#define OCI_LCR_ROW_CMD_START_TX
#define OCI_LCR_ROW_CMD_LOB_WRITE
#define OCI_LCR_ROW_CMD_LOB_TRIM
#define OCI_LCR_ROW_CMD_LOB_ERASE

For DDL LCRs: One of the command types in Oracle Call Interface Programmer's Guide.

cmd_type_len (OUT)
Length of the cmd_type string in bytes excluding the NULL terminator.

owner (OUT)
Canonicalized table owner name. Must be non-NULL.

owner_len (OUT)
Length of the owner string in bytes excluding the NULL terminator.

oname (OUT)
Canonicalized table name. Must be non-NULL

oname_len (OUT)
Length of the oname string in bytes excluding the NULL terminator.

tag (OUT)
A binary tag that enables tracking of the LCR. For example, you can use this tag to
determine the original source database of the DML statement if apply forwarding is
used.

tag_len (OUT)
Number of bytes in the tag.

txid (OUT)
Transaction ID. Must be non-NULL

txid_len (OUT)
Length of the string in bytes excluding the NULL terminator.

src_time (OUT)
The time when the change was generated in the redo log file of the source database.

old_columns (OUT)
Number of columns in the OLD column list. Returns 0 if the input LCR is a DDL LCR.
Optional.

new_columns (OUT)
Number of columns in the NEW column list. Returns 0 if the input LCR is a DDL LCR.
Optional.

position (OUT)
Position for LCR.

position_len (OUT)
Length of position.

flag (OUT)
LCR flag. Possible flags are listed in Comments.

OCILCRHeaderGet()

11-14 Oracle Database XStream Guide

lcrp (IN)
lcrp cannot be NULL.

mode (IN)
OCILCR_NEW_ONLY_MODE - If this mode is specified, then the new_columns returned is
the count of the columns in the NEW column list only. Otherwise, the new_columns
returned is the number of distinct columns present in either the NEW or the OLD column
list of the given row LCR.

11Comments
LCR flag.

#define OCI_ROWLCR_HAS_ID_KEY_ONLY /* only has ID key cols */
#define OCI_ROWLCR_SEQ_LCR /* sequence lcr */

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-15

OCILCRRowStmtGet()

11Purpose
Returns the generated SQL statement for the row LCR, with values in-lined. Users
must preallocate the memory for sql_stmt, and *sql_stmt_len must be set to the size
of the allocated buffer, when it is passed in. If *sql_stmt_len is not large enough to
hold the generated SQL statement, then an error is raised.

11Syntax
sword OCILCRRowStmtGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *row_stmt,
 ub4 *row_stmt_len,
 void *row_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

row_stmt (IN/OUT)
The generated SQL statement for the row LCR.

row_stmt_len (IN/OUT)
Set to the size of the allocated buffer for row_stmt when passed in; returns the length
of row_stmt.

row_lcrp (IN)
Pointer to row LCR.

mode (IN)
Specify OCI_DEFAULT.

OCILCRRowStmtWithBindVarGet()

11-16 Oracle Database XStream Guide

OCILCRRowStmtWithBindVarGet()

11Purpose
Returns the generated SQL statement, which uses bind variables for column values.
The values for the bind variables are returned separately in arrays. You must
preallocate the memory for sql_stmt and the arrays, *sql_stmt_len must be set to the
size of the allocated buffer, and array_size must be the length of the arrays. The
actual column values in bind_var_valuesp points to the values inside the LCR, so it is
a shallow copy. If array_size is not large enough to hold all the variables, or if *sql_
stmt_len is not large enough to hold the generated SQL statement, then an error is
raised.

11Syntax
sword OCILCRRowStmtWithBindVarGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *row_stmt,
 ub4 *row_stmt_len,
 ub2 *num_bind_var,
 ub2 *bind_var_dtyp,
 void **bind_var_valuesp,
 OCIInd *bind_var_indp,
 ub2 *bind_var_alensp,
 ub1 *bind_var_csetidp,
 ub1 *bind_var_csetfp,
 void *row_lcrp,
 oratext **chunk_column_names,
 ub2 *chunk_column_namesl,
 oraub8 *chunk_column_flags,
 ub2 array_size,
 oratext *bind_var_syntax,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

row_stmt (IN/OUT)
The generated SQL statement for the row LCR.

row_stmt_len (IN/OUT)
Set to the size of the allocated buffer for row_stmt when passed in; returns the length
of row_stmt.

num_bind_var (OUT)
The number of bind variables.

bind_var_dtyp (IN/OUT)
Array of data types for the bind variables.

bind_var_valuesp (IN/OUT)
Array of values for the bind variables.

OCI XStream Functions

OCI XStream Functions 11-17

bind_var_indp (IN/OUT)
Array of NULL indicators for the bind variables.

bind_var_alensp (IN/OUT)
Array of lengths for the bind variable values.

bind_var_csetidp (IN/OUT)
Array of character set IDs for the bind variables.

bind_var_csetfp (IN/OUT)
Array of character set forms for the bind variables.

row_lcrp (IN)
Pointer to row LCR.

chunk_column_names (OUT)
Array of LOB column names in LCR.

chunk_column_namesl (OUT)
Array of LOB column name lengths.

chunk_column_flags (OUT)
Array of LOB column flags. Possible flags are listed in Comments.

array_size (IN)
Size of each of the parameter arrays.

bind_var_syntax (IN)
Either (:) (binds are of the form :1, :2, and so on.) or (?) (binds are of the form (?)).

mode (IN)
Specify OCI_DEFAULT.

11Comments
The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */
/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

OCILCRNew()

11-18 Oracle Database XStream Guide

OCILCRNew()

11Purpose
Constructs a new Streams LCR object of the specified type (ROW or DDL) for the
given duration.

11Syntax
sword OCILCRNew (OCISvcCtx *svchp,
 OCIError *errhp,
 OCIDuration duration,
 ub1 lcrtype,
 void **lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

duration (IN)
Memory for the LCR is allocated for this specified duration.

lcrtype (IN)
LCR type. Values are:

#define OCI_LCR_XROW
#define OCI_LCR_XDDL

lcrp (IN/OUT)
If *lcrp is not NULL, an error is raised.

mode (IN)
Specify OCI_DEFAULT.

11Comments
Note:

■ After creation, you are not allowed to change the type of the LCR (ROW or DDL)
or duration of the memory allocation.

■ Use OCILCRHeaderSet() to populate common header fields for row or DDL LCR.

■ After the LCR header is initialized, use OCILCRRowColumnInfoSet() or
OCILCRDDLInfoSet() to populate operation specific elements. Use
OCILCRExtraAttributesSet() to populate extra attribute information.

■ Use OCILCRFree() to free the LCR created by this function.

OCI XStream Functions

OCI XStream Functions 11-19

OCILCRRowColumnInfoGet()

11Purpose
Returns the column fields in a row LCR.

11Syntax
sword OCILCRRowColumnInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 column_value_type,
 ub2 *num_columns,
 oratext **column_names,
 ub2 *column_name_lens,
 ub2 *column_dtyp,
 void **column_valuesp,
 OCIInd *column_indp,
 ub2 *column_alensp,
 ub1 *column_csetfp,
 oraub8 *column_flags,
 ub2 *column_csid,
 void *row_lcrp,
 ub2 array_size,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_value_type (IN)
ROW LCR column value type; either of:

#define OCI_LCR_ROW_COLVAL_OLD
#define OCI_LCR_ROW_COLVAL_NEW

num_columns (OUT)
Number of columns in the specified column array.

column_names (OUT)
An array of column name pointers.

column_name_lens (OUT)
An array of column name lengths.

column_dtyp (OUT)
An array of column data types. Optional. Data is not returned if column_dtyp is NULL.

column_valuesp (OUT)
An array of column data pointers.

column_indp (OUT)
An array of indicators.

OCILCRRowColumnInfoGet()

11-20 Oracle Database XStream Guide

column_alensp (OUT)
An array of column lengths. Each returned element is the length in bytes.

column_csetfp (OUT)
An array of character set forms for the columns. Optional. Data is not returned if the
argument is NULL.

column_flags (OUT)
An array of column flags. Optional. Data is not returned if the argument is NULL. See
Comments for the values.

column_csid (OUT)
An array of character set IDs for the columns.

row_lcrp (IN)
row_lcrp cannot be NULL.

array_size (IN)
Size of each of the parameter arrays. An error is returned if array_size is less than the
number of columns in the requested column list. The actual size of the requested
column list is returned through the num_columns parameter.

mode (IN)
OCILCR_NEW_ONLY_MODE - If this mode is specified, then the new_columns returned is
the count of the columns in the NEW column list only. Otherwise, the new_columns
returned is the number of distinct columns present in either the NEW or the OLD column
list of the given row LCR.

11Comments
■ For INSERT, this function must only be called to get the NEW column values.

■ For DELETE, this function must only be called to get the OLD column values.

■ For UPDATE, this function can be called twice, once to get the NEW column values
and once to get the OLD column values.

■ This function must not be called for COMMIT operations.

The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */
/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

Table 11–3 lists the currently supported table column data types. For each data type, it
lists the corresponding LCR column data type, the C program variable type to cast the
LCR column value, and the OCI functions that can manipulate the column values
returned from OCILCRRowColumnInfoGet().

OCI XStream Functions

OCI XStream Functions 11-21

* Call OCIXStreamOutChunkReceive() to get column data.

Table 11–3 Table Column Data Types

Table Column Data
Types LCR Column Data Type Program Variable Conversion Function

VARCHAR, NVARCHAR2 SQLT_CHR char *

NUMBER SQLT_VNU OCINumber OCINumberToInt()

OCINumberToReal()

OCINumberToText()

DATE SQLT_ODT OCIDate OCIDateToText()

Can access structure directly to get date
and time fields.

RAW SQLT_BIN unsigned char *

CHAR, NCHAR SQLT_AFC char *

BINARY_FLOAT SQLT_BFLOAT float

BINARY_DOUBLE SQLT_BDOUBLE double

TIMESTAMP SQLT_TIMESTAMP OCIDateTime * OCIDateTimeGetTime()

OCIDateTimeGetDate()

OCIDateTimeGetTimeZoneOffset()

OCIDateTimeToText()

TIMESTAMP WITH
TIME ZONE

SQLT_TIMESTAMP_TZ OCIDateTime * OCIDateTimeGetTime()

OCIDateTimeGetDate()

OCIDateTimeGetTimeZoneOffset()

OCIDateTimeToText()

TIMESTAMP WITH
LOCAL TIME ZONE

SQLT_TIMESTAMP_LTZ OCIDateTime * OCIDateTimeGetTime()

OCIDateTimeGetDate()

OCIDateTimeGetTimeZoneOffset()

OCIDateTimeToText()

INTERVAL YEAR TO
MONTH

SQLT_INTERVAL_YM OCIInterval * OCIIntervalToText()

OCIIntervalGetYearMonth()

INTERVAL DAY TO
SECOND

SQLT_INTERVAL_DS OCIInterval * OCIIntervalToText()

OCIIntervalGetDaySecond()

UROWID SQLT_RDD OCIRowid * OCIRowidToChar()

CLOB SQLT_CHR or SQLT_BIN unsigned char * *

NCLOB SQLT_BIN unsigned char * *

BLOB SQLT_BIN unsigned char * *

LONG SQLT_CHR char * *

LONG RAW SQLT_BIN unsigned char * *

OCILCRRowColumnInfoSet()

11-22 Oracle Database XStream Guide

OCILCRRowColumnInfoSet()

11Purpose
Populates column fields in a row LCR.

11Syntax
sword OCILCRRowColumnInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub2 column_value_type,
 ub2 num_columns,
 oratext **column_names,
 ub2 *column_name_lens,
 ub2 *column_dtyp,
 void **column_valuesp,
 OCIInd *column_indp,
 ub2 *column_alensp,
 ub1 *column_csetfp,
 oraub8 *column_flags,
 ub2 *column_csid,
 void *row_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_value_type (IN)
ROW LCR Column value types:

#define OCI_LCR_ROW_COLVAL_OLD
#define OCI_LCR_ROW_COLVAL_NEW

num_columns (IN)
Number of columns in each of the array parameters.

column_names (IN)
Pointer to an array of column names. Column names must be canonicalized. Column
names must follow Oracle Database naming conventions and size limitations.

column_name_lens (IN)
Pointer to an array of column name lengths.

column_dtyp (IN)
Pointer to an array of column data types. See Comments for valid data types.

column_valuesp (IN)
Pointer to an array of column data pointers.

column_indp (IN)
Pointer to an indicator array. For all data types, this is a pointer to an array of OCIInd
values (OCI_IND_NULL or OCI_IND_NOTNULL).

OCI XStream Functions

OCI XStream Functions 11-23

column_alensp (IN)
Pointer to an array of actual column lengths in bytes.

column_csetfp (IN)
Pointer to an array of character set forms for the columns. The default form is SQLCS_
IMPLICIT. Setting this attribute causes the database or national character set to be used
on the client side. Set this attribute to SQLCS_NCHAR for the national character set or
SQLCS_IMPLICIT for the database character set. Pass 0 for non-character columns.

column_flags (IN)
Pointer to an array of column flags. (See Comments for the list of valid LCR column
flags.)

column_csid (IN)
Pointer to an array of character set IDs for the columns.

row_lcrp (IN/OUT)
row_lcrp cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

11Comments
Note:

■ For INSERT, this function must only be called to specify the NEW column values.

■ For DELETE, this function must only be called to specify the OLD column values.

■ For UPDATE, this function can be called twice, once to specify the NEW column
values and once to specify the OLD column values.

■ This function must not be called for COMMIT operations.

The following LCR column flags can be combined using the bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */
/* OCI_LCR_COLUMN_UPDATED is set only for the modified columns in the NEW
 * column list of an update LCR.
 */

Valid data types are:

SQLT_AFC SQLT_TIMESTAMP
SQLT_DAT SQLT_TIMESTAMP_TZ
SQLT_BFLOAT SQLT_TIMESTAMP_LTZ
SQLT_BDOUBLE SQLT_INTERVAL_YM
SQLT_NUM SQLT_INTERVAL_DS
SQLT_VCS
SQLT_ODT
SQLT_INT
SQLT_BIN

OCILCRRowColumnInfoSet()

11-24 Oracle Database XStream Guide

SQLT_CHR
SQLT_RDD
SQLT_VST
SQLT_INT
SQLT_FLT

OCI XStream Functions

OCI XStream Functions 11-25

OCILCRDDLInfoSet()

11Purpose
Populates DDL-specific fields in a DDL LCR.

11Syntax
sword OCILCRDDLInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *object_type,
 ub2 object_type_len,
 oratext *ddl_text,
 ub4 ddl_text_len,
 oratext *logon_user,
 ub2 logon_user_len,
 oratext *current_schema,
 ub2 current_schema_len,
 oratext *base_table_owner,
 ub2 base_table_owner_len,
 oratext *base_table_name,
 ub2 base_table_name_len,
 oraub8 flag,
 void *ddl_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

object_type (IN)
The type of object on which the DDL statement was executed. See Comments for the
valid object types.

object_type_len (IN)
Length of the object_type string without the NULL terminator.

ddl_text (IN)
The text of the DDL statement. This parameter must be set to a non-NULL value. DDL
text must be in Oracle Database DDL format.

ddl_text_len (IN)
DDL text length in bytes without the NULL terminator.

logon_user (IN)
Canonicalized name of the user whose session executed the DDL statement.

logon_user_len (IN)
Length of the logon_user string without the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

OCILCRDDLInfoSet()

11-26 Oracle Database XStream Guide

current_schema (IN)
The canonicalized schema name that is used if no schema is specified explicitly for the
modified database objects in ddl_text. If a schema is specified in ddl_text that differs
from the one specified for current_schema, then the function uses the schema
specified in ddl_text.

This parameter must be set to a non-NULL value.

current_schema_len (IN)
Length of the current_schema string without the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

base_table_owner (IN)
If the DDL statement is a table-related DDL (such as CREATE TABLE or ALTER TABLE), or
if the DDL statement involves a table (such as creating a trigger on a table), then base_
table_owner specifies the canonicalized owner of the table involved. Otherwise, base_
table_owner is NULL.

base_table_owner_len (IN)
Length of the base_table_owner string without the NULL terminator. Must follow
Oracle Database naming conventions and size limitations.

base_table_name (IN)
If the DDL statement is a table-related DDL (such as CREATE TABLE or ALTER TABLE), or
if the DDL statement involves a table (such as creating a trigger on a table), then base_
table_name specifies the canonicalized name of the table involved. Otherwise, base_
table_name is NULL.

base_table_name_len (IN)
Length of the base_table_name without the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

flag (IN)
DDL LCR flag. (Not currently used; used for future extension.) Specify OCI_DEFAULT.

ddl_lcrp (IN/OUT)
ddl_lcrp cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

11Comments
The following are valid object types:

CLUSTER
FUNCTION
INDEX
OUTLINE
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
TYPE
USER
VIEW

OCI XStream Functions

OCI XStream Functions 11-27

NULL is also a valid object type. Specify NULL for all object types not listed.

OCILCRHeaderSet()

11-28 Oracle Database XStream Guide

OCILCRHeaderSet()

11Purpose
Initializes the common header fields for row or DDL LCR.

11Syntax
sword OCILCRHeaderSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *src_db_name,
 ub2 src_db_name_len,
 oratext *cmd_type,
 ub2 cmd_type_len,
 oratext *owner,
 ub2 owner_len,
 oratext *oname,
 ub2 oname_len,
 ub1 *tag,
 ub2 tag_len,
 oratext *txid,
 ub2 txid_len,
 OCIDate *src_time,
 ub1 *position,
 ub2 position_len,
 oraub8 flag,
 void *lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

src_db_name (IN)
Canonicalized source database name. Must be non-NULL.

src_db_name_len (IN)
Length of the src_db_name string in bytes excluding the NULL terminator. Must follow
Oracle Database naming conventions and size limitations.

cmd_type (IN)
For row LCRs: One of the following values:

#define OCI_LCR_ROW_CMD_INSERT
#define OCI_LCR_ROW_CMD_DELETE
#define OCI_LCR_ROW_CMD_UPDATE
#define OCI_LCR_ROW_CMD_COMMIT
#define OCI_LCR_ROW_CMD_ROLLBACK

Note: The values, #define OCI_LCR_ROW_CMD_ROLLBACK and #define
OCI_LCR_ROW_CMD_START_TX, are available starting with Oracle
Database 11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-29

#define OCI_LCR_ROW_CMD_START_TX
#define OCI_LCR_ROW_CMD_LOB_WRITE
#define OCI_LCR_ROW_CMD_LOB_TRIM
#define OCI_LCR_ROW_CMD_LOB_ERASE

For DDL LCRs: One of the command types in Oracle Call Interface Programmer's Guide.

cmd_type_len (IN)
Length of cmd_type.

owner (IN)
Canonicalized table owner name. Owner is not required for COMMIT LCR.

owner_len (IN)
Length of the owner string in bytes excluding the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

oname (IN)
Canonicalized table name. Owner is not required for COMMIT LCR.

oname_len (IN)
Length of the oname string in bytes excluding the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

tag (IN)
A binary tag that enables tracking of the LCR. For example, you can use this tag to
determine the original source database of the DML statement if apply forwarding is
used.

tag_len (IN)
Number of bytes in the tag. Cannot exceed 2000 bytes.

txid (IN)
Transaction ID. Must be non-NULL.

txid_len (IN)
Length of the txid string in bytes, excluding the NULL terminator. Must follow Oracle
Database naming conventions and size limitations.

src_time (IN)
The time when the change was generated in the online redo log file of the source
database.

position (IN)
Position for LCR. Must be non-NULL and byte-comparable.

position_len (IN)
Length of position. Must be greater than zero.

flag (IN)
LCR flag. Possible flags are listed in Comments.

lcrp (IN/OUT)
lcrp cannot be NULL.

mode (IN)
Specify OCI_DEFAULT.

OCILCRHeaderSet()

11-30 Oracle Database XStream Guide

11Comments
Note:

■ This function sets all internal fields of the LCR to NULL including extra attributes.

■ This function does not deep copy the passed-in values. You must ensure data is
valid for the duration of the LCR.

■ For COMMIT LCRs, owner and oname information are not required. Provide valid
values for src_db_name, cmd_type, tag, txid, and position.

■ For row LCRs, use OCILCRRowColumnInfoSet() to populate row LCR-specific
column information.

■ For DDL LCRs, use OCILCRDDLInfoSet() to populate DDL operation specific
information.

■ For row or DDL LCRs, use OCILCRAttributesSet() to populate extra attribute
information.

The following are LCR flags:

#define OCI_ROWLCR_HAS_ID_KEY_ONLY /* only has ID key cols */
#define OCI_ROWLCR_SEQ_LCR /* sequence lcr */

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-31

OCILCRLobInfoGet()

11Purpose
Returns the LOB information for a piece-wise LOB LCR generated from a DBMS_LOB or
OCILob procedure.

11Syntax
sword OCILCRLobInfoGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **column_name,
 ub2 *column_name_len,
 ub2 *column_dty,
 oraub8 *column_flag,
 ub4 *offset,
 ub4 *size,
 void *row_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_name (OUT)
LOB column name.

column_name_len (OUT)
Length of LOB column name.

column_dty (OUT)
Column data type (either SQLT_CHR or SQLT_BIN).

column_flag (OUT)
Column flag. See Comments in "OCILCRRowColumnInfoSet()" on page 11-22.

offset (OUT)
LOB operation offset in code points. Only returned for LOB WRITE and LOB TRIM
operations. This is the same as the offset parameter for OCILobErase() or the offset
parameter in OCILobWrite().

size (OUT)
LOB operation size in code points. Only returned for LOB TRIM and LOB ERASE
operations. This is the same as the new_length parameter in OCILobTrim() or the amtp
parameter in OCILobErase().

row_lcrp (IN)
Pointer to a row LCR.

mode (IN)
Specify OCI_DEFAULT.

OCILCRLobInfoGet()

11-32 Oracle Database XStream Guide

11Comments
Returns OCI_SUCCESS or OCI_ERROR.

OCI XStream Functions

OCI XStream Functions 11-33

OCILCRLobInfoSet()

11Purpose
Sets the LOB information for a piece-wise LOB LCR. This call is valid when the input
LCR is a LOB_WRITE, LOB_ERASE, or LOB_TRIM; otherwise, an error is returned.

11Syntax
sword OCILCRLobInfoSet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *column_name,
 ub2 column_name_len,
 ub2 column_dty,
 oraub8 column_flag,
 ub4 offset,
 ub4 size,
 void *row_lcrp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_name (IN)
LOB column name.

column_name_len (IN)
Length of LOB column name.

column_dty (IN)
Column data type (either SQLT_CHR or SQLT_BIN).

column_flag (IN)
Column flag. See Comments in "OCILCRRowColumnInfoSet()" on page 11-22.

offset (IN)
LOB operation offset in code points. Only required for LOB WRITE and LOB TRIM
operations. This is the same as the soffset parameter for OCILobErase() or the offset
parameter in OCILobWrite().

size (IN)
LOB operation size in code points. Only required for LOB TRIM and LOB ERASE
operations.This is the same as the new_length parameter in OCILobTrim() or the amtp
parameter in OCILobErase().

row_lcrp (IN/OUT)
Pointer to a row LCR.

mode (IN)
Specify OCI_DEFAULT.

OCILCRLobInfoSet()

11-34 Oracle Database XStream Guide

11Comments
Returns OCI_SUCCESS or OCI_ERROR.

OCI XStream Functions

OCI XStream Functions 11-35

OCILCRSCNsFromPosition()

11Purpose
Returns the SCN and the commit SCN from the position value. The input position
must be one that is obtained from an XStream outbound server. An error is returned if
the input position does not conform to the expected format.

11Syntax
sword OCILCRSCNsFromPosition (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position,
 ub2 position_len,
 OCINumber *scn,
 OCINumber *commit_scn,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

position (IN)
LCR position value.

position_len (IN)
Length of LCR position value.

scn (OUT)
SCN number embedded in the given LCR position.

commit_scn (OUT)
The commit SCN embedded in the given position.

mode (IN)
Mode flags used for future expansion. Specify OCI_DEFAULT.

OCILCRSCNToPosition()

11-36 Oracle Database XStream Guide

OCILCRSCNToPosition()

11Purpose
Converts an SCN to a position. The generated position can be passed as the last_
position to OCIXStreamOutAttach() to filter the LCRs with commit SCN less than the
given SCN and the LCR's SCN less than the given SCN. Therefore, the first LCR sent
by the outbound server is either:

■ A commit LCR at the given SCN, or

■ The first LCR of the subsequent transaction with commit SCN greater than or
equal to the given SCN.

11Syntax
sword OCILCRSCNToPosition (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *position,
 ub2 *position_len,
 OCINumber *scn,
 ub4 mode);

11Parameters

svchp (IN)
OCI service context.

errhp (IN)
OCI error handle.

position (OUT)
The resulting position. You must preallocate OCI_LCR_MAX_POSITION_LEN bytes.

position_len (OUT)
Length of position.

scn (IN)
The SCN to be stored in position.

mode (IN)
Mode flags (Not currently used; used for future extension).

11Comments
Returns OCI_SUCCESS if the conversion succeeds, OCI_ERROR otherwise.

OCI XStream Functions

OCI XStream Functions 11-37

OCILCRWhereClauseGet()

11Purpose
Gets the WHERE clause statement for the given row LCR.

11Syntax
sword OCILCRWhereClauseGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *wc_stmt,
 ub4 *wc_stmt_len,
 void *row_lcrp,
 ub4 mode);

11Parameters

svchp (IN/OUT)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

wc_stmt (OUT)
SQL statement equivalent to the LCR.

wc_stmt_len (IN/OUT)
Length of the wc_stmt buffer.

row_lcrp (IN)
Row LCR to be converted to SQL.

mode (IN)
Mode flags used for future expansion. Specify OCI_DEFAULT.

11Comments
The WHERE clause generated for an INSERT LCR has all the columns that are being
inserted. This WHERE clause could be used to identify the inserted row after it is
inserted, for example, like "returning ROWID".

INSERT INTO TAB(COL1) VALUES (10) -> WHERE COL1=10

The WHERE clause generated for UPDATE has all the columns in the old column list.
However, the values of the columns are that of the new value if it exists in the new
column list of the UPDATE. If the column does not have a new value, then the old
column value is used.

UPDATE TAB SET COL1 = 10 WHERE COL1 = 20 -> WHERE COL1 = 10
UPDATE TAB SET COL2 = 20 WHERE COL1 = 20 -> WHERE COL1 = 20

The WHERE clause for DELETE uses the columns and values from the old column list.

LOB piecewise operations use the new columns and values for generating the WHERE
clause.

OCILCRWhereClauseGet()

11-38 Oracle Database XStream Guide

11Returns
OCI_SUCCESS or OCI_ERROR.

OCI XStream Functions

OCI XStream Functions 11-39

OCILCRWhereClauseWithBindVarGet()

11Purpose
Gets the WHERE clause statement with bind variables for the given row LCR.

11Syntax
sword OCILCRWhereClauseWithBindVarGet (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *wc_stmt,
 ub4 *wc_stmt_len,
 ub2 *num_bind_var,
 ub2 *bind_var_dtyp,
 void **bind_var_valuesp,
 OCIInd *bind_var_indp,
 ub2 *bind_var_alensp,
 ub2 *bind_var_csetidp,
 ub1 *bind_var_csetfp,
 void *row_lcrp,
 ub2 array_size,
 oratext *bind_var_syntax,
 ub4 mode);

11Parameters

svchp (IN/OUT)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

wc_stmt (OUT)
SQL statement equivalent to the LCR.

wc_stmt_len (IN/OUT)
Length of the wc_stmt buffer.

num_bind_var (OUT)
Number of bind variables.

bind_var_dtyp (OUT)
Array of data types of bind variables.

bind_var_valuesp (OUT)
Array of values of bind variables.

bind_var_indp (OUT)
Array of NULL indicators of bind variables.

bind_var_alensp (OUT)
Array of lengths of bind values.

bind_var_csetidp (OUT)
Array of char set IDs of binds.

OCILCRWhereClauseWithBindVarGet()

11-40 Oracle Database XStream Guide

bind_var_csetfp (OUT)
Array of char set forms of binds.

row_lcrp (IN)
Row LCR to be converted to SQL.

array_size (IN)
Size of the array of bind values.

bind_var_syntax (IN)
Native syntax to be used for binds.

mode (IN)
Mode flags for future expansion. Specify OCI_DEFAULT.

11Comments
If array_size is not large enough to accommodate the number of columns in the
requested column list, then OCI_ERROR is returned. The expected array_size is
returned through the num_bind_var parameter.

bind_var_syntax for Oracle Database should contain (:). This generates positional
binds such as :1, :2, :3, and so on. For non-Oracle databases input the string that must
be used for binds.

The WHERE clause generated for INSERT LCR has all the columns that are being inserted.
This WHERE clause can identify the inserted row after it is inserted, for example, like
"returning ROWID".

INSERT INTO TAB(COL1) VALUES (10) -> WHERE COL1=10

The WHERE clause generated for UPDATE has all the columns in the old column list.
However, the values of the columns are that of the new column value of the column if
it exists in the new values of the UPDATE. If the column appears only in the old column,
then the old column value is used.

UPDATE TAB SET COL1 = 10 WHERE COL1 = 20 -> WHERE COL1 = 10
UPDATE TAB SET COL2 = 20 WHERE COL1 = 20 -> WHERE COL1 = 20

The WHERE clause for DELETE uses the columns and values from the old column list.

LOB piecewise operations use the new columns and values for generating the WHERE
clause.

11Returns
OCI_SUCCESS or OCI_ERROR.

OCI XStream Functions

OCI XStream Functions 11-41

OCIXStreamInAttach()

11Purpose
Attaches to an inbound server. The client application must connect to the database
using a dedicated connection.

11Syntax
sword OCIXStreamInAttach (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *server_name,
 ub2 server_name_len,
 oratext *source_name,
 ub2 source_name_len,
 ub1 *last_position,
 ub2 *last_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

server_name (IN)
XStream inbound server name.

server_name_len (IN)
Length of the XStream inbound server name.

source_name (IN)
Source name to identify the data source.

source_name_len (IN)
Source name length.

last_position (OUT)
Last position received by inbound server. Optional. If specified, then you must
preallocate OCI_LCR_MAX_POSITION_LEN bytes for the return value.

last_position_len (OUT)
Length of last_position. Must be non-NULL if last_position is non-NULL.

mode (IN)

OCIXSTREAM_IN_ATTACH_RESTART_INBOUND - If this mode is specified, then this function
can notify the server to restart the inbound server regardless of whether it is in a
disabled or aborted state. If you do not pass in this mode and the inbound server is in
an aborted state when this call is made, then the function returns an error.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCIXStreamInAttach()

11-42 Oracle Database XStream Guide

11Comments
The name of the inbound server must be provided because multiple inbound servers
can be configured in one Oracle instance. This function returns OCI_ERROR if any error
is encountered while attaching to the inbound server. Only one client can attach to an
XStream inbound server at any time. An error is returned if multiple clients attempt to
attach to the same inbound server or if the same client attempts to attach to multiple
inbound servers concurrently.

This function returns the last position received by the inbound server. Having
successfully attached to the server, the client should resume sending LCRs with
positions greater than this last_position since the inbound server discards all LCRs
with positions less than or equal to the last_position.

Returns either OCI_SUCCESS or OCI_ERROR status code.

OCI XStream Functions

OCI XStream Functions 11-43

OCIXStreamInDetach()

11Purpose
Detaches from the inbound server.

11Syntax
sword OCIXStreamInDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *processed_low_position,
 ub2 *processed_low_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

processed_low_position (OUT)
The server's processed low position.

processed_low_position (OUT)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

11Comments
You must pass in a preallocated buffer for the position argument. The maximum
length of this buffer is OCI_LCR_MAX_POSITION_LEN. This position is exposed in DBA_
XSTREAM_INBOUND_PROGRESS view

This call returns the server's processed low position. If this function is invoked while a
OCIXStreamInLCRSend() call is in progress, then it immediately terminates that call
before detaching from the inbound server.

Returns either OCI_SUCCESS or OCI_ERROR status code.

OCIXStreamInLCRSend()

11-44 Oracle Database XStream Guide

OCIXStreamInLCRSend()

11Purpose
Sends an LCR stream from the client to the attached inbound server. To avoid a
network round-trip for every OCIXStreamInLCRSend() call, the connection is tied to
this call and terminates the call after an ACK interval since the LCR stream is initiated
to the server.

11Syntax
sword OCIXStreamInLCRSend (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub1 lcrtype,
 oraub8 flag,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

lcrp (IN)
Pointer to the new LCR to send. It cannot be NULL.

lcrtype (IN)
LCR type. Either of:

#define OCI_LCR_XROW
#define OCI_LCR_XDDL

flag (IN)
If bit OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then LCR contains more chunk data.
You must call OCIXStreamInChunkSend() before calling OCIXStreamInLCRSend() again.

mode (IN)
Specify OCI_DEFAULT.

11Comments
Return codes are:

■ OCI_STILL_EXECUTING means that the current call is still in progress. The
connection associated with the specified service context handle is still tied to this
call for streaming the LCRs to the server. An error is returned if you attempt to use
the same connection to execute any OCI calls that require database round-trip, for
example, OCIStmtExecute(), OCIStmtFetch(), OCILobRead(), and so on. OCILCR*
calls are local calls; thus, they are valid while this call is in progress.

■ OCI_SUCCESS means the current call is completed. You can execute OCIStmt*,
OCILob*, and so on from the same service context.

■ OCI_ERROR means this call encounters some errors. Use OCIErrorGet() to obtain
information about the error.

OCI XStream Functions

OCI XStream Functions 11-45

See Also: "Server Handle Attributes" on page 10-3

OCIXStreamInLCRCallbackSend()

11-46 Oracle Database XStream Guide

OCIXStreamInLCRCallbackSend()

11Purpose
Sends an LCR stream to the attached inbound server. You must specify a callback to
construct each LCR for streaming. If some LCRs contain chunk data, then a second
callback must be provided to create each chunk data.

11Syntax
sword OCIXStreamInLCRCallbackSend (
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCICallbackXStreamInLCRCreate createlcr_cb,
 OCICallbackXStreamInChunkCreate createchunk_cb,
 void *usrctxp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

createlcr_cb (IN)
Client callback procedure to be invoked to generate an LCR for streaming. Cannot be
NULL.

createchunk_cb (IN)
Client callback procedure to be invoked to create each chunk. Can be NULL if you do
not need to send any LCR with LOB or LONG or XMLType columns. OCI_ERROR is
returned if this argument is NULL and you attempt to send an LCR with additional
chunk data.

usrctxp (IN)
User context to pass to both callback functions.

mode (IN)
Specify OCI_DEFAULT fore now.

11Comments
Return code: OCI_ERROR or OCI_SUCCESS.

The createlcr_cb argument must be of type OCICallbackXStreamInLCRCreate:

typedef sb4 (*OCICallbackXStreamInLCRCreate)
 void *usrctxp, void **lcrp, ub1 *lcrtyp, oraub8 *flag);

Parameters of OCICallbackXStreamInLCRCreate():

usrctxp (IN/OUT)
Pointer to the user context.

lcrp (OUT)
Pointer to the LCR to be sent.

OCI XStream Functions

OCI XStream Functions 11-47

lcrtyp (OUT)
LCR type (OCI_LCR_XROW or OCI_LCR_XDDL).

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameter to the callback is the user context. The output parameters are the
new LCR, its type, and a flag. If the generated LCR contains additional chunk data,
then this flag must have the OCI_XSTREAM_MORE_ROW_DATA (0x01) bit set. The valid
return codes from the OCICallbackXStreamInLCRCreate() callback function are OCI_
CONTINUE or OCI_SUCCESS. This callback function must return OCI_CONTINUE to
continue processing the OCIXStreamInLCRCallbackSend() call. Any return code other
than OCI_CONTINUE signals that the client wants to terminate the
OCIXStreamInLCRCallbackSend() call immediately. In addition, a NULL LCR returned
from the OCICallbackXStreamInLCRCreate() callback function signals that the client
wants to terminate the current call.

The createchunk_cb argument must be of type OCICallbackXStreamInChunkCreate:

typedef sb4 (*OCICallbackXStreamInChunkCreate)
void *usrctxp,
oratext **column_name,
ub2 *column_name_len,
ub2 *column_dty,
oraub8 *column_flag,
ub2 *column_csid,
ub4 *chunk_bytes,
ub1 **chunk_data,
oraub8 *flag);

The input parameters of the createchunk_cb() procedure are the user context and the
information about the chunk.

Parameters of OCICallbackXStreamInChunkCreate():

usrctxp (IN/OUT)
Pointer to the user context.

column_name (OUT)
Column name of the current chunk.

column_name_len (OUT)
Length of the column name.

column_name_dty (OUT)
Chunk data type (SQLT_CHR or SQLT_BIN).

column_flag (OUT)
See Comments in "OCIXStreamInChunkSend()" on page 11-55.

column_csid (OUT)
Column character set ID. Relevant only if the column is an XMLType column (that is,
column_flag has the OCI_LCR_COLUMN_XML_DATA bit set).

chunk_bytes (OUT)
Chunk data length in bytes.

chunk_data (OUT)
Chunk data pointer.

OCIXStreamInLCRCallbackSend()

11-48 Oracle Database XStream Guide

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The OCIXStreamInLCRCallbackSend() function invokes the createlcr_cb() procedure
to obtain each LCR to send to the server. If the return flag from the createlcr_cb()
procedure has the OCI_XSTREAM_MORE_ROW_DATA bit set, then it invokes the
createchunk_cb() procedure to obtain each chunk. It repeatedly calls the
createchunk_cb() procedure while the flag returned from this callback has the OCI_
XSTREAM_MORE_ROW_DATA bit set. When this bit is not set, this function cycles back to
invoke the createlcr_cb() procedure to get the next LCR. This cycle is repeated until
the createlcr_cb() procedure returns a NULL LCR or when at the transaction
boundary after an ACK interval has elapsed since the call began.

The valid return codes from the OCICallbackXStreamInChunkCreate() callback
function are OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_
CONTINUE to continue processing the OCIXStreamInLCRCallbackSend() call. Any return
code other than OCI_CONTINUE signals that the client wants to terminate the
OCIXStreamInLCRCallbackSend() call immediately.

Because terminating the current call flushes the network and incurs another network
round-trip in the next call, you must avoid returning a NULL LCR immediately when
there is no LCR to send. Doing this can greatly reduce network throughput and affect
performance. During short idle periods, you can add some delays in the callback
procedure instead of returning a NULL LCR immediately to avoid flushing the network
too frequently.

Figure 11–1 shows the execution flow of the OCIXStreamInLCRCallbackSend()
function.

Figure 11–1 Execution Flow of the OCIXStreamInLCRCallbackSend() Function

* While OCI_XSTREAM_MORE_ROW_DATA is set

Description of Figure 11–1:

■ At 1, the user invokes the OCIXStreamInLCRCallbackSend() providing two
callbacks. This function initiates an LCR inbound stream to the server.

■ At 2, this function invokes the createlcr_cb() procedure to get an LCR from the
callback to send to the server. If the return LCR is NULL, then this function exits.

Client Code
1

LCRCallbackSend

(createlcr_ cb,
createchunk_cb)

createlcr_cb

LCR, flag

2Construct LCR

createchunk_cb

flag, col_name, chunk_data

3Construct Chunk

Send to Inbound
Server

LCR is not
NULL

*

LCRCallbackSend

OCI XStream Functions

OCI XStream Functions 11-49

■ If the flag from 2 indicates the current LCR has more data (that is, the OCI_
XSTREAM_MORE_ROW_DATA bit is set), then this function proceeds to 3; otherwise, it
loops back to 2 to get the next LCR.

■ At 3, this function invokes createchunk_cb() to get the chunk data to send to the
server. If the flag from this callback has the OCI_XSTREAM_MORE_ROW_DATA bit set,
then it repeats 3; otherwise, it loops back to 2 to get the next LCR from the user. If
any callback function returns any values other than OCI_CONTINUE, then the
OCIXStreamInLCRCallbackSend() call terminates.

Following is a sample client pseudocode snippet for callback mode (error checking
is not included for simplicity):

main
{
 /* Attach to inbound server */
 OCIXStreamInAttach();

 /* Get the server's processed low position to determine
 * the position of the first LCR to generate.
 */
 OCIXStreamInProcessedLWMGet(&lwm);

 while (TRUE)
 {
 /* Initiate LCR inbound stream */
 OCIXStreamInLCRCallbackSend(createlcr_cb, createchunk_cb);

 OCIXStreamInProcessedLWMGet(&lwm);

 if (some terminating condition)
 break;
 }
 OCIXStreamInDetach(&lwm);
}

createlcr_cb (IN usrctx, OUT lcr, OUT flag)
{
 if (have more LCRs to send)
 {
 /* construct lcr */
 OCILCRHeaderSet(lcr);
 OCILCRRowColumnInfoSet(lcr);

 if (lcr has LOB | LONG | XMLType columns)
 Set OCI_XSTREAM_MORE_ROW_DATA flag;

 if (lcr is LOB_ERASE | LOB_TRIM | LOB_WRITE)
 OCILCRLobInfoSet(lcr);
 }
 else if (idle timeout expires)
 {
 lcr = null;
 }
}

createchunk_cb (IN usrctx, OUT chunk, OUT flag)
{
 /* set col_name, col_flag, chunk data, and so on */
 construct_chunk;

OCIXStreamInLCRCallbackSend()

11-50 Oracle Database XStream Guide

 if (last chunk of current column)
 {
 set col_flag |= OCI_LCR_COLUMN_LAST_CHUNK;

 if (last column)
 clear OCI_XSTREAM_MORE_ROW_DATA flag;
 }
}

OCI XStream Functions

OCI XStream Functions 11-51

OCIXStreamInProcessedLWMGet()

11Purpose
Gets the local processed low position that is cached at the client. This function can be
called anytime while the client is attached to an XStream inbound server. Clients,
using the callback mode to stream LCRs to the server (see
"OCIXStreamInLCRCallbackSend()" on page 11-46), can invoke this function while in
the callback procedures.

11Syntax
sword OCIXStreamInProcessedLWMGet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *processed_low_position,
 ub2 *processed_low_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

processed_low_position (OUT)
The processed low position maintained at the client.

processed_low_position_len (OUT)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

11Comments
After attaching to an XStream inbound server, a local copy of the server's processed
low position (see "OCIXStreamOutProcessedLWMSet()" on page 11-70) is cached at the
client. This local copy is refreshed with the server's low position when each of the
following calls returns OCI_SUCCESS:

■ OCIXStreamInAttach()

■ OCIXStreamInLCRSend()

■ OCIXStreamInLCRCallbackSend()

■ OCIXStreamInFlush()

Return code: OCI_ERROR or OCI_SUCCESS.

You must pass in a preallocated buffer for the position argument. The maximum
length of this buffer is OCI_LCR_MAX_POSITION_LEN. This position is exposed in the
DBA_XSTREAM_INBOUND_PROGRESS view.

The client can use this position to periodically purge the logs used to generate the
LCRs at or below this position.

OCIXStreamInErrorGet()

11-52 Oracle Database XStream Guide

OCIXStreamInErrorGet()

11Purpose
Returns the first error encountered by the inbound server since the
OCIXStreamInAttach() call.

11Syntax
sword OCIXStreamInErrorGet (OCISvcCtx *svchp,
 OCIError *errhp,
 sb4 *errcodep,
 oratext *msgbuf,
 ub2 msg_bufsize,
 ub2 *msg_len,
 oratext *txn_id,
 ub2 txn_id_bufsize,
 ub2 *txn_id_len);

11Parameters

svchp (IN/OUT)
OCI service handle.

errhp (IN/OUT)
Error Handle.

errcodep (OUT)
Error code.

msgbuf (IN/OUT)
Preallocated message buffer.

msg_bufsize (IN)
Message buffer size.

msg_len (OUT)
Length of returned error message.

txn_id (IN/OUT)
Preallocated transaction ID buffer.

txn_id_bufsize (IN)
The transaction ID buffer size.

txn_id_len (OUT)
Length of the returned transaction ID.

11Comments
The maximum size for the returned transaction ID is OCI_LCR_MAX_TXID_LEN. If the
allocated buffer for txn_id is too small, then this routine returns ORA-29258. The

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-53

maximum size for the returned error msg is OCI_ERROR_MAXMSG_SIZE. If the allocated
size for msgbuf is too small, then the returned message is truncated.

OCIXStreamInFlush()

11-54 Oracle Database XStream Guide

OCIXStreamInFlush()

11Purpose
Used to flush the network while attaching to an XStream inbound server. It terminates
any in-progress OCIXStreamInLCRSend() call associated with the specified service
context.

11Syntax
sword OCIXStreamInFlush (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

mode (IN)

OCIXSTREAM_IN_FLUSH_WAIT_FOR_COMPLETE - If this mode is specified, then this
function flushes the network, and then waits for all complete and rollback transactions
that have been sent to the inbound server to complete before returning control to the
client.

11Comments
Return code: OCI_ERROR or OCI_SUCCESS.

Each call incurs a database round-trip to get the server's processed low position, which
you can retrieve afterward using OCIXStreamInProcessedLWMGet(). Call this function
only when there is no LCR to send to the server and the client wants to know the
progress of the attached inbound server.

This call returns OCI_ERROR if it is invoked from the callback functions of
OCIXStreamInLCRCallbackSend().

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-55

OCIXStreamInChunkSend()

11Purpose
Sends a chunk to the inbound server. This function is valid during the execution of the
OCIXStreamInLCRSend() call.

11Syntax
sword OCIXStreamInChunkSend (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *column_name,
 ub2 column_name_len,
 ub2 column_dty,
 oraub8 column_flag,
 ub2 column_csid,
 ub4 chunk_bytes,
 ub1 *chunk_data,
 oraub8 flag,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_name (IN)
Name of column associated with the given data. Column name must be canonicalized
and must follow Oracle Database naming convention.

column_name_len (IN)
Length of column name.

column_dty (IN)
LCR chunk data type (must be SQLT_CHR or SQLT_BIN). See Table 11–5, " Storage of LOB
or LONG Data in the LCR"

column_flag (IN)
Column flag. (See Comments for valid column flags.) Must specify OCI_LCR_COLUMN_
LAST_CHUNK for the last chunk of each LOB or LONG or XMLType column.

column_csid (IN)
Column character set ID. This is required only if the column_flag has OCI_LCR_
COLUMN_XML_DATA bit set.

chunk_bytes (IN)
Chunk data length in bytes.

chunk_data (IN)
Pointer to column data chunk. If the column is NCLOB or varying width CLOB, then the
input chunk data must be in AL16UTF16 format. The chunk data must be in the
character set defined in " Storage of LOB or LONG Data in the LCR" on page 11-72.

OCIXStreamInChunkSend()

11-56 Oracle Database XStream Guide

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA (0x01) bit is set, then the current row change contains
more data. You must clear this bit when sending the last chunk of the current LCR.

mode (IN)
Specify OCI_DEFAULT.

11Comments
The following LCR column flags can be combined using bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

In Streams, LOB, LONG, or XMLType column data is broken up into multiple chunks. For
a row change containing columns of these data types, its associated LCR only contains
data for the other column types. All LOB, LONG or XMLType columns are either
represented in the LCR as NULL or not included in the LCR as defined in Table 11–4,
" Required Column List in the First LCR".

OCILCRRowColumnInfoSet() is provided to generate a list of scalar columns in an LCR.
For LOB, LONG, and XMLType columns, OCIXStreamInChunkSend() is provided to set the
value of each chunk in a column. For a large column, this function can be invoked
consecutively multiple times with smaller chunks of data. The XStream inbound
server can assemble these chunks and apply the accumulated change to the designated
column.

The LCR of a row change must contain all the scalar columns that can uniquely
identify a row at the apply site. Table 11–4 describes the required column list in each
LCR for each DML operation.

Table 11–4 Required Column List in the First LCR

Command Type of the
First LCR of a Row
Change Columns Required in the First LCR

INSERT The NEW column list must contain all non-NULL scalar columns.
All LOB, XMLType, and LONG columns with chunk data must be
included in this NEW column list. Each must have NULL value
and OCI_LCR_COLUMN_EMPTY_LOB flag specified.

UPDATE The OLD column list must contain the key columns.

The NEW column list must contain all updated scalar columns. All
LOB, XMLType, and LONG columns with chunk data must be
included in this NEW column list. Each must have NULL value
and OCI_LCR_COLUMN_EMPTY_LOB flag specified.

DELETE The OLD column list must contain the key columns.

LOB_WRITE, LOB_TRIM, LOB_
ERASE

The NEW column list must contain the key columns and the
modified LOB column.

OCI XStream Functions

OCI XStream Functions 11-57

After constructing each LCR, you can call OCIXStreamInLCRSend() to send that LCR.
Afterward, OCIXStreamInChunkSend() can be called repeatedly to send the chunk data
for each LOB or LONG or XMLType column in that LCR. Sending the chunk value for
different columns cannot be interleaved. If a column contains multiple chunks, then
this function must be called consecutively using the same column name before
proceeding to a new column. The ordering of the columns is irrelevant.

When invoking this function, you must pass OCI_XSTREAM_MORE_ROW_DATA as the flag
argument if there is more data for the current LCR. When sending the last chunk of the
current LCR, then this flag must be cleared to signal the end of the current LCR.

This function is valid only for INSERT, UPDATE, and LOB_WRITE operations. Multiple
LOB, LONG, or XMLType columns can be specified for INSERT and UPDATE, while only one
LOB column is allowed for LOB_WRITE operation.

The following is a sample client pseudocode snippet for non-callback mode (error
checking is not included for simplicity):

main
{
 /* Attach to inbound server */
 OCIXStreamInAttach();

 /* Get the server's processed low position to determine
 * the position of the first LCR to generate.
 */
 OCIXStreamInProcessedLWMGet(&lwm);

 while (TRUE)
 {
 flag = 0;
 /* construct lcr */
 OCILCRHeaderSet(lcr);
 OCILCRRowColumnInfoSet(lcr);

 if (lcr has LOB | LONG | XMLType columns)
 set OCI_XSTREAM_MORE_ROW_DATA flag;

 status = OCIXStreamInLCRSend(lcr, flag);

 if (status == OCI_STILL_EXECUTING &&
 (OCI_XSTREAM_MORE_ROW_DATA flag set))
 {
 for each LOB/LONG/XMLType column in row change
 {
 for each chunk in column
 {
 /* set col_name, col_flag, chunk data */
 construct chunk;

 if (last chunk of current column)
 col_flag |= OCI_LCR_COLUMN_LAST_CHUNK;

 if (last chunk of last column)
 clear OCI_XSTREAM_MORE_ROW_DATA flag;

 OCIXStreamInChunkSend(chunk, col_flag, flag);
 }
 }
 }
 else if (status == OCI_SUCCESS)

OCIXStreamInChunkSend()

11-58 Oracle Database XStream Guide

 {
 /* get lwm when SendLCR call ends successfully. */
 OCIXStreamInProcessedLWMGet(&lwm);
 }

 if (some terminating_condition)
 break;
 }

 OCIXStreamInDetach();
}

OCI XStream Functions

OCI XStream Functions 11-59

OCIXStreamInCommit()

11Purpose
Commits the given transaction. This function lets the client notify the inbound server
about a transaction that has been executed by the client rather than by the server. So
that if the same transaction is retransmitted during apply restart, it is ignored by the
inbound server. A commit LCR must be supplied for the inbound server to extract the
transaction ID and the position of the commit.

11Syntax
sword OCIXStreamInCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 void *lcrp,
 ub4 mode);

11Parameters

svchp (IN/OUT)
OCI service handle.

errhp (IN/OUT)
Error Handle to which errors should be reported.

lcrp (IN)
Pointer to the LCR to send. Must be a commit LCR.

mode (IN)
Mode flags. Not used currently; used for future extension.

11Comments
The position of the input LCR must be higher than DBA_XSTREAM_INBOUND_
PROGRESS.APPLIED_HIGH_POSITION, and the LCR's source database must match DBA_
APPLY_PROGRESS.SOURCE_DATABASE of the attached inbound server.

If there is any pre-commit handler defined, it is executed when this commit LCR is
executed.

Assume a sample use case in which a situation where the inbound server does not
support certain data types, but the client can do the work directly. The client performs
the transaction changes directly to the database and then invokes the
OCIXStreamInCommit() to commit the transaction by way of the inbound server. Note
that the client should not directly commit the transaction itself. Rather, the transaction
changes are committed with this command (OCIXStreamInCommit()) so that the
transaction is atomic. Thus, if the inbound server becomes disabled during the client
transaction, then the entire transaction is correctly rolled back.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCIXStreamOutAttach()

11-60 Oracle Database XStream Guide

OCIXStreamOutAttach()

11Purpose
Attaches to an XStream outbound server. The client application must connect to the
database using a dedicated connection.

11Syntax
sword OCIXStreamOutAttach (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext *server_name,
 ub2 server_name_len,
 ub1 *last_position,
 ub2 last_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

server_name (IN)
XStream outbound server name.

server_name_len (IN)
Length of XStream outbound server name.

last_position (IN)
Position to the last received LCR. Can be NULL.

last_position_len (IN)
Length of last_position.

mode (IN)

OCIXSTREAM_OUT_ATTACH_APP_FREE_LCR - If this mode is specified, then the application
is in charge of freeing the LCRs from the outbound server.

11Comments
The OCIEnv environment handle must be created with OCI_OBJECT mode, and the
service context must be in a connected state to issue this function. This function does
not support nonblocking mode. It returns either the OCI_SUCCESS or OCI_ERROR status
code.

The name of the outbound server must be provided because multiple outbound
servers can be configured in one Oracle Database instance. This function returns OCI_
ERROR if it encounters any error while attaching to the outbound server. Only one client

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

OCI XStream Functions

OCI XStream Functions 11-61

can attach to an XStream outbound server at any time. An error is returned if multiple
clients attempt to attach to the same outbound server or if the same client attempts to
attach to multiple outbound servers using the same service handle.

The last_position parameter is used to establish the starting point of the stream. This
call returns OCI_ERROR if the specified position is non-NULL and less than the server's
processed low position (see "OCIXStreamOutProcessedLWMSet()" on page 11-70);
otherwise, LCRs with positions greater than the specified last_position are sent to
the user.

If the last_position is NULL, then the stream starts from the processed low position
maintained in the server.

OCIXStreamOutDetach()

11-62 Oracle Database XStream Guide

OCIXStreamOutDetach()

11Purpose
Detaches from the outbound server.

11Syntax
sword OCIXStreamOutDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle that you can pass to OCIErrorGet() for diagnostic information in case
of an error.

mode (IN)
Specify OCI_DEFAULT.

11Comments
This function sends the current local processed low position to the server before
detaching from the outbound server. The outbound server automatically restarts after
this call. This function returns OCI_ERROR if it is invoked while a
OCIXStreamOutReceive() call is in progress.

OCI XStream Functions

OCI XStream Functions 11-63

OCIXStreamOutLCRReceive()

11Purpose
Receives an LCR from an outbound stream. If an LCR is available, then this function
immediately returns that LCR. The duration of each LCR is limited to the interval
between two successive OCIXStreamOutLCRReceive() calls. When there is no LCR
available in the stream, this call returns a NULL LCR after an idle timeout.

11Syntax
sword OCIXStreamOutLCRReceive (OCISvcCtx *svchp,
 OCIError *errhp,
 void **lcrp,
 ub1 *lcrtype,
 oraub8 *flag,
 ub1 *fetch_low_position,
 ub2 *fetch_low_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

lcrp (OUT)
Pointer to the LCR received from the stream. If there is an available LCR, then this
LCR is returned with status code OCI_STILL_EXECUTING. When the call ends, a NULL
LCR is returned with status code OCI_SUCCESS.

lcrtype (OUT)
Type of the retrieved LCR. This value is valid only when lcrp is not NULL.

flag (OUT)
Return flag. If bit OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then this LCR has more
data. You must use OCIXStreamOutReceiveChunk() function to get the remaining data.

fetch_low_position (OUT)
XStream outbound server's fetch low position. This value is returned only when the
return code is OCI_SUCCESS. Optional. If non-NULL, then you must preallocate OCI_LCR_
MAX_POSITION_LEN bytes for the return value.

fetch_low_position_len (OUT)
Length of fetch_low_position.

mode (IN)
Specify OCI_DEFAULT.

11Comments
To avoid a network round-trip for every OCIXStreamOutLCRReceive() call, the
connection is tied to this call and allows the server to fill up the network buffer with
LCRs so subsequent calls can quickly receive the LCRs from the network. The server

OCIXStreamOutLCRReceive()

11-64 Oracle Database XStream Guide

ends each call at the transaction boundary after an ACK interval elapses since the call
began. When there is no LCR in the stream, the server ends the call after the idle
timeout elapses.

Return codes:

■ OCI_STILL_EXECUTING means that the current call is still in progress. The
connection associated with the specified service context handle is still tied to this
call for streaming the LCRs from the server. An error is returned if you attempt to
use the same connection to execute any OCI calls that require database round-trip,
for example, OCIStmtExecute(), OCIStmtFetch(), OCILobRead(), and so on.
OCILCR* calls do not require round-trips; thus, they are valid while the call is in
progress.

■ OCI_SUCCESS means that the current call is completed. You are free to execute
OCIStmt*, OCILob*, and so on from the same service context.

■ OCI_ERROR means the current call encounters some errors. Use OCIErrorGet() to
obtain information about the error.

This call always returns a NULL LCR when the return code is OCI_SUCCESS. In addition,
it returns the fetch low position to denote that the outbound server has received all
transactions with commit position lower than or equal to this value.

See Also:

■ "Server Handle Attributes" on page 10-3

■ "OCIXStreamOutChunkReceive()" on page 11-71 for non-callback
pseudocode in the Comments section

OCI XStream Functions

OCI XStream Functions 11-65

OCIXStreamOutLCRCallbackReceive()

11Purpose
Used to get the LCR stream from the outbound server using callbacks. You must
supply a callback procedure to be invoked for each LCR received. If some LCRs in the
stream may contain LOB or LONG or XMLType columns, then a second callback must be
supplied to process each chunk (see "OCIXStreamOutChunkReceive()" on page 11-71).

11Syntax
sword OCIXStreamOutLCRCallbackReceive (
 OCISvcCtx *svchp,
 OCIError *errhp,
 OCICallbackXStreamOutLCRProcess processlcr_cb,
 OCICallbackXStreamOutChunkProcess processchunk_cb,
 void *usrctxp,
 ub1 *fetch_low_position,
 ub2 *fetch_low_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

processlcr_cb (IN)
Callback function to process each LCR received by the client. Cannot be NULL.

processchunk_cb (IN)
Callback function to process each chunk in the received LCR. Can be NULL if you do
not expect to receive any LCRs with additional chunk data.

usrctxp (IN)
User context to pass to both callback procedures.

fetch_low_position (OUT)
XStream outbound server's fetch low position (see "OCIXStreamOutLCRReceive()" on
page 11-63). Optional.

fetch_low_position_len (OUT)
Length of fetch_low_position.

mode (IN)
Specify OCI_DEFAULT.

11Comments
Return code: OCI_SUCCESS or OCI_ERROR.

The processlcr_cb argument must be of type OCICallbackXStreamOutLCRProcess:

typedef sb4 (*OCICallbackXStreamOutLCRProcess)
 (void *usrctxp, void *lcrp, ub1 lcrtyp, oraub8 flag);

OCIXStreamOutLCRCallbackReceive()

11-66 Oracle Database XStream Guide

Parameters of OCICallbackXStreamOutLCRProcess():

usrctxp (IN/OUT)
Pointer to the user context.

lcrp (IN)
Pointer to the LCR just received.

lcrtyp (IN)
LCR type (OCI_LCR_XROW or OCI_LCR_XDDL).

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameters of the processlcr_cb() procedure are the user context, the LCR
just received, its type, and a flag to indicate whether the LCR contains more data. If
there is an LCR available, then this callback is invoked immediately. If there is no LCR
in the stream, after an idle timeout, then this call ends with OCI_SUCCESS return code.
The valid return codes from the OCICallbackXStreamOutLCRProcess() callback
function are OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_
CONTINUE to continue processing the OCIXStreamOutLCRCallbackReceive() call. Any
return code other than OCI_CONTINUE signals that the client wants to terminate
OCIXStreamOutLCRCallbackReceive() immediately.

The processchunk_cb argument must be of type
OCICallbackXStreamOutChunkProcess:

typedef sb4 (*OCICallbackXStreamOutChunkProcess)
(void *usrctxp,
oratext *column_name,
ub2 column_name_len,
ub2 column_dty,
oraub8 column_flag,
ub2 column_csid,
ub4 chunk_bytes,
ub1 *chunk_data,
oraub8 flag);

Parameters of OCICallbackXStreamOutChunkProcess():

usrctxp (IN/OUT)
Pointer to the user context.

column_name (IN)
Column name of the current chunk.

column_name_len (IN)
Length of the column name.

column_name_dty (IN)
Chunk data type (SQLT_CHR or SQLT_BIN).

column_flag (IN)
See Comments in "OCIXStreamInChunkSend()" on page 11-55.

See Also: "Server Handle Attributes" on page 10-3

OCI XStream Functions

OCI XStream Functions 11-67

column_csid (IN)
Column character set ID. Relevant only if the column is an XMLType column (that is,
column_flag has the OCI_LCR_COLUMN_XML_DATA bit set).

chunk_bytes (IN)
Chunk data length in bytes.

chunk_data (IN)
Chunk data pointer.

flag (IN)
If OCI_XSTREAM_MORE_ROW_DATA is set, then the current LCR has more chunk data.

The input parameters of the processchunk_cb() procedure are the user context, the
information about the chunk, and a flag. When the flag argument has the OCI_
XSTREAM_MORE_ROW_DATA (0x01) bit set, then there is more data for the current LCR. The
valid return codes from the OCICallbackXStreamOutChunkProcess() callback function
are OCI_CONTINUE or OCI_SUCCESS. This callback function must return OCI_CONTINUE to
continue processing the OCIXStreamOutLCRCallbackReceive() call. Any return code
other than OCI_CONTINUE signals that the client wants to terminate
OCIXStreamOutLCRCallbackReceive() immediately.

OCI calls are provided to access each field in the LCR. If the LCR contains only scalar
column(s), then the duration of that LCR is limited only to the processlcr_cb()
procedure. If the LCR contains some chunk data, then the duration of the LCR is
extended until all the chunks have been processed. If you want to access the LCR data
at a later time, then a copy of the LCR must be made before it is freed.

As for OCIXStreamOutLCRReceive(), the server ends each call at the transaction
boundary after each ACK interval since the call began, or after each idle timeout. The
default ACK interval is 30 seconds, and the default idle timeout is one second. See
"Server Handle Attributes" on page 10-3 to tune these values. This function also
returns the fetch low position when the call ends.

Figure 11–2 shows the execution flow of the OCIXStreamOutLCRCallbackReceive()
function.

Figure 11–2 Execution Flow of the OCIXStreamOutLCRCallbackReceive() Function

* While OCI_XSTREAM_MORE_ROW_DATA is set.

Description of Figure 11–2:

Client Code
1

LCRCallbackReceive

(processlcr_ cb,
processchunk_cb)

processlcr_cb

(LCR, flag)

(col_name, chunk)

2Process LCR

processchunk_cb
3Process Chunk

while more
LCRs from
stream

*

LCRCallbackReceive

Receive From
Outbound Server

OCIXStreamOutLCRCallbackReceive()

11-68 Oracle Database XStream Guide

■ At 1, the client invokes OCIXStreamOutLCRCallbackReceive() providing two
callbacks. This function initiates an LCR outbound stream from the server.

■ At 2, this function receives an LCR from the stream and invokes processlcr_cb()
procedure with the LCR just received. It passes OCI_XSTREAM_MORE_ROW_DATA flag
to processlcr_cb() if the current LCR has additional data.

■ If the current LCR has no additional chunk, then this function repeats 2 for the
next LCR in the stream.

■ At 3, if the current LCR contains additional chunk data, then this function invokes
processchunk_cb() for each chunk received with the OCI_XSTREAM_MORE_ROW_DATA
flag. This flag is cleared when the callback is invoked on the last chunk of the
current LCR.

■ If there is more LCR in the stream, then it loops back to 2. This process continues
until the end of the current call, or when there is no LCR in the stream for one
second, or if a callback function returns any value other than OCI_CONTINUE.

Here is sample pseudocode for callback mode:

main
{
 /* Attach to outbound server specifying last position */
 OCIXStreamOutAttach(last_pos);

 /* Update the local processed low position */
 OCIXStreamOutProcessedLWMSet(lwm);

 while (TRUE)
 {
 OCIXStreamOutLCRCallbackReceive(processlcr_cb,
 processchunk_cb, fwm);

 /* Use fetch low position(fwm)
 * to update processed lwm if applied.
 */

 /* Update the local lwm so it is sent to
 * server during next call.
 */
 OCIXStreamOutProcessedLWMSet(lwm);
 if (some terminating_condition)
 break;
 }
 OCIXStreamOutDetach();
}

processlcr_cb (IN lcr, IN flag)
{
 /* Process the LCR just received */
 OCILCRHeaderGet(lcr);
 OCILCRRowColumnInfoGet(lcr);

 if (lcr is LOB_WRITE | LOB_TRIM | LOB_ERASE)
 OCILCRLobInfoGet(lcr);

 if (OCI_XSTREAM_MORE_ROW_DATA flag set)
 prepare_for_chunk_data;
 else
 process_end_of_row;

OCI XStream Functions

OCI XStream Functions 11-69

}

processchunk_cb (IN chunk, IN flag)
{
 process_chunk;

 if (OCI_XSTREAM_MORE_ROW_DATA flag not set)
 process_end_of_row;
}

OCIXStreamOutProcessedLWMSet()

11-70 Oracle Database XStream Guide

OCIXStreamOutProcessedLWMSet()

11Purpose
Updates the local copy of the processed low position. This function can be called
anytime between OCIXStreamOutAttach() and OCIXStreamOutDetach() calls. Clients
using the callback mechanism to stream LCRs from the server (see
"OCIXStreamOutLCRCallbackReceive()" on page 11-65), can invoke this function
while in the callback procedures.

11Syntax
sword OCIXStreamOutProcessedLWMSet (OCISvcCtx *svchp,
 OCIError *errhp,
 ub1 *processed_low_position,
 ub2 processed_low_position_len,
 ub4 mode);

11Parameters

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

processed_low_position (IN)
The processed low position maintained at the client.

processed_low_position_len (IN)
Length of processed_low_position.

mode (IN)
Specify OCI_DEFAULT.

11Comments
The processed low position denotes that all LCRs at or below it have been processed.
After successfully attaching to an XStream outbound server, a local copy of the
processed low position is maintained at the client. Periodically, this position is sent to
the server so that archived redo log files containing already processed transactions can
be purged.

Return code: OCI_SUCCESS or OCI_ERROR.

Clients using XStreamOut functions must keep track of the processed low position
based on what they have processed and call this function whenever their processed
low position has changed. This is done so that a more current value is sent to the
server during the next update, which occurs at the beginning of the
OCIXStreamOutLCRCallbackReceive() and OCIXStreamDetach() calls. For an
OCIXStreamOutLCRReceive() call, the processed low position is sent to the server
when it initiates a request to start the outbound stream. It is not sent while the stream
is in progress.

You can query the DBA_XSTREAM_OUTBOUND_PROGRESS view to confirm that the
processed low position has been saved in the server.

OCI XStream Functions

OCI XStream Functions 11-71

OCIXStreamOutChunkReceive()

11Purpose
Allows the client to retrieve the data of each LOB or LONG or XMLType column one
chunk at a time.

11Syntax
sword OCIXStreamOutChunkReceive (OCISvcCtx *svchp,
 OCIError *errhp,
 oratext **column_name,
 ub2 *column_name_len,
 ub2 *column_dty,
 oraub8 *column_flag,
 ub2 *column_csid,
 ub4 *chunk_bytes,
 ub1 **chunk_data,
 oraub8 *flag,
 ub4 mode);

11Syntax

svchp (IN)
Service handle context.

errhp (IN/OUT)
An error handle you can pass to OCIErrorGet() for diagnostic information in case of
an error.

column_name (OUT)
Name of the column that has data.

column_name_len (OUT)
Length of the column name.

column_dty (OUT)
Column chunk data type (either SQLT_CHR or SQLT_BIN).

column_flag (OUT)
Column flag. See Comments for valid flags.

column_csid (OUT)
Column character set ID. This is returned only for XMLType column, that is, column_
flag has OCI_LCR_COLUMN_XML_DATA bit set.

chunk_bytes (OUT)
Number of bytes in the returned chunk.

chunk_data (OUT)
Pointer to the chunk data in the LCR. The client must not deallocate this buffer since
the LCR and its contents are maintained by this function.

flag (OUT)
If OCI_XSTREAM_MORE_ROW_DATA (0x01) is set, then the current LCR has more chunks
coming.

OCIXStreamOutChunkReceive()

11-72 Oracle Database XStream Guide

mode (IN)
Specify OCI_DEFAULT.

11Comments
In Streams, LOB, LONG, or XMLType column data is broken up into multiple LCRs based
on how they are stored in the online redo log files. Thus, for a row change containing
these columns multiple LCRs may be constructed. The first LCR of a row change
contains the column data for all the scalar columns. All LOB or LONG or XMLType
columns in the first LCR are set to NULL because their data are sent in subsequent LCRs
for that row change. These column data are stored in the LCR as either RAW (SQLT_BIN)
or VARCHAR2 (SQLT_CHR) chunks as shown in the table Table 11–5.

In Streams, LOB, LONG, or XMLType column data is broken up into multiple chunks
based on how they are stored in the online redo log files. For a row change containing
columns of these data types, its associated LCR only contains data for the other scalar
columns. All LOB, LONG, or XMLType columns are either represented in the LCR as NULL
or not included in the LCR. The actual data for these columns are sent following each
LCR as RAW (SQLT_BIN) or VARCHAR2 (SQLT_CHR) chunks as shown in Table 11–5,
" Storage of LOB or LONG Data in the LCR".

The following LCR column flags can be combined using the bitwise OR operator.

#define OCI_LCR_COLUMN_LOB_DATA /* column contains LOB data */
#define OCI_LCR_COLUMN_LONG_DATA /* column contains long data */
#define OCI_LCR_COLUMN_EMPTY_LOB /* column has an empty LOB */
#define OCI_LCR_COLUMN_LAST_CHUNK /* last chunk of current column */
#define OCI_LCR_COLUMN_AL16UTF16 /* column is in AL16UTF16 fmt */
#define OCI_LCR_COLUMN_NCLOB /* column has NCLOB data */
#define OCI_LCR_COLUMN_XML_DATA /* column contains xml data */
#define OCI_LCR_COLUMN_XML_DIFF /* column contains xmldiff data */
#define OCI_LCR_COLUMN_ENCRYPTED /* column is encrypted */
#define OCI_LCR_COLUMN_UPDATED /* col is updated */

Return code: OCI_ERROR or OCI_SUCCESS.

This call returns a NULL column name and NULL chunk data if it is invoked when the
current LCR does not contain the LOB, LONG, or XMLType columns. This function is
valid only when an OCIXStreamOutLCRReceive() call is in progress. An error is
returned if it is called during other times.

If the return flag from OCIXStreamOutLCRReceive() has OCI_XSTREAM_MORE_ROW_DATA
bit set, then you must iteratively call OCIXStreamOutChunkReceive() to retrieve all the
chunks belonging to that row change before getting the next row change (that is,
before making the next OCIXStreamOutLCRReceive() call); otherwise, an error is
returned.

Table 11–5 Storage of LOB or LONG Data in the LCR

Source Column Data Type Streams LCR Data Type Streams LCR Character Set

BLOB RAW N/A

Fixed-width CLOB VARCHAR2 Client Character Set

Varying-width CLOB RAW AL16UTF16

NCLOB RAW AL16UTF16

XMLType RAW column csid obtained from the
chunk

OCI XStream Functions

OCI XStream Functions 11-73

Here is sample pseudocode for non-callback mode:

main
{
 /* Attach to outbound server specifying last position */
 OCIXStreamOutAttach(last_pos);

 /* Update the local processed low position */
 OCIXStreamOutProcessedLWMSet(lwm);

 while (TRUE)
 {
 status = OCIXStreamOutLCRReceive(lcr, flag, fwm);

 if (status == OCI_STILL_EXECUTING)
 {
 /* Process LCR just received */
 OCILCRHeaderGet(lcr);
 OCILCRRowColumnInfoGet(lcr);

 while (OCI_XSTREAM_MORE_ROW_DATA flag set)
 {
 OCIXStreamReceiveChunk(chunk, flag,);

 process_chunk;
 }
 process_end_of_row;
 }
 else if (status == OCI_SUCCESS)
 {
 /* Use fetch low position(fwm)
 * to update processed lwm if applied.
 */

 /* Update the local lwm so it is sent to
 * server during next call.
 */
 OCIXStreamOutProcessedLWMSet(lwm);

 if (some terminating_condition)
 break;
 }
 }
 OCIXStreamOutDetach();
}

OCIXStreamOutChunkReceive()

11-74 Oracle Database XStream Guide

Part V
Part V XStream Data Dictionary Views

This part contains descriptions of the data dictionary views related to XStream. This
part contains the following chapters:

■ Chapter 12, "XStream Static Data Dictionary Views"

■ Chapter 13, "XStream Dynamic Performance (V$) Views"

12

XStream Static Data Dictionary Views 12-1

12 XStream Static Data Dictionary Views

This chapter describes the static data dictionary views related to XStream.

This chapter contains these topics:

■ ALL_APPLY

■ ALL_APPLY_ERROR

■ ALL_APPLY_ERROR_MESSAGES

■ ALL_CAPTURE

■ ALL_XSTREAM_INBOUND

■ ALL_XSTREAM_INBOUND_PROGRESS

■ ALL_XSTREAM_OUTBOUND

■ ALL_XSTREAM_OUTBOUND_PROGRESS

■ ALL_XSTREAM_RULES

■ DBA_APPLY

■ DBA_APPLY_ERROR

■ DBA_APPLY_ERROR_MESSAGES

■ DBA_APPLY_SPILL_TXN

■ DBA_CAPTURE

■ DBA_XSTREAM_ADMINISTRATOR

■ DBA_XSTREAM_INBOUND

■ DBA_XSTREAM_INBOUND_PROGRESS

■ DBA_XSTREAM_OUT_SUPPORT_MODE

■ DBA_XSTREAM_OUTBOUND

■ DBA_XSTREAM_OUTBOUND_PROGRESS

■ DBA_XSTREAM_RULES

ALL_APPLY
ALL_APPLY displays information about the apply processes that dequeue messages
from queues accessible to the current user.

See Also: Oracle Database Reference

ALL_APPLY

12-2 Oracle Database XStream Guide

Related View
DBA_APPLY displays information about all apply processes in the database.

Column Data Type NULL Description

APPLY_NAME VARCHAR2(30) NOT NULL Name of the apply process

QUEUE_NAME VARCHAR2(30) NOT NULL Name of the queue from which the apply process
dequeues

QUEUE_OWNER VARCHAR2(30) NOT NULL Owner of the queue from which the apply process
dequeues

APPLY_CAPTURED VARCHAR2(3) Indicates whether the apply process applies captured
messages (YES) or user-enqueued messages (NO)

RULE_SET_NAME VARCHAR2(30) Name of the positive rule set used by the apply process
for filtering

RULE_SET_OWNER VARCHAR2(30) Owner of the positive rule set used by the apply process
for filtering

APPLY_USER VARCHAR2(30) User who is applying messages

APPLY_DATABASE_LINK VARCHAR2(128) Database link to which changes are applied. If NULL, then
changes are applied to the local database.

APPLY_TAG RAW(2000) Tag associated with redo log records that are generated
when changes are made by the apply process

DDL_HANDLER VARCHAR2(98) Name of the user-specified data definition language
(DDL) handler, which handles DDL logical change
records (LCRs)

PRECOMMIT_HANDLER VARCHAR2(98) Name of the user-specified pre-commit handler

MESSAGE_HANDLER VARCHAR2(98) Name of the user-specified procedure that handles
dequeued messages other than LCRs

STATUS VARCHAR2(8) Status of the apply process:

■ DISABLED

■ ENABLED

■ ABORTED

MAX_APPLIED_MESSAGE_
NUMBER

NUMBER System change number (SCN) corresponding to the
apply process high watermark for the last time the apply
process was stopped using the DBMS_APPLY_ADM.STOP_
APPLY procedure with the force parameter set to false.
The apply process high watermark is the SCN beyond
which no messages have been applied.

NEGATIVE_RULE_SET_NAME VARCHAR2(30) Name of the negative rule set used by the apply process
for filtering

NEGATIVE_RULE_SET_OWNER VARCHAR2(30) Owner of the negative rule set used by the apply process
for filtering

STATUS_CHANGE_TIME DATE Time that the STATUS of the apply process was changed

ERROR_NUMBER NUMBER Error number if the apply process was aborted

ERROR_MESSAGE VARCHAR2(4000) Error message if the apply process was aborted

MESSAGE_DELIVERY_MODE VARCHAR2(10) Reserved for internal use

ALL_APPLY_ERROR

XStream Static Data Dictionary Views 12-3

ALL_APPLY_ERROR
ALL_APPLY_ERROR displays information about the error transactions generated by the
apply processes that dequeue messages from queues accessible to the current user.

Related View
DBA_APPLY_ERROR displays information about the error transactions generated by all
apply processes in the database.

PURPOSE VARCHAR2(19) Purpose of the apply process:

■ Streams - An apply process in an Oracle Streams
configuration

■ XStream Streams - An apply process in an Oracle
Streams configuration with XStream capabilities
enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_
XSTREAM_FOR_STREAMS procedure

■ XStream Out - An XStream outbound server in an
XStream Out configuration

■ XStream In - An XStream inbound server in an
XStream In configuration

■ AUDIT VAULT - An apply process in an audit vault
configuration

■ CHANGE DATA CAPTURE - An apply process in a
change data capture configuration

See Also: "DBA_APPLY" on page 12-11

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
ERROR_TYPE column is included in this view.

Column Data Type NULL Description

APPLY_NAME VARCHAR2(30) Name of the apply process at the local database which
processed the transaction

QUEUE_NAME VARCHAR2(30) Name of the queue at the local database from which the
transaction was dequeued

QUEUE_OWNER VARCHAR2(30) Owner of the queue at the local database from which the
transaction was dequeued

LOCAL_TRANSACTION_ID VARCHAR2(22) Local transaction ID for the error transaction

SOURCE_DATABASE VARCHAR2(128) Database where the transaction originated

SOURCE_TRANSACTION_ID VARCHAR2(128) Original transaction ID at the source database

SOURCE_COMMIT_SCN NUMBER Original commit SCN for the transaction at the source
database

MESSAGE_NUMBER NUMBER Identifier for the message in the transaction that raised
an error

ERROR_NUMBER NUMBER Error number of the error raised by the transaction

ERROR_MESSAGE VARCHAR2(4000) Error message of the error raised by the transaction

RECIPIENT_ID NUMBER User ID of the original user that applied the transaction

RECIPIENT_NAME VARCHAR2(30) Name of the original user that applied the transaction

MESSAGE_COUNT NUMBER Total number of messages inside the error transaction

ERROR_CREATION_TIME DATE Time that the error was created

Column Data Type NULL Description

ALL_APPLY_ERROR_MESSAGES

12-4 Oracle Database XStream Guide

ALL_APPLY_ERROR_MESSAGES

ALL_APPLY_ERROR_MESSAGES displays information about the individual messages in an
error transaction generated by the apply processes that dequeue messages from
queues accessible to the current user.

For XStream inbound servers, each message in an error transaction is an LCR.

RELATED VIEW
DBA_APPLY_ERROR_MESSAGES displays information about the individual messages in all
of the error transactions generated by all apply processes in the database.

SOURCE_COMMIT_POSITION RAW(64) Original commit position for the transaction

ERROR_TYPE VARCHAR2(11) NULL if the apply process can access all of the LCRs in
the error transaction. When the ERROR_TYPE is NULL,
manage the error transactions using the instructions in
Oracle Streams Concepts and Administration.

EAGER ERROR if the apply process cannot access all of the
LCRs in the error transaction. This error type typically
means that the apply process was applying LCRs in a
large transaction. When the ERROR_TYPE is EAGER ERROR,
manage the error transaction using the instructions in
"Managing Eager Errors Encountered by an Inbound
Server" on page 5-16.

See Also: "DBA_APPLY_ERROR" on page 12-11

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Note:

■ Messages that were spilled from memory to hard disk do not
appear in this view.

■ This view does not contain information related to XStream
outbound servers.

Column Data Type NULL Description

MESSAGE_ID RAW(16) Unique identifier of the message stored in the error
queue

LOCAL_TRANSACTION_ID VARCHAR2(22) Local transaction ID for the error transaction

TRANSACTION_MESSAGE_
NUMBER

NUMBER Message number of the message that raised the error

The message number is a sequence number for the
messages in the transaction, starting with 1.

ERROR_NUMBER NUMBER Error number of the error raised by the transaction

The error number is populated only for the LCR that
raised the error. This field is NULL for the other LCRs in
the transaction.

ERROR_MESSAGE VARCHAR2(4000) Error message of the error raised by the transaction

The error message is populated only for the LCR that
raised the error. This field is NULL for the other LCRs in
the transaction.

Column Data Type NULL Description

ALL_CAPTURE

XStream Static Data Dictionary Views 12-5

ALL_CAPTURE
ALL_CAPTURE displays information about the capture processes that enqueue the
captured changes into queues accessible to the current user.

RELATED VIEW
DBA_CAPTURE displays information about all capture processes in the database.

See Also: "DBA_APPLY_ERROR_MESSAGES" on page 12-11

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
START_TIME and PURPOSE columns are included in this view.

Column Data Type NULL Description

CAPTURE_NAME VARCHAR2(30) NOT NULL Name of the capture process

QUEUE_NAME VARCHAR2(30) NOT NULL Name of the queue used for staging captured changes

QUEUE_OWNER VARCHAR2(30) NOT NULL Owner of the queue used for staging captured changes

RULE_SET_NAME VARCHAR2(30) Name of the positive rule set used by the capture
process for filtering

RULE_SET_OWNER VARCHAR2(30) Owner of the positive rule set

CAPTURE_USER VARCHAR2(30) Current user who is enqueuing captured messages

START_SCN NUMBER SCN from which the capture process will start to capture
changes

STATUS VARCHAR2(8) Status of the capture process:

■ DISABLED

■ ENABLED

■ ABORTED

CAPTURED_SCN NUMBER SCN of the last redo log record scanned

APPLIED_SCN NUMBER SCN of the most recent message dequeued by the
relevant apply processes. All changes below this SCN
have been dequeued by all apply processes that apply
changes captured by this capture process.

USE_DATABASE_LINK VARCHAR2(3) Indicates whether the source database name is used as
the database link to connect to the source database from
the downstream database (YES) or not (NO). If the capture
process was created at the source database, then this
column will be NULL.

FIRST_SCN NUMBER SCN from which the capture process can be restarted

SOURCE_DATABASE VARCHAR2(128) Global name of the source database

SOURCE_DBID NUMBER Database ID of the source database

SOURCE_RESETLOGS_SCN NUMBER Resetlogs SCN of the source database

SOURCE_RESETLOGS_TIME NUMBER Resetlogs time of the source database

LOGMINER_ID NUMBER Session ID of the Oracle LogMiner session associated
with the capture process

NEGATIVE_RULE_SET_NAME VARCHAR2(30) Name of the negative rule set used by the capture
process for filtering

NEGATIVE_RULE_SET_OWNER VARCHAR2(30) Owner of the negative rule set used by the capture
process for filtering

MAX_CHECKPOINT_SCN NUMBER SCN at which the last checkpoint was taken by the
capture process

ALL_XSTREAM_INBOUND

12-6 Oracle Database XStream Guide

ALL_XSTREAM_INBOUND
ALL_XSTREAM_INBOUND displays information about the XStream inbound servers
accessible to the current user.

Related View
DBA_XSTREAM_INBOUND displays information about all XStream inbound servers in the
database.

REQUIRED_CHECKPOINT_SCN NUMBER Lowest SCN for which the capture process requires redo
information to restart

Note: This SCN value does not necessarily correspond
with a checkpoint SCN value.

LOGFILE_ASSIGNMENT VARCHAR2(8) Logfile assignment type for the capture process:

■ IMPLICIT

■ EXPLICIT

STATUS_CHANGE_TIME DATE Time that the status of the capture process was changed

ERROR_NUMBER NUMBER Error number if the capture process was aborted

ERROR_MESSAGE VARCHAR2(4000) Error message if the capture process was aborted

VERSION VARCHAR2(64) Version number of the capture process

CAPTURE_TYPE VARCHAR2(10) Type of the capture process:

■ DOWNSTREAM

■ LOCAL

LAST_ENQUEUED_SCN NUMBER Last enqueued SCN

CHECKPOINT_RETENTION_TIME NUMBER Checkpoint retention time

Note: When the checkpoint retention time for a capture
process is set to INFINITE, then the value displayed in
this column is 4294967295.

START_TIME TIMESTAMP(6) Time from which the capture process will start to
capture changes

PURPOSE VARCHAR2(19) Purpose of the capture process:

■ Streams - A capture process in an Oracle Streams
configuration

■ XStream Streams - A capture process in an Oracle
Streams configuration with XStream capabilities
enabled by the DBMS_XSTREAM_ADM.ENABLE_GG_
XSTREAM_FOR_STREAMS procedure

■ XStream Out - A capture process in an XStream Out
configuration

■ AUDIT VAULT - A capture process in an audit vault
configuration

■ CHANGE DATA CAPTURE - A capture process in a
change data capture configuration

See Also: "DBA_CAPTURE" on page 12-12

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
STATUS and COMMITTED_DATA_ONLY columns are included in this view.

Column Data Type NULL Description

ALL_XSTREAM_INBOUND_PROGRESS

XStream Static Data Dictionary Views 12-7

ALL_XSTREAM_INBOUND_PROGRESS
ALL_XSTREAM_INBOUND_PROGRESS displays information about the progress made by the
XStream inbound servers accessible to the current user.

Related View
DBA_XSTREAM_INBOUND_PROGRESS displays information about the progress made by all
XStream inbound servers in the database.

Column Data Type NULL Description

SERVER_NAME VARCHAR2(30) NOT NULL Name of the inbound server

QUEUE_OWNER VARCHAR2(30) NOT NULL Owner of the queue associated with the inbound server

QUEUE_NAME VARCHAR2(30) NOT NULL Name of the queue associated with the inbound server

APPLY_USER VARCHAR2(30) Name of the user who can connect to the inbound server
and apply messages

USER_COMMENT VARCHAR2(4000) User comment

CREATE_DATE TIMESTAMP(6) Date when the inbound server was created

STATUS VARCHAR2(8) Status of the inbound server:

■ DISABLED - The inbound server is not running.

■ DETACHED - The inbound server is running, but the
XStream client application is not attached to it.

■ ATTACHED - The inbound server is running, and the
XStream client application is attached to it.

■ ABORTED - The inbound server became disabled
because it encountered an error.

COMMITTED_DATA_ONLY VARCHAR2(3) YES if the inbound server can receive only LCRs in
committed transactions from the XStream client
application. A committed transaction is an assembled,
noninterleaving transaction with no rollbacks.

NO if the inbound server can receive LCRs in transactions
that have not yet committed. This mode is for internal
Oracle use only.

See Also: "DBA_XSTREAM_INBOUND" on page 12-12

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
OLDEST_POSITION, OLDEST_MESSAGE_NUMBER, APPLIED_MESSAGE_NUMBER,
APPLIED_TIME, APPLIED_MESSAGE_CREATE_TIME, SPILL_MESSAGE_
NUMBER, and SOURCE_DATABASE columns are included in this view.

Column Data Type NULL Description

SERVER_NAME VARCHAR2(30) NOT NULL Name of the inbound server

PROCESSED_LOW_POSITION RAW(64) Position of the processed low transaction

APPLIED_LOW_POSITION RAW(64) All messages with a commit position less than this value
have been applied

APPLIED_HIGH_POSITION RAW(64) Highest commit position of a transaction that has been
applied

SPILL_POSITION RAW(64) Position of the spill low watermark of the transactions
currently being applied

OLDEST_POSITION RAW(64) Earliest position of the transactions currently being
applied

ALL_XSTREAM_OUTBOUND

12-8 Oracle Database XStream Guide

ALL_XSTREAM_OUTBOUND
ALL_XSTREAM_OUTBOUND displays information about the XStream outbound servers
accessible to the current user.

Related View
DBA_XSTREAM_OUTBOUND displays information about all XStream outbound servers in
the database.

OLDEST_MESSAGE_NUMBER NUMBER NOT NULL Earliest message number of the transactions currently
being applied

APPLIED_MESSAGE_NUMBER NUMBER NOT NULL Message number up to which all transactions have
definitely been applied. This value is the low watermark
for the inbound server. That is, messages with a commit
message number less than or equal to this message
number have definitely been applied, but some
messages with a higher commit message number may
also have been applied.

APPLIED_TIME DATE Time at which the message with the message number
displayed in the APPLIED_MESSAGE_NUMBER column was
applied

APPLIED_MESSAGE_CREATE_
TIME

DATE Time at which the message with the message number
displayed in the APPLIED_MESSAGE_NUMBER column was
created at its source database

SPILL_MESSAGE_NUMBER NUMBER Spill low watermark. Any message with a lower SCN
has either been applied or spilled to disk. The XStream
client application does not need to send LCRs with a
lower SCN than the spill low watermark. Spilled
messages may not have been applied yet.

SOURCE_DATABASE VARCHAR2(128) NOT NULL Database where the transaction originated

See Also: "DBA_XSTREAM_INBOUND_PROGRESS" on page 12-13

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
STATUS, COMMITTED_DATA_ONLY, START_SCN, and START_TIME columns
are included in this view.

Column Data Type NULL Description

SERVER_NAME VARCHAR2(30) NOT NULL Name of the outbound server

CONNECT_USER VARCHAR2(30) Name of the user who can connect to the outbound
server and process the outbound LCRs

CAPTURE_NAME VARCHAR2(30) Name of the Streams capture process

SOURCE_DATABASE VARCHAR2(128) Database where the transaction originated

CAPTURE_USER VARCHAR2(30) Current user who is enqueuing captured messages

QUEUE_OWNER VARCHAR2(30) NOT NULL Owner of the queue associated with the outbound server

QUEUE_NAME VARCHAR2(30) NOT NULL Name of the queue associated with the outbound server

USER_COMMENT VARCHAR2(4000) User comment

CREATE_DATE TIMESTAMP(6) Date when the outbound server was created

Column Data Type NULL Description

ALL_XSTREAM_OUTBOUND_PROGRESS

XStream Static Data Dictionary Views 12-9

ALL_XSTREAM_OUTBOUND_PROGRESS
ALL_XSTREAM_OUTBOUND_PROGRESS displays information about the progress made by
the XStream outbound servers accessible to the current user.

Related View
DBA_XSTREAM_OUTBOUND_PROGRESS displays information about the progress made by all
XStream outbound servers in the database.

STATUS VARCHAR2(8) Status of the outbound server:

■ DISABLED - The outbound server is not running.

■ DETACHED - The outbound server is running, but the
XStream client application is not attached to it.

■ ATTACHED - The outbound server is running, and the
XStream client application is attached to it.

■ ABORTED - The outbound server became disabled
because it encountered an error.

COMMITTED_DATA_ONLY VARCHAR2(3) YES if the outbound server can send only LCRs in
committed transactions to the XStream client
application. A committed transaction is an assembled,
noninterleaving transaction with no rollbacks.

NO if the outbound server can send LCRs in transactions
that have not yet committed to the XStream client
application. This mode is for internal Oracle use only.

START_SCN NUMBER The SCN from which the outbound server’s capture
process started capturing changes when it was last
started

START_TIME TIMESTAMP(6) The time from which the outbound server’s capture
process started capturing changes when it was last
started

See Also: "DBA_XSTREAM_OUTBOUND" on page 12-13

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
OLDEST_POSITION column is included in this view.

Column Data Type NULL Description

SERVER_NAME VARCHAR2(30) NOT NULL Name of the outbound server

SOURCE_DATABASE VARCHAR2(128) Database where the transaction originated

PROCESSED_LOW_POSITION RAW(64) Position of the low watermark transaction processed by
the outbound server

PROCESSED_LOW_TIME DATE Time when the processed low position was last updated
by the outbound server

OLDEST_POSITION RAW(64) The position of the earliest LCR that is required by the
XStream client application

See Also: "DBA_XSTREAM_OUTBOUND_PROGRESS" on
page 12-14

Column Data Type NULL Description

ALL_XSTREAM_RULES

12-10 Oracle Database XStream Guide

ALL_XSTREAM_RULES
ALL_XSTREAM_RULES displays information about the XStream rules accessible to the
current user.

Related View
DBA_XSTREAM_RULES displays information about all XStream server rules in the
database.

Column Data Type NULL Description

STREAMS_NAME VARCHAR2(30) Name of the Streams process

STREAMS_TYPE VARCHAR2(12) Type of the Streams process:

■ CAPTURE

■ APPLY

STREAMS_RULE_TYPE VARCHAR2(6) The Streams type of the rule:

■ TABLE

■ SCHEMA

■ GLOBAL

RULE_SET_OWNER VARCHAR2(30) Owner of the rule set

RULE_SET_NAME VARCHAR2(30) Name of the rule set

RULE_SET_TYPE CHAR(8) Type of the rule set:

■ POSITIVE

■ NEGATIVE

RULE_OWNER VARCHAR2(30) NOT NULL Owner of the rule

RULE_NAME VARCHAR2(30) NOT NULL Name of the rule

RULE_TYPE VARCHAR2(3) The type of the rule:

■ DML

■ DDL

RULE_CONDITION CLOB Current rule condition

SCHEMA_NAME VARCHAR2(30) For table and schema rules, the schema name

OBJECT_NAME VARCHAR2(30) For table rules, the table name

INCLUDE_TAGGED_LCR VARCHAR2(3) Indicates whether to include tagged LCRs (YES) or not
(NO)

SUBSETTING_OPERATION VARCHAR2(6) For subset rules, the type of operation:

■ INSERT

■ UPDATE

■ DELETE

DML_CONDITION VARCHAR2(4000) For subset rules, the row subsetting condition

SOURCE_DATABASE VARCHAR2(128) The name of the database where the LCRs originated

ORIGINAL_RULE_CONDITION VARCHAR2(4000) For rules created by Streams administrative APIs, the
original rule condition when the rule was created

SAME_RULE_CONDITION VARCHAR2(3) For rules created by Streams administrative APIs,
indicates whether the current rule condition is the same
as the original rule condition (YES) or not (NO)

See Also: "DBA_XSTREAM_RULES" on page 12-14

DBA_APPLY_SPILL_TXN

XStream Static Data Dictionary Views 12-11

DBA_APPLY
DBA_APPLY displays information about all apply processes in the database. Its columns
are the same as those in ALL_APPLY.

DBA_APPLY_ERROR
DBA_APPLY_ERROR displays information about the error transactions generated by all
apply processes in the database. Its columns are the same as those in ALL_APPLY_
ERROR.

DBA_APPLY_ERROR_MESSAGES

DBA_APPLY_ERROR_MESSAGES displays information about the individual messages in all
of the error transactions generated by all apply processes in the database. Its columns
are the same as those in ALL_APPLY_ERROR_MESSAGES.

For XStream inbound servers, each message in an error transaction is an LCR.

DBA_APPLY_SPILL_TXN
DBA_APPLY_SPILL_TXN displays information about the transactions spilled from
memory to hard disk by all apply processes in the database.

See Also: "ALL_APPLY" on page 12-1

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
ERROR_TYPE column is included in this view.

See Also: "ALL_APPLY_ERROR" on page 12-3

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Note:

■ Messages that were spilled from memory to hard disk do not
appear in this view.

■ This view does not contain information related to XStream
outbound servers.

See Also: "ALL_APPLY_ERROR_MESSAGES" on page 12-4

Column Data Type NULL Description

APPLY_NAME VARCHAR2(30) NOT NULL Name of the apply process that spilled one or more
transactions

XIDUSN NUMBER NOT NULL Transaction ID undo segment number

XIDSLT NUMBER NOT NULL Transaction ID slot number

XIDSQN NUMBER NOT NULL Transaction ID sequence number

FIRST_SCN NUMBER NOT NULL SCN of the first message in the transaction

DBA_CAPTURE

12-12 Oracle Database XStream Guide

DBA_CAPTURE
DBA_CAPTURE displays information about all capture processes in the database. Its
columns are the same as those in ALL_CAPTURE.

DBA_XSTREAM_ADMINISTRATOR

DBA_XSTREAM_ADMINISTRATOR displays information about the users who have been
granted privileges to be XStream administrators by procedures in the DBMS_XSTREAM_
AUTH package.

DBA_XSTREAM_INBOUND
DBA_XSTREAM_INBOUND displays information about all XStream inbound servers in the
database. Its columns are the same as those in ALL_XSTREAM_INBOUND.

MESSAGE_COUNT NUMBER Number of messages spilled for the transaction

FIRST_MESSAGE_CREATE_TIME DATE Source creation time of the first message in the
transaction

SPILL_CREATION_TIME DATE Time the first message was spilled

FIRST_POSITION RAW(64) Position of the first message in this transaction

This column is populated only for an XStream inbound
server.

TRANSACTION_ID VARCHAR2(128) Transaction ID of the spilled transaction

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
START_TIME and PURPOSE columns are included in this view.

See Also: "ALL_CAPTURE" on page 12-5

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Column Data Type NULL Description

USERNAME VARCHAR2(30) NOT NULL Name of the user who has been granted privileges to be
an XStream administrator

LOCAL_PRIVILEGES VARCHAR2(3) Indicates whether the user has been granted local
XStream administrator privileges (YES) or not (NO)

ACCESS_FROM_REMOTE VARCHAR2(3) Indicates whether the user can be used for remote
XStream administration through a database link (YES) or
not (NO)

See Also:

■ Chapter 9, "DBMS_XSTREAM_AUTH"

■ "Granting Privileges for the XStream Administrator" on page 4-1

Column Data Type NULL Description

DBA_XSTREAM_OUTBOUND

XStream Static Data Dictionary Views 12-13

DBA_XSTREAM_INBOUND_PROGRESS
DBA_XSTREAM_INBOUND_PROGRESS displays information about the progress made by all
XStream inbound servers in the database. Its columns are the same as those in ALL_
XSTREAM_INBOUND_PROGRESS.

DBA_XSTREAM_OUT_SUPPORT_MODE

DBA_XSTREAM_OUT_SUPPORT_MODE displays information about the level of capture
process support for the tables in the database.

DBA_XSTREAM_OUTBOUND
DBA_XSTREAM_OUTBOUND displays information about all XStream outbound servers in
the database. Its columns are the same as those in ALL_XSTREAM_OUTBOUND.

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
STATUS and COMMITTED_DATA_ONLY columns are included in this view.

See Also: "ALL_XSTREAM_INBOUND" on page 12-6

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
OLDEST_POSITION, OLDEST_MESSAGE_NUMBER, APPLIED_MESSAGE_NUMBER,
APPLIED_TIME, APPLIED_MESSAGE_CREATE_TIME, SPILL_MESSAGE_
NUMBER, and SOURCE_DATABASE columns are included in this view.

See Also: "ALL_XSTREAM_INBOUND_PROGRESS" on page 12-7

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Column Data Type NULL Description

OWNER VARCHAR2(30) Table owner

OBJECT_NAME VARCHAR2(30) Table name

SUPPORT_MODE VARCHAR2(6) Capture process support level for the table:

■ FULL - A capture process can capture changes made
to all of the columns in the table.

■ ID KEY - A capture process can capture changes
made to the key columns and any other columns in
the table that are supported by the capture process,
except for LOB, LONG, LONG RAW, and XMLType
columns.

■ NONE - A capture process cannot capture changes
made to any columns in the table.

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
STATUS, COMMITTED_DATA_ONLY, START_SCN, and START_TIME columns
are included in this view.

DBA_XSTREAM_OUTBOUND_PROGRESS

12-14 Oracle Database XStream Guide

DBA_XSTREAM_OUTBOUND_PROGRESS
DBA_XSTREAM_OUTBOUND_PROGRESS displays information about the progress made by all
XStream outbound servers in the database. Its columns are the same as those in ALL_
XSTREAM_OUTBOUND_PROGRESS.

DBA_XSTREAM_RULES
DBA_XSTREAM_RULES displays information about all XStream rules in the database. Its
columns are the same as those in ALL_XSTREAM_RULES.

See Also: "ALL_XSTREAM_OUTBOUND" on page 12-8

Note: Starting with Oracle Database 11g Release 2 (11.2.0.2), the
OLDEST_POSITION column is included in this view.

See Also: "ALL_XSTREAM_OUTBOUND_PROGRESS" on
page 12-14

See Also: "ALL_XSTREAM_RULES" on page 12-10

13

XStream Dynamic Performance (V$) Views 13-1

13 XStream Dynamic Performance (V$) Views

This chapter describes the dynamic performance (V$) views related to XStream. In an
XStream configuration, an apply process can function as an XStream outbound server
or inbound server.

This chapter contains these topics:

■ V$STREAMS_APPLY_COORDINATOR

■ V$STREAMS_APPLY_READER

■ V$STREAMS_APPLY_SERVER

■ V$XSTREAM_CAPTURE

■ V$XSTREAM_MESSAGE_TRACKING

■ V$XSTREAM_OUTBOUND_SERVER

■ V$XSTREAM_TRANSACTION

V$STREAMS_APPLY_COORDINATOR
V$STREAMS_APPLY_COORDINATOR displays information about each apply process
coordinator. The coordinator for an apply process gets transactions from the apply
process reader and passes them to apply servers. An apply process coordinator is a
subcomponent of an apply process, outbound server, or inbound server.

See Also: Oracle Database Reference

Column Data Type Description

SID NUMBER Session ID of the coordinator's session

SERIAL# NUMBER Serial number of the coordinator's session

STATE VARCHAR2(21) State of the coordinator:

■ INITIALIZING - Starting up

■ IDLE - Performing no work

■ APPLYING - Passing transactions to apply servers

■ SHUTTING DOWN CLEANLY - Stopping without an error

■ ABORTING - Stopping because of an apply error

APPLY# NUMBER Apply process number

An apply process coordinator is an Oracle background process, prefixed
by ap.

APPLY_NAME VARCHAR2(30) Name of the apply process

TOTAL_APPLIED NUMBER Total number of transactions applied by the apply process since the apply
process was last started

V$STREAMS_APPLY_COORDINATOR

13-2 Oracle Database XStream Guide

TOTAL_WAIT_DEPS NUMBER Number of times since the apply process was last started that an apply
server waited to apply a logical change record (LCR) in a transaction until
another apply server applied a transaction because of a dependency
between the transactions

TOTAL_WAIT_COMMITS NUMBER Number of times since the apply process was last started that an apply
server waited to commit a transaction until another apply server
committed a transaction to serialize commits

TOTAL_ADMIN NUMBER Number of administrative jobs issued since the apply process was last
started

TOTAL_ASSIGNED NUMBER Number of transactions assigned to apply servers since the apply process
was last started

TOTAL_RECEIVED NUMBER Total number of transactions received by the coordinator process since the
apply process was last started

TOTAL_IGNORED NUMBER Number of transactions which were received by the coordinator but were
ignored because they had been previously applied

TOTAL_ROLLBACKS NUMBER Number of transactions which were rolled back due to unexpected
contention

TOTAL_ERRORS NUMBER Number of transactions applied by the apply process that resulted in an
apply error since the apply process was last started

UNASSIGNED_COMPLETE_TXNS NUMBER Total number of complete transactions that the coordinator has not
assigned to any apply servers

AUTO_TXN_BUFFER_SIZE NUMBER Current value of transaction buffer size

Transaction buffer size refers to the number of transactions that the apply
reader can assemble ahead of apply servers. The apply process
periodically adjusts the transaction buffer size.

LWM_TIME DATE Time when the message with the lowest message number was recorded

The creation time of the message with the lowest message number was
also recorded at this time.

LWM_MESSAGE_NUMBER NUMBER Number of the message corresponding to the low-watermark

That is, messages with a commit message number less than or equal to
this message number have definitely been applied, but some messages
with a higher commit message number also may have been applied.

LWM_MESSAGE_CREATE_TIME DATE For captured messages, creation time at the source database of the
message corresponding to the low-watermark. For user-enqueued
messages, time when the message corresponding to the low-watermark
was enqueued into the queue at the local database.

HWM_TIME DATE Time when the message with the highest message number was recorded

The creation time of the message with the highest message number was
also recorded at this time.

HWM_MESSAGE_NUMBER NUMBER Number of the message corresponding to the high-watermark

That is, no messages with a commit message number greater than this
message number have been applied.

HWM_MESSAGE_CREATE_TIME DATE For captured messages, creation time at the source database of the
message corresponding to the high-watermark. For user-enqueued
messages, time when the message corresponding to the high-watermark
was enqueued into the queue at the local database.

STARTUP_TIME DATE Time when the apply process was last started

ELAPSED_SCHEDULE_TIME NUMBER Time elapsed (in hundredths of a second) scheduling messages since the
apply process was last started

ELAPSED_IDLE_TIME NUMBER Elapsed idle time

LWM_POSITION RAW(64) Position of the low-watermark LCR

HWM_POSITION RAW(64) Position of the high-watermark LCR

PROCESSED_MESSAGE_NUMBER NUMBER Message number currently processed by the apply coordinator

Column Data Type Description

V$STREAMS_APPLY_READER

XStream Dynamic Performance (V$) Views 13-3

V$STREAMS_APPLY_READER
V$STREAMS_APPLY_READER displays information about each apply reader. The apply
reader is a process which reads (dequeues) messages from the queue, computes
message dependencies, and builds transactions. It passes the transactions on to the
coordinator in commit order for assignment to the apply servers. An apply reader is a
subcomponent of an apply process, outbound server, or inbound server.

Note: The ELAPSED_SCHEDULE_TIME column is only populated if the
TIMED_STATISTICS initialization parameter is set to true, or if the
STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL.

Column Data Type Description

SID NUMBER Session ID of the reader's session

SERIAL# NUMBER Serial number of the reader's session

APPLY# NUMBER Apply process number

An apply process is an Oracle background process prefixed by ap.

APPLY_NAME VARCHAR2(30) Name of the apply process

STATE VARCHAR2(36) State of the reader:

■ INITIALIZING - Starting up.

■ IDLE - Performing no work.

■ DEQUEUE MESSAGES - Dequeuing messages from the queue.

■ SCHEDULE MESSAGES - Computing dependencies between messages
and assembling messages into transactions.

■ SPILLING - Spilling unapplied messages from memory to hard disk.

■ PAUSED - WAITING FOR DDL TO COMPLETE - Waiting for a data
definition language (DDL) LCR to be applied.

TOTAL_MESSAGES_DEQUEUED NUMBER Total number of messages dequeued since the apply process was last
started

TOTAL_MESSAGES_SPILLED NUMBER Number of messages spilled by the reader since the apply process was last
started

DEQUEUE_TIME DATE Time when the last message was received

DEQUEUED_MESSAGE_NUMBER NUMBER Number of the last message received

DEQUEUED_MESSAGE_CREATE_
TIME

DATE For captured messages, creation time at the source database of the last
message received. For user-enqueued messages, time when the message
was enqueued into the queue at the local database.

SGA_USED NUMBER Amount (in bytes) of SGA memory used by the apply process since it was
last started

ELAPSED_DEQUEUE_TIME NUMBER Time elapsed (in hundredths of a second) dequeuing messages since the
apply process was last started

ELAPSED_SCHEDULE_TIME NUMBER Time elapsed (in hundredths of a second) scheduling messages since the
apply process was last started. Scheduling includes computing
dependencies between messages and assembling messages into
transactions.

ELAPSED_SPILL_TIME NUMBER Elapsed time (in hundredths of a second) spent spilling messages since the
apply process was last started

LAST_BROWSE_NUM NUMBER Reserved for internal use

OLDEST_SCN_NUM NUMBER Oldest SCN

LAST_BROWSE_SEQ NUMBER Reserved for internal use

LAST_DEQ_SEQ NUMBER Last dequeue sequence number

V$STREAMS_APPLY_READER

13-4 Oracle Database XStream Guide

OLDEST_XIDUSN NUMBER Transaction ID undo segment number of the oldest transaction that either
has been applied or is being applied

OLDEST_XIDSLT NUMBER Transaction ID slot number of the oldest transaction that either has been
applied or is being applied

OLDEST_XIDSQN NUMBER Transaction ID sequence number of the oldest transaction that either has
been applied or is being applied

SPILL_LWM_SCN NUMBER Spill low-watermark SCN

PROXY_SID NUMBER When the apply process uses combined capture and apply, the session ID
of the propagation receiver that is responsible for direct communication
between capture and apply. If the apply process does not use combined
capture and apply, then this column is 0.

PROXY_SERIAL NUMBER When the apply process uses combined capture and apply, the serial
number of the propagation receiver that is responsible for direct
communication between capture and apply. If the apply process does not
use combined capture and apply, then this column is 0.

PROXY_SPID VARCHAR2(12) When the apply process uses combined capture and apply, the process
identification number of the propagation receiver that is responsible for
direct communication between capture and apply. If the apply process
does not use combined capture and apply, then this column is 0.

CAPTURE_BYTES_RECEIVED NUMBER When the apply process uses combined capture and apply, the number of
bytes received by the apply process from the capture process since the
apply process last started. If the apply process does not use combined
capture and apply, then this column is not populated.

DEQUEUED_POSITION RAW(64) Dequeued position

This column is populated only for an apply process that is functioning as
an XStream inbound server.

LAST_BROWSE_POSITION RAW(64) Reserved for internal use

OLDEST_POSITION RAW(64) The earliest position of the transactions currently being dequeued and
applied

This column is populated only for an apply process that is functioning as
an XStream inbound server.

SPILL_LWM_POSITION RAW(64) Spill low-watermark position

This column is populated only for an apply process that is functioning as
an XStream inbound server.

OLDEST_TRANSACTION_ID VARCHAR2(128) Oldest transaction ID

TOTAL_LCRS_WITH_DEP NUMBER Total number of LCRs with row-level dependencies since the apply
process last started

TOTAL_LCRS_WITH_WMDEP NUMBER Total number of LCRs with watermark dependencies since the apply
process last started

A watermark dependency occurs when an apply process must wait until
the apply process's low-watermark reaches a particular threshold.

TOTAL_IN_MEMORY_LCRS NUMBER Total number of LCRs currently in memory

SGA_ALLOCATED NUMBER The total amount of shared memory (in bytes) allocated from the Streams
pool for the apply process since the apply process last started

Note: The ELAPSED_DEQUEUE_TIME and ELAPSED_SCHEDULE_TIME
columns are only populated if the TIMED_STATISTICS initialization
parameter is set to true, or if the STATISTICS_LEVEL initialization
parameter is set to TYPICAL or ALL.

Column Data Type Description

V$STREAMS_APPLY_SERVER

XStream Dynamic Performance (V$) Views 13-5

V$STREAMS_APPLY_SERVER
V$STREAMS_APPLY_SERVER displays information about each apply server and its
activities. An apply server receives messages from the apply coordinator for an apply
process. For each message received, an apply server either applies the message or
sends the message to the appropriate apply handler. An apply server is a
subcomponent of an apply process, outbound server, or inbound server.

Column Data Type Description

SID NUMBER Session ID of the apply server's session

SERIAL# NUMBER Serial number of the apply server's session

APPLY# NUMBER Apply process number

An apply process is an Oracle background process prefixed by ap.

APPLY_NAME VARCHAR2(30) Name of the apply process

SERVER_ID NUMBER Parallel execution server number of the apply server

STATE VARCHAR2(20) State of the apply server:

■ INITIALIZING - Starting up.

■ IDLE - Performing no work.

■ RECORD LOW-WATERMARK - Performing an administrative job that
maintains information about the apply progress, which is used in the
ALL_APPLY_PROGRESS and DBA_APPLY_PROGRESS data dictionary
views.

■ ADD PARTITION - Performing an administrative job that adds a
partition that is used for recording information about in-progress
transactions.

■ DROP PARTITION - Performing an administrative job that purges rows
that were used to record information about in-progress transactions.

■ EXECUTE TRANSACTION - Applying a transaction.

■ WAIT COMMIT - Waiting to commit a transaction until all other
transactions with a lower commit SCN are applied. This state is
possible only if the COMMIT_SERIALIZATION apply process parameter
is set to a value other than DEPENDENT_TRANSACTIONS and the
PARALLELISM apply process parameter is set to a value greater than 1.

■ WAIT DEPENDENCY - Waiting to apply an LCR in a transaction until
another transaction, on which it has a dependency, is applied. This
state is possible only if the PARALLELISM apply process parameter is
set to a value greater than 1.

■ ROLLBACK TRANSACTION - Rolling back a transaction.

■ TRANSACTION CLEANUP - Cleaning up an applied transaction, which
includes removing LCRs from the apply process’s queue.

■ WAIT FOR CLIENT - Waiting for an XStream client application to
request more LCRs.

■ WAIT FOR NEXT CHUNK - Waiting for the next set of LCRs for a large
transaction.

XIDUSN NUMBER Transaction ID undo segment number of the transaction currently being
applied

XIDSLT NUMBER Transaction ID slot number of the transaction currently being applied

XIDSQN NUMBER Transaction ID sequence number of the transaction currently being
applied

COMMITSCN NUMBER Commit SCN of the transaction currently being applied

DEP_XIDUSN NUMBER Transaction ID undo segment number of a transaction on which the
transaction being applied by this apply server depends

DEP_XIDSLT NUMBER Transaction ID slot number of a transaction on which the transaction being
applied by this apply server depends

DEP_XIDSQN NUMBER Transaction ID sequence number of a transaction on which the transaction
being applied by this apply server depends

V$XSTREAM_CAPTURE

13-6 Oracle Database XStream Guide

V$XSTREAM_CAPTURE

DEP_COMMITSCN NUMBER Commit SCN of the transaction on which this apply server depends

MESSAGE_SEQUENCE NUMBER Number of the current message being applied by the apply server. This
value is reset to 1 at the beginning of each transaction.

TOTAL_ASSIGNED NUMBER Total number of transactions assigned to the apply server since the apply
process was last started

TOTAL_ADMIN NUMBER Total number of administrative jobs done by the apply server since the
apply process was last started. See the STATE information in this view for
the types of administrative jobs.

TOTAL_ROLLBACKS NUMBER Number of transactions assigned to this server that were rolled back

TOTAL_MESSAGES_APPLIED NUMBER Total number of messages applied by this apply server since the apply
process was last started

APPLY_TIME DATE Time the last message was applied

APPLIED_MESSAGE_NUMBER NUMBER Number of the last message applied

APPLIED_MESSAGE_CREATE_
TIME

DATE Creation time at the source database of the last captured message applied.
No information about user-enqueued messages is recorded in this column.

ELAPSED_DEQUEUE_TIME NUMBER Time elapsed (in hundredths of a second) dequeuing messages since the
apply process was last started

ELAPSED_APPLY_TIME NUMBER Time elapsed (in hundredths of a second) applying messages since the
apply process was last started

COMMIT_POSITION RAW(64) Commit position of the transaction.

This column is populated only for an apply process that is functioning as
an XStream outbound server or inbound server.

DEP_COMMIT_POSITION RAW(64) Commit position of the transaction the slave depends on

This column is populated only for an apply process that is functioning as
an XStream inbound server.

LAST_APPLY_POSITION RAW(64) For inbound servers, the position of the last message applied; for
outbound servers, the position of the last message sent to the XStream
client application

This column is populated only for an apply process that is functioning as
an XStream outbound server or inbound server.

TRANSACTION_ID VARCHAR2(128) Transaction ID that the slave is applying

This column is populated only for an apply process that is functioning as
an XStream inbound server.

DEP_TRANSACTION_ID VARCHAR2(128) Transaction ID of the transaction the slave depends on

This column is populated only for an apply process that is functioning as
an XStream inbound server.

Note:

■ The ELAPSED_DEQUEUE_TIME and ELAPSED_APPLY_TIME columns are
only populated if the TIMED_STATISTICS initialization parameter
is set to true, or if the STATISTICS_LEVEL initialization parameter
is set to TYPICAL or ALL.

■ The WAIT FOR NEXT CHUNK apply server state is available starting
with Oracle Database 11g Release 2 (11.2.0.2).

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Column Data Type Description

V$XSTREAM_CAPTURE

XStream Dynamic Performance (V$) Views 13-7

V$XSTREAM_CAPTURE displays information about each capture process that sends LCRs
to an XStream outbound server.

Note: This view does not display information about capture
processes that send LCRs to Oracle Streams apply processes. To view
information about such capture processes, query the V$STREAMS_
CAPTURE view.

Column Data Type Description

SID NUMBER Session identifier of the capture process

SERIAL# NUMBER Session serial number of the capture process session

CAPTURE# NUMBER Capture process number

A capture process is an Oracle background process prefixed by cp.

CAPTURE_NAME VARCHAR2(30) Name of the capture process

LOGMINER_ID NUMBER Session ID of the Oracle LogMiner session associated with the capture
process

STARTUP_TIME DATE Time when the capture process was last started

V$XSTREAM_CAPTURE

13-8 Oracle Database XStream Guide

STATE VARCHAR2(551) State of the capture process:

■ INITIALIZING - Starting up.

■ WAITING FOR DICTIONARY REDO - Waiting for redo log files containing
the dictionary build related to the first SCN to be added to the
capture process session. A capture process cannot begin to scan the
redo log files until all of the log files containing the dictionary build
have been added.

■ DICTIONARY INITIALIZATION - Processing a dictionary build.

■ MINING (PROCESSED SCN = scn_value) - Mining a dictionary build at
the SCN scn_value.

■ LOADING (step X of Y) - Processing information from a dictionary
build and currently at step X in a process that involves Y steps,
where X and Y are numbers.

■ CAPTURING CHANGES - Scanning the redo log for changes that satisfy
the capture process rule sets.

■ WAITING FOR REDO - Waiting for new redo log files to be added to the
capture process session. The capture process has finished processing
all of the redo log files added to its session. This state is possible if
there is no activity at a source database. For a downstream capture
process, this state is possible if the capture process is waiting for new
log files to be added to its session.

■ EVALUATING RULE - Evaluating a change against a capture process
rule set.

■ CREATING LCR - Converting a change into an LCR.

■ ENQUEUING MESSAGE - Enqueuing an LCR that satisfies the capture
process rule sets into the capture process queue.

■ PAUSED FOR FLOW CONTROL - Unable to enqueue LCRs either because
of low memory or because propagations and outbound servers are
consuming messages slower than the capture process is creating
them. This state indicates flow control that is used to reduce spilling
of captured LCRs when propagation or apply has fallen behind or is
unavailable.

■ WAITING FOR THE BUFFERED QUEUE TO SHRINK - Waiting for the
buffered queue to change to a smaller size. The buffered queue
shrinks when there is a memory limitation or when an administrator
reduces its size.

■ WAITING FOR n SUBSCRIBER(S) INITIALIZING - Waiting for outbound
servers that receive LCRs from the capture process to start, where n is
the number of outbound servers.

■ WAITING FOR TRANSACTION - Waiting for LogMiner to provide more
transactions.

■ WAITING FOR INACTIVE DEQUEUERS - Waiting for the capture process’s
queue subscribers to start. The capture process stops enqueuing
LCRs if there are no active subscribers to the queue.

■ SUSPENDED FOR AUTO SPLIT/MERGE - Waiting for a merge operation to
complete.

■ SHUTTING DOWN - Stopping.

■ ABORTING - Aborting.

TOTAL_PREFILTER_DISCARDED NUMBER Total number of prefiltered messages discarded

TOTAL_PREFILTER_KEPT NUMBER Total number of prefiltered messages kept

TOTAL_PREFILTER_
EVALUATIONS

NUMBER Total number of prefilter evaluations

TOTAL_MESSAGES_CAPTURED NUMBER Total number of redo entries passed by LogMiner to the capture process
for detailed rule evaluation since the capture process last started. A
capture process converts a redo entry into a message and performs
detailed rule evaluation on the message when capture process prefiltering
cannot discard the change.

CAPTURE_TIME DATE Time when the most recent message was captured

CAPTURE_MESSAGE_NUMBER NUMBER Number of the most recently captured message

Column Data Type Description

V$XSTREAM_MESSAGE_TRACKING

XStream Dynamic Performance (V$) Views 13-9

V$XSTREAM_MESSAGE_TRACKING

CAPTURE_MESSAGE_CREATE_
TIME

DATE Creation time of the most recently captured message

TOTAL_MESSAGES_CREATED NUMBER Count associated with ELAPSED_LCR_TIME to calculate rate

TOTAL_FULL_EVALUATIONS NUMBER Count associated with ELAPSED_RULE_TIME to calculate rate

TOTAL_MESSAGES_ENQUEUED NUMBER Total number of messages enqueued since the capture process was last
started

ENQUEUE_TIME DATE Time when the last message was enqueued

ENQUEUE_MESSAGE_NUMBER NUMBER Number of the last enqueued message

ENQUEUE_MESSAGE_CREATE_
TIME

DATE Creation time of the last enqueued message

AVAILABLE_MESSAGE_NUMBER NUMBER For local capture, the last redo SCN flushed to the log files. For
downstream capture, the last SCN added to LogMiner through the
archived redo log files.

AVAILABLE_MESSAGE_CREATE_
TIME

DATE For local capture, the time the SCN was written to the log file. For
downstream capture, the time the most recent archived redo log file
(containing the most recent SCN) was added to LogMiner.

ELAPSED_CAPTURE_TIME NUMBER Elapsed time (in hundredths of a second) scanning for changes in the redo
log since the capture process was last started

ELAPSED_RULE_TIME NUMBER Elapsed time (in hundredths of a second) evaluating rules since the
capture process was last started

ELAPSED_ENQUEUE_TIME NUMBER Elapsed time (in hundredths of a second) enqueuing messages since the
capture process was last started

ELAPSED_LCR_TIME NUMBER Elapsed time (in hundredths of a second) creating LCRs since the capture
process was last started

ELAPSED_REDO_WAIT_TIME NUMBER Elapsed time (in hundredths of a second) spent by the capture process in
the WAITING FOR REDO state

ELAPSED_PAUSE_TIME NUMBER Elapsed flow control pause time (in hundredths of a second)

STATE_CHANGED_TIME DATE Time at which the state of the capture process changed

SGA_USED NUMBER The total amount of shared memory (in bytes) currently used by the
capture process out of the amount allocated (SGA_ALLOCATED)

SGA_ALLOCATED NUMBER The total amount of shared memory (in bytes) allocated from the Streams
pool for the capture process

BYTES_OF_REDO_MINED VARCHAR2(64) The total amount of redo data mined (in bytes) since the capture process
last started

SESSION_RESTART_SCN VARCHAR2(64) The SCN from which the capture process started mining redo data when it
was last started

Note: The ELAPSED_CAPTURE_TIME, ELAPSED_RULE_TIME, ELAPSED_
ENQUEUE_TIME, ELAPSED_LCR_TIME, and ELAPSED_REDO_WAIT_TIME
columns are only populated if the TIMED_STATISTICS initialization
parameter is set to true, or if the STATISTICS_LEVEL initialization
parameter is set to TYPICAL or ALL.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Column Data Type Description

V$XSTREAM_OUTBOUND_SERVER

13-10 Oracle Database XStream Guide

V$XSTREAM_MESSAGE_TRACKING displays information about LCRs tracked through the
stream that are processed by XStream components.

You can track an LCR through a stream using one of the following methods:

■ Set the message_tracking_frequency capture process parameter to 1 or another
relatively low value.

■ Run the SET_MESSAGE_TRACKING procedure in the DBMS_STREAMS_ADM package.

When the actions parameter in the DBMS_STREAMS_ADM.SET_MESSAGE_TRACKING
procedure is set to DBMS_STREAMS_ADM.ACTION_MEMORY, information about the
LCRs is tracked in memory, and this view is populated with information about the
LCRs. Currently, DBMS_STREAMS_ADM.ACTION_MEMORY is the only valid setting for
the actions parameter in the procedure.

V$XSTREAM_OUTBOUND_SERVER

V$XSTREAM_OUTBOUND_SERVER displays statistics about an outbound server. An
outbound server sends LCRs to an XStream client application.

Note: This view does not display information about messages
flowing in an Oracle Streams configuration. To view information
about such message streams, query the V$STREAMS_MESSAGE_TRACKING
view.

Column Data Type Description

TRACKING_LABEL VARCHAR2(30) User-specified tracking label

TAG RAW(30) First 30 bytes of the tag of the LCR

COMPONENT_NAME VARCHAR2(30) Name of the component that processed the LCR

COMPONENT_TYPE VARCHAR2(30) Type of the component that processed the LCR

ACTION VARCHAR2(50) Action performed on the LCR

ACTION_DETAILS VARCHAR2(100) Details of the action

TIMESTAMP TIMESTAMP(9) WITH
TIME ZONE

Time when the action was performed

MESSAGE_CREATION_TIME DATE Time when the message was created

MESSAGE_NUMBER NUMBER SCN of the message

TRACKING_ID RAW(16) Globally unique OID of the LCR

SOURCE_DATABASE_NAME VARCHAR2(128) Name of the source database

OBJECT_OWNER VARCHAR2(30) Owner of the object

OBJECT_NAME VARCHAR2(30) Name of the object

XID VARCHAR2(128) Transaction ID

COMMAND_TYPE VARCHAR2(30) Command type of the LCR

MESSAGE_POSITION RAW(64) Position of the message

See Also: Oracle Streams Replication Administrator's Guide

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

V$XSTREAM_OUTBOUND_SERVER

XStream Dynamic Performance (V$) Views 13-11

Note: When the COMMITTED_DATA_ONLY column is YES in the
V$XSTREAM_OUTBOUND_SERVER view, the V$STREAMS_APPLY_SERVER view
provides additional information about the outbound server process,
and information about the apply server background processes used by
the outbound server.

Column Data Type Description

SID NUMBER Session ID of the outbound server’s session

SERIAL# NUMBER Serial number of the outbound server's session

SPID VARCHAR2(12) Process identification number of the operating-system process that sends
LCRs to the client application

SERVER_NAME VARCHAR2(30) Name of the outbound server

STARTUP_TIME DATE Time when the client application attached to the outbound server

V$XSTREAM_OUTBOUND_SERVER

13-12 Oracle Database XStream Guide

STATE VARCHAR2(37) State of the outbound server

When the COMMITTED_DATA_ONLY column shows YES, the following states
are possible:

■ INITIALIZING - Starting up the outbound server.

■ IDLE - Performing no work because there are no LCRs to send to the
XStream client application.

■ GET TRANSACTIONS - Receiving transactions from the outbound
server’s apply coordinator.

■ SEND TRANSACTION - Sending a transaction to an XStream client
application.

■ WAIT FOR NEXT CHUNK - Waiting for the next set of LCRs for a large
transaction.

■ TRANSACTION CLEANUP - Cleaning up an applied transaction, which
includes removing LCRs from the outbound server's queue.

■ WAIT FOR CLIENT - Waiting for an XStream client application to
request more LCRs.

When the COMMITTED_DATA_ONLY column shows NO, the following states are
possible:

■ INITIALIZING - Starting up the outbound server.

■ INITIALIZING RULE EVALUATION CONTEXT - Initializing the context to
evaluate the outbound server’s rules.

■ IDLE - Performing no work because there are no LCRs to send to the
XStream client application.

■ BROWSING LCR - Browsing the outbound server’s queue for the next
LCR.

■ EVALUATING RULES - Evaluating an LCR against a rule set.

■ DEQUEUING LCR - Dequeuing an LCR from the outbound server’s
queue.

■ SENDING LCR - Sending an LCR to an XStream client application.

■ WAITING FOR CAPTURE TO TERMINATE - Waiting for the capture
process to become disabled.

■ SUSPENDED DUE TO A DROPPED SUBSCRIBER - Suspended because a
connected subscriber was dropped. For example, a subscriber can be
dropped during a split or merge operation.

■ SUSPENDED FOR AUTO SPLIT/MERGE - Suspended because an
automatic split or merge operation is being performed.

■ WAITING ON EMPTY QUEUE - Waiting for more LCRs from the capture
process.

■ WAITING FOR CLIENT - Waiting for the XStream client application to
request more LCRs.

■ WAITING FOR CAPTURE TO INITIALIZE - Waiting for the capture
process to finish the data dictionary build.

■ WAITING TO ATTACH TO CAPTURE - Waiting for the outbound server to
attach to the capture process.

When a state refers to a capture process, it is the capture process that
captures changes for the outbound server. When a state refers to a
propagation, it is the outbound server that sends LCRs to the XStream
client application.

XIDUSN NUMBER Transaction ID undo segment number of the transaction currently being
processed

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

XIDSLT NUMBER Transaction ID slot number of the transaction currently being processed

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

Column Data Type Description

V$XSTREAM_TRANSACTION

XStream Dynamic Performance (V$) Views 13-13

V$XSTREAM_TRANSACTION

XIDSQN NUMBER Transaction ID sequence number of the transaction currently being
processed

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

COMMITSCN NUMBER Commit SCN of the transaction currently being processed

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

TOTAL_TRANSACTIONS_SENT NUMBER Total number of transactions sent by the outbound server to the XStream
client application since the last time the client application attached to the
outbound server

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

MESSAGE_SEQUENCE NUMBER Number of the current LCR being processed by the outbound server. This
value is reset to 1 at the beginning of each transaction.

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

TOTAL_MESSAGES_SENT NUMBER Total number of LCRs sent by the outbound server to the XStream client
application since the last time the client application attached to the
outbound server

SEND_TIME DATE Time the last LCR was sent by the outbound server to the XStream client
application

LAST_SENT_MESSAGE_NUMBER NUMBER Message number of the last LCR sent by the outbound server to the
XStream client application

LAST_SENT_MESSAGE_CREATE_
TIME

DATE Creation time at the source database of the last LCR sent by the outbound
server to the client application

ELAPSED_SEND_TIME NUMBER Time elapsed (in hundredths of a second) sending LCRs to the XStream
client application since the last time the client application attached to the
outbound server

COMMIT_POSITION RAW(64) Commit position of the transaction currently being processed

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

LAST_SENT_POSITION RAW(64) Position of the last LCR sent to the XStream client application

This column is populated only if the COMMITTED_DATA_ONLY column shows
YES. When the COMMITTED_DATA_ONLY column shows NO, this column is
NULL.

BYTES_SENT NUMBER Total number of bytes sent by the outbound server to the XStream client
application since the last time the client application attached to the
outbound server

COMMITTED_DATA_ONLY VARCHAR2(3) YES if the outbound server can send only LCRs in committed transactions
to the XStream client application. A committed transaction is an
assembled, noninterleaving transaction with no rollbacks.

NO if the outbound server can send LCRs in transactions that have not yet
committed to the XStream client application. This mode is for internal
Oracle use only.

Note: This functionality is available starting with Oracle Database
11g Release 2 (11.2.0.2).

Column Data Type Description

V$XSTREAM_TRANSACTION

13-14 Oracle Database XStream Guide

V$XSTREAM_TRANSACTION displays information about transactions that are being
processed by capture processes, outbound servers, and inbound servers. This view can
identify long running transactions and display how many LCRs are being processed in
each transaction. This view only contains information about captured LCRs. It does
not contain information about user-enqueued LCRs or user messages.

This view only shows information about LCRs that are being processed because they
satisfied the rule sets for the component at the time of the query. For capture processes,
this view only shows information about changes in transactions that the capture
process has converted into LCRs. It does not show information about all the active
transactions present in the redo log.

For outbound servers, this view only shows information about LCRs that the
outbound server has dequeued. It does not show information about LCRs in the
outbound server’s queue. For outbound servers, information about a transaction
remains in the view until the transaction is sent to the XStream client application.

For inbound servers, information about a transaction remains in the view until the
transaction commits or until the entire transaction is rolled back.

Note: This view does not display information about Oracle Streams
transactions. To view information about Oracle Streams transactions,
query the V$STREAMS_TRANSACTION view.

Column Data Type Description

COMPONENT_NAME VARCHAR2(30) Name of the component

COMPONENT_TYPE VARCHAR2(10) Type of component:

■ CAPTURE for a capture process

■ APPLY for the apply reader subcomponent in an outbound server or
inbound server

■ PROPAGATION_SENDER for the propagation sender that sends LCRs
from a capture process to an outbound server

XIDUSN NUMBER Transaction ID undo segment number of the transaction

XIDSLT NUMBER Transaction ID slot number of the transaction

XIDSQN NUMBER Transaction ID sequence number of the transaction

CUMULATIVE_MESSAGE_COUNT NUMBER Number of LCRs processed in the transaction. If a component is restarted
while the transaction is being processed, then this column shows the
number of LCRs processed in the transaction since the component was
started.

TOTAL_MESSAGE_COUNT NUMBER Total number of LCRs processed in the transaction by an outbound server
or inbound server. This column does not pertain to capture processes.

FIRST_MESSAGE_TIME DATE Time stamp of the first LCR processed in the transaction. If a capture
process is restarted while the transaction is being processed, then this
column shows the time stamp of the first LCR processed after the capture
process was started.

FIRST_MESSAGE_NUMBER NUMBER SCN of the first message in the transaction. If a capture process is restarted
while the transaction is being processed, then this column shows the SCN
of the first message processed after the capture process was started.

LAST_MESSAGE_TIME DATE Time stamp of the last LCR processed in the transaction

LAST_MESSAGE_NUMBER NUMBER SCN of the most recent message encountered in the transaction

FIRST_MESSAGE_POSITION RAW(64) Position of the first message seen by an XStream inbound server

This column is populated only for an apply process that is functioning as
an XStream inbound server.

V$XSTREAM_TRANSACTION

XStream Dynamic Performance (V$) Views 13-15

LAST_MESSAGE_POSITION RAW(64) Position of the last message seen by an XStream inbound server

This column is populated only for an apply process that is functioning as
an XStream inbound server.

TRANSACTION_ID VARCHAR2(128) Transaction ID for an XStream inbound server

This column is populated only for an apply process that is functioning as
an XStream inbound server.

Column Data Type Description

V$XSTREAM_TRANSACTION

13-16 Oracle Database XStream Guide

Index-1

Index

A
ADD_OUTBOUND procedure, 4-17, 8-7
ADD_SUBSET_OUTBOUND_RULES

procedure, 5-5, 8-11
ALL_APPLY view, 12-1
ALL_APPLY_ERROR view, 12-3
ALL_APPLY_ERROR_MESSAGES view, 12-4
ALL_CAPTURE view, 12-5
ALL_XSTREAM_INBOUND view, 12-6
ALL_XSTREAM_INBOUND_PROGRESS view, 12-7
ALL_XSTREAM_OUTBOUND view, 12-8
ALL_XSTREAM_OUTBOUND_PROGRESS

view, 12-9
ALL_XSTREAM_RULES view, 12-10
ALTER_INBOUND procedure, 5-15, 8-13
ALTER_OUTBOUND procedure, 5-4, 5-7, 5-9, 5-10,

5-11, 8-14
apply handlers, 2-4, 2-9
apply process

inbound servers, 2-10
outbound servers, 2-3

apply user
XStream In, 5-15

ARCHIVELOG mode
XStream Out, 4-12

C
capture process, 2-2

capture user
changing, 5-10

start SCN
changing, 5-11

start time
changing, 5-11

table support, 12-13
capture user

XStream Out, 5-10
character sets

SQL generation, 2-17
XStream OCI interface, 10-2

client applications
XStream

example, 4-26
commit_scn_from_position LCR attribute, 2-12

conflict resolution, 2-5, 2-9
CREATE_INBOUND procedure, 4-24, 8-19
CREATE_OUTBOUND procedure, 4-15, 8-21

D
data types

SQL generation, 2-17
XStream In, 2-9
XStream Out, 2-1

database links
XStream Out, 4-11

DBA_APPLY view, 6-5, 6-11, 12-11
DBA_APPLY_ERROR view, 12-11
DBA_APPLY_ERROR_MESSAGES view, 12-11
DBA_APPLY_SPILL_TXN view, 12-11
DBA_CAPTURE view, 12-12
DBA_CAPTURE_EXTRA_ATTRIBUTES view, 7-5
DBA_PROPAGATION view, 7-6
DBA_XSTREAM_ADMINISTRATOR view, 12-12
DBA_XSTREAM_INBOUND view, 6-10, 12-12
DBA_XSTREAM_INBOUND_PROGRESS

view, 6-11, 12-13
DBA_XSTREAM_OUT_SUPPORT_MODE

view, 12-13
DBA_XSTREAM_OUTBOUND view, 5-2, 6-3, 12-13
DBA_XSTREAM_OUTBOUND_PROGRESS

view, 6-8, 12-14
DBA_XSTREAM_RULES view, 12-14
DBMS_STREAMS_AUTH package, 9-1
DBMS_XSTREAM_ADM package, 8-1

security, 8-4
demos

file-based replication, 3-3
ID key LCRs, 2-7
SQL generation, 2-17
XStream, 4-27

dependency scheduling, 2-5
distributed transactions

XStream Out, 2-8
DROP_INBOUND procedure, 5-19, 8-25
DROP_OUTBOUND procedure, 5-13, 8-26

E
eager errors, 5-16

Index-2

ENABLE_GG_XSTREAM_FOR_STREAMS
procedure, 8-27

G
GRANT_ADMIN_PRIVILEGE procedure, 9-6
GRANT_REMOTE_ADMIN_ACCESS

procedure, 9-9

I
ID key LCRs, 2-6

demo, 2-7
inbound servers, 2-10

applied high position, 2-13
applied low position, 2-13
apply user, 2-18

changing, 5-15
configuring, 4-24
dropping, 5-19
eager errors, 5-16
monitoring, 6-10
OCI interface, 10-2
positions, 2-13

monitoring, 6-11
preparing for, 4-14
processed low position, 2-13
spill position, 2-13

INCLUDE_EXTRA_ATTRIBUTE procedure, 7-5
initialization parameters

XStream In, 4-14
XStream Out, 4-13

instantiation system change number, 2-4
IS_GG_XSTREAM_FOR_STREAMS function, 8-29

L
last sent position

monitoring, 6-5
logical change records (LCRs), 1-2

commit_scn_from_position attribute, 2-12
ID key LCRs, 2-6
missing, 7-2
missing attributes, 7-4
scn_from_position attribute, 2-12
sequence LCRs, 2-7
spilling, 2-4

O
OCI interface

XStream, 10-1
OCI_ATTR_XSTREAM_ACK_INTERVAL, 10-3
OCI_ATTR_XSTREAM_IDLE_TIMEOUT, 10-3
OCILCRAttributesGet(), 11-5
OCILCRAttributesSet(), 11-7
OCILCRDDLInfoGet(), 11-10
OCILCRDDLInfoSet(), 11-25
OCILCRFree(), 11-9
OCILCRHeaderGet(), 11-12
OCILCRHeaderSet(), 11-28

OCILCRLobInfoGet(), 11-31
OCILCRLobInfoSet, 11-33
OCILCRLobInfoSet(), 11-33
OCILCRNew(), 11-18
OCILCRNumberFromPosition(), 11-35
OCILCRRowColumnInfoGet(), 11-19
OCILCRRowColumnInfoSet(), 11-22
OCILCRRowStmtGet(), 11-15
OCILCRRowStmtWithBindVarGet(), 11-16
OCILCRSCNToPosition(), 11-36
OCILCRWhereClauseGet(), 11-37
OCILCRWhereClauseWithBindVarGet(), 11-39
OCIXStreamInAttach(), 11-41
OCIXStreamInChunkSend(), 11-55
OCIXStreamInCommit(), 11-59
OCIXStreamInDetach(), 11-43
OCIXStreamInErrorGet(), 11-52
OCIXStreamInFlush(), 11-54
OCIXStreamInLCRCallbackSend(), 11-46
OCIXStreamInLCRSend(), 11-44
OCIXStreamInProcessedLWMGet(), 11-51
OCIXStreamOutAttach(), 7-2, 11-60
OCIXStreamOutChunkReceive(), 11-71
OCIXStreamOutDetach(), 11-62
OCIXStreamOutLCRCallbackReceive(), 11-65
OCIXStreamOutLCRReceive(), 11-63
OCIXStreamOutProcessedLWMSet(), 11-70
Oracle Streams, 1-2
Oracle Streams Performance Advisor

XStream, 6-13
Oracle Streams pool, 7-5

XStream In, 4-14
XStream Out, 4-13

outbound servers, 2-2
apply process features, 2-3
capture processes, 2-2

capture user, 5-10
start SCN, 5-11
start time, 5-11

configuration options, 4-6
configuring, 4-15
connect user, 2-18

changing, 5-9
dropping, 5-13
monitoring, 6-3
OCI interface, 10-1
preparing for, 4-6
processed low position, 2-12

monitoring, 6-8
rules

adding, 5-4
removing, 5-7

statistics
monitoring, 6-6

streaming network transmission, 2-13
transactions

monitoring, 6-5

Index-3

P
parameter modes, 11-2
positions

applied high position, 2-13, 6-11
applied low position, 2-13, 6-11
processed low position, 2-12, 2-13, 6-8, 6-11
spill position, 2-13, 6-11
XStream, 2-11
XStream In, 2-13

monitoring, 6-11
XStream Out, 2-12

privileges
XStream administrator, 4-1, 9-6, 9-10

processed low position, 2-12
monitoring, 6-8

propagation, 2-2

R
REMOVE_SUBSET_OUTBOUND_RULES

procedure, 5-8, 8-30
replication

XStream, 3-2
REVOKE_ADMIN_PRIVILEGE procedure, 9-10
REVOKE_REMOTE_ADMIN_ACCESS

procedure, 9-12
rule-based transformations, 1-2, 2-3, 2-9, 7-3
rules, 1-2, 2-3, 2-9

XStream
monitoring, 6-12

XStream Out, 5-4

S
scn_from_position LCR attribute, 2-12
security

XStream, 2-18, 8-4
sequence LCRs, 2-7
SET_ENQUEUE_DESTINATION procedure, 2-6
SET_EXECUTE procedure, 2-6
SET_MESSAGE_TRACKING procedure, 7-4, 7-7
SET_TRIGGER_FIRING_PROPERTY

procedure, 2-10
source database, 2-2
split and merge, 2-8
SQL generation

data types, 2-17
XStream, 2-16

character sets, 2-17
demo, 2-17
formats, 2-17
interfaces, 2-16

start SCN
changing, 5-11

start time
changing, 5-11

statistics
XStream Out, 6-6

substitute key columns, 2-5

T
tables

XStream Out support, 12-13
tags, 2-5
triggers

XStream In, 2-10
troubleshooting

XStream, 7-1

U
UTL_SPADV package

XStream, 6-15

V
V$PROPAGATION_RECEIVER view, 7-5
V$SESSION view, 6-2
V$STREAMS_APPLY_COORDINATOR view, 13-1
V$STREAMS_APPLY_READER view, 13-3
V$STREAMS_APPLY_SERVER view, 13-5
V$STREAMS_CAPTURE view, 7-3, 7-5
V$STREAMS_POOL_STATISTICS view, 7-5
V$XSTREAM_CAPTURE view, 13-6
V$XSTREAM_MESSAGE_TRACKING view, 13-9
V$XSTREAM_OUTBOUND_SERVER view, 6-5, 6-6,

6-9, 13-10
V$XSTREAM_TRANSACTION view, 13-13
views

XStream, 12-1, 13-1

X
XA interface, 2-8
XStream, 2-1

client applications
example, 4-26

configuring, 4-1
DBMS_XSTREAM_ADM package, 8-1
demos, 4-27
diagnosing problems, 7-1
dynamic performance views, 13-1
managing, 5-1

overview, 5-1
monitoring, 6-1

inbound servers, 6-10
outbound servers, 6-3
rules, 6-12

OCI interface, 10-1
character sets, 10-2
functions, 11-1
handler and descriptor attributes, 10-2
parameters, 11-2
XStream In, 10-2
XStream Out, 10-1

Oracle Streams Performance Advisor, 6-13
positions, 2-11
privileges, 9-1
security, 2-18, 8-4
session information, 6-2

Index-4

SQL generation, 2-16
static data dictionary views, 12-1
troubleshooting, 7-1

client application, 7-2, 7-5
inbound servers, 7-6
missing LCR attributes, 7-4
missing LCRs, 7-2

use cases, 3-1
replication, 3-2
sharing data in files, 3-2
sharing data in memory, 3-3

UTL_SPADV package, 6-15
XStream In, 2-9

applied high position, 2-13
applied low position, 2-13
apply user, 5-15
configuring, 4-24
data types, 2-9
eager errors, 5-16
inbound servers, 2-10
initialization parameters, 4-14
managing, 5-14
monitoring, 6-10
Oracle Streams pool, 4-14
position, 6-11
positions, 2-13
preparing for, 4-14
processed low position, 2-13
spill position, 2-13
triggers, 2-10

XStream Out, 2-1
ARCHIVELOG mode, 4-12
capture user, 5-10
configuration options, 4-6
configuring, 4-14
data types, 2-1
database links, 4-11
distributed transactions, 2-8
dropping components, 5-13, 5-19
ID key LCRs, 2-6
initialization parameters, 4-13
managing, 5-2
monitoring, 6-3
Oracle Streams pool, 4-13
outbound servers, 2-2
positions, 2-12
preparing for, 4-6
process, 6-9
processed low position, 2-12, 6-8
rules, 5-4
sequence LCRs, 2-7
start SCN, 5-11
statistics, 6-6
streaming network transmission, 2-13
table support, 12-13
transactions, 6-5

XStream administrator, 4-1, 9-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I XStream Concepts and Use Cases
	1 Introduction to XStream
	About XStream
	Purpose of XStream
	Prerequisites for XStream
	Tasks and Tools for XStream
	XStream Tasks
	XStream Tools

	2 XStream Concepts
	XStream Out
	The Outbound Server
	Outbound Servers and Apply Process Features
	Apply Process Features That Are Applicable to Outbound Servers
	Apply Process Features That Are Not Applicable to Outbound Servers

	ID Key LCRs
	ID Key LCRs Demo

	Sequence LCRs
	Considerations for XStream Outbound Servers
	XStream Out and Distributed Transactions

	XStream In
	The Inbound Server
	Considerations for XStream Inbound Servers

	Position Order in an LCR Stream
	About Position Order
	Position of LCRs and XStream Out
	Additional LCR Attributes Related to Position
	The Processed Low Position and Restartability for XStream Out
	Streaming Network Transmission

	Position of LCRs and XStream In
	Summary of Position Use in XStream Out and XStream In

	XStream and SQL Generation
	Interfaces for Performing SQL Generation
	SQL Generation Formats
	Data Types and Character Sets
	SQL Generation Demo

	XStream and Security
	Other Ways to Share Information in a Heterogeneous Environment

	3 XStream Use Cases
	Introduction to XStream Use Cases
	XStream Out Use Cases
	XStream In Use Cases

	Replicating Data Changes with Non-Oracle Databases
	Using Files to Store Data Changes
	XStream Demo That Replicates Database Changes Using Files

	Sharing Data Changes with a Client-Side Memory Cache

	Part II XStream Administration
	4 Configuring XStream
	Preparing for XStream
	Granting Privileges for the XStream Administrator
	Preparing for XStream Out
	Decide How to Configure XStream
	Prerequisites for Configuring XStream Out
	Configure an XStream Administrator on All Databases
	If Required, Configure Network Connectivity and Database Links
	Ensure That Each Source Database Is in ARCHIVELOG Mode
	Set the Relevant Initialization Parameters
	Configure the Oracle Streams Pool
	If Required, Configure Log File Transfer to a Downstream Database
	If Required, Add Standby Redo Logs for Real-Time Downstream Capture

	Preparing for XStream In
	Configure an XStream Administrator
	Set the Relevant Initialization Parameters Relevant
	Configure the Oracle Streams Pool

	Configuring XStream Out
	Configuring an XStream Outbound Server
	Configuring Multiple XStream Out Components Using CREATE_OUTBOUND
	Configuring an Outbound Server Using ADD_OUTBOUND

	Adding an Additional Outbound Server to a Capture Process Stream

	Configuring XStream In
	Sample XStream Client Application
	Sample XStream Client Application for the Oracle Call Interface API
	Sample XStream Client Application for the Java API

	5 Managing XStream
	About Managing XStream
	Managing XStream Out
	Checking Whether the DBMS_XSTREAM_ADM Package Can Manage a Capture Process
	Managing Rules for an XStream Out Configuration
	Adding Rules to an XStream Out Configuration
	Adding Schema Rules and Table Rules to an XStream Out Configuration
	Adding Subset Rules to an Outbound Server’s Positive Rule Set

	Removing Rules from an XStream Out Configuration
	Removing Schema Rules and Table Rules From an XStream Out Configuration
	Removing Subset Rules from an Outbound Server’s Positive Rule Set

	Changing the Connect User for an Outbound Server
	Changing the Capture User of the Capture Process for an Outbound Server
	Changing the Start SCN or Start Time of the Capture Process for an Outbound Server
	Changing the Start SCN of the Capture Process for an Outbound Server
	Changing the Start Time of the Capture Process for an Outbound Server

	Dropping Components in an XStream Out Configuration

	Managing XStream In
	Changing the Apply User for an Inbound Server
	Managing Eager Errors Encountered by an Inbound Server
	Dropping Components in an XStream In Configuration

	6 Monitoring XStream
	About Monitoring XStream
	Monitoring Session Information About XStream Components
	Monitoring XStream Out
	Displaying General Information About an Outbound Server
	Displaying Status and Error Information for an Outbound Server
	Displaying Information About an Outbound Server’s Current Transaction
	Displaying Statistics for an Outbound Server
	Displaying the Processed Low Position for an Outbound Server
	Determining the Process Information for an Outbound Server

	Monitoring XStream In
	Displaying General Information About an Inbound Server
	Displaying the Status and Error Information for an Inbound Server
	Displaying the Position Information for an Inbound Server

	Monitoring XStream Rules
	XStream and the Oracle Streams Performance Advisor
	XStream Components
	Topology and Stream Paths
	XStream and Component-Level Statistics
	The UTL_SPADV Package
	Sample Output When an Outbound Server Is the Last Component in a Path
	Sample Output When an Inbound Server Is the Last Component in a Path

	7 Troubleshooting XStream
	Diagnosing Problems with XStream
	Problems and Solutions for XStream
	An OCI Client Application Cannot Attach to the Outbound Server
	Changes Are Failing to Reach the Client Application in XStream Out
	LCRs Streaming from an Outbound Server Are Missing Extra Attributes
	The XStream Out Client Application Is Unresponsive
	XStream In Cannot Identify an Inbound Server
	Changes Are Not Being Applied by an Inbound Server

	How to Get More Help with XStream

	Part III XStream PL/SQL Packages Reference
	8 DBMS_XSTREAM_ADM
	Using DBMS_XSTREAM_ADM
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_XSTREAM_ADM Subprograms
	ADD_OUTBOUND Procedure
	ADD_SUBSET_OUTBOUND_RULES Procedure
	ALTER_INBOUND Procedure
	ALTER_OUTBOUND Procedure
	CREATE_INBOUND Procedure
	CREATE_OUTBOUND Procedure
	DROP_INBOUND Procedure
	DROP_OUTBOUND Procedure
	ENABLE_GG_XSTREAM_FOR_STREAMS Procedure
	IS_GG_XSTREAM_FOR_STREAMS Function
	REMOVE_SUBSET_OUTBOUND_RULES Procedure

	9 DBMS_XSTREAM_AUTH
	Using DBMS_XSTREAM_AUTH
	Overview
	Security Model

	Summary of DBMS_XSTREAM_AUTH Subprograms
	GRANT_ADMIN_PRIVILEGE Procedure
	GRANT_REMOTE_ADMIN_ACCESS Procedure
	REVOKE_ADMIN_PRIVILEGE Procedure
	REVOKE_REMOTE_ADMIN_ACCESS Procedure

	Part IV XStream OCI API Reference
	10 Introduction to the OCI Interface for XStream
	About the XStream Interface
	XStream Out
	XStream In
	Position Order and LCR Streams
	XStream and Character Sets

	Handler and Descriptor Attributes
	Conventions
	Server Handle Attributes
	OCI_ATTR_XSTREAM_ACK_INTERVAL
	OCI_ATTR_XSTREAM_IDLE_TIMEOUT

	11 OCI XStream Functions
	Introduction to XStream Functions
	Conventions for OCI Functions
	Purpose
	Syntax
	Parameters
	Comments

	OCI XStream Functions
	OCILCRAttributesGet()
	OCILCRAttributesSet()
	OCILCRFree()
	OCILCRDDLInfoGet()
	OCILCRHeaderGet()
	OCILCRRowStmtGet()
	OCILCRRowStmtWithBindVarGet()
	OCILCRNew()
	OCILCRRowColumnInfoGet()
	OCILCRRowColumnInfoSet()
	OCILCRDDLInfoSet()
	OCILCRHeaderSet()
	OCILCRLobInfoGet()
	OCILCRLobInfoSet()
	OCILCRSCNsFromPosition()
	OCILCRSCNToPosition()
	OCILCRWhereClauseGet()
	OCILCRWhereClauseWithBindVarGet()
	OCIXStreamInAttach()
	OCIXStreamInDetach()
	OCIXStreamInLCRSend()
	OCIXStreamInLCRCallbackSend()
	OCIXStreamInProcessedLWMGet()
	OCIXStreamInErrorGet()
	OCIXStreamInFlush()
	OCIXStreamInChunkSend()
	OCIXStreamInCommit()
	OCIXStreamOutAttach()
	OCIXStreamOutDetach()
	OCIXStreamOutLCRReceive()
	OCIXStreamOutLCRCallbackReceive()
	OCIXStreamOutProcessedLWMSet()
	OCIXStreamOutChunkReceive()

	Part V XStream Data Dictionary Views
	12 XStream Static Data Dictionary Views
	ALL_APPLY
	ALL_APPLY_ERROR
	ALL_APPLY_ERROR_MESSAGES
	ALL_CAPTURE
	ALL_XSTREAM_INBOUND
	ALL_XSTREAM_INBOUND_PROGRESS
	ALL_XSTREAM_OUTBOUND
	ALL_XSTREAM_OUTBOUND_PROGRESS
	ALL_XSTREAM_RULES
	DBA_APPLY
	DBA_APPLY_ERROR
	DBA_APPLY_ERROR_MESSAGES
	DBA_APPLY_SPILL_TXN
	DBA_CAPTURE
	DBA_XSTREAM_ADMINISTRATOR
	DBA_XSTREAM_INBOUND
	DBA_XSTREAM_INBOUND_PROGRESS
	DBA_XSTREAM_OUT_SUPPORT_MODE
	DBA_XSTREAM_OUTBOUND
	DBA_XSTREAM_OUTBOUND_PROGRESS
	DBA_XSTREAM_RULES

	13 XStream Dynamic Performance (V$) Views
	V$STREAMS_APPLY_COORDINATOR
	V$STREAMS_APPLY_READER
	V$STREAMS_APPLY_SERVER
	V$XSTREAM_CAPTURE
	V$XSTREAM_MESSAGE_TRACKING
	V$XSTREAM_OUTBOUND_SERVER
	V$XSTREAM_TRANSACTION

	Index
	A
	C
	D
	E
	G
	I
	L
	O
	P
	R
	S
	T
	U
	V
	X

