

Oracle® OLAP
Customizing Analytic Workspace Manager

12c Release 1 (12.1)

E17709-05

June 2014

Oracle OLAP Customizing Analytic Workspace Manager, 12c Release 1 (12.1)

E17709-05

Copyright © 2006, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an
inspiration to all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Customizing With XML Documents

Describing SQL Reports ... 1-1
Creating an XML Document for SQL Reports ... 1-1
Example of a Simple Report ... 1-2
Creating Report Folders .. 1-2
Using Bind Variables to Restrict the Report Contents.. 1-3
Creating Reports in Object Folders.. 1-5
Reference: Elements for SQL Reports ... 1-7

<AWMTree>.. 1-7
<AWMNode>.. 1-7
<ShowIfQueryTrue> .. 1-8

Describing Calculation Templates ... 1-8
Creating an XML Document for Calculations ... 1-8
Example of a Simple Calculation Template ... 1-9
Adding an Option to a Calculation .. 1-10
Creating More Complex Calculation Templates .. 1-12
Reference: Elements for Calculations... 1-14

<AWMCalcs> ... 1-15
<Calc>.. 1-15
<CalcOptional> .. 1-16
<CalcOptionalDefinitions> .. 1-17
<Category> ... 1-17
<Item>.. 1-17
<Param> .. 1-17
<Params> .. 1-18

2 Introducing Analytic Workspace Manager Plug-ins

Describing Analytic Workspace Manager Plug-ins .. 2-1
Enabling Analytic Workspace Manager Plug-ins ... 2-2
How Analytic Workspace Manager Calls a Plug-in ... 2-3

Calling an AWMPlugin.. 2-3
Calling a ViewerPlugin or EditorPlugin ... 2-4

Describing the AWMPlugin Interface ... 2-5
Values for the type and obj Parameters .. 2-6
Elements in the params Map for an AWMPlugin... 2-9

iv

Params Map Elements for Non-custom Objects... 2-9
Params Map Elements for Custom Objects... 2-9

Example params Map Elements for an AWMPlugin .. 2-10
Describing the ViewerPlugin and EditorPlugin Interfaces .. 2-11

Describing the ViewerPlugin Interface .. 2-12
Describing the EditorPlugin Interface.. 2-13
Elements in the params Map for a ViewerPlugin or EditorPlugin.. 2-14
Example params Map Elements for a ViewerPlugin and an EditorPlugin............................ 2-15

Example params Map Elements for a ViewerPlugin.. 2-15
Example params Map Elements for an EditorPlugin ... 2-16

Steps in Creating a Plug-in.. 2-17
Describing the Available Plug-ins... 2-18

Creating an XML Document for Descriptions of Plug-ins.. 2-18
Reference: Elements for Plug-in Descriptions... 2-19

<AWMPlugins> ... 2-19
<Plugin>.. 2-19
<Description> ... 2-19

3 Examples of Analytic Workspace Manager Plug-ins

Availability of Example Classes and XML Documents .. 3-1
Examples of AWMPlugin ... 3-2

ViewXMLPlugin Example .. 3-2
DeleteDimPlugin Example ... 3-5

Examples of ViewerPlugin and EditorPlugin... 3-9
LevelViewerPlugin Example ... 3-10
MeasureViewerPlugin Example ... 3-12
CubeViewerPlugin Example ... 3-15
DimEditorPlugin Example... 3-17

Example of Plug-in Descriptions ... 3-24

Index

v

vi

List of Examples

1–1 Creating the My User Views Report .. 1-2
1–2 Creating the My SQL Reports Folder... 1-3
1–3 Passing the Name of a View to a SELECT Statement.. 1-4
1–4 Including an Icon in a Report.. 1-6
1–5 Basic XML Structure for Reports .. 1-7
1–6 Creating the Discount and Average Calculation Templates ... 1-10
1–7 Adding an Option to One Calculation.. 1-11
1–8 Adding an Option to Multiple Calculations .. 1-11
1–9 Sample AWMCalcs Document .. 1-13
1–10 Basic XML Structure for Calculations ... 1-14
1–11 XML Structure for Calculations With Options .. 1-14
1–12 XML Structure for Calculations With Choice Lists... 1-15
2–1 XML Structure for Descriptions of Plug-ins... 2-19
3–1 The ViewXMLPlugin Class ... 3-2
3–2 The DeleteDimPlugin Class... 3-6
3–3 Creating a dimension.xml Document ... 3-10
3–4 The LevelViewerPlugin Class .. 3-10
3–5 Creating a cube.xml Document ... 3-12
3–6 The MeasureViewerPlugin Class... 3-12
3–7 Creating an aw.xml Document .. 3-15
3–8 The CubeViewerPlugin Class... 3-16
3–9 The DimEditorPlugin Class.. 3-18
3–10 Creating an awmplugins.xml Document ... 3-24

vii

List of Figures

1–1 Displaying a Report .. 1-2
1–2 Organizing Reports in Folders.. 1-3
1–3 Modifying the Content of a Report .. 1-4
1–4 Reports in the GLOBAL Schema Folder.. 1-6
1–5 Listing the New Calculations .. 1-9
1–6 Displaying a New Template.. 1-9
1–7 Providing an Option to a Calculation ... 1-11
1–8 Listing More New Calculations ... 1-12
1–9 Choice Lists In a Calculation Template .. 1-13
2–1 Configuration Item on the Tools Menu ... 2-2
2–2 Configuration Dialog Box with Enable Plugins Selected.. 2-3
2–3 Right-click Menu of the Navigation Tree for a Calculated Measure................................... 2-4
2–4 Sequence of Calls to an AWMPlugin ... 2-6
2–5 Sequence of Calls to a ViewerPlugin .. 2-12
2–6 Sequence of Calls to an EditorPlugin.. 2-14
3–1 Dialog Box Displayed by ViewXMLPlugin .. 3-5
3–2 Right-click Menu Displayed by DeleteDimPlugin... 3-9
3–3 Dialog Box Displayed by DeleteDimPlugin.. 3-9
3–4 Results of the MyLevels <AWMNode> in dimension.xml.. 3-11
3–5 Results of LevelViewerPlugin.. 3-12
3–6 Results of the MyMeasures <AWMNode> in cube.xml .. 3-14
3–7 Results of MeasureViewerPlugin .. 3-15
3–8 Results of the MyCubes <AWMNode> in aw.xml ... 3-17
3–9 Results of the CubeViewerPlugin.. 3-17
3–10 Results of the MyDims <AWMNode> in aw.xml... 3-22
3–11 Results of DimEditorPlugin ... 3-22
3–12 Result of MyLevels <AWMNode> Under MyDims in aw.xml .. 3-23
3–13 Results of the Nested <AWMNode> in the MyLevels <AWMNode> in aw.xml.......... 3-23
3–14 Plugins Tab in the About Dialog Box.. 3-24

viii

List of Tables

1–1 Parameters for the ui Attribute ... 1-16
2–1 Type Values and Objects for Navigation Tree Objects... 2-7
2–2 Keys and Values of the params Map for a Non-custom Object .. 2-9
2–3 Keys and Values of the params Map for a Custom Object .. 2-9
2–4 Keys and Values of the BIND_MAP Map ... 2-10
2–5 Keys and Values of the params Map for DeleteDimPlugin.. 2-11
2–6 Keys and Values of the BIND_MAP Map for DeleteDimPlugin 2-11
2–7 Keys and Values of the params Map for a ViewerPlugin or EditorPlugin 2-14
2–8 Keys and Values of the params Map for MeasureViewerPlugin..................................... 2-15
2–9 Keys and Values of the params Map for DimEditorPlugin.. 2-16

ix

Preface

You can add custom objects and menus to the Oracle Analytic Workspace Manager
user interface. You can customize Analytic Workspace Manager by doing the
following:

■ Adding custom reports and calculation templates to the navigation tree.

■ Adding selections to the menu that appears when the user right-clicks a
navigation tree object.

■ Providing graphical user interface elements for viewing or editing relational
database objects or OLAP objects, or both.

Chapter 1, "Customizing With XML Documents" describes how you can add reports
and calculation templates to the navigation tree by using XML documents. It also
describes how you can specify an Analytic Workspace Manager Java plug-in within an
XML document.

Chapter 2, "Introducing Analytic Workspace Manager Plug-ins" describes the Java
plug-in interfaces that Analytic Workspace Manager supports and demonstrates how
to develop a plug-in. With a plug-in you can add items to the right-click menu of an
Analytic Workspace Manager navigation tree object. You can also provide a viewer or
an editor plug-in that displays in the Analytic Workspace Manager property inspector.

This document describes the Analytic Workspace Manager XML and Java plug-in
interfaces and provides simple examples of implementations of them.

This preface contains the following topics.

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for XML or Java developers who want to use XML
documents or Java plug-ins to extend the functionality of Analytic Workspace
Manager in Oracle Database 12c Release 1 (12.1) with the OLAP option.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

x

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information on Oracle OLAP, on using Analytic Workspace Manager, and on
the Oracle OLAP Java API, see the following documents.

■ Oracle OLAP User's Guide

■ Oracle OLAP Java API Reference

■ Oracle OLAP Java API Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Customizing With XML Documents 1-1

1 Customizing With XML Documents

Analytic Workspace Manager provides numerous SQL reports so that you can query
the Oracle Database data dictionary and system tables without having to open another
SQL interface. It also provides an extensive list of templates for generating calculated
measures. You can supplement both of these features by adding custom SQL reports
and calculation templates.

To define these customizations, you create XML documents. For an introduction to
XML, refer to a source such as the W3Schools XML tutorial at
http://www.w3schools.com. Use an XML-enabled editor or browser to validate the
syntax of your XML documents.

This chapter contains the following topics:

■ Describing SQL Reports

■ Describing Calculation Templates

Describing SQL Reports
You can add reports to the Analytic Workspace Manager navigation tree that appear
along with the other built-in reports. You provide a name for the report and a SQL
SELECT command. You can optionally modify the report contents at run-time and
organize them into folders.

Creating an XML Document for SQL Reports
1. Develop a SQL query that returns the information to make available in Analytic

Workspace Manager.

2. Create a text file named awmtree.xml in the directory with the Analytic Workspace
Manager executable, typically Oracle_home/olap/awm.

3. Begin the file with an XML declaration like this one:

<?xml version="1.0" encoding="utf-8"?>

Specify the appropriate encoding for your site.

4. Enter the XML for the template, as described in "Reference: Elements for SQL
Reports" on page 1-7.

5. For the sql attribute of the <AWMNode> element, enter the SELECT command that
you developed in Step 1. You can replace values in a WHERE clause with bind
variables from parent <AWMNode> elements, as described in "Using Bind Variables
to Restrict the Report Contents" on page 1-3.

Describing SQL Reports

1-2 Oracle OLAP Customizing Analytic Workspace Manager

6. Refresh the navigation tree. The new reports appear at the end of the tree.

If the new reports do not appear, then look for syntax errors in the XML.

Example of a Simple Report
Figure 1–1 shows a new report named My User Views in the Analytic Workspace
Manager navigation tree. The report displays the results of this query: SELECT view_
name FROM user_views.

Figure 1–1 Displaying a Report

The XML document in Example 1–1 defines the My User Views report. The document
contains two elements: <AWMTree> and <AWMNode>. <AWMTree> is the root element and
identifies this document as containing XML that defines a report for Analytic
Workspace Manager. The document can have one or more <AWMNode> elements. In this
example, a single <AWMNode> element defines the My User Views report.

Among the attributes that the <AWMNode> element can have are name and sql.
Example 1–1 uses name to identify the report as My User Views, and sql to specify a
SELECT statement that executes when you select the report in the tree.

Example 1–1 Creating the My User Views Report

<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
 <AWMNode name="My User Views" sql="SELECT view_name FROM user_views"/>
</AWMTree>

Creating Report Folders
Folders provide an easy way to organize your reports. A folder is simply an <AWMNode>
element without a SQL statement, and it is the parent of other <AWMNode> elements.
You can nest <AWMNode> elements as deeply as you want.

Figure 1–2 shows a folder named My SQL Reports. It contains two reports, My User
Tables and My User Views.

Describing SQL Reports

Customizing With XML Documents 1-3

Figure 1–2 Organizing Reports in Folders

The XML document in Example 1–2 shows that the <AWMNode> elements defining the
two reports are the children of the <AWMNode> element that defines the My SQL Reports
folder.

Example 1–2 Creating the My SQL Reports Folder

<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
 <AWMNode name="My SQL Reports">
 <AWMNode name="My User Tables" sql="SELECT table_name FROM user_tables"/>
 <AWMNode name="My User Views" sql="SELECT view_name FROM user_views"/>
 </AWMNode>
</AWMTree>

Using Bind Variables to Restrict the Report Contents
Bind variables restrict the contents of a report based on your run-time selection from a
list of values in the navigation tree. Figure 1–3 shows the list of views returned by the
My User Views report, which is now displayed in the navigation tree instead of in the
property inspector. The property inspector displays a report for the particular view
selected in the tree.

The most deeply nested <AWMNode> element (the "leaf" element) is displayed in a grid
in the property inspector and can return multiple columns. The parent elements are
displayed in the navigation tree and either return no columns (that is, a folder) or one
column, as shown here.

Describing SQL Reports

1-4 Oracle OLAP Customizing Analytic Workspace Manager

Figure 1–3 Modifying the Content of a Report

The type parameter of an <AWMNode> element stores the run-time selection. By
referencing the name of the type parameter in a nested <AWMNode> element, you pass
the value into that SELECT statement. The XML document in Example 1–3 shows an
<AWMNode> element nested in the My User Views <AWMNode>. The nested <AWMNode>
uses the value of the type element from the parent <AWMNode> element as a bind
variable. You reference a bind variable by putting it in braces {}, as in {view} in the
example.

Example 1–3 Passing the Name of a View to a SELECT Statement

<?xml version="1.0" encoding="utf-8" ?>
<AWMTree>
 <AWMNode name="My SQL Reports">
 <AWMNode
 name="My User Tables"
 sql="select table_name from user_tables"/>
 <AWMNode
 name="My User Views"
 type="view"
 sql="select view_name from user_views">
 <AWMNode sql="SELECT * FROM user_tab_columns WHERE table_name = {view}"/>
 </AWMNode>
 </AWMNode>
</AWMTree>

Describing SQL Reports

Customizing With XML Documents 1-5

Creating Reports in Object Folders
The awmtree.xml document defines reports that appear in the navigation tree under a
database connection, after the Reports folder. You can also define reports that appear
in the folders for all schemas, analytic workspaces, cubes, or dimensions. The reports
must be in XML documents that have the following names:

■ schema.xml, for reports that appear in all schema folders.

■ aw.xml, for reports that appear in all analytic workspace folders.

■ dimension.xml, for reports that appear in all dimension folders.

■ cube.xml, for reports that appear in all cube folders.

These files must be in a JAR file in the plug-in directory.

To create reports in object folders:

1. Open Analytic Workspace Manager and select Configuration from the Tools
menu, as shown in Figure 2–1 on page 2-2. The Configuration dialog box appears.

2. Select Enable plugins and enter the path to a plug-in directory, if these parameters
are not set already, as shown in Figure 2–2 on page 2-3.

3. Click OK, and close Analytic Workspace Manager.

4. Create one or more XML document files.

5. In the plug-in directory, create a JAR file containing the XML files and any icons
referenced by them. You can create one JAR file for all of them or create individual
JAR files.

6. Open Analytic Workspace Manager and expand the navigation tree to see the
reports.

Figure 1–4 shows a report folder named My Tables described in a schema.xml
document. It uses a custom icon (red button) in the navigation tree. The My Tables
folder appears in the GLOBAL schema folder.

Describing SQL Reports

1-6 Oracle OLAP Customizing Analytic Workspace Manager

Figure 1–4 Reports in the GLOBAL Schema Folder

The schema.xml document in Example 1–4 has an <AWMNode> element named My
Tables. That element has an icon attribute that specifies a graphics file. In the JAR file
that contains the schema.xml file and the button.jpg file, both files are in a directory
named plugin112.

Note: The references to icon files or Java class files in an XML
document must reflect the directory structure of the JAR file
containing them. The examples in this document of XML documents
and Java plug-ins were created in a JDeveloper project named
plugin112. The project deploys the XML and Java class files in a JAR
file. In the JAR file, the XML files and class files are in a directory
named plugin112. In Example 1–4, the icon attribute specification
includes the directory: icon="plugin112/button.jpg". In the
examples of XML documents in Chapter 3, the viewClass attribute
specifications include the package name, as in
viewClass="plugin112.DimEditorPlugin" in Example 3–7 on
page 3-15.

Example 1–4 Including an Icon in a Report

<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
 <AWMNode name="My Tables"
 icon="plugin112/button.jpg"
 type="table"
 sql="select table_name from all_tables where owner = {owner}">
 <AWMNode sql="select column_name, data_type from all_tab_columns where owner =
{owner} and table_name = {table}"/>
 </AWMNode>
</AWMTree>

Describing SQL Reports

Customizing With XML Documents 1-7

Reference: Elements for SQL Reports
An XML document for SQL reports has the basic format shown in Example 1–5.

Example 1–5 Basic XML Structure for Reports

<AWMTree>
 <AWMNode>
 <AWMNode>
 <ShowIfQueryTrue>
 <AWMNode>
 .
 .
 .

<AWMTree>
The root element that identifies this document as containing custom reports for
Analytic Workspace Manager. It contains one or more <AWMNode> elements.

Contains
<AWMNode>

Attributes
None

<AWMNode>
Defines a report folder or SQL report. It contains one or more <AWMNode> elements.

Contains
<AWMNode>, <ShowIfQueryTrue>

Attributes
<AWMNode> has the following attributes:

■ name: The name of the folder or report. For a folder, this attribute is the only one
required.

■ type: The name of a bind variable that stores the selected value of the report. Use
this bind variable to pass a user selection to a second, nested report.

■ sql: A SQL SELECT statement, which can contain a bind variable in a WHERE clause.
The bind variable is defined by the type attribute of a parent <AWMNode> attribute.
The query results appear in the tree for a parent <AWMNode> element; for leaf
elements, the results appear in the property inspector.

■ viewClass: A Java class that implements the ViewerPlugin or EditorPlugin
interface. The plug-in displays in the property inspector. For information on these
Java plug-in interfaces, see Chapter 2, "Introducing Analytic Workspace Manager
Plug-ins". The viewClass and viewSQL attributes are mutually exclusive. Use only
one of them for any single <AWMNode>.

■ viewSql: A SQL SELECT statement. The query results appear in the property
inspector. Use this attribute to specify a SQL statement for a parent <AWMNode>. The

Describing Calculation Templates

1-8 Oracle OLAP Customizing Analytic Workspace Manager

viewSQL and viewClass attributes are mutually exclusive. Use only one or the
other for any single <AWMNode>.

■ icon: An image to use in the navigation tree. The image must be in a JAR file in the
plug-in directory and should be about 20 x 20 pixels.

<ShowIfQueryTrue>
Controls the display of the parent report.

Contains
None

Attributes
<ShowIfQueryTrue> has the following attribute:

■ sql: A SQL SELECT statement that creates the condition for displaying the parent
report. If the query returns one or more rows, then the report is displayed in the
navigation tree. If no rows are returned, then the report is hidden.

Describing Calculation Templates
You can define a calculation template that appears in the Create a Calculated Measure
dialog box like any other calculation. You provide a name for the calculation, the text
of the template, and a calculation using the OLAP expression syntax. For information
on the expression syntax, see Oracle OLAP Expression Syntax Reference.

Creating an XML Document for Calculations
1. Create a custom measure in Analytic Workspace Manager that performs the type

of calculation that you want in a template. Use this custom measure to validate the
syntax of the expression for the template.

2. Create a text file named awmcalcs.xml in the directory with the Analytic
Workspace Manager executable, typically ORACLE_HOME/olap/awm.

3. Begin the file with an XML declaration like this one:

<?xml version="1.0" encoding="utf-8"?>

Specify the appropriate encoding for your site.

4. Enter the XML for the template, as described in "Reference: Elements for
Calculations" on page 1-14.

5. For the expression attribute of the <Calc> element, cut-and-paste the calculation
from the custom measure that you created earlier. Replace the names of the
measure, dimension, and so forth with the variables from the ui parameter.

6. Open Analytic Workspace Manager. The new categories and templates appear at
the end of the Calculation Type list in the Create Calculated Measure dialog box.

If the new entries do not appear, then look for syntax errors in the XML. To see
changes to the XML document, just reopen the Create Calculated Measure dialog
box.

Describing Calculation Templates

Customizing With XML Documents 1-9

Example of a Simple Calculation Template
Figure 1–5 shows the Calculation Type list in the Create Calculated Measure dialog
box. The list contains a new folder named My New Calcs with two additional
calculations: Discount and Average.

Figure 1–5 Listing the New Calculations

Figure 1–6 shows the template portion of the General tab that appears when a user
selects Discount from the tree.

Figure 1–6 Displaying a New Template

The XML document in Example 1–6 defines the My New Calcs folder and the
Discount and the Average calculations. The document contains three elements:
<AWMCalcs>, <Category>, and <Calc>. <AWMCalcs> is the root element. It can have one
or more <Category> elements. In this example, the <Category> element defines a
folder named My New Calcs.

A <Category> element can have one or more <Calc> elements. This document has two
<Calc> elements named Discount and Average.

Describing Calculation Templates

1-10 Oracle OLAP Customizing Analytic Workspace Manager

A <Calc> element has four attributes: name, description, ui, and expression. Each
attribute takes a quoted string as a value. The ui element consists of literal text and
hypertext links. You create the links by entering one of several available parameters.

Example 1–6 uses the {measure} and {number} parameters. You use the same
parameters in the expression attribute as bind variables, which pass the user choices to
the calculation. Notice that the Average calculation uses two {measure} parameters.
The expression attribute refers to them by their order in the ui attribute: {measure:1}
and {measure:2}.

Refer to "Reference: Elements for Calculations" on page 1-14 for full descriptions of
these elements.

Example 1–6 Creating the Discount and Average Calculation Templates

<?xml version ="1.0" encoding="UTF-8" ?>
<AWMCalcs>
 <Category name="NEW_CALCS" description="My New Calcs">
 <Calc
 name="Discount"
 description="Discount"
 ui="Discount {measure} by {number} percent"
 expression="{measure}*(1 - ({number}/100))"/>
 <Calc
 name="Average"
 description="Average"
 ui="Average of {measure} and {measure}"
 expression="({measure:1}+{measure:2})/2"/>
 </Category>
</AWMCalcs>

Adding an Option to a Calculation
You can add an option that changes the basic calculation. The option appears as a
check box in the Create Calculated Measure dialog box. Users select the option to
create the modified calculation.

Two elements support these options: <CalcOptional> and
<CalcOptionalDefinitions>. You can define a <CalcOptional> element locally or
globally. Within a <Calc> element, <CalcOptional> applies only to that particular
calculation. Within a <CalcOptionalDefinitions> element, <CalcOptional> applies to
all calculations that reference it by name.

Figure 1–7 shows the sample calculation with an option of truncating the values of the
measure to whole numbers. The user has changed the percentage value to 6.

Describing Calculation Templates

Customizing With XML Documents 1-11

Figure 1–7 Providing an Option to a Calculation

Example 1–7 shows the Truncate option defined locally in a <Calc> element. The
option applies only to the Discount calculation.

Example 1–7 Adding an Option to One Calculation

<Calc
 name="Discount"
 description="Discount"
 ui="Discount {measure} by {number} percent"
 expression="{measure}*(1 - ({number}/100))">
 <CalcOptional
 name="truncate"
 type="boolean"
 text="Truncate the decimal places"
 expression="TRUNC($expression$)"/>
</Calc>

Example 1–8 shows the Truncate option defined globally in the
<CalcOptionalDefinitions> element. The option is used by the Discount and the
Average calculations, and it is available to any other calculations that might be
defined.

Example 1–8 Adding an Option to Multiple Calculations

<AWMCalcs>
 <CalcOptionalDefinitions>
 <CalcOptional
 name="truncate"
 type="boolean"
 text="Truncate the decimal places"
 expression="TRUNC($expression$)" />
 </CalcOptionalDefinitions>
 <Category name="NEW_CALCS" description="My New Calcs">
 <Calc
 name="Discount"
 description="Discount"
 ui="Discount {measure} by {number} percent"
 expression="{measure}*(1 - ({number}/100))">
 <CalcOptional name="truncate"/>
 </Calc>
 <Calc
 name="Average"

Describing Calculation Templates

1-12 Oracle OLAP Customizing Analytic Workspace Manager

 description="Average"
 ui="Average of {measure} and {measure}"
 expression="({measure:1}+{measure:2})/2">
 <CalcOptional name="truncate"/>
 </Calc>
 </Category>
</AWMCalcs>

Creating More Complex Calculation Templates
This example creates five calculations in two folders. The calculations in both folders
use the global options defined at the beginning of the XML document. Figure 1–8
shows the calculations as they appear in the Calculation Type list.

Figure 1–8 Listing More New Calculations

The My Period To Date calculation has the most complex syntax, including three lists.
Using the <Params> element, you can create the lists quickly. This is the definition of
the first list, which is displayed in Figure 1–9:

<Params>
 <Param type="list" name="timePeriods">
 <Item expression="GREGORIAN YEAR" text="Gregorian year"/>
 <Item expression="GREGORIAN QUARTER" text="Gregorian quarter"/>
 <Item expression="GREGORIAN MONTH" text="Gregorian month"/>
 <Item expression="GREGORIAN WEEK" text="Gregorian week"/>
 <Item expression="ANCESTOR AT LEVEL {level}" text="Ancestor at level"/>
 </Param>
</Params>

Describing Calculation Templates

Customizing With XML Documents 1-13

Figure 1–9 Choice Lists In a Calculation Template

Example 1–9 shows the complete XML document that defines the five calculation
templates shown in Figure 1–8.

Example 1–9 Sample AWMCalcs Document

<?xml version ="1.0" encoding="UTF-8" ?>

<AWMCalcs>
 <Params>
 <Param type="list" name="timePeriods">
 <Item expression="GREGORIAN YEAR" text="Gregorian year"/>
 <Item expression="GREGORIAN QUARTER" text="Gregorian quarter"/>
 <Item expression="GREGORIAN MONTH" text="Gregorian month"/>
 <Item expression="GREGORIAN WEEK" text="Gregorian week"/>
 <Item expression="ANCESTOR AT LEVEL {level}" text="Ancestor at level"/>
 </Param>
 <Param type="list" name="aggOps">
 <Item expression="SUM" text="sum"/>
 <Item expression="MAX" text="maximum"/>
 <Item expression="MIN" text="minimum"/>
 <Item expression="AVG" text="average"/>
 </Param>

 </Params>
 <CalcOptionalDefinitions>
 <CalcOptional
 name="percentages"
 type="boolean"
 text="Multiply by 100"
 expression="($expression$)*100"/>
 <CalcOptional
 name="truncate"
 type="boolean"
 text="Truncate the decimal places"
 expression="TRUNC($expression$)" />
 </CalcOptionalDefinitions>
 <Category name="DEMO_CALCS" description="Demo Calcs">
 <Calc
 name="PctDif"
 description="My Percent Difference"
 ui="Percent difference between {measure} and {measure}."
 expression="({measure:1} - {measure:2}) / abs({measure:2})">
 <CalcOptional name="percentages" />

Describing Calculation Templates

1-14 Oracle OLAP Customizing Analytic Workspace Manager

 </Calc>
 <Calc
 name="PriorPeriod"
 description="My Prior Period"
 ui="Prior period for measure {time_measure} in the {time_dimension}
 dimension and {hierarchy} hierarchy {number} period(s) ago."
 expression="LAG({time_measure},{number}) over hierarchy ({hierarchy})" />
 <Calc
 name="Periodtodate"
 description="My Period to Date"
 ui="{timePeriods} to date for {time_measure} in the {time_dimension}
 dimension and {hierarchy} hierarchy. Aggregate over {timePeriods}
 using {aggOps} from the {calcRange} of the period."
 expression="{aggOps}({time_measure}) OVER HIERARCHY ({hierarchy}
 BETWEEN {calcRange} WITHIN {timePeriods})">
 <Param type="list" name="calcRange">
 <Item expression="UNBOUNDED PRECEDING AND CURRENT MEMBER"
 text="beginning"/>
 <Item expression="CURRENT MEMBER AND UNBOUNDED FOLLOWING"
 text="end"/>
 </Param>
 <CalcOptional name="truncate"/>
 </Calc>
 </Category>
 <Category name="NEW_CALCS" description="My New Calcs">
 <Calc
 name="Discount"
 description="Discount"
 ui="Discount {measure} by {number} percent."
 expression="{measure}*(1 - ({number}/100))">
 <CalcOptional name="truncate"/>
 </Calc>
 <Calc
 name="Average"
 description="Average"
 ui="Average of {measure} and {measure}"
 expression="({measure:1}+{measure:2})/2">
 <CalcOptional name="truncate"/>
 </Calc>
 </Category>
</AWMCalcs>

Reference: Elements for Calculations
An XML document for calculations has the basic format shown in Example 1–10.

Example 1–10 Basic XML Structure for Calculations

<AWMCalcs>
 <Category>
 <Calc>

Example 1–11 expands on this basic structure to include the definition of options in the
calculations.

Example 1–11 XML Structure for Calculations With Options

<AWMCalcs>
 <CalcOptionalDefinitions>
 <CalcOptional>

Describing Calculation Templates

Customizing With XML Documents 1-15

 <Category>
 <Calc>
 <CalcOptional>

Example 1–12 expands the basic structure to include choice lists in the user interface.

Example 1–12 XML Structure for Calculations With Choice Lists

<AWMCalcs>
 <Params>
 <Param>
 <Item>
 <Category>
 <Calc>
 <Param>
 <Item>

Following are the descriptions of the elements.

<AWMCalcs>
The root element that identifies this document as containing the custom calculation
templates for Analytic Workspace Manager. It contains a <Category> element, and can
also contain a <CalcOptionalDefinitions> element, a <Params> element, or both.

Contains
<CalcOptionalDefinitions>, <Category>, <Params>

Attributes
None

<Calc>
Describes a calculation template. It can contain a <CalcOptional> element, or one or
more <Param> elements, or both.

Contains
<CalcOptional>, <Param>

Attributes
<Calc> has the following attributes:

■ name: A unique name for the calculation, which conforms to the same naming
conventions as other OLAP objects.

■ description: A description of the calculation. Analytic Workspace Manager adds
the description to the list of calculation templates.

■ ui: The text of the template, which Analytic Workspace Manager displays in the
Calculation Type list of the Create Calculated Measure dialog box. Enclose
hypertext parameters in braces {}. Table 1–1 describes the valid parameters.

■ expression: The calculation that is executed by the calculated measure. This
calculation is defined using the expression syntax and by using as bind variables
the hypertext parameters from the ui attribute. Enclose the bind variables in
braces {}. If the ui attribute uses the same parameter two or more times, then
reference them by the order they appeared, such as {measure:1} and {measure:2}.
For a simple example, see Example 1–6 on page 1-10.

Table 1–1 Parameters for the ui Attribute

Parameter Description

ATTRIBUTE Lists the attributes of the selected dimension.

DIMENSION Lists all dimensions of the current cube.

DIMENSION_MEMBER Lists the members of the selected dimension.

HIERARCHY Lists the hierarchies of the selected dimension.

HIERARCHY_LEVEL Lists the levels of the selected hierarchy.

LEVEL Lists the levels of the selected dimension.

LIST Displays a list of values specified in this format:

LIST:expression=value;[expression=value;...]

Alternatively, use the <Params> element.

MEASURE Lists all measures in the analytic workspace with at least one
dimension in common with the current cube.

NUMBER Displays a text field that accepts numeric input.

TEXT_INPUT Displays a text field that accepts any text input.

TIME_DIMENSION Lists the time dimensions of the current cube.

TIME_MEASURE Lists all measures for cubes that have a time dimension.

VALUE Displays the current selection from a LIST parameter.

param A parameter defined in a <Param> element. Specifically, the value of
the text attribute of an <Item> element.

Describing Calculation Templates

1-16 Oracle OLAP Customizing Analytic Workspace Manager

<CalcOptional>
Defines a check box that can be used by one or more calculations to modify the basic
expression. For example, a calculation that generates a fraction might offer a Multiply
By 100 option to return the results as a percentage.

Include a <CalcOptional> element in a <Calc> element where you want a check box to
appear. You can fully define the option within the <Calc> element, or you can define
the option within a <CalcOptionalDefinitions> element and reference it by name
with a second <CalcOptional> element in the <Calc> element.

A <Calc> element can contain a <CalcOptional> element. A
<CalcOptionalDefinitions> element can have one or more <CalcOptional> elements.

Contains
None

Attributes
<CalcOptional> has the following attributes:

■ name: A unique name for the option, which conforms to the same naming
conventions as other OLAP objects.

■ type: The data type of the option, which is always boolean.

■ text: A description of the option. This text labels the check box.

■ expression: The calculation that is executed when the option is selected. Use the
expression syntax and ($expression$) for the basic calculation defined by the
current <Calc> element.

Describing Calculation Templates

Customizing With XML Documents 1-17

<CalcOptionalDefinitions>
Contains one or more <CalcOptional> elements so they can be referenced by multiple
calculations. This element must appear directly after <AWMCalcs>.

Contains
<CalcOptional>

Attributes
None

<Category>
Defines a heading in the list of calculations in Analytic Workspace Manager. It contains
one or more <Calc> elements.

Contains
<Calc>

Attributes
<Category> has the following attributes:

■ name: A unique name for the category, which conforms to the same naming
conventions as other OLAP objects.

■ description: A description of the category. Analytic Workspace Manager adds this
description to the list of calculation templates.

<Item>
Describes an entry in a list of values or numbers.

Contains
None

Attributes
<Item> has the following attributes:

■ text: Value entered in the <Calc> ui attribute and displayed to users.

■ expression: Value inserted in the <Calc> expression attribute when a user selects
the item.

<Param>
Describes a list of values or a number field referenced in a <Calc> ui attribute. An
expression that corresponds to the choice made by the user is entered in the
calculation instead of the displayed value. This element contains one or more <Item>
elements.

Contains
<Item>

Attributes
<Param> has the following attributes:

■ type: Either LIST for a list of values, or NUMBER for a field for entering a number.

Describing Calculation Templates

1-18 Oracle OLAP Customizing Analytic Workspace Manager

■ name: The name of the parameter, which is referenced in the <Calc> ui attribute.

■ default: Provides the default value when a user enters a number that has no
corresponding expression in an <Item> element.

<Params>
Contains one or more <Param> elements.

Contains
<Param>

Attributes
None

2

Introducing Analytic Workspace Manager Plug-ins 2-1

2 Introducing Analytic Workspace Manager
Plug-ins

An Analytic Workspace Manager plug-in enables you to run Java code in the context
of Analytic Workspace Manager. With an implementation of a Java plug-in interface
that is supported by Oracle Analytic Workspace Manager, Version 12.1, you can extend
the functionality of Analytic Workspace Manager in Oracle Database 12c Release 1
(12.1) with the OLAP option.

This chapter has the following topics.

■ Describing Analytic Workspace Manager Plug-ins

■ Describing the AWMPlugin Interface

■ Describing the ViewerPlugin and EditorPlugin Interfaces

■ Steps in Creating a Plug-in

■ Describing the Available Plug-ins

Describing Analytic Workspace Manager Plug-ins
Analytic Workspace Manager has the following Java plug-in interfaces.

■ AWMPlugin, which you can use to add selections to the right-click menu of a
navigation tree object.

■ ViewerPlugin, which you can use to display information in the property inspector
about the current navigation tree object.

■ EditorPlugin, which extends ViewerPlugin and adds the ability to edit properties
of the object.

With an Analytic Workspace Manager plug-in, you can implement programs that
perform actions such as the following:

■ Create new types of calculations.

■ Create forecasts.

■ Create custom OLAP metadata objects, such as an enterprise-specific time
dimension.

■ Control the display in the property inspector of the information associated with a
custom navigation tree object.

■ Edit the properties of an object in the property inspector.

In an Analytic Workspace Manager plug-in, you can use the following Java APIs:

Describing Analytic Workspace Manager Plug-ins

2-2 Oracle OLAP Customizing Analytic Workspace Manager

■ Oracle OLAP Java API

■ JDBC API

■ Swing API

You can invoke OLAP DML or SQL procedures by using JDBC classes.

Enabling Analytic Workspace Manager Plug-ins
Analytic Workspace Manager has a configuration option that specifies whether it uses
plug-ins. To enable plug-ins, from the Analytic Workspace Manager Tools menu, select
Configuration, as shown in Figure 2–1. In the Configuration dialog box, select Enable
Plugins and specify the directory that contains your plug-ins, as shown in Figure 2–2.
Click OK and then exit and restart Analytic Workspace Manager.

Figure 2–1 Configuration Item on the Tools Menu

Figure 2–2 shows the Configuration dialog box with Enable plugins selected and with
plugin as the value for Plugin directory. The value should include the full path to the
plug-in directory unless the directory is a subdirectory of the Oracle_home/olap/awm
directory, which is the case for the plugin directory shown in the figure.

Describing Analytic Workspace Manager Plug-ins

Introducing Analytic Workspace Manager Plug-ins 2-3

Figure 2–2 Configuration Dialog Box with Enable Plugins Selected

How Analytic Workspace Manager Calls a Plug-in
If Analytic Workspace Manager has plug-ins enabled, then on startup Analytic
Workspace Manager dynamically loads Java code from JAR files located in the
plug-ins directory. After loading the contents of the JAR files, Analytic Workspace
Manager looks for classes that implement the AWMPlugin, ViewerPlugin, or
EditorPlugin interfaces. It also looks for aw.xml, cube.xml, dimension.xml, and
schema.xml files to add objects to the navigation tree.

Note: You can include multiple plug-ins and XML documents in a
single JAR file.

When Analytic Workspace Manager calls most methods of a plug-in, it passes the
method a java.sql.Connection object as the conn parameter. The Connection
represents the current connection to the Oracle Database instance.

Analytic Workspace Manager does not pass any user identification or password to the
plug-in. It only passes the connection object. An Analytic Workspace Manager plug-in
does not allow you to do anything that you cannot do by writing a standalone Java
program. For information on the parameters that Analytic Workspace Manager passes
to the methods of plug-ins, see "Describing the AWMPlugin Interface" on page 2-5 and
"Describing the ViewerPlugin and EditorPlugin Interfaces" on page 2-11.

Calling an AWMPlugin
When a user right-clicks an object in the Analytic Workspace Manager navigation tree,
a menu appears that presents the actions available for the object. The menu also
displays options supplied by the AWMPlugin plug-ins that apply to the object. An
AWMPlugin uses the isSupported method to indicate whether it applies to an object in
the tree. Because Analytic Workspace Manager calls the isSupported method of each

Describing Analytic Workspace Manager Plug-ins

2-4 Oracle OLAP Customizing Analytic Workspace Manager

plug-in whenever the user right-clicks a navigation tree object, an isSupported
method should return quickly.

The menu displays the text returned by the getMenu method of the plug-in. Figure 2–3
shows the menu that Analytic Workspace Manager displays when a user right-clicks a
calculated measure in the tree. The menu includes the ViewXMLPlugin example
plug-in. For the code of the plug-in example, see Example 3–1 on page 3-2.

Figure 2–3 Right-click Menu of the Navigation Tree for a Calculated Measure

If the user selects the plug-in, then Analytic Workspace Manager calls the handle
method of the plug-in. The handle method specifies the actions that the plug-in
performs. The refreshTree method of the plug-in indicates whether Analytic
Workspace Manager refreshes the navigation tree to include any new objects created
by the plug-in or to remove objects deleted by the plug-in.

Calling a ViewerPlugin or EditorPlugin
As described in "Creating Reports in Object Folders" on page 1-5, with certain XML
documents you can add objects to the Schemas, Analytic Workspaces, Dimensions,
and Cubes folders in the Analytic Workspace Manager navigation tree. You add
objects to the navigation tree by adding <AWMNode> elements to the XML document. If
an <AWMNode> specifies a ViewerPlugin or an EditorPlugin, then Analytic Workspace
Manager calls the plug-in when the user selects the navigation tree object that
corresponds to the <AWMNode>.

With the sql attribute of an <AWMNode> element, you can specify a SQL SELECT
statement. Analytic Workspace Manager displays the result of the statement either in
the folder in the navigation tree or in the property inspector, or in both places. For

Describing the AWMPlugin Interface

Introducing Analytic Workspace Manager Plug-ins 2-5

more information about creating the XML documents and the SQL statements, see
"Creating Reports in Object Folders" on page 1-5.

To control the display of the information in the property inspector or to enable the user
to edit properties of the selected navigation tree object, you can use a ViewerPlugin or
EditorPlugin. You use the viewClass attribute of an <AWMNode> element to specify the
plug-in. In the plug-in you can use the Oracle OLAP Java API to retrieve OLAP objects
or alter characteristics of them. You can also specify user interface elements for the
display in the property inspector.

Describing the AWMPlugin Interface
The following is the oracle.olap.awm.plugin.AWMPlugin interface.

package oracle.olap.awm.plugin

import java.awt.Frame;
import java.sql.Connection;
import java.util.Map;
import oracle.AWXML.AW;

public interface AWMPlugin
{
 boolean isSupported(Connection conn, String type, Object obj, AW aw,
 Map params);

 String getMenu(Connection conn, String type, Object obj, AW aw,
 Map params);

 void handle(Frame parent, Connection conn, String type, Object obj,
 AW aw, Map params);

 boolean refreshTree(Connection conn, String type, Object obj, AW aw,
 Map params);
}

When a user right-clicks an object in the navigation tree, Analytic Workspace Manager
calls the methods of classes that implement the AWMPlugin interface in the sequence
illustrated in Figure 2–4.

Describing the AWMPlugin Interface

2-6 Oracle OLAP Customizing Analytic Workspace Manager

Figure 2–4 Sequence of Calls to an AWMPlugin

Analytic
Workspace

Manager
AWMPlugin

isSupported

handle

boolean

getMenu

refreshTree

boolean

String

Analytic Workspace Manager first calls the isSupported method. If that method
returns true, then Analytic Workspace Manager calls getMenu and displays on the
right-click menu the value that getMenu returns. If a user selects the menu item, then
Analytic Workspace Manager calls the handle and refreshTree methods. The input
parameters that Analytic Workspace Manager passes to the AWMPlugin methods are the
following:

■ conn, which is a java.sql.Connection object that represents the current
connection to the Oracle Database instance.

■ type, which is a java.lang.String that is a type designation that Analytic
Workspace Manager assigns to the object. For a description of type parameter
values, see "Values for the type and obj Parameters" on page 2-6.

■ obj, which is a java.lang.Object that Analytic Workspace Manager associates
with the object selected in the Analytic Workspace Manager navigation tree. The
Object can be a String or an object from the Oracle OLAP Java API. For more
information on the obj parameter values, see "Values for the type and obj
Parameters".

■ aw, which is null. This parameter exists for compatibility with 10g plug-ins, for
which aw was an oracle.AWXML.AW object.

■ params, which is a java.util.Map that contains objects and information that the
plug-in can use. For a description of the Map keys and values, see "Elements in the
params Map for an AWMPlugin" on page 2-9.

■ parent, which is a java.awt.Frame object that Analytic Workspace Manager
passes to the handle method. The plug-in can use this object as the parent frame
for user interface components.

Values for the type and obj Parameters
For the type parameter of the methods of an AWMPlugin implementation, Analytic
Workspace Manager passes to the plug-in a label that identifies the type of the
navigation tree object for which the plug-in is invoked. For the obj parameter of the
methods, Analytic Workspace Manager passes an Object, which is a
java.lang.String or an OLAP metadata object.

Describing the AWMPlugin Interface

Introducing Analytic Workspace Manager Plug-ins 2-7

A plug-in can use the type value to distinguish between the navigation tree objects
that are associated with the same metadata object. For example, for all of the folder
objects in a Dimensions folder, such as Levels and Hierarchies, Analytic Workspace
Manager passes as the obj parameter the same MdmPrimaryDimension object, but it
passes a different type label for each folder object.

Custom objects that you add with an XML document appear in the navigation tree at
the level specified by the XML document. For example, a top-level <AWMNode> in a
dimension.xml document appears in the Dimensions folder of an analytic workspace.
For an AWMPlugin implementation specified by an <AWMNode> element, the type
parameter value has the prefix AWMTree_ followed by the value of the name attribute of
the parent <AWMNode>. The obj parameter value is the run-time value of the type
attribute of the <AWMNode>.

Table 2–1 shows the type parameter values and obj parameter objects that Analytic
Workspace Manager passes to the plug-in for the selected navigation tree object. The
indentation of objects in the Navigation Tree Object column indicates the hierarchy of
the tree. Text in italics indicates a variable object name. The obj parameter objects are
String objects or OLAP metadata objects. The AW object is an
oracle.olapi.metadata.deployment.AW object. The other metadata objects, such as
MdmStandardDimension and MdmCube, are classes in the oracle.olapi.metadata.mdm
package. The Reports object and all of the objects under it have the same type.

Table 2–1 Type Values and Objects for Navigation Tree Objects

Navigation Tree Object type Parameter Value obj Parameter Object

Databases Databases Databases

 Database name DATABASE Database identifier

 Schemas SCHEMA_FOLDER Database identifier

 Schema name SCHEMA Schema name

 Analytic Workspaces WORKSPACE_FOLDER Schema name

 Analytic workspace name WORKSPACE AW

 Dimensions DIMENSION_FOLDER AW

 Dimension name DIMENSION MdmStandardDimension or
MdmTimeDimension

 Levels DIMENSION_LEVEL_FOLDER MdmStandardDimension or
MdmTimeDimension

 Level name DIMENSION_LEVEL MdmDimensionLevel

 Hierarchies DIMENSION_HIERARCHY_FOLDER MdmStandardDimension or
MdmTimeDimension

 Hierarchy name DIMENSION_HIERARCHY MdmLevelHierarchy or
MdmValueHierarchy

 Attributes DIMENSION_ATTRIBUTE_FOLDER MdmStandardDimension or
MdmTimeDimension

 Attribute name DIMENSION_ATTRIBUTE MdmBaseAttribute

 Mappings DIMENSION_MAP MdmStandardDimension or
MdmTimeDimension

 Views DIMENSION_VIEW_FOLDER MdmStandardDimension or
MdmTimeDimension

 View name DIMENSION_VIEW MdmStandardDimension or
MdmTimeDimension

Describing the AWMPlugin Interface

2-8 Oracle OLAP Customizing Analytic Workspace Manager

 Data Security DATA_SECURITY MdmStandardDimension or
MdmTimeDimension

 dimension.xml object AWMTree_parent_node_name For a folder, the name of the
<AWMNode>. For a value returned
by the SQL query, the run-time
object name.

 Cubes CUBE_FOLDER AW

 Cube name CUBE MdmCube

 Measures CUBE_MEASURE_FOLDER MdmCube

 Measure name CUBE_MEASURE MdmBaseMeasure

 Calculated Measures CUBE_DERIVED_MEASURE_FOLDER MdmCube

 Calculated measure name CUBE_DERIVED_MEASURE MdmDerivedMeasure

 Mappings CUBE_MAP MdmCube

 Views CUBE_VIEW_FOLDER MdmCube

 View name CUBE_VIEW MdmCube

 Cube Scripts CUBE_SCRIPT_FOLDER MdmCube

 Cube script name CUBE_SCRIPT Script_name

 Data Security DATA_SECURITY MdmCube

 cube.xml object AWMTree_parent_node_name For a folder, the name of the
<AWMNode>. For a value returned
by the SQL query, the run-time
object name.

 Measure Folders MEASURE_FOLDER_FOLDER AW

 Measure folder name Measure_folder_name MdmOrganizationalSchema

 Languages LANGUAGE Languages

 aw.xml object AWMTree_parent_node_name For a folder, the name of the
<AWMNode>. For a value returned
by the SQL query, the run-time
object name.

 OLAP DML Programs AWMTREE_OLAP DML Programs OLAP DML Programs

 Program name AWMTREE_OLAP DML Programs Program_name

 Maintenance Scripts MAINTENANCE_SCRIPT_FOLDER Schema name

 Script name MAINTENANCE_SCRIPT Script name

 Maintenance Reports AWMTREE_Maintenance Reports Maintenance Reports

 Maintenance_report_name AWMTREE_maintenance_report_name Maintenance_report_name

 schema.xml object AWMTree_parent_node_name For a folder, the name of the
<AWMNode>. For a value returned
by the SQL query, the run-time
object name.

 Data Security Roles ACL_DOCUMENT_FOLDER Data Security Roles

 Security role name Security role name Security role name

 Reports AWMTREE_Reports Reports

 Report name AWMTREE_report_name Report name

Table 2–1 (Cont.) Type Values and Objects for Navigation Tree Objects

Navigation Tree Object type Parameter Value obj Parameter Object

Describing the AWMPlugin Interface

Introducing Analytic Workspace Manager Plug-ins 2-9

Elements in the params Map for an AWMPlugin
The params Map contains information about the navigation tree object that is currently
selected. Table 2–2, " Keys and Values of the params Map for a Non-custom Object"
and Table 2–3, " Keys and Values of the params Map for a Custom Object" contain
descriptions of the keys and values of the elements of the Map for an AWMPlugin The
keys are String objects.

The params Map for the Database folder does not have a DATASOURCE, DATAPROVIDER, or
GETDATAPROVIDER key. The params Map objects for the higher level navigation tree
objects, those above the individual analytic workspaces, have a null value for the
DATAPROVIDER key until the user selects a tree object that requires OLAP metadata.
Other than for those exceptions, the params Map for a navigation tree object has the
keys and values listed in the tables.

Params Map Elements for Non-custom Objects
Table 2–2 lists the keys and values of the elements of the params Map for non-custom
navigation tree objects. Custom navigation tree objects are specified by an <AWMNode>
element in a SQL Report XML document and have a type that begins with the prefix
AWMTree.

Table 2–2 Keys and Values of the params Map for a Non-custom Object

Key Value

AWM_VERSION A String that is the version number of Analytic Workspace Manager.

DATAPROVIDER An oracle.olapi.metadata.mdm.MdmMetadataProvider that is the
metadata provider for the session.

BIND_MAP An empty Map.

DATASOURCE A java.sql.DataSource.

GETDATAPROVIDER An implementation of the oracle.olap.awm.plugin.OLAPDataProvider
interface. The interface specifies a method that gets an
MdmMetadataProvider.

Params Map Elements for Custom Objects
Table 2–3 lists the keys and values of the elements of the params Map for custom
navigation tree objects. A custom object is specified by an <AWMNode> element in a SQL
Report XML document.

Table 2–3 Keys and Values of the params Map for a Custom Object

Key Value

AWM_VERSION A String that is the version number of Analytic Workspace Manager.

DATAPROVIDER An oracle.olapi.metadata.mdm.MdmMetadataProvider that is the
metadata provider for the session.

BIND_MAP A java.util.Map that contains bind variables from the <AWMNode>
element and from the parent of the element, and from Analytic
Workspace Manager.

DATASOURCE A java.sql.DataSource object.

GETDATAPROVIDER An implementation of the oracle.olap.awm.plugin.OLAPDataProvider
interface. The interface specifies a method that gets an
MdmMetadataProvider.

ISFOLDER A String that is TRUE if the <AWMNode> that specifies the plugin-in is a
folder or FALSE if it is not.

Describing the AWMPlugin Interface

2-10 Oracle OLAP Customizing Analytic Workspace Manager

The BIND_MAP Map contains bind variables that are associated with the navigation tree
object that is currently selected. Table 2–4 contains descriptions of the keys and values
in the BIND_MAP Map.

This Map includes the bind variables that appear in the SQL statements of the
<AWMNode> and the parent <AWMNode>. It also includes other bind variables for the
currently selected object in the navigation tree.

The keys are String objects. A bind variable is specified by the type attribute of an
<AWMNODE> element of a custom navigation tree object or is set internally by Analytic
Workspace Manager. A plug-in gets the run-time value of the bind variable from the
BIND_MAP Map. For examples of bind map Map keys and values, see Table 2–6 on
page 2-11.

Note: When you reference the key for a bind variable in your
plug-in, be sure to use lowercase, as in {owner} or {measureobj} or
{dimension_name}.

Table 2–4 Keys and Values of the BIND_MAP Map

Key Value

aw_name A String that contains the name of the currently selected analytic
workspace.

owner A String that contains the name of the owner of the currently selected
analytic workspace.

schema A String that contains the name of the owner of the currently selected
schema.

user A String that contains the name of the user who is connected to the
database.

Other bind variables One or more elements, each of which has a bind variable as a key and has
the run-time value of the bind variable as the value.

Examples of other bind variable keys are dimension_name and cube_name.
For examples of other bind variables that can be in the Map see the
"Example params Map Elements for an AWMPlugin" and the examples in
Chapter 3, "Examples of Analytic Workspace Manager Plug-ins".

Example params Map Elements for an AWMPlugin
Examples of the keys and values of a params Map for a custom object are in Table 2–5
and in Table 2–6. All of the values are String objects except those for the DATAPROVIDER
and DATASOURCE keys.

Table 2–6 has the elements of the params Map that Analytic Workspace Manager passes
to the methods of DeleteDimPlugin when the user right-clicks the CUSTOMER
dimension in the MyDims folder, as shown in Figure 3–2 on page 3-9. The MyDims
folder is created by the aw.xml document in Example 3–7 on page 3-15.

NODE_TYPE For a nested <AWMNode>, a String that is the name of the parent
<AWMNode>. For an <AWMNode> that is a folder, the name of the node.

TYPE A String that is the value of the type attribute of the <AWMNode> that
specifies the plug-in.

Table 2–3 (Cont.) Keys and Values of the params Map for a Custom Object

Key Value

Describing the ViewerPlugin and EditorPlugin Interfaces

Introducing Analytic Workspace Manager Plug-ins 2-11

The figure shows the menu that DeleteDimPlugin displays. The property inspector in
the figure has the output of DimEditorPlugin, because that plug-in is also activated
when the user selects a dimension in the MyDims folder.

An example of getting a value from the params Map is the following line from the
isSupported method in the DeleteDimPlugin class in Example 3–2 on page 3-6.

Object nodeType = params.get("TYPE");

Table 2–5 Keys and Values of the params Map for DeleteDimPlugin

Key Value Description

AW An AW The current analytic workspace object.

AWM_VERSION 12.1.0.1.0 The version number of Analytic
Workspace Manager.

BIND_MAP A Map A container for bind variables related to
the current object.

DATAPROVIDER An MdmMetadataProvider The metadata provider for the session.

DATASOURCE A DataSource The current data source.

GETDATAPROVIDER An OLAPDataProvider An implementation of the
OLAPDataProvider interface.

ISFOLDER FALSE Specifies that the <AWMNode> is not a
folder.

NODE_TYPE MyDims The name of the parent <AWMNode>.

TYPE dimobj The type of the <AWMNode> that specifies
the plug-in.

Table 2–6 has the elements of the Map that is the value of the BIND_MAP key in the
params Map. An example of getting a value from the BIND_MAP Map is the following lines
from the handle method in the DeleteDimPlugin class in Example 3–2.

Map bindMap = (Map)params.get("BIND_MAP");
...
String owner = (String)bindMap.get("owner");

Table 2–6 Keys and Values of the BIND_MAP Map for DeleteDimPlugin

Key Value Description

aw_name GLOBAL The name of the current analytic workspace.

dimobj CUSTOMER The run-time value of the dimension currently
selected in the MyDims folder.

owner GLOBAL The name of the owner of the analytic workspace.

schema GLOBAL The name of the current schema.

user global The name of the current user.

Describing the ViewerPlugin and EditorPlugin Interfaces
As described in "Creating Reports in Object Folders" on page 1-5, with certain XML
documents you can add objects to the Schemas, Analytic Workspaces, Dimensions,
and Cubes folders in the Analytic Workspace Manager navigation tree. You add
objects to the navigation tree by adding <AWMNode> elements to an XML document.

Describing the ViewerPlugin and EditorPlugin Interfaces

2-12 Oracle OLAP Customizing Analytic Workspace Manager

With the sql attribute of an <AWMNode> element, you can specify a SQL SELECT
statement. Analytic Workspace Manager displays the result of the statement either in
the folder in the navigation tree or in the property inspector, or in both places. For
more information about creating the XML documents and the SQL statements, see
"Creating Reports in Object Folders".

With the viewClass attribute of an <AWMNode> element, you can specify a Java plug-in
for viewing or editing database objects. You can add a viewer or an editor for
relational objects or OLAP objects. Relational objects include tables, materialized
views, and so on, and OLAP objects include dimensions, cubes, and so on. To add a
viewer, have the viewClass attribute specify an implementation of the ViewerPlugin
interface. To add an editor, have the viewClass attribute specify an implementation of
the EditorPlugin interface. The viewer or editor plug-in displays in the property
inspector.

Describing the ViewerPlugin Interface
The following is the oracle.olap.awm.plugin.ViewerPlugin interface.

package oracle.olap.awm.plugin

import java.sql.Connection;
import java.util.Map;
import javax.swing.JPanel;

public interface ViewerPlugin
{
 public boolean isViewerForType(Connection conn, String name)
 throws Exception;

 public JPanel getPanel(Connection conn, String name, Map params)
 throws Exception;

 public void cleanup(String name);
}

When the Analytic Workspace Manager user selects the navigation tree object that is
associated with the ViewerPlugin, Analytic Workspace Manager calls the methods of a
ViewerPlugin in the sequence illustrated in Figure 2–5.

Figure 2–5 Sequence of Calls to a ViewerPlugin

Analytic
Workspace

Manager
ViewerPlugin

isViewerForType

getPanel

cleanup

boolean

JPanel

Describing the ViewerPlugin and EditorPlugin Interfaces

Introducing Analytic Workspace Manager Plug-ins 2-13

Analytic Workspace Manager first calls the isViewerForType method and passes it the
following parameters:

■ conn, which is a java.sql.Connection object that represents the current
connection to the Oracle Database instance.

■ name, which is a String that contains the name of the <AWMNode> that is the parent
of the <AWMNode> that has the viewClass attribute.

If the plug-in returns true, Analytic Workspace Manager calls the getPanel method
and passes it the same conn and name parameters plus the following parameter.

■ params, which is a java.util.Map object that contains information about the
currently selected navigation tree object. The information includes the run-time
values for attributes of the <AWMNode> element that has the viewClass attribute and
from the parent <AWMNode>. The plug-in can use this information in specifying data
to display or to retrieve from the database. The keys and values of the Map are
described in Table 2–7. For a description of the Map keys and values, see "Elements
in the params Map for a ViewerPlugin or EditorPlugin" on page 2-14.

When the user selects a different navigation tree object, Analytic Workspace Manager
calls the cleanup method of the plug-in. It passes the method the same name
parameter. In this method you can perform any cleanup that your plug-in requires.

Describing the EditorPlugin Interface
The EditorPlugin interface extends the ViewerPlugin interface. The following is the
oracle.olap.awm.plugin.EditorPlugin interface.

package oracle.olap.awm.plugin

import java.awt.Component;
import java.sql.Connection;
import java.util.Map;

public interface EditorPlugin extends ViewerPlugin
{
 public void setValueChanged(Connection conn, String name, Map params,
 PanelChanged parent);

 public boolean validate(Connection conn, Component parent, String name,
 Map params) throws Exception;

 public boolean save(Connection conn, Component parent, String name,
 Map params) throws Exception;

 public void revert(Connection conn, Component parent, String name,
 Map params) throws Exception;

 public void showHelp(Connection conn, Component parent, String name,
 Map params) throws Exception;
}

For an EditorPlugin, Analytic Workspace Manager initially calls the
isViewerForType, setValueChanged, and getPanel methods, as shown in Figure 2–6,
"Sequence of Calls to an EditorPlugin". For an example of the display of an
EditorPlugin, see Figure 3–11 on page 3-22.

If the user makes a change in the property inspector, then the Apply and Revert
buttons become active. If the user clicks Apply, then Analytic Workspace Manager
calls the validate method of the EditorPlugin. If the value is valid, then Analytic

Describing the ViewerPlugin and EditorPlugin Interfaces

2-14 Oracle OLAP Customizing Analytic Workspace Manager

Workspace Manager calls the save method. If the user clicks Revert, then Analytic
Workspace Manager calls revert. If the user clicks the Help button, then Analytic
Workspace Manager calls showHelp.

All of the methods of an EditorPlugin have the same conn, name, and param
parameters as the getPanel method. Those parameters are described in "Describing
the ViewerPlugin and EditorPlugin Interfaces" on page 2-11. The methods also have
the following additional parameter.

■ parent, which for the setValueChanged method is an implementation of the
oracle.olap.awm.plugin.PanelChanged interface. That interface specifies a single
method, public void changed();. Whenever the user interacts with the editing
field of your EditorPlugin, the EditorPlugin should call the changed method of
the PanelChanged object. For the other EditorPlugin methods, the parent
parameter is the parent component.

Figure 2–6 Sequence of Calls to an EditorPlugin

Analytic
Workspace

Manager
EditorPlugin

isViewerForType

getPanel

cleanup

boolean

JPanel

setValueChanged

validate

boolean

save

boolean

revert

PanelChanged

Elements in the params Map for a ViewerPlugin or EditorPlugin
The params Map for a ViewerPlugin or an EditorPlugin does not contain a BIND_MAP
Map. Instead, the bind variables are keys in the params Map. Table 2–7 contains
descriptions of the keys and values of the elements of the Map for a ViewerPlugin or an
EditorPlugin.

Table 2–7 Keys and Values of the params Map for a ViewerPlugin or EditorPlugin

Key Value

AW An oracle.olapi.metadata.deployment.AW.

aw_name A String that contains the name of the currently selected analytic
workspace.

DATAPROVIDER An oracle.olapi.metadata.mdm.MdmMetadataProvider object that is the
metadata provider for the session.

DATASOURCE A java.sql.DataSource object.

Describing the ViewerPlugin and EditorPlugin Interfaces

Introducing Analytic Workspace Manager Plug-ins 2-15

Example params Map Elements for a ViewerPlugin and an EditorPlugin
Examples of the keys and values of a params Map for a ViewerPlugin or EditorPlugin
are in Table 2–8. All of the values are String objects except those for the DATAPROVIDER
and DATASOURCE keys.

Example params Map Elements for a ViewerPlugin
The cube.xml document in Example 3–5 on page 3-12 has a parent <AWMNode> that has
the name MyMeasures, a type of measureobj, and a SQL statement that references the
bind variable cube_name. The child <AWMNode> has the type measureview and has a
viewClass attribute that specifies the plug-in MeasureViewerPlugin.

Table 2–8 has the elements of the params Map that Analytic Workspace Manager passes
to the methods of the MeasureViewerPlugin when the user selects the UNITS measure
in the MyMeasures folder, as shown in Figure 3–7 on page 3-15. The property
inspector has the output of the plug-in, which is simply the name of the measure.

The MeasureViewerPlugin class in Example 3–6 on page 3-12 gets the value of a bind
variable in the following line in the getPanel method.

measureobj = params.get("measureobj");

ISFOLDER A String that is TRUE if the <AWMNode> that specifies the plugin-in is a
folder or FALSE if it is not.

owner A String that contains the name of the owner of the currently selected
analytic workspace.

schema A String that contains the name of the owner of the currently selected
schema.

TYPE A String that is the value of the type attribute of the <AWMNode> that
specifies the plug-in.

user A String that contains the name of the user who is connected to the
database.

Other bind variables One or more elements, each of which has a bind variable as a key and has
the run-time value of the bind variable as the value. For a plug-in that is
specified by the viewClass attribute of an <AWMNode> in an XML
document, the number of bind variables depends upon how many bind
variables are in the SQL statement of the <AWMNode> and the parent
<AWMNode>.

Examples of other bind variable keys are dimension_name and cube_name.
For examples of other bind variables that can be in the Map see the
"Example params Map Elements for a ViewerPlugin and an EditorPlugin"
and the examples in Chapter 3, "Examples of Analytic Workspace
Manager Plug-ins".

Table 2–8 Keys and Values of the params Map for MeasureViewerPlugin

Key Value Description

AW An AW. The current analytic workspace object.

aw_name GLOBAL The name of the current analytic workspace.

cube_name UNITS_CUBE The name of the current cube.

DATAPROVIDER An MdmMetadataProvider The metadata provider for the session.

DATASOURCE A DataSource The current data source.

Table 2–7 (Cont.) Keys and Values of the params Map for a ViewerPlugin or EditorPlugin

Key Value

Describing the ViewerPlugin and EditorPlugin Interfaces

2-16 Oracle OLAP Customizing Analytic Workspace Manager

Example params Map Elements for an EditorPlugin
Table 2–9 has the elements of the params Map that Analytic Workspace Manager passes
to the methods of the DimEditorPlugin when the user selects the CHANNEL
dimension in the MyDims folder, as shown in Figure 3–11 on page 3-22. The property
inspector in the figure has the output of the DimEditorPlugin.

An example of getting a value from the params Map is the following line from the
getMetadataProvider method in the DimEditorPlugin class in Example 3–9 on
page 3-18.

Object dp = params.get("DATAPROVIDER");

Another example of getting a value from the params Map is the following lines from the
getDimension method in the DimEditorPlugin class.

Object obj = null;
...
obj = params.get("dimobj");

Table 2–9 Keys and Values of the params Map for DimEditorPlugin

Key Value Description

AW An AW. The current analytic workspace object.

aw_name GLOBAL The name of the current analytic
workspace.

DATAPROVIDER An MdmMetadataProvider The metadata provider for the session.

DATASOURCE A DataSource The current data source.

dimobj CHANNEL The run-time value of the dimension
currently selected in the MyDims folder.

ISFOLDER TRUE Indicates that the navigation tree object is
a folder.

NODE_TYPE MyDims The name of the parent <AWMNode>.

owner GLOBAL The name of the owner of the analytic
workspace.

schema GLOBAL The name of the current schema.

TYPE dimobj The type of the <AWMNode>.

user global The name of the current user.

ISFOLDER FALSE Indicates that the navigation tree object is not
a folder.

measureobj UNITS The name of the current measure.

NODE_TYPE MyMeasures The name of the parent <AWMNode>.

owner GLOBAL The name of the owner of the analytic
workspace.

schema GLOBAL The name of the current schema.

TYPE measureview The type of the <AWMNode>.

user global The name of the current user.

Table 2–8 (Cont.) Keys and Values of the params Map for MeasureViewerPlugin

Key Value Description

Steps in Creating a Plug-in

Introducing Analytic Workspace Manager Plug-ins 2-17

Steps in Creating a Plug-in
The prerequisites for creating an Analytic Workspace Manager plug-in are the
following:

■ For the Analytic Workspace Manager that is part of an Oracle Database Enterprise
Edition distribution, include the following files in your development environment.
These JAR files are located in the Oracle_home/olap/api/lib directory in the
Oracle Database installation.

– awm.jar, which contains the plug-in interfaces.

– olap_api.jar, which contains the classes in the Oracle OLAP Java API.

– awxml.jar, which contains the oracle.AWXML.AW class, which the AWMPlugin
interface includes for compatibility with the 10g release of Analytic Workspace
Manager.

■ For an Analytic Workspace Manager that you have downloaded from Oracle
Technology Network, include the awm11.2.0.2.0.jar file in your development
environment.

■ Compile the code with JDK 1.6.

Note: Only plug-ins compiled with JDK 1.6 are compatible with
Analytic Workspace Manager in 12c Release 1 (12.1).

To create an Analytic Workspace Manager plug-in, do the following:

1. Create a class that implements a plug-in interface.

■ For an AWMPlugin, do the following.

– In the isSupported method, specify the objects in the navigation tree to
which the plug-in applies. Be sure to have this method return quickly.

– Have the getMenu method return the text to display on the right-click
menu for navigation tree objects that the plug-in supports.

– In the handle method, include the code for the operations that the plug-in
performs.

– Have the refreshTree method return a boolean that specifies whether to
refresh the navigation tree.

■ For ViewerPlugin, do the following.

– In the isViewerForType method, specify the type of navigation tree objects
to which the plug-in applies.

– Have the getPanel method create the user interface elements for Analytic
Workspace to display and specify the actions for them.

– In the cleanup method, perform any cleaning up that your plug-in
requires.

■ For an EditorPlugin, do the steps for a ViewerPlugin and add the following.

– In the setValueChanged method, store the PanelChanged object from
Analytic Workspace Manager. Call the changed method of the
PanelChanged whenever you want to update the display in the property
inspector.

– In the validate method, validate any change that the user has made.

Describing the Available Plug-ins

2-18 Oracle OLAP Customizing Analytic Workspace Manager

– In the save method, perform the actions required to make the changes and
then commit the current Transaction to save the changes.

– In the revert method, display the object as it was before the changes.

2. Using JDK 1.6, compile the plug-in and any other classes that it uses.

3. Deploy the plug-in, XML documents, and other classes to a JAR file. You can
include multiple plug-ins in the same JAR file.

4. Put the JAR file in the plug-ins directory.

5. Start Analytic Workspace Manager.

Note: Analytic Workspace Manager only loads the contents of the
JAR files upon startup, so if you put a new or updated version of a
JAR file in the plug-ins directory, then you must restart Analytic
Workspace Manager.

To use a ViewerPlugin or EditorPlugin, you generally do the following steps.

■ Create an XML document that has the name schema.xml, aw.xml, cube.xml, or
dimension.xml, depending on where in the navigation tree you want the custom
objects to appear. In the XML document, you can have multiple <AWMNode>
elements at the same level. You can also nest one or more <AWMNode> elements in a
parent <AWMNode> element.

■ Develop the SQL statements to specify with <AWMNode> elements.

■ Implement the ViewerPlugin or EditorPlugin interface.

■ Specify the SQL statement for an <AWMNode> with the sql attribute. Specify a
plug-in with the viewClass attribute.

■ Deploy the XML document and plug-in implementation in a JAR file. You can
have multiple XML documents and plug-ins in the same JAR file. You can put the
XML documents in the same JAR file as the plug-ins.

■ Put the JAR file in the Analytic Workspace Manager directory for plug-ins.

■ Start Analytic Workspace Manager.

Describing the Available Plug-ins
You can provide information about the plug-ins that you add to Analytic Workspace
Manager by creating an awmplugin.xml document. In that XML document, you can
provide a name, a version number, and a description for each plug-in. Analytic
Workspace Manager displays that information, along with the status of the plug-in,
when a user selects the Plugins tab after selecting About on the Help menu.

Creating an XML Document for Descriptions of Plug-ins
1. Create a text file named awmplugin.xml.

2. Begin the file with an XML declaration like this one:

<?xml version="1.0" encoding="utf-8"?>

Specify the appropriate encoding for your site.

Describing the Available Plug-ins

Introducing Analytic Workspace Manager Plug-ins 2-19

3. Enter the XML for the plug-in descriptions, as described in "Reference: Elements
for Plug-in Descriptions" on page 2-19.

4. For the name attribute of the <Plugin> element, enter a name for the plug-in. For
the version attribute, enter the version number of the plug-in. For the class
attribute, enter the class that contains the plug-in. For the <Description> element,
enter a description of the plug-in.

5. In the plug-directory, create a JAR file that contains the awmplugin.xml document.
Alternatively, you could add the awmplugin.xml document to a JAR file that
contains the XML documents described in "Creating Reports in Object Folders" on
page 1-5 or the plug-ins.

For a sample awmplugin.xml file, see "Example of Plug-in Descriptions" on page 3-24.

Reference: Elements for Plug-in Descriptions
An XML document for describing the available plug-ins has the format shown in
Example 2–1.

Example 2–1 XML Structure for Descriptions of Plug-ins

<AWMPlugins>
 <Plugin>
 <Description>
 .
 .
 .

<AWMPlugins>
The root element that identifies this document as containing information about the
Java plug-ins that are available to Analytic Workspace Manager.

Contains
<Plugin>

Attributes
None

<Plugin>
Contains information about a plug-in.

Contains
<Description>

Attributes
<Plugin> has the following attributes:

■ name: A name for the plug-in.

■ version: A version number for the plug-in.

■ class: The Java class that implements the plug-in.

<Description>
Contains a description of the plug-in.

Describing the Available Plug-ins

2-20 Oracle OLAP Customizing Analytic Workspace Manager

Contains
None

Attributes
None

3

Examples of Analytic Workspace Manager Plug-ins 3-1

3 Examples of Analytic Workspace Manager
Plug-ins

This chapter contains examples of the Java classes that implement the AWMPlugin,
ViewerPlugin, and EditorPlugin interfaces. It also contains the example XML
documents that specify the plug-ins.

This chapter contains the following topics:

■ Availability of Example Classes and XML Documents

■ Examples of AWMPlugin

■ Examples of ViewerPlugin and EditorPlugin

■ Example of Plug-in Descriptions

Availability of Example Classes and XML Documents
The examples of Java classes and XML documents in this chapter and in Chapter 1
contain the complete code for the class or document. The complete code is also
available in a compressed file that you can download from the Oracle Technology
Network (OTN) website. The download includes the compiled class files for the
plug-ins, as well. The OTN website is at

http://www.oracle.com/technetwork/database/options/olap/index.html

To get the examples, in the Download section of the web page, select Sample Code
and Schemas. On the Oracle OLAP Downloads page, in the AWM Plug-ins for Oracle
OLAP 11g section, in the AWM Java Plug-in and XML for 11.2.0.1 line, click examples.

Download the compressed file and extract the contents. The compressed file contains
the following files.

Filename Description

readme.txt Briefly describes the contents of the zip file.

awmcalcs.xml Contains the XML for Example 1–9, "Sample AWMCalcs
Document" on page 1-13.

awmtree.xml Contains the XML for Example 1–3, "Passing the Name of
a View to a SELECT Statement" on page 1-4.

plugin112.jar Contains a directory named plugin112, which is the
package containing the examples. In the directory are the
xml, java, and class files for the examples in Chapter 3.

Examples of AWMPlugin

3-2 Oracle OLAP Customizing Analytic Workspace Manager

You put the awmcalcs.xml and awmtree.xml files in the same directory as the Analytic
Workspace Manager executable file. You put the plugin112.jar file in the directory
that you specify for plug-ins, as described in "Enabling Analytic Workspace Manager
Plug-ins" on page 2-2.

Examples of AWMPlugin
The examples of an AWMPlugin are in the following topics.

■ ViewXMLPlugin Example

■ DeleteDimPlugin Example

The examples do not include the documentation comments of the methods of the
AWMPlugin interface or the input parameters and return values of those methods.
Those methods and parameters are described in "Describing the AWMPlugin
Interface" on page 2-5.

ViewXMLPlugin Example
The ViewXMLPlugin class displays an XML representation of a measure or a custom
measure of a cube in the Cubes folder in the Analytic Workspace Manager navigation
tree. Example 3–1 contains the code for the class. The plug-in applies to
oracle.olap.metadata.mdm.MdmBaseMeasure and
oracle.olap.metadata.mdm.MdmDerivedMeasure objects, which correspond to the
Measure and Calculated Measure objects, respectively, of a cube.

The plug-in gets and displays an XML representation of a measure. Figure 2–3 on
page 2-4 shows the menu that Analytic Manager Workspace displays for
ViewXMLPlugin when a user right-clicks a measure. For an example of the dialog box
that ViewXMLPlugin displays, see Figure 3–1, "Dialog Box Displayed by
ViewXMLPlugin" on page 3-5.

Example 3–1 The ViewXMLPlugin Class

import java.awt.BorderLayout;
import java.awt.Font;
import java.awt.Frame;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.sql.Connection;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

import oracle.AWXML.AW;
import oracle.olap.awm.plugin.AWMPlugin;
import oracle.olapi.metadata.mdm.MdmBaseMeasure;
import oracle.olapi.metadata.mdm.MdmDerivedMeasure;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;

/**

Examples of AWMPlugin

Examples of Analytic Workspace Manager Plug-ins 3-3

 * An implementation of the AWMPlugin interface that displays the XML
 * representation of an Oracle OLAP measure object.
 */
public class ViewXMLPlugin implements AWMPlugin
{
 public boolean isSupported(Connection conn, String type, Object obj,
 AW aw, Map params)
 {
 // Support MdmBaseMeasure and MdmDerivedMeasure objects.
 if (obj instanceof MdmBaseMeasure || obj instanceof MdmDerivedMeasure)
 {
 return true;
 }
 return false;
 }

 public String getMenu(Connection conn, String type, Object obj, AW aw,
 Map params)
 {
 // Text to display on the right-click menu.
 String menu = "View XML Example Plug-in";
 return menu;
 }

 public void handle(Frame parent, Connection conn, String type, Object obj,
 AW aw, Map params)
 {
 if (obj instanceof MdmObject)
 {
 // Get the MdmMetadataProvider to use in exporting the XML.
 Object objdp = params.get("DATAPROVIDER");
 if (objdp != null)
 {
 MdmObject mobj = (MdmObject)obj;
 MdmMetadataProvider mdp = (MdmMetadataProvider)objdp;

 // Get the XML representation of the MdmObject.
 List objects = new ArrayList();
 objects.add(mobj);
 Map renameMap = null;
 boolean includeOwnerString = true;
 String title = "XML for " + mobj.getName();
 try
 {
 String xml =
 mdp.exportFullXML(objects, renameMap, includeOwnerString);
 // Create a dialog box and display the XML.
 DisplayXMLDialog dxd = new DisplayXMLDialog(parent, title, true,
 xml);
 }
 catch (IOException ie)
 {
 // Ignore error.
 }
 }
 }
 }

 public boolean refreshTree(Connection conn, String type, Object obj, AW aw,
 Map params)

Examples of AWMPlugin

3-4 Oracle OLAP Customizing Analytic Workspace Manager

 {
 // This example does not create new metadata objects, so return false.
 return false;
 }

 /**
 * An inner class that creates a dialog box that displays the XML.
 */
 class DisplayXMLDialog extends JDialog implements ActionListener
 {
 /**
 * Creates a DisplayXMLDialog for displaying the contents of the xml
 * parameter.
 *
 * @param parent A Frame that is provided by Analytic Workspace Manager.
 * @param title A String that contains text to use as the title for the
 * dialog box.
 * @param modal A boolean that specifies whether the dialog box is modal.
 * @param xml A String that contains the XML to display.
 */
 public DisplayXMLDialog(Frame parent, String title, boolean modal,
 String xml)
 {
 super(parent);
 setLocation(200, 200);
 setTitle(title);
 setModal(modal);

 try
 {
 displayXML(xml);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /**
 * Creates a dialog box and displays the contents of a String.
 *
 * @param xml A String that contains the XML to display.
 */
 private void displayXML(String xml)
 {
 JTextArea ta = new JTextArea(xml);
 ta.setEditable(false);
 Font of = ta.getFont();
 Font f = new Font("Courier New", of.getStyle(), of.getSize());
 ta.setFont(f);

 JScrollPane p = new JScrollPane();
 p.getViewport().add(ta);

 JPanel buttonPane = new JPanel();
 JButton button = new JButton("Close");
 buttonPane.add(button);
 button.addActionListener(this);
 getContentPane().add(buttonPane, BorderLayout.SOUTH);

Examples of AWMPlugin

Examples of Analytic Workspace Manager Plug-ins 3-5

 getContentPane().add(p, BorderLayout.NORTH);
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 pack();
 setVisible(true);
 }

 /**
 * Performs an action for the Close button.
 *
 * @param e An ActionEvent for the Close button.
 */
 public void actionPerformed(ActionEvent e)
 {
 setVisible(false);
 dispose();
 }
 }
}

Figure 3–1 illustrates the dialog box that ViewXMLPlugin displays for the PROFIT
calculated measure in the UNITS_CUBE folder.

Figure 3–1 Dialog Box Displayed by ViewXMLPlugin

DeleteDimPlugin Example
The DeleteDimPlugin class deletes the dimension that the user has selected in the
navigation tree. The plug-in only applies to dimension objects that are in a custom
folder and that have dimobj as the value of the TYPE key of the params Map. The
DeleteDimPlugin plug-in is specified by the aw.xml document in Example 3–7 on
page 3-15.

Examples of AWMPlugin

3-6 Oracle OLAP Customizing Analytic Workspace Manager

Example 3–2 contains the code for the DeleteDimPlugin class.

Example 3–2 The DeleteDimPlugin Class

package plugin112;

import java.awt.Frame;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JOptionPane;
import oracle.AWXML.AW;
import oracle.olap.awm.plugin.AWMPlugin;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;
import oracle.olapi.metadata.mdm.MdmSchema;

/**
 * An implementation of the AWMPlugin interface that can delete
 * an Oracle OLAP dimension object in a custom folder.
 */
public class DeleteDimPlugin implements AWMPlugin
{
 // This plug-in applies to dimension objects in a custom folder.
 public boolean isSupported(Connection conn, String type, Object obj, AW aw,
 Map params)
 {
 if (params != null)
 {
 // Get the value of the type attribute of the AWMNode that specifies this
 // plug-in.
 Object nodeType = params.get("TYPE");
 if (nodeType != null && ((String)nodeType).equalsIgnoreCase("dimobj"))
 return true;
 }
 return false;
 }

 public String getMenu(Connection conn, String type, Object obj, AW aw,
 Map params)
 {
 Object dimName = null;
 if (obj != null && obj instanceof String)
 {
 dimName = (String) obj;
 }
 // Text to display on the right-click menu.
 return "Example Plug-in: Delete Dimension " + dimName;
 }

 public void handle(Frame parent, Connection conn, String type, Object obj,
 AW aw, Map params)
 {
 String dimName = "";
 // The obj parameter should be the name of the currently selected dimension.
 if (obj != null && obj instanceof String)
 {
 dimName = (String) obj;
 String title = "Delete Dimension";
 if (JOptionPane.showConfirmDialog(parent, "Delete " + dimName + "?",

Examples of AWMPlugin

Examples of Analytic Workspace Manager Plug-ins 3-7

 title, JOptionPane.YES_NO_OPTION) ==
 JOptionPane.NO_OPTION)
 return;
 }

 if (params != null)
 {
 Map bindMap = (Map)params.get("BIND_MAP");
 if (bindMap != null)
 {
 // Get the name of the owner, which is also the name of the schema.
 String owner = (String)bindMap.get("owner");
 // Get the currently selected dimension.
 MdmPrimaryDimension dim = getDimension(dimName, owner, params);

 if (dim != null)
 {
 // Get the schema object that contains the dimension.
 MdmSchema schema = dim.getOwner();
 schema.removeDimension(dim);
 MdmMetadataProvider mdp = getMetadataProvider(params);
 // Get the TransactionProvider and commit the current Transaction.
 try
 {
 mdp.getDataProvider()
 .getTransactionProvider()
 .commitCurrentTransaction();
 JOptionPane.showMessageDialog(parent,
 owner + "." + dimName +
 " dimension has been deleted.");
 }
 catch (Exception e)
 {
 JOptionPane.showMessageDialog(parent, e.getMessage(), "Error",
 JOptionPane.ERROR_MESSAGE);
 // Roll back the current Transaction.
 try
 {
 mdp.getDataProvider()
 .getTransactionProvider()
 .rollbackCurrentTransaction();
 }
 catch (Exception e2)
 {
 // Ignore the exception.
 }
 }
 }
 }
 else
 {
 return;
 }
 }
 }

 public boolean refreshTree(Connection conn, String type, Object obj, AW aw,
 Map params)
 {
 return true;

Examples of AWMPlugin

3-8 Oracle OLAP Customizing Analytic Workspace Manager

 }

 // Get the MdmMetadataProvider.
 private MdmMetadataProvider getMetadataProvider(Map params)
 {
 Object dp = params.get("DATAPROVIDER");
 if (dp instanceof MdmMetadataProvider)
 {
 MdmMetadataProvider mdp = (MdmMetadataProvider)dp;
 return mdp;
 }
 return null;
 }

 // Get the currently selected dimension.
 private MdmPrimaryDimension getDimension(String dimName, String schema,
 Map params)
 {
 if (params != null)
 {
 MdmMetadataProvider mdp = getMetadataProvider(params);
 if (mdp != null)
 {
 // Get the dimension from the MdmMetadataProvider.
 MdmObject mobj = mdp.getMetadataObject(schema + "." + dimName);
 if (mobj != null && mobj instanceof MdmPrimaryDimension)
 {
 MdmPrimaryDimension dim = (MdmPrimaryDimension)mobj;
 return dim;
 }
 }
 }
 return null;
 }
}

Figure 3–2 shows the menu that Analytic Manager Workspace displays for
DeleteDimPlugin. The figure shows the menu that appears when a user right-clicks
the CUSTOMER dimension in the MyDims folder. The MyDims folder is created by
the aw.xml document in Example 3–7 on page 3-15.

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-9

Figure 3–2 Right-click Menu Displayed by DeleteDimPlugin

If the user clicks Example Plug-in: Delete Dimension CUSTOMER, then
DeleteDimPlugin displays the dialog box shown in Figure 3–3.

Figure 3–3 Dialog Box Displayed by DeleteDimPlugin

Examples of ViewerPlugin and EditorPlugin
The example ViewerPlugin and EditorPlugin implementations are in the following
topics:

■ LevelViewerPlugin Example

■ MeasureViewerPlugin Example

■ CubeViewerPlugin Example

■ DimEditorPlugin Example

The topics include the XML documents that specify the plug-ins.

Examples of ViewerPlugin and EditorPlugin

3-10 Oracle OLAP Customizing Analytic Workspace Manager

The methods of the ViewerPlugin and EditorPlugin interfaces are described in
"Describing the ViewerPlugin and EditorPlugin Interfaces" on page 2-11.

LevelViewerPlugin Example
The dimension.xml document in Example 3–3 has an <AWMNode> that specifies a folder
named MyLevels and a SQL statement that selects the names of the levels of the
currently selected dimension from the USER_CUBE_DIM_LEVELS table. An unnamed
child <AWMNode> specifies the LevelViewerPlugin. Figure 3–4 on page 3-11 shows the
navigation tree folder and the display in the property inspector for the document.

Example 3–3 Creating a dimension.xml Document

<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
 <AWMNode name="MyLevels"
 type="levelobj"
 sql="select level_name from user_cube_dim_levels where dimension_name =
{dimension_name} ">
 <AWMNode type="levelview"
 viewClass="plugin112.LevelViewerPlugin"/>
 </AWMNode>
</AWMTree>

Example 3–4 contains the LevelViewerPlugin class. The class displays the name of the
currently selected level, as shown in Figure 3–5 on page 3-12.

Example 3–4 The LevelViewerPlugin Class

package plugin112;

import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;

public class LevelViewerPlugin implements ViewerPlugin
{
 public boolean isViewerForType(Connection conn, String name)
 throws Exception
 {
 return true;
 }

 public JPanel getPanel(Connection conn, String name, Map params)
 throws Exception
 {
 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout());
 // Get the name of the current level.
 Object obj = params.get("levelobj");
 if (obj instanceof String)
 {
 String levelName = (String)obj;
 panel.add(new JLabel(levelName));
 }
 return panel;
 }

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-11

 public void cleanup(String name)
 {
 }
}

Figure 3–4 shows the results of the MyLevels <AWMNode> in the dimension.xml
document. A MyLevels folder appears in each dimension folder of the analytic
workspace. The user has selected the MyLevels folder in the PRODUCT folder. The
result of the SQL statement of the <AWMNode> appears in the MyLevels folder. The
property inspector displays the same SQL statement and the result of it, which is a list
of the levels of the dimension.

Figure 3–4 Results of the MyLevels <AWMNode> in dimension.xml

Figure 3–5 shows the results of the unnamed child <AWMNode> of the MyLevels
<AWMNode> in the dimension.xml document. The user has selected the FAMILY level in
the MyLevels folder. The property inspector displays the user interface specified by
LevelViewerPlugin. The plug-in displays the name of the level.

Examples of ViewerPlugin and EditorPlugin

3-12 Oracle OLAP Customizing Analytic Workspace Manager

Figure 3–5 Results of LevelViewerPlugin

MeasureViewerPlugin Example
The cube.xml document in Example 3–5 has an <AWMNode> that specifies a folder
named MyMeasures and a SQL statement that selects the names of the measures of the
currently selected cube from the USER_CUBE_MEASURES table. An unnamed child
<AWMNode> specifies the MeasureViewerPlugin plug-in. Figure 3–6 on page 3-14 shows
the navigation tree folder and the display in the property inspector for the document.

Example 3–5 Creating a cube.xml Document

<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
 <AWMNode name="MyMeasures"
 type="measureobj"
 sql="select measure_name from user_cube_measures where cube_name =
{cube_name}">
 <AWMNode type="measureview"
 viewClass="plugin112.MeasureViewerPlugin"/>
 </AWMNode>
</AWMTree>

Example 3–6 contains the MeasureViewerPlugin class. The class displays the name of
the currently selected measure, as shown in Figure 3–7 on page 3-15.

Example 3–6 The MeasureViewerPlugin Class

package plugin112;

import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-13

import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;

public class MeasureViewerPlugin implements ViewerPlugin
{
 public boolean isViewerForType(Connection conn, String name)
 throws Exception
 {
 return true;
 }

 public JPanel getPanel(Connection conn, String name, Map params)
 throws Exception
 {
 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout());

 // Get the name of the current measure.
 Object measureobj = null;
 if (params != null)
 measureobj = params.get("measureobj");

 if (measureobj instanceof String)
 {
 String measureName = (String)measureobj;
 panel.add(new JLabel(measureName));
 }
 return panel;
 }

 public void cleanup(String name)
 {
 }
}

Figure 3–6 shows the results of the MyMeasures <AWMNode> in the cube.xml document.
A MyMeasures folder appears in each cube folder of the analytic workspace. The user
has selected the MyMeasures folder in the UNITS_CUBE folder. The result of the SQL
statement of the <AWMNode> appears in the MyMeasures folder. The property inspector
displays the same SQL statement and the result of it, which is a list of the measures
and calculated measures of the cube.

Examples of ViewerPlugin and EditorPlugin

3-14 Oracle OLAP Customizing Analytic Workspace Manager

Figure 3–6 Results of the MyMeasures <AWMNode> in cube.xml

Figure 3–7 shows the results of the unnamed child <AWMNode> of the MyMeasures
<AWMNode> in the cube.xml document. The user has selected the UNITS measure in the
MyMeasures folder. The property inspector displays the user interface specified by
MeasureViewerPlugin. The plug-in displays the name of the measure.

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-15

Figure 3–7 Results of MeasureViewerPlugin

CubeViewerPlugin Example
The aw.xml document in Example 3–7 has an <AWMNode> that specifies a folder named
MyDims. For a description of the MyDims <AWMNode>, see "DimEditorPlugin Example"
on page 3-17.

The aw.xml document also has an <AWMNode> that specifies a folder named MyCubes
and a SQL statement that selects the names of the cubes of the current analytic
workspace from the USER_CUBES table. An unnamed child <AWMNode> specifies the
CubeViewerPlugin. Figure 3–8 on page 3-17 shows the navigation tree folder and the
display in the property inspector for the MyCubes <AWMNode>.

Example 3–7 Creating an aw.xml Document

<?xml version="1.0" encoding="US-ASCII" ?>
<AWMTree>
 <AWMNode name="MyDims"
 type="mydimfolder"
 viewSql="select dimension_name, dimension_type from user_cube_
dimensions where aw_name = {aw_name}">
 <AWMNode type="dimobj"
 sql="select dimension_name from user_cube_dimensions where aw_name =
{aw_name}"
 viewClass="plugin112.DimEditorPlugin">
 </AWMNode>
 <AWMNode name="MyLevels"
 type="levelobj"
 sql="select level_name from user_cube_dim_levels where dimension_
name = {dimobj}">
 <AWMNode sql="select * from user_cube_dim_levels where dimension_name =
{dimobj} and level_name = {levelobj}"/>

Examples of ViewerPlugin and EditorPlugin

3-16 Oracle OLAP Customizing Analytic Workspace Manager

 </AWMNode>
 </AWMNode>
 <AWMNode name="MyCubes"
 type="cubeobj"
 sql="select cube_name from user_cubes where aw_name = {aw_name}">
 <AWMNode type="mycubeview"
 viewClass="plugin112.CubeViewerPlugin"/>
 </AWMNode>
</AWMTree>

Example 3–8 contains the CubeViewerPlugin class. The class displays the name of the
currently selected cube, as shown in Figure 3–9 on page 3-17.

Example 3–8 The CubeViewerPlugin Class

package plugin112;

import java.awt.FlowLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JPanel;
import oracle.olap.awm.plugin.ViewerPlugin;

public class CubeViewerPlugin implements ViewerPlugin
{
 public boolean isViewerForType(Connection conn, String name)
 throws Exception
 {
 return true;
 }

 public JPanel getPanel(Connection conn, String name, Map params)
 throws Exception
 {
 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout());
 // Get the name of the current cube.
 Object cubeobj = null;
 if (params != null)
 cubeobj = params.get("cubeobj");
 if (cubeobj instanceof String)
 {
 String cubeName = (String)cubeobj;
 panel.add(new JLabel(cubeName));
 }
 return panel;
 }

 public void cleanup(String name)
 {
 }
}

Figure 3–8 shows the results of the MyCubes <AWMNode> in the aw.xml document. A
MyCubes folder appears in the GLOBAL analytic workspace folder. The user has
selected the MyCubes folder. The result of the SQL statement of the <AWMNode> appears
in the folder. The property inspector displays the same SQL statement and the result of
it, which is a list of the cubes of the analytic workspace.

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-17

Figure 3–8 Results of the MyCubes <AWMNode> in aw.xml

Figure 3–9 shows the results of the unnamed child <AWMNode> of the MyCubes
<AWMNode> in the aw.xml document. The user has selected the UNITS_CUBE cube in the
MyCubes folder. The property inspector displays the user interface specified by
CubeViewerPlugin. The plug-in displays the name of the cube.

Figure 3–9 Results of the CubeViewerPlugin

DimEditorPlugin Example
The aw.xml document in Example 3–7 on page 3-15 has an <AWMNode> that specifies a
folder named MyDims and a SQL statement that selects the names and types of the
dimensions of the current analytic workspace from the USER_CUBE_DIMENSIONS

Examples of ViewerPlugin and EditorPlugin

3-18 Oracle OLAP Customizing Analytic Workspace Manager

table. Figure 3–10 on page 3-22 shows the navigation tree folder and the display in the
property inspector for the MyDims <AWMNode>.

An unnamed child <AWMNode> specifies a SQL statement that selects the names of the
dimensions and also specifies the DimEditorPlugin. Figure 3–11 on page 3-22 shows
the navigation tree folder and the display in the property inspector for the MyDims
<AWMNode>.

The <AWMNode> named MyLevels, nested in the unnamed <AWMNode>, selects the names
of the levels from the USER_CUBE_DIM_LEVELS table for the currently selected
dimension. The MyLevels <AWMNode> has an unnamed nested <AWMNode> that selects all
columns from the USER_CUBE_DIM_LEVELS table for the currently selected
dimension and level.

Example 3–9 contains the DimEditorPlugin class. The class displays the name and the
short description of the currently selected dimension, as shown in Figure 3–11 on
page 3-22. The user can change the value of the short description.

Example 3–9 The DimEditorPlugin Class

package plugin112;

import java.awt.Component;
import java.awt.GridLayout;
import java.sql.Connection;
import java.util.Map;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;
import oracle.olap.awm.plugin.EditorPlugin;
import oracle.olap.awm.plugin.PanelChanged;
import oracle.olapi.metadata.mdm.MdmDescriptionType;
import oracle.olapi.metadata.mdm.MdmMetadataProvider;
import oracle.olapi.metadata.mdm.MdmObject;
import oracle.olapi.metadata.mdm.MdmPrimaryDimension;

public class DimEditorPlugin implements EditorPlugin
{
 private JTextField shortDescTextField;
 private PanelChanged parentPanelChanged;
 private JPanel panel;
 private JLabel dimNameLabel;
 private MdmDescriptionType mdmShortDescrDescrType;

 public DimEditorPlugin()
 {
 panel = new JPanel();
 panel.setLayout(new GridLayout(3, 1));
 dimNameLabel = new JLabel();
 panel.add(dimNameLabel);
 shortDescTextField = new JTextField();
 panel.add(new JLabel("Short Description:"));
 panel.add(shortDescTextField);
 shortDescTextField.getDocument().addDocumentListener(new DocumentListener()
 {
 public void insertUpdate(DocumentEvent e)
 {
 changed();

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-19

 }

 public void removeUpdate(DocumentEvent e)
 {
 changed();
 }

 public void changedUpdate(DocumentEvent e)
 {
 changed();
 }
 });
 }

 public boolean isViewerForType(Connection conn, String name)
 throws Exception
 {
 return true;
 }

 // Get the MdmMetadataProvider of the session.
 private MdmMetadataProvider getMetadataProvider(Map params)
 {
 Object dp = params.get("DATAPROVIDER");
 if (dp instanceof MdmMetadataProvider)
 {
 MdmMetadataProvider mdp = (MdmMetadataProvider)dp;
 return mdp;
 }
 return null;
 }

 // Get the currently selected dimension and the schema from the params Map.
 // Get the MdmMetadataProvider and get the MdmPrimaryDimension for the
 // dimension.
 private MdmPrimaryDimension getDimension(Map params)
 {
 Object obj = null;
 String schema = "";
 if (params != null)
 {
 obj = params.get("dimobj");
 schema = (String)params.get("schema");
 }
 if (obj instanceof String)
 {
 String dimName = (String)obj;
 MdmMetadataProvider mdp = getMetadataProvider(params);
 if (mdp != null)
 {
 MdmObject mobj = mdp.getMetadataObject(schema + "." + dimName);
 if (mobj != null && mobj instanceof MdmPrimaryDimension)
 {
 MdmPrimaryDimension dim = (MdmPrimaryDimension)mobj;
 return dim;
 }
 else
 System.out.println("Cannot get the " + dimName + " dimension.");
 }
 }

Examples of ViewerPlugin and EditorPlugin

3-20 Oracle OLAP Customizing Analytic Workspace Manager

 return null;
 }

 // Get the dimension and the short description of it.
 // Display the short description.
 private void read(Map params)
 {
 MdmPrimaryDimension dim = getDimension(params);
 if (dim != null)
 {
 dimNameLabel.setText(dim.getName());
 mdmShortDescrDescrType =
 MdmDescriptionType.getShortDescriptionDescriptionType();
 String shortDesc = dim.getDescription(mdmShortDescrDescrType);
 shortDescTextField.setText(shortDesc);
 }
 }

 public JPanel getPanel(Connection conn, String name, Map params)
 throws Exception
 {
 read(params);
 return panel;
 }

 public void cleanup(String name)
 {
 }

 public boolean validate(Connection conn, Component parent, String name,
 Map params)
 throws Exception
 {
 String invalidDescr = "foo";
 if (shortDescTextField.getText().equals(invalidDescr))
 {
 JOptionPane.showMessageDialog(parent, "Description cannot be " +
 invalidDescr + ".");
 return false;
 }
 return true;
 }

 public void revert(Connection conn, Component parent, String name,
 Map params)
 throws Exception
 {
 read(params);
 }

 public void showHelp(Connection conn, Component parent, String name,
 Map params)
 throws Exception
 {
 JOptionPane.showMessageDialog(parent, "In Help.");
 }

 public boolean save(Connection conn, Component parent, String name,
 Map params)
 throws Exception

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-21

 {
 // Get the currently selected dimension and set the short description for
 // it.
 MdmPrimaryDimension dim = getDimension(params);
 dim.setDescription(mdmShortDescrDescrType, shortDescTextField.getText());
 // Get the MdmMetadataProvider.
 MdmMetadataProvider mdp = getMetadataProvider(params);
 if (mdp == null)
 return false;
 // Get the DataProvider and the TransactionProvider and commit the current
 // Transaction. If the Transaction is not committable, roll it back.
 try
 {
 mdp.getDataProvider().getTransactionProvider().commitCurrentTransaction();
 }
 catch (Exception e)
 {
 JOptionPane.showMessageDialog(parent, e.getMessage(), "Error",
 JOptionPane.ERROR_MESSAGE);
 try
 {
 mdp.getDataProvider()
 .getTransactionProvider()
 .rollbackCurrentTransaction();
 }
 catch (Exception e2)
 {
 // Ignore the exception.
 }
 }
 return true;
 }

 public void setValueChanged(Connection conn, String name, Map params,
 PanelChanged parentPanelChanged)
 {
 this.parentPanelChanged = parentPanelChanged;
 }

 // Calls the changed() method of the PanelChanged object supplied by
 // Analytic Workspace Manager when it calls the setValueChanged method.
 public void changed()
 {
 if (parentPanelChanged != null)
 parentPanelChanged.changed();
 }
}

Figure 3–10 shows the results of the MyDims <AWMNode> in the aw.xml document. A
MyDims folder appears in the GLOBAL analytic workspace folder. The user has
selected the MyDims folder. The property inspector displays the SQL statement of the
MyDims <AWMNode> and the result of it, which is a table that has columns headed
DIMENSION_NAME and DIMENSION_TYPE. The rows of the columns contains the
names of the dimensions of the analytic workspace and the types of the dimensions.

The MyDims <AWMNode> has an unnamed child <AWMNode> that has a SQL statement that
retrieves the names of the dimensions. Those names appear in the MyDims folder in
the navigation tree. The unnamed <AWMNode> also specifies the DimEditorPlugin
plug-in.

Examples of ViewerPlugin and EditorPlugin

3-22 Oracle OLAP Customizing Analytic Workspace Manager

Figure 3–10 Results of the MyDims <AWMNode> in aw.xml

Figure 3–11 shows the Analytic Workspace Manager user interface after a user has
selected the CHANNEL dimension in the MyDims folder in the navigation tree. The
property inspector displays the user interface specified by DimEditorPlugin. The user
interface includes a text field in which the user can change the value of the short
description attribute.

Figure 3–11 Results of DimEditorPlugin

Figure 3–12 shows the result of the MyLevels <AWMNODE> that is the child of the MyDims
<AWMNODE> in the aw.xml document. The SQL statement of the MyLevels <AWMNode>
selects the LEVEL_NAME column from the USER_CUBE_DIM_LEVELS table for the
currently selected dimension. Figure 3–12 shows the navigation tree folder with the
MyLevels folder selected in the CHANNEL folder. In the property inspector is the
result of the query.

Examples of ViewerPlugin and EditorPlugin

Examples of Analytic Workspace Manager Plug-ins 3-23

Figure 3–12 Result of MyLevels <AWMNode> Under MyDims in aw.xml

Figure 3–13 shows the result of the unnamed <AWMNODE> that is the child of the
MyLevels <AWMNODE> in the aw.xml document. The SQL statement of the unnamed
<AWMNode> selects all columns from the USER_CUBE_DIM_LEVELS table for the
currently selected dimension and level. Figure 3–13 shows the navigation tree folder
with the TOTAL level selected in the MyLevels folder in the CHANNEL folder. The
property inspector displays the result of the query.

Figure 3–13 Results of the Nested <AWMNode> in the MyLevels <AWMNode> in aw.xml

Example of Plug-in Descriptions

3-24 Oracle OLAP Customizing Analytic Workspace Manager

Example of Plug-in Descriptions
As discussed in "Describing the Available Plug-ins" on page 2-18, the awmplugin.xml
file contains descriptions of Java plug-ins that Analytic Workspace Manager displays.
Figure 3–14 shows the Plugins tab of the About dialog box with the information that is
specified by the awmplugin.xml document in Example 3–10.

Figure 3–14 Plugins Tab in the About Dialog Box

Example 3–10 shows the awmplugin.xml document that produces the result shown in
Figure 3–14.

Example 3–10 Creating an awmplugins.xml Document

<?xml version="1.0" encoding="utf-8" ?>
<AWMPlugins>
 <Plugin name="Cube Viewer Plug-in" version="1.0"
 class="plugin112.CubeViewerPlugin">
 <Description>Displays the name of a cube.</Description>
 </Plugin>
 <Plugin name="Level Viewer Plug-in" version="1.0"
 class="plugin112.LevelViewerPlugin">
 <Description>Displays the name of a level.</Description>
 </Plugin>
 <Plugin name="Measure Viewer Plug-in" version="1.0"
 class="plugin112.MeasureViewerPlugin">
 <Description>Displays the name of a measure.</Description>
 </Plugin>
 <Plugin name="Delete Dimension Plug-in" version="2.0"
 class="plugin112.DeleteDimPlugin">
 <Description>Deletes a dimension in the MyDims folder.</Description>
 </Plugin>
 <Plugin name="Edit Dimension Plug-in" version="2.0"
 class="plugin112.DimEditorPlugin">
 <Description>Edits the short description of a dimension.</Description>
 </Plugin>
 <Plugin name="View XML Plug-in" version="1.0" class="plugin112.ViewXMLPlugin">
 <Description>Displays the XML for an OLAP measure.</Description>
 </Plugin>
</AWMPlugins>

Index-1

Index

Symbols
{}

enclosing bind variable, 1-4, 1-15
enclosing hypertext parameter, 1-15

$
enclosing expression, 1-16

A
Analytic Workspace Manager

configuring for plug-ins, 2-2
ways of customizing, ix

aw parameter
of AWMPlugin methods, 2-6

AWMCalcs element
root of a calculation template, 1-15

awmcalcs.xml document
example of, 1-9, 1-11, 1-13
in downloadable examples, 3-1
location in database directory, 1-8

AWMNode element
of an AWMTree element, 1-7

AWMPlugin interface
examples of, 3-2, 3-5
implementations loaded on startup, 2-3
specification, 2-5

AWMPlugins element
root of a plug-in description, 2-19

awmplugin.xml document
description, 2-18
example of, 3-24

AWMTree element
root of a SQL report, 1-7

AWMTree prefix
for type parameter values, 2-7

awmtree.xml document
example of, 1-2, 1-3, 1-4
in downloadable examples, 3-1
location in directory, 1-1
location in navigation tree, 1-5

aw.xml document
example of, 3-15
location in navigation tree, 1-5

B
bind variables

enclosed by braces, 1-4, 1-15
for an AWMPlugin, 2-10
in calculation templates, 1-10, 1-15
in custom reports, 1-3
referencing using lower case, 2-10
replacing values in a WHERE clause, 1-1
replacing values in a WHERE clause, example

of, 1-4
BIND_MAP Map

for an AWMPlugin, 2-10
keys and values, examples of, 2-11

braces
enclosing bind variable, 1-4, 1-15
enclosing hypertext parameters, 1-15

C
Calc element

of an AWMCalcs element, 1-15
CalcOptional element

of a Calc or a CalcOptionalDefinitions
element, 1-16

supporting calculation options, 1-10
CalcOptionalDefinitions element

applying options to all calculations, 1-10
of a AWMCalcs element, 1-17

calculation templates
adding options, 1-10
description, 1-8
example of, 1-9

Category element
of an AWMCalcs element, 1-17

changed method, 2-14, 2-17
class attribute

of a Plugin element, 2-19
cleanup method, 2-13, 2-17
compressed file

containing example code, 3-1
configuring Analytic Workspace Manager for

plug-ins, 2-2
conn parameter

of AWMPlugin methods, 2-6
of ViewerPlugin methods, 2-13

Index-2

Connection object, 2-3
CubeViewerPlugin class, 3-15
cube.xml document

example of, 3-12
location in navigation tree, 1-5

custom calculations, 1-8
custom SQL reports

adding to navigation tree, 1-1
example, 1-2, 1-3, 1-4

D
default attribute

of a Param element, 1-18
DeleteDimPlugin class, 3-5
description attribute

of a Calc element, 1-15
of a Category element, 1-17

Description element
of an AWMPlugins element, 2-19

DimEditorPlugin class, 3-17
dimension.xml

example of, 3-10
location in navigation tree, 1-5

dollar sign
enclosing expression, 1-16

E
EditorPlugin interface

examples of, 3-17
specification, 2-13

enabling plug-ins, 2-2
examples

downloadable, 3-1
of awmcalcs.xml, 1-9, 1-11, 1-13
of AWMPlugin, 3-2, 3-5
of awmplugin.xml, 3-24
of awmtree.xml, 1-2, 1-3, 1-4
of aw.xml, 3-15
of cube.xml document, 3-12
of dimension.xml, 3-10
of EditorPlugin, 3-17
of schema.xml, 1-6
of ViewerPlugin, 3-10, 3-12, 3-15

expression attribute
of a Calc element, 1-15
of a CalcOptional element, 1-16
of an Item element, 1-17

expression syntax, 1-8

F
folders

creating in navigation tree, 1-2

G
getMenu method, 2-4, 2-6, 2-17
getPanel method, 2-13, 2-17

H
handle method, 2-4, 2-6, 2-17
headings

for XML documents, 1-1, 1-8, 2-18
hypertext parameters

creating links by using, 1-10
enclosed by braces, 1-15
referencing two or more, 1-15

I
icon attribute

example of, 1-6
of an AWMNode element, 1-8

icons
in JAR file, 1-5
in JAR file, example of, 1-6

isSupported method, 2-3, 2-6, 2-17
isViewerForType method, 2-13, 2-17
Item element

of a Param element, 1-17

J
JAR files

containing multiple XML documents and
plug-ins, 2-18

directory structure of, 1-6
files for icons included in, 1-5
loaded on startup, 2-18
location for, 2-18
required by plug-ins, 2-17

L
leaf element

defined, 1-3
LevelViewerPlugin class, 3-10

M
MeasureViewerPlugin class, 3-12

N
name attribute

of a Calc element, 1-15
of a CalcOptional element, 1-16
of a Category element, 1-17
of a Param element, 1-18
of a Plugin element, 2-19
of an AWMNode element, 1-7

name parameter
of ViewerPlugin methods, 2-13

O
obj parameter

of AWMPlugin methods, 2-6
OLAP expression syntax, 1-8

Index-3

options
adding to calculation templates, 1-10

Oracle Technology Network (OTN), 3-1

P
Param element

of a Calc or a Params element, 1-17
Params element

of an AWMCalcs element, 1-18
params parameter

keys and values for a ViewerPlugin and
EditorPlugin, 2-14

keys and values for a ViewerPlugin, examples
of, 2-15

keys and values for an AWMPlugin, 2-9
keys and values for an AWMPlugin, examples

of, 2-10
keys and values for an EditorPlugin, examples

of, 2-16
of AWMPlugin methods, 2-6
of ViewerPlugin methods, 2-13

parent parameter
of AWMPlugin methods, 2-6
of EditorPlugin methods, 2-14

plug-in descriptions
creating, 2-18
example of, 3-24

plug-in directory
specifying, 2-2

Plugin element
of an AWMPlugins element, 2-19

plugin112 package, 1-6
plugin112.jar file

containing example plug-ins, 3-1
plug-ins

descriptions of, 2-18
enabling, 2-2
examples of, 3-2, 3-5, 3-10, 3-12, 3-15, 3-17
including package when specifying, 1-6
prerequisites for creating, 2-17
providing descriptions of, 2-18

R
refreshing the navigation tree, 2-4
refreshTree method, 2-4, 2-6, 2-17
reports

See SQL reports
revert method, 2-13, 2-18
root element

of a calculation template, 1-15
of a plug-in description, 2-19
of a SQL report, 1-7

run-time selections
stored by type parameter of AWMNode, 1-4

S
save method, 2-13, 2-18
schema.xml document

example of, 1-6
location in navigation tree, 1-5

setValueChanged method, 2-13, 2-17
showHelp method, 2-13
ShowIfQueryTrue element

of an AWMNode element, 1-8
sql attribute

of a ShowIfQueryTrue element, 1-8
of an AWMNode element, 1-7

SQL reports
adding to navigation tree, 1-1
creating in object folders, 1-5
creating XML documents for, 1-1
examples, 1-2, 1-3, 1-4
XML document structure, 1-7

syntax for expressions, 1-8

T
text attribute

of a CalcOptional element, 1-16
of an Item element, 1-17

type attribute
of a CalcOptional element, 1-16
of a Param element, 1-17
of an AWMNode element, 1-7

type parameter
of an AWMNode, storing run-time selection, 1-4
of AWMPlugin methods, 2-6

U
ui attribute

of a Calc element, 1-15

V
validate method, 2-13, 2-17
version attribute

of a Plugin element, 2-19
ViewerPlugin interface

examples of, 3-10, 3-12, 3-15
specification, 2-12

viewSql attribute
of an AWMNode element, 1-7

ViewXMLPlugin class, 3-2

X
XML documents

for calculations, 1-8
for descriptions of plug-ins, 2-18, 3-24
for SQL reports, 1-1
headings, 1-1, 1-8, 2-18
loaded on startup, 2-3

XML formats
for calculations, 1-14
for descriptions of plug-ins, 2-19
for SQL reports, 1-7

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	1 Customizing With XML Documents
	Describing SQL Reports
	Creating an XML Document for SQL Reports
	Example of a Simple Report
	Creating Report Folders
	Using Bind Variables to Restrict the Report Contents
	Creating Reports in Object Folders
	Reference: Elements for SQL Reports
	<AWMTree>
	<AWMNode>
	<ShowIfQueryTrue>

	Describing Calculation Templates
	Creating an XML Document for Calculations
	Example of a Simple Calculation Template
	Adding an Option to a Calculation
	Creating More Complex Calculation Templates
	Reference: Elements for Calculations
	<AWMCalcs>
	<Calc>
	<CalcOptional>
	<CalcOptionalDefinitions>
	<Category>
	<Item>
	<Param>
	<Params>

	2 Introducing Analytic Workspace Manager Plug-ins
	Describing Analytic Workspace Manager Plug-ins
	Enabling Analytic Workspace Manager Plug-ins
	How Analytic Workspace Manager Calls a Plug-in
	Calling an AWMPlugin
	Calling a ViewerPlugin or EditorPlugin

	Describing the AWMPlugin Interface
	Values for the type and obj Parameters
	Elements in the params Map for an AWMPlugin
	Params Map Elements for Non-custom Objects
	Params Map Elements for Custom Objects

	Example params Map Elements for an AWMPlugin

	Describing the ViewerPlugin and EditorPlugin Interfaces
	Describing the ViewerPlugin Interface
	Describing the EditorPlugin Interface
	Elements in the params Map for a ViewerPlugin or EditorPlugin
	Example params Map Elements for a ViewerPlugin and an EditorPlugin
	Example params Map Elements for a ViewerPlugin
	Example params Map Elements for an EditorPlugin

	Steps in Creating a Plug-in
	Describing the Available Plug-ins
	Creating an XML Document for Descriptions of Plug-ins
	Reference: Elements for Plug-in Descriptions
	<AWMPlugins>
	<Plugin>
	<Description>

	3 Examples of Analytic Workspace Manager Plug-ins
	Availability of Example Classes and XML Documents
	Examples of AWMPlugin
	ViewXMLPlugin Example
	DeleteDimPlugin Example

	Examples of ViewerPlugin and EditorPlugin
	LevelViewerPlugin Example
	MeasureViewerPlugin Example
	CubeViewerPlugin Example
	DimEditorPlugin Example

	Example of Plug-in Descriptions

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

