Oracle® C++ Call Interface
Programmer's Guide

18c
E83800-01
February 2018

ORACLE"

Oracle C++ Call Interface Programmer's Guide, 18c

E83800-01

Copyright © 1999, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Rod Ward

Contributors: Sandeepan Banerjee, Subhranshu Banerjee, Kalyanji Chintakayala, Krishna lItikarlapalli,
Shankar lyer, Maura Joglekar, Toliver Jue, Ravi Kasamsetty, Srinath Krishnaswamy, Shoaib Lari, Geoff Lee,
Roza Leyderman, Chetan Maiya, Kuassi Mensah, Vipul Modi, Rajendra Pingte, John Stewart, Rekha Vallam,
Krishna Verma, Alan Willaims

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience x|
Documentation Accessibility X
Related Documents Xl
Conventions xli
Changes in This Release for Oracle C++ Call Interface
Programmer's Guide
Changes in Oracle Database Release 18c Version 18.1 xlii
Changes in Oracle Database 12c Release 2 (12.2.0.1) xlii
1 Introduction to OCCI
Overview of OCCI 1-1
About Benefits of OCCI 1-2
About Building a C++ Application with OCCI 1-2
About Functionality of OCCI 1-3
About Procedural and Nonprocedural Elements 1-3
About Processing SQL Statements 1-4
About Data Definition Language Statements 1-4
About Control Statements 1-5
About Data Manipulation Language Statements 1-5
About Queries 1-5
Overview of PL/SQL 1-6
About Special OCCI/SQL Terms 1-7
About Object Support 1-7
About Client-Side Object Cache 1-8
About Run-time Environment for Objects 1-8
About Associative and Navigational Interfaces 1-8
About Interoperability with C (OCI) 1-9
About the Metadata Class 1-9
About the Object Type Translator Utility 1-9

ORACLE

About Additional Support 1-10
Building OCCI Demos 1-10
About OCCI on the Oracle Technology Network 1-11

2 Installation and Upgrading

About Installing Oracle C++ Call Interface 2-1
About Upgrading Considerations 2-1
About Determining the Oracle Database Versions 2-1
Determining the Oracle Client Version During Compilation 2-1
About Determining the Oracle Client and Server Versions at Run Time 2-2
About the Instant Client 2-2
About Benefits of Instant Client 2-2
About Installing the Instant Client 2-2
About the Oracle Technology Network 2-3

About the Complete Client Installation 2-4
Running Oracle Universal Installer 2-4

About the Instant Client CD 2-4

About Using the Instant Client 2-5
Patching Instant Client Shared Libraries on UNIX 2-5
Regenerating the Data Shared Library and Zip Files 2-5
About Database Connection Names for Instant Client 2-6
Setting Environment Variables for OCCI Instant Client 2-6
About Instant Client Light (English) 2-7
About Globalization Settings for Instant Client Light (English) 2-7
About Using Instant Client Light (English) 2-8
About Installing Instant Client Light (English) 2-8
Downloading from Oracle Technology Network 2-9

About Using the Client Admin Install 2-9
Installing with Oracle Universal Installer 2-9

About Using OCCI with Microsoft Visual C++ 2-9

3 Accessing Oracle Database Using C++

About Connecting to a Database 3-1
Creating and Terminating an Environment 3-1
Opening and Closing a Connection 3-2
About Support for Pluggable Databases 3-3

About Pooling Connections 3-3
About Using Connection Pools 3-4

Creating a Connection Pool 3-4

ORACLE iv

Creating Proxy Connections
Using Stateless Connection Pooling
About Database Resident Connection Pooling
Administrating Database Resident Connection Pools
Using Database Resident Connection Pools
About Executing SQL DDL and DML Statements
Creating a Statement Object
Creating a Statement Object that Executes SQL Commands
Creating a Database Table
Inserting Values into a Database Table
Reusing the Statement Object
Terminating a Statement Object
About Types of SQL Statements in the OCCI Environment
About Standard Statements
Using Parameterized Statements
Using Callable Statements
Using Callable Statements that Use Array Parameters
About Streamed Reads and Writes
Binding Data in Streaming Mode; SELECT/DML and PL/SQL
Fetching Data in Streaming Mode: PL/SQL
About Fetching Data in Streaming Mode: ResultSet
Working with Multiple Streams
About Modifying Rows lteratively
Setting the Maximum Number of Iterations
Setting the Maximum Parameter Size
Executing an Iterative Operation
About Executing SQL Queries
Using the Result Set
About Specifying the Query
About Optimizing Performance by Setting Prefetch Count
About Executing Statements Dynamically
About Statement Status Definitions
UNPREPARED
PREPARED
RESULT_SET_AVAILABLE
UPDATE_COUNT_AVAILABLE
NEEDS_STREAM_DATA
STREAM_DATA_AVAILABLE
About Using Larger Row Count and Error Code Range Data Types
Using Larger Row Count in SELECT Operations
Using Larger Row Count in INSERT, UPDATE, and DELETE Operations

ORACLE

3-6

39
3-10
3-11
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-21
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-25
3-25
3-25
3-26
3-26
3-26
3-27

About Committing a Transaction 3-28
Caching Statements 3-28
About Handling Exceptions 3-31
About Handling Null and Truncated Data 3-32
4 Object Programming

Overview of Object Programming 4-1
About Working with Objects in C++ with OCCI 4-2
About Persistent Objects 4-2
About Transient Objects 4-3
About Values 4-4
About Representing Objects in C++ Applications 4-4
Creating Persistent and Transient Objects 4-4
Creating Object Representations using the OTT Utility 4-5
About Developing a C++ Application using OCCI 4-6
Developing Basic Object Program Structure 4-6
About Basic Object Operational Flow 4-7
About Initializing OCCI in Object Mode 4-7

About Pinning anObject 4-9

About Operating on an Object in Cache 4-9

About Flushing Changes to the Object 4-9

About Deletion of an Object 4-9
Migrating C++ Applications to Oracle Using OCCI 4-10
Overview of Associative Access 4-10
Using SQL to Access Objects 4-10
Inserting and Modifying Values 4-11
Overview of Navigational Access 4-11
Retrieving an Object Reference (REF) from the Database Server 4-11
Pinning an Object 4-12
Manipulating Object Attributes 4-13
About Marking Objects and Flushing Changes 4-13
Marking an Object as Modified (Dirty) 4-13
About Recording Changes in the Database 4-13
Collecting Garbage in the Object Cache 4-14
About Ensuring Transactional Consistency of References 4-15
Overview of Complex Object Retrieval 4-15
Retrieving Complex Objects 4-16
About Prefetching Complex Objects 4-17
Working with Collections 4-17
Fetching Embedded Objects 4-18

ORACLE

Vi

About Nullness 4-19
About Using Object References 4-19
About Deleting Objects from the Database 4-19
About Type Inheritance 4-20

About Substitutability 4-21

Declaring NOT INSTANTIABLE Types and Methods 4-21

About OCCI Support for Type Inheritance 4-22

About Connection::getMetaData() 4-22
About Bind and Define Functions 4-22

About OTT Support for Type Inheritance 4-22

A Sample OCCI Application 4-23
5 Data Types
Overview of Oracle Data Types 5-1

About OCCI Type and Data Conversion 5-1
Internal Data Types 5-2

Character Strings and Byte Arrays 5-4

Universal Rowid (UROWID) 5-4
External Data Types 5-4

Description of External Data Types 5-8

BFILE 5-9
BDOUBLE 5-9
BFLOAT 5-10
BLOB 5-10
CHAR 5-10
CHARZ 5-10
CLOB 5-11
DATE 5-11
FLOAT 5-12
INTEGER 5-12
INTERVAL DAY TO SECOND 5-12
INTERVAL YEAR TO MONTH 5-13
LONG 5-13
LONG RAW 5-13
LONG VARCHAR 5-13
LONG VARRAW 5-14
NCLOB 5-14
NUMBER 5-14
OCCI BFILE 5-15
OCCI BLOB 5-15

ORACLE

Vii

OCCI BYTES 5-15

OCCI CLOB 5-15

OCCI DATE 5-15

OCCI INTERVALDS 5-15

OCCI INTERVALYM 5-16

OCCI NUMBER 5-16

OCCI POBJECT 5-16

OCCI REF 5-16

OCCI REFANY 5-16

OCCI STRING 5-16

OCCI TIMESTAMP 5-17

OCCI VECTOR 5-17

RAW 5-17

REF 5-17
ROWID 5-17
STRING 5-17
TIMESTAMP 5-18
TIMESTAMP WITH LOCAL TIME ZONE 5-18
TIMESTAMP WITH TIME ZONE 5-18
UNSIGNED INT 5-18
VARCHAR 5-19
VARCHAR?2 5-19
VARNUM 5-19
VARRAW 5-19
NATIVE DOUBLE 5-20
NATIVE FLOAT 5-20

Data Conversions 5-20
Data Conversions for LOB Data Types 5-22
Data Conversions for Date, Timestamp, and Interval Data Types 5-22

6 Metadata

Overview of Metadata 6-1
Using Identity Column Metadata 6-2
About Describing Database Metadata 6-3
Using Metadata (Code Examples) 6-4
Attribute Reference Information 6-7
Parameter Attributes 6-8
Table and View Attributes 6-8
Procedure, Function, and Subprogram Attributes 6-9
Package Attributes 6-10

ORACLE

viii

Type Attributes 6-10
Type Attribute Attributes 6-12
Type Method Attributes 6-13
Collection Attributes 6-14
Synonym Attributes 6-14
Sequence Attributes 6-15
Column Attributes 6-15
Argument and Result Attributes 6-16
List Attributes 6-18
Schema Attributes 6-18
Database Attributes 6-18
7 Programming with LOBs

Overview of LOBs 7-1
Introducing Internal LOBs 7-1
Introducing External LOBs 7-2
About Storing LOBs 7-2
Creating LOBs in OCCI Applications 7-2
Restricting the Opening and Closing of LOBs 7-3
About Reading and Writing LOBs 7-4
Reading LOBs 7-4
Writing LOBs 7-6
About Enhancing the Performance of LOB Reads and Writes 7-7
About Using the getChunkSize() Method 7-7
Updating LOBs 7-7
About Reading and Writing Multiple LOBs 7-8
About Using the Interfaces for Reading and Writing Multiple LOBs 7-8

Using Objects with LOB Attributes 7-9
About Using SecureFiles 7-10
About Using SecureFile Compression 7-10
About Using SecureFiles Encryption 7-10
About Using SecureFiles Deduplication 7-10
About Combining SecureFiles Compression, Encryption, and Deduplication 7-10
SecureFiles LOB Types and Constants 7-11

8 Object Type Translator Utility

Overview of the Object Type Translator Utility 8-1
Using the OTT Utility 8-2
Creating Types in the Database 8-2

ORACLE

About Invoking the OTT Utility 8-3

Specifying OTT Parameters 8-3
About Setting Parameters on the Command Line 8-3

About Setting Parameters in the INTYPE File 8-4

About Setting Parameters in the Configuration File 8-4
Invoking the OTT Utility on the Command Line 8-4
Elements Used on the OTT Command Line 8-5

OTT Utility Parameters 8-5
ATTRACCESS 8-6

CASE 8-6

CODE 8-7
CONFIG 8-7
CPPFILE 8-7
ERRTYPE 8-7

HFILE 8-8
INTYPE 8-8
MAPFILE 8-8
MAPFUNC 8-8
OUTTYPE 8-9
SCHEMA_NAMES 8-9
TRANSITIVE 8-10
UNICODE 8-11
USE_MARKER 8-12
USERID 8-12

Where OTT Parameters Can Appear 8-13
File Name Comparison Restriction 8-13
Using the OTT Command on Microsoft Windows 8-14
About Using the INTYPE File 8-14
Using the INTYPE File 8-14
Structure of the INTYPE File 8-15
INTYPE File Type Specifications 8-16

Using Nested include File Generation 8-17
Using OTT Utility Data Type Mappings 8-19
Default Name Mapping 8-24
Overview of the OUTTYPE File 8-25
Using the OTT Utility and OCCI Applications 8-26
Generating C++ Classes Generated by the OTT Utility 8-27
Map Registry Function 8-28
Extending C++ Classes 8-28
Carrying Forward User Added Code 8-29
How to Use Properties of OTT Markers 8-30

ORACLE X

Using OTT Markers 8-31

o Globalization and Unicode Support

Overview of Globalization and Unicode Support 9-1
Specifying Charactersets 9-1
Data Types for Globalization and Unicode Support 9-2
Using the UString Data Type 9-2
Using Multibyte and UTF16 data 9-3
Using CLOB and NCLOB Data Types 9-3
About Using Objects and OTT Support 9-4

10 Oracle Streams Advanced Queuing

Overview of Oracle Streams Advanced Queuing 10-1
About AQ Implementation in OCCI 10-2
Message 10-3
Agent 10-3
Producer 10-3
Consumer 10-4
Listener 10-4
Subscription 10-4
About Creating Messages 10-4
About Message Payloads 10-5
RAW 10-5
AnyData 10-5

Using User-defined Types as Payloads 10-5
Message Properties 10-6
Correlation 10-6

Sender 10-6

Delay and Expiration 10-6
Recipients 10-6

Priority and Ordering 10-7
Enqueuing Messages 10-7
Dequeuing Messages 10-7
About Dequeuing Options 10-8
Correlation 10-8

Mode 10-8
Navigation 10-8
Listening for Messages 10-9
About Registering for Notification 10-9

ORACLE Xi

Publish-Subscribe Notifications 10-9
How to Use Direct Registration 10-10
Using Open Registration 10-11
About Notification Callback 10-12
About Message Format Transformation 10-13
11 Oracle XA Library
Developing Applications with XA and OCCI 11-1
APIs for XA Support 11-2
12 Optimizing Performance of C++ Applications
About Transparent Application Failover 12-1
Using Transparent Application Failover 12-3
About Objects and Transparent Application Failover 12-3
Using Connection Pooling and Transparent Application Failover 12-3
About Connection Sharing 12-6
Introduction to Thread Safety 12-6
Implementing Thread Safety 12-7
About Serialization 12-7
Automatic Serialization 12-7
Application-Provided Serialization 12-8
Operating System Considerations 12-8
About Application-Managed Data Buffering 12-9
Using the setDataBuffer() Method 12-9
Using the executeArrayUpdate() Method 12-10
Using the Array Fetch Using next() Method 12-11
Modifying Rows lIteratively 12-12
About Using Oracle Connection Manager in Traffic Director Mode 12-12
About Run-time Load Balancing of the Stateless Connection Pool 12-15
API Support 12-16
About Fault Diagnosability 12-16
Using ADR Base Location 12-16
Using ADRCI 12-18
Controlling ADR Creation and Disabling Fault Diagnosability 12-20
Using Client Result Cache 12-20
About Client-Side Deployment Parameters and Auto Tuning 12-21
ORACLE Xii

13 OCCI Application Programming Interface

OCCI Classes and Methods
Using OCCI Classes
OCCI Support for Windows NT and z/OS

Working with Collections of Refs

Common OCCI Constants

Agent Class
Agent()
getAddress()
getName()
getProtocol()
isNull()
operator=()
setAddress()
setName()
setNull()
setProtocol()

AnyData Class
AnyData()
getAsBDouble()
getAsBfile()
getAsBFloat()
getAsBytes()
getAsDate()
getAsintervalDS()
getAsinterval YM()
getAsNumber()
getAsObject()
getAsRef()
getAsString()
getAsTimestamp()
getType()
isNull()
setFromBDouble()
setFromBfile()
setFromBFloat()
setFromBytes()
setFromDate()
setFromintervalDS()
setFrominterval Y M()

ORACLE

13-1
13-2
13-3
13-4
13-5
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-7
13-8
13-8
13-8
13-11
13-11
13-11
13-12
13-12
13-12
13-12
13-12
13-12
13-13
13-13
13-13
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-15
13-15
13-15

Xiii

setFromNumber() 13-15

setFromObject() 13-16
setFromRef() 13-16
setFromString() 13-16
setFromTimestamp() 13-17
setNull() 13-17
BatchSQLException Class 13-17
getException() 13-17
getFailedRowCount() 13-18
getRowNum() 13-18
Bfile Class 13-18
Bfile() 13-19
close() 13-20
closeStream() 13-20
fileExists() 13-20
getDirAlias() 13-20
getFileName() 13-21
getStream() 13-21
getUStringDirAlias() 13-21
getUStringFileName() 13-21
isInitialized() 13-21
isNull() 13-22
isOpen() 13-22
length() 13-22
open() 13-22
operator=() 13-22
operator==() 13-23
operator!=() 13-23
read() 13-23
setName() 13-24
setNull() 13-24
Blob Class 13-24
Blob() 13-26
append() 13-26
close() 13-26
closeStream() 13-27
copy() 13-27
getChunksSize() 13-28
getContentType() 13-28
getOptions() 13-28
getStream() 13-28

ORACLE Xiv

isInitialized() 13-29

isNull() 13-29
isOpen() 13-29
length() 13-29
open() 13-29
operator=() 13-30
operator==() 13-30
operator!= () 13-30
read() 13-30
setContentType() 13-31
setEmpty() 13-31
setNull() 13-32
setOptions() 13-32
trim() 13-32
write() 13-32
writeChunk() 13-33
Bytes Class 13-33
Bytes() 13-34
byteAt() 13-34
getBytes() 13-35
isNull() 13-35
length() 13-35
operator=() 13-35
setNull() 13-36
Clob Class 13-36
Clob() 13-38
append() 13-38
close() 13-38
closeStream() 13-38
copy() 13-39
getCharSetForm() 13-39
getCharSetld() 13-40
getCharSetldUString() 13-40
getChunkSize() 13-40
getContentType() 13-40
getOptions() 13-40
getStream() 13-40
isInitialized() 13-41
isNull() 13-41
isOpen() 13-41
length() 13-41

ORACLE XV

open() 13-41

operator=() 13-42
operator==() 13-42
operator!=() 13-42
read() 13-43
setCharSetld() 13-43
setCharSetldUString() 13-44
setCharSetForm() 13-44
setContentType() 13-44
setEmpty() 13-45
setNull() 13-45
setOptions() 13-45
trim() 13-46
write() 13-46
writeChunk() 13-47
Connection Class 13-47
changePassword() 13-49
commit() 13-50
createStatement() 13-50
flushCache() 13-51
getClientCharSet() 13-51
getClientCharSetUString() 13-51
getClientNCHARCharSet() 13-51
getClientNCHARCharSetUString() 13-51
getClientVersion() 13-51
getLTXID() 13-52
getMetaData() 13-52
getOCIServer() 13-53
getOCIServiceContext() 13-53
getOCISession() 13-53
getServerVersion() 13-53
getServerVersionUString() 13-54
getStmtCacheSize() 13-54
getTag() 13-54
isCached() 13-54
pinVectorOfRefs() 13-55
postToSubscriptions() 13-55
readVectorOfBfiles() 13-56
readVectorOfBlobs() 13-56
readVectorOfClobs() 13-57
registerSubscriptions() 13-58

ORACLE XVi

rollback() 13-58

setStmtCacheSize() 13-58
setTAFNotify() 13-59
terminateStatement() 13-59
unregisterSubscription() 13-60
writeVectorOfBlobs() 13-60
writeVectorOfClobs() 13-61
ConnectionPool Class 13-62
createConnection() 13-62
createProxyConnection() 13-63
getBusyConnections() 13-64
getincrConnections() 13-64
getMaxConnections() 13-64
getMinConnections() 13-64
getOpenConnections() 13-65
getPoolName() 13-65
getStmtCacheSize() 13-65
getTimeOut() 13-65
setErrorOnBusy() 13-65
setPoolSize() 13-65
setStmtCacheSize() 13-66
setTimeOut() 13-66
terminateConnection() 13-66
Consumer Class 13-67
Consumer() 13-68
getConsumerName() 13-69
getCorrelationld() 13-69
getDequeueMode() 13-69
getMessageldToDequeue() 13-70
getPositionOfMessage() 13-70
getQueueName() 13-70
getTransformation() 13-70
getVisibility() 13-70
getWaitTime() 13-70
isNull() 13-71
operator=() 13-71
receive() 13-71
setAgent() 13-71
setConsumerName() 13-72
setCorrelationld() 13-72
setDequeueMode() 13-72

ORACLE XVii

setMessageldToDequeue() 13-73

setNull() 13-73
setPositionOfMessage() 13-73
setQueueName() 13-73
setTransformation() 13-74
setVisibility() 13-74
setWaitTime() 13-74
Date Class 13-74
Date() 13-76
addDays() 13-77
addMonths() 13-77
daysBetween() 13-77
fromBytes() 13-77
fromText() 13-78
getDate() 13-79
getSystemDate() 13-79
isNull() 13-79
lastDay() 13-80
nextDay() 13-80
operator=() 13-80
operator==() 13-81
operator!=() 13-81
operator>() 13-81
operator>=() 13-82
operator<() 13-82
operator<=() 13-82
setDate() 13-83
setNull() 13-83
toBytes() 13-84
toText() 13-84
toZone() 13-84
Environment Class 13-85
createConnection() 13-87
createConnectionPool() 13-88
createEnvironment() 13-89
createStatelessConnectionPool() 13-90
enableSubscription() 13-91
disableSubscription() 13-91
getCacheMaxSize() 13-91
getCacheOptSize() 13-91
getCacheSortedFlush() 13-92

ORACLE Xviii

getCurrentHeapSize() 13-92

getLDAPAdminContext() 13-92
getLDAPAuthentication() 13-92
getLDAPHost() 13-92
getLDAPPort() 13-92
getMap() 13-92
getNLSLanguage() 13-93
getNLSTerritory() 13-93
getOCIEnvironment() 13-93
getXAConnection() 13-93
getXAEnvironment() 13-93
releaseXAConnection() 13-94
releaseXAEnvironment() 13-94
setCacheMaxSize() 13-94
setCacheOptSize() 13-94
setCacheSortedFlush() 13-95
setLDAPAdminContext() 13-95
setLDAPAuthentication() 13-95
setLDAPHostAndPort() 13-96
setLDAPLoginNameAndPassword() 13-96
setNLSLanguage() 13-96
setNLSTerritory() 13-97
terminateConnection() 13-97
terminateConnectionPool() 13-97
terminateEnvironment() 13-97
terminateStatelessConnectionPool() 13-98
IntervalDS Class 13-98
IntervalDS() 13-100
fromText() 13-101
fromUText() 13-101
getDay() 13-102
getFracSec() 13-102
getHour() 13-102
getMinute() 13-102
getSecond() 13-102
isNull() 13-102
operator*() 13-103
operator*=() 13-103
operator=() 13-103
operator==() 13-103
operator!=() 13-104

ORACLE XixX

operator/() 13-104

operator/=() 13-104
operator>() 13-105
operator>=() 13-105
operator<() 13-105
operator<=() 13-106
operator-() 13-106
operator-=() 13-106
operator+() 13-107
operator+=() 13-107
set() 13-107
setNull() 13-108
toText() 13-108
toUText() 13-108
IntervalYM Class 13-109
IntervalYM() 13-110
fromText() 13-111
fromUText() 13-112
getMonth() 13-112
getYear() 13-112
isNull() 13-112
operator*() 13-112
operator*=() 13-113
operator=() 13-113
operator==() 13-113
operator!=() 13-114
operator/() 13-114
operator/=() 13-114
operator>() 13-115
operator>=() 13-115
operator<() 13-115
operator<=() 13-116
operator-() 13-116
operator-=() 13-116
operator+() 13-117
operator+=() 13-117
set() 13-117
setNull() 13-118
toText() 13-118
toUText() 13-118
Listener Class 13-118

ORACLE XX

Listener() 13-119

getAgentList() 13-119
getTimeOutForListen() 13-119
listen() 13-120
setAgentList() 13-120
setTimeOutForListen() 13-120
Map Class 13-120
put() 13-121
Message Class 13-122
Message() 13-123
getAnyData() 13-124
getAttemptsToDequeue() 13-124
getBytes() 13-124
getCorrelationld() 13-124
getDelay() 13-124
getExceptionQueueName() 13-124
getExpiration() 13-124
getMessageEnqueuedTime() 13-125
getMessageState() 13-125
getObiject() 13-125
getOriginalMessageld() 13-125
getPayloadType() 13-125
getPriority() 13-125
getSenderld() 13-126
isNull() 13-126
operator=() 13-126
setAnyData() 13-126
setBytes() 13-126
setCorrelationld() 13-127
setDelay() 13-127
setExceptionQueueName() 13-127
setExpiration() 13-128
setNull() 13-128
setObject() 13-128
setOriginalMessageld() 13-128
setPriority() 13-129
setRecipientList() 13-129
setSenderld() 13-129
MetaData Class 13-130
MetaData() 13-138
getAttributeCount() 13-138

ORACLE XXi

getAttributeld() 13-138

getAttributeType() 13-139
getBoolean() 13-139
getint() 13-139
getMetaData() 13-140
getNumber() 13-140
getRef() 13-140
getString() 13-141
getTimeStamp() 13-141
getUInt() 13-141
getUsString() 13-141
getVector() 13-142
operator=() 13-142
NotifyResult Class 13-142
getConsumerName() 13-143
getMessage() 13-143
getMessageld() 13-143
getPayload() 13-143
getQueueName() 13-143
Number Class 13-143
Number() 13-147
abs() 13-148
arcCos() 13-148
arcSin() 13-148
arcTan() 13-148
arcTan2() 13-148
ceil() 13-149
cos() 13-149
exp() 13-149
floor() 13-149
fromBytes() 13-149
fromText() 13-150
hypCos() 13-150
hypSin() 13-151
hypTan() 13-151
intPower() 13-151
isNull() 13-151
In() 13-151
log() 13-151
operator++() 13-152
operator--() 13-152

ORACLE XXii

operator*()

operator/()
operator%()
operator+()
operator-()

operator-()
operator<()
operator<=()
operator>()
operator>=()
operator==()
operator!=()
operator=()
operator*=()
operator/=()
operator%=()
operator+=()
operator-=()

operator char()
operator signed char()
operator double()
operator float()
operator int()

operator long()
operator long double()
operator short()
operator unsigned char()
operator unsigned int()
operator unsigned long()
operator unsigned short()
power()

prec()

round()

setNull()

shift()

sign()

sin()

squareroot()

tan()

toBytes()

toText()

ORACLE

13-152
13-153
13-153
13-153
13-154
13-154
13-154
13-155
13-155
13-155
13-156
13-156
13-156
13-157
13-157
13-157
13-158
13-158
13-158
13-158
13-158
13-159
13-159
13-159
13-159
13-159
13-159
13-159
13-160
13-160
13-160
13-160
13-161
13-161
13-161
13-161
13-161
13-162
13-162
13-162
13-162

XXiii

trunc() 13-163

PObiject Class 13-163
PObject() 13-164
flush() 13-165
getConnection() 13-165
getRef() 13-165
getSQLTypeName() 13-165
isLocked() 13-165
isNull() 13-166
lock() 13-166
markDelete() 13-166
markModified() 13-166
operator=() 13-166
operator delete() 13-167
operator new() 13-167
pin() 13-168
setNull() 13-168
unmark() 13-168
unpin() 13-168

Producer Class 13-169
Producer() 13-170
getQueueName() 13-170
getRelativeMessageld() 13-170
getSequenceDeviation() 13-171
getTransformation() 13-171
getVisibility() 13-171
isNull() 13-171
operator=() 13-171
send() 13-171
setNull() 13-172
setQueueName() 13-172
setRelativeMessageld() 13-172
setSequenceDeviation() 13-173
setTransformation() 13-173
setVisibility() 13-173

Ref Class 13-174
Ref() 13-175
clear() 13-175
getConnection() 13-175
isClear() 13-175
isNull() 13-176

ORACLE XXiV

markDelete() 13-176

operator->() 13-176
operator*() 13-176
operator==() 13-176
operator!=() 13-177
operator=() 13-177
ptr() 13-177
setLock() 13-178
setNull() 13-178
setPrefetch() 13-178
unmarkDelete() 13-179
RefAny Class 13-179
RefAny() 13-180
clear() 13-180
getConnection() 13-180
isNull() 13-180
markDelete() 13-181
operator=() 13-181
operator==() 13-181
operator!=() 13-181
unmarkDelete() 13-182
ResultSet Class 13-182
cancel() 13-185
closeStream() 13-185
getBDouble() 13-185
getBfile() 13-185
getBFloat() 13-186
getBlob() 13-186
getBytes() 13-186
getCharSet() 13-186
getCharSetUString() 13-187
getClob() 13-187
getColumnListMetaData() 13-187
getCurrentStreamColumn() 13-188
getCurrentStreamRow() 13-188
getCursor() 13-188
getDatabaseNCHARParam() 13-188
getDate() 13-189
getDouble() 13-189
getFloat() 13-189
getint() 13-190

ORACLE' v

getintervalDS() 13-190

getintervalYM() 13-190
getMaxColumnSize() 13-190
getNumArrayRows() 13-191
getNumber() 13-191
getObject() 13-191
getRef() 13-191
getRowid() 13-192
getRowPosition() 13-192
getStatement() 13-192
getStream() 13-192
getString() 13-193
getTimestamp() 13-193
getUInt() 13-193
getUsString() 13-193
getVector() 13-194
getVectorOfRefs() 13-196
isNull() 13-197
isTruncated() 13-197
next() 13-197
preTruncationLength() 13-198
setBinaryStreamMode() 13-198
setCharacterStreamMode() 13-198
setCharSet() 13-199
setCharSetUString() 13-199
setDatabaseNCHARParam() 13-199
setDataBuffer() 13-200
setErrorOnNull() 13-201
setErrorOnTruncate() 13-201
setPrefetchMemaorySize() 13-202
setPrefetchRowCount() 13-202
setMaxColumnSize() 13-202
status() 13-203
SQLException Class 13-203
SQLException() 13-203
getErrorCode() 13-204
getMessage() 13-204
getNLSMessage() 13-204
getNLSUStringMessage() 13-204
getUStringMessage() 13-205
getXAErrorCode() 13-205

ORACLE XXVi

isRecoverable() 13-205

setErrorCtx() 13-205
what() 13-206
StatelessConnectionPool Class 13-206
getAnyTaggedConnection() 13-207
getAnyTaggedProxyConnection() 13-208
getBusyConnections() 13-209
getBusyOption() 13-210
getConnection() 13-210
getincrConnections() 13-211
getMaxConnections() 13-212
getMinConnections() 13-212
getOpenConnections() 13-212
getPoolName() 13-212
getProxyConnection() 13-212
getStmtCacheSize() 13-214
getTimeOut() 13-214
releaseConnection() 13-214
setBusyOption() 13-215
setPoolSize() 13-215
setTimeOut() 13-216
setStmtCacheSize() 13-216
terminateConnection() 13-216
Statement Class 13-217
addlteration() 13-221
closeResultSet() 13-221
closeStream() 13-221
disableCaching() 13-222
execute() 13-222
executeArrayUpdate() 13-222
executeQuery() 13-223
executeUpdate() 13-223
getAutoCommit() 13-224
getBatchErrorMode() 13-224
getBDouble() 13-224
getBfile() 13-224
getBFloat() 13-224
getBlob() 13-225
getBytes() 13-225
getCharSet() 13-225
getCharSetUString() 13-226

ORACLE XXVii

getClob() 13-226

getConnection() 13-226
getCurrentlteration() 13-226
getCurrentStreamlteration() 13-226
getCurrentStreamParam() 13-227
getCursor() 13-227
getDatabaseNCHARParam() 13-227
getDate() 13-227
getDMLRowCounts() 13-228
getDouble() 13-228
getFloat() 13-228
getint() 13-229
getintervalDS() 13-229
getintervalYM() 13-229
getMaxlterations() 13-229
getMaxParamSize() 13-230
getNumber() 13-230
getObject() 13-230
getOClIStatement() 13-230
getRef() 13-231
getResultSet() 13-231
getRowCountsOption() 13-231
getRowid() 13-231
getSQL() 13-231
getSQLUString() 13-232
getStream() 13-232
getString() 13-232
getTimestamp() 13-232
getUb8RowCount() 13-233
getUInt() 13-233
getUpdateCount() 13-233
getUsString() 13-233
getVector() 13-234
getVectorOfRefs() 13-236
isNull() 13-237
isTruncated() 13-237
preTruncationLength() 13-237
registerOutParam() 13-237
setAutoCommit() 13-239
setBatchErrorMode() 13-239
setBDouble() 13-239

ORACLE XXViii

setBfile() 13-239

setBFloat() 13-240
setBinaryStreamMode() 13-240
setBlob() 13-241
setBytes() 13-241
setCharacterStreamMode() 13-241
setCharSet() 13-242
setCharSetUString() 13-242
setClob() 13-243
setDate() 13-243
setDatabaseNCHARParam() 13-243
setDataBuffer() 13-244
setDataBufferArray() 13-245
setDouble() 13-247
setErrorOnNull() 13-247
setErrorOnTruncate() 13-247
setFloat() 13-248
setint() 13-248
setintervalDS() 13-248
setinterval YM() 13-249
setMaxlIterations() 13-249
setMaxParamSize() 13-249
setNull() 13-250
setNumber() 13-250
setObject() 13-251
setPrefetchMemorySize() 13-251
setPrefetchRowCount() 13-251
setRef() 13-252
setRowCountsOption() 13-252
setRowid() 13-253
setSQL() 13-253
setSQLUString() 13-253
setString() 13-254
setTimestamp() 13-254
setUInt() 13-254
setUsString() 13-255
setVector() 13-255
setVectorOfRefs() 13-263
status() 13-264
Stream Class 13-264
readBuffer() 13-265

ORACLE XXX

readLastBuffer() 13-265

writeBuffer() 13-265
writeLastBuffer() 13-266
status() 13-266
Subscription Class 13-266
Subscription() 13-268
getCallbackContext() 13-268
getDatabaseServersCount() 13-268
getDatabaseServerNames() 13-269
getNotifyCallback() 13-269
getPayload() 13-269
getSubscriptionName() 13-269
getSubscriptionNamespace() 13-269
getRecipientName() 13-270
getPresentation() 13-270
getProtocol() 13-270
isNull() 13-270
operator=() 13-270
setCallbackContext() 13-271
setDatabaseServerNames() 13-271
setNotifyCallback() 13-271
setNull() 13-272
setPayload() 13-272
setPresentation() 13-272
setProtocol() 13-272
setSubscriptionName() 13-273
setSubscriptionNamespace() 13-273
setRecipientName() 13-273
Timestamp Class 13-274
Timestamp() 13-275
fromText() 13-278
getDate() 13-279
getTime() 13-279
getTimeZoneOffset() 13-280
intervalAdd() 13-280
intervalSub() 13-280
isNull() 13-281
operator=() 13-281
operator==() 13-281
operator!=() 13-282
operator>() 13-282

ORACLE XXX

operator>=() 13-282
operator<() 13-283
operator<=() 13-283
setDate() 13-283
setNull() 13-284
setTime() 13-284
setTimeZoneOffset() 13-284
subDS() 13-285
subYM() 13-285
toText() 13-285
Index
ORACLE XXXi

List of Examples

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

Creating a Table

Specifying Access to a Table

Creating an Object Table

Inserting Data Through Input Bind Variables

Inserting Objects into the Oracle Database

Using the Simple SELECT Statement

Using the SELECT Statement with Input Variables

Using PL/SQL to Obtain an Output Variable

Using PL/SQL to Insert Partial Records into Placeholders

Using SQL to Extract Partial Records

How to Determine the Major Client Version and Set Performance Features
How to Regenerate the Data Shared Library Files

How to set the ORA_TZFILE Environment Variable

Installing Instant Client Light (English) through Oracle Universal Installer
How to Create an OCCI Environment

How to Terminate an OCCI Environment

How to Use Environment Scope with Blob Objects

How to Create an Environment and then a Connection to the Database
How to Terminate a Connection to the Database and the Environment
The createConnectionPool() Method

How to Create a Connection Pool

The createProxyConnection() Method

How to Use a StatelessConnectionPool

How to Create and Use a Homogeneous Stateless Connection Pool
How to Create and Use a Heterogeneous Stateless Connection Pool
How to Administer the Database Resident Connection Pools

How to Get a Connection from a Database Resident Connection Pool
Using Client-Side Pool and Server-Side Pool

How to Create a Statement

How to Create a Database Table Using the executeUpdate() Method
How to Add Records Using the executeUpdate() Method

How to Specify a SQL Statement Using the setSQL() Method

How to Reset a SQL Statement Using the setSQL() Method

How to Terminate a Statement Using the terminateStatement() Method

How to Use setxxx() Methods to Set Individual Column Values

ORACLE

1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-7
2-2
2-6
2-7
2-9
3-2
3-2
3-2
33
33
35
35
35
3-7
3-7
3-8

3-11

3-12

3-12

3-13

3-13

3-14

3-14

3-14

3-14

3-15

XXXIi

3-22 How to Specify the IN Parameters of a PL/SQL Stored Procedure
3-23 How to Specify OUT Parameters of a PL/SQL Stored Procedure
3-24 How to Bind Data in a Streaming Mode

3-25 How to Fetch Data in a Streaming Mode Using PL/SQL

3-26 How to Read and Write with Multiple Streams

3-27 How to Execute an Iterative Operation

3-28 How to Fetch Data in Streaming Mode Using ResultSet

3-29 SELECT with getUb8RowCount(); simple

3-30 SELECT with getUb8RowCount(); with prefetch

3-31 SELECT with getUb8RowCount(); array fetch with prefetch

3-32 INSERT with getUb8RowCount(); simple

3-33 INSERT with getUb8RowCount(); with iterations

3-34 UPDATE with getUb8RowCount()

3-35 Statement Caching without Connection Pooling

3-36 Statement Caching with Connection Pooling

4-1 Creating Standalone Objects

4-2 Creating Embedded Objects

4-3 Two Methods for Operator new() in the Object Type Translator Utility
4-4 How to Dynamically Create a Transient Object

4-5 How to Create a Transient Object as a Local Variable

4-6 How to Create a Persistent Object

4-7 How to Create a Transient Object

4-8 How to Declare a Custom Type in the Database

4-9 How to Create a VARRAY Collection

4-10 OTT Support Inheritance

4-11 Listing of demo2.sql for a Sample OCCI Application

4-12 Listing of demo2.typ for a Sample OCCI Application

4-13 Listing of OTT Command that Generates Files for a Sample OCCI Application
4-14 Listing of mappings.h for a Sample OCCI Application

4-15 Listing of mappings.cpp for a Sample OCCI Application

4-16 Listing of demo2.h for a Sample OCCI Application

4-17 Listing of demo2.cpp for a Sample OCCI Application

4-18 Listing of myDemao.h for a Sample OCCI Application

4-19 Listing for myDemo.cpp for a Sample OCCI Application

4-20 Listing of main.cpp for a Sample OCCI Application

5-1 Definition of the BDOUBLE Data Type

5-2 Definition of the BFLOAT Data Type

ORACLE

XXXiii

6-1 How to use Identity Column Metadata

6-2 How to Obtain Metadata About Attributes of a Simple Database Table
6-3 How to Obtain Metadata from a Column Containing User-Defined Types
6-4 How to Obtain Object Metadata from a Reference

6-5 How to Obtain Metadata About a Select List from a ResultSet Object
7-1 How to Read Non-Streamed BLOBs

7-2 How to Read Non-Streamed BFILESs

7-3 How to Read Streamed BLOBs

7-4 How to Write Non-Streamed BLOBs

7-5 How to Write Streamed BLOBs

7-6 Updating a CLOB Value

7-7 Updating a BFILE Value

7-8 How to Use a Persistent Object with a BLOB Attribute

7-9 How to Use a Persistent Object with a BFILE Attribute

8-1 How to Use the OTT Utility

8-2 Object Creation Statements of the OTT Utility

8-3 How to Invoke the OTT Utility to Generate C++ Classes

8-4 How to use the SCHEMA_ NAMES Parameter in OTT Ultility

8-5 How to Define a Schema for Unicode Support in OTT

8-6 How to Use UNICODE=ALL Parameter in OTT

8-7 How to Use UNICODE=ONLYCHAR Parameter in OTT

8-8 How to Create a User Defined INTYPE File Using the OTT Utility
8-9 Listing of ott95a.h

8-10 Listing of ott95b.h

8-11 How to Represent Object Attributes Using the OTT Utility

8-12 How to Map Object Data Types Using the OTT Utility

8-13 OUTTYPE File Generated by the OTT Utility

8-14 How to Generate C++ Classes Using the OTT Utility

8-15 How to Extend C++ Classes Using the OTT Utility

9-1 How to Use Globalization and Unicode Support

9-2 Using wstring Data Type

9-3 Binding UTF8 Data Using the string Data Type

9-4 Binding UTF16 Data Using the UString Data Type

9-5 Using CLOB and NCLOB Data Types

10-1 Creating an Agent

10-2 Setting the Agent on the Consumer

10-3 Creating an AnyData Message with a String Payload
ORACLE

6-2
6-4
6-5
6-6
6-7
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-9
7-9
8-2
8-2
8-5
8-9

8-11

8-11

8-12

8-15

8-18

8-19

8-20

8-21

8-25

8-28

8-29
9-1
9-2
9-3
9-3
9-3

10-3

10-4

10-5

XXXIV

10-4 Determining the Type of the Payload in an AnyData Message

10-5 Creating an User-defined Payload

10-6 Specifying the Correlation identifier

10-7 Specifying the Sender identifier

10-8 Specifying the Delay and Expiration times of the message

10-9 Specifying message recipients

10-10 Specifying the Priority of a Message

10-11 Creating a Producer, Setting Visibility, and Enqueuing the Message
10-12 Creating a Consumer, Naming the Consumer, and Receiving a Message
10-13 Receiving a Message

10-14 Specifying dequeuing options

10-15 Listening for messages

10-16 How to Register for Notifications; Direct Registration

10-17 How to Use Open Registration with LDAP

11-1 How to Use Transaction Managers with XA

12-1 How to Enable TAF for Connection Pooling

12-2 How to Insert Records Using the addlteration() method

12-3 How to Insert Records Using the executeArrayUpdate() Method
12-4 How to use Array Fetch with a ResultSet

12-5 How to Modify Rows lIteratively and Handle Errors

12-6 How to Use ADRCI for OCCI Application Incidents

12-7 How to Use ADRCI for Instant Client

12-8 How to Enable and Use the Client Result Cache

13-1 Converting From an SQL Pre-Defined Type To AnyData Type

13-2 Creating an SQL Pre-Defined Type From AnyData Type

13-3 Converting From a User-Defined Type To AnyData Type

13-4 Converting From a User-Defined Type To AnyData Type

13-5 How to Get a Date from Database and Use it in Standalone Calculations
13-6 How to Use an Empty IntervalDS Object through Direct Assignment
13-7 How to Use an Empty IntervalDS Object Through *Text() Methods
13-8 How to Use an Empty IntervalYM Object Through Direct Assignment
13-9 How to Use an IntervalYM Object Through ResultSet and toText() Method
13-10 How to Retrieve and Use a Number Object

13-11 Using Default Timestamp Constructor

13-12 Using fromText() method to Initialize a NULL Timestamp Instance
13-13 Comparing Timestamps Stored in the Database

ORACLE

10-5
10-5
10-6
10-6
10-6
10-6
10-7
10-7
10-8
10-8
10-8
10-9
10-10
10-11
11-1
12-4
12-11
12-11
12-11
12-12
12-19
12-20
12-21
13-8
13-8
13-9
13-9
13-75
13-98
13-99
13-109
13-109
13-144
13-277
13-277
13-277

XXXV

List of Figures

1-1 The OCCI Development Process 1-2
4-1 Basic Object Operational Flow 4-7
8-1 The OTT Utility with OCCI 8-26

ORACLE XXXVi

List of Tables

3-1 Normal Data - Not Null and Not Truncated

3-2 Null Data

3-3 Truncated Data

5-1 Summary of Oracle Internal Data Types

5-2 External Data Types and Corresponding C++ and OCCI Types
5-3 Format of the DATE Data Type

5-4 VARNUM Examples

5-5 Data Conversions Between External and Internal Data Types
5-6 Data Conversions for LOBs

5-7 Data Conversions for Date, Timestamp, and Interval Data Types
6-1 Attribute Groupings

6-2 Attributes that Belong to All Elements

6-3 Attributes that Belong to Tables or Views

6-4 Attributes Specific to Tables

6-5 Attributes that Belong to Procedures or Functions

6-6 Attributes that Belong to Package Subprograms

6-7 Attributes that Belong to Packages

6-8 Attributes that Belong to Types

6-9 Attributes that Belong to Type Attributes

6-10 Attributes that Belong to Type Methods

6-11 Attributes that Belong to Collection Types

6-12 Attributes that Belong to Synonyms

6-13 Attributes that Belong to Sequences

6-14 Attributes that Belong to Columns of Tables or Views

6-15 Attributes that Belong to Arguments / Results

6-16 Values for ATTR_LIST _TYPE

6-17 Attributes Specific to Schemas

6-18 Attributes Specific to Databases

7-1 Values of Type LobOptionType

7-2 Values of Type LobOptionValue

8-1 Summary of OTT Utility Parameters

8-2 C++ Object Data Type Mappings for Object Type Attributes
10-1 Notification Result Attributes; ANONYMOUS and AQ Namespace
13-1 Summary of OCCI Classes

13-2 Enumerated Values Used by All OCCI Classes
ORACLE

3-32
3-33
3-33

5-2

5-5
5-11
5-19
5-21
5-22
5-22

6-3

6-8

6-9

6-9

6-9
6-10
6-10
6-10
6-12
6-13
6-14
6-15
6-15
6-15
6-16
6-18
6-18
6-19
7-11
7-11

8-6
8-20

10-13

13-1
13-5

XXXVil

13-3

13-4

13-5

13-6

13-7

13-8

13-9

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
13-36
13-37
13-38
13-39

Summary of Agent Methods

OCCI Data Types supported by AnyData Class
Summary of AnyData Methods

Summary of BatchSQLEXxception Methods
Summary of Bfile Methods

Summary of Blob Methods

Summary of Bytes Methods

Summary of Clob Methods

Enumerated Values Used by Connection Class
Summary of Connection Methods

Summary of ConnectionPool Methods
Enumerated Values Used by Consumer Class
Summary of Consumer Methods

Summary of Date Methods

Enumerated Values Used by Environment Class
Summary of Environment Methods

Fields of IntervalDS Class

Summary of IntervalDS Methods

Fields of IntervalYM Class

Summary of IntervalYM Methods

Summary of Listener Methods

Summary of Map Methods

Enumerated Values Used by Message Class
Summary of Message Methods

Enumerated Values Used by MetaData Class
Summary of MetaData Methods

Summary of NotifyResult Methods

Summary of Number Methods

Enumerated Values Used by PObject Class
Summary of PObject Methods

Enumerated Values Used by Producer Class
Summary of Producer Methods

Enumerated Values Used by Ref Class
Summary of Ref Methods

Summary of RefAny Methods

Enumerated Values Used by ResultSet Class

Summary of ResultSet Methods

ORACLE

13-5
13-10
13-10
13-17
13-19
13-25
13-34
13-36
13-48
13-48
13-62
13-67
13-67
13-75
13-85
13-86
13-98
13-99

13-109
13-110
13-118
13-121
13-122
13-122
13-130
13-137
13-142
13-145
13-164
13-164
13-169
13-169
13-174
13-174
13-179
13-182
13-182

XXXVl

13-40
13-41
13-42
13-43
13-44
13-45
13-46
13-47
13-48
13-49
13-50

Summary of SQLException

Enumerated Values Used by StatelessConnectionPool Class
Summary of StatelessConnectionPool Methods

Enumerated Values used by the Statement Class

Statement Methods

Enumerated Values Used by Stream Class

Summary of Stream Methods

Enumerated Values Used by Subscription Class

Summary of Subscription Methods

Fields of Timestamp and Their Legal Ranges

Summary of Timestamp Methods

ORACLE

13-203
13-206
13-207
13-217
13-217
13-264
13-264
13-266
13-267
13-274
13-274

XXXIX

Preface

Preface

Audience

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

The Oracle C++ Call Interface Programmer's Guide is intended for programmers,
system analysts, project managers, and other Oracle users who perform, or are
interested in learning about, the following tasks:

« Design and develop database applications in the Oracle environment.
e Convert existing database applications to run in the Oracle environment.
e Manage the development of database applications.

To use this document, you need a basic understanding of object-oriented
programming concepts, familiarity with the use of Structured Query Language (SQL),
and a working knowledge of application development using C++.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

* Oracle C++ Call Interface product information page for white papers, additional
examples, and so on, at Oracle Technology Network

e Discussion forum for all Oracle C++ Call Interface related information is at
Community — Get Started

* Demos at $ORACLE_HOVE/ r dbns/ dermo

x|

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Oracle Database Concepts

Oracle Database SQL Language Reference

Oracle Database Object-Relational Developer's Guide

Oracle Database SecureFiles and Large Objects Developer's Guide
Oracle Database New Features Guide

Oracle Call Interface Programmer's Guide

Oracle Database Administrator’'s Guide

Oracle Database Advanced Queuing User's Guide

Oracle Database Globalization Support Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

xli

Changes in This Release for Oracle C++ Call Interface Programmer's Guide

Changes in This Release for Oracle C++
Call Interface Programmer's Guide

Enter a short description of your topic here (optional).
This preface contains:

¢ Changes in Oracle Database Release 18c Version 18.1

* Changes in Oracle Database 12c¢ Release 2 (12.2.0.1)

Changes in Oracle Database Release 18c Version 18.1
The following are changes in this book for Oracle Database release 18c, version 18.1.

New Features

The following are changes in Oracle C++ Call Interface Programmer's Guide for
Oracle Database release 18c version 18.1.

This section includes the following topics:
e OCCI support for Oracle Connection Manager in Traffic Director Mode

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed
between the database clients and the database instances. Supported clients from
Oracle Database 11g Release 2 (11.2) and later can connect to Oracle
Connection Manager in Traffic Director Mode. Oracle Connection Manager in
Traffic Director Mode provides improved high availability (HA) for planned and
unplanned database server outages, connection multiplexing support, and load
balancing.

Oracle Connection Manager in Traffic Director Mode can use the client
oraaccess. xni configuration file to configure proxy resident connection pools for
one or more services that provide a proxy between the client and database
instances. This feature provides improved high availability and performance for
both planned and unplanned outages.

See About Using Oracle Connection Manager in Traffic Director Mode for more
information.

Changes in Oracle Database 12c Release 2 (12.2.0.1)

The following are changes in Oracle Database Enterprise User Security
Administrator's Guide for Oracle Database 12c Release 2 (12.2.0.1).

ORACLE xlii

Changes in This Release for Oracle C++ Call Interface Programmer's Guide

New Features

There are no new features in this release.

ORACLE xliii

Introduction to OCCI

This chapter provides an overview of Oracle C++ Call Interface (OCCI) and introduces
terminology used in discussing OCCI. You are provided with the background
information needed to develop C++ applications that run in an Oracle environment.

This chapter contains these topics:

* Overview of OCCI

e About Processing SQL Statements
e Overview of PL/SQL

e About Special OCCI/SQL Terms

e About Object Support

e About Additional Support

Overview of OCCI

ORACLE

Oracle C++ Call Interface (OCCI) is an Application Programming Interface (API) that
provides C++ applications access to data in an Oracle database. OCCI enables C++
programmers to use the full range of Oracle database operations, including SQL
statement processing and object manipulation.

OCCI provides for:

» High performance applications through the efficient use of system memory and
network connectivity

» Scalable applications that can service an increasing number of users and requests

» Comprehensive support for application development by using Oracle database
objects, including client-side access to Oracle database objects

» Simplified user authentication and password management
* n-tiered authentication

» Consistent interfaces for dynamic connection management and transaction
management in two-tier client/server environments or multitiered environments

» Encapsulated and opaque interfaces

OCCI provides a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCCI classes) that can be linked in a C++
application at run time. This eliminates the requirement to embed SQL or PL/SQL
within third-generation language (3GL) programs.

This section discusses the following topics:

* About Benefits of OCCI

e About Building a C++ Application with OCCI
* About Functionality of OCCI

1-1

Chapter 1
Overview of OCCI

» About Procedural and Nonprocedural Elements

About Benefits of OCCI

OCCI provides these significant advantages over other methods of accessing an
Oracle database:

* Leverages C++ and the Object Oriented Programming paradigm
* |seasytouse
* Is easy to learn for those familiar with JDBC

* Has a navigational interface to manipulate database objects of user-defined types
as C++ class instances

Note that OCCI does not support nonblocking mode.

About Building a C++ Application with OCCI

ORACLE

As Figure 1-1 shows, you compile and link an OCCI program in the same way that you
compile and link an application that does not use the database.

Figure 1-1 The OCCI Development Process

Source Files 17 OCCI Header Files

L Host Language Compiler

Object Files OCGCI Library
Host Linker

- -~ @
Applicati —p Oracle
pplication Shace

N~ =

Oracle supports most popular third-party compilers. The details of linking an OCCI
program vary from system to system. On some platforms, it may be necessary to
include other libraries, in addition to the OCCI library, to properly link your OCCI
programs.

1-2

Chapter 1
Overview of OCCI

¢ See Also:

Your operating system-specific Oracle documentation and the Oracle Database
Installation Guide for more information about compiling and linking an OCCI
application for your specific platform

About Functionality of OCCI

OCCI provides the following functionality:

» APIs to design scalable, multithreaded applications that can support large
numbers of users securely

» SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server

» Data type mapping and manipulation functions, for manipulating data attributes of
Oracle types

* Advanced Queuing for message management

» XA compliance for distributed transaction support

e Statement caching of SQL and PL/SQL queries

» Connection pooling for managing multiple connections

* Globalization and Unicode support to customize applications for international and
regional language requirement

* Object Type Translator Utility

* Transparent Application Failover support

About Procedural and Nonprocedural Elements

ORACLE

Oracle C++ Call Interface (OCCI) enables you to develop scalable, multithreaded
applications on multitiered architectures that combine nonprocedural data access
power of structured query language (SQL) with procedural capabilities of C++.

In a nonprocedural language program, the set of data to be operated on is specified,
but what operations may performed, or how the operations can be carried out, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and
use to perform database transactions. It is also the standard language used to access
and manipulate data in modern relational and object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them very flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an OCCI
program provides easy access to an Oracle database in a structured programming
environment.

OCCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an

1-3

Chapter 1
About Processing SQL Statements

OCCI program can run a query against an Oracle database. The queries can require
the program to supply data to the database by using input (bind) variables, as follows:

SELECT name FROM enpl oyees WHERE enpl oyee_id = : enpnum

In this SQL statement, enpnumis a placeholder for a value that is supplied by the
application.

In an OCCI application, you can also take advantage of PL/SQL, Oracle's procedural
extension to SQL. The applications you develop can be more powerful and flexible
than applications written in SQL alone. OCCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

About Processing SQL Statements

One of the main tasks of an OCCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCCI application. Oracle
recognizes several types of SQL statements:

» About Data Definition Language Statements
e About Control Statements
* About Data Manipulation Language Statements

e About Queries

About Data Definition Language Statements

ORACLE

Data Definition Language (DDL) statements manage schema objects in the database.
These statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects. Example 1-1 illustrates how to
create a table, and Example 1-2 shows how to grant and revoke privileges on this
table.

DDL statements also allow you to work with objects in the Oracle database, as in
Example 1-3, which illustrates how to create an object table.

Example 1-1 Creating a Table

CREATE TABLE enpl oyee_i nfornmation (
enpl oyee_i d NUVBER(6),
ssn NUMBER(9),
dependents NUVBER(1),
mai | _address VARCHAR(60))

Example 1-2 Specifying Access to a Table

GRANT UPDATE, | NSERT, DELETE ON enpl oyee_information TO donna
REVOKE UPDATE ON enpl oyee_i nformation FROM janie

Example 1-3 Creating an Object Table

CREATE TYPE person_info_type AS OBJECT (
enpl oyee_i d NUVBER(6),
ssn NUMBER(9),
dependents NUMBER(1),
mai | _address VARCHAR(60))

1-4

Chapter 1
About Processing SQL Statements

CREATE TABLE person_info_table OF person_info_type

About Control Statements

OCCI applications treat transaction control, connection control, and system control
statements (for example, DML statements).

¢ See Also:

Oracle Database SQL Language Reference for information about control
statements.

About Data Manipulation Language Statements

Data Manipulation Language (DML) statements can change data in database tables.
For example, DML statements insert new rows into a table, update column values in
existing rows, delete rows from a table, lock a table in the database, and explain the
execution plan for a SQL statement.

DML statements may require an application to supply data to the database by using
input bind variables, as in Example 1-4. This statement can be executed several times
with different bind values, or several rows can be added through array insert in a
single round-trip to the server.

DML statements also enable you to work with objects in the Oracle Database, as in
Example 1-5, which shows the insertion of an instance of a type into an object table.

Example 1-4 Inserting Data Through Input Bind Variables

I NSERT | NTO departments VALUES(:1,:2,:3)

Example 1-5 Inserting Objects into the Oracle Database

I NSERT | NTO person_i nfo_table
VALUES (person_info_type('450987','123456789','3",' 146 Wnfield Street'))

About Queries

ORACLE

Queries are statements that retrieve data from tables in a database. A query can
return zero, one, or many rows of data. All queries begin with the SQL keyword SELECT,
as in Example 1-6:

Queries can require the program to supply data to the database server by using input
bind variables, as in Example 1-7:

In this SQL statement, enp_i d is a placeholder for a value that is supplied by the
application.

Example 1-6 Using the Simple SELECT Statement

SELECT department _nanme FROM departments
VWHERE departnent _id = 30

1-5

Chapter 1
Overview of PL/SQL

Example 1-7 Using the SELECT Statement with Input Variables

SELECT first_nane, |ast_name
FROM enpl oyees
WHERE enpl oyee_id = :enmp_id

Overview of PL/SQL

ORACLE

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows several constructs to be grouped into a single
block and executed as a unit. Among these are the following constructs:

* One or more SQL statements

* Variable declarations

* Assignment statements

e Procedural control statements (I F... THEN... ELSE statements and loops)
* Exception handling

In addition to calling PL/SQL stored procedures from an OCCI program, you can use
PL/SQL blocks in your OCCI program to perform the following tasks:

e Call other PL/SQL stored procedures and stored functions.

e Combine procedural control statements with several SQL statements, to be
executed as a unit.

e Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling.

e Use cursor variables.
e Access and manipulate objects in an Oracle database.

A PL/SQL procedure or function can also return an output variable. This is called an
out bind variable, as in Example 1-8:

Here, the first parameter is an input variable that provides the ID number of an
employee. The second parameter, or the out bind variable, contains the return value of
employee name.

PL/SQL can also be used to issue a SQL statement to retrieve values from a table of
employees, given a particular employee number. Example 1-9 demonstrates the use
of placeholders in PL/SQL statements.

Note that the placeholders in this statement are not PL/SQL variables. They represent
input and output parameters passed to and from the database server when the
statement is processed. These placeholders must be specified in your program.

Example 1-8 Using PL/SQL to Obtain an Output Variable
GET_EMPLOYEE_NAME(: 1, :2);

Example 1-9 Using PL/SQL to Insert Partial Records into Placeholders

SELECT | ast_nane, first_nanme, salary, commi ssion_pct
INTO :enp_l ast, :enp_first, :sal, :comm
FROM enpl oyees
WHERE enpl oyee_id = :enp_id;

1-6

Chapter 1
About Special OCCI/SQL Terms

About Special OCCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement.
Consider Example 1-10:

This example contains these parts:

e A SQL command: SELECT

e Three select-list items: first_nane, | ast_nane, and emai |

e A table name in the FROMclause: enpl oyees

¢ Two column names in the WHERE clause: depart nent _i d and comni ssi on_pct
* A numeric input value in the WHERE clause: 40

* A placeholder for an input bind variable in the WHERE clause: : base

When you develop your OCCI application, you call routines that specify to the
database server the value of, or reference to, input and output variables in your
program. In this guide, specifying the placeholder variable for data is called a bind
operation. For input variables, this is called an in bind operation. For output
variables, this is called an out bind operation.

Example 1-10 Using SQL to Extract Partial Records

SELECT first_nane, |ast_nane, emil
FROM enpl oyees
VHERE departnment _id = 80
AND commi ssi on_pct > :base;

About Object Support

OCCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a per son object. That object type
might have attributes, such as first_nane, | ast _nane, and age, which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. By using the object type as a structural definition, a per son
object could be created with the attributes John, Boni vent o, and 30. Object types may
also contain methods, or programmatic functions that represent the behavior of that
object type.

¢ See Also:

e Oracle Database Concepts

e Oracle Database Object-Relational Developer's Guidefor a more detailed
explanation of object types and objects

ORACLE r

Chapter 1
About Object Support

OCCI provides a comprehensive API for programmers seeking to use the Oracle
database server's object capabilities. These features can be divided into several major
categories, which are discussed in subsequent topics:

» About Client-Side Object Cache

e About Run-time Environment for Objects

» About Associative and Navigational Interfaces
* About Interoperability with C (OCI)

* About the Metadata Class

* About the Object Type Translator Utility

About Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects which have been fetched
by an OCCI application from the server to the client side. The client-side object cache
is created when the OCCI environment is initialized in obj ect mode. Multiple
applications running against the same server have their own object cache. The client-
side object cache tracks the objects that are currently in memory, maintains references
to objects, manages automatic object swapping and tracks the meta-attributes or type
information about objects. The client-side object cache provides the following benefits:

* Improved application performance by reducing the number of client/server round-
trips required to fetch and operate on objects

* Enhanced scalability by supporting object swapping from the client-side cache
* Improved concurrency by supporting object-level locking

* Automatic garbage collection when cache thresholds are exceeded

About Run-time Environment for Objects

OCCI provides a run-time environment for objects that offers a set of methods for
managing how Oracle objects are used on the client side. These methods provide the
necessary functionality for performing these tasks:

» Connecting to an Oracle database server to access its object functionality
» Allocating the client-side object cache and tuning its parameters

* Retrieving error and warning messages

» Controlling transactions that access objects in the database

» Associatively accessing objects through SQL

» Describing a PL/SQL procedure or function whose parameters or result are of
Oracle object type

About Associative and Navigational Interfaces

ORACLE

Applications that use OCCI can access objects in the database through several types
of interfaces, such as SQL SELECT, | NSERT, and UPDATE statements, and C++ pointers
and references that access objects in the client-side object cache by traversing the
corresponding references.

1-8

Chapter 1
About Object Support

OCCI provides a set of methods to support object manipulation by using SQL SELECT,

| NSERT, and UPDATE statements. To access Oracle objects, these SQL statements use a
consistent set of steps as if they were accessing relational tables. OCCI provides
methods to access objects by using SQL statements for:

* Binding object type instances and references as input and output variables of SQL
statements and PL/SQL stored procedures

» Executing SQL statements that contain object type instances and references
» Fetching object type instances and references

* Retrieving column values from a result set as objects

» Describing a select-list item of an Oracle object type

OCCI provides a seamless interface for navigating objects, enabling you to manipulate
database objects in the same way that you would operate on transient C++ objects.
You can dereference the overloaded arrow (- >) operator on an object reference to
transparently materialize the object from the database into the application space.

About Interoperability with C (OCI)

The OCCI application can retrieve the underlying OCI handles and descriptors by
calling get OCl xxx() methods on the OCCI class instances. These handles can be used
to call OCI functions.

Note that the application must be aware that if any properties are changed on the OCI
handles, the corresponding OCCI instances may or may not reflect this.

This interoperability between OCCI and OCI is not supported if the application uses
OCI functions for any object-related functionality.

About the Metadata Class

Each Oracle data type is represented in OCCI by a C++ class. The class exposes the
behavior and characteristics of the data type by overloaded operators and methods.
For example, the Oracle data type NUMBER is represented by t he Number class. OCCI
provides a metadata class that enables you to retrieve metadata describing database
objects, including object types.

About the Object Type Translator Utility

ORACLE

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings. That is, OTT translates object type
information into declarations of host language variables, such as structures and
classes. OTT takes an i nt ype file that contains information about Oracle database
schema objects as input. OTT generates an out t ype file and the necessary header and
implementation files that must be included in a C++ application that runs against the
object schema.

In summary, OCCI supports object handling in an Oracle database by:

* Improving application developer productivity by eliminating the requirement to
write the host language variables that correspond to schema objects

e Maintaining SQL as the data definition language of choice by providing the ability
to automatically map Oracle database schema objects created by SQL to host

1-9

Chapter 1
About Additional Support

language variables; this allows Oracle to support a consistent, enterprise-wide
model of the user's data

Facilitating schema evolution of object types by regenerating included header files
when the schema is changed, allowing Oracle applications to support schema
evolution

Executing SQL statements that manipulate object data and schema information
Passing object references and instances as input variables in SQL statements

Declaring object references and instances as variables to receive the output of
SQL statements

Fetching object references and instances from a database

Describing properties of SQL statements that return object instances and
references

Describing PL/SQL procedures or functions with object parameters or results

Extending commit and rollback calls to synchronize object and relational
functionality

Advanced queuing of objects

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection.

About Additional Support

This section discusses how to build the OCCI examples that ship with Oracle
Database, and additional resources:

Building OCCI Demos
About OCCI on the Oracle Technology Network

Building OCCI Demos

You must install the demonstration programs as described in Oracle Database
Examples Installation Guide. Parts of these demos are used as examples in this book.
To build the examples, see the following steps:

ORACLE

1.

Navigate to the demo directory.

On Windows, this directory is ORACLE_HOME\ r dbis\ deno.

On Linux and UNIX, this directory is ORACLE_HOVE/ r dbis/ deno.

Ensure that this directory contains the file deno_r dbns. nk.

Create the OCCI demo using the nake command.

e To make all the demos at the same time, use the following parameters:
make -f demo_rdbms. mk occi denos

e To make only one demo, use parameters:
make -f deno_rdbns. nk denoname

e To make a single demo with objects, use parameters:

make -f demo_rdbns. nk buil docci EXE=denpname OBJS=denpnane. o

1-10

Chapter 1
About Additional Support

* To make a single demo with static libraries, use parameters:
make -f demo_rdbns. mk buil docci _static EXE=demonane OBJS=denonane. o

* For more options, examine the demo_r dbns. nk file.

About OCCI on the Oracle Technology Network

You can find additional information on OCCI, including a forum, downloads, and white
papers, at: Oracle Technology Network — Oracle C_++_Call Interface.

ORACLE 1-11

Installation and Upgrading

This chapter provides an overview of installation and upgrading for Oracle C++ Call
Interface (OCCI).

This chapter contains these topics:

e About Installing Oracle C++ Call Interface

e About Upgrading Considerations

e About Determining the Oracle Database Versions
* About the Instant Client

e About Instant Client Light (English)

e About Using OCCI with Microsoft Visual C++

About Installing Oracle C++ Call Interface

OCCl is installed as part of the Oracle Database. To determine additional configuration
requirements, you should refer to the Oracle Database Installation Guide and the
Oracle Database Client Installation Guide that is specific to your platform.

About Upgrading Considerations

To use the new features available in this release, you must recompile and relink all
OCCI applications, including classes generated through the Object Type Translator
Utility, when upgrading from an earlier Oracle Client release.

About Determining the Oracle Database Versions

When an application uses several separate code paths with different server versions
or client patchsets, you can verify these options both during compilation and at run
time.

This sections includes the following topics:
* Determining the Oracle Client Version During Compilation

* About Determining the Oracle Client and Server Versions at Run Time

Determining the Oracle Client Version During Compilation

The OCCI header files define 0CCI _MAJOR VERSI ON and OCCl _M NOR_VERSI ON macros.
Example 2-1 illustrates one way to use these macros:

ORACLE 2-1

Chapter 2
About the Instant Client

Example 2-1 How to Determine the Major Client Version and Set Performance
Features

#if (0OCCI _MAJOR VERSION > 9)
env->set CacheSort edFl ush(true); // benefit of performance, if available
#endi f

About Determining the Oracle Client and Server Versions at Run Time

During run time, you can check both the client and server versions of the current
Connecti on by using the getClientVersion(), getServerVersion(), and
getServerVersionUString() methods.

About the Instant Client

The Instant Client feature makes it extremely easy and fast to deploy OCCI based
customer application by eliminating the need for ORACLE_HOME. The storage space
requirements are an additional benefit; Instant Client shared libraries occupy about
one-fourth of the disk space required for a full client installation.

This section includes the following topics:

* About Benefits of Instant Client

e About Installing Instant Client Light (English)

* About Using the Instant Client

e Patching Instant Client Shared Libraries on UNIX

* Regenerating the Data Shared Library and Zip Files
* About Database Connection Names for Instant Client

e Setting Environment Variables for OCCI Instant Client

About Benefits of Instant Client

» Installation involves copying only four files.

» Storage space requirement for the client is minimal

* No loss of functionality or performance exists for deployed applications
* Simplified packaging with ISV applications

The OCCI Instant Client capability simplifies OCCI installation. Even though OCCI is
independent of ORACLE_HOME setting in the Instant Client mode, applications that rely on
ORACLE_HOME settings can continue operation by setting it to the appropriate value. The
activation of the Instant Client mode is only dependent on the ability to load the Instant
Client data shared library. In particular, this feature allows interoperability with Oracle
applications that use ORACLE_HOME for their data, but use a newer release of Oracle
Client.

About Installing the Instant Client

OCCI requires only four shared libraries (or dynamic link libraries, as they are called
on some operating systems) to be loaded by the dynamic loader of the operating

ORACLE 2-2

Chapter 2
About the Instant Client

system. Oracle Database 12c¢ Release 1 (12.1) library names are used; the number
part of library names changes to remain consistent with future release numbers.

For clarity and ease of development, the library structure is changed starting with
Oracle Database 12c¢ Release 1 (12.1). The client shared library, |'i bcl ntsh. so. 12. 1,
depends on | i bcl nt sheore. so. 12. 1. The |i bel nt sheore. so. 12. 1 library contains the
NLS and CORE functionality. Both of these libraries must be installed in the same
directory.

e OCl Instant Client Data Shared Library (I i boci ei . so on Linux and UNIX and
oraoci ei 11. dl I on Windows); correct installation of this file determines if you are
operating in Instant Client mode

e Client Code Library (libcl ntsh. so. 11. 1 on Linux and UNIX and oci . dl | on
Windows)

e Security Library (1ibnnz11. so on Linux and UNIX and or annzsbb11.dl | on
Windows)

* OCCI Library (i bocci . so. 11. 1 on Linux and UNIX and oraocci 11.dlI 1 on
Windows)

Note:

The |i bcl nt sheore. so. 12. 1 file must now reside in the same library as the data
shared library.

This section includes the following topics:

* About the Oracle Technology Network
» About the Complete Client Installation
* Running Oracle Universal Installer

e About the Instant Client CD

About the Oracle Technology Network

ORACLE

The Instant Client libraries are also available on the Oracle Technology Network
(OTN) Web site at:

http:// ww. oracl e. conl t echnol ogy/tech/oci/instantclient/

If these four libraries are accessible through the directory on the Operating System
Library Path variable (LD_LI BRARY_PATH on Linux and UNIX, and PATH on Windows), then
OCCI operates in the Instant Client mode. In this mode, there is no dependency on
ORACLE_HOME and none of the other code and data files provided in ORACLE_HOME are
needed by OCCI.

If you are installing Instant Client from the Oracle Technology Network,

1. Download and install the Instant Client libraries to an empty directory, such as
instantclient 12 1.

2. Set the operating system shared library path environment variable
(LD_LI BRARY_PATH on Linux and UNIX and PATH on Windows) to the directory used in
step 1, instantclient_12_1.

2-3

http://www.oracle.com/technology/tech/oci/instantclient/

Chapter 2
About the Instant Client

This section includes the following topic: About the Instant Client SDK.

About the Instant Client SDK

Instant Client can also be downloaded as an SDK package. The SDK contains all
necessary header files and a makefile for developing OCCI applications in an Instant
Client environment. Once developed, these applications can be deployed in any client
environment. The SDK has these additional features:

It contains C++ demonstration programs.

It includes libraries required to link applications on Windows, and a Make. bat file is
provided to build demos.

The Makefile deno. nk is provided to build the demos for Linux and UNIX. The
instantclient_12_1 directory must be on the LD LI BRARY_PATH before linking the
application. These programs require symbolic links for the Client Code Library and
the OCCI library, Ii bcl ntsh. so. 12. 1 and | i bocci . so. 12. 1 respectively, in the
instantclient_12 1 directory. The demo Makefile, deno. nk, generates these before
the link step. These symbolic links can also be created in a shell script:

cd instantclient_12 1
In-s libclntsh.so.11.1 libclntsh.so
In -s libocci.so.11.1 libocci.so

The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

About the Complete Client Installation

If you performed a complete client installation by choosing the Admin option,

On Linux or UNIX platforms, the i boci ei . so library can be copied from
the $ORACLE_HOME/ i nstant cl i ent directory. All the other libraries can be copied from
the $ORACLE_HOME/ | i b directory in a full Oracle installation.

On Windows, the oraoci ei 11. dI | library can be copied from the ORACLE_HOMVE
\instantclient directory. All other Windows libraries can be copied from the
ORACLE_HOME\ bi n directory.

Running Oracle Universal Installer

If you did not install the database, you can install these libraries by choosing the
Instant Client option from the Oracle Universal Installer. After completing these steps,
you can begin running OCCI applications.

1.
2.

Install the Instant Client shared libraries to a directory such asinstantclient_12_1.

Set the operating system shared library path environment variable to the directory
from step 1. For example, on Linux or UNIX, set the LD LI BRARY_PATH to
instantclient_12_1. On Windows, set PATHto locate the instantclient_12_1
directory.

About the Instant Client CD

You can also install Instant Client from the Instant Client CD. You must install Instant
Client either in an empty directory or on a different system.

ORACLE

2-4

Chapter 2
About the Instant Client

There should be only one set of Oracle libraries on the operating system Library Path
variable; if you have several directories or copies of Instant Client libraries, only one
directory should be on the operating system Library Path.

Similarly, if you also have an installation on an ORACLE_HOMVE of the same system, do not
place both the ORACLE_ HOME/ | i b and Instant Client directory on the operating system
Library Path, regardless of the order in which they appear on the Library Path. Only
one of ORACLE_HOWE/ | i b directory (for non-Instant Client operation) or Instant Client
directory (for Instant Client operation) should be on the operating system Library Path
variable.

About Using the Instant Client

The Instant Client feature is designed for running production applications. For
development, use either the Instant Client SDK or a full installation to access OCCI
header files, makefiles, demonstration programs, and so on.

Patching Instant Client Shared Libraries on UNIX

This feature is not available on Windows platforms.

Because Instant Client is primarily a deployment feature, one of its design objectives is
to reduce the number and size of necessary files. Therefore, Instant Client deployment
does not include all files for patching shared libraries. You should use the OPATCH utility
on an ORACLE_HOME-based full client to patch the Instant Client shared libraries. The
OPATCH utility stores the patching information of the ORACLE_HOME installation in

l'i bel ntsh. so. 11. 1 for Linux and UNIX. This information can be retrieved using the
genezi utility:

genezi -v

If the genezi utility is not installed on the system that deploys Instant Client, you can
copy it from the ORACLE_HOME/ bi n directory of the ORACLE_HOME system.

After applying the patch in an ORACLE_HOME environment, copy the files listed in"About
Installing the Instant Client" to the Instant Client directory. Instead of copying individual
files, you can generate Instant Client *. zi p files, as described in "Regenerating the
Data Shared Library and Zip Files". Then, instead of copying individual files, you can
instead copy the zip files to the target system and unzip them.

Regenerating the Data Shared Library and Zip Files

ORACLE

This feature is not available on Windows platforms.

The Instant Client Data Shared Library, | i boci ei . so, can be regenerated in a Client
Admin Install of ORACLE_HOME. Executing Example 2-2 creates a new | i boci ei . so file
based on current file in ORACLE_HOME and place it in the ORACLE_HOVE/ r dbns/ i nstal | /
instantclient directory; the make targetilibociei generates |ibociei.so.

This location of the regenerated data shared library, | i boci ei . so, is different from the
original location of ORACLE_HOVE/ i nst ant cl i ent

The script in Example 2-2 also creates a directory for About Instant Client Light
(English)

2-5

Chapter 2
About the Instant Client

Example 2-2 How to Regenerate the Data Shared Library Files

mkdir -p $ORACLE_HOME/ rdbms/install/instantclient/light
cd $ORACLE_HOVE/ rdbrs/1i b
meke -f ins_rdbns.nk ilibociei

About Database Connection Names for Instant Client

All Oracle net naming methods that do not require use of ORACLE_HOME or TNS_ADM N to
locate configuration files such as t nsnanes. ora or sqgl net . ora work in the Instant Client
mode.

The connect Stri ng parameter in the createConnection() call can be specified in the
following formats:

e As an SQL Connect URL string, of the form:

[/host: [port][/service nane]

such as:
/I myserver111: 5521/ bj ava2l
e As an Oracle Net keyword-value pair. For example:

(DESCR! PTI ON=(ADDRESS=(PROTOCOL=t ¢p) (HOST=nyser ver 111) (PORT=5521))
(CONNECT DATA=(SERVI CE_NAME=bj ava21)))

e As a connection name that is resolved through Directory Naming when the site is
configured for LDAP server discovery.

e As an entry in the t nsnanes. or a file.

If the TNS_ADM N environment variable is not set, and TNSNAMES entries such as i nst 1
are used, then the ORACLE_HOME variable must be set and the configuration files are
expected to be in the $ORACLE_HOME/ net wor k/ adni n directory.

Naming methods that require TNS_ADM N to locate configuration files continue to
work if the TNS_ADM N environment variable is set.

The ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of OCCI Client Code Library uses the
value of ORACLE_HOME.

The empty connect Stri ng parameter of createConnection() is supported by setting the
environment variable (TWO_TASK on Linux and UNIX, and LOCAL on Windows) to one of
the values described earlier.

¢ See Also:

Oracle Database Net Services Administrator's Guide for more information on
the connect descriptor.

Setting Environment Variables for OCCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of
Globalization Support, CORE, and error message files. An OCCI-only application
should not require ORACLE_HOME to be set. However, if it is set, it does not have an

ORACLE 2-6

Chapter 2
About Instant Client Light (English)

impact on OCCI's operation. OCCI always obtains its data from the Data Shared
Library. If the Data Shared Library is not available, only then is ORACLE_HOME used and a
full client installation is assumed. When set, ORACLE_HOME should be a valid operating
system path name that identifies a directory.

Environment variables ORA_NLS33, ORA NLS32, and ORA _NLS are ignhored in the Instant
Client mode.

In the Instant Client mode, if the ORA_TZFI LE variable is not set, then the larger, default,
timezlrg_n. dat file (where n is the version number of the file) from the Data Shared
Library is used. If using the smaller ti nezone_n. dat file from the Data Shared Library,
then set the ORA_TZFI LE environment variable to the name of the file without any
absolute or relative path names, as shown in Example 2-3.

If OCCI is not operating in the Instant Client mode because the Data Shared Library is
not available, the ORA TZFI LE variable, if set, names a complete path name.

If TNSNAMES entries are used, then TNS_ADM N directory must contain the TNSNAMVES
configuration files. If TNS_ADM N is not set, the ORACLE_HOVE/ net wor k/ adni n directory must
contain Oracle Net Services configuration files.

Example 2-3 How to set the ORA_TZFILE Environment Variable
On Linux and UNIX:

setenv ORA TZFILE tinmezone_n. dat

On Windows:

set ORA TZFILE tinmezone_n. dat

About Instant Client Light (English)

Instant Client Light (English) further reduces installation space requirements of the
client installation over Instant Client by another 63 MB. Specifically, the installation of
the Instant Client Light (English) shared library, | i boci i cus. so on Linux and UNIX and
oraociicusll.dll for Windows, occupies 4 MB on UNIX platforms, when the full Instant
Client shared library, libociei.so, occupies 67 MB of disk space.

Instant Client Light (English), as the name implies, is geared toward applications that
require English-only error messages and use either US7ASCI |, WESDEC, or a Unicode
characterset. Instant Client Light (English) also has no restrictions on the TERRI TORY
field of the NLS_LANG setting. As a result, applications that meet these characterset and
territory criteria can significantly reduce its footprint if they operate in the Instant Client
Light (English) environment.

This section includes the following topics:

* About Globalization Settings for Instant Client Light (English)
* About Using Instant Client Light (English)

* About Installing Instant Client Light (English)

About Globalization Settings for Instant Client Light (English)

Instant Client Light (English) supports the following character sets:

ORACLE .

Chapter 2
About Instant Client Light (English)

* Single-byte character sets include US7ASC! | , WESDEC, WVESMSW N1252, and
VE8| SCB859P1.

* Unicode character sets include UTF8, AL16UTF16, and AL32UTF8.

Instant Client Light (English) returns an error message if the application attempts to
use a character set or a national character set not listed here, either on the client or on
the database. The possible error messages, listed here, are only available in English:

* ORA-12734 Instant Client Light: unsupported client national character set
(NLS_LANG value set)

* ORA-12735 Instant Client Light: unsupported client character set (NLS_LANG
value set)

* ORA-12736 Instant Client Light: unsupported server national character set
(NLS_LANG value set)

* ORA-12737 Instant Client Light: unsupported server character set (NLS_LANG
value set)

When setting NLS_LANG parameters, use the following:

Anerican_territory.charset

where territory is any valid Territory that can be specified through NLS_LANG, and
charset is a character set listed in this section.

" See Also:

Oracle Database Globalization Support Guide for more information about NLS
settings.

About Using Instant Client Light (English)

To determine whether to operate in the Instant Client mode, OCCI applications look for
the Data Shared Library on the LD_LI BRARY_PATH for Linux and UNIX and PATH on
Windows. If this library is not found, OCCI attempts to load the Instant Client Light
(English) Data Shared Library, I i boci i cus. so for Linux and UNIX and oraoci i cus11.dl |
on Windows. If neither is found, a full ORACLE_HOME installation is assumed.

About Installing Instant Client Light (English)

ORACLE

Note that all Instant Client and Instant Client Light (English) files should always be
copied or installed into an empty directory to ensure that there are no incompatible
binaries in the final installation.

There are three ways to install Instant Client Light (English) as described in the
following topics:

* Downloading from Oracle Technology Network
e About Using the Client Admin Install

* Installing with Oracle Universal Installer

2-8

Chapter 2
About Using OCCI with Microsoft Visual C++

Downloading from Oracle Technology Network

When installing Instant Client Light (English) from Oracle Technology Network (OTN),
download and unzip the basi clite. zi p package instead of the usual basi c. zi p
package. You must ensure that the i nstantclient _12_1 directory is empty before
unzipping the libraries. The downloadable package is at the following URL on OTN:

Oracle Instant Cient

About Using the Client Admin Install

Instead of copying the Instant Client Data Shared Library from the ORACLE_HOVE/
instantclient directory, use the Instant Client Light (English) Data Shared Library,
l'ibociicus.so for Linux and UNI X and oraociicusll.dl | for Windows, from the
ORACLE_HOME/ i nstant client/light directory. In other words, the Instant Client directory
on the LD _LI BRARY_PATH for Linux and UNIX and PATH for Windows should contain the
smaller Instant Client Light (English) Data Shared Libraries.

Installing with Oracle Universal Installer

If the Instant Client option is selected from the Oracle Universal Installer (OUI), the full
Instant Client is installed by default, but the libraries for Instant Client Light (English)
are also installed. To operate in Instant Client Light (English) mode, the Instant Client
Light (English) Data Shared Library must replace the Instant Client library. Therefore,
you must place libociicus.so on the LD LI BRARY_PATH for Linux and UNIX, and
oraociicusll.dll on the PATHfor Windows. This design ensures that the Instant Client
Light (English) is not enabled by default.

The Instant Client Light (English) Data Shared Library is initially placed in the
ORACLE_HOME/ i nstantclient/light directory. You must move it to the base directory of
the installation, ORACLE_HOME i nst ant cl i ent, and remove the Instant Client Data Shared
Library in that directory.

Example 2-4 Installing Instant Client Light (English) through Oracle Universal
Installer

If the OUI has installed the Instant Client in ny_orai c_12_1 directory on the

LD_LI BRARY_PATH, then the following commands would ensure operation in the Instant
Client Light (English) mode. Note that to avoid use of incompatible binary files, all
Instant Client files should be copied and installed in an empty directory.

cd ny_oraic_12_1
rmlibociei.so
mv light/libociicus.so .

About Using OCCI with Microsoft Visual C++

ORACLE

The Oracle Database 12¢ Release 1 (12.1) includes OCCI libraries for developing
applications with Microsoft Visual C++ version 10.0 (.NET 2010 SP1 10.0), Microsoft
Visual C++ version 11.0 (.NET 2012 11.0), Microsoft Visual C++ version 12.0 ((NET
2013 12.0), and Intel 12.1 C compilers with Microsoft Visual Studio 2010 STLs.
Microsoft Visual C++ version 8.0 and version 9.0 are no longer supported.

Microsoft Visual C++ version 10.0 libraries are installed in the following default
locations:

2-9

ORACLE

Chapter 2
About Using OCCI with Microsoft Visual C++

ORACLE_BASE\ ORACLE_HOME\ bi n\ or aocci 12. dI |
ORACLE_BASE\ ORACLE_HOME\ oci \ I i b\ nsvc\oraocci 12.1i b

Copies of these two files are also installed under the directory:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vcl0

Microsoft Visual C++ 2012 OCCI libraries are installed in the following default location:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vell

When developing OCCI applications with MSVC++ 2012, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Microsoft Visual C++ 2013 OCCI libraries are installed in the following default location:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vcl2

When developing OCCI applications with MSVC++ 2013, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Applications should link with the appropriate OCCI library. You must ensure that the
corresponding DLL is located in the Windows system PATH.

Applications that link to MSVCRTD. DLL, a debug version of Microsoft C-Runtime, / Mdd
compiler flag, should link with these specific OCCI libraries: oraocci 12d. | i b and
oraocci 12d.dl | .

All Instant Client packages contain the versions of the OCCI DLLs that are compatible
with Microsoft Visual C++ version 10.0.

2-10

Accessing Oracle Database Using C++

This chapter describes the basics of developing C++ applications using Oracle C++
Call Interface (OCCI) to work with data stored in relational databases.

This chapter contains these topics:

About Connecting to a Database

About Pooling Connections

About Executing SQL DDL and DML Statements

About Types of SQL Statements in the OCCI Environment

About Executing SQL Queries

About Executing Statements Dynamically

About Using Larger Row Count and Error Code Range Data Types
About Committing a Transaction

Caching Statements

About Handling Exceptions

About Connecting to a Database

You have several different options for how your application connects to the database.

This section includes the following topics:

Creating and Terminating an Environment
Opening and Closing a Connection

About Support for Pluggable Databases

Creating and Terminating an Environment

All OCCI processing takes place inside the Envi ronnent class. An OCCI environment

ORACLE

provides application modes and user-specified memory management functions.

Example 3-1 illustrates how to create an OCCI environment.

All OCCI objects created with the creat exxx() methods (connections, connection
pools, statements) must be explicitly terminated. When appropriate, you must also

explicitly terminate the environment. Example 3-2 shows how you terminate an OCCI
environment.

In addition, an OCCI environment should have a scope that is larger than the scope of
the following object types created inside that environment: Agent , Byt es, Dat e, Message,
I nterval DS, I nterval YM Subscri ption, and Ti mest anp. This rule does not apply to BFi | e,
Bl ob, and O ob objects, as demonstrated in Example 3-3.

3-1

Chapter 3
About Connecting to a Database

If the application requires access to objects in the global scope, such as static or
global variables, these objects must be set to NULL before the environment is
terminated. In the preceding example, if b was a global variable, a b. set Nul | () call has
to be made before the t er mi nat eEnvi ronment () call.

You can use the mode parameter of the creat eEnvi ronnent () method to specify that
your application:

* Runs in a threaded environment (THREADED MUTEXED or THREADED UNMUTEXED)
» Uses objects (OBJECT)

The mode can be set independently in each environment.
Example 3-1 How to Create an OCCI Environment

Envi ronnent *env = Environnent:: createEnvironnent();

Example 3-2 How to Terminate an OCCI Environment

Envi ronnent : : t erni nat eEnvi ronnent (env);

Example 3-3 How to Use Environment Scope with Blob Objects

const string userNane = "HR';
const string password = "password";
const string connectString = "";

Environnent *env = Environnent::createEnvironnent();
{
Connection *conn = env->creat eConnecti on(
user Nane, password, connectString);
Statenent *stnt = conn->createSt at ement (
" SELECT bl obcol FROM nytable");
Resul t Set *rs = stnt->execut eQuery();
rs->next();
Blob b = rs->getBlob(1);
cout << "Length of BLOB: " << h.length();

stnt->cl oseResul t Set (rs);
conn->term nateStatenent (stnt);
env- >t er mi nat eConnecti on(conn);

}

Envi ronnent: : t erni nat eEnvi ronnent (env);

Opening and Closing a Connection

ORACLE

The Envi ronnent class is the factory class for creating Connect i on objects. You first
create an Envi ronnent instance, and then use it to enable users to connect to the
database through the creat eConnecti on() method.

Example 3-4 creates an environment instance and then uses it to create a database
connection for a database user HR with the appropriate password.

You must use the ter ni nat eConnecti on() method shown in the following code example
to explicitly close the connection at the end of the working session. In addition, the
OCCI environment should be explicitly terminated.

You should remember that all objects (Ref s, Bf i | es, Producer s, Consuner s, and So on)
created or named within a Connect i on instance must be within the inner scope of that
instance; the scope of these objects must be explicitly terminated before the

3-2

Chapter 3
About Pooling Connections

Connecti on is terminated. Example 3-5 demonstrates how to terminate the connection
and the environment.

Example 3-4 How to Create an Environment and then a Connection to the
Database

Envi ronnent *env
Connection *conn

Envi ronnent : : creat eEnvi ronment () ;
env->creat eConnecti on("HR', "password");

Example 3-5 How to Terminate a Connection to the Database and the
Environment

env- >t er m nat eConnect i on(conn);
Envi ronnent : : t erni nat eEnvi ronnent (env);

About Support for Pluggable Databases

The multitenant architecture enables an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appear to an
Oracle client as a separate database. A multitenant container database (CDB) is an
Oracle database that includes one or more pluggable databases (PDBSs).

OCCI clients can connect to a PDB using a service whose pluggable database
property has been set to the relevant PDB.

¢ See:

Oracle Database Administrator's Guide for more information about PDBs and
for more details about configuring the services to connect to various PDBs

¢ See:

Oracle Call Interface Programmer's Guide for information about restrictions
while working with PDBs

About Pooling Connections

ORACLE

This section discusses how to use the connection pooling feature of OCCI. The
information covered includes the following topics:

» About Using Connection Pools
* Using Stateless Connection Pooling

The primary difference between the two is that St at el essConnect i onPool s are used for
applications that do not depend on state considerations; these applications can benefit
from performance improvements available through use of pre-authenticated
connections.

3-3

Chapter 3
About Pooling Connections

About Using Connection Pools

For many middle-tier applications, connections to the database should be enabled for
a large number of threads. Because each thread exists for a relatively short time,
opening a connection to the database for every thread would be inefficient use of
connections, and would result in poor performance.

By employing the connection pooling feature, your application can create a small set
of connections available to a large number of threads, enabling you to use database
resources very efficiently.

This section includes the following topics:
e Creating a Connection Pool

e Creating Proxy Connections

Creating a Connection Pool

ORACLE

To create a connection pool, you use the createConnectionPool() method, as
demonstrated in Example 3-6.

The following parameters are used in Example 3-6:

* pool User Nane: The owner of the connection pool
* pool Password: The password to gain access to the connection pool

e connect String: The database name that specifies the database server to which the
connection pool is related

e minConn: The minimum number of connections to be opened when the connection
pool is created

e mxConn: The maximum number of connections that can be maintained by the
connection pool. When the maximum number of connections are open in the
connection pool, and all the connections are busy, an OCCI method call that
needs a connection waits until it gets one, unless set Error OnBusy() was called on
the connection pool

e incrConn: The additional number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is
implemented only when the total number of open connections is less than the
maximum number of connections that can be opened in that connection pool.

Example 3-7 demonstrates how you can create a connection pool.

You can also configure all these attributes dynamically. This lets you design an
application that has the flexibility of reading the current load (number of open
connections and number of busy connections) and tune these attributes appropriately.
In addition, you can use the set Ti meCut () method to time out the connections that are
idle for more than the specified time. The OCCI terminates idle connections
periodically to maintain an optimum number of open connections.

There is no restriction that one environment must have only one connection pool.
There can be multiple connection pools in a single OCCI environment, and these can
connect to the same or different databases. This is useful for applications requiring
load balancing.

3-4

Chapter 3
About Pooling Connections

Example 3-6 The createConnectionPool() Method

virtual ConnectionPool * createConnectionPool (
const string &pool User Nane,
const string &pool Password,
const string &connectString ="",
unsi gned int mnConn =0,
unsi gned int maxConn =1,
unsigned int incrConn =1) = 0;

Example 3-7 How to Create a Connection Pool

const string connectString = "";
unsigned int maxConn = 5;
unsigned int mnConn = 3;
unsigned int incrConn = 2;

ConnectionPool *connPool = env->creat eConnecti onPool (
pool User Nane,
pool Passwor d,
connect String,
m nConn,
maxConn,
i ncr Conn) ;

Creating Proxy Connections

If you authorize the connection pool user to act as a proxy for other connections, then
no password is required to log in database users who use connections in the
connection pool.

A proxy connection can be created by using either of the following two versions of the
createProxyConnection() method, demonstrated in Example 3-8.

or

Connect i onPool - >cr eat ePr oxyConnect i on(
const string &usernane,
string roles[],
int nunRol es,
Connection: : ProxyType proxyType = Connecti on:: PROXY_DEFAULT);

The following parameters are used in the previous method example:

* roles[]: The roles array specifies a list of roles to be activated after the proxy
connection is activated for the client

e Connection::ProxyType proxyType = Connecti on: : PROXY_DEFAULT: The enumeration
Connect i on: : ProxyType lists constants representing the various ways of achieving
proxy authentication. PROXY_DEFAULT is used to indicate that nane represents a
database username and is the only proxy authentication mode currently
supported.

Example 3-8 The createProxyConnection() Method

Connect i onPool - >cr eat ePr oxyConnect i on(
const string &usernane,
Connection: : ProxyType proxyType = Connection: : PROXY_DEFAULT);

ORACLE 3-5

Chapter 3
About Pooling Connections

Using Stateless Connection Pooling

ORACLE

Stateless Connection Pooling is specifically designed for use in applications that
require short connection times and do not deal with state considerations. The primary
benefit of Stateless Connection Pooling is increased performance, since the time
consuming connection and authentication protocols are eliminated.

Stateless Connection Pools create and maintain a group of stateless, authenticated
connection to the database that can be used by multiple threads. Once a thread
finishes using its connection, it should release the connection back to the pool. If no
connections are available, new ones are generated. Thus, the number of connections
in the pool can increase dynamically.

Some connections in the pool may be tagged with specific properties. The user may
request a default connection, set certain attributes, such as Globalization Support
settings, then tag it and return it to the pool. When a connection with same attributes is
needed, a request for a connection with the same tag can be made, and one of
several connections in the pool with the same tag can be reused. The tag on a
connection can be changed or reset.

Proxy connections may also be created and maintained through the Stateless
Connection Pooling interface.

Stateless connection pooling improves the scalability of the mid-tier applications by
multiplexing the connections. However, connections from a St at el essConnect i onPool
should not be used for long transactions, as holding connections for long periods leads
to reduced concurrency.

< Note:

e OCCI does not check for the correctness of the connection-tag pair. You
are responsible for ensuring that connections with different client-side
properties do not have the same tag.

* Your application should commit or rollback any open transactions before
releasing the connection back to the pool. If this is not done, Oracle
automatically commits any open transactions when the connection is
released.

There are two types of stateless connection pools:

* A homogeneous pool is one in which all the connections are authenticated with
the username and password provided at the time of creation of the pool.
Therefore, all connections have the same authentication context. Proxy
connections are not allowed in such pools.

» Different connections can be authenticated by different usernames in
heterogeneous pools. Proxy connections can also exist in heterogeneous pools,
provided the necessary privileges for creating them are granted on the server.
Additionally, heterogeneous pools support external authentication.

Example 3-9 illustrates a basic usage scenario for connection pools. Example 3-10
presents the usage scenario for creating and using a homogeneous stateless
connection pool, while Example 3-11 covers the use of heterogeneous pools.

3-6

ORACLE

Chapter 3
About Pooling Connections

Example 3-9 How to Use a StatelessConnectionPool

Because the pool size is dynamic, in response to changing user requirements, up to
the specified maximum number of connections. Assume that a stateless connection
pool is created with the following parameters:

e ninConn = 5
e incrConn = 2
e mxConn = 10
Five connections are opened when the pool is created:
e openConn = 5

Using get [AnyTagged] [Proxy] Connecti on() methods, the user consumes all 5 open
connections:

5

e openConn

* busyConn 5

When the user wants another connection, the pool opens 2 new connections and
returns one of them to the user.

e openConn = 7

* busyConn 6

The upper limit for the number of connections that can be pooled is maxConn specified
at the time of creation of the pool.

The user can also modify the pool parameters after the pool is created using the call to
set Pool Si ze() method.

If a heterogeneous pool is created, the i ncr Conn and mi nConn arguments are ignored.

Example 3-10 How to Create and Use a Homogeneous Stateless Connection
Pool

To create a homogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HOMOGENEOQUS mode of the Envi ronnent with
a createStatelessConnectionPool() call.

St at el essConnect i onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernane, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : HOVOGENEQUS) ;

2. Get a new or existing connection from the pool by calling the getConnection()
method.

Connection *conn=scp- >get Connecti on(tag);

During the execution of this call, the pool is searched for a connection with a
matching tag. If such a connection exists, it is returned to the user. Otherwise, an
untagged connection authenticated by the pool username and password is
returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call. It
returns a connection with a non-matching tag if neither a matching tag or NULL tag

3-7

ORACLE

Chapter 3
About Pooling Connections

connections are available. You should verify the tag returned by a getTag() call on
Connect i on.

Connection *conn=scp- >get AnyTaggedConnecti on(tag);
string tag=conn->get Tag();

Use the connection.

Release the connection to the St at el essConnect i onPool through the
releaseConnection() call.

scp- >rel easeConnection(conn, tag);

An empty tag, "", untags the Connecti on.

You have an option of retrieving the connection from the St at el essConnect i onPool
using the same t ag parameter value in a getConnection() call.

Connection *conn=scp->get Connecti on(tag);

Instead of returning the Connecti on to the St at el essConnect i onPool , you may want
to destroy it using the terminateConnection() call.
scp- >t erm nat eConnecti on(conn);

Destroy the pool through aterminateStatelessConnectionPool() call on the
Envi ronment object.

env- >t erm nat eSt at el essConnect i onPool (scp);

Example 3-11 How to Create and Use a Heterogeneous Stateless Connection
Pool

To create a heterogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1.

Create a stateless connection pool in the HETEROGENEQUS mode of the Envi r onnent
with a createStatelessConnectionPool() call.

St at el essConnecti onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernane, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : HETEROGENEQUS) ;

If you are enabling external authentication, you must also activate the
USES_EXT_AUTH mode in the createStatelessConnectionPool() call.

St at el essConnect i onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernanme, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : Pool Type(
St at el essConnect i onPool : : USES_EXT_AUTH|
St at el essConnect i onPool : : HETEROGENEQUS)) ;

Get a new or existing connection from the pool by calling the getConnection()
method of the St at el essConnect i onPool that is overloaded for the heterogeneous
pool option.

Connection *conn=scp->get Connecti on(usernane, passwd, tag);
During the execution of this call, the heterogeneous pool is searched for a
connection with a matching tag. If such a connection exists, it is returned to the

user. Otherwise, an appropriately authenticated untagged connection with a NULL
tag is returned.

3-8

Chapter 3
About Pooling Connections

Alternatively, you can obtain a connection with getAnyTaggedConnection() call
that has been overloaded for heterogeneous pools. It returns a connection with a
non-matching tag if neither a matching tag or NULL tag connections are available.
You should verify the tag returned by a getTag() call on Connecti on.

Connection *conn=scp- >get AnyTaggedConnecti on(username, passwd, tag);
string tag=conn->get Tag();

You may also want to use proxy connections by getProxyConnection() or
getAnyTaggedProxyConnection() calls on the St at el essConnect i onPool .

Connection *pconn = scp->get ProxyConnection(proxyName, roles{},
nuRol es, tag, proxyType);
Connection *pconn = scp->get AnyTaggedPr oxyConnecti on(proxyName, tag,
proxyType);

If the pool supports external authentication, use the following getConnection() call:
Connection *conn=scp->get Connection();
3. Use the connection.

4. Release the connection to the St at el essConnect i onPool through the
releaseConnection() call.

scp- >rel easeConnection(conn, tag);

An empty tag, "", untags the Connecti on.

You have an option of retrieving the connection from the St at el essConnect i onPool
using the same t ag parameter value in a getConnection() call.

Connection *conn=scp->get Connection(tag);

Instead of returning the Connecti on to the St at el essConnect i onPool , you may want
to destroy it using the terminateConnection() call.

scp- >t er mi nat eConnect i on(conn);

5. Destroy the pool through a terminateStatelessConnectionPool() call on the
Envi ronment object.

env- >t erm nat eSt at el essConnect i onPool (scp);

About Database Resident Connection Pooling

ORACLE

Enterprise-level applications must typically handle a high volume of simultaneous user
sessions that are implemented as persistent connections to the database. The
memory overhead of creating and managing these connections has significant
implications for the performance of the database.

Database Resident Connection Pooling solves the problem of too many persistent
connections by providing a pool of dedicated servers for handling a large set of
application connections, thus enabling the database to scale to tens of thousands of
simultaneous connections. It significantly reduces the memory footprint on the
database tier and increases the scalability of both the database and middle tiers.
Database Resident Connection Pooling is designed for architectures with multi-
process application servers and multiple middle tiers that cannot accommodate
connection pooling in the middle tier.

3-9

Chapter 3
About Pooling Connections

Database Resident Connection Pooling architecture closely follows the default
dedicated model for connecting to an Oracle Database instance; however, it removes
the overhead of assigning a specific server to each connection. On the server tier,
most connections are inactive at any given time, and each of these connections
consumes memory. Therefore, database systems that support high connection
volumes face the risk of quickly exhausting all available memory. Database Resident
Connection Pooling allows a connection to use a dedicated server, which combines an
Oracle server process and a user session. Once the connection becomes inactive, it
returns its resources to the pool, for use by similar connections.

In multithreaded middle tiers that are capable of comprehensive connection pooling,
the issue of unused connections is somewhat different. As the number of middle tiers
increases, each middle tier privately holds several connections to the database; these
connections cannot be shared with other middle tiers. Locating the connection pool on
the database instead enables the sharing of connections across similar clients.

Database Resident Connection Pooling supports password-based authentication,
statement caching, tagging, and Fast Application Notification. You can also use client-
side stateless connection pooling with the database resident connection pooling.

Note that clients that hold connections from the database resident connection pool are
persistently connected to a background Connection Broker process. The Connection
Broker implements the pool functionality and multiplexes inbound client connections to
a pool of dedicated server processes. Clients that do not use the connection pool use
dedicated server processes instead.

" See Also:

e Oracle Database Concepts for details about the architecture of Database
Resident Connection Pooling

e Oracle Database Administrator’s Guide for details on configuring Database
Resident Connection Pooling

e Oracle Database PL/SQL Packages and Types Reference, for the
DBMS_CONNECTI ON_POOL package

This section includes the following topics:
* Administrating Database Resident Connection Pools

» Using Database Resident Connection Pools

Administrating Database Resident Connection Pools

ORACLE

To implement database resident connection pooling, it must first be enabled on the
system by a user with SYSDBA privileges. See Example 3-12 for steps necessary to
initiate and maintain a database resident connection pool.

Note that in Oracle RAC configurations, the database resident connection pool starts
on all configured nodes. If the pool is not stopped, the starting configuration is
persistent across instance restarts: the pool is started automatically when the instance
comes up.

3-10

Chapter 3
About Pooling Connections

Example 3-12 How to Administer the Database Resident Connection Pools
A user with SYSDBA privileges must perform the next steps.

1. Connect to the database.
SQLPLUS / AS SYSDBA

2. [Optional] Configure the parameters of the database resident connection pool. The
default values of a pool are set in the following way:

DBMS_CONNECTI ON_POOL. CONFI GURE_POOL(' SYS_DEFAULT_CONNECTI ON_POOL'
M N=>10,
MAX=>200) ;

3. [Optional] Alter specific parameters of the database resident connection pool
without affecting other parameters.

DBVS_CONNECTI ON_POOL. ALTER PARAM ' SYS_DEFAULT_CONNECTI ON_POOL'
" | NACTI VI TY_TI MEQUT'
10);

4. Start the connection pool. After this step, the connection pool is available to all
qualified clients.

DBMS_CONNECTI ON_POOL. START_POOL(' SYS_DEFAULT_CONNECTI ON_POOL') ;
5. [Optional] Change the parameters of the database resident connection pool.

DBVS_CONNECTI ON_POOL. ALTER PARAM ' SYS_DEFAULT_CONNECTI ON_POOL'
" MAXSI ZE',
20);

6. [Optional] The configuration of the connection pool can be reset to default values.
DBMS_CONNECTI ON_POOL. RESTORE_DEFAULTS (' SYS_DEFAULT_CONNECTI ON_POOL') ;

7. Stop the pool. Note that pool information is persistent: stopping the pool does not
destroy the pool name and configuration parameters.

DBMS_CONNECTI ON_POCL. STOP_POOL() ;

Using Database Resident Connection Pools

ORACLE

To use database resident connection pooling, you must specify the connection class
and connection purity. If the application requests a connection that cannot be
potentially tainted with prior connection state, it must specify purity as NEW Oracle
recommends this approach if clients from different geographic locale settings share
the same database instance. When the application can use a previously used
connection, the purity should be set to SELF. In conjunction with connection class and
purity specifications, you can also use an application-specific tags to choose a
previously used connection that has the desired state. The default connection pool
name, as demonstrated in Example 3-12, is SYS_DEFAULT_CONNECTI ON_PQOQL.

This feature overloads StatelessConnectionPool Class and Environment Class
interfaces for retrieving a connection (get Connection() and get ProxyConnecti on()) by
adding the parameters that specify connection class and purity. Every connection
request outside of a client-side connection pool has a default purity of NEwW Connection
requests inside a client-side connection pool have a default purity of SELF.

3-11

ORACLE

Chapter 3
About Pooling Connections

Example 3-13 How to Get a Connection from a Database Resident Connection
Pool

connl = env->createConnection (/*usernane */"hr",
[*passwor d*/ "password", /* database*/ "instl_cnon",
/* connection class */"TESTCC', /* purity */Connection:: SELF);
stm1 = connl->createStatement ("sel ect count(*) fromenp");
rs=stnt 1- >execut eQuery();
while (rs->next())

{
int num= rs->getint(1);
sprintf((char *)tmp, "%!", num;
cout << tnp << endl;

}

stnt 1- >cl oseResul t Set (rs);
connl->term nateSt at enent (stnt1);
env->t er m nat eConnecti on(connl);

Example 3-14 Using Client-Side Pool and Server-Side Pool

St at el essConnect i onPool *scPool ;
QOCCl Connection *connl, *conn2;
scPool = env->createStat el essConnect i onPool
(pool User Nanme, pool Password, connect String, maxConn,
m nConn, incrConn, Statel essConnecti onPool : : HOMOGENEQUS) ;

connl= scPool - >get Connection(/* Connection class name */"TESTCC',
/* Purity */ Connection:: SELF);

/* or, for proxy coonnections */

conn2= scPool - >get ProxyConnection(/* username*/ "HR PROXY",

/*Connection class */"TESTCC', /* Purity */Connection:: SELF);

/* or, for getting a tagged connection */

conn3 = scPool - >get Connection(/*connection class */"TESTCC',
[*purity*/ Connection:: SELF,
[*tag*/ "TESTTAG');

/* Rel easing a tagged connection is done presently */

scPool - >rel easeConnection(conn3, "TESTTAG');

[* To specify purity as new */
connd = scPool - >get Connection(/* connection class */"TESTCC',/* purity of new */
Connection:: NEW;

/* CGet a connection using username and password */
conn5 = scPool - >get Connection (username, password,"TESTCC', Connection:: SELF);

/* Using rol es when asking for a connection */
conné = scPool - >get ProxyConnection (username, roles, nRoles,"TESTCC',
Connection:: SELF);

/* The other code continues as is...witing for clarity */

stmt 1=connl- >createStatenment ("INSERT I NTO enp values (:cl, :c2)");
stm1->setint(1, thrid);
stm1->setString(2, "Test");
int count = stntl->executeUpdate ();
connl->comit();
connl->terminateStatement (stntl);
/* Rel ease the connection */
scPool - >rel easeConnection (connl);

3-12

Chapter 3
About Executing SQL DDL and DML Statements

env- >t erm nat eSt at el essConnecti onPool (scPool);

About Executing SQL DDL and DML Statements

SQL is the industry-wide language for working with relational databases. In OCCI you
execute SQL commands through the St at enent class.

This section includes the following topics:

» Creating a Statement Object

» Creating a Statement Object that Executes SQL Commands
* Reusing the Statement Object

* Terminating a Statement Object

Creating a Statement Object

To create a St atenent object, call the creat eSt at enent () method of the Connecti on
object, as demonstrated in Example 3-15,

Example 3-15 How to Create a Statement

Statement *stnt = conn->createStatenent();

Creating a Statement Object that Executes SQL Commands

Once you have created a St at ement object, execute SQL commands by calling the
execute(), executeUpdate() , executeArrayUpdate() , or executeQuery() methods on
the Statenent object. These methods are used for the following purposes:

» execute() executes all nonspecific statement types

e executeUpdate() executes DML and DDL statements

e executeArrayUpdate() executes multiple DML statements
e executeQuery() executes a query

This section includes the following topics:

e Creating a Database Table

e Inserting Values into a Database Table

Creating a Database Table

ORACLE

Example 3-16 demonstrates how you can create a database table using the
executeUpdate() method.

Example 3-16 How to Create a Database Table Using the executeUpdate()
Method

st nt - >execut eUpdat e(" CREATE TABLE shoppi ng_basket
(item number VARCHAR2(30), quantity NUVBER(3))");

3-13

Chapter 3
About Executing SQL DDL and DML Statements

Inserting Values into a Database Table

Similarly, you can execute a SQL | NSERT statement by invoking the executeUpdate()
method, as demonstrated in Example 3-17.

The executeUpdate() method returns the number of rows affected by the SQL
statement.

" See Also:

$ORACLE_HOME/ r dbns/ deno for a code example that demonstrates how to perform
insert, select, update, and delete operations on table rows.

Example 3-17 How to Add Records Using the executeUpdate() Method

st nt - >execut eUpdat e(" | NSERT | NTO shoppi ng_basket
VALUES(' MANGO , 3)");

Reusing the Statement Object

You can reuse a St at ement object to execute SQL statements multiple times. To
repeatedly execute the same statement with different parameters, you should specify
the statement by the setSQL() method of the St at enent object, as demonstrated in
Example 3-18.

You may now execute this | NSERT statement as many times as required. If at a later
time you want to execute a different SQL statement, you simply reset the statement
object, as demonstrated in Example 3-19.

By using the setSQL() method, OCCI statement objects and their associated
resources are not allocated or freed unnecessarily. To retrieve the contents of the
current statement object at any time, use the getSQL() method.

Example 3-18 How to Specify a SQL Statement Using the setSQL() Method

st ->set SQL(" I NSERT | NTO shoppi ng_basket VALUES(:1,:2)");

Example 3-19 How to Reset a SQL Statement Using the setSQL() Method

st ->set SQL("SELECT * FROM shoppi ng_basket WHERE quantity >= :1");

Terminating a Statement Object

ORACLE

You should explicitly terminate and deallocate a St at enent object using the
terminateStatement() method, as demonstrated in Example 3-20.

Example 3-20 How to Terminate a Statement Using the terminateStatement()
Method

Connection::conn->term nat eSt at enent (Statenent *stnt);

3-14

Chapter 3
About Types of SQL Statements in the OCCI Environment

About Types of SQL Statements in the OCCI Environment

There are three types of SQL statements in the OCCI environment:

* About Standard Statements use SQL commands with specified values
» Using Parameterized Statements have parameters, or bind variables
» Using Callable Statements call stored PL/SQL procedures and functions

The methods of the Statement Class are subdivided into those applicable to all
statements, to parameterized statements, and to callable statements. Standard
statements are a superset of parameterized statements, and parameterized
statements are a superset of callable statements.

This section also includes the following topics:
* About Streamed Reads and Writes

e About Modifying Rows lteratively

About Standard Statements

Both Example 3-16 and Example 3-17 demonstrate standard statements in which
you must explicitly define the values of the statement. In Example 3-16, the CREATE
TABLE statement specifies the name of the table shoppi ng_basket . In Example 3-17, the
| NSERT statement stipulates the values that are inserted into the table, (' MANGO , 3).

Using Parameterized Statements

ORACLE

You can execute the same statement with different parameters by setting placeholders
for the input variables of the statement. These statements are referred to as
parameterized statements because they can accept parameter input from a user or a
program.

If you want to execute an | NSERT statement with different parameters, you must first
specify the statement by the setSQL() method of the St at enent object, as
demonstrated in Example 3-18.

You then call the set xxx() methods to specify the parameters, where xxx stands for the
type of the parameter. Provided that the value of the statement object is "1 NSERT | NTO
shoppi ng_basket VALUES(:1,:2)", as specified in Example 3-18, you can use the code in
Example 3-21 to invoke the setString() method and setint() method to input the values
of these types into the first and second parameters, and the executeUpdate() method
to insert the new row into the table.You can reuse the statement object by re-setting
the parameters and again calling the executeUpdate() method. If your application is
executing the same statement repeatedly, you should avoid changing the input
parameter types because this initiates a rebind operation, and affects application
performance.

Example 3-21 How to Use setxxx() Methods to Set Individual Column Values

stnt->setString(l, "Banana"); Il value for first paranmeter
stnt->setInt(2, 5); Il value for second paraneter
st nt - >execut eUpdat e() ; Il execute statenent

stm->setString(l, "Apple"); Il value for first paraneter

3-15

Chapter 3
About Types of SQL Statements in the OCCI Environment

stnt->setint(2, 9); I/ value for second paranmeter
st nt - >execut eUpdat e() ; Il execute statement

Using Callable Statements

PL/SQL stored procedures, as their name suggests, are procedures that are stored on
the database server for reuse by an application. In OCCI, a callable statement is a
call to a procedure which contains other SQL statements.

If you want to call a procedure count Groceri es(), that returns the quantity of a specified
kind of fruit, you must first specify the input parameters of a PL/SQL stored procedure
through the set XXX() methods of the Stat enent class, as demonstrated in

Example 3-22.

However, before calling a stored procedure, you must specify the type and size of any
QUT parameters by calling the registerOutParam() method, as demonstrated in
Example 3-23. For | N QUT parameters, use the set XXX() methods to pass in the
parameter, and get XXX() methods to retrieve the results.

You now execute the statement by calling the procedure:

st nt - >execut eUpdat e() ; /1l call the procedure

Finally, you obtain the output parameters by calling the relevant get xxx() method:

quantity = stnt->getint(2); /1 get value of the second (QUT) paraneter

Example 3-22 How to Specify the IN Parameters of a PLISQL Stored Procedure
stnt->set SQL("BEG N count Groceries(:1, :2); END:");

int quantity;
stm->setString(1l, "Apple"); [/ specify the first (IN) paraneter of procedure

Example 3-23 How to Specify OUT Parameters of a PL/SQL Stored Procedure

st ->regi sterCQut Param(2, Type::OCClIINT, sizeof(quantity));
/'l specify type and size of the second (OUT) paranmeter

This section includes the following topic: Using Callable Statements that Use Array
Parameters.

Using Callable Statements that Use Array Parameters

ORACLE

A PL/SQL stored procedure executed through a callable statement can have array of
values as parameters. The number of elements in the array and the dimension of
elements in the array are specified through the set Dat aBuf f er Array() method.

The following example shows the set Dat aBuf f er Array() method:

voi d set Dat aBuf fer Array(
unsi gned i nt param ndex,
void *buffer,
Type type,
ub4 arraySi ze,
ub4 *arraylLength,
sb4 el ement Si ze,
ub2 *el ement Lengt h,
sb2 *ind = NULL,
ub2 *rc = NULL);

3-16

Chapter 3
About Types of SQL Statements in the OCCI Environment

The following parameters are used in the previous method example:

e parani ndex: Parameter number

* buffer: Data buffer containing an array of values

e Type: Type of data in the data buffer

e arraySize: Maximum number of elements in the array
e arrayLength: Number of elements in the array

* elenentSize: Size of the current element in the array

e el enentLengt h: Pointer to an array of lengths. el enent Lengt h[i] has the current
length of the i th element of the array

e ind: Indicator information

* rc: Returns code

About Streamed Reads and Writes

ORACLE

OCCI supports a streaming interface for insertion and retrieval of very large columns
by breaking the data into a series of small chunks. This approach minimizes client-side
memory requirements. This streaming interface can be used with parameterized
statements such as SELECT and various DML commands, and with callable statements
in PL/SQL blocks. The data types supported by streams are BLOB, CLOB, LONG, LONG RAW
RAW and VARCHAR2.

Streamed data is of three kinds:

* A writable stream corresponds to a bind variable in a SELECT/DML statement or an
I Nargument in a callable statement.

* Areadable stream corresponds to a fetched column value in a SELECT statement
or an OUT argument in a callable statement.

* A bidirectional stream corresponds to an | N OUT bind variable.

Methods of the Stream Class support the stream interface.

The getStream() method of the Statement Class returns a stream object that supports
reading and writing for DML and callable statements:

» For writing, it passes data to a bind variable or to an I Nor | N QUT argument
* For reading, it fetches data from an QUT or | N QUT argument

The getStream() method of the ResultSet Class returns a stream object that can be
used for reading data.

The stat us() method of these classes determines the status of the streaming
operation.

This section includes the following topics:

e Binding Data in Streaming Mode; SELECT/DML and PL/SQL
e Fetching Data in Streaming Mode: PL/SQL

e About Fetching Data in Streaming Mode: ResultSet

e Working with Multiple Streams

3-17

Chapter 3
About Types of SQL Statements in the OCCI Environment

Binding Data in Streaming Mode; SELECT/DML and PL/SQL

To bind data in a streaming mode, follow these steps and review Example 3-24:

1. Create a SELECT/DM. or PL/SQL statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position that is used in the streaming mode. If the
bind position is a PL/SQL I Nor | N OUT argument type, indicate this by calling the
three-argument versions of these methods and setting the i nArg parameter to TRUE.

Note:

For set Bi narySt reanivode() , the si ze parameter is limited to 32KB (32,768
bytes).

3. Execute the statement; the status() method of the Statement Class returns
NEEDS_STREAM DATA.

Obtain the stream object through a getStream() method of the Statement Class.
Use writeBuffer() and writeLastBuffer() methods of the Stream Class to write data.

Close the stream with closeStream() method of the Statement Class.

N o g &

After all streams are closed, the status() method of the Statement Class changes
to an appropriate value, such as UPDATE_COUNT_AVAI LABLE.

Example 3-24 How to Bind Data in a Streaming Mode

Statenment *stnt = conn->createStat ement (

"Insert Into testtab(longcol) values (:1)"); //longcol is LONG type col um
st nt->set Char act er St reanvbde(1, 100000);
st nt - >execut eUpdat e() ;

Stream *instream = stnt->get Strean(1);
char buffer[1000];

instream >writeBuffer(buffer, len); /[lwite data
instream >witelastBuffer(buffer, len); Il repeat
stnt->cl oseStrean(instrean); [lstnt->status() is

/| UPDATE_COUNT_AVAI LABLE
Statenent *stnt = conn->createStatenment ("BEG N testproc(:1); END;");
[/if the argument type to testproc is INor INQUT then pass TRUE to

/[set Charact er Streamvbde or set Bi naryStreanibde
stnt->set Bi narySt rean\bde(1, 32768, TRUE);

Fetching Data in Streaming Mode: PL/SQL

ORACLE

To fetch data from a streaming mode, follow these steps and review Example 3-25:

1. Create a SELECT/DML statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position into which data is retrieved from the
streaming mode.

3-18

Chapter 3
About Types of SQL Statements in the OCCI Environment

3. Execute the statement; the status() method of the Statement Class returns
STREAM DATA_AVAI LABLE.

4. Obtain the stream object through a getStream() method of the Statement Class.
5. Use readBuffer() and readLastBuffer() methods of the Stream Class to read data.
6. Close the stream with closeStream() method of the Statement Class.

Example 3-25 How to Fetch Data in a Streaming Mode Using PL/SQL

Statenent *stnt = conn->createStatenent ("BEG N testproc(:1); END,");
/largument 1 is OUT type

st nt - >set Char act er St reamvbde(1, 100000);

st nt - >execute();

Stream *outarg = stnt->get Strean(1);
/luse Stream:readBuffer/readlLastBuffer to read data

About Fetching Data in Streaming Mode: ResultSet

About Executing SQL Queries and Example 3-28 provide an explanation of how to use
the streaming interface with result sets.

Working with Multiple Streams

ORACLE

If you must work with multiple read and write streams, you must ensure that the read
or write of one stream is completed before reading or writing on another stream. To
determine stream position, use the getCurrentStreamParam() method of the
Statement Class or the getCurrentStreamColumn() method of the ResultSet Class.
The status() method of the Stream Class returns READY_FOR _READ if there is data in the
stream available for reading, or it returns | NACTI VE if all the data has been read, as
described in Table 13-45. The application can then read the next streaming column.
Example 3-26 demonstrates how to read and write with two concurrent streams. Note
that it is not possible to use these streaming interfaces with the set Dat aBuf f er ()
method in the same St at enent and Resul t Set objects.

¢ See Also:

"About Application-Managed Data Buffering"

Example 3-26 How to Read and Write with Multiple Streams

Statement *stnt = conn->createSt at ement (
“Insert into testtab(longcoll, longcol2) values (:1,:2)");
//1ongcol 1 AND | ongcol 2 are 2 colums inserted in streaning node

st nt - >set Bi narySt r eamrvbde(1, 100000);
st nt - >set Bi narySt reamrvbde(2, 32768);
st - >execut eUpdat e() ;

Stream *col 1
Stream *col 2

stnt->get Strean(1);
stnt->get Strean(2);

col 1->witeBuffer(buffer, Ien); [/first stream
[/conplete witing coll stream

3-19

Chapter 3
About Types of SQL Statements in the OCCI Environment

col 1->witelastBuffer(buffer, len); [/finish first streamand nove to col 2
col 2->writeBuffer(buffer, len); //second stream

[lreading nultiple streanms

stm = conn->createStatenent("select longcol 1, Iongcol2 fromtesttab");
Resul t Set *rs = stnt->executeQuery();

rs->set Bi narySt reamvbde(1, 100000);

rs->set Bi narySt reamvbde(2, 100000);

while (rs->next())
{
Stream *s1 = rs->get Strean(1)
while (sl->status() == Stream :READY_FOR_READ)
{
s1->readBuf fer (buffer, size); I/ process
[/first streaming colum done
rs->cl oseStrean(sl);

/I move onto next col um. rs->getCurrentStreanCol um() returns 2

Stream *s2 = rs->get Strean(2)
while (s2->status() == Stream : READY_FOR_READ)
{
s2->readBuf fer (buffer, size); I/ process
//close the stream
rs->cl oseStrean(s2);

}

About Modifying Rows lteratively

While you can issue the execut eUpdat e method repeatedly for each row, OCCI provides
an efficient mechanism for sending data for multiple rows in a single network round-
trip. Use the addl teration() method of the St atement class to perform batch operations
that modify a different row with each iteration.

To execute | NSERT, UPDATE, and DELETE operations iteratively, you must:

e Set the maximum number of iterations

* Set the maximum parameter size for variable length parameters
This section includes the following topics:

e Setting the Maximum Number of Iterations

e Setting the Maximum Parameter Size

* Executing an lterative Operation

Setting the Maximum Number of Iterations

ORACLE

For iterative execution, first specify the maximum number of iterations that would be
done for the statement by calling the set MaxI terati ons() method:

St at ement - >set Maxl terations(int naxlterations);

You can retrieve the current maximum iterations setting by calling the
get Max!I terations() method.

3-20

Chapter 3
About Executing SQL Queries

Setting the Maximum Parameter Size

If the iterative execution involves variable-length data types, such as string and Byt es,
then you must set the maximum parameter size so that OCCI can allocate the
maximum size buffer:

St at ement - >set MaxPar antSi ze(i nt paraneterlndex, int maxParanSize);

You do not have to set the maximum parameter size for fixed-length data types, such
as Nunber and Dat e, or for parameters that use the set Dat aBuf f er () method.

You can retrieve the current maximum parameter size setting by calling the
get MaxPar ansi ze() method.

Executing an Iterative Operation

Once you have set the maximum number of iterations and (if necessary) the maximum
parameter size, iterative execution using a parameterized statement is straightforward,
as shown in Example 3-27.

Iterative execution is designed only for use in | NSERT, UPDATE and DELETE operations that
use either standard or parameterized statements. It cannot be used for callable
statements and queries. Note that the data type cannot be changed between
iterations. For example, if you use setInt () for parameter 1, then you cannot use

set String() for the same parameter in a later iteration

As shown in the example, you call the addi teration() method after each iteration
except the last, after which you invoke execut eUpdat e() method. Of course, if you did
not have a second row to insert, then you would not have to call the addl teration()
method or make the subsequent calls to the set xxx() methods.

In order to get the number of rows affected by each iteration in the DML execution in
Example 3-27, use setRowCountsOption() to enables the feature, followed by
getDMLRowCounts() to return the vector of the number of rows. For the total number
of rows affected, you can use the return value of executeUpdate() , or call
getUb8RowCount().

Example 3-27 How to Execute an Iterative Operation

st ->set SQL("I NSERT I NTO basket tab VALUES(:1, :2)");

stm->setString(l, "Apples"); // value for first paraneter of first row
stnt->setint(2, 6); /1 value for second paraneter of first row
stnt->addl teration(); /1 add the iteration

stm->setString(l, "Oranges"); // value for first parameter of second row
stnt->setint(1, 4); /1 value for second paraneter of second row

st nt - >execut eUpdat e() ; /1 execute statenment

About Executing SQL Queries

SQL query statements allow your applications to request information from a database
based on any constraints specified. A result set is returned by the query.

This section includes the following topics:

ORACLE 3-21

Chapter 3
About Executing SQL Queries

* Using the Result Set
» About Specifying the Query
* About Optimizing Performance by Setting Prefetch Count

Using the Result Set

ORACLE

Execution of a database query puts the results of the query into a set of rows called
the result set. In OCCI, a SQL SELECT statement is executed by the execut eQuery
method of the Stat ement class. This method returns an Resul t Set object that represents
the results of a query.

Resul t Set *rs = stnt->execut eQuery("SELECT * FROM basket _tab");

Once you have the data in the result set, you can perform operations on it. For
example, suppose you wanted to print the contents of this table. The next () method of
the Resul t Set is used to fetch data, and the get xxx() methods are used to retrieve the
individual columns of the result set, as shown in the following code example:

cout << "The basket has:" << endl;

while (rs->next())

{ string fruit = rs->getString(1); /1 get the first colum as string
int quantity = rs->getint(2); /1 get the second colum as int
cout << quantity << " " << fruit << endl;

}

The next () and status() methods of the Resul t Set class return St at us, as defined in
Table 13-38.

If data is available for the current row, then the status is DATA AVAI LABLE. After all the
data has been read, the status changes to END_OF_FETCH. If there are any output
streams to be read, then the status is STREAM DATA AVAI LABLE, until all the streamed
data are read successfully.

Example 3-28 illustrates how to fetch streaming data into a result set, while section
"About Streamed Reads and Writes" provides the general background.

Example 3-28 How to Fetch Data in Streaming Mode Using ResultSet

char buffer[4096];
Resul t Set *rs = stnt->execut eQuery

(" SELECT col 1, col 2 FROM tabl WHERE col 1 = 11");
rs->set Charact er St reanrvbde(2, 10000);

while (rs->next ())

{

unsigned int length = 0;

unsigned int size = 500;

Stream *stream = rs->get Stream (2);

while (stream>status () == Stream : READY_FOR_READ)

{

length += stream>readBuffer (buffer +length, size);

}

cout << "Read " << length << " bytes into the buffer" << endl;
}

3-22

Chapter 3
About Executing Statements Dynamically

About Specifying the Query

The | N bind variables can be used with queries to specify constraints in the WHERE
clause of a query. For example, the following program prints only those items that
have a minimum quantity of 4:

st ->set SQL("SELECT * FROM basket _tab WHERE quantity >= :1");
int mnimmuantity = 4;

stmt->setlnt(1, mninmmuantity); Il set first paranmeter
Result Set *rs = stnt->executeQuery();

cout << "The basket has:" << endl;

while (rs->next())
cout << rs->getint(2) << " " << rs->getString(1l) << endl;

About Optimizing Performance by Setting Prefetch Count

Although the Resul t Set method retrieves data one row at a time, the actual fetch of
data from the server need not entail a network round-trip for each row queried. To
maximize the performance, you can set the number of rows to prefetch in each round-
trip to the server.

You effect this either by setting the number of rows to be prefetched through the
set Pref et chRowCount () method, or by setting the memory size to be used for
prefetching through the set Pref et chMenorySi ze() method.

If you set both of these attributes, then the specified number of rows are prefetched
unless the specified memory limit is reached first. If the specified memory limit is
reached first, then the prefetch returns as many rows as can fit in the memory space
defined by the call to the set Pref et chMenor ySi ze() method.

By default, prefetching is turned on and the database fetches an extra row all the time.
To turn prefetching off, set both the prefetch row count and memory size to 0.

Prefetching is not in effect if LONG, LOB or Opaque Type columns (such as XM.Type) are
part of the query.

About Executing Statements Dynamically

ORACLE

When you know that you must execute a DML operation, you use the execut eUpdat e
method. Similarly, when you know that you must execute a query, you use
execut eQuery() method.

If your application must allow for dynamic events and you cannot be sure of which
statement must be executed at run time, then OCCI provides the execut e() method.
Invoking the execut e() method returns one of the following statuses:

« UNPREPARED

PREPARED

e RESULT_SET_AVAILABLE

« UPDATE_COUNT_AVAILABLE
* NEEDS_STREAM_DATA

« STREAM_DATA_AVAILABLE

3-23

Chapter 3
About Executing Statements Dynamically

While invoking the execut e() method returns one of these statuses, you can further
'interrogate’ the statement by using the st atus() method.

Statement stnt = conn->createStatement();
Statement::Status status = stnt->status(); /1l status is UNPREPARED

stnt->set SQL("select * fromenp");
status = stnt->status(); Il status is PREPARED

If a statement object is created with a SQL string, then it is created in a PREPARED state.
For example:

Statement stnt = conn->createStatenment("insert into foo(id) values(99)");
Statement:: Status status = stnt->status();// status is PREPARED
status = stnt->execute(); I/ status is UPDATE_COUNT_AVAI LABLE

When you set another SQL statement on the Statement, the status changes to
PREPARED. For example:

stnt->set SQL("sel ect * fromenp"); Il status is PREPARED
status = stnt->execute(); Il status is RESULT_SET_AVAI LABLE

This section includes the following topic: About Statement Status Definitions.

About Statement Status Definitions

This section describes the possible values of St at us related to a statement object:

« UNPREPARED

* PREPARED

* RESULT_SET_AVAILABLE

« UPDATE_COUNT_AVAILABLE
* NEEDS_STREAM_DATA

« STREAM_DATA_AVAILABLE

UNPREPARED

PREPARED

ORACLE

If you have not used the set SQL() method to attribute a SQL string to a statement
object, then the statement is in an UNPREPARED state.

Statement stnt = conn->createStatement();
Statement::Status status = stnt->status(); // status is UNPREPARED

If a Statement is created with an SQL string, then it is created in a PREPARED state. For
example:

Statenent stnt = conn->createStatenent ("I NSERT | NTO denp_tab(id) VALUES(99)");
Statement::Status status = stm->status(); /] status is PREPARED

Setting another SQL statement on the St at ement changes the status to PREPARED. For
example:

status = stnt->execute(); /1l status is UPDATE_COUNT_AVAI LABLE
stnt->set SQL("SELECT * FROM deno_tab"); // status is PREPARED

3-24

Chapter 3
About Executing Statements Dynamically

RESULT_SET_AVAILABLE

A status of RESULT_SET_AVAI LABLE indicates that a properly formulated query has been
executed and the results are accessible through a result set.

When you set a statement object to a query, it is PREPARED. Once you have executed
the query, the statement changes to RESULT_SET_AVAI LABLE. For example:

stnt->set SQL(" SELECT * from EMP"); Il status is PREPARED
status = stnt->execute(); /1 status is RESULT_SET_AVAI LABLE

To access the data in the result set, issue the following statement:

Resul t Set *rs = Statenent->getResult Set();

UPDATE_COUNT_AVAILABLE

When a DDL or DML statement in a PREPARED state is executed, its state changes to
UPDATE_COUNT_AVAI LABLE, as shown in the following code example:

Statenent stnt = conn->createStatenent ("I NSERT | NTO deno_tab(id) VALUES(99)");
Statemt:: Status status = stnt->status(); // status is PREPARED
status = stnt->execute(); Il status is UPDATE_COUNT_AVAI LABLE

This status refers to the number of rows affected by the execution of the statement. It
indicates that:

* The statement did not include any input or output streams.
* The statement was not a query but either a DDL or DML statement.
You can obtain the number of rows affected by issuing the following statement:

st nt - >get Ub8RowCount () ;

Note that a DDL statement results in an update count of zero (0). Similarly, an update
that does not meet any matching conditions also produces a count of zero (0). In such
a case, you cannot determine the kind of statement that has been executed from the
reported status.

NEEDS_STREAM_DATA

ORACLE

If there are any output streams to be written, the execute does not complete until all
the stream data is completely provided. In this case, the status changes to
NEEDS_STREAM DATA to indicate that a stream must be written. After writing the stream,
call the status() method to find out if more stream data should be written, or whether
the execution has completed.

In cases where your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be written.

If you are performing an iterative or array execute, the getCurrentStreamlteration()
method reveals to which iteration the data is to be written.

Once all the stream data has been processed, the status changes to either
RESULT_SET_AVAI LABLE or UPDATE_COUNT_AVAI LABLE.

3-25

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

STREAM_DATA_AVAILABLE

This status indicates that the application requires some stream data to be read in QUT
or | N QUT parameters before the execution can finish. After reading the stream, call the
st at us method to find out if more stream data should be read, or whether the execution
has completed.

In cases in which your statement includes multiple streamed parameters, use the
get Current St reanPar an{) method to discover which parameter must be read.

If you are performing an iterative or array execute, then the
getCurrent Stream terati on() method reveals from which iteration the data is to be
read.

Once all the stream data has been handled, the status changes to
UPDATE_COUNT _REMOVE_AVAI LABLE.

The Resul t Set class also has readable streams and it operates similar to the readable
streams of the St at ement class.

About Using Larger Row Count and Error Code Range Data

Types

Starting with Oracle Database Release 12c¢, Oracle C++ Call Interface supports larger
row count and error code range data types. The method that returns the larger row
count is getUb8RowCount() in Statement Class.

This has two benefits:

» Applications running a statement that affects more than UBAMAXVAL rows may
now see the precise value for the number of rows affected.

» Oracle Database can correctly return newer error codes (above ORA- 65535) to
application clients, starting with Oracle Database Release 12c. Older clients
receive an informative message that indicates error code overflow.

This section contains the following topics:
e "Using Larger Row Count in SELECT Operations"
* "Using Larger Row Count in INSERT, UPDATE, and DELETE Operations"

Using Larger Row Count in SELECT Operations

ORACLE

Method getUb8RowCount() returns the number of rows processed after executing the
SELECT statement, as ub8 type. The examples in this section illustrate how to use
getUb8RowCount() in various SELECT scenarios.

e Inthe simplest scenario in Example 3-29, the number of rows affected is the same
as the number fetched.

e When the prefetch option is set, as demonstrated by Example 3-30, it includes the
number of rows prefetched.

e When using an array fetching mechanism in Example 3-31 by invoking the
setDataBuffer() interface, getUb8RowCount() returns the total number of rows
fetched into user buffers, independent of prefetch option.

3-26

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

Example 3-29 SELECT with getUb8RowCount(); simple
The number of rows affected is the number of rows already fetched.

oraub8 | argeRowCount = 0;

Statement *stnt = conn->createStatenment (" SELECT sal ary FROM enpl oyees");
Resul t Set *rs = stnt->executeQuery ();

rs->next();

| ar geRowCount = st it - >get Ub8RowCount () ;

Example 3-30 SELECT with getUb8RowCount(); with prefetch

Here the number of rows affected is the same as those fetched in previous iterations,
plus the number of rows prefetched in the next () call.

oraub8 | argeRowCount = 0;

Statement *stnt = conn->createStatenment (" SELECT sal ary FROM enpl oyees");
stm -> setPrefetchRowCount (prefetch_count);

Resul t Set *rs = stnt->executeQuery ();

rs->next();

| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-31 SELECT with getUb8RowCount(); array fetch with prefetch

Here number of rows affected, value of | ar geRowCount , is the number of rows fetched
into user buffer in previous iterations, plus the number of rows fetched in either
next (max) or next () call. It is independent of the value of prefetch.

oraub8 | argeRowCount = 0;

Statement *stnt=conn->creat eSt at ement (" SELECT col 1 FROM t abl e1");
int mx = 20;

int prefetch_count = 10;

ub2 I engt hCL[max];

ub4 ci[mex];
for (i =0; i <mx, ++) {
cl[i] =0
lengthCl[i] = sizeof (cl[i]);
}

stm -> setPrefet chRowCount (prefetch_count);

Resul t Set *rs = stnt->executeQuery();

rs->setDataBuffer (1, cl, OCCIINT, sizeof (ub4), lengthCl);
rs->next (mx);

| ar geRowCount = st nt - >get Ub8RowCount () ;

Using Larger Row Count in INSERT, UPDATE, and DELETE

Operations

ORACLE

For | NSERT, UPDATE, and DELETE statements, method getUb8RowCount() returns the
number of rows processed by the most recent statement.

Example 3-32 INSERT with getUb8RowCount(); simple
The value of | ar geRowCount is the number of rows inserted, which is 1.

oraub8 | argeRowCount = 0;
Statement *stnt = conn->createStatement ("I NSERT INTO tablel values (:1)");
stnt - >set Nunber (1, 100);

3-27

Chapter 3
About Committing a Transaction

st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-33 INSERT with getUb8RowCount(); with iterations
Here the value of | ar geRowCount is equal to nax.

int max;

oraub8 | argeRowCount = 0;

Statement *stnt=conn->createStatenent ("I NSERT INTO tablel values (:1)");
stnt->set Maxlterations (max);

for(i =0; i < mx-1; i++) {
stnt->set Nunmber (1, 100);
stnt->addlteration ();

}

stnt->set Nunber (1, 100);
st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-34 UPDATE with getUb8RowCount()
Here the value of | ar geRowCount is the number of rows updated.

oraub8 | argeRowCount = 0;
Statenment *stnt=conn- >creat eSt at enent (
"UPDATE tablel SET COL1 = COL1+100 WHERE COL1=:1");
stnt->set Nunber (1, 200);
st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

About Committing a Transaction

All SQL DML statements are executed in the context of a transaction. An application
causes the changes made by these statement to become permanent by either
committing the transaction, or undoing them by performing a rollback. While the SQL
COW T and ROLLBACK statements can be executed with the execut eUpdat e() method, you
can also call the Connection:: comit() and Connection::rol | back() methods.

If you want the DML changes that were made to be committed immediately, you can
turn on the auto commit mode of the St at enent class by issuing the following
statement:

St at ement : : set Aut oCommi t (TRUE) ;

Once auto commit is in effect, each change is automatically made permanent. This is
similar to issuing a commit right after each execution.

To return to the default mode, auto commit off, issue the following statement:

St atement : : set Aut oConmi t (FALSE) ;

Caching Statements

The statement caching feature establishes and manages a cache of statements within
a session. It improves performance and scalability of application by efficiently using
prepared cursors on the server side and eliminating repetitive statement parsing.

ORACLE 3-28

ORACLE

Chapter 3
Caching Statements

Statement caching can be used with connection and session pooling, and also without
connection pooling. Please review Example 3-35 and Example 3-36 for typical usage
scenarios.

Example 3-35 Statement Caching without Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
without use of connection pools:

1.

6.

Create a Connect i on by making a createConnection() call on the Envi r onnent
object.

Connection *conn = env->creat eConnecti on(
usernane, password, connecstr);

Enable statement caching on the Connecti on object by using a nonzero si ze
parameter in the setStmtCacheSize() call.

conn- >set St nt CacheSi ze(10) ;
Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or
disables statement caching if the si ze parameter is set to zero.

Create a Stat ement by making a createStatement() call on the Connecti on object;
the Statenent is returned if it is in the cache, or a new St at ement with a NULL tag is
created for the user.

Statenent *stnmt = conn->createStatenment(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);

Use the statement to execute SQL commands and obtain results.

Return the statement to cache.

conn->terni nateSt at ement (stnt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

st nt - >di sabl eCachi ng();
conn- >t erm nat eSt at ement (stnt);

If you must verify whether a statement has been cached, issue an isCached() call
on the Connect i on object.

You can choose to tag a statement at release time and then reuse it for another
statement with the same tag. The tag is used to search the cache. An untagged
statement, where tag is NULL, is a special case of a tagged statement. Two
statements are considered different if they only differ in their tags, and if only one
of them is tagged.

Terminate the connection.

Example 3-36 Statement Caching with Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
with connection pooling.

3-29

ORACLE

Chapter 3
Caching Statements

Statement caching is enabled only for connection created after the set St nt CacheSi ze()

call.

If statement cac.hing is not enabled at the pool level, it can still be implemented for
individual connections in the pool.

1.

Create a Connecti onPool by making a call to the createConnectionPool() of the
Envi ronment object.

ConnectionPool *conPool = env->creat eConnecti onPool (
username, password, connecstr,
m nConn, maxConn, incrConn);

If using a St at el essConnect i onPool , call createStatelessConnectionPool() instead.
Subsequent operations are the same for Connecti onPool and
St at el essConnect i onPool objects.

Statel ess ConnectionPool *conPool = env->createStatel essConnectionPool (
username, password, connecstr,
m nConn, maxConn, incrConn, node);

Enable statement caching for all Connect i ons in the Connecti onPool by using a
nonzero si ze parameter in the setStmtCacheSize() call.

conPool - >set St nt CacheSi ze(10) ;
Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or
disables statement caching if the si ze parameter is set to zero.

Get a Connect i on from the pool by making a createConnection() call on the
Connect i onPool object; the Statenent is returned if it is in the cache, or a new
Stat enent with a NULL tag is created for the user.

Connection *conn = conPool - >creat eConnecti on(user nane, password, connecstr);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);

Create a Stat enent by making a createStatement() call on the Connecti on object;
the Statenent is returned if it is in the cache, or a new Stat ement with a NULL tag is
created for the user.

Statenent *stmt = conn->createStatenment(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);
Use the statement to execute SQL commands and obtain results.
Return the statement to cache.

conn->terninateStatement (stnt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

st nt - >di sabl eCachi ng() ;
conn- >t erm nat eSt at enent (stnt);

3-30

Chapter 3
About Handling Exceptions

If you must verify whether a statement has been cached, issue an isCached() call
on the Connect i on object.

7. Release the connection terminateConnection().

conPool - >t er m nat eConnect i on(conn);

About Handling Exceptions

ORACLE

Each OCCI method can generate an exception if it is not successful. This exception is
of type SQLExcepti on. OCCI uses the C++ Standard Template Library (STL), so any
exception that can be thrown by the STL can also be thrown by OCCI methods.

The STL exceptions are derived from the standard exception class. The
exception: : what () method returns a pointer to the error text. The error text is
guaranteed to be valid during the catch block

The SQLExcept i on class contains Oracle specific error numbers and messages. It is
derived from the standard exception class, so it too can obtain the error text by using
the exception: : what () method.

In addition, the SQLExcepti on class has two methods it can use to obtain error
information. The get Error Code() method returns the Oracle error number. The same
error text returned by exception: : what () can be obtained by the get Message() method.
The get Message() method returns an STL string so that it can be copied like any other
STL string.

Based on your error handling strategy, you may choose to handle OCCI exceptions
differently from standard exceptions, or you may choose not to distinguish between the
two.

If you decide that it is not important to distinguish between OCCI exceptions and
standard exceptions, your catch block might look similar to the following:

catch (exception &excp)

{
}

cerr << excp.what() << endl;

Should you decide to handle OCCI exceptions differently than standard exceptions,
your catch block might look like the following:

catch (SQ.Exception &sql Excp)
{

}
catch (exception &excp)

{
}

cerr <<sqgl Excp.getErrorCode << ": " << sql Excp. get Error Message() << endl;

cerr << excp.what() << endl;

In the preceding catch block, SQL exceptions are caught by the first block and non-
SQL exceptions are caught by the second block. If the order of these two blocks were
to be reversed, SQL exceptions would never be caught. Since SQLExcept i on is derived
from the standard exception, the standard exception catch block would handle the
SQL exception as well.

3-31

Chapter 3
About Handling Exceptions

¢ See Also:

» Description of a special feature for handling errors that arise during batch
updates, described in section "Modifying Rows lteratively" in Optimizing
Performance of C++ Applications

e Oracle Database Error Messages Referencefor more information about
Oracle error messages.

This section includes the following topic: About Handling Null and Truncated Data.

About Handling Null and Truncated Data

In general, OCCI does not cause an exception when the data value retrieved by using
the get xxx() methods of the Resul t Set class or Stat enent class is NULL or truncated.
However, this behavior can be changed by calling the set Error OnNul | () method or

set Error OnTruncat e() method. If the set Errorxxx() methods are called with
causeExcept i on=TRUE, then an SQLExcept i on is raised when a data value is NULL or
truncated.

The default behavior is not to raise an SQLExcepti on. A column or parameter value can
also be NULL, as determined by a call to i sNul | () for a Resul t Set or Stat ement object
returning TRUE:

rs->i sNul | (col uml ndex);
st ->i sNul | (parant ndex) ;

If the column or parameter value is truncated, it also returns TRUE as determined by a
i sTruncated() call on a Resul t Set or St atement object:

rs->i sTruncat ed(col uml ndex) ;
st nt->i sTruncat ed(par am ndex) ;

For data retrieved through the set Dat aBuf f er () method and set Dat aBuf f er Array()
method, exception handling behavior is controlled by the presence or absence of
indicator variables and return code variables as shown in Table 3-1, Table 3-2, and
Table 3-3.

Table 3-1 Normal Data - Not Null and Not Truncated

|
Return Code Indicator - not provided Indicator - provided

Not provided error = 0 error =0

indicator = 0

Provided error = 0 error =0

return code = 0 indicator = 0
return code = 0

ORACLE 3-32

ORACLE

Table 3-2 Null Data

Chapter 3
About Handling Exceptions

Indicator - provided

Return Code Indicator - not provided
Not provided SQLEXcept i on

error = 1405
Provided SQLEXcept i on

error = 1405

return code = 1405

error =0
indicator = -1

error =0
indicator = -1
return code = 1405

Table 3-3 Truncated Data

Indicator - provided

Return Code Indicator - not provided
Not provided SQLExcepti on
error = 1406

Provided error = 24345

return code = 1405

SQLException
error = 1406
indicator = data_len

error = 24345
indicator = data_len
return code = 1406

In Table 3-3, dat a_| en is the actual length of the data that has been truncated if this
length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to - 2.

3-33

Object Programming

This chapter provides information on how to implement object-relational programming
using the Oracle C++ Call Interface (OCCI).

This chapter contains these topics:

* Overview of Object Programming

e About Working with Objects in C++ with OCCI

* About Representing Objects in C++ Applications
* About Developing a C++ Application using OCCI
e Migrating C++ Applications to Oracle Using OCCI
* Overview of Associative Access

* Overview of Navigational Access

e Overview of Complex Object Retrieval

* Working with Collections

* About Using Object References

* About Deleting Objects from the Database

* About Type Inheritance

A Sample OCCI Application

Overview of Object Programming

OCCI supports both the associative and navigational style of data access.
Traditionally, third-generation language (3GL) programs manipulate data stored in a
database by using the associative access based on the associations organized by
relational database tables. In associative access, data is manipulated by executing
SQL statements and PL/SQL procedures. OCCI supports associative access to
objects by enabling your applications to execute SQL statements and PL/SQL
procedures on the database server without incurring the cost of transporting data to
the client.

Object-oriented programs that use OCCI can also make use of nhavigational access
that is a key aspect of this programming paradigm. Object relationships between
objects are implemented as references (REFs). Typically, an object application that
uses navigational access first retrieves one or more objects from the database server
by issuing a SQL statement that returns REFs to those objects. The application then
uses those REFs to traverse related objects, and perform computations on these other
objects as required. Navigational access does not involve executing SQL statements,
except to fetch the references of an initial set of objects. By using the OCCI APIs for
navigational access, your application can perform the following functions on Oracle
objects:

» Creating, accessing, locking, deleting, copying and flushing objects

ORACLE 4-1

Chapter 4
About Working with Objects in C++ with OCCI

* Getting references to objects and navigating through the references

This chapter gives examples that show you how to create a persistent object, access
an object, modify an object, and flush the changes to the database server. It discusses
how to access the object using both navigational and associative approaches.

About Working with Objects in C++ with OCCI

Many of the programming principles that govern a relational OCCI applications are
identical for object-relational applications. An object-relational application uses the
standard OCCI calls to establish database connections and process SQL statements.
The difference is that the SQL statements that are issued retrieve object references,
which can then be manipulated with OCCI object functions. An object can also be
directly manipulated as a value (without using its object reference).

Instances of an Oracle type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether they are
referenced by way of an object identifier.

This section discusses the following topics:

* About Persistent Objects
* About Transient Objects

e About Values

About Persistent Objects

ORACLE

A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. There are
two types of persistent objects:

- A standalone instance is stored in a database table row, and has a unique object
identifier. An OCCI application can retrieve a reference to a standalone object, pin
the object, and navigate from the pinned object to other related objects.
Standalone objects may also be referred to as referenceable objects.

It is also possible to select a persistent object, in which case you fetch the object
by value instead of fetching it by reference.

 An embedded instance is not stored in a database table row, but rather is
embedded within another object. Examples of embedded objects are objects
which are attributes of another object, or objects that exist in an object column of a
database table. Embedded objects do not have object identifiers, and OCCI
applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

Users do not have to explicitly delete persistent objects that have been materialized
through references.

Users should delete persistent objects created by application when the transactions
are rolled back

4-2

Chapter 4
About Working with Objects in C++ with OCCI

The SQL examples, Example 4-1 and Example 4-2, demonstrate the difference
between these two types of persistent objects.

Example 4-1 Creating Standalone Objects

Objects that are stored in the object table person_t ab are standalone objects. They
have object identifiers and can be referenced. They can be pinned in an OCCI
application.

CREATE TYPE person_t AS OBJECT
(name var char 2(30),
age nunber (3));
CREATE TABLE person_tab OF person_t;

Example 4-2 Creating Embedded Objects

Objects which are stored in the manager column of the depart nent table are embedded
objects. They do not have object identifiers, and they cannot be referenced. Therefore,
they cannot be pinned in an OCCI application, and they also never have to be
unpinned. They are always retrieved into the object cache by value.

CREATE TABLE depart nent
(dept no nunber,
deptnanme varchar2(30),
manager person_t);

The Array Pin feature allows a vector of references to be dereferenced in one round-
trip to return a vector of the corresponding objects. A new global method,

pi nVect or Of Ref s() , takes a vector of Ref s and populates a vector of PQvj ect s in a single
round-trip, saving the cost of pinning n- 1 references in n- 1 round-trips.

About Transient Objects

ORACLE

A transient object is an instance of an object type. Its lifetime cannot exceed that of the
application. The application can also delete a transient object at any time.

The Object Type Translator (OTT) utility generates two oper at or new methods for each
C++ class, as demonstrated in Example 4-3Example 4-3:

Example 4-4 demonstrates how to dynamically create a transient object. Transient
objects cannot be converted to persistent objects. Their role is fixed at the time they
are instantiated, and it is your responsibility to free memory by deleting transient
objects.

A transient object can also be created on the stack as a local variable, as
demonstrated in Example 4-5. The latter approach guarantees that the transient object
is destroyed when the scope of the variable ends.

¢ See Also:

e Oracle Database Conceptsfor more information about objects

4-3

Chapter 4
About Representing Objects in C++ Applications

Example 4-3 Two Methods for Operator new() in the Object Type Translator
Utility

class Person : public PObject {

public:
dvoi d *operator new(size_t size); /'l creates transient instance
dvoi d *operator new(size_t size, Connection &conn, string table);
/'l creates persistent instance
}

Example 4-4 How to Dynamically Create a Transient Object

Person *p = new Person();

Example 4-5 How to Create a Transient Object as a Local Variable

Person p;

About Values

In this manual, a value refers to either:

» A scalar value which is stored in a non-object column of a database table. An
OCCI application can fetch values from a database by issuing SQL statements.

* An embedded (nonreferenceable) object.

The context should make it clear which meaning is intended.

It is possible to SELECT a referenceable object into the object cache, rather than pinning
it, in which case you fetch the object by value instead of fetching it by reference.

About Representing Objects in C++ Applications

Before an OCCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE TYPE.

This section discusses the following topics:

* Creating Persistent and Transient Objects

» Creating Object Representations using the OTT Ultility

Creating Persistent and Transient Objects

ORACLE

This section discusses how persistent and transient objects are created.

Before you create a persistent object, you must have created the environment and
opened a connection.

A persistent object is created in the database only when one of the following occurs:
e The transaction is committed (Connection: : comit())

* The object cache is flushed (Connecti on: : fl ushCache())

* The object itself is flushed (PObj ect : : fl ush())

Example 4-6 shows how to create a persistent object, addr, in the database table,
addr _t ab.

4-4

Chapter 4
About Representing Objects in C++ Applications

Example 4-7 shows hot to create an instance of the transient object ADDRESS.

Example 4-6 How to Create a Persistent Object

CREATE TYPE ADDRESS AS OBJECT (
state CHAR(2),
zi p_code CHAR(5));
CREATE TABLE ADDR TAB of ADDRESS;
ADDRESS *addr = new(conn, "ADDR TAB') ADDRESS("CA", "94065");

Example 4-7 How to Create a Transient Object

ADDRESS *addr _trans = new ADDRESS("MD', "94111");

Creating Object Representations using the OTT Utility

ORACLE

When your C++ application retrieves instances of object types from the database, it
must have a client-side representation of the objects. The Object Type Translator
(OTT) utility generates C++ class representations of database object types for you.
Example 4-8 shows the declaration of a custom type in the database, and the
corresponding C++ class that the OTT utility generates.

These class declarations in Example 4-8 are automatically written by OTT to a header
file that you name. This header file is included in the source files for an application to
provide access to objects. Instances of a PObj ect (and also instances of classes
derived from Pbj ect S) can be either transient or persistent. The methods writ eSQL()
and readSQ.() are used internally by the OCCI object cache to linearize and
delinearize the objects and are not to be used or modified by OCCI clients.

¢ See Also:

Object Type Translator Utility for more information about the OTT utility

Example 4-8 How to Declare a Custom Type in the Database

CREATE TYPE address AS OBJECT (state CHAR(2), zip_code CHAR(5));

The OTT utility produces the following C++ class:
class ADDRESS : public PQbject {

prot ect ed:
string state;
string zip;

public:
voi d *operator new(size_t size);
voi d *operator new(size_t size,
const Connection* conn,
const stringé& table);
string getSQ.TypeName() const;
voi d get SQLTypeNane(oracl e: : occi::Environment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;
ADDRESS(voi d *ctx) : PObject(ctx) { };
static void *readSQ(void *ctx);
virtual void readSQ(AnyData& stream;

4-5

Chapter 4
About Developing a C++ Application using OCCI

static void witeSQ(void *obj, void *ctx);
virtual void witeSQ(AnyData& strean;

}

About Developing a C++ Application using OCCI

This section discusses the steps involved in developing a basic OCCI object

application.

This section discusses the following topics:

e Developing Basic Object Program Structure

e About Basic Object Operational Flow

Developing Basic Object Program Structure

The basic structure of an OCCI application that uses objects is similar to a relational
OCCI application, the difference being object functionality. The steps involved in an
OCCI object program include:

1. Initialize the Environnent . Initialize the OCCI programming environment in object
mode. Your application must include C++ class representations of database
objects in a header file. You can create these classes by using the Object Type
Translator (OTT) utility, as described in Object Type Translator Utility.

2. Establish a Connection. Use the environment handle to establish a connection to
the database server.

3. Prepare a SQL statement. This is a local (client-side) step, which may include
binding placeholders. In an object-relational application, this SQL statement
should return a reference (REF) to an object.

4. Access the object.

a. Associate the prepared statement with a database server, and execute the
statement.

b. By using navigational access, retrieve an object reference (REF) from the
database server and pin the object. You can then perform some or all of the
following:

Manipulate the attributes of an object and mark it as dirty (modified)
Follow a reference to another object or series of objects

Access type and attribute information

Navigate a complex object retrieval graph

Flush modified objects to the database server

c. By using associative access, you can fetch an entire object by value by using
SQL. Alternately, you can select an embedded (nonreferenceable) object. You
can then perform some or all of the following:

Insert values into a table

Modify existing values

5. Commit the transaction. This step implicitly writes all modified objects to the
database server and commits the changes.

ORACLE

4-6

Chapter 4
About Developing a C++ Application using OCCI

Free statements and handles; the prepared statements should not be used or
executed again.

¢ See Also:

e Accessing Oracle Database Using C++ for information about using
OCCI to connect to a database server, process SQL statements, and
allocate handles

e Object Type Translator Utility for information about the OTT utility

e OCCI Application Programming Interface for descriptions of OCCI
relational functions and the Connect class and the get Met aDat a() method

About Basic Object Operational Flow

Figure 4-1 shows a simple program logic flow for how an application might work with
objects. For simplicity, some required steps are omitted.

Figure 4-1 Basic Object Operational Flow

Initialize OCCl in
Object Mode

v

Pi f (Brings object into
in Object client-side cache)

Operate on Object
in Cache

v

Mark Object
as Dirtied

v

Flush Changes
to Object

v

Refresh Object

The steps shown in Figure 4-1 are discussed in the following sections:

About Initializing OCCI in Object Mode

About Pinning anObject

About Operating on an Object in Cache
About Flushing Changes to the Object

About Deletion of an Object

About Initializing OCCI in Object Mode

If your OCCI application accesses and manipulates objects, then it is essential that
you specify a value of OBJECT for the node parameter of the creat eEnvi r onment ()

ORACLE

4-7

Chapter 4
About Developing a C++ Application using OCCI

method, the first call in any OCCI application. Specifying this value for node indicates to
OCCI that your application works with objects. This notification has the following
important effects:

* The object run-time environment is established.
* The object cache is set up.

Note that ithe node parameter is not set to OBJECT, any attempt to use an object-related
function results in an error.

The following code example demonstrates how to specify the OBJECT node when
creating an OCCI environment:

Envi ronnent *env;
Connection *con;
Statenent *stnt;

env
con

= Environnent:: creat eEnvi ronnment (Envi ronnent : : OBJECT) ;

= Connection(userNane, password, connectString);

Your application does not have to allocate memory when database objects are loaded
into the object cache. The object cache provides transparent and efficient memory
management for database objects. When database objects are loaded into the object
cache, they are transparently mapped into the host language (C++) representation.

The object cache maintains the association between the object copy in the object
cache and the corresponding database object. Upon commi t, changes made to the
object copy in the object cache are automatically propagated back to the database.

The object cache maintains a look-up table for mapping references to objects. When
an application dereferences a reference to an object and the corresponding object is
not yet cached in the object cache, the object cache automatically sends a request to
the database server to fetch the object from the database and load it into the object
cache. Subsequent dereferences of the same reference are faster since they are to
the object cache itself and do not incur a round-trip to the database server.

Subsequent dereferences of the same reference fetch from the cache instead of
requiring a round-trip. The exception to this is in a dereferencing operation that occurs
just after a commit. In this case, the latest object copy from the server is returned. This
ensures that the latest object from the database is cached after each transaction.

The object cache maintains a pin count for each persistent object in the object cache.
When an application dereferences a reference to an object, the pin count of the object
is incremented. The subsequent dereferencing of the same reference to the object
does not change the pin count. Until the reference to the object goes out of scope, the
object continues to be pinned in the object cache and be accessible by the OCCI
client.

The pin count functions as a reference count for the object. The pin count of the object
becomes zero (0) only when there are no more references referring to this object,
during which time the object becomes eligible for garbage collection. The object cache
uses a least recently used algorithm to manage the size of the object cache. This
algorithm frees objects with a pin count of O when the object cache reaches the
maximum size.

ORACLE 4-8

Chapter 4
About Developing a C++ Application using OCCI

About Pinning anObject

In most situations, OCCI users do not have to explicitly pin or unpin the objects
because the object cache automatically keeps track of the pin counts of all the objects
in the cache. As explained earlier, the object cache increments the pin count when a
reference points to the object and decrements it when the reference goes out of scope
or no longer points to the object.

But there is one exception. If an OCCI application uses Ref <T>:: ptr() method to get a
pointer to the object, then the pi n and unpi n methods of the PObj ect class can be used
by the application to control pinning and unpinning of the objects in the object cache.

About Operating on an Object in Cache

Note that the object cache does not manage the contents of object copies; it does not
automatically refresh object copies. Your application must ensure the validity and
consistency of object copies.

About Flushing Changes to the Object

Whenever changes are made to object copies in the object cache, your application is
responsible for flushing the changed object to the database.

Memory for the object cache is allocated on demand when objects are loaded into the
object cache.

The client-side object cache is allocated in the program's process space. This object
cache is the memory for objects that have been retrieved from the database server
and are available to your application.

If you initialize the OCCI environment in object mode, your application allocates
memory for the object cache, whether the application actually uses object calls.

There is only one object cache allocated for each OCCI environment. All objects
retrieved or created through different connections within the environment use the
same physical object cache. Each connection has its own logical object cache.

About Deletion of an Object

ORACLE

For objects retrieved into the cache by dereferencing a reference, you should not
perform an explicit delete. For such objects, the pin count is incremented when a
reference is dereferenced for the first time and decremented when the reference goes
out of scope. When the pin count of the object becomes 0, indicating that all
references to that object are out of scope, the object is automatically eligible for
garbage collection and subsequently deleted from the cache.

For persistent objects that have been created by calling the new operator, you must call
a del et e if you do not commit the transaction. Otherwise, the object is garbage
collected after the commit. This is because when such an object is created using new,
its pin count is initially 0. However, because the object is dirty it remains in the cache.
After a commit, it is no longer dirty and thus garbage collected. Therefore, a delete is
not required.

4-9

Chapter 4
Migrating C++ Applications to Oracle Using OCCI

If a commit is not performed, then you must explicitly call del et e to destroy that object.
You can do this if there are no references to that object. For transient objects, you
must delete explicitly to destroy the object.

You should not call a delete operator on a persistent object. A persistent object that is
not marked/dirty is freed by the garbage collector when its pin count is 0. However, for
transient objects you must delete explicitly to destroy the object.

Migrating C++ Applications to Oracle Using OCCI

This section describes how to migrate existing C++ applications using OCCI.
The steps of migration are:

Determine object model and class hierarchy

Use JDeveloper9i to map to Oracle object schema

Generate C++ header files using Oracle Type Translator

Modify old C++ access classes as required to work with new object type definitions

A S

Add functionality for transient and persistent object management, as required.

Overview of Associative Access

You can employ SQL within OCCI to retrieve objects, and to perform DML operations.
This section discusses the following topics:

* Using SQL to Access Objects

* Inserting and Modifying Values

¢ See Also:

Complete code listing of the demonstration programs

Using SQL to Access Objects

ORACLE

In the previous sections we discussed navigational access, where SQL is used only to
fetch the references of an initial set of objects and then navigate from them to the
other objects. Here we discuss how to fetch the objects using SQL.

The following example shows how to use the Resul t Set : : get Obj ect () method to fetch
objects through associative access where it gets each object from the table, addr _t ab,
using SQL:

string sel _addr_val = "SELECT VALUE(address) FROM ADDR_TAB address";
Resul t Set *rs = stnt->execut eQuery(sel _addr_val);
while (rs->next())

{
ADDRESS *addr _val = rs->get Chject(1);

4-10

Chapter 4
Overview of Navigational Access

cout << "state: " << addr_val->getState();

}

The objects fetched through associative access are termed value instances and they
behave just like transient objects. Methods such as nar kModi fi ed(), fl ush(), and
mar kDel et ed() are applicable only for persistent objects.

Any changes made to these objects are not reflected in the database.

Since the object returned is a value instance, it is the user's responsibility to free
memory by deleting the object pointer.

Inserting and Modifying Values

We have just seen how to use SQL to access objects. OCCI also provides the ability
to use SQL to insert new objects or modify existing objects in the database server
through the Stat enent : : set Obj ect method interface.

The following example creates a transient object Addr ess and inserts it into the
database table addr _t ab:

ADDRESS *addr _val = new address("NVv', "12563"); // new a transient instance
stmt->set SQL(" I NSERT | NTO ADDR TAB val ues(:1)");

stnt->set Ovj ect (1, addr_val);

st nt - >execute();

Overview of Navigational Access

By using navigational access, you engage in a series of operations.
This section discusses the following topics:

e Retrieving an Object Reference (REF) from the Database Server
e Pinning an Object

e Manipulating Object Attributes

e About Marking Objects and Flushing Changes

e Marking an Object as Modified (Dirty)

e About Recording Changes in the Database

e Collecting Garbage in the Object Cache

e About Ensuring Transactional Consistency of References

" See Also:

Complete code listing of the demonstration programs

Retrieving an Object Reference (REF) from the Database Server

To work with objects, your application must first retrieve one or more objects from the
database server. You accomplish this by issuing a SQL statement that returns
references (REFS) to one or more objects.

ORACLE 4-11

Chapter 4
Overview of Navigational Access

It is also possible for a SQL statement to fetch value instances, rather than REFs, from
a database.

The following SQL statement retrieves a REF to a single object addr ess from the
database table addr _t ab:

string sel addr = "SELECT REF(address)
FROM addr _tab address
VWHERE zi p_code = '94065'";

The following code example illustrates how to execute the query and fetch the REF from
the result set.

Resul t Set *rs = stnt->execut eQuery(sel _addr);
rs->next();
Ref <address> addr _ref = rs->getRef(1);

At this point, you could use the object reference to access and manipulate the object
or objects from the database.

See Also:

"About Executing SQL DDL and DML Statements" for general information
about preparing and executing SQL statements

Pinning an Object

ORACLE

This section deals with a simple pin operation involving a single object at a time. For
information about retrieving multiple objects through complex object retrieval, see the
section Overview of Complex Object Retrieval.

Upon completion of the fetch step, your application has a REF to an object. The actual
object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Pinning an object loads the object into the object cache, and enables
you to access and modify the object's attributes and follow references from that object
to other objects. Your application also controls when modified objects are written back
to the database server.

OCCI requires only that you dereference the REF in the same way you would
dereference any C++ pointer. Dereferencing the REF transparently materializes the
object as a C++ class instance.

Continuing the Addr ess class example from the previous section, assume that the user
has added the following method:

string Address::getState()
{

}

return state;

To dereference this REF and access the object's attributes and methods:

string state = addr_ref->getState(); /1 -> pins the object

The first time Ref <T> (addr _ref) is dereferenced, the object is pinned, which is to say
that it is loaded into the object cache from the database server. From then on, the

4-12

Chapter 4
Overview of Navigational Access

behavior of operator -> on Ref <T> is just like that of any C++ pointer (T *). The object
remains in the object cache until the REF (addr _ref) goes out of scope. It then becomes
eligible for garbage collection.

Now that the object has been pinned, your application can modify that object.

Manipulating Object Attributes

Manipulating object attributes is no different from that of accessing them as shown in
the previous section. Let us assume the Address class has the following user defined
method that sets the st at e attribute to the input value:

voi d Address::setState(string new state)

{
}

The following example shows how to modify the state attribute of the object, addr :

state = new state,

addr _ref->set State("PA");

As explained earlier, the first invocation of the operator - > on Ref <T> loads the object, if
it is not in the object cache.

About Marking Objects and Flushing Changes

In the example in the previous section, an attribute of an object was changed. This
change exists only in the client-side cache; you must implement specific programmatic
steps to write the changes to the database.

Marking an Object as Modified (Dirty)

The first step is to indicate that the object has been modified. This is done by calling
the mar kModi fi ed() method on the object (derived method of PObj ect). This method
marks the object as dirty (modified).

Continuing the previous example, after object attributes are manipulated, the object
referred to by addr _ref can be marked dirty as follows:

addr _ref->markMdi fied();

About Recording Changes in the Database

ORACLE

Objects that have had their dirty flag set must be flushed to the database server for the
changes to be recorded in the database. This can be done in three ways:

* Flush a single object marked dirty by ca