

Oracle® Database
JPublisher User's Guide

12c Release 1 (12.1)

E49873-02

July 2014

Oracle Database JPublisher User's Guide, 12c Release 1 (12.1)

E49873-02

Copyright © 1999, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tanmay Choudhury, Brian Wright

Contributing Authors: Tulika Das, Venkatasubramaniam Iyer, Janice Nygard, Thomas Pfaeffle, Ekkehard
Rohwedder, P. Alan Thiesen

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an
inspiration to all who worked on this release.

Contributor: Quan Wang, Kuassi Mensah, Deepa Aswani, Prabha Krishna, Ellen Siegal

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Intended Audience.. xi
Documentation Accessibility .. xii
Structure .. xii
Related Documents ... xiii
Conventions ... xiv

1 Introduction to JPublisher

Overview of JPublisher... 1-1
JPublisher Initial Considerations ... 1-2

New Features in Oracle Database 12c Release 1(12.1.0.2) JPublisher... 1-2
General Requirements for JPublisher.. 1-2
Installing JPublisher... 1-4
Verifying JPublisher Installation.. 1-7

Verifying or Installing the SQLJUTL and SQLJUTL2 Packages... 1-8
Verifying or Installing the UTL_DBWS Package ... 1-8
Verifying or Loading the dbwsclient.jar File .. 1-9
Loading JAR Files For Web Services Call-Outs in Oracle9i or Oracle8i 1-9
Setting Up Password File for Remote SYS Login .. 1-10

JPublisher Usage of the SQLJ Implementation ... 1-10
Overview of SQLJ Usage .. 1-10
Overview of SQLJ Concepts ... 1-11
Backward-Compatibility Modes Affecting SQLJ Source Files .. 1-12

Situations for Reduced Requirements.. 1-12
JPublisher Limitations .. 1-13

What JPublisher Can Publish ... 1-14
JPublisher Mappings and Mapping Categories.. 1-14

JPublisher Mappings for User-Defined Types and PL/SQL Types .. 1-14
Representing User-Defined SQL Types Through JPublisher .. 1-14
Using Strongly Typed Object References for ORAData Implementations...................... 1-15
Using PL/SQL Types Through JPublisher... 1-16

JPublisher Mapping Categories .. 1-16
JDBC Mapping ... 1-16
Object JDBC Mapping .. 1-17
BigDecimal Mapping... 1-17

iv

Oracle Mapping.. 1-17
JPublisher Input and Output .. 1-17

Input to JPublisher .. 1-18
Output from JPublisher.. 1-18

Java Output for User-Defined Object Types .. 1-18
Java Output for User-Defined Collection Types ... 1-19
Java Output for OPAQUE Types... 1-19
Java Output for PL/SQL Packages.. 1-20
Java Output for Server-Side Java Classes and Web Services Call-Outs........................... 1-20
Java Output for SQL Queries or DML Statements.. 1-20
Java Output for AQs and Streams... 1-20
PL/SQL Output.. 1-20

JPublisher Operation .. 1-21
Overview of the Publishing Process: Generation and Use of Output..................................... 1-21
JPublisher Command-Line Syntax ... 1-22
Sample JPublisher Translation .. 1-23

2 Using JPublisher

Publishing User-Defined SQL Types ... 2-1
Publishing PL/SQL Packages... 2-5
Publishing Oracle Streams AQ.. 2-6

Publishing a Queue as a Java Class ... 2-6
Publishing a Topic as a Java Class ... 2-8
Publishing a Stream as a Java Class .. 2-9

Publishing Server-Side Java Classes Through Native Java Interface ... 2-11
Publishing Server-Side Java Classes Through PL/SQL Wrappers .. 2-13
Publishing Server-Side Java Classes to PL/SQL ... 2-15
Publishing Server-Side Java Classes to Table Functions... 2-21
Publishing Web Services Client into PL/SQL ... 2-23

3 Data Type and Java-to-Java Type Mappings

JPublisher Data Type Mappings ... 3-1
Overview of JPublisher Data Type Mappings ... 3-1
SQL and PL/SQL Mappings to Oracle and JDBC Types ... 3-2
JPublisher User Type Map and Default Type Map... 3-5
JPublisher Logical Progression for Data Type Mappings .. 3-6
Object Attribute Types .. 3-7
REF CURSOR Types and Result Sets Mapping... 3-7
Connection in JDBC Mapping... 3-10

Support for PL/SQL Data Types ... 3-10
Type Mapping Support for OPAQUE Types.. 3-11
Type Mapping Support for Scalar Index-by Tables ... 3-12
Type Mapping Support Through PL/SQL Conversion Functions.. 3-15
Type Mapping Support for PL/SQL RECORD and Index-By Table Types........................... 3-18

Sample Package for RECORD Type and Index-By Table Type Support......................... 3-18
Support for RECORD Types .. 3-19
Support for Index-By Table Types .. 3-20

v

Direct Use of PL/SQL Conversion Functions Versus Use of Wrapper Functions 3-20
Other Alternatives for Data Types Unsupported by JDBC... 3-22

JPublisher Styles and Style Files.. 3-22
Style File Specifications and Locations .. 3-22
Style File Format.. 3-23

Style File TRANSFORMATION Section... 3-24
Style File OPTIONS Section.. 3-26

Summary of Key Java-to-Java Type Mappings in Oracle Style Files 3-26
Use of Multiple Style Files ... 3-26

4 Additional Features and Considerations

Summary of JPublisher Support for Web Services.. 4-1
Summary of Support for Web Services Call-Ins to the Database.. 4-1
Support for Web Services Call-Outs from the Database .. 4-3

How to Perform Web Services Call-Out using Static Proxy and JPublisher...................... 4-3
Server-Side Java Invocation (Call-in) .. 4-5

Features to Filter JPublisher Output... 4-5
Publishing a Specified Subset of Functions or Procedures .. 4-6
Publishing Functions or Procedures According to Parameter Modes or Types....................... 4-6
Ensuring that Generated Methods Adhere to the JavaBeans Specification............................... 4-6

Backward Compatibility and Migration.. 4-7
JPublisher Backward Compatibility .. 4-7
Changes in JPublisher Behavior Between Oracle Database 10g Release 1 and Release 2 4-7
Changes in JPublisher Behavior Between Oracle9i Database and Oracle Database 10g......... 4-8
Changes in JPublisher Behavior Between Oracle8i Database and Oracle9i Database 4-8
JPublisher Backward-Compatibility Modes and Settings... 4-10

Explicit Generation of .sqlj Files .. 4-10
Oracle9i Compatibility Mode... 4-10
Oracle8i Compatibility Mode... 4-11
Individual Settings to Force Oracle8i JPublisher Behavior.. 4-12

5 Generated Classes and Interfaces

Treatment of Output Parameters ... 5-1
Passing Output Parameters in Arrays... 5-2
Passing Output Parameters in JAX-RPC Holders ... 5-4
Passing Output Parameters in Function Returns .. 5-5

Translation of Overloaded Methods... 5-6
Generation of SQLJ Classes ... 5-7

Important Notes About Generation of SQLJ Classes.. 5-7
Use of SQLJ Classes for PL/SQL Packages .. 5-8
Use of SQLJ Classes for Object Types ... 5-9
Connection Contexts and Instances in SQLJ Classes ... 5-10
The setFrom(), setValueFrom(), and setContextFrom() Methods.. 5-11

Generation of Non-SQLJ Classes... 5-12
Generation of Java Interfaces.. 5-14
JPublisher Subclasses... 5-14

vi

Extending JPublisher-Generated Classes .. 5-15
Syntax for Mapping to Alternative Classes.. 5-15
Format of the Class that Extends the Generated Class... 5-16

Support for Inheritance.. 5-16
ORAData Object Types and Inheritance.. 5-16

Precautions when Combining Partially Generated Type Hierarchies............................. 5-17
Mapping of Type Hierarchies in JPublisher-Generated Code .. 5-17

ORAData Reference Types and Inheritance.. 5-18
Casting a Reference Type Instance into Another Reference Type.................................... 5-18
Why Reference Type Inheritance Does Not Follow Object Type Inheritance 5-19
Manually Converting Between Reference Types .. 5-20
Example: Manually Converting Between Reference Types... 5-20

SQLData Object Types and Inheritance... 5-23
Effects of Using SQL FINAL, NOT FINAL, NOT INSTANTIABLE.. 5-23

6 Command-Line Options and Input Files

JPublisher Options... 6-1
JPublisher Option Summary... 6-1
JPublisher Option Tips .. 6-5
Notational Conventions .. 6-6
Options for Input Files and Items to Publish ... 6-6

File Containing Names of Objects and Packages to Translate ... 6-7
Declaration of Server-Side Java Classes to Publish.. 6-7
Declaration of Server-Side Java Classes to Publish.. 6-9
Declaration of Server-Side Java Classes to Publish.. 6-9
Settings for Java and PL/SQL Wrapper Generation .. 6-10
Input Properties File .. 6-13
Declaration of Object Types and Packages to Translate... 6-14
Declaration of SQL Statements to Translate .. 6-17
Declaration of Object Types to Translate.. 6-18

Connection Options .. 6-19
SQLJ Connection Context Classes ... 6-19
The Default datasource Option.. 6-20
JDBC Driver Class for Database Connection ... 6-20
Connection URL for Target Database ... 6-20
User Name and Password for Database Connection.. 6-21

Options for Data Type Mappings ... 6-21
Mappings for Built-In Types .. 6-22
Mappings for LOB Types.. 6-22
Mappings for Numeric Types .. 6-23
Mappings for User-Defined Types.. 6-23
Mappings for All Types .. 6-24
Style File for Java-to-Java Type Mappings... 6-24

Type Map Options .. 6-25
Adding an Entry to the Default Type Map .. 6-25
Additional Entry to the User Type Map... 6-26
Default Type Map for JPublisher... 6-26

vii

Replacement of the JPublisher Type Map .. 6-26
Java Code-Generation Options ... 6-26

Method Access.. 6-27
Case of Java Identifiers.. 6-27
Code Generation Type .. 6-28
Method Filtering According to Parameter Modes .. 6-28
Method Filtering According to Parameter Types ... 6-29
Code Generation Adherence to the JavaBeans Specification .. 6-30
Class and Interface Naming Pattern ... 6-30
Generation of User Subclasses ... 6-31
Generation of Package Classes and Wrapper Methods ... 6-32
Omission of Schema Name from Name References ... 6-33
Holder Types for Output Arguments ... 6-34
Name for Generated Java Package .. 6-35
Serializability of Generated Object Wrapper Classes ... 6-36
Generation of toString() Method on Object Wrapper Classes... 6-36
Rename main Method ... 6-36

PL/SQL Code Generation Options .. 6-37
Generation of SQL types ... 6-37
File Names for PL/SQL Scripts ... 6-38
Generation of PL/SQL Wrapper Functions... 6-38
Package for Generated PL/SQL Code .. 6-39
Package for PL/SQL Index-By Tables .. 6-39

Input/Output Options ... 6-39
No Compilation or Translation.. 6-39
Output Directories for Generated Source and Class Files ... 6-40
Java Character Encoding... 6-41

Options to Facilitate Web Services Call-Outs ... 6-41
WSDL Document for Java and PL/SQL Wrapper Generation ... 6-42
Web Services Endpoint ... 6-43
Proxy URL for WSDL .. 6-44
Superuser for Permissions to Run Client Proxies ... 6-44

Option to Access SQLJ Functionality ... 6-45
Settings for the SQLJ Translator .. 6-45

Backward Compatibility Option... 6-46
Backward-Compatible Oracle Mapping for User-Defined Types 6-46

Java Environment Options .. 6-47
Classpath for Translation and Compilation... 6-48
Java Compiler ... 6-48
Java Version .. 6-48

SQLJ Migration Options... 6-48
JPublisher Input Files... 6-50

Properties File Structure and Syntax.. 6-50
INPUT File Structure and Syntax ... 6-52

Understanding the Translation Statement ... 6-52
Sample Translation Statement ... 6-55

INPUT File Precautions.. 6-56

viii

Requesting the Same Java Class Name for Different Object Types.................................. 6-56
Requesting the Same Attribute Name for Different Object Attributes 6-56
Specifying Nonexistent Attributes .. 6-56
JPublisher Reserved Terms... 6-56

A Generated Code Examples

Generated Code: SQL Statement.. A-1
Generated Code: Server-Side Java Call-in.. A-4

The Source Files... A-5
Publishing Server-Side Java Class .. A-8
The Generated Files .. A-9
Testing the Published Files .. A-9

B Troubleshooting

Error While Publishing Web Services Client... B-1

Index

ix

List of Tables

3–1 SQL and PL/SQL Data Type to Oracle and JDBC Mapping Classes................................. 3-3
3–2 Summary of Java-to-Java Type Mappings in Oracle Style Files 3-26
4–1 JPublisher Backward Compatibility Options.. 4-12
6–1 Summary of JPublisher Options .. 6-2
6–2 Mappings for Types Affected by the -builtintypes Option .. 6-22
6–3 Mappings for Types Affected by the -lobtypes Option... 6-22
6–4 Mappings for Types Affected by the -numbertypes Option .. 6-23
6–5 Relation of -mapping Settings to Other Mapping Option Settings 6-24
6–6 Values for the -case Option ... 6-28

x

List of Figures

1–1 Oracle Universal Installer Welcome Screen .. 1-4
1–2 Oracle Universal Installer Select Installation Type Screen ... 1-5
1–3 Oracle Universal Installer Install Location Screen ... 1-5
1–4 Oracle Universal Installer Available Product Components Screen..................................... 1-6
1–5 Oracle Universal Installer Summary Screen ... 1-6
1–6 Oracle Universal Installer Install Screen.. 1-7
1–7 Translating and Using JPublisher-Generated Code.. 1-22

xi

Preface

This preface introduces you to the Oracle Database JPublisher User's Guide, discussing
the intended audience, structure, and conventions of this document. A list of related
Oracle documents is also provided.

The JPublisher utility is for Java programmers who want classes in their applications
to correspond to SQL or PL/SQL entities or server-side Java classes.

This preface covers the following topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

Intended Audience
The Oracle Database JPublisher User's Guide is intended for Java Database Connectivity
(JDBC) and Java2 Platform, Enterprise Edition (J2EE) programmers who want to
accomplish any of the following for database applications:

■ Create Java classes to map to SQL user-defined types, including object types,
VARRAY types, and nested table types

■ Create Java classes to map to OPAQUE types

■ Create Java classes to map to PL/SQL packages

■ Create client-side Java stubs to call server-side Java classes

■ Publish SQL queries or data manipulation language (DML) statements as methods
in Java classes

■ Create Java and PL/SQL wrappers for Web services client proxy classes

■ Publish server-side SQL, PL/SQL, or Java entities as Web services

To use this document, you need knowledge of Java, Oracle Database, SQL, PL/SQL,
and JDBC.

xii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Structure
This document contains:

Chapter 1, "Introduction to JPublisher"
Introduces the JPublisher utility by way of examples, lists new JPublisher features in
this release, and provides an overview of JPublisher operations.

Chapter 2, "Using JPublisher"
Describes how you can use JPublisher for publishing SQL and PL/SQL objects, Oracle
Stream Advanced Queue (AQ), server-side Java classes, and Web services.

Chapter 3, "Data Type and Java-to-Java Type Mappings"
Provides details of JPublisher data type mappings and the styles mechanism for
Java-to-Java type mappings.

Chapter 5, "Generated Classes and Interfaces"
Discusses details and concepts of the classes, interfaces, and subclasses generated by
JPublisher, including how output parameters (PL/SQL IN OUT or OUT parameters)
are treated, how overloaded methods are translated, and how the generated classes
and interfaces are used.

Chapter 4, "Additional Features and Considerations"
Covers additional JPublisher features and considerations: a summary of support for
Web services, filtering of JPublisher output, and migration and backward
compatibility.

Chapter 6, "Command-Line Options and Input Files"
Provides details of the JPublisher command-line syntax, command-line options and
their usage, and input file format.

Appendix A, "Generated Code Examples"
Contains code examples that are too lengthy to fit conveniently with corresponding
material earlier in the manual. This includes examples of Java-to-Java type
transformations to support Web services, and Java and PL/SQL wrappers to support
Web services.

Appendix B, "Troubleshooting"
Covers the troubleshooting tips for JPublisher

xiii

Related Documents
For more information, see the following Oracle resources.

From the Oracle Java Platform group, for Oracle Database releases:

■ Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java in Oracle Database and provides
general information about server-side configuration and functionality. It contains
information that pertains to the Oracle Database Java environment in general,
rather than to a particular product, such as JDBC.

The book also discusses Java stored procedures, which are programs that run
directly in Oracle Database. With stored procedures (functions, procedures, and
triggers), Java developers can implement business logic at the server level, which
improves application performance, scalability, and security.

■ Oracle Database JDBC Developer's Guide

This book covers programming syntax and features of the Oracle implementation
of the JDBC standard. This includes an overview of the Oracle JDBC drivers, the
details of the Oracle implementation of JDBC 1.22, 2.0, and 3.0 features, and a
discussion of Oracle JDBC type extensions and performance extensions.

From the Oracle Java Platform group, for Oracle Application Server releases:

■ Oracle Application Server Containers for J2EE Developer’s Guide

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Security Guide

■ Oracle Application Server Containers for J2EE Servlet Developer's Guide

■ Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's
Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer's Guide

From the Oracle Server Technologies group:

■ Oracle XML DB Developer's Guide

■ Oracle XML Developer's Kit Programmer's Guide

■ Oracle Database XML Java API Reference

■ Oracle Database Development Guide

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Database SQL Language Reference

■ Oracle Database Net Services Administrator's Guide

■ Oracle Database Advanced Security Guide

■ Oracle Database Globalization Support Guide

■ Oracle Database Reference

xiv

From the Oracle Application Server group:

■ Oracle Application Server 10g Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Oracle Application Server 10g Performance Guide

■ Oracle Application Server 10g Globalization Guide

■ Oracle Application Server Web Cache Administrator's Guide

■ Oracle Application Server Web Services Developer's Guide

■ Oracle Application Server 10g Upgrading to 10g (9.0.4)

From the Oracle JDeveloper group:

■ JDeveloper online help

■ JDeveloper documentation on the Oracle Technology Network:

http://www.oracle.com/technetwork/developer-tools/jdev/documentatio
n/index.html

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN. Registration is free and can be done at

http://www.oracle.com/technetwork/community/join/why-join/index.
html

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technetwork/index.html

For additional information, see:

http://jcp.org/aboutJava/communityprocess/final/jsr101/index.html

The preceding link provides access to the Java API for XML-based RPC, JAX-RPC 1.0
specification, with information about JAX-RPC and holders.

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/native2asc
ii.html

For Java Development Kit (JDK) users, the preceding link contains native2ascii
documentation, including information about character encoding that is supported by
Java environments.

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Note: Oracle error message documentation is available on
http://www.oracle.com/technetwork/index.html.

xv

Conventions in Text
We use various conventions in text to help you quickly identify special terms. The
following table describes these conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate Java, SQL, PL/SQL, SQL*Plus, or command-line statements.
They are displayed in a monospace (fixed-width) font and separated from typical text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms defined in
the text.

A class is a blueprint that defines the variables
and the methods common to all objects of a
certain kind.

Italics Italic typeface indicates book titles and
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
system elements. Such elements include
parameters, privileges, data types
(including user-defined types), RMAN
keywords, SQL keywords, SQL*Plus or
utility commands, packages and methods,
as well as system-supplied column names,
database objects and structures, user
names, and roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, file names, directory names,
and some user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as Java packages and
classes, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

xvi

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case-sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Introduction to JPublisher 1-1

1
Introduction to JPublisher

This chapter provides an overview of the JPublisher utility, a summary of JPublisher
operations, and a sample translation. It covers the following topics:

■ Overview of JPublisher

■ JPublisher Initial Considerations

■ What JPublisher Can Publish

■ JPublisher Mappings and Mapping Categories

■ JPublisher Input and Output

■ JPublisher Operation

Overview of JPublisher
JPublisher is a utility that generates Java classes to represent database entities, such as
SQL objects and PL/SQL packages, in a Java client program. It also provides support
for publishing from SQL, PL/SQL, and server-side Java to Web services and enabling
the invocation of external Web services from inside the database. JPublisher is written
in Java.

JPublisher can create classes to represent the following database entities types:

■ User-defined SQL objects

■ Object references

■ User-defined SQL collections

■ PL/SQL packages

■ Server-side Java classes

■ SQL queries and data manipulation language (DML) statements

JPublisher enables you to specify and customize the mapping of these entities to Java
classes in a strongly typed paradigm.

Note: The term, strongly typed, indicates that a particular Java type
is associated with a particular user-defined SQL type, such as an
object type. For example, a Person class is associated with a
corresponding PERSON SQL type. In addition, there is a
corresponding Java type for each attribute of the SQL object type.

JPublisher Initial Considerations

1-2 Oracle Database JPublisher User's Guide

The utility generates the accessor methods, getXXX() and setXXX(), for each
attribute of an object type. If the object type has stored procedures, then JPublisher can
generate wrapper methods to invoke the stored procedures. In this scenario, a
wrapper method is a Java method that invokes a stored procedure, which runs in
Oracle Database.

JPublisher can also generate classes for PL/SQL packages. These classes have wrapper
methods to call the stored procedures in a PL/SQL package.

Instead of directly using JPublisher-generated classes, you can:

■ Extend the generated classes. This process is straightforward. JPublisher generates
initial versions of the subclasses, to which you can add any desired functionality.

■ Write your own Java classes. This approach is flexible, but time-consuming and
error-prone.

■ Use generic, weakly typed classes of the oracle.sql package to represent object,
object reference, and collection types. If these classes meet your requirements, then
you do not need JPublisher. Use this approach if you need to generically process
any SQL object, collection, reference, or OPAQUE type.

In addition, JPublisher simplifies access to PL/SQL types from Java. You can use
predefined or user-defined mappings between PL/SQL and SQL types, as well as use
PL/SQL conversion functions between such types. With these mappings in place,
JPublisher can automatically generate all the required Java and PL/SQL code. It also
enables you to publish server-side Java classes to client-side Java classes, allowing
your application to make direct calls to Java classes in the database.

Several features enable the exposure of Java classes, which are generated from
publishing SQL, PL/SQL, or server-side Java entities, as Web services.

JPublisher Initial Considerations
The following sections provide an overview of JPublisher features and requirements. It
also describes and how JPublisher uses SQLJ in its code generation:

■ New Features in Oracle Database 12c Release 1(12.1.0.2) JPublisher

■ General Requirements for JPublisher

■ Installing JPublisher

■ Verifying JPublisher Installation

■ JPublisher Usage of the SQLJ Implementation

■ Situations for Reduced Requirements

■ JPublisher Limitations

New Features in Oracle Database 12c Release 1(12.1.0.2) JPublisher
There are no new features in this release of JPublisher.

General Requirements for JPublisher
This section describes the basic requirements for JPublisher. It also discusses situations
with less stringent requirements.

See Also: "Summary of JPublisher Support for Web Services" on
page 4-1

JPublisher Initial Considerations

Introduction to JPublisher 1-3

When you use the JPublisher utility, you must also have classes for the Oracle SQLJ
implementation, the Oracle JDBC implementation, and a Sun Microsystems JDK,
among other things.

To use all features of JPublisher, you must have the following installed and set in the
appropriate environment variables, as applicable:

■ Oracle Database 12c

■ JPublisher invocation script or executable

The jpub script for UNIX systems or the jpub.exe program for Microsoft
Windows must be in your file path. These are typically in ORACLE_HOME/bin, or
ORACLE_HOME/sqlj/bin for manual downloads. With proper setup, if you type
just jpub on the command line, you will see information about common
JPublisher options and input settings.

■ JPublisher and SQLJ translator classes

These classes are in the translator.jar library, typically in
ORACLE_HOME/sqlj/lib.

■ SQLJ run time classes

The SQLJ run-time library is runtime12.jar for JDK 1.5 and later. It is typically
located in ORACLE_HOME/sqlj/lib. It includes JPublisher client-side run-time
classes, particularly oracle.jpub.reflect.Client, and JPublisher
server-side run-time classes, particularly oracle.jpub.reflect.Server.
These classes are used for Java call-ins to the database.

■ Oracle Database 12c or Oracle Database 11g JDBC drivers

If you are using JPublisher 12c with Oracle 12c JDBC, then the supported JDK
versions are only JDK 6 and JDK 7. However, if you are using JPublisher 12c with
Oracle JDBC 11g driver, then you can also use JDK version 1.5. Oracle JDBC library
is typically located in ORACLE_HOME/jdbc/lib. Each JDBC library also includes
the JPublisher run-time classes in the oracle.jpub.runtime package.

■ Web services classes

These classes are included in the dbwsa.jar and dbwsclient.jar libraries,
which are typically located in ORACLE_HOME/sqlj/lib.

■ Additional PL/SQL packages and Java Archive (JAR) files in the database, as
needed

Note: The translator library is also automatically loaded into the
database in translator-jserver.jar.

See Also: Oracle Database JDBC Developer's Guide

Note: These .jar files are not included in JPublisher distribution,
but are included in the database Web services call-out utility, which
can be downloaded from
http://download.oracle.com/technology/sample_code/te
ch/java/jsp/dbws-callout-utility-10131.zip

JPublisher Initial Considerations

1-4 Oracle Database JPublisher User's Guide

There are packages and JAR files that must be in the database if you use JPublisher
features for Web services call-ins, Web services call-outs, support for PL/SQL
types, or support for invocation of server-side Java classes. Some of these packages
and files are preloaded, but some must be loaded manually.

■ aurora.zip

When publishing a Web services client using -proxywsdl or publishing
server-side Java classes using -dbjava, JPublisher may load generated Java
wrapper into the database. In this case, the ORACLE_HOME/lib/aurora.zip file
is required. On Microsoft Windows, add this file to CLASSPATH. On Unix systems,
the jpub script picks up aurora.zip automatically. If the aurora.zip file is not
available, then you can turn off the JPublisher loading behavior by specifying
-proxyopt=noload on the command line.

■ JDK version 1.4 or later

For Web services call-outs or to map SYS.XMLType for Web services, you need
JDK 1.4 or later.

Installing JPublisher
In order to install JPublisher, you must install SQLJ in your system. Perform the
following steps to install SQLJ:

1. Download and unzip the Oracle Database 12c Client CD.

2. Execute Oracle Universal Installer by running the setup.exe file.

The Welcome window appears as shown in Figure 1–1.

Figure 1–1 Oracle Universal Installer Welcome Screen

See Also: "Verifying JPublisher Installation"

See Also: "Java Environment Options" on page 6-47

JPublisher Initial Considerations

Introduction to JPublisher 1-5

3. Click Next.

The Select Installation Type window appears as shown in Figure 1–2.

Figure 1–2 Oracle Universal Installer Select Installation Type Screen

4. Select Custom as the installation type and click Next.

The Install Location window appears as shown in Figure 1–3.

Figure 1–3 Oracle Universal Installer Install Location Screen

JPublisher Initial Considerations

1-6 Oracle Database JPublisher User's Guide

5. Verfiy if your Oracle Database home is correct, and click Next.

The Available Product Components window appears as shown in Figure 1–4.

Figure 1–4 Oracle Universal Installer Available Product Components Screen

6. Select Oracle SQLJ from the Components column in the Oracle Client section and
click Next.

The Summary window appears.

Figure 1–5 Oracle Universal Installer Summary Screen

JPublisher Initial Considerations

Introduction to JPublisher 1-7

7. Review your selections, and then click Install.

The Install window appears displaying the progress.

Figure 1–6 Oracle Universal Installer Install Screen

8. Click Exit and then click Yes.

Verifying JPublisher Installation
Depending on the JPublisher features that you need to use, some or all of the following
PL/SQL packages and JAR files must be present in the database:

■ The SQLJUTL package, to support PL/SQL types

■ The SQLJUTL2 package, to support invocation of server-side Java classes

■ The UTL_DBWS package, to support Web services call-outs

■ The dbwsclient.jar file, to support the Java API for XML-based Remote
Procedure Call (JAX-RPC) or Simple Object Access Protocol (SOAP) client proxy
classes for Web services call-outs from Oracle Database 12c or Oracle Database 11g.

■ JAR files to support SOAP client proxy classes for Web services call-outs from
Oracle9i or Oracle8i Database

For Web services call-outs from Oracle9i Database or Oracle8i Database, there is no
JAR file similar to dbwsclient.jar. You must load several JAR files instead.
Also note that JPublisher does not yet support JAX-RPC client proxy classes in
Oracle9i or Oracle8i.

See Also: "Options to Facilitate Web Services Call-Outs" on
page 6-41

JPublisher Initial Considerations

1-8 Oracle Database JPublisher User's Guide

This section covers the following topics:

■ Verifying or Installing the SQLJUTL and SQLJUTL2 Packages

■ Verifying or Installing the UTL_DBWS Package

■ Verifying or Loading the dbwsclient.jar File

■ Loading JAR Files For Web Services Call-Outs in Oracle9i or Oracle8i

■ Setting Up Password File for Remote SYS Login

Verifying or Installing the SQLJUTL and SQLJUTL2 Packages
In Oracle Database 12c, the PL/SQL packages SQLJUTL and SQLJUTL2 are
automatically installed in the database SYS schema. To verify the installation, try to
describe the packages as follows:

SQL> describe sys.sqljutl
SQL> describe sys.sqljutl2

If JPublisher displays a message similar to the following, then the packages are
missing:

Warning: Cannot determine what kind of type is <schema>.<type.> You likely need
to install SYS.SQLJUTL. The database returns: ORA-06550: line 1, column 7:
PLS-00201: identifier 'SYS.SQLJUTL' must be declared

To install the SQLJUTL and SQLJUTL2 packages, you must install one of the following
files in the SYS schema:

■ ORACLE_HOME/sqlj/lib/sqljutl.sql for Oracle9i, Oracle Database 10g, or
Oracle Database 12c

■ ORACLE_HOME/sqlj/lib/sqljutl8.sql for Oracle8i

Verifying or Installing the UTL_DBWS Package
In Oracle Database 12c release, the UTL_DBWS PL/SQL package is not automatically
installed in the database SYS schema due to security reasons. You must install this
package by running the utl_dbws_decl.sql and utl_dbws_body.sql scripts
into the user schema included as callout utilities available on the following OTN page:

http://download.oracle.com/technology/sample_code/tech/java/jsp/
dbws-callout-utility-10131.zip

To verify the installation, try to describe the package as follows:

SQL> describe hr.utl_dbws

Note:

■ Starting from Oracle Database 10g, the sqljutl.jar is
preloaded in the database and you get built-in support for Web
services call-ins. The sqljutl.jar file that was required to load
manually in Oracle9i Database and Oracle8i Database, is not
shipped anymore.

■ The UTL_DBWS package and the dbwsclient.jar file are
associated with each other, and both support the same set of
features.

JPublisher Initial Considerations

Introduction to JPublisher 1-9

Verifying or Loading the dbwsclient.jar File
In Oracle Database 12c, the following file must be loaded into the database for Web
services call-outs:

ORACLE_HOME/sqlj/lib/dbwsclient.jar

It is not preloaded, but you can verify whether it is already loaded by running the
following query in the user schema:

SQL> select status, object_type from all_objects where
 dbms_java.longname(object_name)='oracle/jpub/runtime/dbws/DbwsProxy$1';

The following result indicates that the file is already loaded:

STATUS OBJECT_TYPE
------- -------------------
VALID JAVA CLASS
VALID SYNONYM

If it not loaded, then you can use the loadjava utility to load it as shown in the
following example:

% loadjava -oci8 -u sys -r -v -f -s
 -grant public dbwsclient.jar
Password: password

Loading JAR Files For Web Services Call-Outs in Oracle9i or Oracle8i
For Web services call-outs from an Oracle9i or Oracle8i database, use SOAP client
proxy classes. For this, you must load a number of JAR files into the database. This can
be accomplished with the following command:

% loadjava -u sys -r -v -s -f -grant public
 ORACLE_HOME/soap/lib/soap.jar
 ORACLE_HOME/dms/lib/dms.jar
 J2EE_HOME/lib/servlet.jar
 J2EE_HOME/lib/ejb.jar
 J2EE_HOME/lib/mail.jar
Password: password

You can obtain these files from an Oracle Application Server installation. You would
presumably run Web services in conjunction with Oracle Application Server
Containers for J2EE (OC4J).

Note: Before loading this file, verify that java_pool_size is set to
at least 80 MB and shared_pool_size is set to at least 96 MB.

Note:

■ The JAX-RPC client proxy classes are not yet supported in
Oracle9i or Oracle8i.

■ Before loading this file, verify that java_pool_size is set to at
least 80 MB and shared_pool_size is set to at least 96 MB.

JPublisher Initial Considerations

1-10 Oracle Database JPublisher User's Guide

Setting Up Password File for Remote SYS Login
By default, if the -user and -sysuser options are set while publishing Web services
client using -proxywsdl or publishing server-side Java classes using -dbjava, then
JPublisher will load the generated Java and PL/SQL wrappers into the database.
When the -url setting specifies a JDBC Thin driver, the loading process requires the
database password file to be set up properly. You can set up the password file by
performing the following steps:

1. On the command line, enter the following command:

orapwd file=$ORACLE_HOME/dbs/orapw entries=5
Enter password: password

In the preceding command, yourpass is the password of your choice.

2. From SQL*Plus, connect to the database as SYSDBA, as follows:

CONNECT / AS SYSDBA

Change the password of SYS to the password set in the previous step, as follows:

PASSWORD SYS
 Changing password for SYS
 New password: password
 Retype new password: password

3. Edit the init.ora file and add the following line to it:

REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

This enables remote login as SYSDBA.

Alternatively, with the password file set up, you can manually load JPublisher
generated PL/SQL wrapper and Java wrapper into the database. To turn off automatic
loading by JPublisher, specify -proxyopt=noload on the command line.

JPublisher Usage of the SQLJ Implementation
This section covers the following topics:

■ Overview of SQLJ Usage

■ Overview of SQLJ Concepts

■ Backward-Compatibility Modes Affecting SQLJ Source Files

Overview of SQLJ Usage
Oracle SQLJ translator and run-time libraries are supplied with the JPublisher product.
The JPublisher utility uses the Oracle SQLJ implementation by generating SQLJ code
as an intermediate step in most circumstances, such as the creation of wrapper
methods. The wrapper methods are created either for classes representing PL/SQL
packages or for classes representing SQL object types that define PL/SQL stored
procedures. In these cases, JPublisher uses Oracle SQLJ translator during compilation
and Oracle SQLJ run time during program execution.

In Oracle Database 12c, the usage of SQLJ by JPublisher is transparent by default. SQLJ
source files that JPublisher generates are automatically translated and deleted, unless
you specify otherwise in the JPublisher settings. This automatic translation saves you

See Also: Oracle Database JDBC Developer's Guide

JPublisher Initial Considerations

Introduction to JPublisher 1-11

the effort of explicitly translating the files. The resulting .java files, which use the
SQLJ functionality, and the associated .class files produced by compilation, define
the SQLJ classes. These classes use the Oracle SQLJ run-time application
programming interfaces (APIs) while running. Generated classes that do not use the
SQLJ run time are referred to as non-SQLJ classes. Non-SQLJ classes are generated
when JPublisher creates classes for SQL types that do not have stored procedures or
when JPublisher is specifically set to not generate wrapper methods.

In Oracle Database 12c, it is possible to pass options to the SQLJ translator through the
JPublisher -sqlj option.

JPublisher is included in translator.jar, which also contains the SQLJ translator
library. JPublisher generated classes may rely on runtime12.jar, which is the SQLJ
run-time library for Java Development Kit (JDK) 1.5 and later.

Overview of SQLJ Concepts
A SQLJ program is a Java program containing embedded SQL statements that comply
with the International Standardization Organization (ISO) standard SQLJ Language
Reference syntax. SQLJ source code contains a mixture of standard Java source, SQLJ
class declarations, and SQLJ executable statements with embedded SQL operations.

SQLJ was chosen because it uses simplified code for database access as compared to
JDBC code. In SQLJ, a SQL statement is embedded in a single #sql statement, but
several JDBC statements may be required for the same operation.

This section briefly defines the following key concepts of SQLJ:

■ Connection contexts

A SQLJ connection context object is a strongly typed database connection object.
You can use each connection context class for a particular set of interrelated SQL
entities. This means that all the connections you define using a particular
connection context class will use tables, views, and stored procedures that have
names and data types in common. In theory, the advantage in tailoring connection
context classes to sets of SQL entities is in the degree of online semantics-checking
that is permitted during SQLJ translation. JPublisher does not use online
semantics-checking when it invokes the SQLJ translator, but you can use this
feature if you choose to work with .sqlj files directly.

The sqlj.runtime.ref.DefaultContext connection context class is used by
default. The SQLJ default context is a default connection object and an instance of
this class. The DefaultContext class or any custom connection context class
implements the standard sqlj.runtime.ConnectionContext interface. You
can use the JPublisher -context option to specify the connection context class
that JPublisher instantiates for database connections.

■ Iterators

A SQLJ iterator is a strongly typed version of a JDBC result set and is associated
with the underlying database cursor. SQLJ iterators are used for taking query
results from a SELECT statement. The strong typing is based on the data type of
each query column.

■ Execution contexts

See Also: "Option to Access SQLJ Functionality" on page 6-45

See Also: "SQLJ Connection Context Classes" on page 6-19

JPublisher Initial Considerations

1-12 Oracle Database JPublisher User's Guide

A SQLJ execution context is an instance of the standard
sqlj.runtime.ExecutionContext class and provides a context in which SQL
operations are run. An execution context instance is associated either implicitly or
explicitly with each SQL operation that is run through SQLJ code.

Backward-Compatibility Modes Affecting SQLJ Source Files
In Oracle8i Database and Oracle9i Database, JPublisher produces .sqlj source files as
visible output, which you can translate by using the SQLJ command-line interface.

In Oracle Database 12c, JPublisher supports several backward-compatibility settings
through the -compatible option. This option enables you to work with generated
.sqlj files in a similar fashion. Some of the -compatible option settings are as
follows:

■ -compatible=sqlj

This forces JPublisher skip the step of translating .sqlj files. You must translate
the .sqlj files explicitly. To translate the files, you can either run JPublisher using
only the -sqlj option or you can run the SQLJ translator directly through its own
command-line interface.

■ -compatible=9i

This sets JPublisher to Oracle9i compatibility mode. In this mode, JPublisher
generates .sqlj files with the same code as in Oracle9i versions. This enables you
to work directly with .sqlj files.

■ -compatible=8i or -compatible=both8i

This sets JPublisher to Oracle8i compatibility mode. JPublisher then generates
.sqlj files with the same code as in Oracle8i versions. As with Oracle9i
compatibility mode, this mode enables you to work directly with .sqlj files.

Oracle8i and Oracle9i compatibility modes, particularly the former, result in significant
differences in the code that JPublisher generates. If your only goal is to work directly
with the .sqlj files, then use the sqlj setting.

Situations for Reduced Requirements
If you do not use certain features of JPublisher, then your requirements may be less
stringent. Some of the situations for reduced requirements are as follows:

■ If you never generate classes that implement the Oracle-specific
oracle.sql.ORAData interface or the deprecated oracle.sql.CustomDatum
interface, then you can use a non-Oracle JDBC driver and connect to a non-Oracle
Database. However, JPublisher must be able to connect to Oracle Database.

Note: On UNIX systems, you can access the SQLJ command-line
interface by running the sqlj script. In Microsoft Windows, you use
sqlj.exe.

See Also: "Option to Access SQLJ Functionality" on page 6-45

See Also: "Backward Compatibility and Migration" on page 4-7 and
"Backward Compatibility Option" on page 6-46

JPublisher Initial Considerations

Introduction to JPublisher 1-13

■ If you instruct JPublisher to not generate wrapper methods by setting
-methods=false, or if your object types do not define any methods, then
JPublisher will not generate wrapper methods or produce any SQLJ classes. In
these circumstances, there is no SQLJ translation step and the SQLJ translator is
not required.

■ If you do not use JPublisher functionality to enable Web services call-outs, then
you do not need dbwsa.jar or dbwsclient.jar to be loaded in the database.

JPublisher Limitations
You must be aware of the following limitations when you use JPublisher:

■ JPublisher support for PL/SQL RECORD and indexed-by table types is limited. An
intermediate wrapper layer is used to map a RECORD or an indexed-by-table
argument to a SQL type that JDBC supports. In addition, JPublisher cannot fully
support the semantics of indexed-by tables. An indexed-by table is similar in
structure to a Java hashtable, but information is lost when JPublisher maps this to
a SQL TABLE type.

■ If you use an INPUT file to specify type mappings, then note that some potentially
disruptive error conditions do not result in error or warning messages from
JPublisher. Additionally, there are reserved terms that you are not permitted to use
as SQL or Java identifiers.

■ The -omit_schema_names JPublisher option has a boolean logic, but does not
use the same syntax as other boolean options. You can use this option to instruct
JPublisher to not use schema names to qualify SQL names that are referenced in
wrapper classes. By default, JPublisher uses schema names to qualify SQL names.
To disable the use of schema names, enter the -omit_schema_names option on
the command line, but do not attempt to set -omit_schema_names=true or
-omit_schema_names=false.

Note: Oracle does not test or support configurations that use
non-Oracle components.

See Also: "Generation of Package Classes and Wrapper Methods" on
page 6-32

See Also: "Type Mapping Support for PL/SQL RECORD and
Index-By Table Types" on page 3-18

See Also: "INPUT File Precautions" on page 6-56

See Also: "Omission of Schema Name from Name References" on
page 6-33

Note: This chapter refers to the input file specified by the -input
option as the INPUT file to distinguish from any other kinds of input
files.

What JPublisher Can Publish

1-14 Oracle Database JPublisher User's Guide

What JPublisher Can Publish
You can use JPublisher to publish:

■ SQL user-defined types

■ PL/SQL packages

■ Server-side Java classes

■ SQL queries or DML statements

■ Proxy classes and wrappers for Web services call-outs

■ Oracle Streams AQ

JPublisher Mappings and Mapping Categories
The following sections provide a basic overview of JPublisher mappings and mapping
categories:

■ JPublisher Mappings for User-Defined Types and PL/SQL Types

■ JPublisher Mapping Categories

JPublisher Mappings for User-Defined Types and PL/SQL Types
JPublisher provides mappings from the following to Java classes:

■ User-defined SQL types

■ PL/SQL types

Representing User-Defined SQL Types Through JPublisher
You can use an Oracle-specific implementation, a standard implementation, or a
generic implementation in representing user-defined SQL types, such as objects,
collections, object references, and OPAQUE types, in your Java program.

Following is a summary of these three approaches:

■ Use classes that implement the Oracle-specific ORAData interface.

JPublisher generates classes that implement the oracle.sql.ORAData interface.
The ORAData interface supports SQL objects, object references, collections, and
OPAQUE types in a strongly typed way. That is, for each specific object, object
reference, collection, or OPAQUE type in the database, there is a corresponding Java
type.

■ Use classes that implement the standard SQLData interface, as described in the
JDBC specification.

JPublisher generates classes for SQL object types that implement the
java.sql.SQLData interface. When you use the SQLData interface, all object
reference types are represented generically as java.sql.Ref and all collection
types are represented generically as java.sql.Array. In addition, when using
SQLData, there is no mechanism for representing OPAQUE types.

■ Use oracle.sql.* classes.

You can use the oracle.sql.* classes to represent user-defined types
generically. The oracle.sql.STRUCT class represents all object types, the

See Also: Chapter 2, "Using JPublisher"

JPublisher Mappings and Mapping Categories

Introduction to JPublisher 1-15

oracle.sql.ARRAY class represents all the variable array (VARRAY) and nested
table types, the oracle.sql.REF class represents all the object reference types,
and the oracle.sql.OPAQUE class represents all OPAQUE types. These classes
are immutable in the same way that java.lang.String is.

Choose this option for code that processes objects, collections, references, or
OPAQUE types in a generic way. Unlike classes implementing ORAData or
SQLData, oracle.sql.* classes are not strongly typed.

In addition to strong typing, JPublisher-generated classes that implement ORAData or
SQLData have the following advantages:

■ The classes are customized, rather than generic. You access attributes of an object
using getXXX() and setXXX() methods named after the particular attributes of
the object. Note that you must explicitly update the object in the database if there
are any changes to its data.

■ The classes are mutable. You can modify attributes of an object or elements of a
collection. An exception is that ORAData classes representing object reference
types are not mutable, because an object reference does not have any
subcomponents that can be modified. You can, however, use the setValue()
method of a reference object to change the database value that the reference points
to.

■ You can generate Java wrapper classes that are serializable or that have the
toString() method to print out the object along with its attribute values.

Compared to classes that implement SQLData, classes that implement ORAData are
fundamentally more efficient, because ORAData classes avoid unnecessary
conversions to native Java types.

Using Strongly Typed Object References for ORAData Implementations
For Oracle ORAData implementations, JPublisher always generates strongly typed
object reference classes, in contrast to using the weakly typed oracle.sql.REF class.
This is to provide greater type safety and to mirror the behavior in SQL, in which
object references are strongly typed. The strongly typed classes, for example, the
PersonRef class for references to the PERSON object, are wrappers for the
oracle.sql.REF class.

In these strongly typed REF wrappers, a getValue() method produces an instance of
the SQL object that is referenced as of an instance of the corresponding Java class. In
the case of inheritance, the method produces an instance of a subclass of the
corresponding Java class.

For example, if there is a PERSON object type in the database with a corresponding
Person Java class, then there will also be a PersonRef Java class. The getValue()
method of the PersonRef class would return a Person instance containing the data
for a PERSON object in the database. In addition, JPublisher also generates a static
cast() method on the PersonRef class. This permits you to convert other typed
references to a PersonRef instance.

Note: You can create your own classes, but this is not recommended.
If you create your own classes or generate classes for an inheritance
hierarchy of object types, then your classes must be registered using a
type map.

See Also: Oracle Database JDBC Developer's Guide.

JPublisher Mappings and Mapping Categories

1-16 Oracle Database JPublisher User's Guide

Whenever a SQL object type has an attribute that is an object reference, the Java class
corresponding to the object type would have an attribute that is an instance of a Java
class corresponding to the appropriate reference type. For example, if there is a
PERSON object with a MANAGER REF attribute, then the corresponding Person Java
class will have a ManagerRef attribute.

Using PL/SQL Types Through JPublisher
JDBC does not support PL/SQL-specific types, such as the BOOLEAN type and PL/SQL
RECORD types that are used in stored procedures or functions. JPublisher provides the
following workarounds for PL/SQL types:

■ JPublisher has a type map that you can use to specify the mapping for a PL/SQL
type unsupported by JDBC.

■ For PL/SQL RECORD types or indexed-by tables types, you have the choice of
JPublisher automatically creating a SQL object type or SQL collection type,
respectively, as an intermediate step in the mapping.

With either workaround, JPublisher creates PL/SQL conversion functions or uses
predefined conversion functions that are typically found in the SYS.SQLJUTL
package to convert between a PL/SQL type and a corresponding SQL type. The
conversion functions can be used in generated Java code that calls a stored procedure
directly, or JPublisher can create a wrapper function around the PL/SQL stored
procedure, where the generated Java code calls the wrapper function, which calls the
conversion functions. Either way, only SQL types are exposed to JDBC.

JPublisher Mapping Categories
JPublisher offers different categories of data type mappings from SQL to Java. Each
type mapping option has at least two possible values: jdbc or oracle. The
-numbertypes option has two additional alternatives: objectjdbc and
bigdecimal. The following sections describe these mappings categories.

JDBC Mapping
 In JDBC mapping:

■ Most numeric data types are mapped to Java primitive types, such as int and
float.

■ The DECIMAL and NUMBER type are mapped to the java.math.BigDecimal.

■ Large object (LOB) type and other non-numeric built-in types are mapped to the
standard JDBC types, such as java.sql.Blob and java.sql.Timestamp.

For object types, JPublisher generates SQLData classes. Because predefined data types
that are Oracle extensions, such as BFILE and ROWID, do not have JDBC mappings,
only the oracle.sql.* mapping is supported for these types.

The Java primitive types used in the JDBC mapping do not support NULL values and
do not guard against integer overflow or floating-point loss of precision. If you are
using the JDBC mapping and you attempt to call an accessor method to get an
attribute of a primitive type whose value is NULL, then an exception is thrown. If the
primitive type is short or int, then an exception is thrown if the value is too large to
fit in a short or int variable.

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5 and "Support for PL/SQL Data Types" on page 3-10

See Also: Chapter 3, "Data Type and Java-to-Java Type Mappings"

JPublisher Input and Output

Introduction to JPublisher 1-17

Object JDBC Mapping
In Object JDBC mapping, most numeric data types are mapped to Java wrapper
classes, such as java.lang.Integer and java.lang.Float, and DECIMAL and
NUMBER are mapped to java.math.BigDecimal. This differs from the JDBC
mapping, which does not use primitive types.

Object JDBC is the default mapping for numeric types. When you use the Object JDBC
mapping, all your returned values are objects. If you attempt to get an attribute whose
value is NULL, then a NULL object is returned. The Java wrapper classes used in the
Object JDBC mapping do not guard against integer overflow or floating-point loss of
precision. If you call an accessor method to get an attribute that maps to
java.lang.Integer, then an exception is thrown if the value is too large to fit.

BigDecimal Mapping
In BigDecimal mapping, all numeric data types are mapped to
java.math.BigDecimal. This supports NULL values and large values.

Oracle Mapping
In Oracle mapping, the numeric, LOB, or other built-in types are mapped to classes in
the oracle.sql package. For example, the DATE type is mapped to
oracle.sql.DATE and all numeric types are mapped to oracle.sql.NUMBER. For
object, collection, and object reference types, JPublisher generates ORAData classes.

Because the Oracle mapping uses no primitive types, it can represent a NULL value as
a Java null in all cases. Also, it can represent the largest numeric values that can be
stored in the database, because it uses the oracle.sql.NUMBER class for all numeric
types.

JPublisher Input and Output
To publish database entities, JPublisher connects to the database and retrieves
descriptions of SQL types, PL/SQL packages, or server-side Java classes that you
specify on the command line or in an INPUT file. By default, JPublisher connects to the
database by using the JDBC Oracle Call Interface (OCI) driver, which requires an
Oracle client installation, including Oracle Net Services and required support files. If
you do not have an Oracle client installation, then JPublisher can use Oracle JDBC
Thin driver.

JPublisher generates a Java class for each SQL type or PL/SQL package that it
translates and each server-side Java class that it processes. Generated classes include
code required to read and write objects in the database. When you deploy the
generated JPublisher classes, your JDBC driver installation includes all the necessary
run-time files. If JPublisher generates wrapper methods for stored procedures, then the
classes that it produces use the SQLJ run time during execution. In this case, you must
also have the SQLJ run-time library runtime12.jar.

When you call a wrapper method on an instance of a class that was generated for a
SQL object, the SQL value for the corresponding object is sent to the server along with
any IN or IN OUT arguments. Then the method is invoked, and the new object value
is returned to the client along with any OUT or IN OUT arguments. Note that this
results in a database round trip. If the method call only performs a simple state change
on the object, then there will be better performance if you write and use equivalent
Java that affects the state change locally.

The number of classes that JPublisher produces depends on whether you request
ORAData classes or SQLData classes.

JPublisher Input and Output

1-18 Oracle Database JPublisher User's Guide

To publish external Web services for access from inside a database, JPublisher accesses
a specified Web Service Description Language (WSDL) document and directs the
generation of appropriate client proxy classes. It then generates wrapper classes, as
necessary, and PL/SQL wrappers to allow Web services call-outs from PL/SQL.

The following subsections provide more detail:

■ Input to JPublisher

■ Output from JPublisher

Input to JPublisher
You can specify input options on the command line and in a JPublisher properties file.
In addition to producing Java classes for the translated entities, JPublisher writes the
names of the translated objects and packages to the standard output.

You can use a file known as the JPublisher INPUT file to specify the SQL types,
PL/SQL packages, or server-side Java classes that JPublisher should publish. It also
controls the naming of the generated packages and classes.

To use a properties file to specify option settings, specify the name of the properties
file on the command line by using the -props option. JPublisher processes a
properties file as if its contents were inserted in sequence on the command line at the
point of the -props option. For additional flexibility, properties files can also be SQL
script files in which the JPublisher directives are embedded in SQL comments.

Output from JPublisher
This section describes JPublisher output for user-defined object types, user-defined
collection types, OPAQUE types, PL/SQL packages, server-side Java classes, SQL
queries or DML statements, and AQs and streams.

Java Output for User-Defined Object Types
For a user-defined object type, when you run JPublisher and request ORAData classes,
JPublisher creates the following:

■ An object class that represents instances of Oracle object type in your Java
program

For each object type, JPublisher generates a type.java file for the class code. For
example, JPublisher generates Employee.java for Oracle object type EMPLOYEE.

■ A stub subclass (optional)

See Also: "Overview of the Publishing Process: Generation and Use
of Output" on page 1-21

See Also: "JPublisher Options" on page 6-1, "INPUT File Structure
and Syntax" on page 6-52, and "Properties File Structure and Syntax"
on page 6-50

Note: Be aware that when JPublisher publishes a database entity,
such as a SQL type or PL/SQL package, it also generates classes for
any types that are referenced by the entity. For example, if a stored
procedure in a PL/SQL package that is being published uses a SQL
object type as an argument, then a class will be generated to map to
that SQL object type.

JPublisher Input and Output

Introduction to JPublisher 1-19

It is named as specified in your JPublisher settings. You can modify the generated
stub subclass for custom functionality.

■ An interface for the generated class or subclass to implement (optional)

■ A related reference class for object references

JPublisher generates a typeRef.java file for the REF class associated with the
object type. For example, JPublisher generates the EmployeeRef.java file for
references of Oracle object type EMPLOYEE.

■ Java classes for any object or collection or OPAQUE attributes nested directly or
indirectly within the top-level object

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized. If an attribute type, such as a SQL
OPAQUE type or a PL/SQL type, has been premapped, then JPublisher uses the
target Java type from the map.

If you request SQLData classes, then JPublisher does not generate the object reference
class and classes for nested collection attributes or OPAQUE attributes.

Java Output for User-Defined Collection Types
When you run JPublisher for a user-defined collection type, you must request
ORAData classes. JPublisher creates the following:

■ A collection class to act as a type definition that corresponds to Oracle collection
type

For each collection type JPublisher translates, it generates a type.java file. For
nested tables, the generated class has methods to get and set the nested table as an
entire array and to get and set individual elements of the table. JPublisher
translates collection types when generating ORAData classes, but not when
generating SQLData classes.

■ If the elements of the collection are objects, then a Java class for the element type
and Java classes for any object or collection attributes nested directly or indirectly
within the element type

This is necessary so that object elements can be materialized in Java whenever an
instance of the collection is materialized.

■ An interface that is implemented by the generated type (optional)

Java Output for OPAQUE Types
When you run JPublisher for an OPAQUE type, you must request ORAData classes.
JPublisher creates a Java class that acts as a wrapper for the OPAQUE type, providing
Java versions of the OPAQUE type methods as well as protected APIs to access the
representation of the OPAQUE type in a subclass.

Note: For ORAData implementations, a strongly typed reference
class is always generated, regardless of whether the SQL object type
uses references.

Note: Unlike for object types, you do not have the option of
generating user subclasses for collection types.

JPublisher Input and Output

1-20 Oracle Database JPublisher User's Guide

However, in most cases, Java wrapper classes for the SQL OPAQUE types are furnished
by the provider of the OPAQUE types. For example, the oracle.xdb.XMLType class
for the SYS.XMLTYPE SQL OPAQUE type. In such cases, ensure that the
correspondence between the SQL type and the Java type is predefined to JPublisher
through the type map.

Java Output for PL/SQL Packages
When you run JPublisher for a PL/SQL package, it creates a Java class with wrapper
methods that invoke the stored procedures of the package on the server. IN arguments
for the methods are transmitted from the client to the server, and OUT arguments and
results are returned from the server to the client.

Java Output for Server-Side Java Classes and Web Services Call-Outs
When you run JPublisher for a server-side Java class used for general purposes, it
creates the source code, type.java, for a client-side stub class that mirrors the server
class. When you call the client-side methods, the corresponding server-side methods
are called transparently.

For Web services call-outs, JPublisher typically generates wrapper classes for the
server-side client proxy classes. These wrapper classes act as bridges to the
corresponding PL/SQL wrappers. This is necessary to publish any proxy class
instance method as a static method, because PL/SQL does not support instance
methods.

Java Output for SQL Queries or DML Statements
When you run JPublisher for a SQL query or DML statement, it creates the following:

■ A Java class that implements the method that runs the SQL statement

■ A Java stub subclass, named as specified in your JPublisher settings (optional)

You can modify this stub subclass for custom functionality.

■ A Java interface for the generated class or subclass to implement (optional)

Java Output for AQs and Streams
When you run JPublisher for an AQ or a topic, it creates the following:

■ A Java class for the queue or topic

■ A Java class for the payload type of the queue or topic

In the case of a stream, JPublisher generates a Java class for the stream. The payload is
always SYS.ANYDATA, which is mapped to java.lang.Object.

PL/SQL Output
Depending on your usage, JPublisher may generate a PL/SQL package and associated
PL/SQL scripts.

PL/SQL Package
JPublisher typically generates a PL/SQL package with PL/SQL code for any of the
following:

■ PL/SQL call specifications for generated Java methods

■ PL/SQL conversion functions and wrapper functions to support PL/SQL types

■ PL/SQL table functions

JPublisher Operation

Introduction to JPublisher 1-21

Conversion functions, and optionally wrapper functions, are employed to map
PL/SQL types used in the calling sequences of any stored procedures that JPublisher
translates. The functions convert between PL/SQL types and corresponding SQL
types, given that JDBC does not generally support PL/SQL types.

PL/SQL Scripts
JPublisher generates the following PL/SQL scripts:

■ A wrapper script to create the PL/SQL package and any necessary SQL types

■ A script to grant permission to run the wrapper script

■ A script to revoke permission to run the wrapper script

■ A script to drop the package and types created by the wrapper script

JPublisher Operation
This section discusses the following topics:

■ Overview of the Publishing Process: Generation and Use of Output

■ JPublisher Command-Line Syntax

■ Sample JPublisher Translation

Overview of the Publishing Process: Generation and Use of Output
Figure 1–7 illustrates the basic steps for publishing specified SQL types, PL/SQL
packages, or server-side Java classes. The steps are as follows:

1. Run JPublisher with input from the command line, properties file, and INPUT file,
as desired.

2. JPublisher accesses the database to which it is attached to obtain definitions of
SQL or PL/SQL entities that you specify for publishing.

3. JPublisher generates .java or .sqlj source files, as appropriate, depending on
whether wrapper methods are created for stored procedures.

4. By default, JPublisher invokes the SQLJ translator, which is provided as part of
JPublisher, to translate .sqlj files into .java files.

5. For SQLJ classes, by default, the SQLJ translator invokes the Java compiler to
compile.java files into.class files. For non-SQLJ classes, JPublisher invokes the
Java compiler.

6. JPublisher generates PL/SQL wrappers and scripts, as appropriate, in addition to
the .class files. There is a script to create the PL/SQL wrapper package and any
necessary SQL types, such as types to map to PL/SQL types, a script to drop these
entities, and scripts to grant or revoke required privileges.

7. In the case of proxy class generation through the -proxywsdl or
-proxyclasses option, JPublisher can load generated PL/SQL wrappers and
scripts into the database to which it is connected for execution in the database
PL/SQL engine.

8. By default, JPublisher loads generated Java classes for Web services call-outs into
the database to which it is connected, for execution in Oracle JVM.
JPublisher-generated classes other than those for Web services call-outs typically
execute in a client or middle-tier JVM. You may also have your own classes, such

JPublisher Operation

1-22 Oracle Database JPublisher User's Guide

as subclasses of JPublisher-generated classes, that would typically execute in a
client or middle-tier JVM.

Figure 1–7 Translating and Using JPublisher-Generated Code

JPublisher Command-Line Syntax
On most operating systems, you can start JPublisher from the command line by typing
jpub followed by a series of option settings, as follows:

% jpub -option1=value1 -option2=value2 ...

JPublisher responds by connecting to the database and obtaining the declarations of
the types or packages you specify. It then generates one or more custom Java classes
and writes the names of the translated object types or PL/SQL packages to the
standard output.

Here is an example of a single wraparound command that invokes JPublisher:

% jpub -user=hr -input=demoin -numbertypes=oracle -usertypes=oracle -dir=demo
-d=demo -package=corp
Enter hr password: password

SQL object types
SQL collection types
PL/SQL packages
Server-side Java classes
SELECT, UPDATE, INSERT,
DELETE statements
WSDL files

JPublisher

SQLJ source
SQLJ
translatorJava source

Java source
Java
compilerJava class

.class.class .sql PL/SQL wrappers,
scripts

Definitions of
SQL types
and PL/SQL
packages,
shapes of
query results

 Oracle Database

Java VM

SQLJ
runtime

JDBC
driver

SQLJ
runtime

JDBC
driver

PL/SQL
engine

Client / Middle-tier
Java VM

User-written
subclasses
(including
subclasses of
JPublisher-
generated classes)

Command line
Properties file
INPUT file

Metadata

JPublisher Operation

Introduction to JPublisher 1-23

Enter the command on the command line, allowing it to wrap as necessary. This
command directs JPublisher to connect to the database with the user name hr and
password hr and to translate data types to Java classes, based on instructions in the
INPUT file demoin. The -numbertypes=oracle option directs JPublisher to map
object attribute types to Java classes supplied by Oracle, and the
-usertypes=oracle option directs JPublisher to generate Oracle-specific ORAData
classes. JPublisher places the classes that it generates in the corp package under the
demo directory.

JPublisher also supports specification of .java files, or .sqlj files, if you are using
SQLJ source files directly, on the JPublisher command line. In addition to any
JPublisher-generated files, the specified files are translated and compiled. For example:

% jpub ...options... Myclass.java

Sample JPublisher Translation
This section provides a sample JPublisher translation of a user-defined object type. At
this point, do not worry about the details of the code JPublisher generates. You can
find more information about JPublisher input and output files, options, data type
mappings, and translation later in this manual.

Create the object type EMPLOYEE:

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno INTEGER,
 deptno NUMBER,
 hiredate DATE,
 salary REAL
);

The INTEGER, NUMBER, and REAL types are all stored in the database as NUMBER
types, but after translation they have different representations in the Java program,
based on your setting of the -numbertypes option.

Note: This chapter refers to the input file specified by the -input
option as the INPUT file to distinguish from any other kinds of input
files.

Note:

■ No spaces are permitted around the equal sign (=) on the
JPublisher command line.

■ If you run JPublisher without any command-line input, then it
displays an option list and then terminates.

Note: For more examples, go to
ORACLE_HOME/sqlj/demo/jpub in your Oracle Database
installation.

JPublisher Operation

1-24 Oracle Database JPublisher User's Guide

Assume JPublisher translates the types according to the following command entered
on the command line:

% jpub -user=hr -dir=demo -numbertypes=objectjdbc -builtintypes=jdbc -package=corp
-case=mixed -sql=Employee
Enter hr password: password

Note that JPublisher generates a non-SQLJ class, because the EMPLOYEE object type
does not define any methods.

Because -dir=demo and -package=corp are specified on the JPublisher command
line, the translated class Employee is written to Employee.java at the following
location:

./demo/corp/Employee.java

The Employee.java class file would contain the code shown in the following
example.

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "HR.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 protected MutableStruct _struct;

 private static int[] _sqlType = { 12,4,2,91,7 };
 private static ORADataFactory[] _factory = new ORADataFactory[5];
 protected static final Employee _EmployeeFactory = new Employee(false);

 public static ORADataFactory getORADataFactory()
 { return _EmployeeFactory; }

 /* constructor */
 protected Employee(boolean init)
 { if(init) _struct = new MutableStruct(new Object[5], _sqlType, _factory); }

See Also: "JPublisher Options" on page 6-1

Note: This location is specific for a UNIX system.

Note: The details of the code JPublisher generates are subject to
change. In particular, non-public methods, non-public fields, and
all method bodies may be generated differently.

JPublisher Operation

Introduction to JPublisher 1-25

 public Employee()
 { this(true); }
 public Employee(String name, Integer empno, java.math.BigDecimal deptno,
 java.sql.Timestamp hiredate, Float salary)
 throws SQLException
 { this(true);
 setName(name);
 setEmpno(empno);
 setDeptno(deptno);
 setHiredate(hiredate);
 setSalary(salary);
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { return create(null, d, sqlType); }
 protected ORAData create(Employee o, Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 if (o == null) o = new Employee(false);
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }
 /* accessor methods */
 public String getName() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setName(String name) throws SQLException
 { _struct.setAttribute(0, name); }

 public Integer getEmpno() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setEmpno(Integer empno) throws SQLException
 { _struct.setAttribute(1, empno); }

 public java.math.BigDecimal getDeptno() throws SQLException
 { return (java.math.BigDecimal) _struct.getAttribute(2); }

 public void setDeptno(java.math.BigDecimal deptno) throws SQLException
 { _struct.setAttribute(2, deptno); }

 public java.sql.Timestamp getHiredate() throws SQLException
 { return (java.sql.Timestamp) _struct.getAttribute(3); }

 public void setHiredate(java.sql.Timestamp hiredate) throws SQLException
 { _struct.setAttribute(3, hiredate); }

 public Float getSalary() throws SQLException
 { return (Float) _struct.getAttribute(4); }

 public void setSalary(Float salary) throws SQLException
 { _struct.setAttribute(4, salary); }

JPublisher Operation

1-26 Oracle Database JPublisher User's Guide

}

Code Generation Notes

■ JPublisher also generates object constructors based on the object attributes.

■ Additional private or public methods may be generated with other option settings.
For example, the -serializable=true setting results in the object wrapper
class implementing the interface java.io.Serializable and in the generation
of private writeObject() and readObject() methods. In addition, the
-tostring=true setting results in the generation of a public toString()
method.

■ There is a protected _struct field in JPublisher-generated code for SQL object
types. This is an instance of the oracle.jpub.runtime.MutableStruct
internal class. It contains the data in original SQL format. In general, you should
never reference this field directly. Instead, use the -methods=always or
-methods=named setting, as necessary, to ensure that JPublisher produces
setFrom() and setValueFrom() methods, and then use these methods when
extending a class.

■ JPublisher generates SQLJ classes instead of non-SQLJ classes in the following
circumstances:

– The SQL object being published has methods, and the -methods=false
setting is not specified.

– A PL/SQL package, stored procedure, query, or DML statement is published,
and the -methods=false setting is not specified.

In addition:

– If a SQLJ class is created for a type definition, then a SQLJ class is also created
for the corresponding REF definition.

– If a SQLJ class is created for a base class, then SQLJ classes are also created for
any subclasses.

This means that, in a backward-compatibility mode, JPublisher generates .sqlj
files instead of .java files.

JPublisher also generates an EmployeeRef.java class. The source code is as follows:

package corp;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class EmployeeRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "HR.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

See Also: "The setFrom(), setValueFrom(), and setContextFrom()
Methods" on page 5-11

JPublisher Operation

Introduction to JPublisher 1-27

 REF _ref;

private static final EmployeeRef _EmployeeRefFactory = new EmployeeRef();

 public static ORADataFactory getORADataFactory()
 { return _EmployeeRefFactory; }
 /* constructor */
 public EmployeeRef()
 {
 }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 {
 return _ref;
 }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 EmployeeRef r = new EmployeeRef();
 r._ref = (REF) d;
 return r;
 }

 public static EmployeeRef cast(ORAData o) throws SQLException
 {
 if (o == null) return null;
 try { return (EmployeeRef) getORADataFactory().create(o.toDatum(null),
 OracleTypes.REF); }
 catch (Exception exn)
 { throw new SQLException("Unable to convert "+o.getClass().getName()+" to
 EmployeeRef: "+exn.toString()); }
 }

 public Employee getValue() throws SQLException
 {
 return (Employee) Employee.getORADataFactory().create(
 _ref.getSTRUCT(), OracleTypes.REF);
 }

 public void setValue(Employee c) throws SQLException
 {
 _ref.setValue((STRUCT) c.toDatum(_ref.getJavaSqlConnection()));
 }
}

Note: JPublisher also generates a public static cast() method to
cast from other strongly typed references into a strongly typed
reference instance.

JPublisher Operation

1-28 Oracle Database JPublisher User's Guide

Using JPublisher 2-1

2
Using JPublisher

This chapter describes how you can use JPublisher for:

■ Publishing User-Defined SQL Types

■ Publishing PL/SQL Packages

■ Publishing Oracle Streams AQ

■ Publishing Server-Side Java Classes Through Native Java Interface

■ Publishing Server-Side Java Classes Through PL/SQL Wrappers

■ Publishing Server-Side Java Classes to PL/SQL

■ Publishing Server-Side Java Classes to Table Functions

■ Publishing Web Services Client into PL/SQL

Publishing User-Defined SQL Types
Using JPublisher to publish SQL objects or collections as Java classes is
straightforward. This section provides examples of this for the Order Entry (OE)
schema, which is part of Oracle Database sample schema. If you do not have the
sample schema installed, but have your own object types that you would like to
publish, then replace the user name, password, and object names accordingly.

Assuming that the password for the OE schema is OE, use the following command to
publish the CATEGORY_TYP SQL object type, where % is the system prompt:

% jpub -user=OE -sql=CATEGORY_TYP:CategoryTyp
Enter OE password: password

The JPublisher -user option specifies the user name. The -sql option specifies the
types to be published. The SQL type and Java class is separated by a colon (:).
CATEGORY_TYP is the name of the SQL type, and CategoryTyp is the name of the
corresponding Java class that is to be generated.

JPublisher echoes the names of the SQL types that it publishes to the standard output:

OE.CATEGORY_TYP

In addition to the CategoryTyp.java file, JPublisher also generates the
CategoryTypeRef.java file. This is a strongly typed wrapper class for SQL object

See Also: "Declaration of Object Types and Packages to Translate" on
page 6-14.

Publishing User-Defined SQL Types

2-2 Oracle Database JPublisher User's Guide

references to OE.CATEGORY_TYP. Both these files can be compiled with the Java
compiler, javac.

Another example of publishing SQL object types, in this case the CUSTOMER_TYP type,
by using the shorthand -u for "-user=" and -s for "-sql=" is:

% jpub -u OE -s CUSTOMER_TYP:CustomerTyp
Enter OE password: password

The options -u and -s are followed by a space and then the value.

JPublisher reports a list of SQL object types. Whenever it encounters an object type for
the first time, whether through an attribute, an object reference, or a collection that has
element types as objects or collections, it automatically generates a wrapper class for
that type as well. The list of SQL object types for the OE schema are:

OE.CUSTOMER_TYP
OE.CORPORATE_CUSTOMER_TYP
OE.CUST_ADDRESS_TYP
OE.PHONE_LIST_TYP
OE.ORDER_LIST_TYP
OE.ORDER_TYP
OE.ORDER_ITEM_LIST_TYP
OE.ORDER_ITEM_TYP
OE.PRODUCT_INFORMATION_TYP
OE.INVENTORY_LIST_TYP
OE.INVENTORY_TYP
OE.WAREHOUSE_TYP

Two source files are generated for each object type in this example: one for a Java class,
such as CustomerTyp, to represent instances of the object type, and one for a
reference class, such as CustomerTypeRef, to represent references to the object type.

Notice the naming scheme that JPublisher uses by default. For example, the
OE.PRODUCT_INFORMATION_TYP SQL type is converted to a Java class,
ProductInformationTyp.

Although JPublisher automatically generates wrapper classes for embedded types, it
does not do so for subtypes of given object types. In this case, you have to explicitly
enumerate all the subtypes that you want to have published. The CATEGORY_TYP type
has three subtypes: LEAF_CATEGORY_TYP, COMPOSITE_CATEGORY_TYP, and
CATALOG_TYP. The following is a single, wraparound JPublisher command line to
publish the subtypes of the object type:

% jpub -u OE -s COMPOSITE_CATEGORY_TYP:CompositeCategoryTyp
 -s LEAF_CATEGORY_TYP:LeafCategoryTyp,CATALOG_TYP:CatalogTyp
Enter OE password: password

JPublisher lists the processed types as output, as follows:

OE.COMPOSITE_CATEGORY_TYP
OE.SUBCATEGORY_REF_LIST_TYP
OE.LEAF_CATEGORY_TYP
OE.CATALOG_TYP
OE.CATEGORY_TYP
OE.PRODUCT_REF_LIST_TYP

Keep in mind the following information:

■ If you want to unparse several types, then you can list them all together in the
-sql or -s option, each separated by a comma, or you can supply several -sql
options on the command line.

Publishing User-Defined SQL Types

Using JPublisher 2-3

■ Although JPublisher does not automatically generate wrapper classes for all
subtypes, it does generate them for all supertypes.

■ For SQL objects with methods, such as CATALOG_TYP, JPublisher uses SQLJ
classes to implement the wrapper methods. In Oracle Database 12c, the use of
SQLJ classes, as opposed to regular Java classes, is invisible to you unless you use
one of the backward-compatibility modes.

If the code that JPublisher generates does not provide the functionality or behavior
you want, then you can extend generated wrapper classes to override or complement
their functionality. Consider the following example:

% jpub -u OE -s WAREHOUSE_TYP:JPubWarehouse:MyWarehouse
Enter OE password: password

The JPublisher output is:

OE.WAREHOUSE_TYP

With this command, JPublisher generates both JPubWarehouse.java and
MyWarehouse.java. The JPubWarehouse.java file is regenerated every time you
rerun this command. The MyWarehouse.java generated file can be customized by
you and will not be overwritten by future runs of this command. You can add new
methods in MyWarehouse.java and override the method implementations from
JPubWarehouse.java.

The class that is used to materialize WAREHOUSE_TYP instances in Java is the
specialized MyWarehouse class. If you want user-specific subclasses for all types in an
object type hierarchy, then you must specify triplets of the form
SQL_TYPE:JPubClass:UserClass, for all members of the hierarchy, as shown in
the preceding JPublisher command.

Once you have generated and compiled Java wrapper classes with JPublisher, you can
use the object wrappers directly.

The following SQLJ class calls a PL/SQL stored procedure. Assume that
register_warehouse takes a WAREHOUSE_TYP instance as an IN OUT parameter.
Code comments show the corresponding #sql command. By default, JPublisher
generates and translates the SQLJ code automatically.

java.math.BigDecimal location = new java.math.BigDecimal(10);
java.math.BigDecimal warehouseId = new java.math.BigDecimal(10);
MyWarehouse w = new MyWarehouse(warehouseId,"Industrial Park",location);

Note: Prior to Oracle Database 10g, the generation of SQLJ classes
resulted in the creation of visible .sqlj source files. Starting from
Oracle Database 10g, if you set the JPublisher -compatible flag to a
value of 8i, both8i, 9i, or sqlj, then visible .sqlj source files will
be generated.

In any of these modes, you can use the JPublisher -sqlj option as an
alternative to using the sqlj command-line utility to translate .sqlj
files.

Note: The preceding examples using the OE schema are for
illustrative purposes only and may not be completely up-to-date
regarding the composition of the schema.

Publishing User-Defined SQL Types

2-4 Oracle Database JPublisher User's Guide

// **
// #sql { call register_warehouse(:INOUT w) };
// **
//
// declare temps
oracle.jdbc.OracleCallableStatement __sJT_st = null;
sqlj.runtime.ref.DefaultContext __sJT_cc =
 sqlj.runtime.ref.DefaultContext.getDefaultContext();
if (__sJT_cc==null)
 sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();
sqlj.runtime.ExecutionContext.OracleContext __sJT_ec =
 ((__sJT_cc.getExecutionContext()==null) ?
 sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
 __sJT_cc.getExecutionContext().getOracleContext());
try
{
 String theSqlTS = "BEGIN register_warehouse(:1) \n; END;";
 __sJT_st = __sJT_ec.prepareOracleCall(__sJT_cc,"0RegisterWarehouse",theSqlTS);
 if (__sJT_ec.isNew())
 {
 __sJT_st.registerOutParameter(1,2002,"OE.WAREHOUSE_TYP");
 }
 // set IN parameters
 if (w==null)
 __sJT_st.setNull(1,2002,"OE.WAREHOUSE_TYP");
 else __sJT_st.setORAData(1,w);
 // execute statement
 __sJT_ec.oracleExecuteUpdate();
 // retrieve OUT parameters
 w = (MyWarehouse)__sJT_st.getORAData(1,MyWarehouse.getORADataFactory());
}
finally
{
 __sJT_ec.oracleClose();
}

In Java Database Connectivity (JDBC), you typically register the relationship between
the SQL type name and the corresponding Java class in the type map for your
connection instance. This is required once for each connection. This type mapping can
be done as shown in the following example:

java.util.Map typeMap = conn.getTypeMap();
typeMap.put("OE.WAREHOUSE_TYP", MyWarehouse.class);
conn.setTypeMap(typeMap);

The following JDBC code is equivalent to the JPublisher output, that is, the translated
SQLJ code, shown previously:

CallableStatement cs = conn.prepareCall("{call register_warehouse(?)}");
((OracleCallableStatement)cs).registerOutParameter
 (1,oracle.jdbc.OracleTypes.STRUCT,"OE.WAREHOUSE_TYP");
cs.setObject(w);
cs.executeUpdate();
w = cs.getObject(1);

See Also: "Publishing PL/SQL Packages" on page 2-5

Publishing PL/SQL Packages

Using JPublisher 2-5

Publishing PL/SQL Packages
In addition to mapping SQL objects, you may want to encapsulate entire PL/SQL
packages as Java classes. JPublisher offers functionality to create Java wrapper
methods for the stored procedures of a PL/SQL package.

However, the concept of representing PL/SQL stored procedures as Java methods
presents a problem. Arguments to the PL/SQL functions and procedures may use the
PL/SQL OUT or IN OUT mode, but there are no equivalent modes for passing
arguments in Java. A method that takes an int argument, for example, is not able to
modify this argument in such a way that its callers can receive a new value for it. As a
workaround, JPublisher can generate single-element arrays for OUT and IN OUT
arguments. For example, consider an integer array int[] abc. The input value is
provided in abc[0], and the modified output value is also returned in abc[0].
JPublisher also uses a similar pattern when generating code for SQL object type
methods.

The following command publishes the SYS.DBMS_LOB package into Java:

% jpub -u hr -s SYS.DBMS_LOB:DbmsLob
Enter hr password: password

The JPublisher output is:

SYS.DBMS_LOB

Because DBMS_LOB is publicly visible, you can access it from a different schema, such
as HR. Note that this JPublisher invocation creates a SQLJ class in DbmsLob.java that
contains the calls to the PL/SQL package. The generated Java methods are actually the
instance methods. The idea is that you create an instance of the package using a JDBC
connection or a SQLJ connection context and then call the methods on that instance.

Use of Object Types Instead of Java Primitive Numbers
When you examine the generated code, notice that JPublisher has generated
java.lang.Integer as arguments to various methods. Using Java object types,
such as Integer, instead of Java primitive types, such as int, permits you to
represent SQL NULL values directly as Java nulls, and JPublisher generates these by
default. However, for the DBMS_LOB package, int is preferable over the Integer
object type. The following modified JPublisher invocation accomplishes this through
the -numbertypes option:

% jpub -numbertypes=jdbc -u hr -s SYS.DBMS_LOB:DbmsLob
Enter hr password: password

The JPublisher output is:

SYS.DBMS_LOB

Note: If your stored procedures use types that are specific to
PL/SQL and are not supported by Java, then special steps are
required to map these arguments to SQL and then to Java.

See Also: "Treatment of Output Parameters" on page 5-1 and
"Support for PL/SQL Data Types" on page 3-10

See Also: "Mappings for Numeric Types" on page 6-23

Publishing Oracle Streams AQ

2-6 Oracle Database JPublisher User's Guide

Wrapper Class for Procedures at the SQL Top Level
JPublisher also enables you to generate a wrapper class for the functions and
procedures at the SQL top level. Use the special package name TOPLEVEL, as in the
following example:

% jpub -u hr -s TOPLEVEL:SQLTopLevel
Enter hr password: password

The JPublisher output is:

HR.top-level_scope

A warning appears if there are no stored functions or procedures in the SQL top-level
scope.

Publishing Oracle Streams AQ
Publishing Oracle Streams Advanced Queue (AQ) as Java classes is similar to
publishing PL/SQL stored procedures. JPublisher exposes a queue as a Java program
using AQ Java Message Service (JMS) application programming interfaces (APIs). This
Java program can be further published into Web services by the Web services
assembler. You can perform the following:

■ Publishing a Queue as a Java Class

■ Publishing a Topic as a Java Class

■ Publishing a Stream as a Java Class

Oracle Streams AQ can be categorized into queue, topic, and stream. A queue is a
one-to-one message channel with a declared payload type. A topic is a one to many
message channel with a declared payload type. A stream is a queue or topic with
SYS.ANYDATA as the payload type.

You can publish a queue, topic, or stream using the -sql option as follows:

%jpub -user=hr -sql=AQNAME:javaName
Enter hr password: password

AQNAME is the name of a queue table, queue, topic, or stream. javaName is the name
of the corresponding Java class.

In Microsoft Windows, you must add the following Java Archive (JAR) files to
CLASSPATH for JPublisher to publish a queue. These two files are required for the
running of the JPublisher-generated code for Oracle Streams AQ.

ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar

On UNIX systems, the jpub script distributed with Oracle Database 12c Release 1
includes these JAR files.

For Oracle Streams AQ, the usage of the -sql option is the same as SQL types and
PL/SQL stored procedures. You can specify subclasses and interfaces. Other options
available to SQL types and PL/SQL packages, such as -genpattern, -style,
-builtintypes, and -compatible, are also available with Oracle Streams AQ.

Publishing a Queue as a Java Class
You can publish a queue using the same settings that are used for publishing a SQL
type or PL/SQL stored procedure.

Publishing Oracle Streams AQ

Using JPublisher 2-7

Consider a queue, toy_queue, declared as follows:

CREATE TYPE hr.queue_message AS OBJECT (
 Subject VARCHAR2(30),
 Text VARCHAR2(80)
);
dbms_aqadm.create_queue_table (
 Queue_table => 'hr.queue_queue_table',
 Queue_payload_type => 'hr.queue_message'
);
dbms_aqadm.create_queue (
 queue_name => 'hr.toy_queue',
 queue_table => 'hr.queue_queue_table'
);
dbms_aqadm.start_queue (
 queue_name => 'hr.toy_queue'
);

The following command publishes toy_queue as a Java program:

% jpub -user=hr -sql=toy_queue:ToyQueue
Enter hr password: password

The command generates ToyQueue.java, with the following APIs:

public class ToyQueue
{
 public ToyQueue();
 public ToyQueue(java.sql.Connection conn);
 public ToyQueue(javax.sql.DataSource dataSource);
 public void setConnection(java.sql.Connection conn);
 public void setDataSource(javax.sql.DataSource ds);
 public void addTypeMap(String sqlName, String javaName);
 public void send(QueueMessage payload);
 public QueueMessage receive();
 public QueueMessage receiveNoWait();
 public QueueMessage receive(java.lang.String selector, boolean noWait);
}

Like for PL/SQL stored procedures, JPublisher generates connection and data source
management APIs, such as setConnection() and setDataSource(). The
addTypeMap() method enables you to specify type mapping if the payload type is a
SQL type hierarchy. The send() method enqueues a message. The receive()
method dequeues a message from the queue. This method blocks until a message is
available to dequeue. The receiveNoWait() method dequeues a message and
returns null if no message is available. The last receive() method in the ToyQueue
class dequeues a message satisfying the selector. The selector is a condition specified in
the AQ convention. For example, consider the condition:

priority > 3 and Subject IN ('spider','tank')

This selects messages with priority higher than 3 and with spider and tank as the
Subject attribute.

Note: When creating a queue or topic, you can specify a SQL type as
the payload type. The payload type is transformed into and from the
JMS message types.

Publishing Oracle Streams AQ

2-8 Oracle Database JPublisher User's Guide

QueueMessage is a subclass of ORAData and is generated for the queue_message
payload type, which is a SQL type published as the result of publishing the queue.

The following sample client code uses the generated ToyQueue class. The client code
sends a message to the queue, dequeues the queue using the block operator
receive(), and continues dequeuing messages using receiveNoWait(), until all
messages in the queue are dequeued.

...
ToyQueue q = new ToyQueue(getConnection());
QueueMessage m = new QueueMessage("scooby doo", "lights out");
q.send(m);
System.out.println("Message sent: " + m.getSubject() + " " + m.getText());
m = new QueueMessage("dalmatian", "solve the puzzle");
q.send(m);
System.out.println("Message sent: " + m.getSubject() + " " + m.getText());
m = q.receive();
while (m!=null)
{
 System.out.println("Message received: " + m.getSubject() + " " + m.getText());
 m = q.receiveNoWait();
}
...

Publishing a Topic as a Java Class
Consider a topic declared as follows:

CREATE TYPE hr.topic_message AS OBJECT (
 Subject VARCHAR2(30),
 Text VARCHAR2(80)
);
dbms_aqadm.create_queue_table (
 Queue_table => 'hr.topic_queue_table',
 Multiple_consumers => TRUE,
 Queue_payload_type => 'hr.topic_message'
);
dbms_aqadm.create_queue (
 queue_name => 'hr.toy_topic',
 queue_table => 'hr.topic_queue_table'
);
dbms_aqadm.start_queue (
 queue_name => 'hr.toy_topic'
);

The queue table, topic_queue_table, has the Multiple_consumers property set
to TRUE, indicating that the queue table hosts topics instead of queues.

You can publish the topic as follows:

% jpub -user=hr -sql=toy_topic:ToyTopic
Enter hr password: password

The command generates ToyTopic.java with the following APIs:

public class ToyTopic
{
 public ToyTopic(javax.sql.DataSource dataSource);
 public void setConnection(java.sql.Connection conn);
 public void setDataSource(javax.sql.DataSource ds);
 public void addTypeMap(String sqlName,String javaName);

Publishing Oracle Streams AQ

Using JPublisher 2-9

 public void publish(TopicMessage payload);
 public void publish(TopicMessage payload, java.lang.String[] recipients);
 public void publish(TopicMessage payload, int deliveryMode, int priority,
 long timeToLive);
 public void subscribe(java.lang.String subscriber);
 public void unsubscribe(java.lang.String subscriber);
 public TopicMessage receiveNoWait(java.lang.String receiver);
 public TopicMessage receive(java.lang.String receiver);
 public TopicMessage receive(java.lang.String receiver,
 java.lang.String selector);
}

The publish methods enqueue a message addressed to all the subscribers or a list of
subscribers. The deleveryMode parameter takes the value
javax.jms.DeliveryMode.PERSISTENT or
javax.jms.DeliveryMode.NON_PERSISTENT. However, only
DeliveryMode.PERSISTENT is supported in Oracle Database 10g release 2 (10.2).
The priority parameter specifies the priority of the message. The timeToLive
parameter specifies the time in milliseconds after which the message will be timed out.
A value of 0 indicates the message is not timed out.

The receive methods dequeue a message addressed to the specified receiver.

The following sample client code uses the generated ToyTopic class. The client sends
a message to two receivers, ToyParty and ToyFactory, and then dequeues the topic
as ToyParty, ToyLand, and ToyFactory respectively.

...
ToyTopic topic = new ToyTopic(getConnection());
TopicMessage m = new TopicMessage("scooby doo", "lights out");

topic.publish(m, new String[]{"ToyParty", "ToyFactory"});
System.out.println("Message broadcasted: " + m.getSubject() + " " + m.getText());
m = new TopicMessage("dalmatian", "solve the puzzle");
topic.publish(m, new String[]{"ToyParty", "ToyLand"});
System.out.println("Message broadcasted: " + m.getSubject() + " " + m.getText());

m = topic.receive("ToyParty");
System.out.println("ToyParty receive " + m.getSubject() + " " + m.getText());
m = topic.receive("ToyParty");
System.out.println("ToyParty receive " + m.getSubject() + " " + m.getText());

m = topic.receiveNoWait("ToyLand");
System.out.println("ToyFactory receive " + m.getSubject() + " " + m.getText());
m = topic.receiveNoWait("ToyFactory");
System.out.println("ToyFactory receive " + m.getSubject() + " " + m.getText());
m = topic.receiveNoWait("ToyFactory");
...

Publishing a Stream as a Java Class
A stream is a special case of AQ. It can have only SYS.ANYDATA as the payload type.
As a limitation, JPublisher-generated code for streams requires the JDBC Oracle Call
Interface (OCI) driver. However, the code generated for queue and topic run on both
the JDBC Thin and JDBC OCI driver.

Publishing a stream is similar to publishing an AQ. The following command will
publish the stream, toy_stream:

% jpub -user=hr -sql=toy_stream:ToyStream
Enter hr password: password

Publishing Oracle Streams AQ

2-10 Oracle Database JPublisher User's Guide

This command generates the ToyStream.java file.

The difference between publishing a stream and an AQ or a topic is that when a
stream is published, the payload type will always be SYS.ANYDATA, which is mapped
to java.lang.Object.

The ToyStream.java file contains the following APIs:

public class ToyStream
{
 public ToyStream();
 public ToyStream(java.sql.Connection conn);
 public ToyStream(javax.sql.DataSource dataSource);
 public void setConnection(java.sql.Connection conn);
 public void setDataSource(javax.sql.DataSource ds);
 public void addTypeMap(String sqlName, String javaName);
 public void publish(Object payload);
 public void publish(Object payload, java.lang.String[] recipients);
 public void publish(Object payload, int deliveryMode,
 int priority, long timeToLive);
 public void subscribe(java.lang.String subscriber);
 public void unsubscribe(java.lang.String subscriber);
 public Object receiveNoWait(java.lang.String receiver);
 public Object receive(java.lang.String receiver);
 public Object receive(java.lang.String receiver, java.lang.String selector);
 public Object receive(java.lang.String receiver, java.lang.String selector,
 long timeout);
}

Here is a sample code that uses the generated ToyStream class:

...
System.out.println("*** testStream with an OCI connection");
Object response = null;
ToyStream stream = new ToyStream(getOCIConnection());

stream.publish("Seaside news", new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println("Received: " + response);

stream.publish(new Integer(333), new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println("Received: " + response);

stream.publish(new Float(3.33), new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println("Received: " + response);

stream.publish("Science Monitor".getBytes(), new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println("Received: " + new String((byte[])response));

stream.publish(new String[]{"gamma", "beta"}, new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println("Received: " + ((String[]) response)[0]);

HashMap map = new HashMap();
map.put("US", "dollar");
map.put("Japan", "yen");
map.put("Austrilia", "dollar");
map.put("Britian", "pound");

Publishing Server-Side Java Classes Through Native Java Interface

Using JPublisher 2-11

stream.publish(map, new String[]{"ToyParty"});
response = stream.receive("ToyParty");
map = (HashMap) response;
System.out.println("Message received: " + map.get("Britian") + ", " +
map.get("US") + ", " + map.get("Austrilia"));

stream.addTypeMap("HR.QUEUE_MESSAGE", "queue.wrapper.simple.QueueMessage");
stream.addTypeMap("QUEUE_MESSAGE", "queue.wrapper.simple.QueueMessage");
QueueMessage m = new QueueMessage("Knowing", "world currency");
stream.publish(m, new String[]{"ToyParty"});
response = stream.receive("ToyParty");
System.out.println(response);
m = (QueueMessage) response;
System.out.println("Message received: " + m.getSubject() + " " + m.getText());
...

The sample code sends messages of various types, such as String, Integer, and
java.util.Map. For the QueueMessage JDBC custom type, the addTypeMap()
method is called to specify SQL type to Java type mapping.

Publishing Server-Side Java Classes Through Native Java Interface
Prior to Oracle Database 10g, calling Java stored procedures and functions from a
database client required JDBC calls to the associated PL/SQL wrappers. Each PL/SQL
wrapper had to be manually published with a SQL signature and a Java
implementation. This process had the following disadvantages:

■ The signatures permitted only Java types that had direct SQL equivalents.

■ Exceptions issued in Java were not properly returned.

Starting from Oracle Database 10g, you can use the native Java interface feature for
calls to server-side Java code. The JPublisher -java option provides functionality to
overcome these disadvantages.

To remedy the deficiencies of JDBC calls to associated PL/SQL wrappers, the -java
option makes use of an API for direct invocation of static Java methods. This
functionality is also useful for Web services.

The functionality of the -java option mirrors that of the -sql option, creating a
client-side Java stub class to access a server-side Java class. This is in contrast to
creating a client-side Java class to access a server-side SQL object or PL/SQL package.
The client-side stub class uses SQL code that mirrors the server-side class and includes
the following features:

■ Methods corresponding to the public, static methods of the server class

■ Two constructors, one that takes a JDBC connection and one that takes the SQLJ
default connection context instance

At run time, the stub class is instantiated with a JDBC connection. Calls to its methods
result in calls to the corresponding methods of the server-side class. Any Java types
used in these published methods must be primitive or serializable.

You can use the -java option to publish a server-side Java class, as follows:

-java=className

Consider the oracle.sqlj.checker.JdbcVersion server-side Java class, with the
following APIs:

public class oracle.sqlj.checker.JdbcVersion

Publishing Server-Side Java Classes Through Native Java Interface

2-12 Oracle Database JPublisher User's Guide

{
 public oracle.sqlj.checker.JdbcVersion();
 public static int getDriverMajorVersion();
 public static int getDriverMinorVersion();
 public static java.lang.String getDriverName();
 public static java.lang.String getDriverVersion();
 public static java.lang.String getJdbcLibraryName();
 public static java.lang.String getRecommendedRuntimeZip();
 public static java.lang.String getRuntimeVersion();
 public static java.lang.String getSqljLibraryName();
 public static boolean hasNewStatementCache();
 public static boolean hasOracleContextIsNew();
 public static boolean hasOracleSavepoint();
 public static void main(java.lang.String[]);
 public java.lang.String toString();
 public static java.lang.String to_string();
}

As an example, assume that you want to call the following method on the server:

public String oracle.sqlj.checker.JdbcVersion.to_string();

Use the following command to publish JdbcVersion for client-side invocation:

% jpub -sql=hr -java=oracle.sqlj.checker.JdbcVersion:JdbcVersionClient
Enter hr password: password

This command generates the client-side Java class, JdbcVersionClient, which
contains the following APIs:

public class JdbcVersionClient
{
 public long newInstance();
 public JdbcVersionClient();
 public JdbcVersionClient(java.sql.Connection conn);
 public JdbcVersionClient(sqlj.runtime.ref.DefaultContext ctx);
 public java.lang.String toString(long _handle);
 public int getDriverMajorVersion();
 public int getDriverMinorVersion();
 public java.lang.String getDriverName();
 public java.lang.String getDriverVersion();
 public java.lang.String getJdbcLibraryName();
 public java.lang.String getRecommendedRuntimeZip();
 public java.lang.String getRuntimeVersion();
 public java.lang.String getSqljLibraryName();
 public boolean hasNewStatementCache();
 public boolean hasOracleContextIsNew();
 public boolean hasOracleSavepoint();
 public void main(java.lang.String[] p0);
 public java.lang.String to_string();
}

Compare oracle.sqlj.checker.JdbcVersion with JdbcVersionClient. All
static methods are mapped to instance methods in the client-side code. A instance
method in the server-side class, toString() for example, is mapped to a method
with an extra handle. A handle represents an instance of
oracle.sqlj.checker.JdbcVersion in the server. The handle is used to call the
instance method on the server-side. The extra method in JdbcVersionClient is
newInstance(), which creates a new instance of
oracle.sqlj.checker.JdbcVersion in the server and returns its handle.

Publishing Server-Side Java Classes Through PL/SQL Wrappers

Using JPublisher 2-13

Publishing the server-side Java class has the following constraints:

■ Instance methods can be published only if the class to be published has a public
empty constructor.

■ Only serializable parameter and return types are supported. Methods with
nonserializable types will not be published.

■ Oracle Database 12c or Oracle Database 10g is required.

Starting Oracle Database 12c Release 1 (12.1.0.2), the -java feature requires the
following reparation step:

Load sqljutl.jar and sqljutls.sql into the user schema where the server-side Java classes
are present.

% loadjava -u scott/tiger -r -v -f sqlj/lib/sqljutl.jar
% sqlplus scott/tiger @jpub/sql/sqljutl2.sql

Publishing Server-Side Java Classes Through PL/SQL Wrappers
Since Oracle Database 10g release 2 (10.2), JPublisher provides a new approach to
publish server-side Java classes. It generates the following to call server-side Java:

■ Java stored procedure wrapper for the server-side class

■ PL/SQL wrapper for the Java stored procedure wrapper

■ Client-side Java code to call the PL/SQL wrapper

The Java stored procedure wraps the server-side Java code, which accomplishes the
following:

■ Wraps an instance method into a static method. Each method in the server-side
Java code is wrapped by a static method. An instance method can be mapped in a
single or multiple-instance fashion.

■ Converts Java types into types that can be exposed to the PL/SQL call
specification. For example, the Java type byte[] is converted into
oracle.sql.BLOB.

The PL/SQL wrapper calls the Java stored procedure. The client-side Java code calls
the PL/SQL wrapper through JDBC calls. The -java option requires that the class to
be exposed is already loaded into the database.

The supported Java types are:

■ JDBC supported types

■ Java beans

■ Arrays of supported types

■ Serializable types

To publish a server-side class, use the -dbjava option, as follows:

-dbjava=server-sideClassName:client-sideClassName

The client-sideClassName setting must be specified. Otherwise, JPublisher will
not generate client-side Java class. To publish
oracle.sqlj.checker.JdbcVersion, use the following command:

See Also: "Declaration of Server-Side Java Classes to Publish" on
page 6-7

Publishing Server-Side Java Classes Through PL/SQL Wrappers

2-14 Oracle Database JPublisher User's Guide

% jpub -user=hr -dbjava=oracle.sqlj.checker.JdbcVersion:JdbcVersionClient
Enter hr password: password

The command generates the following output:

oracle/sqlj/checker/JdbcVersionJPub.java
plsql_wrapper.sql
plsql_dropper.sql
HR.JPUBTBL_VARCHAR2
HR.JPUB_PLSQL_WRAPPER
Executing plsql_dropper.sql
Executing plsql_wrapper.sql
Loading JdbcVersionJPub.java

The command generates the JdbcVersionJPub Java stored procedure, the PL/SQL
wrapper, and the client-side JdbcVersionClient class. JdbcVersionJPub.java
and plsql_wrapper.sql are automatically loaded into the database.
JdbcVersionClient has the following APIs:

public class JdbcVersionClient
{
 public JdbcVersionClient();
 public JdbcVersionClient(java.sql.Connection conn);
 public void setConnection(java.sql.Connection conn);
 public void setDataSource(javax.sql.DataSource ds);
 public String toString0();
 public java.math.BigDecimal getDriverMajorVersion();
 public java.math.BigDecimal getDriverMinorVersion();
 public String getDriverName();
 public String getDriverVersion();
 public String getJdbcLibraryName();
 public String getRecommendedRuntimeZip();
 public String getRuntimeVersion();
 public String getSqljLibraryName();
 public java.math.BigDecimal hasNewStatementCache();
 public java.math.BigDecimal hasOracleContextIsNew();
 public java.math.BigDecimal hasOracleSavepoint();
 public void main0(JpubtblVarchar2 arg0);
 public String to_string();
}

Compare JdbcVersion and JdbcVersionClient. It shows a limitation of
JPublisher-generated code. The generated client-side APIs are not exactly the same as
the original server-side APIs. To illustrate this limitation, the following is a list of
several inconsistencies between JdbcVersion and JdbcVersionClient:

■ The static methods are all mapped to instance methods, because a client-side
method requires a JDBC connection to run.

■ A client-side method always throws java.sql.SQLException, while
exceptions thrown from the server-side class will be passed to the client wrapped
with SQLException.

■ The toString() method is renamed to toString0(). This is a limitation
imposed by the stored procedure wrapper, where any method overwriting
java.lang.Object methods has to be renamed to avoid conflicts.

■ The parameter and return types may be different. Numeric types in the server-side
are mapped to java.math.BigDecimal. Array types, such as String[], are
mapped to JDBC custom types. For example, the parameter of main() is mapped

Publishing Server-Side Java Classes to PL/SQL

Using JPublisher 2-15

to JpubtblVarchar2, a subclass of ORAData, which the JPublisher command
generates to represent an array of strings.

■ The main() method in the server-side Java class will be renamed to main0(),
due to the Java stored procedure limitation.

Compared to -java, the advantage of -dbjava is the support for more types and
working with pre-10g database versions. However, the disadvantages are extra
PL/SQL and Java stored procedure layers at run time and the increased possibility of
change in the method signature in the client-side Java class.

Starting Oracle Database 12c Release 1 (12.1.0.2), the -dbjava feature requires the
following preparation step:

Load sqljutl.jar and sqljutls.sql into the user schema where the server-side java classes
are present.

% loadjava -u scott/tiger -r -v -f sqlj/lib/sqljutl.jar
% sqlplus scott/tiger @jpub/sql/sqljutl2.sql

Publishing Server-Side Java Classes to PL/SQL
JPublisher can generate PL/SQL wrappers for server-side Java classes. A Java class is
mapped to a PL/SQL package. Each PL/SQL method corresponds to a Java method.
This feature relieves the customer from writing the PL/SQL call specification and
creating SQL types used in the call specification.

You can use the -dbjava option to generate the PL/SQL wrapper for a server-side
Java class as follows:

-dbjava=server-sideJavaClass

Do not specify a name after server-sideJavaClass. Otherwise, JPublisher will
map the server-side Java class to a client-side Java class.

As an example, generate the PL/SQL wrapper for
oracle.sqlj.checker.JdbcVersion using the following command:

% java -dbjava=oracle.sqlj.checker.JdbcVersion

The command generates the following output:

oracle/sqlj/checker/JdbcVersionJPub.java
plsql_wrapper.sql
plsql_dropper.sql
Executing plsql_dropper.sql
Executing plsql_wrapper.sql
Loading JdbcVersionJPub.java

The command generates and loads the Java stored procedure wrapper,
JdbcVersionJPub.java, and also its PL/SQL wrapper, plsql_wrapper.sql,
which declares the package JPUB_PLSQL_WRAPPER. The JPUB_PLSQL_WRAPPER
package can be used to call the methods of oracle.sqlj.checker.JdbcVersion.

It often makes sense to specify -plsqlfile and -plsqlpackage with -dbjava.
Consider the following command:

% java -dbjava=oracle.sqlj.checker.JdbcVersion -plsqlfile=jdbcversion.sql
-plsqlpackage=jdbcversion

See Also: "Publishing Server-Side Java Classes Through PL/SQL
Wrappers" on page 2-13

Publishing Server-Side Java Classes to PL/SQL

2-16 Oracle Database JPublisher User's Guide

The command generates the following output:

oracle/sqlj/checker/JdbcVersionJPub.java
jdbcversion.sql
jdbcversion_dropper.sql
Executing jdbcversion_dropper.sql
Executing jdbcversion.sql
Loading JdbcVersionJPub.java

The command generates jdbcversion.sql, which declares the jdbcversion
PL/SQL package as the wrapper for oracle.sqlj.checker.JdbcVersion. The
package is declared as follows:

CREATE OR REPLACE PACKAGE jdbcversion AS
 FUNCTION toString0 RETURN VARCHAR2;
 FUNCTION getDriverMajorVersion RETURN NUMBER;
 FUNCTION getDriverMinorVersion RETURN NUMBER;
 FUNCTION getDriverName RETURN VARCHAR2;
 FUNCTION getDriverVersion RETURN VARCHAR2;
 FUNCTION getJdbcLibraryName RETURN VARCHAR2;
 FUNCTION getRecommendedRuntimeZip RETURN VARCHAR2;
 FUNCTION getRuntimeVersion RETURN VARCHAR2;
 FUNCTION getSqljLibraryName RETURN VARCHAR2;
 FUNCTION hasNewStatementCache RETURN NUMBER;
 FUNCTION hasOracleContextIsNew RETURN NUMBER;
 FUNCTION hasOracleSavepoint RETURN NUMBER;
 PROCEDURE main0(arg0 JPUBTBL_VARCHAR2);
 FUNCTION to_string RETURN VARCHAR2;
END jdbcversion;

Note that the methods toString() and main() are renamed to toString0() and
main0(), because of the Java stored procedure limitation.

You can run the PL/SQL stored procedures in the jdbcversion package as follows:

SQL> SELECT jdbcversion.toString0 FROM DUAL;

TOSTRING0
--
Oracle JDBC driver version 10.2 (10.2.0.0.0)
SQLJ runtime: Oracle 9.2.0 for JDBC SERVER/JDK 1.2.x - Built on Oct 10, 2004

The -dbjava command publishes both static and instance methods. To publish the
static method only, use the following setting:

-proxyopts=static

If the server-side class has a public empty constructor, then its instance methods can
be published. Instance methods can be called in two ways, through a default single
instance inside the server, or through individual instances. The following option
determines the approach used to call instance methods inside the server:

-proxyopts=single|multiple

The default setting is:

-proxyopts=single

The preceding SQL statement calls the toString0() method using the single
instance.

Publishing Server-Side Java Classes to PL/SQL

Using JPublisher 2-17

You can publish oracle.sqlj.checker.JdbcVersion using
-proxyopts=multiple, as follows:

% jpub -user=hr -dbjava=oracle.sqlj.checker.JdbcVersion -plsqlfile=jdbcversion.sql
-plsqlpackage=jdbcversion
-proxyopts=multiple
Enter hr password: password

This command generates the jdbcversion PL/SQL package, with the following
methods different from the previous example:

CREATE OR REPLACE PACKAGE jdbcversion AS
 FUNCTION toString0(handleJdbcVersion NUMBER) RETURN VARCHAR2;
 ...
 FUNCTION newJdbcVersion RETURN NUMBER;
END jdbcversion;

Starting from Oracle Database 10g Release 2, an extra method, newJdbcVersion(),
is created. You can create an instance using this method and use the instance to call the
toString0() method. Run the following script in SQL*Plus:

set serveroutput on
DECLARE
 text varchar2(1000);
 inst number;
BEGIN
 inst := jdbcversion.newJdbcVersion;
 text := jdbcversion.toString0(inst);
 dbms_output.put_line(text);
END;
/

This script returns:

Oracle JDBC driver version 10.2 (10.2.0.0.0)
SQLJ runtime: Oracle 9.2.0 for JDBC
SERVER/JDK 1.2.x - Built on Oct 10, 2004

PL/SQL procedure successfully completed.

The following parameter and return types are supported:

■ JDBC supported types

■ Java beans

■ Arrays of supported types

Java beans are mapped to the generic JDBC struct class, oracle.sql.STRUCT at
the Java stored procedure layer, and SQL object types and SQL table types at the
PL/SQL layer. The following option determines how array parameters are handled:

-proxyopts=arrayin|arrayout|arrayinout|arrayall

The default setting is:

-proxyopts=arrayin

With -proxyopts=arrayall, a method containing array parameters is mapped to
three PL/SQL methods. For example, consider the foo(int[]) method. This method
is mapped to the following methods:

PROCEDURE foo(n NUMBERTBL);
PRECEDURE foo_o(n IN NUMBER);

Publishing Server-Side Java Classes to PL/SQL

2-18 Oracle Database JPublisher User's Guide

PROCEDURE foo_io(n IN OUT NUMBER);

The first method treats the array argument as an input, the second treats the array as a
holder for an output value, and the third treats the array as a holder for both input and
output values. With -proxyopts=arrayin, which is the default setting, the
foo(int[]) method is mapped to the first method. With -proxyopts=arrayout,
the foo(int[]) method is mapped to the second method. With
-proxyopts=arrayinout, the foo(int[]) method is mapped to the third
method.

Consider a more complex example that uses two classes. The Add class uses Total
and arrays in the methods. Total is a Java Bean and is therefore supported by
server-side classes publishing. The two classes are defined as follows:

public class Add
{
 public static int add(int i, int j)
 {
 i = i + j;
 return i;
 }
 public int add(Total arg)
 {
 total = total + arg.getTotal();
 return total;
 }
}

public class Total
{
 public void setTotal(int total)
 {
 this.total = total;
 }
 public int getTotal()
 {
 return total;
 }
 private int total;
}

Load the two classes into the database, as follows:

% loadjava -u hr -r -v -f Add.java Total.java
Password: password

Run JPublisher using the following command:

% jpub -user=hr -dbjava=Add -proxyopts=arrayall

The command generates the following output:

AddJPub.java
plsql_wrapper.sql
plsql_dropper.sql
Executing plsql_dropper.sql
Executing plsql_wrapper.sql
Loading AddJPub.java

The generated PL/SQL wrapper, plsql_wrapper.sql, will have the following
declaration:

Publishing Server-Side Java Classes to PL/SQL

Using JPublisher 2-19

CREATE OR REPLACE TYPE JPUBOBJ_Total AS OBJECT (total_ NUMBER);
CREATE OR REPLACE TYPE JPUBTBL_NUMBER AS TABLE OF NUMBER;
CREATE OR REPLACE PACKAGE JPUB_PLSQL_WRAPPER AS
 FUNCTION add(arg0 JPUBOBJ_Total) RETURN NUMBER;
 FUNCTION add_io(arg0 JPUBOBJ_Total) RETURN NUMBER;
 FUNCTION add(arg0 JPUBTBL_NUMBER,arg1 JPUBTBL_NUMBER) RETURN JPUBTBL_NUMBER;
 FUNCTION add_o(arg0 OUT NUMBER,arg1 OUT NUMBER) RETURN JPUBTBL_NUMBER;
 FUNCTION add_io(arg0 IN OUT NUMBER,arg1 IN OUT NUMBER) RETURN JPUBTBL_NUMBER;
END JPUB_PLSQL_WRAPPER;

The following SQL script, when run in SQL*Plus, uses the generated PL/SQL
wrapper:

SQL> set serveroutput on
SQL>
DECLARE
 totalx JPUBOBJ_Total;
 n NUMBER;
 n1 NUMBER;
 n2 NUMBER;
 add1 JPUBTBL_NUMBER;
 add2 JPUBTBL_NUMBER;
 add3 JPUBTBL_NUMBER;
BEGIN
 totalx := JPUBOBJ_Total(2004);
 n := JPUB_PLSQL_WRAPPER.add(totalx);
 n := JPUB_PLSQL_WRAPPER.add(totalx);
 DBMS_OUTPUT.PUT('total ');
 DBMS_OUTPUT.PUT_LINE(n);

 add1 := JPUBTBL_NUMBER(10, 20);
 add2 := JPUBTBL_NUMBER(100, 200);
 add3 := JPUB_PLSQL_WRAPPER.add(add1, add2);
 DBMS_OUTPUT.PUT('add ');
 DBMS_OUTPUT.PUT(add3(1));
 DBMS_OUTPUT.PUT(' ');
 DBMS_OUTPUT.PUT_LINE(add3(2));

 n1 := 99;
 n2 := 199;
 add3 := JPUB_PLSQL_WRAPPER.add_io(n1, n2);
 DBMS_OUTPUT.PUT('add_io ');
 DBMS_OUTPUT.PUT_LINE(n1);
END;
/

The script generates the following output:

total 4008
add 110 220
add_io 298
PL/SQL procedure successfully completed.

The -dbjava option requires the classes being published to be present in the
database. You can use -proxyclasses instead, which requires the classes being
published to be specified in the classpath. Compile Add.java and Total.java, and
include Add and Total in the classpath. You can use the following command to
publish Add, instead of the -dbjava option:

% jpub -proxyclasses=Add

Publishing Server-Side Java Classes to PL/SQL

2-20 Oracle Database JPublisher User's Guide

The command generates the following output:

AddJPub.java
plsql_wrapper.sql
plsql_dropper.sql
Executing plsql_dropper.sql
Executing plsql_wrapper.sql

The -proxyclasses option loads the generated PL/SQL wrapper. However, it does
not load the generated Java stored procedure, AddJPub.java, because this procedure
requires the published classes to exist on the server. You must load the Java stored
procedure together with the published classes.

For example, on UNIX systems, you can load Add.java, Total.java, and
AddJPub.java using the following command:

% loadjava -u hr -r -v -f Add.java Total.java AddJPub.java
Password: password

Once Add.java, Total.java, and AddJPub.java are loaded, the PL/SQL wrapper
is ready for use.

Starting Oracle Database 12c Release 1 (12.1.0.2), the -proxyclasses feature, and the
-java feature require the following preparation step:

Load sqljutl.jar and sqljutls.sql into the user schema where the server-side java classes
are present.

% loadjava -u scott/tiger -r -v -f sqljutl.jar
% sqlplus scott/tiger @jpub/sql/sqljutl2.sql

Mechanisms Used in Exposing Java to PL/SQL
JPublisher supports easy access to server-side Java classes by generating PL/SQL
wrappers, otherwise known as PL/SQL call specifications. A PL/SQL wrapper is a
PL/SQL package that can invoke methods of one or more given Java classes.

PL/SQL supports only static methods. Java classes with only static methods or classes
for which you want to expose only static methods can be wrapped in a
straightforward manner. However, for Java classes that have instance methods that
you want to expose, an intermediate wrapper class is necessary to expose the instance
methods as static methods for use by PL/SQL.

A wrapper class is also required if the Java class to be wrapped uses anything other
than Java primitive types in its method calling sequences.

For instance methods in a class that is to be wrapped, JPublisher can use either or both
of the following mechanisms in the wrapper class:

■ Each wrapped class can be treated as a singleton, meaning that a single default
instance is used. This instance is created the first time a method is called and is
reused for each subsequent method call. Handles are not necessary and are not
used. This mechanism is referred to as the singleton mechanism and is the default
behavior when JPublisher provides wrapper classes for Web services client proxy
classes.

A releaseXXX() method is provided to remove the reference to the default
instance and permit it to be garbage-collected.

See Also: Oracle Database Java Developer's Guide for information
about PL/SQL wrappers

Publishing Server-Side Java Classes to Table Functions

Using JPublisher 2-21

■ Instances of the wrapped class can be identified through handles, also known as
ID numbers. JPublisher uses long numbers as handles and creates static methods
in the wrapper class. The method signatures of these methods are modified to
include the handle of the instance on which to invoke a method. This allows the
PL/SQL wrapper to use the handles in accessing instances of the wrapped class.
In this scenario, you must create an instance of each wrapped class to obtain a
handle. Then you provide a handle for each subsequent instance method
invocation. This mechanism is referred to as the handle mechanism.

A releaseXXX(long) method is provided for releasing an individual instance
according to the specified handle. A releaseAllXXX() method is provided for
releasing all existing instances.

Publishing Server-Side Java Classes to Table Functions
The -dbjava option can generate table functions from the generated PL/SQL
wrapper. Table functions are used if you want to expose data through database tables,
rather than through stored function returns or stored procedure output values. A table
function returns a database table.

For a table function to be generated for a given method, the following must be true:

■ For wrapping instance methods, the singleton mechanism must be enabled. This is
the default setting for -dbjava and -proxyclasses.

■ The wrapped Web service method must correspond to a stored procedure with
OUT arguments or to a stored function.

When used with the -dbjava or -proxyclasses option, the JPublisher
-proxyopts=tabfun setting requests a table function created for each PL/SQL
function in the generated PL/SQL wrapper. Consider the Add class example discussed
earlier. Run the following command:

% jpub -user=hr -dbjava=Add -proxyopts=arrayall,tabfun
Enter hr password: password

The command generates the following output:

AddJPub.java
plsql_wrapper.sql
plsql_dropper.sql
Executing plsql_dropper.sql
Executing plsql_wrapper.sql
Loading AddJPub.java

This command generates the following extra table functions, in addition to the
PL/SQL methods generated in the earlier example:

CREATE OR REPLACE PACKAGE JPUB_PLSQL_WRAPPER AS
 FUNCTION add(arg0 JPUBOBJ_Total) RETURN NUMBER;
 FUNCTION TO_TABLE_add(cur SYS_REFCURSOR) RETURN GRAPH_TAB_add_JPUBOBJ_Total
PIPELINED;
 FUNCTION add(arg0 JPUBTBL_NUMBER,arg1 JPUBTBL_NUMBER) RETURN JPUBTBL_NUMBER;
 FUNCTION TO_TABLE_add0(cur SYS_REFCURSOR) RETURN GRAPH_TAB_add_JPUBTBL_NUMBER
PIPELINED;
 FUNCTION add_o(arg0 OUT NUMBER, arg1 OUT NUMBER) RETURN JPUBTBL_NUMBER;
 FUNCTION TO_TABLE_add_o(cur SYS_REFCURSOR) RETURN

See Also: Oracle Database PL/SQL Language Reference for information
about table functions.

Publishing Server-Side Java Classes to Table Functions

2-22 Oracle Database JPublisher User's Guide

GRAPH_TAB_add_o_JPUBTBL_NUMBER PIPELINED;
 FUNCTION add_io(arg0 IN OUT NUMBER, arg1 IN OUT NUMBER) RETURN JPUBTBL_NUMBER;
 FUNCTION TO_TABLE_add_io(cur SYS_REFCURSOR) RETURN
GRAPH_TAB_add_io_JPUBTBL_NUMB PIPELINED;
END JPUB_PLSQL_WRAPPER;
/

The term, graph, is used with table functions. In this usage, a graph is a SQL object
that defines the schema of the database table returned by a table function. There are
three levels of functionality: a graph object, a table of graph objects, and a table
function that returns the table of graph objects. The table of graph objects contains the
input to a function and the output from that function.

As an example, consider the following declarations in plsql_wrapper.sql, which
define the GRAPH_add_io_JPUBTBL_NUMBER_J graph object and the
GRAPH_TAB_add_io_JPUBTBL_NUMB table of graph objects. These two types are
generated for the TO_TABLE_add_io table function.

CREATE OR REPLACE TYPE GRAPH_add_io_JPUBTBL_NUMBER_J AS OBJECT(arg0 NUMBER,
arg1 NUMBER, arg0_out NUMBER, arg1_out NUMBER, res JPUBTBL_NUMBER);
/

CREATE OR REPLACE TYPE GRAPH_TAB_add_io_JPUBTBL_NUMB AS TABLE OF
GRAPH_add_io_JPUBTBL_NUMBER_J;
/

Also note that a table function always takes a REF CURSOR as input. For the
TO_TABLE_add_io table function, the REF CURSOR expects two arguments, arg0
and arg1. The table function returns an instance of
GRAPH_TAB_add_io_JPUBTBL_NUMB.

Run the following SQL script:

SQL> CREATE TABLE tabfun_input(arg0 NUMBER, arg1 NUMBER);
SQL> BEGIN
 INSERT INTO tabfun_input VALUES(97, 106);
 INSERT INTO tabfun_input VALUES(67, 3);
 INSERT INTO tabfun_input VALUES(19, 23);
 INSERT INTO tabfun_input VALUES(98, 271);
 INSERT INTO tabfun_input VALUES(83, 281);
END;
/
SQL> SELECT * FROM TABLE(JPUB_PLSQL_WRAPPER.TO_TABLE_add_io(CURSOR(SELECT * FROM
tabfun_input)));

The query calls TO_TABLE_add_io, which shows the input and output of that table
function.

 ARG0 ARG1 ARG0_OUT ARG1_OUT RES
-------- -------- -------- -------- -------------------------
 97 106 203 106 JPUBTBL_NUMBER(203)
 67 3 70 3 JPUBTBL_NUMBER(70)
 19 23 42 23 JPUBTBL_NUMBER(42)
 98 271 369 271 JPUBTBL_NUMBER(369)
 83 281 364 281 JPUBTBL_NUMBER(364)

Publishing Web Services Client into PL/SQL

Using JPublisher 2-23

Publishing Web Services Client into PL/SQL
JPublisher can publish a Web Service Description Language (WSDL) file into a
PL/SQL package, to allow a database user to call a Web service from PL/SQL. This
feature is called as Web services call-out. Given a WSDL file, JPublisher generates a
Java-based Web services client proxy, and further generates PL/SQL wrapper for the
client proxy. The client proxy is generated by the Oracle Database Web services
assembler tool, which is started by JPublisher. Before starting the tool, the following
have to be present in the database:

■ The client proxy generated by JPublisher

■ The PL/SQL wrapper generated by JPublisher

■ The Java stored procedure wrapper generated by JPublisher

■ The Java API for XML-based Remote Procedure Call (JAX-RPC) Web services
client run time or Oracle Simple Object Access Protocol (SOAP) Web services client
run time.

These components can be loaded automatically by JPublisher or manually by the user.
At run time, a Web services call-out works as follows:

1. The user calls the PL/SQL wrapper, which in turn calls the Java stored procedure
wrapper.

2. The Java stored procedure calls the client proxy.

3. The client proxy uses the Web services client run time to call the Web services.

The Java stored procedure wrapper is a required intermediate layer to publish instance
methods of the client proxy class as static methods, because PL/SQL supports only
static methods.

Web services call-out requires the following JAR files, which are included in Database
Web Services Callout Utility 10g release 2:

■ dbwsa.jar

■ dbwsclientws.jar

■ dbwsclientdb101.jar

■ dbwsclientdb102.jar

These files can be downloaded from:

http://download.oracle.com/technology/sample_code/tech/java/jsp/dbws-ca
llout-utility-10131.zip

All the JAR files should be copied to the ORACLE_HOME/sqlj/lib directory. The
dbwsa.jar file is required in the classpath when JPublisher publishes a WSDL file.
On UNIX systems, the jpub command-line script includes the
ORACLE_HOME/sqlj/lib/dbwsa.jar. Therefore, you do not have to include it in
the classpath.

The dbwsclientws.jar file contains webservice client classes, irrespective of the
version of Oracle Database. The dbwsclientdb101.jar file contains webservice
client classes that are specific to Oracle Database 10g Release 1 release. The
dbwsclientdb102.jar file contains webservice client classes that are specific to
Oracle Database 10g Release 2 or Oracle Database 11g.

For Oracle9i Database, only Oracle SOAP Web services client is supported. To load
Oracle SOAP Web services client run time into a pre-9.2 Oracle Database, run the
following command:

Publishing Web Services Client into PL/SQL

2-24 Oracle Database JPublisher User's Guide

% loadjava -u sys -r -v -s -f -grant public \
 ${J2EE_HOME}/lib/activation.jar \
 ${J2EE_HOME}/lib/http_client.jar \
 ${ORACLE_HOME}/lib/xmlparserv2.jar \
 ${ORACLE_HOME}/soap/lib/soap.jar \
 ${J2EE_HOME}/lib/mail.jar
Password: password

The commands are in the format of UNIX systems. However, it gives an idea to
Microsoft Windows users about the JAR files that are required for Oracle SOAP Web
services client. The JAR files involved are distributed with Oracle9i Application Server
releases.

To load Oracle SOAP Web services client into Oracle Database 9.2, run the following
command:

% loadjava -u hr -r -v -f -genmissing
 ${ORACLE_HOME}/j2ee/home/lib/jssl-1_2.jar
 ${ORACLE_HOME}/soap/lib/soap.jar
 ${ORACLE_HOME}/dms/lib/dms.jar
 ${ORACLE_HOME}/j2ee/home/lib/servlet.jar
${ORACLE_HOME}/j2ee/home/lib/ejb.jar
${ORACLE_HOME}/j2ee/home/lib/mail.jar
Password: password

To load Oracle SOAP Web services client into Oracle Database 10g, run the following
command:

% loadjava -u hr -r -f -v -genmissing
${ORACLE_HOME}/soap/lib/soap.jar
${ORACLE_HOME}/lib/dms.jar
${ORACLE_HOME}/jlib/javax-ssl-1_1.jar
${ORACLE_HOME}/j2ee/home/lib/servlet.jar
${ORACLE_HOME}/j2ee/home/lib/mail.jar
${ORACLE_HOME}/j2ee/home/lib/activation.jar
${ORACLE_HOME}/j2ee/home/lib/http_client.jar
${ORACLE_HOME}/j2ee/home/lib/ejb.jar
Password: password

To load Oracle JAX-RPC client into Oracle 10g Release 1 Database, use any one of the
following two options:

■ Load the Web service client into the SYS schema using the following command:

% loadjava -u sys -r -v -f -genmissing -s -grant public dbwsclientws.jar
dbwsclientdb101.jar
Password: password

■ Load the Web service client into a user schema using the following command:

% loadjava -u hr -r -v -f -genmissing dbwsclientws.jar dbwsclientdb101.jar
Password: password

To load Oracle JAX-RPC client into Oracle 12c Release 1 Database or Oracle Database
11g, use any one of the following two options:

Note: If the user has Grant Public privileges, then add -grant
public to the command above to make the loaded classes visible to
other schemas.

Publishing Web Services Client into PL/SQL

Using JPublisher 2-25

■ Load the Web service client into the SYS schema using the following command:

% loadjava -u sys -r -v -f -genmissing -s -grant public dbwsclientws.jar
dbwsclientdb102.jar
Password: password

■ Load the Web service client into a user schema using the command:

% loadjava -u hr -r -v -f -genmissing dbwsclientws.jar dbwsclientdb102.jar
Password: password

Web services call-outs require that JPublisher runs on JDK 1.4 or later. The following
JPublisher options are related to Web services call-outs:

-proxywsdl=url
-httpproxy=host:port
-endpoint=url
-proxyopts=soap|jaxrpc|noload|tabfun. Default: -proxyopts=jaxrpc|tabfun.
-sysuser=user/password

where,

■ The -proxywsdl option specifies the URL or path of a WSDL file, which
describes the Web services being published.

■ The -httpproxy option specifies the HTTP proxy that is used to access the
WSDL file, if the file is outside a firewall.

■ The -endpoint option redirects the client to the specified endpoint, rather than
the endpoint specified in the WSDL file.

■ The -proxyopts=soap setting specifies that the PL/SQL wrapper will use
Oracle SOAP Web services client run time to call the Web services.

The -proxyopts=jaxrpc setting specifies that the PL/SQL wrapper will use
Oracle JAX-RPC Web services client run time to call the Web services.

The -proxyopts=tabfun setting specifies that table functions be generated for
applicable Web services operations.

■ The -sysuser setting is recommended for -proxywsdl. It specifies a database
user with SYS privileges. The -sysuser setting allows JPublisher to assign
appropriate access privileges to run the generated PL/SQL wrappers. The
-sysuser setting also allows JPublisher to load Web services client run time, if
the run time is not present in the database.

For example, assume that a JAX-RPC Web service, called HelloService, is deployed
to the following endpoint:

http://localhost:8888/javacallout/javacallout

The WSDL document for this Web service is at the following location:

Note: If the user has Grant Public privileges, then add -grant
public to the command above to make the loaded classes visible to
other schemas.

See Also: "WSDL Document for Java and PL/SQL Wrapper
Generation" on page 6-42 and "Web Services Endpoint" on page 6-43

Publishing Web Services Client into PL/SQL

2-26 Oracle Database JPublisher User's Guide

http://localhost:8888/javacallout/javacallout?WSDL

The Web service provides an operation called getProperty that takes a Java string
specifying the name of a system property, and returns the value of that property. For
example, getProperty("os.name") may return SunOS.

Based on the WSDL description of the Web service, JPublisher can direct the
generation of a Web service client proxy, and generate Java and PL/SQL wrappers for
the client proxy. Use the following command to perform these functions:

% jpub -user=hr -sysuser=sys/sys_password
 -url=jdbc:oracle:thin:@localhost:1521:orcl
 -proxywsdl=http://localhost:8888/javacallout/javacallout?WSDL
 -package=javacallout -dir=genproxy
Enter hr password: password

The command gives the following output:

genproxy/HelloServiceJPub.java
genproxy/plsql_wrapper.sql
genproxy/plsql_dropper.sql
genproxy/plsql_grant.sql
genproxy/plsql_revoke.sql
Executing genproxy/plsql_wrapper.sql
Executing genproxy/plsql_grant.sql
Loading genproxy/plsql_proxy.jar

The -proxyopts setting directs the generation of the JAX-RPC client proxy and
wrappers, and the use of a table function to wrap the Web service operation. The -url
setting indicates the database, and the -user setting indicates the schema, where
JPublisher loads the generated Java and PL/SQL wrappers. The -sysuser setting
specifies the SYS account that has the privileges to grant permissions to run the
wrapper script.

The plsql_grant.sql and plsql_revoke.sql scripts are generated by
JPublisher. These scripts are used to create the PL/SQL wrapper in the database
schema, grant permission to run it, revoke that permission, and drop the PL/SQL
wrapper from the database schema.

The contents of the WSDL file is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="HelloService"
 targetNamespace="http://oracle.j2ee.ws/javacallout/Hello"
 xmlns:tns="http://oracle.j2ee.ws/javacallout/Hello"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types/>
 <message name="HelloServiceInf_getProperty">
 <part name="String_1" type="xsd:string"/>
 </message>
 <message name="HelloServiceInf_getPropertyResponse">
 <part name="result" type="xsd:string"/>
 </message>
 <portType name="HelloServiceInf">
 <operation name="getProperty" parameterOrder="String_1">
 <input message="tns:HelloServiceInf_getProperty"/>
 <output message="tns:HelloServiceInf_getPropertyResponse"/>
 </operation>

Publishing Web Services Client into PL/SQL

Using JPublisher 2-27

 </portType>
 <binding name="HelloServiceInfBinding" type="tns:HelloServiceInf">
 <operation name="getProperty">
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="http://oracle.j2ee.ws/javacallout/Hello"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 use="encoded"
 namespace="http://oracle.j2ee.ws/javacallout/Hello"/>
 </output>
 <soap:operation soapAction=""/>
 </operation>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 </binding>
 <service name="HelloService">
 <port name="HelloServiceInfPort" binding="tns:HelloServiceInfBinding">
 <soap:address location="/javacallout"/>
 </port>
 </service>
</definitions>

HelloServiceInf in the <message> element is the name of the service bean and
determines the name of the interface that is generated and implemented by the
generated JAX-RPC client proxy stub class. The HelloServiceInf interface has the
following signature:

public interface HelloServiceInf extends java.rmi.Remote
{
 public String getProperty(String prop) throws java.rmi.RemoteException;
}

The method getProperty() corresponds to the getProperty operation specified
in the WSDL document. It returns the value of a specified system property, prop. For
example, specify the property os.version to return the operating system version.

The plsql_wrapper.sql file defines the JPUB_PLSQL_WRAPPER PL/SQL wrapper
package. This package is created for calling the Web service from PL/SQL. It includes
the definition of a table function from the Web service operation getProperty. The
script in the plsql_wrapper.sql file is as follows:

CREATE OR REPLACE TYPE GRAPH_getProperty AS OBJECT(
 p0 VARCHAR2(32767),
 res VARCHAR2(32767)
);
/
CREATE OR REPLACE TYPE GRAPH_TAB_getProperty AS TABLE OF GRAPH_getProperty;
/
-- PL/SQL procedures that invoke webserviecs
CREATE OR REPLACE PACKAGE JPUB_PLSQL_WRAPPER AS
 FUNCTION getProperty(p0 VARCHAR2) RETURN VARCHAR2;
 FUNCTION TO_TABLE_getProperty(cur SYS_REFCURSOR) RETURN GRAPH_TAB_getProperty
PIPELINED;
END JPUB_PLSQL_WRAPPER;
/

Because the -user and -sysuser settings are specified in the JPublisher command
line to publish this Web service, JPublisher will load the generated Java code and

Publishing Web Services Client into PL/SQL

2-28 Oracle Database JPublisher User's Guide

PL/SQL wrapper into the database. Once everything is loaded, you can use the
PL/SQL wrapper to invoke the Web service.

The PL/SQL wrapper consists of two functions: getProperty and
TO_TABLE_getProperty. The getProperty function directly wraps the
getProperty() method in the generated client proxy class. For example, the
following SQL*Plus command uses getProperty to determine the operating system
where the Web service is running:

SQL> SELECT JPUB_PLSQL_WRAPPER.getProperty('os.name') FROM DUAL;
JPUB_PLSQL_WRAPPER.GETPROPERTY('OS.NAME')

SunOS

TO_TABLE_getProperty is a table function based on the getProperty function. It
takes a REF CURSOR as input and returns a table. The schema of the table returned is
defined by GRAPH_getProperty. In this example, TO_TABLE_getProperty is
called with a REF CURSOR obtained from a one-column table of VARCHAR2 data,
where each data item is the name of a system property, such as os.version.
TO_TABLE_getProperty returns a table in which each row contains an item from
the input REF CURSOR, and the result of a getProperty call taking that item as
input. The following code is a sample usage of TO_TABLE_getProperty:

SQL> -- Test Table Function
SQL> CREATE TABLE props (name VARCHAR2(50));
SQL> BEGIN
INSERT INTO props VALUES('os.version');
INSERT INTO props VALUES('java.version');
INSERT INTO props VALUES('file.separator');
INSERT INTO props VALUES('file.encoding.pkg');
INSERT INTO props VALUES('java.vm.info');
END;
/
SQL> SELECT * FROM
TABLE(JPUB_PLSQL_WRAPPER.TO_TABLE_getProperty(CURSOR(SELECT * FROM props)));
P0 RES

os.version 5.8
java.version 1.4.1_03
file.separator /
file.encoding.pkg sun.io
java.vm.info mixed mode

This example creates a one-column table of VARCHAR2, populates it with system
property names, and uses TO_TABLE_getProperty to find out the values of those
system properties. In this example, you can see that the operating system is Sun
Microsystems Solaris 5.8.

Data Type and Java-to-Java Type Mappings 3-1

3
Data Type and Java-to-Java Type Mappings

This chapter discusses the JPublisher support for data type mapping, including a
section on JPublisher styles and style files for Java-to-Java type mappings. These style
files are primarily used to provide Web services support. The chapter contains the
following sections:

■ JPublisher Data Type Mappings

■ Support for PL/SQL Data Types

■ JPublisher Styles and Style Files

JPublisher Data Type Mappings
This section covers the JPublisher functionality for mapping from SQL and PL/SQL to
Java in the following topics:

■ Overview of JPublisher Data Type Mappings

■ SQL and PL/SQL Mappings to Oracle and JDBC Types

■ JPublisher User Type Map and Default Type Map

■ JPublisher Logical Progression for Data Type Mappings

■ Object Attribute Types

■ REF CURSOR Types and Result Sets Mapping

■ Connection in JDBC Mapping

Overview of JPublisher Data Type Mappings
When you use the -builtintypes, -lobtypes, -numbertypes, and -usertypes
type mapping options, you can specify one of the following settings for data type
mappings:

■ oracle

■ jdbc

■ objectjdbc

■ bigdecimal

See Also: "Support for PL/SQL Data Types" on page 3-10

Note: The objectjdbc and bigdecimal settings are for the
-numbertypes options only.

JPublisher Data Type Mappings

3-2 Oracle Database JPublisher User's Guide

These mappings affect the argument and result types that JPublisher uses in the
methods it generates.

The class that JPublisher generates for an object type has the getXXX() and
setXXX() accessor methods for the object attributes. The class that JPublisher
generates for a VARRAY or nested table type has the getXXX() and setXXX()
methods, which access the elements of the array or nested table. When generation of
wrapper methods is enabled, the class that JPublisher generates for an object type or
PL/SQL package has wrapper methods. These wrapper methods invoke server
methods, or stored procedures, of the object type or package. The mapping options
control the argument and result types that these methods use.

The Java Database Connectivity (JDBC) and Object JDBC mappings use familiar Java
types that can be manipulated using standard Java operations. The Oracle mapping is
the most efficient mapping. The oracle.sql types match Oracle internal data types
as closely as possible so that little or no data conversion is required between the Java
and SQL formats. You do not lose any information and have greater flexibility in how
you process and unpack the data. If you are manipulating data or moving data within
the database, then Oracle mappings for standard SQL types are the most convenient
representations. For example, performing SELECT and INSERT operations from one
existing table to another. When data format conversion is necessary, you can use
methods in the oracle.sql.* classes to convert to Java native types.

SQL and PL/SQL Mappings to Oracle and JDBC Types
Table 3–1 lists the mappings from SQL and PL/SQL data types to Java types. You can
use all the supported data types listed in this table as argument or result types for
PL/SQL methods. You can also use a subset of the data types as object attribute types.

The SQL and PL/SQL Data Type column contains all possible data types.

Oracle Mapping column lists the corresponding Java types that JPublisher uses when
all the type mapping options are set to oracle. These types are found in the
oracle.sql package provided by Oracle and are designed to minimize the overhead
incurred when converting Oracle data types to Java types.

The JDBC Mapping column lists the corresponding Java types that JPublisher uses
when all the type mapping options are set to jdbc. For standard SQL data types,
JPublisher uses Java types specified in the JDBC specification. For SQL data types that
are Oracle extensions, JPublisher uses the oracle.sql.* types. When you set the
-numbertypes option to objectjdbc, the corresponding types are the same as in
the JDBC Mapping column, except that primitive Java types, such as int, are replaced
with their object counterparts, such as java.lang.Integer.

A few data types are not directly supported by JPublisher, in particular those types
that pertain only to PL/SQL. You can overcome these limitations by providing
equivalent SQL and Java types, as well as PL/SQL conversion functions between

See Also: "Object Attribute Types" on page 3-7

See Also: Oracle Database JDBC Developer's Guide for more
information about the oracle.sql package

Note: Type correspondences explicitly defined in the JPublisher type
map, such as PL/SQL BOOLEAN to SQL NUMBER to Java boolean, are
not affected by the mapping option settings.

JPublisher Data Type Mappings

Data Type and Java-to-Java Type Mappings 3-3

PL/SQL and SQL representations. The annotations and subsequent sections explain
these conversions further.

Table 3–1 SQL and PL/SQL Data Type to Oracle and JDBC Mapping Classes

SQL and PL/SQL Data Type Oracle Mapping JDBC Mapping

CHAR, CHARACTER, LONG, STRING,
VARCHAR, VARCHAR2

oracle.sql.CHAR java.lang.String

NCHAR, NVARCHAR2 oracle.sql.NCHAR (note 1) oracle.sql.NString (note 1)

NCLOB oracle.sql.NCLOB (note 1) oracle.sql.NCLOB (note 1)

RAW, LONG RAW oracle.sql.RAW byte[]

BINARY_INTEGER, NATURAL,
NATURALN, PLS_INTEGER,
POSITIVE, POSITIVEN, SIGNTYPE,
INT, INTEGER

oracle.sql.NUMBER int

DEC, DECIMAL, NUMBER, NUMERIC oracle.sql.NUMBER java.math.BigDecimal

DOUBLE PRECISION, FLOAT oracle.sql.NUMBER double

SMALLINT oracle.sql.NUMBER int

REAL oracle.sql.NUMBER float

DATE oracle.sql.DATE java.sql.Timestamp

TIMESTAMP

TIMESTAMP WITH TZ

TIMESTAMP WITH LOCAL TZ

oracle.sql.TIMESTAMP

oracle.sql.TIMESTAMPTZ

oracle.sql.TIMESTAMPLTZ

java.sql.Timestamp

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

String (note 2) String (note 2)

ROWID, UROWID oracle.sql.ROWID oracle.sql.ROWID

BOOLEAN boolean (note 3) boolean (note 3)

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

Object types Generated class Generated class

SQLJ object types Java class defined at type creation Java class defined at type creation

OPAQUE types Generated or predefined class
(note 4)

Generated or predefined class (note 4)

RECORD types Through mapping to SQL object
type (note 5)

Through mapping to SQL object type
(note 5)

Nested table, VARRAY Generated class implemented
using oracle.sql.ARRAY

java.sql.Array

Reference to object type Generated class implemented
using oracle.sql.REF

java.sql.Ref

REF CURSOR java.sql.ResultSet java.sql.ResultSet

JPublisher Data Type Mappings

3-4 Oracle Database JPublisher User's Guide

Data Type Mapping Notes The following notes correspond to the entries in the
preceding table:

1. The Java classes oracle.sql.NCHAR, oracle.sql.NCLOB, and
oracle.sql.NString are not part of JDBC but are distributed with the
JPublisher run time. JPublisher uses these classes to represent the NCHAR form of
use of the corresponding classes, oracle.sql.CHAR, oracle.sql.CLOB, and
java.lang.String.

2. Mappings of SQL INTERVAL types to the Java String type are defined in the
JPublisher default type map. Functions from the SYS.SQLJUTL package are used
for the conversions.

3. Mapping of PL/SQL BOOLEAN to SQL NUMBER and Java boolean is defined in
the default JPublisher type map. This process uses conversion functions from the
SYS.SQLJUTL package.

4. Mapping of the SYS.XMLTYPE SQL OPAQUE type to the oracle.xdb.XMLType
Java class is defined in the default JPublisher type map. For other OPAQUE types,
the vendor typically provides a corresponding Java class. In this case, you must
specify a JPublisher type map entry that defines the correspondence between the
SQL OPAQUE type and the corresponding Java wrapper class. If JPublisher
encounters an OPAQUE type that does not have a type map entry, then it generates
a Java wrapper class for that OPAQUE type.

5. To support a PL/SQL RECORD type, JPublisher maps the RECORD type to a SQL
object type and then to a Java type corresponding to the SQL object type.
JPublisher generates two SQL scripts. One script is to create the SQL object type
and to create a PL/SQL package containing the conversion functions between the
SQL type and the RECORD type. The other script is used to drop the SQL type and
the PL/SQL package created by the first script.

6. To support a PL/SQL index-by table type, JPublisher first maps the index-by table
type into a SQL collection type and then maps it into a Java class corresponding to
that SQL collection type. JPublisher generates two SQL scripts. One to create the
SQL collection type and to create a PL/SQL package containing conversion
functions between the SQL collection type and the index-by table type. The other
to drop the collection type and the PL/SQL package created by the first script.

Index-by tables Through mapping to SQL
collection (note 6)

Through mapping to SQL collection
(note 6)

Scalar (numeric or character)

Index-by tables

Through mapping to Java array
(note 7)

Through mapping to Java array
(note 7)

User-defined subtypes Same as for base type Same as for base type

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5

See Also: "Type Mapping Support for OPAQUE Types" on page 3-11

See Also: "Type Mapping Support for PL/SQL RECORD and
Index-By Table Types" on page 3-18

Table 3–1 (Cont.) SQL and PL/SQL Data Type to Oracle and JDBC Mapping Classes

SQL and PL/SQL Data Type Oracle Mapping JDBC Mapping

JPublisher Data Type Mappings

Data Type and Java-to-Java Type Mappings 3-5

7. If you use the JDBC driver to call PL/SQL stored procedures or object methods,
then you have direct support for scalar index-by tables, also known as PL/SQL
TABLE types. In this case, you must use a type map entry for JPublisher that
specifies the PL/SQL scalar index-by table type and a corresponding Java array
type. JPublisher can then automatically publish PL/SQL or object method
signatures that use this scalar index-by type.

JPublisher User Type Map and Default Type Map
JPublisher has a user type map, which is controlled by the -typemap and
-addtypemap options and starts out empty. It also has a default type map, which is
controlled by the -defaulttypemap and -adddefaulttypemap options and starts
with entries such as the following:

jpub.defaulttypemap=SYS.XMLTYPE:oracle.xdb.XMLType
jpub.adddefaulttypemap=BOOLEAN:boolean:INTEGER:
SYS.SQLJUTL.INT2BOOL:SYS.SQLJUTL.BOOL2INT
jpub.adddefaulttypemap=INTERVAL DAY TO SECOND:String:CHAR:
SYS.SQLJUTL.CHAR2IDS:SYS.SQLJUTL.IDS2CHAR
jpub.adddefaulttypemap=INTERVAL YEAR TO MONTH:String:CHAR:
SYS.SQLJUTL.CHAR2IYM:SYS.SQLJUTL.IYM2CHAR

These commands, which include some wraparound lines, indicate mappings between
PL/SQL types, Java types, and SQL types. Where applicable, they also specify
conversion functions to convert between PL/SQL types and SQL types.

JPublisher checks the default type map first. If you attempt in the user type map to
redefine a mapping that is in the default type map, JPublisher generates a warning
message and ignores the redefinition. Similarly, attempts to add mappings through
-adddefaulttypemap or -addtypemap settings that conflict with previous
mappings are ignored and generate warnings.

There are typically two scenarios for using the type maps:

■ Specify type mappings for PL/SQL data types that are unsupported by JDBC.

■ Avoid regenerating a Java class to map to a user-defined type. For example,
assume you have a user-defined SQL object type, STUDENT, and have already
generated a Student class to map to it. If you specify the STUDENT:Student
mapping in the user type map, then JPublisher finds the Student class and uses it
for mapping without regenerating it.

To use custom mappings, it is recommended that you clear the default type map, as
follows:

-defaulttypemap=

Then use the -addtypemap option to put any required mappings into the user type
map.

See Also: "Type Mapping Support for PL/SQL RECORD and
Index-By Table Types" on page 3-18

See Also: "Type Mapping Support for Scalar Index-by Tables" on
page 3-12

See Also: "Type Map Options" on page 6-25

See Also: "Example: Using the Type Map to Avoid Regeneration"

JPublisher Data Type Mappings

3-6 Oracle Database JPublisher User's Guide

The predefined default type map defines a correspondence between the
SYS.XMLTYPE SQL OPAQUE type and the oracle.xdb.XMLType Java wrapper class.
In addition, it maps the PL/SQL BOOLEAN type to the Java boolean type and the SQL
INTEGER type through two conversion functions defined in the SYS.SQLJUTL
package. Also, the default type map provides mappings between the SQL INTERVAL
type and the Java String type.

However, you may prefer mapping the PL/SQL BOOLEAN type to the Java object type
Boolean to capture the SQL NULL values in addition to the true and false values.
You can accomplish this by resetting the default type map, as shown by the following:

-defaulttypemap=BOOLEAN:Boolean:INTEGER:SYS.SQLJUTL.INT2BOOL:SYS.SQLJUTL.BOOL2INT

This changes the designated Java type from boolean to Boolean, as well as
eliminating any other existing default type map entries. The rest of the conversion
remains valid.

Example: Using the Type Map to Avoid Regeneration The following example uses
the JPublisher type map to avoid the mapping of regenerated Java classes. Assume the
following type declarations, noting that the CITY type is an attribute of the TRIP type:

SQL> CREATE TYPE city AS OBJECT (name VARCHAR2(20), state VARCHAR2(10));
/
SQL> CREATE OR REPLACE TYPE trip AS OBJECT (leave DATE, place city);
/

Now assume that you invoke JPublisher as follows:

% jpub -u hr -s TRIP:Trip
Enter hr password: password

The JPublisher output is:

HR.TRIP
HR.CITY

Only TRIP is specified for processing. However, the command produces the source
files City.java, CityRef.java, Trip.java, and TripRef.java, because CITY is
an attribute.

If you want to regenerate the classes for TRIP without regenerating the classes for
CITY, then you can rerun JPublisher as follows:

% jpub -u hr -addtypemap=CITY:City -s TRIP:Trip HR.TRIP
Enter hr password: password

As you can see from the output line, the CITY type is not reprocessed and, therefore,
the City.java and CityRef.java files are not regenerated. This is because of the
addition of the CITY:City relationship to the type map, which informs JPublisher
that the existing City class is to be used for mapping.

JPublisher Logical Progression for Data Type Mappings
To map a given SQL or PL/SQL type to Java, JPublisher uses the following logical
progression:

1. Checks the type maps to see if the mapping is already specified.

2. Checks the predefined Java mappings for SQL and PL/SQL types.

3. Checks whether the data type to be mapped is a PL/SQL RECORD type or an
index-by table type. If it is a PL/SQL RECORD type, JPublisher generates a

JPublisher Data Type Mappings

Data Type and Java-to-Java Type Mappings 3-7

corresponding SQL object type that it can then map to Java. If it is an index-by
table type, JPublisher generates a corresponding SQL collection type that it can
then map to Java.

4. If none of steps 1 through 3 apply, then the data type must be a user-defined type.
JPublisher generates an ORAData or SQLData class to map it according to the
JPublisher option settings.

Object Attribute Types
You can use a subset of the SQL data types in Table 3–1 as object attribute types. The
types that can be used are listed here:

■ CHAR, VARCHAR, VARCHAR2, CHARACTER

■ NCHAR, NVARCHAR2

■ DATE

■ DECIMAL, DEC, NUMBER, NUMERIC

■ DOUBLE PRECISION, FLOAT

■ INTEGER, SMALLINT, INT

■ REAL

■ RAW, LONG RAW

■ CLOB

■ BLOB

■ BFILE

■ NCLOB

■ Object type, OPAQUE type, SQLJ object type

■ Nested table, VARRAY type

■ Object reference type

JPublisher supports the following TIMESTAMP types as object attributes:

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

REF CURSOR Types and Result Sets Mapping
If a PL/SQL stored procedure or function or a SQL query returns a REF CURSOR, then
JPublisher generates a method, by default, to map the REF CURSOR to
java.sql.ResultSet.

In addition, for a SQL query, but not for a REF CURSOR returned by a stored
procedure or function, JPublisher generates a method to map the REF CURSOR to an
array of rows. In this array, each row is represented by a JavaBean instance.

Note: The Oracle JDBC implementation does not support the
TIMESTAMP types.

JPublisher Data Type Mappings

3-8 Oracle Database JPublisher User's Guide

In addition, with a setting of -style=webservices-common, if the following classes
are available in the classpath, then JPublisher generates methods to map the REF
CURSOR to the following types:

■ javax.xml.transform.Source

■ oracle.jdbc.rowset.OracleWebRowSet

■ org.w3c.dom.Document

If required, you must perform the following actions to ensure that JPublisher can find
the classes:

1. Ensure that the libraries translator.jar, runtime12.jar, and ojdbc5.jar
are in the classpath. These files contain JPublisher and SQLJ translator classes,
SQLJ run time classes, and JDBC classes, respectively.

2. Use Java Development Kit (JDK) 1.4, for mapping to Source. This class is not
defined in earlier JDK versions.

3. Add ORACLE_HOME/jdbc/lib/rowset-jsr114.jar to the classpath, for
mapping to OracleWebRowSet.

4. Add ORACLE_HOME/lib/xmlparsev2.jar to the classpath, for mapping to
Document.

Consider the following PL/SQL stored procedure:

TYPE curtype1 IS REF CURSOR RETURN emp%rowtype;
FUNCTION get1 RETURN curtype1;

If the OracleWebRowSet class is found in the classpath during publishing, but
Document and Source are not, then JPublisher generates the following methods for
the get1 function:

public oracle.jdbc.rowset.OracleWebRowSet get1WebRowSet()
 throws java.sql.SQLException;
public java.sql.ResultSet get1() throws java.sql.SQLException;

The names of methods returning Document and Source would be
get1XMLDocument() and get1XMLSource(), respectively.

Disabling Mapping to Source, OracleWebRowSet, or Document
There is currently no JPublisher option to explicitly enable or disable mapping to
Source, OracleWebRowSet, or Document. The only condition in the
webservices-common style file is whether the classes exist in the classpath.
However, you can copy and edit your own style file if you want more control over
how JPublisher maps REF CURSOR. The following code is an excerpt from the

Note:

■ The dependency of having the class in the classpath in order to
generate the mapping is specified by a CONDITION statement in
the style file. The CONDITION statement lists required classes.

■ The webservices9 and webservices10 style files include
webservices-common, but override these mappings. Therefore,
JPublisher will not produce these mappings with a setting of
-style=webservices9 or -style=webservices10.

JPublisher Data Type Mappings

Data Type and Java-to-Java Type Mappings 3-9

webservices-common file that has been copied and edited as an example.
Descriptions of the edits follow the code.

BEGIN_TRANSFORMATION
MAPPING
SOURCETYPE java.sql.ResultSet
TARGETTYPE java.sql.ResultSet
RETURN
%2 = %1;
END_RETURN;
END_MAPPING

MAPPING
#CONDITION oracle.jdbc.rowset.OracleWebRowSet
SOURCETYPE java.sql.ResultSet
TARGETTYPE oracle.jdbc.rowset.OracleWebRowSet
TARGETSUFFIX WebRowSet
RETURN
%2 = null;
if (%1!=null)
{
 %2 = new oracle.jdbc.rowset.OracleWebRowSet();
 %2.populate(%1);
}
END_RETURN
END_MAPPING

#MAPPING
#CONDITION org.w3c.dom.Document oracle.xml.sql.query.OracleXMLQuery
#SOURCETYPE java.sql.ResultSet
#TARGETTYPE org.w3c.dom.Document
#TARGETSUFFIX XMLDocument
#RETURN
#%2 = null;
#if (%1!=null)
%2= (new oracle.xml.sql.query.OracleXMLQuery
(_getConnection(), %1)).getXMLDOM();
#END_RETURN
#END_MAPPING

MAPPING
CONDITION org.w3c.dom.Document oracle.xml.sql.query.OracleXMLQuery
 javax.xml.transform.Source javax.xml.transform.dom.DOMSource
SOURCETYPE java.sql.ResultSet
TARGETTYPE javax.xml.transform.Source
TARGETSUFFIX XMLSource
RETURN
%2 = null;
if (%1!=null)
 %2= new javax.xml.transform.dom.DOMSource
 ((new oracle.xml.sql.query.OracleXMLQuery
 (new oracle.xml.sql.dataset.OracleXMLDataSetExtJdbc(_getConnection(),
 (oracle.jdbc.OracleResultSet) %1))).getXMLDOM());
END_RETURN
END_MAPPING
END_TRANSFORMATION

Assume that you copy this file into myrefcursormaps.properties. There are four
MAPPING sections intended for mapping REF CURSOR to ResultSet,
OracleWebRowSet, Document, and Source according to the SOURCETYPE and

Support for PL/SQL Data Types

3-10 Oracle Database JPublisher User's Guide

TARGETTYPE entries. For this example, lines are commented out using the "#"
character to accomplish the following:

■ The CONDITION statement is commented out for the OracleWebRowSet
mapping. Because of this, JPublisher will generate a method for this mapping
regardless of whether OracleWebRowSet is in the classpath.

■ The entire MAPPING section is commented out for the Document mapping.
JPublisher will not generate a method for this mapping.

Run JPublisher with the following options to use your custom mappings:

% jpub -u hr -style=myrefcursormaps -s MYTYPE:MyType
Enter hr password: password

Connection in JDBC Mapping
With the -usertypes=jdbc setting, JPublisher generates SQLData for a SQL object
type. The underlying JDBC connection for a SQLData instance is not automatically set
by the JDBC driver. Therefore, before accessing attributes in a SQLData instance, you
must set a JDBC connection using the setConnectionContext() method.

Consider Address is a SQLData class generated by JPublisher with
-usertypes=jdbc. The following code segment accesses the attribute of an
Address instance. Note that the setConnectionContext call explicitly initializes
the underlying JDBC connection.

...
ResultSet rset = stmt.executeQuery();
Address address = (Address) rset.getObject(1);
address.setConnectionContext(new sqlj.runtime.ref.DefaultContext(connection));
String addr = address.getAddress();
...

On the other hand, for ORAData types that JPublisher generates with the
-usertypes=oracle setting or by default, connection initialization is not required.
The underlying JDBC connection for ORAData is already assigned at the time it is read
from ResultSet.

Support for PL/SQL Data Types
There are three scenarios if JPublisher encounters a PL/SQL stored procedure or
function, including method of a SQL object type, which uses a PL/SQL type that is
unsupported by JDBC:

■ If you specify a mapping for the PL/SQL type in the default type map or user type
map, then JPublisher uses that mapping.

■ If there is no mapping in the type maps, and the PL/SQL type is a RECORD type or
an index-by table type, then JPublisher generates a corresponding SQL type that

Note: Other -usertypes settings do not require setting the
connection, as described in the preceding code example.

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-11

JDBC supports. For a PL/SQL RECORD type, JPublisher generates a SQL object
type to bridge between the RECORD type and Java. For an index-by table type,
JPublisher generates a SQL collection type for the bridge.

■ If neither of the first two scenarios applies, then JPublisher issues a warning
message and uses <unsupported type> in the generated code to represent the
unsupported PL/SQL type.

The following sections discuss further details of JPublisher type mapping features for
PL/SQL types unsupported by JDBC:

■ Type Mapping Support for OPAQUE Types

■ Type Mapping Support for Scalar Index-by Tables

■ Type Mapping Support Through PL/SQL Conversion Functions

■ Type Mapping Support for PL/SQL RECORD and Index-By Table Types

■ Direct Use of PL/SQL Conversion Functions Versus Use of Wrapper Functions

■ Other Alternatives for Data Types Unsupported by JDBC

Type Mapping Support for OPAQUE Types
This section describes JPublisher type mapping support for SQL OPAQUE types in
general.

The Oracle JDBC and SQLJ implementations support SQL OPAQUE types published as
Java classes implementing the oracle.sql.ORAData interface. Such classes must
contain the following public, static fields and methods:

public static String _SQL_NAME = "SQL_name_of_OPAQUE_type";
public static int _SQL_TYPECODE = OracleTypes.OPAQUE;
public static ORADataFactory getORADataFactory() { ... }

If you have a Java wrapper class to map to a SQL OPAQUE type, and the class meets
this requirement, then you can specify the mapping through the JPublisher user type
map. Use the -addtypemap option with the following syntax to append the mapping
to the user type map:

-addtypemap=sql_opaque_type:java_wrapper_class

In Oracle Database 12c, the SYS.XMLTYPE SQL OPAQUE type is mapped to the
oracle.xdb.XMLType Java class through the JPublisher default type map. You could
accomplish the same thing explicitly through the user type map, as follows:

-addtypemap=SYS.XMLTYPE:oracle.xdb.XMLType

Whenever JPublisher encounters a SQL OPAQUE type for which no type
correspondence has been provided, it publishes a Java wrapper class. Consider the
following SQL type defined in the HR schema:

CREATE TYPE X_TYP AS OBJECT (xml SYS.XMLTYPE);

The following command publishes X_TYP as a Java class XTyp:

Note: If you want JPublisher to generate wrapper classes for SQL
OPAQUE types, then you must use an Oracle9i Database release 2 (9.2)
or later installation and JDBC driver.

Support for PL/SQL Data Types

3-12 Oracle Database JPublisher User's Guide

% jpub -u hr -s X_TYP:XTyp
Enter hr password: password

By default, the xml attribute is published using oracle.xdb.XMLType, which is the
predefined type mapping for SYS.XMLTYPE. If you clear the JPublisher default type
map, then a wrapper class, Xmltype, will automatically be generated for the
SYS.XMLTYPE attribute. You can verify this by invoking JPublisher as follows:

% jpub -u hr -s X_TYP:XTyp -defaulttypemap=
Enter hr password: password

The -defaulttypemap option is for setting the JPublisher default type map. Giving
it no value, as in the preceding example, clears it.

Type Mapping Support for Scalar Index-by Tables
The term scalar PL/SQL index-by table refers to a PL/SQL index-by table with
elements of VARCHAR and numerical types. Starting 10g Release 2, JPublisher can map
a simple PL/SQL index-by table into a Java array, as an alternative to mapping
PL/SQL index-by tables into custom JDBC types. The option plsqlindextable
specifies how a simple PL/SQL index-by table is mapped.

-plsqlindextable=custom|array|int

If -plsqlindextable=custom is set, all indexby tables are mapped to custom JDBC
types, such as SQLData, CustomDatum, or ORAData. If -plsqlindextable=array
or -plsqlindextable=int is set, a simple index-by table will be mapped to a Java
array. With -plsqlindextable=int, the int value specifies the array capacity,
which is 32768 by default. The default setting for this option is custom.

Consider the following PL/SQL package:

CREATE OR REPLACE PACKAGE indexbytable_package AS
 TYPE index_tbl1 IS TABLE OF VARCHAR2(111) INDEX BY binary_integer;
 TYPE index_tbl2 IS TABLE OF NUMBER INDEX BY binary_integer;
 TYPE varray_tbl3 IS VARRAY(100) OF VARCHAR2(20);
 TYPE nested_tbl4 IS TABLE OF VARCHAR2(20);
 FUNCTION echo_index_tbl1(a index_tbl1) RETURN index_tbl1;
 FUNCTION echo_index_tbl2(a index_tbl2) RETURN index_tbl2;
 FUNCTION echo_varray_tbl3(a varray_tbl3) RETURN varray_tbl3;
 FUNCTION echo_nested_tbl4(a nested_tbl4) RETURN nested_tbl4;
END;
/

Run the following command:

% jpub -u hr -sql=indexbytable_package:IndexbyTablePackage#IndexbyTableIntf
-plsqlindextable=32
Enter hr password: password

The -plsqlindextable=32 setting specifies that simple index-by tables are mapped
to Java arrays, with a capacity of 32. The following interface is generated in
IndexbyTableIntf.java:

public interface IndexbyTableIntf
{
 public String[] echoIndexTbl1(String[] a);

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5 and "Type Map Options" on page 6-25

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-13

 public java.math.BigDecimal[] echoIndexTbl2(java.math.BigDecimal[] a);
 public IndexbytableintfVarrayTbl3 echoVarrayTbl4(IndexbytableintfVarrayTbl3 a);
 public IndexbytableintfNestedTbl4 echoVarrayTbl4(IndexbytableintfNestedTbl4 a);
}

In the generated code, the simple index-by table types, index_tbl1 and index_tb2,
are mapped to String[] and BigDecimal[] respectively. The nested table and
varray table, however, are still mapped to custom JDBC types, because they are not
index-by tables and their mappings are not affected by the -plsqlindextable
setting.

The limitation of mapping PL/SQL index-by table to an array is that the table must be
indexed by integer. If a PL/SQL package contains both tables indexed by integer and
by VARCHAR, you cannot use the setting -plsqlindexbytable=array or
-plsqlindexbytable=int. Otherwise the mapping for the table indexed by
VARCHAR will encounter run-time errors. Instead, one must use
-plsqlindexbytable=custom.

Mapping of the index-by table elements follows the JDBC type mappings. For
example, with JDBC mapping, SMALLINT is mapped to the Java int type. Therefore,
an index-by table of SMALLINT is mapped to int[]. The
-plsqlindexbytable=array or -plsqlindexbytable=int setting will be
ignored if Oracle mappings are turned on for numbers, that is,
-numbertypes=oracle. The reason is that the Java array mapped to the index-by
table must have string or numerical Java types as elements, while Oracle mappings
map SQL numbers into oracle.sql types.

Oracle JDBC drivers directly support PL/SQL scalar index-by tables with numeric or
character elements. An index-by table with numeric elements can be mapped to the
following Java array types:

■ int[]

■ double[]

■ float[]

■ java.math.BigDecimal[]

■ oracle.sql.NUMBER[]

An index-by table with character elements can be mapped to the following Java array
types:

■ String[]

■ oracle.sql.CHAR[]

In the following circumstances, you must convey certain information for an index-by
table type, as described:

■ Whenever you use the index-by table type in an OUT or IN OUT parameter, you
must specify the maximum number of elements, which is otherwise optional. You
can specify the maximum number of elements using the customary syntax for Java
array allocation. For example, you could specify int[100] to denote a type that
can accommodate up to 100 elements or oracle.sql.CHAR[20] for up to 20
elements.

■ For index-by tables with character elements, you can optionally specify the
maximum size of an individual element, in bytes. This setting is defined using the
SQL-like size syntax. For example, for an index-by table used for IN arguments,
you could specify String[](30). You could also specify

Support for PL/SQL Data Types

3-14 Oracle Database JPublisher User's Guide

oracle.sql.CHAR[20](255) for an index-by table of maximum length 20, the
elements of which will not exceed 255 bytes each.

Use the JPublisher -addtypemap option to add instructions to the user type map to
specify correspondences between PL/SQL types, which are scalar index-by tables, and
the corresponding Java array types. The size hints that are given using the syntax
outlined earlier are embedded into the generated SQLJ class and thus conveyed to
JDBC at run time.

As an example, consider the following code fragment from the definition of the
INDEXBY PL/SQL package in the HR schema. Assume this is available in a file called
indexby.sql.

CREATE OR REPLACE PACKAGE indexby AS

-- jpub.addtypemap=HR.INDEXBY.VARCHAR_ARY:String[1000](4000)
-- jpub.addtypemap=HR.INDEXBY.INTEGER_ARY:int[1000]
-- jpub.addtypemap=HR.INDEXBY.FLOAT_ARY:double[1000]

 TYPE varchar_ary IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;
 TYPE integer_ary IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
 TYPE float_ary IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

 FUNCTION get_float_ary RETURN float_ary;
 PROCEDURE pow_integer_ary(x integer_ary, y OUT integer_ary);
 PROCEDURE xform_varchar_ary(x IN OUT varchar_ary);

END indexby;
/
CREATE OR REPLACE PACKAGE BODY indexby IS ...
/

The following are the required -addtypemap directives for mapping the three
index-by table types:

-addtypemap=HR.INDEXBY.VARCHAR_ARY:String[1000](4000)
-addtypemap=HR.INDEXBY.INTEGER_ARY:int[1000]
-addtypemap=HR.INDEXBY.FLOAT_ARY:double[1000]

Note that depending on the operating system shell you are using, you may have to
quote options that contain square brackets [...] or parentheses (...). You can avoid
this by placing such options into a JPublisher properties file, as follows:

jpub.addtypemap=HR.INDEXBY.VARCHAR_ARY:String[1000](4000)
jpub.addtypemap=HR.INDEXBY.INTEGER_ARY:int[1000]
jpub.addtypemap=HR.INDEXBY.FLOAT_ARY:double[1000]

Additionally, as a feature of convenience, JPublisher directives in a properties file are
recognized when placed behind a "--" prefix (two dashes), whereas any entry that
does not start with "jpub." or with "-- jpub." is ignored. So, you can place
JPublisher directives into SQL scripts and reuse the same SQL scripts as JPublisher
properties files. Thus, after invoking the indexby.sql script to define the INDEXBY
package, you can now run JPublisher to publish this package as a Java class, IndexBy,
as follows:

% jpub -u hr -s INDEXBY:IndexBy -props=indexby.sql
Enter hr password: password

See Also: "Properties File Structure and Syntax" on page 6-50 and
"Additional Entry to the User Type Map" on page 6-26

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-15

As mentioned previously, you can use this mapping of scalar index-by tables only with
Oracle JDBC drivers. If you are using another driver or if you want to create
driver-independent code, then you must define SQL types that correspond to the
index-by table types, as well as defining conversion functions that map between the
two.

Type Mapping Support Through PL/SQL Conversion Functions
This section discusses the mechanism that JPublisher uses for supporting PL/SQL
types in Java code, through PL/SQL conversion functions that convert between each
PL/SQL type and a corresponding SQL type to allow access by JDBC.

In general, Java programs do not support the binding of PL/SQL-specific types. The
only way you can use such types from Java is to use PL/SQL code to map them to SQL
types, and then access these SQL types from Java. However, one exception is the scalar
index-by table type.

JPublisher makes this task more convenient through the use of its type maps. For a
particular PL/SQL type, specify the following information in a JPublisher type map
entry:

■ Name of the PL/SQL type, typically of the form:

SCHEMA.PACKAGE.TYPE

■ Name of the corresponding Java wrapper class

■ Name of the SQL type that corresponds to the PL/SQL type

You must be able to directly map this type to the Java wrapper type. For example,
if the SQL type is NUMBER, then the corresponding Java type could be int,
double, Integer, Double, java.math.BigDecimal, or
oracle.sql.NUMBER. If the SQL type is an object type, then the corresponding
Java type would be an object wrapper class that implements the
oracle.sql.ORAData or java.sql.SQLData interface. The object wrapper
class is typically generated by JPublisher.

■ Name of a PL/SQL conversion function that maps the SQL type to the PL/SQL
type

■ Name of a PL/SQL conversion function that maps the PL/SQL type to the SQL
type

The -addtypemap specification for this has the following form:

-addtypemap=plsql_type:java_type:sql_type:sql_to_plsql_fun:plsql_to_sql_fun

As an example, consider a type map entry for supporting the PL/SQL BOOLEAN type.
It consists of the following specifications:

■ Name of the PL/SQL type: BOOLEAN

■ Specification to map it to Java boolean

■ Corresponding SQL type: INTEGER

See Also: "Type Mapping Support for PL/SQL RECORD and
Index-By Table Types" on page 3-18

See Also: "Type Map Options" on page 6-25

Support for PL/SQL Data Types

3-16 Oracle Database JPublisher User's Guide

JDBC considers boolean values as special numeric values.

■ Name of the PL/SQL function that maps from SQL to PL/SQL: INT2BOOL

The code for the function is:

FUNCTION int2bool(i INTEGER) RETURN BOOLEAN IS
BEGIN IF i IS NULL THEN RETURN NULL;
 ELSE RETURN i<>0;
 END IF;
END int2bool;

■ Name of the PL/SQL function that maps from PL/SQL to SQL: BOOL2INT

The code for the function is:

FUNCTION bool2int(b BOOLEAN) RETURN INTEGER IS
BEGIN IF b IS NULL THEN RETURN NULL;
 ELSIF b THEN RETURN 1;
 ELSE RETURN 0;
 END IF;
END bool2int;

You can put all this together in the following type map entry:

-addtypemap=BOOLEAN:boolean:INTEGER:INT2BOOL:BOOL2INT

Such a type map entry assumes that the SQL type, the Java type, and both conversion
functions have been defined in SQL, Java, and PL/SQL, respectively. Note that there is
already an entry for PL/SQL BOOLEAN in the JPublisher default type map. If you want
to try the preceding type map entry, you will have to override the default type map.
You can use the JPublisher -defaulttypemap option to accomplish this, as follows:

% jpub -u hr -s SYS.SQLJUTL:SQLJUtl
-defaulttypemap=BOOLEAN:boolean:INTEGER:INT2BOOL:BOOL2INT
Enter hr password: password

Be aware that under some circumstances, PL/SQL wrapper functions are also created
by JPublisher. Each wrapper function wraps a stored procedure that uses PL/SQL
types. It calls this original stored procedure and processes its PL/SQL input or output
through the appropriate conversion functions so that only the corresponding SQL
types are exposed to Java. The following JPublisher options control how JPublisher
creates code for invocation of PL/SQL stored procedures that use PL/SQL types,
including the use of conversion functions and possibly the use of wrapper functions:

Note:

■ In some cases, such as with INT2BOOL and BOOL2INT in the
preceding example, JPublisher has conversion functions that
are predefined, typically in the SYS.SQLJUTL package. In
other cases, such as for RECORD types and index-by table types,
JPublisher generates conversion functions during execution.

■ Although this manual describes conversions as mapping
between SQL and PL/SQL types, there is no intrinsic restriction
to PL/SQL in this approach. You could also map between
different SQL types. In fact, this is done in the JPublisher
default type map to support SQL INTERVAL types, which are
mapped to VARCHAR2 values and back.

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-17

■ -plsqlpackage=plsql_package

This option determines the name of the PL/SQL package into which JPublisher
generates the PL/SQL conversion functions: a function to convert each
unsupported PL/SQL type to the corresponding SQL type and a function to
convert from each corresponding SQL type back to the PL/SQL type. Optionally,
depending on how you set the -plsqlmap option, the package also contains
wrapper functions for the original stored procedures, with each wrapper function
invoking the appropriate conversion function.

If you do not specify a package name, then JPublisher uses
JPUB_PLSQL_WRAPPER.

■ -plsqlfile=plsql_wrapper_script,plsql_dropper_script

This option determines the name of the wrapper script and dropper script that
JPublisher creates. The wrapper script creates necessary SQL types that map to
unsupported PL/SQL types and also creates the PL/SQL package. The dropper
script drops these SQL types and the PL/SQL package.

If the files already exist, then they will be overwritten. If you do not specify any
file names, then JPublisher will write to the files named plsql_wrapper.sql
and plsql_dropper.sql.

■ -plsqlmap=flag

This option specifies whether JPublisher generates wrapper functions for stored
procedures that use PL/SQL types. Each wrapper function calls the corresponding
stored procedure and the appropriate PL/SQL conversion functions for PL/SQL
input or output of the stored procedure. Only the corresponding SQL types are
exposed to Java. The flag setting can be any of the following:

– true

This is the default setting. JPublisher generates PL/SQL wrapper functions
only as needed. For any given stored procedure, if the Java code to call it and
convert its PL/SQL types directly is simple enough, and if PL/SQL types are
used only as IN parameters or for the function return, then the generated code
calls the stored procedure directly instead. The code then processes the
PL/SQL input or output through the appropriate conversion functions.

If a PL/SQL type is used as an OUT or IN OUT parameter, then wrapper
functions are required, because conversions between PL/SQL and SQL
representations may be necessary either before or after calling the original
stored procedure.

– false

JPublisher does not generate PL/SQL wrapper functions. If it encounters a
PL/SQL type in a signature that cannot be supported by a direct call and
conversion, then it skips the generation of Java code for the particular stored
procedure.

– always

JPublisher generates a PL/SQL wrapper function for every stored procedure
that uses a PL/SQL type. This setting is useful for generating a proxy PL/SQL
package that complements an original PL/SQL package, providing
JDBC-accessible signatures for those functions or procedures that were not
accessible through JDBC in the original package.

Support for PL/SQL Data Types

3-18 Oracle Database JPublisher User's Guide

Type Mapping Support for PL/SQL RECORD and Index-By Table Types
JPublisher automatically publishes a PL/SQL RECORD type whenever it publishes a
PL/SQL stored procedure or function that uses that type as an argument or return
type. The same is true for PL/SQL index-by table types. This is the only way that a
RECORD type or index-by table type can be published. There is no way to explicitly
request any such types to be published through JPublisher option settings.

The following sections demonstrate JPublisher support for PL/SQL RECORD types and
index-by table types:

■ Sample Package for RECORD Type and Index-By Table Type Support

■ Support for RECORD Types

■ Support for Index-By Table Types

Sample Package for RECORD Type and Index-By Table Type Support
The following PL/SQL package is used to illustrate JPublisher support for PL/SQL
RECORD and index-by table types:

CREATE OR REPLACE PACKAGE company IS
 TYPE emp_rec IS RECORD (empno NUMBER, ename VARCHAR2(10));
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY binary_integer;
 PROCEDURE set_emp_rec(er emp_rec);
 FUNCTION get_emp_rec(empno number) RETURN emp_rec;
 FUNCTION get_emp_tbl RETURN emp_tbl;
END;

This package defines a PL/SQL RECORD type, EMP_REC, and a PL/SQL index-by table
type, EMP_TBL. Use the following command to publish the COMPANY package:

% jpub -u hr -s COMPANY:Company -plsqlpackage=WRAPPER1
 -plsqlfile=wrapper1.sql,dropper1.sql
Enter hr password: password

The JPublisher output is:

HR.COMPANY
HR."COMPANY.EMP_REC"
HR."COMPANY.EMP_TBL"

See Also: "Direct Use of PL/SQL Conversion Functions Versus Use
of Wrapper Functions" on page 3-20 and "PL/SQL Code Generation
Options" on page 6-37

Note: The following are limitations to the JPublisher support for
PL/SQL RECORD and index-by table types:

■ An intermediate wrapper layer is required to map a RECORD or
index-by-table argument to a SQL type that JDBC can support.
In addition, JPublisher cannot fully support the semantics of
index-by tables. An index-by table is similar in structure to a
Java hashtable, but information is lost when JPublisher maps
this to a SQL TABLE type.

■ If you use the JDBC OCI driver and require only the publishing
of scalar index-by tables, then you can use the direct mapping
between Java and these types.

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-19

J2T-138, NOTE: Wrote PL/SQL package WRAPPER1 to file wrapper1.sql.
Wrote the dropping script to file dropper1.sql

In this example, JPublisher generates Company.java for the Java wrapper class for
the COMPANY package, as well as the following SQL and Java entities:

■ The wrapper1.sql script that creates the SQL types corresponding to the
PL/SQL RECORD and index-by table types, and also creates the conversion
functions between the SQL types and the PL/SQL types

■ The dropper1.sql script that removes the SQL types and conversion functions
created by wrapper1.sql

■ The CompanyEmpRec.java source file for the Java wrapper class for the SQL
object type that is generated for the PL/SQL RECORD type

■ The CompanyEmpTbl.java source file for the Java wrapper class for the SQL
collection type that is generated for the PL/SQL index-by table type

Support for RECORD Types
This section continues the example from Sample Package for RECORD Type and
Index-By Table Type Support. For the PL/SQL RECORD type, EMP_REC, JPublisher
generates the corresponding COMPANY_EMP_REC SQL object type. JPublisher also
generates the conversion functions between the two. In this example, the following is
generated in wrapper1.sql for EMP_REC:

CREATE OR REPLACE TYPE COMPANY_EMP_REC AS OBJECT (
 EMPNO NUMBER(22),
 ENAME VARCHAR2(10)
);
/
-- Declare package containing conversion functions between SQL and PL/SQL types
CREATE OR REPLACE PACKAGE WRAPPER1 AS
 -- Declare the conversion functions the PL/SQL type COMPANY.EMP_REC
 FUNCTION PL2COMPANY_EMP_REC(aPlsqlItem COMPANY.EMP_REC)
 RETURN COMPANY_EMP_REC;
 FUNCTION COMPANY_EMP_REC2PL(aSqlItem COMPANY_EMP_REC)
 RETURN COMPANY.EMP_REC;
END WRAPPER1;
/

In addition, JPublisher publishes the COMPANY_EMP_REC SQL object type into the
CompanyEmpRec.java Java source file.

Once the PL/SQL RECORD type is published, you can add the mapping to the type
map. The following is an entry in a sample JPublisher properties file,
done.properties:

jpub.addtypemap=HR.COMPANY.EMP_REC:CompanyEmpRec:COMPANY_EMP_REC:
WRAPPER1.COMPANY_EMP_REC2PL:WRAPPER1.PL2COMPANY_EMP_REC

Use this type map entry whenever you publish a package or type that refers to the
RECORD type, EMP_REC. For example, the following JPublisher invocation uses
done.properties with this type map entry:

% jpub -u hr -p done.properties -s COMPANY -plsqlpackage=WRAPPER2
 -plsqlfile=wrapper2.sql,dropper2.sql
Enter hr password: password

The JPublisher output is:

Support for PL/SQL Data Types

3-20 Oracle Database JPublisher User's Guide

HR.COMPANY
HR."COMPANY.EMP_TBL"
J2T-138, NOTE: Wrote PL/SQL package WRAPPER2 to file wrapper2.sql.
Wrote the dropping script to file dropper2.sql

Support for Index-By Table Types
This section continues the example from Sample Package for RECORD Type and
Index-By Table Type Support.

To support an index-by table type, a SQL collection type must be defined that permits
conversion to and from the PL/SQL index-by table type. JPublisher also supports
PL/SQL nested tables and VARRAYs in the same fashion. Therefore, JPublisher
generates the same code for the following three definitions of EMP_TBL:

TYPE emp_tbl IS TABLE OF emp_rec INDEX BY binary_integer;
TYPE emp_tbl IS TABLE OF emp_rec;
TYPE emp_tbl IS VARRAY OF emp_rec;

For the PL/SQL index-by table type EMP_TBL, JPublisher generates a SQL collection
type, and conversion functions between the index-by table type and the SQL collection
type.

In addition to what was shown for the RECORD type earlier, JPublisher generates the
following:

-- Declare the SQL type for the PL/SQL type COMPANY.EMP_TBL
CREATE OR REPLACE TYPE COMPANY_EMP_TBL AS TABLE OF COMPANY_EMP_REC;
/
-- Declare package containing conversion functions between SQL and PL/SQL types
CREATE OR REPLACE PACKAGE WRAPPER1 AS
 -- Declare the conversion functions for the PL/SQL type COMPANY.EMP_TBL
 FUNCTION PL2COMPANY_EMP_TBL(aPlsqlItem COMPANY.EMP_TBL)
 RETURN COMPANY_EMP_TBL;
 FUNCTION COMPANY_EMP_TBL2PL(aSqlItem COMPANY_EMP_TBL)
 RETURN COMPANY.EMP_TBL;
...
END WRAPPER1;

JPublisher further publishes the SQL collection type into CompanyEmpTbl.java.

As with a PL/SQL RECORD type, once a PL/SQL index-by table type is published, the
published result, including the Java wrapper classes, the SQL collection type, and the
conversion functions, can be used in the future for publishing PL/SQL packages
involving that PL/SQL index-by table type. For example, if you add the following
entry into a properties file that you use in invoking JPublisher, say
done.properties, then JPublisher will use the provided type map and avoid
republishing that index-by table type:

jpub.addtypemap=HR.COMPANY.EMP_TBL:CompanyEmpTbl:COMPANY_EMP_TBL:
WRAPPER1.COMPANY_EMP_TBL2PL:WRAPPER1.PL2COMPANY_EMP_TBL

Direct Use of PL/SQL Conversion Functions Versus Use of Wrapper Functions
In generating Java code to invoke a stored procedure that uses a PL/SQL type,
JPublisher can use either of the following modes of operation:

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5

Support for PL/SQL Data Types

Data Type and Java-to-Java Type Mappings 3-21

■ Invoke the stored procedure directly, which processes the PL/SQL input or output
through the appropriate conversion functions.

■ Invoke a PL/SQL wrapper function, which in turn calls the stored procedure and
processes its PL/SQL input or output through the appropriate conversion
functions. The wrapper function that is generated by JPublisher uses the
corresponding SQL types for input or output.

The -plsqlmap option determines whether JPublisher uses the first mode, the second
mode, or possibly either mode, depending on circumstances.

As an example, consider the HR.COMPANY.GET_EMP_TBL PL/SQL stored procedure
that returns the EMP_TBL PL/SQL index-by table type. Assume that the COMPANY
package, introduced in "Sample Package for RECORD Type and Index-By Table Type
Support" on page 3-18, is processed by JPublisher through the following command:

% jpub -u hr -s COMPANY:Company -plsqlpackage=WRAPPER1
 -plsqlfile=wrapper1.sql,dropper1.sql -plsqlmap=false
Enter hr password: password

The JPublisher output is:

HR.COMPANY
HR."COMPANY.EMP_REC"
HR."COMPANY.EMP_TBL"
J2T-138, NOTE: Wrote PL/SQL package WRAPPER1 to file wrapper1.sql.
Wrote the dropping script to file dropper1.sql

With this command, JPublisher creates the following:

■ SQL object type COMPANY_EMP_REC to map to the PL/SQL RECORD type
EMP_REC

■ SQL collection type COMPANY_EMP_TBL to map to the PL/SQL index-by table
type EMP_TBL

■ Java classes to map to COMPANY, COMPANY_EMP_REC, and COMPANY_EMP_TBL

■ PL/SQL package WRAPPER1, which includes the PL/SQL conversion functions to
convert between the PL/SQL index-by table type and the SQL collection type

In this example, assume that the conversion function PL2COMPANY_EMP_TBL converts
from the PL/SQL EMP_TBL type to the SQL COMPANY_EMP_TBL type. Because of the
setting -plsqlmap=false, no wrapper functions are created. The stored procedure is
called with the following JDBC statement in generated Java code:

conn.prepareOracleCall =
("BEGIN :1 := WRAPPER1.PL2COMPANY_EMP_TBL(HR.COMPANY.GET_EMP_TBL()) \n; END;");

HR.COMPANY.GET_EMP_TBL is called directly, with its EMP_TBL output being
processed through the PL2COMPANY_EMP_TBL conversion function to return the
desired COMPANY_EMP_TBL SQL type.

By contrast, if you run JPublisher with the setting -plsqlmap=always, then
WRAPPER1 also includes a PL/SQL wrapper function for every PL/SQL stored
procedure that uses a PL/SQL type. In this case, for any given stored procedure, the
generated Java code calls the wrapper function instead of the stored procedure. The
wrapper function, in this example WRAPPER1.GET_EMP_TBL, calling the original
stored procedure and processing its output through the conversion function is as
follows:

See Also: "Generation of PL/SQL Wrapper Functions" on page 6-38

JPublisher Styles and Style Files

3-22 Oracle Database JPublisher User's Guide

FUNCTION GET_EMP_TBL()
 BEGIN
 RETURN WRAPPER1.PL2COMPANY_EMP_TBL(HR.COMPANY.GET_EMP_TBL())
 END;

In the generated Java code, the JDBC statement calling the wrapper function is:

conn.prepareOracleCall("BEGIN :1=HR.WRAPPER1.GET_EMP_TBL() \n; END;");

If -plsqlmap=true, then JPublisher uses direct calls to the original stored procedure
wherever possible. However, in the case of any stored procedure for which the Java
code for direct invocation and conversion is too complex or any stored procedure that
uses PL/SQL types as OUT or IN OUT parameters, JPublisher generates a wrapper
function and calls that function in the generated code.

Other Alternatives for Data Types Unsupported by JDBC
The preceding sections describe the mechanisms that JPublisher employs to access
PL/SQL types unsupported by JDBC. As an alternative to using JPublisher in this way,
you can try one of the following:

■ Rewrite the PL/SQL method to avoid using the type

■ Write an anonymous block that does the following:

– Converts input types that JDBC supports into the input types used by the
PL/SQL stored procedure

– Converts output types used by the PL/SQL stored procedure into output
types that JDBC supports

JPublisher Styles and Style Files
JPublisher style files allow you to specify Java-to-Java type mappings. This is to ensure
that generated classes can be used in Web services. As an example, CLOB types, such as
java.sql.Clob and oracle.sql.CLOB, cannot be used in Web services, but the
data can be used if it is converted to a type that is supported by Web services, such as
java.lang.String. JPublisher must generate user subclasses to implement its use
of style files and Java-to-Java type transformations.

Typically, style files are provided by Oracle, but there may be situations in which you
may want to edit or create your own.

The following sections discuss features and usage of styles and style files:

■ Style File Specifications and Locations

■ Style File Format

■ Summary of Key Java-to-Java Type Mappings in Oracle Style Files

■ Use of Multiple Style Files

Style File Specifications and Locations
Use the JPublisher -style option to specify the base name of a style file:

-style=stylename

Based on the stylename you specify, JPublisher looks for a style file as follows, and
uses the first file that it finds:

JPublisher Styles and Style Files

Data Type and Java-to-Java Type Mappings 3-23

1. It looks for the following resource in the classpath:

/oracle/jpub/mesg/stylename.properties

2. It takes stylename as a resource name, possibly qualified, and looks for the
following in the classpath:

/stylename-dir/stylename-base.properties

3. It takes stylename as a name, possibly qualified, and looks for the following file
in the current directory:

stylename.properties

In this case, stylename can optionally include a directory path. If you use the
setting -style=mydir/foo, for example, then JPublisher looks for
mydir/foo.properties relative to the current directory.

If no matching file is found, JPublisher generates an exception.

As an example of the first scenario, if the resource
/oracle/jpub/mesg/webservices.properties exists in
ORACLE_HOME/sqlj/lib/translator.jar and translator.jar is found in the
classpath, then the -style=webservices setting uses
/oracle/jpub/mesg/webservices.properties from translator.jar, even
if there is a webservices.properties file in the current directory.

However, if you specify -style=mystyle and a mystyle.properties resource is
not found in /oracle/jpub/mesg, but there is a mystyle.properties file in the
current directory, then that is used.

Style File Format
The key portion of a style file is the TRANSFORMATION section. This section comprises
everything between the TRANSFORMATION tag and END_TRANSFORMATION tag. It
describes the type transformations, or Java-to-Java mappings, to be applied to types
used for object attributes or in method signatures.

See Also: "Style File for Java-to-Java Type Mappings" on page 6-24

Note: Oracle currently provides three style files:

/oracle/jpub/mesg/webservices-common.properties
/oracle/jpub/mesg/webservices10.properties
/oracle/jpub/mesg/webservices9.properties

These are in the translator.jar file, which must be included in
your classpath. Each file maps Oracle JDBC types to Java types
supported by Web services. Note that the
webservices-common.properties file is for general use and is
included by both webservices10.properties and
webservices9.properties.

To use Web services in Oracle Database 12c, specify the following
style file:

-style=webservices10

To use Web services in Oracle9i, specify -style=webservices9.

JPublisher Styles and Style Files

3-24 Oracle Database JPublisher User's Guide

For convenience, there is an OPTIONS section in which you can specify any other
JPublisher option settings. Because of this section, a style file can replace the
functionality of any other JPublisher properties file, in addition to specifying
mappings.

This section covers the following topics:

■ Style File TRANSFORMATION Section

■ Style File OPTIONS Section

Style File TRANSFORMATION Section
This section provides a template for a style file TRANSFORMATION section, with
comments. Within the TRANSFORMATION section, there is a MAPPING section for each
mapping that you specify. The MAPPING section starts at a MAPPING tag and ends with
an END_MAPPING tag. Each MAPPING section includes a number of subtags with
additional information. In the MAPPING section, the SOURCETYPE and TARGETTYPE
tags are the required subtags. Within each TARGETTYPE section, you should generally
provide information for at least the RETURN, IN, and OUT cases, using the
corresponding tags. The following code illustrates the structure of a typical
TRANSFORMATION section:

TRANSFORMATION

 IMPORT
 # Packages to be imported by the generated classes
 END_IMPORT

 # THE FOLLOWING OPTION ONLY APPLIES TO PL/SQL PACKAGES
 # This interface should be implemented/extended by
 # the methods in the user subclasses and interfaces
 # This option takes no effect when subclass is not generated.
 SUBCLASS_INTERFACE java_interface

 # THE FOLLOWING OPTION ONLY APPLIES TO PL/SQL PACKAGES
 # Each method in the interface and the user subclass should
 # throw this exception (the default SQLException will be caught
 # and re-thrown as an exception specified here)
 # This option takes no effect when subclass is not generated.
 SUBCLASS_EXCEPTION Java_exception_type

 STATIC
 # Any code provided here is inserted at the
 # top level of the generated subclass regardless
 # of the actual types used.
 END_STATIC

 # Enumerate as many MAPPING sections as needed.

 MAPPING
 SOURCETYPE Java_source_type
 # Can be mapped to several target types.
 TARGETTYPE Java_target_type

 # With CONDITION specified, the source-to-target

Note: The following details about style files are provided for
general information. This information is subjected to change.

JPublisher Styles and Style Files

Data Type and Java-to-Java Type Mappings 3-25

 # mapping is carried out only when the listed Java
 # classes are present during publishing.
 # The CONDITION section is optional.
 CONDITION list_of_java_classes

 IN
 # Java code for performing the transformation
 # from source type argument %1 to the target
 # type, assigning it to %2.
 END_IN
 IN_AFTER_CALL
 # Java code for processing IN parameters
 # after procedure call.
 END_IN_AFTER_CALL
 OUT
 # Java code for performaing the transformation
 # from a target type instance %2 to the source
 # type, assigning it to %1.
 END_OUT
 RETURN
 # Java code for performing the transformation
 # from source type argument %1 to the target
 # type and returning the target type.
 END_RETURN

 # Include the code given by a DEFINE...END_DEFINE block
 # at the end of this template file.
 USE defined_name

 # Holder for OUT/INOUT of the type defined by SOURCETYPE.
 HOLDER Java_holder_type
 END_TARGETTYPE

 # More TARGETTYPE sections, as needed

 END_MAPPING

 DEFAULT_HOLDER
 # JPublisher will generate holders for types that do
 # not have HOLDER entries defined in this template.
 # This section includes a template for class definitions
 # from which JPublisher will generate .java files for
 # holder classes.
 END_DEFAULT_HOLDER

 # More MAPPING sections, as needed

 DEFINE defined_name
 # Any code provided here is inserted at the
 # top level of the generated class if the
 # source type is used.
 END_DEFINE
 # More DEFINE sections, as needed

END_TRANSFORMATION

JPublisher Styles and Style Files

3-26 Oracle Database JPublisher User's Guide

Style File OPTIONS Section
For convenience, you can specify any desired JPublisher option settings in the
OPTIONS section of a style file, in the standard format for JPublisher properties files.
The syntax for the same is as follows:

OPTIONS
 # Comments
 jpub.option1=value1
 jpub.option2=value2
 ...
END_OPTIONS

Summary of Key Java-to-Java Type Mappings in Oracle Style Files
The Oracle style files webservices-common.properties,
webservices9.properties, and webservices10.properties, through their
SOURCETYPE and TARGETTYPE specifications, have a number of important
Java-to-Java type mappings to support Web services and REF CURSOR mappings.
These mappings are summarized in Table 3–2.

Use of Multiple Style Files
JPublisher allows multiple -style options on the command line, with the following
behavior:

Note:

■ Style files use ISO8859_1 encoding. Any characters that
cannot be represented directly in this encoding must be
represented in Unicode escape sequences.

■ It is permissible to have multiple MAPPING sections with the
same SOURCETYPE specification. For argument type, JPublisher
uses the last of these MAPPING sections that it encounters.

See Also: "Passing Output Parameters in JAX-RPC Holders" on
page 5-4 for a discussion of holders

Table 3–2 Summary of Java-to-Java Type Mappings in Oracle Style Files

Source Type Target Type

oracle.sql.NString java.lang.String

oracle.sql.CLOB java.lang.String

oracle.sql.BLOB byte[]

oracle.sql.BFILE byte[]

java.sql.Timestamp java.util.Date

java.sql.ResultSet oracle.jdbc.rowset.OracleWebRowSet

org.w3c.dom.Document

javax.xml.transform.Source

See Also: "REF CURSOR Types and Result Sets Mapping" on
page 3-7

JPublisher Styles and Style Files

Data Type and Java-to-Java Type Mappings 3-27

■ The OPTIONS sections are concatenated.

■ The TRANSFORMATION sections are concatenated, except that the entries in the
MAPPING sections are overridden, as applicable. A MAPPING entry from a style file
specified later on the command line overrides a MAPPING entry with the same
SOURCETYPE specification from a style file specified earlier on the command line.

This functionality is useful if you want to overwrite type mappings defined earlier or
add new type mappings. For example, if you want to map SYS.XMLTYPE to
java.lang.String, then you can append the setting -style=xml2string to the
JPublisher command line. This example assumes that the
./xml2string.properties style file will be accessed. This style file is defined as
follows:

 OPTIONS
 jpub.defaulttypemap=SYS.XMLTYPE:oracle.xdb.XMLType
 END_OPTIONS
 TRANSFORM
 MAPPING
 SOURCETYPE oracle.xdb.XMLType
 TARGETTYPE java.lang.String
 # XMLType => String
 OUT
 %2 = null;
 if (%1!=null) %2=%1.getStringVal();
 END_OUT
 # String => XMLType
 IN
 %1 = null;
 if (%2!=null)
 {
 %1 = new %p.%c(_getConnection());
 %1 = %1.createXML(%2);
 }
 END_IN
 END_TARGETTYPE
 END_MAPPING
 END_TRANSFORM

Continuing this example, assume the following PL/SQL stored procedure definition:

PROCEDURE foo (arg XMLTYPE);

JPublisher maps this as follows in the base class:

void foo (arg oracle.xdb.XMLType);

And JPublisher maps it as follows in the user subclass:

void foo (arg String);

Note: By default, JPublisher maps SYS.XMLTYPE to
oracle.xdb.XMLType.

JPublisher Styles and Style Files

3-28 Oracle Database JPublisher User's Guide

Additional Features and Considerations 4-1

4
Additional Features and Considerations

This chapter covers additional features and considerations for your use of JPublisher:

■ Summary of JPublisher Support for Web Services

■ Features to Filter JPublisher Output

■ Backward Compatibility and Migration

Summary of JPublisher Support for Web Services
The following sections summarize key JPublisher features for Web services. Most
features relate to Web services call-ins to the database, covering JPublisher features
that make SQL, PL/SQL, and server-side Java classes accessible to Web services
clients. There are also features and options to support Web services call-outs from the
database.

■ Summary of Support for Web Services Call-Ins to the Database

■ Support for Web Services Call-Outs from the Database

■ Server-Side Java Invocation (Call-in)

Summary of Support for Web Services Call-Ins to the Database
The following JPublisher features support Web services call-ins to code running in
Oracle Database. The generated Java class can then be deployed in Oracle Application
Server, using the Java EE container. For example, a Java class representing a PL/SQL
package can be deployed as a PL/SQL Web Service.

■ Generation of Java interfaces

By using extended functionality of the -sql option, JPublisher can generate Java
interfaces. This functionality eliminates the necessity to manually generate Java
interfaces that represent the application programming interface (API) from which

See Also:

■ Oracle Database Java Developer's Guide for additional information
about Oracle Database Web services

■ Oracle Application Server Web Services Developer's Guide for general
information about Oracle features for Web services

■ Oracle Fusion Middleware Programming Advanced Features of
JAX-RPC Web Services for Oracle WebLogic Server for a complete list
of Database objects or functions that can be published as web
services

Summary of JPublisher Support for Web Services

4-2 Oracle Database JPublisher User's Guide

Web Services Description Language (WSDL) content is to be generated. Prior to
Oracle Database 10g, JPublisher could generate classes but not interfaces.

■ JPublisher styles and style files

Style files, along with the related -style option, enable Java-to-Java type
mappings that ensure that generated classes can be used in Web services. In
particular, Oracle provides the following style files to support Web services:

/oracle/jpub/mesg/webservices-common.properties
/oracle/jpub/mesg/webservices10.properties
/oracle/jpub/mesg/webservices9.properties

■ REF CURSOR returning and result set mapping

The java.sql.ResultSet type is not supported by Web services, which affects
stored procedures and functions that return REF CURSOR types. JPublisher
supports alternative mappings that allow the use of query results with Web
services.

■ Options to filter what JPublisher publishes

There are several features for specifying or filtering JPublisher output, particularly
to ensure that JPublisher-generated code can be exposed as Web services. By using
the extended functionality of the -sql option, you can publish a specific subset of
stored procedures. Using the -filtertypes and -filtermodes options, you
can publish stored procedures based on the modes or types of parameters or
return values. Using the -generatebean option, you can specify that generated
methods satisfy the JavaBeans specification.

■ Support for calling Java classes in the database

JPublisher uses the native Java interface for calls directly from a client-side Java
stub, generated by JPublisher through the -java option, to the server-side Java
code. Prior to Oracle Database 10g, server-side Java code could be called only
through a PL/SQL wrapper that had to be created manually. This PL/SQL
wrapper was also known as a call spec. Since Oracle Database 10g release 2 (10.2),
Web services call-ins of Java classes are supported in two modes, dynamic
invocation mode and PL/SQL wrapper mode.

■ Support for publishing SQL queries or DML statements

JPublisher provides the -sqlstatement option to take a particular SELECT,
UPDATE, INSERT, or DELETE statement and publish it as a method on a Java class
that can be published as a Web service.

See Also: "Generation of Java Interfaces" on page 5-14

See Also: "JPublisher Styles and Style Files" on page 3-22

See Also: "REF CURSOR Types and Result Sets Mapping" on
page 3-7

See Also: "Features to Filter JPublisher Output" on page 4-5

See Also: "Publishing Server-Side Java Classes Through Native Java
Interface" on page 2-11 and "Server-Side Java Invocation (Call-in)" on
page 4-5

Summary of JPublisher Support for Web Services

Additional Features and Considerations 4-3

■ Support for unique method names

To meet Web services requirements, you can instruct JPublisher to disallow
overloaded methods and always use unique method names instead.

Support for Web Services Call-Outs from the Database
JPublisher supports Web services call-outs from Oracle Database. The Web services
client code is written in SQL, PL/SQL, or Java and it runs on the database and invokes
Web services elsewhere. This support is provided through the -proxywsdl and
-httpproxy options. In addition, the -proxyopts and -proxyclasses options
may possibly be relevant, but typically do not require any special settings for Web
services.

Here is a summary of the key options:

■ -proxywsdl=URL

Use this option to generate Web services client proxy classes, given the WSDL
document at the specified URL. This option also generates additional wrapper
classes to expose instance methods as static methods and generates PL/SQL
wrappers.

■ -httpproxy=proxy_URL

Where, a WSDL document is accessed through a firewall. Use this option to
specify a proxy URL to use in resolving the URL of the WSDL document.

How to Perform Web Services Call-Out using Static Proxy and JPublisher
The Oracle JPublisher command line option -proxywsdl can be used to generate
database-side Java and PL/SQL wrappers from the WSDL file of a Web service. To
allow JPublisher to generate and load wrappers for Web service clients into the
database, the dbwsa.jar and dbwsclient.jar files must be present in the
classpath and inside the database respectively.

The following procedure sets up the environment and the database for Oracle
JPublisher-supported Web service call-out. This procedure needs to be performed only
once.

1. Download and install Oracle JPublisher 12c Release 1, if it is not already present
on your system. Oracle JPublisher is installed as part of Oracle SQLJ installation.
You can install Oracle SQLJ from the Database Client CD or from the Database
Client download available at

http://www.oracle.com/technetwork/database/features/jdbc/inde
x-091264.html

2. Add the dbwsa.jar to the directory ORACLE_HOME\sqlj\lib (Microsoft
Windows) or ORACLE_HOME/sqlj/lib (Solaris).

3. Set up the appropriate JDK as the Java VM and Java compiler.

The version of the JDK must be the same as the Java VM in the target database:

■ Use JDK 6 and JDK 7 for Oracle Database 12c

See Also: "Generation of Package Classes and Wrapper Methods" on
page 6-32

See Also: "Options to Facilitate Web Services Call-Outs" on
page 6-41

Summary of JPublisher Support for Web Services

4-4 Oracle Database JPublisher User's Guide

■ Use JDK 1.5 and JDK 6 for Oracle Database 11g

4. Add dbwsa.jar file to the classpath environment variable.

5. Load the dbwsclient.jar file either into the SYS schema or into the schema
where the Web service client will be invoked.

For example, the following loadjava command will load the dbwsclient.jar
file into the SYS schema.

%loadjava -u sys -r -v -f -s -grant public -noverify -genmissing dbwsclient.jar
Password: password

The following loadjava command illustrates how to load the dbwsclient.jar
file into a specific schema.

% loadjava -u hr -r -v -f -noverify -genmissing dbwsclient.jar
Password: password

Example
The following example illustrates how to generate Java and PL/SQL wrappers for a
Web service client and then invoke it by using SQL statements. The example follows
these general steps:

1. Identify the Web service you want to invoke.

2. Call Oracle JPublisher with the appropriate options to generate the client proxy,
the PL/SQL and Java wrappers, and load them into the database.

An Oracle JPublisher command to do this would include the required
-proxywsdl and -user options. The command could also include the optional
-endpoint, -httpproxy, -sysuser, -dir, and -proxyopts options. For
example:

% jpub -user=username -sysuser=sysuser_name/sysuser_password
-proxywsdl=WSDL_URL -endpoint=Web_services_endpoint

It is assumed that the Web service has been previously deployed at
http://localhost:8888/javacallout/javacallout

The following command creates the Web service client and its Java and PL/SQL
wrappers in the subdirectory tmp, then loads the wrappers into the database.

% jpub -user hr -sysuser sys/sys_password -proxywsdl=sample/javacallout.wsdl
 -endpoint=http://localhost:8888/javacallout/javacallout -dir=tmp
Enter hr password: password

This command produces the following output:

tmp/HelloServiceEJBJPub.java
tmp/plsql_wrapper.sql
tmp/plsql_dropper.sql
tmp/plsql_grant.sql
tmp/plsql_revoke.sql
Executing tmp/plsql_dropper.sql
Executing tmp/plsql_wrapper.sql
Executing tmp/plsql_grant.sql
Loading tmp/plsql_proxy.jar

3. Invoke the Web service from inside the database.

Features to Filter JPublisher Output

Additional Features and Considerations 4-5

You can invoke the PL/SQL functions provided in tmp/plsql_wrapper.sql.
Each PL/SQL function corresponds to an operation in the Web service. For
example, if your Web service is available at the following endpoint:

http://localhost:8888/javacallout/javacallout

Then you can issue the following SQL command.

SQL> select jpub_plsql_wrapper.sayhello('hello') from dual;

The command will return the following output.

JPUB_PLSQL_WRAPPER.SAYHELLO('HELLO')

HELLO!! You just said :hello

Server-Side Java Invocation (Call-in)
The server-side Java call-in functionality allows JPublisher to publish Java classes in
the database for client-side invocation. JPublisher generates Java clients to invoke
server-side Java.

In Oracle Database 10g release 1 (10.1), the JPublisher option for server-side call-in is
-java. JPublisher generates a Java client that uses the dynamic invocation interface,
oracle.jpub.runtime.Client, that is provided in the JPublisher run time, to
invoke the oracle.jpub.runtime.Server server-side class, which in turn calls the
desired Java stored procedure. The Client and Server interfaces are a part of the
JPublisher run time. Only static methods with serializable parameters and return types
are supported. Beginning with Oracle Database 10g release 1 (10.1),
oracle.jpub.runtime.Server is located in the database.

In Oracle Database 10g release 2 (10.2), for server-side call-ins, JPublisher generates a
PL/SQL wrapper for the stored procedure and the Java client that calls this PL/SQL
wrapper. It supports both static and instance methods. The parameter and return types
supported are primitive types, Java Beans, Serializable objects, and Oracle Java
Database Connectivity (JDBC) types, typically those with the package name
oracle.sql.

In Oracle Database 10g release 2 (10.2), the -java option is deprecated and the
JPublisher option for server-side call-in is -dbjava. However, the -java option is still
supported for backward compatibility. When the -compatible option is set to 10.1,
-dbjava acts same as -java.

Features to Filter JPublisher Output
JPublisher provides some options that allow you to filter what JPublisher produces.
For example, publishing just a subset of stored procedures from a package, filtering
generated code according to parameter modes or parameter types, and ensuring that
generated classes follow the JavaBeans specification.

The following sections provide details:

■ Publishing a Specified Subset of Functions or Procedures

■ Publishing Functions or Procedures According to Parameter Modes or Types

■ Ensuring that Generated Methods Adhere to the JavaBeans Specification

See Also: "Generated Code: Server-Side Java Call-in" on page A-4

Features to Filter JPublisher Output

4-6 Oracle Database JPublisher User's Guide

Publishing a Specified Subset of Functions or Procedures
Extended functionality of the -sql option enables you to publish just a subset of the
stored functions or procedures from a package or from the SQL top level.

Recall that the following syntax results in publication of all the stored procedures of a
package:

-sql=plsql_package

To publish only a subset of the stored procedures of the package, use the following
syntax:

-sql=plsql_package(proc1+proc2+proc3+...)

You can also specify the subset according to stored procedure names and argument
types. Instead of just specifying proc1, you can specify the following:

proc1(sqltype1, sqltype2, ...)

Publishing Functions or Procedures According to Parameter Modes or Types
In some cases, particularly for code generation for Web services, not all parameter
modes or types are supported in method signatures or attributes for the target usage of
your code. The -filtermodes and -filtertypes options are introduced to allow
you to filter generated code as needed, according to parameter modes, parameter
types, or both.

For each option setting, start with a 1 to include all possibilities by default, that is no
filtering is done. Then list specific modes or types that you want to exclude each
followed by a minus sign (-). For example:

-filtertypes=1,.ORADATA-,.ORACLESQL-

-filtermodes=1,out-,inout-

Alternatively, you can start with a 0 to filter everything out. Then list specific modes or
types that you want to allow each followed by a plus sign (+). For example:

-filtertypes=0,.CURSOR+,.INDEXBY+

-filtermodes=0,in+,return+

Ensuring that Generated Methods Adhere to the JavaBeans Specification
The -generatebean option is a flag that you can use to ensure that generated classes
follow the JavaBeans specification. The default setting is -generatebean=false.

With the -generatebean=true setting, some generated methods are renamed so
that they are not assumed to be JavaBean property getter or setter methods. This is
accomplished by prefixing the method names with an underscore (_).

See Also: "Declaration of Object Types and Packages to Translate" on
page 6-14

See Also: "Method Filtering According to Parameter Modes" on
page 6-28 and "Method Filtering According to Parameter Types" on
page 6-29

Backward Compatibility and Migration

Additional Features and Considerations 4-7

Backward Compatibility and Migration
This section discusses issues of backward compatibility, compatibility between Java
Development Kit (JDK) versions, and migration between Oracle8i, Oracle9i, Oracle
Database 10g, and Oracle Database 12c releases of the JPublisher utility.

Default option settings and some features of the generated code changed in Oracle9i. If
you have created an application using an Oracle8i implementation of JPublisher, you
probably will not be able to rerun JPublisher in Oracle Database 10g (or Oracle9i) and
have the generated classes still work within your application. In addition, there were
changes in JPublisher functionality between Oracle9i and Oracle Database 10g,
although to a lesser degree. The main difference is that .sqlj files are no longer
visibly generated by default, but you can change this behavior through a JPublisher
setting.

The following subsections cover the details:

■ JPublisher Backward Compatibility

■ Changes in JPublisher Behavior Between Oracle Database 10g Release 1 and
Release 2

■ Changes in JPublisher Behavior Between Oracle9i Database and Oracle Database
10g

■ Changes in JPublisher Behavior Between Oracle8i Database and Oracle9i Database

■ JPublisher Backward-Compatibility Modes and Settings

JPublisher Backward Compatibility
The JPublisher run time is packaged with JDBC in the ojdbc14.jar,
ojdbc5.8.jar, or ojdbc6*.jar library. Code generated by an earlier version of
JPublisher is compatible as follows:

■ It can continue to run with the current release of the JPublisher run time.

■ It can continue to compile against the current release of the JPublisher run time.

If you use an earlier release of the JPublisher run time and Oracle JDBC drivers in
generating code, then you can compile the code against that version of the JPublisher
run time.

Changes in JPublisher Behavior Between Oracle Database 10g Release 1 and Release 2
Since Oracle Database 10g release 2 (10.2), JPublisher adds the following new APIs for
Java classes generated for PL/SQL:

■ <init>(javax.sql.DataSource)

A constructor that takes a java.sql.DataSource object as argument

■ setDataSource(javax.sql.DataSource)

A method to set the data source that takes a java.sql.DataSource object as
argument

These methods allow the Java wrapper to acquire a JDBC connection from the data
source provided as argument.

See Also: "Code Generation Adherence to the JavaBeans
Specification" on page 6-30

Backward Compatibility and Migration

4-8 Oracle Database JPublisher User's Guide

JPublisher supports the use of SQL URI types that store URLs, referred to as data links.
In Oracle Database 10g release 1 (10.1), JPublisher maps the SQL URI type,
SYS.URITYPE, and the subtypes, SYS.DBURITYPE, SYS.XDBURITYPE, and
SYS.HTTPURITYPE, to java.net.URL. When SQL URI types are used as PL/SQL
stored procedures or SQL statement parameter and return types, this mapping works.
However, when a SQL URI type is used as an attribute of a SQL type or element of a
SQL array type, the mapping raises ClassCastException at run time.

To overcome this issue, in Oracle Database 10g release 2 (10.2), the SQL URI types are
mapped to the ORAData subclasses that are generated by JPublisher. This is similar to
the mapping used for user-defined SQL object types. You can also force JPublisher to
map a SQL URI type to java.net.URL by specifying the following:

-adddefaulttypemap=
SYS.URITYPE:java.net.URL:VARCHAR2:SYS.URIFACTORY.GETURI:SYS.SQLJUTL.URI2VCHAR
-adddefaulttypemap=
SYS.DBURITYPE:java.net.URL:VARCHAR2:SYS.DBURITYPE.CREATEURI:SYS.SQLJUTL.URI2VCHAR
-adddefaulttypemap=
SYS.XDBURITYPE:java.net.URL:VARCHAR2:SYS.XDBURITYPE.CREATEURI:SYS.SQLJUTL.URI2VCHA
R
-adddefaulttypemap=
SYS.HTTPURITYPE:java.net.URL:VARCHAR2:SYS.HTTPURITYPE.CREATEURI:SYS.SQLJUTL.URI2VC
HAR

This includes the specification of data conversion functions.

Changes in JPublisher Behavior Between Oracle9i Database and Oracle Database 10g
Regarding backward compatibility, a key difference in JPublisher behavior between
Oracle9i Database and Oracle Database 10g is that now, by default, SQLJ source code is
translated automatically and the .sqlj source files are invisible to the user.

In addition, note the following changes in JPublisher behavior in Oracle Database 10g:

■ In Oracle9i Database, JPublisher generates SQLJ classes with a protected
constructor with a boolean argument to specify whether the object must be
initialized. For example:

protected BaseClass(boolean init) { ... }

This constructor is removed in Oracle Database 10g because it conflicts with the
constructor generation for a SQL object type with BOOLEAN attributes.

■ In Oracle Database 10g, SMALLINT is mapped to int instead of short in Java.

Changes in JPublisher Behavior Between Oracle8i Database and Oracle9i Database
Note the following changes in JPublisher behavior, beginning with Oracle9i Database:

■ By default, JPublisher does not declare the inner SQLJ connection context class
_Ctx for every object type. Instead, it uses the
sqlj.runtime.ref.DefaultContext connection context class throughout.

See Also: "Type Mapping Support Through PL/SQL Conversion
Functions" on page 3-15 and "Type Map Options" on page 6-25

See Also: "JPublisher Usage of the SQLJ Implementation" on
page 1-10

Backward Compatibility and Migration

Additional Features and Considerations 4-9

In addition, user-written code must call the getConnectionContext() method
to have a connection context instance, instead of using the _ctx connection
context field declared in code generated by Oracle8i versions of JPublisher.

■ Even with the -methods=true setting, non-SQLJ classes are generated if the
underlying SQL object type or PL/SQL package does not define any methods.
However, a setting of -methods=always always results in SQLJ classes being
produced.

■ By default, JPublisher generates code that implements the oracle.sql.ORAData
interface instead of the deprecated oracle.sql.CustomDatum interface.

■ By default, JPublisher places generated code into the current directory, rather than
into a package/directory hierarchy under the current directory.

Changes in User-Written Subclasses of JPublisher-Generated Classes
If you provided user-written subclasses for classes generated by an Oracle8i version of
JPublisher, then you must be aware that several relevant changes were introduced in
Oracle9i Database related to JPublisher code generation. You must make changes in
any applications that have Oracle8i functionality if you want to use them in Oracle9i
Database, Oracle Database 10g, or Oracle Database 12c.

You must make the following changes to use your code in Oracle9i Database, Oracle
Database 10g, or Oracle Database 12c:

■ Replace any use of the declared _ctx connection context field with use of the
provided getConnectionContext() method. The _ctx field is no longer
supported.

■ Replace the explicit implementation of the create() method with a call to a
superclass create() method, and use ORAData instead of CustomDatum as the
return type.

In the example that follows, assume that UserClass extends BaseClass. Instead
of writing the following method in UserClass:

public CustomDatum create(Datum d, int sqlType) throws SQLException
{
 if (d == null) return null;
 UserClass o = new UserClass();
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 o._ctx = new _Ctx(((STRUCT) d).getConnection());
 return o;
}

See Also: "Connection Contexts and Instances in SQLJ Classes" on
page 5-10

Note: If you use the -compatible=8i or
-compatible=both8i option setting, then you will not see the
changes discussed here and your application will continue to build
and work as before. For more information, refer to "Backward
Compatibility Option" on page 6-46.

However, it is advised that you make the transition to Oracle
Database 12c or Oracle Database 10g JPublisher functionality, which
insulates your user code from implementation details of
JPublisher-generated classes.

Backward Compatibility and Migration

4-10 Oracle Database JPublisher User's Guide

Supply the following:

public ORAData create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

Alternatively, if the class is part of an inheritance hierarchy, then write the
following:

protected ORAData createExact(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

■ In addition to the getConnectionContext() method, JPublisher provides a
getConnection() method that can be used to obtain the JDBC connection
instance associated with the object.

JPublisher Backward-Compatibility Modes and Settings
JPublisher supports settings for backward-compatibility modes through the
-compatible option. At the most elementary level, this includes a setting to
explicitly generate .sqlj files, which are transparent to users in Oracle Database 12c
and Oracle Database 10g by default. There are also Oracle9i and Oracle8i compatibility
modes, involving differences in the generated code itself as well as the creation of
visible .sqlj files. The following topics are discussed:

■ Explicit Generation of .sqlj Files

■ Oracle9i Compatibility Mode

■ Oracle8i Compatibility Mode

■ Individual Settings to Force Oracle8i JPublisher Behavior

Explicit Generation of .sqlj Files
In Oracle Database 12c, if you want to avoid automatic SQLJ translation so that
JPublisher generates .sqlj files that you can work with directly, then you can use the
-compatible=sqlj JPublisher setting.

Oracle9i Compatibility Mode
The -compatible=9i JPublisher option setting enables Oracle9i compatibility mode.
In this mode, JPublisher generates code that is compatible with Oracle9i SQLJ and
JDBC releases. In addition, JPublisher typically produces .sqlj files that are visible to
the user, as is the case with Oracle9i JPublisher.

JPublisher has the following functionality in Oracle9i compatibility mode:

See Also: "Backward Compatibility Option" on page 6-46

Note: In Oracle Database 12c, you do not have to invoke the SQLJ
translator directly to explicitly translate .sqlj files. You can use the
JPublisher -sqlj option instead.

See Also: "Option to Access SQLJ Functionality" on page 6-45

Backward Compatibility and Migration

Additional Features and Considerations 4-11

■ In SQLJ classes, JPublisher generates a protected constructor with a boolean
argument that specifies whether the object must be initialized, as it does in
Oracle9i:

protected BaseClass(boolean init) { ... }

This constructor has neen removed since Oracle Database 10g

■ The mapping in Java from SMALLINT reverts from int, which is the mapping in
Oracle Database 12c, to short.

Oracle8i Compatibility Mode
Either the -compatible=both8i or -compatible=8i JPublisher setting enables
Oracle8i compatibility mode. In this mode, JPublisher generates code that is
compatible with Oracle8i SQLJ and JDBC releases. In addition, JPublisher typically
produces .sqlj files visible to the user, as is the case with Oracle8i JPublisher.

However, for the use of this mode to be permissible, at least one of the following
circumstances must hold:

■ You translate JPublisher-generated .sqlj files with the default SQLJ
-codegen=oracle setting.

■ The JPublisher-generated code runs under JDK 1.5 or later and uses the SQLJ
runtime12.jar library or runs in the Oracle Database 12c release of the
server-side Oracle JVM.

■ You run JPublisher with the -methods=false or -methods=none setting.

Note the following functionality in Oracle8i compatibility mode:

■ JPublisher generates code that implements the deprecated CustomDatum and
CustomDatumFactory interfaces instead of the ORAData and ORADataFactory
interfaces, as with the -compatible=customdatum setting. In addition, if you
choose the -compatible=both8i setting, then the generated code also
implements the ORAData interface, though not ORADataFactory.

■ With the -methods=true setting, JPublisher always generates a SQLJ class for a
SQL object type, even if the object type does not define any methods. This is the
same as using the -methods=always setting.

■ JPublisher generates connection context declarations and connection context
instances on every object wrapper class, as follows:

#sql static context _Ctx;
protected _Ctx _ctx;

This is the same as the -context=generated setting.

■ JPublisher provides a constructor in the wrapper class that takes a generic
ConnectionContext instance, which is an instance of any class implementing
the standard sqlj.runtime.ConnectionContext interface, as input. In Oracle
Database 12c, the constructor accepts only a DefaultContext instance or an
instance of the class specified through the -context option when JPublisher was
run.

■ JPublisher does not provide an API for releasing a connection context instance that
has been created implicitly on a JPublisher object.

See Also: "Changes in JPublisher Behavior Between Oracle9i
Database and Oracle Database 10g" on page 4-8

Backward Compatibility and Migration

4-12 Oracle Database JPublisher User's Guide

By contrast, the JPublisher utility in Oracle Database 12c provides both a
setConnectionContext() method for explicitly setting the connection context
instance for an object, and a release() method for releasing an implicitly
created connection context instance of an object.

If you must choose Oracle8i compatibility mode, then it is advisable to use the
-compatible=both8i setting. This permits your application to work in a
middle-tier environment, such as Oracle Application Server, in which JDBC
connections are obtained through data sources and will likely be wrapped using
oracle.jdbc.OracleXxxx interfaces. CustomDatum implementations do not
support such wrapped connections.

Oracle8i compatibility mode is now the only way for a _ctx connection context
instance to be declared in JPublisher-generated code. No other option setting
accomplishes this particular Oracle8i behavior. The _ctx instance may be useful if you
have legacy code that depends on it, but otherwise you should obtain connection
context instances through the getConnectionContext() method.

Individual Settings to Force Oracle8i JPublisher Behavior
The individual option settings detailed in Table 4–1 will produce results, most of
which are similar to those produced when using JPublisher in Oracle8i compatibility
mode.

For detailed descriptions of these options, refer to the following:

■ "SQLJ Connection Context Classes" on page 6-19

■ "Generation of Package Classes and Wrapper Methods" on page 6-32

■ "Backward-Compatible Oracle Mapping for User-Defined Types" on page 6-46

■ "Output Directories for Generated Source and Class Files" on page 6-40

Note: The -compatible=both8i setting requires a JDBC
implementation from Oracle9i release 1 (9.0.1) or later.

Table 4–1 JPublisher Backward Compatibility Options

Option Setting Behavior

-context=generated This setting results in the declaration of an inner class, _Ctx,
for SQLJ connection contexts. This is used instead of the
default DefaultContext class or user-specified connection
context classes.

-methods=always This setting forces generation of SQLJ classes, in contrast to
non-SQLJ classes, for all JPublisher-generated classes,
whether or not the underlying SQL objects or packages define
any methods.

-compatible=customdatum For Oracle-specific wrapper classes, this setting results in
JPublisher implementing the deprecated
oracle.sql.CustomDatum and CustomDatumFactory
interfaces instead of the oracle.sql.ORAData and
ORADataFactory interfaces.

-dir=. Setting this option to a period (.), results in the generation of
output files into a hierarchy under the current directory, as
was the default behavior in Oracle8i.

Backward Compatibility and Migration

Additional Features and Considerations 4-13

See Also: "Oracle8i Compatibility Mode" on page 4-11

Backward Compatibility and Migration

4-14 Oracle Database JPublisher User's Guide

Generated Classes and Interfaces 5-1

5
Generated Classes and Interfaces

This chapter describes the classes, interfaces, and subclasses that JPublisher generates
in the following sections:

■ Treatment of Output Parameters

■ Translation of Overloaded Methods

■ Generation of SQLJ Classes

■ Generation of Non-SQLJ Classes

■ Generation of Java Interfaces

■ JPublisher Subclasses

■ Support for Inheritance

Treatment of Output Parameters
Stored procedures called through Java Database Connectivity (JDBC) do not pass
parameters in the same way as ordinary Java methods. This affects the code that you
write when you call a wrapper method that JPublisher generates.

When you call an ordinary Java method, parameters that are Java objects are passed as
object references. The method can modify the object.

However, when you call a stored procedure through JDBC, a copy of each parameter is
passed to the stored procedure. If the procedure modifies any parameters, then a copy
of the modified parameter is returned to the caller. Therefore, the before and after values
of a modified parameter appear in separate objects.

A wrapper method that JPublisher generates contains JDBC statements to call the
corresponding stored procedure. The parameters to the stored procedure, as declared
in your CREATE TYPE or CREATE PACKAGE declaration, have the following possible
parameter modes: IN, OUT, and IN OUT. Parameters that are IN OUT or OUT are
returned to the wrapper method in newly created objects. These new values must be
returned to the caller somehow, but assignment to the formal parameter within the
wrapper method does not affect the actual parameter visible to the caller.

In Java, there are no OUT or IN OUT designations, but values can be returned through
holders. In JPublisher, you can specify one of the following alternatives for holders
that handle PL/SQL OUT or IN OUT parameters:

■ Arrays

■ Java API for XML-based Remote Procedure Call (JAX-RPC) holder types

■ Function returns

Treatment of Output Parameters

5-2 Oracle Database JPublisher User's Guide

The -outarguments option enables you to specify which mechanism to use. This
feature is particularly useful for Web services.

The following sections describe the three mechanisms:

■ Passing Output Parameters in Arrays

■ Passing Output Parameters in JAX-RPC Holders

■ Passing Output Parameters in Function Returns

Passing Output Parameters in Arrays
One way to solve the problem of returning output values in Java is to pass an OUT or
IN OUT parameter to the wrapper method in a single-element array. Think of the
array as a container that holds the parameter. This mechanism works as follows:

1. You assign the before value of the parameter to element [0] of an array.

2. You pass the array to your wrapper method.

3. The wrapper method assigns the after value of the parameter to element [0] of the
array.

4. After running the method, you extract the after value from the array.

A setting of -outarguments=array, which is the default, instructs JPublisher to use
this single-element array mechanism to publish any OUT or IN OUT argument.

For example:

Person [] pa = {p};
x.f(pa);
p = pa[0];

Assume that x is an instance of a JPublisher-generated class that has the f() method,
which is a wrapper method for a stored procedure that uses a SQL PERSON object as
an IN OUT parameter. The PERSON type maps to the Person Java class. p is a Person
instance, and pa[] is a single-element Person array.

This mechanism for passing OUT or IN OUT parameters requires you to add a few
extra lines of code to your program for each parameter. As another example, consider
the PL/SQL function created by the following SQL*Plus command:

SQL> CREATE OR REPLACE FUNCTION g (
 a0 NUMBER,
 a1 OUT NUMBER,
 a2 IN OUT NUMBER,
 a3 CLOB,
 a4 OUT CLOB,
 a5 IN OUT CLOB)
 RETURN CLOB IS
 BEGIN
 RETURN NULL;
 END;

With -outarguments=array, this is published as follows:

public oracle.sql.CLOB g (
 java.math.BigDecimal a0,
 java.math.BigDecimal a1[],

See Also: "Holder Types for Output Arguments" on page 6-34

Treatment of Output Parameters

Generated Classes and Interfaces 5-3

 java.math.BigDecimal a2[],
 oracle.sql.CLOB a3,
 oracle.sql.CLOB a4[],
 oracle.sql.CLOB a5[])

Problems similar to those described earlier arise when the this object of an instance
method is modified.

The this object is an additional parameter, which is passed in a different way. Its
mode, as declared in the CREATE TYPE statement, may be IN or IN OUT. If you do
not explicitly declare the mode of the this object, then its mode is IN OUT, if the
stored procedure does not return a result, or IN, if it does.

If the mode of the this object is IN OUT, then the wrapper method must return the
new value of this. The code generated by JPublisher implements this functionality in
different ways, depending on the situation, as follows:

■ For a stored procedure that does not return a result, the new value of this is
returned as the result of the wrapper method.

As an example, assume that the SQL object type MYTYPE has the following
member procedure:

MEMBER PROCEDURE f1(y IN OUT INTEGER);

Also, assume that JPublisher generates a corresponding Java class, MyJavaType.
This class defines the following method:

MyJavaType f1(int[] y)

The f1() method returns the modified this object value as a MyJavaType
instance.

■ For a stored function, which is a stored procedure that returns a result, the
wrapper method returns the result of the stored function as its result. The new
value of this is returned in a single-element array, passed as an extra argument,
which is the last argument, to the wrapper method.

Assume that the SQL object type MYTYPE has the following member function:

MEMBER FUNCTION f2(x IN INTEGER) RETURNS VARCHAR2;

Then the corresponding Java class, MyJavaType, defines the following method:

String f2(int x, MyJavaType[] newValue)

The f2() method returns the VARCHAR2 value as a Java string and the modified
this object value as an array element in the MyJavaType array.

Note: For PL/SQL static procedures or functions, JPublisher
generates instance methods, and not static methods, in the wrapper
class. This is the logistic for associating a database connection with
each wrapper class instance. The connection instance is used in
initializing the wrapper class instance so that you are not
subsequently required to explicitly provide a connection or
connection context instance when calling wrapper methods.

Treatment of Output Parameters

5-4 Oracle Database JPublisher User's Guide

Passing Output Parameters in JAX-RPC Holders
The JAX-RPC specification explicitly specifies holder classes in the
javax.xml.rpc.holders package for the Java mapping of simple XML data types
and other types. Typically, Holder is appended to the type name for the holder class
name. For example, BigDecimalHolder is the holder class for BigDecimal.

Given a setting of -outarguments=holder, JPublisher uses holder instances to
publish OUT and IN OUT arguments from stored procedures. Holder settings are
specified in a JPublisher style file. The settings are specified in the HOLDER subtag
inside the TARGETTYPE section for appropriate mapping. If no holder class is
specified, then JPublisher chooses one according to defaults.

For general information about JAX-RPC and holders, refer to the Java API for
XML-based RPC, JAX-RPC 1.0 specification, available at:

http://jcp.org/aboutJava/communityprocess/final/jsr101/index.htm
l

As an example, consider the PL/SQL function created by the following SQL*Plus
command:

SQL> CREATE OR REPLACE FUNCTION g (
 a0 NUMBER,
 a1 OUT NUMBER,
 a2 IN OUT NUMBER,
 a3 CLOB,
 a4 OUT CLOB,
 a5 IN OUT CLOB)
 RETURN CLOB IS
 BEGIN
 RETURN NULL;
 END;

Assume that the webservices10 style file contains an entry for
-outarguments=holder and the following JPublisher command is used to publish
the function, g():

% jpub -u hr -s toplevel"(g)":ToplevelG -style=webservices10
Enter hr password: password

The published interface is:

public java.lang.String g
 (java.math.BigDecimal a0,
 javax.xml.rpc.holders.BigDecimalHolder _xa1_out_x,
 javax.xml.rpc.holders.BigDecimalHolder _xa2_inout_x,
 java.lang.String a3,
 javax.xml.rpc.holders.StringHolder _xa4_out_x,
 javax.xml.rpc.holders.StringHolder _xa5_inout_x)
throws java.rmi.RemoteException;

In this case, there is an extra level of abstraction. Because oracle.sql.CLOB is not
supported by Web services, it is mapped to String, the JAX-RPC holder class for
which is StringHolder.

See Also: "JPublisher Styles and Style Files" on page 3-22

Treatment of Output Parameters

Generated Classes and Interfaces 5-5

Passing Output Parameters in Function Returns
You can use the -outarguments=return setting as a workaround for supporting
method signatures in Web services that do not use JAX-RPC holder types or arrays. If
there is no support for JAX-RPC holders, the -outarguments=return setting allows
OUT or IN OUT data to be returned in function results.

Consider the PL/SQL function created by the following SQL*Plus command:

SQL> CREATE OR REPLACE FUNCTION g (
 a0 NUMBER,
 a1 OUT NUMBER,
 a2 IN OUT NUMBER,
 a3 CLOB,
 a4 OUT CLOB,
 a5 IN OUT CLOB)
 RETURN CLOB IS
 BEGIN
 RETURN NULL;
 END;

Assume the following JPublisher command to publish the function, g(). Although the
webservices10 style file specifies -outarguments=holder, the
-outarguments=return setting comes after the -style setting and, therefore,
takes precedence.

% jpub -u hr -s toplevel"(g)":ToplevelG -style=webservices10 -outarguments=return
Enter hr password: password

The JPublisher output is as follows:

HR.top_level_scope
ToplevelGUser_g_Out

The JPublisher output acknowledges that it is processing the HR top level and also
indicates the creation of the ToplevelGUser_g_Out Java class to support output
values of the g() function through return data.

JPublisher generates the following interface to take input parameters and return
output parameters:

public ToplevelGUser_g_Out g
 (java.math.BigDecimal a0,

Note:

■ The _g_Out appended to the user class name is according to the
JPublisher naming convention used when creating a class to
contain the output data in the scenario of passing output
parameters in function returns. The _g reflects the name of the
function being processed and the _Out reflects the OUT modifier
in the corresponding PL/SQL call specification. Therefore,
ToplevelGUser_g_Out is the Java type created for the output
data of the g() method in the ToplevelGUser class. The user
class name is according to the naming convention specified in the
webservices10 style file.

■ Typically, JPublisher output reflects only the names of SQL or
PL/SQL entities being processed, but there is no such entity that
directly corresponds to ToplevelGUser_g_Out.

Translation of Overloaded Methods

5-6 Oracle Database JPublisher User's Guide

 java.math.BigDecimal xxa2_inoutxx,
 java.lang.String a3,
 java.lang.String xxa5_inoutxx)
throws java.rmi.RemoteException;

JPublisher generates the TopLevelGUser_g_Out class as follows:

public class ToplevelGUser_g_Out
{
 public ToplevelGUser_g_Out() { }
 public java.math.BigDecimal getA1Out() { return a1_out; }
 public void setA1Out(java.math.BigDecimal a1_out) { this.a1_out = a1_out; }
 public java.math.BigDecimal getA2Inout() { return a2_inout; }
 public void setA2Inout(java.math.BigDecimal a2_inout)
 { this.a2_inout = a2_inout; }
 public java.lang.String getA4Out() { return a4_out; }
}

The ToplevelGUser_g_Out return type encapsulates the values of the OUT and
IN OUT parameters to be passed back to the caller of the function. As in the preceding
section, oracle.sql.CLOB is mapped to String by the webservices10 style file.

Translation of Overloaded Methods
PL/SQL, like Java, lets you create overloaded methods, meaning two or more methods
with the same name but different signatures. However, overloaded methods with
different signatures in PL/SQL may have identical signatures in Java, especially in
user subclasses. As an example, consider the following PL/SQL stored procedures:

PROCEDURE foo(x CLOB);
PROCEDURE foo(x NCHAR);

If you process these with a JPublisher setting of -style=webservices-common,
then they will all have the same signature in Java:

void foo(String x);
void foo(String x);

JPublisher solves such naming conflicts by appending the first letter of the return type
and the first letter of each argument type, as applicable, to the method name. If
conflicts still remain, then a number is also appended. JPublisher solves the preceding
conflict as follows:

void foo(String x);
void fooS(String x);

Note that PL/SQL does not allow overloading for types from the same family. The
following, for example, is illegal:

PROCEDURE foo(x DECIMAL);
PROCEDURE foo(x INT);
PROCEDURE foo(x INTEGER);

Now, consider the procedures as functions instead, with return types from the same
family. The following example is allowed because the argument types are different:

FUNCTION foo(x FLOAT) RETURN DECIMAL;

See Also: "Style File Specifications and Locations" on page 3-22

Generation of SQLJ Classes

Generated Classes and Interfaces 5-7

FUNCTION foo(x VARCHAR2) RETURN INT;
FUNCTION foo(x Student_T) RETURN INTEGER;

By default, these are mapped to Java methods as follows:

java.math.BigDecimal foo(Float x);
java.math.BigDecimal foo(String x);
java.math.BigDecimal foo(StudentT x);

JPublisher allows them all to be named foo() because now the signatures differ.
However, if you want all method names to be unique, as is required for Web services,
use the unique setting of the JPublisher -methods option. With -methods=unique,
JPublisher publishes the methods as follows, using the naming mechanism described
earlier:

java.math.BigDecimal foo(Float x);
java.math.BigDecimal fooBS(String x);
java.math.BigDecimal fooBS1(StudentT x);

Generation of SQLJ Classes
For the -methods=all setting, which is the default, or the -methods=true setting,
JPublisher typically generates SQLJ classes for PL/SQL packages and object types,
using both ORAData and SQLData implementations. An exception is that a SQLJ class
is not generated if an object type does not define any methods, in which case the
generated Java class does not require the SQLJ run time.

SQLJ classes include wrapper methods that invoke the server methods, or stored
procedures, of object types and packages. This section describes how to use these
classes.

This section covers the following topics:

■ Important Notes About Generation of SQLJ Classes

■ Use of SQLJ Classes for PL/SQL Packages

■ Use of SQLJ Classes for Object Types

■ Connection Contexts and Instances in SQLJ Classes

■ The setFrom(), setValueFrom(), and setContextFrom() Methods

Important Notes About Generation of SQLJ Classes
Note the following for JPublisher-generated SQLJ classes:

■ If you are generating Java wrapper classes for a SQL type hierarchy and any of the
types contains stored procedures, then by default, JPublisher generates SQLJ
classes for all the SQL types and not just the types that have stored procedures.

See Also: "Generation of Package Classes and Wrapper Methods" on
page 6-32

See Also: "JPublisher Usage of the SQLJ Implementation" on
page 1-10 and "Backward Compatibility Option" on page 6-46

Generation of SQLJ Classes

5-8 Oracle Database JPublisher User's Guide

■ Classes produced by JPublisher include a release() method. If an instance of a
JPublisher-generated wrapper class implicitly constructs a DefaultContext
instance, then you should use the release() method to release this connection
context instance when it is no longer needed. However, you can avoid this
scenario by adhering to at least one of the following suggestions in creating and
using the wrapper class instance:

– Construct the wrapper class instance with an explicitly provided SQLJ
connection context.

– Associate the wrapper class instance explicitly with a SQLJ connection context
instance through the setConnectionContext() method.

– Use the static SQLJ default connection context instance implicitly for the
wrapper class instance. This occurs if you do not supply any connection
information.

■ In Oracle8i compatibility mode, instead of the constructor taking a
DefaultContext instance or an instance of a user-specified class, there is a
constructor that simply takes a ConnectionContext instance. This could be an
instance of any class that implements the standard
sqlj.runtime.ConnectionContext interface, including the
DefaultContext class.

Use of SQLJ Classes for PL/SQL Packages
Take the following steps to use a class that JPublisher generates for a PL/SQL package:

1. Construct an instance of the class.

2. Call the wrapper methods of the class.

The constructors for the class associate a database connection with an instance of the
class. One constructor takes a SQLJ DefaultContext instance or an instance of a
class specified through the -context option when you run JPublisher. Another
constructor takes a JDBC Connection instance. One constructor has no arguments.
Calling the no-argument constructor is equivalent to passing the SQLJ default context
to the constructor that takes a DefaultContext instance. JPublisher provides the
constructor that takes a Connection instance for the convenience of JDBC
programmers unfamiliar with SQLJ concepts, such as connection contexts and the
default context.

The wrapper methods are all instance methods, because the connection context in the
this object is used in the wrapper methods.

Because a class generated for a PL/SQL package has no instance data other than the
connection context, you typically construct one class instance for each connection

Note: You have the option of explicitly suppressing the generation of
SQLJ classes through the JPublisher -methods=false setting. This
results in all non-SQLJ classes.

See Also: "Connection Contexts and Instances in SQLJ Classes" on
page 5-10

See Also: "Important Notes About Generation of SQLJ Classes" on
page 5-7

Generation of SQLJ Classes

Generated Classes and Interfaces 5-9

context that you use. If the default context is the only one you use, then you can call
the no-argument constructor once.

An instance of a class generated for a PL/SQL package does not contain copies of the
PL/SQL package variables. It is not an ORAData class or a SQLData class, and you
cannot use it as a host variable.

Use of SQLJ Classes for Object Types
To use an instance of a Java class that JPublisher generates for a SQL object type or a
SQL OPAQUE type, you must first initialize the Java object. You can accomplish this in
one of the following ways:

■ Assign an already initialized Java object to your Java object.

■ Retrieve a copy of a SQL object into your Java object. You can do this by using the
SQL object as an OUT argument or as the function return of a JPublisher-generated
wrapper method. You can also do this by retrieving the SQL object through JDBC
calls that you write. If you are in a backward-compatibility mode and use SQLJ
source files directly, then you can retrieve a copy of a SQL object through the SQLJ
#sql statements.

■ Construct the Java object with the no-argument constructor and set its attributes
by using the setXXX() methods, or construct the Java object with the constructor
that accepts values for all the object attributes. Subsequently, you must use the
setConnection() or setConnectionContext() method to associate the
object with a database connection before calling any of its wrapper methods. If
you do not explicitly associate the object with a JDBC or SQLJ connection before
calling a method on it, then it becomes implicitly associated with the SQLJ default
context.

Other constructors for the class associate a connection with the class instance. One
constructor takes a DefaultContext instance or an instance of a class specified
through the -context option when you run JPublisher, and one constructor takes
a Connection instance. The constructor that takes a Connection instance is
provided for the convenience of JDBC programmers unfamiliar with SQLJ
concepts, such as connection contexts and the default context.

Once you have initialized your Java object, you can do the following:

■ Call the accessor methods of the object.

■ Call the wrapper methods of the object.

■ Pass the object to other wrapper methods.

■ Use the object as a host variable in JDBC calls. If you are in a
backward-compatibility mode and use SQLJ source files directly, then you can use
the object as a host variable in the SQLJ #sql statements.

There is a Java attribute for each attribute of the corresponding SQL object type, with
the getXXX() and setXXX() accessor methods for each attribute. JPublisher does not
generate fields for the attributes. For example, for an attribute called foo, there is a
corresponding Java attribute called foo and the accessor methods, getFoo() and
setFoo().

By default, the class includes wrapper methods that call the associated Oracle object
methods, which reside and run on the server. Irrespective of what the server methods

See Also: "Important Notes About Generation of SQLJ Classes" on
page 5-7

Generation of SQLJ Classes

5-10 Oracle Database JPublisher User's Guide

are, the wrapper methods are all instance methods. The DefaultContext in the
this object is used in the wrapper methods.

With Oracle mapping, JPublisher generates the following methods for Oracle JDBC
driver to use:

■ create()

■ toDatum()

These methods are specified in the ORAData and ORADataFactory interfaces and are
generally not intended for your direct use. In addition, JPublisher generates the
setFrom(otherObject), setValueFrom(otherObject), and
setContextFrom(otherObject) methods that you can use to copy values or
connection information from one object instance to another.

Connection Contexts and Instances in SQLJ Classes
The class that JPublisher uses in creating SQLJ connection context instances depends
on how you set the -context option when you run JPublisher. The following classes
can be used:

■ A setting of -context=DefaultContext, which is the default setting, results in
JPublisher using instances of the standard
sqlj.runtime.ref.DefaultContext class.

■ A setting of a user-defined class that is in CLASSPATH and implements the
standard sqlj.runtime.ConnectionContext interface results in JPublisher
using instances of that class.

■ A setting of -context=generated results in the declaration of the static _Ctx
connection context class in the JPublisher-generated class. JPublisher uses
instances of this class for connection context instances. This is appropriate for
Oracle8i compatibility mode, but generally not recommended.

Consider the following points in using SQLJ connection context instances or JDBC
connection instances in instances of JPublisher-generated wrapper classes:

■ Wrapper classes generated by JPublisher provide a setConnectionContext()
method that you can use to explicitly specify a SQLJ connection context instance.
The method is defined as follows:

void setConnectionContext(conn_ctxt_instance);

This installs the passed connection context instance as the SQLJ connection context
in the wrapper class instance. The connection context instance must be an instance

See Also: "SQLJ Connection Context Classes" on page 6-19

Note: It is no longer a routine, as it was in Oracle8i Database, for
JPublisher to declare a _ctx connection context instance. However,
this is used in Oracle8i compatibility mode, with _ctx being
declared as a protected instance of the static _Ctx connection
context class.

Unless you have legacy code that depends on _ctx, it is preferable
to use the getConnectionContext() and
setConnectionContext() methods to retrieve and manipulate
connection context instances in JPublisher-generated classes.

Generation of SQLJ Classes

Generated Classes and Interfaces 5-11

of the class specified through the -context setting for JPublisher connection
contexts, typically DefaultContext.

Note that the underlying JDBC connection must be compatible with the
connection used to materialize the database object in the first place. Specifically,
some objects may have attributes that are valid only for a particular connection,
such as object reference types or BLOBs.

If you have already specified a connection context instance through the
constructor, then you need not set it again using the setConnectionContext()
method.

■ Use either of the following methods of a wrapper class instance, as appropriate, to
retrieve a connection or connection context instance:

– Connection getConnection()

– ConnCtxtType getConnectionContext()

The getConnectionContext() method returns an instance of the connection
context class specified through the JPublisher -context setting, typically
DefaultContext.

The returned connection context instance may be either an explicitly set instance
or one that was created implicitly by JPublisher.

■ If no connection context instance is explicitly set for a JPublisher-generated SQLJ
class, then one will be created implicitly from the JDBC connection instance when
the getConnectionContext() method is called.

In this circumstance, at the end of processing, you must use the release()
method to free resources in the SQLJ run time. This prevents a possible memory
leak.

The setFrom(), setValueFrom(), and setContextFrom() Methods
JPublisher provides the following utility methods in the generated SQLJ classes:

■ setFrom(anotherObject)

This method initializes the calling object from another object of the same base
type, including connection and connection context information. An existing,
implicitly created connection context object on the calling object is freed.

■ setValueFrom(anotherObject)

This method initializes the underlying field values of the calling object from
another object of the same base type. This method does not transfer connection or
connection context information.

Note: Using the setConnectionContext() method to
explicitly set a connection context instance avoids the problem of
the connection context not being closed properly. This problem
occurs only with implicitly created connection context instances.

Note: These methods are available only in the generated SQLJ
classes. If necessary, you can use the setting -methods=always to
ensure that SQLJ classes are produced.

Generation of Non-SQLJ Classes

5-12 Oracle Database JPublisher User's Guide

■ setContextFrom(anotherObject)

This method initializes the connection and connection context information about
the calling object from the connection setting of another object of the same base
type. An existing, implicitly created, connection context object on the calling object
is freed. This method does not transfer any information related to the object value.

Note that there is semantic equivalence between the setFrom() method and the
combination of the setValueFrom() and setContextFrom() methods.

Generation of Non-SQLJ Classes
For a -methods=false setting, or when SQL object types do not define any methods,
JPublisher does not generate wrapper methods for object types. In this case, the
generated class does not require the SQLJ run time during execution. Therefore,
JPublisher generates non-SQLJ classes, meaning classes that do not call the SQLJ run
time application programming interfaces (APIs). All this is true regardless of whether
you use an ORAData implementation or an SQLData implementation.

To use an instance of a class that JPublisher generates for an object type with the
-methods=false setting or for a reference, VARRAY, or nested table type, you must
first initialize the object.

You can initialize your object in one of the following ways:

■ Assign an already initialized Java object to your Java object.

■ Retrieve a copy of a SQL object into your Java object. You can do this by using the
SQL object as an OUT argument or as the function return accessed through a
JPublisher-generated wrapper method in some other class. You can also do this by
retrieving the SQL object through JDBC calls that you write. If you are in a
backward-compatibility mode and using SQLJ source files directly, then you can
retrieve a copy of a SQL object through the SQLJ #sql statements.

■ Construct the Java object with a no-argument constructor and initialize its data, or
construct the Java object based on its attribute values.

Unlike the constructors generated in SQLJ classes, the constructors generated in
non-SQLJ classes do not take a connection argument. Instead, when your object is
passed to or returned from a JDBC Statement, CallableStatement, or
PreparedStatement object, JPublisher applies the connection it uses to construct the
Statement, CallableStatement, or PreparedStatement object.

This does not mean you can use the same object with different connections at different
times, which is not always possible. An object may have a subcomponent that is valid
only for a particular connection, such as a reference or a BLOB.

To initialize the object data, use the setXXX() methods, if your class represents an
object type, or the setArray() or setElement() method, if your class represents a

Note:

■ For the -methods=false setting, JPublisher does not generate
code for PL/SQL packages, because they are not useful without
wrapper methods.

■ JPublisher generates the same Java code for reference, VARRAY,
and nested table types regardless of whether the -methods
option is set to false or true.

Generation of Non-SQLJ Classes

Generated Classes and Interfaces 5-13

VARRAY or nested table type. If your class represents a reference type, then you can
construct only a null reference. All non-null references come from the database.

Once you have initialized your object, you can do the following:

■ Pass the object to wrapper methods in other classes.

■ Use the object as a host variable in JDBC calls. If you are in a
backward-compatibility mode and use SQLJ source files directly, then you can use
the object in the SQLJ #sql statements.

■ Call the methods that read and write the state of the object. These methods operate
on the Java object in your program and do not affect data in the database. You can
read and write the state of the object in the following ways:

– For a class that represents an object type, call the getXXX() and setXXX()
accessor methods.

– For a class that represents a VARRAY or nested table, call the getArray(),
setArray(), getElement(), and setElement() methods.

The getArray() and setArray() methods return or modify an array as a
whole. The getElement() and setElement() methods return or modify
individual elements of the array.

If you want to update the data in the database, then you must re-insert the
Java array into the database.

■ You cannot modify an object reference, because it is an immutable entity. However,
you can read and write the SQL object that it references by using the getValue()
and setValue() methods.

The getValue() method returns a copy of the SQL object that is being referenced
by the object reference. The setValue() method updates a SQL object type
instance in the database by taking an instance of the Java class that represents the
object type as input. Unlike the getXXX() and setXXX() accessor methods of a
class generated for an object type, the getValue() and setValue() methods
read and write SQL objects.

Note that both getValue() and setValue() result in a database round trip to
read or write the value of the underlying database object that the reference points
to.

You can use the getORADataFactory() method in the JDBC code to return an
ORADataFactory object. You can pass this ORADataFactory object to the
getORAData() method in the ArrayDataResultSet,
OracleCallableStatement, and OracleResultSet classes in the oracle.jdbc
package. Oracle JDBC driver uses the ORADataFactory object to create instances of
your JPublisher-generated class.

In addition, classes representing VARRAY and nested table types have methods that
implement features of the oracle.sql.ARRAY class. These methods are:

■ getBaseTypeName()

■ getBaseType()

■ getDescriptor()

However, JPublisher-generated classes for VARRAY and nested table types do not
extend the oracle.sql.ARRAY class.

With Oracle mapping, JPublisher generates the following methods for Oracle JDBC
driver to use:

Generation of Java Interfaces

5-14 Oracle Database JPublisher User's Guide

■ create()

■ toDatum()

These methods are specified in the ORAData and ORADataFactory interfaces and are
not generally intended for direct use. However, you may want to use them if
converting from one object reference Java wrapper type to another.

Generation of Java Interfaces
JPublisher has the ability to generate interfaces as well as classes. This feature is
especially useful for Web services, because it eliminates the necessity to manually
create Java interfaces that represent the API from which WSDL content is generated.

The -sql option supports the following syntax:

-sql=sql_package_or_type:JavaClass#JavaInterface

or:

-sql=sql_package_or_type:JavaClass:JavaUserSubclass#JavaSubInterface

Whenever an interface name is specified in conjunction with a class, then the public
attributes or wrapper methods or both of that class are provided in the interface, and
the generated class implements the interface.

You can specify an interface for either the generated class or the user subclass, but not
both. The difference between an interface for a generated base class and one for a user
subclass involves Java-to-Java type transformations. Method signatures in the subclass
may be different from signatures in the base class because of Java-to-Java mappings.

JPublisher Subclasses
In translating a SQL user-defined type, you may want to enhance the functionality of
the custom Java class generated by JPublisher.

One way to accomplish this is to manually add methods to the class generated by
JPublisher. However, this is not advisable if you anticipate running JPublisher in the
future to regenerate the class. If you regenerate a class that you have modified in this
way, then your changes, such as the methods you have added, will be overwritten.
Even if you direct JPublisher output to a separate file, you still must merge your
changes into the file.

The preferred way to enhance the functionality of a generated class is to extend the
class. JPublisher has a mechanism for this, where it will generate the original base class
along with a stub subclass, which you can customize as desired. Wherever the SQL
type is referenced in code, such as when it is used as an argument, the SQL type will
be mapped to the subclass rather than to the base class.

There is also a scenario for JPublisher-generated subclasses for Java-to-Java type
transformations. You may have situations in which JPublisher mappings from SQL
types to Java types use Java types unsuitable for your purposes; for example, types
unsupported by Web services. JPublisher uses a mechanism of styles and style files to
allow an additional Java-to-Java transformation step, to use a Java type that is suitable.

See Also: "Publishing User-Defined SQL Types" on page 2-1 and
"Publishing PL/SQL Packages" on page 2-5

See Also: "JPublisher Styles and Style Files" on page 3-22

JPublisher Subclasses

Generated Classes and Interfaces 5-15

The following topics are covered in this section:

■ Extending JPublisher-Generated Classes

Extending JPublisher-Generated Classes
Suppose you want JPublisher to generate the JAddress class from the ADDRESS SQL
object type. You also want to write a class, MyAddress, to represent ADDRESS objects,
where MyAddress extends the functionality that JAddress provides.

Under this scenario, you can use JPublisher to generate both a base Java class,
JAddress, and an initial version of a subclass, MyAddress, to which you can add the
desired functionality. You then use JPublisher to map ADDRESS objects to the
MyAddress class instead of the JAddress class.

To do this, JPublisher alters the code it generates in the following ways:

■ It generates the MyAddressRef reference class instead of JAddressRef.

■ It uses the MyAddress class, instead of the JAddress class, to represent attributes
with the SQL type ADDRESS or to represent VARRAY and nested table elements
with the SQL type ADDRESS.

■ It uses the MyAddress factory, instead of the JAddress factory, when the
ORADataFactory interface is used to construct Java objects with the SQL type
ADDRESS.

■ It generates or regenerates the code for the JAddress class. In addition, it
generates an initial version of the code for the MyAddress class, which you can
then modify to insert your own additional functionality. However, if the source file
for the MyAddress class already exists, then it is left untouched by JPublisher.

Syntax for Mapping to Alternative Classes
JPublisher has the functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your -sql command-line option setting:

-sql=object_type:generated_base_class:map_class

For the MyAddress/JAddress example, it is:

-sql=ADDRESS:JAddress:MyAddress

If you were to enter the line in the INPUT file instead of on the command line, it would
look like this:

SQL ADDRESS GENERATE JAddress AS MyAddress

In this syntax, JAddress is the name of the base class that JPublisher generates, in
JAddress.java, but MyAddress is the name of the class that actually maps to
ADDRESS. You are ultimately responsible for the code in MyAddress.java. Update
this as necessary to add your custom functionality. If you retrieve an object that has an
ADDRESS attribute, then this attribute is created as an instance of MyAddress. Or, if
you retrieve an ADDRESS object directly, then it is retrieved into an instance of
MyAddress.

See Also: "Changes in JPublisher Behavior Between Oracle8i
Database and Oracle9i Database" on page 4-8

See Also: "Declaration of Object Types and Packages to Translate" on
page 6-14 and "INPUT File Structure and Syntax" on page 6-52

Support for Inheritance

5-16 Oracle Database JPublisher User's Guide

Format of the Class that Extends the Generated Class
For convenience, an initial version of the user subclass is automatically generated by
JPublisher, unless it already exists. This subclass is where you place your custom code.
For example, the MyAddress.java file generated by JPublisher in the preceding
example.

Note the following:

■ The class has a no-argument constructor. The easiest way to construct a properly
initialized object is to invoke the constructor of the superclass, either explicitly or
implicitly.

■ The class implements the ORAData interface or the SQLData interface. This
happens implicitly by inheriting the necessary methods from the superclass.

■ When extending an ORAData class, the subclass also implements the
ORADataFactory interface, with an implementation of the create() method, as
shown:

public ORAData create(Datum d, int sqlType) throws SQLException
{
 return create(new UserClass(),d,sqlType);
}

However, when the class is part of an inheritance hierarchy, the generated method
changes to protected ORAData createExact(), with the same signature and
body as create().

Support for Inheritance
This section describes the inheritance support for the ORAData types and explains the
following related topics:

■ How JPublisher implements support for inheritance

■ Why a reference class for a subtype does not extend the reference class for the base
type, and how you can convert from one reference type to another reference type,
typically a subclass or superclass

This section covers the following topics:

■ ORAData Object Types and Inheritance

■ ORAData Reference Types and Inheritance

■ SQLData Object Types and Inheritance

■ Effects of Using SQL FINAL, NOT FINAL, NOT INSTANTIABLE

ORAData Object Types and Inheritance
Consider the following SQL object types:

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

CREATE TYPE INSTRUCTOR UNDER PERSON (

Support for Inheritance

Generated Classes and Interfaces 5-17

...
);

Consider the following JPublisher command to create corresponding Java classes:

% jpub -user=hr -sql=PERSON:Person,STUDENT:Student,INSTRUCTOR:Instructor
-usertypes=oracle
Enter hr password: password

In this example, JPublisher generates a Person class, a Student class, and an
Instructor class. The Student and Instructor classes extend the Person class,
because STUDENT and INSTRUCTOR are subtypes of PERSON.

The class at the root of the inheritance hierarchy, Person in this example, contains full
information for the entire inheritance hierarchy and automatically initializes its type
map with the required information. As long as you use JPublisher to generate all the
required classes of a class hierarchy together, no additional action is required. The type
map of the class hierarchy is appropriately populated.

This section covers the following topics:

■ Precautions when Combining Partially Generated Type Hierarchies

■ Mapping of Type Hierarchies in JPublisher-Generated Code

Precautions when Combining Partially Generated Type Hierarchies
If you run JPublisher several times on a SQL type hierarchy, each time generating only
part of the corresponding Java wrapper classes, then you must take precautions in the
user application to ensure that the type map at the root of the class hierarchy is
properly initialized.

In our previous example, you may have run the following JPublisher commands:

% jpub -user=hr -sql=PERSON:Person,STUDENT:Student -usertypes=oracle
Enter hr password: password
% jpub -user=hr -sql=PERSON:Person,INSTRUCTOR:Instructor -usertypes=oracle
Enter hr password: password

In this case, you should create instances of the generated classes, at least of the leaf
classes, before using these mapped types in your code. For example:

new Instructor(); // required
new Student(); // required
new Person(); // optional

Mapping of Type Hierarchies in JPublisher-Generated Code
The Person class includes the following method:

Person create(oracle.sql.Datum d, int sqlType)

This method converts a Datum instance to its representation as a custom Java object. It
is called by Oracle JDBC driver whenever a SQL object declared to be a PERSON is
retrieved into a Person variable. The SQL object, however, may actually be a
STUDENT object. In this case, the create() method must create a Student instance
rather than a Person instance.

To handle this kind of situation, the create() method of a custom Java class must be
able to create instances of any subclass that represents a subtype of the SQL object type
corresponding to the oracle.sql.Datum argument. This ensures that the actual type

Support for Inheritance

5-18 Oracle Database JPublisher User's Guide

of the created Java object matches the actual type of the SQL object. The custom Java
class may or may not be created by JPublisher.

However, the code for the create() method in the root class of a custom Java class
hierarchy need not mention the subclasses. In fact, if it did mention the subclasses, then
you would have to modify the code for the base class whenever you write or create a
new subclass. The base class is modified automatically if you use JPublisher to
regenerate the entire class hierarchy. But regenerating the hierarchy may not always be
possible. For example, you may not have access to the source code for the Java classes
being extended.

Instead, code generated by JPublisher permits incremental extension of a class
hierarchy by creating a static initialization block in each subclass of the custom Java
class hierarchy. This static initialization block initializes a data structure declared in the
root-level Java class, giving the root class the information it needs about the subclass.
When an instance of a subclass is created at run time, the type is registered in the data
structure. Because of this implicit mapping mechanism, no explicit type map, such as
those required in the SQLData scenarios, is required.

ORAData Reference Types and Inheritance
This section shows how to convert from one custom reference class to another and also
explains why a custom reference class generated by JPublisher for a subtype does not
extend the reference classes of the base type.

This section covers the following topics:

■ Casting a Reference Type Instance into Another Reference Type

■ Why Reference Type Inheritance Does Not Follow Object Type Inheritance

■ Manually Converting Between Reference Types

■ Example: Manually Converting Between Reference Types

Casting a Reference Type Instance into Another Reference Type
Revisiting the example in "ORAData Object Types and Inheritance" on page 5-16,
PersonRef, StudentRef, and InstructorRef are obtained for strongly typed
references, in addition to the underlying object type wrapper classes.

There may be situations in which you have a StudentRef instance, but you want to
use it in a context that requires a PersonRef instance. In this case, use the static
method, cast(), generated in strongly typed reference classes:

StudentRef s_ref = ...;
PersonRef p_ref = PersonRef.cast(s_ref);

Note: This implementation makes it possible to extend existing
classes without having to modify them, but it also carries a penalty.
The static initialization blocks of the subclasses must be processed
before the class hierarchy can be used to read objects from the
database. This occurs if you instantiate an object of each subclass by
calling new(). It is sufficient to instantiate just the leaf classes,
because the constructor for a subclass invokes the constructor for its
immediate superclass.

As an alternative, you can generate or regenerate the entire class
hierarchy, if it is feasible.

Support for Inheritance

Generated Classes and Interfaces 5-19

Conversely, you may have a PersonRef instance and know that you can narrow it to
an InstructorRef instance:

PersonRef pr = ...;
InstructorRef ir = InstructorRef.cast(pr);

Why Reference Type Inheritance Does Not Follow Object Type Inheritance
The example here helps explain why it is not desirable for reference types to follow the
hierarchy of their related object types. Consider again a subset of the example given in
the previous section (repeated here for convenience):

CREATE TYPE PERSON AS OBJECT (
...
) NOT FINAL;

CREATE TYPE STUDENT UNDER PERSON (
...
);

And consider the following JPublisher command:

% jpub -user=hr -sql=PERSON:Person,STUDENT:Student -usertypes=oracle
Enter hr password: password

In addition to generating the Person and Student Java types, JPublisher generates
PersonRef and StudentRef types.

Because the Student class extends the Person class, you may expect StudentRef to
extend PersonRef. However, this is not the case, because the StudentRef class can
provide more compile-time type safety as an independent class than as a subtype of
PersonRef. Additionally, a PersonRef object can perform something that a
StudentRef object cannot, such as modifying a Person object in the database.

The most important methods of the PersonRef class are the following:

■ Person getValue()

■ void setValue(Person c)

The corresponding methods of the StudentRef class are as follows:

■ Student getValue()

■ void setValue(Student c)

If the StudentRef class extended the PersonRef class, then the following problems
would occur:

■ Java would not permit the getValue() method in StudentRef to return a
Student object when the method it overrides in the PersonRef class returns a
Person object, even though this is arguably a sensible thing to do.

■ The setValue() method in StudentRef would not override the setValue()
method in PersonRef, because the two methods have different signatures.

You cannot remedy these problems by giving the StudentRef methods the same
signatures and result types as the PersonRef methods, because the additional type
safety provided by declaring an object as a StudentRef, rather than as a PersonRef,
would be lost.

Support for Inheritance

5-20 Oracle Database JPublisher User's Guide

Manually Converting Between Reference Types
You cannot convert one reference type to another directly, because reference types do
not follow the hierarchy of their related object types. This is a limitation of JPublisher.
For background information, this section explains how the generated cast()
methods work to convert from one reference type to another.

The following example outlines the code that could be used to convert from the
XxxxRef reference type to the YyyyRef reference type:

java.sql.Connection conn = ...; // get underlying JDBC connection
XxxxRef xref = ...;
YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(xref.toDatum(conn),oracle.jdbc.OracleTypes.REF);

This conversion consists of two steps, each of which can be useful in its own right.

1. Convert xref from its strong XxxxRef type to the weak oracle.sql.REF type:

oracle.sql.REF ref = (oracle.sql.REF) xref.toDatum(conn);

2. Convert from the oracle.sql.REF type to the target YyyyRef type:

YyyyRef yref = (YyyyRef) YyyyRef.getORADataFactory().
 create(ref,oracle.jdbc.OracleTypes.REF);

Example: Manually Converting Between Reference Types
The following example, including the SQL definitions and Java code, illustrates the
points of the preceding discussion.

SQL Definitions Consider the following SQL definitions:

CREATE TYPE person_t AS OBJECT (ssn NUMBER, name VARCHAR2(30), dob DATE) NOT
FINAL;
/
SHOW ERRORS

CREATE TYPE instructor_t UNDER person_t (title VARCHAR2(20)) NOT FINAL;
/
SHOW ERRORS

CREATE TYPE instructorPartTime_t UNDER instructor_t (num_hours NUMBER);
/
SHOW ERRORS

CREATE TYPE student_t UNDER person_t (deptid NUMBER, major VARCHAR2(30)) NOT
FINAL;
/
SHOW ERRORS

Note: It is not recommended that you follow these manual steps.
They are presented here for illustration only. You can use the cast()
method instead.

Note: This conversion does not include any type-checking.
Whether this conversion is actually permitted depends on your
application and on the SQL schema you are using.

Support for Inheritance

Generated Classes and Interfaces 5-21

CREATE TYPE graduate_t UNDER student_t (advisor instructor_t);
/
SHOW ERRORS

CREATE TYPE studentPartTime_t UNDER student_t (num_hours NUMBER);
/
SHOW ERRORS

CREATE TABLE person_tab OF person_t;

INSERT INTO person_tab VALUES (1001, 'Larry', TO_DATE('11-SEP-60'));

INSERT INTO person_tab VALUES (instructor_t(1101, 'Smith', TO_DATE('09-OCT-1940'),
'Professor'));

INSERT INTO person_tab VALUES (instructorPartTime_t(1111, 'Myers',
TO_DATE('10-OCT-65'), 'Adjunct Professor', 20));

INSERT INTO person_tab VALUES (student_t(1201, 'John', To_DATE('01-OCT-78'), 11,
'EE'));

INSERT INTO person_tab VALUES (graduate_t(1211, 'Lisa', TO_DATE('10-OCT-75'), 12,
'ICS',
instructor_t(1101, 'Smith', TO_DATE ('09-OCT-40'), 'Professor')));

INSERT INTO person_tab VALUES (studentPartTime_t(1221, 'Dave',
TO_DATE('11-OCT-70'), 13, 'MATH', 20));

JPublisher Mappings Assume the following mappings when you run JPublisher:

Person_t:Person,instructor_t:Instructor,instructorPartTime_t:InstructorPartTime,
graduate_t:Graduate,studentPartTime_t:StudentPartTime

SQLJ Class Here is a SQLJ class with an example of reference type conversion:

import java.sql.*;
import oracle.jdbc.*;
import oracle.sql.*;

public class Inheritance
{
 public static void main(String[] args) throws SQLException
 {
 System.out.println("Connecting.");
 java.sql.DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 oracle.jdbc.OracleConnection conn =
 (oracle.jdbc.OracleConnection) java.sql.DriverManager.getConnection
 ("jdbc:oracle:oci8:@", "hr", "hr");
 // The following is only required in 9.0.1
 // or if the Java class hierarchy was created piecemeal
 System.out.println("Initializing type system.");
 new Person();
 new Instructor();
 new InstructorPartTime();
 new StudentT();
 new StudentPartTime();
 new Graduate();
 PersonRef p_ref;
 InstructorRef i_ref;

Support for Inheritance

5-22 Oracle Database JPublisher User's Guide

 InstructorPartTimeRef ipt_ref;
 StudentTRef s_ref;
 StudentPartTimeRef spt_ref;
 GraduateRef g_ref;
 OraclePreparedStatement stmt =
 (OraclePreparedStatement)conn.prepareStatement
 ("select ref(p) FROM PERSON_TAB p WHERE p.NAME=:1");
 OracleResultSet rs;

 System.out.println("Selecting a person.");
 stmt.setString(1, "Larry");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 p_ref = (PersonRef) rs.getORAData(1, PersonRef.getORADataFactory());
 rs.close();

 System.out.println("Selecting an instructor.");
 stmt.setString(1, "Smith");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 i_ref = (InstructorRef) rs.getORAData(1, InstructorRef.getORADataFactory());
 rs.close();

 System.out.println("Selecting a part time instructor.");
 stmt.setString(1, "Myers");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 ipt_ref = (InstructorPartTimeRef) rs.getORAData
 (1, InstructorPartTimeRef.getORADataFactory());
 rs.close();

 System.out.println("Selecting a student.");
 stmt.setString(1, "John");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 s_ref = (StudentTRef) rs.getORAData(1, StudentTRef.getORADataFactory());
 rs.close();

 System.out.println("Selecting a part time student.");
 stmt.setString(1, "Dave");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 spt_ref = (StudentPartTimeRef) rs.getORAData
 (1, StudentPartTimeRef.getORADataFactory());
 rs.close();

 System.out.println("Selecting a graduate student.");
 stmt.setString(1, "Lisa");
 rs = (OracleResultSet) stmt.executeQuery();
 rs.next();
 g_ref = (GraduateRef) rs.getORAData(1, GraduateRef.getORADataFactory());
 rs.close();
 stmt.close();

 // Assigning a part-time instructor ref to a person ref
 System.out.println("Assigning a part-time instructor ref to a person ref");
 oracle.sql.Datum ref = ipt_ref.toDatum(conn);
 PersonRef pref = (PersonRef) PersonRef.getORADataFactory().
 create(ref,OracleTypes.REF);
 // or just use: PersonRef pref = PersonRef.cast(ipt_ref);

Support for Inheritance

Generated Classes and Interfaces 5-23

 // Assigning a person ref to an instructor ref
 System.out.println("Assigning a person ref to an instructor ref");
 InstructorRef iref = (InstructorRef) InstructorRef.getORADataFactory().
 create(pref.toDatum(conn), OracleTypes.REF);
 // or just use: InstructorRef iref = InstructorRef.cast(pref);
 // Assigning a graduate ref to an part time instructor ref.
 // This should produce an error, demonstrating that refs
 // are type safe.
 System.out.println ("Assigning a graduate ref to a part time instructor ref");
 InstructorPartTimeRef iptref =
 (InstructorPartTimeRef) InstructorPartTimeRef.getORADataFactory().
 create(g_ref.toDatum(conn), OracleTypes.REF);
 // or just use: InstructorPartTimeRef iptref =
 // InstructorPartTimeRef.cast(g_ref);
 conn.close();
 }
}

SQLData Object Types and Inheritance
If you use the JPublisher -usertypes=jdbc setting instead of
-usertypes=oracle, then the custom Java class generated by JPublisher
implements the standard SQLData interface instead of the Oracle ORAData interface.
The standard SQLData methods, readSQL() and writeSQL(), provide functionality
equivalent to the ORAData/ORADataFactory methods, create() and toDatum(),
for reading and writing data.

When JPublisher generates SQLData classes corresponding to a SQL hierarchy, the
Java types follow the same hierarchy as the SQL types. This is similar to the case when
JPublisher generates ORAData classes corresponding to a hierarchy of SQL object
types. However, SQLData implementations do not offer the implicit mapping
intelligence that JPublisher automatically generates in ORAData classes.

In a SQLData scenario, you must manually provide a type map to ensure correct
mapping between SQL object types and Java types. In a JDBC application, you can
properly initialize the default type map for your connection or you can explicitly
provide a type map as a getObject() input parameter.

In addition, note that there is no support for strongly typed object references in an
SQLData implementation. All object references are weakly typed java.sql.Ref
instances.

Effects of Using SQL FINAL, NOT FINAL, NOT INSTANTIABLE
This section discusses the effect of using the SQL modifiers FINAL, NOT FINAL, or
NOT INSTANTIABLE on JPublisher-generated wrapper classes.

Using the SQL modifier FINAL or NOT FINAL on a SQL type or on a method of a SQL
type has no effect on the generated Java wrapper code. This ensures that, in all cases,
JPublisher users are able to customize generated Java wrapper classes by extending
the classes and overriding the generated behavior.

Using the NOT INSTANTIABLE SQL modifier on a method of a SQL type results in no
code being generated for that method in the Java wrapper class. Therefore, to call such
a method, you must cast to some wrapper class that corresponds to an instantiable
SQL subtype.

See Also: Oracle Database JDBC Developer's Guide

Support for Inheritance

5-24 Oracle Database JPublisher User's Guide

Using NOT INSTANTIABLE on a SQL type results in the corresponding wrapper class
being generated with protected constructors. This will remind you that instances of
that class can be created only through subclasses that correspond to the instantiable
SQL types.

Command-Line Options and Input Files 6-1

6
Command-Line Options and Input Files

This chapter describes the usage and syntax details of JPublisher option settings and
input files to specify program behavior. It is organized into the following sections:

■ JPublisher Options

■ JPublisher Input Files

JPublisher Options
The following sections list and discuss JPublisher command-line options:

■ JPublisher Option Summary

■ JPublisher Option Tips

■ Notational Conventions

■ Options for Input Files and Items to Publish

■ Connection Options

■ Options for Data Type Mappings

■ Type Map Options

■ Java Code-Generation Options

■ PL/SQL Code Generation Options

■ Input/Output Options

■ Options to Facilitate Web Services Call-Outs

■ Option to Access SQLJ Functionality

■ Backward Compatibility Option

■ Java Environment Options

■ SQLJ Migration Options

JPublisher Option Summary
Table 6–1 summarizes JPublisher options. For default values, the abbreviation, NA,
means not applicable. The Category column refers to the corresponding conceptual
area, indicating the section of this chapter where the option is discussed.

JPublisher Options

6-2 Oracle Database JPublisher User's Guide

Table 6–1 Summary of JPublisher Options

Option Name Description Default Value Category

-access Determines the access modifiers that
JPublisher includes in generated method
definitions.

public Java code generation

-adddefaulttypemap Appends an entry to the JPublisher
default type map.

NA Type maps

-addtypemap Appends an entry to the JPublisher user
type map.

NA Type maps

-builtintypes Specifies the data type mappings, jdbc or
oracle, for built-in data types that are
not numeric or large object (LOB).

jdbc Data type mappings

-case Specifies the case of Java identifiers that
JPublisher generates.

mixed Java code generation

-classpath Adds to the Java classpath for JPublisher
to resolve Java source and classes during
translation and compilation.

Empty Java environment

-compatible Specifies a compatibility mode and
modifies the behavior of
-usertypes=oracle.

See Also: "JPublisher
Backward-Compatibility Modes and
Settings" on page 4-10

oradata Backward
compatibility

-compile Determines whether to proceed with Java
compilation or suppress it. This option
also affects SQLJ translation for
backward-compatibility modes.

true Input/output

-compiler-executab
le

Specifies a Java compiler version, in case
you want a version other than the default.

NA Java environment

-context Specifies the class that JPublisher uses for
SQLJ connection contexts. This can be the
DefaultContext class, a user-specified
class, or a JPublisher-generated inner
class.

DefaultContext Connection

-defaulttypemap Sets the default type map that JPublisher
uses.

Refer to
"JPublisher User
Type Map and
Default Type Map"
on page 3-5.

Type maps

-d Specifies the root directory for placement
of compiled class files.

Empty (all files
directly present in
the current
directory)

Input/output

-dir Specifies the root directory for placement
of generated source files.

Empty (all files
directly present in
the current
directory)

Input/output

-driver Specifies the driver class that JPublisher
uses for Java Database Connectivity
(JDBC) connections to the database.

oracle.jdbc.
OracleDriver

Connection

-encoding Specifies the Java encoding of JPublisher
input and output files.

The value of the
system property
file.encoding

Input/output

JPublisher Options

Command-Line Options and Input Files 6-3

-endpoint Specifies a Web service endpoint. This
option is used in conjunction with the
-proxywsdl option.

NA Web services

-filtermodes Filters code generation according to
specified parameter modes.

NA Java code generation

-filtertypes Filters code generation according to
specified parameter types.

NA Java code generation

-generatebean Ensures that generated code conforms to
the JavaBeans specification.

false Java code generation

-genpattern Defines naming patterns for generated
code.

NA Java code generation

-gensubclass Specifies whether and how to generate
stub code for user subclasses.

true Java code generation

-httpproxy Specifies a proxy URL to resolve the URL
of a Web Services Description Language
(WSDL) document for access through a
firewall. This option is used in conjunction
with the -proxywsdl option.

NA Web services

-input or -i Specifies a file that lists the types and
packages that JPublisher translates.

NA Input files/items

-java Specifies server-side Java classes for which
JPublisher generates client-side classes.

NA Input files/items

-lobtypes Specifies the jdbc or oracle data type
mapping that JPublisher uses for BLOB
and CLOB types.

oracle Data type mappings

-mapping Specifies the mapping that generated
methods support for object attribute types
and method argument types.

Note: This option is deprecated in favor of
the "XXXtypes" mapping options, but is
supported for backward compatibility.

objectjdbc Data type mappings

-methods Determines whether JPublisher generates
wrapper methods for stored procedures of
translated SQL objects and PL/SQL
packages. This option also determines
whether JPublisher generates SQLJ classes
or non-SQLJ classes, and whether it
generates PL/SQL wrapper classes at all.
There are settings to specify whether
overloaded methods are allowed.

all Java code generation

-numbertypes Specifies the data type mappings, such as
jdbc, objectjdbc, bigdecimal, or
oracle, that JPublisher uses for numeric
data types.

objectjdbc Data type mappings

-omit_schema_names Instructs JPublisher not to include the
schema in SQL type name references in
generated code.

Disabled (schema
included in type
names)

Java code generation

-outarguments Specifies the holder type, such as arrays,
Java API for XML-based Remote
Procedure Call (JAX-RPC) holders, or
function returns, for Java implementation
of PL/SQL output parameters.

array Java code generation

Table 6–1 (Cont.) Summary of JPublisher Options

Option Name Description Default Value Category

JPublisher Options

6-4 Oracle Database JPublisher User's Guide

-overwritedbtypes Specifies whether to ignore naming
conflicts when creating SQL types.

true PL/SQL code
generation

-package Specifies the name of the Java package
into which JPublisher generates Java
wrapper classes.

NA Java code generation

-plsqlfile Specifies a wrapper script to create and a
dropper script to drop SQL conversion
types for PL/SQL types and the PL/SQL
package that JPublisher will use for
generated PL/SQL code.

plsql_wrapper.
sql,
plsql_dropper.
sql

PL/SQL code
generation

-plsqlmap Specifies whether to generate PL/SQL
wrapper functions for stored procedures
that use PL/SQL types.

true PL/SQL code
generation

-plsqlpackage Specifies the PL/SQL package into which
JPublisher generates PL/SQL code, such
as call specifications, conversion functions,
and wrapper functions.

JPUB_PLSQL_WRA
PPER

PL/SQL code
generation

-props or -p Specifies a file that contains JPublisher
options in addition to those listed on the
command line.

NA Input files/items

-proxyclasses Specifies Java classes for which JPublisher
generates wrapper classes and PL/SQL
wrappers according to the -proxyopts
setting. For Web services, you will
typically use -proxywsdl instead, which
uses -proxyclasses behind the scenes.

NA Web services

-proxyopts Specifies required layers of Java and
PL/SQL wrappers and additional related
settings.

Is used as input for the -proxywsdl and
-proxyclasses options.

jaxrpc Web services

-proxywsdl Specifies the URL of a WSDL document
for which Web services client proxy classes
and associated Java wrapper classes are
generated along with PL/SQL wrappers.

NA Web services

-serializable Specifies whether the code generated for
object types implements the
java.io.Serializable interface.

false Java code generation

-sql or -s Specifies object types and packages, or
subsets of packages, for which JPublisher
generates Java classes, and optionally
subclasses and interfaces.

NA Input files/items

-sqlj Specifies SQLJ option settings for the
JPublisher invocation of the SQLJ
translator.

NA SQLJ

-sqlstatement Specifies SQL queries or data
manipulation language (DML) statements
for which JPublisher generates Java
classes, and optionally subclasses and
interfaces, with appropriate methods.

NA Input files/items

-style Specifies the name of a "style file" for
Java-to-Java type mappings.

NA Data type mappings

Table 6–1 (Cont.) Summary of JPublisher Options

Option Name Description Default Value Category

JPublisher Options

Command-Line Options and Input Files 6-5

JPublisher Option Tips
Be aware of the following usage notes for JPublisher options:

■ JPublisher always requires the -user option or its shorthand equivalent -u.

■ Options are processed in the order in which they appear. Options from an INPUT
file are processed at the point where the -input or -i option occurs. Similarly,
options from a properties file are processed at the point where the -props or -p
option occurs.

■ As a rule, if a particular option appears more than once, JPublisher uses the value
from the last occurrence. However, this is not true for the following options, which
are cumulative:

-sql

-types, which is deprecated

-java

-addtypemap or -adddefaulttypemap

-style

■ In general, separate options and corresponding option values by an equal sign (=).
However, when the following options appear on the command line, you can also
use a space as a separator:

-sql or -s, -user or -u, -props or -p, and -input or -i

■ With the -sqlj option, you must use a space instead of an equal sign, because
SQLJ settings following the -sqlj option use equal signs. Consider the following
example, where each entry after "-sqlj" is a SQLJ option:

-sysuser Specifies the name and password for a
superuser account that can be used to
grant permissions to execute wrappers
that access Web services client proxy
classes in the database.

NA Web services

-tostring Specifies whether to generate a
toString() method for object types.

false Java code generation

-typemap Specifies the JPublisher type map. Empty Type maps

-types Specifies object types for which JPublisher
generates code.

Note: This option is deprecated in favor of
-sql, but is supported for backward
compatibility.

NA Input files/items

-url Specifies the URL that JPublisher uses to
connect to the database.

jdbc:oracle:oc
i:@

Connection

-user or -u Specifies an Oracle user name and
password for connection.

NA Connection

-usertypes Specifies the jdbc or oracle type
mapping that JPublisher uses for
user-defined SQL types.

oracle Data type mappings

-vm Specifies a Java version, in case you want
a version other than the default.

NA Java environment

Table 6–1 (Cont.) Summary of JPublisher Options

Option Name Description Default Value Category

JPublisher Options

6-6 Oracle Database JPublisher User's Guide

% jpub -user=hr -sql=PERSON:Person -sqlj -optcols=true
 -optparams=true -optparamdefaults=datatype1(size1),datatype2(size)
Enter hr password: password

■ It is advisable to specify a Java package for generated classes with the -package
option, either on the command line or in a properties file. For example, you could
enter the following on the command line:

% jpub -sql=Person -package=e.f ...

Alternatively, you could enter the following in the properties file:

jpub.sql=Person
jpub.package=e.f
...

These statements direct JPublisher to create the class Person in the Java package
e.f, that is, to create the class e.f.Person.

■ If you do not specify a type or package in the INPUT file or on the command line,
then JPublisher translates all types and packages in the user schema according to
the options specified on the command line or in the properties file.

Notational Conventions
The JPublisher option syntax used in the following sections uses the following
notational conventions:

■ Braces {...} enclose a list of possible values. Specify only one of the values
within the braces.

■ A vertical bar | separates alternatives within braces.

■ Terms in italics are for user input. Specify an actual value or string.

■ Terms in boldface indicate default values.

■ Square brackets [...] enclose optional items. In some cases, however, square
brackets or parentheses are part of the syntax and must be entered verbatim. In
this case, this manual uses boldface: [...] or (...).

■ Ellipsis points ... immediately following an item, or items enclosed in brackets,
mean that you can repeat the item any number of times.

■ Punctuation symbols other than those described in this section are entered as
shown in this manual. These include "." and "@", for example.

Options for Input Files and Items to Publish
This section documents the following JPublisher options that specify key input, either
JPublisher input files, such as INPUT files or properties files, or items to publish, such
as SQL objects, PL/SQL packages, SQL queries, SQL DML statements, or server-side
Java classes:

■ Options for input files: -input, -props

■ Options for items to publish: -java, -sql, -sqlstatement, -types

These options are discussed in alphabetic order.

See Also: "Properties File Structure and Syntax" on page 6-50

JPublisher Options

Command-Line Options and Input Files 6-7

File Containing Names of Objects and Packages to Translate
The -input option specifies the name of a file from which JPublisher reads the names
of SQL or PL/SQL entities or server-side Java classes to publish, along with any
related information or instructions. JPublisher publishes each item in the list. You can
think of the INPUT file as a makefile for type declarations, which lists the types that
need Java class definitions.

The syntax of the -input option is as follows:

-input=filename
-i filename

Both formats are synonymous. The second one is a convenient command-line shortcut.

In some cases, JPublisher may find it necessary to translate some additional classes
that do not appear in the INPUT file. This is because JPublisher analyzes the types in
the INPUT file for dependencies before performing the translation and translates other
types as necessary.

If you do not specify any items to publish in an INPUT file or on the command line,
then JPublisher translates all user-defined SQL types and PL/SQL packages declared
in the database schema to which it is connected.

Declaration of Server-Side Java Classes to Publish
The -java option enables you to create client-side stub classes to access server-side
classes. This is an improvement over earlier JPublisher releases in which calling Java
stored procedures and functions from a database client required JDBC calls to
associated PL/SQL wrappers.

The syntax of the -java option is as follows:

-java=class_or_package_list

The functionality of the -java option mirrors that of the -sql option. It creates a
client-side Java stub class to access a server-side Java class, in contrast to creating a
client-side Java class to access a server-side SQL object or PL/SQL package.

When using the -java option, specify a comma-delimited list of server-side Java
classes or packages.

For example:

-java=foo.bar.Baz,foo.baz.*

Or, to specify the client-side class name corresponding to Baz, instead of using the
server-side name by default:

-java=foo.bar.Baz:MyBaz,foo.baz.*

See Also: "Translating Additional Types" on page 6-55 and "INPUT
File Structure and Syntax" on page 6-52

Note:

■ To use the -java option, you must also specify the -user and
-url settings for a database connection.

■ It is advisable to use the same Java Development Kit (JDK) on
the client as on the server.

JPublisher Options

6-8 Oracle Database JPublisher User's Guide

This setting creates MyBaz and not foo.bar.MyBaz.

or:

-java=foo.bar.Baz:foo.bar.MyBaz,foo.baz.*

You can also specify a schema:

-java=foo.bar.Baz@HR

If you specify the schema, then only that schema is searched. If you do not specify a
schema, then the schema of the logged-in user, according to the -user option setting,
is searched. This is the most likely scenario.

As an example, assume that you want to call the following method on the server:

public String oracle.sqlj.checker.JdbcVersion.to_string();

Use the following -java setting:

-java=oracle.sqlj.checker.JdbcVersion

Code Generation for -java Option When you use the -java option, generated code
uses the following API:

public class Client
{
 public static String getSignature(Class[]);
 public static Object invoke(Connection, String, String,
 String, Object[]);
 public static Object invoke(Connection, String, String,
 Class[], Object[]);
}

Classes for the API are located in the oracle.jpub.reflect package, so client
applications must import this package.

For a setting of -java=oracle.sqlj.checker.JdbcVersion,
JPublisher-generated code includes the following call:

Connection conn = ...;
String serverSqljVersion = (String)
 Client.invoke(conn, "oracle.sqlj.checker.JdbcVersion",
 "to_string", new Class[]{}, new Object[]{});

The Class[] array is for the method parameter types, and the Object[] array is for
the parameter values. In this case, because to_string has no parameters, the arrays
are empty.

Note the following:

■ Any serializable type, such as int[] or String[], can be passed as an argument.

■ The semantics of this API are different from the semantics for invoking Java stored
procedures or functions through a PL/SQL wrapper, in the following ways:

Note: If JPublisher cannot find a specified class in the schema, a
specified schema or the schema of the logged-in user, then it uses the
Class.forName() method to search for the class among system
classes in the Java Virtual Machine (JVM), typically Java run-time
environment (JRE) or JDK classes.

JPublisher Options

Command-Line Options and Input Files 6-9

– Arguments cannot be OUT or IN OUT. Returned values must be part of the
function result.

– Exceptions are properly returned.

– Method invocation uses invoker's rights. There is no tuning to obtain definer's
rights.

Declaration of Server-Side Java Classes to Publish
The related options for publishing a server-side Java class are:

-dbajva=class_list

-proxyopts=single|multiple|static|arrayin|arrayout|arrayinout
|arrayall|noload

-compatible=10.1

-sysuser=user/password

-plsqlfile=wrapper[,dropper]

-plsqlpackage=name

Oracle Database 10g release 1 (10.1) introduced the -java option to publish
server-side Java classes. Oracle Database 10g release 2 (10.2) introduced a new
approach toward server-side Java class publishing. The -dbjava option publishes a
server-side Java class into PL/SQL, or into client-side Java class. The class_list
specification is a comma-delimited list of server-side classes at the specified server.
The class_list item is of the form classname[:name[#interface]]. It can also
be a package name. Consider the option:

-dbajva=classname[:name[#interface]]

If name is not specified, then the server-side Java class, classname, is published into
PL/SQL, else into the client-side Java class, name. If interface is specified, then the
interface file is generated for the client-side Java class.

When used with -dbjava, the -proxyopts option indicates whether to map instance
methods using a singleton instance or using multiple instances, and also whether to
map methods with array parameters assuming arrays as IN, OUT, IN OUT, or all the
modes. The -proxyopts=static setting specifies that only static methods should be
published. The default setting, -proxyopts=single,arrayin, indicates that
instance methods are called using a singleton instance and array parameters are
considered as input. The -proxyopts=noload setting forbids JPublisher from
loading the generated PL/SQL and Java stored procedure wrappers.

The -compatible=10.1 option makes -dbjava equivalent to -java.

Declaration of Server-Side Java Classes to Publish
The related options for publishing server-side Java class are:

-proxyclasses=class_or_jar_list

-proxyopts=single|multiple|static|arrayin|arrayout|arrayinout
|arrayall

See Also: Oracle Database Java Developer's Guide for information
about invoker's rights and definer's rights

JPublisher Options

6-10 Oracle Database JPublisher User's Guide

-plsqlfile=wrapper[,dropper]

-plsqlpackage=name

The -proxyclasses option is similar to -dbjava. While -dbjava requires that the
classes to be published exist in the database, -proxyclasses requires that the classes
appear in the classpath. Typically, by using -proxyclasses, you can load the
exposed classes and the generated wrappers into the database later.

The -proxyclasses option generates only a PL/SQL wrapper. Unlike -dbjava, it
will not generate client-side Java code for a server-side Java class. Also, unlike
-dbjava, -proxyclasses does not load the generated Java stored procedure into
the database.

You can use the -proxyclasses option to specify a comma-delimited list of Java
classes, either loose classes or Java Archive (JAR) files, for which JPublisher creates
PL/SQL wrappers. Depending on the situation, JPublisher can also create Java
wrapper classes to afford access from PL/SQL. Each of the classes processed must
have either public, static methods or, for classes in which you want to publish instance
methods, a public zero-argument constructor.

To summarize, the following are generated for each class being processed, depending
on the -proxyopts option settings:

■ A PL/SQL wrapper to allow access from PL/SQL. This is always generated.

■ A wrapper class to expose Java instance methods as static methods, if there are
any instance methods to publish.

Instance methods must be exposed as static methods to allow access from PL/SQL. A
wrapper class is also necessary if the wrapped class uses anything other than Java
primitive types in the method calling sequences.

While using the -proxyclasses option directly, you can specify JAR files and Java
classes that exist in the classpath. Classes and JAR files can be specified as follows:

■ Class name, such as foo.bar.Baz or foo.bar.Baz.class

■ Package name, such as foo.bar.*, for @server mode only

■ JAR or ZIP file name, such as foo/bar/baz.jar or Baz.zip

■ JAR or ZIP file name followed by parenthesized list of classes or packages, such as
baz.jar (foo.MyClass1, foo.bar.MyClass2, foo1.*)

Settings for Java and PL/SQL Wrapper Generation
The -proxyopts option is used as input by the -dbjava, -proxywsdl, and
-proxyclasses options and specifies JPublisher behavior in generating wrapper
classes and PL/SQL wrappers for server-side Java classes.

The syntax of the -proxyopts option is as follows:

-proxyopts=setting1,setting2,...

This option uses the basic settings, which can be used individually or in combinations.
In this discussion, processed classes are the classes that are wrapped by using the
-dbjava, -proxywsdl, or -proxyclasses options.

Where Java wrapper classes are generated, the wrapper class for a class
foo.bar.MyClass would be foo.bar.MyClassJPub, unless the package is
overridden by a setting of the -package option.

You can use the basic -proxyopts settings as follows:

JPublisher Options

Command-Line Options and Input Files 6-11

■ Use the static setting to specify the treatment of static methods of processed
classes.

With this setting, in the PL/SQL wrapper, a wrapper procedure is generated for
each static method. Without this setting, static methods are ignored. For classes
with only static methods, wrapper classes are not required for processed classes
that use only Java primitive types in their method calling sequences.

■ Use the multiple or single setting to specify treatment of instance methods of
processed classes, where you want instance methods exposed as static methods. In
either case, for each processed class, JPublisher generates an intermediate Java
class that wraps instance methods with static methods, in addition to generating a
PL/SQL wrapper.

Use the instance setting to specify treatment of instance methods of processed
classes, where you want instance methods maintained as instance methods.

These settings function as follows:

– multiple

For each processed class, the Java wrapper class has a static equivalent for
each instance method through the use of handles, which identify instances of
wrapped classes.

– single

Only a single default instance of each wrapped class is used during run time.
For each processed class, the Java wrapper class has static wrapper methods
for instance methods without requiring the use of handles. This is the
singleton mechanism.

– instance

Instance methods are wrapped as instance methods in the Java wrapper class.

The instance methods are ignored if one of these settings or a jaxrpc or soap
setting, which implies single, is not specified. For either of these settings, only
classes that provide a public zero-argument constructor are processed. You can use
both settings to generate wrapper classes of both styles.

■ Use the jaxrpc or soap setting to publish instance methods of Web services
client proxy classes. These settings function as follows:

– jaxrpc

This is the default setting. It is a convenient setting for wrapping JAX-RPC
client proxy classes, which is appropriate for use with Oracle Application
Server 10g 10.0.1 and later releases. JPublisher creates a Java wrapper class for
each processed class and also creates the PL/SQL wrapper. Client proxy
classes do not have static methods to be published, and instance methods are
published using the singleton mechanism by default. Therefore, when
processing JAX-RPC client proxy classes, -proxyopts=jaxrpc implies
-proxyopts=single. The jaxrpc setting also results in generation of
special code that is specific to JAX-RPC clients.

– soap

Note: The instance setting is not appropriate for Web services.

JPublisher Options

6-12 Oracle Database JPublisher User's Guide

This setting is equivalent to the jaxrpc setting, but is used for wrapping
SOAP client proxy classes instead of JAX-RPC client proxy classes. This is
appropriate for use with Oracle Application Server 10g 9.0.4 and earlier
releases.

Here are some basic uses of the -proxyopts option:

-proxyopts=jaxrpc

-proxyopts=soap

-proxyopts=static

-proxyopts=static,instance

-proxyopts=single

-proxyopts=single,multiple

-proxyopts=static,multiple

The static,instance setting publishes static and instance methods. The
single,multiple setting publishes only instance methods, using both the singleton
mechanism and the handle mechanism. The static,multiple setting publishes
static and instance methods, using the handle mechanism to expose instance methods
as static methods.

There are additional, advanced -proxyopts settings as well. The functionality of
each setting is as follows:

■ noload

Use this to indicate that the generated code need not be loaded into the database.
By default, the generated code is loaded.

■ recursive

Use this to indicate that when processing a class that extends another class, also
create PL/SQL and Java wrappers, if appropriate, for inherited methods.

■ tabfun

Use this with the jaxrpc or soap setting for JPublisher to generate PL/SQL table
functions for the PL/SQL package for each of the wrapped Web services
operations. This exposes data through database tables rather than stored
procedures or functions.

Do not use the -proxyopts=tabfun setting when the Web service operation
contains array types as parameter types. In such cases, JPublisher generates
PL/SQL stored procedure with SQL tables as parameter types. So, setting the
-proxyopts=tabfun setting will result in compilation error for the generated
PL/SQL wrapper.

■ deterministic

Note: It is typical to explicitly use the -proxyopts option with the
-proxyclasses option than with the -proxywsdl option. For the
use of -proxywsdl with 10.0.x releases of Oracle Application Server
10g, the default -proxyopts=jaxrpc setting is sufficient.

JPublisher Options

Command-Line Options and Input Files 6-13

Use this to indicate in the generated PL/SQL wrapper that the wrapped methods
are deterministic. This would typically be used with the tabfun setting.
Deterministic is a PL/SQL annotation.

■ main(0,...)

Use this with the static setting to define the wrapper methods to be generated if
there is a public void String main(String[]) method in the class. A
separate method is generated for each number of arguments that you want to
support. You can use commas or hyphens when indicating the number of
arguments, as in the following examples:

– main or main(0) produces a wrapper method only for zero arguments.

– main(0,1) produces wrapper methods for zero arguments and one
argument. This is the default setting.

– main(0-3) produces wrapper methods for zero, one, two, and three
arguments.

– main(0,2-4) produces wrapper methods for zero, two, three, and four
arguments.

The maximum number of arguments in the wrapper method for the main()
method is according to PL/SQL limitations.

The following example uses the jaxrpc basic setting by default. It also uses table
functions and indicates that wrapped methods are deterministic:

-proxyopts=tabfun,deterministic

The following example explicitly sets the static mode, processing classes that are
not client proxy classes, and specifies that the generated code should not be loaded
into the database:

-proxyopts=static,noload

Input Properties File
The -props option specifies the name of a JPublisher properties file that specifies
JPublisher option settings. JPublisher processes the properties file as if its contents
were inserted in sequence on the command line where the -props option is specified.

The syntax of the -props option is as follows:

-props=filename
-p filename

Both formats are synonymous. The second one is provided as a convenient
command-line shortcut.

If more than one properties file appears on the command line, then JPublisher
processes them with the other command-line options, in the order in which they
appear.

See Also: Oracle Database SQL Language Reference for information
about DETERMINISTIC functions

See Also: "Properties File Structure and Syntax" on page 6-50

JPublisher Options

6-14 Oracle Database JPublisher User's Guide

Declaration of Object Types and Packages to Translate
The -sql option is used to specify the user-defined SQL types, such as objects or
collections, or the PL/SQL packages that need to be published. Optionally, you can
specify the user subclasses or interfaces that should be generated. You can publish all
or a specific subset of a PL/SQL package.

The syntax of the -sql option is as follows:

-sql={toplevel|object_type_and_package_translation_syntax}
-s {toplevel|object_type_and_package_translation_syntax}

The two formats of this option, -sql and -s, are synonymous. The -s format is
provided as a convenient command-line shortcut.

You can use the -sql option when you do not need the generality of an INPUT file.
The -sql option lets you list one or more database entities declared in SQL that you
want JPublisher to translate. Alternatively, you can use several -sql options in the
same command line, or several jpub.sql options in a properties file.

You can mix user-defined type names and package names in the same -sql
declaration. JPublisher can detect whether each item is an object type or a package.
You can also use the -sql option with the keyword toplevel to translate all
top-level PL/SQL subprograms in a schema. The toplevel keyword is not
case-sensitive.

If you do not specify any types or packages to translate in the INPUT file or on the
command line, then JPublisher translates all the types and packages in the schema to
which you are connected. In this section, the -sql option is explained in terms of the
equivalent INPUT file syntax.

You can use the any of the following syntax modes:

■ -sql=name_a

JPublisher publishes name_a, naming the generated class according to the default
settings. In an INPUT file, you specify this options as follows:

SQL name_a

■ -sql=name_a:class_c

JPublisher publishes name_a as the generated Java class class_c. In an INPUT
file, you specify this options as follows:

SQL name_a AS class_c

■ -sql=name_a:class_b:class_c

In this case, name_a must represent an object type. JPublisher generates the Java
class, class_b, and a stub class, class_c, that extends class_b. You provide

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files. Properties files always use the
8859_1 encoding. This is a feature of Java in general, and not of
JPublisher in particular. However, you can use Unicode escape
sequences in a properties file.

See Also: "Understanding the Translation Statement" on page 6-52

JPublisher Options

Command-Line Options and Input Files 6-15

the code for class_c, which is used to represent name_a in your Java code. In an
INPUT file, you specify this options as follows:

SQL name_a GENERATE class_b AS class_c

■ -sql=name_a:class_b#intfc_b

■ -sql=name_a:class_b:class_c#intfc_c

You can use either of these syntax formats to have JPublisher generate a Java
interface. This feature is particularly useful for Web services. In the first case,
class_b represents name_a and implements intfc_b. In the second case,
class_c represents name_a, extends class_b, and implements intfc_c.

Specify an interface for either the generated class or the user subclass, but not
both. In an INPUT file, this syntax is as follows:

 SQL name_a
 [GENERATE class_b
 [implements intfc_b]]
 [AS class_c
 [implements intfc_c]]
 ...

If you enter more than one item for translation, then the items must be separated by
commas, without any white space. This example assumes that CORPORATION is a
package and that EMPLOYEE and ADDRESS are object types:

-sql=CORPORATION,EMPLOYEE:OracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher interprets this command as follows:

SQL CORPORATION
SQL EMPLOYEE AS OracleEmployee
SQL ADDRESS GENERATE JAddress AS MyAddress

JPublisher performs the following actions:

■ Creates a wrapper class for the CORPORATION package.

■ Translates the EMPLOYEE object type as OracleEmployee.

■ Generates an object reference class, OracleEmployeeRef.

See Also: "Generation of Java Interfaces" on page 5-14

Note:

■ Only SQL names that are not case-sensitive are supported on
the JPublisher command line. If a user-defined type was
defined in a case-sensitive way in SQL, using quotes, then you
must specify the name in the JPublisher INPUT file instead of
specifying the user-defined type, in quotes, on the command
line.

■ If your desired class and interface names follow a pattern, you
can use the -genpattern command-line option for
convenience.

JPublisher Options

6-16 Oracle Database JPublisher User's Guide

■ Translates ADDRESS as JAddress, but generates code and references so that
ADDRESS objects will be represented by the MyAddress class.

■ Generates a MyAddress stub, which extends JAddress, where you can write
your custom code.

■ Generates an object reference class MyAddressRef.

If you want JPublisher to translate all the top-level PL/SQL subprograms in the
schema to which JPublisher is connected, then enter the keyword toplevel following
the -sql option. JPublisher treats the top-level PL/SQL subprograms as if they were
in a package. For example:

-sql=toplevel

JPublisher generates a wrapper class, toplevel, for the top-level subprograms. If you
want the class to be generated with a different name, you can declare the name as
follows:

-sql=toplevel:MyClass

Note that this is synonymous with the following INPUT file syntax:

SQL toplevel AS MyClass

Similarly, if you want JPublisher to translate all the top-level PL/SQL subprograms in
some other schema, then enter:

-sql=schema_name.toplevel

In this example, schema_name is the name of the schema containing the top-level
subprograms. In addition, there are features to publish only a subset of stored
procedures in a PL/SQL package or at the top level, using the following syntax:

-sql=plsql_package(proc1+proc2+proc3+...)

Use a plus sign (+) between stored procedure names. Alternatively, for the SQL top
level, use:

-sql=toplevel(proc1+proc2+proc3+...)

The following syntax is for a JPublisher INPUT file, where commas are used between
stored procedure names:

SQL plsql_package (proc1, proc2, proc3, ...) AS ...

Note:

■ In an INPUT file, put a stored procedure name in quotes if it is
case-sensitive. For example, "proc1". JPublisher assumes that
names that are not in quotes are not case-sensitive.

■ Case-sensitive names are not supported on the JPublisher
command line.

■ Specified stored procedure names can end in the wildcard
character, "%". The specification "myfunc%", for example,
matches all stored procedures that have their name starting
with myfunc, such as myfunc1.

JPublisher Options

Command-Line Options and Input Files 6-17

You can also specify the subset according to stored procedure names and argument
types by using the following syntax:

myfunc(sqltype1, sqltype2, ...)

In this case, only those stored procedures that match in name and the number and
types of arguments will be published. For example:

-sql=mypackage(myfunc1(NUMBER, CHAR)+myfunc2(VARCHAR2))

Declaration of SQL Statements to Translate
The -sqlstatement option enables you to publish SELECT, INSERT, UPDATE, or
DELETE statements as Java methods. JPublisher generates SQLJ classes for this
functionality.

The syntax of the -sqlstatement option is as follows:

-sqlstatement.class=ClassName:UserClassName#UserInterfaceName
-sqlstatement.methodName=sqlStatement
-sqlstatement.return={both|resultset|beans}

Use -sqlstatement.class to specify the Java class in which the method will be
published. In addition to the JPublisher-generated class, you can optionally specify a
user subclass of the generated class, a user interface for the generated class or subclass,
or both. Functionality for subclasses and interfaces is the same as for the -sql option.
If you also use the JPublisher -package option, then the class you specify will be in
the specified package. The default class is SQLStatements.

Use -sqlstatement.methodName to specify the desired Java method name and the
SQL statement. For a SELECT statement, use -sqlstatement.return to specify
whether JPublisher should generate a method that returns a generic
java.sql.ResultSet instance, a method that returns an array of JavaBeans, or
both. Generic implies that the column types of the result set are unknown or
unspecified.

For queries, however, the column types are actually known. This provides the option
of returning specific results through an array of beans. The name of the method
returning ResultSet will be methodName(). The name of the method returning
JavaBeans will be methodNameBeans().

JPublisher INPUT file syntax is as follows:

SQLSTATEMENTS_TYPE ClassName AS UserClassName
 IMPLEMENTS UserInterfaceName
SQLSTATEMENTS_METHOD aSqlStatement AS methodName

Here is a set of sample settings:

-sqlstatement.class=MySqlStatements
-sqlstatement.getEmp="select ename from emp
 where ename=:{myname VARCHAR}"
-sqlstatement.return=both

These settings result in the generated code shown in "Generated Code: SQL Statement"
on page A-1.

Note: If your desired class and interface names follow a pattern,
then you can use the -genpattern option for convenience.

JPublisher Options

6-18 Oracle Database JPublisher User's Guide

In addition, be aware that a style file specified through the -style option is relevant
to the -sqlstatement option. If a SQL statement uses an Oracle data type X, which
corresponds to a Java type Y, and type Y is mapped to a Java type Z in the style file,
then methods generated as a result of the -sqlstatement option will use Z, and not
Y.

For SELECT or DML statement results, you can use a style file to map the results to
javax.xml.transform.Source, oracle.jdbc.rowset.OracleWebRowSet, or
org.w3c.dom.Document.

Declaration of Object Types to Translate
The -types option lets you list one or more individual object types that you want
JPublisher to translate. The syntax of the -types option is as follows:

-types=type_translation_syntax

You can use the -types option, for SQL object types only and when you do not need
the generality of an INPUT file. Except for the fact that the -types option does not
support PL/SQL packages, it is identical to the -sql option.

If you do not enter any types or packages to translate in the INPUT file or on the
command line, then JPublisher translates all the types and packages in the schema to
which you are connected. The command-line syntax lets you indicate three possible
type translations.

■ -types=name_a

JPublisher interprets this syntax as:

TYPE name_a

■ -types=name_a:name_b

JPublisher interprets this syntax as:

TYPE name_a AS name_b

■ -types=name_a:name_b:name_c

JPublisher interprets this syntax as:

TYPE name_a GENERATE name_b AS name_c

TYPE, TYPE...AS, and TYPE...GENERATE...AS commands have the same
functionality as SQL, SQL...AS, and SQL...GENERATE...AS syntax.

Enter -types=... on the command line, followed by one or more object type
translations that you want JPublisher to perform. If you enter more than one item, then
the items must be separated by commas without any white space. For example, if you
enter:

See Also: "JPublisher Styles and Style Files" on page 3-22 and "REF
CURSOR Types and Result Sets Mapping" on page 3-7

Note: The -types option is currently supported for compatibility,
but it is deprecated. Use the -sql option instead.

See Also: "Understanding the Translation Statement" on page 6-52

JPublisher Options

Command-Line Options and Input Files 6-19

-types=CORPORATION,EMPLOYEE:OracleEmployee,ADDRESS:JAddress:MyAddress

JPublisher interprets this command as:

TYPE CORPORATION
TYPE EMPLOYEE AS OracleEmployee
TYPE ADDRESS GENERATE JAddress AS MyAddress

Connection Options
This section documents options related to the database connection that JPublisher
uses. The options are discussed in the alphabetic order.

SQLJ Connection Context Classes
The -context option specifies the connection context class that JPublisher uses, and
possibly declares, for SQLJ classes that JPublisher produces. The syntax of the
-context option is as follows:

-context={generated|DefaultContext|user_defined}

The -context=DefaultContext setting is the default and results in any
JPublisher-generated SQLJ classes using the SQLJ default connection context class,
sqlj.runtime.ref.DefaultContext, for all connection contexts. This is sufficient
for most uses.

Alternatively, you can specify any user-defined class that implements the standard
sqlj.runtime.ConnectionContext interface and exists in the classpath. The
specified class will be used for all connection contexts.

The -context=generated setting results in an inner class declaration for the _Ctx
connection context class in all SQLJ classes generated by JPublisher. So, each class uses
its own SQLJ connection context class. This setting may be appropriate for Oracle8i
compatibility mode, but it is otherwise not recommended. Using the
DefaultContext class or a user-defined class avoids the generation of additional
connection context classes. You can specify the -context option on the command line
or in a properties file.

Notes for -context Usage in Backward-Compatibility Modes
If you use a backward-compatibility mode and use .sqlj files and the SQLJ translator
directly, then a -context=DefaultContext setting gives you greater flexibility if
you translate and compile your .sqlj files in separate steps, translating with the
SQLJ -compile=false setting. If you are not using JDK 1.2-specific types, such as
java.sql.BLOB, CLOB, Struct, Ref, or Array, then you can compile the resulting
.java files under JDK 1.1, JDK 1.2, or later. This is not the case with the
-context=generated setting, because SQLJ connection context classes in JDK 1.1
use java.util.Dictionary instances for object type maps, while SQLJ connection
context classes in JDK 1.2 or later use java.util.Map instances.

Note: With a user-defined class, instances of that class must be
used for output from the getConnectionContext() method or
for input to the setConnectionContext() method. Refer to
"Connection Contexts and Instances in SQLJ Classes" on page 5-10,
for information about these methods.

JPublisher Options

6-20 Oracle Database JPublisher User's Guide

A benefit of using the -context=generated setting, if you are directly manipulating
.sqlj files, is that it permits full control over the way the SQLJ translator performs
online checking. Specifically, you can check SQL user-defined types and PL/SQL
packages against an appropriate exemplar database schema. However, because
JPublisher generates .sqlj files from an existing schema, the generated code is
already verified as correct through construction from that schema.

The Default datasource Option
You can use -datasource to specify the default data source for publishing SQL,
PL/SQL, AQ, and server-side Java classes. With -datasource set, if the JDBC
connection is not explicitly set by the application at run time, then the generated code
will look up the specified Java Naming and Directory Interface (JNDI) location to get
the data source and further get the JDBC connection from that data source.

The syntax of the -datasource option is as follows:

-datasource=jndi_location

JDBC Driver Class for Database Connection
The -driver option specifies the driver class that JPublisher uses for JDBC
connections to the database. The syntax of this option is as follows:

-driver=driver_class_name

The default setting is:

-driver=oracle.jdbc.OracleDriver

This setting is appropriate for any Oracle JDBC driver.

Connection URL for Target Database
You can use the -url option to specify the URL of the database to which you want to
connect. The syntax of the -url option is as follows:

-url=URL

The default setting is:

-url=jdbc:oracle:oci:@

To specify the JDBC Thin driver, use a setting of the following form:

-url=jdbc:oracle:thin:@host:port/servicename

In this syntax, host is the name of the host on which the database is running, port is
the port number, and servicename is the name of the database service.

Note: The use of system identifiers (SIDs) has been deprecated
since Oracle Database 10g, but it is still supported for backward
compatibility. Their use is of the form host:port:sid.

For Oracle JDBC Oracle Call Interface (OCI) driver, use oci in the
connection string in any new code. For backward compatibility,
however, oci8 is still accepted for Oracle8i drivers.

JPublisher Options

Command-Line Options and Input Files 6-21

User Name and Password for Database Connection
JPublisher requires the -user option, which specifies an Oracle user name and
password, so that it can connect to the database. If you do not enter the -user option,
then JPublisher prints an error message and stops execution.

The syntax of the -user option is as follows:

-user=username/password
-u username/password

Both formats are equivalent. The second one is provided as a convenient
command-line shortcut.

For example, the following command directs JPublisher to connect to the database
with the user name hr:

% jpub -user=hr -input=demoin -dir=demo -mapping=oracle -package=corp
Enter hr password: password

Options for Data Type Mappings
The following options control the data type mappings that JPublisher uses to translate
object types, collection types, object reference types, and PL/SQL packages to Java
classes:

■ The -usertypes option controls JPublisher behavior for user-defined types, in
conjunction with the -compatible option for oracle mapping. Specifically, it
controls whether JPublisher implements the Oracle ORAData interface or the
standard SQLData interface in generated classes, and whether JPublisher
generates code for collection and object reference types.

■ The -numbertypes option controls data type mappings for numeric types.

■ The -lobtypes option controls data type mappings for the BLOB, CLOB, and
BFILE types.

■ The -builtintypes option controls data type mappings for non-numeric,
non-LOB, and predefined SQL and PL/SQL types.

These four options are known as the type-mapping options.

For an object type, JPublisher applies the mappings specified by the type-mapping
options to the object attributes and the arguments and results of any methods included
with the object. The mappings control the types that the generated accessor methods
support. For example, they support the types the getXXX() methods return and the
setXXX() methods take.

For a PL/SQL package, JPublisher applies the mappings to the arguments and results
of the methods in the package. For a collection type, JPublisher applies the mappings
to the element type of the collection.

In addition, there is a subsection here for the -style option, which you can use to
specify Java-to-Java type mappings, typically to support Web services. This involves
an extra JPublisher step. A SQL type is mapped to a Java type that is not supported by
Web services, in the JPublisher-generated base class. Then this Java type is mapped to
a Java type that is supported by Web services, in the JPublisher-generated user
subclass.

See Also: "JPublisher Styles and Style Files" on page 3-22

JPublisher Options

6-22 Oracle Database JPublisher User's Guide

Mappings for Built-In Types
The -builtintypes option controls data type mappings for all the built-in data
types except the LOB types, which are controlled by the -lobtypes option, and the
different numeric types, which are controlled by the -numbertypes option. The
syntax of the -builtintypes option is as follows:

-builtintypes={jdbc|oracle}

Table 6–2 lists the data types affected by the -builtintypes option and shows their
Java type mappings for -builtintypes=oracle and -builtintypes=jdbc,
which is the default.

Mappings for LOB Types
The -lobtypes option controls data type mappings for LOB types. The syntax of the
-lobtypes option is as follows:

-lobtypes={jdbc|oracle}

Table 6–3 shows how these types are mapped for -lobtypes=oracle, which is the
default, and for -lobtypes=jdbc.

Table 6–2 Mappings for Types Affected by the -builtintypes Option

SQL Data Type Oracle Mapping Type JDBC Mapping Type

CHAR, CHARACTER, LONG,
STRING, VARCHAR, VARCHAR2

oracle.sql.CHAR java.lang.String

RAW, LONG RAW oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timestamp

TIMESTAMP

TIMESTAMP WITH TZ

TIMESTAMP WITH LOCAL TZ

oracle.sql.TIMESTAMP

oracle.sql.TIMESTAMPTZ

oracle.sql.TIMESTAMPLTZ

java.sql.Timestamp

Table 6–3 Mappings for Types Affected by the -lobtypes Option

SQL Data Type Oracle Mapping Type JDBC Mapping Type

CLOB oracle.sql.CLOB java.sql.Clob

BLOB oracle.sql.BLOB java.sql.Blob

BFILE oracle.sql.BFILE oracle.sql.BFILE

Note:

■ BFILE is an Oracle-specific SQL type, so there is no standard
java.sql.Bfile Java type.

■ NCLOB is an Oracle-specific SQL type. It denotes an NCHAR
form of use of a CLOB and is represented as an instance of
oracle.sql.NCLOB in Java.

■ The java.sql.Clob and java.sql.Blob interfaces were
introduced in the JDK 1.2 versions.

JPublisher Options

Command-Line Options and Input Files 6-23

Mappings for Numeric Types
The -numbertypes option controls data type mappings for numeric SQL and
PL/SQL types. The syntax of the -numbertypes option is as follows:

-numbertypes={jdbc|objectjdbc|bigdecimal|oracle}

The following choices are available:

■ In JDBC mapping, most numeric data types are mapped to Java primitive types,
such as int and float, and DECIMAL and NUMBER are mapped to
java.math.BigDecimal.

■ In Object JDBC mapping, which is the default, most numeric data types are
mapped to Java wrapper classes, such as java.lang.Integer and
java.lang.Float. DECIMAL and NUMBER are mapped to
java.math.BigDecimal.

■ In BigDecimal mapping, all numeric data types are mapped to
java.math.BigDecimal.

■ In Oracle mapping, all numeric data types are mapped to oracle.sql.NUMBER.

Table 6–4 lists the data types affected by the -numbertypes option and shows their
Java type mappings for -numbertypes=jdbc and -numbertypes=objectjdbc,
which is the default.

Mappings for User-Defined Types
The -usertypes option controls whether JPublisher implements the Oracle ORAData
interface or the standard SQLData interface in generated classes for user-defined
types. The syntax of the -usertypes option is as follows:

-usertypes={oracle|jdbc}

When -usertypes=oracle, which is the default, JPublisher generates ORAData
classes for object, collection, and object reference types.

When -usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate classes for collection or object reference types in this case.
You must use java.sql.Array for all collection types and java.sql.Ref for all
object reference types.

Table 6–4 Mappings for Types Affected by the -numbertypes Option

SQL Data Type JDBC Mapping Type Object JDBC Mapping Type

BINARY_INTEGER, INT,
INTEGER, NATURAL, NATURALN,
PLS_INTEGER, POSITIVE,
POSITIVEN, SIGNTYPE

int java.lang.Integer

SMALLINT int java.lang.Integer

REAL float java.lang.Float

DOUBLE PRECISION, FLOAT double java.lang.Double

DEC, DECIMAL, NUMBER,
NUMERIC

java.math.BigDeci
mal

java.math.BigDecimal

JPublisher Options

6-24 Oracle Database JPublisher User's Guide

Mappings for All Types
The -mapping option specifies mapping for all data types, so offers little flexibility
between types. The syntax of the -mapping option is as follows:

-mapping={jdbc|objectjdbc|bigdecimal|oracle}

The -mapping=oracle setting is equivalent to setting all the type mapping options
to oracle. The other -mapping settings are equivalent to setting -numbertypes
equal to the value of -mapping and setting the other type mapping options to their
defaults. This is summarized in Table 6–5.

Style File for Java-to-Java Type Mappings
JPublisher style files allow you to specify Java-to-Java type mappings. One use for this
is to ensure that generated classes can be used in Web services. You use the -style
option to specify the name of a style file. You can use the -style option multiple
times. The settings accumulate in order. The syntax of the -style option is as follows:

-style=stylename

Note:

■ The -usertypes=jdbc setting requires JDK 1.2 or later,
because the SQLData interface is a JDBC 2.0 feature.

■ With certain settings of the -compatible option, a
-usertypes=oracle setting results in classes that implement
the deprecated CustomDatum interface instead of ORAData.

Note: This option is deprecated in favor of the more specific type
mapping options: -usertypes, -numbertypes,
-builtintypes, and -lobtypes. However, it is still supported
for backward compatibility.

Table 6–5 Relation of -mapping Settings to Other Mapping Option Settings

-mapping Setting -builtintypes= -numbertypes= -lobtypes= -usertypes=

-mapping=oracle oracle oracle oracle oracle

-mapping=jdbc jdbc jdbc oracle oracle

-mapping=objectjdbc
(default)

jdbc objectjdbc oracle oracle

-mapping=bigdecimal jdbc bigdecimal oracle oracle

Note: Options are processed in the order in which they appear on
the command line. Therefore, if the -mapping option precedes one
of the specific type mapping options, -builtintypes,
-lobtypes, -numbertypes, or -usertypes, then the specific
type mapping option overrides the -mapping option for the
relevant types. If the -mapping option follows one of the specific
type mapping options, then the specific type mapping option is
ignored.

JPublisher Options

Command-Line Options and Input Files 6-25

Typically, Oracle supplies the style files, but there may be situations in which you
would edit or create your own. To use the Oracle style file for Web services in Oracle
Database 12c, for example, use the following setting:

-style=webservices10

Type Map Options
JPublisher code generation is influenced by entries in the JPublisher user type map or
default type map, primarily to make signatures with PL/SQL types accessible to
JDBC. A type map entry has one of the following formats:

-type_map_option=opaque_sql_type:java_type
-type_map_option=numeric_indexed_by_table:java_numeric_type[max_length]
-type_map_option=char_indexed_by_table:java_char_type[max_length](elem_size)
-type_map_option=plsql_type:java_type:sql_type:sql_to_plsql_func:plsql_to_sql_func

In the type map syntax, sql_to_plsql_func and plsql_to_sql_func are for
functions that convert between SQL and PL/SQL. Note that [...] and (...) are part of
the syntax. Also note that some operating systems require you to quote command-line
options that contain special characters.

The related options, which are discussed in alphabetic order in the following sections,
are -addtypemap, -adddefaulttypemap, -defaulttypemap, and -typemap.
The difference between -addtypemap and -typemap is that -addtypemap appends
entries to the user type map, while -typemap replaces the existing user type map
with the specified entries. Similarly, -adddefaulttypemap appends entries to the
default type map, while -defaulttypemap replaces the existing default type map
with the specified entries.

Here are some sample type map settings, from a properties file that uses the
-defaulttypemap and -adddefaulttypemap options:

jpub.defaulttypemap=SYS.XMLTYPE:oracle.xdb.XMLType
jpub.adddefaulttypemap=BOOLEAN:boolean:INTEGER:
SYS.SQLJUTL.INT2BOOL:SYS.SQLJUTL.BOOL2INT
jpub.adddefaulttypemap=INTERVAL DAY TO SECOND:String:CHAR:
SYS.SQLJUTL.CHAR2IDS:SYS.SQLJUTL.IDS2CHAR
jpub.adddefaulttypemap=INTERVAL YEAR TO MONTH:String:CHAR:
SYS.SQLJUTL.CHAR2IYM:SYS.SQLJUTL.IYM2CHAR

Be aware that you must avoid conflicts between the default type map and user type
map.

Adding an Entry to the Default Type Map
Use the -adddefaulttypemap option to append an entry or a comma-delimited list
of entries to the JPublisher default type map. In addition, JPublisher uses this option
internally. The syntax of this option is:

-adddefaulttypemap=list_of_typemap_entries

See Also: "JPublisher Styles and Style Files" on page 3-22

See Also: "Type Mapping Support for OPAQUE Types" on
page 3-11, "Type Mapping Support for Scalar Index-by Tables" on
page 3-12, and "Type Mapping Support Through PL/SQL Conversion
Functions" on page 3-15

JPublisher Options

6-26 Oracle Database JPublisher User's Guide

Additional Entry to the User Type Map
Use the -addtypemap option to append an entry or a comma-delimited list of entries
to the JPublisher user type map. The syntax of this option is:

-addtypemap=list_of_typemap_entries

Default Type Map for JPublisher
JPublisher uses the -defaulttypemap option internally to set up predefined type
map entries in the default type map. The syntax of this option is:

-defaulttypemap=list_of_typemap_entries

The difference between the -adddefaulttypemap option and the
-defaulttypemap option is that -adddefaulttypemap appends entries to the
default type map, while -defaulttypemap replaces the existing default type map
with the specified entries. To clear the default type map, use the following setting:

-defaulttypemap=

You may want to do this to avoid conflicts between the default type map and the user
type map, for example.

Replacement of the JPublisher Type Map
Use the -typemap option to specify an entry or a comma-delimited list of entries to
set up the user type map. The syntax of this option is:

-typemap=list_of_typemap_entries

The difference between the -typemap option and the -addtypemap option is that
-typemap replaces the existing user type map with the specified entries and
-addtypemap appends entries to the user type map. To clear the user type map, use
the following setting.

-typemap=

You may want to do this to avoid conflicts between the default type map and the user
type map, for example.

Java Code-Generation Options
This section documents options that specify JPublisher characteristics and behavior for
Java code generation. For example, there are options to accomplish the following:

■ Filter generated code according to parameter modes or parameter types

■ Ensure that generated code conforms to the JavaBeans specification

■ Specify naming patterns

■ Specify how stubs are generated for user subclasses

■ Specify whether generated code is serializable

See Also: "JPublisher User Type Map and Default Type Map" on
page 3-5 for additional information, including a caution about
conflicts between the type maps.

JPublisher Options

Command-Line Options and Input Files 6-27

The following options are described in alphabetical order: -access, -case,
-codegen, -filtermodes, -filtertypes, -generatebean, -genpattern,
-gensubclass, -methods, -omit_schema_names, -outarguments, -package,
-serializable, and -tostring.

Method Access
The -access option determines the access modifier that JPublisher includes in
generated constructors, attribute setter and getter methods, member methods on object
wrapper classes, and methods on PL/SQL packages. The syntax of this option is:

-access={public|protected|package}

JPublisher uses the possible option settings as follows:

■ public

Methods are generated with the public access modifier. This is the default option
setting.

■ protected

Methods are generated with the protected access modifier.

■ package

The access modifier is omitted, so generated methods are local to the package.

You may want to use a setting of -access=protected or -access=package if you
want to control the usage of the generated JPublisher wrapper classes. For example,
when you provide customized versions of the wrapper classes as subclasses of the
JPublisher-generated classes, but do not want to provide access to the generated
superclasses.

You can specify the -access option on the command line or in a properties file.

Case of Java Identifiers
For class or attribute names that you do not specify in an INPUT file or on the
command line, the -case option affects the case of Java identifiers that JPublisher
generates, including class names, method names, attribute names embedded within
getXXX() and setXXX() method names, and arguments of generated method
names. The syntax of this option is:

-case={mixed|same|lower|upper}

Table 6–6 describes the possible values for the -case option.

Note: Wrapper classes for object references and VARRAY and
nested table types are not affected by the value of the -access
option.

JPublisher Options

6-28 Oracle Database JPublisher User's Guide

For class or attribute names that you specify through JPublisher options or the INPUT
file, JPublisher retains the case of the letters in the specified name and overrides the
-case option.

Code Generation Type
The -codegen option determines whether the generated Java code uses SQLJ runtime
or JDBC runtime. The syntax of this option is:

-codegen=jdbc|sqlj

The default value is sqlj.

The setting -codegen=jdbc indicates that JPublisher generates Java code using JDBC
runtime. Generation of Java code purely relying on JDBC runtime was introduced in
JPublisher 11g release. The setting -codegen=sqlj indicates that JPublisher
generates Java code using SQLJ runtime. This is the default behavior of JPublisher 12c
release. All the earlier JPublisher releases use only SQLJ runtime to generate Java code.

Method Filtering According to Parameter Modes
In some cases, particularly for generating code for Web services, not all parameter
modes are supported in method signatures or attributes for the target usage of your
code. The -filtermodes option enables you to filter generated code according to
parameter modes. The syntax of this option is:

-filtermodes=list_of_modes_to_filter_out_or_filter_in

You can specify the following for the -filtermodes option:

■ in

■ out

■ inout

■ return

Start the option setting with a 1 to include all possibilities by default, which would
mean no filtering. Then list specific modes or types each followed by a minus sign (-),

Table 6–6 Values for the -case Option

-case Option Value Description

mixed (default) The first letter of every word unit of a class name or of every
word unit after the first word unit of a method name is in
uppercase. All other characters are in lowercase. An
underscore (_), a dollar sign ($), or any character illegal in Java
constitutes a word unit boundary and is removed without
warning. A word unit boundary also occurs after get or set
in a method name.

same JPublisher does not change the case of letters from the way
they are represented in the database. Underscores and dollar
signs are retained. JPublisher removes any other character
illegal in Java and issues a warning message.

upper JPublisher converts lowercase letters to uppercase and retains
underscores and dollar signs. It removes any other character
illegal in Java and issues a warning message.

lower JPublisher converts uppercase letters to lowercase and retains
underscores and dollar signs. It removes any other character
illegal in Java and issues a warning message.

JPublisher Options

Command-Line Options and Input Files 6-29

indicating that the mode or type should be excluded. Alternatively, start with a 0 to
include no possibilities by default, which would mean total filtering, then list specific
modes or types each followed by a plus sign (+), indicating that the mode or type
should be allowed.

The following examples would have the same result, allowing only methods that have
parameters of the in or return mode. Separate the entries by commas.

-filtermodes=0,in+,return+

-filtermodes=1,out-,inout-

Method Filtering According to Parameter Types
In some cases, particularly for generating code for Web services, not all parameter
types are supported in method signatures or attributes for the target usage of your
code. The -filtertypes option enables you to filter generated code according to
parameter types. The syntax of this option is:

-filtertypes=list_of_types_to_filter_out_or_filter_in

You can specify the following settings for the -filtertypes option:

■ Any qualified Java type name

Specify package and class, such as java.sql.SQLData, oracle.sql.ORAData.

■ .ORADATA

This setting indicates any ORAData or SQLData implementations.

■ .STRUCT, .ARRAY, .OPAQUE, .REF

Each of these settings indicates any types that implement ORAData or SQLData
with the corresponding _SQL_TYPECODE specification.

■ .CURSOR

This setting indicates any SQLJ iterator types and java.sql.ResultSet.

■ .INDEXBY

This setting indicates any indexed-by table types.

■ .ORACLESQL

This setting indicates all oracle.sql.XXX types.

Start the option setting with a 1 to include all possibilities by default, indicating no
filtering, then list specific modes or types each followed by a minus sign (-), indicating
that the mode or type should be excluded. Alternatively, start with a 0 to include no
possibilities by default, indicating total filtering, then list specific modes or types each
followed by a plus sign (+), indicating that the mode or type should be allowed.

This first example filters out only .ORADATA and .ORACLESQL. The second example
filters everything except .CURSOR and .INDEXBY:

-filtertypes=1,.ORADATA-,.ORACLESQL-

-filtertypes=0,.CURSOR+,.INDEXBY+

The .STRUCT, .ARRAY, .OPAQUE, and .REF settings are subcategories of the
.ORADATA setting. Therefore, you can have specifications, such as the following,

JPublisher Options

6-30 Oracle Database JPublisher User's Guide

which filters out all ORAData and SQLData types except those with a typecode of
STRUCT:

-filtertypes=1,.ORADATA-,.STRUCT+

Alternatively, to allow ORAData or SQLData types in general, with the exception of
those with a typecode of ARRAY or REF:

-filtertypes=0,.ORADATA+,.ARRAY-,.REF-

Code Generation Adherence to the JavaBeans Specification
The -generatebean option is a flag that you can use to ensure that generated classes
follow the JavaBeans specification. The syntax of this option is:

-generatebean={true|false}

The default setting is -generatebean=false. With the -generatebean=true
setting, some generated methods are renamed so that they are not assumed to be
JavaBean property getter or setter methods. This is accomplished by prefixing the
method names with an underscore (_). For example, for classes generated from SQL
table types, VARRAY, or indexed-by table, method names are changed as follows.

Method names are changed from:

public int getBaseType() throws SQLException;
public int getBaseTypeName() throws SQLException;
public int getDescriptor() throws SQLException;

to:

public int _getBaseType() throws SQLException;
public String _getBaseTypeName() throws SQLException;
public ArrayDecscriptor _getDescriptor() throws SQLException;

The changes in return types are necessary because the JavaBeans specification says
that a getter method must return a bean property, but getBaseType(),
getBaseTypeName(), and getDescriptor() do not return a bean property.

Class and Interface Naming Pattern
It is often desirable to follow a certain naming pattern for Java classes, user subclasses,
and interfaces generated for user-defined SQL types or packages. The -genpattern
option, which you can use in conjunction with the -sql or -sqlstatement option,
enables you to define such patterns conveniently and generically. The syntax of this
option is:

-genpattern=pattern_specifications

Consider the following explicit command-line options:

-sql=PERSON:PersonBase:PersonUser#Person
-sql=STUDENT:StudentBase:StudentUser#Student
-sql=GRAD_STUDENT:GradStudentBase:GradStudentUser#GradStudent

The following pair of options is equivalent to the preceding set of options:

-genpattern=%1Base:%1User#%1
-sql=PERSON,STUDENT,GRAD_STUDENT

By definition, %1 refers to the default base names that JPublisher would create for each
SQL type. By default, JPublisher would create the Person Java type for the PERSON

JPublisher Options

Command-Line Options and Input Files 6-31

SQL type, the Student Java type for the STUDENT SQL type, and the GradStudent
Java type for the GRAD_STUDENT SQL type. So %1Base becomes PersonBase,
StudentBase, and GradStudentBase, respectively. Similar results are produced for
%1User.

If the -sql option specifies the output names, then %2, by definition, refers to the
specified names. For example, the following pair of options has the same effect as the
earlier pair:

-genpattern=%2Base:%2User#%2
-sql=PERSON:Person,STUDENT:Student,GRAD_STUDENT:GradStudent

The following example combines the -genpattern option with the -sqlstatement
option:

-sqlstatement.class=SqlStmts -genpattern=%2Base:%2User:%2

These settings are equivalent to the following:

-sqlstatement.class=SqlStmtsBase:SqlStmtsUser#SqlStmts

Generation of User Subclasses
The value of the -gensubclass option determines whether JPublisher generates
initial source files for user-provided subclasses and, if so, what format these subclasses
should have. The syntax of this option is:

-gensubclass={true|false|force|call-super}

For -gensubclass=true, which is the default, JPublisher generates code for the
subclass only if it finds that no source file is present for the user subclass. The
-gensubclass=false setting results in JPublisher not generating any code for user
subclasses.

For -gensubclass=force, JPublisher always generates code for user subclasses. It
overwrites any existing content in the corresponding .java and .class files if they
already exist. Use this setting with caution.

The setting -gensubclass=call-super is equivalent to -gensubclass=true,
except that JPublisher generates slightly different code. By default, JPublisher
generates only constructors and methods necessary for implementing an interface, for
example, the ORAData interface. JPublisher indicates how superclass methods or
attribute setter and getter methods can be called, but places this code inside
comments. With the call-super setting, all getters, setters, and other methods are
generated.

The idea is that you can specify this setting if you use Java development tools based on
class introspection. Only methods relating to SQL object attributes and SQL object
methods are of interest, and JPublisher implementation details remain hidden. In this
case you can point the tool at the generated user subclass.

You can specify the -gensubclass option on the command line or in a properties
file.

Note: This is the pattern expected for Web services. Specify an
output name and use that as the interface name, and append Base
for the generated class and User for the user subclass.

JPublisher Options

6-32 Oracle Database JPublisher User's Guide

Generation of Package Classes and Wrapper Methods
The -methods option determines whether:

■ JPublisher generates wrapper methods for methods, or stored procedures in SQL
object types and PL/SQL packages.

■ Overloaded method names are allowed.

■ Methods will attempt to reestablish a JDBC connection if an SQLException is
caught.

The syntax for the -methods option is:

-methods={all|none|named|always,overload|unique,noretry|retry}

For -methods=all, which is the default setting among the first group of settings,
JPublisher generates wrapper methods for all the methods in the SQL object types and
PL/SQL packages it processes. This results in generation of a SQLJ class if the
underlying SQL object or package actually defines methods and if not, a non-SQLJ
class. Prior to Oracle Database 10g, SQLJ classes were always generated for the all
setting.

For -methods=none, JPublisher does not generate wrapper methods. In this case,
JPublisher does not generate classes for PL/SQL packages, because they would not be
useful without wrapper methods.

For -methods=named, JPublisher generates wrapper methods only for the methods
explicitly named in the INPUT file.

The -methods=always setting also results in wrapper methods being generated.
However, for backward compatibility with Oracle8i and Oracle9i JPublisher versions,
this setting always results in SQLJ classes being generated for all SQL object types,
regardless of whether the types define methods.

Among the overload and unique settings, -methods=overload is the default and
specifies that method names in the generated code can be overloaded, such as the
following:

int foo(int);
int foo(String);

Alternatively, the -methods=unique setting specifies that all method names must be
unique. This is required for Web services. Consider the following functions:

function foo (a VARCHAR2(40)) return VARCHAR2;
function foo (x int, y int) return int;

With the default -methods=overload setting, these functions are published as
follows:

String foo(String a);
java.math.BigDecimal foo(java.math.BigDecimal x, java.math.BigDecimal y);

With the -methods=unique setting, these functions are published using a
method-renaming mechanism based on the first letter of the return type and argument
types, as shown in the following example:

Note: For backward compatibility, JPublisher also supports the
setting true as equivalent to all, the setting false as equivalent
to none, and the setting some as equivalent to named.

JPublisher Options

Command-Line Options and Input Files 6-33

String foo(String a);
java.math.BigDecimal fooBBB(java.math.BigDecimal x, java.math.BigDecimal y);

With the -methods=retry setting, JPublisher generates constructors with
DataSource arguments and extra code for each method published. A JDBC operation
in a method is enclosed within a try...catch block. If an SQLException is raised
when the method is processed, then the extra code will attempt to reestablish the JDBC
connection and process the SQL operation again. If the attempt to reconnect fails, then
the original SQLException is thrown again.

For -methods=retry, JPublisher generates code different from that generated for
-methods=noretry, in two respects:

■ An additional constructor, which takes a DataSource object as parameter, is
generated. The DataSource object is used to get a new connection at operation
invocation time.

■ A new JDBC connection is requested if an SQLException is thrown.

The -methods=retry setting takes effect only for PL/SQL stored procedures, SQL
statements, AQ, and Web services call-ins for Java classes.

To specify a setting of all, none, named, or always at the same time as you specify a
setting of overload or unique and a setting for retry or noretry, use a comma to
separate the settings. This is shown in the following example:

-methods=always,unique,retry

You can specify the -methods option on the command line or in a properties file.

Omission of Schema Name from Name References
In publishing user-defined SQL types, such as objects and collections, when JPublisher
references the type names in Java wrapper classes, it generally qualifies the type
names with the database schema name, such as HR.EMPLOYEE for the EMPLOYEE type
in the HR schema.

However, by specifying the -omit_schema_names option, you instruct JPublisher
not to qualify SQL type names with schema names. The syntax of this option is:

-omit_schema_names

When this option is specified, names are qualified with a schema name only under the
following circumstances:

■ You declare the user-defined SQL type in a schema other than the one to which
JPublisher is connected. A type from another schema always requires a schema
name to identify it.

■ You declare the user-defined SQL type with a schema name on the command line
or in an INPUT file. The use of a schema name with the type name on the
command line or INPUT file overrides the -omit_schema_names option.

See Also: "Translation of Overloaded Methods" on page 5-6

Note: The use of oracle.jdbc.pool.OracleDataSource
requires JDK 1.3 or later.

JPublisher Options

6-34 Oracle Database JPublisher User's Guide

Omitting the schema name makes it possible for you to use classes generated by
JPublisher when you connect to a schema other than the one used when JPublisher is
invoked, as long as the SQL types that you use are declared identically in the two
schemas.

ORAData and SQLData classes generated by JPublisher include a static final
String field that names the user-defined SQL type matching the generated class.
When the code generated by JPublisher is processed, the SQL type name in the
generated code is used to locate the SQL type in the database. If the SQL type name
does not include the schema name, then the type is looked up in the schema associated
with the current connection when the code generated by JPublisher is processed. If the
SQL type name includes the schema name, then the type is looked up in that schema.

When the -omit_schema_names option is enabled, JPublisher generates the
following code in the Java wrapper class for a SQL object type and similar code to
wrap a collection type:

 public Datum toDatum(Connection c) throws SQLException
 {
 if (__schemaName != null)
 {
 return _struct.toDatum(c, __schemaName + "." + _SQL_NAME);
 }
 return _struct.toDatum(c, typeName);
 }
 private String __schemaName = null;
 public void __setSchemaName(String schemaName) { __schemaName = schemaName; }
 }

The __setSchemaName() method enables you to explicitly set the schema name at
run time so that SQL type names can be qualified by schema even if JPublisher was
run with the -omit_schema_names option enabled. Being qualified by schema is
necessary if a SQL type needs to be accessed from another schema.

Holder Types for Output Arguments
There are no OUT or IN OUT designations in Java, but values can be returned through
holders. In JPublisher, you can specify one of three alternatives for holders:

■ Arrays, which is the default

■ JAX-RPC holder types

■ Function returns

The -outarguments option enables you to specify the mechanism to use, through a
setting of array, holder, or return, respectively. This feature is particularly useful
for Web services. The syntax of this option is:

-outarguments={array|holder|return}

Note: Although this option acts as a boolean option, you cannot
specify -omit_schema_names=true or
-omit_schema_names=false. Specify -omit_schema_names
to enable it, and do nothing to leave it disabled.

See Also: "Treatment of Output Parameters" on page 5-1

JPublisher Options

Command-Line Options and Input Files 6-35

Name for Generated Java Package
The -package option specifies the name of the Java package that JPublisher
generates. The name appears in a package declaration in each generated class. The
syntax for this option is:

-package=package_name

If you use the -dir and -d options, the directory structure in which JPublisher places
the generated files reflects the package name as well as the -dir and -d settings.

Example 1 Consider the following command:

% jpub -dir=/a/b -d=/a/b -package=c.d -sql=PERSON:Person ...

JPublisher generates the files /a/b/c/d/Person.java and
/a/b/c/d/Person.class.

In addition, the Person class includes the following package declaration:

package c.d;

Example 2 Now consider the following command:

% jpub -dir=/a/b -d=/a/b -package=c.d -sql=PERSON:Person -input=myinputfile

Assume that myinputfile includes the following:

SQL PERSON AS e.f.Person

In this case, the package information in the INPUT file overrides the -package option
on the command line. JPublisher generates the files /a/b/e/f/Person.java and
/a/b/e/f/Person.class, with the Person class including the following package
declaration:

package e.f;

If you do not specify a package name, then JPublisher does not generate any package
declaration. The output .java files are placed directly into the directory specified by
the -dir option or into the current directory by default. The output .class files are
placed directly into the directory specified by the -d option or into the current
directory.

Note:

■ If there are conflicting package settings between a -package
option setting and a package setting in the INPUT file, the
precedence depends on the order in which the -input and
-package options appear on the command line. The -package
setting takes precedence if that option is after the -input option.
Otherwise, the INPUT file setting takes precedence.

■ If you do not use the -dir and -d options, or if you explicitly
give them empty settings, then JPublisher places all generated
files directly in the current directory, with no package hierarchy,
regardless of the -package setting.

See Also: "Output Directories for Generated Source and Class Files"
on page 6-40

JPublisher Options

6-36 Oracle Database JPublisher User's Guide

Sometimes JPublisher translates a type that you do not explicitly request, because the
type is required by another type that is translated. For example, it may be an attribute
of the requested type. In this case, the .java and .class files declaring the required
type are also placed into the package specified on the command line, in a properties
file or the INPUT file.

By contrast, JPublisher never translates packages or stored procedures that you do not
explicitly request, because packages or stored procedures are never strictly required by
SQL types or by other packages or stored procedures.

Serializability of Generated Object Wrapper Classes
The -serializable option specifies whether the Java classes that JPublisher
generates for SQL object types implement the java.io.Serializable interface.
The default setting is -serializable=false. The syntax for this option is:

-serializable={true|false}

Please note the following if you choose to set -serializable=true:

■ Not all object attributes are serializable. In particular, none of Oracle LOB types,
such as oracle.sql.BLOB, oracle.sql.CLOB, or oracle.sql.BFILE, can be
serialized. Whenever you serialize objects with such attributes, the corresponding
attribute values are initialized to null after deserialization.

■ If you use object attributes of type java.sql.Blob or java.sql.Clob, then the
code generated by JPublisher requires that the Oracle JDBC rowset
implementation be available in the classpath. This is provided in the ocrs12.jar
library at ORACLE_HOME/jdbc/lib. In this case, the underlying value of Clob
and Blob objects is materialized, serialized, and subsequently retrieved.

■ Whenever you deserialize objects containing attributes that are object references,
the underlying connection is lost, and you cannot issue setValue() or
getValue() calls on the reference. For this reason, JPublisher generates the
following method into your Java classes whenever you specify
-serializable=true:

void restoreConnection(Connection)

After deserialization, call this method once for a given object or object reference to
restore the current connection into the reference or, respectively, into all
transitively embedded references.

Generation of toString() Method on Object Wrapper Classes
You can use the -tostring flag to tell JPublisher to generate an additional
toString() method for printing out an object value. The output resembles SQL code
you would use to construct the object. The default setting is false. The syntax for this
option is:

-tostring={true|false}

Rename main Method
You can use -nomain=true to avoid generating Java methods with the signature
main(String[]). This option applies to SQL publishing and server-side Java class
publishing. The syntax for this option is:

-nomain[=true|false]

JPublisher Options

Command-Line Options and Input Files 6-37

The -dbjava option automatically sets -nomain=true because of Java stored
procedure limitation. In case a method with the signature main(String[]) is to be
generated with the -nomain=true setting, then JPublisher will rename the method,
for example, into main0(Stringp[]).

The default setting is:

-nomain=false

PL/SQL Code Generation Options
This section documents the following options that specify JPublisher behavior in
generating PL/SQL code:

■ -overwritedbtypes

Specifies whether naming conflicts are checked before creating SQL types.

■ -plsqlfile

Specifies scripts to use in creating and dropping SQL types and PL/SQL packages.

■ -plsqlmap

Specifies whether PL/SQL wrapper functions are generated

■ -plsqlpackage

Specifies the name of the PL/SQL package in which JPublisher generates PL/SQL
call specs, conversion functions, wrapper functions, and table functions.

These options are mostly used to support Java calls to stored procedures that use
PL/SQL types. The options specify the creation and use of corresponding SQL types
and the creation and use of PL/SQL conversion functions and PL/SQL wrapper
functions that use the corresponding SQL types for input or output. This enables
access through JDBC.

Generation of SQL types
JPublisher may generate new SQL types when publishing PL/SQL types and
generating PL/SQL wrappers for server-side Java classes. The -overwritedbtypes
option determines how JPublisher names the generated SQL types. The syntax for this
option is:

-overwritedbtypes={true|false}

Prior to Oracle Database 10g release 2 (10.2), JPublisher checked the database for
naming conflicts and chose a name, which was not already in use, for the generated
SQL type. Since Oracle Database 10g release 2 (10.2), JPublisher generates SQL type
names by default, regardless of the existing type names in the database. The
-overwritedbtypes=true setting, which is the default, overwrites the existing
types if the type name is the same as that of the generated SQL type. This enables
JPublisher to generate exactly the same PL/SQL wrappers over different runs.

To ensure that JPublisher does not overwrite any type inside the database while
executing the generated PL/SQL wrapper, you must explicitly specify
-overwritedbtypes=false.

A frequently reported problem in releases prior to Oracle Database 10g release 2 (10.2)
is that after the generated PL/SQL wrapper is processed, rerunning the JPublisher
command generates a different set of SQL types. A workaround for this problem is to
run the PL/SQL dropper script before the JPublisher command is rerun.

JPublisher Options

6-38 Oracle Database JPublisher User's Guide

File Names for PL/SQL Scripts
The -plsqlfile option specifies the name of a wrapper script and a dropper script
generated by JPublisher. The syntax for this option is:

-plsqlfile=plsql_wrapper_script,plsql_dropper_script

The wrapper script contains instructions to create SQL types to map to PL/SQL types
and instructions to create the PL/SQL package that JPublisher uses for any PL/SQL
wrappers or call specs, conversion functions, wrapper functions, and table functions.
The dropper script contains instructions to drop these entities.

You must load the generated files into the database, using SQL*Plus, for example, and
run the wrapper script to install the types and package in the database.

If the files already exist, then they are overwritten. If no file names are specified, then
JPublisher writes to files named plsql_wrapper.sql and plsql_dropper.sql.

JPublisher writes a note about the generated scripts, such as the following:

J2T-138, NOTE: Wrote PL/SQL package JPUB_PLSQL_WRAPPER to
file plsql_wrapper.sql. Wrote the dropping script to file plsql_dropper.sql.

Generation of PL/SQL Wrapper Functions
The -plsqlmap option specifies whether JPublisher generates wrapper functions for
stored procedures that use PL/SQL types. Each wrapper function calls the
corresponding stored procedure and invokes the appropriate PL/SQL conversion
functions for PL/SQL input or output of the stored procedure. Only the corresponding
SQL types are exposed to Java. The syntax for this option is:

-plsqlmap={true|false|always}

The setting can be any of the following:

■ true

This is the default. JPublisher generates PL/SQL wrapper functions only as
needed. For any given stored procedure, if the Java code to call it and convert its
PL/SQL types directly is simple enough and the PL/SQL types are used only as
IN parameters or for the function return, then the generated code calls the stored
procedure directly. It processes the PL/SQL input or output through the
appropriate conversion functions.

■ false

JPublisher does not generate PL/SQL wrapper functions. If it encounters a
PL/SQL type in a signature that cannot be supported by direct call and
conversion, then it skips generation of Java code for the particular stored
procedure.

■ always

JPublisher generates a PL/SQL wrapper function for every stored procedure that
uses a PL/SQL type. This is useful for generating a proxy PL/SQL package that
complements an original PL/SQL package, providing Java-accessible signatures
for those functions or procedures that are inaccessible from Java in the original
package.

See Also: "Type Mapping Support Through PL/SQL Conversion
Functions" on page 3-15 and "Direct Use of PL/SQL Conversion
Functions Versus Use of Wrapper Functions" on page 3-20

JPublisher Options

Command-Line Options and Input Files 6-39

Package for Generated PL/SQL Code
The -plsqlpackage option specifies the name of the PL/SQL package into which
JPublisher places any generated PL/SQL code. This includes PL/SQL wrappers or call
specifications, conversion functions to convert between PL/SQL and SQL types,
wrapper functions to wrap stored procedures that use PL/SQL types, and table
functions. The syntax for this option is:

-plsqlpackage=name_of_PLSQL_package

By default, JPublisher uses the package JPUB_PLSQL_WRAPPER.

Package for PL/SQL Index-By Tables
Use -plsqlindextable=array or -plsqlindextable=int to specify that
PL/SQL index-by table of numeric and character types be mapped to Java array. The
syntax for this option is:

-plsqlindextable=array|custom|int

The int specification defines the capacity of the Java array. The default capacity is
32768. The -plsqlindextable=custom setting specifies that PL/SQL index-by
table be mapped to custom JDBC types, such as a class implementing ORAData.

The default setting is:

-plsqlindextable=custom

Input/Output Options
This section documents options related to JPublisher input and output files and
locations. These are listed in the order in which they are discussed:

■ -compile

Use this option if you want to suppress compilation, and optionally, SQLJ
translation, if JPublisher is in a backward-compatibility mode.

■ -dir

Use this option to specify where the generated source files are placed.

■ -d

Use this option to specify where the compiled class files are placed.

■ -encoding

Use this option to specify the Java character encoding of the INPUT file that
JPublisher reads and the .sqlj and .java files that JPublisher writes.

No Compilation or Translation
Use the -compile option to suppress the compilation of the generated .java files
and, for backward-compatibility modes, to optionally suppress the translation of
generated .sqlj files. The syntax for this option is:

-compile={true|false|notranslate}

Note: You must create this package in the database by running the
SQL script generated by JPublisher.

JPublisher Options

6-40 Oracle Database JPublisher User's Guide

With the default true setting, all generated classes are compiled into .class files. If
you are in a backward-compatibility mode, then you can use the
-compile=notranslate setting to suppress SQLJ translation and Java compilation
of generated source files. This leaves you with .sqlj output from JPublisher, which
you can translate and compile manually by using either the JPublisher -sqlj option
or the SQLJ command-line utility directly. You can also use the -compile=false
setting to proceed with SQLJ translation, but skip Java compilation. This leaves you
with .java output from JPublisher, which you can compile manually.

If you are not in a backward-compatibility mode, such as if you use the default
-compatible=oradata setting, then you can use a setting of -compile=false to
skip compilation. In this scenario, the notranslate setting is not supported, because
visible .sqlj files are not produced if you are not in a backward-compatibility mode.

Output Directories for Generated Source and Class Files
Use the -dir option to specify the root of the directory tree within which JPublisher
places the .java source files or the .sqlj source files for backward-compatibility
modes. The syntax for this option is:

-dir=directory_path
-d=directory_path

A setting of a period (.) explicitly specifies the current directory as the root of the
directory tree. Similarly, use the -d option to specify the root of the directory tree
within which JPublisher places compiled .class files, with the same functionality for
a period (.) setting.

For each option with any nonempty setting, JPublisher also uses package information
from the -package option or any package name included in an SQL option setting in
the INPUT file. This information is used to determine the complete directory hierarchy
for generated files.

For example, consider the following JPublisher command:

% jpub -user=hr -d=myclasses -dir=mysource -package=a.b.c
-sql=PERSON:Person,STUDENT:Student
Enter hr password: password

This results in the following output, relative to the current directory:

mysource/a/b/c/Person.java
mysource/a/b/c/PersonRef.java
mysource/a/b/c/Student.java
mysource/a/b/c/StudentRef.java

myclasses/a/b/c/Person.class
myclasses/a/b/c/PersonRef.class
myclasses/a/b/c/Student.class
myclasses/a/b/c/StudentRef.class

By default, source and class files are placed directly into the current directory, with no
package hierarchy, regardless of the -package setting or any package specification in
the INPUT file.

See Also: "Backward Compatibility Option" on page 6-46 and
"Option to Access SQLJ Functionality" on page 6-45

See Also: "Name for Generated Java Package" on page 6-35

JPublisher Options

Command-Line Options and Input Files 6-41

You can also explicitly specify this behavior with empty settings:

%jpub ... -d= -dir=

You can set these options on the command line or in a properties file.

Java Character Encoding
The -encoding option specifies the Java character encoding of the INPUT file that
JPublisher reads and the source files that JPublisher writes. The default encoding is the
value of the file.encoding system property or 8859_1 (ISO Latin-1), if this
property is not set. The syntax for this option is:

-encoding=name_of_character_encoding

As a general rule, you do not have to set this option unless you specify an encoding for
the SQLJ translator and Java compiler, which you can do with a SQLJ -encoding
setting through the JPublisher -sqlj option. In this scenario, you should specify the
same encoding for JPublisher as for SQLJ and the compiler.

You can use the -encoding option to specify any character encoding supported by
your Java environment. If you are using the Sun Microsystems JDK, these options are
listed in the native2ascii documentation, which you can find at the following
URL:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/nat
ive2ascii.html

Options to Facilitate Web Services Call-Outs
This section documents options and related concepts for accessing Java classes from
server-side Java or PL/SQL. In particular, these options may be used to access Web
services client code from inside the database, referred to as Web services call-outs. This
section comprises the following topics:

■ WSDL Document for Java and PL/SQL Wrapper Generation

■ Web Services Endpoint

■ Proxy URL for WSDL

■ Superuser for Permissions to Run Client Proxies

The following list is a summary of the options relevant to Web services call-outs and
how they relate to each other:

Note: SQLJ has -dir and -d options as well, with the same
functionality. However, when you use the JPublisher -sqlj option to
specify SQLJ settings, use the JPublisher -dir and -d options, which
take precedence over any SQLJ -dir and -d settings.

Note: Encoding settings, either set through the JPublisher
-encoding option or the Java file.encoding setting, do not
apply to Java properties files, including those specified through the
JPublisher -props option. Properties files always use the 8859_1
encoding. This is a feature of Java in general and not JPublisher in
particular. However, you can use Unicode escape sequences in a
properties file.

JPublisher Options

6-42 Oracle Database JPublisher User's Guide

■ -proxyclasses=class1,class2,...,classN

This option specifies Java classes for which Java and PL/SQL wrappers will be
generated. For Web services, this option is used behind the scenes by the
-proxywsdl option and is set automatically to process generated client proxy
classes.

Alternatively, you can use this option directly, for general purposes, when you
want to create Java and PL/SQL wrappers for Java classes.

The -proxyclasses option takes the -proxyopts setting as input.

■ -proxyopts=setting1,setting2,...

This option specifies JPublisher behavior in generating wrapper classes and
PL/SQL wrappers. This is usually, but not necessarily, for Web services. For
typical usage of the -proxywsdl option, the -proxyopts default setting is
sufficient. If you directly use the -proxyclasses option, then you may want
specific -proxyopts settings.

■ -proxywsdl=WSDL_URL

Use this option to generate Web services client proxy classes and appropriate Java
and PL/SQL wrappers, given the WSDL document at the specified URL.

The -proxywsdl option uses the -proxyclasses option behind the scenes and
takes the -proxyopts setting as input.

■ -endpoint=Web_services_endpoint

Use this option in conjunction with the -proxywsdl option to specify the Web
services endpoint.

■ -httpproxy=proxy_URL

Where the WSDL document is accessed through a firewall, use this option to
specify a proxy URL to use in resolving the URL of the WSDL document.

■ -sysuser=superuser_name/superuser_password

Use this option to specify the name and password for the superuser account used
to grant permissions for the client proxy classes to access Web services using
HTTP.

WSDL Document for Java and PL/SQL Wrapper Generation
The syntax for the -proxywsdl option is:

-proxywsdl=WSDL_URL

This option is used as follows:

Note:

■ The features described here require the dbwsclient.jar
library to be installed in Oracle Database 12c.

■ Several previously existing JPublisher options are used in
conjunction with wrapper generation as discussed here: -dir,
-d, -plsqlmap, -plsqlfile, -plsqlpackage, and
-package. You can also specify a database connection through
the -user and -url options so that JPublisher can load
generated entities into the database.

JPublisher Options

Command-Line Options and Input Files 6-43

% jpub -proxywsdl=META-INF/HelloService.wsdl ...

Given the Web services WSDL document at the specified URL, JPublisher directs the
generation of Web services client proxy classes and generates appropriate Java and
PL/SQL wrappers for Web services call-outs from the database. Classes to generate
and process are determined from the WSDL document. JPublisher automatically sets
the -proxyclasses option, uses the -proxyopts setting as input, and executes the
following steps:

1. Invokes Oracle Database Web services assembler tool to produce Web services
client proxy classes based on the WSDL document. These classes use Oracle
Database Web services client run time to access the Web services specified in the
WSDL document.

2. Creates Java wrapper classes for the Web services client proxy classes as
appropriate or necessary. For each proxy class that has instance methods, a
wrapper class is necessary to expose the instance methods as static methods. Even
if there are no instance methods, a wrapper class is necessary if methods of the
proxy class use anything other than Java primitive types in their calling sequences.

3. Creates PL/SQL wrappers for the generated classes, to make them accessible from
PL/SQL. PL/SQL supports only static methods, so this step requires the wrapping
of instance methods by static methods, This is performed in the previous step.

4. Loads generated code into the database assuming you have specified -user and
-url settings and JPublisher has established a connection, unless you specifically
bypass loading through the -proxyopts=noload setting.

The -endpoint option is typically used in conjunction with the -proxywsdl option.

Web Services Endpoint
You can use the -endpoint option in conjunction with the -proxywsdl option to
specify the Web services endpoint. The endpoint is the URL to which the Web service
is deployed and from which the client accesses it. The syntax for this option is:

-endpoint=Web_services_endpoint

Use this option as follows:

% jpub -proxywsdl=META-INF/HelloService.wsdl ...
 -endpoint=http://localhost:8888/javacallout/javacallout

With this command, the Java wrapper class generated by JPublisher includes the
following code:

 ((Stub)m_port0)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:8888/javacallout/javacallout");

Note: When using -proxywsdl:

■ You must use the -package option to determine the package
for generated Java classes.

■ For -proxyopts, the default jaxrpc setting is sufficient for
use with 10.0.x releases of Oracle Application Server 10g. This
setting uses the singleton mechanism for publishing instance
methods of the Web services client proxy classes. For use with
the 9.0.4 release of Oracle Application Server 10g or with earlier
releases, set -proxyopts=soap.

JPublisher Options

6-44 Oracle Database JPublisher User's Guide

Without the -endpoint option, there would instead be the following commented
code:

 // Specify the endpoint and then uncomment the following statement:
 // ((Stub)m_port0)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
 // "<endpoint not provided>");

If you do not specify the endpoint in the JPublisher command line, then you must
manually alter the generated wrapper class to uncomment this code and specify the
appropriate endpoint.

Proxy URL for WSDL
If a WSDL document used for Web services call-outs is accessed through a firewall, use
the -httpproxy option in conjunction with the -proxywsdl option to specify a
proxy URL to use in resolving the URL of the WSDL document. The syntax for this
option is:

-httpproxy=proxy_URL

For example:

% jpub ... -httpproxy=http://www-proxy.oracle.com:80

Superuser for Permissions to Run Client Proxies
Use the -sysuser option to specify the name and password of a superuser account.
This account is used in running the JPublisher-generated PL/SQL script that grants
permissions that allow client proxy classes to access Web services using HTTP. The
syntax for this option is:

-sysuser=superuser_name/superuser_password

For example:

-sysuser=sys/change_on_install

Without a -sysuser setting, JPublisher does not load the generated script granting
permissions. Instead, it asks you to execute the script separately.

If the -url setting specifies a thin driver, then you must set up a password file for
SYS, which authorizes logon as SYS, through the thin driver. To set up a password file,
you must:

1. Add the remote_login_passwordfile option to the database parameter file.
You must use either of the following settings:

remote_login_passwordfile=shared

remote_login_passwordfile=exclusive

2. Create a password file, if you have not already created one. You can do this by
running the following command, where ORACLE_HOME/dbs/ is an existing
directory:

orapwd file="ORACLE_HOME/dbs/orapwlsqlj1" entries=100 force=y
Enter password: password

3. Grant remote logon privileges to a user. This can be done as follows:

% sqlplus /nolog

JPublisher Options

Command-Line Options and Input Files 6-45

SQL> CONN / AS sysdba
Connected.
SQL> GRANT sysdba TO hr;
Grant succeeded.

Option to Access SQLJ Functionality
This section documents the -sqlj option, which you can use to pass SQLJ options to
the SQLJ translator through the JPublisher command line.

Settings for the SQLJ Translator
In Oracle Database 12c, SQLJ translation is automatic by default when you run
JPublisher. Translation is transparent, with no visible .sqlj files resulting from
JPublisher code generation.

However, you can still specify SQLJ settings for the JPublisher invocation of the SQLJ
translator by using the JPublisher -sqlj option. The syntax for this option is:

-sqlj=sqlj_options

For example:

% jpub -user=hr -sqlj -optcols=true -optparams=true
-optparamdefaults=datatype1(size1),datatype2(size)
Enter hr password: password

You can also run JPublisher solely to translate .sqlj files that have already been
produced explicitly, such as if you run JPublisher with the -compatible=sqlj
setting, which skips the automatic SQLJ translation step and results in .sqlj output
files from JPublisher. In this case, use no JPublisher options other than -sqlj. This is a
way to accomplish manual SQLJ translation if the sqlj front-end script or executable
is unavailable.

The commands following -sqlj are equivalent to the command you would give to
the SQLJ translator utility directly. Here is an example:

% jpub -sqlj -d=outclasses -warn=none -encoding=SJIS Foo.sqlj

This is equivalent to the following, if the SQLJ command-line translator is available:

% sqlj -d=outclasses -warn=none -encoding=SJIS Foo.sqlj

See Also: Oracle Database JDBC Developer's Guide for details of
setting up a remote SYS logon

Note:

■ There is no equal sign (=) following -sqlj.

■ All other JPublisher options must precede the -sqlj option. Any
option setting following -sqlj is taken to be a SQLJ option and is
passed to the SQLJ translator. In the preceding example,
-optcols, -optparams, and -optparamdefaults are SQLJ
options.

JPublisher Options

6-46 Oracle Database JPublisher User's Guide

Backward Compatibility Option
This section documents the -compatible option, which you can use to specify any of
the following:

■ The interface for JPublisher to implement in generated classes

■ Whether JPublisher should skip SQLJ translation, resulting in visible .sqlj
output files

■ A backward-compatibility mode to use JPublisher output in an Oracle9i or
Oracle8i environment

Backward-Compatible Oracle Mapping for User-Defined Types
The -compatible option has two modes of operation:

■ Through a setting of oradata or customdatum, you can explicitly specify an
interface to be implemented by JPublisher-generated custom Java classes.

■ Through a setting of sqlj, 8i, both8i, or 9i, you can specify a
backward-compatibility mode.

You can select either of the two modes, but not both.

The syntax for this option is:

-compatible={oradata|customdatum|both8i|8i|9i|10.1|sqlj}

Using -compatible to Specify an Interface
If -usertypes=oracle, then you have the option of setting
-compatible=customdatum, to implement the deprecated CustomDatum interface
in your generated classes for user-defined types, instead of the default ORAData
interface. CustomDatum was replaced by ORAData in Oracle9i Database, but is still
supported for backward compatibility.

The default setting to use the ORAData interface is oradata. If you set
-usertypes=jdbc, then a -compatible setting of customdatum or oradata is
ignored.

If you use JPublisher in a pre-Oracle9i Database environment, in which the ORAData
interface is not supported, then the CustomDatum interface is used automatically if
-usertypes=oracle. You will receive an informational warning if
-compatible=oradata, but the generation will take place.

Note:

■ As an alternative to specifying SQLJ option settings through the
-sqlj option, you can specify them in the sqlj.properties
file that JPublisher supports.

■ The -compiler-executable option, if set, is passed to the
SQLJ translator to specify the Java compiler that the translator will
use to compile Java code.

See Also: "Backward Compatibility and Migration" on page 4-7

JPublisher Options

Command-Line Options and Input Files 6-47

Using -compatible to Specify a Backward-Compatibility Mode
Use the sqlj, 10.1, 9i, 8i, or both8i setting to specify a backward-compatibility
mode.

The -compatible=sqlj setting instructs JPublisher to skip SQLJ translation and
instead produce .sqlj files that you can work with directly. The sqlj setting has no
effect on the generated code itself. To translate the resulting .sqlj files, you can use
the SQLJ translator directly, if available, or use the JPublisher -sqlj option.

The -compatibility=10.1 setting specifies Oracle Database 10g release 1 (10.1)
compatibility mode. In this mode, the JPublisher option -dbjava acts the same as
-java in Oracle Database 10g release 1 (10.1).

The -compatibility=9i setting specifies Oracle9i compatibility mode. In this
mode, JPublisher generates .sqlj files with the same code as would be generated by
Oracle9i version.

The -compatible=8i setting specifies Oracle8i compatibility mode. This mode uses
the CustomDatum interface, generating .sqlj files with the same code that would be
generated by Oracle8i versions of JPublisher. The 8i setting is equivalent to setting
several individual JPublisher options for backward compatibility to Oracle8i. For
example, behavior of method generation is equivalent to that for -methods=always,
and generation of connection context declarations is equivalent to that for
-context=generated.

The -compatible=both8i setting is for an alternative Oracle8i compatibility mode.
With this setting, wrapper classes are generated to implement both the ORAData and
CustomDatum interfaces. Code is generated as it would have been by Oracle8i version
of JPublisher. This setting is generally preferred over the -compatible=8i setting,
because support for ORAData is required for programs running in the middle tier,
such as in Oracle Application Server. However, using ORAData requires an Oracle9i
release 1 (9.0.1) or later JDBC driver.

Java Environment Options
This section discusses JPublisher options that you can use to determine the Java
environment:

■ The -classpath option specifies the Java classpath that JPublisher and SQLJ use
to resolve classes during translation and compilation.

■ The -compiler-executable option specifies the Java compiler for compiling
the code generated by JPublisher.

■ The -vm option specifies the JVM through which JPublisher is invoked.

In a UNIX environment, the jpub script specifies the location of the Java executable
that runs JPublisher. This script is generated at the time you install your database or
application server instance. If the jpub script uses a Java version prior to JDK 1.4, then

See Also: "Option to Access SQLJ Functionality" on page 6-45

Note: In any compatibility mode that results in the generation of
visible .sqlj files, remember that if you are generating Java wrapper
classes for a SQL type hierarchy and any of the types contains stored
procedures, then, by default, JPublisher generates .sqlj files for all
the SQL types, and not just the types that have stored procedures.

JPublisher Options

6-48 Oracle Database JPublisher User's Guide

some JPublisher functionality for Web services, such as call-outs and mapping to the
SYS.XMLType, are unavailable.

Classpath for Translation and Compilation
Use the -classpath option to specify the Java classpath for JPublisher to use in
resolving Java source and classes during translation and compilation. The syntax for
this option is:

-classpath=path1:path2:...:pathN

The following command shows an example of its usage, adding new paths to the
existing classpath:

% jpub -user=hr -sql=PERSON:Person,STUDENT:Student
-classpath=.:$ORACLE_HOME/jdbc/lib/ocrs12.jar:$CLASSPATH
Enter hr password: password

Java Compiler
Use the -compiler-executable option if you want Java code generated by
JPublisher to be compiled by anything other than the compiler that JPublisher would
use by default on your system. Specify the path to an alternative compiler executable
file. The syntax for this option is:

-compiler-executable=path_to_compiler_executable

Java Version
Use the -vm option if you want to use a JVM other than the JVM that JPublisher would
use by default on your system. Specify the path to an alternative Java executable file.
The syntax for this option is:

-vm=path_to_JVM_executable

As an example, assume that JDK 1.4 is installed on a UNIX system at the location
JDK14, relative to the current directory. Run JPublisher with the following command
to use the JDK 1.4 JVM and compiler when publishing Web services client proxy
classes:

% jpub -vm=JDK14/bin/java -compiler-executable=JDK14/bin/java
-proxywsdl=hello.wsdl

SQLJ Migration Options
Starting from Oracle Database 10g release 2 (10.2), JPublisher provides the following
command-line options to support migrating SQLJ to JDBC applications:

■ -migrate

This option enables you to turn on SQLJ migration. The syntax for setting this
option is as follows:

Note: SQLJ also has a -classpath option. If you use the SQLJ
-classpath option, following the JPublisher -sqlj option, then that
setting is used for the classpath for translation and compilation, and
any JPublisher -classpath option setting is ignored. It is more
straightforward to use only the JPublisher -classpath option.

JPublisher Options

Command-Line Options and Input Files 6-49

-migrate[=true|false]

The -migrate and -migrate=true settings are equivalent. Both these settings
indicate that JPublisher should migrate SQLJ programs specified on the command
line to JDBC programs. The -migrate=false turns off the migration mode, and
SQLJ programs are translated and compiled into a Java program that possibly
depends on the SQLJ run time. By default, if this option is not specified, then
JPublisher acts like -migrate=false.

■ -migconn

This option enables you to specify the default JDBC connection used by the
migrated code. The default JDBC connection replaces the default
DefaultContext instance in the SQLJ run time. The syntax for setting this
option is as follows:

-migconn=getter:getter,setter:setter
-migconn=name[[:datasource|modifier][,modifier]*]

In the first syntax, the getter and setter settings specify the getter and setter
methods for the default connection. For example:

-migconn=getter:Test.getDefConn,setter:Test.setDefConn

In the second syntax, the name setting specifies the default JDBC connection. The
optional datasource setting provides a JNDI data source location for initializing
the default JDBC connection. The modifier settings add the modifiers for the
default connection variable. You can specify more than one modifier by using
multiple modifier settings. Examples of the usage of the second syntax are as
follows:

-migconn=_defaultConn:public,static
-migconn=Test._defaultConn
-migconn=Test._defaultConn:jdbc/MyDataSource
-migconn=_defaultConn:public,static,final

■ -migrsi

This option enables you to specify an interface for all ResultSet iterator classes.
The syntax for setting this option is as follows:

-migrsi=java_interface_name

For example:

-migrsi=ResultSetInterface

■ -migsync

This option enables you to mark static variables as synchronized. The syntax for
setting this option is as follows:

-migsync[=true|false]

The -migsync and -migsync=true settings mark static variables generated for
migration purpose as synchronized. If you do not want the variables to be marked
as synchronized, then set -migsync=false. By default, JPublisher acts like
-migsync=true.

■ -migdriver

This option enables you to specify the JDBC driver registered by the migrated
code. The syntax for setting this option is as follows:

JPublisher Input Files

6-50 Oracle Database JPublisher User's Guide

-migdriver=class_name|no

For example:

-migdriver=oracle.jdbc.driver.OracleDriver

By default, JPublisher acts like
-migdriver=oracle.jdbc.driver.OracleDriver. If you do not want the
driver registration code to be generated during migration, then set this option as
follows:

-migdriver=no

■ -migcodegen

This option enables you to specify whether the migrated code depends on an
Oracle JDBC driver or a generic JDBC driver. The syntax for setting this option is
as follows:

-migcodegen=oracle|jdbc

The default behavior is -migcodegen=oracle, indicating that Oracle-specific
JDBC APIs are used in the migrated code.

■ -migserver

This option enables you to specify whether to migrate the program to be used on
the server. The syntax for setting this option is as follows:

-migserver

JPublisher Input Files
The following sections describe the structure and contents of JPublisher input files:

■ Properties File Structure and Syntax

■ INPUT File Structure and Syntax

■ INPUT File Precautions

Properties File Structure and Syntax
A properties file is an optional text file in which you can specify frequently used
options. Specify the name of the properties file on the JPublisher command line with
the -props option.

On each line in a properties file, enter only one option with its associated value. Enter
each option setting with the following prefix, including the period:

jpub.

See Also:

http://www.oracle.com/technology/tech/java/sqlj_jdbc
/pdf/oracle_sqlj_roadmap.pdf

Note: -props is the only option that you cannot specify in a
properties file.

JPublisher Input Files

Command-Line Options and Input Files 6-51

The jpub. prefix is case-sensitive. White space is permitted only directly in front of
jpub.. Any other white space within the option line is significant.

Alternatively, JPublisher permits you to specify options with a double-dash (--),
which is the syntax for SQL comments, as part of the prefix:

-- jpub.

A line that does not start with either of the prefixes shown is simply ignored by
JPublisher.

In addition, you can use line continuation to spread a JPublisher option over several
lines in the properties file. A line to be continued must have a backslash character (\)
as the last character, immediately after the text of the line. Any leading space or double
dash (--) on the line that follows the backslash is ignored. Consider the following
sample entries:

/* The next three lines represent a JPublisher option
 jpub.sql=SQL_TYPE:JPubJavaType:MyJavaType,\
 OTHER_SQL_TYPE:OtherJPubType:MyOtherJavaType,\
 LAST_SQL_TYPE:My:LastType
*/
-- The next two lines represent another JPublisher option
-- jpub.addtypemap=PLSQL_TYPE:JavaType:SQL TYPE\
-- :SQL_TO_PLSQL_FUNCTION:PLSQL_TO_SQL_FUNCTION

Using this functionality, you can embed JPublisher options in SQL scripts, which may
be useful when setting up PL/SQL-to-SQL type mappings.

JPublisher reads the options in the properties file in order, as if its contents were
inserted on the command line at the point where the -props option is located. If you
specify an option more than once, then the last value encountered by JPublisher
overrides previous values, except for the following options, which are cumulative:

■ jpub.sql (or the deprecated jpub.types)

■ jpub.java

■ jpub.style

■ jpub.addtypemap

■ jpub.adddefaulttypemap

For example, consider the following command:

% jpub -user=hr -sql=employee -mapping=oracle -case=lower -package=corp -dir=demo
Enter hr password: password

Now consider the following:

% jpub -props=my_properties

This command is equivalent to the first example if you assume that my_properties
has a definition such as the following:

-- jpub.user=hr/hr
// jpub.user=cannot_use/java_line_comments
jpub.sql=employee
/*
jpub.mapping=oracle
*/
Jpub.notreally=a jpub option
 jpub.case=lower

JPublisher Input Files

6-52 Oracle Database JPublisher User's Guide

jpub.package=corp
 jpub.dir=demo

You must include the jpub. prefix at the beginning of each option name. If you enter
anything other than white space or double dash (--) before the option name, then
JPublisher ignores the entire line.

The preceding example illustrates that white space before jpub. is okay. It also shows
that the jpub. prefix must be all lowercase, otherwise it is ignored. Therefore the
following line from the preceding example will be ignored:

Jpub.notreally=a jpub option

INPUT File Structure and Syntax
Specify the name of the INPUT file on the JPublisher command line with the -input
option. This file identifies SQL user-defined types and PL/SQL packages that
JPublisher should translate. It also controls the naming of the generated classes and
packages. Although you can use the -sql command-line option to specify
user-defined types and packages, an INPUT file allows you a finer degree of control
over how JPublisher translates them.

If you do not specify types or packages to translate in an INPUT file or on the
command line, then JPublisher translates all user-defined types and PL/SQL packages
in the schema to which it connects.

Understanding the Translation Statement
The translation statement in the INPUT file identifies the names of the user-defined
types and PL/SQL packages that you want JPublisher to translate. Optionally, the
translation statement can also specify a Java name for the type or package, a Java name
for attribute identifiers, and whether there are any extended classes.

One or more translation statements can appear in the INPUT file. The structure of a
translation statement is as follows:

(SQL name
| SQL [schema_name.]toplevel [(name_list)]
| TYPE type_name)
[GENERATE java_name_1]
[AS java_name_2]
[TRANSLATE
 database_member_name AS simple_java_name
 { , database_member_name AS simple_java_name}*
]

The following sections describe the components of the translation statement.

SQL name | TYPE type_name Enter SQL name to identify a SQL type or a PL/SQL
package that you want JPublisher to translate. JPublisher examines the name,
determines whether it is for a user-defined type or a PL/SQL package, and processes it
appropriately. If you use the reserved word toplevel in place of name, JPublisher
translates the top-level subprograms in the schema to which JPublisher is connected.

Instead of SQL, it is permissible to enter TYPE type_name if you are specifying only
object types. However, the TYPE syntax is deprecated.

You can enter name as schema_name.name to specify the schema to which the SQL
type or package belongs. If you enter schema_name.toplevel, JPublisher translates

JPublisher Input Files

Command-Line Options and Input Files 6-53

the top-level subprograms in schema schema_name. In conjunction with TOPLEVEL,
you can also supply name_list, which is a comma-delimited list of names to be
published, enclosed in parentheses. JPublisher considers only top-level functions and
procedures that match this list. If you do not specify this list, JPublisher generates code
for all top-level subprograms.

GENERATE java_name_1 AS java_name_2 The AS clause specifies the name of the
Java class that represents the SQL user-defined type or PL/SQL package being
translated.

When you use the AS clause without a GENERATE clause, JPublisher generates the
class in the AS clause and maps it to the SQL type or PL/SQL package.

When you use both the GENERATE clause and the AS clause for a SQL user-defined
type, the GENERATE clause specifies the name of the Java class that JPublisher
generates, which is referred to as the base class. The AS clause specifies the name of a
Java class that extends the generated base class, which is referred to as the user
subclass. JPublisher produces an initial version of the user subclass, and you will
typically add code for your desired functionality. JPublisher maps the SQL type to the
user subclass, and not to the base class. If you later run the same JPublisher command
to republish the SQL type, then the generated class is overwritten, but the user
subclass is not.

The java_name_1 and java_name_2 can be any legal Java names and can include
package identifiers. The case of the Java names overrides the -case option.

TRANSLATE database_member_name AS simple_java_name This clause optionally
specifies a different name for an attribute or method. The database_member_name is
the name of an attribute of a SQL object type or the name of a method of an object type
or PL/SQL package. The attribute or method is to be translated to
simple_java_name, which can be any legal Java name. The case of the Java name
overrides the -case option. This name cannot have a package name.

If you do not use TRANSLATE...AS to rename an attribute or method, or if JPublisher
translates an object type not listed in the INPUT file, then JPublisher uses the database
name of the attribute or method as the Java name. If applicable, the Java name is
modified according to the setting of the -case option. Reasons why you may want to
rename an attribute or method include:

■ The name contains characters other than letters, digits, and underscores.

■ The name conflicts with a Java keyword.

Note: If a user-defined type is defined in a case-sensitive way in
SQL, then you must specify the name in quotes. For example:

SQL "CaseSenstiveType" AS CaseSensitiveType

Alternatively, you can also specify a schema name that is not
case-sensitive:

SQL HR."CaseSensitiveType" AS CaseSensitiveType

You can also specify a case-sensitive schema name:

SQL "Hr"."CaseSensitiveType" AS CaseSensitiveType

The AS clause is optional.

Avoid situations where a period (".") is part of the schema name or
the type name itself.

JPublisher Input Files

6-54 Oracle Database JPublisher User's Guide

■ The type name conflicts with another name in the same scope. This can happen,
for example, if the program uses two types with the same name from different
schemas.

Remember that your attribute names will appear embedded within getXXX() and
setXXX() method names, so you may want to capitalize the first letter of your
attribute names. For example, if you enter:

TRANSLATE FIRSTNAME AS FirstName

JPublisher generates a getFirstName() method and a setFirstName() method.
In contrast, if you enter:

TRANSLATE FIRSTNAME AS firstName

JPublisher generates a getfirstName() method and a setfirstName() method.

Package Naming Rules in the INPUT File You can specify a package name by using
a fully qualified class name in the INPUT file. If you use a simple, unqualified class
name in the INPUT file, then the fully qualified class name includes the package name
from the -package option. This is demonstrated in the following examples:

■ Assume the following in the INPUT file:

SQL A AS B

And assume the setting -package=a.b. In this case, a.b is the package and
a.b.B is the fully qualified class name.

■ Assume that you enter the following in the INPUT file and there is no -package
setting:

SQL A AS b.C

The package is b, and b.C is the fully qualified class name.

Note: The Java keyword null has special meaning when used as
the target Java name for an attribute or method, such as in the
following example:

TRANSLATE FIRSTNAME AS null

When you map a SQL method to null, JPublisher does not
generate a corresponding Java method in the mapped Java class.
When you map a SQL object attribute to null, JPublisher does not
generate the getter and setter methods for the attribute in the
mapped Java class.

See Also: "Name for Generated Java Package" on page 6-35

Note: If there are conflicting package settings between a -package
option setting and a package setting in the INPUT file, then the
precedence depends on the order in which the -input and
-package options appear on the command line. The -package
setting takes precedence if that option is after the -input option, else
the INPUT file setting takes precedence.

JPublisher Input Files

Command-Line Options and Input Files 6-55

Translating Additional Types It may be necessary for JPublisher to translate
additional types that are not listed in the INPUT file. This is because JPublisher
analyzes the types in the INPUT file for dependencies before performing the
translation and translates any additional required types.

Consider the example in "Sample JPublisher Translation" on page 1-23. Assume that
the object type definition for EMPLOYEE includes an attribute called ADDRESS, and
ADDRESS is an object with the following definition:

CREATE OR REPLACE TYPE address AS OBJECT
(
 street VARCHAR2(50),
 city VARCHAR2(50),
 state VARCHAR2(30),
 zip NUMBER
);

In this case, JPublisher would first translate ADDRESS, because that would be
necessary to define the EMPLOYEE type. In addition, ADDRESS and its attributes would
all be translated in the same case, because they are not specifically mentioned in the
INPUT file. A class file would be generated for Address.java, which would be
included in the package specified on the command line.

JPublisher does not translate PL/SQL packages you do not request, because
user-defined types or other PL/SQL packages cannot have dependencies on PL/SQL
packages.

Sample Translation Statement
To better illustrate the function of the INPUT file, consider an updated version of the
example in "Sample JPublisher Translation" on page 1-23.

Consider the following command:

% jpub -user=hr -input=demoin -numbertypes=oracle -usertypes=oracle -dir=demo
-d=demo -package=corp -case=same
Enter hr password: password

And assume that the INPUT file demoin contains the following:

SQL employee AS Employee
TRANSLATE NAME AS Name HIRE_DATE AS HireDate

The -case=same option specifies that generated Java identifiers maintain the same
case as in the database, except where you specify otherwise. Any identifier in a
CREATE TYPE or CREATE PACKAGE declaration is stored in uppercase in the database
unless it is quoted. In this example, the -case option does not apply to the EMPLOYEE
type, because EMPLOYEE is specified to be translated as the Java class Employee.

For attributes, attribute identifiers not specifically mentioned in the INPUT file remain
in uppercase, but JPublisher translates NAME and HIRE_DATE as Name and HireDate,
as specified.

The translated EMPLOYEE type is written to the following files, relative to the current
directory, for UNIX systems in this example, reflecting the -package, -dir, and -d
settings:

demo/corp/Employee.java
demo/corp/Employee.class

JPublisher Input Files

6-56 Oracle Database JPublisher User's Guide

INPUT File Precautions
This section describes possible INPUT file error conditions that JPublisher will
currently not report. There is also a section for reserved terms.

Requesting the Same Java Class Name for Different Object Types
If you request the same Java class name for two different object types, the second class
overwrites the first without warning. Consider that the INPUT file contains:

type PERSON1 as Person
type PERSON2 as Person

JPublisher creates the Person.java file for PERSON1 and then overwrites it for the
PERSON2 type.

Requesting the Same Attribute Name for Different Object Attributes
If you request the same attribute name for two different object attributes, JPublisher
generates getXXX() and setXXX() methods for both attributes without issuing a
warning message. The question of whether the generated class is valid in Java
depends on whether the two getXXX() methods with the same name and the two
setXXX() methods with the same name have different argument types so that they
may be unambiguously overloaded.

Specifying Nonexistent Attributes
If you specify a nonexistent object attribute in the TRANSLATE clause, then JPublisher
ignores it without issuing a warning message.

Consider the following example from an INPUT file:

type PERSON translate X as attr1

A situation in which X is not an attribute of PERSON does not cause JPublisher to issue
a warning message.

JPublisher Reserved Terms
Do not use any of the following reserved terms as SQL or Java identifiers in the INPUT
file.

AS
GENERATE
IMPLEMENTS
SQLSTATEMENTS_TYPE
SQLSTATEMENTS_METHOD
SQL
TRANSLATE
TOPLEVEL
TYPE
VERSION

Generated Code Examples A-1

A
Generated Code Examples

This appendix contains generated code examples that are explained in the following
sections:

■ Generated Code: SQL Statement

■ Generated Code: Server-Side Java Call-in

Generated Code: SQL Statement
This section contains a generated code example for a specified SQL statement, related
to the discussion in "Declaration of SQL Statements to Translate" on page 6-17.

The example is for the following sample settings of the -sqlstatement option:

-sqlstatement.class=MySqlStatements
-sqlstatement.getEmp="select ename from emp
 where ename=:{myname VARCHAR}"
-sqlstatement.return=both

Note that for this example:

■ Code comments show #sql statements that correspond to the translated code
shown.

■ The getEmpBeans() method, generated because of the
-sqlstatement.return=both setting, returns an array of JavaBeans. Each
element represents a row of the result set. The GetEmpRow class is defined for this
purpose.

■ JPublisher generates a SQLJ class. The result set is mapped to a SQLJ iterator.

(For UPDATE, INSERT, or DELETE statements, code is generated both with and
without batching for array binds.)

The translated SQLJ code that JPublisher would produce is:

public class MySqlStatements_getEmpRow
{

 /* connection management */

 /* constructors */
 public MySqlStatements_getEmpRow()
 { }

 public String getEname() throws java.sql.SQLException
 { return ename; }

Generated Code: SQL Statement

A-2 Oracle Database JPublisher User's Guide

 public void setEname(String ename) throws java.sql.SQLException
 { this.ename = ename; }

 private String ename;
}

/*@lineinfo:filename=MySqlStatements*/
/*@lineinfo:user-code*/
/*@lineinfo:1^1*/
import java.sql.SQLException;
import sqlj.runtime.ref.DefaultContext;
import sqlj.runtime.ConnectionContext;
import java.sql.Connection;
import oracle.sql.*;

public class MySqlStatements
{

 /* connection management */
 protected DefaultContext __tx = null;
 protected Connection __onn = null;
 public void setConnectionContext(DefaultContext ctx) throws SQLException
 { release(); __tx = ctx; }
 public DefaultContext getConnectionContext() throws SQLException
 { if (__tx==null)
 { __tx = (__onn==null) ? DefaultContext.getDefaultContext() :
 new DefaultContext(__onn); }
 return __tx;
 };
 public Connection getConnection() throws SQLException
 { return (__onn==null) ? ((__tx==null) ? null : __tx.getConnection()) : __onn; }
 public void release() throws SQLException
 { if (__tx!=null && __onn!=null) __tx.close(ConnectionContext.KEEP_CONNECTION);
 __onn = null; __tx = null;
 }

 /* constructors */
 public MySqlStatements() throws SQLException
 { __tx = DefaultContext.getDefaultContext(); }
 public MySqlStatements(DefaultContext c) throws SQLException
 { __tx = c; }
 public MySqlStatements(Connection c) throws SQLException
 {__onn = c; __tx = new DefaultContext(c); }
/*@lineinfo:generated-code*/
/*@lineinfo:36^1*/

// **
// SQLJ iterator declaration:
// **

public static class getEmpIterator
 extends sqlj.runtime.ref.ResultSetIterImpl
 implements sqlj.runtime.NamedIterator
{
 public getEmpIterator(sqlj.runtime.profile.RTResultSet resultSet)
 throws java.sql.SQLException
 {
 super(resultSet);
 enameNdx = findColumn("ename");
 m_rs = (oracle.jdbc.OracleResultSet) resultSet.getJDBCResultSet();

Generated Code: SQL Statement

Generated Code Examples A-3

 }
 private oracle.jdbc.OracleResultSet m_rs;
 public String ename()
 throws java.sql.SQLException
 {
 return m_rs.getString(enameNdx);
 }
 private int enameNdx;
}

// **

/*@lineinfo:user-code*/
/*@lineinfo:36^56*/

 public MySqlStatements_getEmpRow[] getEmpBeans (String myname)
 throws SQLException
 {
 getEmpIterator iter;
 /*@lineinfo:generated-code*/
 /*@lineinfo:43^5*/
// **
// #sql [getConnectionContext()]
// iter = { select ename from emp where ename=:myname };
// **
{
 // declare temps
 oracle.jdbc.OraclePreparedStatement __sJT_st = null;
 sqlj.runtime.ref.DefaultContext __sJT_cc = getConnectionContext();
 if (__sJT_c c==null) sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();
 sqlj.runtime.ExecutionContext.OracleContext __sJT_ec =
 ((__sJT_cc.getExecutionContext()==null) ?
 sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
 __sJT_cc.getExecutionContext().getOracleContext());
 try {
 String theSqlTS = "select ename from emp where ename= :1";
 __sJT_st = __sJT_ec.prepareOracleStatement
 (__sJT_cc,"0MySqlStatements",theSqlTS);
 // set IN parameters
 __sJT_st.setString(1,myname);
 // execute query
 iter = new MySqlStatements.getEmpIterator
 (new sqlj.runtime.ref.OraRTResultSet
 (__sJT_ec.oracleExecuteQuery(),__sJT_st,"0MySqlStatements",null));
 } finally { __sJT_ec.oracleCloseQuery(); }
}

// **

/*@lineinfo:user-code*/
/*@lineinfo:43^84*/
 java.util.Vector v = new java.util.Vector();
 while (iter.next())
 {
 MySqlStatements_getEmpRow r = new MySqlStatements_getEmpRow();
 r.setEname(iter.ename());
 v.addElement(r);
 }
 MySqlStatements_getEmpRow[] __jPt_result =
 new MySqlStatements_getEmpRow[v.size()];

Generated Code: Server-Side Java Call-in

A-4 Oracle Database JPublisher User's Guide

 for (int i = 0; i < v.size(); i++)
 __jPt_result[i] = (MySqlStatements_getEmpRow) v.elementAt(i);
 return __jPt_result;
 }

 public java.sql.ResultSet getEmp (String myname)
 throws SQLException
 {
 sqlj.runtime.ResultSetIterator iter;
 /*@lineinfo:generated-code*/
 /*@lineinfo:62^5*/

// **
// #sql [getConnectionContext()] iter =
// { select ename from emp where ename=:myname };
// **

{
 // declare temps
 oracle.jdbc.OraclePreparedStatement __sJT_st = null;
 sqlj.runtime.ref.DefaultContext __sJT_cc = getConnectionContext();
 if (__sJT_c c==null) sqlj.runtime.error.RuntimeRefErrors.raise_NULL_CONN_CTX();
 sqlj.runtime.ExecutionContext.OracleContext __sJT_ec =
 ((__sJT_cc.getExecutionContext()==null) ?
 sqlj.runtime.ExecutionContext.raiseNullExecCtx() :
 __sJT_cc.getExecutionContext().getOracleContext());
 try {
 String theSqlTS = "select ename from emp where ename= :1";
 __sJT_st = __sJT_ec.prepareOracleStatement
 (__sJT_cc,"1MySqlStatements",theSqlTS);
 // set IN parameters
 __sJT_st.setString(1,myname);
 // execute query
 iter = new sqlj.runtime.ref.ResultSetIterImpl
 (new sqlj.runtime.ref.OraRTResultSet
 (__sJT_ec.oracleExecuteQuery(),__sJT_st,"1MySqlStatements",null));
 } finally { __sJT_ec.oracleCloseQuery(); }
}

// **

/*@lineinfo:user-code*/
/*@lineinfo:62^84*/
 java.sql.ResultSet __jPt_result = iter.getResultSet();
 return __jPt_result;
 }
}
/*@lineinfo:generated-code*/

Generated Code: Server-Side Java Call-in
JPublisher supports the calling of Java methods in the database from a Java client
outside the database. In Oracle Database 12c Release 1, the JPublisher -dbjava option
is used for server-side Java invocation. Unlike the -java option, the -dbjava option
supports non-serializable parameter or return types.

See Also: "Server-Side Java Invocation (Call-in)" on page 4-5

Generated Code: Server-Side Java Call-in

Generated Code Examples A-5

This section describes an example of server-side Java invocation. This section
comprises:

■ The Source Files

■ Publishing Server-Side Java Class

■ The Generated Files

■ Testing the Published Files

The Source Files
In this example, there are three source files to be created. These are:

■ A server-side Java class

■ A JavaBean used in the server-side Java class

■ An entry point Java class that invokes the methods in the published classes

The source code of these files is as follows:

Server-Side Java Class
The source code of the server-side Java class, Callin2.java, is as follows:

public class Callin2
{
 public static int testInt(int i)
 { return i; }
 public static int[] testInt(int[] i)
 { return i; }
 public static int[][] testInt(int[][] i)
 { return i; }
 public static Integer testInteger(Integer i)
 { return i; }
 public static Integer[] testInteger(Integer[] i)
 { return i; }
 public static Integer[][] testInteger(Integer[][] i)
 { return i; }

 // Test ORAData
 public static oracle.sql.NUMBER testNum(oracle.sql.NUMBER num)
 { return num; }
 public oracle.sql.NUMBER testInstNum(oracle.sql.NUMBER num)
 { return num; }
 public oracle.sql.NUMBER[] testInstNum(oracle.sql.NUMBER[] num)
 { return num; }
 public oracle.sql.NUMBER[][] testInstNum(oracle.sql.NUMBER[][] num)
 { return num; }

 // Test Beans
 public static Callin2Bean testBean()
 { return new Callin2Bean("mybean", new int[]{1,2}); }
 public static Callin2Bean testBean (Callin2Bean b)
 { return b; }
 public static Callin2Bean[] testBean (Callin2Bean[] b)
 { return b; }

Note: You must have the 12c Release 1 (12.1) version of Oracle
Database.

Generated Code: Server-Side Java Call-in

A-6 Oracle Database JPublisher User's Guide

 public static Callin2Bean[][] testBean (Callin2Bean[][] b)
 { return b; }
 public Callin2Bean testInstBean (Callin2Bean b)
 { return b; }
 public Callin2Bean[] testInstBean (Callin2Bean[] b)
 { return b; }
 public Callin2Bean[][] testInstBean (Callin2Bean[][] b)
 { return b; }

 // Test Serializable
 public static java.io.Serializable testSer()
 { return new String("test Serializable"); }
 public static java.io.Serializable testSer (java.io.Serializable b)
 { return b; }
 public static java.io.Serializable[] testSer (java.io.Serializable[] b)
 { return b; }
 public static java.io.Serializable[][] testSer (java.io.Serializable[][] b)
 { return b; }
 public java.io.Serializable testInstSer (java.io.Serializable b)
 { return b; }
 public java.io.Serializable[] testInstSer (java.io.Serializable[] b)
 { return b; }
 public java.io.Serializable[][] testInstSer (java.io.Serializable[][] b)
 { return b; }
}

JavaBean Used in the Server-Side Java Class
The source code of the JavaBean, Callin2Bean.java, used in the server-side Java
class, Callin2.java, is as follows:

public class Callin2Bean
{
 private String stringValue = "";
 private int[] numberValue;

 public Callin2Bean ()
 {
 }

 public Callin2Bean(String string_val, int[] number_val)
 {
 stringValue = string_val;
 numberValue = number_val;
 }

 public void setStringValue(String string_val)
 {
 stringValue = string_val;
 }

 public String getStringValue ()
 {
 return stringValue;
 }

 public void setNumberValue (int[] number_val)
 {
 numberValue = number_val;
 }

Generated Code: Server-Side Java Call-in

Generated Code Examples A-7

 public int[] getNumberValue ()
 {
 return numberValue;
 }

 public boolean equals(Object other)
 {
 if(other instanceof Callin2Bean)
 {
 Callin2Bean my_bean = (Callin2Bean)other;
 if (stringValue.equals(my_bean.getStringValue()) &&
compareIntArray(numberValue, my_bean.getNumberValue()))
 {
 return true;
 }
 }
 return false;
 }

 private boolean compareIntArray(int[] b1, int[] b2)
 {
 try
 {
 if ((b1 == null) && (b2 == null))
 return true;

 if ((b1.length == 0) && (b2.length == 0))
 return true;

 if (b1.length != b2.length)
 return false;
 int x;
 for (x = 0; x < b1.length; x++)
 {
 if (b1[x] != b2[x])
 return false;
 }
 return true;
 }
 catch (Exception e)
 {
 return false;
 }
 }
}

Entry Point Java Class
The TestCallin2.java is the entry point Java class for this example. This class
invokes the methods in the published class. The source code of the
TestCallin2.java file is as follows:

public class TestCallin2
{
 public static void main(String[] args) throws Exception
 {
 java.sql.DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
 oracle.jdbc.OracleConnection conn = (oracle.jdbc.OracleConnection)

Generated Code: Server-Side Java Call-in

A-8 Oracle Database JPublisher User's Guide

//java.sql.DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:lsqlj1",
"hr", "hr");
 java.sql.DriverManager.getConnection("jdbc:oracle:oci8:@", "hr", "hr");

 Callin2Client tkpu = new Callin2Client (conn);

 System.out.println("testInstNum() returned " + tkpu.testinstnum(new
java.math.BigDecimal(1999)));

 TblNumber na = new TblNumber(new java.math.BigDecimal[]{new
java.math.BigDecimal(2999)});
 System.out.println("testInstNum([]) returned " +
 tkpu.testinstnum(na).getArray()[0]);

 ObjCallin2bean mb = new ObjCallin2bean("mybean", na);
 System.out.println("testCallin2Bean() returned " +
tkpu.testbean(mb).getStringValue());
 System.out.println("testCallin2Bean([]) returned " +
tkpu.testbean(new TblObjCallin2bean(new
ObjCallin2bean[]{mb})).getArray()[0].getStringValue());

 java.io.Serializable s = new java.util.Hashtable();
 ((java.util.Hashtable) s).put("bush", "cheny");
 ((java.util.Hashtable) s).put("kerry", "dean");
 java.io.Serializable[] s1 = new java.io.Serializable[]{s};
 java.io.Serializable[][] s2 = new java.io.Serializable[][]{s1};
 System.out.println("testSer() returned " + ((java.util.Hashtable)
tkpu.testser(s)).get("kerry"));
 System.out.println("testSer([]) returned " + ((java.util.Hashtable)
tkpu.testser0(s1)[0]).get("kerry"));
 System.out.println("testSer([][]) returned " + ((java.util.Hashtable)
tkpu.testser1(s2)[0][0]).get("kerry"));
 }
}

Publishing Server-Side Java Class
After you have created the required source files, you must publish these files. To
publish the server-side Java classes, you must first load these files on to the database.
Ensure that you load both Callin2.java and Callin2Bean.java. The command
for loading the files is:

% loadjava -u hr -r -v -f Callin2.java Callin2Bean.java
Password: password

To publish these files, issue the following command:

% jpub -u hr -sysuser=sys/sys_password -dbjava=Callin2:Callin2Client -dir=tmp
Enter hr password: password

The JPublisher output is:

Note: If you are connecting to the database using the JDBC Thin
driver, then you must uncomment the first call to the
getConnection() method in the preceding code and comment the
second call to the getConnection() method, which includes a
connect statement for an Oracle Call Interface (OCI) driver.

Generated Code: Server-Side Java Call-in

Generated Code Examples A-9

tmp/Callin2JPub.java
tmp/plsql_wrapper.sql
tmp/plsql_dropper.sql
HR.TBL_NUMBER
HR.TBL_TBL_NUMBER
HR.OBJ_CALLIN2BEAN
HR.TBL_OBJ_CALLIN2BEAN
HR.TBL_TBL_OBJ_CALLI
HR.JPUB_PLSQL_WRAPPER
Executing tmp/plsql_dropper.sql
Executing tmp/plsql_wrapper.sql
Loading Callin2JPub.java

The Generated Files
When you publish the server-side Java classes JPublisher generates a few Java classes
and PL/SQL scripts. Some of these files are:

■ Callin2JPub.java

This is the server-side Java wrapper class for Callin2.java.

■ Callin2Client.java

This is the client-side Java class.

■ plsql_wrapper.sql

This is the PL/SQL wrapper for the server-side Java class.

■ plsql_dropper.sql

This is the PL/SQL script dropping the PL/SQL wrapper.

The other files generated by JPublisher are as follows:

■ TblNumber.java

A client-side wrapper generated for int[].

■ TblTblNumber.java

A client-side wrapper generated for int[][].

■ ObjCallin2bean.java

A client-side wrapper generated for the server-side class Callin2Bean.

■ ObjCallin2beanRef.java

A client-side wrapper generated for the server-side class Callin2Bean, used as a
REF column in a table. This file is generated, but not used in the call-in scenario.

■ TblObjCallin2bean.java

A client-side wrapper generated for Callin2Bean[].

■ TblTblObjCalli.java

A client-side wrapper generated for Callin2Bean[][].

Testing the Published Files
After the files have been published, you can test the published classes by issuing the
following commands:

% javac -classpath tmp:${CLASSPATH} -d tmp TestCallin2.java

Generated Code: Server-Side Java Call-in

A-10 Oracle Database JPublisher User's Guide

% java -classpath tmp:${CLASSPATH} TestCallin2

Troubleshooting B-1

B
Troubleshooting

This chapter covers the troubleshooting tips for JPublisher. It contains the following
sections:

■ Error While Publishing Web Services Client

Error While Publishing Web Services Client
When publishing Web services client using the -proxywsdl opting, you may come
across one of the following errors:

java.lang.Exception: Error compiling generated client proxy
Can't load library "jdk12/jre/lib/i386/libjava.so", because
jdk12/jre/lib/i386/libjava.so: symbol __libc_wait, version
GLIBC_2.0 not defined in file libc.so.6 with link time reference
Could not create the Java Virtual Machine.

Or

% jpub -proxywsdl=...

Method getStackTrace() not found in class java.lang.Exception.
 _e.setStackTrace(e.getStackTrace());
 ^
1 error

This problem is caused by Java Development Kit (JDK) 1.2 used in the environment.
You must include JDK 1.4 in the PATH environment variable to resolve this error.

Error While Publishing Web Services Client

B-2 Oracle Database JPublisher User's Guide

Index-1

Index

A
access option, 6-27
adddefaulttypemap option, 6-25
addtypemap option, 6-26
Advanced Queue see AQ
AQ (Advanced Queue)

Java output, 1-20
publishing, 2-6

ARRAY class, features supported, 5-13
AS clause, translation statement, 6-53
attribute types, allowed, 3-7

B
backward compatibility

compatibility modes, 4-7
related option, 6-46

BigDecimal mapping
corresponding Java types, 6-23
overview, 1-17

builtintypes option, 6-22

C
case option, 6-27
case-sensitive SQL UDT names, 6-15, 6-53
classes, extending, 5-15
classpath option, 6-48
code generation, Java

generation of Java interfaces, 5-14
generation of non-SQLJ classes, 5-12
generation of SQLJ classes, 5-7
generation of toString() method, 6-36
related options, 6-26
serializability of object wrappers, 6-36
support for inheritance, 5-16
treatment of output parameters, 5-1
treatment of overloaded methods, 5-6

code generation, PL/SQL
names of wrapper and dropper scripts, 6-38
related options, 6-37
specifying generation of wrapper functions, 6-38

collection types
output, 1-19
representing in Java, 1-14

command-line options see options
command-line syntax, 1-22
compatibility

backward, for JPublisher, 4-7
Oracle8i compatibility mode, 4-11
Oracle9i compatibility mode, 4-10

compatible option, 6-46
compile option, 6-39
compiler, specifying version, 6-48
compiler-executable option, 6-48
connection contexts (SQLJ)

definition, 1-11
release() method, 5-8
use of connection contexts and instances, 5-10

context option, 6-19
conventions, notation, 6-6
conversion functions, PL/SQL

introduction, predefined conversion
functions, 1-16

use for PL/SQL types, 3-15
use with wrapper functions, 3-20

D
d option, 6-40
data link (URI type) mapping, 4-7
data type mappings

allowed object attribute types, 3-7
BigDecimal mapping, 1-17
-builtintypes option, 6-22
-compatible option, 6-46
data links, URI types, 4-7
indexed-by table support (general), 3-18
JDBC mapping, 1-16
JPublisher logical progression for mappings, 3-6
-lobtypes option, 6-22
mapping categories, 1-16
-mapping option (deprecated), 6-24
mapping to alternative class (subclass),

syntax, 5-15
-numbertypes option, 6-23
Object JDBC mapping, 1-17
Oracle mapping, 1-17
overview, 3-1
PL/SQL conversion functions, 3-15
RECORD type support, 3-18

Index-2

REF CURSORs and result sets, 3-7
relevant options, 6-21
scalar indexed-by table support with JDBC

OCI, 3-12
special support for PL/SQL types, 3-10
table of mappings, 3-2
-usertypes option, 6-23

default (connection) context (SQLJ), 1-11
default type map, 3-5
defaulttypemap option, 6-26
dir option, 6-40

E
endpoint option, 6-43
environment, options for Java classpath, compiler,

JVM, 6-47
execution contexts (SQLJ), 1-12
extending JPublisher-generated classes

changes after Oracle8i JPublisher, 4-9
concepts, 5-15
format of subclass, 5-16
-gensubclass option, 6-31
introduction, 5-14

F
filtering output

according to parameter modes, 4-6, 6-28
according to parameter types, 4-6, 6-29
publishing a subset of stored procedures or

functions, 4-6, 6-16
to adhere to JavaBeans specification, 4-6, 6-30

filtermodes option, 6-28
filtertypes option, 6-29

G
GENERATE clause, translation statement, 6-53
generatebean option, 6-30
generation see code generation
genpattern option, 6-30
gensubclass option, 6-31
getConnection() method, 5-11
getConnectionContext() method, 5-11

H
handles, handle mechanism for wrapping instance

methods, 2-21
holders

for passing output parameters, 5-1
-outarguments option for holder types, 6-34
using JAX-RPC holders, 5-4

httpproxy option, 6-44

I
i option (-input), 6-7
indexed-by table support

details, general indexed-by tables, 3-18

details, scalar indexed-by tables (JDBC OCI), 3-12
summary, general indexed-by tables, 3-4
summary, scalar indexed-by tables (JDBC

OCI), 3-5
inheritance, support through ORAData, 5-16
INPUT files

-input option, 6-7
package naming rules, 6-54
precautions, 6-56
structure and syntax, 6-52
syntax, 6-14
translation statement, 6-52

input files (general)
-input option (INPUT file), 6-7
overview, 1-18
properties files and INPUT files, 6-50
-props option (properties file), 6-13

input, JPublisher (overview), 1-18
input/output options, 6-39
interfaces, generation and use, 5-14
iterators (SQLJ), 1-11

J
Java environment, options for classpath, compiler,

JVM, 6-47
java option, 6-7
JavaBeans spec, option for adherence, 4-6, 6-30
Java-to-Java type mappings

-style option for style files, 6-24
styles and style files, 3-22
summary of mappings in Oracle style files, 3-26

JAX-RPC holders, 5-4
JDBC mapping

corresponding Java types, 3-2, 6-23
overview, 1-16

JVM, specifying version, 6-48

L
limitations of JPublisher, 1-13
lobtypes option, 6-22

M
mapping option (deprecated), 6-24
mappings see data type mappings
method access option, 6-27
methods option, 6-32
methods, overloaded, translating, 5-6

N
native Java interface, 2-11
nested tables, output, 1-19
non-SQLJ classes, 1-10, 5-12
notational conventions, 6-6
numbertypes option, 6-23

Index-3

O
Object JDBC mapping

corresponding Java types, 6-23
overview, 1-17

object types
classes generated for, 5-9
inheritance, 5-16
output, 1-18
publishing (introduction), 2-1
representing in Java, 1-14

omit_schema_names option, 6-33
option syntax (command line), 1-22
options

-access option, 6-27
-adddefaulttypemap option, 6-25
-addtypemap option, 6-26
-builtintypes option, 6-22
-case option, 6-27
-classpath option, 6-48
code generation, 6-26
-compatible option, 6-46
-compile option, 6-39
-compiler-executable, 6-48
-context option, 6-19
-d option, 6-40
-defaulttypemap option, 6-26
-dir option, 6-40
-endpoint option, 6-43
-filtermodes option, 6-28
-filtertypes option, 6-29
for backward compatibility, 6-46
for SQLJ functionality, 6-45
for type mappings, 6-21
for type maps, 6-25
general tips, 6-5
-generatebean option, 6-30
-genpattern option, 6-30
-gensubclass option, 6-31
-httpproxy option, 6-44
-i option (-input), 6-7
-input option, 6-7
input/output, 6-39
-java option, 6-7
-lobtypes option, 6-22
-mapping option (deprecated), 6-24
-methods option, 6-32
-numbertypes option, 6-23
-omit_schema_names option, 6-33
-outarguments option, 6-34
-p option (-props), 6-13
-package option, 6-35
-plsqlfile option, 6-38
-plsqlmap option, 6-38
-plsqlpackage option, 6-39
-props option (properties file), 6-13
-proxywsdl option, 6-42
-s option (-sql), 6-14
-serializable option, 6-36
-sql option, 6-14
-sqlj option, 6-45

-sqlstatement option, 6-17
-style option, 6-24
summary and overview, 6-1
-sysuser option, 6-44
to facilitate Web services call-outs, 6-41
-tostring option, 6-36
-typemap option, 6-26
-types option (deprecated), 6-18
-u option (-user), 6-21
-user option, 6-21
-usertypes option, 6-23
-vm option, 6-48

Oracle mapping
corresponding Java types, 3-2
overview, 1-17

Oracle8i compatibility mode, 4-11
Oracle9i compatibility mode, 4-10
ORAData interface

object types and inheritance, 5-16
reference types and inheritance, 5-18
use of, 1-14

outarguments option, 6-34
output

-compile option, 6-39
-d option, 6-40
-dir option, 6-40
filtering JPublisher output, 4-5
overview, what JPublisher produces, 1-18

output options, 6-39
output parameters, passing

holders, 5-1
overview, 5-1
using arrays, 5-2
using function returns, 5-5
using JAX-RPC holders, 5-4

overloaded methods, translating, 5-6

P
p option (-props), 6-13
packages, Java

naming rules in INPUT file, 6-54
-package option, 6-35

packages, PL/SQL
generated classes for, 5-8
option for package name, 6-39
publishing (introduction), 2-5

permissions to execute PL/SQL packages, 6-44
PL/SQL conversion functions see conversion

functions, PL/SQL
PL/SQL data types, special support, 3-10
PL/SQL packages see packages, PL/SQL
PL/SQL subprograms, translating top level, 6-14
PL/SQL wrapper, 2-20
PL/SQL wrapper functions see wrapper functions,

PL/SQL
plsqlfile option, 6-38
plsqlmap option, 6-38
plsqlpackage option, 6-39
properties files

Index-4

overview, 1-18
structure and syntax, 6-50

props option (properties file), 6-13
proxies, for Web services call-outs from

database, 4-3, 6-41
proxywsdl option, 6-42
publishing

AQ, 2-6
PL/SQL packages, 2-5
queue, 2-6
server-side Java classes, 2-11
SQL object types, 2-1
stream, 2-9
topic, 2-8

R
RECORD type support

details, 3-18
summary, 3-4

REF CURSOR mapping, 3-7
reference types

inheritance, 5-18
representing in Java, 1-14
strongly-typed, 1-15

release() method (connection contexts), 5-8
requirements for JPublisher

general requirements, 1-2
result set mapping, 3-7

S
s option (-sql), 6-14
sample code

generated code for SQL statement, A-1
sample translation, 1-23
scalar PL/SQL indexed-by table, 3-12
schema names, -omit_schema_names option, 6-33
serializable option, 6-36
server-side Java classes, publishing, 2-11
setConnectionContext() method, 5-10
setContextFrom() method, 5-11
setFrom() method, 5-11
setValueFrom() method, 5-11
singletons, singleton mechanism for wrapping

instance methods, 2-20
SQL name clause, translation statement, 6-52
sql option, 6-14
SQL queries or DML statements

generated code example, A-1
SQLData interface

object types and inheritance, 5-23
use of, 1-14

SQLJ
connection contexts, 1-11
connection contexts and instances, use of, 5-10
default (connection) context, 1-11
execution contexts, 1-12
generation of SQLJ classes, 5-7
iterators, 1-11

JPublisher backward-compatibility modes and .sqlj
files, 1-12

JPublisher -sqlj option to access SQLJ
functionality, 6-45

migration options, 6-48
overview of SQLJ usage by JPublisher, 1-10
SQLJ classes, non-SQLJ classes, 1-10

sqlj option, 6-45
sqljutl.jar, 1-8
sqlstatement option, 6-17
strongly typed paradigm, 1-1
strongly-typed object references, 1-15
style option, 6-24
styles and style files

file formats, 3-23
overview, 3-22
specification and locations, 3-22
-style option, 6-24

subclassing JPublisher-generated classes see extending
syntax, command line, 1-22
sysuser option, 6-44

T
table functions (for Web services)

setting to return Web service data in table, 6-12
TABLE types see indexed-by tables
toplevel keyword (-sql option), 6-14
tostring option, 6-36
TRANSLATE...AS clause, translation statement, 6-53
translation

declare objects/packages to translate, 6-14
declare server-side classes to translate, 6-7
declare SQL statements to translate, 6-17

translation statement
in INPUT file, 6-52
sample statement, 6-55

type mappings see data type mappings
type maps

add to default type map, 6-25
add to user type map, 6-26
default type map, 3-5
option for default type map, 6-26
relevant options, 6-25
replace user type map, 6-26
user type map, 3-5

typemap option, 6-26
types option (deprecated), 6-18

U
u option (-user), 6-21
URI type mapping, 4-7
user option, 6-21
user type map, 3-5
usertypes option, 6-23

V
vm option, 6-48

Index-5

W
Web services

options for call-outs from database, 6-41
overview of JPublisher support, 4-1
support for call-ins to database, 4-1
support for call-outs from database, 4-3

Web services call-out, 2-23
wrapper functions, PL/SQL

introduction, 3-16
option to specify generation, 6-38
use for PL/SQL types, 3-20

wrapper methods
-methods option, 6-32
to invoke stored procedures, 1-2

wrapper packages, PL/SQL see packages, PL/SQL
wrapper procedures, to invoke Java from

PL/SQL, 6-11

Index-6

	Contents
	List of Tables
	List of Figures
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introduction to JPublisher
	Overview of JPublisher
	JPublisher Initial Considerations
	New Features in Oracle Database 12c Release 1(12.1.0.2) JPublisher
	General Requirements for JPublisher
	Installing JPublisher
	Verifying JPublisher Installation
	JPublisher Usage of the SQLJ Implementation
	Situations for Reduced Requirements
	JPublisher Limitations

	What JPublisher Can Publish
	JPublisher Mappings and Mapping Categories
	JPublisher Mappings for User-Defined Types and PL/SQL Types
	JPublisher Mapping Categories

	JPublisher Input and Output
	Input to JPublisher
	Output from JPublisher

	JPublisher Operation
	Overview of the Publishing Process: Generation and Use of Output
	JPublisher Command-Line Syntax
	Sample JPublisher Translation

	2 Using JPublisher
	Publishing User-Defined SQL Types
	Publishing PL/SQL Packages
	Publishing Oracle Streams AQ
	Publishing a Queue as a Java Class
	Publishing a Topic as a Java Class
	Publishing a Stream as a Java Class

	Publishing Server-Side Java Classes Through Native Java Interface
	Publishing Server-Side Java Classes Through PL/SQL Wrappers
	Publishing Server-Side Java Classes to PL/SQL
	Publishing Server-Side Java Classes to Table Functions
	Publishing Web Services Client into PL/SQL

	3 Data Type and Java-to-Java Type Mappings
	JPublisher Data Type Mappings
	Overview of JPublisher Data Type Mappings
	SQL and PL/SQL Mappings to Oracle and JDBC Types
	JPublisher User Type Map and Default Type Map
	JPublisher Logical Progression for Data Type Mappings
	Object Attribute Types
	REF CURSOR Types and Result Sets Mapping
	Connection in JDBC Mapping

	Support for PL/SQL Data Types
	Type Mapping Support for OPAQUE Types
	Type Mapping Support for Scalar Index-by Tables
	Type Mapping Support Through PL/SQL Conversion Functions
	Type Mapping Support for PL/SQL RECORD and Index-By Table Types
	Direct Use of PL/SQL Conversion Functions Versus Use of Wrapper Functions
	Other Alternatives for Data Types Unsupported by JDBC

	JPublisher Styles and Style Files
	Style File Specifications and Locations
	Style File Format
	Summary of Key Java-to-Java Type Mappings in Oracle Style Files
	Use of Multiple Style Files

	4 Additional Features and Considerations
	Summary of JPublisher Support for Web Services
	Summary of Support for Web Services Call-Ins to the Database
	Support for Web Services Call-Outs from the Database
	Server-Side Java Invocation (Call-in)

	Features to Filter JPublisher Output
	Publishing a Specified Subset of Functions or Procedures
	Publishing Functions or Procedures According to Parameter Modes or Types
	Ensuring that Generated Methods Adhere to the JavaBeans Specification

	Backward Compatibility and Migration
	JPublisher Backward Compatibility
	Changes in JPublisher Behavior Between Oracle Database 10g Release 1 and Release 2
	Changes in JPublisher Behavior Between Oracle9i Database and Oracle Database 10g
	Changes in JPublisher Behavior Between Oracle8i Database and Oracle9i Database
	JPublisher Backward-Compatibility Modes and Settings

	5 Generated Classes and Interfaces
	Treatment of Output Parameters
	Passing Output Parameters in Arrays
	Passing Output Parameters in JAX-RPC Holders
	Passing Output Parameters in Function Returns

	Translation of Overloaded Methods
	Generation of SQLJ Classes
	Important Notes About Generation of SQLJ Classes
	Use of SQLJ Classes for PL/SQL Packages
	Use of SQLJ Classes for Object Types
	Connection Contexts and Instances in SQLJ Classes
	The setFrom(), setValueFrom(), and setContextFrom() Methods

	Generation of Non-SQLJ Classes
	Generation of Java Interfaces
	JPublisher Subclasses
	Extending JPublisher-Generated Classes

	Support for Inheritance
	ORAData Object Types and Inheritance
	ORAData Reference Types and Inheritance
	SQLData Object Types and Inheritance
	Effects of Using SQL FINAL, NOT FINAL, NOT INSTANTIABLE

	6 Command-Line Options and Input Files
	JPublisher Options
	JPublisher Option Summary
	JPublisher Option Tips
	Notational Conventions
	Options for Input Files and Items to Publish
	Connection Options
	Options for Data Type Mappings
	Type Map Options
	Java Code-Generation Options
	PL/SQL Code Generation Options
	Input/Output Options
	Options to Facilitate Web Services Call-Outs
	Option to Access SQLJ Functionality
	Backward Compatibility Option
	Java Environment Options
	SQLJ Migration Options

	JPublisher Input Files
	Properties File Structure and Syntax
	INPUT File Structure and Syntax
	INPUT File Precautions

	A Generated Code Examples
	Generated Code: SQL Statement
	Generated Code: Server-Side Java Call-in
	The Source Files
	Publishing Server-Side Java Class
	The Generated Files
	Testing the Published Files

	B Troubleshooting
	Error While Publishing Web Services Client

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

