
Oracle® Database
SODA for C Developers Guide

Release 18c
E84721-03
April 2018

Oracle Database SODA for C Developers Guide, Release 18c

E84721-03

Copyright © 2018, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Drew Adams

Contributors: Vijaya Kumar Jitta, Christopher Jones, Maxim Orgiyan, Rajendra Pingte, Srikrishnan Suresh,
Anthony Tuininga

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions viii

1 SODA for C Prerequisites

2 SODA for C Overview

3 Using SODA for C

3.1 Getting Started with SODA for C 3-2

3.2 Creating a Document Collection with SODA for C 3-9

3.3 Opening an Existing Document Collection with SODA for C 3-11

3.4 Checking Whether a Given Collection Exists with SODA for C 3-12

3.5 Discovering Existing Collections with SODA for C 3-12

3.6 Dropping a Document Collection with SODA for C 3-13

3.7 Creating Documents with SODA for C 3-14

3.8 Inserting Documents into Collections with SODA for C 3-19

3.9 Finding Documents in Collections with SODA for C 3-23

3.10 Replacing Documents in a Collection with SODA for C 3-24

3.11 Removing Documents from a Collection with SODA for C 3-27

3.12 Handling Transactions with SODA for C 3-28

4 Character-Set Considerations for SODA for C

5 Multithreading in SODA for C Applications

iii

6 SODA Collection Configuration Using Custom Metadata

6.1 Getting the Metadata of an Existing Collection 6-2

6.2 Creating a Collection That Has Custom Metadata 6-8

Index

iv

List of Examples

3-1 Getting Started Run-Through 3-3

3-2 Creating a Collection That Has the Default Metadata 3-10

3-3 Opening an Existing Document Collection 3-11

3-4 Printing the Names of All Existing Collections 3-12

3-5 Dropping a Document Collection 3-14

3-6 Creating a Document with JSON Content 3-16

3-7 Creating a Document with Document Key and JSON Content 3-17

3-8 Creating an Empty Document and Then Defining Components 3-18

3-9 Inserting a Document into a Collection 3-20

3-10 Inserting a Document into a Collection and Getting the Result Document 3-20

3-11 Inserting a Document into a Collection Without Providing a Handle 3-22

3-12 Finding the Single Document That Has a Given Document Key 3-23

3-13 Replacing a Document in a Collection, Given Its Key, and Getting the Result Document 3-25

3-14 Removing a Document from a Collection Using a Document Key 3-27

6-1 Getting All of the Metadata of a Collection 6-3

6-2 Getting Individual Collection Metadata Attributes 6-3

6-3 Default Collection Metadata 6-7

6-4 Creating a Collection That Has Custom Metadata 6-8

v

List of Tables

3-1 Document Handle Attributes (Document Components) 3-16

6-1 Collection Handle Attributes (Collection Metadata) 6-2

vi

Preface

This document describes how to use Simple Oracle Document Access (SODA) for C.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for users of Simple Oracle Document Access (SODA) for C.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

• Oracle Call Interface Programmer's Guide for complete information about Oracle
Call Interface (OCI), including reference material

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

• Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

• Oracle Database Error Messages Reference

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
SODA for C Prerequisites

SODA for C is an integral part of Oracle Call Interface (OCI) starting with Oracle
Database Release 18c (18.1).

To use SODA for C, ensure the following:

• You have Oracle Call Interface 18.3 or later.

• You have Oracle Database 18c or later.

• The database character set is AL32UTF8, which implements Unicode UTF-8.

You compile programs that use SODA for C the same way you compile other OCI
programs.

See Also:

Oracle Call Interface Programmer's Guide for information about building and
configuring OCI applications

1-1

2
SODA for C Overview

SODA for C is a C API that is part of Oracle Call Interface (OCI). It implements
Simple Oracle Document Access (SODA). You can use it to perform create, read
(retrieve), update, and delete (CRUD) operations on documents of any kind, and you
can use it to query JSON documents.

You compile programs that use SODA for C the same way you compile other OCI
programs.

SODA is a set of NoSQL-style APIs that let you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know Structured Query Language (SQL) or how the data in the documents is stored in
the database.

Oracle Database supports storing and querying JSON data. SODA collections are
backed by ordinary Oracle Database tables and views. Because of this, you can
generally take advantage of database features for use with the content of SODA
documents. For example, you can apply database analytics and reporting to JSON
data, and you can include JSON data in aggregation and join operations. In addition,
your applications can use database transactions.

SODA interacts with the database transparently. To use SODA you generally do not
need a database administrator, and you do not need to program with a database
language, such as structured query language (SQL). SODA for C uses OCI and the
database to carry out CRUD and query operations, after translating them to Oracle
SQL with SQL/JSON operators.

The remaining topics of this document describe various features of SODA for C.

Note:

• This book provides information about using SODA with C applications,
and it describes all SODA features currently available for use with C. To
use SODA for C you also need to understand SODA generally. For such
general information, please consult Oracle Database Introduction to
Simple Oracle Document Access (SODA). Some features described in
that book are not yet available with SODA for C.

• This book does not provide general information about OCI, including
reference information about the SODA for C functions and constants. For
such information, please consult Oracle Call Interface Programmer's
Guide.

2-1

See Also:

Oracle Database JSON Developer’s Guide for information about using SQL
and PL/SQL with JSON data stored in Oracle Database

Chapter 2

2-2

3
Using SODA for C

How to access SODA for C is described, as well as how to use it to perform create,
read (retrieve), update, and delete (CRUD) operations on collections. CRUD
operations are also called “read and write operations” in this document.

• Getting Started with SODA for C
How to access SODA for C is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document
from a collection.

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care
about the details of its configuration. This creates a collection that has the default
metadata. To create a collection that is configured in a nondefault way, use
function OCISodaCollCreateWithMetadata() instead, passing it custom metadata,
expressed in JSON.

• Opening an Existing Document Collection with SODA for C
Use OCI function OCISodaCollOpen() to open an existing document collection.

• Checking Whether a Given Collection Exists with SODA for C
To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was
successfully opened, which means that it exists. If no such collection exists then
the collection-handle pointer is NULL.

• Discovering Existing Collections with SODA for C
To discover existing collections, use OCI functions OCISodaCollList() and
OCISodaCollGetNext().

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the
components of a document.

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Finding Documents in Collections with SODA for C
To find the document in a collection that has a given key, use OCI function
OCISodaFindOneWithKey(). Each document has a unique key.

• Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns
the new (result) document, so you can get its components.

• Removing Documents from a Collection with SODA for C
To remove a document from a collection, given its key, use OCI function
OCISodaRemoveOneWithKey().

3-1

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

3.1 Getting Started with SODA for C
How to access SODA for C is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a
collection.

Note:

Don’t worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should
give you an idea of what is involved overall in using SODA.

To get started with SODA for C, follow these steps:

1. Ensure that all of the prerequisites have been met for using SODA for C. See
SODA for C Prerequisites.

2. Grant database role SODA_APP to the database schema (user account) where you
intend to store SODA collections. (Replace placeholder user here by a real
account name.)

GRANT SODA_APP TO user;

3. Create a program file containing the C code in Example 3-1, but set variables usr,
passwd, and connstr to values appropriate string values for your database account
and instance.

4. Compile the file and build an executable program from it as you would for any OCI
program.

5. Run the program.

You can run it just by entering the program name on the command line. For
example, if the name is soda-get-started then enter that at the command-line
prompt:

> soda-get-started

If you want the program to drop the collection when done with it then pass the
argument drop to it on the command line:

> soda-get-started drop

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Chapter 3
Getting Started with SODA for C

3-2

Note:

• All C code you have that uses SODA for C features must first initialize
the environment in OCI object mode, passing OCI_OBJECT as the mode
parameter to function OCIEnvNlsCreate() here.

• All SODA handles (document, collection, and any others) need to be
explicitly freed using function OCIHandleFree() when your program no
longer needs them. (In particular, a handle for a document with large
content can be associated with a lot of memory.)

See Also:

• Oracle Call Interface Programmer's Guide for information about building
an OCI application

• Oracle Call Interface Programmer's Guide for basic information about
OCI programming

Example 3-1 Getting Started Run-Through

This example code does the following:

1. Creates an Oracle Call Interface (OCI) environment in object mode, allocates the
error handle, and gets a session using OCISessionGet().

2. Creates and opens a SODA document collection, using the default collection
configuration (metadata).

3. Creates a SODA document with some JSON content.

4. Inserts the document into the collection.

5. Gets the inserted document back. Its other components, besides the content, are
generated automatically.

6. Prints the unique document key, which is one of the components generated
automatically.

7. Finds the document in the collection, providing its key.

8. Prints some of the document components: key, version, last-modified time stamp,
creation time stamp, media type, and content.

9. Optionally drops the collection, cleaning up the database table that is used to store
the collection and its metadata.

10. Frees all allocated handles.

Whether or not the collection is dropped is decided at runtime. To drop the collection
you provide the command-line argument drop to the executable program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

Chapter 3
Getting Started with SODA for C

3-3

static sword status;

int main(int argc, char *argv[])
{
 sword rc = OCI_SUCCESS;
 OCIEnv *envhp = NULL;
 OCIError *errhp = NULL;
 OCISvcCtx *svchp = NULL;
 OCIAuthInfo *authhp = NULL;
 OCISodaColl *collhp = NULL;
 OCISodaDoc *dochp = NULL;
 boolean isDropped = FALSE;
 ub4 docFlags = OCI_DEFAULT;
 OraText *collectionName = (oratext *)"MyJSONCollection";
 OCISodaDoc *foundDochp = NULL;
 OCISodaDoc *origDochp = NULL;

 // Document content: JSON data
 char documentContent[30] = "{\"NAME\":\"Alexander\"}";

 // Set these variables to strings with the appropriate user name and password.
 // (Be sure to replace the placeholders user and password used here.)
 OraText usr[30] = user;
 OraText passwd[30] = password;

 // Set variable connstr to a string value composed of the host name, port number,
and service name
 // of your database instance.
 // (Be sure to replace placeholders host, port, and service used here.)
 OraText connstr[50] = "host:port/service";

 OraText *key = NULL;
 ub4 keyLen = 0;
 OraText *content = NULL;
 ub4 contentLen = 0;
 OraText *version = NULL;
 ub4 versionLen = 0;
 OraText *lastModified = NULL;
 ub4 lastModifiedLen = 0;
 OraText *mediaType = NULL;
 ub4 mediaTypeLen = 0;
 OraText *createdOn = NULL;
 ub4 createdOnLen = 0;

 // Set up environment. OCI_OBJECT is required for all SODA C code.
 rc = OCIEnvNlsCreate(&envhp,
 OCI_OBJECT,
 NULL,
 NULL,
 NULL,
 NULL,
 0,
 NULL,
 0,
 0);

 if (rc != OCI_SUCCESS)
 {
 printf ("OCIEnvNlsCreate failed\n");
 goto finally;
 }

Chapter 3
Getting Started with SODA for C

3-4

 // Allocate error handle
 rc = OCIHandleAlloc((dvoid *) envhp,
 (dvoid **) &errhp,
 OCI_HTYPE_ERROR,
 (size_t) 0,
 (dvoid **) 0);

 if (rc != OCI_SUCCESS)
 {
 printf ("OCIHandleAlloc: OCI_HTYPE_ERROR creation failed\n");
 goto finally;
 }

 // Allocate authentication-information handle
 rc = OCIHandleAlloc ((dvoid *)envhp,
 (dvoid **)&authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (size_t)0,
 (dvoid **)0);

 if (rc != OCI_SUCCESS)
 {
 printf ("OCIHandleAlloc: OCI_HTYPE_AUTHINFO creation failed\n");
 goto finally;
 }

 // Set variable usr to the user name
 rc = OCIAttrSet ((dvoid *)authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (dvoid *)user,
 (ub4)strlen((char *)user),
 (ub4)OCI_ATTR_USERNAME,
 (OCIError *)errhp);
 if (rc != OCI_SUCCESS)
 {
 printf ("OCIAttrSet: OCI_ATTR_USERNAME failed\n");
 goto finally;
 }

 // Set variable passwd to the password
 rc = OCIAttrSet ((dvoid *)authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (dvoid *)passwd,
 (ub4)strlen((char *)passwd),
 (ub4)OCI_ATTR_PASSWORD,
 (OCIError *)errhp);
 if (rc != OCI_SUCCESS)
 {
 printf ("OCIAttrSet: OCI_ATTR_PASSWORD failed\n");
 goto finally;
 }

 // Get service handle
 // This provides service and error handles we can use for service calls
 rc = OCISessionGet ((OCIEnv *)envhp,
 (OCIError *)errhp,
 (OCISvcCtx **)&svchp,
 (OCIAuthInfo *)authhp,
 (OraText *)connstr,
 (ub4)strlen((char *)connstr),

Chapter 3
Getting Started with SODA for C

3-5

 (OraText *)NULL,
 (ub4)0,
 (OraText **)0,
 (ub4 *)0,
 (boolean *)0,
 (ub4)OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISessionGet failed\n");
 goto finally;
 }

 // Create collection named by the value of variable collectionName, with default
metadata
 rc = OCISodaCollCreate(svchp,
 collectionName,
 (ub4) strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaCollCreate failed\n");
 goto finally;
 }

 // Create a document with content provided by variable documentContent
 rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaDocCreate failed\n");
 goto finally;
 }

 // Because OCISodaInsertAndGet returns the result document as dochp, we first
 // save the pointer to the original input document handle, which was returned
 // by OCISodaDocCreate, as origDochp. This lets us free the original
 // document handle later.
 origDochp = dochp;

 // Insert the document into the collection
 rc = OCISodaInsertAndGet(svchp,
 collhp,
 &dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaInsertAndGet failed\n");
 goto finally;
 }

Chapter 3
Getting Started with SODA for C

3-6

 // Get the auto-generated key of the inserted document
 rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_KEY failed\n");
 goto finally;
 }

 // Find the document using its key
 printf("Find the document by its auto-generated key %.*s\n", keyLen, key);
 rc = OCISodaFindOneWithKey(svchp,
 collhp,
 key,
 keyLen,
 OCI_DEFAULT,
 &foundDochp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaFindOneWithKey failed\n");
 goto finally;
 }

 // Get and print components of found document
 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_KEY failed\n");
 goto finally;
 }
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_VERSION failed\n");
 goto finally;
 }
 printf("Version: %.*s\n", versionLen, version);

Chapter 3
Getting Started with SODA for C

3-7

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &lastModified,
 &lastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_LASTMOD_TIMESTAMP failed\n");
 goto finally;
 }
 printf("Last-modified: %.*s\n", lastModifiedLen, lastModified);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &createdOn,
 &createdOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_CREATE_TIMESTAMP failed\n");
 goto finally;
 }
 printf("Created: %.*s\n", createdOnLen, createdOn);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &mediaType,
 &mediaTypeLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_MEDIA_TYPE failed\n");
 goto finally;
 }
 printf("Media Type: %.*s\n", mediaTypeLen, mediaType);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_CONTENT failed\n");
 goto finally;
 }
 printf("Content: %.*s \n", contentLen, content);

 // Drop the collection if argument "drop" was provided
 if ((argc > 1) && (strcmp(argv[1], "drop") == 0))
 {
 rc = OCISodaCollDrop(svchp,
 collhp,

Chapter 3
Getting Started with SODA for C

3-8

 &isDropped,
 errhp,
 OCI_DEFAULT);
 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaCollDrop failed\n");
 goto finally;
 }
 else
 {
 printf("Collection dropped\n");
 }
 }

 finally:

 // Release the session and free all handles
 if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);

 if (dochp)
 (void) OCIHandleFree((dvoid *) dochp, OCI_HTYPE_SODA_DOCUMENT);

 if (origDochp)
 (void) OCIHandleFree((dvoid *) origDochp, OCI_HTYPE_SODA_DOCUMENT);

 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);

 (void) OCISessionRelease(svchp, errhp, (oratext *)0, 0, OCI_DEFAULT);

 if (authhp)
 (void) OCIHandleFree ((dvoid *)authhp, (ub4)OCI_HTYPE_AUTHINFO);

 if (errhp)
 (void) OCIHandleFree((dvoid *) errhp, OCI_HTYPE_ERROR);

 if (svchp)
 (void) OCIHandleFree((dvoid *) errhp, OCI_HTYPE_SVCCTX);

 if (envhp)
 (void) OCIHandleFree((dvoid *) envhp, OCI_HTYPE_ENV);
 return rc;
}

Related Topics

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

3.2 Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care about
the details of its configuration. This creates a collection that has the default metadata.
To create a collection that is configured in a nondefault way, use function
OCISodaCollCreateWithMetadata() instead, passing it custom metadata, expressed in
JSON.

For each of these functions, if a collection with the same name already exists then it is
simply opened and its handle is returned. For function

Chapter 3
Creating a Document Collection with SODA for C

3-9

OCISodaCollCreateWithMetadata(), if the metadata passed to it does not match that of
the existing collection then the collection is not opened and an error is raised. (To
match, all metadata fields must have the same values.)

Example 3-2 uses function OCISodaCollCreate() to create a collection that has the
default configuration (default metadata). It returns the collection as an OCISodaColl
handle.

A collection that has the default collection metadata has the following characteristics:

• It can store only JSON documents.

• Each of its documents has these components: key, content, creation time stamp,
last-modified time stamp.

• Keys are automatically generated for documents that you add to the collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

• Whether the collection can store only JSON documents.

• The presence or absence of columns for document creation time stamp, last-
modified time stamp, and version.

• Methods of document key generation, and whether keys are client-assigned or
generated automatically.

• Methods of version generation.

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

This configurability also lets you map a new collection to an existing database table.

Note:

Unless otherwise stated, the remainder of this documentation assumes that
a collection has the default configuration.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about the default naming of a collection table

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about collection metadata components

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollCreate()

Example 3-2 Creating a Collection That Has the Default Metadata

This example creates collection MyCollection with the default metadata. Note that
function OCISodaCollCreate() does not, itself, perform a database commit operation.

Chapter 3
Creating a Document Collection with SODA for C

3-10

OCISodaColl *collhp = NULL;
OraText *collectionName = (OraText *)"MyCollection";
rc = OCISodaCollCreate(svchp,
 (const OraText *)collectionName,
 (ub4)strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);

Related Topics

• Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute OCI_ATTR_SODA_DESCRIPTOR, to
get all of the metadata of a collection at once, as a JSON document. You can also
use OCIAttrGet() to get individual collection metadata attributes.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to OCI function OCISodaCollCreateWithMetadata().

• Checking Whether a Given Collection Exists with SODA for C
To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was
successfully opened, which means that it exists. If no such collection exists then
the collection-handle pointer is NULL.

3.3 Opening an Existing Document Collection with SODA for
C

Use OCI function OCISodaCollOpen() to open an existing document collection.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaCollOpen()

Example 3-3 Opening an Existing Document Collection

This example uses OCI function OCISodaCollOpen() to open the collection named
MyCollection. It returns an OCISodaColl handle that represents this collection as the
value of the fourth parameter (collhp in this example). The function return value is
OCI_SUCCESS for success or OCI_ERROR for failure. If the value returned is OCI_ERROR then
there is no existing collection named MyCollection.

OCISodaColl *collhp = NULL;
OraText *collectionName = "MyCollection";
rc = OCISodaCollOpen(svchp,
 collectionName,
 (ub4) strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);
if (!collhp) printf("Collection %s does not exist\n", collectionName);

Chapter 3
Opening an Existing Document Collection with SODA for C

3-11

3.4 Checking Whether a Given Collection Exists with SODA
for C

To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was successfully
opened, which means that it exists. If no such collection exists then the collection-
handle pointer is NULL.

Example 3-3 illustrates this. If MyCollection names an existing collection then that
collection is opened, and collection-handle collhp points to it. If MyCollection does not
name an existing collection then after invoking function OCISodaCollOpen() the value of
collection-handle collhp is still NULL.

Related Topics

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care
about the details of its configuration. This creates a collection that has the default
metadata. To create a collection that is configured in a nondefault way, use
function OCISodaCollCreateWithMetadata() instead, passing it custom metadata,
expressed in JSON.

3.5 Discovering Existing Collections with SODA for C
To discover existing collections, use OCI functions OCISodaCollList() and
OCISodaCollGetNext().

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollList()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaGetNext()

Example 3-4 Printing the Names of All Existing Collections

This example uses OCI function OCISodaCollList() to obtain a collection cursor
(collectionCursor). It then iterates over the cursor, printing out each collection name.

OCISodaCollCursor *collectionCursor;
OCISodaColl *collhp;
OraText *startName = NULL;
ub4 startNameLen = 0;
OraText *collectionName = NULL;
ub4 collectionNameLen = 0;

rc = OCISodaCollList(svchp,
 startName,
 (ub4) strlen(startName),
 startNameLen,
 &collectionCursor,

Chapter 3
Checking Whether a Given Collection Exists with SODA for C

3-12

 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

do
{
 rc = OCISodaCollGetNext(svchp,
 collectionCursor,
 &collhp,
 errhp,
 OCI_DEFAULT);
 if (rc == OCI_NO_DATA || rc == OCI_INVALID_HANDLE || rc == OCI_ERROR) goto finally;

 rc = OCIAttrGet((dvoid *) collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *) &collectionName,
 &collectionNameLen,
 OCI_ATTR_SODA_COLL_NAME,
 errhp);

 if (rc != OCI_SUCCESS) goto finally;
 printf("%s\n", collectionName);
}
while(1);

finally:
if (collectionCursor) OCIHandleFree((dvoid *) collectionCursor,
(ub4)OCI_HTYPE_SODA_CURSOR);

In this example, startName is NULL, and startNameLen is 0. As a result, the cursor iterates
over all collections in the database.

Alternatively, you could iterate over only a subset of the existing collections. For that,
you could set startName to an existing collection name, such as "myCollectionB", and
set startNameLen to its string length. The cursor would then iterate over only that
collection and the collections whose names come after that collection name
alphabetically. The collections would be iterated over in alphabetic order of their
names.

For example, if the existing collections are "myCollectionA", "myCollectionB", and
"myCollectionC", and if startName is "myCollectionB", then the cursor iterates over
"myCollectionB" and "myCollectionC", in that order.

3.6 Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

Unlike Oracle SQL statement DROP TABLE, function OCISodaCollDrop() does not implicitly
perform a commit operation before and after it drops the collection. To complete the
collection removal you must explicitly commit all uncommitted writes to the collection
before invoking OCISodaCollDrop().

Dropping a collection using a collection handle does not free the handle. You must use
OCI function OCIHandleFree() to free a handle.

Chapter 3
Dropping a Document Collection with SODA for C

3-13

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaCollDrop()

Example 3-5 Dropping a Document Collection

This example uses OCI function OCISodaCollDrop() to drop a collection. (Variable
collhp is assumed to point to an existing collection — an OCISodaColl instance).

If the collection cannot be dropped because of uncommitted write operations then an
error is returned. If the collection is dropped successfully, the value of out parameter
dropStatus is TRUE; otherwise it is FALSE.

If the collection-handle argument (collhp in this example) no longer references an
existing collection then no error is returned, but dropStatus is FALSE after the invocation
of OCISodaCollDrop().

boolean dropStatus = FALSE;
rc = OCISodaCollDrop(svchp, collhp, &dropStatus, errhp, OCI_DEFAULT);

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns
the new (result) document, so you can get its components.

3.7 Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the components
of a document.

SODA for C represents a document using a OCISodaDoc handle. This is a carrier of
document content and other document components, such as the document key.
Document components are handle attributes.

Here is an example of the content of a JSON document:

Chapter 3
Creating Documents with SODA for C

3-14

{ "name" : "Alexander",
 "address" : "1234 Main Street",
 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345"
}

A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

You can create a document in these ways:

• By invoking a OCI function that is specifically designed to create a document:
OCISodaDocCreate(), OCISodaDocCreateWithKey(), or
OCISodaDocCreateWithKeyAndMType().

Example 3-6 and Example 3-7 illustrate this. They both create a document handle.
In each case the media type for the created document defaults to "application/
json", and the other document components default to NULL.

• By invoking function OCIHandleAlloc() with handle type OCI_HTYPE_SODA_DOCUMENT, to
create an empty document (handle).

Example 3-8 illustrates this.

You can use function OCIAttrSet() to define (set) document components (document-
handle attributes), whether or not they already have values.

If you use the second approach (OCIHandleAlloc()) to create a document then you
must invoke function OCIAttrSet() to set at least the content component.

However you create a document, you can reuse the handle for multiple document
operations. For example, you can change the content or other components, passing
the same handle to different write operations.

In a collection, each document must have a key. You must provide the key when you
create the document only if you expect to insert the document into a collection that
does not automatically generate keys for inserted documents. By default, collections
are configured to automatically generate document keys. Use function
OCISodaDocCreate() if the key is to be automatically generated; otherwise, supply the
key (as parameter key) to OCISodaDocCreateWithKey(), or
OCISodaDocCreateWithKeyAndMType().

Use function OCISodaDocCreateWithKeyAndMType() if you want to provide the document
media type (otherwise, it defaults to "application/json"). This can be useful for
creating non-JSON documents (using a media type other than "application/json").

Whichever document-creation function you use, invoking it sets the document
components that you provide (the content, possibly the key, and possibly the media
type) to the values you provide for them. And it sets the values of the creation time
stamp, last-modified time stamp, and version to null.

Chapter 3
Creating Documents with SODA for C

3-15

You get document components using OCI function OCIAttrGet(), which is the same
way you get the value of any handle attribute. You pass the type of the component you
want to get to OCIAttrGet() as the fifth argument.

Table 3-1 Document Handle Attributes (Document Components)

Attribute Description

OCI_ATTR_SODA_KEY The unique key for the document.

OCI_ATTR_SODA_CREATE_TIMESTAMP The creation time stamp for the document.

OCI_ATTR_SODA_LASTMOD_TIMESTAMP The last-modified time stamp for the
document.

OCI_ATTR_SODA_MEDIA_TYPE The media type for the document.

OCI_ATTR_SODA_VERSION The document version.

OCI_ATTR_SODA_CONTENT The document content.

Immediately after you create a document, OCIAttrGet() returns these values for
components:

• Values explicitly provided to the document-creation function

• "application/json", for OCI_ATTR_SODA_MEDIA_TYPE, if the media type was not
provided to the creation function

• NULL for other components

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of SODA documents

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for restrictions that apply for SODA documents

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaDocCreate()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaDocCreateWithKey()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaDocCreateWithKeyAndMType()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCIHandleAlloc()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCIAttrSet()

Example 3-6 Creating a Document with JSON Content

This example uses OCISodaDocCreate() to create a document handle and fill the
document with content. It then frees the document handle.

Chapter 3
Creating Documents with SODA for C

3-16

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"name\":\"Alexander\"}";
ub4 docFlags = OCI_DEFAULT;

rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT)

if (dochp) OCIHandleFree((dvoid *) dochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

Example 3-7 Creating a Document with Document Key and JSON Content

This example is similar to Example 3-6, but it uses OCISodaDocCreateWithKey(),
providing the document key (myKey) as well as the document content. It then gets and
prints the non-null document components that were set by OCISodaDocCreate(): the key,
the content and the media type. It then frees the document handle.

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"name\":\"Alexander\"}";
OraText *key = "myKey";
ub4 docFlags = OCI_DEFAULT;
sword rc = OCI_SUCCESS;
OraText *finalKey;
ub4 finalKeyLen = 0;
OraText *finalContent;
ub4 finalContentLen = 0;
OraText *media;
ub4 mediaLen = 0;

rc = OCISodaDocCreateWithKey(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 key,
 (ub4) strlen(key),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT)

if (rc != OCI_SUCCESS) goto finally;

// Get and print the key, content and media type, which were set by
OCISodaDocCreate().
OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &finalKey,
 &finalKeyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
printf ("Key: %.*s\n", finalKeyLen, finalKey);

OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &finalContent,
 &finalContentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);

Chapter 3
Creating Documents with SODA for C

3-17

printf ("Content: %.*s\n", finalContentLen, finalContent);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &media,
 &mediaLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", mediaLen, media);

finally:
if (dochp) OCIHandleFree((dvoid *) dochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

This is the printed output:

Key: myKey
Content: {"name" : "Alexander"}
Media type: application/json

Example 3-8 Creating an Empty Document and Then Defining Components

sword rc = OCI_SUCCESS;
OCISodaDoc *dochp = NULL;
OraText *documentContent= "{\"NAME\":\"Alexander\"}";

rc = OCIHandleAlloc((void *) envhp,
 (void **) &dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

rc = OCIAttrSet(dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 documentContent,
 (ub4) strlen(documentContent),
 OCI_ATTR_SODA_CONTENT,
 errhp);
finally: ...

Related Topics

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Finding Documents in Collections with SODA for C
To find the document in a collection that has a given key, use OCI function
OCISodaFindOneWithKey(). Each document has a unique key.

• Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns
the new (result) document, so you can get its components.

• Removing Documents from a Collection with SODA for C
To remove a document from a collection, given its key, use OCI function
OCISodaRemoveOneWithKey().

Chapter 3
Creating Documents with SODA for C

3-18

3.8 Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

If you have created a document handle, you can use function OCISodaInsert() or
OCISodaInsertAndGet() to insert the document into a collection. These functions create
document keys automatically, unless the collection is configured with client-assigned
keys and the input document provides the key. These functions take a document
handle as one of their arguments.

For convenience, you can alternatively use function OCISodaInsertWithCtnt() or
OCISodaInsertAndGetWithCtnt() to insert a document without having created a
document handle. You provide only the content and (optionally) the key for the
document. (The key is needed only when inserting into a collection that has client-
assigned keys.)

If the target collection is configured for documents that have creation and last-modified
time-stamp components then all of the document-insertion functions automatically set
these components. If the collection is configured to generate document versions
automatically then the insertion functions also set the version component. (The default
collection configuration provides both time-stamp components and the version
component.)

In addition to inserting the document, functions OCISodaInsertAndGet() and
OCISodaInsertAndGetWithCtnt() return a result document, which contains the generated
document components, such as the key, and which does not contain the content of the
inserted document.

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies
an existing document in the collection, then these methods return an error.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaInsert()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaInsertAndGet()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaInsertWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaInsertAndGetWithCtnt()

Chapter 3
Inserting Documents into Collections with SODA for C

3-19

Example 3-9 Inserting a Document into a Collection

This example creates a document and inserts it into a collection using function
OCISodaInsert(). The use of mode parameter OCI_SODA_ATOMIC_COMMIT ensures that the
insertion and any other outstanding operations are committed.

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"NAME\":\"Alexander\"}";

rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 OCI_DEFAULT,
 &dochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally:

rc = OCISodaInsert(svchp,
 collhp,
 dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

finally: ...

Example 3-10 Inserting a Document into a Collection and Getting the Result
Document

This example creates a document and inserts it into a collection using function
OCISodaInsertAndGet(), which also returns the result document, after insertion. The
example then gets (and prints) each of the generated components from that result
document (which contains them): the creation time stamp, the last-modified time
stamp, the media type, and the version. To obtain each of these components it uses
function OCIAttrGet(), passing the type of the component:
OCI_ATTR_SODA_CREATE_TIMESTAMP, OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
OCI_ATTR_SODA_MEDIA_TYPE, and OCI_ATTR_SODA_VERSION.

sword rc = OCI_SUCCESS;

OraText *key = "myKey1";
OraText *documentContent = "{\"name\":\"Alexander\"}";
ub4 docFlags = OCI_DEFAULT;
OCISodaDoc *dochp = NULL;
OCISodaDoc *origDochp = NULL;
OraText *resultKey;
ub4 resultKeyLen = 0;
OraText *resultCreatedOn;
ub4 resultCreatedOnLen = 0;
OraText *resultLastModified;
ub4 resultLastModifiedLen = 0;
OraText *resultVersion;
ub4 resultVersionLen = 0;
OraText *resultMedia;
ub4 resultMediaLen = 0;

// Create a document with key "myKey1"
rc = OCISodaDocCreateWithKey(envhp,
 documentContent,
 (ub4) strlen(documentContent),

Chapter 3
Inserting Documents into Collections with SODA for C

3-20

 key,
 (ub4) strlen(key),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

// Insert the document into a collection.

// collhp is a collection-handle pointer. We assume the collection it
// points to was configured to use client-assigned keys.

// Because OCISodaInsertAndGet returns the result document as dochp, we first
// save the pointer to the original input document handle, which is returned by
// OCISodaDocCreateWithKey, as origDochp. This lets us free the original
// document handle later.

origDochp = dochp;

rc = OCISodaInsertAndGet(svchp,
 collhp,
 &dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

if (rc != OCI_SUCCESS) goto finally;

// Print some components of the result document. (For brevity we omit checking
// for a return value of OCI_SUCCESS in all OCIAttrGet() calls here.)

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultCreatedOn,
 &resultCreatedOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
printf ("Created-on time stamp: %.*s\n", resultCreatedOnLen, resultCreatedOn);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultLastModified,
 &resultLastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);
printf ("Last-modified time stamp: %.*s\n", resultLastModifiedLen,
resultLastModified);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultVersion,
 &resultVersionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
printf ("Version: %.*s\n", resultVersionLen, resultVersion);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultMedia,
 &resultMediaLen,

Chapter 3
Inserting Documents into Collections with SODA for C

3-21

 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", resultMediaLen, resultMedia);

finally:

// Free the document handles
if (origDochp) OCIHandleFree((dvoid *) origDochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

if (dochp) OCIHandleFree((dvoid *) dochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

Example 3-11 Inserting a Document into a Collection Without Providing a
Handle

This example uses function OCISodaInsertWithCtnt() to insert a document into a
collection without providing a document handle. Only the document key and content
are provided as arguments.

Here we assume that we are inserting the document into a collection that is configured
with client-assigned keys. If you instead insert a document into a collection configured
for auto-generated keys then pass NULL as the key argument and 0 as the key-length
argument (which immediately follows the key argument).

OraText *documentContent = "{\"NAME\":\"Hannibal\"}";
OraText *key = "myKey2";

rc = OCISodaInsertWithCtnt(svchp,
 collhp,
 key,
 (ub4) strlen(key),
 (void *)documentContent,
 (ub4) strlen(documentContent),
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns
the new (result) document, so you can get its components.

Chapter 3
Inserting Documents into Collections with SODA for C

3-22

3.9 Finding Documents in Collections with SODA for C
To find the document in a collection that has a given key, use OCI function
OCISodaFindOneWithKey(). Each document has a unique key.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaFindOneWithKey()

Example 3-12 Finding the Single Document That Has a Given Document Key

This example uses function OCISodaFindOneWithKey() to find the single document
whose key is "key1". It then uses function OCIAttrGet() to retrieve various document
components and prints them. Finally, it frees the document handle that was allocated.

If no document is found for the supplied key then function OCISodaFindOneWithKey()
returns status code OCI_NO_DATA and the document returned (foundDochp in this
example) is NULL.

sword rc = OCI_SUCCESS;

// (For illustration, assign a value that could be autogenerated.)
OraText *key = "FEE804F00B614F88BF357A695F4F73AB";
ub4 keyLen = strlen(key);

OraText *content;
ub4 contentLen = 0;
OraText *createdOn;
ub4 createdOnLen = 0;
OraText *lastModified;
ub4 lastModifiedLen = 0;
OraText *version;
ub4 versionLen = 0;
OraText *media;
ub4 mediaLen = 0;
OCISodaDoc *foundDochp = NULL;

rc = OCISodaFindOneWithKey(svchp,
 collhp,
 key,
 keyLen,
 findFlags,
 &foundDochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS)
{
 if (rc == OCI_NO_DATA)
 // OCI_NO_DATA return code means document was not found
 {
 printf ("Document with the supplied key not found in the collection\n");
 }
 goto finally;

Chapter 3
Finding Documents in Collections with SODA for C

3-23

}

// Print components of found document.
// (Skip the key component - it is the key used to find the document.)
// (For brevity we omit checking the return values of the OCIAttrGet calls here.)

OCIAttrGet((dvoid *)foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
printf ("Content: %.*s\n", contentLen, content);

OCIAttrGet((dvoid *)foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&createdOn,
 &createdOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
printf ("Created-on time stamp: %.*s\n", createdOnLen, createdOn);

OCIAttrGet((dvoid *)foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&lastModified,
 &lastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);
printf ("Last-modified time stamp: %.*s\n", lastModifiedLen, lastModified);

OCIAttrGet((dvoid *)foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
printf ("Version: %.*s\n", versionLen, version);

OCIAttrGet((dvoid *)foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&media,
 &mediaLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", mediaLen, media);

...

finally:
 if (foundDochp) OCIHandleFree((dvoid *) foundDochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

3.10 Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns the
new (result) document, so you can get its components.

In addition to replacing the content, the replacement functions update the values of the
last-modified time stamp and the version (for a collection that has columns last-
modified and version, which is the case by default). The replacement functions also

Chapter 3
Replacing Documents in a Collection with SODA for C

3-24

replace the media type with the media type provided in the input document. Document
replacement does not change the document key or the creation time stamp.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneWithKey()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneAndGetWithKey()

Example 3-13 Replacing a Document in a Collection, Given Its Key, and Getting
the Result Document

This example uses OCI function OCISodaReplOneAndGetWithKey() to replace a document
in a collection, given its key, "myKey1" and get the result document. It uses function
OCIAttrGet() to retrieve various document components, which it prints. The use of
mode parameter OCI_SODA_ATOMIC_COMMIT ensures that the replacement and any other
outstanding operations are committed.

sword rc = OCI_SUCCESS;

OraText *key = "myKey1";
OraText *documentContent = "{\"name\":\"Mark\"}";
ub4 docFlags = OCI_DEFAULT;
OCISodaDoc *dochp = NULL;
OCISodaDoc *origDochp = NULL;
boolean isReplaced = FALSE;
OraText *resultKey;
ub4 resultKeyLen = 0;
OraText *resultCreatedOn;
ub4 resultCreatedOnLen = 0;
OraText *resultLastModified;
ub4 resultLastModifiedLen = 0;
OraText *resultVersion;
ub4 resultVersionLen = 0;
OraText *resultMedia;
ub4 resultMediaLen = 0;

// Create a document with custom key "myKey1"
rc = OCISodaDocCreateWithKey(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 key,
 (ub4) strlen(key),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

// Assume that the collection pointed to by collhp has client-assigned keys, and
// assume that it has an existing document with key "myKey1". Replace that
// document with the newly created document.
//
// Because OCISodaReplOneAndGetWithKey returns the result document as dochp, we

Chapter 3
Replacing Documents in a Collection with SODA for C

3-25

// first save the pointer to the original input document handle returned by the
// OCISodaDocCreateWithKey above as origDochp. This lets us free the original
// document handle later.

origDochp = dochp;
rc = OCISodaReplOneAndGetWithKey(svchp,
 collhp,
 key,
 (ub4) strlen(key),
 &dochp,
 &isReplaced,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

if (rc != OCI_SUCCESS) goto finally;

// If isReplace is set to FALSE, no existing document with key "myKey1" was
// found in the collection.
if (isReplace == FALSE) goto finally;

// Print result document components.
// (For brevity we omit checking the return values of the OCIAttrGet calls here.)

// The key component is unchanged
OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultKey,
 &resultKeyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
printf ("Key: %.*s\n", resultKeyLen, resultKey);

// The created-on time stamp is unchanged
OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultCreatedOn,
 &resultCreatedOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
printf ("Created-on time stamp: %.*s\n", resultCreatedOnLen, resultCreatedOn);

// The last-modified time stamp was updated
OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultLastModified,
 &resultLastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);
printf ("Last-modified time stamp: %.*s\n", resultLastModifiedLen,
resultLastModified);

// The version was updated
OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultVersion,
 &resultVersionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
printf ("Version: %.*s\n", resultVersionLen, resultVersion);

// The media type was updated with the media type of the document pointed to by

Chapter 3
Replacing Documents in a Collection with SODA for C

3-26

// dochp, which is the default media type, application/json.
OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultMedia,
 &resultMediaLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", resultMediaLen, resultMedia);

...

// Free the document handles
finally:

 if (origDochp) OCIHandleFree((dvoid *) origDochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

 if (dochp) OCIHandleFree((dvoid *) dochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

3.11 Removing Documents from a Collection with SODA for
C

To remove a document from a collection, given its key, use OCI function
OCISodaRemoveOneWithKey().

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaRemoveOneWithKey()

Example 3-14 Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "mykey1". The removal
status, which is provided by out parameter isRemoved (TRUE if the document was
removed; FALSE if not), is printed. The use of mode parameter OCI_SODA_ATOMIC_COMMIT
ensures that the removal and any other outstanding operations are committed.

boolean isRemoved = FALSE;
rc = OCISodaRemoveOneWithKey(svchp,
 collhp,
 "mykey1",
 (ub4) strlen("mykey1"),
 &isRemoved,
 errhp,

Chapter 3
Removing Documents from a Collection with SODA for C

3-27

 OCI_SODA_ATOMIC_COMMIT);
if ((rc == OCI_SUCCESS) && (isRemoved == TRUE))
 printf("Document removed\n");

3.12 Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a database
transaction.

You do this in either of these ways:

• Use execution mode parameter OCI_SODA_ATOMIC_COMMIT when you invoke a SODA
operation. If an operation is executed in this mode and it completes successfully
then the current transaction is committed after completion.

As is usual for a commit, this commits all outstanding changes, not just changes
made by the SODA operation. However, if the operation fails then only changes
made for the SODA operation are rolled back; any uncommitted changes made
prior to invocation of the SODA operation are not rolled back.

• Use function OCITransactionCommit() or OCITransactionRollback(), to commit or roll
back, respectively, the current transaction. These are standard Oracle Call
Interface (OCI) functions; they are not SODA-specific.

SODA operations of creating and dropping a collection do not automatically commit
before or after they perform their action. (This differs from the behavior of SQL DDL
statements, which commit both before and after performing their action.)

One consequence of this is that, before a SODA collection can be dropped, any
outstanding write operations to it must be committed or rolled back. This is because
function OCISodaCollDrop() does not itself commit before it performs its action. In this,
its behavior differs from that of a SQL DROP TABLE statement.

Related Topics

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Replacing Documents in a Collection with SODA for C
To replace a document in a collection, given its key, use OCI function
OCISodaReplOneWithKey() or OCISodaReplOneAndGetWithKey(). The latter also returns
the new (result) document, so you can get its components.

See Also:

•

• Oracle Call Interface Programmer's Guide for information about mode
parameter OCI_SODA_ATOMIC_COMMIT

• Oracle Call Interface Programmer's Guide for information about Oracle
Call Interface (OCI) support for transactions

Chapter 3
Handling Transactions with SODA for C

3-28

4
Character-Set Considerations for SODA for
C

Use of character sets with SODA for C is discussed. This applies only to the encoding
of JSON documents. (Non-JSON documents are always stored in a SODA collection
using BLOB content, which is treated only as a sequence of bytes, not characters.)

SODA for C and Character-Set Encodings for JSON Data: Client and Database

SODA for C involves two kinds of JSON-data character-set encodings: client-side and
database.

By the standard defining JSON, JSON data is encoded with a Unicode character set;
that is, JSON data is Unicode data, by definition. But on the client side SODA for C
relaxes the restriction that JSON data must be Unicode; you can use data that has
other encodings but otherwise has JSON syntax.

On the client side:

• The non-Unicode encodings that you can use with a SODA for C client are all of
those allowed by Oracle Call Interface (OCI), with the exception of EBCDIC: you
cannot use an EBCDIC character set for SODA documents.

• The Unicode encodings that you can use with a SODA for C client are UTF-8,
UTF-16 LE (little-endian), and UTF-16 BE (big-endian). These correspond to
Oracle Database character sets AL32UTF8, AL32UTF16, and AL32UTF16LE,
respectively. You cannot use UTF-32 — it is not an OCI client-side encoding.

On the database side (that is, for the content column of a collection):

• The database character set must be AL32UTF8, which implements Unicode
UTF-8.

• The encoding used for JSON data in the content column of a collection depends
on the SQL type:

– VARCHAR2 — The documents are encoded as AL32UTF8. VARCHAR2 data is
always stored in the database character set.

– BLOB — The documents are encoded as UTF-8, UTF-16 BE, or UTF-16 LE.
Which of these Unicode encodings is used depends on how the input
documents were encoded on the client side, as is explained in Writing JSON
Documents To the Database From the Client.

– CLOB — The documents are encoded as UCS-2. A CLOB instance is encoded as
UCS-2 whenever the database character set is multibyte (as is AL32UTF8).

If client-side and database-side encodings are the same (they are both Unicode) then
no conversion is needed from one to the other.

But if they differ then SODA automatically converts from one character set to the other.
If a character used in a document on the client side has no corresponding Unicode
character then conversion to the database character set when writing the document is
lossy. Similarly, if a character used in a document on the database side has no

4-1

corresponding character in the client-side character set then conversion when reading
the document is lossy.

For example:

• Suppose that your client-side encoding is JA16SJIS, and the content column for
your SODA collection is configured to store JSON data using SQL data type
VARCHAR2. When you write data to your collection SODA automatically converts it
from JA16SJIS to the database character set (AL32UTF8).

• Suppose that your client-side encoding is AL16UTF16LE, and your collection is
configured to store JSON data using SQL data type BLOB. Because data type BLOB
supports encoding AL16UTF16LE, no conversion is needed.

By default, the character set used by OCI is defined by environment variable NLS_LANG.
You can override this for a given OCI client using OCI function OCIEnvNlsCreate() with
parameter charset.

In particular, you can use OCIEnvNlsCreate() to create an environment handle that
defines the character set used by a given client as OCI_UTF16ID (UTF-16), which cannot
be set from NLS_LANG. Character set OCI_UTF16ID designates a UTF-16 encoding whose
endianness (big-endian or little-endian) depends on the platform where the client is
run.

When a document is written to the database from a client application, or a document is
read from the database to a client application, the application tells OCI what client-side
encoding to use for the document. It does this by way of parameter docFlags, which is
passed to either a document-handle creation function or a convenience function for
writing content into a document without providing a document handle. That is,
parameter docFlags controls the encoding of documents on the client side.

Writing JSON Documents To the Database From the Client

SODA for C functions that create a document handle are named with prefix
OCISodaDocCreate. They all accept parameter docFlags.

SODA for C also provides convenience functions for writing JSON content to the
database without providing a document handle. These functions are named with suffix
WithCtnt (standing for “with content”). They also accept parameter docflags.

For writing, parameter docFlags can have either of these values:

• OCI_DEFAULT — Use the character set defined by the environment handle, or by
environment variable NLS_LANG, if not set for the handle.

You must supply document content in the encoding that is specified by the
environment handle or NLS_LANG. Otherwise, the result of a write operation is
unpredictable.

The character set can be any that is valid for OCI (Unicode or non-Unicode), with
the exception of EBCDIC. (If it is OCI_UTF16 then you must supply the document
with a UTF 16 encoding whose endianness matches the endianness of the
platform where the client runs.)

If you write a document that is not encoded as Unicode to a BLOB column using
OCI_DEFAULT then SODA converts the content to UTF-8 before writing.

• OCI_SODA_DETECT_JSON_ENC — Automatically detect the encoding of the document
content as UTF-8, UTF-16 LE (little-endian), or UTF-16 BE (big-endian)

Chapter 4

4-2

You must supply document content in one of those encodings. Otherwise, the
result of a write operation is unpredictable.

Use cases for working with JSON data on the client side:

• To work in a non-Unicode encoding or in a single Unicode encoding, use
OCI_DEFAULT.

• To work in a mix of Unicode encodings (UTF-8, UTF-16 LE, UTF-16 BE) in the
same application, use OCI_SODA_DETECT_JSON_ENC. (With OCI_DEFAULT, documents are
assumed to be in the single encoding specified by the environment handle or
NLS_LANG.)

• To work in a UTF-16 encoding that has a different endianness from that of the
client-side platform, use OCI_SODA_DETECT_JSON_ENC.

If the client-side character set differs from the character set of the content column in
the database, SODA converts the document, when writing, to the character set of the
content column. To avoid any such conversion, use BLOB as the content data type (BLOB
is the default), and supply the content with encoding UTF-8 or UTF-16 (BE or LE). If
you do this then it does not matter which value (OCI_DEFAULT or
OCI_SODA_DETECT_JSON_ENC) you use for parameter docFlags.

Reading JSON Documents From the Database To the Client

SODA for C functions (such as OCISodaFindOneWithKey()) that read content into a client-
side document also provide parameter docFlags, which you use to specify the client-
side encoding to use for the retrieved content.

For reading, parameter docFlags can have any of these values:

• OCI_DEFAULT — Use the character set defined by the environment handle, or by
environment variable NLS_LANG, if not set for the handle. (This is the same as for
document writes to the database.)

• OCI_SODA_AS_STORED — Use the same encoding used to store the document in the
database. This value is valid only for use with a collection that uses BLOB storage;
otherwise, an error is raised.

• OCI_SODA_AS_AL32UTF8 — Use UTF-8 as the encoding.

If the client-side character set differs from the character set of the content column in
the database, SODA converts the document, when reading, to the character set
specified for the client. To avoid any such conversion, use BLOB as the content data
type (BLOB is the default), and use OCI_SODA_AS_STORED for parameter docFlags.

Chapter 4

4-3

See Also:

• Oracle Call Interface Programmer's Guide for information about setting
the OCI client character set

• Oracle Call Interface Programmer's Guide for information about OCI
support for globalization

• Oracle Database Globalization Support Guide for complete information
about Oracle Database support for globalization

• Oracle Database JSON Developer’s Guide

• Unicode.org for information about Unicode

• IETF RFC4627 and ECMA 404 for the JSON Data Interchange Format

Chapter 4

4-4

5
Multithreading in SODA for C Applications

SODA for C is designed for lockless multithreading in applications.

To achieve multithreading, just use separate handles in each thread of your SODA
application. SODA handles are not designed to be shared between threads. In
particular, they are not locked with mutexes to negotiate mutual exclusion among
threads.

For example, to read or write to the same collection from multiple threads, obtain a
separate collection handle in each thread using OCISodaCollOpen(), and use each
handle to perform read and write operations.

Only in the case of document handles can it sometimes make sense to share SODA
handles among threads.

For example, one thread might create documents and put them into a queue, while
worker threads dequeue the head document and insert it into a collection. Document
handles could be shared among threads, here.

You don’t want multiple threads working on the same document at the same time, but
a single document handle can be passed from one thread to another. It is your
responsibility to provide application-level synchronization so that the document handle
is not simultaneously accessed from different threads.

Related Topics

• Opening an Existing Document Collection with SODA for C
Use OCI function OCISodaCollOpen() to open an existing document collection.

• Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the
components of a document.

5-1

6
SODA Collection Configuration Using
Custom Metadata

SODA collections are highly configurable. You can customize collection metadata, to
obtain different behavior from that provided by default.

Note:

Although you can customize collection metadata to obtain different behavior
from that provided by default, Oracle recommends against this unless you
have a compelling reason. Customizing collection metadata requires
familiarity with Oracle Database concepts, such as SQL data types. Because
SODA collections are implemented on top of Oracle Database tables (or
views), many collection configuration components are related to the
underlying table configuration.

• Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute OCI_ATTR_SODA_DESCRIPTOR, to
get all of the metadata of a collection at once, as a JSON document. You can also
use OCIAttrGet() to get individual collection metadata attributes.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to OCI function OCISodaCollCreateWithMetadata().

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for general information about SODA document collections and
their metadata

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about collection metadata components

6-1

6.1 Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute OCI_ATTR_SODA_DESCRIPTOR, to get
all of the metadata of a collection at once, as a JSON document. You can also use
OCIAttrGet() to get individual collection metadata attributes.

Table 6-1 Collection Handle Attributes (Collection Metadata)

Attribute Description

OCI_ATTR_SODA_CRTIME_COL_NAME The name of the database column that stores
the creation time stamp of the document.

OCI_ATTR_SODA_CTNT_CACHE The SecureFiles LOB cache setting.

OCI_ATTR_SODA_CTNT_COL_NAME The database column that stores the
document content.

OCI_ATTR_SODA_CTNT_COMPRESS The SecureFiles LOB compression setting.

OCI_ATTR_SODA_CTNT_ENCRYPT The SecureFiles LOB encryption setting.

OCI_ATTR_SODA_CTNT_MAX_LEN The maximum length, in bytes, of the
database column that stores the document
content. This attribute applies only to content
of type VARCHAR2.

OCI_ATTR_SODA_CTNT_SQL_TYPE The SQL data type of the database column
that stores the document content.

OCI_ATTR_SODA_CTNT_VALIDATION The syntax to which JavaScript Object
Notation (JSON) content must conform —
standard, strict, or lax.

OCI_ATTR_SODA_DESCRIPTOR All of the metadata of the collection, in JSON
format.

OCI_ATTR_SODA_KEY_ASSIGN_METHOD The method used to assign keys to documents
that are inserted into the collection.

OCI_ATTR_SODA_KEY_COL_NAME The name of the database column that stores
the document key.

OCI_ATTR_SODA_KEY_MAX_LEN The maximum length, in bytes, of the
database column that stores the document
key. This attribute applies only to content of
type VARCHAR2.

OCI_ATTR_SODA_KEY_SEQ_NAME The name of the database sequence that
generates keys for documents that are
inserted into a collection if the key assignment
method is SEQUENCE.

OCI_ATTR_SODA_KEY_SQL_TYPE The SQL data type of the database column
that stores the document key.

OCI_ATTR_SODA_MODTIME_COL_NAME The name of the database column that stores
the last-modified time stamp of the document.

OCI_ATTR_SODA_MODTIME_INDEX The name of the index on the database
column that stores the last-modified time
stamp.

OCI_ATTR_SODA_READONLY An indication of whether the collection is read-
only.

Chapter 6
Getting the Metadata of an Existing Collection

6-2

Table 6-1 (Cont.) Collection Handle Attributes (Collection Metadata)

Attribute Description

OCI_ATTR_SODA_SCHEMA The name of the Oracle Database schema
(user) that owns the table or view to which the
collection is mapped.

OCI_ATTR_SODA_TABLE_NAME The name of the database table to which the
collection is mapped.

OCI_ATTR_SODA_VERSION_COL_NAME The name of the database column that stores
the document version.

OCI_ATTR_SODA_VERSION_METHOD The method used to compute version values
for documents when they are inserted into a
collection or replaced.

OCI_ATTR_SODA_VIEW_NAME The name of the database view to which the
collection is mapped.

See Also:

• Oracle Call Interface Programmer's Guide

• Oracle Database Introduction to Simple Oracle Document Access
(SODA)

Example 6-1 Getting All of the Metadata of a Collection

This example shows the result of invoking function OCIAttrGet() for collection-handle
attribute OCI_ATTR_SODA_DESCRIPTOR on the collection with the default configuration that
was created using Example 3-2. This retrieves all of the collection metadata as JSON
data. The default metadata for a collection is shown in Example 6-3.

OraText *fetchedMetadata;
ub4 fetchedMetadataLen = 0;

rc = OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)fetchedMetadata,
 &fetchedMetadataLen,
 OCI_ATTR_SODA_DESCRIPTOR, errhp);

if (rc == OCI_SUCCESS)
 printf ("Collection specification: %.*s\n", fetchedMetadataLen, fetchedMetadata);

Example 6-2 Getting Individual Collection Metadata Attributes

This example uses OCIAttrGet() to get individual collection metadata attributes. For
each attribute, you pass the collection handle, the attribute, and the attribute type.

// String collection metadata attribute
oratext *collAttr = NULL;

// Length of collection metadata attribute
// (relevant only for string attributes).
ub4 collAttrLen = 0;

Chapter 6
Getting the Metadata of an Existing Collection

6-3

ub1 ub1CollAttr = 0;
ub4 ub4CollAttr = 0;
boolean boolCollAttr = FALSE;

// Get and print collection metadata components.
// (For brevity we omit checking the return values of the OCIAttrGet calls here.)

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_COLL_NAME,
 errhp);
printf("Collection name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_TABLE_NAME,
 errhp);
printf("Table name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_SCHEMA,
 errhp);
printf("Schema name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_KEY_COL_NAME,
 errhp);
printf("Key column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_KEY_SQL_TYPE,
 errhp);
if (ub1CollAttr == SQLT_CHR)
 printf ("Key column type: VARCHAR2\n");
else if (ub1CollAttr == SQLT_BIN)
 printf ("Key column type: RAW\n");
else if (ub1CollAttr == SQLT_NUM)
 printf ("Key column type: NUMBER\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub4CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_KEY_MAX_LEN,
 errhp);
printf ("Key column max length: %d\n", ub4CollAttr);

Chapter 6
Getting the Metadata of an Existing Collection

6-4

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_KEY_ASSIGN_METHOD,
 errhp);

if (ub1CollAttr == OCI_SODA_KEY_METHOD_UUID)
 printf ("Key assignment method: UUID\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_GUID)
 printf ("Key assignment method: GUID\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_SEQUENCE)
 printf ("Key assignment method: SEQUENCE\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_CLIENT)
 printf ("Key assignment method: CLIENT\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_COL_NAME,
 errhp);
printf("Content column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_SQL_TYPE,
 errhp);
if (ub1CollAttr == SQLT_CHR)
 printf ("Content column type: VARCHAR2\n");
else if (ub1CollAttr == SQLT_BLOB)
 printf ("Content column type: BLOB\n");
else if (ub1CollAttr == SQLT_CLOB)
 printf ("Content column type: CLOB\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub4CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_MAX_LEN,
 errhp);
printf ("Content column max length: %d\n", ub4CollAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_VALIDATION,
 errhp);
if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_STRICT)
 printf ("Content column validation: STRICT\n");
else if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_LAX)
 printf ("Content column validation: LAX\n");
else if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_STD)
 printf ("Content column validation: STANDARD\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),

Chapter 6
Getting the Metadata of an Existing Collection

6-5

 &collAttrLen,
 OCI_ATTR_SODA_CTNT_COMPRESS,
 errhp);
if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_NONE)
 printf ("Content column compress: NONE\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_HIGH)
 printf ("Content column compress: HIGH\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_MEDIUM)
 printf ("Content column compress: MEDIUM\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_LOW)
 printf ("Content column compress: LOW\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_ENCRYPT,
 errhp);
if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_NONE)
 printf ("Content column encrypt: NONE\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_3DES168)
 printf ("Content column encrypt: 3DES168\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES128)
 printf ("Content column encrypt: AES128\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES192)
 printf ("Content column encrypt: AES192\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES256)
 printf ("Content column encrypt: AES256\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&boolCollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_CACHE,
 errhp);
if (boolCollAttr == TRUE)
 printf ("Content column cache: TRUE\n");
else
 printf ("Content column cache: FALSE\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_VERSION_COL_NAME,
 errhp);
printf("Version column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_VERSION_METHOD,
 errhp);
if (ub1CollAttr == OCI_SODA_VERSION_NONE)
 printf ("Version method: NONE\n");
else if (ub1CollAttr == OCI_SODA_VERSION_TIMESTAMP)
 printf ("Version method: TIMESTAMP\n");
else if (ub1CollAttr == OCI_SODA_VERSION_MD5)
 printf ("Version method: MD5\n");
else if (ub1CollAttr == OCI_SODA_VERSION_SHA256)

Chapter 6
Getting the Metadata of an Existing Collection

6-6

 printf ("Version method: SHA256\n");
else if (ub1CollAttr == OCI_SODA_VERSION_SEQUENTIAL)
 printf ("Version method: SEQUENTIAL\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MODTIME_COL_NAME,
 errhp);
printf("Last-modified column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MODTIME_INDEX,
 errhp);
printf("Last-modified index name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_CRTIME_COL_NAME,
 errhp);
printf("Created-on column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MTYPE_COL_NAME,
 errhp);
printf("Media type column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)&boolCollAttr,
 &collAttrLen,
 OCI_ATTR_SODA_READONLY,
 errhp);

if (boolCollAttr == TRUE)
 printf("Collection is read-only");
else
 printf("Collection is not read-only");

Example 6-3 Default Collection Metadata

{
 "schemaName" : "mySchemaName",
 "tableName" : "myTableName",
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },
 "contentColumn" :

Chapter 6
Getting the Metadata of an Existing Collection

6-7

 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",
 "compress" : "NONE",
 "cache" : true,
 "encrypt" : "NONE",
 "validation" : "STANDARD"
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "SHA256"
 },
 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },
 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"
 },
 "readOnly" : false
}

Related Topics

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to OCI function OCISodaCollCreateWithMetadata().

6.2 Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to OCI function OCISodaCollCreateWithMetadata().

The optional metadata argument to OCI function OCISodaCollCreateWithMetadata() is a
SODA collection specification. It is JSON data that specifies the metadata for the
new collection.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If the metadata passed to OCISodaCollCreateWithMetadata() does
not match that of the existing collection then the collection is not opened and an error
is raised. To match, all metadata fields must have the same values.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollCreateWithMetadata()

• Oracle Call Interface Programmer's Guide for information about
collection-handle attribute OCI_ATTR_SODA_DESCRIPTOR

Example 6-4 Creating a Collection That Has Custom Metadata

This example creates a collection with custom metadata that specifies two metadata
columns, named KEY (for document keys), and JSON (for document content type JSON).

Chapter 6
Creating a Collection That Has Custom Metadata

6-8

The key assignment method is CLIENT, and the content-column SQL data type is
VARCHAR2. The example uses collection-handle attribute OCI_ATTR_SODA_DESCRIPTOR to get
the complete metadata from the newly created collection.

sword rc = OCI_SUCCESS;
OCISodaColl *collhp = NULL;
OraText *metadata ="{\"keyColumn\" : \
{\"name\" : \"KEY\", \"assignmentMethod\": \"CLIENT\" }, \
\"contentColumn\" : { \"name\" : \"JSON\", \"sqlType\": \"VARCHAR2\" } }";
OraText *collName = "myCustomCollection";
OraText *fetchedMetadata = NULL;
ub4 fetchedMetadataLen = 0;

rc = OCISodaCollCreateWithMetadata(svchp,
 collName,
 (ub4) strlen(collName),
 metadata,
 (ub4) strlen(metadata),
 &collhp,
 errhp,
 OCI_DEFAULT));
if (rc != OCI_SUCCESS)
{
 printf(OCISodaCollCreateWithMetadata failed\n");
 goto finally;
}

rc = OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)fetchedMetadata,
 &fetchedMetadataLen,
 OCI_ATTR_SODA_DESCRIPTOR,
 errhp);

if (rc == OCI_SUCCESS)
{
 printf ("Collection specification: %.*s\n", fetchedMetadataLen, fetchedMetadata);
}

finally: ...

Here is the output, formatted for readability. The values of fields for keyColumn and
contentColumn that are not specified in the collection specification are defaulted. The
values of fields other than those provided in the collection specification (keyColumn and
contentColumn) are also defaulted. The value of field tableName is defaulted from the
collection name. The value of field schemaName is the database schema (user) that is
current when the collection is created.

Collection specification: {
 "schemaName" : "mySchemaName",
 "tableName" : "myCustomCollection",
 "keyColumn" :
 {
 "name" : "KEY",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "CLIENT"
 },

"contentColumn" :
 {

Chapter 6
Creating a Collection That Has Custom Metadata

6-9

 "name" : "JSON",
 "sqlType" : "VARCHAR2",
 "maxLength" : 4000,
 "validation" : "STANDARD"
 },
 "readOnly" : false
}

Related Topics

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care
about the details of its configuration. This creates a collection that has the default
metadata. To create a collection that is configured in a nondefault way, use
function OCISodaCollCreateWithMetadata() instead, passing it custom metadata,
expressed in JSON.

Chapter 6
Creating a Collection That Has Custom Metadata

6-10

Index

A
attributes

collection handle, 6-2
document handle, 3-14

C
character sets, 4-1
collection configuration, 6-1
collection metadata

custom, 6-8
getting, 6-2

collection-handle attributes, 6-2
collections

checking existence, 3-12
creating, 3-9

with custom metadata, 6-8
discovering, 3-12
dropping, 3-13
opening, 3-11

during creation, 3-9
components of SODA documents, 3-14
creating an OCI environment, 3-2
creating collections, 3-9

with custom metadata, 6-8
creating documents, 3-14

D
database role SODA_APP, 3-2
deleting collections

See dropping collections
deleting documents from collections

See removing documents from collections
discovering collections

checking existence, 3-12
listing, 3-12

document components, 3-14
document metadata, 3-14
document-handle attributes, 3-14
documents

creating, 3-14
finding in collections, 3-23
inserting into collections, 3-19

documents (continued)
removing from collections, 3-27
replacing in collections, 3-24

dropping collections, 3-13

E
environment, OCI, creating, 3-2
existing collection, checking for, 3-12

F
finding documents in collections, 3-23
freeing SODA handles, 3-2
functions

OCIAttrGet(), 3-14, 6-2
OCIEnvNlsCreate(), 3-2
OCIHandleAlloc(), 3-2
OCIHandleFree(), 3-2
OCISodaCollCreate(), 3-9

opening existing collection, 3-11
OCISodaCollCreateWithMetadata(), 3-9
OCISodaCollDrop()

example, 3-13
OCISodaCollGetNext()

example, 3-12
OCISodaCollList()

example, 3-12
OCISodaCollOpen()

checking collection existence, 3-12
OCISodaDocCreate(), 3-14
OCISodaDocCreateWithKey(), 3-14
OCISodaDocCreateWithKeyAndMType(),

3-14
OCISodaFindOneWithKey(), 3-23
OCISodaInsert(), 3-19
OCISodaInsertAndGet(), 3-19
OCISodaInsertAndGetWithCtnt(), 3-19
OCISodaInsertWithCtnt(), 3-19
OCISodaRemoveOneWithKey(), 3-27
OCISodaReplOneAndGetWithKey(), 3-24
OCISodaReplOneWithKey(), 3-24

Index-1

G
getting collection metadata, 6-2
getting document components, 3-14

H
handle

collection
attributes, 6-2

document
attributes, 3-14

use in multithreading, 5-1
handling transactions, 3-28

I
inserting documents into collections, 3-19

J
JSON

character encoding, 4-1
character sets, 4-1

L
listing collections, 3-12

M
metadata

collections
getting, 6-2

documents
getting, 3-14

multithreading, 5-1

N
NLS settings, 3-2

O
object mode, OCI, 3-2
OCI_ATTR_SODA_CONTENT document-handle

attribute, 3-14
OCI_ATTR_SODA_CREATE_TIMESTAMP

document-handle attribute, 3-14
OCI_ATTR_SODA_CRTIME_COL_NAME

collection-handle attribute, 6-2
OCI_ATTR_SODA_CTNT_CACHE collection-

handle attribute, 6-2

OCI_ATTR_SODA_CTNT_COL_NAME
collection-handle attribute, 6-2

OCI_ATTR_SODA_CTNT_COMPRESS
collection-handle attribute, 6-2

OCI_ATTR_SODA_CTNT_ENCRYPT collection-
handle attribute, 6-2

OCI_ATTR_SODA_CTNT_MAX_LEN collection-
handle attribute, 6-2

OCI_ATTR_SODA_CTNT_SQL_TYPE
collection-handle attribute, 6-2

OCI_ATTR_SODA_CTNT_VALIDATION
collection-handle attribute, 6-2

OCI_ATTR_SODA_DESCRIPTOR collection-
handle attribute, 6-2

OCI_ATTR_SODA_KEY document-handle
attribute, 3-14

OCI_ATTR_SODA_KEY_ASSIGN_METHOD
collection-handle attribute, 6-2

OCI_ATTR_SODA_KEY_COL_NAME collection-
handle attribute, 6-2

OCI_ATTR_SODA_KEY_MAX_LEN collection-
handle attribute, 6-2

OCI_ATTR_SODA_KEY_SEQ_NAME collection-
handle attribute, 6-2

OCI_ATTR_SODA_KEY_SQL_TYPE collection-
handle attribute, 6-2

OCI_ATTR_SODA_LASTMOD_TIMESTAMP
document-handle attribute, 3-14

OCI_ATTR_SODA_MEDIA_TYPE document-
handle attribute, 3-14

OCI_ATTR_SODA_MODTIME_COL_NAME
collection-handle attribute, 6-2

OCI_ATTR_SODA_MODTIME_INDEX
collection-handle attribute, 6-2

OCI_ATTR_SODA_READONLY collection-
handle attribute, 6-2

OCI_ATTR_SODA_SCHEMA collection-handle
attribute, 6-2

OCI_ATTR_SODA_TABLE_NAME collection-
handle attribute, 6-2

OCI_ATTR_SODA_VERSION document-handle
attribute, 3-14

OCI_ATTR_SODA_VERSION_COL_NAME
collection-handle attribute, 6-2

OCI_ATTR_SODA_VERSION_METHOD
collection-handle attribute, 6-2

OCI_ATTR_SODA_VIEW_NAME collection-
handle attribute, 6-2

OCIAttrGet() function, 3-14, 6-2
OCIEnvNlsCreate() function, 3-2
OCIHandleAlloc() function, 3-2
OCIHandleFree() function, 3-2
OCISodaCollCreate() function, 3-9

opening existing collection, 3-11
OCISodaCollCreateWithMetadata() function, 3-9

Index

Index-2

OCISodaCollDrop() function
example, 3-13

OCISodaCollGetNext() function
example, 3-12

OCISodaCollList() function
example, 3-12

OCISodaCollOpen() function
checking collection existence, 3-12

OCISodaDocCreate() function, 3-14
OCISodaDocCreateWithKey() function, 3-14
OCISodaDocCreateWithKeyAndMType()

function, 3-14
OCISodaFindOneWithKey() function, 3-23
OCISodaInsert() function, 3-19
OCISodaInsertAndGet() function, 3-19
OCISodaInsertAndGetWithCtnt() function, 3-19
OCISodaInsertWithCtnt() function, 3-19
OCISodaRemoveOneWithKey() function, 3-27
OCISodaReplOneAndGetWithKey() function,

3-24
OCISodaReplOneWithKey() function, 3-24
opening collections, 3-11

opening collections (continued)
during creation, 3-9

P
prerequisites for using SODA for C, 1-1

R
removing documents from collections, 3-27
replacing documents in collections, 3-24
role SODA_APP, 3-2

S
SODA_APP database role, 3-2

T
threading, 5-1
transaction handling, 3-28

Index

3

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for C Prerequisites
	2 SODA for C Overview
	3 Using SODA for C
	3.1 Getting Started with SODA for C
	3.2 Creating a Document Collection with SODA for C
	3.3 Opening an Existing Document Collection with SODA for C
	3.4 Checking Whether a Given Collection Exists with SODA for C
	3.5 Discovering Existing Collections with SODA for C
	3.6 Dropping a Document Collection with SODA for C
	3.7 Creating Documents with SODA for C
	3.8 Inserting Documents into Collections with SODA for C
	3.9 Finding Documents in Collections with SODA for C
	3.10 Replacing Documents in a Collection with SODA for C
	3.11 Removing Documents from a Collection with SODA for C
	3.12 Handling Transactions with SODA for C

	4 Character-Set Considerations for SODA for C
	5 Multithreading in SODA for C Applications
	6 SODA Collection Configuration Using Custom Metadata
	6.1 Getting the Metadata of an Existing Collection
	6.2 Creating a Collection That Has Custom Metadata

	Index

