Oracle® Database

Real Application Security Administrator's and Developer's Guide
12c Release 1 (12.1)

E48189-09

May 2015

ORACLE

Oracle Database Real Application Security Administrator's and Developer's Guide, 12c Release 1 (12.1)
E48189-09
Copyright © 2007, 2015, Oracle and/ or its affiliates. All rights reserved.

Primary Authors: Rod Ward, Sumit Jeloka, Roza Leyderman, Maitreyee Chaliha, Janis Greenberg, Tulika
Das, Sue Pelski

Contributors: Suraj Adhikari, Tanvir Ahmed, Rafae Bhatti, Chi Ching Chui, Praveen Deshmukh, Saba Gul,
Min-Hank Ho, Pat Huey, Swapna Jawarikapisha, Thomas Keefe, Peter Knaggs, Sanghoon Kwak, Hsiu-Chu
Li, Yan Li, Chao Liang, Shuo Liu, Chon Lei, Sarma Namuduri, Janaki Narasinghanallur, Ganesh Narayanan,
Paul Needham, Eric Paapanen, Vikram Pesati, Preetam Ramakrishna, Den Raphaely, Yi Ru, Javed Samuel,
Srividya Tata, Andrew Wang, Weihong Wang, Simon Watt, Mingzhu Wei, Min Xu, Shi Zhao, Sam Zhou

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an
inspiration to all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XXi
AN S Lo T VLT ORRTRRRRRRT XXi
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XXi
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XXi
(@03 4N T£=3 115 o) 0 I RTR TR RTRRN XXi

Changes in This Release for Oracle Database Real Application Security
Administrator's and Developer's GUIde...............ccocooirinienieeee e Xxiii

Changes in Oracle Database 12c Release 1 (12.1.0.2)......ccccoeuviiiiirininiiiininininiiiirisiscneecieeeeens XXiii

1 Introducing Oracle Database Real Application Security

What Is Oracle Database Real Application Security?............ccccooviiinnnnnnnnnine, 1-1
Disadvantages of Traditional Security for Managing Application Users.........c.c.cccoeuvererurunnce. 1-2
Advantages of Real Application SeCUrity.......cooooeiiiiiiiiiiiiic 1-2
Architecture of Real Application SeCUIity ... 1-2

Data Security Concepts Used in Real Application Securitycccoccviviiiiniiii. 1-3
About Data Security with Oracle Database Real Application Securitycccoeeveirieieiencen. 1-4
Principals: Users and RoIes...........ccccccuiiiiiiiiiiiiiiiiiiiiicssss e 1-5

Understanding the Difference Between Database Users and Application Users.............. 1-6
Understanding the Difference Between Database Roles and Application Roles............... 1-6
Granting Database Privileges to Application Users and Application Roles...................... 1-7
ApPplication Privileges ... 1-7
Security Classes in Oracle Database Real Application Security.......c.c.cocooeeieieiiciiiiicicicine, 1-7
Access Control Entry (ACE)ccociiiiiiiiiiiiiccc e 1-8
Access Control LiSt (ACL) ..ottt ettt ettt sttt ettt et et be e saen 1-8
Data Security POLICYc.oviuiieiiiecieece 1-8

Application Session Concepts Used in Application Securityccccovvininnnnnnnnninnnnn. 1-9

Flow of Design and Developmentcccccooiiiiiiiiiiiiiii e 1-9

Scenario: Security Human Resources (HR) Demonstration of Employee Information.......... 1-10
Basic Security HR Demo Scenario: Description and Security Requirements........................ 1-10
Basic HR Scenario: Implementation OVerview............ccoveeeiiiiinieiciniineeeceeceees 1-12

Auditing in an Oracle Database Real Application Security Environment................cccccceoeeu 1-13

2 Configuring Application Users and Application Roles
Configuring Application USersccccoiiiiiiiiiiiiii s 2-1

About Application User ACCOUNLS.........ccovviviiiiiiiiiieiiiiiicc s 2-1

General Procedures for Creating Application User Accountsc.cccoevecieieiccieiceennnnen. 2-1
Creating a Simple Application User ACCOUNL..........covuririririririreririrrreer e 2-2
Creating a Direct Login Application User AcCOUNtcooeuiiiiiriiiiiiiciec e, 2-3

Creating Direct Login Application User AcCounts.........ccoooovrueieieiiicieeiiicce e 2-3

Procedure for Creating the Direct Login Application User Account..........cccccceeucueueueuennnne 2-3

Setting a Password Verifier for Direct Application User Accountscccceevvveniiinininnen. 2-4
Resetting the Application User's Password with the SQL*Plus PASSWORD Command 2-5
Configuring an Application User SWItChccccococuiiiiiiiiiiiiicccecceeceeee e 2-7
Validating an Application USeT ..o 2-8

Configuring Application Roles ... 2-8
About Application ROLES.........cciuiiiiiiiiiiiiiiiccecce e 2-8
Regular and Dynamic Application Rolescccueioiiiiiiiiiciii e 2-8

Regular Application ROIES...........c.coiiiiiiici e 2-9

Dynamic Application ROLES.......c.cccciiuiiiiiiiiiiiiiiicicieeieeeee e 2-9
Configuring an Application RoOle...........ccciiiiiiiiiiiic 2-9

Creating a Regular Application Rolec.cooeiiiiiiiii 2-10

Creating a Dynamic Application Role........cccccceuiuririiiiiiinniiiircccccreeeeeeeeeeeees 2-10

Validating an Application Role..........ccocoviiiiiiiiiiiiic s 2-10
Predefined Regular Application Roles and Dynamic Application Roles.............ccccceoeeuene... 2-11

Effective Dates for Application Users and Application Roles............cccoevevciniinicnecnecnecns 2-11
Granting Application Privileges to Principalscccoviiiiiiiiiniiiccc 2-12
Granting an Application Role to an Application USercccoeeiiiiiniiiiciceiiicceecci, 2-12

Creating a New Application User and Granting This User an Application Role........... 2-12

Granting an Application Role to an Existing Application User...........ccocevveriviviiirinnnnnn 2-13
Granting an Application Role to Another Application Roleccoooeiiiiiiiiii, 2-13
Granting a Database Role to an Application Role...........c.cccooiiiiiiiiiiieceececccceenenens 2-13

Configuring Application Sessions

About ApPlication SESSIONS.........c..ccovuiiriiiriiiiieieereeere ettt ae et 3-1
Application Sessions in Real Application Securityccccovviviivininnniiniin, 3-2
Advantages of Application SESSIONSc.cceuiviiurieiiiicieec e 3-2

Creating and Maintaining Application Sessions............cccccvviiiiiiiinii, 3-3
Creating an Application SESSIONcciiuiiiiiiiiiiiiicic s 3-3
Creating an Anonymous Application SeSSION...........ccccviiiiiiiiiiiiciiccecceeeeeeees 3-4
Attaching an Application Session to a Traditional Database Sessioncccccceevuvereveicrircence. 3-4
Setting a Cookie for an Application SESSION ..o 3-5
Assigning an Application User to an Anonymous Application Sessionc.cccccevvivirirenence. 3-6

Switching Current Application User to Another Application User in Current Application
Session 3-7

Configuring Global Callback Event Handlers for an Application Session.............cccccoceveveuee. 3-7
Saving an Application SESSIONccccciiiiiiiiiiiiiiiiiiic e 3-9
Detaching an Application Session from a Traditional Database Sessioncccccceeueuenee. 3-10
Destroying an Application SeSSiON..........ccueiiurieiiiicicicc 3-11
Manipulating the Application Session State................ccccocoviiiniiiiiini 3-11
Using Namespace Templates to Create NameSpaCes..........cccovvvvrereriiiiiincieiiincccceenenes 3-12

Components of a Namespace Template...........cccocevviniiiiciiieiiiiiiiiccenes 3-12

INamMeESPACE VIEWSovviiiiiiiiiit s 3-13

Creating a Namespace Template for an Application Sessionccoceeiicieiiieiciennnes 3-13
Initializing a Namespace in an Application SeSsion...........cccccoceuceccueciiieeicieeeeeeeenennens 3-14
Initializing a Namespace When the Session Is Createdccccccoooiiiiiiiiiiiiin 3-14
Initializing a Namespace When the Session Is Attachedccccoooiiii 3-15

Initializing a Namespace When a Named Application User Is Assigned to an Anonymous
Application Session 3-16

Initializing a Namespace When the Application User Is Switched in an Application Session

3-16
Initializing a Namespace EXPLCitly........ccooiiiiiiiiii 3-17
Setting Session Attributes in an Application SESSIONc.cccoceueiecueueuciiceeiecieeceeeeeeees 3-18
Getting Session Attributes in an Application Sessioncccceveeviviiiiiiiiiiciic, 3-19
Creating Custom Attributes in an Application Sessioncccooeveerieiiicicieieiiicnccc 3-20
Deleting a Namespace in an Application Sessionccccceeueuviciierireiiceneccceeeeeeeeees 3-20
Enabling Application Roles for a Session ..., 3-21
Disabling Application Roles for a Session............coccueiiireiiiiiciiiiccc 3-22
Administrative APIs for External Users and Rolescccocooviiiiiiii 3-22

Configuring Application Privileges and Access Control Lists

Application Privileges............ccccoviiiiiiiiiiiii e 4-1
Aggregate PrivIege ... 4-1
ALL PIIVIIEZE.....cviiiiiiiiiiiiciciicc s 4-3
Configuring Security Classes..............cccoviiiiiiiiiiinii e 4-3
About Security Classes..........ooiiieiiiiiicieiicecie i 4-3
Security Class INheritance..........cocouriiii 4-4
Security Class as Privilege SCOPE.......cccociiiiiiiiiiiiicccceeecc e 4-5
DML SeCUTitY CLASS ...vovieiviieiicicieieiicie ettt 4-5
Validating Security Classes..........c.oocueuiiiiiieiiiicie e 4-5
Manipulating SeCUTity ClasSeSs........ccovururriririririririrre e 4-5
Configuring Access Control Lists ... 4-7
ADOUL ACLS QN ACES ..ottt ettt 4-7
Creating ACLS and ACEScccccciiiiiiiicccre e 4-8
DIBILY .ot 4-9

TVET L. e 4-9

ACE Start-Date and End-Date...........cccooeiiniiiiiniiiiic 4-10
Validating Access CONtrol LiStScooeueieiiiieiiiiiiicic e 4-10
Updating Access Control LiSts........ccccccciiiiiiiiiiiiiniiiiiiiiiccsnssss 4-10
Checking ACLS for @ Privilege........cccciiiiiiiiiiiiccceeceeeee e 4-11
Using Multilevel Authentication ..o 4-12
Principal TYPES ...c.cuivimimiiiiiiiiiciciciciciic et 4-12
Access Resolution RESUILS ..ot 4-13
ACE Evaluation OIder ..o 4-13
ACL INNETITANCE ...ttt ettt st 4-13
Extending ACL INheritance.........ccccccciiiiiiiiiiieccceeeeeeeeeee e 4-13
Constraining ACL INheritance ... 4-13

ACL Catalog VIEWS......c.ciiiiiiiiiiiiicci s 4-14
Security Class Catalog VIEWSccccciiuiiuiiiiiiimiiieeicieeeieieeeteieie e eeeanes 4-14

Data SeCUTIYccvoviiiiiii s 4-15

Data REAIMIS ..ottt e et e et e e et e e st e e saa e e e snt e e e snbeeesaaaeeenteeenteeennaees 4-15
ParameteriZed ACL........oo ittt et eae e te et e et e e eae e era e e aeeere s eteeeaaeeteeereeenaeenres 4-15
ACL BiNdiNg......c.coviiiiiiiiiiiiiiiicccc s 4-15

Configuring Data Security

About Data SeCUIitY........cccccoiviiiiiiiiiiiiii 5-1
Validating the Data Security POLicyccccccooviiiniiiiiii, 5-2
Understanding the Structure of the Data Security Policyccccoooviiiniiiiniiiiiiic, 5-2
Designing Data Realms.............ccccccoviiiiiiiiiiiiiiiiiiiic s 5-4
Understanding the Structure of a Data Realm.............coooii, 5-4
Using Static Data Realms ..o 5-6
Using Trace Files to Check for Policy Predicate EXrors...........coooevoiieiiiiiiciciccc 5-7
Applying Additional Application Privileges to a Column.............cccccoevvviininnnnnnninnne, 5-7
Enabling Data Security Policy for a Database Table or View.............ccccccoviiiiniiniiiiins 5-9
Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure......... 5-10
Applying Multiple Policies for a Table 01 VIeWccccoooiiiiiiiiiiiiiiccc 5-10

How the APPLY_OBJECT_POLICY Procedure Alters a Database Table............cccccvevevennenee. 5-10
How ACLs on Table Data Are Evaluated............cccoooieiiiiiiiiicccc 5-11
Creating Real Application Security Policies on Master-Detail Related Tables........................ 5-11
About Real Application Security Policies on Master-Detail Related Tables.......................... 5-12
Understanding the Structure of Master Detail Data Realms........c..ccccooeviiiiiininininicnnne 5-12
Example of Creating a Real Application Security Policy on Master-Detail Related Tables. 5-12
Managing Application Privileges for Data Security Policies.............cccccocooviiiininnn. 5-20
Bypassing the Security Checks of a Real Application Security Policyccccoovirieiennnen. 5-20
SQL*Plus SET SECUREDCOL Command.........ccccceciuiiiniiiiiiiniiiiieeennes 5-21
Using BEQUEATH CURRENT_USER VieWScccccoviiiiiiiiiiiiin s 5-22
Using SQL Functions to Determine the Invoking Application User...........ccoooeueiviririeinnnnnn, 5-24
Real Application Security: Putting It All Togetherccococoiiiiiiiiii 5-25
Basic HR Scenario: Implementation Taskscccccccevveiiininiiincrrecceeeceeeeees 5-25
Creating a Database User as the Real Application Security Administrator.................... 5-25
Creating Roles and Application USers...........cccciiiiiiiiiiiiiiiiiiciccccceeeieeennes 5-26
Creating the Security Class and ACLS ... 5-28
Creating the Data Security POLCYcooeuiviiiiiiieii 5-29
Validating the Real Application Security ObJects........cccccceeuiuiiviriiiiiiiiiiiiiicriicne 5-30
Disabling a Data Security Policy for a Table...........cccccooeiiiiiiiiiiiiccecccececenenens 5-31
Running the Security HR DeMOc.coooiiiiiiiiiii 5-31

6 Using Real Application Security in Java Applications

vi

Initializing the Middle Tier ... s 6-1
Mid-tier Configuration Mode...........cccciiiiiiiiiiiiic e 6-1
Using the getSessionManager Method ..o 6-1
Changing the Middle-Tier Cache Settingcccceoioiiieiiiiiiiiiie e, 6-3

Setting the Maximum Cache Idle Timeccccccccoeeiiiiiiiiiiiiiiiiiiccces 6-3
Setting the Maximum Cache SiZeccccociuieiiiiiiiiiiiiiiceeece e 6-3
Getting the Maximum Cache Idle Timecccccooiriiieiiiiiiiiicc e 6-3
Getting the Maximum Cache SiZe ... 6-3

Removing Entries from the Cache...........ccoviiiiiiiiiiiiccs 6-4

Clearing the Cache.............coiiiiiii e 6-4
Managing Real Application Security Sessions ..., 6-4
Creating A Real Application Security User SeSSiON...........cceueiiucieiiiiicicieiici e 6-4
Attaching An Application SeSSION.........ccoeuiiiuiiiieiiicieie e 6-5
Assigning or Switching an Application USeT...........c.ccooiiiiiiiiiiiiciicceeeeeeeneeenenenes 6-6
Enabling Real Application Security Application Roles...........cccoovvvivnininnninnninie, 6-7
Enabling a Real Application Security Application Roleccooveiiiiiiiiiiiie 6-7
Disabling a Real Application Security Application Rolec.cccoevivirvnnnnnnnnnirnene. 6-7
Checking If a Real Application Security Application Role Is Enabledcccccceuevennnn. 6-8
Performing Namespace Operations as Session USercccceuiiicueieiicieieiiicce e, 6-8
Creating INamMeSPACES...........ccciviiiiiiiiiii s 6-8
Deleting NamMeSPACEScoceveviiirieieiiciet e 6-9
Implicitly Creating Namespaces...........ccccueuiirieieiiciceeecc s 6-9

Using Namespace Attributes ... 6-9
Performing Namespace Operations as Session Manager...........ccccoceueievicicieiiscersicce s 6-11
Performing Miscellaneous Session-Related Activities...........cccoceuoioiiiiiiiiiiiciiiicccc, 6-11
Getting the Oracle Connection Associated with the Session..........c.ccccoevvirvvvrnnncnne. 6-11

Getting the Application User ID for the SeSSion ... 6-11

Getting the Session ID for the SeSSION ..o 6-12
Getting a String Representation of the Session...........cccccocceicccciiiiiccccccccceee 6-12

Getting the 5ess10n COOKI@c.oiiuiieiiiciic s 6-12

Setting Session Inactivity Timeout as Session Manager............ccccccevvvvveeeeinininicccnennenne, 6-12

Setting the Session Cookie as Session Managerccoovevvvrernnnnsrsssesseeeseeeenes 6-12
Detaching an Application SESSION ... 6-12
Destroying A Real Application Security Application Session...........cccccevireieiiicicieinccnnen, 6-13
Authenticating Application Users Using Java APIS..........ccccoceiiiiiiiiininiiiicccces 6-13
Authorizing Application Users Using ACLSccccoeviiniiiiiiiiiiiiccs 6-14
Constructing an ACL Identifier ..o 6-14
Using the checkAcl Method........c.coiiiiiiiiiiiiiccccccecceee s 6-14
Getting Data Privileges Associated with a Specific ACL.......cccccccoviiiiininiin, 6-15
Human Resources Administration Use Case: Implementation in Java.........cccccooovninnnnnn 6-15

7 Oracle Fusion Middleware Integration with Real Application Security

External Users and External ROIEScccccociviiiiiiiiniiiiiiniiciieectree e aese e 7-1
Session APIs for External Users and Rolescccccccoiiiiiiiic, 7-2
Namespace for External USeTScccoccuvveiiiiiiiiiiiiiiiiii s 7-2
Creating @ SESSIONc.eiiiiiiieiiiic s 7-2
Ataching @ SESSIONvviiiiiiiiicieieiecece e 7-4
Assigning a User t0 @ SeSSION.........coiiuriiiiiiiiciiccic 7-7
Saving a Session and Aborting a SESSION..........ccueveuiiiiiiiicieice e 7-9

8 Application Session Service in Oracle Fusion Middleware

Real Application Security CONCEPLScccoovviiiiiriniiiiiriectrereeeese et 8-1
Application Session Service in Oracle Fusion Middleware.............c..cccoccceviciniiniininninnennenns 8-3
Application Session Filter ... 8-5

vii

9

viii

Application Session Filter Operationccccevviiiininiiiiniiiii e, 8-5

DePloYment........cccoviiiiiiiiiiiiiiiii s 8-6
Application Configuration of the Application Session Filter.............cccccocoiiinniiiiniinn, 8-6
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and
Oracle Fusion MiddleWarecoooiiiiiiiiiiiii s 8-8
Prer@qUISITES....cucviviiiiciicittt s 8-8
Manual ConfigUIAtIONcceueuiuiuiuiieieiieiceeeee et 8-8
Automatic CoNfiguration.........oooeuiiiiiiiic e 8-9
Application Session APIS ..o 8-10
Application SeSsion APIS........c.ccoiiiiiiiiiiece et 8-10
Attaching to an Application SeSSiONcccvuiiiiiiiiiiiiiicccc 8-10
Detaching from an Application SeSSIONcceuiiuiieiiicicieicc i 8-11
Destroying an Application SESSIONccccciuiiicuiieiiiiiieeeceeeee s 8-12
Privilege Elevation AP ..o 8-13
Enabling a Dynamic Role in the Application Session ... 8-13
Namespace APIS.........cooiiiiiii s 8-14
Creating a NamMeSPaCe........cccueueiiiiiiiiiicee s 8-15
Deleting a INamMeSPACE........ccocueueiiiiieieiieecteie ettt 8-15
Setting the Namespace Attribute..........ccccceiiiiiiiiiiiiicceeee s 8-15
Deleting a Namespace Attribute ... 8-16
Getting a Namespace Attributecooeuiviiiiiii 8-16
Check Privilege AP ... 8-18
Check a Privilege on the ACLScccoooiiiiiici s 8-18
Human Resources Demo Use Case: Implementation in Javaccccovvniiininnninnnnn, 8-20
Setting Up the HR Demo Application for External Principals (setup.sql)cccccevevvrerunencee 8-21
Application Session Filter Configuration File (Web.Xml)ccccccoviiiiininiiiiinn, 8-25
Sample Servlet Application (MyHR java)cccoueioiriiiiiiiec 8-28
Filter to Set Up the Application Namespace (MyFilter.java).......ccccceeeueurvvrerrnnnnnncncenes 8-34
HR Demo Use Case - User ROIEs..........ccccoeuiiiiiiiiiiiiiiiiiiiec s 8-37
HR Demo (1) - Logged in as Employee LPOPP............cccoooiiiii 8-38
HR Demo (2) - Logged in as HRMGR..........cccccceiiiiiiiiiiiiiiiicceeeceeeeeeeeeeeeeeeeeeeeees 8-38
HR Demo (3) - Logged in as a Team Manager............ccccevvvieinininieieininiieieeeeesennns 8-39

Oracle Database Real Application Security Data Dictionary Views

DBA_XS_OBJECTS ...ttt s st st 9-3
DBA_XS_PRINCIPALS.......ootiitetetetetettette ettt sttt ettt a e s st et sae e et et et ese e st sesaesnenes 9-4
DBA_XS_EXTERNAL_PRINCIPALS........ccooiiiiiiiiiiiiiiicicce ettt 9-4
DBA_XS_USERS ...ttt e s sttt 9-5
USER _XS_USERS. ...ttt ettt ettt ettt st et b e et sttt e et et et ese e bt sesaessenes 9-6
USER_XS_PASSWORDL_LIMITScoooiiiiiiiiicne et s 9-6
DBA_XS_ROLES ...ttt s s st sttt et 9-7
DBA_XS_DYNAMIC_ROLEScociitttenietetetetete ettt sttt sae ettt ese et saessenes 9-7
DBA_XS_PROXY_ROLESccooiiiiiiiicetceeete sttt e 9-8
DBA_XS_ROLE_GRANTS ..ottt sttt 9-8
DBA_XS_PRIVILEGESccootiitittitetteeettete ettt ettt st sae s st et sa ettt ese et seenes 9-9
USER_XS_PRIVILEGESccocoiiiiiiiitct sttt 9-9
DBA_XS_IMPLIED_PRIVILEGESccooiiiiiiiiiiieiiee ettt 9-10

10

USER_XS_IMPLIED_PRIVILEGEScccooiiiiiiiiiiteteecteeteteee e 9-10

DBA_XS_SECURITY_CLASSES..........ccoooimroieriirrirsessseesssessssessssessssssssessssssssssessssesssssssssssssssssssnons 9-11
USER_XS_SECURITY_CLASSESccoouiiiiriireiinsisesssesissssssssesssssssssssessssessssssssssssssssessssnens 9-11
DBA_XS_SECURITY_CLASS_DEPcoovoiiiiiririeriensisesissessssssssssssesssssssssesssssssssssssssssssssnens 9-11
USER_XS_SECURITY_CLASS_DEP........cooocesvviimrrerrreeresesissesessessssssssessssssssssessssesssssssssssssessssnons 9-12
DBA_XS_ACLS ...ttt sttt ss st 9-12
USER_XS_ACLSccosvvemieriirniiiesesses st ssss sttt st 9-12
DBA_XS_ACES........oiiieiveieieseeesesses s sse s sses st ss s ss s s 9-13
USER_XS_ACESoiiiiiiiireitseseise st sssee st ss st ss sttt 9-13
DBA_XS_POLICIES...........osiiiriiiriiinsiesssssessssessssessssesssss st ssssesssssssssssssssss st sssessssssssesssessssnons 9-14
USER_XS_POLICIES..........ooooivuerieesieeessssessssessssessssesssss st ssssessssssssssssssssssssssssessssesssssssssessssssssanons 9-14
DBA_XS_REALM_CONSTRAINTSoesvuuiirriimriasnsessessssssesssessssss s ssssssesssssssssssssssssnes 9-15
USER_XS_REALM_CONSTRAINTSccoooriurririnriinrisesissssssssssssssssssessssessssssssessssssssessssnens 9-15
DBA_XS_INHERITED_REALMSocosmviriirmiiensieesssessssessssessssssssessssssssssessssesssssssssssssssssssnons 9-16
USER_XS_INHERITED_REALMSoosviiiiriiinrionsisesisssessssssssssessss s sssesssssssssssssssssssssnens 9-17
DBA_XS_ACL_PARAMETERS..........coovtmmriiriirniisnsssesssessssessssssssssssesssssessssessssessssessssssssessssnens 9-17
USER_XS_ACL_PARAMETERScoooimriiriiirisisssessssessssessssessssssssessssssssssessssesssssssssssssssssssnons 9-18
DBA_XS_COLUMN_CONSTRAINTSccooooriieriimiirniesnessssssesisessssssssssssesssesssssssssssssssssnes 9-18
USER_XS_COLUMN_CONSTRAINTSccoovurrirrriirisesiissesssessssssesssssssssessssssssessssssssssssssnens 9-18
DBA_XS_APPLIED_POLICIES............coooosiviriiereeesseeessssessssessssessssssssessssssssssesssse s sssesssssssssanons 9-19
DBA_XS_MODIFIED_POLICIES..........coccossiuuiitriinreisnssssessssssessssessssesssssssssssssesssssssssssssssssnes 9-19
DBA_XS_SESSIONScosvviriiiriieeeieessisessssssssssssesssss st sss st ss sttt 9-20
DBA_XS_ACTIVE_SESSIONScoooiieriieriisisisssssssssssssssessssessssssssessssssssssessssessssssssssssssessssnons 9-20
DBA_XS_SESSION_ROLEScoooiiiiiriiieeiseeisssesssssssssssssses st essssss s st sssssssssssssnes 9-21
DBA_XS_SESSION_NS_ATTRIBUTES..........coovvuriiinriieriinissnessnessesssssssssessssessssesssssssssessssnens 9-21
DBA_XS_NS_TEMPLATESccoooooiiieiiieriieseisessssesssseesssessssessssesssssssssssssssssssessssessss s ssssssssssssnons 9-22
DBA_XS_NS_TEMPLATE_ATTRIBUTEScooooriiiiiiiiinnieesieesesssessssssssssessssssssssssssssenes 9-22
ALL_XDS_ACL_REFRESHccoooesiiiiiiiriiniisseisessssessssesssssssssssssssssessssssssssesssssssssssssssssessssnons 9-23
ALL_XDS_ACL_REFSTAToosviiiveerieessisesssses s s st ssssessssesssssssssssssssssssessssessssssssssssssesssssons 9-24
ALL_XDS_LATEST_ACL_REFSTAToooiniiireieiisesisesisssesssssssssssssssessssessss st ssessssssssnens 9-24
DBA_XDS_ACL_REFRESHccooooosiuiiiiinriiniisnessssssssssessssssssesssssssssssssssssessssessssssssssssssssssnons 9-25
DBA_XDS_ACL_REFSTATcooovvmmoveerveseeeessisessssesssaes s ssssessss s sssssssssssssssssssssssssssssssssssessssanons 9-25
DBA_XDS_LATEST_ACL_REFSTATcooiiieriiriinsesnessssssesssessssessssess s sssse s sssssssssssssnes 9-26
USER_XDS_ACL_REFRESHcooooiiimriiriirniisssssssssessssssssessssssssesssssssssessssessssssssesssessssnons 9-27
USER_XDS_ACL_REFSTAToooveeiveereeeesessessssesssesssssesssssssssssessanons 9-27
USER_XDS_LATEST_ACL_REFSTATosvvuiiiiiinritesessesesssesssssssssssessssessssss s sssssssssssnens 9-28
V$XS_SESSION_NS_ATTRIBUTES........cooooriirriiiriinrisesessssssssssssssssssessssessssessssssssssssessssnons 9-28
VEXS_SESSION_ROLESoovooooveoeoeocveoseiesessesssaes oo ssss s s s sssse s 9-29
Oracle Database Real Application Security SQL Functions
COLUMN_AUTH_INDICATOR FUNCHON...........ovoorrvererreesesesseeessesesseesssses s 10-1
XS_SYS_CONTEXT FUNCHOMNoovrierierniteneiseesessse st sess sttt 10-2
ORA_CHECK_ACL FUNCHOMcoovoorieoniereieseeisesssssssssssssssses s ssse s ss st sssssssnes 10-4
ORA_GET_ACLIDS FUNCHOIeeeeiiiiiiieiiee ettt eeetat e e eeaate e e e ssnteeeeesssansseessssssanseessssnnnseeeas 10-4
ORA_CHECK_PRIVILEGE FUNCHONoovvveuienioneiseseseise st ssenes 10-5
TO_ACLID FUNCHON ..ottt e et e et e e st e s etae s saaessenseesensesesnssesssneesnseessnnes 10-5

11 Oracle Database Real Application Security PL/SQL Packages

DBMS_XS_SESSIONS PacKagec.coeiiiiiiiiiiiciiieteitiee et 11-1
SECUTTILY MO L.......oiiiiiiiiiiiicccc s 11-2
(@03 1= =1 1 1= S TSR U T PRRP 11-2
Object Types, Constructor Functions, Synonyms, and Grants...........cccccceeeiiiiinniennnn, 11-2
Summary of DBMS_XS_SESSIONS SUDPIOZIamScccceurueururururieirireeeieeeeirreeeeieeeesieeeeeeeeseens 11-3

CREATE_SESSION PrOCEAULI.......uviiiiieeeieieeeee et eeaee e eeeeeeeaveeesnaeessaaaessneeesnns 11-4
ATTACH_SESSION PrOCEAUTEcveuirieeieieeieieieieieteieietetetete et sesesesaese s e ssesessesessesessens 11-5
ASSIGN _USER PrOCEAUTI ...ceoeveeeeeeeeeeee et eeeteeeeeeeeeaeeseaeeeseseesesseessiseessessesssssessaeesnns 11-7
SWITCH_USER PrOCEAULEevviiieeeieetieeeeeee et eeeaee e eeaeeeeaaeessanesssnaaessnneeeenns 11-8
CREATE_NAMESPACE ProCedUre........ccceeveirieiieiieieieeeieieieeeieseseseesesaesessesessesessesessens 11-9
CREATE_ATTRIBUTE PrOCEAUL....ccuvteeeeieeeeeeeeeeeeeeeeeeeeeee et eeeeeeeereeseeaeessentessssneeseneas 11-10
SET _ATTRIBUTE PIOCEAULE.......coooueiiieeeieeeeeeeeee ettt et e s snneeas 11-11
GET_ATTRIBUTE ProOCEAUTIE........ceeveivieiietietietictietecteeteeteete et ee e eteeveeveeveeveevesaessessennens 11-12
RESET _ATTRIBUTE PrOCEAUTIC......uitieeeeeeeeeeeeeeee ettt eeeeeeeeneeeeeeseeseeneesseneesesseesennens 11-13
DELETE_ATTRIBUTE PrOCEAULEevveieeeeieeeeeeeeeeeeeeeeeeeee et snaeeas 11-13
DELETE_NAMESPACE ProCedurecccceoveieieieieieieieieieieeieeiereseevessesesseessesessesesesees 11-14
ENABLE _ROLE PIOCEAUTIE .c.eeveeeeeeeeeeee ettt eeee et eseeaeeesereeeesaseeseneessseesssneesssseens 11-15
DISABLE_ROLE PrOCEAUTIE.......ooooeeeiieeeeieeeeeeeeee ettt eae e s snae s snnneeas 11-15
SET_SESSION_COOKIE Procedure.........cccceerteerieerieeiiererteesieesiesessesessesessessssessssessssesens 11-16
REAUTH_SESSION PrOCEAUTE......veeeeeeeeeeeeeee et eeeeeeeeeeeeeeaeeseraeesssaeesesasesssneeens 11-17
SET_INACTIVITY_TIMEOUT ProcedUre.........ccoeeveieieiirinreiereeeeeeeeereereereesessessesessans 11-17
SAVE_SESSION PrOCEAUIEcuvevinieiinieeiieiiietiteesie ettt te e se e et sessesessesessesessesessesensens 11-18
DETACH_SESSION PIOCEAUIE ...eveeeeeeeeeeeeeeeeeee et eeeeeeeeveeeeeeeeseeaeeseaeessessesssnesssneeas 11-18
DESTROY_SESSION PIOCEAULEoeoeveieeneiieeeee ettt eae e s e e ennneeas 11-19
ADD_GLOBAL_CALLBACK ProCedureccoeueerieeinieinieieieieieisieseresesessesessesessesessens 11-19
ENABLE_GLOBAL_CALLBACK PIOCEAULE «.cooovveieeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeveeeeereeesennens 11-21
DELETE_GLOBAL_CALLBACK Procedureccccevveveieierieeeieerieiesiesteseessesseseeseeseesens 11-22

XS_ACL PACKAGEcvviiiiiiii bbb 11-22
SECUTILY MO L.t 11-23
Object Types, Constructor Functions, Synonyms, and Grants............cc.cceeueviinieiiinenenne. 11-23
(@079 15] 7: 1 1 1= TSRS RUUPRUURRN 11-24
Summary of XS_ACL SUbPIOZrams.........cccccovuvieirririiiriiirrreirrreee s 11-24

CREATE_ACL PIrOCEAUI ..o eeee et ete e s s st e s enaeesenanesenneeean 11-24
APPEND_ACES PrOCEAUTIEooiieeeeieeeee ettt ettt e et eseaaessenaeeesneesennaeas 11-25
REMOVE_ACES PIOCEAUIE ..ottt eeeae s eeseaeeeeeaseeseanessenaeesseneesssneens 11-26
SET _SECURITY_CLASS PrOCOAUIEuoooeeviieeneeieeeeee et 11-27
SET PARENT _ACL PIOCEAULIE ...eevveieeieeeeeeeeeeee ettt seat e et seaaeesenveessneessnaeas 11-27
ADD_ACL _PARAMETER PrOCEAUTIE «.ccooveeeeeieeeeeeeeee et eeeeeeeeeeeeeeeaeeseaeeeeeveeeeeeessenneas 11-28
REMOVE_ACL_PARAMETERS Procedurecccccevveveieierieeieeeeeieeesiesressesvessessessesnens 11-29
SET_DESCRIPTION PrOCEAUTIEceevinieriieriieiiietiietetetesteeesteeesaeessseesssesesse s ssessssessssesenns 11-29
DELETE _ACL PrOCEAUTI....coooeeeeeeeeeeeee ettt eeeeeeeeeeeteeeeaeeeeeaeeeeeeeeseeseesaaeesssseesssnnesssneeeas 11-30

XS_ADMIN_UTIL PacKage.........ccccooiiiiiiiiiiiiiiiicccs st 11-30
SeCUTILY MOdEL......ociiiiiiiiiiiii e 11-31
Object Types, Constructor Functions, Synonyms, and Grants............cccccceceevevvvrrernencnes 11-31
L0031 =1 1 1= USRS 11-31
Summary of XS_ADMIN_UTIL Subprogramscccccceeurernininicnreiniceeieiceee e 11-31

GRANT_SYSTEM_PRIVILEGE Procedure.........c.ccccoveverirerirercnnenireneeeneeeneeeneeeneenenns 11-31

REVOKE_SYSTEM_PRIVILEGE Procedurecccoceeeeieeieieininieeeeiese e 11-32
XS_DATA_SECURITY PaCKaGEcooviiiiiiiiiiiccccccccicce e 11-32
Object Types, Constructor Functions, Synonyms, and Grants...........c...ccoeeueireieiinenenne. 11-32
Security MOdel........coiiiiiiiiiiiiiiiiiiiiii e 11-34
Summary of XS_DATA_SECURITY SUbPrograms...........ccccceeurererururererrereseseseressesesseseseens 11-35
CREATE_POLICY PrOCEAUTEcccuvveiieeeeeeee ettt etaee st seanessnneee s 11-35
APPEND_REALM_CONSTRAINTS Procedureccceeeeeeueeineriiriesiesieneeeeeeeeieeeeeeene 11-36
REMOVE_REALM_CONSTRAINTS ProCedUIe....ccccoueeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneens 11-37
ADD_COLUMN_CONSTRAINTS Procedurec.ccceeeeeerereneneninienienieneeieeeeeeeeesnene 11-38
REMOVE_COLUMN_CONSTRAINTS Procedurecccceeeeeeererenieniesiesieeiereeeeene 11-38
CREATE_ACL_PARAMETER PrOCeAUTIE.....ccouvvviiiieieeeieeeiteeeeeeeeeee et eeeeseenvveeeessnnes 11-39
DELETE_ACL_PARAMETER Procedurecccoeveieieeieerieieniesiesieeeseeseeseeseeseeseesesnenns 11-39
SET_DESCRIPTION ProCeAUTIEccccoveieuieiieiieieeieee sttt ettt st e eeneene 11-40
DELETE_POLICY PIOCEAUTEeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeseaeeseaeeeseneesesnnessenneens 11-41
ENABLE_OBJECT_POLICY ProcedUre.......c.cccuecieeieriieieieeeeniesteieeeesresseesseeeesseessessesnnas 11-42
DISABLE_OBJECT_POLICY Procedure.........cccoeirerierieieieeeeeieeieee et seeeeene 11-42
REMOVE_OBJECT_POLICY ProcedUrecccceevevieierieieieeeeieesieeresressessessesesneseessessssenns 11-43
APPLY_OBJECT_POLICY Procedure.........ccceeueecuerieeierieeieieeeesieeeeesteseessessessessessesssessens 11-44
XS_DATA_SECURITY_UTIL PacKageccccoeiiiiiiiiiiiiiiiiiiiniceieece e 11-45
SECUTTLY MOMEL.......ooiiiiiir e 11-45
COMNSEANES ...ttt ettt et e st e et et e et et e et s e be e st e seessesseeseesseeseassasssesseessasseassensenssansanssensenses 11-45
Summary of XS_DATA_SECURITY_UTIL Subprogramscccccevvvvinnninnininininnencnnns 11-46
SCHEDULE_STATIC_ACL_REFRESH Procedure.......ccccoueeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeenens 11-46
ALTER_STATIC_ACL_REFRESH Procedure..........ccceeirueireinieenieisieeeieeeeeesie e 11-47
XS_DIAG PacKae.......c.cooiiiiiiiiiiiiiiicc ettt 11-47
SECUTILY MOMEL.......ooiiiiiiic e 11-48
Summary of XS_DIAG Subprogramsccccceurueiiieiiiniiiniinieice e 11-48
VALIDATE_PRINCIPAL FUNCHON ..ottt et a s 11-48
VALIDATE_SECURITY_CLASS FUNCHON......ccocotiieieiiiiierieiecreteieieieseeve s e eeeeeseeenens 11-49
VALIDATE_ACL FUNCHON ..ottt ettt ve vt ets vt veste v s evesbesaessessesseneas 11-50
VALIDATE_DATA_SECURITY FUNCHON ...vcevivieieiiieieieieieiceceteetereeeveeereeseveeeseseesesenens 11-50
VALIDATE_NAMESPACE_TEMPLATE FUNCHON......ccooievieieieieieieeeeeeee e 11-52
VALIDATE_WORKSPACE FUNCHOINoouiitiiiieieieieieeeteeteeeeteevesresves s essessesessesseseenens 11-52
XS_NAMESPACE PacKage........ccooeiiiiiiiiiiiiiieierteetesee sttt 11-53
SECUTILY MO L.......ooiiiiiii e 11-53
Object Types, Constructor Functions, Synonyms, and Grants...........c.cccceeeueniieieinincnennen. 11-53
(@079 151 7: 1 1 1= TSSO PRUPRURRRPRRNt 11-54
Summary of XS_NAMESPACE Subprograms............cccccccevuveeerirrnnnnnnresreseeneeeeseeeeeaes 11-54
CREATE_TEMPLATE ProCeAUTIE......couvvieeeiieeeeee et 11-54

ADD _ATTRIBUTES PrOCEAULIEooeeeeeiieeeeeeeeeee ettt seaae e s e s sneessanaeas 11-55
REMOVE_ATTRIBUTES PrOCEAUIE «..eeeeeeeeeeeeeeeeeee ettt eeeee s e seeeeeseneessneens 11-56

1) 8 B 5 VANAN) B 9 0 G 56 e Y=t e AU <R 11-57

SET _DESCRIPTION PrOCEAULIEevviieeieeeeieeeeee ettt ettt eeaaeeseaaeesenteessneessnneeas 11-57
DELETE_TEMPLATE PIOCEAUTE ..cooeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeaeeseaeeeseneesesnessanneens 11-58
XS_PRINCIPAL PACKAZE ..ottt 11-58
SECUTILY MO L......ooiiiiiiiiiiii e 11-58

xi

Object Types, Constructor Functions, Synonyms, and Grants.............cccccecevviennininnne 11-59

(@070 151 7: 1 1 £SO USROS UURUPRRURRURNt 11-59
Summary of XS_PRINCIPAL SUbProgramsccccceeeurvereririrerniniririsresseeesee s 11-60
CREATE_USER PrOCEAUTIEeviieeieeiceeeeeeeeeeeeeeee et et eeie e e seaaeesenaeessaavessnneeean 11-60
CREATE_ROLE PrOCEAUTIE.......ocvevievieiicieetieeeeeeet ettt ettt st s as s e eva v e 11-62
CREATE_DYNAMIC_ROLE PIOCEAUTE ...ceoeeeeeeeeeeeeeee et seeeeeeeaeeeeeavesesaeeeas 11-62
GRANT_ROLES PIOCEAULE.......veeieeeeieeeeee et eae e saae s snvessenaesennneeas 11-63
REVOKE_ROLES PIOCEAUTIEc..cviuiieiiiietievietieteetieteeteeteete et sese s e eve e eveeveeveevesaeesensennens 11-64
ADD_PROXY _USER PrOCEAUTEevvviiiieeeiieeeeeeeeieeeeeeeeteeeeeeeieeee e eseaaveeeesenasseeesssnnnsesssnnns 11-65
REMOVE_PROXY_USERS PrOCEAULEueeieeeeiieeieeeeeeeeeee e 11-66
ADD_PROXY_TO_DBUSERcoctetietietietietietectieteeteetetetee e evseve e et eteese st esessessens s esseseens 11-67
REMOVE_PROXY_FROM_DBUSER........ccccsitstirtirieieieieteieieetesssssessessessessessessessessesnens 11-68
SET_EFFECTIVE_DATES ProCeAULIE......cocoveietieriitiireeteciesietereseeseeseeveeeeeveereesessessessessesnans 11-68
SET_DYNAMIC_ROLE_DURATION Procedurecccoveverieieeerieecresieseeereeeeeeevneneens 11-69
SET DYNAMIC_ROLE_SCOPE PrOCEAUTE ...coooueeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneeeeeveeseeeeas 11-69
ENABLE_BY_DEFAULT PrOCEAULE ...uueoovviiieeeieceeeeeeeeee et 11-70
ENABLE_ROLES_BY_DEFAULT Procedurecoccoeueeveeieieieeieeeeeeeteereeveereeve e eveveenns 11-70
SET _USER_SCHEMA PIOCEAUIE «..oeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeaeeseeneesseneessseeesennens 11-71
SET _GUID PIOCEAULE.ccooeveeeeeeeeeeee ettt e et eeae e snaaessntessenaesennneeas 11-71
SET_PROFILE PrOCEAUTE........coviieeieiietieiietietieteeteeteeteete ettt ae s e eteeveeteeteevessessessessennens 11-72
SET _USER_STATUS PrOCEAUTIC......oeeeeeeeeeeeieeeeeeeeeeeeeeeeee e eeeeeeeseaeeeeeseeseseeseseesssneessssees 11-73
SET _PASSWORD PrOCEAULIE.coouviiieeieeeeeeeeeee ettt et e s s senae s sneeeas 11-74
SET_VERIFIER PrOCEAUIEc.oovviviitievietieteetieteeteetet ettt ete et ve st s e ens e evs v 11-75
SET _DESCRIPTION PrOCEAULEeeveeeeeeeeeeeeeeeeee ettt eeeeeeeeereeeeeaeeseneeseseesseneesssneens 11-75
DELETE_PRINCIPAL PIOCEAULEccovveeeeeeieeeeee et 11-76
XS_SECURITY_CLASS PACKAGEcvreeneiiiiiieteiee ettt esene 11-76
SECUTILY MO L.......oiiiiiiic e 11-77
Summary of XS_SECURITY_CLASS Subprograms...........cccccevviiieriiniiieninininensiinnnnns 11-77
CREATE_SECURITY_CLASS ProCedure........ceeieuiereiereieeeeieteee ettt sseeee e eveeve s 11-77
ADD PARENTS PIOCEAUIE ...eveeeeeeeeeeeeeeeeeeeeeeee et eeae e seaeeeeeveeseeneesesaeessensesssneesaneens 11-78
REMOVE_PARENTS PLOCEAULEoooveeieeeieeeeeeeee ettt 11-79
ADD _PRIVILEGES PrOCEAULE......eeviiieeeieeeeeeeeeeeeeteeeeeee ettt seet e eeeaaeeseaaeesenaeeesaeessnaeas 11-79
REMOVE_PRIVILEGES PrOCEAUL......uvieeeiieeeeee ettt eeeeeeeeeeeeeeereeseeaeesseneessssseesenens 11-80
ADD_IMPLIED_PRIVILEGES Procedure........c.cceeveieiieiienienieieeeeeeeeereereereevessessessesnans 11-81
REMOVE_IMPLIED_PRIVILEGES ProcedUre............cooeeueeveereeeeeeeeeeeeeeeeeeeeeeveevenens 11-82
SET _DESCRIPTION PrOCEAUIEevveeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeesereeeeeaeeseneessaeesseneesssneens 11-82
DELETE_SECURITY_CLASS ProCedUTIe.....cccuveiiieieieeiieeeeee et eaee s 11-83

12 Real Application Security HR Demo

Overview of the Security HR Demo.........cccccoiiiiiiiiiiii s 12-1
What Each Script D0escccoiiiiiiiiiiiiiiiiicir s 12-2
Setting Up the Security HR Demo Components...............cccccoeiviniiiinininiiiinniceens 12-4
Create Roles and Application USEeTIs...........ccciuiuiiiiiiiiiiieiiiiiiiciic s 12-4
Create the Security Class and ACLS...........ccccoeuiiniiiiiniiiceec e 12-4
Create the Data Security POLICYcccciiiiiiiiiiiiiccccccceecee e 12-5
Validate the Real Application Security Objectsccccovuviviiininininnniniiie, 12-6
Set up the Mid-Tier Related Configuration...........ccocoeueveiiiiiiiiniiciieec e, 12-7

Xii

A

Cc

Running the Security HR Demo Using Direct LoGon..............cccccciiiniiiiinniiiccce,

Running the Security HR Demo Attached to a Real Application Security Session
Running the Security HR Demo Cleanup Script..........ccccoiiiiiniiiniiiiiics
Running the Security HR Demo in the Java Interface..............cccocoeiiiiiiniinniis
Using RASADM to Run the Security HR Demo............ccccooiiiiiiiiiiicccas
Running the RASADM APPLCAtioN........ccceuviviiiiiiiriririirirrr e
For More INformation.........c.coeiiiiiiiiiiinic e
DeSiGN PRASE.........cuieiiecect e e
Development FLOWccciiiiiire et
Using RASADM to Create the HR Demo ..o
Creating Application ROLeScccouoviiriiiiiii s
Creating AppPLication USETSccccucuiiiiiiiiiiiiiiiriecieereecee s
Creating the Data Security POLCYccccovoiuiueiiiiicicc e

Predefined Objects in Real Application Security

Regular Application ROLESc.cccciuiiiiiiiiiiiiiicccce e
Dynamic Application ROLES...........coiiiiiiiiiiiiiiiiiiiiccc s
Database ROIES..........ccoviiiiiiiiiiiiiiiiiic s

Configuring OCI and JDBC Applications for Column Authorization

Using OCI to Retrieve Column Authorization Indicatorscccoovviiniiiinin
Example of Obtaining the Return Code...........cccooiiiiiiiiiiiiccceeeeeeeeeeeeeeeeeeees
Using Return Code and Indicator with Authorization Indicator ..o
Warning for Unknown Authorization Indicator ..o
OCI Describe for COIUMN SECUTILYc.cuiuiuiuiiiiimiiiieieiiiecieieeiceeee et neaeeees

Using JDBC to Retrieve Column Authorization Indicators...............cccccoviiiiiiinn.
Checking Security Attributes for a Table COlUMNccooeiiiiiiiiiicce e
Check User Authorization for a Table CoIUMIN..........ccooviiiiiiiiiiices
Example of Checking Security Attributes and User Authorizationcccoceeeeiiiiiiccinnnn.

Real Application Security HR Demo Files

How to Run the Security HR Democccoociiiiiiiiiiiiiiici s

Scripts for the Security HR Demo...........cccccoooiiiiiiiiiiiccccceee e
Rrdemo_SetUP.SqL.....c.ccuimiiiiicce s
hrdemo_1run.sql ... s
hrdemo_run_sess.SqL ...
HRDEIMOJAVA .ooviviniiiiiiiiniiiniccc et
hrdemo_clean.sql ...

Generated Log Files for Each Script ...
Rrdemo_SETUP.LOZcciuimiiiiiiiiciccccc e
hrdemo_rUNJOG ..o

xiii

hrdemo_1Un_SESS.JOZ........ciiimiiiiiiiiiiiiiici s C-19
HRDEMOLOG ..ot C-21
Rrdemo_Clean.JOg ..o s C-22

D Troubleshooting Oracle Database Real Application Security

About Real Application Security Diagnostics............ccccococeiiniiiiniiiiiie, D-1
Using Validation APIS..........c.oiiiiii e D-1
How to Check Which ACLs Are Associated with a Row for the Current User D-2
How to Find If a Privilege Is Granted in an ACL t0 a USer.......ccccccccccieiinciiicicicrieceee D-2
Exception State DUMPScovuiiiiiiiiiiiiiicicciccc s D-3
Event-Based TracCingccocouiiriioiiie s D-3
IN-MemMOTY TTACINGcviiiiiiiiiiiciiciic e D-3
STALISEICS ..ot D-3
Event-Based Tracing of Real Application Security Components.............c.ccceeeiiinniiinnicennne. D-3
Application Sessions (XSSESSION) Event-Based Tracingccccceeveveverrereverenererenerenesreneenes D-4
Application Principals (XSPRINCIPAL) Event-Based Tracing..........ccccecevvvevvvivvinriiniiienennnn D-6
Security Classes (XSSECCLASS) Event-Based Tracingccoceueioiieieiiciciciccecc D-7
ACL (XSACL) Event-Based TracCing........cccceeueueueururieiiriiciricieicieireieeeieeeeeeeeeeeeeeeeeeesee e D-8
Data Security (XSXDS and XSVPD) Event-Based Tracing...........ccocevevicieiiiiiciciiiicicee D-8
Exception State Dump Information.............cccoooiiiiiiiiis D-9
58510MN SHAtISHICSoveviiceieiicc e D-10
Middle-Tier TTaCingccccoceviiiiiiiiiiiiicec s D-10
Glossary
Index

Xiv

XV

List of Examples

XVi

2-1
2-2

2-3

A WN—=O

3-10
3-11
3-12
3-13
3-14
3-15

3-16

3-17
3-18
3-19
3-20
3-21
3-22
3-23
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

Setting the Password Verifier.............oooii 2-5
DBA Resets the Password with a Password Change Operation for User lwuser2 When Not
Explicitly Attached to a Session 2-5

User Iwuser2 Performs a Self Password Change that Fails When Explicitly Attached to a
Session Because the Session Lacks the ALTER USER Privilege 2-5

A Self Password Change Succeeds When Explicitly Attached to a Session and User
Iwuser2's Session Has the ALTER USER Privilege 2-6

Configuring a Proxy Application USerccccoieiiiiiiiiniiicce e 2-7
Creating a Session and Switching an Application User..........cccooeveiiiiiiiiiniiicicie 2-7
Creating a Regular Application Role ... 2-10
Creating a Dynamic Application Role..........ccccccvviiiiiiiiniiiiiiii 2-10
Setting Effective Dates for an Application User...........cocooeueiiiniiiniiiiiicccce 2-11
Setting Effective Dates for an Application Role of an Application User 2-11
Creating a New Application User and Granting This User an Application Role.......... 2-13
Granting an Application Role to an Existing Application User...........cccocevuviviiinininnnnnn 2-13
Granting a Regular Application Role to Another Regular Application Role 2-13
Granting a Database Role to an Application Role...........cccccccoiiiiiiiiniiiiniiine, 2-13
Creating an Application SESSION..........cciiiiiiiiiiii e 3-4
Creating an Anonymous Application SeSsion..........c.cccoiiiiiiiiiiiiiiiiices 3-4
Attaching an Application SESSION. ..o 3-5
Setting a Cookie for an Application SeSSIONcccccueueiiriciiiiiccice e 3-5
Assigning an Application User to an Application Session............ccccoeveeiiiiiiiniiiiiiiininnns 3-6

Switching an Application User to Another Application User in the Current Application
Session 3-7

Registering a Global Callback in an Application Sessioncccccceeiiiiiiiiniiiiicinns 3-9
Saving the Current User Application SeSSioN...........cccccvieiiiiiiiiiiiniiiiiiiinieeeenns 3-9
Detaching and Committing an Application Session...........cccccevvviiviinniinnniiiin 3-10
Detaching and Not Committing an Application Session...........cccceviiiiiiiiiiiiiiiiiennen, 3-10
Destroying an Application SeSSIONcocicueieiiicieiiiicc s 3-11
Creating a Namespace Template..........cccooiiiiiiiiiii 3-14
Initializing Namespaces When Creating an Application Session...........ccccccceevvvviiiiinnnen 3-15
Initializing Namespaces When Attaching an Application Sessioncccceeiereueinnes 3-15

Initializing Namespaces When Assigning an Application User to an Application Session....
3-16
Initializing Namespaces When Switching an Application User in an Application Session....
3-17

Initializing a Namespace Explicitly in an Application Session...........cccccceueucvcueuiiricncnnne. 3-18
Setting a Namespace Attribute for an Application Session............cccccoeeveiireiiicineieiennes 3-18
Getting a Namespace Attribute for an Application Session............ccccoevveiriereiccieininnes 3-19
Creating a Custom Namespace Attribute for an Application Session..........c.c.cccceunnenes 3-20
Deleting a Namespace in an Application Session...........c.ccoeeeeeiiiccenincceeecceeeee 3-20
Enabling a Role in an Application SESSION..........ccccccueueuririiiciiiiininiiiiicrcccssas 3-21
Disabling a Role in an Application SESSION..........cccccccueueiriiiciiiviiiniiirirncrcrseas 3-22
Adding an Aggregate Privilege to a Security Class........ccccocoveiiiiivcrinicceccecenes 4-2
Adding Implied Privileges to an Aggregate Privilegecccccovvviviinnnnnnnnninnne. 4-2
USINGg ALL GIant......oouiiiiiiiiiiiiciicc s s 4-3
Showing Security Class Inheritance.............cccociiiiiiiiiiiiiiccccccees 4-4
Adding Parent Security Classes for a Specified Security Class.........ccccoeeurireririicnnernnnnen. 4-5
Removing One or More Parent Classes for a Specified Security Class.........c.cccccoverrinncen. 4-5
Adding One or More Application Privileges to a Security Classccccocoeeverevvirenereinnen. 4-6
Removing One or More Application Privileges from a Specified Security Class 4-6
Removing all Application Privileges for a Specified Security Class.........ccccoovvvrrririnnnen. 4-6
Adding One or More Implied Application Privileges to an Aggregate Privilege............. 4-6
Removing a Specified Implied Application Privileges from an Aggregate Privilege 4-6

4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28

N
111 1
N =N

©

_A_A_A_A_A_A_A_A_Agoalj\jo')(n_';w

—
©Co~NOOCOA~AWN-—=-O

010101010101010101({101010101010101010101

[
N
o

521
5-22
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15

Removing all Implied Application Privileges from an Aggregate Privilege...................... 4-7

Setting a Description String for a Specified Security Class...........cooeeveivicieieiiiiciciine 4-7
Deleting a Specified Security Classcccoouieieiiiiiieiiicce s 4-7
Creating an Access Control List.........ccooeueiiiieiiiiiiiic s 4-8
Denying a Privilegecooeiiiiiiii e 4-9
Inverting an Application Privilege........cccceuiieieiiiiiiiiicc 4-9
Setting ACE Start-Date and End-Date ..o, 4-10
Appending an ACE to an Access Control List ... 4-10
Removing all ACEs from an ACL ..o 4-10
Modifying the Security Class for an ACLcccoooiiiiiiiiic e, 4-11
Setting or Modifying the Parent ACL...........coooioiiiiiiii 4-11
Removing all ACL Parameters for an ACL............ccoooiiiiiiiiiiii 4-11
Removing the Specified ACL Parameter for an ACL..........cccooooiiiiiiiiie, 4-11
Setting a Description String for an ACL.........c.ccooiii e, 4-11
Deleting an ACL.......oooiiii s 4-11
Extending ACL INheTitance...........ccouoviiieiiiiiicic s 4-13
Constraining ACL Inheritance: Firewall-Specific Authentication Privilege.................... 4-14
Using a Constraining Application Privilege ..o 4-14
Structure of a Data Security POLCYccouoviuiiiiiiiiici 5-3
Components of a Data Realm Constraint.............cccceeeeieiiiiiiiiiiieeeeens 5-5
Column with an Additional Application Privilege That Has Been Applied..................... 5-8
Checking Authorized Data and Masking NULL Values ..o 5-9
Using XS_DATA_SECURITY.APPLY_OBJECT_POLICYccccceiiiiiiiiiicieenieiean 5-10
A Master Detail Data Realm.........cccccocoviiiiiiiiiiiiiiccs 5-12
How a BEQUEATH CURRENT_USER View WOIKSc.cccccouiuriiiiiiiieiiiciciecin 5-23
How a BEQUEATH DEFINER View Works........cccccooiiiiiiiiiiiiiccccccc 5-23
Creating the Database USerccccouiiiiiiiiiii s 5-25
Creating the DB_EMP Database USercccccccviiiiiiieiniiiiiiiiciciceeeeeeeeennes 5-26
Creating the Application Role EMP_ROLE for Common Employees............ccccceuevnnene. 5-26
Creating the Application Role IT_ROLE for the IT Departmentccccccoevvviiinininnnnn 5-26
Creating the Application Role HR_ROLE for the HR Department............ccccceevvvnvrrnnnne. 5-26
Granting DB_EMP Database Role to Each Application Role..........cccccceevviiiiiiiinnnnnnn. 5-26
Creating Application User DAUSTINccccccooeviiiiiiiiiiiiiiiicccccees 5-27
Creating Application User SMAVRIS ... 5-27
Creating the HRPRIVS Security Classcccocoeueiiiiiiciiiiiiciccici s 5-28
Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL......ccccccoviiiiiiiiiecneeccenens 5-28
Creating the EMPLOYEES_DS Data Security POLCYcccoooiiiieiiiiiieicc 5-29
Applying the EMPLOYEES_DS Security Policy to the EMPLOYEES Table................... 5-30
Validating the Real Application Security Objectsccccoeviviiiiiiiiiiiiiiiicc, 5-30
Disabling a Data Security Policy for a Table............cccccoooeoiiiiiiiiiniiiiees 5-31
How to Get an Instance of the Session Manager in Java Using a Single Connection....... 6-2
How to Create a Real Application Security Session in Javacccccevvvvininnnnninienen, 6-5
How to Attach a Real Application Security Session in Java........ccceceeeeieiiiiiiiiiennns 6-5
How to Attach Using @ COOKIEc.cvvurieiiiiiiicieiiici s 6-6
How to Assign an Application User to a Session in Java........cccooeeeiiiniiiniiniciiiinennns 6-6
How to Switch an Application User in a Session in Java ... 6-6
How to Enable a Real Application Security Application Role in Java.......cccoceeveivininnnns 6-7
How to Disable a Real Application Security Application Role in Java........ccccceveeviiniinns 6-7
How to Test If a Real Application Security Application Role Is Enabled in Java............. 6-8
How to Create a Namespace in Java.......ccccooiiiiiiiiiiicccs e 6-8
How to Delete a Namespace in JaVa ...t 6-9
How to Implicitly Create the Namespace in Javaccccooevueiiiiiniiiiiiiicciiccccens 6-9
How to Create a Session Namespace Attribute in Java........cccoeeeeieiiniciiiiiciiicnns 6-9
How to Retrieve a Session Namespace Attribute in Javacccocevvivviiinnnnnnn 6-10
How to List AttribUtes iN JAVA ..cc.eeveieieieiiireeiesteieseetete ettt et 6-10

xvii

xviii

6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
7-1
7-2
7-3
7-4
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12

B-2
B-3

How to Reset an Attribute in Java.....cocooeieiieieiniieeecee e 6-10
How to Delete an Attribute in Javacccooeeererireninieeeeee e 6-11
How to Get the Session ID for the Session in Javacocceererereneeirnenieneneneseseeeeeeeeaeas 6-12
How to Get the Secure Session CooKie in JaVa.......coceererierieieieneninenenereeeeeeeeeieee s 6-12
How to Set the Secure Session COOKi€ iN Java.....c..coceeeririenierenienieiieeenesesie e 6-12
How to Detach a Real Application Security Session in Javaccccceceeviniiiiiieiennen, 6-13
How to Destroy a Real Application Security Session in Java.........ccccoeeveiinieiiiinicieine, 6-13
How to Authenticate Application Users in Javac.cccoeeeeeiiiniiiieiiiicic 6-13
How to Construct an ACL Identifier..........ccooiiiiiiiiiiiiiicccceenes 6-14
How to get an ACL for a Specified Data Privilegeccccooeiriiiiiiiic 6-15
Creating a Real Application Security Session for External Users.........c.cccoooeeuiiirieieinnnen. 7-3
Attaching a Real Application Security Session for External Users...........ccccoeueiirierninnnen. 7-6
How to Assign a Real Application Security Session to External Usersc.cccccceueueunnes 7-8
How to Save a Real Application Security External User Sessionc.cccoeveviviviiiinninnns 7-9
Granting the Code-Based Permission Credential AccessPermission to the xsee jar File.. 8-6
Application Session Filter Sample Configuration ..o, 8-7
Application Session APIs: AttachSession and DetachSession.............cccccovuvuiieiiiiiniennen. 8-11
Application Session APIs: DestroySession..........cccuiveiviiiiiiiiiiiiiniiiiieiiinss 8-12
Privilege Elevation APcccoiiiii s 8-13
Namespace APIS ..o s 8-17
CheckPrivilege APL.........coooiiii s 8-19
Set Up the HR Demo Application for External Principals.......c.cccccoviivviniininiinininns 8-21
A Complete Application Session Filter Sample Configurationc.cccccovvvviviiininines 8-25
Sample Servlet Application MyHR Javaccccoiiiiiiiiiiiiiiicccces 8-28
Filter to Set Up Application Namespaceccccovuevevieiiiiiiiniiciiiiiiicccss 8-34
User and Group to Application Roles Mappingcccoeeeeeineiieiicicieieeeeenens 8-37
Retrieving Return Codes from OCI for a Column Authorizationccccccoverieiinnnnen. B-2
Using the OCIDescribeAny Function to Enable an Explicit Describe.............ccccccoeeeeee.. B-4
Check Security Attributes and User Authorization..............cceeiiiiiince, B-8

List of Figures

Oracle Database Real Application Security Components.............ccoooeeueiniirceeiiccieieienne. 1-3
Three Dimensions of Data Securityc..ooeiieiiiiiiic e 1-5
Real Application Security Architecture ..o 3-2
Real Application Security Data Security Policy Created on the EMPLOYEES Table....... 5-3
Real Application Security Data Security Policy Created on Master-Detail Related Tables.....
5-15

Application Session Service in Oracle Fusion Middleware............cccccoooviiriiiiiiinininne 8-4
Oracle RAS Administration Login Page..........ccooeoiiiiiiiiiciciiiccc e 12-13
Oracle RAS Administration Home Page.ccccooiimiiiiiiiii 12-15
The Role EMP_ROLE that Is to Be Granted to Employees.c.cccooooeiiniiiininnnnna 12-18
IT Department Employee DAUSTIN Granted EMP_ROLE and IT_ROLE Roles. 12-20
The HR.HRPRIVS Privilege Class to Be Used in the Column Authorization............... 12-22
The EMPLOYEES_DS Policy Informationcccccevvvininiiiiiiniiinnes 12-23
The Column Authorization ... 12-24
The IT Department Data Realm Authorization. ... 12-25
The HR.IT_ACL ACL to Limit IT Employees Access to Employee DAUSTIN. 12-26
Completed HR.Employees_DS Data Security Policy.cccocooomeiiiiiiriiiiiiiiicc 12-28
APPlying the POLCYc.oviieeiii s 12-29
Enabled HR.Employees_DS Data Security POLiCYcocoooeueiiiiiiiiiiiiiiecce 12-29

Xix

List of Tables

XX

3-1
8-1

[o1 1 1
O©COoONOOODLWN = =

UUUUUIUUUUO

Session Events That Can Use Callback Event Handlers ..., 3-8
Session Service HR Demo(1) Logged in as Employee LPOPPcccccoooiiiiinnnnnn. 8-38
Session Service HR Demo(2) Logged in as HR Manager HRMGRcccccooeiee. 8-39
Session Service HR Demo(3) Logged in as Team Manager AHUNOLD 8-39
Oracle Database Real Application Security Data Dictionary Views.........ccccocoooeuireennnnen. 9-1
Oracle Database Real Application Security SQL Functions and Procedures................. 10-1
Predefined Parameters............cccoeviieiiiiiniiiiiiiniiicc 10-2
Oracle Database Real Application Security PL/SQL Packagescccccouerrueieirnnnnnnn. 11-1
Summary of DBMS_XS_SESSIONS Subprograms............c.cceeeeeieieiereeinninninn. 11-3
Summary of XS_ACL Subprogramsccccceueiimieieiniiicieiince i 11-24
Summary of XS_ADMIN_UTIL Subprograms............cccceerrivininiiinninninneneenn, 11-31
Summary of XS_DATA_SECURITY Subprogramsccceeeemiieeieiereeieieineienennns 11-35

Summary of XS_DATA_SECURITY Subprograms for Managing Data Security Policies on
Tables or Views 11-35

Summary of XS_DATA_SECURITY_UTIL Subprograms.............ccceevuvivirininininininienen. 11-46
Summary of XS_DIAG SUbPIOgramscccccceviiniiiiiiiiiniisessenns 11-48
Summary of XS_NAMESPACE Subprograms ..., 11-54
Summary of XS_PRINCIPAL Subprograms...........cccccevvvninnniniinniniinn, 11-60
Summary of XS_SECURITY_CLASS Subprograms.............ccccoeeviriiieinniininnisiinensnnenn. 11-77
Authorization Indicator Behavior (By Default)........c.cccccooiiiiiiiiiiiiis B-3

Authorization Indicator Behavior (By Default) - OCI_ATTR_NO_AUTH_
WARNING=TRUE B-4

HR Demo Scripts and Log Files ... C-1
Summary of XS_DIAG Subprogramsceceeueueiiueiiniiieiiceiecece e D-2
Real Application Security Components and Events...........c.coooviiiiiiiiiiiiiiiiennns D-3
XSSESSION Trace CONtENtS........cviuiimimimiiiiiiiiiiiicceictctsissessi s D-5
XSPRINCIPAL Trace CONENEScoiuiuiiiiiiiiitiieiiiiicitctcieieeee sttt D-7
XSACL Trace CONtENtS.coviviimiimiiiniirieciccccctcs s sesss s seaeseaeae D-8
XSXDS Trace CONENESc.cvuivimiiiiiiiiiiicictcctcct s D-9
XSVPD Trace CONtENtS.........cooiviimimimiiitititiicicietcteietesee sttt D-9
Real Application Security Components and First-Failure Dump Information................ D-9
Real Application Security Components and Performance Statistics............cccocevvvriennee. D-10

Audience

Preface

Welcome to Oracle Database Real Application Security Administrator’s and Developer’s
Guide. This guide describes how you may configure Oracle Database Real Application
Security.

This guide is intended for database administrators (DBAs), security administrators,
application developers, and others tasked with configuring Oracle Database Real
Application Security in an Oracle database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see these Oracle resources:
» Oracle Database Real Application Security Java API Reference
» Oracle Database Real Application Security Session Service Java API Reference

Conventions

The following text conventions are used in this document:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

XXi

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXii

Changes in This Release for Oracle Database
Real Application Security Administrator's and
Developer's Guide

This preface contains:

= Changes in Oracle Database 12c Release 1 (12.1.0.2)

Changes in Oracle Database 12c Release 1 (12.1.0.2)

The following are changes in Oracle Database Real Application Security Administrator’s
and Developer’s Guide for Oracle Database 12c Release 1 (12.1.0.2).

New Features
The following features are new in this release:

= Real Application Security includes support for user password policy management.

Oracle Database 12¢ Release 1 (12.1.0.2) introduces Real Application Security user
password policy management, such as account locking, password aging, and
expiry, password complexity verification, and password history management. This
feature provides password management facilities to the direct login Real
Application Security user in order to better maintain the passwords on the system.

This feature provides the following new API:
— SET PROFILE Procedure

This feature enhances the following APIs:

— SET _PASSWORD Procedure

Adds the opassword parameter. Changes the default for the type parameter to
XS_SHAL12.

— SET USER_STATUS Procedure

Adds to the status parameter the following additional status values:
INACTIVE, UNLOCK, and EXPIRED. Deprecates the PASSWORDEXPIRED status value.

— SET VERIFIER Procedure

Adds the verifier type XS_SHA512 and removes the verifier types XS_SALTED_
MD5, XS_SHA1, XS_SASL,_MD5, XS_MD5, XS_MD4, and XS_03LOGON.

This feature adds the following new views:

— USER_XS_USERS

xXiii

XXiv

— USER_XS_PASSWORD_LIMITS
This feature enhances the following view:
- DBA_XS_USERS

The following columns are added: ACCOUNT_STATUS, LOCK_DATE, EXPIRY_DATE,
and PROFILE.

See Creating Direct Login Application User Accounts and the links to these new
and changed APIs for more information about using this feature.

Real Application Security provides an application session service in Fusion
Middleware (FMW) to set up an application session transparently and securely
that supports security context and existing application users and roles managed
externally by FMW.

This application session service is a servlet filter that is responsible for application
session setup and a set of APIs that the application can use with the application
session.

See Chapter 8, "Application Session Service in Oracle Fusion Middleware" for
more information about this feature.

Deprecated Features
The following features are deprecated and will not be supported in future releases:

For the CREATE_USER procedure

The PASSWORDEXPIRED and LOCKED values for the parameter STATUS are deprecated.
See "CREATE_USER Procedure" on page 11-60 for more information.

For the SET_USER_STATUS procedure

The PASSWORDEXPIRED status value is deprecated.

See "SET_USER_STATUS Procedure" on page 11-73 for more information.

For the SET_PASSWORD procedure

The password types XS_MD4 and XS_03LOGON are deprecated.

See "SET_PASSWORD Procedure" on page 11-74 for more information.

For the SET_VERIFIER procedure

The verifier types XS_SALTED_MD5, XS_SHAL, XS_SASL_MD5, XS_MD5, XS_MD4, and XS_
03LOGON are deprecated.

See "SET_VERIFIER Procedure" on page 11-75 for more information.

1

Introducing Oracle Database Real Application
Security

This chapter contains:

= What Is Oracle Database Real Application Security?

= Data Security Concepts Used in Real Application Security
= Application Session Concepts Used in Application Security
= Flow of Design and Development

= Scenario: Security Human Resources (HR) Demonstration of Employee
Information

» Auditing in an Oracle Database Real Application Security Environment

What Is Oracle Database Real Application Security?
Oracle Database Real Application Security is a database authorization model that:
= Supports declarative security policies
= Enables end-to-end security for multitier applications
= Provides an integrated solution to secure database and application resources

= Advances the security architecture of Oracle Database to meet existing and
emerging demands of applications developed for the Internet

Traditional security was designed for client/server systems. These systems had a
significantly smaller number of users than newer applications designed for the
Internet. When application developers found traditional security inadequate, they
often moved it from the database layer to the application layer. To accomplish this,
developers frequently built their own tables and defined their own application users.
Because security was encoded in the application layer, rather than in the database,
application users and application roles were typically known only to the application.
In other words, database users were not application-level users, hence the user
identity was not known during the access control decision in the database.
Furthermore, database operations were limited to DDLs and DMLs that do not
represent application-level tasks or operations, hence the operation context was also
not known during the access control decision in the database. These practices exposed
the database to vulnerability.

Real Application Security is designed to:

= Manage application security for application users rather than database users

Introducing Oracle Database Real Application Security 1-1

What Is Oracle Database Real Application Security?

Enable developers to manage security for application level tasks
Enable application user identity to be known during security enforcement

Enable developers to return security to the database layer, either incrementally, or
all at once

This section discusses traditional security and Real Application Security, indicating
how Real Application Security improves upon traditional security.

This section describes these concepts:

Disadvantages of Traditional Security for Managing Application Users
Advantages of Real Application Security
Architecture of Real Application Security

Disadvantages of Traditional Security for Managing Application Users

Using the traditional security model, it was often difficult to manage three-tier
applications, especially when performing these security tasks:

Extending security policies independent of application code

Enforcing security policies at the database level, where the application user is
unknown

Enforcing least privilege principle as full access is granted to highly privileged
two-tier components

Advantages of Real Application Security

Real Application Security enables these security tasks, which improve database
security and performance:

Three-tier and two-tier applications can declaratively define, provide, and enforce
access control requirements at the database layer.

The database can provide a uniform security model across all tiers and support
multiple application user stores, including the associated roles, authentication
credentials, database attributes, and application-defined attributes. This model
enables application users to have a single unique global identity across an Oracle
enterprise.

An Oracle database can natively support the application security context. The
database supports integrated policy specification and enforcement for both the
application and the database, so the application does not need to do this through
application code. Because the database stores the application security context
information, this also reduces network traffic.

Developers can use Real Application Security to control application user access to
data in an Oracle database throughout all components of an Oracle enterprise in a
common manner.

See Chapter 5, "Configuring Data Security" for more information about defining
data security policies and access control requirements.

Architecture of Real Application Security

Real Application Security is managed through a collection of PL/SQL and Java APIs.
This architecture that enables you to configure its components—application users,
application roles, sessions, and other security-related components. With Real

1-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Data Security Concepts Used in Real Application Security

Application Security, you configure application counterparts to the traditional user,
role, and session, through the use of entities, which are stored in tables.

Figure 1-1 shows the various components used in Oracle Database Real Application
Security. This includes application users, application roles, access control lists, security
classes, and application sessions. These components are discussed in the following
sections. Figure 1-1 also shows Web applications establishing application sessions to
the database.

Figure 1-1 Oracle Database Real Application Security Components

Web
Clients

Attached

Lo O

Application Server

Real Application Security

Oracle Database
1. nAA
Ll
4
Application ACL
Session Cache Cache

Real Application Security

Connection Pool ACLs, Application Privileges, Users, Roles

(A (1 A O\.
DB Session DB Sesslcn 1 1 1
1 'I 'I ‘I
L | l
DB Session
3
-
Application Sessions
Attached | e :
¥
DB Seszion DB Session DB Session DB Session
1 2 3 4

SQL*Plus

Data Security Concepts Used in Real Application Security

This section describes access control terms and concepts that you need to understand
before you can begin to configure Real Application Security. Using the PL/SQL
administrative interfaces, you can create and manage the entities described here:
application user, application role, principal, application privilege, security class, access
control list (ACL), access control entry (ACE), and data realm.

Introducing Oracle Database Real Application Security 1-3

Data Security Concepts Used in Real Application Security

Note: When a term such as application user or application role is used
here, it applies to Real Application Security; when it is important to
distinguish the database type, either no qualifier is used or the
qualifier database is used.

This section contains:

= About Data Security with Oracle Database Real Application Security
= Principals: Users and Roles

= Application Privileges

» Security Classes in Oracle Database Real Application Security

» Access Control Entry (ACE)

s Access Control List (ACL)

= Data Security Policy

See Also:
» Chapter 2, "Configuring Application Users and Application Roles"

» Chapter 4, "Configuring Application Privileges and Access
Control Lists"

About Data Security with Oracle Database Real Application Security

Effective security requires defining which application users, applications, or functions
can have access to which data, to perform which kinds of operations. Thus, effective
security has these three dimensions:

1. which application users
2. can perform which operations
3. on which data

You define (1) principals, (2) application privileges, and (3) objects in relation to these
three dimensions, respectively. Principals are users and roles. A role can represent
attributes of an application user, system state, or a piece of code.

Principals and application privileges are related in a declarative way by defining
ACLs. These ACLs are then related to the data by defining Data Security policy that
protects rows and columns of table data. For example, you can protect table data by
using PL/SQL procedures to set controlling ACLs.

Figure 1-2 illustrates an example where the user, ProjectManager has the
ModifyProject privilege on a data realm comprised of Team A's projects.

1-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Data Security Concepts Used in Real Application Security

Figure 1-2 Three Dimensions of Data Security

Privilege (P):
modifyProject '

Access Control List (ACL)

Grant modifyProject to ProjectManager
on Team A's Projects

-

Data Realm (R):
Team A's Projects

Principals: Users and Roles

When discussing fine-grained database access control, a principal is an application
user or an application role or a database user or a database role. An application user
can be a person or an autonomous application process that accesses information in the
database. An application role is a logical grouping of application privileges required
to accomplish a real life task. An application role can contain other application roles,
but this recursion cannot be circular. You use application roles to associate application
users, both database users and application users with privileges.

Oracle Database supports the following as principals:

Database users and database roles

A database user is also sometimes referred to as a database schema or a user
account. When a person or application logs onto the database, it uses a database
user (schema) and password.

A database role corresponds to a set of database privileges that can be granted to
database users, applications, or other database roles—see "Understanding the
Difference Between Database Roles and Application Roles" on page 1-6.

Application users and Application roles

The term application, as used by Real Application Security, refers to the creation of
an application user, application role, or session that contains only information
pertinent to the application that the application user is logging onto. Application
users and application roles are defined by an application, and they do not need to
be tied to any database schema.

Application users can also create heavyweight database sessions by connecting to
the database directly. These are called direct login application users. See "Creating
a Direct Login Application User Account" on page 2-3. When an application user
creates a heavyweight database session, the user's default schema is set to a
preconfigured value meant solely for name resolution purposes, such as HR.

An application role can only be granted to an application user or to another
application role. You cannot directly grant database privileges to application users
and application roles. See "Granting Database Privileges to Application Users and
Application Roles" on page 1-7 for further details.

Introducing Oracle Database Real Application Security 1-5

Data Security Concepts Used in Real Application Security

See Also:
s "Configuring Application Users" on page 2-1
s "Configuring Application Roles" on page 2-8

Understanding the Difference Between Database Users and Application Users
Database users are also referred to as traditional users, and have these characteristics:

= They are associated with schemas and passwords.

= They can create heavyweight sessions to schemas with which they are associated.
Application users are defined by an application, and have these characteristics:

= They do not own database schemas.

= They can create application sessions to the database through the middle tier.

= They can create heavyweight database sessions by connecting to the database
directly. (See "Creating a Direct Login Application User Account" on page 2-3.)

Note: Ina heavyweight session, the user is associated with a default
schema.

Understanding the Difference Between Database Roles and Application Roles
A database role is traditionally thought of as a named set of database privileges.

Database roles have these characteristics:
» They are granted privileges, just as database users can be granted privileges.

= They serve as intermediaries for mapping database privileges to database users
(and applications) as follows: a role is granted privileges, and the role is then
granted to users (giving them the privileges).

1. Grant privileges to database role
2. Grant database role to database user

The database user now has the privileges of the database role.

Note: In traditional database terminology, a role is considered to be
the same thing as the set of privileges that are granted to it.

An application role can be regarded as the set of application-defined privileges that are
associated with it using the mechanism of a declarative access control list (ACL),
discussed in "Access Control List (ACL)" on page 1-8.

Application roles have these characteristics:

» They use an access control list (ACL), rather than a database grant, as the
intermediary that maps application privileges to users or roles.

= They can be only granted to application users or application roles.

= They cannot be granted to a database role, unlike a database role can be granted to
an application role.

1-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Data Security Concepts Used in Real Application Security

Note: In access control terminology, application roles are classified
with application users as principals.

Granting Database Privileges to Application Users and Application Roles

You cannot grant database privileges directly to application users and application
roles. Instead, you grant the database privileges to a database role, and then grant the
database role to the application role in these steps.

1. Grant database privileges to database role.
2. Grant database role to the application role.

The statements in the following code do exactly this, effectively granting the database
SELECT privilege to the application role, HRREP.

CREATE ROLE db_hrrep;
GRANT SELECT ON hr.employees TO db_hrrep;
GRANT db_hrrep TO HRREP;

Application users already created or subsequently created, with that application role,
acquire this application privilege.

Application Privileges

An application privilege is a particular right or permission that can be granted or
denied to a principal. Application developers define application privileges in a
security class.

The set of application privileges granted to a principal controls whether or not this
principal can perform a given operation on the data that it protects. For example, if the
principal (database user) HR wants to perform the SELECT operation on a given
resource, then SELECT privileges must be granted to principal HR before the SELECT
operation.

Application privileges can also be aggregated. An aggregate privilege is an
application privilege that implies other application privileges. These implied
privileges can be any application privileges defined by the current security class or an
inherited privilege. When an aggregate privilege is granted or denied, its implied
application privileges are implicitly granted or denied.

Aggregate privileges simplify usability when the number of application privileges
grows. For example, instead of granting each application privilege separately, you can
group related application privileges into an aggregate privilege. Then, you can use a
single grant to enable a principal to access all the application privileges contained in
the aggregate privilege.

Security Classes in Oracle Database Real Application Security

A security class is a scope for a set of application privileges.

A security class includes application privileges that it inherits from other security
classes, and it can include application privileges that it defines.

A security class is typically associated with an access control list (ACL), and the ACL
can grant application privileges in the security class to specific principals. See "Access
Control List (ACL)" on page 1-8.

Example 44 shows how to create a security class policy.

Introducing Oracle Database Real Application Security 1-7

Data Security Concepts Used in Real Application Security

Access Control Entry (ACE)

An access control entry (ACE) either grants or denies application privileges to a
particular principal (application user or application role).

An ACE is an element in an array named ace_list. The whole array is called by and
becomes part of the access control list (ACL).

The ACE does not, itself, specify which data to protect; that is done by associating the
ACL with target data, such as a set of rows in an order entry table. You can make this
association by creating a data realm to restrict the user to modifying only those rows,
or by using the PL/SQL procedure XS_DATA_SECURITY.SET_ACLS.

Access Control List (ACL)

An access control list (ACL) is a list of access control entries (ACEs), which permit or
deny application privileges to one or more principals.

If the ACL you create relies on a set of custom application privileges that you define in
your own security class, then you must explicitly associate that security class with the
ACL. See Example 4-15, "Creating an Access Control List" for an example.

If the only application privileges used in the ACL are defined in the DML security
class, then no security class association is needed as that is the default. See a
description in "DML Security Class" on page 4-5.

Data Security Policy

To protect data within a database table, you must create a data security policy.
Database records, both at row and column level, can be protected using the
fine-grained access control described in this section.

The data security policy performs the following functions:

= Specifies the data that you want to protect. The data can be indicated by a WHERE
clause in a data realm of one or more rows that you design. It can also be defined
using named notation by using an association operator to associate the parameter
to the left of the arrow (=>) with the actual parameter to the right of the arrow. For
example, in Example 5-19, each realmis defined using association operators.

The data security policy can contain one or more data realms.

» Associates each data realm with one or more access control lists (ACLs) that
specify the application privileges required to access rows and columns of the data
realm to form what is called a data realm constraint. A given ACL protects a given
data realm and controls access to particular application users or application roles
(called principals). (See "Access Control List (ACL)" on page 1-8 for more
information about ACLs.)

= Optionally applies additional application privileges to protect a particular column
to form what is known as column constraints. This is useful in cases where you
need to add an extra layer of security for sensitive data.

= Associates additional custom application privileges. For example, an
administrator could create an APPROVE_TRANSACTION privilege, which controls
whether a user can take a particular action on the row. Assuming SELECT privilege
is granted to all users, all users could see the row, but only some users can perform
the transaction approval action.

In summary, the application user who logs in will only be allowed to perform
operations including DML on records within the data realm, including individual

1-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Flow of Design and Development

rows of data, based on the application privileges in its associated ACLs. Thus, the data
security policy is composed of data realm constraints and column constraints that
protect the data realm by only allowing access to application users who have
application privileges in the associated ACLs.

For example, suppose you have a sales table that lists all sales representatives, their
regions, the products they are responsible for, product categories, and product prices.
When individual sales representatives log on, each representative would see selected
data for all other sales representatives, such as sales representatives for particular
product categories based on data realm constraints. If you wanted to restrict the
display of product prices to sales representatives by region, you could apply
additional application privileges to the column listing product prices, in this case
using column constraints.

Chapter 5, "Configuring Data Security" describes in detail how to protect database
objects.

Application Session Concepts Used in Application Security

Real Application Security introduces the concept of an application session. Within the
context of application sessions, there are three types of user identities:

= Application session user: The user associated with the application session.

Application session access to database objects is checked against the permissions
granted to this user.

» Traditional (heavyweight) session user: The user that established the database
session.

This user can be an application user or a database user, as long as database
authentication credentials are available.

» Schema owner: The database schema is the schema associated with the traditional
database session and is only used for object name resolution.

Traditional database user sessions have these characteristics:

s They hold their own database resources, such as transactions and cursors.
s They consume many server resources.

Application sessions have these characteristics:

= They contain information that is pertinent only to the application.

s They can be dedicated to each end application user.

s They can persist until the application user logs out of the application or the
application terminates unexpectedly.

See Chapter 3, "Configuring Application Sessions" for more information about
application sessions.

Flow of Design and Development

You should be familiar with the concepts introduced in this chapter to take full
advantage of Real Application Security.

In general, identify all tasks an application performs that require application privileges
to control data access. Then, add the appropriate application privileges to a security
class so that you can reference them in an ACL and grant them to the application users
and application roles, as follows:

Introducing Oracle Database Real Application Security 1-9

Scenario: Security Human Resources (HR) Demonstration of Employee Information

» Create a default set of meaningful application roles based on the features the
application provides.

= Identify the tables that require data security protection based on the application
table design and security requirements, and define the data realms, including
column protection.

= Define data security policies based on the application requirements and the rules
applied on the tables.

s Ensure that ACLs used in the data security policy and functional security grant the
appropriate application privileges to application roles.

Scenario: Security Human Resources (HR) Demonstration of Employee

Information

This section presents an example policy that provides a high-level overview of Real
Application Security. It is a simple scenario aimed at explaining the basic Real
Application Security concepts. You should be familiar with the following concepts,
introduced in "Data Security Concepts Used in Real Application Security" on page 1-3:

= Principals — application users and application roles
= Security classes and application privileges

m Access control lists and entries (ACLs and ACEs)

= Data security policy

This same scenario appears throughout the book, to illustrate different components of
Real Application Security. It is also described in detail in Chapter 12, "Real Application
Security HR Demo" and Appendix C, "Real Application Security HR Demo Files" to
demonstrate how to use advanced concepts of Real Application Security to handle a
more complex policy.

Basic Security HR Demo Scenario: Description and Security Requirements

Susan Mavris (SMAVRIS) is an employee in the Human Resources department. Her job

title is Human Resources Representative. In this capacity, she is in charge of managing
the human resources information for all employees, including department 60 (IT). She
can view and update all the employee records, including the SALARY column.

David Austin (DAUSTIN) is an employee in the IT department. His job title is Assistant
Department Manager. In this capacity, he can view employee records in the IT
department, but he cannot view the SALARY column, except for his own salary record.

Secure authorization requires defining which application users and application roles
can have access to which data, to perform which kinds of operations. These three
security dimensions must be defined: protected data, principals, and application
privileges. (see "About Data Security with Oracle Database Real Application Security"
on page 1-4).

In this basic scenario:

= The data to be protected is employee information and it is protected in three ways:
- Access to an employee's own record, including the SALARY column.
- Access to all the records in the IT department, excluding the SALARY column.

- Access to all employee records, including the SALARY column.

1-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Scenario: Security Human Resources (HR) Demonstration of Employee Information

Users are allowed access to employee data in the following ways:
- Each user can view their own record, including the SALARY column.

- Application user DAUSTIN in his role as Assistant Department Manager is
allowed to view all the records in the IT department, excluding the SALARY
column.

- Application user SMAVRIS in her role as human-resources representative is
allowed to view and update all employee records, including the SALARY
column.

Database role DB_EMP is created and granted SELECT, INSERT, UPDATE, and DELETE
privileges on HR . EMPLOYEES.

Application roles are created as follows:

— EMP_ROLE is granted to both application users DAUSTIN and SMAVRIS. Database
role DB_EMP is granted to EMP_ROLE.

- IT_ROLE is granted to only application user DAUSTIN. Database role DB_EMP is
granted to IT_ROLE.

- HR_ROLE is granted to only application user SMAVRIS. Database role DB_EMP is
granted to HR_ROLE.

The VIEW_SALARY application privilege is created to control access to the SALARY
column. The HRPRIVS security class is created in which to scope the VIEW_SALARY
application privilege.

ACLs are created to define the degree of access to employee records in the
following ways:

— EMP_ACL grants the EMP_ROLE the SELECT database privilege and VIEW_SALARY
application privilege to view an employee's own record, including the SALARY
column.

— IT_ACL grants the IT_ROLE only the SELECT database privilege to view the
employee records in the IT department, but it does not grant the VIEW_SALARY
privilege that is required for access to the SALARY column.

- HR_ACL grants the HR_ROLE ALL privileges, which means all the privileges in the
ACL's security class. In this case, ALL privileges includes SELECT, INSERT,
UPDATE, and DELETE database privileges to view and update all employee's
records, and granting the VIEW_SALARY application privilege to view the
SALARY column.

The HR demo secures the HR. EMPLOYEE table by creating and applying the data
security policy, EMPLOYEES_DS, that has the following three data realms and
column constraint:

- Anemployee's own record realm. The ACL, EMP_ACL controls this realm,
which grants application role EMP_ROLE privileges to access the realm,
including the SALARY column.

— All the records in the IT department realm. The ACL, IT_ACL controls this
realm, which grants application role IT_ROLE privileges to access the realm,
but excluding the SALARY column.

— All the employee records realm. The ACL, HR_ACL controls this realm, which
grants application role HR_ROLE privileges to access the realm, including the
SALARY column.

Introducing Oracle Database Real Application Security 1-11

Scenario: Security Human Resources (HR) Demonstration of Employee Information

— A column constraint that protects the SALARY column by requiring the VIEW_
SALARY privilege to view its sensitive data.

Basic HR Scenario: Implementation Overview

To implement the basic human-resources security scenario, in addition to identifying
the protected data, the principals, and the application privileges, you must define the
following:

= A database user as the Real Application Security Administrator and then connect
as the Real Application Security Administrator to create the components.

s How the principals connect with the database to access the data.

s The access control lists (ACLs) that grant the application privilege and any
database privileges to the principals.

= A data security policy that associates the ACLs with the particular data (rows) that
the principals need to access.

In this basic scenario, application users SMAVRIS and DAUSTIN connect to the database
directly as the principals.

The application user account that is created for application users SMAVRIS and DAUSTIN
are principals in this scenario. Each application user account is granted application
roles that, ultimately, has the SELECT privilege on the database table that contains the
employee information. The application role is a principal in this scenario.

A database role, DB_EMP serves as intermediary between the application role and the
database privilege because database privileges can be granted only to database users
and roles. That is, the necessary database privileges are granted to a database role, and
that role is granted to each application role (the principal).

The database SELECT privilege applies to the entire table. The principal must also be
granted an Real Application Security application privilege such as the DML SELECT
privilege, which can be restricted to certain rows of the database table. This restriction
is implemented using an access control list (ACL) and a data security policy.

The HR scenario requires the following components for the security model:

= Protected data: Employee information is stored in the table EMPLOYEES of the
sample database schema HR (delivered with Oracle Database).

= Application role: Application roles, EMP_ROLE, IT_ROLE, and HR_ROLE are created
for performing tasks. The application roles are defined with the XS_
PRINCIPAL.CREATE_ROLE procedure.

= Application user: Application users, SMAVRIS and DAUSTIN, are created and
defined. SMAVRIS is granted the application roles EMP_ROLE and HR_ROLE. DAUSTIN
is granted the application roles EMP_ROLE and IT_ROLE.

= Database access: Application users SMAVRIS and DAUSTIN are given a database
password for direct database login. In order to grant SELECT, INSERT, UPDATE, and
DELETE privileges on table EMPLOYEES to application roles EMP_ROLE, IT_ROLE, HR_
ROLE a database role, DB_ENMP, is created and granted these database privileges. The
application roles are then granted this database role.

= Application Privilege: A single security class, HRPRIVS, is created which defines a
single custom application privilege, VIEW_SALARY. Through inheritance, the
predefined application privilege SELECT is also available in this security class.
These application privileges will be used in connection with a data security policy

1-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Auditing in an Oracle Database Real Application Security Environment

to allow read access to employee information. The security class is created by the
XS_SECURITY_CLASS.CREATE_SECURITY_CLASS procedure.

s ACL: The SELECT and VIEW_SALARY privileges are granted to application role EMP_
ROLE by the access control list (ACL), EMP_ACL that is created by XS_ACL.CREATE_
ACL procedure. The SELECT privilege is granted to application role IT_ROLE by the
ACL, IT_ACL that is created by XS_ACL.CREATE_ACL procedure. The ALL privilege is
granted to application role HR_ROLE by the ACL, HR_ACL that is created by xS_
ACL.CREATE_ACL procedure. The ALL privilege means all the privileges in the ACL's
security class. In this case, ALL privileges includes SELECT, INSERT, UPDATE, and
DELETE database privileges to view and update all employee's records, and
granting the VIEW_SALARY application privilege to view the SALARY column.

= Data Security Policy: The data security policy is defined and created with the XS_
DATA_SECURITY.CREATE_POLICY procedure. This data security policy defines three
data realms (an employee's own record realm that can view the realm including
the SALARY column, all the records in the IT department realm that can view the IT
department excluding the SALARY column, and all the employee records realm that
can view the realm including the SALARY column) and a column constraint. The
data security policy associates the ACLs EMP_ACL, IT_ACL, and HR_ACL with its
respective data realm.

Introducing this example in this chapter provides an overview of the requirements for
implementing a policy using Real Application Security. Actual implementation of
these tasks requires a systematic understanding of all the Real Application Security
concepts introduced in this chapter, and further discussed in subsequent chapters. The
complete example, including implementation details, appears in "Real Application
Security: Putting It All Together" on page 5-25.

Auditing in an Oracle Database Real Application Security Environment

Another aspect of security is auditing in an Oracle Database Real Application Security
environment. Real Application Security administration and run-time actions can be
audited by configuring and enabling unified audit policies. For information about
unified auditing in an Oracle Database Real Application Security environment, see
Oracle Database Security Guide.

The following static data dictionary views are defined for auditing policies specifically
for Oracle Database Real Application Security:

= DBA_XS_AUDIT POLICY_OPTIONS - describes the auditing options that were defined
for Real Application Security unified audit policies. See Oracle Database Reference
for more information.

= DBA_XS_AUDIT TRAIL - provides detailed information about Real Application
Security that were audited. See Oracle Database Reference for more information.

= DBA_XS_ENB_AUDIT_POLICIES - lists users for whom Real Application Security
unified audit polices are enabled. See Oracle Database Reference for more
information.

Introducing Oracle Database Real Application Security 1-13

Auditing in an Oracle Database Real Application Security Environment

1-14 Oracle Database Real Application Security Administrator's and Developer's Guide

2

Configuring Application Users and Application
Roles

This chapter contains:

= Configuring Application Users

= Configuring Application Roles

» Effective Dates for Application Users and Application Roles

» Granting Application Privileges to Principals

See Also:
"XS_PRINCIPAL Package" on page 11-58

Configuring Application Users
This section contains the following topics:
= About Application User Accounts
s Creating a Simple Application User Account
s Creating a Direct Login Application User Account

= Resetting the Application User's Password with the SQL*Plus PASSWORD
Command

s Configuring an Application User Switch
= Validating an Application User

About Application User Accounts

Traditional database users own database schemas and can create traditional
heavyweight database sessions to those schemas. Application users do not own
database schemas, but can create application sessions in the database.

You can either attach or connect application users to the database through the direct
login to use application sessions.

This section contains:

= General Procedures for Creating Application User Accounts

General Procedures for Creating Application User Accounts
The general procedure for creating an application user account is as follows:

Configuring Application Users and Application Roles 2-1

Configuring Application Users

Log in to SQL*Plus as a user who has the CREATE USER system privilege.

See "XS_PRINCIPAL Package" on page 11-58 for more information about the Xs_
PRINCIPAL package and specifically the "CREATE_USER Procedure" on page 11-60.

You must have the privileges required to create, modify, or drop application users
and roles. These privileges are governed by the same system privileges required to
create, modify, or drop database users and roles. For more information about these
and other SQL statements, see Oracle Database SQL Language Reference.

2. Create the application users with the XS_PRINCIPAL.CREATE_USER procedure.
Select the appropriate type, and follow the instructions in these sections:
s "Creating a Simple Application User Account" on page 2-2
s "Creating a Direct Login Application User Account" on page 2-3

Other Tasks

After you create the application user account, you can grant the account a role, which
provides privileges for the application users. For more information, see "Granting an
Application Role to an Existing Application User" on page 2-13.

Creating a Simple Application User Account

Note: In SQL*Plus, case sensitivity is an issue for lower case
characters and special characters, so keep these guidelines in mind.

= An application user whose name contains lower case or special
characters must connect to SQL*Plus with the account name in
double quotation marks:

For example:

CONNECT "lwuserl"
Enter password: password
Connected.

s The name of an application role that contains lower case or special
characters must be entered in SQL*Plus enclosed in double
quotation marks.

For example:

GRANT cust_role TO "app_regular_role";

When you create a simple application user account, the schema argument specifies the
schema name to use to resolve unqualified names. This does not give you any
privileges, and it is just used for name resolution purposes. If the schema name is not
specified, XS$NULL, is used.

To create a simple application user account, do the following:

1.

Log in.
For example, if sec_mgr has the CREATE USER privilege, log in as follows:

sglplus sec_mgr
Enter password: password
Connected.

2-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Application Users

2. Create the application user account.
For example:

BEGIN

SYS.XS_PRINCIPAL.CREATE USER('lwuserl');
END;
/

As a user with DBA role, you can check the user creation by querying the DBA_XS_
USERS data dictionary view as follows. See "DBA_XS_USERS" on page 9-5 for more
information.

SELECT NAME FROM DBA_XS_USERS;

XSGUEST
LWUSER1

This output displays the existing application user accounts. The XSGUEST user
account is an already existing or predefined system created user account.

For detailed information about the XS_PRINCIPAL.CREATE_USER procedure, see
"CREATE_USER Procedure" on page 11-60.

You can delete an application user account using the XS_PRINCIPAL.DELETE_
PRINCIPAL procedure, see "DELETE_PRINCIPAL Procedure" on page 11-76.

Creating a Direct Login Application User Account

This section contains:
s Creating Direct Login Application User Accounts
= Procedure for Creating the Direct Login Application User Account

» Setting a Password Verifier for Direct Application User Accounts

Creating Direct Login Application User Accounts

You can use an application user account to directly log into the database. This is useful
for users who need to perform functions such as logging directly into SQL*Plus
without logging in through SSO or a Web interface. The direct login user must have a
password.

Procedure for Creating the Direct Login Application User Account
To create a direct login application user account:

1. Log in as described in "General Procedures for Creating Application User
Accounts” on page 2-1.

2. Create the application user account.

For example, to create an application user account, lwuserl, whose default
database schema is HR:

BEGIN
SYS.XS_PRINCIPAL.CREATE_USER
(name => 'lwuserl',
schema => 'HR');
END;

Configuring Application Users and Application Roles 2-3

Configuring Application Users

Note: If the schema does not exist, the direct login fails.

When this Real Application user directly connects to the database for name
resolution of unqualified database objects in queries, HR schema is used as the
default schema. For example:

SELECT COUNT(*) FROM EMPLOYEES;

3. Create a password for the application user account.
For example:

BEGIN

SYS.XS_PRINCIPAL.SET PASSWORD('lwuserl', 'password');
END;
/

Set the password as described in "SET_PASSWORD Procedure" on page 11-74.
When you use the SET_PASSWORD procedure, it creates a verifier for you based on
the password and the type parameter, and then inserts the verifier and the value
of the type parameter into the dictionary table.

Note: Replace password with a secure password. See Oracle Database
Security Guide for more information about password guidelines.

4. Create a profile named prof and assign this profile to the application user account.
For example:

CREATE PROFILE prof LIMIT PASSWORD_REUSE_TIME 1/1440 PASSWORD_REUSE_MAX 3
PASSWORD_VERIFY_FUNCTION Verify Pass;

BEGIN
SYS.XS_PRINCIPAL.SET_PROFILE('lwuserl', 'prof');
END;

The user assigning the profile must have ALTER_USER privilege. See the "SET_
PROFILE Procedure" on page 11-72 for more information.

Next, you are ready to assign privileges to the application user account. Go to
"Granting Application Privileges to Principals" on page 2-12.

Afterward, the user can connect to the database as follows. For example:

CONNECT lwuserl
Password: password

Setting a Password Verifier for Direct Application User Accounts

Optionally, you can set a password verifier for this password (a hash transformed
password), enabling administrators to migrate users into Real Application Security
with knowledge of the verifier and not the password. If you do not set a password
verifier, the default hashing algorithm is XS_SHA512. For more information, see the
"SET_VERIFIER Procedure" on page 11-75.

2-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Application Users

Example 2-1 uses the XS_PRINCIPAL.SET_VERIFIER procedure to set the password
verifier to the value 6DFF060084ECE67F, using the hashing algorithm XS_SHA512 for the
application user account LWUSER1.

Example 2—1 Setting the Password Verifier

BEGIN
SYS.XS_PRINCIPAL.SET VERIFIER('lwuserl',
' 6DFF060084ECE6TF ',
SYS.XS_PRINCIPAL.XS_SHA512) ;
END;
/

Resetting the Application User's Password with the SQL*Plus PASSWORD Command

As the security administrator, sec_mgr, you have the dba and xs_session_admin
privileges. Example 2-2 shows how the security administrator can reset the password
for user lwuser2 using the SQL*Plus PASSWORD command.

Example 2-2 DBA Resets the Password with a Password Change Operation for User
Iwuser2 When Not Explicitly Attached to a Session

sglplus sec_mgr

Enter password: password

Connected.

SQL> BEGIN
2 SYS.XS_PRINCIPAL.CREATE_USER('lwuser2');
3 END;
4/

PL/SQL orocedure successfully completed.

SQL> PASSWORD lwuser2
Changing password for lwuser?2
New password: password

Retype new password: password
Password changed

However, if you as user lwuser2, perform a self password change using the SQL*Plus
PASSWORD command invoked from an explicitly attached session (a session attached
using the ATTACH_SESSION procedure or the attachSession () method in Java), the
session must have the ALTER USER privilege and the user name must be provided with
the PASSWORD command.

Example 2-3 shows how the application user 1wuser2 explicitly attached to a session,
performs a self password change that fails because the users session does not have the
ALTER USER privilege.

Example 2-3 User Iwuser2 Performs a Self Password Change that Fails When Explicitly
Attached to a Session Because the Session Lacks the ALTER USER Privilege

sglplus sec_mgr
Enter password: password
Connected.
SQL> DECLARE
2 SESSIONID RAW(16);
BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser2', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid) ;
END;

o Ul i W

Configuring Application Users and Application Roles 2-5

Configuring Application Users

7/
PL/SQL procedure successfully completed.
SQL> CONNECT lwuser?2
Enter password: password
Connected.
SQL> SELECT SYS.XS_SYS_CONTEXT ('XS$SESSION', 'USERNAME') FROM DUAL;
SYS.XS_SYS_CONTEXT ('XSSSESSION', 'USERNAME')

LWUSER2

SQL> PASSWORD lwuser?2
Changing password for lwuser2

0l1d password: password
New password: password
Retype new password: password

ERROR:
ORA-01031: insufficient privileges

Password unchanged

Example 2—4 shows how an application user 1wuser2 explicitly attached to a session
having the ALTER USER privilege can perform a self password change. The user's self
password change is successful.

Example 2-4 A Self Password Change Succeeds When Explicitly Attached to a Session
and User Iwuser2's Session Has the ALTER USER Privilege

sglplus sec_mgr

Enter password: password

Connected.

SQL> CREATE ROLE pwdchg;

Role created.

SQL> GRANT ALTER USER TO pwdchg;

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE (NAME => 'resetpwd_role', ENABLED => TRUE);
PL/SQL procedure successfully completed.

SQL> GRANT pwdchg TO resetpwd_role;

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser2', 'resetpwd_role');
PL/SQL procedure successfully completed.

SQL> CONNECT lwuser2

Enter password: password

Connected.

SQL> SELECT SYS.XS_SYS_CONTEXT ('XSSSESSION', 'USERNAME') FROM DUAL;

2-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Application Users

SYS.XS_SYS_CONTEXT ('XSSSESSION', 'USERNAME')

LWUSER2

SQL> PASSWORD lwuser2
Changing password for lwuser2
01d password: password

New password: password

Retype new password: password
Password changed

SQL>

If the user's session has the ALTER USER privilege, you can reset the password for any
application user from any application user's session (including an explicitly attached
and a direct logon session) or the database user session if that session has the ALTER
USER privilege. The PASSWORD command never prompts for the old password if you are
changing another application user's password.

An application user can also change his or her own password using the SET_PASSWORD
procedure. The SET_PASSWORD procedure will always prompt for the old password for
a self password change, but if the session has the ALTER USER privilege, then the old
password can be omitted.

Configuring an Application User Switch

Using the XS_PRINCIPAL.ADD_PROXY_USER procedure, you can add an application user
to proxy another application user and assume the application roles of that application
user. You can use the DBMS_XS_SESSIONS. SWITCH_USER procedure to switch application
users in a session if the user has been added as a proxy.

Assume app_userl has application roles rolel and role2. Example 2-5 allows you to
proxy the application roles rolel and role2 of app_userl to app_user2. The call add_
proxy _user ('app_userl', 'app_user2',6 pxy roles) allows app_user2 to switch to
app_userl and assume app_userl's roles, rolel and role2. It does not grant the roles
to app_user?.

Example 2-5 Configuring a Proxy Application User

DECLARE
pxy_roles XSSNAME_LIST;
begin
pxy_roles := XSSNAME_LIST('rolel', 'role2');
sys.xs_principal.add_proxy_user (target_user => 'app_userl', proxy_user => 'app_
user2', target_roles => pxy_roles);
end;
/

As the application user with DBA role, you can create a session for app_user2 and
switch application user to app_userl, as shown in Example 2-6.

Example 2-6 Creating a Session and Switching an Application User

declare
sessionid raw(16);

begin
sys.dbms_xs_sessions.create_session('app_user2', sessionid);
sys.dbms_xs_sessions.attach_session(sessionid);
sys.dbms_xs_sessions.switch_user('app_userl');

Configuring Application Users and Application Roles 2-7

Configuring Application Roles

end;
/

This example first creates a session with app_user2 and attaches to it. Then app_user2
switches to app_userl and assumes app_userl's roles, rolel and role2.

Validating an Application User

Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects. To validate an application
user account, use the XS_DIAG.VALIDATE_PRINCIPAL function. The caller has invoker's
rights on this package and must have ADMIN_ANY_SEC_SECURITY privilege to run the
XS_DIAG package.

See the "VALIDATE_PRINCIPAL Function" on page 11-48 for more information.

Configuring Application Roles
This section contains the following topics:
= About Application Roles
s Regular and Dynamic Application Roles
s Configuring an Application Role
s Predefined Regular Application Roles and Dynamic Application Roles

About Application Roles

An application role is a role that can only be granted to an application user or to
another application role. Application roles provide a way to group application users
who must have a common application privilege, identified within an ACL, in order to
access an application. The XS_PRINCIPAL.CREATE_ROLE procedure can create regular
application roles. The XS_PRINCIPAL.CREATE_DYNAMIC_ROLE procedure can create
dynamic application roles (one type of application role).

Application roles are conceptually similar to enterprise roles. An enterprise role can
only be granted to an enterprise user and that grant occurs outside the database.
Similarly, an application role can only be granted to an application user or application
role, and that grant occurs outside of the standard database grant mechanisms.
Dynamic roles cannot be granted to an application user or another application role,
but can only be enabled in an application session as a parameter in an attach session
call as described in "Dynamic Application Roles" on page 2-9.

See Also:

» Oracle Database SQL Language Reference for more information about
SQL

» Oracle Database PL/SQL Language Reference for more information
about PL/SQL APIs

Regular and Dynamic Application Roles

Real Application Security allows regular and dynamic application roles.

This section contains the following topics:

2-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Application Roles

s Regular Application Roles
= Dynamic Application Roles

Regular Application Roles

A regular application role is an application role that you can grant to an application
user or another application role (regular or dynamic). You can specify if you want the
regular application role to be enabled by default or not.

Dynamic Application Roles

A dynamic application role is an application role that is enabled only under certain
situations, for example, when a user has logged on using SSL, or during a specific
period of time, and so on. Dynamic application roles might be used, for example, if
there is some application privilege granted to all application users connecting during
weekdays. If that criterion is met, then the application enables those application roles.

The application determines the criteria for enabling a dynamic application role,
however the criteria can be evaluated by the application or by the database at the
request of the application.

= When the Application Evaluates the Criteria

If the application evaluates the criteria and the application role meets it, then the
application, if it is attached to an application session, can enable dynamic
application roles for application users. When the application detaches from the
application session, the dynamic application role is automatically disabled.

For security reasons, you cannot disable dynamic application roles during the
session. This is especially important because they may infer negative application
privileges.

s When the Database Evaluates the Criteria

If the database evaluates the criteria and the application role meets it, then the
database can enable application roles for the application user. The database can
disable dynamic application roles based on two types of time-outs: one from the
last time the session was accessed, and one from the last time the session was
authenticated. Oracle Database checks these time-outs when the session is first
attached.

You do not need to grant the dynamic application role formally to a user beforehand.
There is no way to enable or disable a dynamic application role through the standard
enable and disable APIs. You cannot grant dynamic application roles to other
application roles, but you can grant other application roles to dynamic roles.

See Also: "Predefined Regular Application Roles and Dynamic
Application Roles" on page 2-11

Configuring an Application Role

This section contains the following topics:
= Creating a Regular Application Role
» Creating a Dynamic Application Role
= Validating an Application Role

Configuring Application Users and Application Roles 2-9

Configuring Application Roles

Creating a Regular Application Role

To create a regular application role, log into SQL*Plus as user sec_mgr with the CREATE
ROLE system privilege, and then use the XS_PRINCIPAL.CREATE_ROLE procedure.

Example 2-7 shows how to create a regular application role called app_regular_role.
The start_date and end_date parameters specify the active start and end times for
this application role. The enable parameter is set to TRUE.

Example 2-7 Creating a Regular Application Role

DECLARE
st_date TIMESTAMP WITH TIME ZONE;
ed_date TIMESTAMP WITH TIME ZONE;
BEGIN
st_date := SYSTIMESTAMP;
ed_date := TO_TIMESTAMP_TZ('2013-06-18 11:00:00 -5:00", 'YYYY-MM-DD HH:MI:SS');
SYS.XS_PRINCIPAL.CREATE_ROLE

(name => 'app_regular role',
enabled => TRUE,

start_date => st_date,

end_date => ed_date);

END;
/

After you create the regular application role, you are ready to grant it to one or more
application users or application roles. See the following section:

"Granting an Application Role to an Application User" on page 2-12

Creating a Dynamic Application Role

To create a dynamic application role, log into SQL*Plus as user sec_mgr with the
CREATE ROLE system privilege and then use the XS_PRINCIPAL.CREATE DYNAMIC_ROLE
procedure.

Example 2-8 shows how to create a dynamic application role called app_dynamic_
role. The optional duration and scope parameters specify the period of time (in
minutes) the application role is active and the scope for this role, which can be either
SESSION_SCOPE (the default value) or REQUEST _SCOPE. SESSION_SCOPE means the
enabled dynamic role is still enabled when you detach the session and attach to the
session again, unless you explicitly specify that it be disabled in the session reattach.
REQUEST_SCOPE means that the role is disabled after the session is detached.

Example 2-8 Creating a Dynamic Application Role

BEGIN
SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE
(name => 'app_dynamic_role',
duration => 40,
scope => XS_PRINCIPAL.SESSION_SCOPE) ;
END;

/

In this example, the dynamic application role is active for 40 minutes, and the scope is
the current application session.

Validating an Application Role

Oracle recommends that you should always validate Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of

2-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Effective Dates for Application Users and Application Roles

validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects. To validate an application
role, use the XS_DIAG.VALIDATE_PRINCIPAL function. See the "VALIDATE_PRINCIPAL
Function" on page 11-48 for more information.

See Appendix D, "Troubleshooting Oracle Database Real Application Security" for
troubleshooting advice.

Predefined Regular Application Roles and Dynamic Application Roles

Using predefined dynamic application roles in a Real Application Security session,
application users can acquire application privileges based on their run-time states.
These application roles cannot be acquired by grants.

As an example, an application role may be enabled for application users connecting
from within the corporate firewall, which grants application users more application
privileges than connecting from outside the firewall.

See "Roles" on page A-1 for a description of Real Application Security predefined
regular application roles, dynamic application roles, and database roles.

Regular application roles can be granted to an application user, but dynamic
application roles cannot. Dynamic application roles are enabled based on user state.

See "Regular and Dynamic Application Roles" on page 2-8 for descriptions.

Effective Dates for Application Users and Application Roles

You can specify effective dates for application users, application roles, and role grants.
The application user or application role is available only within the period defined by
the effective start and end date. Example 2-9 shows how effective dates are specified
for an application user.

Example 2-9 Setting Effective Dates for an Application User

DECLARE
startDate TIMESTAMP := TO_TIMESTAMP (
'2012-01-01 11:00:00", 'YYYY-MM-DD HH:MI:SS');
endDate TIMESTAMP := TO_TIMESTAMP (
'2013-01-01 11:00:00", 'YYYY-MM-DD HH:MI:SS');

BEGIN
SYS.XS_PRINCIPAL.CREATE_USER
(name => 'lwuserl',
start_date => startDate,
end_date => endDate) ;
END;
/

Sometimes the effective date restriction does not need to be an attribute of an
application user or application role. Instead, it is only needed to restrict the effective
dates on a per role grant basis. In this case, you can specify beginning and ending
effective dates for an application role grant. This only constrains that particular
application role grant and allows for implementing fine-grained access control policy.
Example 2-10 shows how effective dates are specified for an application role.

Example 2—-10 Setting Effective Dates for an Application Role of an Application User

DECLARE
startDate TIMESTAMP := TO_TIMESTAMP ('2012-01-01 11:00:00','YYYY-MM-DD

Configuring Application Users and Application Roles 2-11

Granting Application Privileges to Principals

HH:MI:SS');
endDate TIMESTAMP := TO_TIMESTAMP ('2013-01-01 11:00:00','YYYY-MM-DD
HH:MI:SS');
BEGIN
SYS.XS_PRINCIPAL.GRANT_ROLES
(grantee => 'lwuserl',
role => 'app_regular_role',
start_date => startDate,
end_date => endDate) ;
END;

/

These are the most direct consequences of effective date restrictions:

s If an application user is not currently effective (that is, within the period defined
by its start and end date), the session for the particular application user cannot be
created.

s If an application role is not currently effective, the application role (and any
descendants) is not be available to the application user in the session.

s For application roles that are shared children of multiple application roles, the
child application roles are available as long as there is at least one parent that is
effective.

s If the application role grant of an application role is not currently effective, the
application role (and any descendants) is not available to the application user or
application role to which it is granted.

Note: The effective dates should be used in the policy after a careful
consideration of the nature of the restrictions that they impose on the
use of application users and application roles.

Granting Application Privileges to Principals
This section contains the following topics:
= Granting an Application Role to an Application User
= Granting an Application Role to Another Application Role

= Granting a Database Role to an Application Role

Granting an Application Role to an Application User

This section contains the following topics:
s Creating a New Application User and Granting This User an Application Role

= Granting an Application Role to an Existing Application User

Creating a New Application User and Granting This User an Application Role

Example 2-11 shows how to grant an application role, appll_regular_role, to an
application user, lwuserl, when the application user account is created.

To find a listing of existing application roles, query the DBA_XS_ROLES data dictionary
view.

2-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Granting Application Privileges to Principals

Example 2-11 Creating a New Application User and Granting This User an Application
Role
BEGIN
SYS.XS_PRINCIPAL.CREATE USER ('lwuserl');
SYS.XS_PRINCIPAL.GRANT ROLES('lwuserl', 'appll_regular_role');
END;
/

Granting an Application Role to an Existing Application User

Example 2-12 shows how to grant an application role, appll_regular_role, to an
existing application user, lwuserl. You cannot grant dynamic application roles to an
existing application user.

You can find a listing of existing application user accounts by querying the DBA_XS_
USERS view.

Example 2-12 Granting an Application Role to an Existing Application User

BEGIN

SYS.XS_PRINCIPAL.GRANT ROLES('lwuserl', ‘'appll_ regular_role');
END;
/

Granting an Application Role to Another Application Role

Example 2-13 shows how to grant a regular application role to another regular
application role. You cannot grant dynamic application roles to other regular
application roles, but you can grant other regular application roles to dynamic
application roles. To find a listing of existing application roles, query the DBA_XS_ROLES
view (see "DBA_XS_ROLES" on page 9-7).

Example 2-13 Granting a Regular Application Role to Another Regular Application Role

BEGIN
SYS.XS_PRINCIPAL.GRANT ROLES(grantee => 'app_regular_role', role => 'appll_
regular_role');
END;
/

Granting a Database Role to an Application Role

To grant a database role to an application role, use the SQL GRANT statement. You can
find a listing of existing database roles by querying the DBA_ROLES data dictionary
view.

Example 2-14 shows how to grant the database role, cust_role, to the application role
app_regular_role.

Example 2-14 Granting a Database Role to an Application Role

GRANT cust_role TO app_regular_role;

Configuring Application Users and Application Roles 2-13

Granting Application Privileges to Principals

2-14 Oracle Database Real Application Security Administrator's and Developer's Guide

3

Configuring Application Sessions

This chapter contains:

= About Application Sessions

s Creating and Maintaining Application Sessions
= Manipulating the Application Session State

s Administrative APIs for External Users and Roles

About Application Sessions

An application session contains information relevant to the application and its user.
An application session stores application session state as a collection of attribute-value
pairs. These attribute value pairs are divided into namespaces. Unlike traditional
heavyweight database sessions, an application session does not hold its own database
resources, such as transactions and cursors. Because application sessions consume far
fewer server resources than heavyweight sessions, an application session can be
dedicated to each end application user. An application session can persist in the
database and resume later with minimal cost.

To configure an application session, you work in two phases:
1. You create and maintain the application session.
2. You can manipulate the session state during the life of the session.

You can use either PL/SQL APIs or Java APIs to configure application sessions. This
chapter describes the programmatic creation, use, and maintenance of application
sessions in PL/SQL, and includes specific links to comparable Java information.

The following table provides generic links to more information about these topics.

For Information About... See Also

PL/SQL API syntax Chapter 10, "Oracle Database Real
Application Security SQL Functions"

Chapter 11, "Oracle Database Real
Application Security PL/SQL Packages"

Java API syntax (in Javadoc format) Oracle Database Real Application Security Java
API Reference
Performing Tasks with Java APIs Chapter 6, "Using Real Application Security

in Java Applications”

This section contains:

Configuring Application Sessions 3-1

About Application Sessions

= Application Sessions in Real Application Security

= Advantages of Application Sessions

Application Sessions in Real Application Security

Figure 3-1 shows a Real Application Security architecture diagram and indicates how
application sessions fit into it. The figure shows applications creating application
sessions in the database. Some of these application sessions are associated with
traditional database (DB) sessions.

Figure 3-1 also shows other components of Real Application Security such as ACLs,
application privileges, application users, and application roles.

Figure 3—1 Real Application Security Architecture

Web Server / External
Clients Identity Store
- & Oracle Database
To Access

_» | Application Server

| JEE Applications

Real Application Security
Java Container

ACLs, Application Privileges, Users, Roles

Real Application Security
Java APls PO"G]!'
Synchronization

‘I (A A A O\
Real Application Security 4 ri 1" ri '
f: lr i

§ i I

fvdwdw

Application ACL R

Session Cache Cache i Application Sessions
Connection Pool Attached | ‘.‘
- U | | K

DB Session DB Session N U [_I L' l_l
1 2
- __JOBC | DBSession DB S;ssion f:] Sgssiun DB Sassion

1 4

A

DB Session f
3 /

b
—
SQL*Plus

Advantages of Application Sessions

Application sessions have functional advantages over traditional database sessions.
For example, traditional database sessions are typically unaware of the end user
identities or the security policies for those end users. On the contrary:

3-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating and Maintaining Application Sessions

= Application sessions encapsulate end user's security context. They enable
applications to use database authorization mechanisms for access control based on
the end user identity.

= An application session can be associated with multiple database sessions
simultaneously.

s They are accessible by all nodes in an Oracle Real Application Clusters (Oracle
RAC) environment.

Application sessions have these performance advantages over traditional database
sessions:

s They can be created with less overhead than traditional database sessions.
s They can persist in the database and resume later with minimal cost.

= Real Application Security can collect session attribute changes and session states
on the client, using caches. Then, these changes are appended to the database until
the next database roundtrip, reducing the number of database roundtrips.

Creating and Maintaining Application Sessions
This section contains:
n Creating an Application Session
s Creating an Anonymous Application Session
= Attaching an Application Session to a Traditional Database Session
= Setting a Cookie for an Application Session
= Assigning an Application User to an Anonymous Application Session

= Switching Current Application User to Another Application User in Current
Application Session

= Configuring Global Callback Event Handlers for an Application Session
= Saving an Application Session
= Detaching an Application Session from a Traditional Database Session

= Destroying an Application Session

Creating an Application Session

You can create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or using the createSession method of the XSSessionManager
class in Java. To create an application session, the invoking user needs CREATE_SESSION
application privilege. This privilege can be obtained through XS_SESSION_ADMIN
Database role or by XS_ADMIN_UTIL.GRANT_SYSTEM PRIVILEGE API call (see "GRANT_
SYSTEM_PRIVILEGE Procedure" on page 11-31 for more information). CREATE_
SESSION procedure populates the unique identifier of the newly created session in
sessionid out parameter. This unique identifier can be used to refer to the session in
future calls. The DBA_XS_SESSIONS data dictionary view displays all the application
sessions in the database.

You can also specify a list of namespaces to be created when the session is created. If
you specify namespaces during creation of the session, the caller must have
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
the ADMIN_NAMESPACE system privilege.

Configuring Application Sessions 3-3

Creating and Maintaining Application Sessions

Example 3-1 shows how to create an application session with lwuserl.

Example 3—1 Creating an Application Session

DECLARE

sessionid RAW(16);
BEGIN

SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
END;

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "CREATE_SESSION Procedure" on page 11-4
The syntax of the Java createSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Create a Real Application Security

Session in Java'" on page 6-5

Creating an Anonymous Application Session

You can also create an anonymous application session using the DBMS_XS_
SESSIONS.CREATE_SESSION procedure in PL/SQL or using the
createAnonymousSession method of the XSSessionManager class in Java. To create an
anonymous session through the PL/SQL API, you must specify the predefined user
name XSGUEST.

Example 3-2 shows how to create an anonymous session with the predefined user
XSGUEST.

Example 3-2 Creating an Anonymous Application Session

DECLARE

sessionid RAW(16);
BEGIN

SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
END;

After creating an anonymous application session, you can assign a named user to the
session.

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "CREATE_SESSION Procedure" on page 11-4
The syntax of the Java Oracle Database Real Application Security Java
createAnonymousSession method (in API Reference

Javadoc format)

A Java example of this task "How to Create a Real Application Security
Session in Java" on page 6-5

Attaching an Application Session to a Traditional Database Session

To use an application session, it must be associated with a database session. This
operation is called attach. You can attach an application session to a traditional
database session using the DBMS_XS_SESSIONS.ATTACH_SESSION procedure in PL/SQL

3-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating and Maintaining Application Sessions

or the attachSession method of the XSSessionManager class in Java. A database
session can only attach one application session at a time. The DBA_XS_ACTIVE_
SESSIONS dynamic data dictionary view displays all attached application sessions in
the database.

To execute this procedure, the traditional session user must have the ATTACH_SESSION
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN
Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call. If you
specify namespaces, then the user is required to have the application privileges
MODIFY_NAMESPACE]OrMODIFY_ATTRIBUTE(nltheluﬂnespaces,OrADMIN_NAMESPACE
system privilege.

Example 3-3 shows how to attach an application session to a database session.

Example 3-3 Attaching an Application Session

DECLARE
sessionid raw(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH SESSION(sessionid);

END;

To attach a session with dynamic roles, a list of dynamic roles can be passed in attach.

Note: When developing the application, ensure that all application
end user actions are captured within an ATTACH_SESSION ... DETACH_
SESSION programming block. (For more information, see "Detaching
an Application Session from a Traditional Database Session" on
page 3-10).

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "ATTACH_SESSION Procedure" on page 11-5
The syntax of the Java attachSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Attach a Real Application Security

Session in Java" on page 6-5

Setting a Cookie for an Application Session

You can associate a specific cookie with an application session using the DBMS_XS_
SESSIONS.SET_SESSION_COOKIE procedure in PL/SQL or the setCookie method of the
XSSessionManager class in Java. The cookie can also be associated at the time of
creation of the session through the CREATE_SESSION PL/SQL APL

To execute this procedure, the user must be granted the MODIFY_SESSION application
privilege. This privilege can be obtained through the Xs_SESSION_ADMIN Database role
or by the XS_ADMIN_UTIL.GRANT_SYSTEM PRIVILEGE API call.

Example 3-4 shows how to set a cookie for an application session.

Example 3-4 Setting a Cookie for an Application Session
DECLARE

Configuring Application Sessions 3-5

Creating and Maintaining Application Sessions

sessionid raw(16);
BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.SET SESSION COOKIE('Cookiel', sessionid);
END;

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "SET_SESSION_COOKIE Procedure" on
page 11-16

The syntax of the Java setCookie method Oracle Database Real Application Security Java

(in Javadoc format) API Reference

A Java example of this task "How to Set the Secure Session Cookie in

Java" on page 6-12

Assigning an Application User to an Anonymous Application Session

You can assign a named application user to a currently attached anonymous
application session using the DBMS_XS_SESSIONS.ASSIGN_USER procedure in PL/SQL
or the assignUser method of the XSSessionManager class in Java. Assigning a user
changes the user session from anonymous to a named user.

To execute this procedure, the dispatcher or connection user must have the ASSIGN_
USER application privilege. This privilege can be obtained through the XS_SESSTON_
ADMIN Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call. If
you specify namespaces, then the user is required to be granted application privileges
MODIFY NAMESPACE or MODIFY ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE
system privilege. A list of dynamic roles can also be enabled using the DBMS_XS_
SESSIONS.ASSIGN_USER procedure.

Example 3-5 shows how to assign the application user lwuserl to an application
session.

Example 3-5 Assigning an Application User to an Application Session

DECLARE
sessionid raw(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.ASSIGN USER('lwuserl');

END;

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "ASSIGN_USER Procedure" on page 11-7
The syntax of the Java assignUser Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Assign an Application User to a

Session in Java'" on page 6-6

3-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating and Maintaining Application Sessions

Switching Current Application User to Another Application User in Current Application
Session

You can switch or proxy the security context of the current application session to a
newly initialized security context for a specified application user using the DBMS_XS_
SESSIONS.SWITCH_USER procedure in PL/SQL or the switchUser method of the
Session interface in Java. To proxy another application user, the current application
session user must be set up as a proxy user for the target user before performing the
switch operation. This is performed through the XS_PRINCIPAL.ADD_PROXY_USER
PL/SQL APIL.

Switching a user changes the user session between two named users.

If the target application user of the proxy operation has a list of filtering roles (proxy
roles) set up for the proxy user, they are enabled in the session.

You can either retain or clear the application namespace and attributes after a switch
operation. When the keep_state parameter is set to TRUE, all application namespaces
and attributes are retained; otherwise, all previous state in the session is cleared.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_
NAMESPACE system privilege.

Example 3-6 shows how to switch the application user lwuserl to application user
lwuser2 in the current application session. Note that namespace templates ns1 and ns2
should have already have been created by SYSDBA.

Example 3-6 Switching an Application User to Another Application User in the Current
Application Session

DECLARE
sessionid RAW(16);
nsList DBMS_XS_NSATTRLIST;
BEGIN
nsList := DBMS_XS_NSATTRLIST (DBMS_XS_NSATTR('nsl'),DBMS_XS_NSATTR('ns2'));
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2’',
keep_state => TRUE,
namespaces => nslist);
END;
The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "SWITCH_USER Procedure" on page 11-8
The syntax of the Java assignUser Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Switch an Application User in a

Session in Java" on page 6-6

Configuring Global Callback Event Handlers for an Application Session

A global callback event handler is a predefined PL/SQL procedure that can be
invoked to inspect, log, and modify the session state when certain session events of
interest occur. You can add multiple global callback event handlers on a session event.
After you create the PL/SQL procedure, you can register or deregister, or enable or
disable it using these procedures, respectively:

Configuring Application Sessions 3-7

Creating and Maintaining Application Sessions

m DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK

Use this procedure to register a callback event handler.
s DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK

Use this procedure to deregister a global callback.
s DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK

Use this procedure to enable or disable a global callback procedure by specifying a
value of TRUE for enable or FALSE for disable.

To execute these APIs the user must have the CALLBACK application privilege. This can

be obtained through the XSPROVISIONER application role or by calling the XS_ADMIN_
UTIL.GRANT_SYSTEM_PRIVILEGE APIL You can configure one or more global callback
event handlers for use in an application session. If you configure multiple callback

event handlers, Oracle Database executes the handlers in the order in which they were

created.

Optionally, you can follow these steps to change the execution order:

1. Run the DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK procedure to deregister any

existing callback.

2. Run the DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK procedure to register the

callback.

Table 3-1 lists session events that can use callback event handlers.

Table 3—1

Session Events That Can Use Callback Event Handlers

Session Event

When the Callback Will Be Executed

Creating a new application session

After the session is created.

Attaching to an existing application session

After the session is attached.

Enabling a dynamic application role

After a dynamic application role is
enabled.

Disabling a dynamic application role

After a dynamic application role is
disabled.

Direct login of an application session

After the session is attached (if the
session attach is called as part of the
direct logon of an application session).

Assigning a named application user to an
anonymous application session

After the named user is assigned to the
anonymous application session.

Proxying from one named application user to
another named application user

After the application user is switched (if
the application user is not proxying back
to the original application user).

Proxying back from a named application user to the
original application user

After the application user is switched (if
the application user is proxying back to
the original application user).

Enabling a regular application role

After the application role is enabled.

Disabling a regular application role

After the application role is disabled.

Detaching from an existing application session or
database session

Before the session is detached.

Terminating an existing application session or
database session

Before the session is destroyed.

3-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating and Maintaining Application Sessions

Table 3-1 (Cont.) Session Events That Can Use Callback Event Handlers

Session Event When the Callback Will Be Executed
Direct logoff of an application session or database Before the session is detached (if the
session session detach is called as part of the

direct logoff of an application session).

Suppose you want to initialize certain application-specific states after creating a
session. Example 3-7 shows how to register a global callback that sets up the state
CALLBACK_PROC, which is defined in the package CALLBACK_PKG and owned by the
schema CALLBACK_SCHM.

Example 3-7 Registering a Global Callback in an Application Session

BEGIN
SYS.DBMS_XS_SESSIONS.ADD GLOBAL_CALLBACK
(DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
'CALLBACK_SCHM', 'CALLBACK_PKG', 'CALLBACK_PROC') ;
END;
/

The state CALLBACK_PROC is registered as a global callback for the event CREATE_
SESSION_EVENT.

For more examples, and for details about the syntax of these procedures, see the
following:

= "ADD_GLOBAL_CALLBACK Procedure" on page 11-19
= "DELETE_GLOBAL_CALLBACK Procedure" on page 11-22
= "ENABLE_GLOBAL_CALLBACK Procedure" on page 11-21

Saving an Application Session

You can save the current user application session using the DBMS_XS_SESSIONS.SAVE_
SESSION procedure in PL/SQL or the saveSession method of the XSSessionManager
class in Java. Use the save operation when session changes need to be propagated
immediately to other sessions using the same session as this one. If the save operation
is not used, then the session changes would be reflected in other sessions only after
this session is detached.

The calling user requires no privileges to perform this operation.

Example 3-8 shows how to save the current user application session.

Example 3-8 Saving the Current User Application Session

BEGIN
SYS.DBMS_XS_SESSIONS.SAVE_SESSION;
END;

The following table provides links to additional information about these topics.

For... See Also

The syntax of these PL/SQL procedures "SAVE_SESSION Procedure" on page 11-18

The syntax of the Java detachSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

Configuring Application Sessions 3-9

Creating and Maintaining Application Sessions

For... See Also

A Java example of this task "How to Save a Real Application Security
External User Session" on page 7-9

Detaching an Application Session from a Traditional Database Session

You can detach an application session from the traditional database session using
either of these procedures:

m DBMS_XS_SESSIONS.DETACH_SESSION (abort => FALSE)

Use this procedure to detach the session and commit any changes that were made
since the last time session changes were saved. When you specify the abort
parameter as FALSE (the default value), all changes performed in the current
session are persisted. The currently attached user can perform this operation
without any additional privileges.

DETACH_SESSION is always performed on the currently attached session.
m DBMS_XS_SESSIONS.DETACH_SESSION (abort => TRUE)

Use this procedure to detach the session without saving the changes. When you
specify the abort parameter as TRUE, it rolls back the changes performed in the
current session. The role and namespace changes made to the session since the
attach are discarded.

Example 3-9 shows how to detach an application session from a database session and
commit the changes. Note that you can call DETACH_SESSION anywhere to detach the
currently attached session.

You can use the detachSession method of the XSSessionManager class in Java.

Example 3-9 Detaching and Committing an Application Session

DECLARE
sessionid RAW(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);

DBMS_XS_SESSIONS.DETACH SESSION;
END;
Example 3-10 shows how to detach a database session from an application session
without saving any changes.

Example 3—-10 Detaching and Not Committing an Application Session

DECLARE
sessionid RAW(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);

SYS.DBMS_XS_SESSIONS.DETACH_SESSION(TRUE) ;
END;

3-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

Note: When developing the application, ensure that all application
end user actions are captured within an ATTACH_SESSION ... DETACH_
SESSION programming block. (For more information, see "Attaching
an Application Session to a Traditional Database Session" on page 3-4)

The following table provides links to additional information about these topics.

For... See Also
The syntax of these PL/SQL procedures "DETACH_SESSION Procedure" on
page 11-18
The syntax of the Java detachSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference
A Java example of this task "How to Detach a Real Application Security

Session in Java" on page 6-13

Destroying an Application Session

You can terminate an application session using the DBMS_XS_SESSIONS.DESTROY_
SESSION procedure in PL/SQL or using the destroySession method of the
XSSessionManager class in Java. This procedure also detaches all traditional sessions
from the application session.

To execute this procedure, the invoking user must have the TERMINATE_SESSION
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN
Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call.

Example 3-11 shows how to destroy an application session.

Example 3—11 Destroying an Application Session

DECLARE
sessionid RAW(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY SESSION(sessionid);

END;

The following table provides links to additional information about this topic.

For... See Also
The syntax of this PL/SQL procedure "DESTROY_SESSION Procedure" on
page 11-19
The syntax of the Java destroySession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference
A Java example of this task "How to Destroy a Real Application Security

Session in Java" on page 6-13

Manipulating the Application Session State
This section contains:

» Using Namespace Templates to Create Namespaces

Configuring Application Sessions 3-11

Manipulating the Application Session State

» Initializing a Namespace in an Application Session

» Setting Session Attributes in an Application Session

= Getting Session Attributes in an Application Session

s Creating Custom Attributes in an Application Session
= Deleting a Namespace in an Application Session

= Enabling Application Roles for a Session

s Disabling Application Roles for a Session

Using Namespace Templates to Create Namespaces

An application uses a namespace to store application defined attribute-value pairs.
Often, an application needs to use the same namespace across different application
sessions. A namespace template provides a way to define and initialize a namespace.

A namespace template defines the namespace and its properties. It is used to initialize
the namespace in an application session. The namespace name must be the same as the
template that defines it.

This section contains:
s Components of a Namespace Template
= Namespace Views

s Creating a Namespace Template for an Application Session

Components of a Namespace Template
A namespace template includes the following:

= Name of the namespace

The name of the application namespace uniquely identifies the namespace. This
name is used when creating the namespace in an application session.

= Namespace handler

The namespace handler is called when an attribute value is set or retrieved.
Specifying a handler is optional.

Namespaces can be associated with an event handling function. The server
invokes this function whenever an operation on an attribute registered for event
handling is performed. The event handling function is provided with the attribute
name, attribute value, and the event code as arguments. For example:

FUNCTION event_handling_function_name (
session_id IN RAW,
namespace IN VARCHAR2,
attribute IN VARCHAR2,
old_value 1IN VARCHAR2,
new_value IN VARCHAR2,
event_code IN PLS_INTEGER)

RETURNS PLS_INTEGER;

s Attribute List

The attribute list includes the attributes defined for the namespace. These
attributes are created in the session when the namespace is created.

You can specify the following optional data for attributes:

3-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

— The default value

The attribute is initialized with the default value when the namespace is
created in the application session. The default value and the event types
FIRSTREAD_EVENT and FIRSTREAD_PLUS_UPDATE_EVENT cannot exist at the same
time.

- Event types
You can specify the following event types for an attribute:
* FIRSTREAD_EVENT

Specify this event type to call the namespace handler when an attribute
whose value has not been set is read for the first time. You can specify this
event type only if a default value has not been set for the attribute.

* UPDATE_EVENT

Specify this event type to call the namespace handler when the attribute
value is updated.

* FIRSTREAD_PLUS_UPDATE_EVENT

Specify this event type to call the namespace handler when an attribute
whose value has not been set is read for the first time, or when its value is
updated. You can specify this event type only if a default value has not
been set for the attribute.

= Namespace ACL

The privilege model for namespace operations. Namespace operations are
protected by the ACL set on the template. By default, NS_UNRESTRICTED_ACL is set
on a template, which allows unrestricted operation on namespaces created from
the templates.

Namespace Views

You can find information about namespace templates, namespace template attributes,
and namespace attributes in current and all application sessions by querying these
data dictionary views:

= "DBA_XS_NS_TEMPLATES" on page 9-22

= "DBA_XS_NS_TEMPLATE_ATTRIBUTES" on page 9-22
s "DBA_XS_SESSION_NS_ATTRIBUTES" on page 9-21

s "V$XS_SESSION_NS_ATTRIBUTES" on page 9-28

Creating a Namespace Template for an Application Session

You can create a namespace template using the XS_NAMESPACE.CREATE_TEMPLATE
procedure in PL/SQL or the createNamespace method of the Session interface in Java.

Example 3-12 shows how to create the namespace template ns1 for an application
session. It defines the attributes for this namespace using the list of attributes attrs.
Because this namespace template has NS_UNRESTRICTED_ACL set on the template, this
allows unrestricted operation on namespaces created from the template.

The calling user must have the ADMIN_ANY_SEC_POLICY application privilege, which
allows it to administer namespace templates and attributes.

Configuring Application Sessions 3-13

Manipulating the Application Session State

Example 3-12 Creating a Namespace Template

DECLARE
attrs XSSNS_ATTRIBUTE_LIST;
BEGIN
attrs := XS$NS_ATTRIBUTE_LIST();
attrs.extend(3);

attrs(l) := XSSNS_ATTRIBUTE('attrl', 'valuel',
XS_NAMESPACE.UPDATE_EVENT) ;

attrs(2) := XSSNS_ATTRIBUTE('attr2',null,
XS_NAMESPACE.FIRSTREAD_PLUS_UPDATE_EVENT) ;

attrs(3) := XSSNS_ATTRIBUTE('attr3', 'value3');

SYS.XS_NAMESPACE.CREATE TEMPLATE (name=>'nsl',

description=>'namespace template 1',
attr_list=>attrs,
schema=>'SCOTT',
package=>'PKGl',
function=>'FN1',
acl=>'SNS_UNRESTRICTED_ACL');

END;

/

The following table provides links to additional information about this topic.

For... See Also
The syntax of this PL/SQL procedure "CREATE_TEMPLATE Procedure" on
page 11-54
The syntax of the Java createNamespace Oracle Database Real Application Security Java
method (in Javadoc format) API Reference
A Java example of this task "How to Create a Namespace in Java" on
page 6-8

Initializing a Namespace in an Application Session

A namespace can be initialized, using a namespace template, during any of the
following events, as described in this section:

s Initializing a Namespace When the Session Is Created
= Initializing a Namespace When the Session Is Attached

» Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session

s Initializing a Namespace When the Application User Is Switched in an
Application Session

s Initializing a Namespace Explicitly

Initializing a Namespace When the Session Is Created

When you create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or the createSession method of the XSSessionManager class in
Java, you can specify a list of namespaces to initialize.

Example 3-13 shows how to initialize two namespaces, ns1 and ns2, while creating an
application session.

If you specify namespaces during creation of the session, the caller is required to be
granted application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the
namespaces, or be granted the ADMIN_NAMESPACE system privilege.

3-14 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

Example 3-13 Initializing Namespaces When Creating an Application Session

DECLARE
nsList DBMS_XS_NSATTRLIST;
sessionid RAW(16);
BEGIN
nsList := DBMS_XS_NSATTRLIST (DBMS_ XS NSATTR('nsl'),DBMS_XS_NSATTR('ns2'));
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid, FALSE, FALSE,
nsList);
END;
/

Note: The namespaces used in Example 3-13 must already have
corresponding namespace templates defined.

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "CREATE_SESSION Procedure” on page 11-4
The syntax of the Java createSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Create a Real Application Security

Session in Java" on page 6-5

Initializing a Namespace When the Session Is Attached

When you attach the session using the DBMS_XS_SESSIONS . ATTACH_SESSION procedure
in PL/SQL or using the attachSession method of the XSSessionManager class in Java,
you can specify a list of namespaces to initialize.

Example 3-14 shows how to initialize two namespaces, ns1 and ns2, while attaching
an application session.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_
NAMESPACE system privilege.

Example 3—-14 Initializing Namespaces When Attaching an Application Session

DECLARE
nsList DBMS_XS NSATTRLIST;
sessionid RAW(16);
BEGIN
nsList := DBMS_XS_NSATTRLIST (DBMS_XS_NSATTR('nsl'),DBMS_XS_NSATTR('ns2'));
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid, NULL, NULL, NULL, NULL,
nsList);
END;
/

Note: The namespaces used in Example 3-14 must already have
corresponding namespace templates defined.

The following table provides links to additional information about this topic.

Configuring Application Sessions 3-15

Manipulating the Application Session State

For... See Also

The syntax of this PL/SQL procedure "ATTACH_SESSION Procedure" on page 11-5
The syntax of the Java attachSession Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Attach a Real Application Security

Session in Java" on page 6-5

Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session

When you assign an application user to an application session using the DBMS_XS_
SESSIONS.ASSIGN_USER procedure in PL/SQL or the assignUser method of the
XSSessionManager class in Java, you can specify a list of namespaces to initialize.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_ NAMESPACE or MODIFY ATTRIBUTE on the namespaces, or ADMIN_
NAMESPACE system privilege.

Example 3-15 shows how to initialize two namespaces, ns1 and ns2, while assigning
an application user to an application session.

Example 3—15 Initializing Namespaces When Assigning an Application User to an
Application Session

DECLARE
sessionid RAW(30);
nsList DBMS_XS NSATTRLIST;
BEGIN
nsList := DBMS_XS_NSATTRLIST (DBMS_XS_NSATTR('nsl'),DBMS_XS_NSATTR('ns2'));
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
SYS.DBMS_XS SESSIONS.ASSIGN USER(username => 'lwuser2',
sessionid => sessionid,
namespaces => nsList);
END;

Note: The namespaces used in Example 3-15 must already have
corresponding namespace templates defined.

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "ASSIGN_USER Procedure" on page 11-7
The syntax of the Java assignUser Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Assign an Application User to a

Session in Java" on page 6-6

Initializing a Namespace When the Application User Is Switched in an Application
Session

When you switch an application user in an application session using the DBMS_XS_
SESSIONS.SWITCH_USER procedure in PL/SQL or using the switchUser method of the
Session interface in Java, you can specify a list of namespaces to initialize.

3-16 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_
NAMESPACE system privilege.

Note: To enable the switch from 1wuserl to lwuser2 after attaching
the session, you must first define lwuser?2 as the target user for
lwuserl, as follows:

exec XS_PRINCIPAL.ADD_PROXY_USER('lwuser2', 'lwuserl');

Example 3-16 shows how to initialize two namespaces, ns1 and ns2, while switching
an application user in an application session.

Example 3-16 Initializing Namespaces When Switching an Application User in an
Application Session

DECLARE
sessionid RAW(30);
nsList DBMS_XS NSATTRLIST;

BEGIN
nsList := DBMS_XS_NSATTRLIST (DBMS_XS NSATTR('nsl'),DBMS_XS_NSATTR('ns2'));
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid) ;
SYS.DBMS_XS SESSIONS.SWITCH USER(username => 'lwuser2',

namespaces => nsList);
END;
/

Note: The namespaces used in Example 3-16 must already have
corresponding namespace templates defined.

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "SWITCH_USER Procedure" on page 11-8
The syntax of the Java switchUser Oracle Database Real Application Security Java
method (in Javadoc format) API Reference

A Java example of this task "How to Switch an Application User in a

Session in Java" on page 6-6

Initializing a Namespace Explicitly

You can explicitly initialize a namespace in an application session using the DBMS_XS_
SESSIONS.CREATE_NAMESPACE procedure in PL/SQL or the createNamespace method of
the Session interface in Java.

To execute the DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure, the calling user must
have the MODIFY_NAMESPACE application privilege on the namespace or the ADMIN_
NAMESPACE system privilege.

Example 3-17 shows how to explicitly initialize a namespace, ns1, in an application
session.

Configuring Application Sessions 3-17

Manipulating the Application Session State

Example 3-17 |Initializing a Namespace Explicitly in an Application Session

DECLARE
sessionid RAW(30);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('nsl');

END;

/

Note: The namespace used in Example 3-17 must already have a
corresponding namespace template defined.

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "CREATE_NAMESPACE Procedure" on
page 11-9

The syntax of the Java createNamespace Oracle Database Real Application Security Java

method (in Javadoc format) API Reference

A Java example of this task "How to Create a Namespace in Java" on
page 6-8

Setting Session Attributes in an Application Session

You can set the value of a specific session attribute using the DBMS_XS_SESSIONS.SET_
ATTRIBUTE procedure in PL/SQL or the setAttribute method of the
SessionNamespace interface method in Java.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege
on the namespace or the ADMIN_NAMESPACE system privilege.

Note: An attribute can store a string value up to 4000 characters
long.

Example 3-18 shows how to set a value, vall, for an attribute, attrl, of the
application session.

Example 3-18 Setting a Namespace Attribute for an Application Session

DECLARE
sessionid RAW(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('nsl');
SYS.DBMS_XS SESSIONS.SET ATTRIBUTE('nsl', 'attrl', 'vall');
SYS.DBMS_XS_SESSIONS.DETACH SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;

/

The following table provides links to additional information about this topic.

3-18 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

For... See Also

The syntax of this PL/SQL procedure "SET_ATTRIBUTE Procedure" on page 11-11

The syntax of the Java setAttribute Oracle Database Real Application Security Java

method (in Javadoc format) API Reference

Information about this task in Java "Setting a Session Namespace Attributes" on
page 6-10

Getting Session Attributes in an Application Session

You can retrieve the value of a specific session attribute using the DBMS_XS_
SESSIONS.GET_ATTRIBUTE procedure in PL/SQL or using the getAttribute method of
the SessionNamespace interface method in Java.

The calling user is not required to be granted any privileges to get attributes using the
DBMS_XS_SESSIONS.GET_ATTRIBUTEFmocedure

Note: If an attribute value has not been set, and the FIRSTREAD_EVENT
has been specified for the attribute, then an attempt to read the the
attribute value triggers a call to the namespace event handler.

The namespace event handler procedure typically sets a value for the
attribute, and performs other application-specific processing tasks.

Example 3-19 shows how to retrieve an attribute, attrl, of the application session.

Example 3-19 Getting a Namespace Attribute for an Application Session

DECLARE
sessionid RAW(16);
attrib_out_val VARCHAR2 (4000);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('nsl');
SYS.DBMS_XS_SESSIONS.SET ATTRIBUTE('nsl', 'attrl', 'vall');
SYS.DBMS_XS_SESSIONS.GET ATTRIBUTE('nsl', 'attrl', attrib_out_val);
SYS.DBMS_XS_SESSIONS.DETACH SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;

/

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "GET_ATTRIBUTE Procedure" on page 11-12

The syntax of the Java getAttribute Oracle Database Real Application Security Java

method (in Javadoc format) API Reference

Information about this task in Java "Gettiéngi; (;i Session Namespace Attributes" on
page 6-

Configuring Application Sessions 3-19

Manipulating the Application Session State

Creating Custom Attributes in an Application Session

You can create custom attributes in a namespace using the DBMS_XS_SESSIONS.CREATE_
ATTRIBUTE procedure in PL/SQL or the createAttribute method of the
SessionNamespace interface method in Java.

Custom attributes differ from template attributes. Template attributes are part of the
namespace template, and are automatically created in the session when the namespace
is created. Custom attributes are programmatically created in a namespace, using the
CREATE_ATTRIBUTE procedure.

The calling application is required to be granted the MODIFY_ATTRIBUTE application
privilege on the namespace or the ADMIN_NAMESPACE system privilege.

Example 3-20 shows how to create a custom attribute, customattr, in a namespace of
the application session.

Example 3-20 Creating a Custom Namespace Attribute for an Application Session

DECLARE
sessionid RAW(16);
attrib_out_val VARCHAR2 (4000);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('nsl');
SYS.DBMS_XS_SESSIONS.CREATE_ATTRIBUTE('nsl', 'customattr', 'default_value_custom',

NULL) ;
SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('nsl', 'customattr', 'newvalue');
SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('nsl', 'customattr', attrib_out_val);
SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;

/

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "CREATE_ATTRIBUTE Procedure" on
page 11-10

The syntax of the Java createAttribute Oracle Database Real Application Security Java

method (in Javadoc format) API Reference

A Java example of this task "How to Create a Session Namespace

Attribute in Java" on page 6-9

Deleting a Namespace in an Application Session

You can delete a namespace and all attributes identified by it from an application
session using the DBMS_XS_SESSIONS . DELETE_NAMESPACE procedure in PL/SQL or the
deleteAttribute method of the SessionNamespace interface method in Java.

The calling user must have the MODIFY_NAMESPACE application privilege on the
namespace or the ADMIN_NAMESPACE system privilege.

Example 3-21 shows how to delete a namespace ns1 from an application session.

Example 3-21 Deleting a Namespace in an Application Session
DECLARE

3-20 Oracle Database Real Application Security Administrator's and Developer's Guide

Manipulating the Application Session State

sessionid RAW(16);
out_value VARCHAR2 (4000);
BEGIN

SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid) ;
SYS.DBMS_XS_SESSIONS.CREATE NAMESPACE('nsl');

SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('nsl',
SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('nsl',

'attrl', 'vall');
'attrl', out_value);

SYS.DBMS_XS SESSIONS.DELETE NAMESPACE('nsl');
SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;
/

The following table provides links to additional information about this topic.

For... See Also
The syntax of this PL/SQL procedure "DELETE_NAMESPACE Procedure" on
page 11-14

The syntax of the Java deleteNamespace
method (in Javadoc format)

A Java example of this task

Oracle Database Real Application Security Java
API Reference

"How to Delete a Namespace in Java" on
page 6-9

Enabling Application Roles for a Session

You can enable only directly granted regular application roles of an application session
user using the DBMS_XS_SESSIONS . ENABLE_ROLE procedure in PL/SQL or the
enableRole method of the Session interface in Java.

The DBA_XS_SESSION_ROLES dynamic data dictionary view lists application roles
enabled in all application sessions. The V$XS_SESSION_ROLES dynamic data dictionary
view lists application roles enabled in the currently attached application session.

Example 3-22 shows how to enable a role in an application session.

Example 3-22 Enabling a Role in an Application Session

DECLARE
sessionid RAW(16);
BEGIN

SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH SESSION (sessionid);
SYS.DBMS_XS SESSIONS.ENABLE ROLE('authl_role');
SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;
/

The following table provides links to additional information about this topic.

For...

See Also

The syntax of this PL/SQL procedure

The syntax of the Java enableRole
method (in Javadoc format)

"ENABLE_ROLE Procedure" on page 11-15

Oracle Database Real Application Security Java
API Reference

Configuring Application Sessions 3-21

Administrative APIs for External Users and Roles

For... See Also

A Java example of this task "How to Enable a Real Application Security
Application Role in Java" on page 6-7

Disabling Application Roles for a Session

You can disable application roles for a specific session using the DBMS_XS_
SESSIONS.DISABLE_ROLE procedure in PL/SQL or the disableRole method of the
Session interface in Java.

Example 3-23 shows how to disable a role in an application session.

Example 3-23 Disabling a Role in an Application Session

DECLARE
sessionid RAW(16);

BEGIN
SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuserl', sessionid);
SYS.DBMS_XS_SESSIONS.ATTACH_SESSION (sessionid);
SYS.DBMS_XS_SESSIONS.ENABLE_ROLE ('authl role');
SYS.DBMS_XS_SESSIONS.DISABLE ROLE('authl_role');
SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid) ;

END;

/

The following table provides links to additional information about this topic.

For... See Also

The syntax of this PL/SQL procedure "DISABLE_ROLE Procedure" on page 11-15

The syntax of the Java disableRole Oracle Database Real Application Security Java

method (in Javadoc format) API Reference

A Java example of this task "How to Disable a Real Application Security

Application Role in Java" on page 6-7

Administrative APIs for External Users and Roles

3-22

This section describes the following administrative APIs that are required for external
users and roles:

s "CREATE_SESSION Procedure" on page 11-4

s "ATTACH_SESSION Procedure" on page 11-5

= "ASSIGN_USER Procedure" on page 11-7
"SAVE_SESSION Procedure" on page 11-18

Oracle Database Real Application Security Administrator's and Developer's Guide

4

Configuring Application Privileges and Access
Control Lists

This chapter describes how to configure application privileges and access control lists
(ACLs) in Oracle Database Real Application Security. It includes information on how
to create, set, and modify ACLs, and describes how ACL security interacts with other
Oracle Database security mechanisms.

This chapter contains the following sections:
= Application Privileges

s Configuring Security Classes

s Configuring Access Control Lists

s Data Security

= ACL Binding

Application Privileges

The database has predefined system privileges, such as CREATE TABLE, and object
privileges, such as UPDATE. A large number of custom privileges that must be defined
for enterprise applications are often called application-defined privileges. Real
Application Security introduces the definition of these privileges, termed application
privileges, in the database. For application developers, these custom application
privileges are used for access control on application-level operations. These
application-level operations allow fine-grained access on data at a granular level of
columns, rows, or cells.

When an application privilege is explicitly bound to a resource, for example, rows and
columns of a table, an application privilege can be used to protect an application-level
operation on a database object. Alternatively, it may be used in the same manner as a
system privilege when binding to a resource is not required.

This section contains the following topics:
= Aggregate Privilege
s Checking ACLs for a Privilege

Aggregate Privilege

A Real Application Security aggregate privilege implies a set of other application
privileges. The implied application privileges of an aggregate privilege can be any
application privilege defined by the current security class or an inherited application

Configuring Application Privileges and Access Control Lists 4-1

Application Privileges

privilege (see "Configuring Security Classes" on page 4-3 for more information). When
an aggregate privilege is granted or denied, its implied application privileges are
implicitly granted or denied.

When an aggregate privilege AG implies the application privileges pl1 and p2, granting
the application privilege, AG, implies that both pl and p2 are granted. However,
granting both the pl and p2 does not imply that AG is granted.

Aggregate privileges are useful for the following purposes:

= Enabling grouping and granting a set of application privileges as a single grant,
simplifying application privilege administration. A group name or an alias for a
set of application privileges, where the group name itself is not an application
privilege, makes checking for the set simpler as it checks for each application
privilege in the group.

= Providing an efficient way to check a set of application privileges based on a single
application privilege check.

Example 4-1 adds an aggregate privilege called UPDATE_INFO to the HRPRIVS security
class. The aggregate privilege contains the implied privileges UPDATE, DELETE, and
INSERT.

Example 4-1 Adding an Aggregate Privilege to a Security Class

BEGIN
SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES (sec_class=>'HRPRIVS',
priv=>'UPDATE_INFO',
implied_priv_list=>XS$NAME_LIST (' "UPDATE"',
'""DELETE"', '"INSERT"'));
END;

When the group name itself is a first class privilege, there may be several possible
semantics for the aggregate privilege based on its relationship to its members. When
defining a semantic to represent an aggregate privilege, you must consider various
relations between the aggregate privilege and its members, such as imply and include.
For example, consider the imply relation in Java Security; selecting this semantic when
granting an aggregate privilege implies granting all its member application privileges
individually, but not the aggregate privilege. Therefore, granting all the member
application privileges of an aggregate does not imply granting the aggregate privilege.

Example 4-2 adds a list of implied application privileges for the aggregate privilege
UPDATE_INFO.

Example 4-2 Adding Implied Privileges to an Aggregate Privilege

BEGIN
SYS.XS_SECURITY_CLASS.ADD IMPLIED PRIVILEGES (sec_
class=>'HRPRIVS', (priv=>'UPDATE_INFO',
implied priv_list=>XSSNAME_LIST('"UPDATE"', '"DELETE"', '"INSERT"'));
END;

An aggregate privilege is not an application role. An application role itself is not an
application privilege that protects a resource. Application roles are used to activate
and deactivate application privileges available to an application user to enforce
role-based access control constraints.

Also, an aggregate privilege is not a security class. A security class is not an
application privilege that can be granted to a user. A security class lists a set of
application privileges including aggregate privileges that may be either granted or

4-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Security Classes

denied in an ACL. Within a security class, many aggregate privileges may be defined
based on the application privileges available in the security class.

An aggregate privilege can have other aggregate privileges as its members. Note that
the member privileges of an aggregate privilege must be defined in the same security
class (or in an ancestor security class) as the aggregate privilege. An aggregate
privilege definition cannot create a cycle.

ALL Privilege

The ALL privilege is a predefined aggregate privilege. Every security class has the ALL
privilege, and it contains all the application privileges of that security class. ALL is not
explicitly defined in every security class, but it is internally understood by the system
based on the security class associated with the ACL. The cardinality of an ALL for a
security class changes whenever an application privilege is added or removed from
the security class.

Use of the ALL construct enables Real Application Security to express access control
policy such as "grant all the application privileges to the application user ul defined
for an application except the specific privilege pl1". Example 4-3 shows an ACL in the
security class, AppSecurityClass, which has all the application privileges for the
application. The ordered evaluation of ACEs ensures that the ALL except pl is granted
to the application user ul.

Example 4-3 Using ALL Grant
select NAME, SECURITY_CLASS, PARENT ACL from DBA_XS_ACLS;
NAME SECURITY_CLASS PARENT ACL

sampleACL AppSecurityClass

select ACL, ACE_ORDER, GRANT TYPE, PRINCIPAL, PRIVILEGE from DBA_XS_ACES;

ACL ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE
sampleACL 1 DENY Ul pl
sampleACL 2 GRANT Ul ALL

Configuring Security Classes
This section contains the following topics:
= About Security Classes
= Security Class Inheritance
» Security Class as Privilege Scope
s DML Security Class
= Validating Security Classes

» Manipulating Security Classes

About Security Classes

A security class is a scope for a set of application privileges. The same application
privilege can be defined in multiple security classes. A security class restricts the set of
application privileges that may be granted or denied within an ACL. A security class

Configuring Application Privileges and Access Control Lists 4-3

Configuring Security Classes

is both a place to define a collection of relevant application privileges and a way to
associate an ACL with one security class.

Real Application Security supports a set of predefined application privileges and
security classes and also allows applications to define their own custom application
privileges using security classes. Each class of object being protected is associated with
a security class that indicates the set of operations that may be performed on its
objects. There are predefined security classes that define built-in application privileges.

Security classes simplify the task of managing a large number of application
privileges. Each ACL is associated with one security class. This security class defines
the scope of application privileges that may be granted within the ACL.

Each object type can support a large number of application privileges, and many
different object types may share a common set of operations. To simplify these types of
specifications, security classes support inheritance.

Security Class Inheritance

A security class can inherit application privileges from parent security classes. A child
security class implicitly contains all the application privileges defined in the parent
security classes. The application privileges available in a security class are the
combination of the application privileges defined in the security class and the
application privileges inherited from parent security classes.

A security class can specify a list of parent security classes. The application privileges
available in these parent classes become available in the child class. When the same
application privilege name is defined in a child and its parent security class, the
application privilege in the child replaces or overrides the application privilege in the
parent.

Example 4-4 shows security class inheritance by creating a security class called
HRPRIVS. The HRPRIVS security class defines two application privileges, VIEW_
SENSITIVE_INFO and UPDATE_INFO. UPDATE_INFO, which is an aggregate privilege that
implies three other privileges: UPDATE, DELETE, and INSERT. The security class HRPRIVS
inherits application privileges from DML security class as specified by the parent_1list
parameter.

Example 4-4 Showing Security Class Inheritance

DECLARE
pr_list XS$PRIVILEGE_LIST;
BEGIN

pr_list :=XS$PRIVILEGE_LIST(
XS$PRIVILEGE (name=>'VIEW_SENSITIVE_INFO'),
XS$PRIVILEGE (name=>'UPDATE_INFO',

implied_priv_list=>XSSNAME LIST
('"UPDATE"', ''DELETE"', '"INSERT"')));

SYS.xs_security_class.create_security_class(
name=>"'HRPRIVS',
parent_list=>XS$NAME_LIST('DML'),
priv_list=>pr_list);

END;
/

4-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Security Classes

Security Class as Privilege Scope

An ACL has a single security class as its scope. An ACL grants application privileges
to principals to control access to protected data or functionality; it can grant only the
application privileges that are defined in its security class. The security_class
parameter is used to specify the security class in an ACL. When checking an
application privilege against an ACL, the security class of the application privilege is
resolved based on the security class of the ACL, as the ACL always has an associated
security class. If no security class is specified, then the DML Security Class is used as
the default security class. Different ACLs can have as their scope the same security
class.

DML Security Class

The DML security class is predefined or created during installation. The DML security
class contains common application privileges for object manipulation: SELECT, INSERT,
UPDATE, and DELETE. If an ACL does not specity its security class, DML is the default
security class for the ACL.

Real Application Security DML application privileges are the same as database object
privileges and inherently enforced by database object-level operations. However, Real
Application Security DML application privileges are effective only when Real
Application Security Data Security is enabled for database tables.

Validating Security Classes

Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects.

See "VALIDATE_SECURITY_CLASS Function" on page 11-49 for more information
about validating a security class.

Manipulating Security Classes

To manipulate security classes, use the procedures in PL/SQL package XS_SECURITY_
CLASS; it includes procedures to create, manage, and delete security classes and their
application privileges. This package also includes procedures for managing security
class inheritance; see "XS_SECURITY_CLASS Package" on page 11-76.

Example 4-5 invokes ADD_PARENTS to add the parent security class GENPRIVS to the
HRPRIVS security class.

Example 4-5 Adding Parent Security Classes for a Specified Security Class

BEGIN
SYS.XS_SECURITY_CLASS.ADD_PARENTS ('HRPRIVS', 'GENPRIVS') ;
END;

Example 4-6 invokes REMOVE_PARENTS to remove the parent security class GENPRIVS
from the HRPRIVS security class.

Example 4-6 Removing One or More Parent Classes for a Specified Security Class

BEGIN
SYS.XS_SECURITY_CLASS.REMOVE_PARENTS ('HRPRIVS', 'GENPRIVS');
END;

Configuring Application Privileges and Access Control Lists 4-5

Configuring Security Classes

Example 4-7 invokes ADD_PRIVILEGES to add an aggregate privilege called UPDATE_
INFO to the HRPRIVS security class. The aggregate privilege contains the implied
privileges UPDATE, DELETE, and INSERT. Note that ADD_PRIVILEGES may be used to add
several application privileges to a security class. See "Aggregate Privilege" on page 4-1
for more information.

Example 4-7 Adding One or More Application Privileges to a Security Class

BEGIN
SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES (sec_class=>'HRPRIVS',
priv=>'UPDATE_INFO',
implied_priv_list=>XS$NAME_LIST (' "UPDATE"',
""DELETE"', '"INSERT"'));
END;

Example 4-8 invokes REMOVE_PRIVILEGES to remove the UPDATE_INFO application
privilege from the HRPRIVS security class.

Example 4-8 Removing One or More Application Privileges from a Specified Security
Class

BEGIN
SYS.XS_SECURITY_CLASS.REMOVE PRIVILEGES ('HRPRIVS', 'UPDATE INFO');
END;

Example 4-9 invokes REMOVE_PRIVILEGES to remove all application privileges from the
HRPRIVS security class.

Example 4-9 Removing all Application Privileges for a Specified Security Class
BEGIN

SYS.XS_SECURITY CLASS.REMOVE PRIVILEGES ('HRPRIVS');
END;

Example 4-10 invokes ADD_IMPLIED_PRIVILEGES to add a list of implied application
privileges for the aggregate privilege UPDATE_INFO.

Example 4-10 Adding One or More Implied Application Privileges to an Aggregate
Privilege
BEGIN
SYS.XS_SECURITY_ CLASS.ADD_IMPLIED_PRIVILEGES (priv=>'UPDATE_INFO',
implied_priv_1ist=>XS$NAME_
LIST('"UPDATE"', '"DELETE"', '"INSERT"'));
END;

Example 4-11 invokes REMOVE_IMPLIED_PRIVILEGES to remove the implicit privilege
DELETE from the aggregate privilege UPDATE_INFO.

Example 4-11 Removing a Specified Implied Application Privileges from an Aggregate
Privilege

BEGIN
SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED PRIVILEGES ('UPDATE_INFO', '"DELETE"');
END;

Example 4-12 invokes REMOVE_IMPLIED_PRIVILEGES to remove all implicit application
privileges from the aggregate privilege UPDATE_INFO.

4-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Access Control Lists

Example 4-12 Removing all Implied Application Privileges from an Aggregate Privilege

BEGIN
SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_ PRIVILEGES ('UPDATE_INFO') ;
END;

The procedure sets a description string for the specified security class. Example 4-13
invokes SET_DESCRIPTION to set a description string for the HRPRIVS security class.

Example 4-13 Setting a Description String for a Specified Security Class

BEGIN
SYS.XS_SECURITY_CLASS.SET_DESCRIPTION (
'"HRPRIVS', 'Contains privileges required to manage HR data');
END;

Example 4-14 invokes DELETE_SECURITY_CLASS to delete the HRACL ACL using the
default delete option DEFAULT_OPTION. Note that this option is defined in "XS_
ADMIN_UTIL Package" on page 11-30.

Example 4-14 Deleting a Specified Security Class

BEGIN

SYS.XS_SECURITY_CLASS.DELETE_SECURITY_CLASS ('HRPRIVS',6XS_ADMIN_UTIL.DEFAULT_
OPTION) ;
END;

Configuring Access Control Lists
This section contains the following topics:
= About ACLs and ACEs
s Creating ACLs and ACEs
= Updating Access Control Lists
s Checking ACLs for a Privilege
= Using Multilevel Authentication
= Principal Types
= Access Resolution Results
= ACE Evaluation Order
s ACL Inheritance

About ACLs and ACEs

Real Application Security encompasses access control lists (ACLs) and supports
grants, denials, and various conflict resolution methods. ACLs are extended to support
application-defined privileges, enabling applications to control privileges that are
meaningful to it. Authorization queries are of the form: "Is the application user
authorized for privilege pin ACL a?" Application-defined privileges are implemented
through APIs supported both in the middle tier and in the database. These APIs
enable the application to protect sensitive operations, such as approval of purchase
orders.

Before performing a sensitive operation, the application must determine the required
application privileges. For example, if the application requires the approveP0
application privilege, it must locate the ACL associated with the desired purchase

Configuring Application Privileges and Access Control Lists 4-7

Configuring Access Control Lists

order, al, and issue a query to determine if the Real Application Security session is
authorized for application privilege approveP0O in al. Note that the application must be
trusted to properly carry out authorization. Data security improves this by providing a
declarative method of associating ACLs with rows in a table; a data security policy
allows an administrator or developer to identify a set of rows in a table using an SQL
predicate and associates the set with the ACL that is used to control access to its
member rows.

The data security system provides a SQL operator that returns the ACLs associated
with a row. This SQL operator performs an authorization check using the ACL
references associated with the row. By default, a query returns all rows the user is
allowed to view; these ACL references may be used in the middle tier to determine
appropriate access for a particular row, as arguments in a WHERE clause that limits the
result set. Thus, the result set may be further restricted to display only those rows for
some specific operations, such as approveP0, based on the user's authorization.

The Real Application Security system provides native enforcement for SQL operations
in the database, limiting the scope for damage due to security errors in the application.
Thus, a SQL injection attack in one part of the application will not provide access to
tables outside of that component.

An ACL protects a resource by specifying application privileges of the principals on
the resource. An ACL is a list of access control entries (ACEs) where each ACE
maintains the mapping from a principal to a granted or denied application privileges
for the resource. A principal may be a database user or Real Application Security
application user or application role.

Access Control Entry or ACE

An access control entry, or ACE, represents an application privilege grant, and an
ACL represents a set of application privilege grants that are bound to a resource. Here,
the resource can be a database table, a column in a table, or a set of rows in a table
selected using a SQL predicate. Hence when a resource is accessed, only the ACLs
associated with the resource are checked for the access right.

An ACE either grants or denies access to some application function or other database
data for a particular principal. The ACE does not, itself, specify which data to protect;
that is done outside the ACE and the ACL, by associating the ACL with target data.

XSSACE_TYPE type is provided to construct each ACE entry for the ACL. An XS$SACE_
LIST object consists of a list of privileges and the principal to whom the privileges are
granted or denied. ACEs related information can be accessed through DBA_XS_ACES
view.

Creating ACLs and ACEs

Example 4-15 creates an ACL called HRACL. This ACL includes ACEs contained in ace_
list. The application privileges used in ace_list are available in the HRPRIVS security
class. The st_date and en_date parameters specify the active start and end times for
this ACL; note that only the SELECT and VIEW_SENSITIVE_INFO application privileges
are temporary.

Example 4-15 Creating an Access Control List

DECLARE
st_date TIMESTAMP WITH TIME ZONE;
en_date TIMESTAMP WITH TIME ZONE;
ace_list XSSACE_LIST;

BEGIN

4-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Access Control Lists

st_date := SYSTIMESTAMP;
en_date := TO_TIMESTAMP_TZ('2019-06-18 11:00:00 -5:00",
'YYYY-MM-DD HH:MI:SS TZH:TZM');
ace_list := XSSACE_LIST(
XS$ACE_TYPE (privilege list=>XS$NAME_LIST('"SELECT"', 'VIEW_SENSITIVE INFO'),
granted=>true,
principal_name=>'HRREP',
start_date=>st_date,
end_date=>en_date),
XSSACE_TYPE (privilege_list=>XSSNAME_LIST ('UPDATE_INFO'),
granted=>true,
principal_name=>'HRMGR'),
XSSACE_TYPE (privilege_list=>XS$NAME_LIST (' "SELECT"'),
granted=>true,
principal_name=>'DB_HR', principal_type=>XS_ACL.PTYPE_DB)) ;

sys.xs_acl.create_acl (name=>"HRACL',
ace_list=>ace_list,
sec_class=>"HRPRIVS',
description=>'HR Representative Access');
END;
/
Each ACE includes a principal that is the target of the grant and a list of application
privileges. The grant is subject to the following attributes:

= Deny
s Invert

s ACE Start-Date and End-Date

Deny

When a grant is negated, the application privileges are denied. Example 4-16 sets the
value of the attribute granted to FALSE to deny application privileges to the principal.
The default value is TRUE.

Example 4-16 Denying a Privilege
XSSACE_LIST(
XSSACE_TYPE (privilege_list=>XS$SNAME_LIST('UPDATE_INFO'),
granted=>FALSE,
principal_name=>'HRREP'
)i

Real Application Security ACL supports only the ordered evaluation of ACEs. The
first ACE that grants or denies the requested application privilege contributes toward
the final grant or deny. See section "DBA_XS_ACES" on page 9-13.

Invert

When the specified application privileges are given to all principals except one, that
principal is inverted; the inverted attribute is set to TRUE. The default value of the
attribute inverted is FALSE. In Example 4-17, a grant made to the inverted role
HRGUEST provides the application privileges to any user that does not have the role
enabled.

Example 4-17 Inverting an Application Privilege

XSSACE_LIST(
XSSACE_TYPE (privilege_list=>XS$SNAME LIST('UPDATE_INFO'),

Configuring Application Privileges and Access Control Lists 4-9

Configuring Access Control Lists

inverted=>TRUE,
principal_name=>'HRGUEST'
)

ACE Start-Date and End-Date

Each ACE can have a time constraint based on a start-date and an end-date, specifying
the time when the ACE is in effect.

In Example 4-18, the optional attributes start_date and end_date (of datatype
TIMESTAMP WITH TIME ZONE) define the time period over which an ACE is valid. The
end_date value must be greater than the start_date value.

Example 4-18 Setting ACE Start-Date and End-Date

XSSACE_TYPE (privilege_1list=>XSSNAME_LIST('"SELECT"', 'VIEW_SENSITIVE_INFO'),
granted=>true,
principal_name=>'HRREP',
start_date=>st_date,
end_date=>en_date))

Validating Access Control Lists

Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects.

See "VALIDATE_ACL Function" on page 11-50 for more information about validating
an ACL.

Updating Access Control Lists

To manipulate ACLs, use the procedures in PL/SQL package XS_ACL; it contains
procedures that create and manage ACLs. See "XS_ACL Package" on page 11-22.

Example 4-19 invokes APPEND_ACES to add an ACE, ace_entry, to the HRACL ACL. The
ACE grants the SELECT privilege to the DB_HR database user.

Example 4-19 Appending an ACE to an Access Control List

DECLARE
ace_entry XSSACE_TYPE;
BEGIN
ace_entry := XSSACE_TYPE (privilege_list=>XSSNAME_LIST('"SELECT"'),
granted=>true,
principal_name=>'DB_HR',
principal_type=>XS_ACL.PTYPE_DB);
SYS.XS_ACL.APPEND_ACES ('HRACL',ace_entry) ;
END;

Example 4-20 invokes REMOVE_ACES to remove all ACEs from the ACL called HRACL.

Example 4-20 Removing all ACEs from an ACL

BEGIN
SYS.XS_ACL.REMOVE_ACES ('HRACL') ;
END;

4-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Access Control Lists

The procedure sets or modifies the security class for an ACL. Example 4-21 invokes
SET_SECURITY_CLASS procedure to associate the HRPRIVS security class with ACL
HRACL.

Example 4-21 Modifying the Security Class for an ACL

BEGIN
SYS.XS_ACL.SET SECURITY_CLASS('HRACL', 'HRPRIVS');
END;

Example 4-22 invokes SET_PARENT_ACL to set the A11DepACL ACL as the parent ACL
for the HRACL ACL. The inheritance type is set to EXTEND.

Example 4-22 Setting or Modifying the Parent ACL

BEGIN
SYS.XS_ACL.SET_PARENT ACL ('HRACL', 'Al1DepACL',XS_ACL.EXTENDED) ;
END;

Example 4-23 invokes REMOVE_ACL_PARAMETERS to remove all ACL parameters for
ACLI.

Example 4-23 Removing all ACL Parameters for an ACL

BEGIN
SYS.XS_ACL.REMOVE_ACL_PARAMETERS ('ACL1') ;
END;

Example 4-24 invokes REMOVE_ACL_PARAMETERS to remove the REGION parameter for
ACLL.

Example 4-24 Removing the Specified ACL Parameter for an ACL

BEGIN
SYS.XS_ACL.REMOVE_ACL_PARAMETERS ('ACL1', 'REGION');
END;

Example 4-25 invokes SET_DESCRIPTION to set a description for ACL HRACL.

Example 4-25 Setting a Description String for an ACL

BEGIN
SYS.XS_ACL.SET_DESCRIPTION ('HRACL',
'Grants privileges to HR representatives and managers.');
END;

Example 4-26 invokes DELETE_ACL to delete ACL HRACL using the default delete
option.

Example 4-26 Deleting an ACL

BEGIN
SYS.XS_ACL.DELETE_ACL ('HRACL') ;
END;

Checking ACLs for a Privilege

There are two forms of enforcement; the system enforces DML privileges on data
security protected objects, and the SQL operator added by the user enforces all other
application privileges.

Configuring Application Privileges and Access Control Lists 4-11

Configuring Access Control Lists

To check an ACL for an application privilege, call the SQL operator ORA_CHECK_ACL:

ORA_CHECK_ACL (acls, privilege [,privilege] ...)

The ORA_CHECK_ACL SQL operator evaluates the list of application privileges with
respect to an ordered list of ACLs. The evaluation process proceeds until any one of
the following three events occurs:

= A grantis encountered for every application privilege specified before any
potential denials of the same application privilege. The outcome is that the
application privileges are granted.

» One of the application privileges specified is denied before any potential grants.
The outcome is that at least one of the application privileges is denied.

» The list of ACEs is fully traversed. The outcome is that not all of the application
privileges are granted.

To evaluate the application privilege, Oracle checks the ACEs (which are kept in
order), and the evaluation stops when it finds an ACE that grants or denies the
requested application privileges.

To find the ACLs associated with rows of a table or view, call the SQL operator ORA_
GET_ACLIDS: ORA_GET ACLIDS (table, ...).For example, to enforce an application
privilege, priv, on a table, tab, the user query adds the following check:

ORA_CHECK_ACL (ORA_GET_ACLIDS (tab), priv)

This function answers the question whether application privileges were granted,
denied, or neither. A corresponding Java APl is also available.

Using Multilevel Authentication

Multilevel authentication enables the user to specify, through system-constraining
ACLs, application privileges based on levels of authentication. A system-constraining
ACL specifies a minimum application-wide set of application privileges on objects,
based on dynamic roles that reflect an application user's level of authentication. When
attempting to access an object, an application user may be either strongly or weakly
authenticated, either inside or outside the firewall, with the following four possible
levels of authentication:

= Strongly authenticated, inside firewall
= Strongly authenticated, outside firewall
= Weakly authenticated, inside firewall

» Weakly authenticated, outside firewall

A system-constraining ACL can specify application privileges that apply to
application users at each level of authentication in an application. Based on application
requirements, the administrator may grant additional application privileges to specific
users based on any necessary criteria; such additional application privileges are
independent of any system-constraining ACL. Example 4-28 and Example 4-29
implement a system-constraining ACL.

Principal Types

In addition to Real Application Security principals, application users and application
roles, Real Application Security supports grants based on database users and roles.
When the system evaluates an ACL in a context of a Real Application Security session,
it ignores grants that are based on a database schema, but honors grants that are based

4-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Configuring Access Control Lists

on database role because they are part of Real Application Security user's role list.
Within an ACL, multiple ACEs can grant privileges to a principal.

Access Resolution Results

Requests for access can have two possible results: true or false.
= Aresult of true means that the requested application privilege is granted

= Aresult of false means that the requested application privilege is either not
granted or denied.

ACE Evaluation Order

ACEs are evaluated in the order they appear in the ACL. The outcome of evaluating a
particular ACE may be one of the following;:

» The application privilege is granted.
s The application privilege is denied.
= The application privilege is neither granted nor denied.

Note that if an ACE grants an application privilege that a previous ACE denies, the
result is a deny because the ACEs are evaluated in order.

ACL Inheritance

ACLs can explicitly inherit from a single parent ACL, enabling the application to share
policies across multiple objects. When the request for an application privilege involves
two ACLs, the final result of the access-resolution algorithm may be based on
semantics of individual access-resolution results of the ACLs. Real Application
Security supports two types of inheritance semantics: extending ACL inheritance (OR
with ordered evaluation), and constraining ACL inheritance (AND).

Extending ACL Inheritance

Extending ACL inheritance (OR with ordered evaluation) dictates that the ACEs are
evaluated from the bottom of the inheritance tree to its top, from child to parent. In
extending ACL inheritance, an application privilege is granted if either child or parent
ACL grants the privilege, and denied if either the child or parent ACL denies the
privilege. In fact, the first ACL that explicitly grants or denies the requested
application privilege determines the final result. After the first grant or deny, further
evaluations of the remaining ACLs are not attempted. Note that this evaluation rule is
the same as the ordered evaluation of ACEs within an ACL.

The following example sets the A11DepACL ACL as the parent ACL for the HRACL ACL.
The inheritance type is set to EXTENDED.

Example 4-27 Extending ACL Inheritance

BEGIN
SYS.XS_ACL.SET_PARENT_ACL('HRACL', 'Al1DepACL',XS_ACL.EXTENDED) ;
END;

Constraining ACL Inheritance

Constraining ACL inheritance (AND) requires that both the child and the parent ACL
grant the application privilege so that the ACL check evaluates to true.

Configuring Application Privileges and Access Control Lists 4-13

Configuring Access Control Lists

Application-wide security policies can be enforced if all the ACLs for an application
are constrained by the same parent ACL. For example, imagine a sample policy where
users who are authenticated as being inside the corporate firewall can have application
privileges in addition to the SELECT privilege. Example 4-28 shows the constraining
ACL for this policy (inheritance type is set to CONSTRAINED), where all application
users with XSPUBLIC application role are granted the SELECT privilege. Note that only
the application users who are inside the corporate firewall have the dynamic
application role FIREWALL enabled. Therefore, application users inside the firewall are
granted all the application privileges in HRPRIVS security class. As this ACL constrains
all the ACLs, such as guestACL, Example 4-29 shows that the application privilege
grants of these ACLs are constrained by FIREWALL_ACL.

Example 4-28 Constraining ACL Inheritance: Firewall-Specific Authentication Privilege

DECLARE

ace_list XSSACE_LIST;
BEGIN

ace_list := XSSACE_LIST(

XSSACE_TYPE (privilege_list=>XSSNAME_LIST('"SELECT"'),
granted=>true,
principal_name=>'XSPUBLIC'),

XS$ACE_TYPE (privilege_list=>XS$NAME_LIST('ALL'),
granted=>true,
principal_name=>'FIREWALL'));

sys.xs_acl.create_acl (name=>'FIREWALL_ACL',
ace_list=>ace_list,
sec_class=>'HRPRIVS',
description=>'0Only select privilege if not inside firewall');
END;

BEGIN
SYS.XS_ACL.SET_PARENT_ACL('GuestACL', 'FIREWALL_ACL',XS_ACL.CONSTRAINED) ;
END;

Example 4-29 Using a Constraining Application Privilege

SQL> select ACE_ORDER, GRANT_TYPE, PRINCIPAL, PRIVILEGE
from DBA_XS_ACES
where ACL='FIREWALL_ACL';

ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE

GRANT XSPUBLIC SELECT
2 GRANT FIREWALL ALL

ACL Catalog Views

ACLs have the following catalog views:
= DBA_XS_ACLS catalog view, described in section "DBA_XS_ACLS" on page 9-12
= DBA_XS_ACES catalog view, described in section "DBA_XS_ACES" on page 9-13

Security Class Catalog Views

Security classes have the following catalog views:

s DBA_XS_SECURITY_CLASSES, described in section "DBA_XS_SECURITY_CLASSES"
on page 9-11

4-14 Oracle Database Real Application Security Administrator's and Developer's Guide

ACL Binding

= DBA_XS_SECURITY_CLASS_DEP, described in "DBA_XS_SECURITY_CLASS_DEP" on
page 9-11

= DBA_XS_PRIVILEGES, described in "DBA_XS_PRIVILEGES" on page 9-9

Data Security

Data Realms

Data security associates ACLs with a logical group of rows, known as a data realm.

This enables applications to define and enforce application-specific privileges at the
database layer, through policies that define data realms and their access. These data
realms include both a SQL predicate that identifies a set of rows and an ACL that
protects the identified rows. The ACL evaluation is based on the application user, not
the schema owner.

Real Application Security's Data Security policy data realms associate ACLs with rows
in a table. A data realm has two parts:

1. A rule expressed as a SQL predicate, which selects a set of rows.
2. A set of ACLs, which specify access policies on the rows.

Data Security manages DML Real Application Security application privileges granted
by the associated ACLs. The DataSecurity module does not inherently enforce other
(non-DML) Real Application Security application privileges. Such application
privilege may be enforced programmatically as part of a DML operation, when
invoking the CHECK_PRIVILEGE operator inside either the SQL operator or data realm
predicate.

Parameterized ACL

Because each data realm defines a rule that uses a set of parameters, different values
for these parameters select different rows. These sets of rows may require different
ACLs. Therefore, association between an ACL and a set of rows depends on the data
realm rule and its parameter names and values.

ACL Binding

In the database, a privilege may be bound to a resource in the following manner:

= It can be explicitly bound as part of a privilege grant. For example, database object
privileges are bound to a resource as part of a privilege grant, such as GRANT user_
Nupdate ON table M.

= It may also be globally bound as part of the privilege definition, such as a system
privileges ALTER SYSTEM or CREATE ANY TABLE, which do not require the resource
name as part of their grant statement.

Similarly, a Real Application Security application privilege can be one of these types:

= Explicitly bound through an ACL and data realms as part of Data Security
policies; see Chapter 5, "Configuring Data Security"

= Globally bound to a resource as part of its definition

Configuring Application Privileges and Access Control Lists 4-15

ACL Binding

4-16 Oracle Database Real Application Security Administrator's and Developer's Guide

O

Configuring Data Security

This chapter contains:

= About Data Security

s Understanding the Structure of the Data Security Policy

= Designing Data Realms

= Applying Additional Application Privileges to a Column

= Enabling Data Security Policy for a Database Table or View

= Creating Real Application Security Policies on Master-Detail Related Tables
= Managing Application Privileges for Data Security Policies

s Using BEQUEATH CURRENT_USER Views

= Real Application Security: Putting It All Together

About Data Security

Data security refers to the ability to control application user access to data in an Oracle
database throughout all components of an Oracle Enterprise, using a uniform
methodology. In Oracle Database Real Application Security, to secure a database table
or view, you must specify the rows that you want to secure by creating a data realm
(see also, data realm).

To restrict access to the data realm, you associate one or more access control lists
(ACLs) that list the application users or application roles and their application
privileges for each data realm. A data realm together with its associated ACL is known
as a data realm constraint.

You can further restrict access to specific columns by applying one or more application
privileges to each column. This is useful in situations where you want only privileged
application users to see the data in that column.

Data security is an extension of Oracle Virtual Private Database (VPD). VPD adds a
WHERE predicate to restrict data access each time an application user selects or modifies
a database table. For more information about VPD, see Oracle Database Security Guide.
Oracle Database Real Application Security extends VPD concepts further by
implementing an authorization model that can further restrict access at both the row
and column by means of associating ACLs to these objects. In addition, the application
session and session context (through user roles and session namespace) are made more
secure. Furthermore Real Application Security provides its own data dictionaries.

To configure data security in Oracle Database Real Application Security, you must
follow these steps:

Configuring Data Security 5-1

Validating the Data Security Policy

1. Create a data security policy. The data security policy defines one or more data
realms and associates ACLs for each data realm to create data realm constraints.
The data security policy can also contain column-specific attributes to further
control data access. Multiple tables or views can share the same data security
policy. This lets you create a uniform security strategy that can be used across a set
of tables and views.

Example 5-1 on page 5-3 shows the structure a data security policy.
2. Associate the data security policy with the table or view you want to secure.

You can run the XS_DATA_SECURITY.APPLY_OBJECT_POLICY PL/SQL procedure to
enable the data security policy for the table or view that contains the data realms
and columns that you want to secure.

Note that if your application security requires that you update table rows and also
restrict read access to certain columns in the same table, you must use two APPLY_
OBJECT_POLICY procedures to enforce both data security policies. For example, one
APPLY_OBJECT_POLICY procedure would enforce the DML statement_types
required for updating table rows (for example, INSERT, UPDATE, DELETE), while the
other APPLY_OBJECT_POLICY procedure would enforce only the statement_types
of SELECT for the column constraint.

Example 5-5 on page 5-10 shows how to use the APPLY_OBJECT_POLICY
procedure. See "APPLY_OBJECT_POLICY Procedure" on page 11-44 for more
information.

3. Validate the data security policy. See "Validating the Data Security Policy" on
page 5-2 for more information.

Validating the Data Security Policy

Oracle recommends that you should always validate the Real Application Security
objects after administrative configuration changes. The XS_DIAG package provides a set
of validation APIs to help ensure that the complicated relationships among your Real
Application Security objects are not damaged unintentionally by these changes.

See "VALIDATE_DATA_SECURITY Function" on page 11-50 for more information
about validating a data security policy.

Understanding the Structure of the Data Security Policy

You can create a data security policy using the XS_DATA_SECURITY.CREATE_POLICY
PL/SQL procedure.

Figure 5-1 shows the structure of a Real Application Security data security policy
named HR.EMPLOYEES_DS that is created from a data realm constraint and a column
constraint, both of which are to be applied to the EMPLOYEES table. The data realm
constraint defines the rows (DEPARTMENT_ID with a value of 60 or 100) on which the
data security policy applies and the ACL (HRACL) that is associated with these rows.
The column constraint defines a constraint for the sensitive column data in the SALARY
column of the EMPLOYEES table by using the VIEW_SENSITIVE_INFO privilege that is
required to view this sensitive data.

5-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Understanding the Structure of the Data Security Policy

Figure 5-1 Real Application Security Data Security Policy Created on the EMPLOYEES Table

Security Classes Data Security Policies EMPLOYEES
| HR.EMPLOYEES_SC HR.EMPLOYEES_DS
- DEFARTMENT_ID
Privileges
Realm Constraints SALARY
SELECT R —

Data Realm Constraints

VIEW_SENSITIVE_INFO

—4‘3EFARTHEHT_ID in (60, 104}

ACLs

Column Constraints

— HR.HRACL

|

‘SALARY '

Grant SELECT to
Employes_Role

Grant SELECT,
VIEW_SENSITIVE_INFO
to Manager Role

Example 5-1 creates the data security policy shown in Figure 5-1.

See Also: "CREATE_POLICY Procedure" on page 11-35

Example 5-1 Structure of a Data Security Policy

-- Create the ACL HRACL.

DECLARE

ace_list XS$ACE_LIST;

BEGIN

ace_list := XSSACE_LIST(

XSSACE_TYPE (privilege_list => XSSNAME_LIST('SELECT'),

granted => true,principal_name => 'Employee_Role'),

XS$ACE_TYPE (privilege_list => XS$NAME LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
granted => true, principal_name => 'Manager_Role'));

sys.xs_acl.create_acl (name => 'HRACL',ace_list => ace_list, sec_class =>
'HR.EMPOLYEES_SC') ;
END;

-- Create variables to store the data realm constraints and the column constraint.
DECLARE

realm_cons XSSREALM CONSTRAINT LIST;
BEGIN

-- Create a data realm constraint comprising of a data realm (rule) and
-- an associated ACL.
realm_cons :=
XSSREALM_CONSTRAINT LIST (
XSSREALM CONSTRAINT TYPE (realm=> 'DEPARTMENT ID in (60, 100)°',
acl_list=> XSSNAME_LIST('HRACL')));

-- Create the column constraint.
column_cons :=
XS$COLUMN_CONSTRAINT LIST (
XSSCOLUMN_CONSTRAINT_TYPE (column_list=> XSSLIST('SALARY'),
privilege=> 'VIEW_SENSITIVE_INFO'));

-- Create the data security policy.

Configuring Data Security 5-3

Designing Data Realms

SYS.XS DATA SECURITY.CREATE POLICY(
name=>"'HR.EMPLOYEES DS',
realm constraint_list=>realm cons,
column_constraint_list=>column_cons);

-- Enforce the data security policy to protect READ access of the EMPLOYEES table
-- and restrict access to the SALARY column using the VIEW_SENSITIVE_INFO
-- privilege.
sys.xs_data_security.apply_object_policy(
policy => 'HR.EMPLOYEES_DS',
schema => 'HR',
object => 'EMPLOYEES',
statement_types => 'SELECT',
owner_bypass => true);

END;

You should validate the data security policy after you create it. See "VALIDATE_
DATA_SECURITY Function" on page 11-50 for more information.

The main parameters of a data security policy are as follows:

s Policy Name: This defines the name of the data security policy.

Example 5-1 uses the name EMPLOYEES_DS for the data security policy that it
creates.

s Data Realm Constraints: The data realm constraints define the data realms, or the
rows, on which the data security policy applies, together with the ACLs to be
associated with these data realms.

Example 5-1 uses the realm_cons list to define the data realm constraint for the
EMPLOYEES_DS policy. realm_cons comprises of rows that have a DEPARTMENT_ID
value of 60 or 100. These rows are associated with the HRACL access control list.

s Column Constraint: Column constraint defines additional constraint for sensitive
column data in the data realm constraint.

Example 5-1 associates the column_cons column constraint with the EMPLOYEES_DS
policy. column_cons protects the SALARY column with the VIEW_SENSITIVE_INFO
privilege.

Designing Data Realms
This section includes the following topics:
= Understanding the Structure of a Data Realm

= Using Static Data Realms

Understanding the Structure of a Data Realm

A data realm is a collection of one or more object instances. An object instance is
associated with a single row in a table or view and is identified by the primary key
value of the row in the storage table of the object. A table can have both static and
dynamic data realms defined for it at the same time. As described earlier, an ACL
defines the application privilege grants for the data realm.

A data realm constraint is used to associate a data realm with an ACL. Example 5-2
creates a data realm constraint called realm_cons. The data realm constraint includes a
membership rule to create a data realm. The data realm includes rows where

5-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Designing Data Realms

DEPARTMENT IDis 60 or 100. realm_cons also declares an ACL, called HRACL, to

associate with the data realm.

Example 5-2 Components of a Data Realm Constraint

realm_cons :

XSSREALM_CONSTRAINT TYPE(realm=> 'DEPARTMENT ID in (60,

100) ',

acl_list=> XSSNAME LIST('HRACL'));

The membership of the object instances within a data realm is determined by a rule in
the form of a SQL predicate, which must be applicable to the WHERE clause of a
single-table query against the storage table of the object. The SQL predicate in
Example 5-2 is DEPARTMENT_ID in (60, 100).

If the SQL you write causes errors, such as ORA-28113: policy predicate has error,
then you can use trace files to find cause of the error. See "Using Trace Files to Check
for Policy Predicate Errors" on page 5-7 for more information.

Example 5-2 uses a single ACL called HRACL. A data realm can be associated with
multiple ACLs, and the same ACL can be used across multiple data realms.

Consider the following columns from the ORDERS purchase order table in the OE sample

schema:
ORDER_ID | CUSTOMER_ID | ORDER_STATUS | SALES_REP_ID | ORDER_TOTAL
2354 104 0 155 46257
2355 104 8 NULL 94513.5
2356 105 5 NULL 29473.8
2357 108 5 158 59872.4
2358 105 2 155 7826

Each row in the ORDERS table is an object instance in the purchase order object. The
number listed in the ORDER_ID column is the primary key used to uniquely identify a
particular purchase order object instance. For example:

= A data realm comprised of one object instance, that is, one row. For example, you
could use the WHERE predicate of ORDER_ID=2354.

= A data realm comprised of multiple object instances. For example, you could have
multiple rows using the WHERE predicate of CUSTOMER_ID=104.

= A data realm comprised of the entire contents of the table, defined by the WHERE
predicate of 1=1.

Examples of ways to define data realms are as follows:
s Use valid SQL attributes such as columns in a table.
In this case, you are using WHERE predicates such as the following:

CUSTOMER_ID=104

Changes made to the data in the rows and columns are automatically reflected in
the data collected by the data realm.

» Use parameters in the WHERE predicate.
You can parameterize an data realm, for example:

CUSTOMER_ID=&PARAM

Configuring Data Security 5-5

Designing Data Realms

This example assumes that the parameter PARAM has been associated with different
customer IDs. When you grant permissions in this situation, you need to grant the
permission to the specific parameter value. You must specify the values of the
parameters in the ACL associated with the data realm that contains this type of
WHERE predicate. This enables you to create the grant based on customer IDs
without having to create many customer ID-specific data realms.

s Use amembership rule based on runtime application session variables or
subqueries.

An example of this type of membership rule is:

CUSTOMER_ID=XS_SYS_CONTEXT('order', 'cust_id')

However, be careful about creating membership rules that are based on session
variables or subqueries. For example, suppose you wanted to use the session
variable USER, which reflects the current application user, in the membership rule
co1=USER. Oracle Database cannot pre-compute the resultant row set because the
result is not deterministic. Application user SCOTT and application user JSMITH
may have a different result for the same row. However, the membership rule
col="'SCOTT' works because the rule is always evaluated to the same result for any
given row.

See "Using Static Data Realms" on page 5-6 for more information about creating
data realms. See also "XS_SYS_CONTEXT Function" on page 10-2 for more
information about XS_SYS_CONTEXT.

Using Static Data Realms

In a static data realm, Oracle Database evaluates changes to data affected by a data
realm when the data is updated. You can use static data realms with tables, but not
with views.

To set an data realm to be static, set its is_static attribute to true. The following
example creates a static data realm:

realm_cons := XSSREALM_CONSTRAINT_TYPE (realm=> 'DEPARTMENT_ID in (60, 100)',
acl_list=> XSSNAME LIST('HRACL'),
is_static=> TRUE);

Materialized Views (MVs) will be used to maintain the binding between rows in the
protected table and the ACLs that protect them. They will be generated automatically
whenever static data realms are included in the data security policy. These MVs will
support complete refresh only and will allow up to 125 ACLs to be associated with any
single row.

The MV that is generated will be of the form mv (TABLEROWID, ACLIDLIST) where
TABLEROWID refers to a row in the table being protected and ACLIDLIST is a list of
ACLID values stored in a RAW type column. The individual 16-byte values will be
concatenated to form the list.

Oracle Database evaluates dynamic data realms each time the application user
performs a query on the data realm data. You can use dynamic data realms to protect
rows for both tables and views. A dynamic data realm has the most flexibility, because
it is not bound by the requirements needed for static data realms. Be aware that an
overly complex rule within the dynamic data realm definition may affect performance.

If the base table update is infrequent or the data realm member evaluation rule is
complex, then you should consider using static data realms to protect the base table. A

5-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Applying Additional Application Privileges to a Column

frequently updated base table may be constantly out of sync with the ACLIDS storage
MYV, unless the MV is refreshed accordingly. The administrator should make the
decision based on the base table statistics and performance requirements of the
system.

To set a data realm constraint to be dynamic, set its is_static attribute to FALSE, or
omit the is_static attribute. The following example creates a dynamic data realm:

realm_cons := XSSREALM CONSTRAINT TYPE(realm=> 'DEPARTMENT ID in (60, 100)',
acl_list=> XSSNAME LIST('HRACL'),
is_static=> FALSE);

Using Trace Files to Check for Policy Predicate Errors

If the SQL defined in the realm element causes an ORA-28113: policy predicate has
error or similar message, then you can use trace files to find the cause of the error. The
trace file shows the actual error, along with the VPD view showing the reason for the
problem. Often, the syntax of the view has a trivial error, which you can solve by
analyzing the SQL text of the view.

To enable tracing, log into SQL*Plus as a user who has the ALTER SESSION privilege.

If you want to dump all the data realm constraint rules (with their parameter values
resolved) into the trace file, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSXDS] disk=high';

If you want to dump the VPD views of the XDS-enabled table during the initial (hard)
parse of a query, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSVPD] disk=high';

Alternatively, you can enable tracing by adding the following lines to the initialization
file for the database instance:

event="TRACE[XSXDS] disk=high"

event="TRACE[XSVPD] disk=high"

You can find the location of this trace file by issuing the following SQL command:

SHOW PARAMETER USER_DUMP_DEST;

If you need to disable tracing, issue the following statements:

ALTER SESSION SET EVENTS 'TRACE[XSVPD] off';
ALTER SESSION SET EVENTS 'TRACE[XSXDS] off';

See Also:
= "Data Security (XSXDS and XSVPD) Event-Based Tracing" on
page D-8

n Oracle Database Administrator’s Guide for more information about
using trace files

Applying Additional Application Privileges to a Column

By default, access to rows is protected by the ACL associated with the data realm. In
addition, you can protect a particular column with custom application privileges.

Configuring Data Security 5-7

Applying Additional Application Privileges to a Column

To protect a column for table T, add a list of column constraints to the data security
policy that will be applied to table T.

For example, the PRODUCT_INFORMATION table in the OE schema contains the LIST
PRICE column. If you want to restrict the display of product prices to specific
categories, you can apply an additional application privilege to the LIST_COLUMN table,
so that only the sales representative who has logged in can see the product list prices
for the categories he or she manages.

Example 5-3 shows a column constraint that protects the LIST_PRICE column with the
ACCESS_PRICE application privilege.

Example 5-3 Column with an Additional Application Privilege That Has Been Applied

column_cons :=
XS$COLUMN_CONSTRAINT_LIST (
XS$COLUMN_CONSTRAINT_TYPE (column_list=> XS$LIST('LIST_PRICE'),
privilege=> 'ACCESS_PRICE'));
Before you add the column constraint, a SELECT statement on the following columns
from the OE. PRODUCT_INFORMATION table for products in categories 13 and 14 shows
the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE
3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

1755 32MB Cache /NM 14 121

After the column constraint is applied, the sales representatives who are responsible
for category 13 products see the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE
3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 NULL

1755 32MB Cache /NM 14 NULL

Conversely, sales representatives responsible for category 14 products see this output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE
3400 HD 8GB /SE 13 NULL

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

1755 32MB Cache /NM 14 121

5-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Enabling Data Security Policy for a Database Table or View

In these examples, the list price for product 3355 is NULL. To enable a mid-tier
application to distinguish between the true value of authorized data, which could
include NULL, and an unauthorized value that is always NULL, use the COLUMN_AUTH_
INDICATOR SQL function to check if the column value in a row is authorized. You can
mask the unauthorized data with a value different from NULL by modifying the SELECT
statement to include a DECODE or CASE function that contains the COLUMN_AUTH_
INDICATOR SQL function.

Example 54 shows a SELECT statement that uses the COLUMN_AUTH_INDICATOR function
to check authorized data and the DECODE function to replace NULL with the value
restricted.

Example 5-4 Checking Authorized Data and Masking NULL Values

SELECT PRODUCT_ID, PRODUCT_NAME, CATEGORY_ID

DECODE (COLUMN_AUTH_INDICATOR(LIST_PRICE), 0, 'restricted', 1, LIST PRICE) LIST_
PRICE

FROM PRODUCT_INFORMATION

WHERE CATEGORY_ID = 13;

Afterward, the masked value appears in place of NULL. For example, if our category 13
sales representative logs on and searches for product list prices, he or she sees the
following output:

PRODUCT_ID PRODUCT_NAME | CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 restricted

1755 32MB Cache /NM 14 restricted
See Also:

» Chapter 9, "Oracle Database Real Application Security
Data Dictionary Views" for information about the column
constraints data dictionary views, which list existing tables that
use column level security

s "COLUMN_AUTH_INDICATOR Function" on page 10-1

= Example 5-1, "Structure of a Data Security Policy" on page 5-3 for
an example of a column constraint element within a data security

policy.
s Appendix B, "Configuring OCI and JDBC Applications for

Column Authorization" if your applications use either Oracle Call
Interface (OCI) or JDBC

Enabling Data Security Policy for a Database Table or View

The XS_DATA_SECURITY.APPLY OBJECT_POLICY procedure applies a data security policy
on a table or view.

This section includes the following topics:

= Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure

Configuring Data Security 5-9

Enabling Data Security Policy for a Database Table or View

s How the APPLY_OBJECT_POLICY Procedure Alters a Database Table
s How ACLs on Table Data Are Evaluated

Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure

Use the XS_DATA_SECURITY.APPLY_ OBJECT_POLICY procedure to enable Real
Application Security for a database table or view. Example 5-5 enables the ORDERS_DS
data security policy for the OE.ORDERS table. See "APPLY_OBJECT_POLICY
Procedure" on page 11-44 for more information.

Example 5-5 Using XS_DATA_SECURITY.APPLY_OBJECT_POLICY

BEGIN
SYS.XS_DATA_SECURITY.APPLY_ OBJECT POLICY (policy=>'ORDERS_DS',
schema=>"'0E",
object=>"'ORDERS') ;
END;

Applying Multiple Policies for a Table or View

You can apply multiple data security policies for a table or view. When a table or view
is protected by multiple data security policies, an application user has access to only
those rows that are allowed by all the policies. So, for example, if the data realm for
Policy 1 includes a row, but the data realm for Policy 2 does not include the same row,
the application user would be unable to access the row.

Column security works similarly. Consider the case where column Coll is protected by
multiple policies: Policyl protects it with Privl, Policy2 protects it with Priv2, and so
forth. Then an application user must have been granted all application privileges
(Priv1, Priv2, and so forth) to access Coll.Thus, for columns protected by column
policies, an application user must have been granted access by all policies protecting
the column.

How the APPLY _OBJECT POLICY Procedure Alters a Database Table

The following table, OE. ORDERS, shown earlier under "Understanding the Structure of a
Data Realm" on page 5-4, has been enabled with XS_DATA SECURITY.APPLY OBJECT_
POLICY. It shows the addition of the hidden SYS_ACLOID column. This column, whose
data type is NUMBER, lists application user-managed ACL identifiers. The following
table contains the application user-managed ACL identifier 500, which is a direct grant
on the object instance identified by the order ID 2356.

Note: The SYS_ACLOID hidden column can be enabled by passing the
value XS_DATA_SECURITY.APPLY ACLOID_COLUMN for the apply_option
parameter when invoking the XS_DATA_SECURITY procedure. Real
Application Security allows only one ACLID to be added to the SYS_
ACLOID column.

ORDER_ID | CUSTOMER_ID | ORDER_STATUS | SALES_REP_ID | ORDER_TOTAL SYS_ALCOID
2354 104 0 155 46257

2355 104 8 NULL 94513.5

2356 105 5 NULL 29473.8 500

2357 108 5 158 59872.4

5-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating Real Application Security Policies on Master-Detail Related Tables

ORDER_ID

CUSTOMER_ID | ORDER_STATUS | SALES_REP_ID | ORDER_TOTAL SYS_ALCOID

2358

105

2 155 7826

The system-managed static ACL identifiers, are stored in a Materialized View (MV).

TABLEROWID ACLIDLIST
AAAO/8AABAAANTCABJ 60FB8AAA40D46CIEE040449864653987
AAAQ/8AABAAANTrCABL 60FB8AAA40D46CIEE040449864653987

To find detailed information on the data realms or data realm constraints associated
with a table, query the DBA_XS_REALM_CONSTRAINTS data dictionary view. See "DBA_
XS_REALM_CONSTRAINTS" on page 9-15 for more information.

How ACLs on Table Data Are Evaluated

When Oracle Database evaluates a set of ACLs, it stops the evaluation when it finds
the first grant or deny. For this reason, it is important to plan the order of ACLs
carefully. The ACLs associated with each row in a table are evaluated in the following
order:

1. The ACLs from grants directly on object instances (that is, application
user-managed ACL identifiers) are evaluated first. See "Configuring Access
Control Lists" on page 4-7 for more information about creating an ACL and adding
it to the object instance.

2. The ACLs from static data realm constraint grants are evaluated next, after
application user-managed ACLs. If you have multiple static data realms, they are
evaluated in the order of their physical appearance in the data security policy. See
"Using Static Data Realms" on page 5-6 for more information about static data
realms.

3. The ACLs from dynamic data realm constraint grants are evaluated last. If you
have multiple dynamic data realms, they are evaluated in the order of their
physical appearance in the policy. See "Using Static Data Realms" on page 5-6 for
more information about dynamic data realms.

Creating Real Application Security Policies on Master-Detail Related

Tables

This section includes the following topics:
= About Real Application Security Policies on Master-Detail Related Tables
= Understanding the Structure of Master Detail Data Realms

= Example of Creating a Real Application Security Policy on Master-Detail Related
Tables

For more information about master-detail tables, see the chapter about creating a
master-detail application using JPA and Oracle ADF in Oracle Database 2 Day + Java
Developer’s Guide.

Configuring Data Security 5-11

Creating Real Application Security Policies on Master-Detail Related Tables

About Real Application Security Policies on Master-Detail Related Tables

You can create a data security policy that can be used for master-detail related tables.
Typically, you may want the same policy that protects the master table to protect its
detail tables. Creating a Real Application Security policy for master-detail tables
enables anyone accessing these tables to do so under a uniform policy that can be
inherited from master table to detail table.

The possible inheritance paths for policies and master-detail tables are as follows:
= Multiple detail tables can inherit policies from one master table.

s Detail tables can inherit policies from other detail tables.

= One detail table can inherit policies from multiple master tables.

If any one of the policies in the master table is satisfied, then application users can
access the corresponding rows in the detail table.

Understanding the Structure of Master Detail Data Realms

To create a Real Application Security policy for master-detail related tables, you must
create a data security policy for each table. In each data security policy for the detail
tables, you indicate the master table from which the detail table inherits by including
master detail data realms. Steps 4, 6 and 7 in the procedure under "Example of
Creating a Real Application Security Policy on Master-Detail Related Tables" on

page 5-12 shows examples of creating and using master-detail data realms and
creating and applying master-detail data security policies to master-detail tables.

Example 5-6 shows a sample master detail data realm.

Example 5-6 A Master Detail Data Realm
realm_cons := XSSREALM_CONSTRAINT_ TYPE

(parent_schema=> 'OE',

parent_object=> 'CUSTOMERS',

key_list=> XS$KEY_LIST(XS$SKEY_TYPE (primary_key=> 'CUSTOMER_ID',
foreign_key=> 'CUSTOMER_ID',
foreign_key_ type=> 1)),

when_condition=> 'ORDER_STATUS IS NOT NULL')

In this specification:

» when_condition specifies a predicate for the detail table, similar to a WHERE clause,
to filter data. If when_condition evaluates to true, then Oracle Database applies
the master policy. This element is optional.

m parent_schema specifies the name of the schema that contains the master table.
m parent_object specifies the name of the master table.
= primary_key specifies the primary key from the master table.

» foreign_key specifies the foreign key of the detail table.

Example of Creating a Real Application Security Policy on Master-Detail Related Tables

This example uses the SH sample schema. The SH schema has a table called CUSTOMERS,
which is the master table. The master table CUSTOMERS has a detail table called SALES,
and another detail table called COUNTRIES. The following example demonstrates how
to enforce a Real Application Security policy that virtually partitions the customer and
sales data along their regional boundary defined in the COUNTRIES table for read access

5-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating Real Application Security Policies on Master-Detail Related Tables

of the CUSTOMERS and SALES tables. In addition, there is a requirement to mask out data
on the columns CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT to users, except for those
users who need full table access for business analysis, such as the business analyst.

Note: All administrative commands in this example can be
performed by a database user, such as the SYSTEM account who has the
DBA roles in the database, because the DBA role has been granted
appropriate privilege for Real Application Security administrative
tasks. In addition, because security classes, ACLs, and data security
policies are schema qualified objects, you must explicitly use the
intended schema name when these objects are specified in the APIs, so
they will not be resolved to objects under the database session default

schema of SYSTEM.

The descriptions for the three tables, which are all in the same schema (SH), are as

follows:

-- SH.CUSTOMERS in the master table.

Name

CUST_ID
CUST_FIRST_NAME
CUST_LAST_NAME
CUST_GENDER
CUST_YEAR_OF BIRTH
CUST_MARITAL_STATUS
CUST_STREET ADDRESS
CUST_POSTAL_CODE
CUST_CITY
CUST_STATE_PROVINCE
COUNTRY_ID

CUST _MAIN_PHONE_NUMBER
CUST_INCOME_LEVEL
CUST_CREDIT_LIMIT
CUST_EMATL

-- SH.SALES is a detail table.
Name

NOT
NOT
NOT

NOT

NULL
NULL
NULL

NULL

NUMBER
VARCHAR2 (20)
VARCHAR2 (40)
CHAR(1)
NUMBER (4)
VARCHAR2 (20)
VARCHAR2 (40)
VARCHAR2 (10)
VARCHAR2 (30)
VARCHAR2 (40)
CHAR (2)
VARCHAR2 (25)
VARCHAR2 (30)
NUMBER
VARCHAR2 (30)

PROD_ID
CUST_ID
TIME_ID
CHANNEL_ID
PROMO_ID
QUANTITY_SOLD
AMOUNT_SOLD

-- SH.COUNTRIES is a detail table.

Name

COUNTRY_ID
COUNTRY_NAME
COUNTRY_SUBREGION
COUNTRY_REGION

NOT
NOT

NULL
NULL

CHAR (2)

VARCHAR2 (40)
VARCHAR2 (30)
VARCHAR2 (20)

Figure 5-2 shows an overview of the completed Real Application Security data
security policies created and applied to the master-detail related tables (CUSTOMERS -

Configuring Data Security 5-13

Creating Real Application Security Policies on Master-Detail Related Tables

SALES - COUNTRIES) that are described as an overview in the following steps and in
more detail in the steps that follow this figure.

1. Create the principals, an application role and an application user, for each of four
geographic regions: Europe, Americas, Asia, and Africa, in addition to a business
analyst role and an associated application user.

2. Create the VIEW_SENSITIVE_INFO privilege and create the SH.CUST_SEC_CLASS in
which to scope the privilege.

3. Grant the VIEW_SENSITIVE_INFO privilege to the business analyst role.

4. Define a data realm constraint with a rule that parameterizes regions in order for
the system to recognize the string ®ION, which will later be used in a policy.

5. Create a column constraint to secure the two columns, CUST_INCOME_LEVEL and
CUST_CREDIT LEVEL using the VIEW_SENSITIVE_INFO privilege.

6. Create the data security policy SH.CUSTOMER_DS specifying the data realm
constraint and the column constraint that was previously created.

7. Register the name and data type of the parameter in the rule for the SH.CUSTOMER_
Ds data security policy.

8. Create the ACLs for each region to authorize read access to the respective roles
needing read access. For example for the Europe region, you grant SELECT
privilege to the Europe_sales role and grant SELECT and VIEW_SENSITIVE_INFO
privileges to the Business_Analyst role.

9. Associate each ACL in each region with the rows that satisfy the rule where the
value of the parameter REGION is equal to region name, for example, Europe. You
do this for each of the four regions, and then add this ACL to the SH.CUSTOMER_DS
data security policy.

10. Create the data realm constraint for the master-detail tables, so users can access a
record in the SALES detail table only if a user is authorized to access its parent row
in the CUSTOMERS master table.

11. Create the SH. SALES_DS data security policy to enforce this data realm constraint.

In Figure 5-2, the master-detail tables also show the primary key (PK) fields and
foreign key (FK) fields and a number of additional fields that are used in creating the
data realm constraints and column constraints. Using these PK and FK relationships,
the same data security policies that apply to the master table also apply to the detail
tables. In this particular case, for example, all ACLs granting SELECT privilege to the
CUSTOMERS master table and enforced by the SH.CUSTOMER_DS data security policy, also
applies to the SALES detail table.

5-14 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating Real Application Security Policies on Master-Detail Related Tables

Figure 5-2 Real Application Security Data Security Policy Created on Master-Detail Related Tables

Security Classes Data Security Policies Objects (Tables) Master

SH.CUST_SEC_CLASS —_:i EH.CUSTOMER_DS ——— | | CUSTOMERS
Privileges -—{ EH.SRLES_DE — :1 CUST_ID_PK
SELECT m

Realm Constraints S o

Data Realm Constraints

VIEW_SENSITIVE_INFD —

CUST_INCOME LEVEL

L COST_CREDIT LIMIT

'"COUNTRY_ID in
(SELECT COUNTRY_I

ACLs from SH.COUNTRIES® II
— | B4 where
T . I T COUNTEY _REGION =
7 Hurcpe salas —hEGL
View Europs sale &' II ‘REGION) ' Detail
‘REGION® 'Burcpe’
i Seir o parent ohject— 'CUSTOMERS SALES
Vltfwﬁimex 1(.:.1:—._l:-><_1 (=] Ll L] primary_key —e ‘CUST IO
— ‘REGICN' ‘“Americas foreion_key —w 'CUST_ID U | cust_10 FR
‘View_ hsias sales’ - z
. - FROD_ID
L *REGICH® “Asia’ Column Constraints i
OUANTITY SO
*View_Africa_sales’ 'CUST_INCOME_LEVEL o e
CRESTON CAfrica’ *CUST_CREDIT_LIMIT®

Detail
Principals COUNTRIES
Roles ésrgrrﬁ;ee)]| COUNTRY_ID FK

. COUNTRY_REGION

Europe sales

COUNTRY_NAME

Americas_sales

Aaia_sales

Africa_sales ‘ Martin

I
Il [D | —) -

Business Analyst | Turner

To create a Real Application Security policy for these master-detail tables, follow these
steps:

1. Create the roles and users needed for each country, (role Europe_sales, user
SMITH), (role Americas_sales, user JAMES), (role Asia_sales, user MILLER), (role
Africa_sales, user MARTIN), and (role Business_Analyst, user TURNER), who is the
only user who will have full table access.

BEGIN
sys.xs_principal.create_role(name => 'Europe_sales', enabled => TRUE);
sys.xs_principal.create_role(name => 'Americas_sales', enabled => TRUE);
sys.xs_principal.create_role(name => 'Asia_sales', enabled => TRUE);
sys.xs_principal.create_role(name => 'Africa_sales', enabled => TRUE);
sys.xs_principal.create_role(name => 'Business_Analyst', enabled => TRUE);

sys.xs_principal.create_user (name => 'SMITH', schema => 'SH');
sys.dbms_xs_principals.set_password(username => 'SMITH',

password => 'password',

type => XS_PRINCIPAL.XS_SHA512);
sys.xs_principal.grant_roles(grantee => 'SMITH', role => 'Europe_sales');

sys.xs_principal.create_user (name =>' JAMES', schema => 'SH');
sys.dbms_xs_principals.set_password(username => 'JAMES',

Configuring Data Security 5-15

Creating Real Application Security Policies on Master-Detail Related Tables

password => 'password',
type => XS_PRINCIPAL.XS_SHA512);
sys.xs_principal.grant_roles(grantee => 'JAMES', role => 'Americas_sales');

sys.xs_principal.create_user (name => 'MILLER', schema => 'SH');
sys.dbms_xs_principals.set_password(username => 'MILLER',

password => 'password',

type => XS_PRINCIPAL.XS_SHA512);
sys.xs_principal.grant_roles(grantee => 'MILLER', role => 'Asia_sales');

sys.xs_principal.create_user (name => 'MARTIN', schema => 'SH');
sys.dbms_xs_principals.set_password(username => 'MARTIN',

password => 'password',

type => XS_PRINCIPAL.XS_SHA512);
sys.xs_principal.grant_roles(grantee => 'MARTIN', role => 'Africa_sales');

sys.xs_principal.create_user (name => 'TURNER', schema=> 'SH');
sys.dbms_xs_principals.set_password(username => 'TURNER',
password => 'password',
type => XS_PRINCIPAL.XS_SHA512);
sys.xs_principal.grant_roles(grantee => 'TURNER', role => 'Business_
Analyst');
END;

2. Define the SH.CUST_SEC_CLASS security class for the privilege, VIEW_SENSITIVE_
INFO to protect the sensitive columns.

The row level privileges to access data security protected objects for query and
DML are predefined in the Security Class DML under the SYS schema.

DECLARE
pr_list XSSPRIVILEGE_LIST;
BEGIN
-- Let's call the new privilege VIEW_SENSIATIVE_INFO
pr_list := XSS$PRIVILEGE_ LIST(XSSPRIVILEGE (name => 'VIEW_SENSITIVE_INFO'));

Sys.Xs_security class.create_security_class(
name => 'SH.CUST_SEC_CLASS',
description => 'Security Class to protect CUSTOMERS and SALES data',
parent_list => XSSNAME_LIST('SYS.DML'),
priv_list => pr_list);
END;

3. Define the data realm constraint with a rule that parameterizes regions, then
define the column constraint and specify the name of the two columns, CUST_
INCOME_LEVELandCUST_CREDIT_LIMIT,h}beSecunﬂibytheVIEW_SENSITIVE_INFO
privilege. Then, create a SH.CUSTOMER_DS data security policy and register the
name and data type of the parameter in the rule.

The security policy requires that regional customers and sales data be partitioned
with different ACLs. One way to achieve this is to define as many data realms as
regions and do this for both tables. However, in this example, another way is
shown. That is, to parameterize the region in a data realm with a single rule and
use the master-detail relationship to simplify the administrative tasks.

So, instead of creating many constraints for the policy, it is more efficient to create
only one constraint with the following rule that parameterizes the region:

COUNTRY_ID in
(select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = ®ION)

5-16 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating Real Application Security Policies on Master-Detail Related Tables

In order for the system to recognize that the string ®ION in the rule is indeed a
parameter, you must invoke the xs_data_security.create_acl_parameter
procedure to register the parameter name after the policy is created. In addition,
you must specify the data type of the parameter value. Since regions are stored as
character string data, the XS_ACL.TYPE_VARCHAR macro is used for this example.
Another supported data type is XS_ACL.TYPE_NUMBER for numbers.

DECLARE

rows_secs XSS$SREALM_CONSTRAINT LIST;

cols_secs XS$SCOLUMN_CONSTRAINT LIST;
BEGIN
-- Define the realm constraint with a rule that parameterizes regions.

rows_secs := xSSREALM_CONSTRAINT LIST (

XSSREALM_CONSTRAINT_TYPE (
realm => 'COUNTRY_ID in (select COUNTRY_ID from SH.COUNTRIES ' ||
'‘where COUNTRY_REGION = &' || 'REGION)'));

-- Define the column constraint to secure CUST_INCOME_LEVEL and
-- CUST_CREDIT LIMIT columns by using the VIEW_SENSITIVE_ INFO privilege.
cols_secs := XS$SCOLUMN_CONSTRAINT LIST (
XS$COLUMN_CONSTRAINT TYPE (
column_list => XS$LIST('CUST_INCOME LEVEL', 'CUST CREDIT LIMIT'),
privilege => 'VIEW_SENSITIVE_INFO'));

-- Create the data security policy.
sys.xs_data_security.create_policy(
name => 'SH.CUSTOMER_DS',
realm_constraint_list => rows_secs,
column_constraint_list => cols_secs,
description => 'Policy to protect sh.customers table');

-- Register the name and data type of the parameter in the rule.
sys.xs_data_security.create_acl_parameter (
policy => 'SH.CUSTOMER_DS',
parameter => 'REGION',
param_type => XS_ACL.TYPE_VARCHAR) ;
END;

Create ACLs to authorize read access for each region. For the Europe region, grant
SELECT to the Europe_sales role. In addition, SELECT and VIEW_SENSITIVE_INFO
privileges are granted to the Business_Analyst role so that the grantee of the role
has full table access and is able to see data in the columns of CUST INCOME_LEVEL
and CUST_CREDIT LIMIT as well.

DECLARE
ace_list XSSACE_LIST;
BEGIN
ace_list := XSSACE_LIST(
XS$ACE_TYPE (privilege_list => XS$NAME LIST('SELECT'),
granted => true,
principal_name => 'Europe_sales'),
XSSACE_TYPE (privilege_list =>
XSSNAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
granted => true,
principal_name => 'Business_Analyst'));

sys.xs_acl.create_acl (name => 'View_FEurope_sales',
ace_list => ace_list,
sec_class => 'SH.CUST _SEC_CLASS',
description => 'Authorize read access for the Europe

Configuring Data Security 5-17

Creating Real Application Security Policies on Master-Detail Related Tables

region');

-- The ACL must be associated with rows that satisfy the rule where the value
-- of the parameter REGION is equal to Europe. For example the constraint

-- rule becomes the COUNTRY_ID in

-- (select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = 'Europe').

sys.xs_acl.add_acl_parameter (acl => 'View_Europe_sales',
policy => 'SH.CUSTOMER_DS',
parameter => 'REGION',
value => 'Europe');
END;

5. Create ACLs to authorize read access for the other three regions, Americas, Asia,
and Africa.

DECLARE
ace_list XSSACE_LIST;
BEGIN
ace_list := XSSACE_LIST(
XS$ACE_TYPE (privilege_list => XS$NAME LIST('SELECT'),
granted => true,
principal_name => 'Americas_sales'),
XSSACE_TYPE (privilege_list =>
XSSNAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
granted => true,
principal_name => 'Business_Analyst'));

sys.xs_acl.create_acl (name => 'View Americas_sales',
ace_list => ace_list,
sec_class => 'SH.CUST_SEC_CLASS',
description => 'Authorize read access for the Americas
region');

sys.xs_acl.add_acl_parameter (acl => 'View_Americas_sales',
policy => 'SH.CUSTOMER_DS',
parameter => 'REGION',
value => 'Americas');
END;

DECLARE
ace_list XSSACE_LIST;
BEGIN
ace_list := XSSACE_LIST(
XS$ACE_TYPE (privilege_list => XS$NAME LIST ('SELECT'),
granted => true,
principal_name => 'Asia_sales'),
XSSACE_TYPE (privilege_list =>
XSSNAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
granted => true,
principal_name => 'Business_Analyst'));

sys.xs_acl.create_acl (name => 'View_Asia_sales',
ace_list => ace_list,
sec_class => 'SH.CUST_SEC_CLASS',
description => 'Authorize read access for the Asia region');

sys.xs_acl.add_acl_parameter (acl => 'View_Asia_sales',
policy => 'SH.CUSTOMER_DS',
parameter => 'REGION',
value => 'Asia');

5-18 Oracle Database Real Application Security Administrator's and Developer's Guide

Creating Real Application Security Policies on Master-Detail Related Tables

END;

DECLARE
ace_list XSSACE_LIST;
BEGIN
ace_list := XSSACE_LIST(
XS$ACE_TYPE (privilege_list => XS$NAME LIST('SELECT'),
granted => true,
principal_name => 'Africa_sales'),
XSSACE_TYPE (privilege_list =>
XSSNAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
granted => true,
principal_name => 'Business_Analyst'));

sys.xs_acl.create_acl (name => 'View Africa_sales',
ace_list => ace_list,
sec_class => 'SH.CUST_SEC_CLASS',

description => 'Authorize read access for the Africa region');

sys.xs_acl.add_acl_parameter (acl => 'View_Africa_sales',
policy => 'SH.CUSTOMER_DS',
parameter => 'REGION',
value => 'Africa');
END;

Apply the SH.CUSTOMER_DS policy created in Step 3 to protect read access to the
CUSTOMERS table.

BEGIN
sys.xs_data_security.apply_object_policy(

policy => 'SH.CUSTOMER_DS',
schema => 'SH',
object => 'CUSTOMERS',
statement_types => 'SELECT',
owner_bypass => true);

END;

Create the data realm master-detail constraint to protect the SALES table. This
master-detail constraint utilizes the same regional partitioning policy as
previously described in Steps 3 through 6. This means that a user can access a

record in the SALES detail table only if that user is authorized to access its parent

row in the CUSTOMERS master table.

DECLARE
rows_secs XSSREALM_CONSTRAINT_LIST;
BEGIN
-- Define the master-detail constraint.
rows_secs := XSSREALM_CONSTRAINT LIST (
XSSREALM_CONSTRAINT TYPE (
parent_schema => 'SH',
parent_object => 'CUSTOMERS',
key_list => xsSkey_list(xsS$key_ type(primary_key => 'CUST_ID',
foreign_key => 'CUST_ID',
foreign_key type => 1))));

-- Create a policy to enforce the constraint.
sys.xs_data_security.create_policy(
name => 'SH.SALES_DS',
realm_constraint_list => rows_secs,
column_constraint_list => null);

Configuring Data Security 5-19

Managing Application Privileges for Data Security Policies

-- Apply the policy to protect read access of the SALES table.
sys.xs_data_security.apply_object_policy(
policy => 'SH.SALES_DS',
schema => 'SH',
object => 'SALES',
statement_types => 'SELECT',
owner_bypass => true);
END;

8. Grant object level SELECT privilege to PUBLIC for users to perform a query.

GRANT SELECT ON sh.customers TO PUBLIC;
GRANT SELECT ON sh.countries TO PUBLIC;
GRANT SELECT ON sh.sales TO PUBLIC;

9. Connect as user MARTIN and perform a query to display user MARTIN's sales data for
the Africa region and to show the masking of the sensitive sales information for
the CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT columns.

CONNECT MARTIN/welcome

SELECT c¢.COUNTRY_NAME, c¢.COUNTRY_ID, ct.CUST_FIRST NAME, PROD_ID, QUANTITY_ SOLD
FROM sh.customers ct, sh.sales s, sh.countries c
WHERE ct.CUST_ID = s.CUST_ID AND

ct.COUNTRY_ID = c¢.COUNTRY_ID;

COUNTRY_NAME CO CUST_FIRST NAME PROD_ID QUANTITY SOLD
South Africa ZA Forrest 8050 2
South Africa ZA Mitch 17505 11
South Africa ZA Murry 32785 7
South Africa ZA Heath 3585 12

Managing Application Privileges for Data Security Policies
This section includes the following topics:
= Bypassing the Security Checks of a Real Application Security Policy
s SQL*Plus SET SECUREDCOL Command

Bypassing the Security Checks of a Real Application Security Policy

The following database users can bypass the security checks of a Real Application
Security Policy:

s User sys
= Database users who have the EXEMPT ACCESS POLICY system privilege
» The owner of the object to which the policy is applied.

If the data security policy is applied to an object with the owner bypass
specification, the owner of the object may bypass such policy. By default, owner
bypass is not allowed.

The object owner also can create another view on the same table and assign this
view a different Real Application Security policy.

5-20 Oracle Database Real Application Security Administrator's and Developer's Guide

Managing Application Privileges for Data Security Policies

SQL*Plus SET SECUREDCOL Command

The SQL*Plus SET SECUREDCOL command enables you to customize how secure
column values are displayed in SQL*Plus output for users without permission to view
a column and for columns with unknown security. You can choose either the default
text or specify the text that is displayed. The default is OFF.

When column level security is enabled, and SET SECUREDCOL is set ON, output from
SQL*Plus for secured columns or columns of unknown security level is replaced with
either your customized text or the default indicators. This only applies to scalar data
types. Complex object data output is not affected.

Syntax
SET SECUREDCOL {OFF|ON} [UNAUTH[ORIZED] text] [UNK[NOWN] text]

Parameters

Parameter Description

ON Displays the default indicator asterisks (****) in place of column values
for users without authorization to view the column, and displays question

unknown for the column (when the specific privileges applied to the
column are not known). The indicators "+" and "?" are filled to the defined
column length or the column length defined by a current COLUMN
command.

By default this command will be OFF.

OFF Displays null values in place of column values for application users
without authorization to view the column, and in place of column values
where the security level is unknown for the column.

UNAUTH [ORIZED] Text enables you to specify the text to be displayed in a secured column
for application users without authorization to view the column. This text
appears instead of the default *****.

You can specify any alphanumeric text up to the column length or a
maximum of 30 characters. Longer text is truncated. Text containing
spaces must be quoted.

UNK [NOWN] Text enables you to specify the text to be displayed in a column of
unknown security level (when the specific privileges applied to the

You can specify any alphanumeric text up to the column length or a
maximum of 30 characters. Longer text is truncated. Text containing
spaces must be quoted.

Example 1

SET SECUREDCOL ON
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL
7539 KING 10 Kk kK KKk ok
7369 SMITH 20 800
7566 JONES 20 2975
7788 SCOTT 20 3000
7521 WARD 30 xR KKK
7499 ALLEN 30 ok ok ok ok ok ok ok

6 rows selected.

Configuring Data Security 5-21

Using BEQUEATH CURRENT_USER Views

Example 2

SET SECUREDCOL ON UNAUTH notallowed
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL

7539 KING 10 notallowed
7369 SMITH 20 800

7566 JONES 20 2975

7788 SCOTT 20 3000

7521 WARD 30 notallowed
7499 ALLEN 30 notallowed

6 rows selected.

Using BEQUEATH CURRENT_USER Views

Traditionally, views in Oracle Database use definer's rights. This means that if you
invoke an identity or privilege-sensitive SQL function or an invoker's rights PL/SQL
or Java function, then current schema, and current user, are set to the view owner and
currently enabled roles is set to the view owner plus PUBLIC within the functions's
execution.

If you need background information on invoker's rights and definer's rights, see Oracle
Database PL/SQL Language Reference.

Note: Certain built-in SQL functions, such as SYS_CONTEXT () and
USERENV () are exceptions to the preceding rule. These functions
always use the current application user's environment, even when
called from definer's rights views.

Oracle Database 12¢ Release 1 (12.1) enables you to create views with the BEQUEATH
clause, which lets you configure this behavior. The BEQUEATH clause determines
whether identity or privilege-sensitive SQL functions, invoker's rights PL/SQL
program units, and Java functions referenced in the view inherit the current schema,
current user, and currently enabled roles from the querying user's environment. This is
especially useful for Real Application Security applications, which often need to run
code in the invoking application user's environment.

Using BEQUEATH CURRENT_USER in the view definition creates a view that allows
privilege-sensitive, and invoker's rights functions referenced in the view to inherit
current schema, current user, and currently enabled roles from the querying user's
environment. See Oracle Database SQL Language Reference for the syntax of the CREATE
OR REPLACE VIEW statement.

Example 5-7 illustrates how a BEQUEATH CURRENT_USER view enables invoker right's
program units to run in the invoking application user's environment. When USER2
selects from USER1's view, the invoker's rights function is invoked in USER2's
environment.

5-22 Oracle Database Real Application Security Administrator's and Developer's Guide

Using BEQUEATH CURRENT_USER Views

Example 5-7 How a BEQUEATH CURRENT_USER View Works
SQL> CONNECT USER1/USER1

Connected.

SQL>

SQL> -- You first create an invoker's rights function to determine who the current
SQL> -- user really is.

SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER
IS

2 BEGIN

3 RETURN SYS_CONTEXT ('USERENV', 'CURRENT USER');

4 END;

57/

Function created.

SQL> -- Note that you do not need to grant EXECUTE to called_as_user, because even
SQL> -- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
SQL> -- the references present in the view body using definer's rights.

SQL> CREATE OR REPLACE VIEW BEQUEATH_INVOKER_VIEW BEQUEATH CURRENT USER AS
2 SELECT CALLED_AS_USER FROM DUAL;
View created.

SQL> GRANT SELECT ON BEQUEATH_INVOKER_VIEW TO PUBLIC;
Grant succeeded.

SQL> CONNECT USER2/USER2
Connected.

SQL> SELECT * FROM USER1.BEQUEATH INVOKER_VIEW;
CALLED_AS_USER

Using BEQUEATH DEFINER in the view definition creates a view that causes
privilege-sensitive, and invoker's rights functions referenced in the view to inherit
current schema, current user, and currently enabled roles from the view definer's
environment. If no BEQUEATH clause is specified, then BEQUEATH DEFINER is assumed.

If a BEQUEATH_DEFINER view contains a reference to a BEQUEATH CURRENT_USER view,
then invoker's rights functions in the referenced view would use the parent view
owner's rights.

Example 5-8 illustrates how a BEQUEATH DEFINER view defines a boundary for nested
invoker right's program units to run in the view owner's environment. When USER2
selects from USER1's view, the view's invoker's rights function is invoked in USER1's
environment.

Example 5-8 How a BEQUEATH DEFINER View Works
SQL> CONNECT USER1/USER1

Connected.

SQL>

SQL> -- You first create an invoker's rights function to determine who the current
SQL> -- user really is.

SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER
IS

2 BEGIN

3 RETURN SYS_CONTEXT ('USERENV', 'CURRENT_USER');

4 END;

5/

Configuring Data Security 5-23

Using BEQUEATH CURRENT_USER Views

Func

SQL>
SQL>
SQL>

SQL>
2 SE

tion created.

-- Note that you do not need to grant EXECUTE to called_as_user, because even
-- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
-- the references present in the view body using definer's rights.

CREATE OR REPLACE VIEW BEQUEATH_DEFINER_VIEW BEQUEATH DEFINER AS
LECT CALLED_AS_USER FROM DUAL;

View created.

SQL>
Gran

SQL>
Conn

SQL>

GRANT SELECT ON BEQUEATH_DEFINER_VIEW TO PUBLIC;
t succeeded.

CONNECT USER2/USER2
ected.
SELECT * FROM USER1.BEQUEATH_DEFINER_VIEW;

CALLED_AS_USER

See Also: Oracle Database Security Guide for the use of invoker's
rights and definer's rights in VPD and FGA policies

Using SQL Functions to Determine the Invoking Application User
SQL functions, such as SYS_CONTEXT () and USERENV (), and XS_SYS_CONTEXT (), always

retu
righ

rn the current application user's environment, even when called from definer's
ts views. Sometimes, applications need to determine the invoking application user

based on the security context (BEQUEATH property) of views referenced in the
statement.

The
you

following new functions introduced in Oracle Database 12¢ Release 1 (12.1) enable
to figure out the invoking application user taking into account the BEQUEATH

property of views referenced in the statement:

5-24 Oracle Database

ORA_INVOKING_USER: Use this function to return the name of the database user
whose context is currently used. If the function is invoked from within a definer's
rights boundary, then the name of the database object owner is returned. If the
invoking user is a Real Application Security application user, then the constant
XSSUSER is returned.

ORA_INVOKING_USERID: Use this function to return the identifier (ID) of the
database user whose context is currently used. If the function is invoked from
within a definer's rights boundary, then the ID of the database object owner is
returned.

If the invoking user is a Real Application Security application user, then the
function returns an identifier common to all Real Application Security application
users, but distinct from the identifier for any database user.

ORA_INVOKING_XS USER: Use this function to return the name of the Real
Application Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

ORA_INVOKING_XS_USER_GUID: Use this function to return the identifier (ID) of the
Real Application Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

Real Application Security Administrator's and Developer's Guide

Real Application Security: Putting It All Together

The following example shows a database user USER1 querying ORA_INVOKING_USER and
ORA_INVOKING_XS_USER. ORA_INVOKING_XS_USER returns NULL, as the user is not a Real
Application security application user.

SQL> CONNECT USER1

Enter password:

Connected.

SQL> SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USER

SQL> SELECT ORA_INVOKING_XS_USER FROM DUAL;

ORA_INVOKING_XS_USER

See Also:

» Oracle Database SQL Language Reference for detailed information on
the preceding SQL functions and other functions like SYS_CONTEXT

s "XE5_SYS_CONTEXT Function" on page 10-2

Real Application Security: Putting It All Together

This section puts all the Real Application Security concepts together in order to define
a basic data security policy. It builds upon the HR scenario example introduced in
"Scenario: Security Human Resources (HR) Demonstration of Employee Information"
on page 1-10.

The section discusses each implementation task described in the scenario with the help
of an example.

Basic HR Scenario: Implementation Tasks
The following implementation tasks are discussed:
» Creating a Database User as the Real Application Security Administrator
= Creating Roles and Application Users
» Creating the Security Class and ACLS
» Creating the Data Security Policy
= Validating the Real Application Security Objects
= Disabling a Data Security Policy for a Table

Creating a Database User as the Real Application Security Administrator

Before you can create Real Application Security components, you must first create a
database user as the Real Application Security Administrator, grant this administrator
dba and xs_session_admin privileges, and then connect to the database as the Real
Application Security Administrator.

Example 5-9 Creating the Database User

SQL> connect sys/password as sysdba
Connected.

Configuring Data Security 5-25

Real Application Security: Putting It All Together

SQL> grant dba, xs_session_admin to rasadm identified by rasadm;
Grant succeeded.

SQL> connect rasadm/password;
Connected.

Creating Roles and Application Users

Creating the Database Role

Create the database role DB_EMP and grant this role the necessary table privileges. This
role is used to grant the required object privileges to application users.

Example 5-10 Creating the DB_EMP Database User

SQL> create role db_emp;
Role created.
SQL> grant select, insert, update, delete on hr.employees to db_emp;

Grant succeeded.

Creating the Application Roles

Example 5-11 Creating the Application Role EMP_ROLE for Common Employees

SQL> exec sys.xs_principal.create_role(name => 'emp_role', enabled => true);

PL/SQL procedure successfully completed.

Example 5-12 Creating the Application Role IT_ROLE for the IT Department

SQL> exec sys.xs_principal.create_role(name => 'it_role', enabled => true);

PL/SQL procedure successfully completed.

Example 5-13 Creating the Application Role HR_ROLE for the HR Department

SQL> exec sys.xs_principal.create_role(name => 'hr_role', enabled => true);

PL/SQL procedure successfully completed.

Grant the DB_EMP Database Role to the Application Roles

Grant the DB_EMP database role to the three application roles, so they each have the
required object privilege to access the table.

Example 5-14 Granting DB_EMP Database Role to Each Application Role

SQL> grant db_emp to emp_role;
Grant succeeded.

SQL> grant db_emp to it_role;

5-26 Oracle Database Real Application Security Administrator's and Developer's Guide

Real Application Security: Putting It All Together

Grant succeeded.
SQL> grant db_emp to hr_role;

Grant succeeded.

Create the Application Users

Create application user DAUSTIN (in the IT department) and grant this user application
roles EMP_ROLE and IT_ROLE.

Example 5-15 Creating Application User DAUSTIN

SQL> exec sys.xs_principal.create_user (name => 'daustin', schema => 'hr');
PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.set_password('daustin', 'password');

PL/SQL procedure successfully completed.

SQL> exec sys.xXs_principal.grant_roles('daustin', 'emp_role');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'it_role');

PL/SQL procedure successfully completed.

In this example:

Note: To make logins easier, you can create the name in upper case.
That way, the user can omit the quotation marks when logging in or
connecting to SQL*Plus. For example:

sglplus DAUSTIN

See Also: "Creating a Simple Application User Account” on page 2-2
for information about how case sensitivity affects database logins for
application users

Create application user SMAVRIS (in the HR department) and grant this user
application roles EMP_ROLE and HR_ROLE.

Example 5-16 Creating Application User SMAVRIS

SQL> exec sys.xXs_principal.create_user (name => 'smavris', schema => 'hr');
PL/SQL procedure successfully completed.

SQL> exec sys.xXs_principal.set_password('smavris', 'password');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('smavris', 'emp_role');

PL/SQL procedure successfully completed.

Configuring Data Security 5-27

Real Application Security: Putting It All Together

SQL> exec sys.xs_principal.grant_roles('smavris', 'hr_role');

PL/SQL procedure successfully completed.

Creating the Security Class and ACLS

Creating the Security Class

Create a security class HRPRIVS based on the predefined DML security class. HRPRIVS
has a new privilege VIEW_SALARY, which controls access to the SALARY column.

Example 5-17 Creating the HRPRIVS Security Class
SQL> declare

2 begin

3 Sys.xs_security_class.create_security_class(

4 name => 'hrprivs',

5 parent_list => xs$name_list('sys.dml')

6 priv_list => xs$privilege_list (xs$privilege('view_salary')));
7 end;

8 /

PL/SQL procedure successfully completed.

Creating the ACIs

Create three ACLs, EMP_ACL, IT_ACL, and HR_ACL to grant privileges for the data
security policy to be defined later.

Example 5-18 Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL
SQL> declare

2 aces xsSace_list := xsSace_list();
3 begin
4 aces.extend (1) ;
5
6 -- EMP_ACL: This ACL grants EMP_ROLE the privileges to view an employee's
7 -- own record including SALARY column.
8 aces(1l) := xs$Sace_type(privilege_list => xsSname_list('select', 'view_
salary'),
9 principal_name => 'emp_role');
10
11 sys.xs_acl.create_acl (name => 'emp_acl',
12 ace_list => aces,
13 sec_class => 'hrprivs');
14
15 -- IT_ACL: This ACL grants IT ROLE the privilege to view the employee
16 -- records in IT department, but it does not grant the VIEW_SALARY
17 -- privilege that is required for access to SALARY column.
18 aces(1l) := xsSace_type(privilege list => xs$name_list('select'),
19 principal_name => 'it_role');
20
21 sys.xs_acl.create_acl (name => 'it_acl"',
22 ace_list => aces,
23 sec_class => 'hrprivs');
24
25 -- HR_ACL: This ACL grants HR_ROLE the privileges to view and update all
26 -— employees' records including SALARY column.

5-28 Oracle Database Real Application Security Administrator's and Developer's Guide

Real Application Security: Putting It All Together

27
28
29
30
31
32
33
34

aces (1) := xs$Sace_type(privilege_list => xs$name_list('all'),
principal_name => 'hr_role');
sys.xs_acl.create_acl (name => 'hr_acl',
ace_list => aces,
sec_class => 'hrprivs');
end;
/

PL/SQL procedure successfully completed.

In this example:

Lines 11 through 13: Creates the EMP_ACL and grants EMP_ROLE the SELECT and
VIEW_SALARY privileges.

Lines 21 through 23: Creates the IT_ACL and grants IT_ROLE the SELECT privileges.

Lines 30 through 32: Creates the HR_ACL and grants HR_ROLE the ALL privileges.
The ALL privilege means all the privileges in the ACL's security class. In this case,
ALL privileges includes SELECT, INSERT, UPDATE, and DELETE database privileges to
view and update all employee's records, and granting the VIEW_SALARY application
privilege to view the SALARY column.

Creating the Data Security Policy

Create the data security policy for the EMPLOYEES table. The policy defines three data
realm constraints and a column constraint that protects the SALARY column.

Example 5-19 Creating the EMPLOYEES_DS Data Security Policy
SQL> declare

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

realms xsSrealm_constraint_list := xs$realm constraint_list();
cols xs$column_constraint_list := xsScolumn_constraint_list();
begin

realms.extend(3) ;

-- Realm #1: Only the employee's own record.
-- EMP_ROLE can view the realm including SALARY column.
realms (1) := xsSrealm_constraint_type (
realm => 'email = xs_sys_context(''xs$session'',''username'')"',
acl_list => xs$name_list('emp_acl'));

-- Realm #2: The records in the IT department.
-- IT ROLE can view the realm excluding SALARY column.
realms (2) := xsSrealm_constraint_type (

realm => 'department_id = 60°',

acl_list => xs$name_list('it_acl'));

-- Realm #3: All the records.
-- HR_ROLE can view and update the realm including SALARY column.
realms (3) := xsSrealm_constraint_type (

realm = '1=1",

acl_list => xs$name_list('hr_acl'));

-- Column constraint protects SALARY column by requiring VIEW_SALARY

-- privilege.

cols.extend(1);

cols(l) := xs$column_constraint_type (
column_list => xsS$list('salary'),
privilege => 'view_salary');

Configuring Data Security 5-29

Real Application Security: Putting It All Together

31

32 sys.xs_data_security.create_policy(

33 name => 'employees_ds',
34 realm_constraint_list => realms,

35 column_constraint_list => cols);

36 end;

37/

PL/SQL procedure successfully completed.

In this example:
]
s Lines 7 through 23: Defines the three data realm constraints.

= Lines 27 through 30: Defines the column constraint requiring the VIEW_SALARY
application privilege to view the SALARY column.

= Lines 32 through 35: Creates the EMPLOYEES_DS data security policy
encompassing the three data realm constraints and the column constraint.

Applying the Data Security Policy to the Table
Apply the data security policy to the EMPLOYEES table.

Example 5-20 Applying the EMPLOYEES_DS Security Policy to the EMPLOYEES Table

SQL> begin
2 sys.xs_data_security.apply_object_policy(

3 policy => 'employees_ds',
4 schema => 'hr',

5 object =>'employees');

6 end;

7/

PL/SQL procedure successfully completed.

Validating the Real Application Security Objects

After you create these Real Application Security objects, validate them to ensure they
are all properly configured.

Example 5-21 Validating the Real Application Security Objects

SQL> set serveroutput on;

SQL> begin
2 if (xs_diag.validate_workspace()) then
3 dbms_output.put_line('All configurations are correct.');
4 else
5 dbms_output.put_line('Some configurations are incorrect.');
6 end 1if;
7 end;
8 /

All configurations are correct.
PL/SQL procedure successfully completed.
SQL> -- XSSVALIDATION_TABLE contains validation errors if any.

SQL> -- Expect no rows selected.
SQL> select * from xs$validation_table order by 1, 2, 3, 4;

5-30 Oracle Database Real Application Security Administrator's and Developer's Guide

Real Application Security: Putting It All Together

no rows selected

Disabling a Data Security Policy for a Table

Example 5-22 shows the complementary operation of disabling data security for table
HR.EMPLOYEES.

Example 5-22 Disabling a Data Security Policy for a Table

BEGIN
SYS.XS_DATA_SECURITY.DISABLE_OBJECT POLICY (policy => 'EMPLOYEES_DS', schema =>
'"HR', object => 'EMPLOYEES');
END;
/

Running the Security HR Demo

The Security HR Demo is run in two ways:

= Using direct logon first as application user DAUSTIN and later as application user
SMAVRIS.

In each case, each user performs queries on the HR . EMPLOYEES table to demonstrate
what each can access or cannot access to view employee records and the SALARY
column. See "Running the Security HR Demo Using Direct Logon" on page 12-7
for a description of this demonstration.

= Attached to a Real Application Security session

In this demonstration, the Real Application Security Administrator creates a Real
Application Security session for an application user to attach to. See "Running the
Security HR Demo Attached to a Real Application Security Session" on page 12-9
for a description of this demonstration.

Configuring Data Security 5-31

Real Application Security: Putting It All Together

5-32 Oracle Database Real Application Security Administrator's and Developer's Guide

6

Using Real Application Security in Java
Applications

This chapter describes how to use Real Application Security in Java applications. This
chapter contains the following sections:

» Initializing the Middle Tier

= Managing Real Application Security Sessions

= Authenticating Application Users Using Java APIs
= Authorizing Application Users Using ACLs

s Human Resources Administration Use Case: Implementation in Java

Initializing the Middle Tier

The XSSessionManager class manages the life cycle of the session. It provides methods
to create, attach, assign, detach, and destroy sessions. It also provides methods to
perform cache activities.

This section describes the following topics:

= Mid-tier Configuration Mode

= Using the getSessionManager Method

s Changing the Middle-Tier Cache Setting

Mid-tier Configuration Mode

You can use one mid-tier configuration mode:
= Dispatcher mode - get a session manager with dispatcher connections

In dispatcher mode, the dispatcher user must have session administration and cache
access privileges. The application user does not need any session or cache privilege.
The two predefined database roles, xs_session_admin and xs_cache_admin, can be
granted to the dispatcher.

For best security practices, the application user should be given the least amount of
privilege, therefore dispatcher mode is the recommended mid-tier configuration.

Using the getSessionManager Method

There is one way to get a session manager following the mid-tier configuration mode
described in "Mid-tier Configuration Mode" on page 6-1:

Using Real Application Security in Java Applications 6-1

Initializing the Middle Tier

= Pass a connection or a pool of connections of the dispatcher user. In this way, the
needed privileges are granted to the dispatcher. The two predefined roles, xs_
session_admin and xs_cache_admin, should be granted to the dispatcher user. The
dispatcher user is a direct logon Real Application Security user.

Using the dispatcher mode, you can initiate the Real Application Security middle tier
by getting an instance of the session manager (see Example 6-1). Use the
getSessionManager method (in bold typeface) of the XSSessionManager class to get an
instance of the session manager. This method initializes a Real Application Security
session manager by using either a single connection or a pool of connections. The
caller of the getSessionManager method should have the Java Authentication and
Authorization Service (JAAS) permission
XSSecurityPermission("initSecurityManager").

Example 6-1 How to Get an Instance of the Session Manager in Java Using a Single
Connection

static XSSessionManager manager;

static Connection dispatcherConn = null;
int cacheMaxIdleTime=30;

int cacheMaxsize=2048000;

String host;

String port;

String sid;
dispatcherConn = DriverManager.getConnection("jdbc:oracle:thin:@" + host + ":" +
port + ":" + sid, dispatcherUser, dispatcherPassword);

manager = XSSessionManager.getSessionManager (dispatcherConn, cacheMaxIdleTime,
cacheMaxsize);

Privileges for the Session Manager

Real Application Security session manager is initialized with a connection of a
privileged user, who authorizes the session operations on behalf of the regular Real
Application Security application users. If the session manager has the session
operation privileges, then, each application user under the session manager does not
need to have session operation privileges, and the application user's session operations
can be performed as a trusted party. The session manager authorizes session
operations for a connection, so you do not need to grant the createSession and
attachToSession privileges directly to the regular Real Application Security
application user. This session manager must have the following privileges:

= Real Application Security database object privileges to manage cached data in the
middle tier.

= Session life cycle management privileges for the session manager to create or
attach sessions on behalf of Real Application Security application user and
external users.

Roles for the Session Manager

The session manager needs the following two roles to have the privileges mentioned
in "Privileges for the Session Manager" on page 6-2:

= A database role xs_cache_admin with the following privileges:

— Privilege to query Real Application Security entities and to synchronize
metadata

6-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Initializing the Middle Tier

- Privilege to execute code for the key exchange
= A Real Application Security role, xs_session_admin, with ADMIN_SESSION
privilege

These roles are predefined in the system.

Changing the Middle-Tier Cache Setting

Once the session manager is initialized, it starts to add some data like the ACL and
Security class information to the cache. This cache data can be reused. The cache is
initialized with its default settings that can be changed later.

This section describes the following topics:
s Setting the Maximum Cache Idle Time
s Setting the Maximum Cache Size
s Getting the Maximum Cache Idle Time
s Getting the Maximum Cache Size
= Removing Entries from the Cache

s Clearing the Cache

Setting the Maximum Cache Idle Time

To set the maximum cache idle time, use the setCacheMaxIdleTime method of the
XSSessionManager class. The setCacheMaxIdleTime method sets the maximum
number of minutes that the cache can go without updating.

If an attempt is made to fetch objects from the cache and the XSSessionManager has
not called the updateCache method for a period of time equal to the value set by the
setCacheMaxIdleTime method, then, before returning any objects, the updateCache
method is invoked forcefully to check that all the cached objects are still valid. The
caller of the setCacheMaxIdleTime method must have the JAAS permission
XSSecurityPermission ("setCacheMaxIdleTime").

Setting the Maximum Cache Size

To set the maximum cache size, use the setCacheMaxSize method of the
XSSessionManager class. This method sets the size of the cache on the middle tier.

The default size of the cache is 10MB. The minimum cache size is 1IMB. The caller of
the setCacheMaxSize method must have the JAAS permission
XSSecurityPermission ("setCacheMaxSize").

Getting the Maximum Cache Idle Time

To get the maximum cache idle time, use the getCacheMaxIdleTime method of the
XSSessionManager class. This method returns the maximum number of minutes for
which the cache does not have an updateCache call to update the cache. The caller of
the getCachemaxIdleTime method must have the JAAS permission
XSSecurityPermission ("getCacheMaxIdleTime").

Getting the Maximum Cache Size

To get the maximum cache size, use the getCacheMaxSize method of the
XSSessionManager class. This method returns the maximum size of the cache in bytes.
The caller of the getCacheMaxSize method must have the JAAS permission
XSSecurityPermission("getCacheMaxSize").

Using Real Application Security in Java Applications 6-3

Managing Real Application Security Sessions

Removing Entries from the Cache

To remove entries from the cache, a cache eviction algorithm is used, along with
watermark levels. A watermark level determines how long data should stay in
memory cache before being removed. When the cache size reaches the high
watermark, then the cache eviction algorithm removes entries until the cache size
reaches the low watermark. This section describes the following activities for
removing entries from the cache:

= Setting the WaterMark

s Getting High WaterMark

s Getting Low WaterMark

Setting the WaterMark To set the watermark, use the setWaterMark method from the

XSSessionManager class. The caller of the setWaterMark method must have the JAAS
permission XSSecurityPermission("setWaterMark").

Getting High WaterMark To get the high watermark for cache, use the getHighWaterMark
method from the XSSessionManager class.

Getting Low WaterMark To get the low watermark for cache, use the getLowWaterMark
method from the XSSessionManager class.

Clearing the Cache

To clear the cache explicitly from the middle tier, use the clearCache method of the
XSSessionManager class. This method explicitly clears the shared cache from the
middle tier. The caller of the clearCache method must have the JAAS permission
XSSecurityPermission("clearCache").

Managing Real Application Security Sessions
This section describes the following topics:
= Creating A Real Application Security User Session
= Attaching An Application Session
= Assigning or Switching an Application User
= Enabling Real Application Security Application Roles
s Performing Namespace Operations as Session User
= Performing Miscellaneous Session-Related Activities
= Detaching an Application Session

s Destroying A Real Application Security Application Session

Creating A Real Application Security User Session

To create a Real Application Security user session, for example, 1ws, for the application
user lwuser, use the createSession method of the XSSessionManager class (see
Example 6-2). The createSession method (in bold typeface). creates a session on the
server with the specified parameters passed. A database round-trip is required to
perform this operation.

6-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Managing Real Application Security Sessions

Example 6-2 How to Create a Real Application Security Session in Java

Session lws = null;

static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie="nst";

lws = manager.createSession(lwsConn, user, cookie, null);

To create an anonymous Real Application Security application session, use the
createAnonymousSession method of the XSSessionManager class. The application user
for this session is a predefined anonymous user, so no user parameter is passed in this
method.

Both methods support using a cookie and a namespace.

The cookie, passed as the parameter, can be used to identify the newly created Real
Application Security application session in future calls, until the cookie value is
changed or the session is destroyed.

The namespace, passed as the parameter, can be used to create a namespace in the
session. For details, see "Performing Namespace Operations as Session User" on
page 6-8.

It is possible to reassign a specific application user to take over this session. In this
case, some of the state of the session for the anonymous user is still preserved. For
details, see "Assigning or Switching an Application User" on page 6-6.

Attaching An Application Session

To attach an application session, use the attachSession method of the
XSSessionManager class (see Example 6-3). The attachSession method (in bold
typeface) attaches the JDBC connection to the specified Real Application Security
application session object. It also enables or disables the dynamic application roles,
creates namespaces of the session, and sets the authentication time.

Example 6-3 How to Attach a Real Application Security Session in Java

Session lws = null;

static Connection lwsConn = null;

static XSSessionManager manager;

static String user = "lwuser";

String cookie = "lwscookie";

List <String> edynamicRoles = new ArrayList <String>();
edynamicRoles.add ("EDYNROLEQOL") ;

edynamicRoles.add ("EDYNROLEQQO2") ;

List <String> ddynamicRoles = new ArrayList <String>();
ddynamicRoles.add ("DDYNROLEOO1") ;

ddynamicRoles.add ("DDYNROLEQO2") ;

lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, edynamicRoles, ddynamicRoles, null, new

Timestamp (System.currentTimeMillis()));

You can also attach to a session by using either ID or cookie as shown in Example 6—4.
See Example 7-2 for another example of attaching to a session by using a cookie.

Using Real Application Security in Java Applications 6-5

Managing Real Application Security Sessions

Example 6-4 How to Attach Using a Cookie

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;

lws = manager.attachSessionByCookie(lwsConn, "myCookie", null, null, null, null,
null);

Assigning or Switching an Application User

If you have an anonymous session, you can reassign it to another application user
later. Otherwise, if your session is assigned to an application user already, you can
switch the session to another application user. In either case, the session must be
attached first, before assigning or switching an application user.

To assign a name to a previously anonymous application user, use the assignUser
method of the XSSessionManager class (see Example 6-5). The assignUser method (in
bold typeface) changes the session context (user and roles) to the given user, for
example, lwuser, but keeps the existing namespace. It can also change the session at
the same time, by any given dynamic roles and namespace parameters, in the same
way as the attachSession method. The associated session attributes remain in effect
unless they are removed through another call.

Example 6-5 How to Assign an Application User to a Session in Java

Session lws = null;
static XSSessionManager manager;
static String user = "lwuser";

manager.assignUser (lws, user, null, null, null, new
Timestamp (System.currentTimeMillis()));

To change a session user from a named user (non-anonymous) to another named user,
use the switchUser method of the Session object.

Any request for retaining the dynamic application roles, which were assigned while
attaching the session, is disabled. The dynamic application roles are retained for the
new application user only when they are also included in the dynamic application
roles list for the new application user. The associated session attributes remain in effect
unless the session attributes list is reset.

This method changes the session context (user and roles) to the target user (see
"Switching Current Application User to Another Application User in Current
Application Session" on page 3-7 for details about roles change), but not keeping the
existing namespace by default. If you want to retain the existing namespace, you can
use the switchUserKeepState method of the Session object. It can also change the
session at the same time, by any given dynamic roles and namespace parameters, in
the same way as the attachSession method.

Example 6-6 demonstrates how to switch the application user from lwuser to lwuserl.
The switchUser method is in bold typeface.

Example 6-6 How to Switch an Application User in a Session in Java

Session lws = null;

Vector<String> listOfNamespaces;

static String user = "lwuser";

List<String> nslistl = new ArrayList<String>();

6-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Managing Real Application Security Sessions

manager.assignUser (lws, user, nslistl, nslist2, nslist3, new
Timestamp (System.currentTimeMillis()));

lws.switchUser ("lwuserl",listOfNamespaces);

Enabling Real Application Security Application Roles

A Real Application Security application role is a role that can be granted only to a Real
Application Security application user or to another Real Application Security
application role. Real Application Security application roles are granted database
privileges through database roles. The database privileges are granted to a database
role, which in turn is granted to a Real Application Security application role. For more
information about Real Application Security application users and application roles,
refer to "Principals: Users and Roles" on page 1-5.

This section describes the following operation associated with application roles:
= Enabling a Real Application Security Application Role

= Disabling a Real Application Security Application Role

s Checking If a Real Application Security Application Role Is Enabled

Enabling a Real Application Security Application Role

To enable a Real Application Security application role granted to the current
application user for the session, use the enableRole method of the Session interface
(see Example 6-7).

The enableRole method (in bold typeface) has no effect if the particular application
role is currently disabled. This operation requires a database round-trip.

Example 6-7 How to Enable a Real Application Security Application Role in Java

static Session lws;
static Roles rl;

rl=new Role("HROLE1l",null,0);
lws.enableRole(rl);

Disabling a Real Application Security Application Role

To disable a Real Application Security application role granted to the current user for
the session, use the disableRole method of the Session interface (see Example 6-8).
This operation requires a database round-trip. The disableRole method is in bold
typeface.

Example 6-8 How to Disable a Real Application Security Application Role in Java

static Session lws;
static Roles ril;

rl=new Role("HROLE1l",null,0);
lws.enableRole(rl) ;

lws.disableRole(rl);

Using Real Application Security in Java Applications 6-7

Managing Real Application Security Sessions

Checking If a Real Application Security Application Role Is Enabled

To test if the specified application role is enabled in the Real Application Security
application session, use the isRoleEnabled method of the Session interface (see
Example 6-9). The isRoleEnabled method is in bold typeface.

This method does not have an associated database operation. You must have the
administerSession Real Application Security application privilege to call this
method.

Example 6-9 How to Test If a Real Application Security Application Role Is Enabled in
Java

static Session lws;
lws.enableRole ("HROLEL") ;

boolean b = lws.isRoleEnabled("HROLE1");

Performing Namespace Operations as Session User

A namespace is a group of additional attributes of the session context. An application
uses a namespace to store application defined attribute-value pairs. The current
session user should have MODIFY_NAMESPACE (for namespace) and MODIFY_ATTRIBUTE
(for attribute) application privileges. For more information about namespaces, refer to
"Using Namespace Templates to Create Namespaces" on page 3-12.

This section describes how to perform the following activities:
s Creating Namespaces

= Deleting Namespaces

s Implicitly Creating Namespaces

= Using Namespace Attributes

Creating Namespaces

To create a namespace in Java, use the createNamespace method of the Session
interface (see Example 6-10). The createNamespace method (in bold typeface) creates a
new session namespace using the namespace template document, whose name
matches with the specified name. If an event handler is specified in the template
document, then the specified event handler applies to all the namespaces created using
that template.

Note: You can also create a namespace by passing a namespace name
as a parameter with the createSession and attachSession methods
discussed in the previous sections.

Example 6-10 How to Create a Namespace in Java

Session lws = null;

SessionNamespace ns = lws.createNamespace ("TESTNS1");

6-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Managing Real Application Security Sessions

Deleting Namespaces

To delete a namespace in Java, use the deleteNamespace method of the Session
interface (see Example 6-11). The deleteNamespace method (in bold typeface) removes
a namespace from a session.

Example 6-11 How to Delete a Namespace in Java

Session lws = null;
SessionNamespace ns = lws.createNamespace ("TESTNSL") ;

lws.deleteNamespace ("TESTNS1") ;

Implicitly Creating Namespaces

To implicitly create the namespace object to represents the session namespace, use the
getNamespace method of the Session interface (see Example 6-12). The getNamespace
method is in bold typeface. If the namespace specified already exists, an error is
thrown.

Example 6-12 How to Implicitly Create the Namespace in Java

Session lws = null;
SessionNamespace ns2 = lws.getNamespace ("TESTNS1");

To retrieve a String representation of the namespace, use the toString method of the
SessionNamespace interface.

Using Namespace Attributes

A session namespace manages the attributes that a single application module stores
for the duration of the session. The session namespace stores the attributes in a single
namespace, a single set of access control restrictions, or a single event handler
procedure that dispatches the attribute change events for that namespace.

This section describes how to perform the following activities:

» Creating a Session Namespace Attribute

m Setting a Session Namespace Attributes

= Getting a Session Namespace Attributes

= Listing Attributes

= Resetting Attributes

= Deleting Attributes

Creating a Session Namespace Attribute To create a session namespace attribute in Java,
use the createAttribute method of the SessionNamespace interface (see

Example 6-13). The createAttribute method (in bold typeface) creates a new
attribute in the namespace.

Example 6-13 How to Create a Session Namespace Attribute in Java

String namel="empid';
String valuel="JB007";
SessionNamespace ns;

Using Real Application Security in Java Applications 6-9

Managing Real Application Security Sessions

SessionNamespaceAttribute sal=ns.createAttribute(namel,valuel);

Setting a Session Namespace Attributes To set a session namespace attribute in Java, use
the setAttribute method of the SessionNamespace interface.

Getting a Session Namespace Attributes To retrieve a session namespace attribute in Java,
use the getAttribute method of the SessionNamespace interface (see Example 6-14).
The getAttribute method (in bold typeface) returns the attribute whose name is
specified as the parameter.

Example 6-14 How to Retrieve a Session Namespace Attribute in Java

String name="empid';
String value="JB007";
SessionNamespace ns;

SessionNamespaceAttribute sa=ns.createAttribute (name,value);

String attrvalue = ns.getAttribute("empid").getValue();
ns.getAttribute("empid") .setValue("newValue");

Listing Attributes To list the attributes in the namespace, use the 1istAttributes
method of the SessionNamespace interface (see Example 6-15). The listAttributes
method (in bold typeface) returns a collection of the attribute names in the namespace

Example 6-15 How to List Attributes in Java

String namel="empid';
String valuel="JB007";
SessionNamespace ns;

SessionNamespaceAttribute sal=ns.createAttribute (namel,valuel);
for (Enumeration e = ns.listAttributes() ; e.hasMoreElements() ;) {

System.out.println(" -- " + e.nextElement());

}

Resetting Attributes To reset an attribute in Java, use the resetAttribute method of the
SessionNamespace interface (see Example 6-16). The resetAttribute method (in bold
typeface) resets the attribute in the namespace to its default value.

Example 6-16 How to Reset an Attribute in Java
String namel="empid';

String valuel="JB007";

SessionNamespace ns;

SessionNamespaceAttribute sal=ns.createAttribute (namel,valuel);

ns.resetAttribute("empid");

6-10 Oracle Database Real Application Security Administrator's and Developer's Guide

Managing Real Application Security Sessions

Deleting Attributes To delete an attribute in Java, use the deleteAttribute method of
the SessionNamespace interface (see Example 6-17). The deleteAttribute method (in
bold typeface) deletes the particular attribute in the namespace.

Example 6—17 How to Delete an Attribute in Java

String namel="empid';
String valuel="JB007";
SessionNamespace ns;

SessionNamespaceAttribute sal=ns.createAttribute(namel,valuel);

ns.deleteAttribute("empid");

Performing Namespace Operations as Session Manager

Each namespace has an associated ACL to determine who can manipulate the
namespace and its attributes. If an application does not want the current session user
to manipulate the namespace, but allows a session manager to do it, this can be done
asSesskn1n1anagerXSSessionManager.

XSSessionManager has a set of overloaded methods as Session, to manage the
namespace. The usage is similar to that described for session user in "Performing
Namespace Operations as Session User" on page 6-8.

Note that the session manager instance XSSessionManager may not be available to the
application code; only the trusted infrastructure layer can use the session manager to
manipulate such a secured namespace.

Performing Miscellaneous Session-Related Activities

This section describes the following topics:

= Getting the Oracle Connection Associated with the Session
s Getting the Application User ID for the Session

= Getting the Session ID for the Session

= Getting a String Representation of the Session

= Getting the Session Cookie

» Setting Session Inactivity Timeout as Session Manager

= Setting the Session Cookie as Session Manager

Getting the Oracle Connection Associated with the Session

To get the Oracle connection associated with the session, if it is currently bound to one,
use the getConnection method of the Session interface.

Getting the Application User ID for the Session

To get the application user identifier (ID) for a particular session, use the getUserId
method of the Session interface.

To check if the application user for the session is anonymous, use the isAnonymous
method of the Session interface.

Using Real Application Security in Java Applications 6-11

Managing Real Application Security Sessions

Getting the Session ID for the Session

To get the session identifier (ID) for a particular session, use the getId method of the
Session interface (see Example 6-18). The getId method is in bold typeface.

Example 6-18 How to Get the Session ID for the Session in Java

Session lws=null;

System.out.println("The Session ID is" + 1lws.getId());

Getting a String Representation of the Session

To get a String representation of the session, use the toString method of the Session
interface.

Getting the Session Cookie

To get the secure session cookie used for the session, use the getSessionCookie
method of the Session interface (see Example 6-19). The getSessionCookie method is
in bold typeface.

Example 6-19 How to Get the Secure Session Cookie in Java

static Session lws;

System.out.println(lws.getSessionCookie());

Setting Session Inactivity Timeout as Session Manager

To set the timeout on the session, use the setInactivityTimeout method of the
SessionManager interface. This method sets the session timeout in minutes.

The setInactivityTimeout method overrides the normal session timeout
configuration. The method is:

sessionManager.setInactivityTimeout (Session session, int minutes);

Setting the Session Cookie as Session Manager

To set the secure session cookie used for the session, use the setCookie method of the
SessionManager interface (see Example 6-20). The setCookie method (in bold
typeface) returns the secure session cookie used for this session. The method is:

sessionManager.setCookie (1lws, "newCookieValue") ;

Example 6-20 How to Set the Secure Session Cookie in Java

static XSSessionManager manager;

manager.sessionManager.setCookie (lws, "chocolate chip");

Detaching an Application Session

To detach a Real Application Security application session in Java, use the
detachSession method of the XSSessionManager class (see Example 6-21). The
detachSession method (in bold typeface) detaches the session whose object it accepts

6-12 Oracle Database Real Application Security Administrator's and Developer's Guide

Authenticating Application Users Using Java APIs

as a parameter. The detachSession method call commits all changes in the request at
the database level. A database round-trip is required to perform this operation.

Example 6-21 How to Detach a Real Application Security Session in Java

Session lws = null;

static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie;

lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp (System.currentTimeMillis()));

manager .detachSession(lws);

Destroying A Real Application Security Application Session

To destroy a Real Application Security application session in Java, use the
destroySession method of the XSSessionManager class (see Example 6-22). The
destroySession method (in bold typeface) accepts the database connection object and
a session object as parameters. After you call this method, the destroyed session can no
longer be accessed from any JVM. A database round-trip is required to perform this
operation and for create session as well.

Example 6-22 How to Destroy a Real Application Security Session in Java

Session lws = null;

static Connection lwsConn = null;
static XSSessionManager manager;
static String user = "lwuser";
String cookie;

lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp (System.currentTimeMillis()));

manager .detachSession (lws) ;
manager.destroySession(lwsConn, lws);

Authenticating Application Users Using Java APIs

Authenticating application users is a main security function needed by applications.
The XSAuthenticationModule class is used for authenticating application users. The
authenticate method of the XSAuthenticationModule class is used to verify the
application user credentials (see Example 6-23). The authenticate method is in bold
typeface.

Example 6—23 How to Authenticate Application Users in Java

boolean authOk = false;
String dbUser;

String passwd;

String host;

Using Real Application Security in Java Applications 6-13

Authorizing Application Users Using ACLs

String port;
String sid;

authOk = XSAuthenticationModule.authenticate(host + ":" + port + ":" + sid,
dbUser, passwd);

Authorizing Application Users Using ACLs

Authorization is another main security feature needed by applications. In Real
Application Security, the authorization policy comprises of the Access Control Lists
(ACLs) and the application privileges. They are defined in the Real Application
Security database and managed in a cache in the middle tier. The application
privileges are data privileges. Data privileges are used to define the access of a
function or operation to data. Once a function attaches a connection to the session, any
query passed through the connection is automatically enforced by the database server.

The Ac11d class provides various methods to perform the following:
s Constructing an ACL Identifier

= Using the checkAcl Method

= Getting Data Privileges Associated with a Specific ACL

Constructing an ACL Identifier

To construct an Access Control List (ACL) identifier, use one of the overloaded
parameterized constructors of the Ac1Id class (see Example 6-24). If you want to
construct an ACL identifier from raw binary data, then use the following constructor:

public AclId(byte[] raw)

Example 6-24 How to Construct an ACL Identifier
Session lws = null;

static byte[] aclRaw;

AclId id = new AclId(aclRaw);
boolean ret = lws.checkAcl (aclRaw, "UPDATE_INFO");

When you invoke this constructor, an ACL identifier, using raw binary returned from
the ora_get_aclids operator of a query, is created.

If you want to construct an ACL identifier from internal ACL identifiers, then use the
following constructor:

public AclId(java.util.List<java.lang.Long> ids)

When you invoke this constructor, it creates an ACL identifier using internal ACL
identifiers.

Using the checkAcl Method

To check one or more ACLs for specified data privileges, use the checkAcl method of
the XSAccessController class. The data privileges are checked against one or more
ACLs defined in the Ac1Id object. The checkAcl method returns true only when all
the data privileges are granted in the ACLs. It is important to note that all privileges

6-14 Oracle Database Real Application Security Administrator's and Developer's Guide

Human Resources Administration Use Case: Implementation in Java

need not be granted in a single ACL. A session is needed for using the checkacl
method as Example 6-25 indicates.

Example 6-25 demonstrates how to get the ACL associated with data privilege
privileges22.

Example 6-25 How to get an ACL for a Specified Data Privilege

boolean ret;

Session lws = null;

AclId id2 = new AclId(ids);

List <String> privileges22 = new ArrayList<String>();

ret = XSAccessController.checkAcl (lws, id2, privileges22);

Getting Data Privileges Associated with a Specific ACL

To get a collection of data privileges that are granted in the given ACL, for the given
session, use the getPrivileges method of the Session class.

Note: You use the checkaAcl method for data security and the
checkPrivilege method for function security.

Human Resources Administration Use Case: Implementation in Java

This section describes how to verify data security related application privileges at the
middle tier. This Java example is based on the Security Human Resources (HR)
scenario described in "Real Application Security: Putting It All Together" on page 5-25.
It uses the EMPLOYEES table in the sample HR schema. The example uses two Real
Application Security application users DAUSTIN and SMAVRIS to illustrate Real
Application Security concepts. The example can be divided into the following
modules:

s Setting Up the Mid-Tier Related Configuration

= Setting up the Connection and Initializing the Middle Tier

» Setting up the Session and Authorizing with Middle-Tier API
= Running a Query on the Database

s Performing Cleanup Operations

s The main Method

Setting Up the Mid-Tier Related Configuration

To set up the mid-tier configuration involves creating a DISPATCHER user and password
and granting this user the xscacfeadmin and xsessionadmin Real Application Security
administrator privileges.

exec xXs_principal.create_user (name=>'dispatcher', schema=>'HR');

exec sys.xs_principal.set_password('dispatcher', 'password');
exec Xs_principal.grant_roles('dispatcher', 'xscacheadmin');
exec Xs_principal.grant_roles('dispatcher', 'xssessionadmin');

Using Real Application Security in Java Applications 6-15

Human Resources Administration Use Case: Implementation in Java

Setting up the Connection and Initializing the Middle Tier

This example uses the setupConnection method to create the connection to the
database. The setupConnection method accepts a String array as argument, where:

args [0]=Database user
args [1]=Password
args[2]=Host

This method also initializes the middle tier by calling the getSessionManager method
of the oracle.security.xs.XSSecurityManager class.

public static void setupConnection(String[] args) throws Exception {
mgrConnection =
DriverManager.getConnection(args[2], "dispatcher", "password");

mgr = XSSessionManager.getSessionManager (mgrConnection, 30, 2048000);

appConnection = DriverManager.getConnection(args([2], args([0], args[l]);

Setting up the Session and Authorizing with Middle-Tier API

This example uses queryAsUser method to set up the session and authorize with the
middle-tier checkAcl method. This example creates a session and attaches the session,
and then calls the queryEmployees method. The queryEmployees method in "Running
a Query on the Database" on page 6-16 checks the ACL for the UPDATE privilege, and if
TRUE, it allows the update; it checks the ACL again for the VIEW_SALARY application
privilege, and if TRUE, it allows access to the SALARY column and displays all the
employees records including the sensitive data in the SALARY column. Then after
displaying the employees records, it detaches the session, and destroys the session.

private static void queryAsUser (String user) throws SQLException {
System.out.println("\nQuery HR.EMPLOYEES table as user \"" + user + "\"");

try {
Session lws = mgr.createSession (appConnection, user, null,null);
mgr.attachSession(appConnection, lws, null, null, null, null, null);

queryEmployees (1lws) ;

mgr.detachSession (lws) ;

mgr.destroySession (appConnection, lws);
} catch (Exception e) {

e.printStackTrace() ;

Running a Query on the Database
This example uses the queryEmployees method to run a query on the HR database.

public static void queryEmployees (Session lws) throws SQLException {

Connection conn = lws.getConnection();
String query =
" select email, first_name, last_name, department_id, salary, ora_get_
aclids(emp) from hr.employees emp where department_id in (40, 60, 100) order by
email";

6-16 Oracle Database Real Application Security Administrator's and Developer's Guide

Human Resources Administration Use Case: Implementation in Java

Statement stmt = null;
ResultSet rs = null;

System.out.printf(" EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE
| VIEW_SALARY\n");

try {

stmt = conn.createStatement () ;
rs = stmt.executeQuery(query);

while (rs.next()) {

String email = rs.getString("EMAIL");

String first_name = rs.getString("FIRST_NAME");
String last_name = rs.getString("LAST_NAME");

String department_id = rs.getString ("DEPARTMENT ID");
String salary;

if (((OracleResultSet)rs).getAuthorizationIndicator ("SALARY")
AuthorizationIndicator.NONE) {
salary = rs.getString("SALARY");
}
else {
salary = n*****n;

byte[] aclRaw = rs.getBytes(6);

String update, viewSalary;

if (XSAccessController.checkAcl (lws, aclRaw, "UPDATE")) {
update = "true";

}

else {
update = "false";

if (XSAccessController.checkAcl (lws, aclRaw, "VIEW_SALARY")) {

viewSalary = "true";
}
else {

viewSalary = "false";

System.out.printf ("%9s|%12s|%12s|%6s|%8s|%8s|%8s\n", email,
first_name, last_name, department_id,
salary, update, viewSalary);

}
} catch (Exception e) {
e.printStackTrace();
} finally {
try { if (rs !'= null) rs.close(); } catch (Exception e) {};
try { if (stmt != null) stmt.close(); } catch (Exception e) {};

The queryEmployees method is run for both application users DAUSTIN and SMAVRIS.

Using Real Application Security in Java Applications 6-17

Human Resources Administration Use Case: Implementation in Java

Performing Cleanup Operations
This examples uses the cleanup method for system cleanup operations.

public static void cleanupConnection() throws Exception {
mgrConnection.close() ;
appConnection.close();

The main Method

This section contains the main method for the Java example discussed. This section
also contains the different packages that you must import to run the program.

import java.sqgl.Connection;
import java.sql.DriverManager;
import java.sqgl.ResultSet;
import java.sql.SQLException;
import java.sqgl.Statement;

import java.util.ArrayList;

import java.util.List;

import oracle.jdbc.OracleDriver;

import oracle.jdbc.OracleResultSet;

import oracle.jdbc.OracleResultSet.AuthorizationIndicator;

import oracle.security.xs.Role;

import oracle.security.xs.Session;

import oracle.security.xs.XSAccessController;
import oracle.security.xs.XSSessionManager;

/**
* HR demo java version, check data security related privilege at mid-tier
*/

public class HRDemo {

static Connection mgrConnection = null;
static Connection appConnection = null;
static XSSessionManager mgr = null;
static String user = null;

public static void main(String[] args) {
try {

DriverManager.registerDriver (new OracleDriver());

if (args.length >=3) {
user = args[0];

} else {
System.out.println("Usage HRDemo user pwd dbURL");
System.exit (1) ;

setupConnection(args) ;

queryAsUser ("DAUSTIN") ;
queryAsUser ("SMAVRIS") ;

cleanupConnection() ;

6-18 Oracle Database Real Application Security Administrator's and Developer's Guide

Human Resources Administration Use Case: Implementation in Java

} catch (Exception el) {
el.printStackTrace();

}

Running the Use Case

1. Running the Security HR demo in Java assumes that the set up script described in
"Setting Up the Security HR Demo Components" on page 12-4 has been run to set
up the Real Application Security components.

2. Compile the Java code.

SORACLE_HOME/jdk6/bin/javac -classpath $ORACLE_HOME/rdbms_
ho/jlib/xs.jar:SORACLE_HOME/dbjava/lib/ojdbc6.jar HRdemo.java

Note: You must use JDK 6 with xs.jar and ojdbcé6.jar, which are
located in the Oracle home directory. Different jars and JDK may not
work.

3. Run the Java code.

SORACLE_HOME/jdk6/bin/java -classpath $ORACLE_HOME/rdbms_
ho/jlib/xs.jar:$ORACLE_HOME/dbjava/lib/ojdbc6.jar

HRdemo db_hr db_hr jdbc:oracle:thin:@myserver:myport:mysid

Output

Running the Security HR demo in Java assumes that the set up script described in
"Setting Up the Security HR Demo Components" on page 12-4 has been run to set up
the Real Application Security components. When you run the Security HR demo,
results of two queries are returned.

The first query runs with application user DAUSTIN, who has application roles EMP_
ROLE and IT_ROLE, so he can view employee records in the IT department, but he
cannot view the SALARY column except for his own salary record. The results of the
query are as follows:

Query HR.EMPLOYEES table as user "DAUSTIN"
EMAIL | FIRST NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY

AHUNOLD| Alexander | Hunold| 60| **¥*x| false| false
BERNST | Bruce| Ernst]| 60| ***xx| false| false
DAUSTIN | David| Austin| 60| 4800| false| true
DLORENTYZ | Diana| Lorentz| 60| ****x| false| false
VPATABAL | Valli| Pataballa| 60| ****x| false| false

Note that application user DAUSTIN can only view the SALARY column data for his own
record, and no others.

The second query runs with application user SMAVRIS, who has application roles
EMP_ROLE and HR_ROLE, so she can view and update all the employee records. The
results of the query are as follows:

Query HR.EMPLOYEES table as user "SMAVRIS"
EMAIL | FIRST _NAME | LAST NAME | DEPT | SALARY | UPDATE | VIEW_SALARY

Using Real Application Security in Java Applications 6-19

Human Resources Administration Use Case: Implementation in Java

AHUNOLD| Alexander| Hunold| 60| 9000 | true| true
BERNST | Bruce| Ernst| 60 | 6000 true| true
DAUSTIN| David| Austin]| 60| 4800 | true| true
DFAVIET| Daniel | Faviet| 100] 9000 | true| true
DLORENTZ | Diana| Lorentz| 60 | 4200 | true| true
ISCIARRA| Ismael | Sciarra| 100 7700 | true| true
JCHEN | John| Chen| 100] 8200 | true| true
JMURMAN| Jose Manuel | Urman| 100] 7800 | true| true
LPOPP| Luis]| Popp| 100] 6900 | true| true
NGREENBE | Nancy| Greenberg| 100 12008] true| true
SMAVRIS | Susan | Mavris| 40| 6500 true| true
VPATABAL | Valli| Pataballa| 60| 4800 | true| true

Note that application user SMAVRIS can view all the employee records, including all
data in the SALARY column.

6-20 Oracle Database Real Application Security Administrator's and Developer's Guide

7

Oracle Fusion Middleware Integration with Real
Application Security

Real Application Security adds external user and role support for application
integration, that can be used, for example, with Oracle Fusion Middleware. For Oracle
Fusion Middleware, the users and roles are also externalized to a common, single
repository with centralized management and single authentication of the user
interface using the Authorization Policy Manager. From a Real Application Security
perspective, the integrated users and roles (including application roles) are
externalized principals because Oracle Fusion Middleware manages them externally.
The mid-tier initialization and authorization operations are the same as those
described in Chapter 6.

This chapter describes the following topics:
= External Users and External Roles

m Session APIs for External Users and Roles

External Users and External Roles

An external user is an end-user accessing a service. User information is stored in the
identity store, typically instantiated by the WebLogic Authenticator. This user is
neither a database user nor a Real Application Security application user. An external
user does not have any footprint in the database. But, an external user needs to access
the database for application data. Therefore, a Real Application Security context
(session) is established for such a user to control the user's access to the required data.

An anonymous user is an unauthenticated user, or a user whose credentials have not
been validated. An anonymous user is permitted to access only unprotected resources
such as public data from a database. An application can enable or disable the use of
anonymous users.

An external role or group is a collection of users and other groups, which can be
hierarchical. For example, a group can include arbitrarily nested groups.

An external application role is a collection of users, groups, and application roles,
which can be hierarchical. This role is specific to the application, defined by the
application policy, and may not be known to the J2EE container. Application roles are
scoped because they are visible only when the application runs. They can be mapped
to other application roles defined in the same application scope and also to enterprise
users or groups. Application roles are used in authorization decisions.

Similar to external users, external roles and application roles have no footprint in the
Real Application Security system. They are used to control the way the Real
Application Security ACLs grant data access to an application.

Oracle Fusion Middleware Integration with Real Application Security 7-1

Session APIs for External Users and Roles

External roles and application roles also enforce the details of data access. External
users need some basic database privileges, typically the object privilege to run
SELECT on an application table. These privileges can be granted through a Real
Application Security dynamic application role, which is enabled when a user session is
attached. For example, to grant privileges to an external user or role, specify the
principal type as XS_ACL. PTYPE_EXTERNAL in an ACE list when creating an ACL. See
the "CREATE_ACL Procedure” on page 11-24 for more information.

Session Modes for External Users
Real Application Security supports the following two modes of operation for sessions:

m Secure Mode

In secure mode, data security is enforced at the database server. By default, a
session is created in a secure mode for all users.

s Trusted mode

A trusted mode is a mode in which data security is enforced at the middle tier and
not at the database server. In such a mode, the data security implemented by Real
Application Security is bypassed. So, creating a session in trusted mode is a
privileged operation.

Trusted mode is allowed only for external users, and only when the dispatcher has
CREATE_TRUSTED_SESSION privilege. This privilege can be granted to the dispatcher
user as follows:

XS_ADMIN_UTIL.grant_system_ privilege ('CREATE_TRUSTED_SESSION', 'dispatcher', XS_
ADMIN_UTIL.PTYPE_XS) ;

Session APIs for External Users and Roles
This section describes the following topics for external users and roles:
= Namespace for External Users
m Creating a Session
= Attaching a Session
= Assigning a User to a Session

= Saving a Session and Aborting a Session

Namespace for External Users

The namespaces for external users are enhanced with attribute manipulation features
during creating, attaching, and assigning a session. External users are able to perform
the following activities:

» Creating namespace with attributes while creating a session
= Setting namespace attributes while attaching a session and assigning a user

= Saving a session and leaving it as attached

Creating a Session

To create a Real Application Security application session, use the createSession
method of the XSSessionManager class.

7-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Session APIs for External Users and Roles

For external users, this method creates a Session object on the server as well as its
corresponding middle-tier representation with namespaces and attributes. This
method also creates the Namespaces and sets corresponding attributes given in the
Namespace/ AttributeValue. The cookie can be used to identify the newly created Real
Application Security application session in future calls, until the cookie value is
changed or the session is destroyed.

Syntax

public abstract Session createSession(java.sgl.Connection conn,

ExternalUser eUser,

java.lang.String cookie,

java.util.Collection<NamespaceValue> nav)

throws InvalidXSUserException,
AccessDeniedException,
java.sql.SQLException,
XSSessionException,
InvalidXSNamespaceException

public abstract Session createSessionTrusted(java.sgl.Connection conn,
ExternalUser externalUser,
java.lang.String cookie,
java.util.Collection<NamespaceValue> nameSpaceValues)
throws InvalidXSUserException,
AccessDeniedException,
java.sql.SQLException,
SQLException,
XSException,
InvalidXSNamespaceException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

eUser or The external user associated with the session

externalUser

cookie The session cookie used to identify the external user

nav or A list of namespaces with corresponding attributes to be created
nameSpaceValues for the namespaces

Example

Example 7-1 demonstrates how to create a Real Application Security session for
external users. The createSession method is in bold typeface.

Example 7-1 Creating a Real Application Security Session for External Users

static Connection lws_conn =null;

static XSSessionManager sm = null;

lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager (privConn,20,29999999);

Oracle Fusion Middleware Integration with Real Application Security 7-3

Session APIs for External Users and Roles

String trituser = "TUSEROL";

String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavlList = new ArrayList<AttributeValue>();
AttributeValue nsavl = new AttributeValue("ATTRO1", "valuel");
nsavList.add(nsavl) ;

AttributeValue nsav2 = new AttributevValue("ATTR02", "value2");
nsavList.add(nsav2) ;

NamespaceValue nav = new NamespaceValue("NST01l",nsavList);
List<NamespaceValue> nsList = new ArrayList();

nsList.add (nav) ;

/* create session with external user name in secure mode with namespace attr-vals
and cookie */

lws = sm.createSession(lws_conn, new ExternalUser (extuser, extuuid), cookie,
nsList);

sm.destroySession (lws_conn, lws);

/*Create external user session in secure mode*/
lws = sm.createSession(lws_conn, new ExternalUser (extuser, extuuid), null, null);
sm.destroySession(lws_conn, lws);

/*Create external user session in secure mode with namespace attribute values */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), null,
nsList);

sm.destroySession(lws_conn, lws);

/* create session with external user name in secure mode with cookie */

lws = sm.createSession(lws_conn, new ExternalUser (extuser, extuuid), cookie,
null);

sm.destroySession(lws_conn, lws);

/* create trusted session with only external user name */

lws = sm.createSessionTrusted(lws_conn, new ExternalUser (extuser, extuuid), null,
null);

sm.destroySession(lws_conn, lws);

/* create session with RAS user name in secure mode with namespace and cookie */
lws = sm.createSession(lws_conn, trituser, cookie, nsList);
sm.destroySession (lws_conn, lws);

Attaching a Session

To attach an application session, use the attachSession method of the
XSSessionManager class.

For external users, this method attaches the JDBC connection to the specified session
object. This method also sets the dynamic application roles, external roles,
authentication time, and creates namespaces for the session. It also gives a list of a
namespace and its corresponding namespace attributes to be created and set. If the
namespace does not exist, then this method creates the namespace, and then sets the
corresponding attributes.

Syntax

public abstract void attachSession(

7-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Session APIs for External Users and Roles

java.sqgl.Connection conn,
Session session,
java.util.Collection<java.lang.String> enabledDynamicRoles,
java.util.Collection<java.lang.String> disabledDynamicRoles,
java.util.Collection<ExternalRole> externalRoles,
java.util.Collection<NamespaceValue> nav,
java.sqgl.Timestamp authenticationTime)
throws java.sql.SQLException,

AccessDeniedException,
InvalidSessionException,
XSSessionException,
InvalidXSNamespaceException

public abstract Session attachSessionByCookie(

java.sqgl.Connection conn,
java.lang.String cookie,
java.util.Collection<java.lang.String> enabledDynamicRoles,
java.util.Collection<java.lang.String> disabledDynamicRoles,
java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
java.sgl.Timestamp authenticationTime)
throws java.sqgl.SQLException,

AccessDeniedException,

InvalidSessionException,

XSException,

InvalidXSNamespaceException

public abstract Session attachSessionByID(
java.sqgl.Connection conn,
java.lang.String id,
java.util.Collection<java.lang.String> enabledDynamicRoles,
java.util.Collection<java.lang.String> disabledDynamicRoles,
java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
java.sqgl.Timestamp authenticationTime)
throws java.sqgl.SQLException,
AccessDeniedException,
InvalidSessionException,
XSException,
InvalidXSNamespaceException

Parameters

Parameter Description

conn The database connection to be attached to the application
session

session The Session object to be attached

cookie The session cookie

id The session identifier

enabledDynamicRoles A collection of dynamic application role names to be enabled

disabledDynamicRoles A collection of dynamic application role names to be disabled

externalRoles A collection of external roles to be enabled

nav or namespaceValues A list of namespaces with corresponding attributes to be set

Oracle Fusion Middleware Integration with Real Application Security 7-5

Session APIs for External Users and Roles

Parameter Description
authenticationTime The authentication time to be sent to the database server
Example

Example 7-2 demonstrates how to attach a Real Application Security session for
external users. The attachSession method is in bold typeface.

Example 7-2 Attaching a Real Application Security Session for External Users

static Connection lws_conn =null;
static XSSessionManager sm = null;

lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager (privConn,20,29999999);

String cookie = "some_cookie";

String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;
Session lws2 = null

List<AttributeValue> nsavlList = new ArrayList<AttributeValue>();

AttributeValue nsavl = new AttributeValue("ATTRO1", "valuel");
nsavList.add(nsavl) ;
AttributeValue nsav2 = new AttributevValue("ATTR02", "value2");
nsavlList.add(nsav2) ;

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add (nav) ;

List <String> dynamicRoles = new ArraylList <String>();
dynamicRoles.add ("DYNROLEQOL1") ;
dynamicRoles.add ("DYNROLE0O2") ;

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add (new ExternalRole("EXTPRINOL"));
extRoles.add (new ExternalRole ("MYEXTPRINO2"));

lws = sm.createSession(lws_conn, new ExternalUser (extuser, extuuid), cookie +
"secure", nsList, false);

sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles,
extRoles, null, null);

sm.detachSession (lws) ;

sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles,
extRoles, null, new Timestamp (System.currentTimeMillis()));
sm.detachSession (1lws) ;

sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles,

7-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Session APIs for External Users and Roles

extRoles, nsList, null);

sm.detachSession (1lws) ;

sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles,
extRoles, nsList, new Timestamp (System.currentTimeMillis()));
sm.detachSession (lws) ;

lws2 = sm.createSession(lws_conn, new ExternalUser (extuser, extuuid), cookie +
"trusted", nsList, true);

lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, null, null);
sm.detachSession (1lws2) ;

lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, nsList, new

Timestamp (System.currentTimeMillis()));

sm.detachSession (1lws2) ;

External Role Behavior while Attaching a Session

» After an external role is enabled for a session, it is stored as part of the session
context as an ID. This role ID is used in access control, when you call the checkAcl
method on both middle tier and database server. This is same as regular Real
Application Security application role or dynamic application role.

= A Real Application Security ID is assigned for every external role passed while
attaching a session, whether the role is referred by ACL or not.

» The scope of the external role is within the boundary of attaching or detaching a
session. An external role cannot be enabled for attaching multiple sessions, and it
does not need to be explicitly disabled. So, the roles assigned for attaching the first
session will not be automatically enabled while attaching the next session, unless
the roles are assigned again.

This behavior is completely different from the behavior of regular Real
Application Security application roles or dynamic application roles, where the
application roles assigned for attaching the first session are automatically enabled
while attaching the next session.

m After a session is attached, the external role remains consistent till detaching and
reattach the session. The role may even be revoked for the user.

Assigning a User to a Session

To assign a name to a previously anonymous user, use the assignUser method of the
XSSessionManager class.

For external users, this method assigns a named user to a previously anonymous user,
sets the dynamic application roles, external role, and authentication time. If a list of
Namespace/ Attribute values is given, this method creates each namespace that does
not exist, and sets the corresponding attributes.

Syntax

public abstract void assignUser(
Session session,
ExternalUser targetUser,
java.util.Collection<java.lang.String> enabledDynamicRoles,
java.util.Collection<java.lang.String> disabledDynamicRoles,
java.util.Collection<ExternalRole> externalRoles,
java.util.Collection<NamespaceValue> naValues,
java.sql.Timestamp authenticationTime)
throws java.sqgl.SQLException,

Oracle Fusion Middleware Integration with Real Application Security 7-7

Session APIs for External Users and Roles

AccessDeniedException,
InvalidSessionException,
XSSessionException,
InvalidXSNamespaceException

Parameters

Parameters Description

session The session object to assign the user to

targetUser An ExternalUser object initialized based on authentication
enabledDynamicRoles A list of dynamic application role names to be enabled
disabledDynamicRoles A list of dynamic application role names to be disabled
externalRoles A collection of external roles to be enabled
namespaceValues A list of namespaces with corresponding attributes to be set
authenticationTime The a timestamp indicated when the user authenticated
Example

Example 7-3 demonstrates how to assign a Real Application Security session to
external users. The assignUser method is in bold typeface.

Example 7-3 How to Assign a Real Application Security Session to External Users

static Connection lws_conn =null;
static XSSessionManager sm = null;

lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager (privConn,20,29999999);

String cookie = "some_cookie";

String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavlList = new ArrayList<AttributeValue>();
AttributeValue nsavl = new AttributeValue("ATTRO1", "valuel");
nsavList.add(nsavl) ;

AttributeValue nsav2 = new AttributeValue ("ATTR02", "value2");
nsavList.add(nsav2) ;

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add (nav) ;

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add ("DYNROLEOOL1") ;

7-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Session APIs for External Users and Roles

dynamicRoles.add ("DYNROLEQO02") ;

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add (new ExternalRole ("EXTPRINO1"));
extRoles.add (new ExternalRole ("MYEXTPRINO2"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
sm.detachSession (1lws) ;

lws = sm.createAnonymousSession(lws_conn, cookie + "secure", nsList, false);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, new
Timestamp (System.currentTimeMillis()));

sm.detachSession (1lws) ;

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, null, nsList, null);
sm.detachSession (1lws) ;

Saving a Session and Aborting a Session

To save the changes of a session at the database server and keep the session still
attached, use the saveSession method of the XSSessionManager class.

For external users, this method saves the current session. Similar to the detachSession
method, this method commits all session changes to the back end and a database
roundtrip is required to perform this operation. But, unlike the detachSession
method, this method keeps the session attached. This method is mainly used to save
an application context (namespace).

To abort the changes of a session at the database server and detach from the session,
use the abortSession method of the XSSessionManager class.

Syntax

public abstract void saveSession(Session session)
throws java.sqgl.SQLException,
NotAttachedException,
XSSessionException

public abstract void abortSession(Session session)
throws java.sql.SQLException,
NotAttachedException,
XSException

Example
Example 7-4 demonstrates how to save a Real Application Security external user
session. The saveSession method is in bold typeface.

Example 7-4 How to Save a Real Application Security External User Session

Oracle Fusion Middleware Integration with Real Application Security 7-9

Session APIs for External Users and Roles

static Connection lws_conn =null;
static XSSessionManager sm = null;

lws_conn = DriverManager.getConnection (lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager (privConn,20,29999999);

String cookie = "some_cookie";

String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;
List<AttributeValue> nsavlList = new ArrayList<AttributeValue>();

AttributeValue nsavl = new AttributeValue ("ATTRO1", "valuel");
nsavList.add (nsavl) ;
AttributeValue nsav2 = new AttributeValue("ATTR02", "value2");
nsavList.add(nsav2) ;

NamespaceValue nav = new NamespaceValue ("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add (nav) ;

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add ("DYNROLEOO1") ;
dynamicRoles.add ("DYNROLEQO02") ;

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add (new ExternalRole ("EXTPRINO1"));
extRoles.add (new ExternalRole ("MYEXTPRINO2"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser (lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
lws.deleteNamespace ("NST01") ;

sm.saveSession(lws);

7-10 Oracle Database Real Application Security Administrator's and Developer's Guide

8

Application Session Service in Oracle Fusion
Middleware

Real Application Security provides an application session service in Oracle Fusion
Middleware to set up an application session transparently and securely that supports
existing application users, roles, and security context. This application session service
is a servlet filter that is responsible for application session setup and a set of APIs that
the application can use with the application session. This application session service
supports user and roles managed externally by Oracle Fusion Middleware.

For Oracle Database 12c Release 1 (12.1.0.2), this application session service supports a
Java EE Web application using Oracle Platform Security Service (OPSS) as the
application security provider. This application session service can be deployed to the
Java EE container that OPSS can support, together with the application.

This chapter describes the following topics:

= Real Application Security Concepts

= Application Session Service in Oracle Fusion Middleware

= Application Session Filter

= Deployment

= Application Configuration of the Application Session Filter

= Domain Configuration: Setting Up an Application Session Service to Work with
OPSS and Oracle Fusion Middleware

= Application Session APIs

= Human Resources Demo Use Case: Implementation in Java

Real Application Security Concepts

As an Oracle Database authorization system, Real Application Security supports
application security by enforcing who (application user) can do what application-level
operations (ApprovePurchaseOrder, ViewSSN) on which database resource (purchase
order records of employees under my report, my SSN). An application session is used
to enforce application security. Typically, the users and roles are provisioned
externally, that is, enterprise users are provisioned in an identity store and application
roles are managed in a policy store, such as, Oracle Identity Management and Oracle
Entitlement Server (OES).

Application Session Service in Oracle Fusion Middleware 8-1

Real Application Security Concepts

Application Users and Roles Managed Externally

Real Application Security supports users and roles that are provisioned by an external
party, such as Oracle Entitlement Server for managing application users and roles
provisioning, while OPSS provides a runtime security framework for enforcing
security for application roles. Theses are referred to as external application users and
application roles (see Chapter 7, "Oracle Fusion Middleware Integration with Real
Application Security" for more information.)

Real Application Security also has users and roles for the application natively
managed in the database, and these are referred to as Real Application Security
application users and application roles (see Chapter 2, "Configuring Application Users
and Application Roles" for more information).

For external application users and application roles, Real Application Security does
not manage user provisioning including users' role assignment. However, for native
application users and application roles in the database, grants of application roles to
application users, database roles to application roles, and application roles to
application roles are managed in the database. Both Real Application Security
application users and application roles, and external application users and application
roles are supported in an application session, and can be used in a data security policy.
An application privilege can be granted to users managed both in the identity store
externally or in the database natively.

Application Session in Oracle Fusion Middleware

An application session represents an application user's runtime security context, which
includes the user identity, database and application roles, and namespace attribute
values. The application session here in Oracle Fusion Middleware is using externally
managed user and roles. See Chapter 3, "Configuring Application Sessions" for more
information about configuring an application session.

Session Manager in Oracle Fusion Middleware

In Real Application Security, the session manager authorizes the application session
operation and has the necessary privileges to create or modify the application session.
The application code or application database connection should not have these
privileges. To the database, the session manager is a Real Application Security direct
logon user (see "Creating a Direct Login Application User Account” on page 2-3). It
communicates with the database at the beginning of application session service
initialization to build a trust relation with the database server based on authorization
credentials. This mechanism is used subsequently to further authorize the application
session operations on behalf of the application.

Dynamic Roles in Oracle Fusion Middleware

Other than the application roles, an application session supports a dynamic role. This
is a type of Real Application Security role that must be defined natively in the
database (see "Dynamic Application Roles" on page 2-9). This role is not granted to the
user or other roles. It must be enabled programmatically in the application session at
run time. This can be done by the Real Application Security filter automatically or by
the trusted application code explicitly.

The dynamic role can be defined as request scope or session scope. Session scope
means the enabled dynamic role is still enabled in the next attach, unless you explicitly
specify that it is disabled in the next attach. Request scope means that the role is
disabled after the application session is detached from the connection.

Dynamic role serves two general purposes:

» Object privilege

8-2 Oracle Database Real Application Security Administrator's and Developer's Guide

Application Session Service in Oracle Fusion Middleware

An application user is not a database user. These object privileges can be granted
to a Real Application Security dynamic role when application users and roles are
provisioned in external identity stores. When the Real Application Security filter
sets up the application session for the application user, it enables the dynamic role
in every application session accessing the current application. The dynamic role is
specific to the current application only.

= Application Session privilege elevation

Certain trusted application code must temporarily have higher privileges in order
to do some database operations. This is supported by enabling a Real Application
Security dynamic role during application session attach from the trusted code

declared using a Java code based policy. The role should be disabled upon detach.

One use case is application namespace setup where session namespace attributes
are secured in Real Application Security in a fine grained manner. The namespace
must be predefined at the database as a namespace template. Upon definition, in
the associated ACL of the namespace authorization policy can be specified, that is,
who (user/role) can do what (modify_namespace, modify_attribute) on the
namespace. To ensure that only trusted application code can modify the
namespace attributes, the privileges are granted to a dynamic role. Also, the
dynamic role can only be programmatically enabled by certain trusted application
code identified by Java code permission. This supports the use case that only the
trusted code can set up certain namespaces.

Application Session Service in Oracle Fusion Middleware

Figure 8-1 shows application session service as it is implemented in Oracle Fusion
Middleware.

Application Session Service in Oracle Fusion Middleware 8-3

Application Session Service in Oracle Fusion Middleware

Figure 8—-1 Application Session Service in Oracle Fusion Middleware

Client
Authentication Server Identity Store
| Single Sign-On ™
WebLogic Server

|_ Authenticator

OPSS Filter —
4
g:g:_lﬁf,p gﬁ:,t:o" m Application Session
Human Resources
| Subject ApplicationSes sion{conn) ;
i Code stmt = conn
N
[— rs = stmk. e y 1
Real Application ApplicationSessionService. detachSession (conn) ;
Security API

Connection Pool
JOBC

f 5
:\% Application
4._.{1 Lj’ L ; { Session

Connt Conn2 Conn3 Database

Security Store
P

An application session service is an integrated solution with Oracle Fusion
Middleware, to leverage Oracle Fusion Middleware to provide an application session
at the database. In Oracle Fusion Middleware:

» The application user is authenticated by the container. In WLS, typically the
authenticator works with the SSO server to authenticate the user.

= The application user and group are managed by the Identity Store.

= OPSSis an application security framework to set up the application security
context based on the container's security context. See Securing Applications with
Oracle Platform Security Services for more information about application security
with OPSS.

The Real Application Security servlet filter sets up the application session
transparently and synchronizes the application session with the OPSS subject. The
server filter code consists of a set of APIs that function in the application session to:

= Attach, detach, and destroy the session (see "Application Session APIs" on
page 8-10)

= Provide privilege elevation (see "Privilege Elevation API" on page 8-13)
= Provide namespace operations (see "Namespace APIs" on page 8-14)

s Provide authorization (see "Check Privilege API" on page 8-18)

Real Application Security provides:

= APIs that support external users and roles in the application session

8-4 Oracle Database Real Application Security Administrator's and Developer's Guide

Application Session Filter

= Authorizes the session operation through the session manager

= Support for fine-grained access control on namespace

Application Session Filter

The Real Application Security application session filter is a standard Java EE servlet
filter that implements the javax.servlet.Filter interface. The basic function of this
filter is to set up an application session transparently according to the authenticated
user's security context (OPSS Subject).

This application session filter allows the application session to be continuously shared
among applications. It cannot be created for every request, but must be tied to a
stateful context and reused for the same user until logout. For web applications, the
http session is such a context. It is maintained by the container for the same user's
continuous access from logon until logout, across multiple single sign-on applications
or containers.

The http session object is always accessible from the ServletFilter, but may not be
accessible from the generic application code.

Application Session Filter Operation
The application session filter sets up the application session in the following manner:
» It creates an application session at the user's first access.

If the user has been logged in, it creates the application session as the user in the
authentication context (OPSS Subject).

If the user has not been logged in, it creates the application session as an
anonymous user.

= It reuses the existing application session instance for the user's subsequent access
to the same application.

= It shares the same application session among multiple applications when multiple
applications access the same Real Application Security database.

= It synchronizes the application session at the beginning of each http request to
make sure the user and roles in the current application session are always
synchronized with the authentication context (OPSS Subject), and only the
configured dynamic roles are enabled for every application session.

The synchronization is done by pushing the OPSS Subject values to the server and
getting back the server computed values for the current application session.

User and roles in the application session are fixed once the filter is fired before
application code execution. The filter is responsible for synchronizing the user and
roles, not application code.

Application code is responsible for the namespace setup. The filter can only help to
bring back the previous namespace. See "Namespace APIs" on page 8-14 for more
information about namespace setup.

The application session is cached locally based on the http session ID. The http session
is managed by the container. Real Application Security has an application session
listener to listen for the container's application session event. When the http session is
invalidated by the container, the application session is removed from the local cache
by the Real Application Security listener.

Application Session Service in Oracle Fusion Middleware 8-5

Deployment

Deployment

Real Application Security application session service is delivered in one jar file,

xsee. jar. Oracle recommends that you deploy the xsee. jar jar file to a common
directory, not together with the web application (WAR file inside web-inf/1ib). In this
way, you can separate the jar from application code, and grant some special code
based permissions to only the xsee. jar jar file, and not to the application code.

For the xsee. jar jar file to get the session manager's credential from the CSF store, you
must grant code based permission CredentialAccessPermission to the xsee.jar jar
file. The filter internally uses Real Application Security session manager to authorize
the session operation.

In Example 8-1, the xsee. jar jar file is deployed to WLS's domain /1ib directory. The
java policy file (system-jazn-data.xml) has the CredentialAccessPermission grant,
assuming that the session manager's key/map is using the default value.

For deployment instructions, see the section about standard Java EE deployment in
Understanding Oracle WebLogic Server.

For a simple and quick method of deploying an application for testing or evaluation,
use Auto-Deployment. This is an easier way to deploy the application session service
by packaging everything (class, web.xml) in to one WAR file, and copying it to the
Weblogic autodeploy directory. See the section about auto-deploying applications in
development domains in Deploying Applications to Oracle WebLogic Server.

Example 8—-1 Granting the Code-Based Permission CredentialAccessPermission to the xsee.jar File

<grant>

</grant>

<grantee>
<codesource>
<url>file:${domain.home}/lib/xsee.jar</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
<name>context=SYSTEM, mapName=oracle.rdbms.ras, keyName=default</name>
<actions>read</actions>
</permission>
</permissions>

To create the session manager's credential, see Step 2 in "Manual Configuration" on
page 8-8 for more information.

Application Configuration of the Application Session Filter

The filter is configured in the application's web.xml configuration file in a standard
way. It can be configured to apply to only specific URLs. This avoids unnecessary
application session setup for certain pages for which it does not need database access.

The filter assumes that user authentication has been done and an authentication
context has been established. In OPSS, the user's application context is computed at the
OPSS filter, so the OPSS filter must be deployed ahead of the application session filter
in the filter chain.

The application session filter uses the following web.xml parameters:

m application.datasource

8-6 Oracle Database Real Application Security Administrator's and Developer's Guide

Application Configuration of the Application Session Filter

The application uses this application.datasource parameter. The application
session filter requires this parameter for initialization, application session setup
and namespace operations.

dynamic.roles

A list of Real Application Security dynamic roles to be used are separated by a
commay(,). The dynamic roles must already be created at the database as session
scope; otherwise, the following exception is thrown: ORA-46055: invalid role
specified.

The roles are enabled for every application session in the current application, and
automatically disabled in other applications. Note that these dynamic roles are
enabled for the anonymous session. You should not over grant any privileges to
dynamic roles if they are not needed for every application session. Normally, only
object privileges should be granted to the dynamic roles.

For any tables not protected by Real Application Security, the application still has
the flexibility to use the database connection pool user for access, not the
application user. In that case, no attach application session API call is needed and
no object privilege is granted to the dynamic roles.

session.manager.pwd.key and session.manager.pwd.map

The session.manager.pwd. key parameter and the session.manager.pwd.map
parameter (fixed as oracle.rdbms.ras) point to a credential (user ID and
password) in the credential store. The session.manager.pwd.key parameter is
used to retrieve the session manager's credential. Currently, the OPSS CSF
credential store is used to store the credential, and the CSF API is used to retrieve
the credential at run time. In addition, both the session manager's user ID and
password can be retrieved from the store.

The default value is default for the session.manager.pwd.key parameter. If the
application is using the default credential, then this parameter can be omitted.

If an application wants to use a specific session manager, not the default
credential, the application's administrator must create the credential with a
different key name, and configure it using this parameter. See configuring the
OPSS security store in Securing Applications with Oracle Platform Security Services for
more information.

session.manager.pool.min and session.manager.pool .max

The session manager's connection is also used to query the data security policy
(ACL) at the mid-tier. This connection is managed as a pool. The
session.manager.pool.min parameter determines the minimum size of the pool.
This parameter is optional. The default value is 1.

The session.manager.pool.max parameter determines the maximum size of the
pool. This parameter is optional. The default value is 3.

If the privilege check is not needed, the pool size should be set to 1 for both
session.manager.pool.min and session.manager.pool.max values.

Example 8-2 shows an application session filter sample configuration that includes the
servlet filter, its parameters, and the listener. Any parameters, which have default
values, are omitted from this example.

Example 8-2 Application Session Filter Sample Configuration

<filter>

<filter-name>ApplicationSessionFilter</filter-name>

Application Session Service in Oracle Fusion Middleware 8-7

Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

<filter-class>oracle.security.xs.ee.session.ApplicationSessionFilter</filter-class>
<init-param>
<param-name>application.datasource</param-name>
<param-value>jdbc/myDBDS</param-value>
</init-param>
<init-param>
<param-name>dynamic.roles</param-name>
<param-value>my_drole</param-value>
</init-param>
</filter>
<listener>
<description>RAS Session Listener</description>

<listener-class>oracle.security.xs.ee.session.ApplicationSessionListener</listener-class>
</listener>

Domain Configuration: Setting Up an Application Session Service to Work
with OPSS and Oracle Fusion Middleware

This section describes the prerequisites and configuration required for an application
to use an application session service.

Prerequisites

To use Real Application Security, both the application session service and OPSS must
be deployed and configured in a Oracle Fusion Middleware's Java EE container.

For WebLogic server, the prerequisites include:

s A JRF based WLS domain (OPSS is built-in) certified with the Oracle database 12¢
JDBC driver. The required JDBC jars could be many, not just one driver jar
depending on the features you need (UCP, I18N, SQLXML and so forth).

» Oracle Database 12¢ Release 1 (12.1)

For WebLogic server 10.3.6 and 12.1.2 JRF release (part of Oracle Fusion Middleware),
the JDBC driver shipped is not Oracle Database 12c compatible. You must obtain the
Oracle Database 12¢ JDBC jars (ojdbcé . jar or ojdbc7. jar and other matched jars
depending on the features you need), and add these jars to the front of your WebLogic
Server's classpath. For detailed instruction, see Administering [DBC Data Sources for
Oracle WebLogic Server, Section B.

If there is version mismatch between the JDBC driver and the database, the Real
Application Security filter initialization fails with an error message. For example,

s If the Oracle Database 11g JDBC driver is being used with Oracle Database 12c, the
following error message appears in the server log: Fail to initialize RAS
session manager due to method missing.

s If the Oracle Database 12c JDBC driver is being used with Oracle Database 11g, the
following error message appears in the server log: ORA-00439: feature not
enabled: Fusion Security.

Manual Configuration

Follow these manual configuration steps for an application to use an application
session service. These steps should work for both WebLogic 10.3.6 and 12.1.2, JRF
release.

1. Install the Real Application Security jars.

8-8 Oracle Database Real Application Security Administrator's and Developer's Guide

Domain Configuration: Setting U