

Oracle® TimesTen In-Memory Database
PL/SQL Developer's Guide

11g Release 2 (11.2.2)

E21639-07

October 2014

Oracle TimesTen In-Memory Database PL/SQL Developer's Guide, 11g Release 2 (11.2.2)

E21639-07

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Related documents... vii
Conventions ... viii
Documentation Accessibility ... ix

What's New.. xi

New features in Release 11.2.2.0.0 .. xi

1 Introduction to PL/SQL in the TimesTen Database

Features of PL/SQL in TimesTen .. 1-1
TimesTen PL/SQL components and operations... 1-2

Application interaction with TimesTen and PL/SQL .. 1-2
PL/SQL in TimesTen versus PL/SQL in Oracle Database.. 1-3

SQL statements in PL/SQL blocks ... 1-3
Execution of PL/SQL from SQL ... 1-4

Audiences for this document ... 1-4
Developers experienced with Oracle Database and Oracle Database PL/SQL........................ 1-4
Developers experienced with TimesTen... 1-5

About the TimesTen PL/SQL demos .. 1-5

2 Programming Features in PL/SQL in TimesTen

PL/SQL blocks... 2-1
PL/SQL variables and constants .. 2-2
SQL function calls from PL/SQL... 2-5
PL/SQL control structures... 2-6

Conditional control .. 2-6
Iterative control .. 2-7
CONTINUE statement .. 2-7

How to execute PL/SQL procedures and functions ... 2-8
How to pass data between an application and PL/SQL .. 2-9

Using bind variables from an application .. 2-9
IN, OUT, and IN OUT parameter modes .. 2-10

Use of SQL in PL/SQL programs.. 2-11
Static SQL in PL/SQL for queries and DML statements... 2-11

iv

Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement) ... 2-12
FORALL and BULK COLLECT operations... 2-14
RETURNING INTO clause .. 2-15
TimesTen PL/SQL with TimesTen Cache... 2-16
Large objects (LOBs) ... 2-17

About LOBs... 2-18
LOB locators.. 2-18
Temporary LOBs.. 2-19
Differences between TimesTen LOBs and Oracle Database LOBs 2-19
Using LOBs ... 2-19
PL/SQL package support for LOBs .. 2-20
Passthrough LOBs.. 2-20

Use of cursors in PL/SQL programs... 2-21
PL/SQL procedures and functions ... 2-21

Creating and using procedures and functions.. 2-21
Using synonyms for procedures and functions.. 2-24

PL/SQL packages ... 2-25
Package concepts... 2-25
Creating and using packages .. 2-25
Using synonyms for packages... 2-28

Wrapping PL/SQL source code ... 2-29
Differences in TimesTen: transaction behavior .. 2-31

3 Data Types in PL/SQL in TimesTen

Understanding the data type environments ... 3-1
Understanding and using PL/SQL data types .. 3-2

PL/SQL data type categories ... 3-2
Predefined PL/SQL scalar data types... 3-2

PLS_INTEGER and BINARY_INTEGER data types ... 3-3
SIMPLE_INTEGER data type.. 3-4
ROWID data type.. 3-4
LOB data types .. 3-4

PL/SQL composite data types ... 3-4
Using collections in PL/SQL... 3-5
Using records in PL/SQL .. 3-5
Using associative arrays from applications .. 3-6

PL/SQL REF CURSORs .. 3-7
Data type conversion ... 3-9

Conversion between PL/SQL data types ... 3-9
Conversion between application data types and PL/SQL or SQL data types.......................... 3-9

Differences in TimesTen: data type considerations ... 3-10
Conversion between PL/SQL and TimesTen SQL data types ... 3-11
Date and timestamp formats: NLS_DATE_FORMAT and NLS_TIMESTAMP_FORMAT. 3-12
Non-supported data types... 3-13
Zero-length strings in TimesTen type mode... 3-13

v

4 Errors and Exception Handling

Understanding exceptions .. 4-1
About exceptions.. 4-1
Exception types... 4-2

Trapping exceptions .. 4-2
Trapping predefined TimesTen errors.. 4-3
Trapping user-defined exceptions... 4-4

Using the RAISE statement ... 4-4
Using the RAISE_APPLICATION_ERROR procedure ... 4-5

Showing errors in ttIsql .. 4-6
Differences in TimesTen: exception handing and error behavior ... 4-7

TimesTen PL/SQL transaction and rollback behavior for unhandled exceptions................... 4-7
TimesTen error messages and SQL codes .. 4-9
Warnings not visible in PL/SQL ... 4-9
Unsupported predefined errors... 4-9
Possibility of runtime errors after clean compile (use of Oracle Database SQL parser).......... 4-9
Use of TimesTen expressions at runtime... 4-10

5 Examples Using TimesTen SQL in PL/SQL

Examples using the SELECT...INTO statement in PL/SQL ... 5-1
Using SELECT... INTO to return sum of salaries .. 5-1
Using SELECT...INTO to query another user's table .. 5-2

Example using the INSERT statement ... 5-2
Examples using input and output parameters and bind variables... 5-3

Using IN and OUT parameters .. 5-3
Using IN OUT parameters.. 5-4
Using associative arrays.. 5-5

Examples using cursors ... 5-6
Fetching values ... 5-6
Using the %ROWCOUNT and %NOTFOUND attributes... 5-8
Using cursor FOR loops .. 5-8

Examples using FORALL and BULK COLLECT ... 5-9
Using FORALL with SQL%BULK_ROWCOUNT .. 5-9
Using BULK COLLECT INTO with queries ... 5-10
Using BULK COLLECT INTO with cursors ... 5-11
Using SAVE EXCEPTIONS with BULK COLLECT... 5-12

Examples using EXECUTE IMMEDIATE .. 5-13
Using EXECUTE IMMEDIATE to create a table .. 5-14
Using EXECUTE IMMEDIATE with a single row query.. 5-14
Using EXECUTE IMMEDIATE to alter a connection attribute .. 5-15
Using EXECUTE IMMEDIATE to call a TimesTen built-in procedure................................... 5-16
Using EXECUTE IMMEDIATE with TimesTen-specific syntax .. 5-16

Examples using RETURNING INTO.. 5-16
Using the RETURNING INTO clause with a record ... 5-17
Using BULK COLLECT INTO with the RETURNING INTO clause 5-17

Examples using the AUTHID clause ... 5-18

vi

Script for AUTHID examples .. 5-18
Using AUTHID CURRENT_USER... 5-19
Using AUTHID DEFINER ... 5-20

Example querying a system view ... 5-22

6 PL/SQL Installation and Environment

Confirming that PL/SQL is installed and enabled in TimesTen .. 6-1
PL/SQL installation and the ttmodinstall utility .. 6-1
Checking that PL/SQL is enabled in a TimesTen database... 6-1

PL/SQL connection attributes .. 6-2
The ttSrcScan utility .. 6-8

7 Access Control for PL/SQL Programs

Access control for PL/SQL operations .. 7-1
Required privileges for PL/SQL statements and operations .. 7-1
Granting and revoking privileges.. 7-3
Invalidated objects ... 7-5

Access control for SQL operations .. 7-7
Definer's rights and invoker's rights .. 7-7
Additional access control considerations .. 7-8

Access control for connections and connection attributes ... 7-8
Access control for system views and supplied packages... 7-8
Access control for built-in procedures relating to PL/SQL... 7-9

8 TimesTen Supplied PL/SQL Packages

DBMS_LOB ... 8-2
DBMS_LOCK.. 8-4
DBMS_OUTPUT ... 8-5
DBMS_PREPROCESSOR... 8-6
DBMS_RANDOM .. 8-7
DBMS_SQL ... 8-8
DBMS_UTILITY.. 8-10
TT_DB_VERSION .. 8-12
TT_STATS .. 8-13
UTL_FILE ... 8-14
UTL_IDENT ... 8-16
UTL_RAW... 8-17
UTL_RECOMP... 8-19

9 TimesTen PL/SQL Support: Reference Summary

Index

vii

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to disk storage for the ability to recover and
restart. Replication features allow high availability. TimesTen supports standard
application interfaces JDBC, ODBC, and ODP.NET, in addition to Oracle interfaces
PL/SQL, OCI, and Pro*C/C++. TimesTen is available separately or as a cache for
Oracle Database.

This document covers TimesTen support for PL/SQL.

The following topics are discussed in the preface:

■ Audience

■ Related documents

■ Conventions

■ Documentation Accessibility

Audience
This document is intended for anyone developing or supporting applications that use
PL/SQL with TimesTen. Although it provides some overview, you should be familiar
with PL/SQL or have access to more detailed documentation. This manual
emphasizes TimesTen-specific functionality.

You should also be familiar with TimesTen, SQL (Structured Query Language), and
database operations.

You would typically use PL/SQL through some programming interface such as those
mentioned above, so should also consult the appropriate TimesTen developer
documentation.

Also see "Audiences for this document" on page 1-4, which goes into more detail.

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network.

http://www.oracle.com/technetwork/database/database-technologies/timesten/documentation/index.html

Oracle Database documentation is also available on the Oracle Technology network.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document.

viii

http://www.oracle.com/pls/db112/homepage

In particular, these Oracle Database documents may be of interest:

■ Oracle Database PL/SQL Language Reference

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database SQL Language Reference

■ Oracle Database Reference

In addition, numerous third-party documents are available that describe PL/SQL in
detail.

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows applies to all
supported Windows platforms. The term UNIX applies to all supported UNIX and
Linux platforms. Refer to the "Platforms" section in Oracle TimesTen In-Memory
Database Release Notes for specific platform versions supported by TimesTen.

This document uses the following text conventions:

TimesTen documentation uses the following variables to identify path, file and user
names.

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

italic Italic type indicates terms defined in text, book titles, or emphasis.

monospace Monospace type indicates commands, URLs, procedure and function
names, package names, attribute names, directory names, file names,
text that appears on the screen, or text that you enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a code
example for which you specify or use a particular value, such as in the
following example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line. An ellipsis in a code
example indicates that what is shown is only a partial example.

% The percent sign indicates the UNIX shell prompt.

ix

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Convention Meaning

install_dir The path that represents the directory where TimesTen is installed.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at installation time with a
unique instance name. This name appears in the installation path.

bits or bb Two digits, either 32 or 64, that represent either a 32-bit or 64-bit
operating system.

release or rr The first three parts in a release number, with or without dots. The first
three parts of a release number represent a major TimesTen release. For
example, 1122 or 11.2.2 represents TimesTen 11g Release 2 (11.2.2).

DSN TimesTen data source name (for the TimesTen database).

x

xi

What's New

This section summarizes the new features and functionality of Oracle TimesTen
In-Memory Database 11g Release 2 (11.2.2) that are documented in this guide,
providing links into the guide for more information.

New features in Release 11.2.2.0.0
■ LOB support

TimesTen supports LOBs (large objects). This includes CLOBs (character LOBs),
NCLOBs (national character LOBs), and BLOBs (binary LOBs).

For details of support in PL/SQL, refer to "Large objects (LOBs)" on page 2-17.

■ Associative array binds

Associative arrays, formerly known as index-by tables or PL/SQL tables, are
supported as IN, OUT, or IN OUT bind parameters in TimesTen PL/SQL, such as
from an OCI, Pro*C/C++, or JDBC application. This enables arrays of data to be
passed efficiently between an application and the database.

See "Using associative arrays from applications" on page 3-6.

■ Use of PL/SQL statements in dynamic SQL

TimesTen supports the use of PL/SQL anonymous blocks and procedure or
function calls, in addition to SQL statements, in an EXECUTE IMMEDIATE statement
or DBMS_SQL procedure or function call.

Refer to "Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)" on
page 2-12.

xii

1

Introduction to PL/SQL in the TimesTen Database 1-1

1Introduction to PL/SQL in the TimesTen
Database

TimesTen supports PL/SQL (Procedural Language Extension to SQL), a programming
language that enables you to integrate procedural constructs with SQL in your
database. TimesTen 11g Release 2 (11.2.2) implements the PL/SQL language from
Oracle Database release 11.2.0.2. As such, most PL/SQL features present in that release
of Oracle Database are also present in TimesTen, operating in essentially the same
way. (Refer to Chapter 9, "TimesTen PL/SQL Support: Reference Summary" for
differences.)

This chapter provides a brief introduction to TimesTen PL/SQL, covering the
following topics:

■ Features of PL/SQL in TimesTen

■ TimesTen PL/SQL components and operations

■ Audiences for this document

■ About the TimesTen PL/SQL demos

Features of PL/SQL in TimesTen
PL/SQL support in TimesTen enables you to do the following:

■ Take full advantage of the PL/SQL programming language.

■ Execute PL/SQL from your client applications that use these APIs:

– ODBC

– JDBC

– Oracle Call Interface (OCI)

– Oracle Pro*C/C++

– Oracle Data Provider for .NET (ODP.NET)

– TTClasses (TimesTen C++ library)

■ Execute TimesTen SQL from PL/SQL.

■ Create, alter, or drop standalone procedures, functions, packages and package
bodies.

■ Use PL/SQL packages to extend your database functionality and to provide
PL/SQL access to SQL features.

■ Handle exceptions and errors in your PL/SQL applications.

TimesTen PL/SQL components and operations

1-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

■ Set connection attributes in your database to customize your PL/SQL
environment.

■ Alter session parameters so you can manage your PL/SQL environment.

■ Display PL/SQL metadata in your database by using PL/SQL system views.

TimesTen PL/SQL components and operations
This section provides an overview of PL/SQL operations in TimesTen, including
discussion of how an application interacts with PL/SQL and how PL/SQL
components interact with other components of TimesTen. The following topics are
covered:

■ Application interaction with TimesTen and PL/SQL

■ PL/SQL in TimesTen versus PL/SQL in Oracle Database

Application interaction with TimesTen and PL/SQL
Figure 1–1 shows the PL/SQL components and their interactions with each other and
with other TimesTen components during PL/SQL operations.

Figure 1–1 TimesTen PL/SQL components

An application uses the API of its choice—ODBC, JDBC, OCI, Pro*C, ODP.NET, or
TTClasses—to send requests to the database. ODBC is the TimesTen native API, so
each of the other APIs ultimately calls the ODBC layer.

The ODBC driver calls the TimesTen SQL parser to examine each incoming request
and determine whether it is SQL or PL/SQL. The request is then passed to the
appropriate subsystem within TimesTen. PL/SQL source and SQL statements are
compiled, optimized and executed by the PL/SQL subsystem and SQL subsystem,
respectively.

The PL/SQL compiler is responsible for generating executable code from PL/SQL
source, while the SQL compiler does the same for SQL statements. Each compiler
generates intermediate code that can then be executed by the appropriate PL/SQL or
SQL execution engine. This executable code, along with metadata about the PL/SQL
blocks, is then stored in tables in the database.

Application

SQL
Compiler

PL/SQL
Compiler

PL/SQL
Execution

Engine

Compiled
Procedure

SQL
Parser

SQL
Execution

Engine

ODBC
driver

SQL
Parser API

TimesTen PL/SQL components and operations

Introduction to PL/SQL in the TimesTen Database 1-3

When PL/SQL blocks are executed, the PL/SQL execution engine is invoked. As
PL/SQL blocks in turn invoke SQL, the PL/SQL execution engine calls the TimesTen
SQL compiler and the TimesTen SQL execution engine to handle SQL execution.

PL/SQL in TimesTen versus PL/SQL in Oracle Database
PL/SQL processing in TimesTen is largely identical to its processing in Oracle
Database. The PL/SQL compiler and execution engine that are included with
TimesTen originated in Oracle Database, and the relationship between PL/SQL
components and the SQL compiler and execution engine is comparable. The tables
used to store PL/SQL units are the same in TimesTen and Oracle Database, as are the
views that are available to query information about stored PL/SQL units.

Beyond these basic similarities, however, are some potentially significant differences.
These are detailed in the following subsections:

■ SQL statements in PL/SQL blocks

■ Execution of PL/SQL from SQL

SQL statements in PL/SQL blocks
In TimesTen, as in Oracle Database, PL/SQL blocks may include SQL statements.
Consider the anonymous block in the following example:

Command> create table tab2 (x number, last_name VARCHAR2 (25) INLINE NOT NULL);
Command> declare
 > x number;
 > begin
 > select salary into x from employees where last_name = 'Whalen';
 > insert into tab2 values(x, 'Whalen');
 > end;
 > /

PL/SQL procedure successfully completed.

The PL/SQL compiler in TimesTen calls a copy of the Oracle Database SQL parser to
analyze and validate the syntax of such SQL statements. This Oracle Database parser
is included in TimesTen for this purpose. As part of this processing, PL/SQL may
rewrite parts of the SQL statements (for example, by removing INTO clauses or
replacing PL/SQL variables with binds). This processing is identical in TimesTen and
in Oracle Database. The rewritten SQL statements are then included in the executable
code for the PL/SQL block. When the PL/SQL block is executed, these SQL statements
are compiled and executed by the TimesTen SQL subsystem.

In Oracle Database, the same SQL parser is used by the PL/SQL compiler and the SQL
compiler. In TimesTen, however, different SQL parsers are used. TimesTen PL/SQL
uses the Oracle Database SQL parser, while TimesTen SQL uses the native TimesTen
SQL parser. This difference is typically, but not always, transparent to the end user. In
particular, be aware of the following:

■ SQL statements in TimesTen PL/SQL programs must obey Oracle Database SQL
syntax. While TimesTen SQL is generally a subset of Oracle Database SQL, there

Note: The introduction of PL/SQL into TimesTen has little impact
on applications that do not use it. If applications execute SQL directly,
then requests are passed from the TimesTen ODBC driver to the
TimesTen SQL compiler and execution engine in the same way as in
previous releases.

Audiences for this document

1-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

are some expressions that are permissible in TimesTen SQL but not in Oracle
Database SQL. Such TimesTen-specific SQL operations cannot be used within
PL/SQL except by using dynamic SQL through EXECUTE IMMEDIATE statements or
the DBMS_SQL package. See "Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE
statement)" on page 2-12.

■ SQL statements that would be permissible in Oracle Database are accepted by the
PL/SQL compiler as valid even if they cannot be executed by TimesTen. If SQL
features are used that TimesTen does not support, compilation of a PL/SQL block
may be successful, but a runtime error would occur when the PL/SQL block is
executed.

Execution of PL/SQL from SQL
In Oracle Database, PL/SQL blocks can invoke SQL statements, and SQL statements
can in turn invoke PL/SQL functions. For example, a stored procedure can invoke an
UPDATE statement that employs a user-written PL/SQL function in its WHERE clause.

In TimesTen, a SQL statement cannot invoke a PL/SQL function.

In addition, TimesTen does not support triggers. (See "XLA and TimesTen Event
Management" in Oracle TimesTen In-Memory Database C Developer's Guide for
information about XLA, a high-performance, asynchronous TimesTen alternative to
triggers.)

Audiences for this document
There are two primary developer audiences for this document:

■ Developers experienced with Oracle Database and Oracle Database PL/SQL who
want to learn how to use PL/SQL in TimesTen: These readers want to learn the
differences between PL/SQL in Oracle Database and PL/SQL in TimesTen.

■ Developers experienced with TimesTen who are not familiar with PL/SQL: These
readers need general information about PL/SQL.

The following subsections note areas of particular interest in this document for each
audience.

Developers experienced with Oracle Database and Oracle Database PL/SQL
Developers experienced with Oracle Database PL/SQL can bypass much of this
document, which covers many general concepts of PL/SQL. Likely areas of interest,
particularly differences in PL/SQL functionality between Oracle Database and
TimesTen, include the following. Note that TimesTen-specific considerations are
discussed at the end of Chapter 2, Chapter 3, and Chapter 4 and throughout Chapter 9.

■ "How to execute PL/SQL procedures and functions" on page 2-8: This includes a
comparison between how you can execute them in TimesTen and in Oracle
Database.

■ "Differences in TimesTen: transaction behavior" on page 2-31: This discusses
cursor behavior when a transaction ends in TimesTen.

■ "Differences in TimesTen: data type considerations" on page 3-10: This includes
TimesTen-specific conversions, and types that TimesTen does not support.

■ "Differences in TimesTen: exception handing and error behavior" on page 4-7: This
describes differences in error support, handling, and reporting.

About the TimesTen PL/SQL demos

Introduction to PL/SQL in the TimesTen Database 1-5

■ Chapter 6, "PL/SQL Installation and Environment": This includes discussion of
TimesTen connection attributes.

■ Chapter 8, "TimesTen Supplied PL/SQL Packages": This documents the subset of
Oracle Database PL/SQL packages that TimesTen supports.

■ Chapter 9, "TimesTen PL/SQL Support: Reference Summary": This reference
chapter provides a detailed treatment of differences between TimesTen PL/SQL
and Oracle Database PL/SQL.

Developers experienced with TimesTen
Most of this document is geared toward readers without prior PL/SQL experience,
especially prior TimesTen users who are not familiar with PL/SQL, and nearly the
entire document should be useful. In particular, Chapter 2, "Programming Features in
PL/SQL in TimesTen," will help these readers get started and Chapter 5, "Examples
Using TimesTen SQL in PL/SQL," includes some additional examples.

Chapter 9, "TimesTen PL/SQL Support: Reference Summary," is geared toward
differences between TimesTen PL/SQL and Oracle Database PL/SQL and may be of
less interest.

About the TimesTen PL/SQL demos
After you have configured your environment, you can confirm that everything is set
up correctly by compiling and running the TimesTen Quick Start demo applications.
Refer to the Quick Start welcome page at install_dir/quickstart.html, especially
the links under SAMPLE PROGRAMS, for information about the following:

■ Demo schema and setup: The build_sampledb script (.sh on UNIX or .bat on
Windows) creates a sample database and demo schema. You must use this before
you start using the demos.

■ Demo environment and setup: The ttquickstartenv script (.sh or .csh on UNIX
or .bat on Windows), a superset of the ttenv script generally used for TimesTen
setup, sets up the demo environment. You must use this each time you enter a
session where you want to compile or run any of the demos.

■ Demos and setup: TimesTen provides demos for PL/SQL in a subdirectory under
the quickstart/sample_code directory. For instructions on running the demos,
see the README file in the subdirectory.

■ What the demos do: A synopsis of each demo is provided when you click PL/SQL
under SAMPLE PROGRAMS.

About the TimesTen PL/SQL demos

1-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

2

Programming Features in PL/SQL in TimesTen 2-1

2Programming Features in PL/SQL in TimesTen

One of the advantages of PL/SQL in TimesTen is the ability to integrate PL/SQL
procedural constructs with the flexible and powerful TimesTen SQL language.

This chapter surveys the main PL/SQL programming features described in "Overview
of PL/SQL" in Oracle Database PL/SQL Language Reference. Working from simple
examples, you will learn how to use PL/SQL in TimesTen. Unless otherwise noted, the
examples have the same results in TimesTen as in Oracle Database.

See the end of the chapter for TimesTen-specific considerations. See "TimesTen
PL/SQL components and operations" on page 1-2 for an overview of how applications
interact with TimesTen in general and PL/SQL in particular.

The following are the main topics of this chapter:

■ PL/SQL blocks

■ PL/SQL variables and constants

■ SQL function calls from PL/SQL

■ PL/SQL control structures

■ How to execute PL/SQL procedures and functions

■ How to pass data between an application and PL/SQL

■ Use of SQL in PL/SQL programs

■ Use of cursors in PL/SQL programs

■ PL/SQL procedures and functions

■ PL/SQL packages

■ Wrapping PL/SQL source code

■ Differences in TimesTen: transaction behavior

PL/SQL blocks
The basic unit of a PL/SQL source program is the block, or anonymous block, which
groups related declarations and statements. TimesTen supports PL/SQL blocks.

Note: Except where stated otherwise, the examples in this guide use
the TimesTen ttIsql utility. In order to display output in the
examples, the setting SET SERVEROUTPUT ON is used. For more
information on ttIsql, see "ttIsql" in Oracle TimesTen In-Memory
Database Reference.

PL/SQL variables and constants

2-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

A PL/SQL block is defined by the keywords DECLARE, BEGIN, EXCEPTION, and END.
Example 2–1 shows the basic structure of a PL/SQL block.

Example 2–1 PL/SQL block structure

DECLARE -- (optional)
 -- Variables, cursors, user-defined exceptions
BEGIN -- (mandatory)
 -- PL/SQL statements
EXCEPTION -- (optional)
 -- Actions to perform when errors occur
END -- (mandatory)

You can define either anonymous or named blocks in your PL/SQL programs. This
example creates an anonymous block that queries the employees table and returns the
data in a PL/SQL variable:

Command> SET SERVEROUTPUT ON;
Command> DECLARE
 > v_fname VARCHAR2 (20);
 > BEGIN
 > SELECT first_name
 > INTO v_fname
 > FROM employees
 > WHERE employee_id = 100;
 > DBMS_OUTPUT.PUT_LINE (v_fname);
 > END;
 > /
Steven

PL/SQL procedure successfully completed.

PL/SQL variables and constants
You can define variables and constants in PL/SQL and then use them in procedural
statements and in SQL anywhere an expression can be used.

For example:

Command> DECLARE
 > v_hiredate DATE;
 > v_deptno NUMBER (2) NOT NULL := 10;
 > v_location VARCHAR2 (13) := 'San Francisco';
 > c_comm CONSTANT NUMBER := 1400;

You can use the %TYPE attribute to declare a variable according to either a TimesTen
column definition or another declared variable. For example, use %TYPE to create
variables emp_lname and min_balance:

Command> DECLARE
 > emp_lname employees.last_name%TYPE;
 > balance NUMBER (7,2);
 > min_balance balance%TYPE:= 1000;
 > BEGIN

Note: If you use TimesTen Application-Tier Database Cache
(TimesTen Cache): A PL/SQL block cannot be passed through to
Oracle Database. (Also see "TimesTen PL/SQL with TimesTen Cache"
on page 2-16.)

PL/SQL variables and constants

Programming Features in PL/SQL in TimesTen 2-3

 > SELECT last_name INTO emp_lname FROM employees WHERE employee_id = 100;
 > DBMS_OUTPUT.PUT_LINE (emp_lname);
 > DBMS_OUTPUT.PUT_LINE (min_balance);
 > END;
 > /
King
1000

PL/SQL procedure successfully completed.

You can assign a value to a variable in the following ways.

■ With the assignment operator (:=), as shown in Example 2–2

■ By selecting or fetching values into it, as shown in Example 2–3

■ By passing the variable as an OUT or IN OUT parameter to a subprogram (procedure
or function) and then assigning the value inside the subprogram, as shown in
Example 2–4

Example 2–2 Assigning values to variables with the assignment operator

Command> DECLARE -- Assign values in the declarative section
 > wages NUMBER;
 > hours_worked NUMBER := 40;
 > hourly_salary NUMBER := 22.50;
 > bonus NUMBER := 150;
 > country VARCHAR2(128);
 > counter NUMBER := 0;
 > done BOOLEAN;
 > valid_id BOOLEAN;
 > emp_rec1 employees%ROWTYPE;
 > emp_rec2 employees%ROWTYPE;
 > TYPE commissions IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 > comm_tab commissions;
 > BEGIN -- Assign values in the executable section
 > wages := (hours_worked * hourly_salary) + bonus;
 > country := 'France';
 > country := UPPER('Canada');
 > done := (counter > 100);
 > valid_id := TRUE;
 > emp_rec1.first_name := 'Amy';
 > emp_rec1.last_name := 'Feiner';
 > emp_rec1 := emp_rec2;
 > comm_tab(5) := 20000 * 0.15;
 > END;
 > /

PL/SQL procedure successfully completed.

Note: The DBMS_OUTPUT package used in these examples is supplied
with TimesTen. For information on this and other supplied packages,
refer to Chapter 8, "TimesTen Supplied PL/SQL Packages".

PL/SQL variables and constants

2-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example 2–3 Using SELECT INTO to assign values to variables

Select 10% of an employee's salary into the bonus variable:

Command> DECLARE
 > bonus NUMBER(8,2);
 > emp_id NUMBER(6) := 100;
 > BEGIN
 > SELECT salary * 0.10 INTO bonus FROM employees
 > WHERE employee_id = emp_id;
 > DBMS_OUTPUT.PUT_LINE (bonus);
 > END;
 > /
2400

PL/SQL procedure successfully completed.

Example 2–4 Assigning values to variables as parameters of a subprogram

Declare the variable new_sal and then pass the variable as a parameter (sal) to
procedure adjust_salary. Procedure adjust_salary computes the average salary for
employees with job_id='ST_CLERK' and then updates sal. After the procedure is
executed, the value of the variable is displayed to verify that the variable was correctly
updated.

Command> DECLARE
 > new_sal NUMBER(8,2);
 > emp_id NUMBER(6) := 126;
 > PROCEDURE adjust_salary (emp_id NUMBER, sal IN OUT NUMBER) IS
 > emp_job VARCHAR2(10);
 > avg_sal NUMBER(8,2);
 > BEGIN
 > SELECT job_id INTO emp_job FROM employees
 > WHERE employee_id = emp_id;
 > SELECT AVG(salary) INTO avg_sal FROM employees
 > WHERE job_id = emp_job;
 > DBMS_OUTPUT.PUT_LINE ('The average salary for ' || emp_job
 > || ' employees: ' || TO_CHAR(avg_sal));
 > sal := (sal + avg_sal)/2;
 > DBMS_OUTPUT.PUT_LINE ('New salary is ' || sal);
 > END;
 > BEGIN
 > SELECT AVG(salary) INTO new_sal FROM employees;
 > DBMS_OUTPUT.PUT_LINE ('The average salary for all employees: '
 > || TO_CHAR(new_sal));
 > adjust_salary(emp_id, new_sal);
 > DBMS_OUTPUT.PUT_LINE ('Salary should be same as new salary ' ||
 > new_sal);
 > END;
 > /
The average salary for all employees: 6461.68
The average salary for ST_CLERK employees: 2785
New salary is 4623.34

Note: This example uses records, which are composite data
structures that have fields with different data types. You can use the
%ROWTYPE attribute, as shown, to declare a record that represents a row
in a table or a row from a query result set. Records are further
discussed under "PL/SQL composite data types" on page 3-4.

SQL function calls from PL/SQL

Programming Features in PL/SQL in TimesTen 2-5

Salary should be same as new salary 4623.34

PL/SQL procedure successfully completed.

SQL function calls from PL/SQL
Most SQL functions are supported for calls directly from PL/SQL. In the first example
that follows, the function RTRIM is used as a PL/SQL function in a PL/SQL assignment
statement. In the second example, it is used as a SQL function in a static SQL
statement.

Example 2–5 Using the RTRIM function from PL/SQL

Use the TimesTen PL/SQL RTRIM built-in function to remove the right-most "x" and
"y" characters from the string. Note that RTRIM is used in a PL/SQL assignment
statement.

Command> DECLARE p_var VARCHAR2(30);
 > BEGIN
 > p_var := RTRIM ('RTRIM Examplexxxyyyxyxy', 'xy');
 > DBMS_OUTPUT.PUT_LINE (p_var);
 > END;
 > /
RTRIM Example

PL/SQL procedure successfully completed.

Example 2–6 Using the RTRIM function from SQL

Use the TimesTen SQL function RTRIM to remove the right-most "x" and "y" characters
from the string. Note that RTRIM is used in a static SQL statement.

Command> DECLARE tt_var VARCHAR2 (30);
 > BEGIN
 > SELECT RTRIM ('RTRIM Examplexxxyyyxyxy', 'xy')
 > INTO tt_var FROM DUAL;
 > DBMS_OUTPUT.PUT_LINE (tt_var);
 > END;
 > /
RTRIM Example

PL/SQL procedure successfully completed.

You can refer to information about SQL functions in TimesTen under "Expressions" in
Oracle TimesTen In-Memory Database SQL Reference. See "SQL Functions in PL/SQL
Expressions" in Oracle Database PL/SQL Language Reference for information about
support for SQL functions in PL/SQL.

Note: This example illustrates the ability to nest PL/SQL blocks
within blocks. The outer anonymous block contains an enclosed
procedure. This PROCEDURE statement is distinct from the CREATE
PROCEDURE statement documented in "PL/SQL procedures and
functions" on page 2-21, which creates a subprogram that remains
stored in the user's schema.

PL/SQL control structures

2-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

PL/SQL control structures
Control structures are among the PL/SQL extensions to SQL. TimesTen supports the
same control structures as Oracle Database.

The following control structures are discussed in this section.

■ Conditional control

■ Iterative control

■ CONTINUE statement

Conditional control
The IF-THEN-ELSE and CASE constructs are examples of conditional control. In
Example 2–7, the IF-THEN-ELSE construct is used to determine the salary raise of an
employee based on the current salary. The CASE construct is also used to choose the
course of action to take based on the job_id of the employee.

Example 2–7 Using the IF-THEN-ELSE and CASE constructs

Command> DECLARE
 > jobid employees.job_id%TYPE;
 > empid employees.employee_id%TYPE := 115;
 > sal employees.salary%TYPE;
 > sal_raise NUMBER(3,2);
 > BEGIN
 > SELECT job_id, salary INTO jobid, sal from employees
 > WHERE employee_id = empid;
 > CASE
 > WHEN jobid = 'PU_CLERK' THEN
 > IF sal < 3000 THEN sal_raise := .12;
 > ELSE sal_raise := .09;
 > END IF;
 > WHEN jobid = 'SH_CLERK' THEN
 > IF sal < 4000 THEN sal_raise := .11;
 > ELSE sal_raise := .08;
 > END IF;
 > WHEN jobid = 'ST_CLERK' THEN
 > IF sal < 3500 THEN sal_raise := .10;
 > ELSE sal_raise := .07;
 > END IF;
 > ELSE
 > BEGIN
 > DBMS_OUTPUT.PUT_LINE('No raise for this job: ' || jobid);
 > END;
 > END CASE;
 > DBMS_OUTPUT.PUT_LINE ('Original salary ' || sal);
 > -- Update
 > UPDATE employees SET salary = salary + salary * sal_raise
 > WHERE employee_id = empid;
 > END;
 > /
Original salary 3100

PL/SQL procedure successfully completed.

PL/SQL control structures

Programming Features in PL/SQL in TimesTen 2-7

Iterative control
An iterative control construct executes a sequence of statements repeatedly, as long as
a specified condition is true. Loop constructs are used to perform iterative operations.

There are three loop types:

■ Basic loop

■ FOR loop

■ WHILE loop

The basic loop performs repetitive actions without overall conditions. The FOR loop
performs iterative actions based on a count. The WHILE loops perform iterative actions
based on a condition.

Example 2–8 Using a WHILE loop

Command> CREATE TABLE temp (tempid NUMBER(6),
 > tempsal NUMBER(8,2),
 > tempname VARCHAR2(25));
Command> DECLARE
 > sal employees.salary%TYPE := 0;
 > mgr_id employees.manager_id%TYPE;
 > lname employees.last_name%TYPE;
 > starting_empid employees.employee_id%TYPE := 120;
 > BEGIN
 > SELECT manager_id INTO mgr_id
 > FROM employees
 > WHERE employee_id = starting_empid;
 > WHILE sal <= 15000 LOOP -- loop until sal > 15000
 > SELECT salary, manager_id, last_name INTO sal, mgr_id, lname
 > FROM employees WHERE employee_id = mgr_id;
 > END LOOP;
 > INSERT INTO temp VALUES (NULL, sal, lname); -- insert NULL for tempid
 > COMMIT;
 > EXCEPTION
 > WHEN NO_DATA_FOUND THEN
 > INSERT INTO temp VALUES (NULL, NULL, 'Not found'); -- insert NULLs
 > COMMIT;
 > END;
 > /

PL/SQL procedure successfully completed.

Command> SELECT * FROM temp;
< <NULL>, 24000, King >
1 row found.

CONTINUE statement
The CONTINUE statement enables you to transfer control within a loop back to a new
iteration.

Example 2–9 Using the CONTINUE statement

In this example, the first v_total assignment is executed for each of the 10 iterations of
the loop. The second v_total assignment is executed for the first five iterations of the
loop. The CONTINUE statement transfers control within a loop back to a new iteration,
so for the last five iterations of the loop, the second v_total assignment is not
executed. The end v_total value is 70.

How to execute PL/SQL procedures and functions

2-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Command> DECLARE
 > v_total SIMPLE_INTEGER := 0;
 > BEGIN
 > FOR i IN 1..10 LOOP
 > v_total := v_total + i;
 > DBMS_OUTPUT.PUT_LINE ('Total is : ' || v_total);
 > CONTINUE WHEN i > 5;
 > v_total := v_total + i;
 > DBMS_OUTPUT.PUT_LINE ('Out of loop Total is: ' || v_total);
 > END LOOP;
 > END;
 > /
Total is : 1
Out of loop Total is: 2
Total is : 4
Out of loop Total is: 6
Total is : 9
Out of loop Total is: 12
Total is : 16
Out of loop Total is: 20
Total is : 25
Out of loop Total is: 30
Total is : 36
Total is : 43
Total is : 51
Total is : 60
Total is : 70

PL/SQL procedure successfully completed.

How to execute PL/SQL procedures and functions
TimesTen supports execution of PL/SQL from client applications using ODBC, OCI,
Pro*C/C++, ODP.NET, JDBC, or TimesTen TTClasses (for C++).

As noted earlier, a block is the basic unit of a PL/SQL source program. Anonymous
blocks were also discussed earlier. By contrast, procedures and functions are PL/SQL
blocks that have been defined with a specified name. See "PL/SQL procedures and
functions" on page 2-21 for how to define and create them.

In TimesTen, a PL/SQL procedure or function that is standalone (created with CREATE
PROCEDURE or CREATE FUNCTION) or part of a package can be executed using an
anonymous block or a CALL statement. (See "CALL" in Oracle TimesTen In-Memory
Database SQL Reference for details about CALL syntax.)

Consider the following function:

create or replace function mytest return number is
begin
 return 1;
end;

In TimesTen, you can execute mytest in either of the following ways.

■ In an anonymous block:

Command> variable n number;
Command> begin
 > :n := mytest();
 > end;
 > /

How to pass data between an application and PL/SQL

Programming Features in PL/SQL in TimesTen 2-9

PL/SQL procedure successfully completed.

Command> print n;
N : 1

■ In a CALL statement:

Command> variable n number;
Command> call mytest() into :n;
Command> print n;
N : 1

In Oracle Database, you could also execute mytest through a SQL statement, as
follows. This execution mechanism is not supported in TimesTen.

■ In a SELECT statement:

SQL> select mytest from dual;

 MYTEST

 1

How to pass data between an application and PL/SQL
This section covers the following topics for passing data between an application and
PL/SQL:

■ Using bind variables from an application

■ IN, OUT, and IN OUT parameter modes

Refer to "Bind Variables" in Oracle Database PL/SQL Language Reference for additional
information.

Using bind variables from an application
You can use ":var" notation for bind variables to be passed between your application
(such as a C or Java application) and PL/SQL. The term bind variable (or sometimes
host variable) is used equivalently to how the term parameter has historically been used
in TimesTen, and bind variables from an application would correspond to the
parameters declared in a PL/SQL procedure or function specification.

Here is a simple example using ttIsql to call a PL/SQL procedure that retrieves the
name and salary of the employee corresponding to a specified employee ID. In this
example, ttIsql essentially acts as the calling application, and the name and salary
are output from PL/SQL:

Command> VARIABLE b_name VARCHAR2 (25)
Command> VARIABLE b_sal NUMBER

Command> BEGIN
 > query_emp (171, :b_name, :b_sal);
 > END;
 > /

Note: A user's own procedure takes precedence over a TimesTen
built-in procedure with the same name, but it is best to avoid such
naming conflicts.

How to pass data between an application and PL/SQL

2-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

PL/SQL procedure successfully completed.

Command> PRINT b_name
B_NAME : Smith
Command> PRINT b_sal
B_SAL : 7400

See "Examples using input and output parameters and bind variables" on page 5-3 for
the complete example.

See "PL/SQL procedures and functions" on page 2-21 for how to create and define
procedures and functions.

See "Binding parameters and executing statements" in Oracle TimesTen In-Memory
Database C Developer's Guide and "Preparing SQL statements and setting input
parameters" in Oracle TimesTen In-Memory Database Java Developer's Guide for
additional information and examples for those languages.

IN, OUT, and IN OUT parameter modes
Parameter modes define whether parameters declared in a PL/SQL subprogram
(procedure or function) specification are used for input, output, or both. The three
parameter modes are IN (the default), OUT, and IN OUT.

An IN parameter lets you pass a value to the subprogram being invoked. Inside the
subprogram, an IN parameter acts like a constant and cannot be assigned a value. You
can pass a constant, literal, initialized variable, or expression as an IN parameter.

An OUT parameter returns a value to the caller of a subprogram. Inside the
subprogram, an OUT parameter acts like a variable. You can change its value and
reference the value after assigning it.

Notes:

■ The TimesTen binding mechanism (early binding) differs from
that of Oracle Database (late binding). TimesTen requires the data
types before preparing queries. As a result, there will be an error
if the data type of each bind parameter is not specified or cannot
be inferred from the SQL statement. This would apply, for
example, to the following statement:

SELECT 'x' FROM DUAL WHERE :a = :b;

You could address the issue as follows, for example:

SELECT 'x' from DUAL WHERE CAST(:a as VARCHAR2(10)) =
 CAST(:b as VARCHAR2(10));

■ For duplicate parameters, the implementation in PL/SQL in
TimesTen is no different than the implementation in PL/SQL in
Oracle Database.

■ The term "bind parameter" as used in TimesTen developer guides
(in keeping with ODBC terminology) is equivalent to the term
"bind variable" as used in TimesTen PL/SQL documents (in
keeping with Oracle Database PL/SQL terminology).

Use of SQL in PL/SQL programs

Programming Features in PL/SQL in TimesTen 2-11

An IN OUT parameter passes an initial value to a subprogram and returns an updated
value to the caller. It can be assigned a value and its value can be read. Typically, an IN
OUT parameter is a string buffer or numeric accumulator that is read inside the
subprogram and then updated. The actual parameter that corresponds to an IN OUT
formal parameter must be a variable, not a constant or an expression.

See "Examples using input and output parameters and bind variables" on page 5-3.

Use of SQL in PL/SQL programs
PL/SQL is tightly integrated with the TimesTen database through the SQL language.
This section covers use of the following SQL features in PL/SQL.

■ Static SQL in PL/SQL for queries and DML statements

■ Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)

■ FORALL and BULK COLLECT operations

■ RETURNING INTO clause

■ TimesTen PL/SQL with TimesTen Cache

■ Large objects (LOBs)

Static SQL in PL/SQL for queries and DML statements
From within PL/SQL, you can execute the following as static SQL:

■ DML statements: INSERT, UPDATE, DELETE, and MERGE

■ Queries: SELECT

■ Transaction control: COMMIT and ROLLBACK

For information on these SQL statements, refer to "SQL Statements" in Oracle TimesTen
In-Memory Database SQL Reference.

Example 2–10 shows how to execute a query. For additional examples using TimesTen
SQL in PL/SQL, see Chapter 5, "Examples Using TimesTen SQL in PL/SQL".

Example 2–10 Retrieving data with SELECT...INTO

Use the SELECT... INTO statement to retrieve exactly one row of data. TimesTen
returns an error for any query that returns no rows or multiple rows.

Note: TimesTen supports the binding of associative arrays (but not
varrays or nested tables) as IN, OUT, or IN OUT parameters. See "Using
associative arrays from applications" on page 3-6.

Notes:

■ You must use dynamic SQL to execute DDL statements in
PL/SQL. See the next section, "Dynamic SQL in PL/SQL
(EXECUTE IMMEDIATE statement)".

■ See "Differences in TimesTen: transaction behavior" on page 2-31
for details about how TimesTen transaction behavior differs from
Oracle Database behavior.

Use of SQL in PL/SQL programs

2-12 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

This example retrieves hire_date and salary for the employee with employee_id=100
from the employees table of the HR schema.

Command> run selectinto.sql

DECLARE
 v_emp_hiredate employees.hire_date%TYPE;
 v_emp_salary employees.salary%TYPE;

BEGIN
 SELECT hire_date, salary
 INTO v_emp_hiredate, v_emp_salary
 FROM employees
 WHERE employee_id = 100;
 DBMS_OUTPUT.PUT_LINE(v_emp_hiredate || ' ' || v_emp_salary);
END;
/

1987-06-17 24000

PL/SQL procedure successfully completed.

Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)
You can use native dynamic SQL, through the EXECUTE IMMEDIATE statement, to
accomplish any of the following:

■ Execute a DML statement such as INSERT, UPDATE, or DELETE.

■ Execute a DDL statement such as CREATE or ALTER. For example, you can use ALTER
SESSION to change a PL/SQL first connection attribute.

■ Execute a PL/SQL anonymous block.

■ Call a PL/SQL stored procedure or function.

■ Call a TimesTen built-in procedure. (See "Built-In Procedures" in Oracle TimesTen
In-Memory Database Reference.)

One use case is if you do not know the full text of your SQL statement until execution
time. For example, during compilation you may not know the name of the column to
use in the WHERE clause of your SELECT statement. In such a situation, you can use the
EXECUTE IMMEDIATE statement.

Another use case is for DDL, which cannot be executed in static SQL from within
PL/SQL.

To call a TimesTen built-in procedure that returns a result set, create a record type and
use EXECUTE IMMEDIATE with BULK COLLECT to fetch the results into an array.

Example 2–11 provides a set of brief examples of EXECUTE IMMEDIATE. For additional
examples, see "Examples using EXECUTE IMMEDIATE" on page 5-13.

For more information, see "EXECUTE IMMEDIATE Statement" in Oracle Database
PL/SQL Language Reference.

Use of SQL in PL/SQL programs

Programming Features in PL/SQL in TimesTen 2-13

Example 2–11 Using EXECUTE IMMEDIATE to execute PL/SQL

This provides a set of examples using PL/SQL in EXECUTE IMMEDIATE statements. (The
examples are independent of each other.)

Create a table and execute a DML statement on it within a PL/SQL block, specifying
the input parameter through a USING clause. Then select the table to see the result.

Command> create table t(i int);
Command> declare
 > i number := 1;
 > begin
 > execute immediate 'begin insert into t values(:j);end;' using i;
 > end;
 > /

PL/SQL procedure successfully completed.

Command> select * from t;
< 1 >
1 row found.

Create a PL/SQL procedure foo then execute it in a PL/SQL block, specifying the
input parameter through a USING clause:

Command> create or replace procedure foo(message varchar2) is
 > begin
 > dbms_output.put_line(message);
 > end;
 > /

Procedure created.

Command> begin
 > execute immediate 'begin foo(:b);end;' using 'hello';
 > end;
 > /
hello

PL/SQL procedure successfully completed.

Create a PL/SQL procedure myprint then execute it through a CALL statement,
specifying the input parameter through a USING clause:

Command> declare
 > a number := 1;
 > begin

Notes:

■ See "Differences in TimesTen: transaction behavior" on page 2-31
for important information.

■ As a DDL statement is being parsed to drop a procedure or a
package, a timeout occurs if the procedure, or a procedure in the
package, is still in use. After a call to a procedure, that procedure
is considered to be in use until execution has returned to the user
side. Any such deadlock times out after a short time.

■ You can also use the DBMS_SQL package for dynamic SQL. See
"DBMS_SQL" on page 8-8.

Use of SQL in PL/SQL programs

2-14 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 > execute immediate 'call myprint(:b)' using a;
 > end;
 > /
myprint procedure got number 1

PL/SQL procedure successfully completed.

Usage notes for dynamic SQL
Code that is executed through EXECUTE IMMEDIATE generally shares the same
environment as the outer PL/SQL block, as in Oracle Database. In particular, be aware
of the following. (These points apply to using DBMS_SQL as well as EXECUTE
IMMEDIATE.)

■ SQL and PL/SQL executed through EXECUTE IMMEDIATE run in the same
transaction as the outer block.

■ Any exception raised during execution of an EXECUTE IMMEDIATE statement is
propagated to the outer block. Therefore, any errors on the error stack when the
EXECUTE IMMEDIATE statement is executed are visible inside the outer block. This is
useful for procedures such as DBMS_UTILITY.FORMAT_ERROR_STACK.

■ Errors on the error stack prior to execution of a PL/SQL block in an EXECUTE
IMMEDIATE statement are visible inside the block, for example by using DBMS_
UTILITY.FORMAT_ERROR_STACK.

■ The execution environment in which an EXECUTE IMMEDIATE statement executes is
the same as for the outer block. PL/SQL and TimesTen parameters, REF CURSOR
state, and package state from the EXECUTE IMMEDIATE statement are visible inside
the outer block.

FORALL and BULK COLLECT operations
Bulk binding is a powerful feature used in the execution of SQL statements from
PL/SQL to move large amounts of data between SQL and PL/SQL. (This is different
from binding parameters from an application program to PL/SQL.) With bulk
binding, you bind arrays of values in a single operation rather than using a loop to
perform FETCH, INSERT, UPDATE, and DELETE operations multiple times. TimesTen
supports bulk binding, which can result in significant performance improvement.

Use the FORALL statement to bulk-bind input collections before sending them to the
SQL engine. Use BULK COLLECT to bring back batches of results from SQL. You can
bulk-collect into any type of PL/SQL collection, such as a varray, nested table, or
associative array (index-by table). For additional information on collections, refer to
"Using collections in PL/SQL" on page 3-5.

You can use the %BULK_EXCEPTIONS cursor attribute and the SAVE EXCEPTIONS clause
with FORALL statements. SAVE EXCEPTIONS allows an UPDATE, INSERT, or DELETE
statement to continue executing after it issues an exception (for example, a constraint
error). Exceptions are collected into an array that you can examine using %BULK_
EXCEPTIONS after the statement has executed. When you use SAVE EXCEPTIONS, if
exceptions are encountered during the execution of the FORALL statement, then all
rows in the collection are processed. When the statement finishes, an error is issued to
indicate that at least one exception occurred. If you do not use SAVE EXCEPTIONS, then
when an exception is issued during a FORALL statement, the statement returns the
exception immediately and no other rows are processed.

Refer to "Using FORALL Statement and BULK COLLECT Clause Together" in Oracle
Database PL/SQL Language Reference for more information on these features.

Use of SQL in PL/SQL programs

Programming Features in PL/SQL in TimesTen 2-15

Example 2–12 shows basic use of bulk binding and the FORALL statement. For more
information and examples on bulk binding, see "Examples using FORALL and BULK
COLLECT" on page 5-9.

Example 2–12 Using the FORALL statement

In the following example, the PL/SQL program increases the salary for employees
with IDs 100, 102, 104, or 110. The FORALL statement bulk-binds the collection.

Command> CREATE OR REPLACE PROCEDURE raise_salary (p_percent NUMBER) IS
 > TYPE numlist_type IS TABLE OF NUMBER
 > INDEX BY BINARY_INTEGER;
 > v_id numlist_type; -- collection
 > BEGIN
 > v_id(1) := 100; v_id(2) := 102; v_id (3) := 104; v_id (4) := 110;
 > -- bulk-bind the associative array
 > FORALL i IN v_id.FIRST .. v_id.LAST
 > UPDATE employees
 > SET salary = (1 + p_percent/100) * salary
 > WHERE employee_id = v_id (i);
 > END;
 > /

Procedure created.

Find out salaries before executing the raise_salary procedure:

Command> SELECT salary FROM employees WHERE employee_id = 100 OR employee_id =
102 OR employee_id = 104 OR employee_id = 100;
< 24000 >
< 17000 >
< 6000 >
3 rows found.

Execute the procedure and verify results as follows.

Command> EXECUTE raise_salary (10);

PL/SQL procedure successfully completed.

Command> SELECT salary FROM employees WHERE employee_id = 100 or employee_id =
102 OR employee_id = 104 OR employee_id = 100;
< 26400 >
< 18700 >
< 6600 >
3 rows found.

RETURNING INTO clause
You can use a RETURNING INTO clause, sometimes referred to as DML returning, with
an INSERT, UPDATE, or DELETE statement to return specified columns or expressions,
optionally including rowids, from rows that were affected by the action. This
eliminates the need for a subsequent SELECT statement and separate round trip, in
case, for example, you want to confirm what was affected or want the rowid after an
insert or update.

A RETURNING INTO clause can be used with dynamic SQL (with EXECUTE IMMEDIATE) or
static SQL.

Through the PL/SQL BULK COLLECT feature, the clause can return items from a single
row into either a set of parameters or a record, or can return columns from multiple

Use of SQL in PL/SQL programs

2-16 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

rows into a PL/SQL collection such as a varray, nested table, or associative array
(index-by table). Parameters in the INTO part of the clause must be output only, not
input/output. For information on collections, refer to "Using collections in PL/SQL"
on page 3-5. For BULK COLLECT, see "FORALL and BULK COLLECT operations" on
page 2-14 and "Examples using FORALL and BULK COLLECT" on page 5-9.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of the "INSERT", "UPDATE", and "DELETE" documentation in
Oracle TimesTen In-Memory Database SQL Reference.

Also see "Examples using RETURNING INTO" on page 5-16.

Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for
additional information about DML returning.

TimesTen PL/SQL with TimesTen Cache
When PL/SQL programs execute SQL statements, the SQL statements are processed
by TimesTen in the same manner as when SQL is executed from applications written
in other programming languages. All standard behaviors of TimesTen SQL apply. In
an TimesTen Cache environment, this includes the ability to use all cache features
from PL/SQL. When PL/SQL accesses tables in cache groups, the normal rules for
those tables apply. For example, issuing a SELECT statement against a cache instance in
a dynamic cache group may cause the instance to be automatically loaded into
TimesTen from Oracle Database.

In particular, be aware of the following points about this functionality.

■ When you use static SQL in PL/SQL, any tables accessed must exist in TimesTen
or the PL/SQL will not compile successfully. In the following example, ABC must
exist in TimesTen.

begin
 insert into abc values(1, 'Y');
end;

■ In an TimesTen Cache environment, there is the capability to use the TimesTen
passthrough facility to automatically route SQL statements from TimesTen to
Oracle Database. (See "Setting a passthrough level" in Oracle TimesTen
Application-Tier Database Cache User's Guide for details of the passthrough facility.)

With passthrough=1, a statement can be passed through to Oracle Database if any
accessed table does not exist in TimesTen. In PL/SQL, however, the statement
would have to be executed using dynamic SQL.

Updating the preceding example, the following TimesTen PL/SQL block could be
used to access ABC in Oracle Database with passthrough=1:

begin
 execute immediate 'insert into abc values(1, 'Y')';
end;

In this case, TimesTen PL/SQL can compile the block because the SQL statement
is not examined at compile time.

■ While PL/SQL can be executed in TimesTen, in the current release the TimesTen
passthrough facility cannot be used to route PL/SQL blocks from TimesTen to
Oracle Database. For example, when using TimesTen Cache with passthrough=3,
statements executed on a TimesTen connection are routed to Oracle Database in
most circumstances. In this scenario, you may not execute PL/SQL blocks from
your application program, because TimesTen would attempt to forward them to

Use of SQL in PL/SQL programs

Programming Features in PL/SQL in TimesTen 2-17

Oracle Database, which is not supported. (In the passthrough=1 example, it is just
the SQL statement being routed to Oracle Database, not the block as a whole.)

Large objects (LOBs)
TimesTen supports LOBs (large objects). This includes CLOBs (character LOBs),
NCLOBs (national character LOBs), and BLOBs (binary LOBs).

PL/SQL language features support LOBs in TimesTen as they do in Oracle Database,
unless noted otherwise.

This section provides a brief overview of LOBs and discusses their use in PL/SQL,
covering the following topics.

■ About LOBs

■ LOB locators

■ Temporary LOBs

■ Differences between TimesTen LOBs and Oracle Database LOBs

■ Using LOBs

■ PL/SQL package support for LOBs

You can also refer to the following:

■ "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen

■ Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen
functionality)

Important: PL/SQL procedures and functions can use any of the
following cache operations with either definer's rights or invoker's
rights:

■ Loading or refreshing a cache group with commit every n rows

■ DML on AWT cache groups

■ DML on non-propagated cache groups (user managed cache
groups without PROPAGATE enabled)

■ SELECT on cache group tables that do not invoke passthrough or
dynamic load

■ UNLOAD CACHE GROUP

PL/SQL procedures or functions that use any of the following cache
operations must use invoker's rights (AUTHID CURRENT_USER):
passthrough, dynamic loading of a cache group, loading or refreshing
a cache group using WITH ID, DDL on cache groups, DML on SWT
cache groups, or FLUSH CACHE GROUP.

See "Definer's rights and invoker's rights" on page 7-7.

Note: TimesTen does not support CLOBs if the database character
set is TIMESTEN8.

Use of SQL in PL/SQL programs

2-18 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

About LOBs
A LOB is a large binary object (BLOB) or character object (CLOB or NCLOB). In
TimesTen, a BLOB can be up to 16 MB in size and a CLOB or NCLOB up to 4 MB.
LOBs in TimesTen have essentially the same functionality as in Oracle Database,
except as noted otherwise. (See "Differences between TimesTen LOBs and Oracle
Database LOBs" on page 2-19.)

LOBs may be either persistent or temporary. A persistent LOB exists in a LOB column
in the database. A temporary LOB exists only within an application.

LOB locators
In PL/SQL, a LOB consists of a LOB locator and a LOB value. The locator is an opaque
structure that acts as a handle to the value. When an application uses a LOB in an
operation such as passing a LOB as a parameter, it is passing the locator, not the actual
value.

To update a LOB, your transaction must have an exclusive lock on the row containing
the LOB. You can accomplish this by selecting the LOB with a SELECT ... FOR UPDATE
statement. This results in a writable locator. With a simple SELECT statement, the
locator is read-only. Read-only and writable locators behave as follows.

■ A read-only locator is read consistent, meaning that throughout its lifetime, it sees
only the contents of the LOB as of the time it was selected. Note that this would
include any uncommitted updates made to the LOB within the same transaction
prior to when the LOB was selected.

■ A writable locator is updated with the latest data from the database each time a
write is made through the locator. So each write is made to the most current data
of the LOB, including updates that have been made through other locators.

The following example details behavior for two writable locators for the same LOB:

1. The LOB column contains "XY".

2. Select locator L1 for update.

3. Select locator L2 for update.

4. Write "Z" through L1 at offset 1.

5. Read through locator L1. This would return "ZY".

6. Read through locator L2. This would return "XY", because L2 remains
read-consistent until it is used for a write.

7. Write "W" through L2 at offset 2.

8. Read through locator L2. This would return "ZW". Prior to the write in the
preceding step, the locator was updated with the latest data ("ZY").

Important: LOB manipulations through APIs that use LOB locators
result in usage of TimesTen temporary space. Any significant number
of such manipulations may necessitate a size increase for the
TimesTen temporary data region. See "TempSize" in Oracle TimesTen
In-Memory Database Reference.

Use of SQL in PL/SQL programs

Programming Features in PL/SQL in TimesTen 2-19

Temporary LOBs
A PL/SQL block can create a temporary LOB explicitly, for it own use. In TimesTen,
the lifetime of such a LOB does not extend past the end of the transaction in which it is
created (as is the case with the lifetime of any LOB locator in TimesTen).

A temporary LOB may also be created implicitly by TimesTen. For example, if a
SELECT statement selects a LOB concatenated with an additional string of characters,
TimesTen implicitly creates a temporary LOB to contain the concatenated data. Note
that a temporary LOB is a server-side object. TimesTen has no concept of client-side
LOBs.

Temporary LOBs are stored in the TimesTen temporary data region.

See "CREATETEMPORARY procedures" in Oracle TimesTen In-Memory Database
PL/SQL Packages Reference for how to create temporary LOBs.

Differences between TimesTen LOBs and Oracle Database LOBs
Be aware of the following:

■ A key difference between the TimesTen LOB implementation and the Oracle
Database implementation is that in TimesTen, LOB locators do not remain valid
past the end of the transaction. All LOB locators are invalidated after a commit or
rollback, whether explicit or implicit. This includes after any DDL statement if
TimesTen DDLCommitBehavior is set to 0 (the default), for Oracle Database
behavior, which is always the case for PL/SQL users.

■ TimesTen does not support BFILEs, SecureFiles, array reads and writes for LOBs,
or callback functions for LOBs.

■ In TimesTen, the DBMS_LOB FRAGMENT procedures are not supported, so you can
write data into the middle of a LOB only by overwriting previous data. There is no
functionality to insert data into the middle of a LOB and move previous data,
beginning at that point, higher in the LOB correspondingly. Similarly, in TimesTen
you can delete data from the middle of a LOB only by overwriting previous data
with zeros or null data. There is no functionality to remove data from the middle
of a LOB and move previous data, beginning at that point, lower in the LOB
correspondingly. In either case in TimesTen, the size of the LOB does not change,
except in the circumstance where from the specified offset there is less space
available in the LOB than there is data to write. (In Oracle Database there is
functionality for either mode, either overwriting and not changing the size of the
LOB, or inserting or deleting and changing the size of the LOB.)

■ TimesTen does not support binding arrays of LOBs.

■ TimesTen does not support batch processing of LOBs.

■ Relevant to BLOBs, there are differences in the usage of hexadecimal literals in
TimesTen. See the description of HexadecimalLiteral in "Constants" in Oracle
TimesTen In-Memory Database SQL Reference.

Using LOBs
The following shows basic use of a CLOB. Assume a table defined and populated as
follows, with a BLOB column (not used here) and a CLOB column:

Command> create table t1 (a int, b blob, c clob);
Command> insert into t1(a,b,c) values(1, 0x123451234554321, 'abcde');
1 row inserted.
Command> commit;

Use of SQL in PL/SQL programs

2-20 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Select a CLOB from the table and display it:

Command> declare
 > myclob clob;
 > begin
 > select c into myclob from t1 where a=1;
 > dbms_output.put_line('CLOB selected from table t1 is: ' || myclob);
 > end;
 > /
CLOB selected from table t1 is: abcde

PL/SQL procedure successfully completed.

The following tries to display the temporary CLOB again after a commit statement has
ended the transaction, showing that the LOB locator becomes invalid from that point:

Command> declare
 > myclob clob;
 > begin
 > select c into myclob from t1 where a=1;
 > dbms_output.put_line('CLOB selected from table t1 is: ' || myclob);
 > commit;
 > dbms_output.put_line('CLOB after end of transaction is: ' || myclob);
 > end;
 > /
 1806: invalid LOB locator specified
 8507: ORA-06512: at line 8
CLOB selected from table t1 is: abcde
The command failed.

PL/SQL package support for LOBs
TimesTen supports subprograms of the DBMS_LOB package for manipulation of LOB
data.

See "DBMS_LOB" on page 8-2 in this document for a list and descriptions of these
subprograms. See "DBMS_LOB" in Oracle TimesTen In-Memory Database PL/SQL
Packages Reference for further information.

Passthrough LOBs
Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen,
are exposed as TimesTen LOBs and are supported by TimesTen in much the same way
that any TimesTen LOB is supported, but note the following:

■ TimesTen LOB size limitations do not apply to storage of passthrough LOBs, but
do apply to binding. Also, if a passthrough LOB is copied to a TimesTen LOB,
such as through DBMS_LOB.COPY, the size limit applies to the copy.

An attempt to copy a passthrough LOB to a TimesTen LOB when the passthrough
LOB is larger than the TimesTen LOB size limit results in an error.

■ As with TimesTen local LOBs, a locator for a passthrough LOB does not remain
valid past the end of the transaction.

See "DBMS_LOB" on page 8-2 in this document for information about DBMS_LOB
support for passthrough LOBs.

PL/SQL procedures and functions

Programming Features in PL/SQL in TimesTen 2-21

Use of cursors in PL/SQL programs
A cursor, either explicit or implicit, is used to handle the result set of a SELECT
statement. As a programmer, you can declare an explicit cursor to manage queries that
return multiple rows of data. PL/SQL declares and opens an implicit cursor for any
SELECT statement that is not associated with an explicit cursor.

Example 2–13 shows basic use of a cursor. See "Examples using cursors" on page 5-6
for additional information and examples. Also see "PL/SQL REF CURSORs" on
page 3-7.

Example 2–13 Using a cursor to retrieve information about an employee

Declare a cursor c1 to retrieve the last name, salary, hire date, and job class for the
employee whose employee ID is 120.

Command> DECLARE
 > CURSOR c1 IS
 > SELECT last_name, salary, hire_date, job_id FROM employees
 > WHERE employee_id = 120;
 > --declare record variable that represents a row
 > --fetched from the employees table
 > employee_rec c1%ROWTYPE;
 > BEGIN
 > -- open the explicit cursor
 > -- and use it to fetch data into employee_rec
 > OPEN c1;
 > FETCH c1 INTO employee_rec;
 > DBMS_OUTPUT.PUT_LINE('Employee name: ' || employee_rec.last_name);
 > CLOSE c1;
 > END;
 > /
Employee name: Weiss

PL/SQL procedure successfully completed.

PL/SQL procedures and functions
Procedures and functions are PL/SQL blocks that have been defined with a specified
name.

Creating and using procedures and functions
Standalone subprograms (stored procedures or functions) are created at the database
level with the CREATE PROCEDURE or CREATE FUNCTION statement.

Optionally use CREATE OR REPLACE PROCEDURE or CREATE OR REPLACE FUNCTION if you
want the subprogram to be replaced if it already exists.

Important: Be aware that in TimesTen, any operation that ends your
transaction closes all cursors associated with the connection. This
includes any COMMIT or ROLLBACK statement. This also includes any
DDL statement executed when PL/SQL is enabled, because the
DDLCommitBehavior connection must be set to 0 (Oracle Database
behavior) if PL/SQL is enabled. This results in autocommits of DDL
statements. See "Differences in TimesTen: transaction behavior" on
page 2-31 for additional information.

PL/SQL procedures and functions

2-22 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Use ALTER PROCEDURE or ALTER FUNCTION to explicitly compile a procedure or function
or modify the compilation options. (To recompile a procedure or function that is part
of a package, recompile the package using the ALTER PACKAGE statement.)

In TimesTen, syntax for CREATE PROCEDURE and CREATE FUNCTION is a subset of what is
supported in Oracle Database. For information on these statements and the ALTER
PROCEDURE and ALTER FUNCTION statements in TimesTen, see "SQL Statements" in
Oracle TimesTen In-Memory Database SQL Reference.

Also see "How to execute PL/SQL procedures and functions" on page 2-8.

Example 2–14 Create and execute a procedure with OUT parameters

This example creates a procedure that uses OUT parameters, executes the procedure in
an anonymous block, then displays the OUT values. The procedure takes an employee
ID as input then outputs the salary and job ID for the employee.

Command> CREATE OR REPLACE PROCEDURE get_employee
 > (p_empid in employees.employee_id%TYPE,
 > p_sal OUT employees.salary%TYPE,
 > p_job OUT employees.job_id%TYPE) IS
 > BEGIN
 > SELECT salary,job_id
 > INTO p_sal, p_job
 > FROM employees
 > WHERE employee_id = p_empid;
 > END;
 > /

Notes:

■ If you use replication: PL/SQL DDL statements, such as CREATE
statements for PL/SQL functions, procedures, and packages, are
not replicated. See "Creating a new PL/SQL object in an existing
active standby pair" and "Adding a PL/SQL object to an existing
replication scheme" in Oracle TimesTen In-Memory Database
Replication Guide for steps to address this.

■ If you use TimesTen Cache: A PL/SQL procedure or function
resident in Oracle Database cannot be called in TimesTen by
passthrough. Procedures and functions must be defined in
TimesTen to be executable in TimesTen. (Also see "TimesTen
PL/SQL with TimesTen Cache" on page 2-16.)

■ PL/SQL and database object names: TimesTen does not support
non-ASCII or quoted non-uppercase names of PL/SQL objects
(procedures, functions, and packages). Also, trailing spaces in the
quoted names of PL/SQL objects are not supported. In addition,
trailing spaces in the quoted names of objects such as tables and
views that are passed to PL/SQL are silently removed.

■ Definer's rights or invoker's rights determines access to SQL
objects used by a PL/SQL procedure or function. For information,
refer to "Definer's rights and invoker's rights" on page 7-7.

■ See "Showing errors in ttIsql" on page 4-6 for how to get
information when you encounter errors in compiling a procedure
or function.

PL/SQL procedures and functions

Programming Features in PL/SQL in TimesTen 2-23

Procedure created.

Command> VARIABLE v_salary NUMBER;
Command> VARIABLE v_job VARCHAR2(15);
Command> BEGIN
 > GET_EMPLOYEE (120, :v_salary, :v_job);
 > END;
 > /

PL/SQL procedure successfully completed.

Command> PRINT
V_SALARY : 8000
V_JOB : ST_MAN

Command> SELECT salary, job_id FROM employees WHERE employee_id = 120;
< 8000, ST_MAN >
1 row found.

Example 2–15 Create and call a function

This example creates a function that returns the salary of the employee whose
employee ID is specified as input, then calls the function and displays the result that
was returned.

Command> CREATE OR REPLACE FUNCTION get_sal
 > (p_id employees.employee_id%TYPE) RETURN NUMBER IS
 > v_sal employees.salary%TYPE := 0;
 > BEGIN
 > SELECT salary INTO v_sal FROM employees
 > WHERE employee_id = p_id;
 > RETURN v_sal;
 > END get_sal;
 > /

Function created.

Command> variable n number;
Command> call get_sal(100) into :n;
Command> print n;
N : 24000

Note: Instead of using the anonymous block shown in the preceding
example, you could use a CALL statement:

Command> CALL GET_EMPLOYEE(120, :v_salary, :v_job);

Note: Instead of using the CALL statement shown in the preceding
example, you could use an anonymous block:

Command> begin
 > :n := get_sal(100);
 > end;
 > /

PL/SQL procedures and functions

2-24 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Using synonyms for procedures and functions
TimesTen supports private and public synonyms (aliases) for database objects,
including PL/SQL procedures, functions, and packages. Synonyms are often used to
mask object names and object owners or to simplify SQL statements.

Create a private synonym for procedure foo in your schema as follows:

CREATE SYNONYM synfoo FOR foo;

Create a public synonym as follows:

CREATE PUBLIC SYNONYM pubfoo FOR foo;

A private synonym exists in the schema of a specific user and shares the same
namespace as database objects such as tables, views, and sequences. A private
synonym cannot have the same name as a table or other object in the same schema.

A public synonym does not belong to any particular schema, is accessible to all users,
and can have the same name as any private object.

To use a synonym you must have appropriate privileges to access the underlying
object. For required privileges to create or drop a synonym, see "Required privileges
for PL/SQL statements and operations" on page 7-1.

For general information about synonyms, see "Understanding synonyms" in Oracle
TimesTen In-Memory Database Operations Guide. For information about the CREATE
SYNONYM and DROP SYNONYM statements, see "SQL Statements" in Oracle TimesTen
In-Memory Database SQL Reference.

Example 2–16 Use a synonym for a procedure

In the following example, USER1 creates a procedure in his schema and creates a public
synonym for it. Then USER2 executes the procedure through the public synonym.
Assume the following:

■ USER1 has been granted CREATE SESSION, CREATE PROCEDURE, and CREATE PUBLIC
SYNONYM privileges.

■ USER2 has been granted CREATE SESSION and EXECUTE ANY PROCEDURE privileges.

■ Both users have connected to the database.

■ USER2 employs the SET SERVEROUTPUT ON setting.

USER1:

Command> create or replace procedure test is
 > begin
 > dbms_output.put_line('Running the test');
 > end;
 > /

Procedure created.

Command> create public synonym pubtest for test;

Synonym created.

USER2:

Command> begin
 > pubtest;
 > end;

PL/SQL packages

Programming Features in PL/SQL in TimesTen 2-25

 > /
Running the test

PL/SQL procedure successfully completed.

PL/SQL packages
This section discusses how to create and use PL/SQL packages.

For information about PL/SQL packages provided with TimesTen, refer to Chapter 8,
"TimesTen Supplied PL/SQL Packages."

Package concepts
A package is a database object that groups logically related PL/SQL types, variables,
and subprograms. You specify the package and then define its body in separate steps.

The package specification is the interface to the package, declaring the public types,
variables, constants, exceptions, cursors, and subprograms that are visible outside the
immediate scope of the package. The body defines the objects declared in the
specification, as well as queries for the cursors, code for the subprograms, and private
objects that are not visible to applications outside the package.

TimesTen stores the package specification separately from the package body in the
database. Other schema objects that call or reference public program objects depend
only on the package specification, not on the package body.

Creating and using packages
To create packages and store them permanently in the database, use the CREATE
PACKAGE and CREATE PACKAGE BODY statements.

To create a new package, do the following:

1. Create the package specification with the CREATE PACKAGE statement.

You can declare program objects in the package specification. Such objects are
referred to as public objects and can be referenced outside the package, and by
other objects in the package.

Optionally use CREATE OR REPLACE PACKAGE if you want the package specification
to be replaced if it already exists.

2. Create the package body with the CREATE PACKAGE BODY (or CREATE OR REPLACE
PACKAGE BODY) statement.

You can declare and define program objects in the package body.

■ You must define public objects declared in the package specification.

■ You can declare and define additional package objects, referred to as private
objects. Private objects are declared in the package body rather than in the
package specification, so they can be referenced only by other objects in the
package. They cannot be referenced outside the package.

Note: The syntax for creating packages and package bodies is the
same as in Oracle Database; however, while Oracle Database
documentation mentions that you must run a script named
DBMSSTDX.SQL, this does not apply to TimesTen.

PL/SQL packages

2-26 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Use ALTER PACKAGE to explicitly compile the member procedures and functions of a
package or modify the compilation options.

For more information on the CREATE PACKAGE, CREATE PACKAGE BODY, and ALTER
PACKAGE statements, see "SQL Statements" in Oracle TimesTen In-Memory Database SQL
Reference.

Example 2–17 Create and use a package

Consider the case where you want to add a row to the employees tables when you hire
a new employee and delete a row from the employees table when an employee leaves
your company. The following example creates two procedures to accomplish these
tasks and bundles the procedures in a package. The package also contains a function
to return the count of employees with a salary greater than that of a specific employee.
The example then executes the function and procedures and verifies the results.

Command> CREATE OR REPLACE PACKAGE emp_actions AS
 > PROCEDURE hire_employee (employee_id NUMBER,
 > last_name VARCHAR2,
 > first_name VARCHAR2,
 > email VARCHAR2,
 > phone_number VARCHAR2,
 > hire_date DATE,
 > job_id VARCHAR2,
 > salary NUMBER,
 > commission_pct NUMBER,
 > manager_id NUMBER,
 > department_id NUMBER);
 > PROCEDURE remove_employee (emp_id NUMBER);
 > FUNCTION num_above_salary (emp_id NUMBER) RETURN NUMBER;
 > END emp_actions;
 > /

Package created.

Command> -- Package body:
 > CREATE OR REPLACE PACKAGE BODY emp_actions AS
 > -- Code for procedure hire_employee:
 > PROCEDURE hire_employee (employee_id NUMBER,
 > last_name VARCHAR2,
 > first_name VARCHAR2,
 > email VARCHAR2,
 > phone_number VARCHAR2,
 > hire_date DATE,
 > job_id VARCHAR2,
 > salary NUMBER,
 > commission_pct NUMBER,

Notes:

■ If you use replication: PL/SQL DDL statements, such as CREATE
statements for PL/SQL functions, procedures, and packages, are
not replicated. See "Creating a new PL/SQL object in an existing
active standby pair" and "Adding a PL/SQL object to an existing
replication scheme" in Oracle TimesTen In-Memory Database
Replication Guide for steps to address this.

■ See "Showing errors in ttIsql" on page 4-6 for how to get
information when you encounter errors in compiling a package.

PL/SQL packages

Programming Features in PL/SQL in TimesTen 2-27

 > manager_id NUMBER,
 > department_id NUMBER) IS
 > BEGIN
 > INSERT INTO employees VALUES (employee_id,
 > last_name,
 > first_name,
 > email,
 > phone_number,
 > hire_date,
 > job_id,
 > salary,
 > commission_pct,
 > manager_id,
 > department_id);
 > END hire_employee;
 > -- Code for procedure remove_employee:
 > PROCEDURE remove_employee (emp_id NUMBER) IS
 > BEGIN
 > DELETE FROM employees WHERE employee_id = emp_id;
 > END remove_employee;
 > -- Code for function num_above_salary:
 > FUNCTION num_above_salary (emp_id NUMBER) RETURN NUMBER IS
 > emp_sal NUMBER(8,2);
 > num_count NUMBER;
 > BEGIN
 > SELECT salary INTO emp_sal FROM employees
 > WHERE employee_id = emp_id;
 > SELECT COUNT(*) INTO num_count FROM employees
 > WHERE salary > emp_sal;
 > RETURN num_count;
 > END num_above_salary;
 > END emp_actions;
 > /

Package body created.

Command> BEGIN
 > /* call function to return count of employees with salary
 > greater than salary of employee with employee_id = 120
 > */
 > DBMS_OUTPUT.PUT_LINE
 > ('Number of employees with higher salary: ' ||
 > TO_CHAR(emp_actions.num_above_salary(120)));
 > END;
 > /
Number of employees with higher salary: 33

PL/SQL procedure successfully completed.

Verify the count of 33.

Command> SELECT salary FROM employees WHERE employee_id = 120;
< 8000 >
1 row found.

Command> SELECT COUNT (*) FROM employees WHERE salary > 8000;
< 33 >
1 row found.

PL/SQL packages

2-28 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Now add an employee and verify results. Then, remove the employee and verify that
the employee was deleted from the employees table.

Command> BEGIN
 > emp_actions.hire_employee(300,
 > 'Belden',
 > 'Enrique',
 > 'EBELDEN',
 > '555.111.2222',
 > '31-AUG-04',
 > 'AC_MGR',
 > 9000,
 > .1,
 > 101,
 > 110);
 > END;
 > /

PL/SQL procedure successfully completed.

Command> SELECT * FROM employees WHERE employee_id = 300;
< 300, Belden, Enrique, EBELDEN, 555.111.2222, 2004-08-31 00:00:00, AC_MGR, 9000,
.1, 101, 110 >
1 row found.
Command> BEGIN
 > emp_actions.remove_employee (300);
 > END;
 > /

PL/SQL procedure successfully completed.

Command> SELECT * FROM employees WHERE employee_id = 300;
0 rows found.

Using synonyms for packages
TimesTen supports private and public synonyms (aliases) for database objects,
including PL/SQL procedures, functions, and packages. Synonyms are often used to
mask object names and object owners or to simplify SQL statements.

To create a private synonym for package foopkg in your schema:

CREATE SYNONYM synfoopkg FOR foopkg;

To create a public synonym for foopkg:

CREATE PUBLIC SYNONYM pubfoopkg FOR foopkg;

Also see "Using synonyms for procedures and functions" on page 2-24 and "Required
privileges for PL/SQL statements and operations" on page 7-1.

Wrapping PL/SQL source code

Programming Features in PL/SQL in TimesTen 2-29

Wrapping PL/SQL source code
Wrapping is the process of hiding PL/SQL source code. You can wrap PL/SQL source
code with the wrap utility, which processes an input SQL file and wraps only the
PL/SQL units in the file, such as a package specifications, package bodies, functions,
and procedures.

Consider the following example, which uses a file wrap_test.sql to define a
procedure named wraptest. It then uses the wrap utility to process wrap_test.sql.
The procedure is created with the source code hidden, and executes successfully. As a
final step, the ALL_OBJECTS view is queried to see the wrapped source code.

Here are the contents of wrap_test.sql:

CREATE OR REPLACE PROCEDURE wraptest IS
 TYPE emp_tab IS TABLE OF employees%ROWTYPE INDEX BY PLS_INTEGER;
 all_emps emp_tab;
BEGIN
 SELECT * BULK COLLECT INTO all_emps FROM employees;
 FOR i IN 1..10
 LOOP
 DBMS_OUTPUT.PUT_LINE('Emp Id: ' || all_emps(i).employee_id);
 END LOOP;
END;
/

In the example that follows, "$" is the UNIX prompt, "Command>" is the ttIsql prompt,
and user input is shown in bold.

$ wrap iname=wrap_test.sql

PL/SQL Wrapper: Release 11.2.0.2.0- Production on Wed Sep 14 12:59:27 2011

Copyright (c) 1993, 2009, Oracle. All rights reserved.

Processing wrap_test.sql to wrap_test.plb

$ cat wrap_test.plb
CREATE OR REPLACE PROCEDURE wraptest wrapped
a000000
1
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd

Note: You cannot create synonyms for individual member
subprograms of a package.

This is valid:

create or replace public synonym pubtestpkg for testpkg;

This is not valid:

create or replace public synonym pubtestproc for testpkg.testproc;

Wrapping PL/SQL source code

2-30 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

abcd
abcd
abcd
abcd
abcd
abcd
abcd
7
124 12c
YZ6L0v2ntFaqttW8hSJD5IHIYccwg+nwNfZqfHQCv/9kMJyznwdLh8FepNXpWS1fzVBDkTke
LWlhFdFzCMfmmJ5GGrCwrqgngEhfRpq7ck5Dzsf7sDlnQeE3QGmb/yu9Dec1+JO2kOMlx3dq
BuC7fR2f5sjDtBeDXiGCC0kJ5QBVregtoBckZNO9MoiWS4w0jF6T1CPY0Aoi/KUwxC8S8I8n
amF5xGQDCYTDajs77orIGEqtX747k0YAO+r1e9adGUsVgZK1ONcTM/+Wit+LYKi7b03eJxdB
+aaKn/Lh

/

$ ttisql sampledb_1122

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=sampledb_1122";
Connection successful:
DSN=sampledb_1122;UID=myuserid;DataStore=.../install/info/DemoDataStore/
sampledb_1122;DatabaseCharacterSet=US7ASCII;ConnectionCharacterSet=US7ASCII;DRIVER
=.../install/lib/libtten.so;PermSize=40;TempSize=32;TypeMode=0;
(Default setting AutoCommit=1)

Command> @wrap_test.plb

CREATE OR REPLACE PROCEDURE wraptest wrapped
a000000
1
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
7
124 12c
YZ6L0v2ntFaqttW8hSJD5IHIYccwg+nwNfZqfHQCv/9kMJyznwdLh8FepNXpWS1fzVBDkTke
LWlhFdFzCMfmmJ5GGrCwrqgngEhfRpq7ck5Dzsf7sDlnQeE3QGmb/yu9Dec1+JO2kOMlx3dq
BuC7fR2f5sjDtBeDXiGCC0kJ5QBVregtoBckZNO9MoiWS4w0jF6T1CPY0Aoi/KUwxC8S8I8n
amF5xGQDCYTDajs77orIGEqtX747k0YAO+r1e9adGUsVgZK1ONcTM/+Wit+LYKi7b03eJxdB
+aaKn/Lh

Procedure created.

Command> SET SERVEROUTPUT ON

Differences in TimesTen: transaction behavior

Programming Features in PL/SQL in TimesTen 2-31

Command> BEGIN
 > wraptest();
 > END;
 > /
Emp Id: 100
Emp Id: 101
Emp Id: 102
Emp Id: 103
Emp Id: 104
Emp Id: 105
Emp Id: 106
Emp Id: 107
Emp Id: 108
Emp Id: 109

PL/SQL procedure successfully completed.

Command> SELECT text FROM all_source WHERE name = 'WRAPTEST';

< PROCEDURE wraptest wrapped
a000000
1
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
7
124 12c
YZ6L0v2ntFaqttW8hSJD5IHIYccwg+nwNfZqfHQCv/9kMJyznwdLh8FepNXpWS1fzVBDkTke
LWlhFdFzCMfmmJ5GGrCwrqgngEhfRpq7ck5Dzsf7sDlnQeE3QGmb/yu9Dec1+JO2kOMlx3dq
BuC7fR2f5sjDtBeDXiGCC0kJ5QBVregtoBckZNO9MoiWS4w0jF6T1CPY0Aoi/KUwxC8S8I8n
amF5xGQDCYTDajs77orIGEqtX747k0YAO+r1e9adGUsVgZK1ONcTM/+Wit+LYKi7b03eJxdB
+aaKn/Lh

 >
1 row found.

Differences in TimesTen: transaction behavior
In TimesTen, any operation that ends your transaction closes all cursors associated
with the connection. This includes the following:

■ Any COMMIT or ROLLBACK statement

■ For PL/SQL users, any DDL statement

This is because when PL/SQL is enabled (the PLSQL first connection attribute is set
to 1), the TimesTen DDLCommitBehavior general connection attribute must be set to
0 for Oracle Database behavior (autocommit DDL).

Differences in TimesTen: transaction behavior

2-32 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

For example, consider the following scenario, where you want to recompile a set of
procedures. This would not work, because the first time ALTER PROCEDURE is executed,
the cursor (pnamecurs) would be closed:

declare
 cursor pnamecurs is select * from all_objects where object_name like 'MYPROC%';
begin
 for rec in pnamecurs loop
 execute immediate 'alter procedure ' || rec.object_name || ' compile';
 end loop;
end;

Instead, you can do something like the following, which fetches all the procedure
names into an internal table then executes ALTER PROCEDURE on them with no active
cursor.

declare
 cursor pnamecurs is select * from all_objects where object_name like 'MYPROC%';
 type tbl is table of c%rowtype index by binary_integer;
 myprocs tbl;

begin
 open pnamecurs;
 fetch pnamecurs bulk collect into myprocs;
 close pnamecurs;
 for i in 1..myprocs.count loop
 execute immediate 'alter procedure ' || myprocs(i).object_name || ' compile';
 end loop;
end;

3

Data Types in PL/SQL in TimesTen 3-1

3Data Types in PL/SQL in TimesTen

This chapter focuses on the range of data types available to you for manipulating data
in PL/SQL, TimesTen SQL, and your application programs.

TimesTen supports PL/SQL data types and the interactions between PL/SQL data
types, TimesTen data types, and client application program data types. Data type
conversions and data type mappings are supported.

See the end of the chapter for TimesTen-specific considerations.

Topics in this chapter include the following:

■ Understanding the data type environments

■ Understanding and using PL/SQL data types

■ Data type conversion

■ Differences in TimesTen: data type considerations

Understanding the data type environments
There are three distinct environments to consider when discussing data types:

■ PL/SQL programs that contain variables and constants that use PL/SQL data
types

■ TimesTen SQL statements that make use of database rows, columns, and constants

These elements are expressed using TimesTen SQL data types.

■ Application programs that interact with the database and the PL/SQL
programming language

Application programs are written in programming languages such as C and Java
and contain variables and constants that use data types from these programming
languages.

Table 3–1 summarizes the environments and gives examples of data types for each
environment.

Table 3–1 Summarizing the data type environments

Environment Data type examples

PL/SQL programs NUMBER, PLS_INTEGER, VARCHAR2, STRING, DATE, TIMESTAMP

TimesTen SQL statements TT_BIGINT, TT_INTEGER, BINARY_FLOAT, VARCHAR2, DATE,
TIMESTAMP

Application programs int, double, String

Understanding and using PL/SQL data types

3-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Understanding and using PL/SQL data types
This section describes the PL/SQL data types that are supported in PL/SQL programs.
It does not describe the data types supported in TimesTen SQL statements. For
information on data types supported in TimesTen SQL statements, see "Data Types" in
Oracle TimesTen In-Memory Database SQL Reference.

The following topics are covered in this section:

■ PL/SQL data type categories

■ Predefined PL/SQL scalar data types

■ PL/SQL composite data types

■ PL/SQL REF CURSORs

For additional information see "PL/SQL Data Types" in Oracle Database PL/SQL
Language Reference.

PL/SQL data type categories
In a PL/SQL block, every constant, variable, and parameter has a data type. PL/SQL
provides predefined data types and subtypes and lets you define your own PL/SQL
subtypes.

Table 3–2 lists the categories of the predefined PL/SQL data types.

Predefined PL/SQL scalar data types
Scalar data types store single values with no internal components. Table 3–3 lists
predefined PL/SQL scalar data types of interest, grouped by data type families.

Table 3–2 Predefined PL/SQL data type categories

Data type category Description

Scalar Single values with no internal components

Composite Internal components that are either scalar or composite

Reference Pointers to other data items such as REF CURSORs

Note: See "Non-supported data types" on page 3-13.

Table 3–3 Predefined PL/SQL scalar data types

Data type family Data type name

NUMERIC NUMBER

PLS_INTEGER

BINARY_FLOAT

BINARY_DOUBLE

CHARACTER CHAR[ACTER]

VARCHAR2

NCHAR (national character CHAR)

NVARCHAR2 (national character VARCHAR2)

BINARY RAW

Understanding and using PL/SQL data types

Data Types in PL/SQL in TimesTen 3-3

Example 3–1 Declaring PL/SQL variables

Command> DECLARE
 > v_emp_job VARCHAR2 (9);
 > v_count_loop BINARY_INTEGER := 0;
 > v_dept_total_sal NUMBER (9,2) := 0;
 > v_orderdate DATE := SYSDATE + 7;
 > v_valid BOOLEAN NOT NULL := TRUE;
 > ...

PLS_INTEGER and BINARY_INTEGER data types
The PLS_INTEGER and BINARY_INTEGER data types are identical and are used
interchangeably in this document.

The PLS_INTEGER data type stores signed integers in the range -2,147,483,648 through
2,147,483,647 represented in 32 bits. It has the following advantages over the NUMBER
data type and subtypes:

■ PLS_INTEGER values require less storage.

■ PLS_INTEGER operations use hardware arithmetic, so they are faster than NUMBER
operations, which use library arithmetic.

For efficiency, use PLS_INTEGER values for all calculations that fall within its range. For
calculations outside the PLS_INTEGER range, use INTEGER, a predefined subtype of the
NUMBER data type.

See "PLS_INTEGER and BINARY_INTEGER Data Types" in Oracle Database PL/SQL
Language Reference for additional information.

BOOLEAN BOOLEAN

Note: You cannot bind BOOLEAN types in SQL statements.

DATETIME DATE

TIMESTAMP

INTERVAL INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECONDS

ROWID ROWID

LOB BLOB (binary LOB)

CLOB (character LOB)

NCLOB (national character LOB)

Note: See "Non-supported data types" on page 3-13.

Note: When a calculation with two PLS_INTEGER data types
overflows the PLS_INTEGER range, an overflow exception is raised
even if the result is assigned to a NUMBER data type.

Table 3–3 (Cont.) Predefined PL/SQL scalar data types

Data type family Data type name

Understanding and using PL/SQL data types

3-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

SIMPLE_INTEGER data type
SIMPLE_INTEGER is a predefined subtype of the PLS_INTEGER data type that has the
same range as PLS_INTEGER (-2,147,483,648 through 2,147,483,647) and has a NOT NULL
constraint. It differs from PLS_INTEGER in that it does not overflow.

You can use SIMPLE_INTEGER when the value is never null and overflow checking is
unnecessary. Without the overhead of checking for null values and overflow, SIMPLE_
INTEGER provides better performance than PLS_INTEGER.

See "SIMPLE_INTEGER Subtype of PLS_INTEGER" in Oracle Database PL/SQL
Language Reference for additional information.

ROWID data type
Each row in a table has a unique identifier known as its rowid.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

Also refer to "ROWID data type" and "ROWID" in Oracle TimesTen In-Memory Database
SQL Reference for additional information about rowids and the ROWID data type,
including usage and life.

LOB data types
The LOB (large object) type family includes CLOB (character LOBs), NCLOB (national
character LOBs), and BLOB (binary LOBs).

A LOB consists of a LOB locator and a LOB value. The locator acts as a handle to the
value. When an application selects a LOB or passes a LOB as a parameter, for example,
it is using the locator, not the actual value.

LOBs may be either persistent or temporary. A persistent LOB exists in the database,
in a particular row of a LOB column. A temporary LOB is used internally within a
program, but could then be inserted into a LOB column in the database to become a
persistent LOB.

See "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen.

Also see "Large objects (LOBs)" on page 2-17 for usage information.

PL/SQL composite data types
Composite types have internal components that can be manipulated individually, such
as the elements of an array, record, or table.

Oracle TimesTen In-Memory Database supports the following composite data types:

■ Associative array (index-by table)

■ Nested table

■ Varray

■ Record

Associative arrays, nested tables, and varrays are also referred to as collections.

The following sections discuss the use of composite data types:

■ Using collections in PL/SQL

■ Using records in PL/SQL

Understanding and using PL/SQL data types

Data Types in PL/SQL in TimesTen 3-5

■ Using associative arrays from applications

See "PL/SQL Collections and Records" in Oracle Database PL/SQL Language Reference
for additional information.

Using collections in PL/SQL
You can declare collection data types similar to arrays, sets, and hash tables found in
other languages. A collection is an ordered group of elements, all of the same type.
Each element has a unique subscript that determines its position in the collection.

In PL/SQL, array types are known as varrays (variable size arrays), set types are
known as nested tables, and hash table types are known as associative arrays or index-by
tables. These are all collection types.

Example 3–2 Using a PL/SQL collection type

This example declares collection type staff_list as a table of employee_id, then uses
the collection type in a loop and in the WHERE clause of the SELECT statement.

Command> DECLARE
 > TYPE staff_list IS TABLE OF employees.employee_id%TYPE;
 > staff staff_list;
 > lname employees.last_name%TYPE;
 > fname employees.first_name%TYPE;
 > BEGIN
 > staff := staff_list(100, 114, 115, 120, 122);
 > FOR i IN staff.FIRST..staff.LAST LOOP
 > SELECT last_name, first_name INTO lname, fname FROM employees
 > WHERE employees.employee_id = staff(i);
 > DBMS_OUTPUT.PUT_LINE (TO_CHAR(staff(i)) ||
 > ': ' || lname || ', ' || fname);
 > END LOOP;
 > END;
 > /
100: King, Steven
114: Raphaely, Den
115: Khoo, Alexander
120: Weiss, Matthew
122: Kaufling, Payam

PL/SQL procedure successfully completed.

Any collections can be passed between PL/SQL subprograms as parameters, but in
TimesTen only associative arrays can be passed between PL/SQL and applications
written in other languages. (See "Using associative arrays from applications" below.)

You can use collections to move data in and out of TimesTen tables using bulk SQL.

Using records in PL/SQL
Records are composite data structures that have fields with different data types. You
can pass records to subprograms with a single parameter. You can also use the
%ROWTYPE attribute to declare a record that represents a row in a table or a row from a
query result set, without specifying the names and types for the fields, as shown in
Example 2–2 on page 2-3.

Example 3–3 Declaring a record type

Declare various record types.

Understanding and using PL/SQL data types

3-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Command> DECLARE
 > TYPE timerec IS RECORD (hours SMALLINT, minutes SMALLINT);
 > TYPE meetin_typ IS RECORD (
 > date_held DATE,
 > duration timerec, -- nested record
 > location VARCHAR2(20),
 > purpose VARCHAR2(50));
 > BEGIN
 > ...
 > END;
 > /

Using associative arrays from applications
Associative arrays, formerly known as index-by tables or PL/SQL tables, are
supported as IN, OUT, or IN OUT bind parameters in TimesTen PL/SQL, such as from
an OCI, Pro*C/C++, or JDBC application. This enables arrays of data to be passed
efficiently between an application and the database.

An associative array is a set of key-value pairs. In TimesTen, for associative array
binding (but not for use of associative arrays only within PL/SQL), the keys, or
indexes, must be integers (BINARY_INTEGER or PLS_INTEGER). The values must be
simple scalar values of the same data type. For example, there could be an array of
department managers indexed by department numbers. Indexes are stored in sort
order, not creation order.

You can declare an associative array type and then an associative array in PL/SQL as
in the following example (note the INDEX BY):

declare
 TYPE VARCHARARRTYP IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
 x VARCHARARRTYP;
 ...

See Example 3–4 below and "Using associative arrays" on page 5-5 for examples.

Also see "Associative array bindings in TimesTen OCI" and "Associative array
bindings in TimesTen Pro*C/C++" in Oracle TimesTen In-Memory Database C
Developer's Guide, and "Binding associative arrays" in Oracle TimesTen In-Memory
Database Java Developer's Guide.

For general information about associative arrays, see "Associative Arrays" in Oracle
Database PL/SQL Language Reference.

The following example does some simple manipulation of an associative array,
effectively binding it from ttIsql and printing the array.

Notes: Note the following restrictions in TimesTen:

■ The following types are not supported in binding associative
arrays: LOBs, REF CURSORs, TIMESTAMP, ROWID.

■ Associative array binding is not allowed in passthrough
statements.

■ General bulk binding of arrays is not supported in TimesTen
programmatic APIs. Varrays and nested tables are not supported
as bind parameters.

Understanding and using PL/SQL data types

Data Types in PL/SQL in TimesTen 3-7

Example 3–4 Using an associative array from ttIsql

Command> var lngvc[1000] varchar2(30);
Command> declare
> TYPE VARCHARARRTYP IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
> x VARCHARARRTYP;
> begin
> x := :lngvc;
> x (1) := 'One';
> x (10) := 'Ten';
> :lngvc := x;
> end;
> /

PL/SQL procedure successfully completed.

Command> print lngvc;
LNGVC : ARRAY [1000] (Current Size 10)
LNGVC[1] : One
LNGVC[2] : <NULL>
LNGVC[3] : <NULL>
LNGVC[4] : <NULL>
LNGVC[5] : <NULL>
LNGVC[6] : <NULL>
LNGVC[7] : <NULL>
LNGVC[8] : <NULL>
LNGVC[9] : <NULL>
LNGVC[10] : Ten

PL/SQL REF CURSORs
A REF CURSOR is a handle to a cursor over a SQL result set that can be passed as a
parameter between PL/SQL and an application. TimesTen supports OUT REF
CURSORs, from PL/SQL to the application. The application would open the REF
CURSOR within PL/SQL, pass it from there through the applicable API, and fetch the
result set.

TimesTen supports REF CURSORs in ODBC, JDBC, ODP.NET, OCI, Pro*C/C++, and
TTClasses for either direct connections or client/server connections. REF CURSORs
are also discussed in the following TimesTen documents:

■ "Working with REF CURSORs" in Oracle TimesTen In-Memory Database C
Developer's Guide

■ "Working with REF CURSORs" in Oracle TimesTen In-Memory Database Java
Developer's Guide

■ "Working with REF CURSORs" in Oracle TimesTen In-Memory Database TTClasses
Guide

You can define a REF CURSOR in PL/SQL in TimesTen as you would in Oracle
Database. (See "Cursor Variables" in Oracle Database PL/SQL Language Reference.) It is
typical to use REF CURSOR as a metatype, where you define a "strong" (specific) REF
CURSOR type tailored to your data, then declare a cursor variable of that type. For
example:

Command> DECLARE
 > TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE;

Note: TimesTen supports one OUT REF CURSOR per statement.

Understanding and using PL/SQL data types

3-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 > dept_cv DeptCurTyp; -- declare cursor variable
 > ...

Example 3–5 Use a REF CURSOR as an output parameter

This example creates a procedure GET_EMP in a package FOO_PACK to retrieve
information about employees from the employees table. The procedure declares a REF
CURSOR type cursor_out, then uses that type for the output parameter.

First specify the package definition, REF CURSOR type, and procedure definition.

create or replace package foo_pack is
 type cursor_out is ref cursor;
 procedure get_emp (results out cursor_out);
end foo_pack;

Then specify the package body and procedure implementation.

create or replace package body foo_pack as
 procedure get_emp (results out cursor_out) is
 begin
 open results for select employee_id, last_name from employees
 where employee_id < 110 order by last_name;
 end get_emp;
end foo_pack;

Declare a REF CURSOR variable for the output, execute the procedure, and display
the results. Note that outside of PL/SQL, you can declare only "weak" (generic) REF
CURSORs.

Command> var proc_result refcursor;
Command> exec foo_pack.get_emp(:proc_result);

PL/SQL procedure successfully completed.

Command> print proc_result;
PROC_RESULT :
< 105, Austin >
< 102, De Haan >
< 104, Ernst >
< 109, Faviet >
< 108, Greenberg >
< 103, Hunold >
< 100, King >
< 101, Kochhar >
< 107, Lorentz >
< 106, Pataballa >
10 rows found.

Alternatively, you could declare a weakly typed REF CURSOR variable in FOO_PACK:

create or replace package foo_pack is
 procedure get_emp (results out sys_refcursor);
end foo_pack;

create or replace package body foo_pack as
 procedure get_emp (results out sys_refcursor) is
 begin
 open results for select employee_id, last_name from employees
 where employee_id < 110 order by last_name;
 end get_emp;
end foo_pack;

Data type conversion

Data Types in PL/SQL in TimesTen 3-9

Data type conversion
This section covers the following data type conversions:

■ Conversion between PL/SQL data types

■ Conversion between application data types and PL/SQL or SQL data types

Also see type conversion information under "Differences in TimesTen: data type
considerations" on page 3-10.

Conversion between PL/SQL data types
TimesTen supports implicit and explicit conversions between PL/SQL data types.

Consider this example: The variable v_sal_hike is of type VARCHAR2. When calculating
the total salary, PL/SQL first converts v_sal_hike to NUMBER then performs the
operation. The result is of type NUMBER. PL/SQL uses implicit conversion to obtain the
correct result.

Command> DECLARE
 > v_salary NUMBER (6) := 6000;
 > v_sal_hike VARCHAR2(5) := '1000';
 > v_total_salary v_salary%TYPE;
 > BEGIN
 > v_total_salary := v_salary + v_sal_hike;
 > DBMS_OUTPUT.PUT_LINE (v_total_salary);
 > end;
 > /
7000

PL/SQL procedure successfully completed.

Conversion between application data types and PL/SQL or SQL data types
TimesTen supports data type conversions between application program data types
and PL/SQL data types, and between application program data types and TimesTen
SQL data types. For SQL, the conversions are the same whether SQL is invoked by
your PL/SQL program or is invoked directly by your application.

As an example, Table 3–4 shows a few representative data type mappings from an
application using the ODBC API to PL/SQL program data types. For more
information about ODBC-to-PL/SQL type mappings, refer to "Determination of
parameter type assignments and type conversions" in Oracle TimesTen In-Memory
Database C Developer's Guide.

Note: Also see "Date and timestamp formats: NLS_DATE_FORMAT
and NLS_TIMESTAMP_FORMAT" on page 3-12.

Table 3–4 Sampling of ODBC SQL to PL/SQL type mapping

ODBC type PL/SQL type

SQL_BINARY RAW (Bound precision is used.)

SQL_CHAR CHAR (Bound precision is used.)

SQL_DATE DATE

SQL_DECIMAL NUMBER

SQL_DOUBLE NUMBER

Differences in TimesTen: data type considerations

3-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example 3–6 ODBC to PL/SQL data type conversions

Consider a scenario where your C program uses the ODBC API and your goal is to
bind your C variable of type VARCHAR2 to a PL/SQL variable of type NUMBER. TimesTen
performs the implicit conversion for you.

Command> VARIABLE c_var VARCHAR2 (30) := '961';
Command> DECLARE v_var NUMBER;
 > BEGIN
 > v_var := :c_var;
 > DBMS_OUTPUT.PUT_LINE (v_var);
 > END;
 > /
961

PL/SQL procedure successfully completed.

Example 3–7 ODBC to TimesTen SQL data type conversions

This example creates a table with a column of type TT_BIGINT and uses PL/SQL to
invoke the TimesTen SQL INSERT statement. A bind variable of type SQL_VARCHAR is
used in the INSERT statement. The conversions are the same as the conversions that
would occur if your application invoked the INSERT statement directly.

Command> CREATE TABLE conversion_test2 (Col1 TT_BIGINT);
Command> VARIABLE v_var VARCHAR2 (100) := '1000';
Command> BEGIN
 > INSERT INTO conversion_test2 VALUES (:v_var);
 > END;
 > /

PL/SQL procedure successfully completed.

Command> SELECT * FROM conversion_test2;
< 1000 >
1 row found.

Differences in TimesTen: data type considerations
This section covers the following TimesTen-specific considerations regarding data
type support and type conversions:

■ Conversion between PL/SQL and TimesTen SQL data types

■ Date and timestamp formats: NLS_DATE_FORMAT and NLS_TIMESTAMP_
FORMAT

■ Non-supported data types

■ Zero-length strings in TimesTen type mode

SQL_FLOAT BINARY_DOUBLE

SQL_INTEGER PLS_INTEGER

SQL_REFCURSOR REF CURSOR

SQL_TIMESTAMP TIMESTAMP (Bound scale is used.)

SQL_VARCHAR VARCHAR2 (Bound precision is used.)

Table 3–4 (Cont.) Sampling of ODBC SQL to PL/SQL type mapping

ODBC type PL/SQL type

Differences in TimesTen: data type considerations

Data Types in PL/SQL in TimesTen 3-11

Conversion between PL/SQL and TimesTen SQL data types
TimesTen supports conversions between PL/SQL data types and TimesTen SQL data
types.

Table 3–5 shows supported data type conversions, with PL/SQL types along the top
and SQL types down the left side. The data types are grouped by data type families,
with columns referring to PL/SQL type families and rows referring to TimesTen type
families. "Y" indicates that a conversion is possible between the two families.
Supported conversions are bidirectional.

Table 3–6 that follows summarizes the TimesTen data types and suggestions for
PL/SQL type mappings.

Table 3–5 Supported conversions between PL/SQL and TimesTen SQL data types

Type Family NUMERIC CHARACTER BINARY DATETIME INTERVAL ROWID

NUMERIC Y Y

CHARACTER Y Y Y Y Y Y

DATETIME Y Y

TIME Y

ROWID Y Y

BINARY Y Y Y

Table 3–6 Data type usage and sizes

TimesTen data type Description

TT_TINYINT This is for unsigned integers ranging from 0 to 255.

Numeric overflows can occur if you insert a value with type
PL/SQL NUMBER or PL/SQL PLS_INTEGER (or BINARY_INTEGER)
into a TT_TINYINT column.

TT_SMALLINT This is for signed 16-bit integers in the range -32,768 to 32,767.

Numeric overflows can occur if you insert a value with type
PL/SQL NUMBER or PL/SQL PLS_INTEGER (or BINARY_INTEGER)
into a TT_SMALLINT column.

TT_INTEGER This is for signed integers in the range -2,147,483,648 to
2,147,483,647.

This is equivalent to PLS_INTEGER.

TT_BIGINT This is for signed eight-byte integers in the range
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Use PL/SQL NUMBER. A PL/SQL PLS_INTEGER (or BINARY_
INTEGER) variable could overflow.

NUMBER, BINARY_FLOAT,
BINARY_DOUBLE

Use when floating point precision is required.

Character types All PL/SQL character types can hold up to 32,767 bytes of data.

■ TimesTen CHAR can hold up to 8300 bytes.

■ TimesTen NCHAR can hold up to 4150 characters (8300 bytes).

■ TimesTen VARCHAR2 can hold up to 4,194,304 bytes.

■ TimesTen NVARCHAR2 can hold up to 2,097,152 characters
(4,194,304 bytes).

Differences in TimesTen: data type considerations

3-12 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example 3–8 Conversions between TimesTen SQL data types and PL/SQL data types

Consider the case where you have a table with two columns. Col1 has a data type of
TT_INTEGER and Col2 has a data type of NUMBER. In your PL/SQL program, you declare
two variables: v_var1 of type PLS_INTEGER and v_var2 of type VARCHAR2. The goal is to
SELECT the row of data from your table into the two PL/SQL variables.

Data type conversions occur when you execute the SELECT statement. Col1 is
converted from a TimesTen SQL TT_INTEGER type into a PLS_INTEGER type. Col2 is
converted from a TimesTen SQL NUMBER type into a PL/SQL VARCHAR2 type. The query
executes successfully.

Command> CREATE TABLE test_conversion (Col1 TT_INTEGER, Col2 NUMBER);
Command> INSERT INTO test_conversion VALUES (100, 20);
1 row inserted.

Command> DECLARE
 > v_var1 PLS_INTEGER;
 > v_var2 VARCHAR2 (100);
 > BEGIN
 > SELECT Col1, Col2 INTO v_var1, v_var2 FROM test_conversion;
 > DBMS_OUTPUT.PUT_LINE (v_var1);
 > DBMS_OUTPUT.PUT_LINE (v_var2);
 > END;
 > /
100
20

PL/SQL procedure successfully completed.

Date and timestamp formats: NLS_DATE_FORMAT and NLS_TIMESTAMP_FORMAT
TimesTen does not support user-specified NLS_DATE_FORMAT and NLS_TIMESTAMP_
FORMAT settings.

■ NLS_DATE_FORMAT is always 'yyyy-mm-dd'.

■ NLS_TIMESTAMP_FORMAT is always 'yyyy-mm-dd hh:mi:ss.ff6' (fractional seconds
to six decimal places).

You can use the SQL and PL/SQL TO_DATE and TO_CHAR functions to specify other
desired formats. See "Expressions" in Oracle TimesTen In-Memory Database SQL
Reference for details of these functions.

Datetime, interval, and time
types

Use the TO_CHAR and TO_DATE built-in functions when you
require a format that is different than the default format used
when converting these types to and from character types.

Binary types ■ TimesTen BINARY can hold up to 8300 bytes.

■ TimesTen VARBINARY can hold up to 4,194,304 bytes.

■ RAW and LONG RAW can hold up to 32,767 bytes.

Note: See "Non-supported data types" on page 3-13.

Table 3–6 (Cont.) Data type usage and sizes

TimesTen data type Description

Differences in TimesTen: data type considerations

Data Types in PL/SQL in TimesTen 3-13

Non-supported data types
Note the following non-support of data types:

■ PL/SQL data type categories: PL/SQL in TimesTen does not support Internet data
types (XMLType, URIType, HttpURIType) or "Any" data types (AnyType, AnyData,
AnyDataSet).

■ PL/SQL scalar data types: TimesTen does not support the PL/SQL data types
TIMESTAMP WITH [LOCAL] TIME ZONE and UROWID.

■ TimesTen PL/SQL does not support the TimesTen type TT_DECIMAL.

Zero-length strings in TimesTen type mode
In TimesTen type mode, still supported for backward compatibility, the string value ""
is considered by TimesTen to be an empty, zero-length string, but not a null value. In
PL/SQL, however, a zero-length string is always considered to be null. If a parameter
with a value of empty string is passed to a SQL statement that is executed in PL/SQL,
the parameter is converted to NULL by PL/SQL before the SQL statement is passed to
TimesTen.

See "TimesTen type mode (backward compatibility)" in Oracle TimesTen In-Memory
Database SQL Reference for information about this mode.

Differences in TimesTen: data type considerations

3-14 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

4

Errors and Exception Handling 4-1

4Errors and Exception Handling

This chapter describes the flexible error trapping and error handling you can use in
your PL/SQL programs.

For more information on error-handling and exceptions in PL/SQL, see "PL/SQL
Error Handling" in Oracle Database PL/SQL Language Reference.

See the end of this chapter for TimesTen-specific considerations.

The following topics are covered:

■ Understanding exceptions

■ Trapping exceptions

■ Showing errors in ttIsql

■ Differences in TimesTen: exception handing and error behavior

Understanding exceptions
This section provides an overview of exceptions in PL/SQL programming, covering
the following topics:

■ About exceptions

■ Exception types

About exceptions
An exception is a PL/SQL error that is raised during program execution, either
implicitly by TimesTen or explicitly by your program. Handle an exception by
trapping it with a handler or propagating it to the calling environment.

For example, if your SELECT statement returns multiple rows, TimesTen returns an
error (exception) at runtime. As the following example shows, you would see
TimesTen error 8507, then the associated ORA error message. (ORA messages, originally
defined for Oracle Database, are similarly implemented by TimesTen.)

Command> DECLARE
 > v_lname VARCHAR2 (15);
 > BEGIN
 > SELECT last_name INTO v_lname
 > FROM employees
 > WHERE first_name = 'John';
 > DBMS_OUTPUT.PUT_LINE ('Last name is :' || v_lname);
 > END;
 > /

Trapping exceptions

4-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 8507: ORA-01422: exact fetch returns more than requested number of rows
 8507: ORA-06512: at line 4
The command failed.

You can handle such exceptions in your PL/SQL block so that your program
completes successfully. For example:

Command> DECLARE
 > v_lname VARCHAR2 (15);
 > BEGIN
 > SELECT last_name INTO v_lname
 > FROM employees
 > WHERE first_name = 'John';
 > DBMS_OUTPUT.PUT_LINE ('Last name is :' || v_lname);
 > EXCEPTION
 > WHEN TOO_MANY_ROWS THEN
 > DBMS_OUTPUT.PUT_LINE (' Your SELECT statement retrieved multiple
 > rows. Consider using a cursor.');
 > END;
 > /
 Your SELECT statement retrieved multiple rows. Consider using a cursor.

PL/SQL procedure successfully completed.

Exception types
There are three types of exceptions:

■ Predefined exceptions are error conditions that are defined by PL/SQL.

■ Non-predefined exceptions include any standard TimesTen errors.

■ User-defined exceptions are exceptions specific to your application.

In TimesTen, these three types of exceptions are used in the same way as in Oracle
Database.

Trapping exceptions
This section describes how to trap predefined TimesTen errors or user-defined errors.

Exception Description How to handle

Predefined TimesTen
error

One of approximately 20 errors
that occur most often in PL/SQL
code

You are not required to declare
these exceptions. They are
predefined by TimesTen. TimesTen
implicitly raises the error.

Non-predefined
TimesTen error

Any other standard TimesTen
error

These must be declared in the
declarative section of your
application. TimesTen implicitly
raises the error and you can use an
exception handler to catch the error.

User-defined error Error defined and raised by the
application

These must be declared in the
declarative section. The developer
raises the exception explicitly.

Trapping exceptions

Errors and Exception Handling 4-3

Trapping predefined TimesTen errors
Trap a predefined TimesTen error by referencing its predefined name in your
exception-handling routine. PL/SQL declares predefined exceptions in the STANDARD
package.

Table 4–1 lists predefined exceptions supported by TimesTen, the associated ORA error
numbers and SQLCODE values, and descriptions of the exceptions.

Also see "Unsupported predefined errors" on page 4-9.

Table 4–1 Predefined exceptions

Exception name
Oracle Database
error number SQLCODE Description

ACCESS_INTO_NULL ORA-06530 -6530 Program attempted to assign
values to the attributes of an
uninitialized object.

CASE_NOT_FOUND ORA-06592 -6592 None of the choices in the WHEN
clauses of a CASE statement were
selected and there is no ELSE
clause.

COLLECTION_IS_NULL ORA-06531 -6531 Program attempted to apply
collection methods other than
EXISTS to an uninitialized nested
table or varray, or program
attempted to assign values to the
elements of an uninitialized
nested table or varray.

CURSOR_ALREADY_OPENED ORA-06511 -6511 Program attempted to open an
already opened cursor.

DUP_VAL_ON_INDEX ORA-00001 -1 Program attempted to insert
duplicate values in a column that
is constrained by a unique index.

INVALID_CURSOR ORA-01001 -1001 There is an illegal cursor
operation.

INVALID_NUMBER ORA-01722 -1722 Conversion of character string to
number failed.

NO_DATA_FOUND ORA-01403 +100 Single row SELECT returned no
rows or your program referenced
a deleted element in a nested
table or an uninitialized element
in an associative array (index-by
table).

PROGRAM_ERROR ORA-06501 -6501 PL/SQL has an internal problem.

ROWTYPE_MISMATCH ORA-06504 -6504 Host cursor variable and
PL/SQL cursor variable involved
in an assignment statement have
incompatible return types.

STORAGE_ERROR ORA-06500 -6500 PL/SQL ran out of memory or
memory was corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-06533 -6533 A program referenced a nested
table or varray using an index
number larger than the number
of elements in the collection.

Trapping exceptions

4-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example 4–1 Using the ZERO_DIVIDE predefined exception

In this example, a PL/SQL program attempts to divide by 0. The ZERO_DIVIDE
predefined exception is used to trap the error in an exception-handling routine.

Command> DECLARE v_invalid PLS_INTEGER;
 > BEGIN
 > v_invalid := 100/0;
 > EXCEPTION
 > WHEN ZERO_DIVIDE THEN
 > DBMS_OUTPUT.PUT_LINE ('Attempt to divide by 0');
 > END;
 > /
Attempt to divide by 0

PL/SQL procedure successfully completed.

Trapping user-defined exceptions
You can define your own exceptions in PL/SQL in TimesTen, and you can raise
user-defined exceptions explicitly with either the PL/SQL RAISE statement or the
RAISE_APPLICATION_ERROR procedure.

Using the RAISE statement
The RAISE statement stops normal execution of a PL/SQL block or subprogram and
transfers control to an exception handler. RAISE statements can raise predefined
exceptions, or user-defined exceptions whose names you decide.

Example 4–2 Using RAISE statement to trap user-defined exception

In this example, the department number 500 does not exist, so no rows are updated in
the departments table. The RAISE statement is used to explicitly raise an exception and
display an error message, returned by the SQLERRM built-in function, and an error code,
returned by the SQLCODE built-in function. Use the RAISE statement by itself within an
exception handler to raise the same exception again and propagate it back to the
calling environment.

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 -6532 A program referenced a nested
table or varray element using an
index number that is outside the
legal range (for example, -1).

SYS_INVALID_ROWID ORA-01410 -1410 The conversion of a character
string into a universal rowid
failed because the character
string does not represent a ROWID
value.

TOO_MANY_ROWS ORA-01422 -1422 Single row SELECT returned
multiple rows.

VALUE_ERROR ORA-06502 -6502 An arithmetic, conversion,
truncation, or size constraint
error occurred.

ZERO_DIVIDE ORA-01476 -1476 A program attempted to divide a
number by zero.

Table 4–1 (Cont.) Predefined exceptions

Exception name
Oracle Database
error number SQLCODE Description

Trapping exceptions

Errors and Exception Handling 4-5

Command> DECLARE
 > v_deptno NUMBER := 500;
 > v_name VARCHAR2 (20) := 'Testing';
 > e_invalid_dept EXCEPTION;
 > BEGIN
 > UPDATE departments
 > SET department_name = v_name
 > WHERE department_id = v_deptno;
 > IF SQL%NOTFOUND THEN
 > RAISE e_invalid_dept;
 > END IF;
 > ROLLBACK;
 > EXCEPTION
 > WHEN e_invalid_dept THEN
 > DBMS_OUTPUT.PUT_LINE ('No such department');
 > DBMS_OUTPUT.PUT_LINE (SQLERRM);
 > DBMS_OUTPUT.PUT_LINE (SQLCODE);
 > END;
 > /
No such department
User-Defined Exception
1

PL/SQL procedure successfully completed.

The command succeeded.

Using the RAISE_APPLICATION_ERROR procedure
Use the RAISE_APPLICATION_ERROR procedure in the executable section or exception
section (or both) of your PL/SQL program. TimesTen reports errors to your
application so you can avoid returning unhandled exceptions.

Use an error number between -20,000 and -20,999. Specify a character string up to
2,048 bytes for your message.

Example 4–3 Using the RAISE_APPLICATION_ERROR procedure

This example attempts to delete from the employees table where last_
name=Patterson. The RAISE_APPLICATION_ERROR procedure raises the error, using
error number -20201.

Command> DECLARE
 > v_last_name employees.last_name%TYPE := 'Patterson';
 > BEGIN
 > DELETE FROM employees WHERE last_name = v_last_name;
 > IF SQL%NOTFOUND THEN
 > RAISE_APPLICATION_ERROR (-20201, v_last_name || ' does not exist');
 > END IF;
 > END;
 > /
 8507: ORA-20201: Patterson does not exist
 8507: ORA-06512: at line 6
The command failed.

Note: Given the same error condition in TimesTen and Oracle
Database, SQLCODE returns the same error code, but SQLERRM does not
necessarily return the same error message. This is also noted in
"TimesTen error messages and SQL codes" on page 4-9.

Showing errors in ttIsql

4-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Showing errors in ttIsql
You can use the show errors command in ttIsql to see details about errors you
encounter in executing anonymous blocks or compiling packages, procedures, or
functions. This is shown in Example 4–4.

Example 4–4 ttIsql show errors command

Again consider Example 2–17 on page 2-26. Assume the same package specification
shown there, which declares the procedures and functions hire_employee, remove_
employee, and num_above_salary. But instead of the body definition shown there,
consider the following, which defines hire_employee and num_above_salary but not
remove_employee:

CREATE OR REPLACE PACKAGE BODY emp_actions AS
-- Code for procedure hire_employee:
 PROCEDURE hire_employee (employee_id NUMBER,
 last_name VARCHAR2,
 first_name VARCHAR2,
 email VARCHAR2,
 phone_number VARCHAR2,
 hire_date DATE,
 job_id VARCHAR2,
 salary NUMBER,
 commission_pct NUMBER,
 manager_id NUMBER,
 department_id NUMBER) IS
 BEGIN
 INSERT INTO employees VALUES (employee_id,
 last_name,
 first_name,
 email,
 phone_number,
 hire_date,
 job_id,
 salary,
 commission_pct,
 manager_id,
 department_id);
 END hire_employee;
-- Code for function num_above_salary:
 FUNCTION num_above_salary (emp_id NUMBER) RETURN NUMBER IS
 emp_sal NUMBER(8,2);
 num_count NUMBER;
 BEGIN
 SELECT salary INTO emp_sal FROM employees
 WHERE employee_id = emp_id;
 SELECT COUNT(*) INTO num_count FROM employees
 WHERE salary > emp_sal;
 RETURN num_count;
 END num_above_salary;
END emp_actions;
/

Attempting this body definition after the original package specification results in the
following:

Warning: Package body created with compilation errors.

Differences in TimesTen: exception handing and error behavior

Errors and Exception Handling 4-7

To get more information, run ttIsql and use the command show errors. In this
example, show errors provides the following:

Command> show errors;
Errors for PACKAGE BODY EMP_ACTIONS:

LINE/COL ERROR
-------- ---
13/13 PLS-00323: subprogram or cursor 'REMOVE_EMPLOYEE' is declared in a
package specification and must be defined in the package body

Differences in TimesTen: exception handing and error behavior
You should be aware of some error-related behaviors that differ between TimesTen
PL/SQL and Oracle Database PL/SQL:

■ TimesTen PL/SQL transaction and rollback behavior for unhandled exceptions

■ TimesTen error messages and SQL codes

■ Warnings not visible in PL/SQL

■ Unsupported predefined errors

■ Possibility of runtime errors after clean compile (use of Oracle Database SQL
parser)

■ Use of TimesTen expressions at runtime

TimesTen PL/SQL transaction and rollback behavior for unhandled exceptions
TimesTen PL/SQL differs from Oracle Database PL/SQL in a scenario where an
application executes PL/SQL in the middle of a transaction, and an unhandled
exception occurs during execution of the PL/SQL. Oracle Database rolls back to the
beginning of the anonymous block. TimesTen does not roll back.

An application should always handle any exception that results from execution of a
PL/SQL block, as in the following example, run with autocommit disabled:

create table mytable (num int not null primary key);
set serveroutput on

insert into mytable values(1);
begin
 insert into mytable values(2);
 insert into mytable values(1);
exception
 when dup_val_on_index then
 dbms_output.put_line('oops:' || sqlerrm);
 rollback;
end;

select * from mytable;

commit;

The second INSERT fails because values must be unique, so an exception occurs and
the program performs a rollback. Running this in TimesTen results in the following.

oops:TT0907: Unique constraint (MYTABLE) violated at Rowid <BMUFVUAAABQAAAADjq>

select * from mytable;

Differences in TimesTen: exception handing and error behavior

4-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

0 rows found.

The result is equivalent in Oracle Database, with the SELECT results showing no rows.

Now consider a TimesTen example where the exception is not handled, again run with
autocommit disabled:

create table mytable (num int not null primary key);
set serveroutput on

insert into mytable values(1);
begin
 insert into mytable values(2);
 insert into mytable values(1);
end;

select * from mytable;

commit;

In TimesTen, the SELECT query indicates execution of the first two inserts:

 907: Unique constraint (MYTABLE) violated at Rowid <BMUFVUAAABQAAAADjq>
 8507: ORA-06512: at line 3
The command failed.

select * from mytable;
< 1 >
< 2 >
2 rows found.

If you execute this in Oracle Database, there is a rollback to the beginning of the
PL/SQL block, so the results of the SELECT indicate execution of only the first insert:

ORA-00001: unique constraint (SYSTEM.SYS_C004423) violated
ORA-06512: at line 3

 NUM

 1

Notes:

■ If there is an unhandled exception in a PL/SQL block, TimesTen
leaves the transaction open only to allow the application to assess
its state and determine appropriate action.

■ An application in TimesTen should not execute a PL/SQL block
while there are uncommitted changes in the current transaction,
unless those changes together with the PL/SQL operations really
do constitute a single logical unit of work and the application is
able to determine appropriate action. Such action, for example,
might consist of a rollback to the beginning of the transaction.

■ If autocommit is enabled and an unhandled exception occurs in
TimesTen, the entire transaction is rolled back.

Differences in TimesTen: exception handing and error behavior

Errors and Exception Handling 4-9

TimesTen error messages and SQL codes
Given the same error condition, TimesTen does not guarantee that the error message
returned by TimesTen is the same as the message returned by Oracle Database,
although the SQL code is the same. Therefore, the information returned by the
SQLERRM function may be different, but that returned by the SQLCODE function is the
same.

For further information:

■ Example 4–2 on page 4-4 uses SQLERRM and SQLCODE.

■ Refer to "Warnings and Errors" in Oracle TimesTen In-Memory Database Error
Messages and SNMP Traps for information about specific TimesTen error messages.

■ Refer to "SQLERRM Function" and "SQLCODE Function" in Oracle Database
PL/SQL Language Reference for general information.

Warnings not visible in PL/SQL
Oracle Database does not have the concept of runtime warnings, so Oracle Database
PL/SQL does not support warnings.

TimesTen does have the concept of warnings, but because the TimesTen PL/SQL
implementation is based on the Oracle Database PL/SQL implementation, TimesTen
PL/SQL does not support warnings.

As a result, in TimesTen you could execute a SQL statement and see a resulting
warning, but if you execute the same statement through PL/SQL you would not see
the warning.

Unsupported predefined errors
"Trapping predefined TimesTen errors" on page 4-3 lists predefined exceptions
supported by TimesTen, the associated ORA error numbers and SQLCODE values, and
descriptions of the exceptions.

Table 4–2 notes predefined exceptions that are not supported by TimesTen.

Possibility of runtime errors after clean compile (use of Oracle Database SQL parser)
The TimesTen PL/SQL implementation uses the Oracle Database SQL parser in
compiling PL/SQL programs. (This is discussed in "PL/SQL in TimesTen versus
PL/SQL in Oracle Database" on page 1-3.) As a result, if your program uses Oracle

Table 4–2 Predefined exceptions not supported by TimesTen

Exception name
Oracle Database
error number SQLCODE Description

LOGIN_DENIED ORA-01017 -1017 User name or password is
invalid.

NOT_LOGGED_ON ORA-01012 -1012 Program issued a database call
without being connected to the
database.

SELF_IS_NULL ORA-30625 -30625 Program attempted to invoke a
MEMBER method, but the object
was not initialized.

TIMEOUT_ON_RESOURCE ORA-00051 -51 Timeout occurred while the
database was waiting for a
resource.

Differences in TimesTen: exception handing and error behavior

4-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Database syntax or built-in procedures that are not supported by TimesTen, the issue
is not discovered during compilation. A runtime error occurs during program
execution, however.

Use of TimesTen expressions at runtime
TimesTen SQL includes several constructs that are not present in Oracle Database
SQL. The PL/SQL language does not include these constructs. To use
TimesTen-specific SQL from PL/SQL, execute the SQL statements using the EXECUTE
IMMEDIATE statement. This avoids compilation errors.

For lists of TimesTen-specific SQL and expressions, see "Compatibility Between
TimesTen and Oracle Databases" in Oracle TimesTen Application-Tier Database Cache
User's Guide.

For more information about EXECUTE IMMEDIATE, refer to "Dynamic SQL in PL/SQL
(EXECUTE IMMEDIATE statement)" on page 2-12.

5

Examples Using TimesTen SQL in PL/SQL 5-1

5Examples Using TimesTen SQL in PL/SQL

This chapter provides additional examples to further explore the tight integration of
TimesTen SQL in PL/SQL:

■ Examples using the SELECT...INTO statement in PL/SQL

■ Example using the INSERT statement

■ Examples using input and output parameters and bind variables

■ Examples using cursors

■ Examples using FORALL and BULK COLLECT

■ Examples using EXECUTE IMMEDIATE

■ Examples using RETURNING INTO

■ Examples using the AUTHID clause

■ Example querying a system view

Examples using the SELECT...INTO statement in PL/SQL
Use the SELECT... INTO statement to retrieve exactly one row of data. TimesTen
returns an error for any query that returns no rows or multiple rows.

The section provides the following examples:

■ Using SELECT... INTO to return sum of salaries

■ Using SELECT...INTO to query another user's table

Using SELECT... INTO to return sum of salaries
This example uses a SELECT...INTO statement to calculate the sum of salaries for all
employees in the department where department_id is 60.

Example 5–1 Using SELECT... INTO to return sum of salaries

Command> DECLARE
 > v_sum_sal NUMBER (10,2);
 > v_dept_no NUMBER NOT NULL := 60;
 > BEGIN
 > SELECT SUM(salary) -- aggregate function
 > INTO v_sum_sal FROM employees
 > WHERE department_id = v_dept_no;
 > DBMS_OUTPUT.PUT_LINE ('Sum is ' || v_sum_sal);
 > END;
 > /

Example using the INSERT statement

5-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Sum is 28800

PL/SQL procedure successfully completed.

Using SELECT...INTO to query another user's table
This example provides two users, USER1 and USER2, to show one user employing
SELECT...INTO to query another user's table.

Example 5–2 Using SELECT...INTO to query another user's table

The following privileges are assumed:

grant create session to user1;
grant create session to user2;
grant create table to user1;
grant select on user1.test to user2;

USER1:

Command> create table test(name varchar2(20), id number);
Command> insert into test values('posey', 363);
1 row inserted.

USER2:

Command> declare
 > targetid number;
 > begin
 > select id into targetid from user1.test where name='posey';
 > dbms_output.put_line('Target ID is ' || targetid);
 > end;
 > /
Target ID is 363

PL/SQL procedure successfully completed.

Example using the INSERT statement
TimesTen supports the TimesTen DML statements INSERT, UPDATE, DELETE, and MERGE.
This section has an example of the INSERT statement.

Example 5–3 Using the INSERT statement in PL/SQL

This example uses the AS SELECT query clause to create table emp_copy, sets
AUTOCOMMIT off, creates a sequence to increment employee_id, and uses the INSERT
statement in PL/SQL to insert a row of data in table emp_copy.

Command> CREATE TABLE emp_copy AS SELECT * FROM employees;
107 rows inserted.
Command> SET AUTOCOMMIT OFF;

Command> CREATE SEQUENCE emp_copy_seq
 > START WITH 207
 > INCREMENT BY 1;

Command> BEGIN
 > INSERT INTO emp_copy
 > (employee_id, first_name, last_name, email, hire_date, job_id,
 > salary)
 > VALUES (emp_copy_seq.NEXTVAL, 'Parker', 'Cores', 'PCORES', SYSDATE,

Examples using input and output parameters and bind variables

Examples Using TimesTen SQL in PL/SQL 5-3

 > 'AD_ASST', 4000);
 > END;
 > /

PL/SQL procedure successfully completed.

Continuing, the example confirms the row was inserted, then rolls back the
transaction.

Command> SELECT * FROM EMP_COPY WHERE first_name = 'Parker';
< 207, Parker, Cores, PCORES, <NULL>, 2008-07-19 21:49:55, AD_ASST, 4000,
<NULL>, <NULL>, <NULL> >
1 row found.
Command> ROLLBACK;
Command> SELECT * FROM emp_copy WHERE first_name = 'Parker';
0 rows found.

Now INSERT is executed again, then the transaction is rolled back in PL/SQL. Finally,
the example verifies that TimesTen did not insert the row.

Command> BEGIN
 > INSERT INTO emp_copy
 > (employee_id, first_name, last_name, email, hire_date, job_id,
 > salary)
 > VALUES (emp_copy_seq.NEXTVAL, 'Parker', 'Cores', 'PCORES', SYSDATE,
 > 'AD_ASST',4000);
 > ROLLBACK;
 > END;
 > /

PL/SQL procedure successfully completed.

Command> SELECT * FROM emp_copy WHERE first_name = 'Parker';
0 rows found.

Examples using input and output parameters and bind variables
The following examples in this section use IN, OUT, and IN OUT parameters, including
bind variables (host variables) from outside PL/SQL:

■ Using IN and OUT parameters

■ Using IN OUT parameters

■ Using associative arrays

Using IN and OUT parameters
This example creates a procedure query_emp to retrieve information about an
employee, passes the employee_id value 171 to the procedure, and retrieves the name
and salary into two OUT parameters.

Example 5–4 Using IN and OUT parameters

Command> CREATE OR REPLACE PROCEDURE query_emp
 > (p_id IN employees.employee_id%TYPE,
 > p_name OUT employees.last_name%TYPE,
 > p_salary OUT employees.salary%TYPE) IS
 > BEGIN
 > SELECT last_name, salary INTO p_name, p_salary
 > FROM employees

Examples using input and output parameters and bind variables

5-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 > WHERE employee_id = p_id;
 > END query_emp;
 > /

Procedure created.

Command> -- Execute the procedure
 > DECLARE
 > v_emp_name employees.last_name%TYPE;
 > v_emp_sal employees.salary%TYPE;
 > BEGIN
 > query_emp (171, v_emp_name, v_emp_sal);
 > DBMS_OUTPUT.PUT_LINE (v_emp_name || ' earns ' ||
 > TO_CHAR (v_emp_sal, '$999,999.00'));
 > END;
 > /
Smith earns $7,400.00

PL/SQL procedure successfully completed.

Using IN OUT parameters
Consider a situation where you want to format a phone number. This example takes a
10-character string containing digits for a phone number and passes this unformatted
string to a procedure as an IN OUT parameter. After the procedure is executed, the IN
OUT parameter contains the formatted phone number value.

Example 5–5 Using IN OUT parameters

Command> CREATE OR REPLACE PROCEDURE format_phone
 > (p_phone_no IN OUT VARCHAR2) IS
 > BEGIN
 > p_phone_no := '(' || SUBSTR (p_phone_no,1,3) ||
 > ') ' || SUBSTR (p_phone_no,4,3) ||
 > '-' || SUBSTR (p_phone_no,7);
 > END format_phone;
 > /

Procedure created.

Create the bind variable, execute the procedure, and verify the results.

Command> VARIABLE b_phone_no VARCHAR2 (15);
Command> EXECUTE :b_phone_no := '8006330575';

PL/SQL procedure successfully completed.

Command> PRINT b_phone_no;
B_PHONE_NO : 8006330575
Command> BEGIN
 > format_phone (:b_phone_no);
 > END;
 > /

PL/SQL procedure successfully completed.

Command> PRINT b_phone_no
B_PHONE_NO : (800) 633-0575

Examples using input and output parameters and bind variables

Examples Using TimesTen SQL in PL/SQL 5-5

Using associative arrays
This example uses ttIsql to bind a NUMBER array and a VARCHAR2 array to
corresponding OUT associative arrays in a PL/SQL procedure.

See "Using associative arrays from applications" on page 3-6 for related information.

Example 5–6 Binding to an associative array from ttIsql

Assume the following SQL setup.

DROP TABLE FOO;

CREATE TABLE FOO (CNUM INTEGER,
 CVC2 VARCHAR2(20));

INSERT INTO FOO VALUES (null,
 'VARCHAR 1');
INSERT INTO FOO VALUES (-102,
 null);
INSERT INTO FOO VALUES (103,
 'VARCHAR 3');
INSERT INTO FOO VALUES (-104,
 'VARCHAR 4');
INSERT INTO FOO VALUES (105,
 'VARCHAR 5');
INSERT INTO FOO VALUES (106,
 'VARCHAR 6');
INSERT INTO FOO VALUES (107,
 'VARCHAR 7');
INSERT INTO FOO VALUES (108,
 'VARCHAR 8');

COMMIT;

Assume the following PL/SQL package definition. This includes the INTEGER
associative array type NUMARRTYP and the VARCHAR2 associative array type VCHARRTYP,
used for output associative arrays c1 and c2, respectively, in the definition of
procedure P1.

CREATE OR REPLACE PACKAGE PKG1 AS
 TYPE NUMARRTYP IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
 TYPE VCHARRTYP IS TABLE OF VARCHAR2(20) INDEX BY BINARY_INTEGER;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP);

END PKG1;
/

CREATE OR REPLACE PACKAGE BODY PKG1 AS

 CURSOR CUR1 IS SELECT CNUM, CVC2 FROM FOO;

 PROCEDURE P1(c1 OUT NUMARRTYP,c2 OUT VCHARRTYP) IS
 BEGIN
 IF NOT CUR1%ISOPEN THEN
 OPEN CUR1;
 END IF;
 FOR i IN 1..8 LOOP
 FETCH CUR1 INTO c1(i), c2(i);
 IF CUR1%NOTFOUND THEN

Examples using cursors

5-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 CLOSE CUR1;
 EXIT;
 END IF;
 END LOOP;
 END P1;

END PKG1;

Now ttIsql calls PKG1.P1, binds arrays to the P1 output associative arrays, and prints
the contents of those associative arrays.

Command> var c1[10] number;
Command> var c2[10] varchar2(20);
Command> print;
C1 : ARRAY [10] (Current Size 0)
C2 : ARRAY [10] (Current Size 0)
Command> BEGIN PKG1.P1(:c1, :c2); END;
> /

PL/SQL procedure successfully completed.

Command> print
C1 : ARRAY [10] (Current Size 8)
C1[1] : <NULL>
C1[2] : -102
C1[3] : 103
C1[4] : -104
C1[5] : 105
C1[6] : 106
C1[7] : 107
C1[8] : 108
C2 : ARRAY [10] (Current Size 8)
C2[1] : VARCHAR 1
C2[2] : <NULL>
C2[3] : VARCHAR 3
C2[4] : VARCHAR 4
C2[5] : VARCHAR 5
C2[6] : VARCHAR 6
C2[7] : VARCHAR 7
C2[8] : VARCHAR 8

Examples using cursors
TimesTen supports cursors, as discussed in "Use of cursors in PL/SQL programs" on
page 2-21. Use a cursor to handle the result set of a SELECT statement.

Examples in this section cover the following:

■ Fetching values

■ Using the %ROWCOUNT and %NOTFOUND attributes

■ Using cursor FOR loops

See "Explicit Cursor Attributes" in Oracle Database PL/SQL Language Reference for
information about the cursor attributes used in these examples.

Fetching values
This section provides examples of how to fetch values from a cursor, including how to
fetch the values into a record.

Examples using cursors

Examples Using TimesTen SQL in PL/SQL 5-7

Example 5–7 Fetching values from a cursor

The following example uses a cursor to select employee_id and last_name from the
employees table where department_id is 30 Two variables are declared to hold the
fetched values from the cursor, and the FETCH statement retrieves rows one at a time in
a loop to retrieve all rows. Execution stops when there are no remaining rows in the
cursor, illustrating use of the %NOTFOUND cursor attribute.

%NOTFOUND yields TRUE if an INSERT, UPDATE, or DELETE statement affected no rows, or a
SELECT INTO statement returned no rows.

Command> DECLARE
 > CURSOR c_emp_cursor IS
 > SELECT employee_id, last_name FROM employees
 > WHERE department_id = 30;
 > v_empno employees.employee_id%TYPE;
 > v_lname employees.last_name%TYPE;
 > BEGIN
 > OPEN c_emp_cursor;
 > LOOP
 > FETCH c_emp_cursor INTO v_empno, v_lname;
 > EXIT WHEN c_emp_cursor%NOTFOUND;
 > DBMS_OUTPUT.PUT_LINE (v_empno || ' ' || v_lname);
 > END LOOP;
 > CLOSE c_emp_cursor;
 > END;
 > /

114 Raphaely
115 Khoo
116 Baida
117 Tobias
118 Himuro
119 Colmenares

Example 5–8 Fetching values into a record

This is similar to Example 5–7 above, with the same results, but fetches the values into
a PL/SQL record instead of PL/SQL variables.

Command> DECLARE
 > CURSOR c_emp_cursor IS
 > SELECT employee_id, last_name FROM employees
 > WHERE department_id = 30;
 > v_emp_record c_emp_cursor%ROWTYPE;
 > BEGIN
 > OPEN c_emp_cursor;
 > LOOP
 > FETCH c_emp_cursor INTO v_emp_record;
 > EXIT WHEN c_emp_cursor%NOTFOUND;
 > DBMS_OUTPUT.PUT_LINE (v_emp_record.employee_id || ' ' |
 > v_emp_record.last_name);
 > END LOOP;
 > CLOSE c_emp_cursor;
 > END;
 > /

114 Raphaely
115 Khoo
116 Baida
117 Tobias
118 Himuro

Examples using cursors

5-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

119 Colmenares

PL/SQL procedure successfully completed.

Using the %ROWCOUNT and %NOTFOUND attributes
Example 5–9 shows how to use the %ROWCOUNT cursor attribute as well as the
%NOTFOUND cursor attribute previously shown in Example 5–7 on page 5-7 and
Example 5–8 above.

Example 5–9 Using %ROWCOUNT and %NOTFOUND attributes

This example has the same results as Example 5–8, but illustrating the %ROWCOUNT
cursor attribute as well as the %NOTFOUND attribute for exit conditions in the loop.

%ROWCOUNT yields the number of rows affected by an INSERT, UPDATE, or DELETE
statement or returned by a SELECT...INTO or FETCH...INTO statement.

Command> DECLARE
 > CURSOR c_emp_cursor IS
 > SELECT employee_id, last_name FROM employees
 > WHERE department_id = 30;
 > v_emp_record c_emp_cursor%ROWTYPE;
 > BEGIN
 > OPEN c_emp_cursor;
 > LOOP
 > FETCH c_emp_cursor INTO v_emp_record;
 > EXIT WHEN c_emp_cursor%ROWCOUNT > 10 OR c_emp_cursor%NOTFOUND;
 > DBMS_OUTPUT.PUT_LINE (v_emp_record.employee_id || ' ' ||
 > v_emp_record.last_name);
 > END LOOP;
 > CLOSE c_emp_cursor;
 > END;
 > /
114 Raphaely
115 Khoo
116 Baida
117 Tobias
118 Himuro
119 Colmenares

PL/SQL procedure successfully completed.

Using cursor FOR loops
PL/SQL in TimesTen supports cursor FOR loops, as shown in the following examples.

Example 5–10 Using a cursor FOR loop

In this example, PL/SQL implicitly declares emp_record. No OPEN and CLOSE
statements are necessary. The results are the same as in Example 5–9 above.

Command> DECLARE
 > CURSOR c_emp_cursor IS
 > SELECT employee_id, last_name FROM employees
 > WHERE department_id = 30;
 > BEGIN
 > FOR emp_record IN c_emp_cursor
 > LOOP
 > DBMS_OUTPUT.PUT_LINE (emp_record.employee_id || ' ' ||
 > emp_record.last_name);

Examples using FORALL and BULK COLLECT

Examples Using TimesTen SQL in PL/SQL 5-9

 > END LOOP;
 > END;
 > /
114 Raphaely
115 Khoo
116 Baida
117 Tobias
118 Himuro
119 Colmenares

PL/SQL procedure successfully completed.

Example 5–11 Using a cursor FOR loop with subqueries

This example illustrates a FOR loop using subqueries. The results are the same as in
Example 5–9 on page 5-8 and Example 5–10 above.

Command> BEGIN
 > FOR emp_record IN (SELECT employee_id, last_name FROM
 > employees WHERE department_id = 30)
 > LOOP
 > DBMS_OUTPUT.PUT_LINE (emp_record.employee_id || ' ' ||
 > emp_record.last_name);
 > END LOOP;
 > END;
 > /
114 Raphaely
115 Khoo
116 Baida
117 Tobias
118 Himuro
119 Colmenares

PL/SQL procedure successfully completed.

Examples using FORALL and BULK COLLECT
TimesTen supports bulk binding and the FORALL statement and BULK COLLECT feature,
as noted in "FORALL and BULK COLLECT operations" on page 2-14.

Examples in this section cover the following:

■ Using FORALL with SQL%BULK_ROWCOUNT

■ Using BULK COLLECT INTO with queries

■ Using BULK COLLECT INTO with cursors

■ Using SAVE EXCEPTIONS with BULK COLLECT

Using FORALL with SQL%BULK_ROWCOUNT
The %BULK_ROWCOUNT cursor attribute is a composite structure designed for use with
the FORALL statement.

The attribute acts like an associative array (index-by table). Its ith element stores the
number of rows processed by the ith execution of the INSERT statement. If the ith
execution affects no rows, then %BULK_ROWCOUNT(i) returns zero.

This is demonstrated in Example 5–12.

Examples using FORALL and BULK COLLECT

5-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example 5–12 Using the FORALL statement with SQL%BULK_ROWCOUNT

Command> DECLARE
 > TYPE num_list_type IS TABLE OF NUMBER
 > INDEX BY BINARY_INTEGER;
 > v_nums num_list_type;
 > BEGIN
 > v_nums (1) := 1;
 > v_nums (2) := 3;
 > v_nums (3) := 5;
 > v_nums (4) := 7;
 > v_nums (5) := 11;
 > FORALL i IN v_nums.FIRST .. v_nums.LAST
 > INSERT INTO num_table (n) VALUES (v_nums (i));
 > FOR i IN v_nums.FIRST .. v_nums.LAST
 > LOOP
 > DBMS_OUTPUT.PUT_LINE ('Inserted '||
 > SQL%BULK_ROWCOUNT (i) || ' row (s)' ||
 > ' on iteration ' || i);
 > END LOOP;
 > END;
 > /
Inserted 1 row (s) on iteration 1
Inserted 1 row (s) on iteration 2
Inserted 1 row (s) on iteration 3
Inserted 1 row (s) on iteration 4
Inserted 1 row (s) on iteration 5

PL/SQL procedure successfully completed.

Using BULK COLLECT INTO with queries
Use BULK COLLECT with the SELECT statement in PL/SQL to retrieve rows without
using a cursor.

Example 5–13 Using BULK COLLECT INTO with queries

This example selects all rows from the departments table for a specified location into a
nested table, then uses a FOR LOOP to output data.

Command> CREATE OR REPLACE PROCEDURE get_departments (p_loc NUMBER) IS
 > TYPE dept_tab_type IS
 > TABLE OF departments%ROWTYPE;
 > v_depts dept_tab_type;
 > BEGIN
 > SELECT * BULK COLLECT INTO v_depts
 > FROM departments
 > where location_id = p_loc;
 > FOR i IN 1 .. v_depts.COUNT
 > LOOP
 > DBMS_OUTPUT.PUT_LINE (v_depts(i).department_id
 > || ' ' || v_depts (i).department_name);
 > END LOOP;
 > END;
 > /

Procedure created.

The following executes the procedure and verifies the results:

Command> EXECUTE GET_DEPARTMENTS (1700);

Examples using FORALL and BULK COLLECT

Examples Using TimesTen SQL in PL/SQL 5-11

10 Administration
30 Purchasing
90 Executive
100 Finance
110 Accounting
120 Treasury
130 Corporate Tax
140 Control And Credit
150 Shareholder Services
160 Benefits
170 Manufacturing
180 Construction
190 Contracting
200 Operations
210 IT Support
220 NOC
230 IT Helpdesk
240 Government Sales
250 Retail Sales
260 Recruiting
270 Payroll

PL/SQL procedure successfully completed.

Command> SELECT department_id, department_name FROM departments WHERE

location_id = 1700;
< 10, Administration >
< 30, Purchasing >
< 90, Executive >
< 100, Finance >
< 110, Accounting >
< 120, Treasury >
< 130, Corporate Tax >
< 140, Control And Credit >
< 150, Shareholder Services >
< 160, Benefits >
< 170, Manufacturing >
< 180, Construction >
< 190, Contracting >
< 200, Operations >
< 210, IT Support >
< 220, NOC >
< 230, IT Helpdesk >
< 240, Government Sales >
< 250, Retail Sales >
< 260, Recruiting >
< 270, Payroll >
21 rows found.

Using BULK COLLECT INTO with cursors
Example 5–14 uses a cursor to bulk-collect rows from a table.

Example 5–14 Using BULK COLLECT INTO with cursors

This example uses a cursor to bulk-collect rows from the departments table with a
specified location_id. value. Results are the same as in Example 5–13 above.

Command> CREATE OR REPLACE PROCEDURE get_departments2 (p_loc NUMBER) IS
 > CURSOR cur_dept IS

Examples using FORALL and BULK COLLECT

5-12 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 > SELECT * FROM departments
 > WHERE location_id = p_loc;
 > TYPE dept_tab_type IS TABLE OF cur_dept%ROWTYPE;
 > v_depts dept_tab_type;
 > BEGIN
 > OPEN cur_dept;
 > FETCH cur_dept BULK COLLECT INTO v_depts;
 > CLOSE cur_dept;
 > FOR i IN 1 .. v_depts.COUNT
 > LOOP
 > DBMS_OUTPUT.PUT_LINE (v_depts (i).department_id
 > || ' ' || v_depts (i).department_name);
 > END LOOP;
 > END;
 > /

Procedure created.

Command> EXECUTE GET_DEPARTMENTS2 (1700);
10 Administration
30 Purchasing
90 Executive
100 Finance
110 Accounting
120 Treasury
130 Corporate Tax
140 Control And Credit
150 Shareholder Services
160 Benefits
170 Manufacturing
180 Construction
190 Contracting
200 Operations
210 IT Support
220 NOC
230 IT Helpdesk
240 Government Sales
250 Retail Sales
260 Recruiting
270 Payroll

PL/SQL procedure successfully completed.

Using SAVE EXCEPTIONS with BULK COLLECT
SAVE EXCEPTIONS allows an UPDATE, INSERT, or DELETE statement to continue executing
after it issues an exception. When the statement finishes, an error is issued to signal
that at least one exception occurred. Exceptions are collected into an array that you can
examine using %BULK_EXCEPTIONS after the statement has executed.

Example 5–15 Using SAVE EXCEPTIONS with BULK COLLECT

In this example, PL/SQL raises predefined exceptions because some new values are
too large for the job_id column. After the FORALL statement, SQL%BULK_
EXCEPTIONS.COUNT returns 2, and the contents of SQL%BULK_EXCEPTIONS are (7, 01401)
and (13, 01401), indicating the error number and the line numbers where the error was
detected. To get the error message, the negative of SQL%BULK_EXCEPTIONS(i).ERROR_
CODE is passed to the error-reporting function SQLERRM (which expects a negative
number).

Examples using EXECUTE IMMEDIATE

Examples Using TimesTen SQL in PL/SQL 5-13

The following script is executed using ttIsql:

-- create a temporary table for this example
CREATE TABLE emp_temp AS SELECT * FROM employees;

DECLARE
 TYPE empid_tab IS TABLE OF employees.employee_id%TYPE;
 emp_sr empid_tab;
-- create an exception handler for ORA-24381
 errors NUMBER;
 dml_errors EXCEPTION;
 PRAGMA EXCEPTION_INIT(dml_errors, -24381);

BEGIN
 SELECT employee_id
 BULK COLLECT INTO emp_sr FROM emp_temp
 WHERE hire_date < '1994-12-30';
-- add '_SR' to the job_id of the most senior employees
 FORALL i IN emp_sr.FIRST..emp_sr.LAST SAVE EXCEPTIONS
 UPDATE emp_temp SET job_id = job_id || '_SR'
 WHERE emp_sr(i) = emp_temp.employee_id;
-- If any errors occurred during the FORALL SAVE EXCEPTIONS,
-- a single exception is raised when the statement completes.

EXCEPTION
-- Figure out what failed and why
 WHEN dml_errors THEN
 errors := SQL%BULK_EXCEPTIONS.COUNT;
 DBMS_OUTPUT.PUT_LINE
 ('Number of statements that failed: ' || errors);
 FOR i IN 1..errors LOOP
 DBMS_OUTPUT.PUT_LINE('Error #' || i || ' occurred during '||
 'iteration #' || SQL%BULK_EXCEPTIONS(i).ERROR_INDEX);
 DBMS_OUTPUT.PUT_LINE('Error message is ' ||
 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));
 END LOOP;
END;
/

DROP TABLE emp_temp;

Results are as follows:

Number of statements that failed: 2
Error #1 occurred during iteration #7
Error message is ORA-01401: inserted value too large for column
Error #2 occurred during iteration #13
Error message is ORA-01401: inserted value too large for column

PL/SQL procedure successfully completed.

Examples using EXECUTE IMMEDIATE
TimesTen supports the EXECUTE IMMEDIATE statement, as noted in "Dynamic SQL in
PL/SQL (EXECUTE IMMEDIATE statement)" on page 2-12. This section provides the
following additional examples to consider as you develop your PL/SQL applications
in TimesTen:

■ Using EXECUTE IMMEDIATE to create a table

■ Using EXECUTE IMMEDIATE with a single row query

Examples using EXECUTE IMMEDIATE

5-14 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

■ Using EXECUTE IMMEDIATE to alter a connection attribute

■ Using EXECUTE IMMEDIATE to call a TimesTen built-in procedure

■ Using EXECUTE IMMEDIATE with TimesTen-specific syntax

Using EXECUTE IMMEDIATE to create a table
Consider a situation where you do not know your table definition at compilation. By
using an EXECUTE IMMEDIATE statement, you can create your table at execution time.
This example shows a procedure that creates a table using the EXECUTE IMMEDIATE
statement. The procedure is executed with the table name and column definitions
passed as parameters, then creation of the table is verified.

Example 5–16 Using EXECUTE IMMEDIATE to create a table

Command> CREATE OR REPLACE PROCEDURE create_table
 > (p_table_name VARCHAR2, p_col_specs VARCHAR2) IS
 > BEGIN
 > EXECUTE IMMEDIATE 'CREATE TABLE ' || p_table_name
 >
 > || ' (' || p_col_specs|| ')';
 > END;
 > /

Procedure created.

Execute the procedure and verify the table is created.

Command> BEGIN
 > create_table ('EMPLOYEES_NAMES', 'id NUMBER (4)
 > PRIMARY KEY, name VARCHAR2 (40)');
 > END;
 > /

PL/SQL procedure successfully completed.

Command> DESCRIBE employees_names;

Table USER.EMPLOYEES_NAMES:
 Columns:
 *ID NUMBER (4) NOT NULL
 NAME VARCHAR2 (40) INLINE

1 table found.
(primary key columns are indicated with *)

Using EXECUTE IMMEDIATE with a single row query
In this example, the function get_emp retrieves an employee record. The function is
executed and returns the results in v_emprec.

Example 5–17 Using EXECUTE IMMEDIATE with a single row query

Command> CREATE OR REPLACE FUNCTION get_emp (p_emp_id NUMBER)
 > RETURN employees%ROWTYPE IS
 > v_stmt VARCHAR2 (200);
 > v_emprec employees%ROWTYPE;
 > BEGIN
 > v_stmt:= 'SELECT * FROM EMPLOYEES '||
 > 'WHERE employee_id = :p_emp_id';

Examples using EXECUTE IMMEDIATE

Examples Using TimesTen SQL in PL/SQL 5-15

 > EXECUTE IMMEDIATE v_stmt INTO v_emprec USING p_emp_id;
 > RETURN v_emprec;
 > END;
 > /

Function created.

Command> DECLARE
 > v_emprec employees%ROWTYPE := GET_EMP (100);
 > BEGIN
 > DBMS_OUTPUT.PUT_LINE ('Employee: ' || v_emprec.last_name);
 > END;
 > /
Employee: King

PL/SQL procedure successfully completed.

Using EXECUTE IMMEDIATE to alter a connection attribute
This example uses an EXECUTE IMMEDIATE statement with ALTER SESSION to alter the
PLSQL_OPTIMIZE_LEVEL setting, calling the ttConfiguration built-in procedure before
and after to verify the results. (The next example calls ttConfiguration from inside an
EXECUTE IMMEDIATE statement.) Refer to "ttConfiguration" in Oracle TimesTen
In-Memory Database Reference for information about this procedure.

Example 5–18 Using EXECUTE IMMEDIATE to alter PLSCOPE_SETTINGS

Command> call ttconfiguration;
...
< PLSCOPE_SETTINGS, IDENTIFIERS:NONE >
< PLSQL, 1 >
< PLSQL_CCFLAGS, <NULL> >
< PLSQL_CODE_TYPE, INTERPRETED >
< PLSQL_CONN_MEM_LIMIT, 100 >
< PLSQL_MEMORY_ADDRESS, 0x10000000 >
< PLSQL_MEMORY_SIZE, 32 >
< PLSQL_OPTIMIZE_LEVEL, 2 >
< PLSQL_TIMEOUT, 30 >
...
54 rows found.

Command> begin
 > execute immediate 'alter session set PLSQL_OPTIMIZE_LEVEL=3';
 > end;
 > /
PL/SQL procedure successfully completed.

Command> call ttconfiguration;
...
< PLSCOPE_SETTINGS, IDENTIFIERS:NONE >
< PLSQL, 1 >
< PLSQL_CCFLAGS, <NULL> >
< PLSQL_CODE_TYPE, INTERPRETED >
< PLSQL_CONN_MEM_LIMIT, 100 >
< PLSQL_MEMORY_ADDRESS, 0x10000000 >
< PLSQL_MEMORY_SIZE, 32 >
< PLSQL_OPTIMIZE_LEVEL, 3 >
< PLSQL_TIMEOUT, 30 >
...
54 rows found.

Examples using RETURNING INTO

5-16 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Using EXECUTE IMMEDIATE to call a TimesTen built-in procedure
In PL/SQL, you can use an EXECUTE IMMEDIATE statement with CALL syntax to call a
TimesTen built-in procedure.

For example, to call the built-in procedure ttConfiguration and return its output
result set, create a PL/SQL record type then use EXECUTE IMMEDIATE with BULK
COLLECT to fetch the result set into an array.

For more information on TimesTen built-in procedures, see "Built-In Procedures" in
Oracle TimesTen In-Memory Database Reference.

Example 5–19 Using EXECUTE IMMEDIATE to call ttConfiguration

Command> DECLARE
 > TYPE ttConfig_record IS RECORD
 > (name varchar2(255), value varchar2 (255));
 > TYPE ttConfig_table IS TABLE OF ttConfig_record;
 > v_ttConfigs ttConfig_table;
 > BEGIN
 > EXECUTE IMMEDIATE 'CALL ttConfiguration'
 > BULK COLLECT into v_ttConfigs;
 > DBMS_OUTPUT.PUT_LINE ('Name: ' || v_ttConfigs(1).name
 > || ' Value: ' || v_ttConfigs(1).value);
 > end;
 > /
Name: CacheGridEnable Value: 0

PL/SQL procedure successfully completed.

Using EXECUTE IMMEDIATE with TimesTen-specific syntax
This example uses an EXECUTE IMMEDIATE statement to execute a TimesTen SELECT
FIRST n statement. This syntax is specific to TimesTen.

Example 5–20 Using EXECUTE IMMEDIATE with TimesTen-specific syntax

Command> DECLARE v_empid NUMBER;
 > BEGIN
 > EXECUTE IMMEDIATE 'SELECT FIRST 1 employee_id FROM employees'
 > INTO v_empid;
 > DBMS_OUTPUT.PUT_LINE ('Employee id: ' || v_empid);
 > END;
 > /
Employee id: 100

PL/SQL procedure successfully completed.

Examples using RETURNING INTO
This section includes the following two examples using the RETURNING INTO clause:

■ Using the RETURNING INTO clause with a record

■ Using BULK COLLECT INTO with the RETURNING INTO clause

See "RETURNING INTO clause" on page 2-15 for an overview.

Examples using RETURNING INTO

Examples Using TimesTen SQL in PL/SQL 5-17

Using the RETURNING INTO clause with a record
The following example uses ttIsql to run a SQL script that uses a RETURNING INTO
clause to return data into a record. The example gives a raise to a specified employee,
returns his name and new salary into a record, then outputs the data from the record.
For reference, the original salary is shown before running the script.

Example 5–21 Using the RETURNING INTO clause with a record

Command> SELECT SALARY,LAST_NAME FROM EMPLOYEES WHERE EMPLOYEE_ID = 100;
< 24000, King >
1 row found.

Command> run ReturnIntoWithRecord.sql;

CREATE TABLE emp_temp AS SELECT * FROM employees;
107 rows inserted.

DECLARE
 TYPE EmpRec IS RECORD (last_name employees.last_name%TYPE,
 salary employees.salary%TYPE);
 emp_info EmpRec;
 emp_id NUMBER := 100;
BEGIN
 UPDATE emp_temp SET salary = salary * 1.1
 WHERE employee_id = emp_id
 RETURNING last_name, salary INTO emp_info;
 DBMS_OUTPUT.PUT_LINE
 ('Just gave a raise to ' || emp_info.last_name ||
 ', who now makes ' || emp_info.salary);
 ROLLBACK;
END;
/

Just gave a raise to King, who now makes 26400

PL/SQL procedure successfully completed.

Using BULK COLLECT INTO with the RETURNING INTO clause
The following example uses ttIsql to run a SQL script that uses a RETURNING INTO
clause with BULK COLLECT to return data into nested tables, a type of PL/SQL
collection. The example deletes all the employees from a specified department, then,
using one nested table for employee IDs and one for last names, outputs the employee
ID and last name of each deleted employee. For reference, the IDs and last names of
employees in the department are also displayed before execution of the script.

Example 5–22 Using BULK COLLECT INTO with the RETURNING INTO clause

Command> select employee_id, last_name from employees where department_id=30;
< 114, Raphaely >
< 115, Khoo >
< 116, Baida >
< 117, Tobias >
< 118, Himuro >
< 119, Colmenares >
6 rows found.
Command> run ReturnIntoWithBulkCollect.sql;

CREATE TABLE emp_temp AS SELECT * FROM employees;

Examples using the AUTHID clause

5-18 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

107 rows inserted.

DECLARE
 TYPE NumList IS TABLE OF employees.employee_id%TYPE;
 enums NumList;
 TYPE NameList IS TABLE OF employees.last_name%TYPE;
 names NameList;
BEGIN
 DELETE FROM emp_temp WHERE department_id = 30
 RETURNING employee_id, last_name
 BULK COLLECT INTO enums, names;
 DBMS_OUTPUT.PUT_LINE
 ('Deleted ' || SQL%ROWCOUNT || ' rows:');
 FOR i IN enums.FIRST .. enums.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE
 ('Employee #' || enums(i) || ': ' || names(i));
 END LOOP;
END;
/
Deleted 6 rows:
Employee #114: Raphaely
Employee #115: Khoo
Employee #116: Baida
Employee #117: Tobias
Employee #118: Himuro
Employee #119: Colmenares

PL/SQL procedure successfully completed.

Examples using the AUTHID clause
This section runs a script twice in ttIsql with just one change, first defining a
PL/SQL procedure with AUTHID CURRENT_USER for invoker's rights, then with AUTHID
DEFINER for definer's rights. See "Definer's rights and invoker's rights" on page 7-7 for
related information.

Script for AUTHID examples
The script assumes three users have been created: a tool vendor and two tool users
(brandX and brandY). Each has been granted CREATE SESSION, CREATE PROCEDURE, and
CREATE TABLE privileges as necessary. The following setup is also assumed, to allow
"use username;" syntax to connect to the database as username.

connect adding "uid=toolVendor;pwd=pw" as toolVendor;
connect adding "uid=brandX;pwd=pw" as brandX;
connect adding "uid=brandY;pwd=pw" as brandY;

The script does the following:

■ Creates the procedure, printInventoryStatistics, as the tool vendor.

■ Creates a table with the same name, myInventory, in each of the three user
schemas, populating it with unique data in each case.

■ Runs the procedure as each of the tool users.

The different results between the two executions of the script show the difference
between invoker's rights and definer's rights.

Following is the script for the invoker's rights execution.

Examples using the AUTHID clause

Examples Using TimesTen SQL in PL/SQL 5-19

use toolVendor;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);

create or replace procedure printInventoryStatistics authid current_user is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/
grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
set serveroutput on
execute toolVendor.printInventoryStatistics;

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
set serveroutput on
execute toolVendor.printInventoryStatistics;

The only difference for the definer's rights execution is the change in the AUTHID clause
for the procedure definition.

...
create or replace procedure printInventoryStatistics authid definer is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/
...

Using AUTHID CURRENT_USER
This example shows the results when the procedure is defined with invoker's rights.
Note that when the tool users brandX and brandY run the printInventoryStatistics
procedure, each sees the data in his own (the invoker's) myInventory table.

Example 5–23 Using AUTHID CURRENT_USER

Command> run invoker.sql

use toolVendor;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);
1 row inserted.

Examples using the AUTHID clause

5-20 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

create or replace procedure printInventoryStatistics authid current_user is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/

Procedure created.

grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
toothpaste 100

PL/SQL procedure successfully completed.

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
shampoo 10

PL/SQL procedure successfully completed.

Use the following to terminate all the connections:

Command> disconnect all;

Using AUTHID DEFINER
This example shows the results when the procedure is defined with definer's rights.
Note that when the tool users brandX and brandY run printInventoryStatistics,
each sees the data in myInventory belonging to the tool vendor (the definer).

Example 5–24 Using AUTHID DEFINER

Command> run definer.sql

use toolVendor;

create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);
1 row inserted.

Examples using the AUTHID clause

Examples Using TimesTen SQL in PL/SQL 5-21

create or replace procedure printInventoryStatistics authid definer is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/

Procedure created.

grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
butter 1

PL/SQL procedure successfully completed.

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
butter 1

PL/SQL procedure successfully completed.

In this case, it is also instructive to see that although brandX and brandY can each
access the toolVendor.myInventory table through the procedure, they cannot access it
directly. That is a key use of definer's rights, to allow specific and restricted access to a
table or other SQL object through the actions of a procedure.

Command> use brandX;
brandx: Command> select * from toolVendor.myInventory;
15100: User BRANDX lacks privilege SELECT on TOOLVENDOR.MYINVENTORY
The command failed.

brandx: Command> use brandY;
brandy: Command> select * from toolVendor.myInventory;
15100: User BRANDY lacks privilege SELECT on TOOLVENDOR.MYINVENTORY
The command failed.

Use the following to terminate all the connections:

Command> disconnect all;

Example querying a system view

5-22 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Example querying a system view
This section provides an example that queries a system view.

Example 5–25 Querying system view USER_SOURCE

This example queries the USER_SOURCE system view to examine the source code of
procedure query_emp from Example 5–4 on page 5-3. (You must create that procedure
before completing this example.)

Command> SELECT SUBSTR (text, 1, LENGTH(text)-1)
 > FROM user_source
 > WHERE name = 'QUERY_EMP' AND type = 'PROCEDURE';

This produces the following output:

< PROCEDURE query_emp >
< (p_id IN employees.employee_id%TYPE, >
< p_name OUT employees.last_name%TYPE, >
< p_salary OUT employees.salary%TYPE) IS >
< BEGIN >
< SELECT last_name, salary INTO p_name, p_salary >
< FROM employees >
< WHERE employee_id = p_id; >
< END query_emp; >
9 rows found.

Note: As with other USER_* system views, all users have SELECT
privilege for the USER_SOURCE system view.

6

PL/SQL Installation and Environment 6-1

6PL/SQL Installation and Environment

The chapter shows you how to manage PL/SQL in your TimesTen database, set
connection attributes, and display system-provided packages. It also describes the
ttSrcScan utility, which you can use to check for PL/SQL features unsupported in
TimesTen. The chapter concludes with examples to assist you in your setup
procedures.

Topics in this chapter include:

■ Confirming that PL/SQL is installed and enabled in TimesTen

■ PL/SQL connection attributes

■ The ttSrcScan utility

Confirming that PL/SQL is installed and enabled in TimesTen
This section covers the following topics:

■ PL/SQL installation and the ttmodinstall utility

■ Checking that PL/SQL is enabled in a TimesTen database

PL/SQL installation and the ttmodinstall utility
TimesTen installs PL/SQL by default. If you choose not to install PL/SQL (which is
discouraged), you can use the TimesTen ttmodinstall utility to install it later. For
more information, see "ttmodinstall" in Oracle TimesTen In-Memory Database Reference.

Checking that PL/SQL is enabled in a TimesTen database
PL/SQL is enabled by default (first connection attribute setting PLSQL=1). You can
confirm the status of PL/SQL in your database in the following ways. In these
examples, $ is the UNIX prompt and Command> is the ttIsql prompt.

■ Use the ttStatus utility to determine if PL/SQL is enabled in your database, as
indicated in the following example. See "ttStatus" in Oracle TimesTen In-Memory
Database Reference for information about this utility.

$ ttstatus
TimesTen status report as of Sat Sep 17 13:58:27 2011

Daemon pid 20921 port 28959 instance myserver
...

Note: Only the instance administrator can run this utility.

PL/SQL connection attributes

6-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

--
Data store /mypath/install/info/DemoDataStore/sampledb_1122
There are xx connections to the data store
Shared Memory KEY 0x2e0183b1 ID 1343492
PL/SQL Memory KEY 0x2f0183b1 ID 1376261 Address 0x10000000
Type PID Context Connection Name ConnID
Process 16678 0x08f718c0 sampledb_1122 1
...
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
...
End of report

■ Using the ttIsql utility, call the ttConfiguration built-in procedure to determine
the PLSQL connection attribute setting for your database. The value 1, as shown in
the following example, indicates PL/SQL is enabled. Refer to "ttConfiguration" in
Oracle TimesTen In-Memory Database Reference for information about this built-in
procedure.

Command> call ttconfiguration;
...
< DataStore, /mypath/install/info/DemoDataStore/sampledb_1122 >
...
< PLSQL, 1 >
...
< UID, MYUSER >
61 rows found.

PL/SQL connection attributes
There are several TimesTen connection attributes specific to PL/SQL, as summarized
in Table 6–1 that follows. For additional information on these connection attributes,
see "PL/SQL first connection attributes" and "PL/SQL general connection attributes"
in Oracle TimesTen In-Memory Database Reference.

The table also notes any required access control privileges and whether each
connection attribute is a first connection attribute or general connection attribute. First
connection attributes are set when the database is first loaded, and persist for all
connections. Only the instance administrator can load a database with changes to first
connection attribute settings. A general connection attribute setting applies to one
connection only, and requires no special privilege.

Table 6–1 PL/SQL Connection Attributes

Attribute Summary

PLSQL First connection attribute

Required privilege: Instance administrator

Enables PL/SQL in the database.

If PLSQL=1, PL/SQL is enabled.

If PLSQL=0, PL/SQL is not enabled.

You can enable PL/SQL when your database is initially
created or at any first connection. Once PL/SQL is
enabled, it cannot be disabled.

Default: 1 (for platforms where PL/SQL is supported)

PL/SQL connection attributes

PL/SQL Installation and Environment 6-3

PLSQL_MEMORY_ADDRESS First connection attribute

Required privilege: Instance administrator

Specifies the virtual address, as a hexadecimal value, at
which the PL/SQL shared memory segment is loaded
into each process that uses the TimesTen direct drivers.
This memory address must be identical in all
connections to a given database and in all processes
that connect to that database.

If a single application simultaneously makes direct
connections to multiple databases, then you must set
different values for each of the databases.

Default: Platform-specific value

Refer to "PLSQL_MEMORY_ADDRESS" in Oracle
TimesTen In-Memory Database Reference for
platform-specific information.

PLSQL_MEMORY_SIZE First connection attribute

Required privilege: Instance administrator

Determines the size, in megabytes, of memory allocated
for the PL/SQL shared memory segment, which is
shared by all connections. This memory is used to hold
recently executed PL/SQL code and metadata about
PL/SQL objects.

Default: Platform-specific value

Refer to "PLSQL_MEMORY_SIZE" in Oracle TimesTen
In-Memory Database Reference for information about
calculating the PL/SQL memory size and for
platform-specific values and tuning information.

PLSCOPE_SETTINGS General connection attribute

Required privilege: None

Controls whether the PL/SQL compiler generates
cross-reference information. Possible values are
IDENTIFIERS:NONE or IDENTIFIERS:ALL.

You can use the ALTER SESSION statement to change
this value within your session.

Default: IDENTIFIERS:NONE

Table 6–1 (Cont.) PL/SQL Connection Attributes

Attribute Summary

PL/SQL connection attributes

6-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

PLSQL_CCFLAGS General connection attribute

Required privilege: None

Use this to set inquiry directives to control conditional
compilation of PL/SQL units, which enables you to
customize the functionality of a PL/SQL program
depending on conditions that are checked. This is
especially useful when applications may be deployed to
multiple database environments. For example, to
activate debugging features:

PLSQL_CCFLAGS='DEBUG:TRUE'

PL/SQL conditional compilation flags are similar in
concept to flags on a C compiler command line, such as
the following:

% cc -DEBUG=TRUE ...

You can use the ALTER SESSION statement to change
PLSQL_CCFLAGS within your session.

See "Conditional Compilation" in Oracle Database
PL/SQL Language Reference for information about this
feature.

Default: NULL

Table 6–1 (Cont.) PL/SQL Connection Attributes

Attribute Summary

PL/SQL connection attributes

PL/SQL Installation and Environment 6-5

PLSQL_CONN_MEM_LIMIT General connection attribute

Required privilege: None

Specifies the maximum amount of PL/SQL shared
memory (process heap memory) that PL/SQL can
allocate for the current connection. (Note that this
memory is not actually allocated until needed.) This is
memory used for runtime data, such as large PL/SQL
collections, as opposed to cached executable code. This
limit setting protects other parts of your application,
such as C or Java components, when PL/SQL might
otherwise take all available runtime memory.

The amount of space consumed by PL/SQL variables is
roughly what you might expect comparable variables to
consume in other programming languages. As an
example, consider a large array of strings:

type chararr is table of varchar2(32767)
 index by binary_integer;
big_array chararr;

If 100,000 strings of 100 bytes each are placed into such
an array, approximately 12 megabytes of memory is
consumed.

Memory consumed by variables in PL/SQL blocks is
used while the block executes, then is released. Memory
consumed by variables in PL/SQL package
specifications or bodies (not within a procedure or
function) is used for the lifetime of the package.
Memory consumed by variables in a PL/SQL
procedure or function, including one defined within a
package, is used for the lifetime of the procedure or
function. However, in all cases, memory freed by
PL/SQL is not returned to the operating system.
Instead, it is kept by PL/SQL and reused by future
PL/SQL invocations. The memory is freed when the
application disconnects from TimesTen.

The PLSQL_CONN_MEM_LIMIT value is a number specified
in megabytes. A setting of 0 means no limit.

You can use the ALTER SESSION statement to change
this value within your session.

Default: 100 megabytes

Note: In ttPLSQLMemoryStats output, the related value
CurrentConnectionMemory indicates how much process
heap memory PL/SQL has actually acquired through
malloc(). (Also see Example 6–3 on page 6-8.)

PLSQL_OPTIMIZE_LEVEL General connection attribute

Required privilege: None

Specifies the optimization level used to compile
PL/SQL library units. The higher the setting, the more
effort the compiler makes to optimize PL/SQL library
units. Possible values are 0, 1, 2, or 3.

You can use the ALTER SESSION statement to change
this value within your session.

Default: 2

Table 6–1 (Cont.) PL/SQL Connection Attributes

Attribute Summary

PL/SQL connection attributes

6-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

The rest of this section provides some examples for setting and altering PL/SQL
connection attributes.

PLSQL_TIMEOUT General connection attribute

Required privilege: None

Controls how long PL/SQL program units are allowed
to run, in seconds, before being terminated. A new
value impacts PL/SQL programs currently running.
Possible values are 0 (meaning no time limit) or any
positive integer.

You can use the ALTER SESSION statement to change
this value within your session.

(Also be aware of TimesTen SQL query timeout
settings, as discussed in "Setting a timeout duration for
SQL statements" in Oracle TimesTen In-Memory Database
C Developer's Guide, and the TimesTen TTC_Timeout
setting, discussed in "TTC_Timeout" in Oracle TimesTen
In-Memory Database Reference.)

Default: 30 seconds

Notes:

■ The frequency with which PL/SQL programs
check execution time against this timeout value is
variable. It is possible for programs to run
significantly longer than the timeout value before
being terminated.

■ If you are using TimesTen Client/Server,
PLSQL_TIMEOUT should be significantly less than
TTC_Timeout, and cannot be 0 (for no timeout) if
TTC_Timeout is greater than 0. For details, see the
TTC_Timeout documentation referenced above.

Notes: There are additional TimesTen connection attributes you
should consider for PL/SQL. For more information about them, refer
to the indicated sections in Oracle TimesTen In-Memory Database
Reference.

■ If PL/SQL is enabled in your database, the value for the
DDLCommitBehavior general connection attribute must be 0. See
"DDLCommitBehavior".

■ If the LockLevel general connection attribute is set to 1
(database-level locking), certain PL/SQL internal functions cannot
be performed. Therefore, set LockLevel to 0 for your connection.
You can then use the ttLockLevel built-in procedure to
selectively switch to database-level locking for those transactions
that require it. See "LockLevel" and "ttLockLevel".

■ The PL/SQL shared memory segment is not subject to the
MemoryLock first connection attribute. See "MemoryLock".

Table 6–1 (Cont.) PL/SQL Connection Attributes

Attribute Summary

PL/SQL connection attributes

PL/SQL Installation and Environment 6-7

Example 6–1 Create a database with PL/SQL default connection attributes

This example defines a database pldef without specifying PL/SQL connection
attributes. (Be aware that only an instance administrator can create a database.)

Sample odbc.ini entry:

[pldef]
Driver=/mypath/install/lib/libtten.so
DataStore=/mypath/install/info/DemoDataStore/pldef
DatabaseCharacterSet=US7ASCII

Connect to database pldef:

$ ttisql pldef

Copyright (c) 1996-2011, Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=pldef";
Connection successful:
DSN=pldef;UID=myuser;DataStore=/mypath/install/info/DemoDataStore/pldef;
DatabaseCharacterSet=US7ASCII;ConnectionCharacterSet=US7ASCII;
DRIVER=/mypath/install/lib/libtten.so;TypeMode=0;
(Default setting AutoCommit=1)

Call the ttConfiguration built-in procedure to display settings, which shows you the
default PL/SQL settings:

Command> call ttconfiguration;
...
< DataBaseCharacterSet, US7ASCII >
< DataStore, /mypath/install/info/DemoDataStore/pldef >
...
< PLSCOPE_SETTINGS, IDENTIFIERS:NONE >
< PLSQL, 1 >
< PLSQL_CCFLAGS, <NULL> >
...
< PLSQL_CONN_MEM_LIMIT, 100 >
< PLSQL_MEMORY_ADDRESS, 0x10000000 >
< PLSQL_MEMORY_SIZE, 32 >
< PLSQL_OPTIMIZE_LEVEL, 2 >
< PLSQL_TIMEOUT, 30 >
...
< UID, MYUSER >
61 rows found.

Example 6–2 Use ALTER SESSION to change attribute settings

This example uses ALTER SESSION statements to alter PL/SQL connection attributes,
changing the settings of PLSCOPE_SETTINGS, PLSQL_CONN_MEM_LIMIT, and
PLSQL_OPTIMIZE_LEVEL. It then calls the ttConfiguration built-in procedure to
display the new values.

Command> ALTER SESSION SET PLSCOPE_SETTINGS = "IDENTIFIERS:ALL";

Session altered.

Command> ALTER SESSION SET PLSQL_CONN_MEM_LIMIT=200;

Session altered.

The ttSrcScan utility

6-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Command> ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL=3;

Session altered.

Command> call ttconfiguration;
...
< DataStore, /mypath/install/info/DemoDataStore/pldef >
...
< PLSCOPE_SETTINGS, IDENTIFIERS:ALL >
...
< PLSQL_CONN_MEM_LIMIT, 200 >
...
< PLSQL_OPTIMIZE_LEVEL, 3 >
...
< UID, MYUSER >
61 rows found.

Example 6–3 View PL/SQL performance statistics

The ttPLSQLMemoryStats built-in procedure returns statistics about PL/SQL library
cache performance and activity. This example shows some sample output. Refer to
"ttPLSQLMemoryStats" in Oracle TimesTen In-Memory Database Reference for
information about this procedure.

Command> call ttplsqlmemorystats;
< Gets, 5.000000 >
< GetHits, 0.000000e+00 >
< GetHitRatio, 0.000000e+00 >
< Pins, 4.000000 >
< PinHits, 0.000000e+00 >
< PinHitRatio, 0.000000e+00 >
< Reloads, 0.000000e+00 >
< Invalidations, 0.000000e+00 >
< CurrentConnectionMemory, 0.000000e+00 >
< DeferredCleanups, 0.000000e+00 >
10 rows found.

The ttSrcScan utility
If you have an existing PL/SQL program and want to see whether it uses PL/SQL
features that TimesTen does not support, you can use the ttSrcScan command line
utility to scan your program for unsupported functions, packages, types, type codes,
attributes, modes, and constants. This is a standalone utility that can be run without
TimesTen or Oracle Database being installed and runs on any platform supported by
TimesTen. It reads source code files as input and creates HTML and text files as
output. If the utility finds unsupported items, they are logged and alternatives are
suggested. You can find the ttSrcScan executable in the quickstart/sample_util
directory in your TimesTen installation.

Specify an input file or directory for the program to be scanned and an output
directory for the ttSrcScan reports. Other options are available as well. See the
README file in the sample_util directory for information.

Note: CurrentConnectionMemory is related to the
PLSQL_CONN_MEM_LIMIT connection attribute documented in "PL/SQL
connection attributes" on page 6-2, indicating the amount of heap
memory that has actually been acquired by PL/SQL.

7

Access Control for PL/SQL Programs 7-1

7Access Control for PL/SQL Programs

TimesTen has features to control database access with object-level resolution for
database objects such as tables, views, materialized views, indexes, sequences,
functions, procedures, and packages, for example. You can refer to "Managing Access
Control" in Oracle TimesTen In-Memory Database Operations Guide for introductory
information about TimesTen access control features.

This chapter introduces access control as it relates to PL/SQL users.

Topics in this chapter include the following:

■ Access control for PL/SQL operations

■ Access control for SQL operations

■ Definer's rights and invoker's rights

■ Additional access control considerations

Access control for PL/SQL operations
This section covers the following topics:

■ Required privileges for PL/SQL statements and operations

■ Granting and revoking privileges

■ Invalidated objects

Required privileges for PL/SQL statements and operations
For PL/SQL users, access control affects the ability to create, alter, drop, or execute
PL/SQL procedures and functions, including packages and their member procedures
and functions.

You need the CREATE PROCEDURE privilege to create a procedure, function, package
definition, or package body if it is being created in your own schema, or CREATE ANY
PROCEDURE if it is being created in any schema other than your own. To alter or drop a
procedure, function, package definition, or package body, you must be the owner or
have the ALTER ANY PROCEDURE privilege or DROP ANY PROCEDURE privilege,
respectively.

Note: Access control is enabled when you install TimesTen. You
cannot disable it.

Access control for PL/SQL operations

7-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

To execute a procedure or function, you must be the owner, have the EXECUTE
privilege for the procedure or function (or for the package to which it belongs, if
applicable), or have the EXECUTE ANY PROCEDURE privilege. This is all summarized in
Table 7–1.

Table 7–1 Privileges for using PL/SQL procedures and functions

Action SQL statement or operation Required Privilege

Create a procedure,
function, package
definition, or package
body.

CREATE [OR REPLACE]
PROCEDURE

CREATE [OR REPLACE] FUNCTION

CREATE [OR REPLACE] PACKAGE

CREATE [OR REPLACE] PACKAGE
BODY

CREATE PROCEDURE in user's
schema

Or:

CREATE ANY PROCEDURE in any
other schema

Alter a procedure,
function, or package.

ALTER PROCEDURE

ALTER FUNCTION

ALTER PACKAGE

Ownership of the procedure,
function, or package

Or:

ALTER ANY PROCEDURE

Drop a procedure,
function, package
definition, or package
body.

DROP PROCEDURE

DROP FUNCTION

DROP PACKAGE

DROP PACKAGE BODY

Ownership of the procedure,
function, or package

Or:

DROP ANY PROCEDURE

Execute a procedure or
function.

Invoke the procedure or
function.

Ownership of the procedure or
function, or of the package to
which it belongs (if applicable)

Or:

EXECUTE for the procedure or
function, or for the package to
which it belongs (if applicable)

Or:

EXECUTE ANY PROCEDURE

Create a private synonym
for a procedure, function,
or package.

CREATE [OR REPLACE] SYNONYM CREATE SYNONYM in user's
schema

Or:

CREATE ANY SYNONYM in any
other schema

Create a public synonym
for a procedure, function,
or package.

CREATE [OR REPLACE] PUBLIC
SYNONYM

CREATE PUBLIC SYNONYM

Use a synonym to execute
a procedure or function.

Invoke the procedure or
function through its synonym.

Privilege to execute the
underlying procedure or
function

Drop a private synonym
for a procedure, function,
or package.

DROP SYNONYM Ownership of the synonym

Or:

DROP ANY SYNONYM

Drop a public synonym
for a procedure, function,
or package.

DROP PUBLIC SYNONYM DROP PUBLIC SYNONYM

Access control for PL/SQL operations

Access Control for PL/SQL Programs 7-3

See "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the
syntax and required privileges of SQL statements discussed in this section.

Granting and revoking privileges
Use the SQL statement GRANT to grant a privilege. Use REVOKE to revoke one.

The following example grants EXECUTE privilege to user2 for a procedure and a
package that user1 owns:

Command> grant execute on user1.myproc to user2;
Command> grant execute on user1.mypkg to user2;

This example revokes the privileges:

Command> revoke execute on user1.myproc from user2;
Command> revoke execute on user1.mypkg from user2;

Example 7–1 Granting of required privileges

This example shows a series of attempted operations by a user, user1, as follows:

1. The user attempts each operation before having the necessary privilege. The
resulting error is shown.

2. The instance administrator grants the necessary privilege.

3. The user successfully performs the operation.

The ttIsql utility is used by user1 to perform (or attempt) the operations and by the
instance administrator to grant privileges.

USER1:

Initially the user does not have permission to create a procedure. That must be granted
even in his or her own schema.

Command> create procedure testproc is
 > begin
 > dbms_output.put_line('user1.testproc called');
 > end;

Notes:

■ A user who has been granted privilege to execute a procedure (or
function) can execute the procedure even if he or she has no
privilege on other procedures that the procedure calls. For
example, consider a stored procedure user2.proc1 that executes
procedure user2.proc2. If user1 is granted privilege to execute
proc1 but is not granted privilege to execute proc2, he could not
run proc2 directly but could still run proc1.

■ Privilege to execute a procedure or function allows implicit
compilation of the procedure or function if it is invalid or not
compiled at the time of execution.

■ When CREATE OR REPLACE results in an object (such as a
procedure, function, package, or synonym) being replaced, there
is no effect on privileges that any users had previously been
granted on that object. This is as opposed to when there is an
explicit DROP and then CREATE to re-create an object, in which case
all privileges on the object are revoked.

Access control for PL/SQL operations

7-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

 > /
15100: User USER1 lacks privilege CREATE PROCEDURE
The command failed.

Instance administrator:

Command> grant create procedure to user1;

USER1:

Once user1 can create a procedure in his own schema, he can execute it because he
owns it.

Command> create procedure testproc is
 > begin
 > dbms_output.put_line('user1.testproc called');
 > end;
 > /

Procedure created.

Command> begin
 > testproc();
 > end;
 > /
user1.testproc called

PL/SQL procedure successfully completed.

The user cannot yet create a procedure in another schema, though.

Command> create procedure user2.testproc is
 > begin
 > dbms_output.put_line('user2.testproc called');
 > end;
 > /
15100: User USER1 lacks privilege CREATE ANY PROCEDURE
The command failed.

Instance administrator:

Command> grant create any procedure to user1;

USER1:

Now user1 can create a procedure in another schema, but he cannot execute it yet
because he does not own it or have privilege.

Command> create procedure user2.testproc is
 > begin
 > dbms_output.put_line('user2.testproc called');
 > end;
 > /

Procedure created.

Command> begin
 > user2.testproc();
 > end;
 > /
 8503: ORA-06550: line 2, column 7:
PLS-00904: insufficient privilege to access object USER2.TESTPROC
 8503: ORA-06550: line 2, column 1:

Access control for PL/SQL operations

Access Control for PL/SQL Programs 7-5

PL/SQL: Statement ignored
The command failed.

Instance administrator:

Command> grant execute any procedure to user1;

USER1:

Now user1 can execute a procedure in another schema.

Command> begin
 > user2.testproc();
 > end;
 > /
user2.testproc called

PL/SQL procedure successfully completed.

Invalidated objects
When a privilege on an object is revoked from a user, all of that user's PL/SQL objects
that refer to that object are temporarily invalidated. Once the privilege has been
restored, a user can explicitly recompile and revalidate an object by executing ALTER
PROCEDURE, ALTER FUNCTION, or ALTER PACKAGE, as applicable, on the object.
Alternatively, each object is recompiled and revalidated automatically the next time it
is executed.

For example, if user1 has a procedure user1.proc0 that calls user2.proc1, proc0
becomes invalid if EXECUTE privilege for proc1 is revoked from user1.

Use the following to see if any of your objects are invalid:

select * from user_objects where status='INVALID';

See "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for
information about the ALTER statements.

Example 7–2 Invalidated object

This example shows a sequence that results in an invalidated object, in this case a
PL/SQL procedure, as follows:

1. A user is granted CREATE ANY PROCEDURE privilege, creates a procedure in another
user's schema, then creates a procedure in his own schema that calls the procedure
in the other user's schema.

2. The user is granted EXECUTE privilege to execute the procedure in the other user's
schema.

3. The user executes the procedure in his schema that calls the procedure in the other
user's schema.

4. EXECUTE privilege for the procedure in the other user's schema is revoked from the
user, invalidating the user's own procedure.

5. EXECUTE privilege for the procedure in the other user's schema is granted to the
user again. When he executes his own procedure, it is implicitly recompiled and
revalidated.

Instance administrator:

Command> grant create any procedure to user1;

Access control for PL/SQL operations

7-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

USER1:

Command> create procedure user2.proc1 is
 > begin
 > dbms_output.put_line('user2.proc1 is called');
 > end;
 > /

Procedure created.

Command> create procedure user1.proc0 is
 > begin
 > dbms_output.put_line('user1.proc0 is called');
 > user2.proc1;
 > end;
 > /

Procedure created.

Instance administrator:

Command> grant execute on user2.proc1 to user1;

USER1:

Command> begin
 > user1.proc0;
 > end;
 > /
user1.proc0 is called
user2.proc1 is called

PL/SQL procedure successfully completed.

And to confirm user1 has no invalid objects:

Command> select * from user_objects where status='INVALID';
0 rows found.

Instance administrator:

Now revoke the EXECUTE privilege from user1.

Command> revoke execute on user2.proc1 from user1;

USER1:

Immediately, user1.proc0 becomes invalid because user1 no longer has privilege to
execute user2.proc1.

Command> select * from user_objects where status='INVALID';
< PROC0, <NULL>, 273, <NULL>, PROCEDURE, 2009-06-04 14:51:34, 2009-06-04 14:58:23,
2009-06-04:14:58:23, INVALID, N, N, N, 1, <NULL> >
1 row found.

So user1 can no longer execute the procedure.

Command> begin
 > user1.proc0;
 > end;
 > /
 8503: ORA-06550: line 2, column 7:

Definer's rights and invoker's rights

Access Control for PL/SQL Programs 7-7

PLS-00905: object USER1.PROC0 is invalid
 8503: ORA-06550: line 2, column 1:
PL/SQL: Statement ignored
The command failed.

Instance administrator:

Again grant EXECUTE privilege on user2.proc1 to user1.

Command> grant execute on user2.proc1 to user1;

USER1:

The procedure user1.proc0 is still invalid until it is either explicitly or implicitly
recompiled. It is implicitly recompiled when it is executed, as shown here. Or ALTER
PROCEDURE could be used to explicitly recompile it.

Command> select * from user_objects where status='INVALID';
< PROC0, <NULL>, 273, <NULL>, PROCEDURE, 2009-06-04 14:51:34, 2009-06-04 16:13:00,
2009-06-04:16:13:00, INVALID, N, N, N, 1, <NULL> >
1 row found.
Command> begin
 > user1.proc0;
 > end;
 > /
user1.proc0 is called
user2.proc1 is called

PL/SQL procedure successfully completed.

Command> select * from user_objects where status='INVALID';
0 rows found.

Access control for SQL operations
For any query or SQL DML statement executed in an anonymous block, or any SQL
DDL statement executed in an EXECUTE IMMEDIATE statement, including all such
operations discussed in this document or used in any example, it is assumed that the
user has appropriate privilege to execute the statement and access the desired objects.
SQL executed in a PL/SQL anonymous block requires the same privilege as when
executed directly. For example, to insert rows of data into a table you own, no
privilege is required. If you want to insert rows of data into a table you do not own,
you must be granted INSERT privilege on that table or granted INSERT ANY TABLE.

Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for
details SQL statements and their required privileges.

Definer's rights and invoker's rights
When a PL/SQL procedure or function is defined, the optional AUTHID clause of the
CREATE FUNCTION or CREATE PROCEDURE statement specifies whether the function or
procedure executes with definer's rights (AUTHID DEFINER, the default) or invoker's
rights (AUTHID CURRENT_USER). Similarly, for procedures or functions in a package, the
AUTHID clause of the CREATE PACKAGE statement specifies whether each member
function or procedure of the package executes with definer's rights or invoker's rights.
The AUTHID clause is shown in the syntax documentation for these statements, under
"SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.

Additional access control considerations

7-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

The AUTHID setting affects the name resolution and privilege checking of SQL
statements that a procedure or function issues at runtime. With definer's rights, SQL
name resolution and privilege checking operate as though the owner of the procedure
or function (the definer, in whose schema it resides) is running it. With invoker's
rights, SQL name resolution and privilege checking simply operate as though the
current user (the invoker) is running it.

Invoker's rights would be useful in a scenario where you might want to grant broad
privileges for a body of code, but would want that code to affect only each user's own
objects in his or her own schema.

Definer's rights would be useful in a situation where you want all users to have access
to the same centralized tables or other SQL objects, but only for the specific and
limited actions that are executed by the procedure. The users would not have access to
the SQL objects otherwise.

See "Examples using the AUTHID clause" on page 5-18 for examples using definer's
and invoker's rights.

Refer to "Invoker's Rights and Definer's Rights (AUTHID Property)" in Oracle Database
PL/SQL Language Reference for additional information.

Additional access control considerations
This section covers the following:

■ Access control for connections and connection attributes

■ Access control for system views and supplied packages

■ Access control for built-in procedures relating to PL/SQL

Access control for connections and connection attributes
Note the following when connecting to the database:

■ Privilege to connect to a database must be explicitly granted to every user, other
than the instance administrator, through the CREATE SESSION privilege. This is a
system privilege so must be granted to the user either by the instance
administrator or by a user with ADMIN privilege. This can be accomplished either
directly or through the PUBLIC role. Refer to "Managing Access Control" in Oracle
TimesTen In-Memory Database Operations Guide for additional information and
examples.

■ Required privileges for PL/SQL connection attributes are included in "PL/SQL
connection attributes" on page 6-2.

Access control for system views and supplied packages
Note the following regarding access to system views and PL/SQL supplied packages.

■ SELECT and EXECUTE privileges on various system tables, system views, PL/SQL
functions, PL/SQL procedures, and PL/SQL packages are granted by default to
all users through the PUBLIC role, of which all users are a member. This role is
documented in "Privileges" in Oracle TimesTen In-Memory Database SQL Reference.
Use the following command to see the list of these public database objects and the
associated privileges:

SELECT table_name, privilege FROM sys.all_tab_privs
WHERE grantee='PUBLIC';

Additional access control considerations

Access Control for PL/SQL Programs 7-9

All users have SELECT privilege for the ALL_* and USER_* system views.

■ EXECUTE ANY PROCEDURE does not apply to supplied packages; however, most are
accessible through the PUBLIC role. Access control for PL/SQL packages provided
with TimesTen is noted at the beginning of Chapter 8, "TimesTen Supplied
PL/SQL Packages."

Access control for built-in procedures relating to PL/SQL
The ttPLSQLMemoryStats built-in procedure, which returns statistics about library
cache performance and activity, can be called by any user. This procedure is
documented under "ttPLSQLMemoryStats" in Oracle TimesTen In-Memory Database
Reference. Also see Example 6–3 on page 6-8.

Additional access control considerations

7-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

8

TimesTen Supplied PL/SQL Packages 8-1

8TimesTen Supplied PL/SQL Packages

TimesTen supplies public PL/SQL packages, listed immediately below, to extend
database functionality and provide PL/SQL access to SQL features. TimesTen installs
these packages automatically for your use. Packages that are part of the PL/SQL
language itself or are otherwise for Oracle Database internal use only are not shown
here or described in this chapter.

This chapter lists and briefly describes the subprograms that comprise each package.
For details on these PL/SQL packages, refer to Oracle TimesTen In-Memory Database
PL/SQL Packages Reference.

■ DBMS_LOB

■ DBMS_LOCK

■ DBMS_OUTPUT

■ DBMS_PREPROCESSOR

■ DBMS_RANDOM

■ DBMS_SQL

■ DBMS_UTILITY

■ TT_DB_VERSION

■ TT_STATS

■ UTL_FILE

■ UTL_IDENT

■ UTL_RAW

■ UTL_RECOMP

DBMS_LOB

8-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

DBMS_LOB

The DBMS_LOB package provides subprograms to operate on BLOBs, CLOBs, and
NCLOBs, including temporary LOBs.

Table 8–1 describes the supported DBMS_LOB subprograms.

Notes:

■ TimesTen does not support DBMS_LOB subprograms intended
specifically for BFILEs, SecureFiles (including Database File
System features), or inserting or deleting data fragments in the
middle of a LOB.

■ DBMS_LOB procedures and functions are supported for both
TimesTen LOBs and passthrough LOBs, which are LOBs in Oracle
Database accessed through TimesTen and exposed as TimesTen
LOBs. Note, however, that CREATETEMPORARY can only be used to
create a temporary LOB in TimesTen. If a temporary passthrough
LOB is created using some other mechanism, such as SQL,
ISTEMPORARY and FREETEMPORARY can be used on that LOB.

As with TimesTen local LOBs, a locator for a passthrough LOB
does not remain valid past the end of the transaction.

In addition to copying from one TimesTen LOB to another, COPY
can copy from a TimesTen LOB to a passthrough LOB, from a
passthrough LOB to a TimesTen LOB, or from one passthrough
LOB to another passthrough LOB. An attempt to copy a
passthrough LOB to a TimesTen LOB when the passthrough LOB
is larger than the TimesTen LOB size limit results in an error.
("COPY procedures" in Oracle TimesTen In-Memory Database
PL/SQL Packages Reference provides examples for copying LOBs.)

See "Passthrough LOBs" on page 2-20 for related information.

Table 8–1 DBMS_LOB subprograms

Subprogram Description

APPEND procedures Appends the contents of the source LOB to the destination
LOB.

CLOSE procedures Closes a previously opened LOB.

COMPARE functions Compares two entire LOBs or parts of two LOBs.

CONVERTTOBLOB procedure Reads character data from a source CLOB or NCLOB instance,
converts the character data to the specified character set,
writes the converted data to a destination BLOB instance in
binary format, and returns the new offsets.

CONVERTTOCLOB procedure Takes a source BLOB instance, converts the binary data in
the source instance to character data using the specified
character set, writes the character data to a destination
CLOB or NCLOB instance, and returns the new offsets.

COPY procedures Copies all or part of the source LOB to the destination
LOB.

DBMS_LOB

TimesTen Supplied PL/SQL Packages 8-3

CREATETEMPORARY procedures Creates a temporary LOB in the temporary data region.
Any of the durations supported by Oracle Database is
permitted (SESSION, TRANSACTION, or CALL), but in
TimesTen LOB duration cannot extend past the end of the
transaction.

ERASE procedures Erases all or part of a LOB.

FREETEMPORARY procedures Frees a temporary LOB in the temporary data region.

GET_STORAGE_LIMIT functions Returns the storage limit for the LOB type of the specified
LOB.

GETCHUNKSIZE functions In TimesTen, this simply returns the value 32 KB for
interoperability. Do not rely on this value for performance
tuning.

GETLENGTH functions Returns the length of the LOB value, in bytes for a BLOB
or characters for a CLOB or NCLOB.

INSTR functions Returns the matching position of the nth occurrence of the
pattern in the LOB.

ISOPEN functions Checks to see if the LOB was already opened using the
input locator.

ISTEMPORARY functions Checks whether the locator is pointing to a temporary
LOB.

OPEN procedures Opens a LOB (persistent or temporary) in the indicated
mode, read/write or read-only.

Note: Opening a LOB is similar conceptually, but not
technically, to opening a file. Opening a LOB is more like
a hint regarding resources to be required.

READ procedures Reads data from the LOB starting at the specified offset.

SUBSTR functions Returns part of the LOB value starting at the specified
offset.

TRIM procedures Trims the LOB value to the specified shorter length.

WRITE procedures Writes data to the LOB from a specified offset.

WRITEAPPEND procedures Writes a buffer to the end of a LOB.

Table 8–1 (Cont.) DBMS_LOB subprograms

Subprogram Description

DBMS_LOCK

8-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

DBMS_LOCK

The DBMS_LOCK package provides an interface to lock-management services. In the
current release, TimesTen supports only the sleep feature.

Table 8–2 describes the supported DBMS_LOCK subprogram.

Table 8–2 DBMS_LOCK subprograms

Subprogram Description

SLEEP procedure This procedure suspends the session for a given duration.
Specify the amount of time in seconds. The smallest supported
increment is a hundredth of a second. For example:

DBMS_LOCK.SLEEP(1.95);

Notes:

■ The actual sleep time may be somewhat longer than
specified, depending on system activity.

■ If PLSQL_TIMEOUT is set to a positive value that is less than
this sleep time, the timeout takes effect first. Be sure that
either the sleep value is less than the timeout value, or
PLSQL_TIMEOUT=0 (no timeout). See "PL/SQL connection
attributes" on page 6-2 for information about PLSQL_
TIMEOUT.

DBMS_OUTPUT

TimesTen Supplied PL/SQL Packages 8-5

DBMS_OUTPUT

The DBMS_OUTPUT package enables you to send messages from stored procedures and
packages. The package is useful for displaying PL/SQL debugging information.

Table 8–3 describes the DBMS_OUTPUT subprograms.

Table 8–3 DBMS_OUTPUT subprograms

Subprogram Description

DISABLE procedure Disables message output.

ENABLE procedure Enables message output.

GET_LINE procedure Retrieves one line from the buffer.

GET_LINES procedure Retrieves an array of lines from the buffer.

NEW_LINE procedure Terminates a line created with PUT.

PUT procedure Places a line in the buffer.

PUT_LINE procedure Places a partial line in the buffer.

DBMS_PREPROCESSOR

8-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

DBMS_PREPROCESSOR

The DBMS_PREPROCESSOR package provides an interface to print or retrieve the source
text of a PL/SQL unit after processing of conditional compilation directives.

Table 8–4 describes the DBMS_PREPROCESSOR subprograms.

Table 8–4 DBMS_PREPROCESSOR subprograms

Subprogram Description

GET_POST_PROCESSED_SOURCE function Returns post-processed source text.

PRINT_POST_PROCESSED_SOURCE procedure Prints post-processed source text.

DBMS_RANDOM

TimesTen Supplied PL/SQL Packages 8-7

DBMS_RANDOM

The DBMS_RANDOM package provides a built-in random number generator.

Table 8–5 describes the DBMS_RANDOM subprograms.

Table 8–5 DBMS_RANDOM subprograms

Subprogram Description

INITIALIZE procedure Initializes the package with a seed value (deprecated).

NORMAL function Returns random numbers in a normal distribution.

RANDOM procedure Generates a random number (deprecated).

SEED procedure Resets the seed.

STRING function Gets a random string.

TERMINATE procedure Terminates the package (deprecated).

VALUE function There are two overloaded versions. In the first, it gets a random
number greater than or equal to 0 and less than 1, with 38 digits
to the right of the decimal point (38-digit precision). In the
second, it gets a random number within specified low and high
limits.

DBMS_SQL

8-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

DBMS_SQL

The DBMS_SQL package provides an interface for using dynamic SQL to accomplish any
of the following:

■ Execute data manipulation language (DML) and data definition language (DDL)
statements.

■ Execute PL/SQL anonymous blocks.

■ Call PL/SQL stored procedures and functions.

This package does not support pre-defined data types and overloads with data types
that are not supported in TimesTen, such as UROWID, time zone features, ADT,
database-level collections, and edition overloads. For more information on the
supported data types in TimesTen PL/SQL, see "Understanding the data type
environments" on page 3-1.

Table 8–6 describes the DBMS_SQL subprograms.

Table 8–6 DBMS_SQL subprograms

Subprogram Description

BIND_ARRAY procedure Binds a given value to a given collection.

BIND_VARIABLE procedure Binds a given value to a given variable.

CLOSE_CURSOR procedure Closes a given cursor and frees memory.

COLUMN_VALUE procedure Returns the value of the cursor element for a given
position in a cursor.

COLUMN_VALUE_LONG procedure Returns a selected part of a LONG column that has
been defined using DEFINE_COLUMN_LONG.

Important: Because TimesTen does not support the
LONG data type, attempting to use this procedure in
TimesTen results in an ORA-01018 error at runtime.

DEFINE_ARRAY procedure Defines a collection to be selected from the given
cursor. Use with SELECT statements.

DEFINE_COLUMN procedure Defines a column to be selected from the given
cursor. Use with SELECT statements.

DEFINE_COLUMN_LONG procedure Defines a LONG column to be selected from the given
cursor. Use with SELECT statements.

Important: Because TimesTen does not support the
LONG data type, attempting to use the COLUMN_VALUE_
LONG procedure in TimesTen results in an ORA-01018
error at runtime. DEFINE_COLUMN_LONG would be
used in conjunction with COLUMN_VALUE_LONG.

DESCRIBE_COLUMNS procedure Describes the columns for a cursor opened and
parsed through the DBMS_SQL package.

DESCRIBE_COLUMNS2 procedure Describes the specified column. Use as an alternative
to DESCRIBE_COLUMNS procedure.

DESCRIBE_COLUMNS3 procedure Describes the specified column. Use as an alternative
to DESCRIBE_COLUMNS procedure.

EXECUTE function Executes a given cursor.

EXECUTE_AND_FETCH function Executes a given cursor and fetches rows.

FETCH_ROWS function Fetches a row from a given cursor.

DBMS_SQL

TimesTen Supplied PL/SQL Packages 8-9

IS_OPEN function Returns TRUE if a given cursor is open.

LAST_ERROR_POSITION function Returns the byte offset in the SQL statement text
where the error occurred.

LAST_ROW_COUNT function Returns a cumulative count of the number of rows
fetched.

LAST_ROW_ID function Returns NULL. TimesTen does not support ROWID of
the last row operated on by a DML statement.

LAST_SQL_FUNCTION_CODE function Returns the SQL function code for the statement.

OPEN_CURSOR function Returns the cursor ID number of a new cursor.

PARSE procedures Parses a given statement.

TO_CURSOR_NUMBER function Takes an opened (by OPEN) strongly or weakly typed
REF CURSOR and transforms it into a DBMS_SQL
cursor number.

TO_REFCURSOR function Takes an opened, parsed, and executed cursor (by
OPEN, PARSE, and EXECUTE) and transforms or
migrates it into a PL/SQL manageable REF
CURSOR (a weakly typed cursor) that can be
consumed by PL/SQL native dynamic SQL and
switched to use native dynamic SQL.

VARIABLE_VALUE procedures Returns value of a named variable for a given
cursor.

Table 8–6 (Cont.) DBMS_SQL subprograms

Subprogram Description

DBMS_UTILITY

8-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

DBMS_UTILITY

The DBMS_UTILITY package provides a variety of utility subprograms.

Subprograms are not supported (and not listed here) for features that TimesTen does
not support.

Table 8–7 describes DBMS_UTILITY subprograms.

Table 8–7 DBMS_UTILITY subprograms

Subprogram Description

CANONICALIZE procedure Canonicalizes a given string.

COMMA_TO_TABLE procedure Converts a comma-delimited list of names into
an associative array (index-by table) of names.

COMPILE_SCHEMA Compiles all procedures, functions, packages,
and views in the specified database schema.

DB_VERSION procedure Returns version information for the database.

The procedure returns NULL for the compatibility
setting because TimesTen does not support the
system parameter COMPATIBLE.

FORMAT_CALL_STACK function Formats the current call stack.

FORMAT_ERROR_BACKTRACE function Formats the backtrace from the point of the
current error to the exception handler where the
error is caught.

FORMAT_ERROR_STACK function Formats the current error stack.

GET_CPU_TIME function Returns the current CPU time in hundredths of a
second.

GET_DEPENDENCY procedure Shows the dependencies on the objects passed
in.

GET_ENDIANNESS function Returns the endianness of your database
platform.

GET_HASH_VALUE function Computes a hash value for a given string.

GET_SQL_HASH function Computes the hash value for a given string using
the MD5 algorithm.

GET_TIME function Returns the current time in hundredths of a
second.

INVALIDATE procedure Invalidates a database object and optionally
modifies the PL/SQL compiler parameter
settings for the object.

IS_BIT_SET function Checks the setting of a specified bit in a RAW
value.

NAME_RESOLVE procedure Resolves the given name of the following form:

[[a.]b.]c[@dblink]

Where a, b, and c are SQL identifiers and dblink
is a dblink (database link).

Do not use @dblink. TimesTen does not support
dblinks.

DBMS_UTILITY

TimesTen Supplied PL/SQL Packages 8-11

NAME_TOKENIZE procedure Calls the parser to parse the given name of the
following form:

"a [.b [.c]][@dblink]"

Strips double quotes or converts to uppercase if
there are no quotes. Ignores comments and does
not perform semantic analysis. Missing values
are NULL.

Do not use @dblink. TimesTen does not support
dblinks.

TABLE_TO_COMMA procedures Converts an associative array (index-by table) of
names into a comma-delimited list of names.

VALIDATE procedure Validates the object described by either owner,
name and namespace, or object ID.

Table 8–7 (Cont.) DBMS_UTILITY subprograms

Subprogram Description

TT_DB_VERSION

8-12 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

TT_DB_VERSION

The TT_DB_VERSION package contains boolean constants indicating the current
TimesTen release.

Table 8–8 describes the TT_DB_VERSION constants.

The primary use case for the TT_DB_VERSION and UTL_IDENT packages is for conditional
compilation.

See "Examples" in Oracle TimesTen In-Memory Database PL/SQL Packages Reference for an
example that uses TT_DB_VERSION and UTL_IDENT.

Table 8–8 TT_DB_VERSION constants

Name Description

VER_LE_1121 Boolean that is TRUE if the TimesTen version this package ships
with is 11.2.1 or prior. FALSE for TimesTen 11g Release 2
(11.2.2) versions.

VER_LE_1122 Boolean that is TRUE if the TimesTen version this package ships
with is 11.2.2 or prior. TRUE for TimesTen 11g Release 2 (11.2.2)
versions.

TT_STATS

TimesTen Supplied PL/SQL Packages 8-13

TT_STATS

The TT_STATS package provides features for collecting and comparing snapshots of
TimesTen system metrics, according to the capture level. Each snapshot can consist of
what TimesTen considers to be basic metrics, typical metrics, or all available metrics.

For those familiar with Oracle Database performance analysis tools, these reports are
similar in nature to Oracle Automatic Workload Repository (AWR) reports.

Table 8–9 TT_STATS subprograms

Subprogram Description

CAPTURE_SNAPSHOT
procedure and function

Takes a snapshot of TimesTen metrics. The function also returns
the snapshot ID.

DROP_SNAPSHOTS_RANGE
function

Deletes snapshots according to a specified range of snapshot IDs
or timestamps.

GENERATE_REPORT_HTML
procedure

Produces a report in HTML format based on the data from two
specified snapshots.

GENERATE_REPORT_TEXT
procedure

Produces a report in plain text format based on the data from
two specified snapshots.

GET_CONFIG function Retrieves the value of a specified TT_STATS configuration
parameter or the values of all configuration parameters.

SET_CONFIG procedure Sets a specified value for a specified TT_STATS configuration
parameter.

SHOW_SNAPSHOTS function Shows the snapshot IDs and timestamps of all snapshots
currently stored in the database.

UTL_FILE

8-14 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

UTL_FILE

The UTL_FILE package enables PL/SQL programs the ability to read and write
operating system text files.

In the current release, this package is restricted to access of a pre-defined temporary
directory only. Refer to the Oracle TimesTen In-Memory Database Release Notes for
details.

Table 8–10 describes the UTL_FILE subprograms.

Note: Users do not have execute permission on UTL_FILE by default.
To use UTL_FILE in TimesTen, an ADMIN user or instance administrator
must explicitly grant EXECUTE permission on it, such as in the
following example:

GRANT EXECUTE ON SYS.UTL_FILE TO scott;

Table 8–10 UTL_FILE subprograms

Subprogram Description

FCLOSE procedure Closes a file.

FCLOSE_ALL procedure Closes all file handles.

FCOPY procedure Copies a contiguous portion of a file to a newly created file.

FFLUSH procedure Physically writes all pending output to a file.

FGETATTR procedure Reads and returns the attributes of a disk file.

FGETPOS procedure Returns the current relative offset position (in bytes) within a
file.

FOPEN function Opens a file for input or output.

FOPEN_NCHAR function Opens a file in Unicode for input or output.

FREMOVE procedure With sufficient privilege, deletes a disk file.

FRENAME procedure Renames an existing file to a new name (similar to the UNIX mv
command).

FSEEK procedure Adjusts the file pointer forward or backward within the file by
the number of bytes specified.

GET_LINE procedure Reads text from an open file.

GET_LINE_NCHAR procedure Reads text in Unicode from an open file.

GET_RAW function Reads a RAW string value from a file and adjusts the file pointer
ahead by the number of bytes read.

IS_OPEN function Determines if a file handle refers to an open file.

NEW_LINE procedure Writes one or more operating system-specific line terminators to
a file.

PUT procedure Writes a string to a file.

PUT_LINE procedure Writes a line to a file and appends an operating system-specific
line terminator.

PUT_LINE_NCHAR procedure Writes a Unicode line to a file.

PUT_NCHAR procedure Writes a Unicode string to a file.

UTL_FILE

TimesTen Supplied PL/SQL Packages 8-15

PUT_RAW function Accepts as input a RAW data value and writes the value to the
output buffer.

PUTF procedure This is similar to the PUT procedure, but with formatting.

PUTF_NCHAR procedure This is similar to the PUT_NCHAR procedure, but with formatting.
Writes a Unicode string to a file with formatting.

Table 8–10 (Cont.) UTL_FILE subprograms

Subprogram Description

UTL_IDENT

8-16 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

UTL_IDENT

The UTL_IDENT package indicates whether PL/SQL is running on TimesTen, an Oracle
database client, an Oracle database server, or Oracle Forms. Each of these has its own
version of UTL_IDENT with appropriate settings for the constants.

Table 8–11 shows the UTL_IDENT settings for TimesTen.

The primary use case for the UTL_IDENT package is for conditional compilation,
resembling the following:

$if utl_ident.is_oracle_server $then
 [...Run code supported for Oracle Database...]
$elsif utl_ident.is_timesten $then
 [...code supported for TimesTen Database...]
$end

See "Examples" in Oracle TimesTen In-Memory Database PL/SQL Packages Reference for an
example that uses TT_DB_VERSION and UTL_IDENT.

Table 8–11 UTL_IDENT Constants

Name Description

IS_ORACLE_CLIENT BOOLEAN set to FALSE

IS_ORACLE_SERVER BOOLEAN set to FALSE

IS_ORACLE_FORMS BOOLEAN set to FALSE

IS_TIMESTEN BOOLEAN set to TRUE

UTL_RAW

TimesTen Supplied PL/SQL Packages 8-17

UTL_RAW

The UTL_RAW package provides SQL functions for manipulating RAW data types.

Table 8–12 describes the UTL_RAW subprograms.

Table 8–12 UTL_RAW subprograms

Subprogram Description

BIT_AND function Performs bitwise logical "and" of two RAW values
and returns the resulting RAW.

BIT_COMPLEMENT function Performs bitwise logical "complement" of a RAW
value and returns the resulting RAW.

BIT_OR function Performs bitwise logical "or" of two RAW values and
returns the resulting RAW.

BIT_XOR function Performs bitwise logical "exclusive or" of two RAW
values and returns the resulting RAW.

CAST_FROM_BINARY_DOUBLE function Returns the RAW binary representation of a BINARY_
DOUBLE value.

CAST_FROM_BINARY_FLOAT function Returns the RAW binary representation of a BINARY_
FLOAT value.

CAST_FROM_BINARY_INTEGER function Returns the RAW binary representation of a BINARY_
INTEGER value.

CAST_FROM_NUMBER function Returns the RAW binary representation of a NUMBER
value.

CAST_TO_BINARY_DOUBLE function Casts the RAW binary representation of a BINARY_
DOUBLE value into a BINARY_DOUBLE.

CAST_TO_BINARY_FLOAT function Casts the RAW binary representation of a BINARY_
FLOAT value into a BINARY_FLOAT.

CAST_TO_BINARY_INTEGER function Casts the RAW binary representation of a BINARY_
INTEGER value into a BINARY_INTEGER.

CAST_TO_NUMBER function Casts the RAW binary representation of a NUMBER
value into a NUMBER.

CAST_TO_NVARCHAR2 function Casts a RAW value represented using n data bytes
into an NVARCHAR2 value with n data bytes.

CAST_TO_RAW function Casts a VARCHAR2 value represented using n data
bytes into a RAW with n data bytes.

CAST_TO_VARCHAR2 function Casts a RAW value represented using n data bytes
into a VARCHAR2 value with n data bytes.

COMPARE function Compares two RAW values.

CONCAT function Concatenates up to 12 RAW values into a single RAW
value.

CONVERT function Converts a RAW value from one character set to
another and returns the resulting RAW.

COPIES function Copies a RAW value a specified number of times and
returns the concatenated RAW value.

LENGTH function Returns the length in bytes of a RAW value.

UTL_RAW

8-18 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

OVERLAY function Overlays the specified portion of a target RAW value
with an overlay RAW value, starting from a specified
byte position and proceeding for a specified number
of bytes.

REVERSE function Reverses a byte-sequence in a RAW value.

SUBSTR function Returns a substring of a RAW value for a specified
number of bytes from a specified starting position.

TRANSLATE function Translates the specified bytes from an input RAW
value according to the bytes in a specified
translation RAW value.

TRANSLITERATE function Converts the specified bytes from an input RAW
value according to the bytes in a specified
transliteration RAW value.

XRANGE function Returns a RAW value containing the succession of
one-byte encodings beginning and ending with the
specified byte-codes.

Table 8–12 (Cont.) UTL_RAW subprograms

Subprogram Description

UTL_RECOMP

TimesTen Supplied PL/SQL Packages 8-19

UTL_RECOMP

The UTL_RECOMP package recompiles invalid PL/SQL modules. This is particularly
useful after a major-version upgrade that typically invalidates all PL/SQL objects.

Table 8–13 describes the UTL_RECOMP subprograms.

Important: To use this package, you must be the instance
administrator and specify SYS.UTL_RECOMP.

Table 8–13 UTL_RECOMP subprograms

Name Description

RECOMP_PARALLEL procedure Recompiles invalid objects in a given schema, or all invalid
objects in the database, in parallel.

Note: Because TimesTen does not support DBMS_SCHEDULER,
the number of recompile threads to run in parallel is always
1, regardless of what the user specifies. Therefore there is no
effective difference between RECOMP_PARALLEL and RECOMP_
SERIAL in TimesTen.

RECOMP_SERIAL procedure Recompiles invalid objects in a given schema, or all invalid
objects in the database, serially.

UTL_RECOMP

8-20 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

9

TimesTen PL/SQL Support: Reference Summary 9-1

9TimesTen PL/SQL Support: Reference
Summary

The purpose of this chapter is to summarize PL/SQL language elements and features
and compare their support in TimesTen to their support in Oracle Database. In the
Oracle Database documentation, many of these features are covered in "PL/SQL
Language Elements" in Oracle Database PL/SQL Language Reference.

Table 9–1 PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

ALTER {PROCEDURE|
FUNCTION | PACKAGE}
statements

Recompiles a PL/SQL
procedure, function, or
package.

Y Syntax and semantics are the same as
in Oracle Database.

For information about these
statements, see "SQL Statements" in
Oracle TimesTen In-Memory Database
SQL Reference.

ALTER SESSION statement Changes session
parameters dynamically.

Y In TimesTen you can use ALTER
SESSION to set some PL/SQL
connection attributes as discussed in
"PL/SQL connection attributes" on
page 6-2.

For more information on this
statement in TimesTen, see "ALTER
SESSION" in Oracle TimesTen
In-Memory Database SQL Reference.

Assignment statement Sets current value of a
variable, parameter, or
element.

Y See "PL/SQL variables and constants"
on page 2-2.

AUTONOMOUS_TRANSACTION
pragma

Marks a routine as
autonomous.

N TimesTen does not support
autonomous transactions.

Block declaration Declares a block, the basic
unit of a PL/SQL source
program.

Y See "PL/SQL blocks" on page 2-1.

BULK COLLECT clause Select multiple rows. Y This clause can be used with the
SELECT statement in PL/SQL to
retrieve rows without using a cursor.
See "FORALL and BULK COLLECT
operations" on page 2-14 and
"Examples using FORALL and BULK
COLLECT" on page 5-9.

9-2 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

CALL statement Executes a routine from
within SQL.

Y In TimesTen, use the CALL statement to
execute PL/SQL stored procedures
and functions, as in Oracle Database,
or TimesTen built-in procedures. (For
TimesTen built-in procedures, use
EXECUTE IMMEDIATE if CALL is inside
PL/SQL.) See "How to execute
PL/SQL procedures and functions" on
page 2-8 and Example 5–19, "Using
EXECUTE IMMEDIATE to call
ttConfiguration" on page 5-16.

CASE statement Evaluates an expression,
compares it against several
values, and takes action
according to the
comparison that is true.

Y See "PL/SQL control structures" on
page 2-6.

CLOSE statement Closes a cursor or cursor
variable.

Y See Example 2–13, "Using a cursor to
retrieve information about an
employee" on page 2-21 (among
others).

Collection definition Specifies a collection,
which is an ordered group
of elements that are all of
the same type.

Y Examples include associative arrays
(index-by tables or PL/SQL tables),
nested tables, and varrays.

TimesTen supports all three of these
collection types in PL/SQL programs,
but supports only associative arrays as
bound parameters between PL/SQL
and applications written in other
languages (such as OCI or JDBC).

See "Using collections in PL/SQL" on
page 3-5.

Collection methods Built-in subprograms that
operate on collections and
are called using "dot"
notation.

Y See "Collection Methods" in Oracle
Database PL/SQL Language Reference.
Examples include COUNT, DELETE,
EXISTS, EXTEND, FIRST, LAST, LIMIT,
NEXT, PRIOR, and TRIM.

Comments Text included within your
code for explanatory
purposes.

Y Single-line and multi-line comments
are supported.

COMMIT statement Ends the current
transaction and makes
permanent all changes
performed in the
transaction.

Y See "COMMIT" in Oracle TimesTen
In-Memory Database SQL Reference.

Important: COMMIT and ROLLBACK
statements close all cursors in
TimesTen.

Connection attributes Equivalent to initialization
parameters in Oracle
Database.

Y See "PL/SQL connection attributes" on
page 6-2. Also see "PL/SQL first
connection attributes" and "PL/SQL
general connection attributes" in Oracle
TimesTen In-Memory Database Reference.

Constant and variable
declarations

Specify constants and
variables to be used in
PL/SQL code, in the
declarative part of any
PL/SQL block,
subprogram, or package.

Y See "PL/SQL variables and constants"
on page 2-2.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

TimesTen PL/SQL Support: Reference Summary 9-3

CONTINUE statement Exits the current iteration
of a loop and transfers
control to the next iteration.

Y See "CONTINUE statement" on
page 2-7.

CREATE FUNCTION statement Creates a PL/SQL function. Y CREATE FUNCTION is supported in
TimesTen, but the AS LANGUAGE, AS
EXTERNAL, and PIPELINED clauses are
not supported.

See "PL/SQL procedures and
functions" on page 2-21. Also see
"CREATE FUNCTION" in Oracle
TimesTen In-Memory Database SQL
Reference.

You are not required to run
DBMSSTDX.SQL in TimesTen.

CREATE LIBRARY statement Creates a schema object
associated with an
operating system shared
library.

N CREATE LIBRARY is not supported in
TimesTen.

CREATE PACKAGE statement

CREATE PACKAGE BODY
statement

These statements are used
together to create a
PL/SQL package definition
and package body.

Y Syntax and semantics are the same as
in Oracle Database.

See "PL/SQL packages" on page 2-25.
Also see "CREATE PACKAGE" and
"CREATE PACKAGE BODY" in Oracle
TimesTen In-Memory Database SQL
Reference.

You are not required to run
DBMSSTDX.SQL in TimesTen.

CREATE PROCEDURE statement Creates a PL/SQL
procedure.

Y CREATE PROCEDURE is supported in
TimesTen, but the AS LANGUAGE and AS
EXTERNAL clauses are not supported.

See "PL/SQL procedures and
functions" on page 2-21. Also see
"CREATE PROCEDURE" in Oracle
TimesTen In-Memory Database SQL
Reference.

Note: You are not required to run
DBMSSTDX.SQL in TimesTen.

CREATE TYPE statement Creates a user-defined
object type or collection
type.

N TimesTen does not support CREATE
TYPE.

CURRENT_DATE function Returns the current date in
the session time zone.

Y In TimesTen this returns the current
date in UTC (universal time).
TimesTen does not support local time
zones.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

9-4 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Cursor attributes Appended to the cursor or
cursor variable to return
useful information about
the execution of a data
manipulation statement.

Y Explicit cursors and cursor variables
have four attributes: %FOUND, %ISOPEN,
%NOTFOUND, and %ROWCOUNT.

The implicit cursor (SQL) has
additional attributes: %BULK_ROWCOUNT
and %BULK_EXCEPTIONS.

See "Using the %ROWCOUNT and
%NOTFOUND attributes" on page 5-8
and "Using FORALL with
SQL%BULK_ROWCOUNT" on
page 5-9. Also see "Named Cursor
Attribute" in Oracle Database PL/SQL
Language Reference.

Cursor declaration Declares a cursor. To
execute a multi-row query,
TimesTen opens an
unnamed work area that
stores processing
information. A cursor lets
you name the work area,
access the information, and
process the rows
individually.

Y See "Use of cursors in PL/SQL
programs" on page 2-21.

Cursor variables (REF
CURSORs)

Act as handles to cursors
over SQL result sets.

Y TimesTen supports OUT REF
CURSORs, one per statement.

See "PL/SQL REF CURSORs" on
page 3-7.

Database links (dblinks) A pointer that defines a
one-way communication
path from an Oracle
database server to another
database server.

N TimesTen does not support database
links.

DELETE statement Deletes rows from a table. Y See "DELETE" in Oracle TimesTen
In-Memory Database SQL Reference.

DROP { PROCEDURE |
FUNCTION | PACKAGE }
statement

Removes a PL/SQL
procedure, function, or
package, as specified.

Y Syntax and semantics are the same as
in Oracle Database.

You can refer to information about
these statements in "SQL Statements"
in Oracle TimesTen In-Memory Database
SQL Reference.

Error reporting (This is self-explanatory.) Y TimesTen applications report errors
using Oracle Database error codes
instead of TimesTen error codes. The
error messages that accompany the
error codes are either TimesTen error
messages or Oracle Database error
messages.

EXCEPTION_INIT pragma Associates a user-defined
exception with a TimesTen
error number.

Y See "EXCEPTION_INIT Pragma" in
Oracle Database PL/SQL Language
Reference.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

TimesTen PL/SQL Support: Reference Summary 9-5

Exception definition Specifies an exception,
which is a runtime error or
warning condition. Can be
predefined or user-defined.

Y Predefined conditions are raised
implicitly. User-defined exceptions are
raised explicitly by the RAISE
statement. To handle raised
exceptions, write separate routines
called exception handlers.

See Chapter 4, "Errors and Exception
Handling".

EXECUTE IMMEDIATE
statement

Builds and executes a
dynamic SQL statement.

Y TimesTen supports this as Oracle
Database does to execute a SQL DML
or DDL statement, execute a PL/SQL
anonymous block, or call a PL/SQL
stored procedure or function. See
"Dynamic SQL in PL/SQL (EXECUTE
IMMEDIATE statement)" on
page 2-12.

In TimesTen, the EXECUTE IMMEDIATE
statement can also be used to execute
TimesTen built-in procedures and
TimesTen-specific SQL features (such
as SELECT FIRST).

Executing PL/SQL from
client applications

(This is self-explanatory.) Y TimesTen supports ODBC, OCI,
Pro*C/C++, TTClasses (a set of
TimesTen C++ classes), JDBC, and
ODP.NET.

Executing PL/SQL from SQL (This is self-explanatory.) N In TimesTen, you cannot execute
PL/SQL from a SQL statement (static
or dynamic).

EXIT statement Exits a loop and transfers
control to the end of the
loop.

Y See Example 6–2, "Use ALTER
SESSION to change attribute settings"
on page 6-7 (among others).

Expression definition Specifies an expression,
which is a combination of
operands (variables,
constants, literals,
operators, and so on) and
operators. The simplest
expression is a single
variable.

Y See "Expressions" in Oracle Database
PL/SQL Language Reference.

FETCH statement Retrieves rows of data from
the result set of a multi-row
query.

Y See Example 2–13, "Using a cursor to
retrieve information about an
employee" on page 2-21 (among
others).

FORALL statement Bulk-binds input
collections before sending
them to the SQL engine.

Y See "FORALL and BULK COLLECT
operations" on page 2-14.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

9-6 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Function declaration and
definition

Specifies a subprogram or
stored program that can be
declared and defined in a
PL/SQL block or package
and returns a single value.

Y In TimesTen, a stored function or
procedure can be executed in an
anonymous block or through a CALL
statement, but not from any other SQL
statement. See "How to execute
PL/SQL procedures and functions" on
page 2-8.

Use the CREATE FUNCTION statement in
TimesTen SQL to create stored
functions. See "PL/SQL procedures
and functions" on page 2-21. Also see
"CREATE FUNCTION" in Oracle
TimesTen In-Memory Database SQL
Reference.

Also refer to the table entry below for
"Procedure declaration and
definition".

GOTO statement Branches unconditionally
to a statement label or
block label.

Y See "GOTO Statement" in Oracle
Database PL/SQL Language Reference.

IF statement Executes or skips a
sequence of statements
depending on the value of
the associated boolean
expression.

Y See "Conditional control" on page 2-6.

Initialization parameters Initial parameter settings
for an Oracle database.

n/a TimesTen connection attributes are
equivalent. See that entry above.

INLINE pragma Specifies whether a
subprogram call is to be
inline.

Y See "INLINE Pragma" in Oracle
Database PL/SQL Language Reference.

INSERT statement Inserts one or more rows of
data into a table.

Y See "Example using the INSERT
statement" on page 5-2. Also see
"INSERT" in Oracle TimesTen
In-Memory Database SQL Reference.

Literal declaration Specifies a numeric,
character string, or boolean
value.

Y Examples:

Numeric literal: 135

String literal: 'TimesTen'

LOCK TABLE statement Locks database tables in a
specified lock mode.

N TimesTen does not support the LOCK
TABLE statement.

LOOP statement Executes a sequence of
statements multiple times.
Can be used, for example,
in implementing a FOR loop
or WHILE loop.

Y See Example 2–8, "Using a WHILE
loop" on page 2-7. Also see "Basic
LOOP Statement" in Oracle Database
PL/SQL Language Reference.

MERGE statement Allows you to select rows
from one or more sources
for update or insertion into
a target table.

Y See "MERGE" in Oracle TimesTen
In-Memory Database SQL Reference.

Native dynamic SQL
execution

Processes most dynamic
SQL statements through
the EXECUTE IMMEDIATE
statement.

Y See the EXECUTE IMMEDIATE entry
above.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

TimesTen PL/SQL Support: Reference Summary 9-7

Non-ASCII names Use of non-ASCII character
sets in names of tables,
columns, procedures,
functions, and other
database objects.

N This is not supported in TimesTen.

Non-uppercase names Use of quoted
non-uppercase names of
tables, columns,
procedures, functions, and
other database objects.

N This is not supported in TimesTen
(such as lowercase and MixedCase).
For example, you cannot have the
following:

create or replace procedure
"MixedCase" as
begin
 ...
end;

NULL statement This is a no-operation
statement. Control is
passed to the next
statement without any
action.

Y See "NULL Statement" in Oracle
Database PL/SQL Language Reference.

Object type declaration Specifies a custom object
type, which is created in
SQL and stored in the
database.

N TimesTen does not support object
types at the database level. For
example, CREATE TYPE is not
supported.

OPEN statement Executes the query
associated with a cursor.
Allocates database
resources to process the
query, and identifies the
result set.

Y See Example 2–13, "Using a cursor to
retrieve information about an
employee" on page 2-21.

OPEN-FOR statement Executes the SELECT
statement associated with a
cursor variable (REF
CURSOR). Positions the
cursor variable before the
first row in the result set.

Y

Package declaration Specifies a package, which
is a database object that
groups logically related
PL/SQL types, items, and
subprograms.

Y Use SQL statements CREATE PACKAGE
and CREATE PACKAGE BODY.

See "PL/SQL packages" on page 2-25.
Also see "SQL Statements" in Oracle
TimesTen In-Memory Database SQL
Reference for information about the
CREATE statements.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

9-8 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

Procedure declaration and
definition

Specifies a subprogram or
stored program that can be
declared and defined in a
PL/SQL block or package
and performs a specific
action.

Y In TimesTen, a stored procedure or
function can be executed in an
anonymous block or through a CALL
statement, but not from any other SQL
statement. See "How to execute
PL/SQL procedures and functions" on
page 2-8.

Use the CREATE PROCEDURE statement
in TimesTen SQL to create stored
procedures. See "PL/SQL procedures
and functions" on page 2-21. Also see
"CREATE PROCEDURE" in Oracle
TimesTen In-Memory Database SQL
Reference.

Also refer to the table entry above for
"Function declaration and definition".

RAISE statement Stops normal execution of a
PL/SQL block or
subprogram and transfers
control to an exception
handler.

Y See "Using the RAISE statement" on
page 4-4.

Record definition Defines a record, which is a
composite variable that
stores data values of
different types (similar to a
database row).

Y See "Using records in PL/SQL" on
page 3-5.

RESTRICT_REFERENCES
pragma

Asserts that a subprogram
(usually a function) in a
package specification or
object type specification
does not read or write
database tables or package
variables.

N TimesTen ignores this.

Result cache This is a mechanism for
caching the results of
PL/SQL functions in a
shared global area (SGA)
that is available to every
session that runs your
application.

N TimesTen does not support this.

RETURN statement Immediately completes the
execution of a subprogram
and returns control to the
invoker. Execution resumes
with the statement
following the subprogram
call.

Y See "RETURN Statement" in Oracle
Database PL/SQL Language Reference.

RETURNING INTO clause Specifies the variables in
which to store the values
returned by the statement
to which the clause
belongs.

Y See "RETURNING INTO clause" on
page 2-15 and "Examples using
RETURNING INTO" on page 5-16.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

TimesTen PL/SQL Support: Reference Summary 9-9

ROLLBACK statement Undoes database changes
made during the current
transaction.

Y See "ROLLBACK" in Oracle TimesTen
In-Memory Database SQL Reference.

Important: COMMIT and ROLLBACK
statements close all cursors in
TimesTen.

%ROWTYPE attribute Provides a record type that
represents a row in a
database table.

Y See Example 2–2, "Assigning values to
variables with the assignment
operator" on page 2-3.

SAVEPOINT statement Names and marks the
current point in the
processing of a transaction.

N TimesTen does not support
savepoints.

SELECT INTO statement Retrieves values from one
row of a table (SELECT) and
then stores the values in
either variables or a record.
With the BULK COLLECT
clause (discussed above),
this statement retrieves an
entire result set at one time.

Y See Example 2–3, "Using SELECT
INTO to assign values to variables" on
page 2-4. Also see "Query Result Set
Processing" in Oracle Database PL/SQL
Language Reference.

SERIALLY_REUSABLE pragma Indicates that package state
is required only for the
duration of one call to the
server.

N TimesTen does not support the
SERIALLY_REUSABLE pragma.

SET TRANSACTION statement Begins a read-only or read
and write transaction.

N TimesTen does not support the SET
TRANSACTION statement.

SOUNDEX SQL function Returns a character string
containing the phonetic
representation of a char.

Y See "SOUNDEX" in Oracle TimesTen
In-Memory Database SQL Reference.

SQL cursor Either explicit or implicit, is
used to handle the result
set of a SELECT statement.

Y See "Use of cursors in PL/SQL
programs" on page 2-21.

SQLCODE function Returns number code of the
most recent exception.

Y Given the same error condition, error
codes returned by the built-in function
SQLCODE are the same in TimesTen as
in Oracle Database, although the
SQLERRM returns may be different.

This is also noted in "TimesTen error
messages and SQL codes" on page 4-9.

SQLERRM function Returns the error message
associated with the
error-number argument.

Y Given the same error condition, error
messages returned by the built-in
function SQLERRM are not necessarily
the same in TimesTen as in Oracle
Database, although SQLCODE returns
are the same.

This is also noted in "TimesTen error
messages and SQL codes" on page 4-9.

Supplied packages These are PL/SQL
packages supplied with the
database.

Y TimesTen provides a subset of the
Oracle Database PL/SQL supplied
packages.

See Chapter 8, "TimesTen Supplied
PL/SQL Packages".

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

9-10 Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

System tables and views These are tables and views
provided with the database
for administrative
purposes.

Y TimesTen supports a subset of the
Oracle Database system tables and
views.

See "System Tables" in Oracle TimesTen
In-Memory Database System Tables and
Views Reference.

SYSTIMESTAMP Returns the system date,
including fractional
seconds and time zone, of
the system on which the
database resides.

N TimesTen cannot support this because
the return type, TIMESTAMP WITH TIME
ZONE, is not currently supported.

As an alternative, you can use SELECT
tt_sysdate FROM dual using dynamic
SQL:

declare
 ts timestamp;
begin
 execute immediate
 'select tt_sysdate from dual'
 into ts;
-- ts has millisecond resolution
end;

Triggers These are procedures that
are stored in the database
and activated when specific
conditions occur, such as
adding a row to a table.

N TimesTen does not support triggers,
but you can achieve similar
functionality using XLA. See "XLA
and TimesTen Event Management" in
Oracle TimesTen In-Memory Database C
Developer's Guide.

ttPLSQLMemoryStats built-in
procedure

Returns statistics about
library cache performance
and activity.

Y See "ttPLSQLMemoryStats" in Oracle
TimesTen In-Memory Database Reference.

Note: In Oracle Database, the
V$LIBRARYCACHE system view provides
the same statistical information.

%TYPE attribute Lets you use the data type
of a field, record, nested
table, database column, or
variable in your own
declarations, rather than
hardcoding the data type.
Particularly useful when
declaring variables, fields,
and parameters that refer
to database columns.

Y See "PL/SQL variables and constants"
on page 2-2.

UPDATE statement Updates the values of one
or more columns in all
rows of a table or in rows
that satisfy a search
condition.

Y See "UPDATE" in Oracle TimesTen
In-Memory Database SQL Reference.

V$LIBRARYCACHE system view In Oracle Database, use this
system view to return
statistics about library
cache performance and
activity.

n/a In TimesTen, use the
ttPLSQLMemoryStats built-in
procedure to retrieve the same
statistical information. See that entry
above.

Table 9–1 (Cont.) PL/SQL language element and feature support in TimesTen

Feature name Description Supported? Example/comment

Index-1

Index

Symbols
%BULK_EXCEPTIONS attribute, 2-14, 5-12
%BULK_ROWCOUNT attribute, 5-9
%FOUND attribute, 9-4
%ISOPEN attribute, 9-4
%NOTFOUND attribute, 5-7, 9-4
%ROWCOUNT attribute, 5-8, 9-4
%ROWTYPE attribute, 2-4
%TYPE attribute, 2-2

A
access control

connections, 7-8
for TimesTen built-in functions, 7-9
granting and revoking privileges, 7-3
impact for PL/SQL, 7-1
privileges for procedures, functions,

packages, 7-1
SQL operations, 7-7
supplied packages and system views, 7-8

ALTER SESSION, 6-7
anonymous blocks, 2-1
array binding

associative array binding, 3-6
bulk binding, 2-14

associative arrays (index-by tables)
binding, 3-6
example, 5-5
using, 3-5

audiences for this document, 1-4
AUTHID clause, 5-18, 7-7

B
BINARY_INTEGER type, 3-3
bind parameter--see parameters
bind variables--see parameters
blocks, 2-1
built-in functions (TimesTen)

access control, 7-9
calling via EXECUTE IMMEDIATE, 2-12, 5-16

bulk binding
%BULK_EXCEPTIONS attribute, 2-14, 5-12
BULK COLLECT INTO with cursors, 5-11

BULK COLLECT INTO with queries, 5-10
BULK COLLECT INTO with RETURNING

INTO, 5-17
examples, 5-9
FORALL statement, 2-14
overview, 2-14
SAVE EXCEPTIONS clause, 2-14, 5-12

C
cache features, use from PL/SQL, 2-16
CALL statement, calling functions and

procedures, 2-8
CASE statement, 2-6
collections, 3-5
compilation

conditional compilation, use of PLSQL_
CCFLAGS, 6-4

conditional, use of UTL_IDENT and TT_DB_
VERSION, 8-16

DBMS_UTILITY.COMPILE_SCHEMA, 8-10
DBMS_UTILITY.INVALIDATE, optionally modify

compiler parameter settings, 8-10
implicit, 7-3
PLSCOPE_SETTINGS for compilation

cross-reference information, 6-3
PLSQL_OPTIMIZE_LEVEL for optimization

level, 6-5
UTL_RECOMP package to recompile invalid

modules, 8-19
components of PL/SQL, overview, 1-2
composite data types, 3-4
conditional control, 2-6
connection attributes

first connection attributes, 6-2
general connection attributes, 6-2
PLSCOPE_SETTINGS attribute, 6-3
PLSQL attribute, 6-2
PLSQL_CCFLAGS attribute, 6-4
PLSQL_CONN_MEM_LIMIT attribute, 6-5
PLSQL_MEMORY_ADDRESS attribute, 6-3
PLSQL_MEMORY_SIZE attribute, 6-3
PLSQL_OPTIMIZE_LEVEL attribute, 6-5
PLSQL_TIMEOUT attribute, 6-6

constants and variables, 2-2
CONTINUE statement, 2-7

Index-2

conversion--see type conversion
cursors

closed at end of transaction, 2-31
cursor attributes, 9-4
cursor FOR loop, example, 5-8
examples, 5-6
REF CURSORs, 3-7
use in PL/SQL, 2-21

D
data types

associative arrays (index-by tables), 3-5
categories, 3-2
collections, 3-5
composite data types, 3-4
conversion between application types and PL/SQL

or SQL types, 3-9
conversion between PL/SQL and SQL, 3-11
conversion between PL/SQL types, 3-9
differences in TimesTen, 3-10
index-by tables (associative arrays), 3-5
nested tables, 3-5
non-supported types, 3-13
overview of what is supported, 3-1
PLS_INTEGER and BINARY_INTEGER, 3-3
PL/SQL types, 3-2
records, 3-5
REF CURSORs, 3-7
ROWID, 3-4
scalar types, 3-2
SIMPLE_INTEGER, 3-4
type environments, 3-1
varrays, 3-5

DBMS_LOB package, 8-2
DBMS_LOCK package, 8-4
DBMS_OUTPUT package, 8-5
DBMS_PREPROCESSOR package, 8-6
DBMS_RANDOM package, 8-7
DBMS_SQL package, 8-8
DBMS_UTILITY package, 8-10
DDL statements, 2-12
definer’s rights, 5-18, 7-7
demo applications, 1-5
differences in TimesTen

data type considerations, 3-10
exception handling and behavior, 4-7
execution of PL/SQL from SQL, 1-4
PL/SQL language element and feature

support, 9-1
SQL statements in PL/SQL blocks, 1-3
transaction behavior, 2-31

DML returning, 2-15, 5-16
DML statements, 2-11
duplicate parameters, 2-10
dynamic SQL

DBMS_SQL package, 8-8
EXECUTE IMMEDIATE examples, 5-13
EXECUTE IMMEDIATE usage, 2-12

E
enabling PL/SQL

checking whether it is enabled, 6-1
errors

error messages, differences vs. Oracle, 4-9
exception types, 4-2
RAISE statement, 4-4
RAISE_APPLICATION_ERROR procedure, 4-5
show errors in ttIsql, 4-6
SQLCODE built-in function, 4-4, 4-9
SQLERRM built-in function, 4-4, 4-9
transaction and rollback behavior, differences vs.

Oracle, 4-7
trapping predefined exceptions, 4-3
trapping user-defined exceptions, 4-4
understanding exceptions, 4-1
warnings (not supported), 4-9

examples
bind variables, 5-3
bulk binding, 5-9
cursor FOR loop, 5-8
cursors, 5-6
dynamic SQL, 5-13
FETCH statement, 5-6
INSERT statement, 5-2
query a system view, 5-22
RETURNING INTO, 5-16
SELECT statement, 5-1

exceptions--see errors
EXECUTE IMMEDIATE statement

examples, 5-13
usage, 2-12

F
features, overview, 1-1
FETCH statement, example, 5-6
first connection attributes, 6-2
FOR loop, 2-7
FORALL statement, 2-14, 5-9
functions

access control, 7-1
basic usage and example, 2-21
SQL functions, from PL/SQL, 2-5
supported ways to execute, 2-8

G
general connection attributes, 6-2
granting privileges, 7-3

I
IF-THEN-ELSE statement, 2-6
IN OUT parameters, 2-10
IN parameters, 2-10
index-by tables (associative arrays)

binding, 3-6
using, 3-5

INSERT statement, example, 5-2

Index-3

installing PL/SQL (ttmodinstall), 6-1
integer types

BINARY_INTEGER, 3-3
PLS_INTEGER, 3-3
SIMPLE_INTEGER, 3-4

invoker’s rights, 5-18, 7-7
iterative control, 2-7

L
language elements and features, support, 9-1
LOBs

DBMS_LOB package, 8-2
overview, 2-17
using in PL/SQL, 2-17

N
nested tables, 3-5
NLS_DATE_FORMAT, 3-12
NLS_TIMESTAMP_FORMAT, 3-12
non-ASCII names (not supported), 9-7
non-uppercase names (not supported), 9-7

O
operations of PL/SQL, overview, 1-2
OUT parameters, 2-10
overview

components and operations, 1-2
features, 1-1

P
packages

access control, 7-1
concepts, 2-25
creating and using, 2-25
TimesTen-supplied packages, 8-1

parameters
binding, 2-9
duplicate parameters, 2-10
examples using bind variables, 5-3
IN, 2-10
IN OUT, 2-10
OUT, 2-10

PLS_INTEGER type, 3-3
PLSCOPE_SETTINGS connection attribute, 6-3
PLSQL connection attribute, 6-2
PLSQL_CCFLAGS connection attribute, 6-4
PLSQL_CONN_MEM_LIMIT connection

attribute, 6-5
PLSQL_MEMORY_ADDRESS connection

attribute, 6-3
PLSQL_MEMORY_SIZE connection attribute, 6-3
PLSQL_OPTIMIZE_LEVEL connection attribute, 6-5
PLSQL_TIMEOUT connection attribute, 6-6
predefined exceptions

not supported by TimesTen, 4-9
supported by TimesTen, 4-3

privileges

for procedures, functions, packages, 7-1
granting and revoking, 7-3

privileges--also see access control
procedures

access control, 7-1
basic usage and example, 2-21
supported ways to execute, 2-8

programming features
conditional control, 2-6
continue, 2-7
iterative control, 2-7

public objects, 2-25

Q
queries, 2-11
Quick Start demo applications, 1-5

R
RAISE statement (exceptions), 4-4
RAISE_APPLICATION_ERROR procedure, 4-5
records, 3-5
REF CURSORs, 3-7
replication, PL/SQL DDL, not supported, 2-22
RETURNING INTO clause, 2-15, 5-16
revoking privileges, 7-3
ROWID type, 3-4

S
samples--see examples
SAVE EXCEPTIONS clause, 2-14, 5-12
security--see access control
SELECT statement, 2-11
SELECT statement, example, 5-1
show errors, ttIsql, 4-6
SIMPLE_INTEGER type, 3-4
sleep functionality, 8-4
SQL

DDL statements, 2-12
dynamic SQL, 2-12
static SQL, 2-11

SQL functions, from PL/SQL, 2-5
SQLCODE built-in function, 4-4, 4-9
SQLERRM built-in function, 4-4, 4-9
standalone subprograms (procedures and

functions), 2-21
static SQL, 2-11
stored functions

access control, 7-1
basic usage and example, 2-21
supported ways to execute, 2-8

stored procedures
access control, 7-1
basic usage and example, 2-21
supported ways to execute, 2-8

subprograms
access control, 7-1
basic usage and example, 2-21
supported ways to execute, 2-8

Index-4

supplied packages and system views
access control, 7-8
system view, querying, 5-22

synonyms
for packages, 2-28
for procedures and functions, 2-24

T
TimesTen Application-Tier Database Cache

(TimesTen Cache), use from PL/SQL, 2-16
TimesTen built-in functions

access control, 7-9
calling via EXECUTE IMMEDIATE, 2-12, 5-16

TO_CHAR function, 3-12
TO_DATE function, 3-12
transaction and rollback behavior, differences vs.

Oracle, 4-7
transaction behavior, 2-31
trapping exceptions

predefined exceptions, 4-3
user-defined exceptions, 4-4

TT_DB_VERSION package, 8-12
TT_DECIMAL data type (unsupported), 3-12
TT_STATS package, 8-13
ttIsql, show errors, 4-6
ttmodinstall utility (install PL/SQL), 6-1
ttPLSQLMemoryStats built-in procedure, 6-8, 7-9,

9-10
ttSrcScan utility (check for unsupported

features), 6-8
type conversion

between application types and PL/SQL or SQL
types, 3-9

between PL/SQL and SQL, 3-11
between PL/SQL types, 3-9
differences in TimesTen, 3-10

U
unsupported features, check with ttSrcScan, 6-8
UTL_FILE package, 8-14
UTL_IDENT package, 8-16
UTL_RAW package, 8-17
UTL_RECOMP package, 8-19

V
variables and constants, 2-2
varrays, 3-5

W
warnings (not supported), 4-9
WHILE loop, 2-7
wrapping PL/SQL source code, 2-29

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 11.2.2.0.0

	1 Introduction to PL/SQL in the TimesTen Database
	Features of PL/SQL in TimesTen
	TimesTen PL/SQL components and operations
	Application interaction with TimesTen and PL/SQL
	PL/SQL in TimesTen versus PL/SQL in Oracle Database
	SQL statements in PL/SQL blocks
	Execution of PL/SQL from SQL

	Audiences for this document
	Developers experienced with Oracle Database and Oracle Database PL/SQL
	Developers experienced with TimesTen

	About the TimesTen PL/SQL demos

	2 Programming Features in PL/SQL in TimesTen
	PL/SQL blocks
	PL/SQL variables and constants
	SQL function calls from PL/SQL
	PL/SQL control structures
	Conditional control
	Iterative control
	CONTINUE statement

	How to execute PL/SQL procedures and functions
	How to pass data between an application and PL/SQL
	Using bind variables from an application
	IN, OUT, and IN OUT parameter modes

	Use of SQL in PL/SQL programs
	Static SQL in PL/SQL for queries and DML statements
	Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)
	FORALL and BULK COLLECT operations
	RETURNING INTO clause
	TimesTen PL/SQL with TimesTen Cache
	Large objects (LOBs)
	About LOBs
	LOB locators
	Temporary LOBs
	Differences between TimesTen LOBs and Oracle Database LOBs
	Using LOBs
	PL/SQL package support for LOBs
	Passthrough LOBs

	Use of cursors in PL/SQL programs
	PL/SQL procedures and functions
	Creating and using procedures and functions
	Using synonyms for procedures and functions

	PL/SQL packages
	Package concepts
	Creating and using packages
	Using synonyms for packages

	Wrapping PL/SQL source code
	Differences in TimesTen: transaction behavior

	3 Data Types in PL/SQL in TimesTen
	Understanding the data type environments
	Understanding and using PL/SQL data types
	PL/SQL data type categories
	Predefined PL/SQL scalar data types
	PLS_INTEGER and BINARY_INTEGER data types
	SIMPLE_INTEGER data type
	ROWID data type
	LOB data types

	PL/SQL composite data types
	Using collections in PL/SQL
	Using records in PL/SQL
	Using associative arrays from applications

	PL/SQL REF CURSORs

	Data type conversion
	Conversion between PL/SQL data types
	Conversion between application data types and PL/SQL or SQL data types

	Differences in TimesTen: data type considerations
	Conversion between PL/SQL and TimesTen SQL data types
	Date and timestamp formats: NLS_DATE_FORMAT and NLS_TIMESTAMP_FORMAT
	Non-supported data types
	Zero-length strings in TimesTen type mode

	4 Errors and Exception Handling
	Understanding exceptions
	About exceptions
	Exception types

	Trapping exceptions
	Trapping predefined TimesTen errors
	Trapping user-defined exceptions
	Using the RAISE statement
	Using the RAISE_APPLICATION_ERROR procedure

	Showing errors in ttIsql
	Differences in TimesTen: exception handing and error behavior
	TimesTen PL/SQL transaction and rollback behavior for unhandled exceptions
	TimesTen error messages and SQL codes
	Warnings not visible in PL/SQL
	Unsupported predefined errors
	Possibility of runtime errors after clean compile (use of Oracle Database SQL parser)
	Use of TimesTen expressions at runtime

	5 Examples Using TimesTen SQL in PL/SQL
	Examples using the SELECT...INTO statement in PL/SQL
	Using SELECT... INTO to return sum of salaries
	Using SELECT...INTO to query another user's table

	Example using the INSERT statement
	Examples using input and output parameters and bind variables
	Using IN and OUT parameters
	Using IN OUT parameters
	Using associative arrays

	Examples using cursors
	Fetching values
	Using the %ROWCOUNT and %NOTFOUND attributes
	Using cursor FOR loops

	Examples using FORALL and BULK COLLECT
	Using FORALL with SQL%BULK_ROWCOUNT
	Using BULK COLLECT INTO with queries
	Using BULK COLLECT INTO with cursors
	Using SAVE EXCEPTIONS with BULK COLLECT

	Examples using EXECUTE IMMEDIATE
	Using EXECUTE IMMEDIATE to create a table
	Using EXECUTE IMMEDIATE with a single row query
	Using EXECUTE IMMEDIATE to alter a connection attribute
	Using EXECUTE IMMEDIATE to call a TimesTen built-in procedure
	Using EXECUTE IMMEDIATE with TimesTen-specific syntax

	Examples using RETURNING INTO
	Using the RETURNING INTO clause with a record
	Using BULK COLLECT INTO with the RETURNING INTO clause

	Examples using the AUTHID clause
	Script for AUTHID examples
	Using AUTHID CURRENT_USER
	Using AUTHID DEFINER

	Example querying a system view

	6 PL/SQL Installation and Environment
	Confirming that PL/SQL is installed and enabled in TimesTen
	PL/SQL installation and the ttmodinstall utility
	Checking that PL/SQL is enabled in a TimesTen database

	PL/SQL connection attributes
	The ttSrcScan utility

	7 Access Control for PL/SQL Programs
	Access control for PL/SQL operations
	Required privileges for PL/SQL statements and operations
	Granting and revoking privileges
	Invalidated objects

	Access control for SQL operations
	Definer's rights and invoker's rights
	Additional access control considerations
	Access control for connections and connection attributes
	Access control for system views and supplied packages
	Access control for built-in procedures relating to PL/SQL

	8 TimesTen Supplied PL/SQL Packages
	DBMS_LOB
	DBMS_LOCK
	DBMS_OUTPUT
	DBMS_PREPROCESSOR
	DBMS_RANDOM
	DBMS_SQL
	DBMS_UTILITY
	TT_DB_VERSION
	TT_STATS
	UTL_FILE
	UTL_IDENT
	UTL_RAW
	UTL_RECOMP

	9 TimesTen PL/SQL Support: Reference Summary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

