Pro*COBOL®
Programmer's Guide

18c
E84342-01
February 2018

ORACLE"

Pro*COBOL Programmer's Guide, 18c

E84342-01

Copyright © 1996, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Celin Cherian

Contributing Authors: Syed Mujeed Ahmed, Jack Melnick, Neelam Singh, Subhranshu Banerjee, Beethoven
Cheng, Michael Chiocca, Nancy lkeda, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Diana Lorentz, Ajay Popat,
Chris Racicot, Pamela Rothman, Simon Slack, Gael Stevens

Contributors: Valarie Moore

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Intended Audience XXVi
Documentation Accessibility XXVi
Related Documents XXVil
Conventions XXVil

Changes in This Release for Pro*COBOL Programmer's Guide

Changes in Pro*COBOL Release 18c, Version 18.1 XXViii
Changes in Pro*COBOL 12c Release 2 (12.2) XXViii

Part | Introduction and Concepts

1 Introduction
1.1 Whatis Pro*COBOL? 1-1
1.2 The Pro*COBOL Precompiler 1-1
1.2.1 Language Alternatives 1-2
1.3 Advantages of the Pro*COBOL Precompiler 1-3
1.4 The SQL Language 1-3
1.5 The PL/SQL Language 1-3
1.6 Pro*COBOL Features and Benefits 1-4
1.7 Directory Structure 1-5
1.7.1 Header Files 1-6
1.7.2 Library File 1-6
1.7.3 Known Problems, Restrictions, and Workarounds 1-6
1.8 Compatibility, Upgrading, and Migration 1-7
2 Precompiler Concepts
2.1 Key Concepts of Embedded SQL Programming 2-1
2.1.1 Steps in Developing an Embedded SQL Application 2-1

ORACLE" iii

2.1.2 Embedded SQL Statements
2.1.2.1 Executable versus Declarative Statements
2.1.3 Embedded SQL Syntax
2.1.4 Static Versus Dynamic SQL Statements
2.1.5 Embedded PL/SQL Blocks
2.1.6 Host Variables and Indicator Variables
2.1.7 Oracle Datatypes
2.1.8 Tables
2.1.9 Errors and Warnings

2.1.9.1 SQLCODE/SQLSTATE Status Variables
2.1.9.2 SQLCA Status Variable

2.1.9.3 WHENEVER Statement

2.1.9.4 ORACA

2.1.9.5 Precompiler Options and Error Handling

2.1.10

SQL99 Syntax Support

2.2 Programming Guidelines

221
222
2.2.3
224
225
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2211
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2221
2.2.22
2.2.23
2.2.24
2.2.25

ORACLE

Abbreviations
Case-Insensitivity
COBOL Versions Supported
Coding Areas
Commas
Comments
Continuation Lines
Copy Statements
Decimal-Point is Comma
Delimiters
Division Headers that are Optional
Embedded SQL Syntax
Figurative Constants
File Length
FILLER is Allowed
Host Variable Names
Hyphenated Names
Level Numbers
MAXLITERAL Default
Multibyte Datatypes
NULLs in SQL
Paragraph and Section Names
REDEFINES Clause
Relational Operators
Sentence Terminator

2-2
2-3
2-4
2-5
2-5
2-5

2-7
2-7
2-7
2-7
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-9
2-9

2-10

2-10

2-11

2-11

2-11

2-12

2-12

2-12

2-13

2-13

2-13

2-13

2-14

2-14

2-14

2-14

2-14

2-14

2-15

2-15

2-16

2.3 The Declare Section 2-16
2.3.1 Contents of a Declare Section 2-16
2.3.1.1 AnExample 2-17

2.3.2 Precompiler Option DECLARE_SECTION 2-17
2.3.3 Using the INCLUDE Statement 2-17
2.3.3.1 Filename Extensions 2-18

2.3.3.2 Search Paths 2-18

2.4 Nested Programs 2-18
2.4.1 Support for Nested Programs 2-19
2.4.1.1 Declaring the SQLCA 2-20

2.4.1.2 Nested Program Example 2-20

2.5 Conditional Precompilations 2-20
2.5.1 An Example 2-21
2.5.2 Defining Symbols 2-21

2.6 Separate Precompilations 2-22
2.6.1 Guidelines 2-22
2.6.1.1 Referencing Cursors 2-22

2.6.1.2 Specifying MAXOPENCURSORS 2-22

2.6.1.3 Using a Single SQLCA 2-22

2.6.1.4 Using a Single DATE_FORMAT 2-23

2.6.2 Restrictions 2-23

2.7 Compiling and Linking 2-23
2.8 Sample DEPT and EMP Tables 2-23
2.8.1 Sample DEPT and EMP Data 2-24

2.9 Sample EMP Program: SAMPLE1.PCO 2-24

3 Database Concepts

3.1 Connecting to Oracle 3-1
3.2 Default Databases and Connections 3-3
3.2.1 Concurrent Logons 3-3
3.2.2 Using Username/Password 3-4
3.2.2.1 Named Database Connections 3-4

3.2.3 Automatic Logons 3-7
3.2.3.1 The AUTO_CONNECT Precompiler Option 3-8

3.2.4 Changing Passwords at Runtime 3-8
3.2.5 Connect Without Alter Authorization 3-8
3.2.5.1 Standard CONNECT 3-8

3.2.5.2 SYSDBA or SYSOPER Privileges 3-9

3.2.6 Using Links 3-9

3.3 Key Terms 3-9

ORACLE

3.4 How Transactions Guard a Database 3-10

3.5 Beginning and Ending Transactions 3-11
3.6 Using the COMMIT Statement 3-11
3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements 3-12
3.6.2 CLOSE_ON_COMMIT Precompiler Option 3-12

3.7 Using the ROLLBACK Statement 3-12
3.7.1 Statement-Level Rollbacks 3-13

3.8 Using the SAVEPOINT Statement 3-14
3.9 Using the RELEASE Option 3-15
3.10 Using the SET TRANSACTION Statement 3-16
3.11 Overriding Default Locking 3-17
3.11.1 Using the FOR UPDATE OF Clause 3-17
3.11.1.1 Restrictions 3-17

3.12 Fetching Across Commits 3-18
3.12.1 Using the LOCK TABLE Statement 3-18
3.13 Handling Distributed Transactions 3-19
3.14 Guidelines for Transaction Processing 3-19
3.14.1 Designing Applications 3-20
3.14.2 Obtaining Locks 3-20
3.14.3 Using PL/SQL 3-20
3.14.4 X/Open Applications 3-20

4 Datatypes and Host Variables

4.1 The Oracle Database Datatypes 4-1
4.1.1 Internal Datatypes 4-1
4.1.2 External Datatypes 4-3

4.12.1 CHAR 4-4
4122 CHARF 4-4
4.1.2.3 CHARZ 4-4
4.1.2.4 DATE 4-5
4125 DECIMAL 4-5
4.1.2.6 DISPLAY 4-5
4.1.2.7 FLOAT 4-5
4128 INTEGER 4-5
4129 LONG 4-6
4.1.2.10 LONG RAW 4-6
4.1.2.11 LONG VARCHAR 4-6
4.1.2.12 LONG VARRAW 4-6
4.1.2.13 NUMBER 4-6
4.1.2.14 OVER-PUNCH 4-6

ORACLE vi

4.1.2.15 RAW
4.1.2.16 ROWID
4.1.2.17 STRING
4.1.2.18 UNSIGNED
4.1.2.19 VARCHAR
4.1.2.20 VARCHAR2
4.1.2.21 VARNUM
4.1.2.22 VARRAW
4.1.2.23 SQL Pseudocolumns and Functions
4.2 Datetime and Interval Datatype Descriptors
4.3 Host Variables
4.3.1 Declaring Host Variables
4.3.1.1 Example Declarations
4.3.1.2 Initialization
4.3.1.3 Restrictions
4.3.2 Referencing Host Variables
4.3.2.1 Group Items as Host Variables
4.3.2.2 Restrictions
4.4 Indicator Variables
4.4.1 Using Indicator Variables
4.4.1.1 On Input
4.4.1.2 On Output
4.4.2 Declaring Indicator Variables
4.4.3 Referencing Indicator Variables
4.4.3.1 Use in Where Clauses
4.4.3.2 Avoid Error Messages
4.4.3.3 ANSI Requirements

4.4.3.4 Indicator Variables for Multibyte NCHAR Variables
4.4.3.5 Indicator Variables with Host Group ltems

4.5 VARCHAR Variables
4.5.1 Declaring VARCHAR Variables
4.5.2 Implicit VARCHAR Group Items
453 Referencing VARCHAR Variables
4.6 Handling Character Data
4.6.1 Default for PIC X
4.6.2 Effects of the PICX Option
4.6.3 Fixed-Length Character Variables
4.6.3.1 On Input
4.6.3.2 On Output
4.6.4 Varying-Length Variables
4.6.4.1 On Input

ORACLE

4-6

4-7
4-7
4-7
4-8

4-8

4-8
4-10
4-12
4-12
4-16
4-17
4-17
4-17
4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-24
4-25
4-25
4-25
4-25
4-25
4-26
4-26
4-27

Vii

4.6.4.2 On Output 4-27

4.7 Universal ROWIDs 4-27
4.7.1 Subprogram SQLROWIDGET 4-29
4.8 Globalization Support 4-30
4.9 Unicode Support for Pro*xCOBOL 4-31
49.1 NLS_LOCAL=YES Restrictions 4-32
4.9.2 Character Strings in Embedded SQL 4-32
49.3 Embedded DDL 4-33
4.9.4 Blank Padding 4-33
4.9.5 Indicator Variables 4-33
4.9.6 Various Combinations of PIC X/PIC N Variables and NCHAR/CHAR
Columns 4-34
49.6.1 PIC X and NCHAR Column 4-34
4.9.6.2 PIC N and CHAR column 4-34
4.9.7 Working With New Options 4-34
4.10 Datatype Conversion 4-35
4.11 Explicit Control Over DATE String Format 4-37
4,12 Datatype Equivalencing 4-38
4.12.1 Usefulness of Equivalencing 4-38
4.12.2 Host Variable Equivalencing 4-38
4.12.2.1 CONVBUFSZ Clause in VAR Statement 4-40
4.12.2.2 An Example 4-40
4.12.3 Using the CHARF Datatype Specifier 4-42
4.12.4 Guidelines 4-42
4125 RAW and LONG RAW Values 4-43
4.13 Platform Endianness Support 4-43
4.14 Sample Program 4: Datatype Equivalencing 4-44

5 Embedded SQL

5.1 Using Host Variables 5-1
5.1.1 Output Versus Input Host Variables 5-1
5.2 Using Indicator Variables 5-2
5.2.1 Input Variables 5-2
5.2.2 Output Variables 5-3
5.2.3 Inserting NULLs 5-3
5.2.4 Handling Returned NULLs 5-4
5.2.5 Fetching NULLs 5-4
5.2.6 Testing for NULLs 5-4
5.2.7 Fetching Truncated Values 5-5
5.3 The Basic SQL Statements 5-5
5.3.1 Selecting Rows 5-6

ORACLE viii

5.3.1.1 Available Clauses 5-7

5.3.2 Inserting Rows 5-7

5.3.3 DML Returning Clause 5-7

5.3.4 Using Subqueries 5-8

5.3.5 Updating Rows 5-8

5.3.6 Deleting Rows 5-8

5.3.7 Using the WHERE Clause 5-9

5.4 Cursors 5-9

5.4.1 Declaring a Cursor 5-10

5.4.2 Opening a Cursor 5-11

5.4.3 Fetching from a Cursor 5-11

5.4.4 Closing a Cursor 5-12

5.4.5 Using the CURRENT OF Clause 5-12

5.4.6 Restrictions 5-13

5.4.7 A Typical Sequence of Statements 5-13

5.4.8 Positioned Update 5-14

5.4.9 The PREFETCH Precompiler Option 5-14

5.5 Scrollable Cursors 5-15

5.5.1 Using Scrollable Cursors 5-15

5,5.1.1 DECLARE SCROLL CURSOR 5-15

55.1.2 OPEN 5-15

5.5.1.3 FETCH 5-15

5.5.1.4 CLOSE 5-16

5.5.2 The CLOSE_ON_COMMIT Precompiler Option 5-16

5.5.3 The PREFETCH Precompiler Option 5-16

5.6 Flexible B Area Length 5-17

5.7 Fix Execution Plans 5-18

5.7.1 SQL File 5-20

5.7.1.1 Examples 5-21

5.7.2 LOG File 5-22

5.8 Sample Program 2: Cursor Operations 5-23
6 Embedded PL/SQL

6.1 Embedding PL/SQL 6-1

6.1.1 Host Variables 6-1

6.1.2 VARCHAR Variables 6-1

6.1.3 Indicator Variables 6-2

6.1.3.1 Handling NULLs 6-2

6.1.3.2 Handling Truncated Values 6-2

6.1.4 SQLCHECK 6-2

ORACLE iX

6.2 Advantages of PL/SQL 6-2

6.2.1 Better Performance 6-2
6.2.2 Integration with Oracle 6-3
6.2.3 Cursor FOR Loops 6-3
6.2.4 Subprograms 6-3
6.2.4.1 Parameter Modes 6-4

6.2.5 Packages 6-4
6.2.6 PL/SQL Tables 6-4
6.2.7 User-Defined Records 6-5

6.3 Embedding PL/SQL Blocks 6-6
6.4 Host Variables and PL/SQL 6-6
6.4.1 PL/SQL Examples 6-6
6.4.2 A More Complex PL/SQL Example 6-7
6.4.3 VARCHAR Pseudotype 6-9

6.5 Indicator Variables and PL/SQL 6-9
6.5.1 Handling NULLs 6-10
6.5.2 Handling Truncated Values 6-10

6.6 Host Tables and PL/SQL 6-11
6.6.1 ARRAYLEN Statement 6-12
6.6.1.1 Optional Keyword EXECUTE to ARRAYLEN Statement 6-13

6.7 Cursor Usage in Embedded PL/SQL 6-15
6.8 Stored PL/SQL and Java Subprograms 6-16
6.8.1 Creating Stored Subprograms 6-16
6.8.2 Calling a Stored PL/SQL or Java Subprogram 6-17
6.8.2.1 Anonymous PL/SQL Block 6-17

6.8.2.2 CALL Statement 6-17

6.8.2.3 CALL Example 6-18

6.8.3 Using Dynamic PL/SQL 6-19
6.8.4 Subprograms Restriction 6-19

6.9 Sample Program 9: Calling a Stored Procedure 6-19
6.9.1 Remote Access 6-23
6.10 Cursor Variables 6-23
6.10.1 Declaring a Cursor Variable 6-24
6.10.2 Allocating a Cursor Variable 6-24
6.10.3 Opening a Cursor Variable 6-24
6.10.3.1 Opening Indirectly through a Stored PL/SQL Procedure 6-25
6.10.3.2 Opening Directly from Your Pro*COBOL Application 6-26

6.10.4 Fetching from a Cursor Variable 6-26
6.10.5 Closing a Cursor Variable 6-27
6.10.6 Freeing a Cursor Variable 6-27
6.10.7 Restrictions on Cursor Variables 6-27

ORACLE X

6.10.8 Sample Program 11: Cursor Variables 6-27
6.10.8.1 SAMPLE11.SQL 6-28
6.10.8.2 SAMPLE11.PCO 6-28

7 Host Tables

7.1 Host Tables 7-1
7.2 Advantages of Host Tables 7-1
7.3 Tables in Data Manipulation Statements 7-2
7.3.1 Declaring Host Tables 7-2
7.3.1.1 Restrictions 7-2

7.3.2 Referencing Host Tables 7-3
7.3.3 Using Indicator Tables 7-4
7.3.4 Host Group Item Containing Tables 7-4
7.3.5 Oracle Restrictions 7-5
7.3.6 ANSI Restriction and Requirements 7-5

7.4 Selecting into Tables 7-5
7.4.1 Batch Fetches 7-6
7.4.2 Using SQLERRD(3) 7-6
7.4.3 Number of Rows Fetched 7-6
7.4.4 Restrictions on Using Host Tables 7-7
7.4.5 Fetching NULLs 7-7
7.4.6 Fetching Truncated Values 7-8
7.4.7 Sample Program 3: Fetching in Batches 7-8

7.5 Inserting with Tables 7-10
7.5.1 Restrictions on Host Tables 7-10

7.6 Updating with Tables 7-11
7.6.1 Restrictions in UPDATE 7-11

7.7 Deleting with Tables 7-12
7.7.1 Restrictions in DELETE 7-12

7.8 Using Indicator Tables 7-12
7.9 The FOR Clause 7-13
7.9.1 Restrictions 7-14
7.9.1.1 Ina SELECT Statement 7-14

7.9.1.2 With the CURRENT OF Clause 7-14

7.10 The WHERE Clause 7-14
7.11 Mimicking the CURRENT OF Clause 7-15
7.12 Tables of Group Items as Host Variables 7-16
7.13 Sample Program 14: Tables of Group Items 7-17
7.14 Additional Array Insert/Select Syntax 7-19

ORACLE Xi

7.15 Using Implicit Buffered Insert 7-25
8 Error Handling and Diagnostics

8.1 Why Error Handling is Needed 8-1
8.2 Error Handling Alternatives 8-1
8.2.1 SQLCA 8-2
8.2.2 ORACA 8-2
8.2.3 ANSI SQLSTATE Variable 8-2
8.2.4 Declaring SQLSTATE 8-3
8.2.4.1 SQLSTATE Values 8-3

8.3 Using the SQL Communications Area 8-6
8.3.1 Contents of the SQLCA 8-6
8.3.2 Declaring the SQLCA 8-7
8.3.3 Key Components of Error Reporting 8-7
8.3.3.1 Status Codes 8-7

8.3.3.2 Warning Flags 8-7

8.3.3.3 Rows-Processed Count 8-7

8.3.3.4 Parse Error Offset 8-7

8.3.3.5 Error Message Text 8-8

8.3.4 SQLCA Structure 8-8
8.3.4.1 SQLCAID 8-8

8.3.4.2 SQLCABC 8-8

8.3.4.3 SQLCODE 8-8

8.3.4.4 SQLERRM 8-9

8.3.4.5 SQLERRD 8-9

8.3.4.6 SQLWARN 8-10

8.3.4.7 SQLEXT 8-11

8.3.5 PL/SQL Considerations 8-11
8.3.6 Getting the Full Text of Error Messages 8-11
8.3.7 DSNTIAR 8-12
8.3.8 WHENEVER Directive 8-13
8.3.8.1 Conditions 8-13

8.3.8.2 SQLWARNING 8-13

8.3.8.3 SQLERROR 8-13

8.3.8.4 NOT FOUND or NOTFOUND 8-13

8.3.8.5 Actions 8-14

8.3.8.6 CONTINUE 8-14

8.3.8.7 DO CALL 8-14

8.3.8.8 DO PERFORM 8-14

8.3.89 GOTOorGOTO 8-14

ORACLE

Xii

8.3.8.10 STOP 8-14
8.3.9 Coding the WHENEVER Statement 8-15
8.3.9.1 DO PERFORM 8-15
8.3.9.2 DO CALL 8-16
8.3.9.3 Scope 8-17
8.3.9.4 Careless Usage: Examples 8-17
8.3.10 Getting the Text of SQL Statements 8-18
8.4 Using the Oracle Communications Area 8-19
8.4.1 Contents of the ORACA 8-20
8.4.2 Declaring the ORACA 8-20
8.4.3 Enabling the ORACA 8-20
8.4.4 Choosing Runtime Options 8-21
8.45 ORACA Structure 8-21
8.4.5.1 ORACAID 8-21
8.45.2 ORACABC 8-21
8.4.5.3 ORACCHF 8-21
8.4.54 ORADBGF 8-21
8.455 ORAHCHF 8-22
8.4.5.6 ORASTXTF 8-22
8.4.5.7 Diagnostics 8-22
8.45.8 ORASTXT 8-22
8.4.5.9 ORASFNM 8-23
8.4.5.10 ORASLNR 8-23
8.4.5.11 Cursor Cache Statistics 8-23
8.4.5.12 ORAHOC 8-23
8.4.5.13 ORAMOC 8-23
8.4.5.14 ORACOC 8-23
8.4.5.15 ORANOR 8-23
8.4.5.16 ORANPR 8-23
8.4.5.17 ORANEX 8-24
8.4.6 ORACA Example Program 8-24
8.5 How Errors Map to SQLSTATE Codes 8-25
8.5.1 Status Variable Combinations 8-30

O Oracle Dynamic SQL
9.1 Dynamic SQL 9-1
9.2 Advantages and Disadvantages of Dynamic SQL 9-2
9.3 When to Use Dynamic SQL 9-2
9.4 Requirements for Dynamic SQL Statements 9-2
9.5 How Dynamic SQL Statements Are Processed 9-3
ORACLE Xiii

9.6 Methods for Using Dynamic SQL

9.6.1 Method 1

9.6.2 Method 2

9.6.3 Method 3

9.6.4 Method 4

9.6.5 Guidelines

9.6.5.1 Avoiding Common Errors

9.7 Using Method 1

9.7.1 The EXECUTE IMMEDIATE Statement

9.7.2 An Example

9.8 Sample Program 6: Dynamic SQL Method 1

9.9 Using Method 2
9.9.1 The USING Clause

9.10 Sample Program 7: Dynamic SQL Method 2

9.11 Using Method 3
9.11.1 PREPARE
9.11.2 DECLARE
9.11.3 OPEN
9.11.4 FETCH
9.11.5 CLOSE

9.12 Sample Program 8: Dynamic SQL Method 3

9.13 Using Oracle Method 4
9.13.1 Need for the SQLDA
9.13.2 The DESCRIBE Statement
9.13.3 SQLDA Contents
9.13.4 Implementing Method 4

9.14 Using the DECLARE STATEMENT Statement

9.15 Using Host Tables
9.16 Using PL/SQL
9.16.1 With Method 1
9.16.2 With Method 2
9.16.3 With Method 3
9.16.4 With Method 4
9.16.5 Caution
9.17 Dynamic SQL Statement Caching

Part Il Applications

9-3
9-3
9-4
9-4
9-4
9-5

9-6

9-6

9-7

9-8
9-10
9-11
9-11
9-14
9-14
9-15
9-15
9-15
9-16
9-16
9-18
9-19
9-19
9-20
9-20
9-21
9-22
9-22
9-22
9-22
9-23
9-23
9-23
9-23

ORACLE

Xiv

10 ANSI Dynamic SQL

10.1 Basics of ANSI Dynamic SQL 10-1
10.1.1 Precompiler Options 10-2
10.2 Overview of ANSI SQL Statements 10-2
10.3 Sample Code 10-5
10.4 Oracle Extensions 10-6
10.4.1 Reference Semantics 10-6
10.4.2 Using Tables for Bulk Operations 10-7
10.5 ANSI Dynamic SQL Precompiler Options 10-9
10.6 Full Syntax of the Dynamic SQL Statements 10-10
10.6.1 ALLOCATE DESCRIPTOR 10-10
10.6.1.1 Variables 10-11
10.6.1.2 Examples 10-11

10.6.2 DEALLOCATE DESCRIPTOR 10-11
10.6.3 GET DESCRIPTOR 10-12
10.6.4 SET DESCRIPTOR 10-14
10.6.4.1 Example 10-16

10.6.5 Use of PREPARE 10-16
10.6.6 DESCRIBE INPUT 10-17
10.6.7 DESCRIBE OUTPUT 10-17
10.6.8 EXECUTE 10-18
10.6.9 Use of EXECUTE IMMEDIATE 10-19
10.6.10 Use of DYNAMIC DECLARE CURSOR 10-19
10.6.11 OPEN Cursor 10-20
10.6.12 FETCH 10-21
10.6.13 CLOSE a Dynamic Cursor 10-21
10.6.14 Differences From Oracle Dynamic Method 4 10-22
10.6.15 Restrictions 10-22
10.7 Sample Programs: SAMPLE12.PCO 10-23

11 Oracle Dynamic SQL: Method 4

11.1 Meeting the Special Requirements of Method 4 11-1
11.1.1 Advantages of Method 4 11-2
11.1.2 Information the Database Needs 11-2
11.1.3 Where the Information is Stored 11-2
11.1.4 How Information is Obtained 11-3

11.2 Understanding the SQL Descriptor Area (SQLDA) 11-3
11.2.1 Purpose of the SQLDA 11-3
11.2.2 Multiple SQLDAs 11-4
11.2.3 Declaring a SQLDA 11-4

ORACLE XV

11.3 The SQLDA Variables 11-6

11.4 Prerequisite Knowledge 11-11
11.4.1 Using SQLADR 11-12
11.4.2 Converting Data 11-12
11.4.3 Coercing Datatypes 11-15
11.4.4 Handling NULL/Not NULL Datatypes 11-18

11.5 The Basic Steps 11-18

11.6 A Closer Look at Each Step 11-19
11.6.1 Declare a Host String 11-20
11.6.2 Declare the SQLDAs 11-20
11.6.3 Set the Maximum Number to DESCRIBE 11-21
11.6.4 Initialize the Descriptors 11-21
11.6.5 Store the Query Text in the Host String 11-23
11.6.6 PREPARE the Query from the Host String 11-23
11.6.7 DECLARE a Cursor 11-24
11.6.8 DESCRIBE the Bind Variables 11-24
11.6.9 Reset Number of Place-Holders 11-25
11.6.10 Get Values for Bind Variables 11-26
11.6.11 OPEN the Cursor 11-27
11.6.12 DESCRIBE the Select List 11-28
11.6.13 Reset Number of Select-List Items 11-29
11.6.14 Reset Length/Datatype of Each Select-List ltem 11-29
11.6.15 FETCH Rows from the Active Set 11-31
11.6.16 Get and Process Select-List Values 11-32
11.6.17 CLOSE the Cursor 11-32

11.7 Using Host Tables with Method 4 11-33

11.8 Sample Program 10: Dynamic SQL Method 4 11-36

12 Multithreaded Applications

12.1 Introduction to Threads 12-1
12.2 Runtime Contexts in Pro*COBOL 12-2
12.3 Runtime Context Usage Models 12-3
12.3.1 Multiple Threads Sharing a Single Runtime Context 12-3
12.3.2 Multiple Threads Sharing Multiple Runtime Contexts 12-4
12.4 User Interface Features for Multithreaded Applications 12-5
12.4.1 THREADS Option 12-5
12.4.2 Embedded SQL Statements and Directives for Runtime Contexts 12-6
12.4.2.1 Host Tables of SQL-CONTEXT Are Not Allowed 12-6
12.4.2.2 EXEC SQL ENABLE THREADS 12-6
12.4.2.3 EXEC SQL CONTEXT ALLOCATE 12-6

ORACLE XVi

12.4.2.4 EXEC SQL CONTEXT USE 12-7

12.4.2.5 EXEC SQL CONTEXT FREE 12-7
12.4.3 Communication with Pro*C/C++ Programs 12-7
12.4.4 Multithreading Programming Considerations 12-7

12.4.4.1 Restrictions on Multithreading 12-8
12.4.5 Multiple Context Examples 12-8

12.45.1 Example 1 12-8

12.45.2 Example 2 12-8

12.45.3 Example 3 12-9

12.4.5.4 Example 4 12-10

12.45.5 Example5 12-11

12.5 Multithreaded Example 12-12

13 Large Objects (LOBS)

13.1 Using LOBs 13-1
13.1.1 Internal LOBs 13-1
13.1.2 External LOBs 13-1
13.1.3 Security for BFILEs 13-2
13.1.4 LOBs Compared with LONG and LONG RAW 13-2
13.1.5 LOB Locators 13-2
13.1.6 Temporary LOBs 13-3
13.1.7 LOB Buffering Subsystem 13-3

13.2 How to Use LOBs 13-3
13.2.1 LOB Locators in Your Application 13-5
13.2.2 Initializing a LOB 13-5

13.2.2.1 Internal LOBs 13-5
13.2.2.2 External LOBs 13-5
13.2.2.3 Temporary LOBs 13-6
13.2.2.4 Freeing LOBs 13-6

13.3 Rules for LOB Statements 13-6
13.3.1 For All LOB Statements 13-6
13.3.2 For the LOB Buffering Subsystem 13-7
13.3.3 For Host Variables 13-7

13.4 LOB Statements 13-8
13.4.1 APPEND 13-8
13.4.2 ASSIGN 13-9
1343 CLOSE 13-9
13.4.4 COPY 13-10
13.45 CREATE TEMPORARY 13-11
13.4.6 DISABLE BUFFERING 13-11

ORACLE XVii

13.4.7 ENABLE BUFFERING 13-12
13.4.8 ERASE 13-12
13.4.9 FILE CLOSE ALL 13-13
13.4.10 FILE SET 13-13
13.4.11 FLUSH BUFFER 13-14
13.4.12 FREE TEMPORARY 13-14
13.4.13 LOAD FROM FILE 13-14
13.4.14 OPEN 13-15
13.4.15 READ 13-16
13.4.16 TRIM 13-18
13.4.17 WRITE 13-18
13.4.18 DESCRIBE 13-19
13.4.19 READ and WRITE Using the Polling Method 13-22
13.5 LOB Sample Program: LOBDEMO1.PCO 13-23
14 Precompiler Options
14.1 The procob Command 14-1
14.1.1 Case-Sensitivity 14-2
14.2 Actions During Precompilation 14-2
14.3 About the Options 14-2
14.3.1 Precedence of Option Values 14-3
14.3.2 Macro and Micro Options 14-4
14.3.3 Determining Current Values 14-4
14.4 Entering Precompiler Options 14-5
14.4.1 Onthe Command Line 14-5
14.4.2 Inline 14-5
14.4.2.1 Advantages 14-5
14.4.2.2 Scope of EXEC ORACLE 14-6
14.4.3 Configuration Files 14-6
14.4.4 Column Properties Support 14-7
14.5 Scope of Precompiler Options 14-8
14.6 Quick Reference 14-8
14.7 Using Pro*COBOL Precompiler Options 14-11
14.7.1 ASACC 14-11
14.7.2 ASSUME_SQLCODE 14-11
14.7.3 AUTO_CONNECT 14-12
14.7.4 CHARSET_PICX 14-13
14.7.5 CHARSET_PICN 14-13
14.7.6 CLOSE_ON_COMMIT 14-14
14.7.7 COMMON_PARSER 14-14
ORACLE Xviii

14.7.8

14.7.9

14.7.10
14.7.11
14.7.12
14.7.13
14.7.14
14.7.15
14.7.16
14.7.17
14.7.18
14.7.19
14.7.20
14.7.21
14.7.22
14.7.23
14.7.24
14.7.25
14.7.26
14.7.27
14.7.28
14.7.29
14.7.30
14.7.31
14.7.32
14.7.33
14.7.34
14.7.35
14.7.36
14.7.37
14.7.38
14.7.39
14.7.40
14.7.41
14.7.42
14.7.43
14.7.44
14.7.45
14.7.46
14.7.47
14.7.48

ORACLE

CONFIG
DATE_FORMAT
DB2_ARRAY
DBMS
DECLARE_SECTION
DEFINE
DYNAMIC
END_OF FETCH
ERRORS

File_ID

FIPS

FORMAT
HOLD_CURSOR
HOST
IMPLICIT_SVPT
INAME
INCLUDE
IRECLEN
LITDELIM
LNAME
LRECLEN
LTYPE
MAX_ROW_INSERT
MAXLITERAL
MAXOPENCURSORS
MODE

NESTED
NLS_LOCAL
ONAME

ORACA
ORECLEN
OUTLINE
OUTLNPREFIX
PAGELEN
PICN_ENDIAN
PICX
PLAN_BASELINE
PLAN_PREFIX
PLAN_RUN
PLAN_FIXED
PLAN_ENABLED

14-15
14-15
14-16
14-16
14-17
14-17
14-18
14-18
14-19
14-19
14-20
14-21
14-21
14-22
14-22
14-23
14-23
14-24
14-24
14-25
14-25
14-26
14-26
14-26
14-27
14-28
14-29
14-29
14-30
14-30
14-31
14-31
14-32
14-32
14-33
14-33
14-34
14-34
14-34
14-35
14-35

XiX

14.7.49 MEMFORPREFETCH 14-35

14.7.50 PREFETCH 14-36
14.7.51 RELEASE_CURSOR 14-37
14.7.52 RUNOUTLINE 14-38
14.7.53 SELECT_ERROR 14-38
14.7.54 SQLCHECK 14-39
14.7.55 STMT_CACHE 14-42
14.7.56 TYPE_CODE 14-42
14.7.57 UNSAFE_NULL 14-43
14.7.58 USERID 14-43
14.7.59 VARCHAR 14-44
14.7.60 XREF 14-44

A Operating System Dependencies

A.1 System-Specific References in this Manual A-1
A.1.1 COBOL Versions A-1
A.1.2 Host Variables A-1

A.1.2.1 Declaring A-1

A.1.2.2 Naming A-1
A.1.3 INCLUDE Statements A-2
A.1.4 MAXLITERAL Default A-2
A.1.5 PIC N or Pic G Clause for Multi-byte Globalization Support Characters A-2
A.1.6 RETURN-CODE Special Register May Be Unpredictable. A-2
A.1.7 Byte-Order of Binary Data A-2

B Reserved Words, Keywords, and Namespaces

B.1 Reserved Words and Keywords B-1
B.2 Reserved Namespaces B-4

C Performance Tuning

C.1 Causes of Poor Performance C-1
C.2 Improving Performance C-2
C.3 Using Host Tables C-2
C.4 Using PL/SQL and Java C-3
C.5 Optimizing SQL Statements C-3
C.5.1 Optimizer Hints C-4
C.5.1.1 Giving Hints C-4

C.6 SQL Statement Caching C-4
C.7 Using Indexes C-5

ORACLE XX

C.8 Taking Advantage of Row-Level Locking C-5
C.9 Eliminating Unnecessary Parsing C-5
C.9.1 Handling Explicit Cursors C-6
C.9.1.1 Cursor Control C-6
C.9.2 Using the Cursor Management Options C-7
C.9.2.1 Private SQL Areas and Cursor Cache C-7
C.9.2.2 Resource Use C-8
C.9.2.3 Infrequent Execution C-8
C.9.2.4 Frequent Execution C-9
C.9.2.5 Effect on the Shared SQL Area C-9
C.9.2.6 Embedded PL/SQL Considerations C-9
C.9.2.7 Parameter Interactions C-10
C.10 Avoiding Unnecessary Reparsing C-10
C.11 About Using Oracle Connection Manager in Traffic Director Mode C-10
D Syntactic and Semantic Checking

D.1 Syntactic and Semantic Checking Basics D-1
D.2 Controlling the Type and Extent of Checking D-1
D.3 Specifying SQLCHECK=SEMANTICS D-2
D.3.1 Enabling a Semantic Check D-2
D.3.1.1 Connecting to Oracle D-2
D.3.1.2 Using DECLARE TABLE D-3

E Embedded SQL Statements and Precompiler Directives
E.1 Summary of Precompiler Directives and Embedded SQL Statements E-3
E.2 About the Statement Descriptions E-5
E.3 How to Read Syntax Diagrams E-5
E.3.1 Statement Terminator E-6
E.3.2 Required Keywords and Parameters E-6
E.3.3 Optional Keywords and Parameters E-7
E.3.4 Syntax Loops E-7
E.3.5 Multi-part Diagrams E-7
E.3.6 Oracle Names E-8
E.4 ALLOCATE (Executable Embedded SQL Extension) E-8
E.5 ALLOCATE DESCRIPTOR (Executable Embedded SQL) E-9
E.6 CALL (Executable Embedded SQL) E-10
E.7 CLOSE (Executable Embedded SQL) E-11
E.8 COMMIT (Executable Embedded SQL) E-12
E.9 CONNECT (Executable Embedded SQL Extension) E-14
ORACLE XXi

E.10
E.11
E.12
E.13
E.14
E.15
E.16
E.17
E.18
E.19
E.20
E.21
E.22
E.23
E.24
E.25
E.26
E.27
E.28
E.29
E.30
E.31
E.32
E.33
E.34
E.35
E.36
E.37
E.38
E.39
E.40
E.41
E.42
E.43
E.44
E.45
E.46
E.47
E.48
E.49
E.50

ORACLE

CONTEXT ALLOCATE (Executable Embedded SQL Extension)
CONTEXT FREE (Executable Embedded SQL Extension)
CONTEXT USE (Oracle Embedded SQL Directive)
DEALLOCATE DESCRIPTOR (Embedded SQL Statement)
DECLARE CURSOR (Embedded SQL Directive)

DECLARE DATABASE (Oracle Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)

DECLARE TABLE (Oracle Embedded SQL Directive)

DELETE (Executable Embedded SQL)

DESCRIBE (Executable Embedded SQL)

DESCRIBE DESCRIPTOR (Executable Embedded SQL)
ENABLE THREADS (Executable Embedded SQL Extension)
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
EXECUTE (Executable Embedded SQL)

EXECUTE DESCRIPTOR (Executable Embedded SQL
EXECUTE IMMEDIATE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

FETCH DESCRIPTOR (Executable Embedded SQL)

FREE (Executable Embedded SQL Extension)

GET DESCRIPTOR (Executable Embedded SQL)

INSERT (Executable Embedded SQL)

LOB APPEND (Executable Embedded SQL Extension)

LOB ASSIGN (Executable Embedded SQL Extension)

LOB CLOSE (Executable Embedded SQL Extension)

LOB COPY (Executable Embedded SQL Extension)

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)
LOB DESCRIBE (Executable Embedded SQL Extension)

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)
LOB ENABLE BUFFERING (Executable Embedded SQL Extension)
LOB ERASE (Executable Embedded SQL Extension)

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)
LOB FILE SET (Executable Embedded SQL Extension)

LOB FLUSH BUFFER (Executable Embedded SQL Extension)
LOB FREE TEMPORARY (Executable Embedded SQL Extension)
LOB LOAD (Executable Embedded SQL Extension)

LOB OPEN (Executable Embedded SQL Extension)

LOB READ (Executable Embedded SQL Extension)

LOB TRIM (Executable Embedded SQL Extension)

LOB WRITE (Executable Embedded SQL Extension)

OPEN (Executable Embedded SQL)

OPEN DESCRIPTOR (Executable Embedded SQL)

E-15
E-16
E-17
E-18
E-19
E-21
E-22
E-24
E-25
E-27
E-29
E-30
E-31
E-32
E-33
E-35
E-36
E-39
E-40
E-41
E-43
E-46
E-46
E-47
E-47
E-48
E-49
E-50
E-50
E-51
E-51
E-52
E-52
E-53
E-53
E-54
E-54
E-55
E-55
E-56
E-57

XXii

E.51 PREPARE (Executable Embedded SQL) E-59
E.52 ROLLBACK (Executable Embedded SQL) E-60
E.53 SAVEPOINT (Executable Embedded SQL) E-63
E.54 SELECT (Executable Embedded SQL) E-64
E.55 SET DESCRIPTOR (Executable Embedded SQL) E-67
E.56 UPDATE (Executable Embedded SQL) E-68
E.57 VAR (Oracle Embedded SQL Directive) E-72
E.58 WHENEVER (Embedded SQL Directive) E-73
F Pro*COBOL for Windows

F.1 Compiling and Linking Pro*COBOL Applications F-1
F.1.1 How to Use the IDE F-1
F.1.2 How to Use the Animator Products F-2
F.1.3 The COBOL and CBLLINK Commands F-2
F.1.4 The COBSQL Command F-2
F.2 Sample Programs F-3
F.2.1 Building the Demonstration Table F-3
F.2.2 Building the Sample Programs F-3
F.2.3 Sample Files F-4

Index
ORACLE Xxiii

List of Tables

1-1 Directories

1-2 Header Files

2-1 Embedded SQL Statements — Directives

2-2 Embedded SQL Statements — Executable SQL

2-3 Relational Operators

4-1 Summary of Oracle Built-In Datatypes

4-2 External Datatypes

4-3 Date Format

4-4 Pseudocolumns and Internal Datatypes

4-5 Functions and Internal Datatypes

4-6 Host Variable Declarations

4-7 Compatible Oracle Internal Datatypes

4-8 Globalization Support Parameters

4-9 Conversions Between Internal and External Datatypes

4-10 Formats for Date Strings

4-11 Host Variable Equivalencing

4-12 Parameters for Host Variable Equivalencing

4-13 VARNUM Examples

6-1 Legal Datatype Conversions

7-1 Host Tables Valid in SELECT INTO

7-2 Host Tables Valid in UPDATE

7-3 DB2 Array Syntax vs. Oracle Precompiler Syntax

8-1 Predefined Classes

8-2 DSNTIAR Error Codes and Their Meanings

8-3 Parameter Datatypes

8-4 SQLSTATE Codes

8-5 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14
and DECLARE_SECTION=YES

8-6 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |
ANSI14 and DECLARE_SECTION=YES

9-1 Appropriate Method to Use

10-1 ANSI SQL Datatypes

10-2 DYNAMIC Option Settings

10-3 TYPE_CODE Option Settings

10-4 Definitions of Descriptor Item Names

ORACLE

1-5
1-6
2-3
2-3
2-15

8-30

8-31

9-3
10-4
10-9

10-10
10-13

XXIV

10-5 Oracle Extensions to Definitions of Descriptor Item Names
10-6 Descriptor Iltem Names for SET DESCRIPTOR

10-7 Extensions to Descriptor Item Names for SET DESCRIPTOR
11-1 Internal Datatypes and Related Codes

11-2 Oracle External and Related COBOL Datatypes

11-3 PL/SQL Datatype Equivalences with Internal Datatypes
11-4 Datatype Exceptions to the SQLPR2 Procedure

13-1 LOB Access Methods

13-2 Source LOB and Precompiler Datatypes

13-3 LOB Attributes

14-1 How Macro Option Values Set Micro Option Values

14-2 Option List

14-3 Formats for Date Strings

14-4 Types of Listings

14-5 Checking Done by SQLCHECK

B-1 Reserved Namespaces

C-1 HOLD_CURSOR and RELEASE _CURSOR Interactions
E-1 Source/Type Column Meaning

E-2 Precompiler Directives and Embedded SQL Statements and Clauses
F-1 Pro*COBOL Sample Programs

ORACLE

10-13
10-15
10-15
11-13
11-13
11-14
11-17

13-4
13-17
13-20

14-4

14-9
14-15
14-26
14-41

C-10

E-3
E-3

XXV

Preface

Preface

This manual is a comprehensive user's guide and reference to the Oracle Pro*COBOL
Precompiler. It shows you how to develop COBOL programs that use the database
languages SQL and PL/SQL to access and manipulate Oracle data. See Oracle
Database SQL Language Reference and PL/SQL User’s Guide and Reference for
more information on SQL and PL/SQL.

This Preface contains these topics:
* Intended Audience

e Documentation Accessibility

* Related Documents

e Conventions

Intended Audience

The Pro*COBOL Programmer's Guide is intended for anyone developing new COBOL
applications or converting existing applications to run in the Oracle environment.
Written especially for programmers, this comprehensive treatment of Pro*COBOL will
also be of value to systems analysts, project managers, and others interested in
embedded SQL applications.

To use this manual effectively, you need a working knowledge of the following
subjects:

» Applications programming in COBOL
e The SQL database language

e Oracle concepts and terminology

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

XXVI

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

For more information, see these Oracle resources:

* Oracle Database SQL Language Reference
e Oracle C++ Call Interface Programmer's Guide
e Oracle Call Interface Programmer's Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXVii

Changes in This Release for Pro*COBOL Programmer's Guide

Changes in This Release for Pro*COBOL
Programmer's Guide

This preface lists changes in the Pro*xCOBOL Programmer's Guide.

Changes in Pro*COBOL Release 18c, Version 18.1

New Features

The following feature is new in this release:

e Support for Oracle Connection Manager in Traffic Director Mode

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed
between supported database clients and database instances for improved high
availability, connection multiplexing, and load balancing.

See About Using Oracle Connection Manager in Traffic Director Mode for more
information.

Changes in Pro*COBOL 12c Release 2 (12.2)

The following are changes in Pro*COBOL for Oracle Database 12c release 2 (12.2).

New Features

e Pro*COBOL now supports identifier lengths of 128 bytes. In previous releases, the
identifier length limit was 30 bytes.

e Pro*COBOL now supports Oracle Instant Client - Basic Light version.

e Pro*COBOL now introduces a new command line option “trim_password”, to
prevent authentication issues caused by password strings that contain trailing
blank space.

e Pro*COBOL now supports the Micro Focus Visual COBOL 2.2 Update 2 compiler
for the following platforms:

— Linux x64

— Windows 64-bit and 32-bit

— Solaris x86 (32-bit and 64-bit)

— Solaris SPARC (32-bit and 64-bit)

ORACLE XXViii

Introduction and Concepts

Part | contains the following chapters:

e Introduction

e Precompiler Concepts

e Database Concepts

e Datatypes and Host Variables
Embedded SQL

e Embedded PL/SQL

* Host Tables

e Error Handling and Diagnostics

e Oracle Dynamic SQL

ORACLE

Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in
developing application programs that manipulate Oracle data and find out what it
enables your applications to do. The following questions are answered:

* What is Pro*COBOL?

e The Pro*COBOL Precompiler

e Advantages of the Pro*xCOBOL Precompiler
e The SQL Language

e The PL/SQL Language

* Pro*COBOL Features and Benefits

e Directory Structure

1.1 What is Pro*COBOL?

To access an Oracle database, you use a high-level query language called Structured
Query Language (SQL). You often use SQL through an interactive interface, such as
SQL*Plus.

Pro*COBOL is a programming tool that enables you to embed SQL statements in a
COBOL program. The Pro*COBOL precompiler converts the SQL statements in the
COBOL program into standard Oracle run-time library calls. The generated output file
can then be compiled, linked, and run in the usual manner.

Use the Pro*COBOL precompiler when rapid development and compatibility with other
systems are your priorities.

1.2 The Pro*COBOL Precompiler

The Pro*COBOL Precompiler is a programming tool that enables you to embed SQL
statements in a host COBOL program. As Figure 1-1 shows, the precompiler accepts
the host program as input, translates the embedded SQL statements into standard
Oracle run-time library calls, and generates a source program that you can compile,
link, and execute in the usual way.

ORACLE 1-1

1.2.1 Language Alternatives

ORACLE

Figure 1-1

Chapter 1
The Pro*COBOL Precompiler

Embedded SQL Program Development

Host
Program

Oracle
Precompiler

Source
Program

Object
Program

Executable
Program

" Note:

With embedded SQL statements

With all SQL statements replaced by library calls

Oracle
Runtime
Library

To resolve calls (SQLLIB)

Pro*COBOL supports the MERANT Micro Focus NetExpress version 5.0 for

32-bit Windows 2000.

¢ Note:

Pro*COBOL does not support Object Oriented COBOL (OOCOBOL)
specifications.

Oracle Precompilers are available (but not on all systems) for the following high-level

languages:

C/C++

1-2

Chapter 1
Advantages of the Pro*COBOL Precompiler

« COBOL
* FORTRAN

1.3 Advantages of the Pro*COBOL Precompiler

The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into your
application programs. You can embed SQL statements in COBOL. A convenient, easy
to use interface lets your application access Oracle directly.

Unlike many application development tools, Pro*COBOL lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. It enables close
monitoring of resource usage, SQL statement execution, and various run-time
indicators. With this information, you can adjust program parameters for maximum
performance.

1.4 The SQL Language

If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively or embedded in an application program depends on the job at hand.
If the job requires the procedural processing power of COBOL, or must be done on a
regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and
easy to learn. Being non-procedural, it lets you specify what you want done without
specifying how to do it. A few English-like statements make it easy to manipulate
Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can:

e CREATE, ALTER, and DROP database tables dynamically.
e SELECT, INSERT, UPDATE, and DELETE rows of data.
e COMMIT or ROLLBACK transactions.

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus. Usually, only minor changes are required to switch from
interactive to embedded SQL.

1.5 The PL/SQL Language

ORACLE

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL enables you to group SQL statements logically and send them to Oracle in a
block rather than one by one. This reduces network traffic and processing overhead.

Related Topics
 Embedded PL/SQL

1-3

1.6 Pro*COBOL Features and Benefits

ORACLE

Chapter 1
Pro*COBOL Features and Benefits

As Figure 1-2 shows, Pro*COBOL offers many features and benefits that help you to
develop effective, reliable applications.

Figure 1-2 Pro*COBOL Features and Benefits

Runtime
Diagnostics

Separate
Precompilation

Conditional
Precompilation

Event
Handling

Concurrent
Connects

Support
for LOBs

Datatype
Equivalencing

Syntax
Checking

Pro*COBOL

Language

Alternatives

ANSI/ISO SQL
Conformance

Highly
Customized
Applications

ANSI
Dynamic
SQL

User Exits

Support for
PL/SQL
and Java

Host
Table
Support

Precompiler
Options

For example, the Pro*COBOL Precompiler enables you to:

* Write your application in COBOL.
e Conform to the ANSI/ISO embedded SQL standard.

» Take advantage of ANSI Dynamic SQL Method 4, an advanced programming
technique that lets your program accept or build any valid SQL statement at run-
time in a COBOL program.

» Design and develop highly customized applications.

» Convert automatically between Oracle internal datatypes and COBOL datatypes.

* Improve performance by embedding PL/SQL transaction processing blocks in your

COBOL application program.

» Specify useful precompiler options and change their values during precompilation.

» Use datatype equivalencing to control the way Oracle interprets input data and

formats output data.

1-4

Chapter 1
Directory Structure

* Precompile several program modules separately, and then link them into one
executable program.

* Check the syntax and semantics of embedded SQL data manipulation statements
and PL/SQL blocks.

* Access Oracle databases on multiple nodes concurrently, using Oracle Net
Services.

e Use arrays as input and output program variables.

» Precompile sections of code conditionally so that your host program can run in
different environments.

* Interface with tools, such as Oracle Forms and Oracle Reports, through user exits
written in a high-level language.

» Handle errors and warnings with the ANSI-approved status variables SQLSTATE
and SQLCODE, or the SQL Communications Area (SQLCA) and WHENEVER
statement. Or both SQLSTATE and SQLCODE, and the SQL Communications
Area (SQLCA) and WHENEVER statement.

* Use an enhanced set of diagnostics provided by the Oracle Communications Area
(ORACA).

» Access Large Object (LOB) database types.

1.7 Directory Structure

ORACLE

When you install Pro*COBOL, Oracle Universal Installer creates a directory called
\ preconp in your ORACLE_BASE\ ORACLE_HOVE directory.

Note:

The \ preconp directory can contain files for other products, such as Pro*C/C++.

The \ preconp directory contains the directories listed in Table 1-1.

Table 1-1 Directories
]

Directory Name Contents

\admn Configuration files

\ deno\ procob?2 Sample programs for Pro*COBOL
\ dem\ sq SQL scripts for sample programs
\ doc\ procob2 Readme files for Pro*COBOL
\lib Library files

\ mesg Message files

\public Header files

1-5

Chapter 1
Directory Structure

1.7.1 Header Files

The ORACLE_BASE\ ORACLE_HOVE\ pr econp\ publ i ¢ directory contains the Pro*COBOL
header files listed in Table 1-2.

Table 1-2 Header Files

___|
Header File Description

oraca. cob Contains the Oracle Communications Area (ORACA), which helps you to

diagnose runtime errors and to monitor your program's use of various
Oracle resources.

oracab. cob ORACAS is the COMP-5 version of ORACA.
sql ca. cob Contains the SQL Communications Area (SQLCA), which helps you to

diagnose runtime errors. The SQLCA is updated after every executable
SQL statement.

sql cab. cob SQLCAGS is the COMP-5 version of SQLCA.
sql da. cob Contains the SQL Descriptor Area (SQLDA), which is a data structure

required for programs that use dynamic SQL Method 4.

sql da5. cob This is the COMP-5 version of SQLDA.

1.7.2 Library File

The ORACLE_BASE\ ORACLE_HOME \ preconp\ | i b directory contains the library file that you
use when linking Pro*COBOL applications. The library file is called orasqgl 12. l'i b.

Is orasqlll.lib correct?

1.7.3 Known Problems, Restrictions, and Workarounds

ORACLE

1.

Although all Windows operating systems allow spaces in filenames and directory
names, the Oracle Pro*COBOL precompilers do not precompile files that include
spaces in the file name or directory name. For example, do not use the following
formats:

° proc inanme=test one.pc
e proc inanme=d:\dir1\second dir\sanplel.pc

Users running PROCOB application that are not linked using /LITLINK option and
failing at runtime with the error,

Load error: file ' ORASQLS'

need to copy orasql 9. dl | to orasgl 8.dl | inthe same directory where orasql 9. di |
exists.

Is this still an issue? What is the error and what are the lib file names?

The COMPS5 precompiler option is not available on SPARC Solaris 64 bit
computers. User the COMP option instead.

1-6

Chapter 1
Compatibility, Upgrading, and Migration

1.8 Compatibility, Upgrading, and Migration

ORACLE

The additional "array insert" and "array select" syntax will help migrating DB2
precompiler applications to the Pro*Cobol application. This is because you will not
need to change DB2 array INSERT and SELECT syntax to that of Oracle Pro*Cobol.

The "'Implicit Buffered Insert" feature supported by Pro*Cobol helps you to migrate
DB2 precompiler applications to Pro*Cobol applications without using the array syntax
of Pro*Cobol for better performance.

1-7

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. It presents
definitions of important words, explanations of basic concepts, and key rules.

Topics covered are:

Key Concepts of Embedded SQL Programming
Programming Guidelines

The Declare Section

Nested Programs

Conditional Precompilations

Separate Precompilations

Compiling and Linking

Sample DEPT and EMP Tables

Sample EMP Program: SAMPLE1.PCO

2.1 Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build.

2.1.1 Steps in Developing an Embedded SQL Application

Precompiling results in a source file that can be compiled normally. Although
precompiling adds a step to the traditional development process, that step is well
worth taking because it lets you write very flexible applications.

ORACLE

Figure 2-1 walks you through the embedded SQL application development process:

2-1

Chapter 2
Key Concepts of Embedded SQL Programming

Figure 2-1 Application Development Process

Steps Results

Design » | Specs

yes o [Host
— Code >\ Program

Source

Precompile »| Program

i » [Object
CLlID " Program

. (Linked
” Program

H
(A

Execute

2.1.2 Embedded SQL Statements

ORACLE

The term embedded SQL refers to SQL statements placed within an application
program. Because the application program houses the SQL statements, it is called a
host program, and the language in which it is written is called the host language. For
example, with Pro*COBOL you can embed SQL statements in a COBOL host
program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE
modifies rows, DELETE removes unwanted rows, and SELECT retrieves rows that
meet your search criteria.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

2-2

Chapter 2
Key Concepts of Embedded SQL Programming

2.1.2.1 Executable versus Declarative Statements

Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable statements and directives.

Executable SQL statements generate calls to the database. They include almost all
queries, Data Manipulation Language (DML), data definition language (DDL), and
Data Control Language (DCL) statements.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data.

You use directives to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever COBOL declarations can be placed.

Table 2-1 groups some examples of embedded SQL statements (not a complete list.)

Table 2-1 Embedded SQL Statements — Directives

STATEMENT PURPOSE

ARRAYLEN* To use host tables with PL/SQL
BEGIN DECLARE To declare host variables
SECTION*

END DECLARE SECTION*

DECLARE* To name Oracle objects
INCLUDE* To copy in files

VAR* To equivalence variables
WHENEVER* To handle runtime errors

Table 2-2 Embedded SQL Statements — Executable SQL

I
STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER

CONNECT*

CREATE

DROP

GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE

ORACLE 2-3

Chapter 2
Key Concepts of Embedded SQL Programming

Table 2-2 (Cont.) Embedded SQL Statements — Executable SQL
|

STATEMENT PURPOSE

CLOSE* To query and manipulate Oracle data

DELETE

EXPLAIN
PLAN

FETCH*
INSERT
LOCK TABLE
OPEN*
SELECT
UPDATE

COMMIT To process transactions
ROLLBACK

SAVEPOINT

SET

TRANSACTIO

N

DESCRIBE* To use dynamic SQL
EXECUTE*

PREPARE*

ALTER To control sessions
SESSION

SET ROLE

* Has no interactive counterpart

¢ See Also:

Embedded SQL Statements and Precompiler Directives contains a
presentation of the most important statements and directives.

2.1.3 Embedded SQL Syntax

In your application program, you can freely intermix SQL statements with host-
language statements and use host-language variables in SQL statements. The only
special requirement for building SQL statements into your host program is that you
begin them with the words EXEC SQL and end them with the token END-EXEC.
Pro*COBOL translates all executable EXEC SQL statements into calls to the runtime

ORACLE

library SQLLIB.

Most embedded SQL statements differ from their interactive counterparts only through
the addition of a new clause or the use of program variables. Compare the following
interactive and embedded ROLLBACK statements:

ROLLBACK WORK; -- interactive

* enbedded

2-4

Chapter 2
Key Concepts of Embedded SQL Programming

EXEC SQL
ROLLBACK WORK
END- EXEC.

A period or any other terminator can follow a SQL statement. Either of the following is
allowed:

EXEC SQL ... END EXEC,
EXEC SQL ... END-EXEC.

2.1.4 Static Versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and

transaction before run time. That is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so on.

However, some applications are required to accept and process any valid SQL
statement at run time. In this case you might not know until run time all the SQL
commands, database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.

Related Topics

e Embedded SQL

e Oracle Dynamic SQL

* ANSI Dynamic SQL

e Oracle Dynamic SQL: Method 4

2.1.5 Embedded PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement, so you can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands.

Related Topics
Embedded PL/SQL

2.1.6 Host Variables and Indicator Variables

ORACLE

A host variable is a scalar or table variable or group item declared in the COBOL
language and shared with Oracle, meaning that both your program and Oracle can
reference its value. Host variables are the key to communication between Oracle and
your program.

You use input host variables to pass data to the database. You use output host
variables to pass data and status information from the database to your program.

2-5

Chapter 2
Key Concepts of Embedded SQL Programming

Host variables can be used anywhere an expression can be used. In SQL statements,
host variables must be prefixed with a colon "' to set them apart from database
schema names.

You can associate any host variable with an optional indicator variable. An indicator
variable is an integer variable that indicates the value or condition of its host variable.
A NULL is a missing, an unknown, or an inapplicable value. You use indicator
variables to assign NULLSs to input host variables and to detect NULLs in output
variables or truncated values in output character host variables.

A host variable must not be:

» prefixed with a colon in COBOL statements
» used in data definition (DDL) statements such as ALTER and CREATE

In SQL statements, an indicator variable must be prefixed with a colon and appended
to its associated host variable (to improve readability, you can precede the indicator
variable with the optional keyword INDICATOR).

Every program variable used in a SQL statement must be declared according to the
rules of the COBOL language. Normal rules of scope apply. COBOL variable names
can be any length, but only the first 30 characters are significant for Pro*COBOL. Any
valid COBOL identifier can be used as a host variable identifier, including those
beginning with digits.

The external datatype of a host variable and the internal datatype of its source or
target database column need not be the same, but they must be compatible.

¢ See Also:

Datatype Conversion for list of compatible datatypes between which Oracle
converts automatically when necessary.

2.1.7 Oracle Datatypes

ORACLE

Typically, a host program inputs data to the database, and the database outputs data
to the program. Oracle inserts input data into database tables and selects output data
into program host variables. To store a data item, Oracle must know its datatype,
which specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudo-columns, which return specific data items but
are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, it does any conversion between the external datatype
of the input host variable and the internal datatype of the database column. When
Oracle outputs data to your host program, if necessary, Oracle converts between the
internal datatype of the database column and the external datatype of the output host
variable.

2-6

Chapter 2
Key Concepts of Embedded SQL Programming

Note:

You can override default datatype conversions by using dynamic SQL Method
4 or datatype equivalencing. For information about datatype equivalencing, see
"Explicit Control Over DATE String Format".

2.1.8 Tables

Pro*COBOL lets you define table host variables (called host tables) and operate on
them with a single SQL statement. Using the SELECT, FETCH, DELETE, INSERT,
and UPDATE statements, you can query and manipulate large volumes of data with
ease.

¢ See Also:

Host Tables for a complete discussion of host tables.

2.1.9 Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*COBOL
provides the following error handling mechanisms:

e SQLCODE status variable

e SQLSTATE status variable

* SQL Communications Area (SQLCA)
* WHENEVER statement

* Oracle Communications Area (ORACA)

2.1.9.1 SQLCODE/SQLSTATE Status Variables

After executing a SQL statement, the Oracle Server returns a status code to a variable
named SQLCODE or SQLSTATE. The status code indicates whether the SQL
statement executed successfully or caused an error or warning condition.

2.1.9.2 SQLCA Status Variable

ORACLE

The SQLCA is a data structure that defines program variables used by Oracle to pass
runtime status information to the program. With the SQLCA, you can take different
actions based on feedback from Oracle about work just attempted. For example, you
can check to see if a DELETE statement succeeded and, if so, how many rows were
deleted.

The SQLCA provides for diagnostic checking and event handling. At runtime, the
SQLCA holds status information passed to your program by Oracle. After executing a
SQL statement, Oracle sets SQLCA variables to indicate the outcome, as illustrated in
Figure 2-2.

2-7

Chapter 2
Key Concepts of Embedded SQL Programming

Figure 2-2 Updating the SQLCA

Host Program

I: Error Codes
: Warning Flag Settings
: Number of Rows
: Diagnostic Test

SQL

Database Server

You can check to see if an INSERT, UPDATE, or DELETE statement succeeded and
if it did, how many rows were affected. Or, if the statement failed, you can get more
information about what happened.

When MODE={ANSI13 | ORACLE}, you must declare the SQLCA by hard-coding it or
by copying it into your program with the INCLUDE statement.

¢ See Also:

"Using the SQL Communications Area" for more information about how to
declare and use the SQLCA.

2.1.9.3 WHENEVER Statement

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions include continuing
with the next statement, calling a subprogram, branching to a labeled statement,
performing a paragraph, or stopping.

2.1.9.4 ORACA

ORACLE

When more information is needed about runtime errors than the SQLCA provides, you
can use the ORACA. The ORACA is a data structure that handles Oracle
communication. It contains cursor statistics, information about the current SQL
statement, option settings, and system statistics.

2-8

Chapter 2
Programming Guidelines

2.1.9.5 Precompiler Options and Error Handling

Oracle returns the success or failure of SQL statements in status variables,
SQLSTATE and SQLCODE. With precompiler option MODE=ORACLE, you use
SQLCODE, declared by including SQLCA. With MODE=ANSI, either SQLSTATE or
SQLCODE must be declared, but SQLCA is not necessary.

Related Topics

* Error Handling and Diagnostics

2.1.10 SQL99 Syntax Support

The SQL standard enables the portability of SQL applications across all conforming
software products. Oracle features are compliant with the ANSI/ISO SQL99 standard,
including ANSI compliant joins. Pro*Cobol supports all SQL99 features that are
supported by Oracle database, which means that the SQL99 syntax for the SELECT,
INSERT, DELETE, and UPDATE statements and the body of the cursor in a
DECLARE CURSOR statement are supported.

2.2 Programming Guidelines

This section deals with embedded SQL syntax, coding conventions, and Pro*COBOL-
specific features and restrictions. Topics are arranged alphabetically for quick
reference.

2.2.1 Abbreviations

You can use the standard COBOL abbreviations, such as PIC for PICTURE IS and
COMP for USAGE IS COMPUTATIONAL.

2.2.2 Case-Insensitivity

Pro*COBOL precompiler options and values as well as all EXEC SQL statements,
inline commands, and COBOL statements are case-insensitive. The precompiler
accepts both upper- and lower-case tokens.

2.2.3 COBOL Versions Supported

Pro*COBOL supports the standard implementation of COBOL for your operating
system (usually COBOL-85 or COBOL-74). Some platforms may support both COBOL
implementations. For more information, see your Oracle system-specific
documentation.

2.2.4 Coding Areas

The precompiler option FORMAT, specifies the format of your source code. If you
specify FORMAT=ANSI (the default), you are conforming as much as possible to the
ANSI standard. In this format, columns 1 through 6 can contain an optional sequence
number, and column 7 (indicator area) can indicate comments or continuation lines.

ORACLE 2-9

Chapter 2
Programming Guidelines

Division headers, section headers, paragraph names, FD and 01 statements begin in
columns 8 through 11 (area A). Other statements, including EXEC SQL and EXEC
ORACLE statements, must be placed in area B (columns 12 through 72). These
guidelines for source code format can be overridden by your compiler's rules.

If you specify FORMAT=TERMINAL, COBOL statements can begin in column 1 (the
left-most column), or column 1 can be the indicator area. This format is also subject to
the rules of your compiler.

You can specify FORMAT=VARIABLE to allow Flexible B Area Length.

Consult your COBOL compiler documentation for your own platform to determine the
actual acceptable formats for COBOL statements.

Note:

In this manual, COBOL code examples use the FORMAT=TERMINAL setting.
The online sample programs in the demo directory use FORMAT=ANSI.

2.2.5 Commas

In SQL, you must use commas to separate list items, as the following example shows:

EXEC SQL SELECT ENAME, JOB, SAL
[NTO : EMP-NAME, :JOB-TITLE, :SALARY
FROM EMP
VHERE EMPNO = : EMP- NUMBER

END- EXEC.

In COBOL, you can use commas or blanks to separate list items. For example, the
following two statements are equivalent:

ADD AMI1, AMI2, AMI3 TO TOTAL- AM.
ADD AMI1 AMI2 AMI3 TO TOTAL- AMT.

2.2.6 Comments

ORACLE

You can place COBOL comment lines within SQL statements. COBOL comment lines
start with an asterisk (*) in the indicator area.

You can also place ANSI SQL-style comments starting with "- - " within SQL
statements at the end of a line (but not after the last line of the SQL statement).

COBOL comments continue for the rest of the line after these two characters: "*>".
You can place C-style comments (/* ... */) in SQL statements.
The following example shows all four styles of comments:

MOVE 12 TO DEPT-NUMBER. *> This is the software devel opnent group.
EXEC SQL SELECT ENAME, SAL
* assign colum val ues to output host variabl es

| NTO : EMP- NAME, : SALARY -- output host variables
/* colum val ues assigned to output host variables */
FROM EMP

2-10

Chapter 2
Programming Guidelines

WHERE DEPTNO = : DEPT- NUMBER
END- EXEC. -- illegal Comment

You cannot nest comments or place them on the last line of a SQL statement after the
terminator END-EXEC.

2.2.7 Continuation Lines

You can continue SQL statements from one line to the next, according to the rules of
COBOL, as this example shows:

EXEC SQL SELECT ENAME, SAL | NTO : EMP- NAME, : SALARY FROM EMP
VHERE DEPTNO = : DEPT- NUMBER
END- EXEC.

No continuation indicator is needed.

To continue a string literal from one line to the next, code the literal through column 72.
On the next line, code a hyphen (-) in column 7, a quote in column 12 or beyond, and
then the rest of the literal. An example follows:

WORKI NG STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 UPDATE- STATEMENT PI C X(80) VALUE "UPDATE EMP SET BON

"US = 500 WHERE DEPTNO = 20".
EXEC SQL END DECLARE SECTI ON END- EXEC.

2.2.8 Copy Statements

Copy statements are not parsed by Pro*COBOL. Therefore, files included with the
COPY command should not contain definitions of Host variables or contain embedded
SQL statements. Instead, use the INCLUDE precompiler statement which is
documented in "Using the INCLUDE Statement". Be careful when using INCLUDE and
also using DECLARE_SECTION=YES. Group items should be either placed all inside
or all outside of a Declare Section.

2.2.9 Decimal-Point is Comma

ORACLE

Pro*COBOL supports the DECIMAL-POINT IS COMMA clause in the ENVIRONMENT
DIVISION. If the DECIMAL-POINT IS COMMA clause appears in the source file, then
the comma will be allowed as the symbol beginning the decimal part of any numeric
literals in the VALUE clauses.

For example, the following is allowed:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. FOO
ENVI RONMVENT DI VI ST ON.
CONFI GURATI ON SECTI ON.
SPECI AL- NAMES.
DECI MAL- PO NT | S COMVA. > <. K
DATA DI VI SI ON.
WORKI NG STORAGE SECTI ON.

01 WDATAL PIC SOV999 VALUE +,567. *> <--- **

2-11

Chapter 2
Programming Guidelines

01 VDATA2 PIC SOV999 VALUE -,234. *> <--- **

2.2.10 Delimiters

The LITDELIM option specifies the delimiters for COBOL string constants and literals.
If you specify LITDELIM=APOST, Pro*COBOL uses apostrophes when generating
COBOL code. If you specify LITDELIM=QUOTE (default), quotation marks are used,
asin

CALL "SQLROL" USING SQL- TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing
special or lowercase characters, as in

EXEC SQL CREATE TABLE "Enp2" END- EXEC.

However, you must use apostrophes to delimit string constants, as in

EXEC SQL SELECT ENAME FROM EMP WHERE JOB = ' CLERK' END- EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, Pro*COBOL
generates the delimiter specified by the LITDELIM value.

2.2.11 Division Headers that are Optional

The following division headers are optional:

* |IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
» DATADIVISION

Note that the PROCEDURE DIVISION header is not optional. The following source
can be precompiled:

*| DENTI FI CATI ON DI VI SI ON header is optional
PROGRAM | D. HELLO.

* ENVI RONMVENT DI VI SI ON header is optional
CONFI GURATI ON SECTI ON.

*DATA DI VI SION header is optional
WORKI NG STORAGE SECTI ON.

PROCEDURE DI VI SI ON.
DI SPLAY "Hello Verld!".
STOP RUN.

2.2.12 Embedded SQL Syntax

To use a SQL statement in your Pro*COBOL program, precede the SQL statement
with the EXEC SQL clause, and end the statement with the END-EXEC keyword.

ORACLE 2-12

Chapter 2
Programming Guidelines

¢ See Also:

Oracle Database SQL Language Reference. for more information about
Embedded SQL syntax.

2.2.13 Figurative Constants

Figurative constants, such as HIGH-VALUE, ZERO, and SPACE, cannot be used in
SQL statements. For example, the following is invalid:

EXEC SQL DELETE FROM EMP WHERE COWM = ZERO END- EXEC.

Instead, use the following:

EXEC SQL DELETE FROM EMP WHERE COWM = 0 END- EXEC.

2.2.14 File Length

Pro*COBOL cannot process arbitrarily long source files. Some of the variables used
internally limit the size of the generated file. There is no absolute limit to the number of
lines allowed, but the following aspects of the source file are contributing factors to the
file-size constraint:

e Complexity of the embedded SQL statements (for example, the number of bind
and define variables)

e Whether a database name is used (for example, connecting to a database with an
AT clause)

e Number of embedded SQL statements

To prevent problems related to this limitation, use multiple program units to sufficiently
reduce the size of the source files.

2.2.15 FILLER is Allowed

The word FILLER is allowed in host variable declarations. The word FILLER is used to
specify an elementary item of a group that cannot be referred to explicitly. The
following declaration is valid:

01 STOCK.
05 DIVIDEND PIC X(5).
05 FILLER PIC X.
05 PRICE PIC X(6).

2.2.16 Host Variable Names

Any valid standard COBOL identifier can be used as a host variable. Variable names
can be any length, but only the first 30 characters are significant. The maximum
number of significant characters recognized by COBOL compilers is 30.

For portability, you may wish to restrict the length of host variable names to 18 or
fewer characters (the length mandated by the SQL standard).

ORACLE 2-13

Chapter 2
Programming Guidelines

¢ See Also:

Reserved Words__ Keywords_ and Namespaces for a list of words that have
restrictions on their use in applications.

2.2.17 Hyphenated Names
You can use hyphenated host-variable names in static SQL statements but not in
dynamic SQL. For example, the following usage is invalid:

MOVE " DELETE FROM EMP WHERE EMPNO = : EMP- NUMBER' TO SQLSTMI.
EXEC SQL PREPARE STMI1 FROM SQLSTMI END- EXEC.

2.2.18 Level Numbers

When declaring host variables, you can use level numbers 01 through 49, and 77.
Pro*COBOL does not allow variables containing the VARYING clause or pseudo-type
variables (these datatypes are prefixed with "SQL- ") to be declared level 49 or 77.

2.2.19 MAXLITERAL Default

With the MAXLITERAL option, you can specify the maximum length of string literals
generated by Pro*COBOL, so that compiler limits are not exceeded. For Pro*COBOL,
the default value is 256, but you might have to specify a lower value. On IBM-
proprietary S370 operating systems it is 120.

2.2.20 Multibyte Datatypes

ANSI standard National Character Set datatypes are supported for handling multibyte
character data. The PIC N or PIC G clause, if supported by your compiler, defines
variables that store fixed-length NCHAR strings. You can store variable-length,
multibyte National Character Set strings using COBOL group items consisting of a
length field and a string field.

The environmental variable NLS_NCHAR is available to specify a client-side
Globalization Support National Character Set.

Related Topics
* VARCHAR Variables

2.2.21 NULLs in SQL

In SQL, a NULL represents a missing, unknown, or inapplicable column value; it
equates neither to zero nor to a blank. Use the NVL function to convert NULLs to non-
NULL values, use the IS [NOT] NULL comparison operator to search for NULLs, and
use indicator variables to insert and test for NULLSs.

2.2.22 Paragraph and Section Names

You can associate standard COBOL paragraph and section names with SQL
statements, as shown in the following example:

ORACLE 2-14

Chapter 2
Programming Guidelines

LOAD- DATA.
EXEC SQU
| NSERT | NTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (: EMP-NUMBER, : ENP- NAME, : DEPT- NUVBER)
END- EXEC.

Also, you can reference paragraph and section names in a WHENEVER ... DO or
WHENEVER ... GOTO statement, as the next example shows:

PROCEDURE DI VI SI ON.
MAIN.
EXEC SQL WHENEVER SQLERRCR DO PERFORM SQL- ERROR END- EXEC.

SQL- ERROR SECTI ON.

You must begin all paragraph names in area A.

2.2.23 REDEFINES Clause

You can use the COBOL REDEFINES clause to redefine group or elementary items.
For example, the following declarations are valid:

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 RECID PICX4).
01 REC-NUM REDEFINES REC-ID PIC S9(4) COWP.
EXEC SQL END DECLARE SECTI ON END- EXEC.

And:
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 STOCK.
05 DI VI DEND PIC X(5).
05 PRICE PIC X(6).

01 BOND REDEFINES STOCK.
05 COUPON-RATE PIC X(4).
05 PRICE PIC X(7).
EXEC SQL END DECLARE SECTI ON END- EXEC.

Pro*COBOL issues no warning or error if a single INTO clause uses items from both a
group item host variable and from its re-definition.

2.2.24 Relational Operators

COBOL relational operators differ from their SQL equivalents, as shown in Relational
Operators. Furthermore, COBOL enables the use of words instead of symbols,
whereas SQL does not.

Table 2-3 Relational Operators
|

SQL Operators COBOL Operators

= =, EQUAL TO

<> 1=, A= NOT=, NOT EQUAL TO
> >, GREATER THAN

< <, LESS THAN

ORACLE 2-15

Chapter 2
The Declare Section

Table 2-3 (Cont.) Relational Operators
|

SQL Operators COBOL Operators
>= >=, GREATER THAN OR EQUAL TO
<= <=, LESS THAN OR EQUAL TO

2.2.25 Sentence Terminator

A COBOL sentence includes one or more COBOL or SQL statements, or both of them,
and ends with a period. In conditional sentences, only the last statement must end with
a period, as the following example shows.

| F EMP- NUMBER = ZERO

MOVE FALSE TO VALI D- DATA

PERFCRM GET- EMP- NUM UNTI L VALI D- DATA = TRUE
ELSE

EXEC SQL DELETE FROM EMP

VWHERE EMPNO = : EMP- NUMBER

END- EXEC

ADD 1 TO DELETE- TOTAL.
END- | F.

SQL statements may be ended by a comma, a period, or another COBOL statement.

2.3 The Declare Section

Passing data between the database server and your application program requires host
variables and error handling. This section shows you how to meet these requirements.

2.3.1 Contents of a Declare Section

A Declare Section begins with the statement:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

and ends with the statement:

EXEC SQL END DECLARE SECTI ON END- EXEC.

Between these two statements only the following are allowed:
* Host-variable and indicator-variable declarations

* Non-host COBOL variables

e EXEC SQL DECLARE statements

 EXEC SQL INCLUDE statements

e EXEC SQL VAR statements

» EXEC ORACLE statements

« COBOL comments

ORACLE 2-16

Chapter 2
The Declare Section

2.3.1.1 An Example

In the following example, you declare four host variables for use later in your program.

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 EMP-NUMBER PIC 9(4) COW VALUE ZERO

01 EMP-NAME PIC X(10) VARYING

01 SALARY PI'C S9(5) V99 COWP-3 VALUE ZERO

01 COW SSION PI'C S9(5) V99 COWP-3 VALUE ZERO
EXEC SQL END DECLARE SECTI ON END- EXEC.

2.3.2 Precompiler Option DECLARE_SECTION

The Declare Section is optional. For backward compatibility with releases prior to 8.0,
for which it was required, Pro*xCOBOL provides a command-line precompiler option for
explicit control over whether only declarations in the Declare Section are allowed as
host variables. This option is:

DECLARE_SECTION={YES | NO} (default is NO)

You must use the DECLARE_SECTION option on the command line or in a
configuration file.

When MODE=ORACLE and DECLARE_SECTION=YES, only variables declared
inside the Declare Section are allowed as host variables. When MODE=ANSI then
DECLARE_SECTION is implicitly set to YES.

If DECLARE_SECTION is set to YES, then you must declare all program variables
used in SQL statements inside the Declare Section. If DECLARE_SECTION is set to
NO, then it is optional to use a Declare Section. In this case, declarations of host
variables and indicator variables can be made either inside or outside a Declare
Section. This optional behavior is a change from Release 8.0 and earlier releases.

Multiple Declare Sections are allowed for each precompiled unit. Furthermore, a host
program can contain several independently precompiled units.

" See Also:

e "Macro and Micro Options" for more information about macro and micro
options.

° "DECLARE_SECTION" for more details of the option.

2.3.3 Using the INCLUDE Statement

The INCLUDE statement lets you copy files into your host program, as the following
example shows:

* Copy in the SQL Connunications Area (SQ.CA)
EXEC SQL | NCLUDE SQLCA END- EXEC.

ORACLE 2-17

Chapter 2
Nested Programs

* Copy in the Oracle Comuni cations Area (ORACA)
EXEC SQ. | NCLUDE ORACA END- EXEC.

You can INCLUDE any file. When you precompile your Pro*xCOBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

2.3.3.1 Filename Extensions

If your system uses file extensions but you do not specify one, Pro*xCOBOL assumes
the default extension for source files (usually COB). For more information, see your
Oracle system-specific documentation.

2.3.3.2 Search Paths

If your system uses directories, you can set a search path for included files using the
INCLUDE option, as follows:

| NCLUDE=pat h

where path defaults to the current directory.

Pro*COBOL first searches the current directory, then the directory specified by the
INCLUDE option, and finally the directory for standard INCLUDE files. You need not
specify a path for standard files such as the SQLCA and ORACA. However, a path is
required for nonstandard files unless they are stored in the current directory.

You can also specify multiple paths on the command line, as follows:

. | NCLUDE=<pat h1> | NCLUDE=<pat h2> ...

When multiple paths are specified, Pro*COBOL searches the current directory first,
then the pathl directory, then the path2 directory, and so on. The directory containing
standard INCLUDE files is searched last. The path syntax is system specific. For more
information, see your Oracle system-specific documentation.

Remember that Pro*COBOL searches for a file in the current directory first even if you
specify a search path. If the file you want to INCLUDE is in another directory, make
sure no file with the same name is in the current directory or any other directory that
precedes it in the search path. If your operating system is case sensitive, be sure to
specify the same upper/lowercase filename under which the file is stored.

2.4 Nested Programs

ORACLE

Nesting programs in COBOL means that you place one program inside another. The
contained programs may reference some of the resources of the programs that
contain them. The names within the higher-level program and the nested program can
be the same, and describe different data items without conflict, because the names
are known only within the programs. However, names described in the Configuration
Section of the higher-level program can be referenced in the nested program.

Some compilers do not support the GLOBAL clause. Pro*COBOL supports nested
programs by generating code that contains GLOBAL clauses. To avoid generating
GLOBAL clauses unconditionally, specify the precompiler option NESTED=NO.
NESTED (=YES or NO) defaults to YES and can be used in configuration files, or on
the command line, but not inline (EXEC ORACLE statement).

2-18

Chapter 2
Nested Programs

The higher-level program can contain several nested programs. Likewise, nested
programs can have programs nested within them. You must place the nested program
directly before the END PROGRAM header of the program in which it is nested.

You can call a nested program only by a program in which it is either directly or
indirectly nested. If you want a nested program to be called by any program, even one
on a different branch of the nested tree structure, you code the COMMON clause in
the PROGRAM-ID paragraph of the nested program. You can code COMMON only for
nested programs:

PROGRAM | D. <nest ed- pr ogr am name> COVMON.

You can code the GLOBAL phrase for File Definitions and level 01 data items (any
subordinate items automatically become global). This enables them to be referenced
in all subprograms directly or indirectly contained within them. You code GLOBAL on
the higher-level program. If the nested program defines the same name as one
declared GLOBAL in a higher-level program, COBOL uses the declaration within the
nested program. If the data item contains a REDEFINES clause, GLOBAL must follow
it.

FD file-name GLOBAL ...

01 data-namel GLOBAL ...

01 dat a- name2 REDEFI NES dat a- nane3 GLOBAL ...
Related Topics

« NESTED

2.4.1 Support for Nested Programs

ORACLE

Pro*COBOL enables you to store nested programs with embedded SQL within a
single source file. All 01 level items, which are marked as global in a containing
program and are valid host variables at the containing program level, are usable as
valid host variables in any programs directly or indirectly contained by the containing
program. Consider the following example:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. MAI NPROG
ENVI RONMVENT DI VI SI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 RECl GLOBAL.
05 VARL PIC X(10).
05 VAR PIC X(10).
01 VARL PIC X(10) GLOBAL.
EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
<mai n program st at ement s>
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. NESTEDPROG
ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.

2-19

Chapter 2
Conditional Precompilations

01 VARL PIC S9(4).

PROCEDURE DI VI SI ON.
EXEC SQL SELECT X, Y INTO : RECL FROM ... END-EXEC
EXEC SQL SELECT X INTO :VARL FROM ... END-EXEC.
EXEC SQL SELECT X I NTO : RECL. VARL FROM ... END-EXEC.

END PROGRAM NESTEDPROG
END PROGRAM MAI NPROG

The main program declares the host variable REC1 as global, and thus the nested
program can use REC1 in the first select statement without having to declare it. Since
VAR1 is declared as a global variable and also as a local variable in the nested
program, the second select statement will use the VAR1 declared as S9(4), overriding
the global declaration. In the third select statement, the global VAR1 of REC1 declared
as PIC X(10) is used.

The previous paragraph describes the results when DECLARE_SECTION=NO is
used. When DECLARE_SECTION=YES, Pro*COBOL will not recognize host variables
unless they are declared inside a Declare Section. If the preceding program is
precompiled with DECLARE_SECTION=YES, then the second select statement would
result in an ambiguous host variable error. The first and third select statements would
function the same.

Note: Recursive nested programs are not supported

2.4.1.1 Declaring the SQLCA

For information on declaring the SQLCA for nested programs, the included SQLCA
definition provided will be declared as global, so the declaration of SQLCA is only
required in the higher-level program. The SQLCA can change each time a new SQL
statement is executed. The SQLCA provided can always be modified to remove the
global specification if you want to declare additional SQLCA areas in the nested
programs. This also applies to SQLDA and ORACA.

Related Topics
* SQLCA Status Variable

2.4.1.2 Nested Program Example

See SAMPLE13.PCO in the demo directory.

2.5 Conditional Precompilations

ORACLE

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that can
run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code host-language statements as well as EXEC SQL

2-20

Chapter 2
Conditional Precompilations

statements in these sections. The following statements let you exercise conditional
control over precompilation:

* -- define a synbol

EXEC ORACLE DEFI NE synbol END-EXEC.
* -- if symbol is defined

EXEC ORACLE | FDEF symbol END- EXEC.
* .- if synbol is not defined

EXEC ORACLE | FNDEF synbol END- EXEC.
* -- otherwi se

EXEC ORACLE ELSE END- EXEC.
* -- end this control block

EXEC CRACLE ENDI F END- EXEC.

A conditional statement must be terminated with END- EXEC.

Note:

The conditional compilation feature of your compiler may not be supported by
Pro*COBOL.

2.5.1 An Example

In the following example, the SELECT statement is precompiled only when the symbol
SITEZ2 is defined:

EXEC ORACLE | FDEF Sl TE2 END- EXEC.
EXEC SQL SELECT DNAME

I NTO : DEPT- NAME

FROM DEPT

VWHERE DEPTNO = : DEPT- NUMBER
EXEC ORACLE ENDI F END- EXEC.

Blocks of conditions can be nested as shown in the following example:

EXEC CRACLE | FDEF OUTER END- EXEC.
EXEC CRACLE | FDEF | NNER END- EXEC.

EXEC CRACLE ENDI F END- EXEC.
EXEC CRACLE ENDI F END- EXEC.

You can "Comment out" host-language or embedded SQL code by placing it between
IFDEF and ENDIF and not defining the symbol.

2.5.2 Defining Symbols

You can define a symbol in two ways. Either include the statement

EXEC ORACLE DEFI NE symbol END- EXEC.

in your host program or define the symbol on the command line using the syntax

. I NAME=fi |l ename ... DEFI NE=synbol

where symbol is not case-sensitive.

ORACLE 2-21

Chapter 2
Separate Precompilations

Some port-specific symbols are predefined for you when Pro*COBOL is installed on
your system. For example, predefined operating system symbols include CMS, MVS,
UNIX, and VMS.

Note:

A DEFINE SYMBOL name beginning with a number, or that includes a dash,
causes an unrecoverable error during precompilation. You can use
underscores, and you can use numbers other than at the beginning of a
DEFINE SYMBOL name.

2.6 Separate Precompilations

You can precompile several COBOL program modules separately and then link them
into one executable program. This supports modular programming, which is required
when the functional components of a program are written and debugged by different
programmers. The individual program modules need not be written in the same
language.

2.6.1 Guidelines

The following guidelines will help you avoid some common problems.

2.6.1.1 Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot declare
a cursor in one file and open or fetch from it in another file, so when doing a separate
precompilation, make sure all definitions and references to a given cursor are in one
file.

2.6.1.2 Specifying MAXOPENCURSORS

When you precompile the program module that connects to Oracle, specify a value for
MAXOPENCURSORS that is high enough for any of the program modules. If you use
it for another program module, MAXOPENCURSORS is ignored. Only the value in
effect for the connect is used at run time.

2.6.1.3 Using a Single SQLCA

If you want to use just one memory area for the SQLCA, the process for doing so
depends on which version of Pro*xCOBOL you are using.

2.6.1.3.1 Version 1.8 and Lower

You must declare the SQLCA globally. You can do this by modifying the SQLCA.COB
file, changing the line

01 SQLCA

to

ORACLE 2-22

Chapter 2
Compiling and Linking

01 SQLCA EXTERNAL.

Alternatively, you can include a hard-coded definition for SQLCA, copied from
SQLCA.cob and make the aforementioned change. Note that you still have to include
a definition of SQLCA in each precompiled unit.

2.6.1.3.2 Version 2 and Later

In later versions of Pro*COBOL, the SQLCA is not copied from the file system. It is
generated by the precompiler. If you need to share the SQLCA structure in these
versions, instead of this statement:

EXEC SQL | NCLUDE SQLCA END- EXEC

you should use the following code:

EXEC SQL | NCLUDE SQLCA. ANX END- EXEC

This causes the precompiler to generate the SQLCA structure with the EXTERNAL
keyword added automatically.

2.6.1.4 Using a Single DATE_ FORMAT

You must use the same format string for DATE in each program module.

2.6.2 Restrictions

All references to an explicit cursor must be in the same program file. You cannot
perform operations on a cursor that was declared in a different module. See Chapter 4
for more information about cursors.

Also, any program file that contains SQL statements must have a SQLCA that is in the
scope of the local SQL statements.

2.7 Compiling and Linking

To get an executable program, you must compile the source file(s) produced by
Pro*COBOL, then link the resulting object module with any modules needed from
SQLLIB and system-specific Oracle libraries.

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. Such conflicts can happen when you try to link third party
software into a precompiled program. Not all third-party software is compatible with
Oracle, so you might have problems. Check with Oracle Support Services to see if the
software is supported.

Compiling and linking are system-dependent. For example, on some systems, you
must turn off compiler optimization when compiling a host language program. For
instructions, see your system-specific Oracle manual.

2.8 Sample DEPT and EMP Tables

Most of the complete program examples in this guide use two sample database tables:
DEPT and EMP. If they do not exist in your demo directory, create them before
running the sample programs. Their definitions follow:

ORACLE 2-23

Chapter 2
Sample EMP Program: SAMPLE1.PCO

CREATE TABLE DEPT (DEPTNO NUMBER(2), DNAMVE VARCHARZ(14), LOC VARCHAR2(13)):

CREATE TABLE EMP (EMPNO NUMBER(4) prinary key, ENAMVE VARCHAR2(10), JOB VARCHAR?

(9)
MGR NUMBER(4), HI REDATE DATE, SAL NUMBER(7,2), COWM NUMBER(7,2), DEPTNO NUMBER(2

9),
));

2.8.1 Sample DEPT and EMP Data

Respectively, the DEPT and EMP tables contain the following rows of data:

DEPTNO DNAME LoC

10 ACCOUNTI NG NEW YORK

20 RESEARCH DALLAS

30 SALES CHI CAGD

40 COPERATI ONS BOSTON

EVMPNO ENAVE JOB MGR H REDATE SAL COW DEPTNO
7369 SMTH CLERK 7902 17- DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESI DENT 17-NOv-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03- DEC-81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MLLER CLERK 7782 23-JAN-82 1300 10

2.9 Sample EMP Program: SAMPLE1.PCO

ORACLE

A good way to get acquainted with embedded SQL is to look at a program example.
This program is SAMPLE1.PCO in the demo directory.

The program logs on to the database, prompts the user for an employee number,
gueries the database table EMP for the employee's name, salary, and commission.
The selected results are stored in host variables EMP-NAME, SALARY, and
COMMISSION. The program uses the host indicator variable, COMM-IND to detect
NULL values in column COMMISSION.

The paragraph DISPLAY-INFO then displays the result.
Bug 7225844 - Following para - substituted EMP-NAME for EMP-NUMBER

The COBOL variables USERNAME, PASSWD, and EMP-NAME are declared using
the VARYING clause, which enables you to use a variable-length string external
Oracle datatype called VARCHAR.

The SQLCA Communications Area is included to handle errors. If an error occurs,
paragraph SQL-ERROR is performed.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements used are
optional, unless you set the precompiler option DECLARE_SECTION to YES, or
option MODE to ANSI.

2-24

ORACLE

Chapter 2
Sample EMP Program: SAMPLE1.PCO

The WHENEVER statement is used to handle errors.

The program ends when the user enters a zero employee number.

" Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security
Guide for password management guidelines and other security
recommendations.

This programlogs on to ORACLE, pronpts the user for an enpl oyee number,
queries the database for the enployee's name, salary, and conmission, then
displays the result. The programterninates when the user enters a 0.

I D DIVISION

PROGRAM | D. QUERY.

ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAME PIC X(10) VARYI NG

01 PASSWD PIC X(10) VARYI NG

01 EMP-REC- VARS.
05 EMP-NAME PIC X(10) VARYI NG
05 EMP-NUMBER PI C S9(4) COW VALUE ZERO.
05 SALARY PI C S9(5) V99 COWP-3 VALUE ZERQ
05 COW SSION PI C S9(5) V99 COWP-3 VALUE ZERQ
05 COW I ND PI C S9(4) COW VALUE ZERO.

EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

01 DI SPLAY- VARI ABLES.
05 D EMP- NAME PIC X
05 D SALARY PIC Z(
05 D COWSSION PIC Z(
05 D EMP-NUMBER PIC 9(

01 D-TOTAL-QUERIED PIC 9(4) VALUE ZERO

PROCEDURE DI VI SI ON.
BEG N- PGM
EXEC SQL WHENEVER SQLERRCR
DO PERFORM SQL- ERROR END- EXEC.

PERFORM LOGON.
QUERY- LOCP.
DI SPLAY " ",

DI SPLAY "ENTER EMP NUMBER (0 TOQUIT): "
W TH NO ADVANCI NG

2-25

ORACLE

Chapter 2
Sample EMP Program: SAMPLE1.PCO

ACCEPT D- EMP- NUMBER.

MOVE D- EMP- NUVBER TO ENP- NUVBER
I F (EMP- NUMBER = 0)
PERFORM SI G\ OFF.
MOVE SPACES TO EMP- NAVE- ARR
EXEC SQL VHENEVER NOT FOUND GOTO NO-EMP END- EXEC.
EXEC SQL SELECT ENAME, SAL, NVL(COW 0)
I NTO : EMP- NAME, : SALARY, : COMM SSI ON: COMM | ND
FROM EMP
HERE EMPNO = : EMP- NUVBER
END- EXEC.
PERFORM DI SPLAY- | NFO.
ADD 1 TO D- TOTAL- QUER! ED.
GO TO QUERY- LOCP.

NO- EMP.

DI SPLAY "NOT A VALI D EMPLOYEE NUMBER - TRY AGAIN.".
GO TO QUERY- LOCP.

LOGON.

MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY " CONNECTED TO ORACLE AS USER: ", USERNAME- ARR

DI SPLAY- I NFO.

DI SPLAY " "

DI SPLAY " EMPLOYEE SALARY COWM SSI ON'.
DI SPLAY "------- meeee e
MOVE EMP- NAME- ARR TO D- EMP- NAME.

MOVE SALARY TO D- SALARY.

IF COWHIND = -1

DI SPLAY D- EMP- NAME, D- SALARY, " NULL"
ELSE
MOVE COW SSI ON TO D- COWM SSI ON
DI SPLAY D- EMP- NAME, D- SALARY, " ", D-COW SSI ON
END- | F.
Sl G\ OFF.
DI SPLAY " "

SQL-

DI SPLAY "TOTAL NUMBER QUERI ED WAS ",
D- TOTAL- QUERI ED, "."

DI SPLAY " "

DI SPLAY "HAVE A GOOD DAY.".

DI SPLAY " "

EXEC SQL COW T WORK RELEASE END- EXEC.

STCP RUN.

ERRCR.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
DI SPLAY " "

DI SPLAY " ORACLE ERRCR DETECTED: ".

DI SPLAY " "

DI SPLAY SQLERRMC.

2-26

Chapter 2
Sample EMP Program: SAMPLE1.PCO

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

Related Topics

» Using the SQL Communications Area
- MODE

* WHENEVER Directive

ORACLE 2.27

Database Concepts

This chapter explains the CONNECT statement and its options, Oracle Net Services,
and related network connection statements. Transaction processing is presented. You
learn the basic techniques that safeguard the consistency of your database, including
how to control whether changes to Oracle data are made permanent or undone.

e Connecting to Oracle

» Default Databases and Connections
« Key Terms

* How Transactions Guard a Database
e Beginning and Ending Transactions

e Using the COMMIT Statement

e Using the ROLLBACK Statement

e Using the SAVEPOINT Statement

e Using the RELEASE Option

e Using the SET TRANSACTION Statement
e Overriding Default Locking

e Fetching Across Commits

» Handling Distributed Transactions

e Guidelines for Transaction Processing

3.1 Connecting to Oracle

Your Pro*COBOL program must log on to Oracle before querying or manipulating
data. To log on, you use the CONNECT statement, as in

EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

where USERNAME and PASSWD are PIC X(n) or PIC X(n) VARYING host variables.
Alternatively, you can use the statement:

EXEC SQL
CONNECT : USR- PWD
END- EXEC.

where the host variable USR-PWD contains your username and password separated
by a slash (/) followed by an optional thsnames.ora alias (@ TNSALIAS).

The syntax for the CONNECT statement has an optional ALTER AUTHORIZATION
clause. The complete syntax for CONNECT is shown here:

ORACLE 3-1

Chapter 3
Connecting to Oracle

EXEC SQL

CONNECT { :user |DENTIFIED BY :ol dpswd | :usr_psw }

[[AT { dbnanme | :host_variable }] USING :connect_string]

[{ALTER AUTHORI ZATI ON : newpswd | |N {SYSDBA | SYSOPER} MODE}]
END- EXEC.

The CONNECT statement must be the first SQL statement executed by the program.
That is, other executable SQL statements can positionally, but not logically, precede
the CONNECT statement. If the precompiler option AUTO_CONNECT=YES, a
CONNECT statement is not needed.)

To supply the username and password separately, you define two host variables as
character strings or VARCHAR variables. If you supply a userid containing both
username and password, only one host variable is needed.

Make sure to set the username and password variables before the CONNECT is
executed or it will fail. Your program can prompt for the values or you can hard-code
them, as follows:

WORKI NG STORAGE SECTI ON.

01 USERNAME PIC X(10).
01 PASSMD PIC X(10).

PROCEDURE DI VI SI ON.
LOGON.
EXEC SQL WHENEVER SQLERROR GOTO LOGON- ERROR END- EXEC.
MOVE " SCOTT" TO USERNAME.
MOVE "TI GER' TO PASSWD.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

However, you cannot hard-code a username and password into the CONNECT
statement or use quoted literals. For example, the following statements are invalid:

EXEC SQL
CONNECT SCOTT | DENTI FI ED BY Tl GER
END- EXEC.

EXEC SQL
CONNECT * SCOTT" | DENTI FI ED BY " Tl GER'
END- EXEC.

¢ See Also:
e "Changing Passwords at Runtime" for more information about ALTER
AUTHORIZATION clause.

e "SYSDBA or SYSOPER Privileges" for more information about SYSDBA
and SYSOPER.

ORACLE 3-2

Chapter 3
Default Databases and Connections

3.2 Default Databases and Connections

It is possible within a Pro*COBOL program to maintain more than one database
connection at the same time.

3.2.1 Concurrent Logons

ORACLE

Pro*COBOL supports distributed processing through Oracle Net Services. Your
application can concurrently access any combination of local and remote databases or
make multiple connections to the same database. In Figure 3-1, an application
program communicates with one local and three remote Oracle databases. ORA2,
ORAZ3, and ORA4 are logical names used in CONNECT statements.

Figure 3-1 Connecting Through Oracle

Application Local
Program Oracle
Database

A

v

Oracle Net

Remote Remote
Oracle Oracle
Database Remote Database
Oracle
Database

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net Services provides a distributed processing environment for
Oracle tools. This section shows you how the Pro*xCOBOL supports distributed
processing through Oracle Net Services. You learn how your application can

* Access other databases directly or indirectly
» Concurrently access any combination of local and remote databases
* Make multiple connections to the same database

Normally you would need only a single connection, achieved by EXEC SQL

CONNECT : USR- PWD END- EXEC. The database that is connected to is determined by what
USR-PWD contains. If it contains the username and password for the default
database, it will connect to the database defined as the default for the session. If it
contains username/password@REMDB" it will connect through Oracle Net Services to
the REMDB database as defined by your Oracle Net Services configuration. (An

3-3

Chapter 3
Default Databases and Connections

alternative is to use the USING clause to specify the Oracle Net Services connection
string.) This is the default connection.

To make further concurrent connections to either the same or different databases you
make use of the AT clause, that is, EXEC SQL AT DB1 CONNECT : USR- PMD END- EXEC. The
name after the AT clause uniquely identifies a "nondefault” connection, and any SQL
statements with the same name after the AT clause are executed against that
connection. If the AT clause is omitted in an SQL statement then the statement is
executed against the default connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

3.2.2 Using Username/Password

Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT : USERNAME | DENTI FI ED BY : PASSWORD END- EXEC.

Or you can use:

EXEC SQL CONNECT : USR- PWD END- EXEC.

where USR-PWD contains any valid Oracle connect string.

These are simplified subsets of the CONNECT statement. For all details, read the next
sections in this chapter.

Related Topics
e Automatic Logons
* CONNECT (Executable Embedded SQL Extension)

3.2.2.1 Named Database Connections

ORACLE

In the following example, you connect to a named database. Normally you use a
named database connection only for multiple concurrent connections. The following
example shows the syntax for a single connection:

* -- Declare necessary host variables
WORKI NG STORAGE SECTI ON.

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(10) .
01 PASSWORD PIC X(10) .
01 DB-STRING PIC X(20) .

EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
MOVE "scott" TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "nyrenote" TO DB- STRI NG

* -~ Assign a unique name to the database connection.
EXEC SQ. DECLARE DBNAME DATABASE END- EXEC.

* -- Connect to the nondefault database
EXEC SQL

3-4

ORACLE

Chapter 3
Default Databases and Connections

CONNECT : USERNAME | DENTI FI ED BY : PASSWORD
AT DBNAME USI NG : DB- STRI NG
END- EXEC.

The identifiers in this example serve the following purposes:

e The host variables USERNAME and PASSWORD identify a valid user.

* The host variable DB-STRING contains the Oracle Net Services syntax for logging
on to a nondefault database at a remote node.

* The undeclared identifier DBNAME names a hondefault connection; it is an
identifier used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database to be associated
with DBNAME. Later, SQL statements using the AT clause (with DBNAME) are
executed at the database specified by DB-STRING.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

* -~ Declare necessary host variables
WORKI NG STORAGE SECTI ON.

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(10).
01 PASSWORD PIC X(10).
01 DB-NAME PIC X(10).
01 DB-STRING PIC X(20).
EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
MWVE "scott" TO USERNAME.
MOVE "tiger" TO PASSSWORD.
MOVE "oracl el" TO DB- NAME.
MOVE "nyrenote" TO DB- STRI NG

* .- Connect to the nondefault database
EXEC SQL
CONNECT : USERNANME | DENTI FI ED BY : PASSWORD
AT : DB- NAME USI NG : DB- STRI NG
END- EXEC.

If DB-NAME is a host variable, the DECLARE DATABASE statement is not needed.
Only if DBNAME is an undeclared identifier must you execute a DECLARE DBNAME
DATABASE statement before executing a CONNECT ... AT DBNAME statement.

SQL Operations. If granted the privilege, you can execute any SQL data manipulation
statement at the nondefault connection. For example, you might execute the following
sequence of statements:

EXEC SQL AT DBNAME SELECT ...
EXEC SQL AT DBNAME | NSERT ...
EXEC SQL AT DBNAME UPDATE ...

In the next example, DB-NAME is a host variable:

EXEC SQL AT :DB- NAME DELETE ...

Cursor Control. Cursor control statements such as OPEN, FETCH, and CLOSE are
exceptions—they never use an AT clause. If you want to associate a cursor with an

3-5

Chapter 3
Default Databases and Connections

explicitly identified database, use the AT clause in the DECLARE CURSOR statement,
as follows:

EXEC SQL AT : DB- NAME DECLARE enp_cursor CURSOR FOR ...
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor ...

EXEC SQL CLOSE enp_cursor END- EXEC.

If DB-NAME is a host variable, its declaration must be within the scope of all SQL
statements that refer to the declared cursor. For example, if you open the cursor in
one subprogram, then fetch from it in another, you must declare DB-NAME globally or
pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the AT clause. The
SQL statements are executed at the database named in the AT clause of the
DECLARE CURSOR statement or at the default database if no AT clause is used in
the cursor declaration.

The AT :host-variable clause enables you to change the connection associated with a
cursor. However, you cannot change the association while the cursor is open.
Consider the following example:

EXEC SQ. AT : DB- NAME DECLARE enp_cursor CURSOR FOR ...
MOVE "oracl el" TO DB- NAME.
EXEC SQ. OPEN enp_cursor END- EXEC.
EXEC SQ. FETCH enp_cursor INTO...
MOVE "oracl e2" TO DB- NAME.
* -~ illegal, cursor still open
EXEC SQ. OPEN enp_cursor END- EXEC.
EXEC SQ. FETCH enp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

* -- close cursor first
EXEC SQ. CLOSE enp_cursor END- EXEC.
MOVE "oracl e2" TO DB- NAME.
EXEC SQ. OPEN EMP- CUROR END- EXEC.
EXEC SQL FETCH enp_cursor INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control statements in
that some never use the AT clause. For dynamic SQL Method 1, you must use the AT
clause if you want to execute the statement at a nondefault connection. An example
follows:

EXEC SQL AT : DB- NAVE EXECUTE | MVEDI ATE : SQL- STMI' END- EXEC.

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other
dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and
CLOSE never use the AT clause. The next example shows Method 2:

EXEC SQL AT : DB- NAVME DECLARE SQL- STMI STATEMENT END- EXEC.
EXEC SQL PREPARE SQL- STMI' FROM : SQL- STRI NG END- EXEC.
EXEC SQL EXECUTE SQL- STMI' END- EXEC.

ORACLE 3-6

Chapter 3
Default Databases and Connections

The following example shows Method 3:

EXEC SQL AT : DB- NAME DECLARE SQL- STMT STATEMENT END- EXEC.
EXEC SQL PREPARE SQL- STMI' FROM : SQL- STRI NG END- EXEC.

EXEC SQL DECLARE enp_cursor CURSCR FOR SQL- STMI' END- EXEC.
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor INTO ...

EXEC SQL CLOSE enp_cursor END- EXEC.

You need not use the AT clause when connecting to a remote database unless you
open two or more connections simultaneously (in which case the AT clause is needed
to identify the active connection). To make the default connection to a remote
database, use the following syntax:

EXEC SQL
CONNECT : USERNAVE | DENTI FI ED BY : PASSWORD USI NG : DB- STRI NG
END- EXEC.

3.2.3 Automatic Logons

You can log on to Oracle automatically with the userid:

<pr ef i x><user name>

where prefix is the value of the Oracle initialization parameter OS_AUTHENT_PREFIX
(the default value is OPS$) and username is your operating system user or task name.
For example, if the prefix is OPS$, your user name is TBARNES, and OPS$TBARNES
is a valid Oracle userid, then you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a slash (/)
character to Pro*COBOL, as follows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 ORACLEID PIC X

EXEC SQL END DECLARE SECTI ON END- EXEC.

MOVE ' /' TO ORACLEID.
EXEC SQL CONNECT : ORACLEI D END- EXEC.

This automatically connects you as user OPS$username. For example, if your
operating system username is RHILL, and OPS$RHILL is a valid Oracle username,
connecting with a slash (/) automatically logs you on to Oracle as user OPS$RHILL.

You can also pass a character string to Pro*COBOL. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 ORACLEID PIC X(5).

EXEC SQL END DECLARE SECTI ON END- EXEC.

MOVE '/ " TO CRACLEID.
EXEC SQL CONNECT : ORACLEI D END- EXEC.

ORACLE .

Chapter 3
Default Databases and Connections

3.2.3.1 The AUTO_CONNECT Precompiler Option

Pro*COBOL lets your program log on to the default database without using the
CONNECT statement. Simply specify the precompiler option AUTO_CONNECT on the
command line.

Assume that the default value of OS_AUTHENT_PREFIX is OPS$, your username is
TBARNES, and OPS$TBARNES is a valid Oracle userid. When
AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable SQL
statement, your program logs on to Oracle automatically with the userid
OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement to
log on to Oracle.

3.2.4 Changing Passwords at Runtime

Pro*COBOL provides client applications with a convenient way to change a user
password at runtime through the optional ALTER AUTHORIZATION clause.

The syntax for the ALTER AUTHORIZATION clause is shown here:
EXEC SQL CONNECT .. ALTER AUTHORI ZATI ON : NEWPSVD END- EXEC.

Using this clause indicates that you want to change the account password to the value

indicated by NEWPSWD. After the change is made, an attempt is made to connect as
USER/NEWPSWD. This can have the following results:

* The application will connect without issue.
» The application will fail to connect. This could be due to either of the following:

— Password verification failed for some reason. In this case the password
remains unchanged.

— The account is locked. Changes to the password are not permitted.

3.2.5 Connect Without Alter Authorization

This section describes the possible outcomes of different variations of the CONNECT
statement.

3.2.5.1 Standard CONNECT

ORACLE

If an application issues the following statement:

EXEC SQL CONNECT ... /* No ALTER AUTHORI ZATI ON cl ause */

it performs a normal connection attempt. The possible results include the following:

* The application will connect without issue.

* The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow
logons. At this point, the user is encouraged to change the password before the
account becomes locked.

* The application will fail to connect. Possible causes include the following:

3-8

Chapter 3
Key Terms

— The password is incorrect.

— The account has expired, and is possibly in a locked state.

3.2.5.2 SYSDBA or SYSOPER Privileges

Before Oracle release 8.1 you did not have to use this clause to have the SYSOPER
or SYSDBA system privilege, but now you must.

Append the following optional string to the CONNECT statement after all other clauses
if you want to log on with either SYSDBA or SYSOPER system privileges:

IN{ SYSDBA | SYSOPER } MODE

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE END- EXEC.

Here are the restrictions that apply to this option:

» This option is not supported when using the AUTO_CONNECT=YES precompiler
option setting.

e The option is not permitted when using the ALTER AUTHORIZATION keywords in
the CONNECT statement.

3.2.6 Using Links

Database links are supported through the Oracle distributed database option. For
example, a distributed query allows a single SELECT statement to access data on one
or more nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At runtime, the embedded
SELECT statement is executed by the specified database server, which connects
implicitly to the nondefault database(s) to get the required data.

Related Topics

» Connecting to a Database Service

3.3 Key Terms

ORACLE

Before delving into the subject of transactions, you should know the terms defined in
this section.

The jobs or tasks that the database manages are called sessions. A user session is
started when you run an application program or a tool such as Oracle Forms and
connect to the database. Oracle enables user sessions to work simultaneously and
share computer resources. To do this, Oracle must control concurrence, the
accessing of the same data by many users. Without adequate concurrence controls,
there might be a loss of data integrity. That is, changes to data or structures might be
made in the wrong order.

Oracle uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot
be changed by other users until you finish with it. You need never explicitly lock a
resource, because default locking mechanisms protect table data and structures.

3-9

Chapter 3
How Transactions Guard a Database

However, you can request data locks on tables or rows when it is to your advantage
to override default locking. You can choose from several modes of locking such as
row share and exclusive.

A deadlock can occur when two or more users try to access the same database
object. For example, two users updating the same table might wait if each tries to
update a row currently locked by the other. Because each user is waiting for resources
held by another user, neither can continue until the server breaks the deadlock. The
server signals an error to the participating transaction that had completed the least
amount of work, and the "deadlock detected while waiting for resource" error code is
returned to SQLCODE in the SQLCA.

When a table is queried by one user and updated by another at the same time, the
database generates a read consistent view of the table's data for the query. That is,
once a query begins (and proceeds), the data read by the query does not change. As
update activity continues, the database takes snapshots of the table's data and
records changes in a rollback segment. The database uses information in the
rollback segment to build read consistent query results and to undo changes if
necessary.

3.4 How Transactions Guard a Database

ORACLE

The database is transaction oriented; it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements you define to
accomplish some task. The database treats the series of SQL statements as a unit so
that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program fails
in the middle of a transaction, the database is automatically restored to its former (pre-
transaction) state.

The coming sections show you how to define and control transactions. Specifically, it
shows how to:

* Begin and end transactions
* Use the COMMIT statement to make transactions permanent

* Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions

* Use the ROLLBACK statement to undo whole transactions
» Specify the RELEASE option to free resources and log off the database
* Use the SET TRANSACTION statement to set read-only transactions

e Use the FOR UPDATE clause or LOCK TABLE statement to override default
locking

¢ See Also:

Oracle Database SQL Language Reference for details about the SQL
statements.

3-10

Chapter 3
Beginning and Ending Transactions

3.5 Beginning and Ending Transactions

3.6 Using

ORACLE

You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable statement
is part of a transaction. Because they cannot be rolled back and need not be
committed, declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

e Code a COMMIT or ROLLBACK statement, with or without the RELEASE option.
This explicitly makes permanent or undoes changes to the database.

e Code a data definition statement (ALTER, CREATE, or GRANT, for example) that
issues an automatic commit before and after executing. This implicitly makes
permanent changes to the database.

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.

If your program fails in the middle of a transaction, Oracle detects the error and rolls
back the transaction. If your operating system fails, Oracle restores the database to its
former (pre-transaction) state.

the COMMIT Statement

The COMMIT statement is used to make changes to the database permanent. Until
changes are committed, other users cannot access the changed data; they see it as it
was before your transaction began. The COMMIT statement has no effect on the
values of host variables or on the flow of control in your program. Specifically, the
COMMIT statement:

» Makes permanent all changes made to the database during the current
transaction.

» Makes these changes visible to other users.
» Erases all savepoints (see the next section).
* Releases all row and table locks, but not parse locks.

» Closes cursors declared using the FOR UPDATE clause or referenced elsewhere
in the code with the CURRENT OF clause. If MODE=ANSI | ANSI14 or
CLOSE_ON_COMMIT=YES is used, then all explicit cursors are closed.

* Ends the transaction.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT OF
clause remain open across commits. This can boost performance. For an example,
see "Fetching Across Commits".

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicitly commit pending changes. Otherwise, Oracle rolls them back. In the
following example, you commit your transaction and disconnect:

EXEC SQL COWM T WORK RELEASE END- EXEC.

3-11

Chapter 3
Using the ROLLBACK Statement

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees
all resources (locks and cursors) held by your program and logs off the database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic commit before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements

Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR remains open after a COMMIT. The following example shows how to use
this clause:

EXEC SQL

DECLARE C1 CURSOR W TH HOLD

FOR SELECT ENAME FROM ENP

WHERE ENPNO BETVEEN 7600 AND 7700
END- EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in DB2
to override the default, which is to close all cursors on commit. ProxCOBOL provides
this clause in order to ease migrations of applications from DB2 to Oracle. When
MODE=ANSI, Oracle uses the DB2 default, but all host variables must be declared in
a Declare Section. To avoid having a Declare Section, use the precompiler option
CLOSE_ON_COMMIT described next.

Related Topics
 DECLARE CURSOR (Embedded SQL Directive)

3.6.2 CLOSE_ON_COMMIT Precompiler Option

The precompiler option CLOSE_ON_COMMIT is available to override the default
behavior of MODE=ANSI (if you specify MODE=ANSI on the command line, any
cursors not declared with the WITH HOLD clause are closed on commit):

CLOSE_ ON.COWM T = {YES | NO}

The default is NO. This option must be entered only on the command line or in a
configuration file.

" Note:

Use this option carefully; applications may be slowed if cursors are opened and
closed many times because of the need to re-parse for each OPEN statement.
See "CLOSE_ON_COMMIT".

3.7 Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The ROLLBACK statement has no

ORACLE 3-12

Chapter 3
Using the ROLLBACK Statement

effect on the values of host variables or on the flow of control in your program.
Specifically, the ROLLBACK statement

» Undoes all changes made to the database during the current transaction
» Erases all savepoints

* Ends the transaction

» Releases all row and table locks, but not parse locks

» Closes cursors declared using the FOR UPDATE clause or referenced elsewhere
in the code with the CURRENT OF clause. If MODE={ANSI | ANSI14}, then all
explicit cursors are closed.

When MODE={ANSI13 | ORACLE}, explicit cursors not referenced in a CURRENT OF
clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect:

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees
all resources held by your program and logs off the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine
that includes a ROLLBACK statement, your program might enter an infinite loop if the
rollback fails with an error. You can avoid this by coding WHENEVER SQLERROR
CONTINUE before the ROLLBACK statement.

For example, consider the following:

EXEC SQL
VWHENEVER SQLERROR GOTO SQL- ERROR
END- EXEC.

DI SPLAY ' Enpl oyee nunmber? ' .

ACCEPT EMP- NUMBER.

DI SPLAY ' Enpl oyee name? '.

ACCEPT EMP- NAME.

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME)
VALUES (: EMP- NUMBER, : EMP- NAME)

END- EXEC.

SQL- ERROR.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
DI SPLAY ' PROCESSI NG ERRCR. ' .
DI SPLAY ' ERROR CODE : ', SQLCCDE.
DI SPLAY ' MESSAGE :', SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

Oracle rolls back transactions if your program terminates abnormally.

3.7.1 Statement-Level Rollbacks

Before executing any SQL statement, Oracle marks an implicit savepoint (not available
to you). Then, if the statement fails, Oracle rolls it back automatically and returns the
applicable error code to SQLCODE in the SQLCA. For example, if an INSERT

ORACLE 3-13

Chapter 3
Using the SAVEPOINT Statement

statement causes an error by trying to insert a duplicate value in a unique index, the
statement is rolled back.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is kept. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

" Note:

Before executing a SQL statement, Oracle must parse it, that is, examine it to
make sure it follows syntax rules and refers to valid database objects. Errors
detected while executing a SQL statement cause a rollback, but errors detected
while parsing the statement do not.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

3.8 Using the SAVEPOINT Statement

ORACLE

The SAVEPOINT embedded SQL statement marks and names the current point in
processing a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

EXEC SQL SAVEPOI NT start_del ete END- EXEC.

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the data
to its former state, recover, and then reexecute the function.

To undo part of a transaction, you can use savepoints with the ROLLBACK statement
and its TO SAVEPOINT clause. The TO SAVEPOINT clause lets you roll back to an
intermediate statement in the current transaction. With it, you do not have to undo all
your changes. Specifically, the ROLLBACK TO SAVEPOINT statement:

« Undoes changes made to the database since the specified savepoint was marked
» Erases all savepoints marked after the specified savepoint

* Releases all row and table locks acquired since the specified savepoint was
marked

In the following example, you access the table MAIL_LIST to insert new listings,
update old listings, and delete (a few) inactive listings. After the delete, you check
SQLERRD(3) in the SQLCA for the number of rows deleted. If the number is
unexpectedly large, you roll back to the savepoint start_delete, undoing just the delete.

* -- For each new customner

DI SPLAY ' New cust omer nunber? '

ACCEPT CUST- NUMBER.

| F CUST-NUMBER = 0
@0 TO REV- STATUS

END- | F.

DI SPLAY ' New cust oner nane? '
ACCEPT CUST- NAME.

3-14

3.9 Using

ORACLE

* .

Chapter 3
Using the RELEASE Option

EXEC SQL | NSERT | NTO MAI L-LI ST (CUSTNO, CNAME, STAT)
VALUES (: CUST-NUVBER, : CUST- NAME, ' ACTI VE').
END- EXEC.

For each revised status

REV- STATUS.

* .

DI SPLAY ' Cust omer nunber to revise status? '
ACCEPT CUST- NUMBER
| F CUST- NUMBER = 0
G0 TO SAVE- PO NT

END- | F.
DI SPLAY ' New status? '
ACCEPT NEW STATUS.
EXEC SQ. UPDATE MAI L-LIST

SET STAT = : NEW STATUS WHERE CUSTNO = : CUST- NUMBER
END- EXEC.

mark savepoi nt

SAVE- PO NT.

SQL-

EXEC SQL SAVEPOI NT START- DELETE END- EXEC.
EXEC SQL DELETE FROM MAI L- LI ST WHERE STAT = ' | NACTI VE
END- EXEC.

| F SQLERRD(3) < 25

- check nunber of rows del eted

DI SPLAY ' Nunber of rows deleted is ', SQLERRD(3)
ELSE
DI SPLAY ' Undoi ng deletion of ', SQLERRD(3), ' rows'
EXEC SQL
WHENEVER SQLERROR GOTO SQL- ERROR
END- EXEC
EXEC SQL
ROLLBACK TO SAVEPQ NT START- DELETE
END- EXEC
END- | F.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQ. COW T WORK RELEASE END- EXEC.
STOP RUN.

- exit program

ERROR.

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

DI SPLAY ' Processing error'.

- exit programwith an error.

STCP RUN.

Note that you cannot specify the RELEASE option in a ROLLBACK TO SAVEPOINT
statement.

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased. A COMMIT
or ROLLBACK statement erases all savepoints.

the RELEASE Option

Oracle rolls back changes automatically if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect using the RELEASE embedded SQL statement.

3-15

Chapter 3
Using the SET TRANSACTION Statement

Normal termination occurs when your program runs its course, closes open cursors,
explicitly commits or rolls back work, disconnects, and returns control to the user. Your
program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COW T WORK RELEASE END- EXEC.

or

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

3.10 Using the SET TRANSACTION Statement

You can use the SET TRANSACTION statement to begin a read-only or read/write
transaction, or to assign your current transaction to a specified rollback segment. A
COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.

Because they allow "repeatable reads," read-only transactions are useful for running
multiple queries against one or more tables while other users update the same tables.
During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to
guery or update data as usual. An example of the SET TRANSACTION statement
follows:

EXEC SQL SET TRANSACTI ON READ ONLY END- EXEC.

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions. Only the SELECT (without FOR
UPDATE), LOCK TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM, COMMIT,
and ROLLBACK statements are allowed in a read-only transaction.

In the following example, a store manager checks sales activity for the day, the past
week, and the past month by using a read-only transaction to generate a summary
report. The report is unaffected by other users updating the database during the
transaction.

EXEC SQL SET TRANSACTI ON READ ONLY END- EXEC.

EXEC SQL SELECT SUM SALEAMI) | NTO : DAILY FROM SALES
VWHERE SALEDATE = SYSDATE END- EXEC.

EXEC SQL SELECT SUM SALEAMI) | NTO : WEEKLY FROM SALES
VHERE SALEDATE > SYSDATE - 7 END- EXEC.

EXEC SQL SELECT SUM SALEAMI) | NTO : MONTHLY FROM SALES
VWHERE SALEDATE > SYSDATE - 30 END- EXEC.

EXEC SQL COW T WORK END- EXEC.

* -- sinply ends the transaction since there are no changes
* -~ to make permanent
* .- format and print report

ORACLE 3-16

Chapter 3
Overriding Default Locking

3.11 Overriding Default Locking

By default, Oracle implicitly (automatically) locks many data structures for you.
However, you can request specific data locks on rows or tables when it is to your
advantage to override default locking. Explicit locking lets you share or deny access to
a table for the duration of a transaction or ensure multitable and multiquery read
consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of
a table to make sure they do not change before an update or delete is executed.
However, Oracle automatically obtains row-level locks at update or delete time. So,
use the FOR UPDATE OF clause only if you want to lock the rows before the update
or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

3.11.1 Using the FOR UPDATE OF Clause

When you DECLARE a cursor, you can meanwhile optionally specify the FOR
UPDATE clause, which has the effect of acquiring an exclusive lock on all rows
defined by the cursor. This is useful, for example, when you want to base an update
on existing rows in a table and want to ensure that they are not meanwhile changed by
anyone else.

Note that if you refer to a cursor with the CURRENT OF clause, that the precompiler
will automatically add the FOR UPDATE clause to the cursor definition and the word
OF is optional. For instance, instead of:

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
FOR UPDATE OF SAL
END- EXEC.

you can drop the OF part of the clause and simply code:

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20
FOR UPDATE
END- EXEC.

¢ See Also:

"Using the CURRENT OF Clause " for an example.

3.11.1.1 Restrictions

ORACLE

You cannot use FOR UPDATE with multiple tables, but you must use FOR UPDATE
OF to identify a column in the table that you want locked. Row locks obtained by a
FOR UPDATE statement are cleared by a COMMIT, which explains why the cursor is
closed for you. If you try to fetch from a FOR UPDATE cursor after a commit, Oracle
generates a Fetch out of Sequence error.

3-17

Chapter 3
Fetching Across Commits

3.12 Fetching Across Commits

If you want to mix commits and fetches, do not use the CURRENT OF clause. Instead,
select the ROWID of each row, and then use that value to identify the current row
during the update or delete. Consider the following example:

EXEC SQ. DECLARE enp_cursor CURSCR FOR
SELECT ENAME, SAL, ROWD FROM EMP WHERE JOB = ' CLERK'
END- EXEC.

EXEC SQ. OPEN enp_cursor END- EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO ...
PERFORM
EXEC SQ.
FETCH enp_cursor | NTO : EMP_NAME, : SALARY, :ROWID
END- EXEC

EXEC SQL UPDATE EMP SET SAL = : NEW SALARY
VHERE ROWD = :RO¥ID
END- EXEC
EXEC SQL COW T END- EXEC
END- PERFORM

Note, however, that the fetched rows are not locked. So, you can receive inconsistent
results if another user modifies a row after you read it but before you update or delete
it.

3.12.1 Using the LOCK TABLE Statement

Use the LOCK TABLE statement locks one or more tables in a specified lock mode.
For example, the following statement locks the EMP table in row share mode. Row
share locks allow concurrent access to a table. They prevent other users from locking
the entire table for exclusive use.

EXEC SQL
LOCK TABLE EMP | N ROW SHARE MODE NOWAI T
END- EXEC.

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one
user at a time can acquire an exclusive lock. While one user has an exclusive lock on
a table, no other users can insert, update, or delete rows in that table.

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked
by another user. Control is immediately returned to your program so that it can do
other work before trying again to acquire the lock. (You can check SQLCODE in the
SQLCA to see if the table lock failed.) If you omit NOWAIT, Oracle waits until the table
is available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. Consequently, a query never blocks another query or an update,
and an update never blocks a query. Only if two different transactions try to update the
same row will one transaction wait for the other to complete. Table locks are released
when your transaction issues a COMMIT or ROLLBACK.

ORACLE 3-18

Chapter 3
Handling Distributed Transactions

" See Also:

Using Oracle Lock Management Services for more information about lock
modes.

3.13 Handling Distributed Transactions

A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that
accesses a remote node using a database link. A distributed transaction includes at
least one distributed statement that updates data at multiple nodes of a distributed
database. If the update affects only one node, the transaction is non-distributed.

When you issue a commit, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a rollback, all the changes are
undone. However, if a network or machine fails during the commit or rollback, the state
of the distributed transaction might be unknown or in doubt. In such cases, if you have
FORCE TRANSACTION system privileges, you can manually commit or roll back the
transaction at your local database by using the FORCE clause. The transaction must
be identified by a quoted literal containing the transaction ID, which can be found in
the data dictionary view DBA_2PC_PENDING. Some examples follow:

EXEC SQL COW T FORCE ' 22.31.83' END- EXEC.
EXEC SQL ROLLBACK FORCE ' 25. 33. 86" END- EXEC.

FORCE commits or rolls back only the specified transaction and does not affect your
current transaction. Note that you cannot manually roll back in-doubt transactions to a
savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, the server
stores the text specified by COMMENT in the data dictionary view
DBA_2PC_PENDING along with the transaction ID. The text must be a quoted literal
of no more than 50 characters in length. An example follows:

EXEC SQL
COW T COMMENT 'In-doubt trans; notify Order Entry'
END- EXEC.

See Also:

Oracle Database Concepts. for more information about distributed transactions.

3.14 Guidelines for Transaction Processing

The following guidelines will help you avoid some common problems.

ORACLE 3-19

Chapter 3
Guidelines for Transaction Processing

3.14.1 Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to
accomplish a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. Thus, the SQL
statements in a transaction should change the data in a consistent way. For example,
a transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

3.14.2 Obtaining Locks

If your application programs include SQL locking statements, make sure the users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock
any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

3.14.3 Using PL/SQL

If a PL/SQL block is part of a transaction, commits and rollback operations inside the
block affect the whole transaction. In the following example, the rollback operation
undoes changes made by the update and the insert:

EXEC SQL I NSERT INTO EMP . ..
EXEC SQL EXECUTE
BEG N UPDATE enp

EXCEPTI ON
WHEN DUP_VAL_ON_| NDEX THEN
ROLLBACK;
END;
END- EXEC.

3.14.4 X/Open Applications

For instructions on using the XA interface in X/Open applications, see X/Open
Distributed Transaction Processing (DTP).

ORACLE 3-20

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*COBOL program,
including:

e The Oracle Database Datatypes

« Datetime and Interval Datatype Descriptors
¢ Host Variables

* Indicator Variables

* VARCHAR Variables

e Handling Character Data

* Universal ROWIDs

e Globalization Support

e Unicode Support for Pro*xCOBOL

¢ Datatype Conversion

« Explicit Control Over DATE String Format
- Datatype Equivalencing

e Platform Endianness Support

e Sample Program 4: Datatype Equivalencing

4.1 The Oracle Database Datatypes

Oracle Database recognizes two kinds of datatypes: internal and external. Internal
datatypes specify how Oracle Database stores data in database columns.

Oracle Database also uses internal datatypes to represent database pseudocolumns.
An external datatype specifies how data is stored in a host variable.

" See Also:

Data Types for complete descriptions of the Oracle internal (also called built-in)
datatypes.

4.1.1 Internal Datatypes

Table 4-1 summarizes the information about each Oracle built-in datatype.

ORACLE 4-1

ORACLE

Chapter 4
The Oracle Database Datatypes

Table 4-1 Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length and Default

CHAR (size)

VARCHAR? (size)

NCHAR (size)

NVARCHAR?2 (size)

CLOB

NCLOB

LONG

NUMBER(p,s)

DATE

Fixed-length character
data of length size in
characters or bytes,
depending on the
national character set

Fixed-length character
data of length size in
characters or bytes,
depending on the
national character set. A
maximum size must be
specified.

Fixed-length character
data of length size in
characters or bytes,
depending on national
character set.

Variable-length
character data of length
size in characters or
bytes, depending on
national character set. A
maximum size must be
specified.

Single-byte character
data

Single-byte or fixed-
length multibyte national
character set (NCHAR)
data

Variable-length
character data

Variable-length numeric
data.: Maximum
precision p, or scale s is
38, or both.

Fixed-length date and
time data, ranging from
Jan. 1,4712 B.C.E. to
Dec. 31, 4712 C.E.

Fixed for every row in the table (with trailing
blanks.) Column size is the number of
characters for a fixed-width national character
set or the number of bytes required to store
one character, with an upper limit of 2000
bytes for each row. Default size is 1 character
or 1 byte for each row, depending on the
national character set. Consider the character
set (one-byte or multibyte) before setting size.

Variable for each row. Column size is the
number of characters for a fixed-width national
character set or the number of bytes for a
varying-width national character set. Maximum
size is determined by the number of bytes
required to store one character, with an upper
limit of 4000 bytes for each row. Default size is
1 character or 1 byte, depending on the
national character set.

Fixed for every row in the table (with trailing
blanks). Column size is the number of bytes
for a national character set or the number of
bytes for a varying-width national character
set. Maximum size is determined by the
number of bytes required to store one
character, with an upper limit of 2000 bytes for
each row. Default is 1 character or 1 byte,
depending on the character set.

Variable for each row. Column size is the
number of bytes for a national character set.
Maximum size is determined by the number of
bytes required to store one character, with an
upper limit of 4000 bytes for each row. Default
is 1 character or 1 byte, depending on the
character set.

Up to 2732 - 1 bytes, or 4 gigabytes.

Up to 232 - 1 bytes, or 4 gigabytes.

Variable for each row in the table, up to 2731 -
1 bytes, or 2 gigabytes, for each row. Provided
for backward compatibility.

Variable for each row. The maximum space
required for a given column is 21 bytes for
each row.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DD-MON-YY)
specified by NLS_DATE_FORMAT parameter.

4-2

Chapter 4
The Oracle Database Datatypes

Table 4-1 (Cont.) Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default
BLOB Unstructured binary data Up to 232 - 1 bytes, or 4 gigabytes.
BFILE Binary data stored inan Up to 2232 - 1 bytes, or 4 gigabytes.
external file
RAW (size) Variable-length raw Variable for each row in the table, up to 2000
binary data bytes for each row. A maximum size must be
specified. Provided for backward compatibility.
LONG RAW Variable-length raw Variable for each row in the table, up to 2731 -
binary data 1 bytes, or 2 gigabytes, for each row. Provided
for backward compatibility.
ROWID Binary data representing Fixed at 10 bytes (extended ROW D) or 6 bytes

row addresses

(restricted ROW D) for each row in the table.

4.1.2 External Datatypes

The external datatypes include all the internal datatypes plus several datatypes found
in other supported host languages. Use the datatype names in datatype equivalencing,
and the datatype codes in dynamic SQL Method 4. The following table lists external

ORACLE

datatypes.

Table 4-2 External Datatypes

Name Code Description
CHAR 1 <= 65535-byte, variable-length character string ()

96 <= 65535-byte, fixed-length character string ()
CHARF 96 <= 65535-byte, fixed-length character string
CHARZ 97 <= 65535-byte, fixed-length, null-terminated string ()
DATE 12 7-byte, fixed-length date/time value
DECIMAL 7 COBOL packed decimal
DISPLAY 91 COBOL numeric character string with leading sign
DISPLAY TRAILING 152 COBOL numeric with trailing sign
FLOAT 4-byte or 8-byte floating-point number
INTEGER 2-byte, 4-byte, or 8-byte signed integer.
LONG <= 2147483647-byte, fixed-length string
LONG RAW 24 <= 217483647-byte, fixed-length binary data
LONG VARCHAR 94 <= 217483643-byte, variable-length string
LONG VARRAW 95 <= 217483643-byte, variable-length binary data
NUMBER 2 Internal Oracle Format Number represented in binary

coded decimal format.

OVERPUNCH 172 COBOL numeric character string with embedded leading
LEADING sign
OVERPUNCH 154 COBOL numeric character string with embedded trailing
TRAILING sign (equivalent to declarations of the form PIC

S9(n)V9(m) DISPLAY)

4-3

Chapter 4
The Oracle Database Datatypes

Table 4-2 (Cont.) External Datatypes
|

Name Code Description

RAW 23 <= 65535-byte, fixed-length binary data ()
ROWID 11 fixed-length binary value (system-specific)
STRING 5 <= 65535-byte, null-terminated character string ()
UNSIGNED 68 2-byte or 4-byte unsigned integer

UNSIGNED DISPLAY 153 COBOL unsigned numeric

VARCHAR 9 <= 65533-byte, variable-length character string
VARCHAR?2 1 <= 65535-byte, variable-length character string ()
VARNUM 6 variable-length binary number

VARRAW 15 <= 65533-byte, variable-length binary data
Notes:

CHAR is datatype 1 when PICX=VARCHAR2 and datatype 96 when PICX=CHARF.

Maximum size is 32767 (32K) on some platforms.

4.1.2.1 CHAR

CHAR behavior depends on the settings of the option PICX. See "PICX".

4.1.2.2 CHARF

By default, the CHARF datatype represents all non-varying character host variables.
You use the CHARF datatype to store fixed-length character strings. On most
platforms, the maximum length of a CHARF value is 65535 (64K) bytes. See "PICX".

On Input. Oracle reads the number of bytes specified for the input host variable, does
not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value is all-blank, then a string of spaces is stored.

On Output. Oracle returns the number of bytes specified for the output host variable,
blank-padding if necessary, then assigns the output value to the target host variable. If
a NULL is returned, then the original value of the variable is not overwritten.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle sets it to the original length of the output value.

4.1.2.3 CHARZ

The CHARZ datatype represents fixed-length, null-terminated character strings. On
most platforms, the maximum length of a CHARZ value is 65535 bytes. You usually
will not need this external type in Pro*COBOL.

ORACLE 4-4

Chapter 4
The Oracle Database Datatypes

4.1.2.4 DATE

The DATE datatype represents dates and times in 7-byte, fixed-length fields. As
Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute, and
second are stored in that order from left to right.

Table 4-3 Date Format

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13
17-Oct-1994 at

1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100.
The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year
byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes range
from 1 to 60. The time defaults to midnight (1, 1, 1). Pro*COBOL also supports five
additional datetime datetypes, as described in "Datetime and Interval Datatype
Descriptors" .

4.1.2.5 DECIMAL

The DECIMAL datatype represents packed decimal numbers for calculation. In
COBOL, the host variable must be a signed COMP-3 field with an implied decimal
point. If significant digits are lost during data conversion, the value is truncated to the
declared length.

4.1.2.6 DISPLAY

The DISPLAY datatype represents numeric character data. The DISPLAY datatype
refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which requires n
+ 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC S9(n)V9(d).

4.1.2.7 FLOAT

The FLOAT datatype represents numbers that have a fractional part or that exceed the
capacity of the INTEGER datatype. FLOAT relates to the COBOL datatypes COMP-1
(4-byte floating point) and COMP-2 (8-byte floating point).

Oracle can represent numbers with greater precision than floating point
implementations because the internal format of Oracle numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL function
ROUND because FLOAT stores binary (not decimal) numbers; so, fractions do not
convert exactly.

4.1.2.8 INTEGER

The INTEGER datatype represents numbers that have no fractional part. An integer is
a signed, 2-byte, 4-byte, or 8-byte binary number. The order of the bytes in a word is

ORACLE 4.5

Chapter 4
The Oracle Database Datatypes

platform-dependent. You must specify a length for input and output host variables. On
output, if the column has a fractional part, the digits after the decimal point are
truncated.

4.1.2.9 LONG

The LONG datatype represents fixed-length character strings. The LONG datatype is
like the VARCHAR?2 datatype, except that the maximum length of a LONG value is
2147483647 bytes (two gigabytes).

4.1.2.10 LONG RAW

The LONG RAW datatype represents fixed-length, binary data or byte strings. The
maximum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

LONG RAW data is like LONG data, except that Oracle assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

4.1.2.11 LONG VARCHAR

The LONG VARCHAR datatype represents variable-length character strings. LONG
VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 bytes. In an EXEC SQL VAR
statement, do not include the 4-byte length field.

4.1.2.12 LONG VARRAW

The LONG VARRAW datatype represents binary data or byte strings. LONG
VARRAW variables have a 4-byte length field followed by a data field. The maximum
length of the data field is 2147483643 bytes. In an EXEC SQL VAR statement, do not
include the 4-byte length field.

4.1.2.13 NUMBER

The NUMBER datatype represents the internal Oracle NUMBER format which cannot
be represented by a COBOL datatype.

4.1.2.14 OVER-PUNCH

OVER-PUNCH is the default signed numeric for the COBOL language. Digits are held
in ASCIl or EBCDIC format in radix 10, with one digit for each byte of computer
storage. The sign is held in the high order nibble of one of the bytes. It is called OVER-
PUNCH because the sign is "punched-over" the digit in either the first or last byte. The
default sign position will be over the trailing byte. PIC S9(n)V9(m) TRAILING or PIC
S9(n)V9(m) LEADING is used to specify the over-punch.

4.1.2.15 RAW

The RAW datatype represents fixed-length binary data or byte strings. On most
platforms, the maximum length of a RAW value is 65535 bytes.

ORACLE 4-6

Chapter 4
The Oracle Database Datatypes

RAW data is like CHAR data, except that Oracle assumes nothing about the meaning
of RAW data and does no character set conversions when you transmit RAW data
from one system to another.

4.1.2.16 ROWID

The ROWID datatype is the database row identifier in COBOL. To support both logical
and physical ROWIDs (as well as ROWIDs of non-Oracle tables) the Universal
ROWID (UROWID) was defined. Use the SQL-ROWID pseudotype for this datatype
(see "Universal ROWIDs").

You can use VARCHAR?2 host variables to store ROWIDs in a readable format. When
you select or fetch a ROWID into a VARCHAR?2 host variable, Oracle converts the
binary value to an 18-byte character string and returns it in the format:

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the ROWID:

00000OOE. 000A. 0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHARZ host variable, and hen compare the
host variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor. For
an example, see "Mimicking the CURRENT OF Clause".

Note: If you need full portability or your application communicates with a non-Oracle
database through Transparent Gateway, specify a maximum length of 256 (not 18)
bytes when declaring the VARCHAR?2 host variable. If your application communicates
with a non-Oracle data source through Oracle Open Gateway, specify a maximum
length of 256 bytes. Though you can assume nothing about its contents, the host
variable will behave normally in SQL statements.

4.1.2.17 STRING

The STRING datatype is like the VARCHAR?2 datatype except that a STRING value is
always terminated by a LOW-VALUE character. This datatype is usually not used in
Pro*COBOL.

4.1.2.18 UNSIGNED

The UNSIGNED datatype represents unsigned integers. This datatype is usually not
used in ProxCOBOL.

4.1.2.19 VARCHAR

ORACLE

The VARCHAR datatype represents variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a 65533-byte string field. However, for
VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for

4-7

Chapter 4
The Oracle Database Datatypes

the length field. For longer strings, use the LONG VARCHAR datatype. In an EXEC
SQL VAR statement, do not include the 2-byte length field.

4.1.2.20 VARCHAR?2

The VARCHAR?2 datatype represents variable-length character strings. On most
platforms, the maximum length of a VARCHAR?2 value is 65535 bytes.

Specify the maximum length of a VARCHARZ2(n) value in bytes, not characters. So, if
a VARCHAR2(n) variable stores multibyte characters, its maximum length is less than
n characters.

On Input. Oracle reads the number of bytes specified for the input host variable, strips
any trailing blanks, and then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value is all SPACES, Oracle treats it like a NULL.

Oracle can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle generates an error.

On Output. Oracle returns the number of bytes specified for the output host variable,
blank-padding if necessary, and then assigns the output value to the target host
variable. If a NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle sets it to the original length of the output value.

Oracle can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you select the column value
123456789 into a host variable of length 6, Oracle returns the value 1. 2E08 to the host
variable.

4.1.2.21 VARNUM

The VARNUM datatype is similar in format to NUMBER and is usually not used in
Pro*COBOL.

4.1.2.22 VARRAW

The VARRAW datatype represents variable-length binary data or byte strings. The
VARRAW datatype is like the RAW datatype, except that VARRAW variables have a
2-byte length field followed by a <= 65533-byte data field. For longer strings, use the
LONG VARRAW datatype. In an EXEC SQL VAR statement, do not include the 2-byte
length field. To get the length of a VARRAW variable, simply refer to its length field.

4.1.2.23 SQL Pseudocolumns and Functions

SQL recognizes the pseudocolumns listed in Table 4-4, which return specific data
items.

ORACLE 4-8

ORACLE

Chapter 4
The Oracle Database Datatypes

Table 4-4 Pseudocolumns and Internal Datatypes

Pseudocolumn Internal Datatype
CURRVAL NUMBER

LEVEL NUMBER
NEXTVAL NUMBER

ROWID ROWID
ROWNUM NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are
treated like columns, so their values must be SELECTed from a table. Sometimes it is
convenient to select pseudocolumn values from a dummy table.

In addition, SQL recognizes the functions without parameters listed in Table 4-5, which
also return specific data items.

Table 4-5 Functions and Internal Datatypes

Function Internal Datatype
SYSDATE DATE

uiD NUMBER

USER VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE,
and DELETE statements. In the following example, you use SYSDATE to compute the
number of months since an employee was hired:

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, H REDATE)
| NTO : MONTHS- OF- SERVI CE
FROM EMP
VHERE EMPNO = : EMP- NUMBER

END EXEC.

Brief descriptions of the SQL pseudocolumns and functions follow.

CURRVAL returns the current number in a specified sequence. Before you can
reference CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the
rows of a table into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL
segregates the data at each level in the tree.

Specify the direction in which the query walks the tree (down from the root or up from
the branches) with the PRIOR operator. In the START WITH clause, you can specify a
condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. In the following example, the sequence named partno assigns part
numbers:

4-9

Chapter 4
Datetime and Interval Datatype Descriptors

EXEC SQL I NSERT | NTO PARTS
VALUES (PARTNO. NEXTVAL, :DESCRI PTION, : QUANTITY, :PRICE
END EXEC.

If a transaction generates a sequence number, the sequence is incremented when you
commit or roll back the transaction. A reference to NEXTVAL stores the current
sequence number in CURRVAL.

ROWNUM returns a number indicating the sequence in which a row was selected from
a table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM
of 2, and so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs
are assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT statement.
Also, you can use ROWNUM in an UPDATE statement to assign unique values to
each row in a table. Using ROWNUM in the WHERE clause does not stop the
processing of a SELECT statement; it just limits the number of rows retrieved. The
only meaningful use of ROWNUM in a WHERE clause is:

. VHERE ROWNUM < const ant END- EXEC.

because the value of ROWNUM increases only when a row is retrieved. The following
search condition can never be met because the first four rows are not retrieved:

. WHERE ROMNUM = 5 END- EXEC.
SYSDATE returns the current date and time.
UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

4.2 Datetime and Interval Datatype Descriptors

ORACLE

The OCI datetime and interval datatypes supported by Pro*COBOL are briefly
summarized here.

" See Also:

Oracle Database SQL Language Reference for more a more complete
discussion datetime datatype descriptors

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also has
no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype. When
assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the
Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp
to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TI MESTAVP datatype which contains both date
and time.

4-10

ORACLE

Chapter 4
Datetime and Interval Datatype Descriptors

TIMESTAMP

The TI MESTAMWP datatype is an extension of the DATE datatype. It stores the year, month,
and day of the DATE datatype, plus the hour, minute, and second values. It has no time
zone. The TI MESTAWP datatype has the form:

TI MESTAMP(f ract i onal _seconds_preci si on)

where fractional _seconds_preci si on (which is optional) specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0 to
9. The default is 6.

TIMESTAMP WITH TIME ZONE

TI MESTAMP W TH TI ME ZONE (TSTZ) is a variant of TI MESTAMWP that includes an explicit time
zone displacement in its value. The time zone displacement is the difference (in hours
and minutes) between local time and UTC (Coordinated Universal Time—formerly
Greenwich Mean Time). The TI MESTAMP W TH TI ME ZONE datatype has the form:

TI MESTAMP(fractional _seconds_precision) WTH TI ME ZONE

where fractional _seconds_pr eci si on optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6.

Two TI MESTAMP W TH Tl ME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TI ME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE (TSLTZ) is another variant of TI MESTAMP that includes a
time zone displacement in its value. Storage is in the same format as for TI MESTANP.
This type differs from TI MESTAMP W TH TI ME ZONE in that data stored in the database is
normalized to the database time zone, and the time zone displacement is not stored
as part of the column data. When users retrieve the data, Oracle returns it in the users'
local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TI MESTAMP W TH LOCAL TI ME ZONE datatype has the form:

TI MESTAMP(f ract i onal _seconds_precision) WTH LOCAL TI ME ZONE

where fractional _seconds_pr eci si on optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6.

INTERVAL YEAR TO MONTH

| NTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
The | NTERVAL YEAR TO MONTH datatype has the form:

| NTERVAL YEAR(year _precision) TO MONTH

where the optional year _preci si on is the number of digits in the YEAR datetime field. The
default value of year precisionis 2.

4-11

Chapter 4
Host Variables

INTERVAL DAY TO SECOND

| NTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. The | NTERVAL DAY TO SECOND datatype has the form:

I NTERVAL DAY (day_precision) TO SECOND(fractional _seconds_preci si on)

where:

e day_precision is the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

e fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

Note:

To avoid unexpected results in your DML operations on datetime data, you can
verify the database and session time zones by querying the built-in SQL
functions DBTI MEZONE and SESSI ONTI MEZONE. If the time zones have not been set
manually, Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle uses UTC
as the default value.

4.3 Host Variables

Host variables are the key to communication between your host program and the
server. Typically, a host program inputs data to the server, and the server outputs data
to the program. The server stores input data in database columns and stores output
data in program host variables.

4.3.1 Declaring Host Variables

Host variables are declared according to COBOL rules, using the COBOL datatypes
that are supported by Pro*COBOL. COBOL datatypes must be compatible with the
source/target database column.

The supported COBOL variable declarations, descriptions, corresponding external
datatypes, and Oracle datatype codes are shown in Table 4-6.

Table 4-6 Host Variable Declarations
]

Variable Declaration Description External Type
Datatype Code
PIC X...X fixed-length string of 1-byte characters (1) CHARF 96
PIC X(n) n-length string of 1-byte characters VARCHAR 9
PIC X..X VARYING variable-length string of 1-byte characters (1,2)
PIC X(n) VARYING variable-length (n max.) string of 1-byte characters
&)

ORACLE

4-12

Table 4-6 (Cont.) Host Variable Declarations
]

Variable Declaration

Description

Chapter 4

Host Variables

External
Datatype

Type
Code

PICN...N

PIC G...G

PIC N(n)

PIC G(n)

PIC N...N VARYING
PIC N(n) VARYING

PIC G...G VARYING
PIC G(n) VARYING

PIC S9...9 BINARY
PIC S9(n) BINARY
PIC S9...9 COMP
PIC S9(n) COMP
PIC S9...9 COMP-4
PIC S9(n) COMP-4

PIC S9...9 COMP-5
PIC S9(n) COMP-5

COMP-1
COMP-2

PIC S9...9[V9...9] COMP-3
PIC S9(n)[V9(n)] COMP-3
PIC S9...9[V9...9]
PACKED-DECIMAL

PIC S9(n)[VI(n)]
PACKED-DECIMAL

PIC S9...9[V9...9] DISPLAY
SIGN LEADING SEPARATE
PIC S9(n)[V9(m)] DISPLAY
SIGN LEADING SEPARATE
PIC S9...9[V9...9] DISPLAY
SIGN TRAILING SEPARATE
PIC S9(n)[V9(m)] DISPLAY
SIGN TRAILING SEPARATE
PIC 9...9 DISPLAY

PIC 9(n)[VO(m)] DISPLAY
PIC S9...9[V9...9] DISPLAY
SIGN TRAILING

PIC S9(n)[V9(m)] DISPLAY
SIGN TRAILING

PIC S9...9[V9...9] DISPLAY
SIGN LEADING

PIC S9(n)[V9(m)] DISPLAY
SIGN LEADING

ORACLE

fixed-length string of multibyte NCHAR

characters (1,3)

n-length string of multibyte NCHAR characters

®)

variable-length string of multibyte characters (2,3)

variable-length (n max.) string of multibyte

characters (2,3)

integer (4,5,7)

byte-swapped integer (4,5,6,7)

floating-point number (5)

packed-decimal (4,5)

display leading (8,11)

display trailing (8)

unsigned display (9)

over-punch trailing (9)

over-punch leading (9)

CHARF

VARCHAR

INTEGER

INTEGER

FLOAT

DECIMAL

DISPLAY

DISPLAY
TRAILING

UNSIGNED
DISPLAY

OVER-PUNCH
TRAILING

OVER-PUNCH
LEADING

96

91

152

153

154

172

4-13

Chapter 4
Host Variables

Table 4-6 (Cont.) Host Variable Declarations

Variable Declaration Description External Type
Datatype Code
SQL-CURSOR cursor variable
SQL-CONTEXT runtime context
SQL-ROWID universal ROWID UROWID 104
SQL-BFILE external binary file BFILE 112
SQL-BLOB binary LOB BLOB 113
SQL-CLOB character LOB CLOB 114
Notes:
1. X..Xand 9...9 stand for a given number (n) of Xs or 9s. For variable-length
strings, n is the maximum length.
2. The keyword VARYING assigns the VARCHAR external datatype to a character
string. For more information, see "Declaring VARCHAR Variables".
3. Before using the PIC N or PIC G datatype in your Pro*COBOL source files, verify
that it is supported by your COBOL compiler.
4. Only signed numbers (PIC S...) are allowed. For floating-point numbers, however,
PIC strings are not accepted.
5. Not all COBOL compilers support all of these datatypes.
6. With COMP or COMP-5, the number cannot have a fractional part; scaled binary
numbers are not supported. COMP-5 is not supported on the SPARC Solaris 64
bit platform, use COMP instead.
7. The maximum value of the integer is n to 18. This may vary, depending on the
operating system and the compilers for Pro*Cobol and Cobol.
8. Both DISPLAY and SIGN are optional.
9. DISPLAY is optional
10. If TRAILING is omitted, the embedded sign position is operating-system
dependent.
11. LEADING is optional.
In Table 4-6 and Table 4-7 the symbols [and '] denote that an optional entry is
contained inside. The symbols '{' and '} denote that a choice must be made between
tokens separated by the symbol '|'.
Table 4-7 shows all the COBOL datatypes that can be converted to and from each
internal datatype.
ORACLE 4-14

ORACLE

Table 4-7 Compatible Oracle Internal Datatypes

Chapter 4
Host Variables

Internal Datatype Notes

COBOL Datatype

Description

CHAR(x) (1)
VARCHAR2(Y) (1)

NCHAR(u))
NVARCHAR2(v) ()
BLOB

cLoB

NCLOB

BFILE

NUMBER @)
NUMBER (p,s)

PIC X(n)

PIC X...X

PIC X(n) VARYING

PIC X...X VARYING

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP-5

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC S9...9[V9...9] COMP-3
PIC S9(n)[V9(n)] COMP-3
PIC S9...9[V9...9] DISPLAY
PIC S9(n)[V9(n)] DISPLAY

PIC{N..N|G...G}
PIC {N(n) | G(n)}
SQL-BLOB

SQL-CLOB

SQL-NCLOB

SQL-BFILE

PIC S9...9 COMP

PIC S9(n) COMP

PIC S9...9 BINARY

PIC S9(n) BINARY

PIC S9...9 COMP-5

PIC S9(n) COMP-5
COMP-1

COMP-2

PIC S9...9V9...9 COMP-3
PIC S9(n)V9(n) COMP-3
PIC S9...9V9...9 DISPLAY
PIC S9(n)V9(n) DISPLAY

PIC [X..X | N..N | G...G]
PIC [X(n) | N(n) | G(n)]
PIC X...X VARYING

PIC X(n) VARYING

character string
n-character string
variable-length string

integer

integer

integer

floating point number
packed decimal

display

national character string
n-national character string

binary LOB

character LOB

national character LOB
external binary file

integer

integer

integer

floating point number
packed decimal
display

character string (4)
n-character string (4)

variable-length string
n-byte variable-length string

4-15

Chapter 4
Host Variables

Table 4-7 (Cont.) Compatible Oracle Internal Datatypes

Internal Datatype Notes COBOL Datatype Description
DATE 5) PIC X(n) n-byte character string
LONG Q) PIC X...X character string
RAW PIC X(n) n-byte variable-length string
(6) PIC X(n) VARYING
LONG RAW PIC X..X VARYING universal rowid
ROWID
SQL-ROWID
Notes:

Bug 7225844 - Following para - substituted 1<= x < =2000 bytes, default is 1
for
<= x < =2000 bytes, default is 1.

1. 1<=x<=2000 bytes, default is 1. 1<=y <=4000 bytes, default is 1.
2. 1<=u<=2000 bytes, default is 1. 1<=v<=4000 bytes, default is 1.

3. pranges from 2 to 38. s ranges from -84 to 127.
4

Strings can be converted to NUMBERS only if they consist of convertible
characters — 0 to 9, period (.), +, -, E, e. The Globalization Support (formerly
called National Language Support or NLS) settings for your system might change
the decimal point from a period (.) to a comma (,).

5. When converted to a string type, the default size of a DATE depends on the
NCHAR settings in effect on your system. When converted to a binary value, the
length is 7 bytes.

6. When converted to a string type, a ROWID requires from 18 to 4000 bytes.
ROWID can also be converted to a character type. Oracle recommends the use of
SQL-ROWID for all new programs.

4.3.1.1 Example Declarations

ORACLE

The following example declares several host variables for later use:

01 STRL PIC X(3)
01 STRZ PIC X(3) VARYING
01 NUML PIC S9(5) COWP.
01 NUM2 COWP-1.
01 NUMB COWP-2.

You can also declare one-dimensional tables of simple COBOL types, as the next
example shows:

01 XMP- TABLES.
05 TAB1 PIC XXX OCCURS 3 TI MES.
05 TAB2 PIC XXX VARYI NG OCCURS 3 TI MES.

4-16

Chapter 4
Host Variables

05 TAB3 PIC S999 COWP-3 OCCURS 3 TI MES.

4.3.1.2 Initialization

You can initialize host variables, except pseudotype host variables, using the VALUE
clause, as shown in the following example:

01 USERNAME PIC X(10) VALUE "SCOTT".
01 MAX-SALARY PIC S9(4) COWP VALUE 5000.

If a string value assigned to a character variable is shorter than the declared length of
the variable, the string is blank-padded on the right. If the string value assigned to a
character variable is longer than the declared length, the string is truncated.

No error or warning is issued, but any VALUES clause on a pseudotype variable is
ignored and discarded.

4.3.1.3 Restrictions

You cannot use alphabetic character (PIC A) variables or edited data items as host
variables. Therefore, the following variable declarations cannot be made for host
variables:

01 AMOUNT- OF- CHECK PIC ****9, 99,
01 FIRST- NAME PIC A(10).
01 BIRTH DATE PI'C 99/ 99/ 99.

4.3.2 Referencing Host Variables

Host variables are used in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in
COBOL statements, as this example shows:

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP-NUMBER PIC S9(4) COW VALUE ZERO.
01 EMP-NAME PIC X(10) VALUE SPACE.
01 SALARY PI C S9(5) V99 COWP- 3.

EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.

DI SPLAY " Enpl oyee nunber? " WTH NO ADVANCI NG
ACCEPT EMP- NUMBER.
EXEC SQL SELECT ENAME, SAL
[NTO : EMP- NAME, : SALARY FROM EMP
WHERE EMPNO = : EMP- NUMBER
END- EXEC.
COVPUTE BONUS = SALARY / 10.

Though it might be confusing, you can give a host variable the same name as a table
or column, as the following example shows:

ORACLE 4-17

Chapter 4
Host Variables

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMPNO PIC S9(4) COMP VALUE ZERO.
01 ENAME PIC X(10) VALUE SPACE.
01 COW PIC S9(5)V99 COMVP-3.

EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI S| ON.

EXEC SQL SELECT ENAME, COWM
I NTO : ENAME, : COMWM FROM EMP
VWHERE EMPNO = : EMPNO

END- EXEC.

4.3.2.1 Group ltems as Host Variables

ORACLE

Pro*COBOL allows the use of group items in embedded SQL statements. Group items
with elementary items (containing only one level) can be used as host variables. The
host group items (also referred to as host structures) can be referenced in the INTO
clause of a SELECT or a FETCH statement, and in the VALUES list of an INSERT
statement. When a group item is used as a host variable, only the group name is used
in the SQL statement. For example, given the following declaration

01 DEPARTURE.
05 HUR PIC X(2).
05 MNUTE PIC X(2).

the following statement is valid:

EXEC SQL SELECT DHOUR, DM NUTE
I NTO : DEPARTURE
FROM SCHEDULE
VHERE . ..

The order that the members are declared in the group item must match the order that
the associated columns occur in the SQL statement, or in the database table if the
column list in the INSERT statement is omitted. Using a group item as a host variable
has the semantics of substituting the group item with elementary items. In the
preceding example, it would mean substituting :DEPARTURE

with :DEPARTURE.HOUR, :DEPARTURE.MINUTE.

Group items used as host variables can contain host tables. In the following example,
the group item containing tables is used to INSERT three entries into the SCHEDULE
table:

01 DEPARTURE.
05 HOUR PIC X(2) OCCURS 3 TIMES.
05 MNUTE PIC X(2) OCCURS 3 TIMES.

EXEC SQL | NSERT | NTO SCHEDULE (DHOUR, DM NUTE)
VALUES (: DEPARTURE) END- EXEC.

If VARCHAR=YES is specified, Pro*xCOBOL will recognize implicit VARCHARS. If the

nested group item declaration resembles a VARCHAR host variable, then the entire
group item is treated like an elementary item of VARYING type. See "VARCHAR".

4-18

Chapter 4
Indicator Variables

When referencing elementary items instead of the group items as host variables
elementary names need not be unique because you can qualify them using the
following syntax:

group_itemel enentary_item

This naming convention is allowed only in SQL statements. It is similar to the IN (or
OF) clause in COBOL, examples of which follow:

MOVE M NUTE | N DEPARTURE TO M NUTE- QUT.
DI SPLAY HOUR OF DEPARTURE.

The COBOL IN (or OF) clause is not allowed in SQL statements. Qualify elementary
names to avoid ambiguity. For example:

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 DEPARTURE.

05 HOR PIC X(2).

05 MNUTE PIC X(2).
01 ARRIVAL.

05 HOR PIC X(2).

05 MNUTE PIC X(2).

EXEC SQL END DECLARE SECTI ON END- EXEC.

EXEC SQL SELECT DHR, DM N I NTO : DEPARTURE. HOUR, : DEPARTURE. M NUTE

FROM TI METABLE
VHERE . ..

4.3.2.2 Restrictions

A host variable cannot substitute for a column, table, or other object in a SQL
statement and must not be an Oracle reserved word. See Reserved Words_
Keywords_ and Namespaces for a list of reserved words and keywords.

4.4 Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLSs to input
host variables and in the INTO clause to detect NULLs (or truncated values for
character columns) in output host variables.

4.4.1 Using Indicator Variables

Here are the values indicator variables can take on.

4.4.1.1 On Input

The values your program can assign to an indicator variable have the following
meanings:

ORACLE 4-19

Chapter 4
Indicator Variables

Indicator Variables Description

-1 Oracle will assign a NULL to the column, ignoring the value of the
host variable.

>=0 Oracle will assign the value of the host variable to the column.

4.4.1.2 On Output

The values Oracle can assign to an indicator variable have the following meanings:

Indicator Variables Description

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable. The

integer returned by the indicator variable is the original length of
the column value, and SQLCODE in SQLCA is set to zero.

-2 Oracle assigned a truncated column variable to the host variable,
but the original column value could not be determined (a LONG
column, for example).

4.4.2 Declaring Indicator Variables

An indicator variable must be explicitly declared as PIC S9(4) COMP and must not be
a reserved word. In the following example, you declare an indicator variable named
COMM-IND (the name is arbitrary):

WORKI NG- STORAGE SECTI ON.

01 EMP-NAME PIC X(10) VALUE SPACE.
01 SALARY PI C S9(5) V99 COWP- 3.
01 COW SSION PIC S9(5) V99 COWP-3.
01 COWHIND PIC S9(4) COW.

4.4.3 Referencing Indicator Variables

In SQL statements, an indicator variable must be prefixed with a colon and appended
to its associated host variable. In COBOL statements, an indicator variable must not
be prefixed with a colon or appended to its associated host variable. An example
follows:

EXEC SQL SELECT SAL, COWM
[NTO : SALARY, : COWM SSI ON: COVM | ND FROM EMP
VHERE EMPNO = : EMP- NUMBER
END- EXEC.
IF COWMIND = -1
COWPUTE PAY = SALARY
ELSE
COMPUTE PAY = SALARY + COW SSI ON.

ORACLE 4-20

Chapter 4
Indicator Variables

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is

host _vari abl el NDI CATOR: i ndi cator _vari abl e

and is equivalent to

host _variabl e:indicator_variable

You can use both forms of expression in your host program.

4.4.3.1 Use in Where Clauses

Indicator variables cannot be used in the WHERE clause to search for NULLs. For
example, the following DELETE statement triggers an error at run time:

* Set indicator variable.

COWHIND = -1
EXEC SQL

DELETE FROM EMP WHERE COWM = : COWM SSI ON: COMM | ND
END- EXEC.

The correct syntax follows:
EXEC SQL

DELETE FROM EMP VHERE COWM |'S NULL
END- EXEC.

4.4.3.2 Avoid Error Messages

If you SELECT or FETCH a NULL into a host variable that has no indicator, Oracle
issues an error message.

You can disable the error message by also specifying UNSAFE_NULL=YES on the
command line.

Related Topics

* Precompiler Options

4.4.3.3 ANSI Requirements
When MODE=ORACLE, if you SELECT or FETCH a truncated column value into a

host variable that is not associated with an indicator variable, Oracle issues an error
message.

However, when MODE={ANSI | ANSI14 | ANSI13}, no error is generated.

¢ See Also:

Embedded SQL for values for indicator variables.

ORACLE 4-21

Chapter 4
VARCHAR Variables

4.4.3.4 Indicator Variables for Multibyte NCHAR Variables

Indicator variables for multibyte NCHAR character variables can be used as with any
other host variable. However, a positive value (the result of a SELECT or FETCH was
truncated) represents the string length in multibyte characters instead of 1-byte
characters.

4.4.3.5 Indicator Variables with Host Group Items

To use indicator variables with a host group item, either setup a second group item
that contains an indicator variable for each nullable variable in the group item or use a
table of half-word integer variables. You do NOT have to have an indicator variable for
each variable in the group item, but the nullable fields which you wish to use indicators
for must be placed at the beginning of the data group item. The following indicator
group item can be used with the DEPARTURE group item:

01 DEPARTURE- | ND.
05 HOUR-IND PIC S9(4) COW.
05 MNUTE-IND PIC S9(4) COW.

If you use an indicator table, you do NOT have to declare a table of as many elements
as there are members in the host group item. The following indicator table can be used
with the DEPARTURE group item:

01 DEPARTURE-IND PI C S9(4) COWP OCCURS 2 TIMES.

Reference the indicator group item in the SQL statement in the same way that a host
indicator variable is referenced:

EXEC SQL SELECT DHOUR, DM NUTE
I NTO : DEPARTURE: DEPARTURE- | ND
FROM SCHEDULE
WHERE . ..

When the query completes, the NULL/NOT NULL status of each selected component
is available in the host indicator group item. The restrictions on indicator host variables
and the ANSI requirements also apply to host indicator group items.

4.5 VARCHAR Variables

COBOL string datatypes are fixed length. However, Pro*COBOL lets you declare a
variable-length string pseudotype called VARCHAR. A VARCHAR variable is a
pseudotype that enables you to specify the exact length of the data stored in the
database and to specify the exact length of the data to be passed to the database.

4.5.1 Declaring VARCHAR Variables

You define a VARCHAR host variable by adding the keyword VARYING to its
declaration, as shown in the following example:

01 ENAME PIC X(15) VARYING

ORACLE 4-22

Chapter 4
VARCHAR Variables

Note:

PIC N and PIC G are not allowed in definitions that use VARYING. To see how
to correctly use PIC N and PIC G in VARCHAR variables, see "Implicit
VARCHAR Group Items".

Note:

Pro*COBOL adds 4 characters to variable names declared with VARYING. So,
if your COBOL compiler supports a variable name length of n, then Pro*xCOBOL
supports a variable name that is four characters less (n-4).

The COBOL VARYING phrase is used in PERFORM and SEARCH statements to
increment subscripts and indexes. Do not confuse this with the Pro*COBOL VARYING
clause in the preceding example.

VARCHAR is an extended Pro*COBOL datatype or pre-declared group item. For
example, Pro*COBOL expands the VARCHAR declaration

01 ENAME PIC X(15) VARYING

into a group item with length and string fields, as follows:

01 ENAME
05 ENAME-LEN PIC S9(4) COW.
05 ENAME-ARR PIC X(15).

The length field (suffixed with -LEN) holds the current length of the value stored in the
string field (suffixed with -ARR). The maximum length in the VARCHAR host-variable
declaration must be in the range of 1 to 9,999 bytes.

The advantage of using VARCHAR variables is that you can explicitly set and
reference the length field. With input host variables, Pro*COBOL reads the value of the
length field and uses that many characters of the string field. With output host
variables, Pro*xCOBOL sets the length value to the length of the character string stored
in the string field.

4.5.2 Implicit VARCHAR Group Items

ORACLE

Pro*COBOL implicitly recognizes some group items as VARCHAR host variables
when the precompiler option VARCHAR=YES is specified on the command line. For
variable-length single-byte character types, use the following structure (length
expressed in single-byte characters):

nn data-name- 1.
49 data-name-2 PIC S9(4) COWP.
49 data-name-3 PIC X(length).

nn must be 01 through 48.

For variable-length multibyte NCHAR characters, use these formats (length is
expressed in double-byte characters):

4-23

Chapter 4
VARCHAR Variables

nn DATA- NAME- 1.
49 DATA-NAME-2 PIC S9(4) COWP.
49 DATA-NAME-3 PIC N(length).

nn DATA- NAME- 1.
49 DATA-NAME-2 PIC S9(4) COWP.
49 DATA-NAME-3 PIC @length).

The el ementary itens in these group-itemstructures nust be declared as |evel 49 for
Pro*COBCOL to recogni ze them as VARCHAR host vari abl es.

The VARCHAR=YES command line option must be specified for Pro*COBOL to
recognize the extended form of the VARCHAR group items. If VARCHAR=NO, then
any declarations that resemble the preceding formats will be interpreted as regular
group items. If VARCHAR=YES and a group item declaration format looks similar (but
not identical) to the extended VARCHAR format, then the item will be interpreted as a
regular group item rather than a VARCHAR group item. For example, if
VARCHAR=YES is specified and you write the following:

01 LASTNAME.
48 LASTNAME-LEN PIC S9(4) COW.
48 LASTNAME- TEXT PI C X(15).

then, since level 48 instead of 49 is used for the group item elements, the item is
interpreted as a regular group item rather than a VARCHAR group item.

¢ See Also:

Precompiler Options for more information about the Pro*COBOL VARCHAR
option.

4.5.3 Referencing VARCHAR Variables

In SQL statements, you reference a VARCHAR variable using the group name
prefixed with a colon, as the following example shows:

WORKI NG STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 PART-NUMBER PIC X(5).
01 PART-DESC PIC X(20) VARYING

EXEC SQL END DECLARE SECTI ON END- EXEC.
PROCEDURE DI VI SI ON.

EXEC SQL

SELECT PDESC | NTO : PART- DESC FROM PARTS

VHERE PNUM = : PART- NUMBER
END- EXEC.

After the query executes, PART-DESC-LEN holds the actual length of the character
string retrieved from the database and stored in PART-DESC-ARR.

ORACLE 4-24

Chapter 4
Handling Character Data

4.6 Handling Character Data

This section explains how Pro*COBOL handles character host variables. There are
two kinds of single-byte character host variables and two kinds of multibyte
Globalization Support (formerly called NLS) character host variables:

* PIC X(n) (or PIC X...X)
* PIC X(n) VARYING (or PIC X...X VARYING)
* PIC N(n) (or PIC N...N) or PIC G(n) (or PIC G...G)

Note:

Before using multibyte NCHAR datatypes, verify that the PIC N or PIC G
datatype is supported by your COBOL compiler.

4.6.1 Default for PIC X

The default datatype of PIC X variables is CHARF (was VARCHAR?2 before release
8.0.) The precompiler command line option, PICX, is provided for backward
compatibility. PICX can be entered only on the command line or in a configuration file.
See "PICX" for more details.

4.6.2 Effects of the PICX Option

The PICX option determines how Pro*COBOL treats data in character strings. The
PICX option enables your program to use ANSI fixed-length strings or to maintain
compatibility with previous versions of the database server and Pro*COBOL.

You must use PICX=VARCHAR?2 (not the default) to obtain the same results as
releases of Pro*COBOL before 8.0. Or, use

EXEC SQL varname | S VARCHAR2 END- EXEC.

for each variable.

4.6.3 Fixed-Length Character Variables

Fixed-length character variables are declared using the PIC X(n) and PIC G(n) and
PIC N(n) datatypes. These types of variables handle character data based on their
roles as input or output variables.

4.6.3.1 On Input

ORACLE

When PICX=VARCHARZ2, the program interface strips trailing blanks before sending
the value to the database. If you insert into a fixed-length CHAR column, Pro*xCOBOL
re-appends trailing blanks up to the length of the database column. However, if you
insert into a variable-length VARCHAR2 column, Pro*COBOL never appends blanks.

When PICX=CHARYF, trailing blanks are never stripped.

4-25

Chapter 4
Handling Character Data

Host input variables for multibyte Globalization Support data are not stripped of trailing
double-byte spaces. The length component is assumed to be the length of the data in
characters, not bytes.

Make sure that the input value is not trailed by extraneous characters. Normally, this is
not a problem because when a value is ACCEPTed or MOVEd into a PIC X(n)
variable, COBOL appends blanks up to the length of the variable.

The following example illustrates the point:

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.

01 EMPLOYEES.
05 EMP-NAME PIC X(10).
05 DEPT-NUVBER PIC S9(4) VALUE 20 COWP.
05 EMP-NUMBER PIC S9(9) VALUE 9999 COWP.
05 JOB-NAME PIC X(8).

EXEC SQL END DECLARE SECTI ON END- EXEC.
PROCEDURE DI VI SI ON.

DI SPLAY "Enpl oyee nane? " W TH NO ADVANCI NG
ACCEPT EMP- NAME.
* Assune that the name M LLER was entered
* EMP- NAME contains "M LLER " (4 trailing blanks)
MOVE " SALES" TO JOB- NAME.
* JOB- NAME now contains "SALES " (3 trailing blanks)
EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME, DEPTNO, JOB)
VALUES (: EMP-NUMBER, : EMP- NAME, : DEPT- NUMBER, :JOB- NAME
END- EXEC.

If you precompile the last example with PICX=VARCHAR?2 and the target database
columns are VARCHARZ2, the program interface strips the trailing blanks on input and
inserts just the 6-character string "MILLER" and the 5-character string "SALES" into
the database. However, if the target database columns are CHAR, the strings are
blank-padded to the width of the columns.

If you precompile the last example with PICX=CHARF and the JOB column is defined
as CHAR(10), the value inserted into that column is "SALES#####" (five trailing
blanks). However, if the JOB column is defined as VARCHAR2(10), the value inserted
is "SALES###" (three trailing blanks), because the host variable is declared as PIC
X(8). This might not be what you want, so be careful.

4.6.3.2 On Output

The PICX option has no effect on output to fixed-length character variables. When you
use a PIC X(n) variable as an output host variable, Pro*COBOL blank-pads it. In our
example, when your program fetches the string "MILLER" from the database, EMP-
NAME contains the value "MILLER####" (with four trailing blanks). This character
string can be used without change as input to another SQL statement.

4.6.4 Varying-Length Variables

VARCHAR variables handle character data based on their roles as input or output
variables.

ORACLE 4-26

Chapter 4
Universal ROWIDs

4.6.4.1 0n Input

When you use a VARCHAR variable as an input host variable, your program must
assign values to the length and string fields of the expanded VARCHAR declaration,
as shown in the following example:

[F ENAME-IND = -1
MOVE “NOT AVAI LABLE" TO ENAME- ARR
MOVE 13 TO ENAME- LEN.

You need not blank-pad the string variable. In SQL operations, Pro*xCOBOL uses
exactly the number of characters given by the length field, counting any spaces.

4.6.4.2 On Output

When you use a VARCHAR variable as an output host variable, Pro*COBOL sets the
length field. An example follows:

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMPNO PIC S9(4) COWP.
01 ENAME PIC X(15) VARYING

EXEC SQL END DECLARE SECTI ON END- EXEC.
PROCEDURE DI VI SI ON.

EXEC SQL
SELECT ENAME | NTO : ENAVE FROM ENP
WHERE EMPNO = : EMPNO

END- EXEC.

| F ENAME-LEN = 0
MOVE FALSE TO VALI D- DATA.

An advantage of VARCHAR variables over fixed-length strings is that the length of the
value returned by Pro*COBOL is available right away. With fixed-length strings, to get
the length of the value, your program must count the number of characters.

Host output variables for multibyte NCHAR data are not padded at all. The length of
the buffer is set to the length in bytes, not characters.

Note:

When PI CN_ENDI AN=CsS, the length of the buffer for multibyte NCHAR data is set
to the length in characters, not bytes.

4.7 Universal ROWIDs

There are two kinds of table organization used in the database server: heap tables and
index-organized tables.

Heap tables are the default. This is the organization used in all tables before Oracle.
The physical row address (ROWID) is a permanent property that is used to identify a

ORACLE 4-27

Chapter 4
Universal ROWIDs

row in a heap table. The external character format of the physical ROWID is an 18-
byte character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque structure
that contains the primary key of the table, control information, and an optional physical
"guess"”. You can use this ROWID in a SQL statement containing a clause such as
"WHERE ROWID = ..." to retrieve values from the table.

The universal ROWID was introduced in the Oracle 8.1 Database release. Universal
ROWID can be used for both physical ROWID and logical ROWID. You can use
universal ROWIDs to access data in heap tables, or index-organized tables, since the
table organization can change with no effect on applications. The column datatype
used for ROWID is UROWID(/length), where length is optional.

Use the universal ROWID in all new applications.
Declare a universal ROWID, which uses the pseudotype SQL-ROWID, this way:
01 M-ROND SQL- ROND.
Memory for the universal ROWID is allocated with the ALLOCATE statement:
EXEC SQL ALLCCATE : MWY- RON D END- EXEC.

Use MY-ROWID in SQL DML statements like this:
EXEC SQL SELECT ROWD I NTO : MY-RON D FROM MYTABLE WHERE ... END- EXEC.

EXEC SQL UPDATE MYTABLE SET ... VWHERE RON D = : MY-RON D END- EXEC.

Free the memory when you no longer need it with the FREE directive:

EXEC SQL FREE : MY- RON D END- EXEC.

You also have the option of using a character host variable of width between 18 and
4000 as the host bind variable for universal ROWID. Character-based universal
ROWIDs are supported for heap tables only for backward compatibility. Because a
universal ROWID can be variable length there can be truncation when it is selected.

Use the character variable like this:

01 M- ROW D- CHAR PI C X(4000) VARYI NG

EXEC SQL ALLOCATE : MY- RON D- CHAR END- EXEC.
EXEC SQL SELECT ROWD I NTO : MY- RON D- CHAR FROM WTABLE WHERE ... END- EXEC.

EXEC SQL UPDATE MYTABLE SET ... WHERE ROWD = : M- ROW D- CHAR END- EXEC.

EXEC SQL FREE : MY- RON D- CHAR END- EXEC.

ORACLE 4-28

Chapter 4
Universal ROWIDs

¢ See Also:

e Oracle Database Concepts for more information on universal ROWIDs.

e "Positioned Update" for an example of a positioned update using the
universal ROWID.

4.7.1 Subprogram SQLROWIDGET

ORACLE

The Oracle subprogram SQLROWIDGET enables you to retrieve the ROWID of the
last row inserted, updated, or selected. SQLROWIDGET requires a context or NULL
and a ROWID as its arguments.

To use the default context, pass the figurative constant NULL as the first parameter in
the call to SQLROWIDGET.

Note that the universal ROWID must be declared and allocated before the call. The
context, if used must be declared and allocated before the call. Here is the syntax:

CALL "SQLRON DGET" USI NG NULL rowi d.
or

CALL "SQLROW DGET" USI NG context rowid.
where
context (IN)

is the runtime context variable, of pseudotype SQL-CONTEXT, or the figurative
constant NULL for the default context. For a discussion of runtime contexts, see
"Embedded SQL Statements and Directives for Runtime Contexts".

rowid (OUT)

is a universal ROWID variable, of pseudotype SQL-ROWID. When a normal execution
finishes, this will point to a valid universal ROWID. In case of an error, rowid is
undefined.

Here is a sample showing its use with the default context:
01 M-ROND SQL- RON D.
o EXEC SQL ALLCCATE : MWY- RON D END- EXEC.

* |NSERT, or UPDATE or DELETE Coes here:

CALL "SQLRON DGET" USI NG NULL My- ROW D.
* MY-RON D now has the universal row d descriptor for the last row

EXEC SQL FREE : MY- ROW D END- EXEC.

If your compiler does not allow using the figurative constant NULL in a CALL
statement, you can declare a variable with picture S9(9) COMP VALUE 0 and use that
with the BY VALUE clause in the call to SQLROWIDGET, as follows:

4-29

Chapter 4
Globalization Support

01 NULL- CONTEXT PIC S9(9) COWP VALUE ZERO
01 MY-RON' D SQLROW D.

CALL "SQLROW DGET" USI NG BY VALUE NULL- CONTEXT BY REFERENCE MY- ROW D.

4.8 Globalization Support

ORACLE

Although the widely-used 7-bit or 8-bit ASCII and EBCDIC character sets are
adequate to represent the Roman alphabet, some Asian languages, such as
Japanese, contain thousands of characters. These languages require 16 bits or more,
to represent each character. How does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support (formerly called National Language Support or
NLS), which lets you process single-byte and multibyte character data and convert
between character sets. It also lets your applications run in different language
environments. With Globalization Support, number and date formats adapt
automatically to the language conventions specified for a user session. Thus,
Globalization Support enables users around the world to interact with Oracle in their
native languages.

You control the operation of language-dependent features by specifying various
Globalization Support parameters. You can set default parameter values in the
initialization file. Table 4-8 shows what each Globalization Support parameter
specifies.

Table 4-8 Globalization Support Parameters
|

Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions
NLS_TERRITORY territory-dependent conventions
NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names
NLS_NUMERIC_CHARACTERS decimal character and group separator
NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.
NLS_LANGUAGE specifies the default values for language-dependent features, which
include

* language for Server messages
* language for day and month names
e sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

e Date format
» Decimal character

e Group separator

4-30

Chapter 4
Unicode Support for Pro*COBOL

* Local currency symbol
e ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows

NLS_LANG = | anguage_territory.character set

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding
scheme used for the terminal. An encoding scheme (usually called a character set or
code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the
terminal.

You define NLS_LANG as an environment variable (or the equivalent on your system).
For example, on UNIX using the C shell, you might define NLS_LANG as follows:

setenv NLS_LANG French_France. W8I SCB859P1

To change the values of Globalization Support parameters during a session, you use
the ALTER SESSION statement as follows:

ALTER SESSI ON SET nl s_paraneter = val ue

Pro*COBOL fully supports all the Globalization Support features that allow your
applications to process multilingual data stored in an Oracle database. For example,
you can declare foreign-language character variables and pass them to string
functions such as INSTRB, LENGTHB, and SUBSTRB. These functions have the
same syntax as the INSTR, LENGTH, and SUBSTR functions, respectively, but
operate on a per-byte basis rather than a per-character basis.

You can use the functions NLS_INITCAP, NLS LOWER, and NLS_UPPER to handle
special instances of case conversion. And, you can use the function NLSSORT to
specify WHERE-clause comparisons based on linguistic rather than binary ordering.
You can even pass Globalization Support parameters to the TO_CHAR, TO_DATE,
and TO_NUMBER functions.

¢ See Also:

Oracle Database Globalization Support Guide for more information about
Globalization Support.

4.9 Unicode Support for Pro*COBOL

ORACLE

Pro*COBOL does not support source code written with Unicode. If you want to set
UTF8 to locale, source code should be written with only ASCII code.

If you want to use Unicode variables, you need to remember the following:

* Pro*COBOL does not support "USAGE NATIONAL". If you want to use Unicode
variables, use -C NSYMBOL="NATIONAL" for compiling Cobol programs with MF
Cobol.

* Unicode can be used with PIC X and PIC N:

4-31

Chapter 4
Unicode Support for Pro*COBOL

— AL32UTF8 and UTF8 can be used with PIC X.
— AL16UTF16 can be used with PIC N.

* Equate NLS_NCHAR environment variable to the client-side character set used in
PIC N. If NLS_NCHAR is not set, then NLS_LANG is used.

» Equate NLS_LANG environment variable to the client-side character set used in
PIC X.

e AL16UTF16, JA16SJISFIXED and JA16EUCFIXED can be setin NLS_NCHAR.
e JA16SJIS and JA16SJISTILDE can also be set in NLS_NCHAR.
* JA16EUC and JA16EUCTILDE cannot be used with NLS_NCHAR.

¢ See Also:

For the character sets that can be used in NLS_LANG, refer to the
Globalization Support Guide.

PICX=charf/varchar2 works for unicode PIC X variables and for PIC N it works with the
restrictions mentioned in the aforementioned list.

4.9.1 NLS LOCAL=YES Restrictions

When the precompiler option NLS_LOCAL is YES, the runtime library (SQLLIB)
performs blank-padding and blank-stripping for Globalization Support multibyte
datatypes.

When NLS_LOCAL=YES, multibyte NCHAR features are not supported within a
PL/SQL block. These features include N-quoted character literals and fixed-length
character variables.

These restrictions then apply:

Tables Disallowed. Host variables declared using the PIC N or PIC G datatype must
not be tables.

No Odd-Byte Widths. Oracle CHAR columns should not be used to store multibyte
NCHAR characters. A run-time error is generated if data with an odd number of bytes
is FETCHed from a single-byte column into a multibyte NCHAR host variable.

No Host Variable Equivalencing. Multibyte NCHAR character variables cannot be
equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for NCHAR multibyte character
string host variables in Pro*COBOL.

Functions should not be used on columns that store multibyte Globalization Support
data.

4.9.2 Character Strings in Embedded SQL

A multibyte Globalization Support character string in an embedded SQL statement
consists of the letter N, followed by the string enclosed in single quotes.

ORACLE 4-32

Chapter 4
Unicode Support for Pro*COBOL

For example,

EXEC SQL
SELECT EMPNO | NTO : ENP- NUM FROM ENP
WHERE ENAME=N NLS st ring'

END- EXEC.

4.9.3 Embedded DDL

When the precompiler option, NLS_LOCAL=YES, columns storing NCHAR data
cannot be used in embedded data definition language (DDL) statements. This
restriction cannot be enforced when precompiling, so the use of extended column
types, such as NCHAR, within embedded DDL statements results in an execution
error rather than a precompile error.

Related Topics

e Precompiler Options

4.9.4 Blank Padding

When a Pro*COBOL character variable is defined as a multibyte Globalization Support
variable, the following blank padding and blank stripping rules apply, depending on the
external datatype of the variable.

CHARF. Input data is stripped of any trailing double-byte spaces. However, if a string
consists only of multibyte spaces, a single multibyte space is left in the buffer to act as
a sentinel.

Output host variables are blank padded with multibyte spaces.

VARCHAR. On input, host variables are not stripped of trailing double-byte spaces.
The length component is assumed to be the length of the data in characters, not bytes.

On output, the host variable is not blank padded at all. The length of the buffer is set to
the length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported for Globalization
Support data, since they can only be specified using dynamic SQL or datatype
equivalencing, neither of which is supported for Globalization Support data.

Related Topics

e Handling Character Data

4.9.5 Indicator Variables

You can use indicator variables with multibyte Globalization Support character
variables as use you would with any other variable, except column length values are
expressed in characters instead of bytes.

Related Topics

* Using Indicator Variables

ORACLE 4-33

Chapter 4
Unicode Support for Pro*COBOL

4.9.6 Various Combinations of PIC X/PIC N Variables and NCHAR/
CHAR Columns

Pro*Cobol supports various combinations of PIC X /PIC N variables and NCHAR/
CHAR columns for select, insert and update statements through command line options
charset _pi cx and char set _pi cn.

4.9.6.1 PIC X and NCHAR Column

By default, PIC X variables are converted to the server-side Database Character Set
so that these variables can be used with CHAR columns. Therefore, when you use the
PIC X variables with NCHAR columns, there can be some data loss. To avoid this, use
the following command to set the character set form used by PIC X variables to
NCHAR:

char set _pi cx=nchar_char set

4.9.6.2 PIC N and CHAR column

By default, PIC N variables are converted to the server-side National Character Set so
that these variables can be used with CHAR columns. Therefore, when you use the
PIC N variables with NCHAR columns, there may be some performance impact. To
avoid this, use the following command to set the character set form used by PIC N
variables to CHAR:

charset _pi cn=db_char set

¢ See Also:

Using Pro*COBOL Precompiler Options for more information on
CHARSET_PICX and CHARSET_PICN.

4.9.7 Working With New Options

ORACLE

The following table shows how to work with the new options:

e Host var : Host variables type

e DB column type : CHAR/NCHAR

e charset_picx : value for charset_picx option
e charset_picn : value for charset_picn option
* NLS_NCHAR : value for NLS_NCHAR

» data charset : character set of host variables

Host var DB col type charset_picx charset_picN NLS_NCHAR Data charset
PIC X CHAR nchar_charset - set NLS_NCHAR
PIC X CHAR db_charset - set NLS_LANG
PIC X CHAR nchar_charset - not set NLS _LANG
4-34

Chapter 4
Datatype Conversion

Host var DB col type charset_picx charset_picN NLS_NCHAR Data charset
PIC X CHAR db_charset - not set NLS_ LANG
PIC X NCHAR nchar_charset - set NLS_NCHAR
PIC X NCHAR db_charset - set NLS_LANG
PIC X NCHAR nchar_charset - not set NLS_LANG
PIC X NCHAR db_charset - not set NLS LANG
PICN CHAR - nchar_charset set NLS_NCHAR
PICN CHAR - db_charset set NLS_NCHAR
PIC N NCHAR - nchar_charset not set NLS_LANG
PICN NCHAR - db_charset not set NLS_LANG
PIC N NCHAR - nchar_charset set NLS_NCHAR
PICN NCHAR - db_charset set NLS_NCHAR
PICN NCHAR - nchar_charset not set NLS LANG
PICN NCHAR - db_charset not set NLS_ LANG

4.10 Datatype Conversion

ORACLE

At precompile time, an external datatype is assigned to each host variable. For
example, Pro*COBOL assigns the INTEGER external datatype to host variables of
type PIC S9(n) COMP. At run time, the datatype code of every host variable used in a
SQL statement is passed to Oracle. Oracle uses the codes to convert between internal
and external datatypes.

Before assigning a SELECTed column value to an output host variable, Oracle must
convert the internal datatype of the source column to the datatype of the host variable.
Likewise, before assigning or comparing the value of an input host variable to a
column, Oracle must convert the external datatype of the host variable to the internal
datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of 1234 to a PIC S9(4) COMP
value. You cannot, however, convert a CHAR value of 123465543 (number too large)
or 10F (number not decimal) to a PIC S9(4) COMP value. Likewise, you cannot
convert a PIC X(n) value that contains alphabetic characters to a NUMBER value.

The datatype of the host variable must be compatible with that of the database
column. It is your responsibility to make sure that values are convertible. For example,
if you try to convert the string value YESTERDAY to a DATE column value, you get an
error. Conversions between internal and external datatypes follow the usual data
conversion rules. For instance, you can convert a CHAR value of 1234 to a 2-byte
integer. But, you cannot convert a CHAR value of 65543 (number too large) or 10F
(number not decimal) to a 2-byte integer. Likewise, you cannot convert a string value
that contains alphabetic characters to a NUMBER value.

Number conversion follows the conventions specified by Globalization Support
parameters in the Oracle initialization file. For example, your system might be
configured to recognize a comma (,) instead of a period (.) as the decimal character.

The following table shows the supported conversions between internal and external
datatypes.

4-35

Table 4-9 Conversions Between Internal and External Datatypes

Chapter 4
Datatype Conversion

External Internal - - - - - - -
CHAR 110 110 (2) /O 1(3) 110 110 (3) /O (1)
CHARF e} 110 (2) 10 1 (3) /0 110 (3) 1/0 (1)
CHARZ 110 110 (2) 10 1 (3) /0 110 (3) 1/0 (1)
DATE I/O 110 | - - - --
DECIMAL 1/10O (4) - | - - I/0 - -
DISPLAY /O (4)) - [- - 110 - -
FLOAT /o (4) - [- - 110 - -
INTEGER /o (4) - I - - 110 - -
LONG 110 110 (2) IO 1(35) - /0 110 (3) 1/0 (1)
LONG RAW O(6) . 1(56) /O - . 110 .
LONG 110 110@2) 110 1(35) - 110 1/0@3)) 1/0 (1)
VARCHAR
LONG /o (6) - 1(56) 1O - - 110 -
VARRAW
NUMBER /o (4) - [- - 110 - -
RAW /o) - 1(56) IO - - 110 -
ROWID I - I - - - - 1’0
STRING 110 110 (2) /0 1(35) - 110 110 (3) 1/0 (1)
UNSIGNED 1/O (4) - | - - I/0 - -
VARCHAR 1/O 110 (2) /0 1(35) - 110 110 (3) -
VARCHAR2 1/O 110 (2) /0 1(3) - 110 110 (3) /O (1)
VARNUM /o (4) - I - - 110 - -
VARRAW /o) - 1(56) IO - - 110 -
In the preceding table:
e | =input only
* O =output only
e |/O = input or output

ORACLE 4-36

Chapter 4
Explicit Control Over DATE String Format

¢ Note:
On input, host string must be in Oracle'BBBBBBBB.RRRR.FFFF' format.
On output, column value is returned in same format.
On input, host string must be the default DATE character format.
On output, column value is returned in same format
On input, host string must be in hex format.
On output, column value is returned in same format.
On output, column value must represent a valid number.

On input, length must be less than or equal to 2000.

¢ See Also:

Oracle Database Globalization Support Guide for more information about
Globalization Support.

4.11 Explicit Control Over DATE String Format

ORACLE

When you select a DATE column value into a character host variable, Oracle must
convert the internal binary value to an external character value. So, Oracle implicitly
calls the SQL function TO_CHAR, which returns a character string in the default date
format. The default is set by the Oracle initialization parameter NLS_DATE_FORMAT.
To get other information such as the time or Julian date, you must explicitly call
TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value into a DATE
column. Oracle implicitly calls the SQL function TO_DATE, which expects the default
date format. To insert dates in other formats, you must explicitly call TO_DATE with a
format mask.

For compatibility with other versions of SQL Pro*COBOL now provides the following
precompiler option to specify date strings:

DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt'
The DATE_FORMAT option must be used on the command line or in a configuration

file. The date strings are shown in the following table:

Table 4-10 Formats for Date Strings
|

Format Name Abbreviation Date Format
International Standards Organization ISO yyyy-mm-dd
USA standard USA mm/dd/yyyy
European standard EUR dd.mm.yyyy

4-37

Chapter 4
Datatype Equivalencing

Table 4-10 (Cont.) Formats for Date Strings
|

Format Name Abbreviation Date Format
Japanese Industrial Standard JIS yyyy-mm-dd
installation-defined LOCAL Any installation-defined form.

'fmt' is a date format model, such as 'Month dd, yyyy'. Note that all separately compiled
units linked together must use the same DATE_FORMAT value.

¢ See Also:

Datetime Format Elements for the list of date format model elements.

4.12 Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle interprets input data and the
way Oracle formats output data. You can equivalence supported COBOL datatypes to
external datatypes on a variable-by-variable basis.

4.12.1 Usefulness of Equivalencing

Datatype equivalencing is useful in several ways. For example, suppose you want to
use a variable-length string in a COBOL program. You can declare a PIC X host
variable, then equivalence it to the external datatype VARCHAR?2.

In addition, you can use datatype equivalencing to override default datatype
conversions. Unless Globalization Support parameters in the initialization file specify
otherwise, if you select a DATE column value into a character host variable, Oracle
returns a 9-byte string formatted as follows:

DD- MON- YY

However, if you equivalence the character host variable to the DATE external
datatype, Oracle returns a 7-byte value in the internal format.

4.12.2 Host Variable Equivalencing

ORACLE

By default, Pro*COBOL assigns a specific external datatype to every host variable.
You can override the default assignments by equivalencing host variables to external
datatypes. This is called host variable equivalencing.

The syntax of the VAR embedded SQL statement is:

EXEC SQL
VAR host _variable IS datatype [CONVBUFSZ [IS] (size)]
END- EXEC

or
EXEC SQL VAR host _variable [CONVBUFSZ [1S] (size)] END-EXEC

4-38

Chapter 4
Datatype Equivalencing

where datatype is:

SQ datatype [({length | precision, scale })]

There must be at least one of the two clauses, or both.

where:

Table 4-11 Host Variable Equivalencing
|

Variable

Description

precision and scale Integer literals that represent, respectively, the number of significant digits and the point at

length

size

SQL datatype

host_variable

which rounding will occur. For example, a scale of 2 means the value is rounded to the
nearest hundredth (3.456 becomes 3.46); a scale of -3 means the number is rounded to
the nearest thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of -84 .. 99. However, the maximum
precision and scale of a database column are 38 and 127, respectively. So, if precision
exceeds 38, you cannot insert the value of host_variable into a database column. On the
other hand, if the scale of a column value exceeds 99, you cannot select or fetch the value
into host_variable.

Specify precision and scale only when type_name is DECIMAL or DISPLAY

Input or output host variable (or host table) declared earlier.

The VARCHAR and VARRAW external datatypes have a 2-byte length field followed by an
n-byte data field, where n lies in the range 1 .. 65533. So, if type_name is VARCHAR or
VARRAW, host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes have a 4-byte length field
followed by an n-byte data field, where n lies in the range 1 .. 2147483643. So, if
type_name is LONG VARCHAR or LONG VARRAW, host_variable must be at least 5
bytes long.

An integer which is the size, in bytes, of a buffer used to perform conversion of the
specified host_variable to another character set.

Name of a valid external datatype such as RAW or STRING.

Input or output host variable or host table declared earlier.

The VARCHAR and VARRAW external datatypes have a 2-byte length field followed by an
n-byte data field, where n lies in the range 1 .. 65533. So, if type_name is VARCHAR or
VARRAW, host_variable must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW external datatypes have a 4-byte length field
followed by an n-byte data field, where n lies in the range 1 .. 2147483643. So, if
type_name is LONG VARCHAR or LONG VARRAW, host_variable must be at least 5
bytes long.

ORACLE

An Example shows which parameters to use with each external datatype.

You cannot use EXEC SQL VAR with NCHAR host variables (those containing PIC G
or PIC N clauses).

If DECLARE_SECTION=TRUE then you must have a Declare Section and you must
place EXEC SQL VAR statements in the Declare Section.

When ext_type_name is FLOAT, use length; when ext_type_name is DECIMAL, you
must specify precision and scale instead of length.

Host variable equivalencing is useful in several ways. For example, you can use it
when you want Oracle to store but not interpret data. Suppose you want to store a
host table of 4-byte integers in a RAW database column. Simply equivalence the host
table to the RAW external datatype, as follows:

4-39

Chapter 4
Datatype Equivalencing

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP- TABLES.
05 EMP-NUMBER PIC S9(4) COWP OCCURS 50 TI MES.

* Reset default datatype (INTEGER) to RAW
EXEC SQL VAR EMP-NUMBER |'S RAW (200) END- EXEC.
EXEC SQ. END DECLARE SECTI ON END- EXEC.

With host tables, the length you specify must match the buffer size required to hold the
table. In the last example, you specified a length of 200, which is the buffer size
needed to hold 50 4-byte integers.

You can also declare a group item to be used as a LONG VARCHAR:

01 M- LONG VARCHAR.
05 UC-LEN PIC S9(9) COWP.
05 UG- ARR PI C X(6000).
EXEC SQL VAR MY- LONG VARCHAR IS LONG VARCHAR(6000) .

¢ See Also:

e "CONVBUFSZ Clause in VAR Statement" for more information about
CONVBUFSZ clause.

* "VAR (Oracle Embedded SQL Directive) " for a syntax diagram of EXEC
SQL VAR statement.

4.12.2.1 CONVBUFSZ Clause in VAR Statement

The EXEC SQL VAR statement can have an optional CONVBUFSZ clause. You
specify the size, in bytes, of the buffer in the runtime library used to perform
conversion of the specified host variable between character sets.

When you have not used the CONVBUFSZ clause, the runtime automatically
determines a buffer size based on the ratio of the host variable character size
(determined by NLS_LANG) and the character size of the database character set. This
can sometimes result in the creation of a buffer of LONG size. Databases are allowed
to have only one LONG column. An error is raised if there is more than one LONG
value.

To avoid such errors, you use a length shorter than the size of a LONG. If a character
set conversion results in a value longer than the length specified by CONVBUFSZ,
then Pro*xCOBOL returns an error.

4.12.2.2 An Example

ORACLE

Suppose you want to select employee names from the EMP table, then pass them to a
C-language routine that expects null-terminated strings. You need not explicitly null-
terminate the names. Simply equivalence a host variable to the STRING external
datatype, as follows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 EMP-NAME PIC X(11).

4-40

ORACLE

EXEC SQL VAR EMP-NAME | S STRING (11) END EXEC.

EXEC SQL END DECLARE SECTI ON END- EXEC.

Chapter 4
Datatype Equivalencing

The width of the ENAME column is 10 characters, so you allocate the new EMP-
NAME 11 characters to accommodate the null terminator. (Here, length is optional
because it defaults to the length of the host variable.) When you select a value from
the ENAME column into EMP-NAME, Oracle null-terminates the value for you.

Table 4-12 Parameters for Host Variable Equivalencing

External Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of
variable

CHARZ optional n/a n/a declared length of
variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required none

DISPLAY n/a required required none

DISPLAY n/a required required none

TRAILING

UNSIGNED n/a required required none

DISPLAY

OVERPUNCH n/a required required none

TRAILING

OVERPUNCH n/a required required none

LEADING

FLOAT optional (4 or 8) n/a n/a declared length of
variable

INTEGER optional (1,2,40r8) nla n/a declared length of
variable

LONG optional n/a n/a declared length of
variable

LONG RAW optional n/a n/a declared length of
variable

LONG VARCHAR required (note 1) n/a n/a none

LONG VARRAW required (note 1) n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of
variable

RAW optional n/a n/a declared length of
variable

ROWID n/a n/a n/a 18 bytes (see note 2)

UNSIGNED optional (1, 2, or 4) n/a n/a declared length of
variable

VARCHAR required n/a n/a none

VARCHAR2 optional n/a n/a declared length of
variable

VARNUM n/a n/a n/a 22 bytes

4-41

Chapter 4
Datatype Equivalencing

Table 4-12 (Cont.) Parameters for Host Variable Equivalencing

___|
External Datatype Length Precision Scale Default Length

VARRAW optional n/a n/a none

1. If the data field exceeds 65533 bytes, pass -1.
2. This length is typical but the default is port-specific.

4.12.3 Using the CHARF Datatype Specifier

You can use the datatype specifier CHARF in VAR statements to equivalence COBOL
datatypes to the fixed-length ANSI datatype CHAR.s

When PICX=CHARF, specifying the datatype CHAR in a VAR statement equivalences
the host-language datatype to the fixed-length ANSI datatype CHAR (Oracle external
datatype code 96). However, when PICX=VARCHAR?2, the host-language datatype is
equivalenced to the variable-length datatype VARCHAR?2 (code 1).

However, you can always equivalence host-language datatypes to the fixed-length
ANSI datatype CHAR. Simply specify the datatype CHARF in the VAR statement. If
you use CHARF, the host-language datatype is equivalenced to the fixed-length ANSI
datatype CHAR even when PICX=VARCHAR?2.

4.12.4 Guidelines

ORACLE

To input VARNUM or DATE values, you must use the Oracle internal format. Keep in
mind that Oracle uses the internal format to output VARNUM and DATE values.

After selecting a column value into a VARNUM host variable, you can check the first
byte to get the length of the value. Internal Datatypes gives some examples of
returned VARNUM values.

Table 4-13 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte
5 2 193 6 n/a
-5 3 62 96 102
2767 3 194 28, 68 n/a
-2767 4 61 74, 34 102
100000 2 195 11 n/a
1234567 5 196 2,24, 46, 68 n/a

If no Oracle external datatype suits your needs exactly, use a VARCHAR2-based or
RAW-based external datatype.

¢ See Also:

"Explicit Control Over DATE String Format" for converting DATE values.

4-42

Chapter 4
Platform Endianness Support

4.12.5 RAW and LONG RAW Values

When you select a RAW or LONG RAW column value into a character host variable,
Oracle must convert the internal binary value to an external character value. In this
case, Oracle returns each binary byte of RAW or LONG RAW data as a pair of
characters. Each character represents the hexadecimal equivalent of a nibble (half a
byte). For example, Oracle returns the binary byte 11111111 as the pair of characters
"FF". The SQL function RAWTOHEX performs the same conversion.

A conversion is also necessary when you insert a character host value into a RAW or
LONG RAW column. Each pair of characters in the host variable must represent the
hexadecimal equivalent of a binary byte. If a character does not represent the
hexadecimal value of a nibble, Oracle issues an error message.

¢ See Also:

"Sample Program 4: Datatype Equivalencing” for more information about
datatype conversion.

4.13 Platform Endianness Support

ORACLE

Oracle stored unicode data (UTF16) is always in big endian. Currently, client
applications run on different platforms. Linux and Windows have little endian
representation and Solaris has big endian representation. When UTF16 data is
inserted or selected, Pro*Cobol doesn't convert endian form between server and the
client. This leads to corrupted UTF16 (UCS2) strings in the PIC N variable.

Platform endianness (Little endian for Linux and Windows, Big endian for Solaris) in
PIC N variables can be maintained using the command line option pi cn_endi an.

New Command Line Option

pi cn_endi an={ Bl § CS}

If picn_endian=big, then PIC N variables are bound with character set ID ALI6UTF16.
If picn_endian=o0s then PIC N variables are bound with character set ID UCS2.

The default value for this option is "big" to preserve the current behavior. This option is
ignored if NLS_NCHAR is not AL16UTF16.

Character set form for PIC N variables can be set by using the existing Pro*Cobol
command line option:

charset _pi cn={nchar _charset | db_charset}

¢ See Also:

"Varying-Length Variables" for more information about varchar host variable if
Pl CN_ENDI AN=CS.

4-43

Chapter 4
Sample Program 4: Datatype Equivalencing

4.14 Sample Program 4: Datatype Equivalencing

After connecting to Oracle, this program creates a database table named IMAGE in
the SCOTT account, then simulates the insertion of bitmap images of employee
numbers into the table. Datatype equivalencing lets the program use the Oracle
external datatype LONG RAW to represent the images. Later, when the user enters an
employee number, the number's "bitmap" is selected from the IMAGE table and
displayed on the terminal screen.

* This programsimulates the storage and retrieval of bitmap imges into table
* |MAGE, which is created in the SCOTT account after |ogging on to ORACLE.
* Datatype equival encing allows an ORACLE external type of LONG RAWto be
* specified for the prograns representation of the inages.
| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. DTY- EQUI V.
ENVI RONMVENT DI VI SI ON.
DATA DI VI SI ON.
VORKI NG STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(10) VARYI NG
01 PASSWD PIC X(10) VARYI NG
01 EMP-REC- VARS.

05 EMP-NUMBER PIC S9(4) COW.
05 EMP-NAME PIC X(10) VARYI NG
05 SALARY PI C S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
05 COW SSION Pl C S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
05 COW I ND PIC S9(4) COW.

EXEC SQL VAR SALARY |S DI SPLAY(8, 2) END-EXEC.
EXEC SQL VAR COWM SSION | S DI SPLAY(8, 2) END- EXEC.

01 BUFFER- VAR
05 BUFFER PIC X(8192).
EXEC SQL VAR BUFFER |'S LONG RAW END- EXEC.

01 | NEMPNO PIC S9(4) COW.
EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

01 DI SPLAY- VARI ABLES.
05 D EMP- NAME PI C X(10).
05 D SALARY PIC $7(4)9. 99.
05 D-COWMSSION PIC $Z(4)9.99.
05 D-I NEMPNO PIC 9(4).

01 REPLY PI C X(10).

01 I NDX PIC S9(9) COW.
01 PRT-QUOT PIC S9(9) COW.
01 PRT-MD PIC S9(9) COW.

PROCEDURE DI VI SI ON.
BEG N- PGM

EXEC SQL WHENEVER SQLERRCR
DO PERFORM SQL- ERROR END- EXEC.

ORACLE 4-44

ORACLE

Chapter 4
Sample Program 4: Datatype Equivalencing

PERFORM LOGON.
DI SPLAY "OK TO DROP THE | MAGE TABLE? (Y/N)
W TH NO ADVANCI NG

ACCEPT REPLY.

IF (REPLY NOT = "Y') AND (REPLY NOT = "y")
GO TO SI G\ OFF- EXI T.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQL DROP TABLE | MAGE END- EXEC.
DI SPLAY " "
| F (SQLCODE = 0) DI SPLAY
"TABLE | MAGE DROPPED - CREATI NG NEW TABLE. "
ELSE | F (SQLOODE = -942) DI SPLAY
"TABLE | MAGE DOES NOT EXI ST - CREATI NG NEW TABLE. "
ELSE PERFORM SQL- ERROR
EXEC SQL WHENEVER SQLERROR
DO PERFORM SQL- ERROR END- EXEC.
EXEC SQL CREATE TABLE | MAGE
(EMPNO NUMBER(4) NOT NULL, BI TMAP LONG RAW
END- EXEC.
EXEC SQL DECLARE EMPCUR CURSCR FOR
SELECT EMPNO, ENAVE FROM EMP
END- EXEC.
EXEC SQL OPEN EMPCUR END- EXEC.
DI SPLAY " "
DI SPLAY
"| NSERTI NG BI TMAPS | NTO | MAGE FOR ALL EMPLOYEES ..."
DI SPLAY " "

| NSERT- LOCP.
EXEC SQL VHENEVER NOT FOUND GOTO NOT- FOUND END- EXEC.
EXEC SQL FETCH EMPCUR
I NTO : EMP- NUMBER : ENP- NAME
END- EXEC.
MOVE EMP- NAVE- ARR TO D- ENP- NAME.
DI SPLAY "EMPLOYEE ", D-EMP-NAVE W TH NO ADVANCI NG
PERFORM GET- | MAGE.
EXEC SQL | NSERT | NTO | MAGE
VALUES (: EMP-NUVBER, : BUFFER)
END- EXEC.
DI SPLAY " |'S DONE! "
MOVE SPACES TO EMP- NAVE- ARR
GO TO | NSERT- LOOP.

NOT- FOUND.
EXEC SQL CLOSE EMPCUR END- EXEC.
EXEC SQL COMWM T WORK END- EXEC.
DI SPLAY " "
DI SPLAY
"DONE | NSERTI NG Bl TMAPS. NEXT, LET'S DI SPLAY SOME. "

DI SP- LOCP.
MOVE 0 TO | NEMPNO.
DI SPLAY " "
DI SPLAY "ENTER EMPLOYEE NUMBER (0 TO QUIT):
W TH NO ADVANCI NG
ACCEPT D- | NEMPNO.

MOVE D- | NEMPNO TO | NEMPNO.

4-45

ORACLE

Chapter 4
Sample Program 4: Datatype Equivalencing

I F (INEVPNO = 0)
G0 TO Sl G\ OFF.
EXEC SQL WHENEVER NOT FOUND GOTO NO-EMP END- EXEC.
EXEC SQL SELECT EMP. EMPNO, ENAME, SAL, NVL(COWM 0), BITMAP
| NTO : EMP- NUVBER, : ENP- NAME, : SALARY,
: COMM SSI ON: COMMHI ND, : BUFFER
FROM EMP, | MAGE
WHERE EMP. ENPNO = : | NEMPNO
AND EMP. ENPNO = | MAGE. EMPNO
END- EXEC.
DI SPLAY " "
PERFORM SHOW | NAGE.
MOVE EMP- NAMVE- ARR TO D- ENP- NAME.
MOVE SALARY TO D- SALARY.
MOVE COMM SSI ON TO D- COW SSI ON.
DI SPLAY "EMPLOYEE ", D-EMP-NAME, " HAS SALARY ", D-SALARY
W TH NO ADVANCI NG
IF COWHIND = -1
DI SPLAY " AND NO COVM SSI ON. "
ELSE
DI SPLAY " AND COMM SSION ", D-COWM SSION, "."
END- | F.
MOVE SPACES TO ENP- NAME- ARR
GO TO DI SP- LOCP,

NO- EMP.
DI SPLAY "NOT A VALI D EMPLOYEE NUMBER - TRY AGAIN.".
GO TO DI SP- LOCP.

LOGON.
MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY "CONNECTED TO ORACLE AS USER ", USERNAME- ARR.
DI SPLAY " "

GET- | MAGE.
PERFORM MOVE- | MAGE
VARYI NG I NDX FROM 1 BY 1 UNTIL I NDX > 8192.

MOVE- | MAGE.
STRING '*' DELIM TED BY SI ZE
I NTO BUFFER

W TH PO NTER | NDX.
DI VI DE 256 | NTO | NDX
G VING PRT- QUOT REMAI NDER PRT- MOD.
|F (PRT-MOD = 0) DI SPLAY "." WTH NO ADVANCI NG

SHOW | MAGE.
PERFORM VARYI NG | NDX FROM 1 BY 1 UNTIL INDX > 10
DI SPLAY " EEEEEEEEEEEEEEEEEEEEEEEEE I
END- PERFORM
DI SPLAY " "
Sl G\- OFF.

EXEC SQL DROP TABLE | MAGE END- EXEC.

4-46

ORACLE

Chapter 4
Sample Program 4: Datatype Equivalencing

SI G\ OFF-EXIT.

SQL-

DI SPLAY " "

DI SPLAY "HAVE A GOOD DAY.".

DI SPLAY " "

EXEC SQL COW T WORK RELEASE END- EXEC.
STCP RUN.

ERRCOR.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
DI SPLAY " "

DI SPLAY "ORACLE ERRCR DETECTED:

DI SPLAY " "

DI SPLAY SQLERRMC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

4-47

Embedded SQL

5.1 Using

This chapter describes the basic techniques of embedded SQL programming. Topics
are:

* Using Host Variables

e Using Indicator Variables

e The Basic SQL Statements
* Cursors

» Scrollable Cursors

* Flexible B Area Length

* Fix Execution Plans

e Sample Program 2: Cursor Operations

Host Variables

Use host variables to pass data and status information to your program from the
database, and to pass data to the database.

5.1.1 Output Versus Input Host Variables

ORACLE

Depending on how they are used, host variables are called output or input host
variables. Host variables in the INTO clause of a SELECT or FETCH statement are
called output host variables because they hold column values output by Oracle. Oracle
assigns the column values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because
your program inputs their values to Oracle. For example, you use input host variables
in the VALUES clause of an INSERT statement and in the SET clause of an UPDATE
statement. They are also used in the WHERE, HAVING, and FOR clauses. In fact,
input host variables can appear in a SQL statement wherever a value or expression is
allowed.

You cannot use input host variables to supply SQL keywords or the names of
database objects. Thus, you cannot use input host variables in data definition
statements (sometimes called DDL) such as ALTER, CREATE, and DROP. In the
following example, the DROP TABLE statement is invalid:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 TABLE-NAME PI'C X(30) VARYING

EXEC SQL END DECLARE SECTI ON END- EXEC.
DI SPLAY ' Tabl e nane? '
ACCEPT TABLE- NAME.

EXEC SQL DROP TABLE : TABLE- NAME END- EXEC.
* -- host variable not allowed

5-1

5.2 Using

Chapter 5
Using Indicator Variables

Note:

In an ORDER BY clause, you can use a host variable, but it is treated as a
constant or literal, and hence the contents of the host variable have no effect.
For example, the SQL statement:

EXEC SQL SELECT ENAME, EMPNO | NTO : NAME, : NUMBER
FROM EMP
ORDER BY : ORD

END- EXEC.

appears to contain an input host variable, ORD. However, the host variable in
this case is treated as a constant, and regardless of the value of ORD, no
ordering is done.

Before Oracle executes a SQL statement containing input host variables, your
program must assign values to them. Consider the following example:

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
01 EMP-NUMBER PIC S9(4) COWP.
01 EMP-NAME PIC X(20) VARYING

EXEC SQL END DECLARE SECTI ON END- EXEC.

* -- get values for input host variables
DI SPLAY ' Enpl oyee nunber? '
ACCEPT EMP- NUMBER.
DI SPLAY ' Enpl oyee name? '
ACCEPT EMP- NAME.
EXEC SQL | NSERT | NTO EMP (EMPNO, ENANE)
VALUES (: EMP- NUMBER, : EMP- NAME)
END- EXEC.

Notice that the input host variables in the VALUES clause of the INSERT statement
are prefixed with colons.

Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign NULLSs to input
host variables and in the INTO clause to detect NULLs or truncated values in output
host variables.

5.2.1 Input Variables

ORACLE

For input host variables, the values your program can assign to an indicator variable
have the following meanings:

Variable Meaning

-1 Oracle will assign a NULL to the column, ignoring the value of the
host variable.

5-2

Chapter 5
Using Indicator Variables

Variable Meaning

>=0 Oracle will assigns the value of the host variable to the column.

5.2.2 Output Variables

For output host variables, the values Oracle can assign to an indicator variable have
the following meanings:

Variable Meaning

-2 Oracle assigned a truncated column value to the host variable, but
could not assign the original length of the column value to the
indicator variable because the number was too large.

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable,

assigned the original column length (expressed in characters,
instead of bytes, for multibyte Globalization Support host variables)
to the indicator variable, and set SQLCODE in the SQLCA to zero.

Remember, an indicator variable must be declared as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and appended to its host variable (unless
you use the keyword INDICATOR).

5.2.3 Inserting NULLs

ORACLE

You can use indicator variables to insert NULLs. Before the insert, for each column
you want to be NULL, set the appropriate indicator variable to -1, as shown in the
following example:

MOVE -1 TO | ND- COWM
EXEC SQL | NSERT | NTO EMP (ENPNO, COWM)

VALUES (: EMP-NUVBER, : COVM SSI ON: | ND- COMM)
END- EXEC.

The indicator variable IND-COMM specifies that a NULL is to be stored in the COMM
column.

You can hard-code the NULL instead, as follows:

EXEC SQL | NSERT | NTO EMP (EMPNO, COWM
VALUES (: EMP- NUMBER, NULL)
END- EXEC.

But this is less flexible.
Typically, you insert NULLs conditionally, as the next example shows:

DI SPLAY ' Enter enpl oyee number or 0 if not available: '
W TH NO ADVANCI NG
ACCEPT EMP- NUMBER.
| F EMP- NUMBER = 0
MOVE -1 TO | ND- EMPNUM
ELSE

5-3

Chapter 5
Using Indicator Variables

MOVE 0 TO | ND- EMPNUM
END- | F.
EXEC SQL | NSERT | NTO EMP (EMPNO, SAL)
VALUES (: EMP- NUMBER: | ND- EMPNUM : SALARY)
END- EXEC.

5.2.4 Handling Returned NULLS

You can also use indicator variables to manipulate returned NULLs, as the following
example shows:

EXEC SQL SELECT ENAME, SAL, COW
[NTO : EMP- NAME, : SALARY, :COWM SSI ON: | ND- COWM
FROM EMP
VHERE EMPNO = : EMP_NUMBER
END- EXEC.
IF IND-COWM = -1
MOVE SALARY TO PAY.

* -- conmissionis null; ignore it
ELSE
ADD SALARY TO COWMM SSI ON G VI NG PAY.
END- | F.

5.2.5 Fetching NULLs

Using the precompiler option UNSAFE_NULL=YES, you can select or fetch NULLs
into a host variable that lacks an indicator variable, as the following example shows:

* .- assunme that conm ssion is NULL
EXEC SQ. SELECT ENAME, SAL, COW
| NTO : EMP- NAME, : SALARY, :COWM SSI ON
FROM EMP
WHERE EMPNO = : EMP- NUMBER
END- EXEC.

SQLCODE in the SQLCA is set to zero indicating that Oracle executed the statement
without detecting an error or exception.

Without an indicator variable there is no way to know whether or not a NULL was
returned. The value of the host variable is undefined. If you do not use indicator
variables, set the precompiler option UNSAFE_NULL=YES. Oracle therefore advises
that UNSAFE_NULL=YES only be used to upgrade existing programs and that
indicator variables be used for all new programs.

When UNSAFE_NULL=NO, if you select or fetch NULLs into a host variable that lacks
an indicator variable, Oracle issues an error message.

Related Topics
¢ UNSAFE_NULL

5.2.6 Testing for NULLs

You can use indicator variables in the WHERE clause to test for NULLSs, as the
following example shows:

EXEC SQL SELECT ENAME, SAL
[NTO : EMP- NAME, : SALARY

ORACLE 5-4

Chapter 5
The Basic SQL Statements

FROM EMP
VWHERE : COMM SSI ON: | ND-COW | S NULL . ..

However, you cannot use a relational operator to compare NULLs with each other or
with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLS:

EXEC SQL SELECT ENAME, SAL
[NTO : EMP- NAME, : SALARY
FROM EMP
VWHERE COWM = : COWMM SSI ON: | ND- COMWM
END- EXEC.

The next example shows how to compare values for equality when some of them
might be NULLSs:

EXEC SQL SELECT ENAME, SAL
INTO : EMP_NAME, : SALARY
FROM EMP
WHERE (COMM = : COW SSI ON) OR ((COMM | 'S NULL) AND
(: COVM SSI ON: | ND- COMM | S NULL))
END- EXEC.

5.2.7 Fetching Truncated Values

If a value is truncated when fetched into a host variable, no error is generated. In all
cases a WARNING will be signaled (see "Warning Flags"). if an indicator variable is
used with a character string, when a value is truncated, the indicator variable is set to
the length of the value in the database. Note that no warning is flagged if a numeric
value is truncated.

5.3 The Basic SQL Statements

ORACLE

Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on statements which manipulate data in database tables (sometimes
called DML) and cursor control statements.

The following SQL statements let you query and manipulate Oracle data:

SQL Statements Description

SELECT Returns rows from one or more tables.
INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes rows from a table.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, you want to know how many rows have been updated as well as whether it
succeeded. To find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

* Implicit checking with the WHENEVER statement
» Explicit checking of SQLCA variables

5-5

Chapter 5
The Basic SQL Statements

Alternatively, when MODE={ANSI | ANSI14}, you can check the status variable
SQLSTATE or SQLCODE. For more information, see "ANSI SQLSTATE Variable".

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

e queries that return no rows (that is, merely check for existence)
e queries that return only one row
e queries that return more than one row

Queries that return more than one row require an explicitly declared cursor or cursor
variable. The following embedded SQL statements let you define and control an
explicit cursor:

SQL Statements Description

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined.)

In the coming sections, first you learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements. ,
see the

¢ See Also:

Oracle Database SQL Language Reference for more information about
statements and their clauses.

5.3.1 Selecting Rows

ORACLE

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000
I NTO : enp_name, :JOB-TITLE, :SALARY
FROM EMP
WHERE EMPNO = : EMP- NUMBER

END- EXEC.

The column names and expressions following the keyword SELECT make up the
select list. The select list in our example contains three items. Under the conditions
specified in the WHERE clause (and following clauses, if present), Oracle returns
column values to the host variables in the INTO clause. The number of items in the
select list should equal the number of host variables in the INTO clause, so there is a
place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example (in which EMPNO is a unique key). However, if a query can return more than
one row, you must fetch the rows using a cursor or select them into a host array.

5-6

Chapter 5
The Basic SQL Statements

If a query is written to return only one row but might actually return several rows, the
result depends on how you specify the option SELECT_ERROR. When
SELECT_ERROR=YES (the default), Oracle issues an message if more than one row
is returned.

When SELECT_ERROR=NO, a row is returned and Oracle generates no error.

5.3.1.1 Available Clauses

You can use all of the following standard SQL clauses in your SELECT statements:
INTO, FROM, WHERE, CONNECT BY, START WITH, GROUP BY, HAVING, ORDER
BY, and FOR UPDATE OF.

5.3.2 Inserting Rows

You use the INSERT statement to add rows to a table or view. In the following
example, you add a row to the EMP table:

EXEC SQL | NSERT I NTO EMP (EMPNO, ENAME, SAL, DEPTNO)
VALUES (: EMP_NUMBER, :EMP-NAME, : SALARY, : DEPT- NUMBER)
END- EXEC.

Each column you specify in the column list must belong to the table named in the
INTO clause. The VALUES clause specifies the row of values to be inserted. The
values can be those of constants, host variables, SQL expressions, or
pseudocolumns, such as USER and SYSDATE.

The number of values in the VALUES clause must equal the number of names in the
column list. You can omit the column list if the VALUES clause contains a value for
each column in the table in the same order they were defined by CREATE TABLE, but
this is not recommended because a table's definition can change.

5.3.3 DML Returning Clause

ORACLE

The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The returning clause has this syntax:

{RETURNI NG | RETURN} {expr [,expr]}
INTO {:hv [[INDI CATOR]:iv] [, :hv [[INDI CATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause
eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The DM
returning cl ause eliminates inefficient network round-trips, extra processing, and
server memory. You will also note, for example, when a trigger inserts default values
or a primary key value.

The returning_clause is not allowed with a subquery. It is only allowed after the
VALUES clause.

For example, our INSERT could have a clause at its end such as:

RETURNI NG EMPNO, ENAME, DEPTNO | NTO : NEW EMP- NUMBER, : NEW EMP- NAME, : DEPT

Related Topics

 Embedded SQL Statements and Precompiler Directives

5-7

Chapter 5
The Basic SQL Statements

5.3.4 Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multi-part
searches. They can be used to

» supply values for comparison in the WHERE, HAVING, and START WITH clauses
of SELECT, UPDATE, and DELETE statements

» define the set of rows to be inserted by a CREATE TABLE or INSERT statement
» define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the VALUES clause in
an INSERT statement with a subquery, as follows:

EXEC SQL | NSERT I NTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)
SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP
VHERE JOB = :JOB-TI TLE

END- EXEC.

Notice how the INSERT statement uses the subquery to obtain intermediate results.

5.3.5 Updating Rows

You use the UPDATE statement to change the values of specified columns in a table
or view. In the following example, you update the SAL and COMM columns in the EMP
table:

EXEC SQL UPDATE EMP
SET SAL = : SALARY, COW = : COW SSI ON
VWHERE EMPNO = : EMP- NUMBER

END- EXEC.

You can use the optional WHERE clause to specify the conditions under which rows
are updated. See "Using the WHERE Clause ".

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example
shows:

EXEC SQL UPDATE EMP

SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)
VHERE EMPNO = : EMP- NUMBER

END- EXEC.

5.3.6 Deleting Rows

ORACLE

You use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM EMP
VWHERE DEPTNO = : DEPT- NUMBER
END- EXEC.

You can use the optional WHERE clause to specify the condition under which rows
are deleted.

5-8

Chapter 5
Cursors

5.3.7 Using the WHERE Clause

You use the WHERE clause to select, update, or delete only those rows in a table or
view that meet your search condition. The WHERE-clause search condition is a
Boolean expression, which can include scalar host variables, host arrays (not in
SELECT statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit
the WHERE clause in an UPDATE or DELETE statement, Oracle sets SQLWARN(5)
in the SQLCA to 'W' to warn that all rows were processed.

5.4 Cursors

ORACLE

To process a SQL statement, Oracle opens a work area called a private SQL area.
The private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in its
private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements that use the INTO clause.

The set of rows retrieved is called the results set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, which is called the current row.

When a query returns multiple rows, you can explicitly define a cursor to
e Process beyond the first row returned by the query

e Keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the query. This allows
your program to process the rows one at a time. The following statements let you
define and manipulate a cursor:

- DECLARE
- OPEN

- FETCH

- CLOSE

First you use the DECLARE statement (more precisely, a directive) to name the cursor
and associate it with a query.

The OPEN statement executes the query and identifies all the rows that meet the
guery search condition. These rows form a set called the active set of the cursor. After
opening the cursor, you can use it to retrieve the rows returned by its associated

query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use
a FETCH statement to retrieve the current row in the active set. You can execute
FETCH repeatedly until all rows have been retrieved.

When done fetching rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

5-9

Chapter 5
Cursors

5.4.1 Declaring a Cursor

ORACLE

You use the DECLARE statement to define a cursor by giving it a name, as the
following example shows:

EXEC SQL DECLARE EMPCURSCR CURSCR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
VHERE DEPTNO = : DEPT_NUMBER

END- EXEC.

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. Therefore, cursor names
cannot be passed from one precompilation unit to another. Cursor names cannot be
hyphenated. They can be any length, but only the first 31 characters are significant.
For ANSI compatibility, use cursor names no longer than 18 characters.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command line
or in a configuration file. Any cursor not declared with the WITH HOLD clause is
closed after a COMMIT or ROLLBACK when CLOSE_ON_COMMIT=YES.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. The defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO. If you
specify MODE=ANSI then any cursors not using the WITH HOLD clause will be closed
on COMMIT. The application will run more slowly because cursors are closed and re-
opened many times. Setting CLOSE_ON_COMMIT=NO when MODE=ANSI results in
performance improvement. To see how macro options such as MODE affect micro
options such as CLOSE_ON_COMMIT, see "Precedence of Option Values".

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE statement must physically (not just logically)
precede all other SQL statements referencing the cursor. That is, forward references
to the cursor are not allowed. In the following example, the OPEN statement is
misplaced:

EXEC SQL OPEN EMPCURSCR END- EXEC.
* -- M SPLACED OPEN STATEMENT
EXEC SQL DECLARE EMPCURSCR CURSCR FOR
SELECT ENAME, EMPNO, SAL
FROM EMP
VHERE ENAME = : EMP- NAME
END- EXEC.

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot declare a cursor in source
file A.PCO, then open it in source file B.PCO.

Your host program can declare as many cursors as it needs. However, in a given file,
every DECLARE statement must be unique. That is, you cannot declare two cursors
with the same name in one precompilation unit, even across blocks or procedures,
because the scope of a cursor is global within a file.

For users of MODE=ANSI or CLOSE_ON_COMMIT=YES, the WITH HOLD clause
can be used in a DECLARE section to override the behavior defined by the two
options. With these options set, the behavior will be for all cursors to be closed when a

5-10

Chapter 5
Cursors

COMMIT is issued. This can have performance implications due to the overhead of re-
opening the cursor to continue processing. The careful use of WITH HOLD can speed
up programs that need to conform to the ANSI standard for precompilers in most
respects.

Related Topics
« CLOSE_ON_COMMIT
e WITH HOLD Clause in DECLARE CURSOR Statements

5.4.2 Opening a Cursor

Use the OPEN statement to execute the query and identify the active set. In the
following example, a cursor named EMPCURSOR is opened.

EXEC SQL OPEN EMPCURSOR END- EXEC.

OPEN positions the cursor just before the first row of the active set. However, none of
the rows is actually retrieved at this point. That will be done by the FETCH statement.

Once you open a cursor, the query's input host variables are not reexamined until you
reopen the cursor. Thus, the active set does not change. To change the active set, you
must reopen the cursor.

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS.

Related Topics
e Using Pro*COBOL Precompiler Options

5.4.3 Fetching from a Cursor

ORACLE

You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause
and list of output host variables are part of the FETCH statement. In the following
example, you fetch into three host variables:

EXEC SQL FETCH EMPCURSCR
[NTO : EMP- NAME, : EMP-NUMBER, : SALARY
END- EXEC.

The cursor must have been previously declared and opened. The first time you
execute FETCH, the cursor moves from before the first row in the active set to the first
row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been fetched, you must reopen the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reopen the cursor. When
MODE=ANSI, you must close the cursor before reopening it.

As the next example shows, you can fetch from the same cursor using different sets of
output host variables. However, corresponding host variables in the INTO clause of
each FETCH statement must have the same datatype.

5-11

Chapter 5
Cursors

EXEC SQL DECLARE EMPCURSCOR CURSCR FOR
SELECT ENAME, SAL FROM EMP WHERE DEPTNO = 20
END- EXEC.

EXEC SQL OPEN EMPCURSOR END- EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...

LOCP.
EXEC SQL FETCH EMPCURSOR | NTO : EMP- NAMEL, :SAL1 END- EXEC
EXEC SQL FETCH EMPCURSOR | NTO : EMP- NAME2, : SAL2 END- EXEC
EXEC SQL FETCH EMPCURSCR | NTO : EMP- NAME3, : SAL3 END- EXEC

GO TO LOCP.
END- PERFORM

If the active set is empty or contains no more rows, FETCH returns the "no data found"
Oracle warning code to SQLCODE in the SQLCA (if MODE=ANSI then the optional
SQLSTATE variable will also be set.) The status of the output host variables is
indeterminate. (In a typical program, the WHENEVER NOT FOUND statement detects
this error.) To reuse the cursor, you must reopen it.

5.4.4 Closing a Cursor

When finished fetching rows from the active set, you close the cursor to free the
resources, such as storage, acquired by opening the cursor. When a cursor is closed,
parse locks are released. What resources are freed depends on how you specify the
options HOLD_CURSOR and RELEASE_CURSOR. In the following example, you
close the cursor named EMPCURSOR:

EXEC SQL CLOSE EMPCURSOR END- EXEC.

You cannot fetch from a closed cursor because its active set becomes undefined. If
necessary, you can reopen a cursor (with new values for the input host variables, for
example).

When CLOSE_ON_COMMIT=NO (the default when MODE=ORACLE), issuing a
COMMIT or ROLLBACK will only close cursors declared using the FOR UPDATE
clause or referred to by the CURRENT OF clause. Other cursors that are not affected
by the COMMIT or ROLLBACK statement, remain open, if they are open already.
However, when CLOSE_ON_COMMIT=YES (the default when MODE=ANSI), issuing
a COMMIT or ROLLBACK closes all cursors.

Related Topics
* CLOSE_ON_COMMIT

5.4.5 Using the CURRENT OF Clause

ORACLE

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement
to refer to the latest row fetched from the named cursor. The cursor must be open and
positioned on a row. If no fetch has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that is referenced
in the CURRENT OF clause of an UPDATE or DELETE statement. The CURRENT OF
clause signals the precompiler to add a FOR UPDATE clause if necessary.

5-12

Chapter 5
Cursors

In the following example, you use the CURRENT OF clause to refer to the latest row
fetched from a cursor named EMPCURSOR:

EXEC SQL DECLARE EMPCURSCR CURSCR FOR
SELECT ENAME, SAL FROM EMP WHERE JOB = ' CLERK
END- EXEC.

EXEC SQL OPEN EMPCURSCR END- EXEC.
EXEC SQL WHENEVER NOT FOUND DO ...
LOOP.
EXEC SQL FETCH EMPCURSCR | NTO : EMP- NAME, : SALARY
END- EXEC.

EXEC SQL UPDATE EMP SET SAL = : NEW SALARY
VWHERE CURRENT OF EMPCURSCR

END- EXEC.

GO TO LOOP.

Related Topics
* Mimicking the CURRENT OF Clause

5.4.6 Restrictions

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the open, not as they are fetched, and are released when
you commit or rollback. If you try to fetch from a FOR UPDATE cursor after a commit,
Oracle generates an error.

You cannot use the CURRENT OF clause with a cursor declared with a join since
internally, the CURRENT OF mechanism uses the ROWID pseudocolumn and there is
no way to specify which table the ROWID relates to. For an alternative, see "Mimicking
the CURRENT OF Clause". Finally, you cannot use the CURRENT OF clause in
dynamic SQL.

5.4.7 A Typical Sequence of Statements

The following example shows the typical sequence of cursor control statements using
the CURRENT OF clause and the FOR UPDATE OF clause:

* -- Define a cursor.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR
SELECT ENAME, JOB FROM EMP
WHERE EMPNO = : EMP- NUMBER
FOR UPDATE OF JOB
END- EXEC.
* -~ (Open the cursor and identify the active set.
EXEC SQL OPEN EMPCURSOR END- EXEC.
* .- Exit if the last row was al ready fetched.
EXEC SQL
WHENEVER NOT FOUND GOTO NO- MORE
END- EXEC.
* -~ Fetch and process data in a | oop.
LOOP.
EXEC SQ. FETCH EMPCURSOR | NTO : EMP- NAME, :JOB-TITLE
END- EXEC.
* -- host-|anguage statements that operate on the fetched data
EXEC SQL UPDATE EMP
SET JOB = : NEWJOB- TI TLE

ORACLE 5-13

Chapter 5
Cursors

VWHERE CURRENT OF EMPCURSCR
END- EXEC.
GO TO LOOP.

MO- MORE.
* -- Disable the cursor.
EXEC SQ. CLOSE EMPCURSOR END- EXEC.
EXEC SQ. COW T WORK RELEASE END- EXEC.
STOP RUN.

5.4.8 Positioned Update

The following skeletal example demonstrates positioned update using the universal
ROWID, which is defined in "Universal ROWIDs":

01 M-ROWD SQL- ROAD.

EXEC SQL ALLOCATE : MY- RON D END- EXEC.
EXEC SQL DECLARE C CURSCR FOR
SELECT ROWD, ... FROM MYTABLE FOR UPDATE OF ... END-EXEC.
EXEC SQL OPEN C END- EXEC.
EXEC SQL FETCH C INTO : M-RON'D ... END EXEC.
* Process retrieved data.

EXEC SQL UPDATE MYTABLE SET ... WHERE ROWD = : M- ROW D END- EXEC.

NO- MORE- DATA:
EXEC SQL CLOSE C END- EXEC.
EXEC SQL FREE : MY- RON D END- EXEC.

5.4.9 The PREFETCH Precompiler Option

The precompiler option PREFETCH allows for more efficient queries by pre-fetching
rows. This decreases the number of server round-trips needed and reduces memory
required. The number of rows set by the PREFETCH option value in a configuration
file or on the command line is used for all queries involving explicit cursors, subject to
the standard precedence rules.

When used inline, the PREFETCH option must precede any of these cursor
statements:

e EXEC SQL OPEN cursor
« EXEC SQL OPEN cursor USING host_var_list
« EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-
fetching) to 9999. The default value is 1.

ORACLE 5-14

Chapter 5
Scrollable Cursors

Note:

The PREFETCH precompiler option is specifically designed for enhancing the
performance of single row fetches. PREFETCH values have no effect when
doing array fetches, regardless of which value is assigned.

5.5 Scrollable Cursors

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.

When a cursor is executed, the results of the query are placed into a a set of rows
called the result set. The result set can be fetched either sequentially or non-
sequentially. Non-sequential result sets are called scrollable cursors.

A scrollable cursor enables users to access the rows of a database result set in a
forward, backward, and random manner. This enables the program to fetch any row in
the result set.

Related Topics
* About Using Scrollable Cursors in OCI

5.5.1 Using Scrollable Cursors

The following statements let you define and manipulate a scrollable cursor.

5.5.1.1 DECLARE SCROLL CURSOR

You can use the DECLARE <cursor name> SCROLL CURSOR statement to name the
scrollable cursor and associate it with a query.

5.5.1.2 OPEN

You can use the OPEN statement in the same way as in the case of a non-scrollable
cursor.

5.5.1.3 FETCH

ORACLE

You can use the FETCH statement to fetch required rows in a random manner. An
application can fetch rows up or down, first or last row directly, or fetch any single row
in a random manner.

The following options are available with the FETCH statement.

1. FETCH FIRST

Fetches the first row from the result set.
2. FETCH PRIOR

Fetches the row prior to the current row.
3. FETCH NEXT

5-15

Chapter 5
Scrollable Cursors

Fetches the next row from the current position. This is same as the non-scrollable
cursor FETCH.

4. FETCH LAST
Fetches the last row from the result set.
5. FETCH CURRENT
Fetches the current row.
6. FETCH RELATIVE n
Fetches the nth row relative to the current row, where n is the offset.
7. FETCH ABSOLUTE n
Fetches the nth row, where n is the offset from the start of the result set.
The following example describes how to FETCH the last record from a result set.

EXEC SQL DECLARE enp_cursor SCROLL CURSOR FOR
SELECT ename, sal FROM enp WHERE dept no=20;

EXEC SQ. OPEN enp_cursor;
EXEC SQL FETCH LAST enp_cursor INTO :enp_nane, :sal;
EXEC SQ. CLOSE enp_cursor;

5.5.1.4 CLOSE

You can use the CLOSE statement in the same way as in the case of a non-scrollable
cursor.

Note:

You cannot use scrollable cursors for REF cursors.

5.5.2 The CLOSE_ON_COMMIT Precompiler Option

The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose
whether or not to close all cursors when a COMMIT is executed and the macro option
MODE=ANSI. When MODE=ANSI, CLOSE_ON_COMMIT has the default value YES.
Explicitly setting CLOSE_ON_COMMIT=NO results in better performance because
cursors will not be closed when a COMMIT is executed, removing the need to re-open
the cursors and incur extra parsing.

5.5.3 The PREFETCH Precompiler Option

ORACLE

The precompiler option PREFETCH allows for more efficient queries by pre-fetching a
given number of rows. This decreases the number of server round trips needed and
reduces overall memory usage. The number of rows set by the PREFETCH option
value is used for all queries involving explicit cursors, subject to the standard
precedence rules. When used inline, the PREFETCH option must precede any of
these cursor statements:

« EXEC SQL OPEN cursor

5-16

Chapter 5
Flexible B Area Length

« EXEC SQL OPEN cursor USING host_var_list
« EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-
fetching) to 65535. The default value is 1.

kd

Note:

The default value of the PREFETCH option is 1 - return a single row for each
round-trip. If you choose not to use the PREFETCH option, using the command
line, you must explicitly disable it by setting the PREFETCH option to 0.

PREFETCH is automatically disabled when LONG or LOB columns are being
retrieved.

Note:

PREFETCH is used primarily to enhance the performance of single row
fetches. PREFETCH has no effect when array fetches are used.

Note:

The PREFETCH option should be used wisely, and on a case-by-case basis.
Select an appropriate prefetch value that will optimize performance of a specific
FETCH statement. To accomplish this, use the inline prefetch option instead of
the command line prefetch option.

Note:

The performance of many large applications can be improved simply by using
indicator variables with host variables in FETCH statements.

To enable precompiler applications to obtain the maximum advantage from the
use of the PREFETCH option on single row fetches, it is strongly
recommended that you use indicator variables.

5.6 Flexible B Area Length

The length of B Area for a Pro*Cobol program is limited to 72 when the format is set to
ANSI. Cobol compilers now can support B Area length up to 253. This provides a
programmer with the flexibility to type a line that is longer than 72 columns. Pro*Cobol
now supports B area length up to 253 when a Pro*Cobol application is precompiled
with the

ORACLE

5-17

Chapter 5
Fix Execution Plans

FORMAT=VARI ABLE | RECLEN=300

options.

5.7 Fix Execution Plans

ORACLE

In application development environments where modules are developed in one
environment, and then integrated and deployed into another, the performance of the
applications are affected. At times, the performance of the precompiler applications
are affected by changes in the database environment. These may include changes in
the optimizer statistics, changes to the optimizer settings, or changes to parameters
affecting the sizes of memory structures.

To fix execution plans for SQL's used in Pro*Cobol in the development environment,
you need to use the outline feature of Oracle at the time of precompiling. An outline is
implemented as a set of optimizer hints that are associated with the SQL statement. If
you enable the use of the outline for the statement, Oracle automatically considers the
stored hints and tries to generate an execution plan in accordance with those hints. In
this way, you can ensure that the performance is not affected when the modules are
integrated or deployed into different environments.

You can use the following SQL statements to create outlines in Pro*Cobol:

e SELECT
e DELETE
* UPDATE

* INSERT... SELECT
e CREATE TABLE... AS SELECT

If the outline option is set, then the precompiler generates two files, a SQL file and a
LOG file at the end of successful precompilation. Command line options out | i ne and
out | nprefix control the generation of the outlines.

¢ See Also:

Precompiler Options for more details on these command line options

Each generated outline name is unique. Because the file names used in the
application are unique, this information is used in generating the outline name. In
addition, the category name is also prefixed.

Caution:

Oracle allows only 128 bytes for the outline name. If you exceed the limit, the
precompiler will flag an error. You can restrict the length of the outline name by
using the out | nprefi x option.

5-18

ORACLE

Chapter 5
Fix Execution Plans

Example 5-1 Generating a SQL File Containing Outlines

You need to precompile the following program by using the outline option to generate
SQL files containing the outlines for all the outline-supported SQL statements in this
program.

LR E R SRR SRS EREEESER SRR SRR SRR EER SRR ERRERREREEREEREEREEREEEEEEEEERESE]

* out | ndeno: *

* Qutlines will be created for the following SQL operations, *
* 1. CREATE ... SELECT *
* 2. INSERT ... SELECT *
* 3. UPDATE *
* 4. DELETE *
* 5. SELECT *
* *

IR EEEEE SRR SRR SRR SRS EREEREEREERERR SRR EREEREEREEREREEEREEEEEEEEEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. out | ndeno.
ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

* EMBEDDED COBOL (file "OUTNDEMO. PCO')

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(10) VARYING
01 PASSWD PIC X(10) VARYING

01 ENAME PIC X(10).
01 JOBPIC X9).
01 SAL PIC X(6).
01 COWPIC X(6).

EXEC SQL END DECLARE SECTI ON END- EXEC.

01 STRINGFI ELDS.
02 STR PI C X(18) VARYING

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
BEG N- PGM
EXEC SQL WHENEVER SQLERRCR DO PERFORM SQL- ERROR END- EXEC.

PERFORM LOGON.

EXEC SQL | NSERT | NTO BONUS

SELECT ENAME, JOB, SAL, COMM FROM EMP
VHERE JOB LI KE " SALESMAN

END- EXEC.

EXEC SQL UPDATE BONUS
SET SAL = SAL * 1.1 WHERE SAL < 1500
END- EXEC.

EXEC SQL DECLARE Cl1 CURSCR FCR

SELECT ENAME, JOB, SAL, COMM FROM BONUS ORDER BY SAL
END- EXEC.

EXEC SQL OPEN C1 END- EXEC.

5-19

Chapter 5
Fix Execution Plans

DI SPLAY "Contents of updated BONUS table".
DI SPLAY " ENAVE JOB SAL COW'.
DI SPLAY " "

EXEC SQL WHENEVER NOT FOUND GOTO END- FETCH END- EXEC.
FETCH- DATA.

EXEC SQL FETCH C1 INTO : ENAME, :JOB, :SAL, :COW END- EXEC.

DI SPLAY ENAME, JOB, SAL, COW

Q0 TO FETCH- DATA.

END- FETCH.
EXEC SQL CLOSE C1 END- EXEC.
EXEC SQL WHENEVER NOT FOUND DO PERFORM SQL- ERROR END- EXEC.

EXEC SQL DELETE FROM BONUS END- EXEC.

EXEC SQL CREATE TABLE OUTLNDEMO TAB AS
SELECT EMPNO, ENAME, SAL FROM EMP WHERE DEPTNO = 10
END- EXEC.

EXEC SQL DROP TABLE QUTLNDEMO TAB END- EXEC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

LOGON.
MOVE "scott" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "tiger" TO PASSVWD- ARR
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

* HANDLES SQL ERRCR CONDI TI ONS
SQL- ERRR

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.

DI SPLAY " "

DI SPLAY " ORACLE ERRCR DETECTED: "

DI SPLAY " "

DI SPLAY SQLERR\C.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

STOP RUN.

5.7.1 SQL File

ORACLE

The generated file name has the following format:

<filename> <filetype>. sql
In Pro*Cobol, for the file "abc.pco”, the generated SQL file will be abc_pco.sql.

Generated file format

If the outlnprefix option is not used, then the format of the unique identifier used as
outline name and comment is:

<category_nane>_<fil ename>_<fil et ype>_<sequence no. >

5-20

Chapter 5
Fix Execution Plans

If the outinprefix option is used (outlnprefix=<prefix_name>), then the format of the
unique identifier used as outline name and comment is:

<pref i x_nane>_<sequence no. >

If outline=yes, which is the default category, then <category name> will be DEFAULT
and outline name will be:

DEFAULT_<fil ename>_<fil et ype>_<sequence no.>

or

<pref i x_name>_<sequence no. >

The allowed range for <sequence no. > is 0000 to 9999.

SQL in the generated precompiled file will have the comment appended to it as it
appears in the outline for that SQL.

5.7.1.1 Examples

ORACLE

Consider the following examples.

Example 1
If abc.pco has the statements

EXEC SQL sel ect * fromenp where enpno=:var END- EXEC.
EXEC SQL sel ect * from dept END EXEC.

and if outline=mycatl and outlnprefix is not used, then:

Contents of abc_pco.sql

create or replace outline mycatl _abc_pco_0000 for category mycatl on sel ect * from
enp where enpno=:bl /* nycatl_abc_pco_0000 */;

create or replace outline mycatl abc_pco_0001 for category mycatl on sel ect * from
dept /* mycatl_abc_pco_0001 */;

Contents of abc.cob

01 SQV001 GLOBAL.
02 FILLER PIC X(60) VALUE "select * fromenp where enpno=: bl
/* mycat1_abc_pco_0000 */

Example 2

If abc.pco has the statements

EXEC SQL sel ect * fromenp where enpno=:var END-EXEC.
EXEC SQL sel ect * from dept END EXEC.

and if outline=mycatl and outlnprefix=myprefix, then:

Contents of abc_pco.sql

create or replace outline myprefix_0000 for category mycatl on sel ect * fromenp
where enpno=: bl /* nyprefix_0000 */;

5-21

Chapter 5
Fix Execution Plans

create or replace outline myprefix_0001 for category mycatl on sel ect * from dept /*
myprefix_0001 */;

Contents of abc.cob

01 SQ001 GLOBAL.
02 FILLER PIC X(60) VALUE "select * fromenp where enpno=:bl
- I* nyprefix_0000 */

Example 3
If abc.pco has the statements

EXEC SQL select * fromenp where enpno=:var END- EXEC.
EXEC SQL select * from dept END EXEC.

and if outline=yes and outlnprefix=myprefix, then:

Contents of abc_pco.sql

create or replace outline myprefix_0000 on sel ect * fromenp where enpno=: bl /*
mypr ef i x_0000 */;

create or replace outline myprefix_0001 on sel ect * fromdept /* myprefix_0001 */;

Contents of abc.cob

01 SQV001 GLOBAL.
03 FILLER PIC X(60) VALUE "select * fromenp where enpno=:bl
- /* nyprefix_0000 */

5.7.2 LOG File

ORACLE

The generated file name has the following format:

<filename>_<filetype>.1o0g

In Pro*Cobol, for the file "abc.pco”, the generated LOG file will be abc_pco.log.

Consider the following example.

Example 1
If abc.pco has the statement

EXEC SQL select * from enp END EXEC.

Contents of abc_pco.log

CATEGORY <Cat egor y_nane>
Source SQL_O
SELECT * FROM enp
OUTLI NE NAME
abc_pco_0000
QUTLINE SQL_0
Select * fromenp /* abc_pco_0000 */

5-22

Chapter 5

Sample Program 2: Cursor Operations

5.8 Sample Program 2: Cursor Operations

This program logs on to Oracle, declares and opens a cursor, fetches the names,
salaries, and commissions of all salespeople, displays the results, then closes the

ORACLE

cursor

All fetches except the final one return a row and, if no errors were detected during the
fetch, a success status code. The final fetch fails and returns the "no data found"
Oracle warning code to SQLCODE in the SQLCA. The cumulative number of rows

actually fetched is found in SQLERRD(3) in the SQLCA.
khkkkkkhhkkhkkhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhkhhhkhhhhkhhhhk

* Sanple Program 2: Cursor Operations

*

* This programlogs on to ORACLE, declares and opens a cursor,
* fetches the names, salaries, and commi ssions of all

* sal espeopl e, displays the results, then closes the cursor.
khkkkkkhkhkhkkhhhkhkkhhkhhhhhhhk

*
*
*
*
*
*
| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. CURSCR- CPS.

ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAME PIC X(10) VARYI NG
01 PASSWD PIC X(10) VARYING
01 EMP-REC- VARS.
05 EMP-NAME PIC X(10) VARYI NG
05 SALARY Pl C S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
05 COW SSION PI C S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
EXEC SQL VAR SALARY IS DI SPLAY(8, 2) END-EXEC.
EXEC SQL VAR COMM SSION | S DI SPLAY(8, 2) END- EXEC.
EXEC SQL END DECLARE SECTI ON END- EXEC.

EXEC SQL | NCLUDE SQLCA END- EXEC.

01 DI SPLAY- VARI ABLES.
05 D EMP- NAME PI C X(10).
05 D SALARY PIC Z(4)9.99.
05 D COW SSION PIC Z(4)9.99.

PROCEDURE DI VI SI ON.

BEG N- PGM
EXEC SQL WHENEVER SQLERRCR
DO PERFORM SQL- ERROR END- EXEC.
PERFORM LOGON.
EXEC SQL DECLARE SALESPECPLE CURSCR FOR
SELECT ENAME, SAL, COW

FROM EMP
VHERE JOB LI KE ' SALES%
END- EXEC.
EXEC SQL OPEN SALESPECPLE END- EXEC.
DI SPLAY " ™.
DI SPLAY " SALESPERSON SALARY COW SSI ON'.

5-23

ORACLE

Chapter 5
Sample Program 2: Cursor Operations

DI SPLAY "-cmmmmaes e oo "

FETCH- LOOP.

EXEC SQL WHENEVER NOT FOUND
DO PERFORM SI GN- OFF END- EXEC.
EXEC SQL FETCH SALESPECPLE
I NTO : EMP- NAME, : SALARY, :COWM SSI ON
END- EXEC.
MOVE EMP- NAME- ARR TO D- EMP- NAME.
MOVE SALARY TO D- SALARY.
MOVE COW SSI ON TO D- COWM SSI ON.
DI SPLAY D- EMP- NAME, " ", D-SALARY, " ", D-COW SSI ON.
MOVE SPACES TO EMP- NAME- ARR
GO TO FETCH- LOCP.

LOGON.

MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY "CONNECTED TO ORACLE AS USER ", USERNAME- ARR.

Sl G\- OFF.

SQL-

EXEC SQL CLOSE SALESPEOPLE END- EXEC.
DI SPLAY " "

DI SPLAY "HAVE A GOOD DAY.".

DI SPLAY " "

EXEC SQL COW T WORK RELEASE END- EXEC.
STCP RUN.

ERROR.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
DI SPLAY " "

DI SPLAY " ORACLE ERRCR DETECTED: ".

DI SPLAY " "

DI SPLAY SQLERRMC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

5-24

Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter has the following
sections:

e Embedding PL/SQL

e Advantages of PL/SQL

e Embedding PL/SQL Blocks

e Host Variables and PL/SQL

e Indicator Variables and PL/SQL

e Host Tables and PL/SQL

e Cursor Usage in Embedded PL/SQL

e Stored PL/SQL and Java Subprograms

e Sample Program 9: Calling a Stored Procedure

e Cursor Variables

6.1 Embedding PL/SQL

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, declare the variables to be shared
with PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and END-
EXEC keywords.

6.1.1 Host Variables

Inside a PL/SQL block, host variables are global to the entire block and can be used
anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host
variables in a PL/SQL block must be prefixed with a colon. The colon sets host
variables apart from PL/SQL variables and database objects.

6.1.2 VARCHAR Variables

ORACLE

When entering a PL/SQL block, Oracle automatically checks the length fields of
VARCHAR host variables. Therefore, you must set the length fields before the block is
entered. For input variables, set the length field to the length of the value stored in the
string field. For output variables, set the length field to the maximum length allowed by
the string field.

6-1

Chapter 6
Advantages of PL/SQL

6.1.3 Indicator Variables

In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be
appended to its associated host variable. Further, if you refer to a host variable with its
indicator variable, you must always refer to it that way in the same block.

6.1.3.1 Handling NULLSs

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically
assigns a NULL to the host variable. When exiting the block, if a host variable is NULL,
PL/SQL automatically assigns a value of -1 to the indicator variable.

6.1.3.2 Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string.

6.1.4 SQLCHECK

You must specify SQLCHECK=SEMANTICS when precompiling a program with an
embedded PL/SQL block. You must also use the USERID option.

Related Topics

e Precompiler Options

6.2 Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as:
e Better performance

* Integration with Oracle

e Cursor FOR loops

* Procedures and functions

» Packages

* PL/SQL tables

e User-defined records

" See Also:

Oracle Database PL/SQL Language Reference for more information about PL/
SQL.

6.2.1 Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle must process SQL statements one

ORACLE 6-2

Chapter 6
Advantages of PL/SQL

at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements to
the server. This minimizes communication between your application and the server.

6.2.2 Integration with Oracle

PL/SQL is tightly integrated with the server. For example, most PL/SQL datatypes are
native to the data dictionary. Furthermore, you can use the %TYPE attribute to base
variable declarations on column definitions stored in the data dictionary, as the
following example shows:

job_title enp.job%YPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

6.2.3 Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR
loop, which implicitly declares its loop index as a record, opens the cursor associated
with a given query, repeatedly fetches data from the cursor into the record and then
closes the cursor. An example follows:

DECLARE
BEG N
FOR enprec IN (SELECT enpno, sal, conm FROM enp) LOOP
I F enprec.comm/ enprec.sal > 0.25 THEN ...

END LOCP;
END;

Notice that you use dot notation to reference fields in the record.

6.2.4 Subprograms

ORACLE

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, you can write your own, such as follows:

PROCEDURE cr eat e_dept
(new_dname | N CHAR(14),
new_| oc IN CHAR(13),
new_deptno OUT NUMBER(2)) IS
BEG N
SELECT dept no_seq. NEXTVAL | NTO new_deptno FROM dual ;
I NSERT | NTO dept VALUES (new deptno, new dname, new_|oc);
END create_dept;

6-3

Chapter 6
Advantages of PL/SQL

When called, this procedure accepts a new department name and location, selects the
next value in a department-number database sequence, inserts the new number,
name, and location into the dept table and then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTION and
CREATE PROCEDURE) that can be called from multiple applications without needing
to be re-compiled each time.

6.2.4.1 Parameter Modes

You use parameter modes to define the behavior of formal parameters. There are
three parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you
pass values to the subprogram being called. An OUT parameter lets you return values
to the caller of a subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 6-1 shows the legal conversions between
datatypes.

6.2.5 Packages

PL/SQL lets you bundle logically related types, program objects, and subprograms into
a package. Packages can be compiled and stored in a database, where their contents
can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms and so implements the specification. The following example "packages"
two employment procedures:

PACKAGE enp_actions IS -- package specification
PROCEDURE hi re_enpl oyee (enpno NUMBER enanme CHAR, ...);
PROCEDURE fire_enpl oyee (enp_id NUVBER);

END enp_acti ons;

PACKAGE BODY enp_actions IS -- package body
PROCEDURE hi re_enpl oyee (enpno NUMBER ename CHAR, ...) IS
BEG N
I NSERT | NTO emp VALUES (enpno, enane, ...);
END hi re_enpl oyee;
PROCEDURE fire_enpl oyee (enp_id NUMBER) IS
BEG N
DELETE FROM emp WHERE enpno = enp_i d;
END fire_enpl oyee;
END enp_acti ons;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and inaccessible.

6.2.6 PL/SQL Tables

ORACLE

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or

6-4

Chapter 6
Advantages of PL/SQL

NUMBER), but the primary key must belong to type BINARY_INTEGER,
PLS_INTEGER or VARCHAR?2.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. The following example declares a TABLE type called
NumTabTyp:

DECLARE
TYPE NunffabTyp |'S TABLE OF NUMBER
I NDEX BY BI NARY_| NTECER;

BEG N
END;

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

numtab NunfTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named
num_tab as follows:

numtab(9) ...

6.2.7 User-Defined Records

ORACLE

You can use the %ROWTYPE attribute to declare a record that represents a row in a
database table or a row fetched by a cursor. However, you cannot specify the
datatypes of fields in the record or define fields of your own. The composite datatype
RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named fields, which can belong to different datatypes. For example, suppose
you have different kinds of data about an employee such as name, salary, hire date,
and so on. This data is dissimilar in type but logically related. A record that contains
such fields as the name, salary, and hire date of an employee would let you treat the
data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. The following example declares a RECORD type
called DeptRecTyp:

DECLARE
TYPE Dept RecTyp | S RECORD
(deptno NUMBER(4) NOT NULL := 10, ~-- nust initialize
dname CHAR(9),
| oc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a unique
name and specific datatype. You can add the NOT NULL option to any field
declaration and so prevent the assigning of NULLSs to that field. However, you must
initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

6-5

Chapter 6
Embedding PL/SQL Blocks

dept _rec Dept RecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you
reference the dname field in the dept_rec record as follows:

dept _rec. dnane ...

6.3 Embedding PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. Thus, you
can place a PL/SQL block anywhere in a host program that you can place a SQL
statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block with
the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEG N
END;
END- EXEC.

When your program embeds PL/SQL blocks, you must specify the precompiler option
SQLCHECK=SEMANTICS because PL/SQL must be parsed by Pro*COBOL. To
connect to the server, you must also specify the option USERID.

Related Topics
e Using Pro*COBOL Precompiler Options

6.4 Host Variables and PL/SQL

Host variables are the key to communication between a host language and a PL/SQL
block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and
reference host variables.

For example, you can prompt a user for information and use host variables to pass
that information to a PL/SQL block. Then, PL/SQL can access the database and use
host variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

6.4.1 PL/SQL Examples

ORACLE

The following example illustrates the use of host variables with PL/SQL. The program
prompts the user for an employee number and then displays the job title, hire date,
and salary of that employee.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(20) VARYING
01 PASSWORD PIC X(20) VARYING

6-6

Chapter 6
Host Variables and PL/SQL

01 EMP-NUMBER PI C S9(4) COWP.
01 JOB-TITLE PIC X(20) VARYING
01 H RE-DATE PIC X(9) VARYING
01 SALARY PI C S9(6) V99
DI SPLAY S| GN LEADI NG SEPARATE.
EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

DI SPLAY ' Connected to Oracle'.
PERFORM
DI SPLAY ' Enpl oyee Number (0 to end)? 'WTH NO ADVANCI NG
ACCEPT EMP- NUMBER
| F EMP-NUMBER = 0
EXEC SQL COW T WORK RELEASE END- EXEC
DI SPLAY ' Exiting progran
STOP RUN
END- | F.
L et begin PL/SQ block ------------um---
EXEC SQL EXECUTE
BEG N
SELECT job, hiredate, sal
I NTO : JOB-TI TLE, :H RE-DATE, :SALARY
FROM EMP
WHERE EMPNO = : EMP- NUMBER;
END;
END- EXEC.
L end PL/SQL block -----------------
DI SPLAY ' Number Job Title Hre Date Salary'.
Dl SPLAY &' -em e e e "
DI SPLAY EMP-NUMBER, JOB- Tl TLE, HI RE- DATE, SALARY.
END- PERFORM

SQL- ERRCR.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
DI SPLAY ' Processing error'.
STOP RUN.

Notice that the host variable EMP-NUMBER is set before the PL/SQL block is entered,
and the host variables JOB-TITLE, HIRE-DATE, and SALARY are set inside the block.

6.4.2 A More Complex PL/SQL Example

ORACLE

In the following example the user is prompted for a bank account number, transaction
type, and transaction amount. The account is then debited or credited. If the account
does not exist, an exception is raised. When the transaction is complete its status is
displayed.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(20) VARYING
01 ACCT-NUM PIC S9(4) COWP.
01 TRANS-TYPE PIC X(1).
01 TRANS-AMI PIC PI C S9(6)V99
Dl SPLAY S| GN LEADI NG SEPARATE.
01 STATUS PI C X(80) VARYING
EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.
DI SPLAY ' Usernanme? ' WTH NO ADVANCI NG
ACCEPT USERNAME.
DI SPLAY ' Password? '.

6-7

Chapter 6
Host Variables and PL/SQL

ACCEPT PASSWORD.
EXEC SQ. WHENEVER SQLERROR DO PERFORM SQL- ERRCR.
EXEC SQL CONNECT : USERNAME | DENTI FI ED BY : PASSWORD.
PERFORM
DI SPLAY ' Account Nunber (0 to end)? '
W TH NO ADVANCI NG
ACCEPT ACCT_NuMm
I F ACCT-NUM = 0
EXEC SQL COW T WORK RELEASE END- EXEC
DI SPLAY ' Exiting programi W TH NO ADVANCI NG
STOP RUN
END- | F.
DI SPLAY ' Transaction Type - Dyebit or Credit? '
W TH NO ADVANCI NG
ACCEPT TRANS- TYPE
DI SPLAY ' Transaction Amount? '
ACCEPT trans_ant

e begin PL/SQL block -----------cummnn--
EXEC SQL EXECUTE

DECLARE
ol d_bal NUMBER(9, 2) ;
err_nsg CHAR(70);
nonexi stent EXCEPTI ON;

BEG N
| F : TRANS-TYP-TYPE = 'C THEN -- credit the account

UPDATE accts SET bal = bal + : TRANS- AMI
WHERE acctid = :acct-num

| F SQLYRONCOUNT = 0 THEN -- no rows affected
RAI SE nonexi stent;
ELSE
:STATUs := 'Credit applied;
END | F;
ELSIF : TRANS-TYPe = 'D THEN -- debit the account

SELECT bal INTO ol d_bal FROM accts
WHERE acctid = : ACCT- NUM
IF old_bal >= :TRANS-AMI THEN -- enough funds
UPDATE accts SET bal = bal - : TRANS- AMI
WHERE acctid = : ACCT- NUM
: STATUS := 'Debit applied';

ELSE
- STATUS : = "Insufficient funds';
END I F;
ELSE
:STATUS := "Invalid type: ' || :TRANS-TYPE;
END I F;
COWM T;
EXCEPTI ON

VHEN NO _DATA FOUND OR nonexi stent THEN
. STATUS : = ' Nonexi stent account';
WHEN OTHERS THEN
err_nmsg := SUBSTR(SQLERRM 1, 70);

. STATUS := "Error: ' || err_nsg;
END;
END- EXEC.
L LT end PL/SQ block ----------mmmemmmaannnn
DI SPLAY ' Status: ', STATUS
END- PERFORM
SQL- ERROR.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

ORACLE 6-8

Chapter 6
Indicator Variables and PL/SQL

DI SPLAY ' Processing error'.
STOP RUN.

6.4.3 VARCHAR Pseudotype

Recall that you can use the VARCHAR pseudotype to declare variable-length
character strings. If the VARCHAR is an input host variable, you must tell ProxCOBOL
what length to expect. Therefore, set the length field to the actual length of the value
stored in the string field.

If the VARCHAR is an output host variable, Pro*COBOL automatically sets the length
field. However, to use a VARCHAR output host variable in your PL/SQL block, you
must initialize the length field before entering the block. Therefore, set the length field
to the declared (maximum) length of the VARCHAR, as shown in the following
example:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP-NUM PIC S9(4) COW.
01 EMP-NAME PIC X(10) VARYING
01 SALARY PI C S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.

EXEC SQL END DECLARE SECTI ON END- EXEC.
PROCEDURE DI VI SI ON.

* -- initialize length field
MOVE 10 TO EMP- NAME- LEN.
EXEC SQL EXECUTE

BEG N
SELECT enane, sal |NTO : EMP- NAME, : SALARY
FROM enp
WHERE enpno = : EMP- NUM
END;
END- EXEC.

6.5 Indicator Variables and PL/SQL

ORACLE

PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLSs, as
follows:

IF variable I'S NULL THEN ...

You can use the assignment operator (:=) to assign NULLSs, as follows:

variable := NULL;

However, host languages need indicator variables because they cannot manipulate
NULLs. Embedded PL/SQL meets this need by letting you use indicator variables to:

e Accept NULLs input from a host program
e Output NULLSs or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rule:

« If you refer to a host variable with an indicator variable, you must always refer to it
that way in the same block.

6-9

Chapter 6
Indicator Variables and PL/SQL

In the following example, the indicator variable IND-COMM appears with its host
variable COMMISSION in the SELECT statement, so it must appear that way in the IF
statement:

EXEC SQL EXECUTE
BEG N
SELECT enane, conmm
| NTO : EMP- NAME, : COVMM SSI ON: | ND- COWM FROM enp
WHERE enpno = : EMP- NUM
| F :COW SSION: IND-COWM | S NULL THEN ...

END;
END- EXEC.

Notice that PL/SQL treats :COMMISSION:IND-COMM like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

6.5.1 Handling NULLs

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically
assigns a NULL to the host variable. When exiting the block, if a host variable is NULL,
PL/SQL automatically assigns a value of -1 to the indicator variable. In the next
example, if IND-SAL had a value of -1 before the PL/SQL block was entered, the
salary_missing exception is raised. An exception is a named error condition.

EXEC SQL EXECUTE
BEG N
I F : SALARY: IND-SAL IS NULL THEN
RAI SE sal ary_mi ssi ng;
END I F;

END;
END- EXEC.

6.5.2 Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original
length of the string. The following example the host program will be able to tell, by
checking the value of IND-NAME, if a truncated value was assigned to EMP-NAME:

EXEC SQL EXECUTE
DECLARE

new_nane CHAR(10);
BEG N

: EMP_NAME: | ND- NAME : = new_nane;

END;
END- EXEC.

ORACLE 6-10

Chapter 6
Host Tables and PL/SQL

6.6 Host Tables and PL/SQL

ORACLE

You can pass input host tables and indicator tables to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER,;
VARCHARZ? key types are not permitted. Normally, the entire host table is passed to
PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a
smaller table dimension.

Furthermore, you can use a subprogram call to assign all the values in a host table to
rows in a PL/SQL table. Given that the table subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. (n - m + 1). For example, if the
table subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1 .. (10
-5+1)orl..6.

Note: Pro*xCOBOL does not check your usage of host tables. For instance, no index
range checking is done.

In the following example, you pass a host table named salary to a PL/SQL block,
which uses the host table in a function call. The function is named median because it
finds the middle value in a series of numbers. Its formal parameters include a PL/SQL
table named num_tab. The function call assigns all the values in the actual parameter
salary to rows in the formal parameter num_tab.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 SALARY OCCURS 100 TIMES PIC S9(6) V99 COVP- 3.
01 MEDI AN-SALARY PIC S9(6)V99 COWP-3.
EXEC SQ. END DECLARE SECTI ON END- EXEC.
* -- popul ate the host table
EXEC SQL EXECUTE
DECLARE
TYPE NunfTabTyp |'S TABLE OF REAL
| NDEX BY Bl NARY_| NTEGER,
n Bl NARY | NTEGER,

FUNCTI ON nedi an (num tab NunfTabTyp, n | NTEGER)
RETURN REAL IS
BEG N
* -- conpute nedian

END;

BEG N
n := 100;
. MEDI AN- SALARY : = nedi an(: SALARY END;

END- EXEC.

You can also use a subprogram call to assign all row values in a PL/SQL table to
corresponding elements in a host table. For an example, see "Stored PL/SQL and
Java Subprograms".

The interface between Host Tables and PL/SQL strictly controls datatypes. The default
external type for PIC X is CHARF (fixed length character string) and this can only be
mapped to PL/SQL tables of type CHAR.

Table 6-1 shows the legal conversions between row values in a PL/SQL table and
elements in a host table. The most notable fact is that you cannot pass a PIC X
variable to a table of type VARCHAR2 without using datatype equivalencing to

6-11

Chapter 6
Host Tables and PL/SQL

equivalence the variable to VARCHAR?2, or using PICX=VARCHAR2 on the command
line.

Table 6-1 Legal Datatype Conversions

PL/SQL Table

Host Table
CHARF
CHARZ
DATE
DECIMAL
DISPLAY
FLOAT
INTEGER
LONG

LONG
VARCHAR

LONG
VARRAW

NUMBER
RAW
ROWID
STRING
UNSIGNED
VARCHAR
VARCHAR?2
VARNUM
VARRAW

LONG RAW NUMBER RAW VARCHAR2

X - -

X X X

xX X
xX X !
x
xX X !
xX X !

6.6.1 ARRAYLEN Statement

ORACLE

Suppose you must pass an input host table to a PL/SQL block for processing. By
default, when binding such a host table, Pro*COBOL use its declared dimension.
However, you might not want to process the entire table. In that case, you can use the
ARRAYLEN statement to specify a smaller table dimension. ARRAYLEN associates
the host table with a host variable, which stores the smaller dimension. The statement
syntax is:

EXEC SQL ARRAYLEN host _array (di nensi on) EXECUTE END- EXEC.
where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear somewhere after the declarations of
host_array and dimension. You cannot specify an offset into the host table. However,
you might be able to use COBOL features for that purpose.

The following example uses ARRAYLEN to override the default dimension of a host
table named BONUS:

6-12

Chapter 6
Host Tables and PL/SQL

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 BONUS OCCURS 100 TIMES PIC S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.
01 M-DIM PIC S9(9) COVP.

EXEC SQL ARRAYLEN BONUS (MY-DI M END- EXEC.
EXEC SQ. END DECLARE SECTI ON END- EXEC.
* -- popul ate the host table

* -- set smaller table dinmension
MVE 25 TO My-DIM
EXEC SQL EXECUTE
DECLARE
TYPE NunfTabTyp |'S TABLE OF REAL
| NDEX BY Bl NARY_| NTEGER;
medi an_bonus REAL;
FUNCTI ON nedi an (num_tab NuniTabTyp, n | NTEGER)
RETURN REAL IS
BEG N
* -- conpute nmedian
END;
BEG N
medi an_bonus : = nedian(: BONUS, : W-DIM;

END;
END- EXEC.

Only 25 table elements are passed to the PL/SQL block because ARRAYLEN reduces
the host table from 100 to 25 elements. As a result, when the PL/SQL block is sent to
the server for execution, a much smaller host table is sent along. This saves time and,
in a networked environment, reduces network traffic.

6.6.1.1 Optional Keyword EXECUTE to ARRAYLEN Statement

ORACLE

The use of host tables used in a dynamic SQL Method 2 statement (see "Using
Method 2") may have two different interpretations based on the presence or absence
of the keyword to EXECUTE the ARRAYLEN statement. .

If the EXECUTE keyword is absent:

e The PL/SQL block will be executed multiple times, with the actual number
determined by the minimum dimension of ARRAYLEN used.

* The host array cannot be bound to a PL/SQL table.

If EXECUTE is present:

* The host table must be bound to an index table.

e The PL/SQL block will be executed once.

» All host variables specified in the EXEC SQL EXECUTE statement must:
— Be specified in an ARRAYLEN ... EXECUTE statement, or
— Beascalar.

The following Pro*xCOBOL example demonstrates how host tables can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be execute 3 times resulting in 3 new rows in the emp table.

6-13

Chapter 6
Host Tables and PL/SQL

01 DYNSTMI PIC X(80) VARYING
01 EMPNOTAB PIC S9(4) COMPUTATI ONAL OCCURS 5 TI MES.
01 ENAVETAB PIC X(10) OCCURS 3 TIMES.

MOVE 1111 TO EMPNOTAB

MOVE 2222 TO EMPNOTAB
MOVE 3333 TO EMPNOTAB
MOVE 4444 TO EMPNOTAB
MOVE 5555 TO EMPNOTAB

AR AR
g1 B~ wWwnN -
—_ = — —

MOVE "M CKEY" TO ENANETAB(1).

MOVE "M NNIE" TO ENAMETAB(2) .

MOVE " GOOFY" TO ENAMETAB(3).

MOVE "BEG N | NSERT | NTO enp(enpno, enane) VALUES :bl, :b2; END;"
TO DYNSTMT- ARR.

MOVE 57 TO DYNSTMI- LEN.

EXEC SQL PREPARE s1 FROM : DYNSTMI END- EXEC.
EXEC SQL EXECUTE s1 USI NG : EMPNCTAB, : ENAMETAB END- EXEC.

Given the following PL/SQL procedure:

CREATE OR REPLACE PACKAGE pkg AS

TYPE tab |'S TABLE OF NUVBER(5) | NDEX BY Bl NARY_| NTEGER;

PROCEDURE procl (parnl tab, parn2 NUMBER, parnB tab);
END;

The following Pro*COBOL example demonstrates how to bind a host table to a
PL/SQL index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

01
01
01
01

DYNSTMI PIC X(8

[
I NTTAB
DM

VARYI NG

COWP VALUE 2.

COMP OCCURS 3 TI MES.
COWP VALUE 3.

PIC S9(

0
PIC S9(4
9
PIC S9(9

—_— =

EXEC SQL ARRAYLEN I NTTAB (DM EXECUTE END- EXEC.

MOVE 1 TO I NTTAB(1).

MOVE 2 TO | NTTAB(2).
MOVE 3 TO | NTTAB(3).

MOVE "BEG N pkg. procl (:vi1, :v2, :v3); end;";
TO DYNSTMT- ARR.
MOVE 37 TO DYNSTMT- LEN.

EXEC SQL PREPARE s1 FROM : DYNSTMI END- EXEC.
EXEC SQL EXECUTE s1 USING :INTTAB, : 11, :1NTTAB END- EXEC.

However, the following Pro*COBOL example will result in a precompile-time error
because there is no ARRAYLEN...EXECUTE statement for INTTAB2.

ORACLE

6-14

Chapter 6
Cursor Usage in Embedded PL/SQL

01 DYNSTMI PIC X(80) VARYING

01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
01 INTTAB2 PIC S9(9) COMP OCCURS 3 TI MES.
01 DIM PIC S9(9) COVP VALUE 3.

EXEC SQL ARRAYLEN I NTTAB (DI M EXECUTE END- EXEC.

MOVE 1 TO I NTTAB(1).
MOVE 2 TO | NTTAB(2).
MOVE 3 TO | NTTAB(3).

MOVE "BEG N pkg. procl (:vl, :v2, :v3); end;";
TO DYNSTMT- ARR.
MOVE 37 TO DYNSTMT- LEN.

EXEC SQL PREPARE s1 FROM : DYNSTMI END- EXEC.
EXEC SQL EXECUTE s1 USING : I NTTAB, :1NTTAB2, :INTTAB END- EXEC.

6.7 Cursor Usage in Embedded PL/SQL

ORACLE

The maximum number of cursors your program can simultaneously use is determined
by the database initialization parameter OPEN_CURSORS. Normally, to prevent
OPEN_CURSORS being exceeded, the precompiler allows management of statement
cursors. The precompiler options HOLD_CURSOR, RELEASE_CURSOR and
MAXOPENCURSORS are used. While executing an embedded PL/SQL block there
will be one cursor, the parent cursor, associated with the entire PL/SQL block and a
separate child cursor for each statement executed during the execution of the PL/SQL
block. Because the PL/SQL block is passed to the server for execution, only the parent
cursor can be tracked by the precompiler runtime library. Thus, it is possible for
applications that use a lot of cursors in this way to exceed OPEN_CURSORS.

Figure 6-1 shows how to calculate the maximum number of cursors used.

Figure 6-1 Maximum Cursors in Use

SQL statement cursors

PL/SQL parent cursors

PL/SQL child cursors
+ 6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

Developers should be aware of this situation and plan for this in the setting of
OPEN_CURSORS and MAXOPENCURSORS.

If there are problems with this, you may wish to free all child cursors after a SQL
statement is executed.

This can be achieved by setting RELEASE_CURSOR=YES and
HOLD_CURSOR=NO. Because the use of the first setting for the entire program is
likely to have an impact on performance, you can set these options in line as follows:

6-15

Chapter 6
Stored PL/SQL and Java Subprograms

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) END- EXEC.
* -~ first enbedded PL/SQ bl ock

EXEC ORACLE OPTI ON (RELEASE_CURSOR=NO) END- EXEC.
* -~ enbedded SQ statenents

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) END- EXEC.
* -- second enbedded PL/SQL bl ock

EXEC ORACLE OPTI ON (RELEASE_CURSOR=NO) END- EXEC.
* -- enbedded SQL statenents

Related Topics
Embedded PL/SQL Considerations

6.8 Stored PL/SQL and Java Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in the database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary, it is a database
object can be re-executed without being re-compiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to the
database by your application, it is called an inline subprogram and is compiled by the
database. Pro*COBOL sends the statement to the server for execution.

Subprograms defined within a package are considered part of the package, and so are
called packaged subprograms. Stored subprograms not defined within a package are
called standalone subprograms.

6.8.1 Creating Stored Subprograms

ORACLE

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a COBOL program, as the following example shows:

EXEC SQL CREATE
FUNCTI ON sal _ok (salary REAL, title CHAR)
RETURN BOCLEAN AS
mn_sal REAL;
max_sal REAL;
BEG N
SELECT losal, hisal INTO mn_sal, max_sal
FROM sal s
WHERE job = title;
RETURN (salary >= nmin_sal) AND
(salary <= max_sal);
END sal _ok;
END- EXEC.

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE).

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails,
Oracle generates a warning, not an error.

6-16

Chapter 6
Stored PL/SQL and Java Subprograms

¢ See Also:

Oracle Database SQL Language Reference. for the full syntax of the CREATE
statement.

6.8.2 Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block or the CALL embedded SQL statement.

6.8.2.1 Anonymous PL/SQL Block

The following example calls a standalone procedure named raise_salary:

EXEC SQL EXECUTE
BEG N
raise_salary(:enp_id, :increase);
END;
END- EXEC.

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package named
emp_actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEG N
enp_actions.raise_salary(:enp_id, :increase)
END;
END- EXEC.

An actual IN parameter can be a literal, host variable, host table, PL/SQL constant or
variable, PL/SQL table, PL/SQL user-defined record, subprogram call, or expression.
However, an actual OUT parameter cannot be a literal, subprogram call, or
expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

6.8.2.2 CALL Statement

ORACLE

The concepts presented earlier for the embedded PL/SQL block holds true for the
CALL statement. The CALL embedded SQL statement has the form:

EXEC SQL
CALL [schema.][package.]stored_proc[@b_link](argl, ...)
[INTO :ret_var[[INDI CATOR] : ret _ind]]
END- EXEC.

where:

schemn

the schema containing the procedure

package

6-17

Chapter 6
Stored PL/SQL and Java Subprograms

the package containing the procedure

stored_proc

is the Java or PL/SQL stored procedure to be called

db_link

is the optional remote database link

argl...

is the list of arguments (variables, literals, or expressions) passed,

ret_var

is the optional host variable which receives the result

i nd_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SQLCHECK=SEMANTICS with the
CALL statement.

6.8.2.3 CALL Example

If you have created a PL/SQL function f act (stored in the package mat hpkg) that takes
an integer as input and returns its factorial in an integer:

EXEC SQL CREATE OR REPLACE PACKAGE BODY mat hpkg as
function fact(n IN I NTEGER) RETURN | NTEGER AS
BEG N
IF (n <=0) then return 1;
ELSE return n * fact(n - 1);
END I F;
END f act;
END mat hpkge;
END- EXEC.

then to use fact in a Pro*COBOL application:

01 N PIC S9(4) COWP.
01 FACT PIC S9(9) COW.

EXEC SQL CALL mat hpkge. fact(: N) I NTO : FACT END- EXEC.

" See Also:

e "CALL (Executable Embedded SQL)" for more information about the CALL
statement.

» Developing Applications with Multiple Programming Languages for a
complete explanation of passing arguments and other issues.

ORACLE 6-18

Chapter 6
Sample Program 9: Calling a Stored Procedure

6.8.3 Using Dynamic PL/SQL

Recall that Pro*COBOL treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to execute the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to prepare and execute the PL/SQL string. If the block
contains an unknown number of host variables, you must use dynamic SQL Method 4.

Related Topics

e Oracle Dynamic SQL

* ANSI Dynamic SQL

* Oracle Dynamic SQL: Method 4

6.8.4 Subprograms Restriction

In dynamic SQL Method 4, a host table cannot be bound to a PL/SQL procedure with
a parameter of type TABLE.

6.9 Sample Program 9: Calling a Stored Procedure

ORACLE

Before trying the sample program, you must create a PL/SQL package named
calldemo, by running the following script, titled CALLDEMO.SQL, which is supplied
with Pro*COBOL. The script can be found in the Pro*COBOL demo library. Check your
system-specific Oracle documentation for exact spelling of the the name of the script.

CREATE OR REPLACE PACKAGE cal | demp AS

TYPE name_array |S TABLE OF enp. ename% ype
I NDEX BY BI NARY_I NTEGER;

TYPE job_array IS TABLE OF enp.j ob% ype
I NDEX BY BI NARY_I NTEGER;

TYPE sal _array |'S TABLE OF enp. sal % ype
I NDEX BY BI NARY_I NTEGER;

PROCEDURE get _enpl oyees(

dept _nurber IN number, -- department to query
batch_size IN | NTEGER, -- rows at atine
found N QUT | NTEGER, -- rows actually returned
done_fetch QUT INTEGER, -- all done flag
enp_name our name_array,
j ob aut job_array,
sal ot sal _array);

END cal | den;

/
CREATE OR REPLACE PACKAGE BCODY cal | demp AS
CURSOR get _enp (dept _nunber IN nunber) IS

SELECT enane, job, sal FROM enp
VHERE deptno = dept _nunber;

6-19

ORACLE

Chapter 6
Sample Program 9: Calling a Stored Procedure

- Procedure "get_enpl oyees" fetches a batch of enployee
- rows (batch size is deternined by the client/caller

- of the procedure). It can be called from other

- stored procedures or client application prograns.

- The procedure opens the cursor if it is not

- already open, fetches a batch of rows, and

- returns the nunmber of rows actually retrieved. At

- end of fetch, the procedure closes the cursor

PROCEDURE get _enpl oyees(
dept _nunber IN nunber,

batch_size IN | NTEGER,

found IN QUT | NTEGER,

done_fetch QUT | NTEGER,

enp_nane aut name_array,

job aut job_array,

sal (08)) sal _array) IS

BEG N
| F NOT get_enp% SOPEN THEN -- open the cursor if
OPEN get _enp(dept _nunber); -- not already open

END | F;
- Fetch up to "batch_size" rows into PL/SQ table,
- tallying rows found as they are retrieved. Wen all
- rows have been fetched, close the cursor and exit
- the loop, returning only the last set of rows found.
done_fetch :=0; -- set the done flag FALSE
found : = 0;

FOR i IN 1..batch_size LOOP
FETCH get _enp I NTO enp_nane(i), job(i), sal(i);

I F get _enp%NOTFOUND THEN -- if no row was found
CLOSE get _enp;
done_fetch := 1; -- indicate all done
EXIT

ELSE
found := found + 1; -- count row

END | F;

END LOOP
END;
END;

/

The following sample program connects to the database, prompts the user for a
department number and then calls a PL/SQL procedure named get_employees, which
is stored in package calldemo. The procedure declares three PL/SQL tables as OUT
formal parameters and then fetches a batch of employee data into the PL/SQL tables.
The matching actual parameters are host tables. When the procedure finishes, row
values in the PL/SQL tables are automatically assigned to the corresponding elements
in the host tables. The program calls the procedure repeatedly, displaying each batch
of employee data, until no more data is found.

LR R RS SRS R RS SRR EREEEEEEE RS R R R EREEEEERE RS EEEEEEEEEEEEEEEESEESEEE]

Sample Program9: Calling a Stored Procedure

This program connects to ORACLE, pronpts the user for a
department nunber, then calls a PL/SQL stored procedure naned
GET_EMPLOYEES, which is stored in package CALLDEMO. The
procedure declares three PL/SQL tables ast OUT fornal

*
*
*
*
*
*

6-20

ORACLE

Chapter 6
Sample Program 9: Calling a Stored Procedure

parameters, then fetches a batch of enployee data into the

PL/ SQL tables. The matching actual paranmeters are host tables
When the procedure finishes, it automatically assigns all row
values in the PL/SQL tables to corresponding el ements in the
host tables. The programcalls the procedure repeatedly

di spl ayi ng each batch of enployee data, until no nore data

is found

Use option picx=varchar2 when preconpiling this sanple program

IEEEEEEEEEE SRR RS R EEEEEE R EEREREEEEEEEEEEEEEREEEREEREEREEREEEEREEEERERESES]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. CALL- STORED- PRCC.
ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAVE PIC X(15) VARYING
01 PASSVD PIC X(15) VARYING
01 DEPT-NUM PIC S9(9) COWP.

01 ENP- TABLES.
05 EMP-NAME OCCURS 10 TIMES PIC X(10).
05 JOB-TITLE OCCURS 10 TIMES PIC X(10).

05 SALARY OCCURS 10 TI MES COVP-2.
01 DONE-FLAG PIC S9(9) COWP.
01 TABLE-SIZE PIC S9(9) COVP VALUE 10.
01 NUM RET PIC S9(9) COWP.
01 SQLCODE PIC S9(9) COWP.

EXEC SQL END DECLARE SECTI ON END- EXEC.
01 COUNTER PIC S9(9) COWP.

01 DI SPLAY- VAR! ABLES.
05 DEMP-NAME PIC X(10).
05 D-JOB-TITLE PIC X(10).

05 D SALARY PIC Z(5)9.

05 D-DEPT-NUM PIC 9(2).

EXEC SQL | NCLUDE SQLCA END- EXEC.
PROCEDURE DI VI SI ON.

BEG N- PGM
EXEC SQL WHENEVER SQLERRCR DO
PERFORM SQL- ERRCR END- EXEC.

PERFORM LOGON.

PERFORM | NI T- TABLES VARYI NG COUNTER FROM 1 BY 1
UNTI L COUNTER > 10.

PERFORM GET- DEPT- NUM

PERFORM DI SPLAY- HEADER.

MOVE ZERO TO DONE- FLAG.

MOVE ZERO TO NUM RET.

PERFORM FETCH- BATCH UNTI L DONE- FLAG = 1.

PERFORM LOGOFF.

I NI T- TABLES.
NOVE SPACE TO EMP- NAVE(COUNTER) .

6-21

ORACLE

Chapter 6

Sample Program 9: Calling a Stored Procedure

MOVE SPACE TO JOB- Tl TLE(COUNTER) .
MOVE ZERO TO SALARY(COUNTER) .

GET- DEPT- NUM
MOVE ZERO TO DEPT- NUM
DI SPLAY " ™.
DI SPLAY "ENTER DEPARTMENT NUMBER: "
W TH NO ADVANCI NG

ACCEPT D- DEPT- NUM
MOVE D- DEPT- NUM TO DEPT- NUM

DI SPLAY- HEADER
DI SPLAY " ".
DI SPLAY "EMPLOYEE ~ JOB TITLE SALARY".
DISPLAY "--ccmmee meeae e

FETCH- BATCH.
EXEC SQL EXECUTE
BEG N
CALLDEMD. GET_ENPLOYEES
(: DEPT-NUM : TABLE- SI ZE,
“ NUMRET, : DONE- FLAG
T EMP-NAME, :JOB-TITLE, :SALARY);
END;
END- EXEC.
PERFORM PRI NT- ROAS VARY! NG COUNTER FROM 1 BY 1
UNTI L COUNTER > NUM RET.

PRI NT- RO/S.
MOVE ENP- NAME(COUNTER) TO D- ENP- NAME.
MOVE JOB- TI TLE(COUNTER) TO D- JOB- TI TLE.
MOVE SALARY(COUNTER) TO D- SALARY.

DI SPLAY D-EMP-NAME, " ",
D-JOB-TITLE, " ",
D- SALARY.

LOGON.
MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " ™.
DI SPLAY " CONNECTED TO ORACLE AS USER: ", USERNAME- ARR

LOGOFF.
DI SPLAY " ™.
DI SPLAY "HAVE A GOOD DAY.".
DI SPLAY " ™.
EXEC SQL COW T WORK RELEASE END- EXEC.
STCP RUN.

SQL- ERRR
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: "
DI SPLAY " "

6-22

Chapter 6
Cursor Variables

DI SPLAY SQLERRMC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

Remember that the datatype of each actual parameter must be convertible to the
datatype of its corresponding formal parameter. Further, before a stored subprogram
exits, all OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

6.9.1 Remote Access

PL/SQL lets you access remote databases through database links. Typically, database
links are established by your DBA and stored in the data dictionary. A database link
tells your program where the remote database is located, the path to it, and what
username and password to use. The following example uses the database link dallas
to call the raise_salary procedure:

EXEC SQL EXECUTE
BEG N
raise_salary@al | as(:enmp_id, :increase);
END;

END- EXEC.

You can create synonyms to provide location transparency for remote subprograms,
as the following example shows:

CREATE PUBLI C SYNONYM rai se_sal ary FOR raise_sal ary@lal |l as;

6.10 Cursor Variables

ORACLE

You can use cursor variables in your Pro*COBOL programs to process multi-row
gueries using static embedded SQL. A cursor variable identifies a cursor reference
that is defined and opened on the database server, using PL/SQL.

Like a cursor, a cursor variable points to the current row in the active set of a multi-row
query. Cursors differ from cursor variables the way constants differ from variables.
While a cursor is static, a cursor variable is dynamic, because it is not tied to a specific
guery. You can open a cursor variable for any type-compatible query.

You can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in a database. This gives you a
convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use these
statements to control a cursor variable:

* ALLOCATE

* OPEN...FOR
- FETCH

« CLOSE

* FREE

After you declare the cursor variable and allocate memory for it, you must pass it as an
input host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query on the
server side, FETCH from it on the client side and then CLOSE it on either side.

6-23

Chapter 6
Cursor Variables

The advantages of cursor variables are

» Ease of maintenance. Queries are centralized, in the stored procedure that opens
the cursor variable. If you need to change the cursor, you only need to make the
change in one place: the stored procedure. There is no need to change each
application.

* Increased Security. The user of the application (the username when the
Pro*COBOL application connected to the database) must have execute
permission on the stored procedure that opens the cursor. This user, however,
does not need to have read permission on the tables used in the query. This
capability can be used to limit access to the columns in the table.

¢ See Also:

Cursor Variables for complete information about cursor variables.

6.10.1 Declaring a Cursor Variable

You declare a Pro*COBOL cursor variable using the SQL-CURSOR pseudotype. For
example:

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 CUR- VAR SQL- CURSCR.
EXEC. SQ_ END DECLARE SECTI ON END- EXEC.

A SQL-CURSOR variable is implemented as a COBOL group item in the code that
Pro*COBOL generates. A cursor variable is just like any other Pro*COBOL host
variable.

6.10.2 Allocating a Cursor Variable

Before you can OPEN or FETCH from a cursor variable, you must initialize it using the
Pro*COBOL ALLOCATE command. For example, to initialize the cursor variable CUR-
VAR that was declared in the previous section, write the following statement:

EXEC SQL ALLOCATE : CUR- VAR END- EXEC.

Allocating a cursor variable does not require a call to the server, either at precompile
time or at runtime.

The AT clause cannot be used in an ALLOCATE statement.

Caution: Allocating a cursor variable does cause heap memory to be used. For this
reason, avoid allocating a cursor variable in a program loop.

6.10.3 Opening a Cursor Variable

You must use an embedded anonymous PL/SQL block to open a cursor variable on
the database server. The anonymous PL/SQL block may open the cursor either

ORACLE 6-24

Chapter 6
Cursor Variables

indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines it in
the same statement) or directly from the Pro*COBOL program.

6.10.3.1 Opening Indirectly through a Stored PL/SQL Procedure

Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demp_cur_pkg AS
TYPE EnpNane |'S RECORD (name VARCHAR2(10));
TYPE cur_type |'S REF CURSCR RETURN EnpNane;
PROCEDURE open_enp_cur (
curs IN QUT curtype,
dept _numIN nunber) ;
END;

CREATE PACKAGE BODY demo_cur _pkg AS
CREATE PROCEDURE open_enp_cur (
curs IN QUT curtype,
dept _numIN nunber) 1S

BEG N
COPEN curs FOR
SELECT enane FROM enp
VHERE deptno = dept_num
ORDER BY ename ASC,
END;
END;

After this package has been stored, you can open the cursor curs by first calling the
open_emp_cur stored procedure from your Pro*COBOL program and then issuing a
FETCH from the cursor variable emp_cursor in the program. For example:

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 enp_cursor sql - cursor.
01 DEPT-NUM PIC S9(4).
01 EMP- NAME PI'C X(10) VARYING

EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.

* Al l ocate the cursor variable.
EXEC SQ.
ALLOCATE : enp- cur sor
END- EXEC.

MOVE 30 TO dept _num
* Open the cursor on the Oracle Server.
EXEC SQL EXECUTE
begin
deno_cur _pkg. open_enp_cur (: enp-cursor, :dept-nunj;
END;
END- EXEC.
EXEC SQL
VWHENEVER NOT FOUND DO PERFCRM S| GN- OFF
END- EXEC.
FETCH LOOP.
EXEC SQL
FETCH : enmp_cursor | NTO : EMP- NAME
END- EXEC.

ORACLE 6-25

Chapter 6
Cursor Variables

DI SPLAY "Enpl oyee Nane: ", : EMP- NAME.
GO TO FETCH LOOP.

Sl G\ OFF.

6.10.3.2 Opening Directly from Your Pro*xCOBOL Application

To open a cursor using a PL/SQL anonymous block in a Pro*xCOBOL program, define
the cursor in the anonymous block. Consider the following example:

PROCEDURE DI VI SI ON.

EXEC SQL EXECUTE
begin
OPEN : enp_cursor FOR SELECT enane FROM enp
VHERE deptno = : DEPT- NUM
end;
END- EXEC.

6.10.4 Fetching from a Cursor Variable

After opening a cursor variable for a multi-row query, you use the FETCH statement to
retrieve rows as you would from a static cursor. The syntax follows:

EXEC SQL FETCH cursor_vari abl e_nane
INTO {record_name | variable_nanme[, variable_name, ...]}
END- EXEC.

Each column value returned by the cursor variable is assigned to a corresponding field
or variable in the INTO clause, providing that their datatypes are compatible.

The FETCH statement must be executed on the client side. The following example
fetches rows into a host record named EMP-REC:

* -- exit loop when done fetching

EXEC SQL

WHENEVER NOT FOUND DO PERFORM NO- MORE

END- EXEC.

PERFORM
* -- fetch rowinto record

EXEC SQL FETCH : EMP- CUR | NTO : EMP- REC END- EXEC
* -- test for transfer out of |oop

* -- process the data
END- PERFORM

NO- MORE.

Use the embedded SQL FETCH INTO command to retrieve the rows selected
when you opened the cursor variable. For example:

EXEC SQL
FETCH : enmp_cursor | NTO : EMP- | NFO EMP-1 NFO- | ND
END- EXEC.

ORACLE 6-26

Chapter 6
Cursor Variables

Before you can FETCH from a cursor variable, the variable must be initialized and
opened. You cannot FETCH from an unopened cursor variable.

6.10.5 Closing a Cursor Variable

Use the embedded SQL CLOSE statement to close a cursor variable. At this point its
active set becomes undefined. The syntax follows:

EXEC SQ. CLOSE cursor_variabl e_name END- EXEC.

The CLOSE statement can be executed on the client side or the server side. The
following example closes the cursor variable CUR-VAR when the last row is
processed:

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
* Decl are the cursor variable.
01 CUR VAR SQL- CURSCR.

EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
* Al locate and open the cursor variable, then
* Fetch one or nore rows.

* Close the cursor variable.
EXEC SQL
CLOSE : CUR- VAR
END- EXEC.

6.10.6 Freeing a Cursor Variable

To free memory allocated for the cursor variable, CUR-VAR, use the FREE statement
after the CLOSE:

* Free the cursor variable nenory.
EXEC SQL
FREE : CUR- VAR
END- EXEC.

6.10.7 Restrictions on Cursor Variables

The following restrictions apply to the use of cursor variables:

e Cursor variables are not supported in dynamic SQL.

* You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands. The DECLARE CURSOR command does not apply to cursor
variables.

* You cannot use the AT clause with the ALLOCATE command.

6.10.8 Sample Program 11: Cursor Variables

The following sample programs—a SQL script (SAMPLE11.sql) and a Pro*COBOL
program (SAMPLE11.pco)—demonstrate how you can use cursor variables in
Pro*COBOL.

ORACLE 6-27

Chapter 6
Cursor Variables

6.10.8.1 SAMPLE11.SQL

Following is the PL/SQL source code for a creating a package that declares and opens
a cursor variable:

CONNECT SCOTT/ Tl GER
CREATE OR REPLACE PACKACE enp_deno_pkg AS
TYPE enp_cur _type IS REF CURSOR RETURN enp%RONTYPE;
PROCEDURE open_cur (
cursor IN QUT enp_cur_type,
dept_num I N nunber);
END enp_deno_pkg;
/
CREATE OR REPLACE PACKAGE BODY enp_demo_pkg AS

PROCEDURE open_cur (
cursor IN QUT enp_cur_type,
dept _num I N nunber) IS
BEG N
OPEN cursor FOR SELECT * FROM enp
VHERE deptno = dept_num
ORDER BY ename ASC,
END;
END enp_deno_pkg;
/

6.10.8.2 SAMPLE11.PCO

ORACLE

Following is a Pro*COBOL sample program, SAMPLE11.PCO, that uses the cursor
variable declared in the SAMPLE11.sql example to fetch employee names, salaries,
and commissions from the EMP table:

IR EE R SRR R RS SRR RS R R SRR SRR SRR R ER SRR EREER SRR EEREEEEREEEREEEEEEREEE]

Sanpl e Program 11: Cursor Variable Operations

variable fetches the names, salaries, and conm ssions of all

sal espeopl e, displays the results, then closes the cursor.

*
*
This programlogs on to ORACLE, allocates and opens a cursor *
*
*
IR RS RS R SRS R RS SRR R R R R R R R R R R R R R R R R R R SRR R R R R R R R R R R R R R R R EEEEEEEE]

*
*
*
*
*
*

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. CURSCR- VARI ABLES.
ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAME PIC X(15) VARYING
01 PASSWD PIC X(15) VARYING
01 HOST PIC X(15) VARYING
01 EMP-CUR SQL- CURSCR.
01 EMP-INFO
05 EMP-NUM PIC S9(4) COW.
05 EMP-NAM PIC X(10) VARYING
05 EMP-JOB PIC X(10) VARYI NG
05 EMP-MR PIC S9(4) COW.
05 EMP-DAT PIC X(10) VARYING
05 EMP-SAL Pl C S9(6) V99

6-28

ORACLE

01

01

Chapter 6
Cursor Variables

DI SPLAY SI GN LEADI NG SEPARATE.

05 ENP- COM PI C S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.

05 EMP-DEP PIC S9(4) COW.
ENP- | NFO- | ND.

05 EMP-NUMIND PIC S9(4) COW.
05 EMP-NAMIND PIC S9(4) COW.
05 EMP-JOB-IND PIC S9(4) COW.
05 EWP-MGR-IND PIC S9(4) COW.
05 EMP-DAT-IND PIC S9(4) COW.
05 EMP-SAL-IND PIC S9(4) COW.
05 EMP-COMIND PIC S9(4) COW.
05 EMP-DEP-IND PIC S9(4) COW.

EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

DI SPLAY- VARI ABLES.

05 DDEP-NUM PIC Z(3)9
05 D-EMP-NAM PIC X(10)
05 D EMP-SAL PIC Z(4)9.
05 DEWP-COM PIC Z(4)9
05 D-EMP-DEP PIC 9(2)

PROCEDURE DI VI SI ON.

BEG N- PGM

EXEC SQL
VWHENEVER SQLERROR DO PERFORM SQL- ERROR
END- EXEC.
PERFORM LOGON.
EXEC SQL
ALLOCATE : EMP- CUR
END- EXEC.
DI SPLAY "Enter department nunber (0 to exit):
W TH NO ADVANCI NG
ACCEPT D- EMP- DEP.
MOVE D- EMP- DEP TO EMP- DEP.

| F EMP-DEP <= 0
GO TO SI G\-OFF
END- | F.

MOVE EMP- DEP TO D- DEP- NUM
EXEC SQL EXECUTE
BEG N
enp_deno_pkg. open_cur (: EMP- CUR, : EMP- DEP) ;
END;
END- EXEC.
DI SPLAY " ".
DI SPLAY "For department ", D-DEP-NUM ":"
DI SPLAY " ".
DI SPLAY "EMPLOYEE SALARY COW SSI ON'.
DI SPLAY "-mmmmmm e e e

FETCH- LOOP.

EXEC SQL
WHENEVER NOT FOUND GOTO CLOSE- UP
END- EXEC.
MOVE SPACES TO ENP- NAM ARR.
EXEC SQL FETCH : EMP- CUR
I NTO : EMP- NUM ENP- NUM | ND,

6-29

ORACLE

- EMP- NAM EMP- NAM: | ND,
- EMP- JOB: EMP- JOB- | ND,
- EMP- MGR: EMP- MGR- | ND,
. EMP- DAT: EMP- DAT- | ND,
- EMP- SAL: EMP- SAL- | ND,
- EMP- COM EMP- COM | ND,
. EMP- DEP: EMP- DEP- | ND

END- EXEC.

MOVE EMP- SAL TO D- EMP- SAL.

IF EMP-COMIND = 0

MOVE EMP- COM TO D- EMP- COM

Chapter 6
Cursor Variables

DI SPLAY EMP-NAM ARR, " ", D-EMP-SAL,

", D EMP-COM
ELSE

DI SPLAY EMP-NAM ARR, " ", D-EMP-SAL,

N A
END- | F.
GO TO FETCH- LOCP.

LOGON.
MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
MOVE "1 NST1_ALI AS" TO HOST- ARR
MOVE 11 TO HOST- LEN.
EXEC SQL

CONNECT : USERNAME | DENTI FI ED BY : PASSWD

END- EXEC.
DI SPLAY " "

DI SPLAY " CONNECTED TO ORACLE AS USER

CLCSE- UP.
EXEC SQL
CLCSE : EMP- CUR
END- EXEC.
EXEC SQL
FREE : EMP- CUR
END- EXEC.
Sl G\ OFF.
DI SPLAY " "
DI SPLAY "HAVE A GOOD DAY.".
DI SPLAY " "
EXEC SQL
COW T WORK RELEASE
END- EXEC.
STCP RUN.

SQL- ERRR
EXEC SQ
WHENEVER SQLERRCR CONTI NUE
END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: "
DI SPLAY " "
DI SPLAY SQLERR\C.
EXEC SQ
ROLLBACK WORK RELEASE
END- EXEC.
STOP RUN.

", USERNAME- ARR.

6-30

Host Tables

This chapter looks at using host tables to simplify coding and improve program
performance. You learn how to manipulate Oracle data using host tables, how to
operate on all the elements of a host table with a single SQL statement, how to limit
the number of table elements processed, and how to use tables of group items.

The main sections are:

* Host Tables

* Advantages of Host Tables

e Selecting into Tables

* Selecting into Tables

* Inserting with Tables

e Updating with Tables

e Deleting with Tables

e Using Indicator Tables

* The FOR Clause

* The WHERE Clause

e Mimicking the CURRENT OF Clause
e Tables of Group Items as Host Variables
» Additional Array Insert/Select Syntax

e Using Implicit Buffered Insert

7.1 Host Tables

A host table (also known as an array) is a set of related data items, called elements,
associated with a single variable. An indicator variable defined as a table is called an
indicator table. An indicator table can be associated with any host table that is
NULLABLE.

7.2 Advantages of Host Tables

ORACLE

Host tables can ease programming and can offer greatly improved performance. When
writing an application, you are usually faced with the problem of storing and
manipulating large amounts of data. Host tables simplify the task of accessing multiple
return values.

Host tables let you manipulate multiple rows with a single SQL statement. Thus,
communications overhead is reduced markedly, especially in a networked
environment. For example, suppose you want to insert information about 300
employees into the EMP table. Without host tables your program must do 300

7-1

Chapter 7
Tables in Data Manipulation Statements

individual INSERTs—one for each employee. With host tables, only one INSERT need
be done.

7.3 Tables in Data Manipulation Statements

Pro*COBOL allows the use of host tables in data manipulation statements. You can
use host tables as input variables in the INSERT, UPDATE, and DELETE statements
and as output variables in the INTO clause of SELECT and FETCH statements.

The syntax used for host tables and for simple host variables is nearly the same. One
difference is the optional FOR clause, which lets you control table processing. Also,
there are restrictions on mixing host tables and simple host variables in a SQL
statement.

7.3.1 Declaring Host Tables

You declare and dimension host tables in the Data Division. In the following example,
three host tables are declared, each dimensioned with 50 elements:

01 EMP-TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 EMP- NAME OCCURS 50 TIMES PIC X(10.
05 SALARY OCCURS 50 TIMES PIC S9(5) V99 COVP-3.

You can use the INDEXED BY phrase in the OCCURS clause to specify an index, as
the next example shows:

01 EMP- TABLES.
05 EMP-NUMBER PIC X(10) OCCURS 50 TIMES
| NDEXED BY EMP- 1 NDX.

The INDEXED BY phrase implicitly declares the index item EMP-INDX.

7.3.1.1 Restrictions

Multi-dimensional host tables are not allowed. Thus, the two-dimensional host table
declared in the following example is invalid:

01 NATION

05 STATE OCCURS 50 TI MES.
10 STATE- NAME PIC X(25).
10 COUNTY OCCURS 25 TI MES.

15 COUNTY-NAME PI X X(25).

Variable-length host tables are not allowed either. For example, the following
declaration of EMP-REC is invalid for a host variable:

01 EMP-FILE
05 REC COUNT PIC S9(3) COw.
05 EMP-REC OCCURS 0 TO 250 TI MES

ORACLE 7-2

Chapter 7
Tables in Data Manipulation Statements

DEPENDI NG ON REC- COUNT.

The maximum number of host table elements in a SQL statement that is accessible in
one fetch is 32K (or possibly greater, depending on your platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of elements accessible is limited to 32512 divided by the size of the
datatype.

7.3.2 Referencing Host Tables

If you use multiple host tables in a single SQL statement, their dimensions should be
the same. This is not a requirement, however, because Pro*COBOL always uses the
smallest dimension for the SQL operation. In the following example, only 25 rows are
inserted

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COWP OCCURS 50 TI MES.
05 EMP-NAME PIC X(10) OCCURS 50 TI MES.
05 DEPT-NUMBER PIC S9(4) COWP OCCURS 25 TI MES.
EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
* Popul ate host tables here.

EXEC SQL | NSERT I NTO EMP (EMPNO, ENAME, DEPTNO
VALUES (: EMP-NUMBER, : EMP- NAME, : DEPT- NUMBER)
END- EXEC.

Host tables must not be subscripted in SQL statements. For example, the following
INSERT statement is invalid:

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4) COWP OCCURS 50 TI MES.
05 EMP-NAME PIC X(10) OCCURS 50 TI MES.
05 DEPT-NUMBER PIC S9(4) COWP OCCURS 50 TI MES.
EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.
PERFORM LOAD- EMP VARYING J FROM 1 BY 1 UNTIL J > 50.

LOAD- EMP.
EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (: EMP-NUVBER(J), : EMP- NAVE(J),
: DEPT- NUMBER(J))
END- EXEC.

You need not process host tables in a PERFORM VARYING statement. Instead, use
the un-subscripted table names in your SQL statement. Pro*COBOL treats a SQL
statement containing host tables of dimension n like the same statement executed n
times with n different scalar host variables, but more efficiently.

ORACLE 7-3

Chapter 7
Tables in Data Manipulation Statements

7.3.3 Using Indicator Tables

You can use indicator tables to assign NULLs to elements in input host tables and to
detect NULLSs or truncated values (of character columns only) in output host tables.
The following example shows how to conduct an INSERT with indicator tables:

WORKI NG- STORAGE SECTI ON.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP-TABLES.
05 EMP-NUMBER PIC S9(4)
05 DEPT-NUMBER PIC S9(4) COWP OCCURS 50 TI MES.
05 COW SSION PIC S9(5) V99 COWP-3 OCCURS 50 TI MES.
05 COWHIND PIC S9(4) COWP OCCURS 50 TI MES.
EXEC SQL END DECLARE SECTI ON END- EXEC.

4) COWP OCCURS 50 TI MES.
4
5
4

—_— ==

PROCEDURE DI VI SI ON.

* Popul ate the host and indicator tables.
* Set indicator table to all zeros.

EXEC SQL | NSERT I NTO EMP (EMPNO, DEPTNO, COWW)
VALUES (: EMP- NUMBER, : DEPT- NUMBER,
: COW SSI ON: COVM: | ND)
END- EXEC.

The dimension of the indicator table must be greater than or equal to the dimension of
the host table.

When using host table SELECT and FETCH, it is recommended that you use indicator
variables. That way you can test for NULLs in the associated output host table.

If a NULL is selected or fetched into a host variable that has no associated indicator
variable, your program stops processing, sets sqlca.sqlerrd(3) to the number of rows
processed, and returns an error.

NULL is selected by default, but you can switch it off by using the UNSAFE_NULL =
YES option.

When DBMS=V7 or V8, your program does not consider truncation to be an error.

7.3.4 Host Group Item Containing Tables

ORACLE

Note: If you have a host group item containing tables, then you must use a
corresponding group item of tables for an indicator. For example, if your group item is
the following:

01 DEPARTURE.
05 HOUUR PIC X(2) OCCURS 3 TIMES.
05 MNUTE PIC X(2) OCCURS 3 TIMES.

the following indicator variable cannot be used:

01 DEPARTURE-IND PIC S9(4) COWP OCCURS 6 TI MES.

The indicator variable you use with the group item of tables must itself be a group item
of tables such as the following:

7-4

Chapter 7
Selecting into Tables

01 DEPARTURE- I ND.
05 HOUR-IND PIC S9(4) COWP OCCURS 3 TI MES.
05 M NUTE-IND PIC S9(4) COWP OCCURS 3 TI MES.

7.3.5 Oracle Restrictions

Mixing scalar host variables with host tables in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is a host table, all must be host
tables.

You cannot use host tables with the CURRENT OF clause in an UPDATE or DELETE
statement.

7.3.6 ANSI Restriction and Requirements

The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are
still allowed. The use of arrays can be flagged using the FIPS flagger precompiler
option, if desired.

7.4 Selecting into Tables

ORACLE

You can use host tables as output variables in the SELECT statement. If you know the
maximum number of rows the select will return, simply define the host tables with that
number of elements. In the following example, you select directly into three host
tables. The table was defined with 50 rows, with the knowledge that the select will
return no more than 50 rows.

01 EMP-REC TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 EMP- NAME OCCURS 50 TIMES PIC X(10) VARYING
05 SALARY OCCURS 50 TIMES PIC S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.

EXEC SQL SELECT ENAME, EMPNO, SAL
[NTO : EMP- NAME, : EMP- NUMBER, : SALARY
FROM EMP
VHERE SAL > 1000

END- EXEC.

In this example, the SELECT statement returns up to 50 rows. If there are fewer than
50 eligible rows or you want to retrieve only 50 rows, this method will suffice. However,
if there are more than 50 eligible rows, you cannot retrieve all of them this way. If you
reexecute the SELECT statement, it just returns the first 50 rows again, even if more
are eligible. You must either define a larger table or declare a cursor for use with the
FETCH statement.

If a SELECT INTO statement returns more rows than the size of the table you defined,
Oracle issues an error message unless you specify SELECT_ERROR=NO.

Related Topics
e SELECT_ERROR

7-5

Chapter 7
Selecting into Tables

7.4.1 Batch Fetches

Use batch fetches when the size of data you are processing is large (greater than
about 100 rows) as well as when you do not know how many rows will be returned.

If you do not know the maximum number of rows a select will return, you can declare
and open a cursor, and then fetch from it in "batches." Batch fetches within a loop let
you retrieve a large number of rows with ease. Each fetch returns the next batch of
rows from the current active set. In the following example, you fetch in 20-row batches:

01 EMP-REC TABLES.
05 EMP-NUMBER OCCURS 20 TIMES PIC S9(4) COWP.
05 EMP-NAME OCCURS 20 TIMES PIC X(10) VARYING
05 SALARY OCCURS 20 TIMES PIC S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.

EXEC SQL DECLARE EMPCURSCR CURSCR FCR
SELECT EMPNO, SAL FROM EMP
END- EXEC.

EXEC SQL OPEN EMPCURSOR END- EXEC.

EXEC SQL WHENEVER NOT FOUND DO PERFORM END- I T.
LOCP.
EXEC SQL FETCH EMPCURSOR | NTO : EMP- NUMBER, : SALARY END- EXEC.
* -- process batch of rows

Q0 TO LOCP.
END- I T.

Do not forget to check how many rows were actually returned in the last fetch and to
process them.

Related Topics

e Sample Program 3: Fetching in Batches

7.4.2 Using SQLERRD(3)

For INSERT, UPDATE, and DELETE statements, SQLERRD(3) records the number of
rows processed.

SQLERRD(3) is also useful when an error occurs during a table operation. Processing
stops at the row that caused the error, so SQLERRD(3) gives the number of rows
processed successfully.

7.4.3 Number of Rows Fetched

ORACLE

Each fetch returns, at most, the number of entries in the table. Fewer rows are
returned in the following cases:

e The end of the active set is reached. The "no data found" warning code is returned
to SQLCODE in the SQLCA. For example, this happens if you fetch into a table of
number of entries 100, but only 20 rows are returned.

7-6

Chapter 7
Selecting into Tables

* Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into a table of number of entries 20 because after the third fetch,
only 10 rows remain to be fetched.

* An error is detected while processing a row. The fetch fails and the applicable
error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of
SQLERRD in the SQLCA, called SQLERRD(3) in this guide. This applies to each open
cursor. In the following example, notice how the status of each cursor is maintained
separately:

EXEC SQL OPEN CURSCR1 END- EXEC.

EXEC SQL OPEN CURSCOR2 END- EXEC.

EXEC SQL FETCH CURSCRL | NTO : TABLE- OF- 20 END- EXEC.
* -~ nowrunning total in SQLERRD(3) is 20

EXEC SQL FETCH CURSOR2 | NTO : TABLE- OF- 30 END- EXEC.
* -~ now running total in SQLERRD(3) is 30, not 50

EXEC SQL FETCH CURSCRL | NTO : TABLE- OF- 20 END- EXEC.
* -~ nowrunning total in SQLERRD(3) is 40 (20 + 20)

EXEC SQL FETCH CURSOR2 | NTO : TABLE- OF- 30 END- EXEC.
* -~ nowrunning total in SQLERRD(3) is 60 (30 + 30)

7.4.4 Restrictions on Using Host Tables

Using host tables in the WHERE clause of a SELECT statement is allowed only in a
sub-query. Also, since Pro*COBOL always takes the smallest dimension of table, do
not mix simple host variables with host tables in the INTO clause of a SELECT or
FETCH statement because only one row will be retrieved. If any of the host variables
is a table, then all must be tables.

Host Tables Valid in SELECT INTO shows which uses of host tables are valid in a
SELECT INTO statement.

Table 7-1 Host Tables Valid in SELECT INTO
]

INTO Clause WHERE Clause Valid?
table table no
scalar scalar yes
table scalar yes
scalar table no

Related Topics
* The WHERE Clause

7.4.5 Fetching NULLs

ORACLE

When UNSAFE_NULL=YES, if you select or fetch a NULL into a host table that lacks
an indicator table, no error is generated. So, when doing table selects and fetches,
Oracle recommends that you use indicator tables. This is because this makes it
NULLSs easier to find in the associated output host table.

When UNSAFE_NULL=NO, if you select or fetch a NULL into a host table that lacks
an indicator table, Oracle stops processing, sets SQLERRD(3) to the number of rows
processed, and issues an error message:

7-7

Chapter 7
Selecting into Tables

¢ See Also:

Using Indicator Variables to learn how to find NULLs and truncated values.

7.4.6 Fetching Truncated Values

If you select or fetch a truncated column value into a host table that lacks an indicator
table, Oracle sets SQLWARN(2).

You can check SQLERRD(3) for the number of rows processed before the truncation
occurred. The rows-processed count includes the row that caused the truncation error.

When doing table selects and fetches, you can use indicator tables. That way, if
Oracle assigns one or more truncated column values to an output host table, you can
find the original lengths of the column values in the associated indicator table.

7.4.7 Sample Program 3: Fetching in Batches

The following host table sample program can be found in the demo directory.

ORACLE

IR EER SRR R RS SRR RS R SRR SRR SRR R EREEREEREEREEREEREEEEREEREEEESEEREEE]

* Sanple Program 3: Host Tabl es *

*

*

* This programlogs on to ORACLE, declares and opens a cursor, *

* fetches in batches using host tables, and prints the results. *
khkkkkkhkhkkhkkhhhkhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhhhhk

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. HOST- TABLES.
ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

01
01
01

01
01
01
01

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

USERNAME PIC X(15) VARYING

PASSVD PIC X(15) VARYING

EMP- REC- TABLES.

05 EMP- NUMBER OCCURS 5 TIMES PIC S9(4) COW.

05 EMP-NAME OCCURS 5 TIMES PIC X(10) VARYING
05 SALARY OCCURS 5 TIMES PIC S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
EXEC SQL VAR SALARY IS DI SPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

NUM RET PIC S9(9) COVP VALUE ZERO
PRI NT- NUM PIC S9(9) COVP VALUE ZERO
COUNTER PIC S9(9) COWP.

DI SPLAY- VARI ABLES.

05 D EMP- NAME PI C X(10).
05 D EMP-NUMBER PIC 9(4).
05 D SALARY PIC Z(4)9.99.

PROCEDURE DI VI SI ON.

BEG N- PGM

EXEC SQL
WHENEVER SQLERROR DO PERFORM SQL- ERROR

7-8

ORACLE

END- EXEC.

PERFCRM LOGON.

EXEC SQL
DECLARE C1 CURSCR FOR
SELECT EMPNO, SAL, ENAME
FROM EMP

END- EXEC.

EXEC SQL
OPEN C1

END- EXEC.

FETCH LOOP.
EXEC SQL
WHENEVER NOT FOUND DO PERFORM S| G\- OFF
END- EXEC.
EXEC SQL
FETCH C1
I NTO : EMP- NUMBER, : SALARY, : ENP- NAME
END- EXEC.
SUBTRACT NUM RET FROM SQLERRD(3) G VI NG PRI NT- NUM
PERFCRM PRI NT- | T.
MOVE SQLERRD(3) TO NUM RET.
GO TO FETCH- LOCP.

LOGON.
MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "

DI SPLAY "CONNECTED TO ORACLE AS USER ", USERNAME- ARR.

PRINT-1T.
DI SPLAY " "
DI SPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
DI SPLAY "---ommimmimee mmiie i
PERFORM PRI NT- ROAS
VARYI NG COUNTER FROM 1 BY 1
UNTI L COUNTER > PRI NT- NUM

PRI NT- ROAS.
MOVE EMP- NUMBER(COUNTER) TO D- EMP- NUMBER.
MOVE SALARY(COUNTER) TO D- SALARY.

DI SPLAY " ", D-EMP-NUMBER, " ", D-SALARY, "

ENP- NAVE- ARR | N ENP- NAVE(COUNTER) .
MOVE SPACES TO ENP- NAVE- ARR | N EMP- NAVE(COUNTER) .

Sl G\ OFF.
SUBTRACT NUM RET FROM SQLERRD(3) G VI NG PRI NT- NUM
| F (PRINT-NUM > 0) PERFORM PRINT-IT.
EXEC SQL
CLCSE C1
END- EXEC.
EXEC SQL
COW T WORK RELEASE
END- EXEC.
DI SPLAY " "
DI SPLAY "HAVE A GOOD DAY.".

Chapter 7
Selecting into Tables

7-9

Chapter 7
Inserting with Tables

DI SPLAY " "
STCP RUN.

SQL- ERRR
EXEC SQ
WHENEVER SQLERRCR CONTI NUE
END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: "
DI SPLAY " "
DI SPLAY SQLERR\C.
EXEC SQ
ROLLBACK WORK RELEASE
END- EXEC.
STOP RUN.

7.5 Inserting with Tables

You can use host tables as input variables in an INSERT statement. Just make sure
your program populates the tables with data before executing the INSERT statement.
If some elements in the tables are irrelevant, you can use the FOR clause to control
the number of rows inserted.

An example of inserting with host tables follows:

01 EMP- REC- TABLES.
05 EMP- NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 EMP- NAME OCCURS 50 TIMES PIC X(10) VARYING
05 SALARY OCCURS 50 TIMES PIC S9(6) V99
DI SPLAY SI GN LEADI NG SEPARATE.
* -- popul ate the host tables
EXEC SQL | NSERT | NTO EMP (ENAME, EMPNO, SAL)
VALUES (: EMP-NAME, : EMP- NUMBER, : SALARY)
END- EXEC.

The number of rows inserted will be available in SQLERRD(3).

Host tables must not be subscripted in SQL statements. For example the following
INSERT statement is invalid:

PERFORM VARYI NG | FROM 1 BY 1 UNTIL | = TABLE- DI MENSI ON.
EXEC SQL | NSERT | NTO EMP (ENAME, EMPNO, SAL)
VALUES (: EMP-NAME(I), :EMP-NUMBER(1), :SALARY(1))
END_EXEC
END- PERFORM

Related Topics
e The FOR Clause

7.5.1 Restrictions on Host Tables

ORACLE

Mixing simple host variables with host tables in the VALUES clause of an INSERT,
UPDATE, or DELETE statement causes only the first element of any host table to be
processed because simple host variables are treated as host tables of dimension one
and Pro*COBOL always uses the smallest declared dimension. You receive a warning
when this occurs.

7-10

Chapter 7
Updating with Tables

7.6 Updating with Tables

You can also use host tables as input variables in an UPDATE statement, as the
following example shows:

01 EMP-REC- TABLES.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 SALARY OCCURS 50 TIMES PIC S9(6)V99
DI SPLAY SI GN LEADI NG SEPARATE.

* -- popul ate the host tables
EXEC SQL
UPDATE EMP SET SAL = : SALARY WHERE EMPNO = : EMP- NUMBER
END- EXEC.

The number of rows updated by issuing this statement is available in SQLERRD(3).
This is not necessarily the number of rows in the host table. The number does not
include rows processed by an update cascade (which causes subsequent updates.)

If some elements in the tables are irrelevant, you can use the FOR clause to limit the
number of rows updated.

The last example showed a typical update using a unique key (EMP-NUMBER). Each
table element qualified just one row for updating. In the following example, each table
element qualifies multiple rows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING
05 COW SSION OCCURS 50 TIMES PIC S9(6) V99
DI SPLAY S| GN LEADI NG SEPARATE.
EXEC SQ. END DECLARE SECTI ON END- EXEC.
* -~ popul ate the host tables
EXEC SQL
UPDATE EMP SET COMM = : COWM SSI ON WHERE JOB = : JOB-TI TLE
END- EXEC.

7.6.1 Restrictions in UPDATE

ORACLE

You cannot use host tables with the CURRENT OF clause in an UPDATE statement.
For an alternative, see "Mimicking the CURRENT OF Clause".

Table 7-2 shows which uses of host tables are valid in an UPDATE statement:

Table 7-2 Host Tables Valid in UPDATE

SET Clause WHERE Clause Valid?
table table yes
scalar scalar yes
table scalar no
scalar table no

7-11

Chapter 7
Deleting with Tables

7.7 Deleting with Tables

You can also use host tables as input variables in a DELETE statement. Doing so is
like executing the DELETE statement repeatedly using successive elements of the
host table in the WHERE clause. Thus, each execution might delete zero, one, or
more rows from the table. An example of deleting with host tables follows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

05 EMP- NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
EXEC SQL END DECLARE SECTI ON END- EXEC.
* -- popul ate the host table
EXEC SQL
DELETE FROM EMP WHERE EMPNO = : EMP- NUMBER
END- EXEC.

The cumulative number of rows deleted can be found in SQLERRD(3). That number
does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP-NUMBER). Each
table element qualified just one row for deletion. In the following example, each table
element qualifies multiple rows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING
EXEC SQ. END DECLARE SECTI ON END- EXEC.
* -~ popul ate the host table
EXEC SQL
DELETE FROM EMP WHERE JOB = :JOB-TI TLE
END- EXEC.

7.7.1 Restrictions in DELETE

You cannot use host tables with the CURRENT OF clause in a DELETE statement.
For an alternative, see "Mimicking the CURRENT OF Clause".

7.8 Using Indicator Tables

ORACLE

You use indicator tables to assign NULLs to input host tables and to detect NULL or
truncated values in output host tables. The following example shows how to insert with
indicator tables:

01 EMP- REC- VARS.
05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 DEPT-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 COWM SSION OCCURS 50 TIMES PIC S9(6)V99
DI SPLAY SI GN LEADI NG SEPARATE.
* -- indicator table:
05 COWMIND OCCURS 50 TIMES PIC S9(4) COWP.
popul ate the host tables
popul ate the indicator table; to insert a NULL into
the COW colum, assign -1 to the appropriate elenment in
- the indicator table
EXEC SQL
I NSERT | NTO EMP (EMPNO, DEPTNO, COWM

* k% ok

7-12

Chapter 7
The FOR Clause

VALUES (: EMP_NUMBER, : DEPT- NUVBER, : COVMM SSI ON: COVM | ND)
END- EXEC.

The number of entries of the indicator table cannot be smaller than the number of
entries of the host table.

7.9 The FOR Clause

ORACLE

You can use the optional FOR clause to set the number of table elements processed
by any of the following SQL statements:

« DELETE

* EXECUTE (See information on Oracle dynamic SQL in Oracle Dynamic SQL:
Method 4.

» FETCH
* INSERT
« OPEN

* UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire table. The FOR clause lets
you limit the elements used to just the number you need, as the following example
shows:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP- REC- VARS.
05 EMP-NAME OCCURS 1000 TIMES PIC X(20) VARYING
05 SALARY OCCURS 100 TIMES PIC S9(6)V99
DI SPLAY SI GN LEADI NG SEPARATE.
01 ROWS-TO-I NSERT PI C S9(4) COWP.
EXEC SQL END DECLARE SECTI ON END- EXEC.
* -~ popul ate the host tables
MOVE 25 TO ROWS- TO- | NSERT.
* -- set FOR-clause variable
* -- will process only 25 rows
EXEC SQL FOR : ROAS- TO- | NSERT
| NSERT | NTO EMP (ENAME, SAL)
VALUES (: EMP-NAME, : SALARY)
END- EXEC.

The FOR clause must use an integer host variable to count table elements. For
example, the following statement is illegal:

* -~ illegal
EXEC SQL FCR 25
I NSERT | NTO EMP (ENAME, EMPNO, SAL)
VALUES (: EMP- NAME, : EMP- NUMBER, : SALARY)
END- EXEC.

The FOR clause variable specifies the number of table elements to be processed.
Make sure the number does not exceed the smallest table dimension. Internally, the
value is treated as an unsigned quantity. An attempt to pass a negative value through
the use of a signed host variable will result in unpredictable behavior.

7-13

Chapter 7
The WHERE Clause

7.9.1 Restrictions

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in
a SELECT statement or with the CURRENT OF clause.

7.9.1.1 In a SELECT Statement

If you use the FOR clause in a SELECT statement, you receive an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear.
Does it mean "execute this SELECT statement n times"? Or, does it mean "execute
this SELECT statement once, but return n rows"? The problem in the former case is
that each execution might return multiple rows. In the latter case, it is better to declare
a cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :LIMT FETCH EMPCURSCR | NTO . ..

7.9.1.2 With the CURRENT OF Clause

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer
to the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE EMPCURSCOR CURSCR FOR
SELECT ENAME, SAL FROM EMP WHERE EMPNO = : EMP- NUMBER

END- EXEC.
EXEC SQL OPEN EMPCURSCR END- EXEC.
EXEC SQL FETCH enp_cursor | NTO : EM NAMVE, : SALARY END- EXEC.

EXEC SQL UPDATE EMP SET SAL = : NEW SALARY
VWHERE CURRENT OF EMPCURSCR
END- EXEC.

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of LIMIT is 1 (you can
only update or delete the current row once):

EXEC SQL FOR : LIM T UPDA- CURSOR END- EXEC.

EXEC SQL FOR : LIMT DELETE FROM EMP
WHERE CURRENT OF enp_cursor
END- EXEC.

7.10 The WHERE Clause

Pro*COBOL treats a SQL statement containing host tables of number of entries n like
the same SQL statement executed n times with n different scalar variables (the
individual table elements). The precompiler issues an error message only when such
treatment is ambiguous:

For example, assuming the declarations:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

05 MGRP-NUMBER OCCURS 50 TIMES PIC S9(4) COWP.
05 JOB-TITLE OCCURS 50 TIMES PIC X(20) VARYING

ORACLE 7-14

Chapter 7
Mimicking the CURRENT OF Clause

01 | PIC S9(4) COW.
EXEC SQL END DECLARE SECTI ON END- EXEC.

it would be ambiguous if the statement:

EXEC SQL SELECT MG I NTO : MGR- NUMBER FROM EMP
VWHERE JOB = :JOB-TI TLE
END- EXEC.

were treated like the following statement

PERFORM VARYING | FROM 1 BY 1 UNTIL | = 50

SELECT MGR | NTO : MGR- NUVBER(1) FROM EMP
WHERE JOB = : JOB_TITLE(I)

END- EXEC

END- PERFORM

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL
UPDATE EMP SET MR = : MGR_NUVBER
WHERE EMPNO | N (SELECT ENPNO FROM EMP WHERE
JOB = :JOB-TITLE)

END- EXEC.

were treated like the following statement

PERFORM VARYING | FROM 1 BY 1 UNTIL | = 50
UPDATE EMP SET MGR = : MGR NUVBER()
WHERE EMPNO | N
(SELECT EMPNO FROM EMP WHERE JOB = : JOB-TI TLE(1))
END- EXEC
END- PERFORM

because there is a MGR-NUMBER in the SET clause for each row matching JOB-
TITLE in the WHERE clause, even if each JOB-TITLE matches multiple rows. All rows
matching each JOB-TITLE can be SET to the same MGR-NUMBER, so no error
message is issued.

7.11 Mimicking the CURRENT OF Clause

The CURRENT OF clause enables you to do UPDATESs or DELETES of the most
recent row in the cursor. Use of the CURRENT OF clause causes the FOR UPDATE
clause to be added to the cursor. Adding this clause has the effect of locking all rows
identified by the cursor in exclusive mode. Note that you cannot use CURRENT OF
with host tables. Instead, append FOR UPDATE to the definition of the cursor and
explicitly select the ROWID column, then use that value to identify the current row
during the update or delete. An example follows:

05 EMP- NAME OCCURS 25 TIMES PI C X(20) VARYING
05 JOB-TITLE OCCURS 25 TIMES PIC X(15) VARYING
05 OLD-TITLE OCCURS 25 TIMES PIC X(15) VARYING
05 ROWNID OCCURS 25 TIMES PIC X(18) VARYING

EXEC SQL DECLARE EMPCURSCR CURSCR FOR
SELECT ENAME, JOB, RON D FROM EMP
FOR UPDATE

ORACLE 7-15

Chapter 7
Tables of Group Items as Host Variables

END- EXEC.
EXEC SQL OPEN EMPCURSCR END- EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO . ..

PERFORM

EXEC SQL
FETCH EMPCURSOR
I NTO : EMP-NAME, :JOB-TITLE, :RONID
END- EXEC
EXEC SQL
DELETE FROM EMP
VHERE JOB = : OLD-TITLE AND ROWD = :ROMID
END- EXEC
EXEC SQL COW T WORK END- EXEC
END- PERFORM

7.12 Tables of Group Items as Host Variables

Pro*COBOL allows the use of tables of group items (also called records) in embedded
SQL statements. The tables of group items can be referenced in the INTO clause of a
SELECT or a FETCH statement, and in the VALUES list of an INSERT statement.

For example, given the following declaration:

01 TABLES.
05 ENP- TABLE OCCURS 20 TI MES.
10 EMP-NUMBER PIC S9(4) COWP.

10 EMP-NAME PIC X(10).

10 DEPT-NUMBER PIC S9(4) COWP.

the following statement is valid:

EXEC SQL | NSERT | NTO ENP(EMPNO, ENAME, DEPTNO)
VALUES(: ENP- TABLE)
END- EXEC.

Assuming that the group item has been filled with data already, the statement bulk
inserts 20 rows consisting of the employee number, employee name, and department
number into the EMP table.

Make sure that the order of the group items corresponds to the order in the SQL
statement.

To use an indicator variable, set up a second table of a group item that contains an
indicator variable for each variable in the group item:

01 TABLES- | ND.
05 EMP-TABLE-IND OCCURS 20 TI MES.

10 EMP- NUVBER- | ND PIC S9(4) COWP.
10 EMP- NAMVE- | ND PIC S9(4) COWP.
10 DEPT- NUVBER | ND PIC S9(4) COWP.

The host indicator table of a group item can be used as follows:

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (: ENP- TABLE: ENP- TABLE- | ND)
END- EXEC.

ORACLE 7-16

Chapter 7
Sample Program 14: Tables of Group ltems

If the exact characteristics of the data are known, it is convenient to specify an
elementary item indicator for a group item:

05 EMP- TABLE- | ND PIC S9(4) COW
OCCURS 20 TI MES.

Host tables of group items cannot have group items that are tables. For example:

01 TABLES.
05 EMP- TABLE OCCURS 20 TI MES.
10 EMP- NUVBER PI'C S9(4) COVP OCCURS 10 TI MES.
10 EMP- NAME PIC X(10).
10 DEPT- NUMBER PIC S9(4) COWP.

EMP- TABLE cannot be used as a host variable because EMP- NUMBERis a table.

Host tables of nested group items are not allowed. For example:

01 TABLES.
05 TEAM TABLE OCCURS 20 TI MES

10 EMP-TABLE
15 EMP- NUMBER PIC S9(4) COWP.
15 EMP-NAME PIC X(10).

10 DEPT- TABLE.
15 DEPT- NUMBER PIC S9(4) COWP.
15 DEPT- NAME PIC X(10).

TEAM TABLE cannot be used as a host variable because its members (EVP- TABLE and
DEPT- TABLE) are group items themselves.

Finally, the restrictions that apply to host tables in Pro*COBOL also apply to tables of
group items:

e Multi-dimensional and variable-length tables are not allowed.

« If multiple tables are used in a single SQL statement, their dimensions should be
the same.

* Host tables in SQL statements must not be subscripted.

7.13 Sample Program 14: Tables of Group Items

ORACLE

This program logs on, declares and opens a cursor, fetches in batches using a table of
group items. Read the initial comments for details.

IR EE RS RS R RS R SRR SRR SRR SRR SRR R R R R SRR R RS R R R R R R SRR EREEEEEEREEE]

* Sanple Program 14: Tables of group itens *
* *
* This programlogs on to ORACLE, declares and opens a cursor, *
* fetches in batches using a table of group items , and prints *
* the results. This sanple is identical to sanple3 except that *
* instead of using three separate host tables of five elenents *
* each, it uses a five-element table of three group itens. *
* The output should be identical. *
* *

kkkkkkkkkkhkkkhkkhhhkhhhhhhhhhhhkhdhhhkhhhkhhhhhhhhhdhhdhhkxrhkhhxk

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. TABLE- OF- GROUP- | TEMS.
ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

7-17

01
01
01

01
01
01
01

Chapter 7
Sample Program 14: Tables of Group ltems

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.
USERNANE PIC X(15) VARYI NG
PASSVD PIC X(15) VARYI NG
EMP- REC- TABLE OCCURS 5 TI MES.

05 EMP-NUMBER PIC S9(4) COW.

05 SALARY PI C S9(6) V99
DI SPLAY S| GN LEADI NG SEPARATE.
05 ENP- NAME PIC X(10) VARYI NG

EXEC SQL VAR SALARY |S DI SPLAY(8,2) END-EXEC.
EXEC SQL END DECLARE SECTI ON END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

NUM RET PIC S9(9) COVP VALUE ZERO.
PRI NT- NUM PIC S9(9) COVP VALUE ZERO.
COUNTER PIC S9(9) COWP.

DI SPLAY- VARI ABLES.
05 D-EMP-NAME PIC X(10).
05 D-EMP-NUMBER PIC 9(4).
05 D SALARY PIC Z(4)9. 99.

PROCEDURE DI VI SI ON.

BEG N- PGM

EXEC SQL
VHENEVER SQLERROR DO PERFORM SQL- ERROR
END- EXEC.
PERFORM LOGON.
EXEC SQL
DECLARE C1 CURSCR FOR
SELECT EMPNO, SAL, ENAME
FROM EMP
END- EXEC.
EXEC SQL
OPEN C1
END- EXEC.

FETCH- LOOP.

EXEC SQL
WHENEVER NOT FOUND DO PERFORM S| G\- OFF
END- EXEC.
EXEC SQL
FETCH C1
| NTO : EMP- REC- TABLE
END- EXEC.
SUBTRACT NUMRET FROM SQLERRD(3) G VI NG PRI NT- NUM
PERFCRM PRI NT- | T.
MOVE SQLERRD(3) TO NUM RET.
GO TO FETCH- LOCP.

LOGON.

MOVE " SCOTT" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "TI GER' TO PASSWD- ARR.
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY "CONNECTED TO ORACLE AS USER ", USERNAME- ARR.

PRINT-1T.

ORACLE

7-18

Chapter 7
Additional Array Insert/Select Syntax

DI SPLAY " "
DI SPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
DI SPLAY "---cmmmmmimee mmiie e
PERFORM PRI NT- ROAS

VARYI NG COUNTER FROM 1 BY 1

UNTI L COUNTER > PRI NT- NUM

PRI NT- ROAS.

MOVE EMP- NUVBER(COUNTER) TO D- EMP- NUVBER

MOVE SALARY(COUNTER) TO D- SALARY.

DI SPLAY " " DEMP-NUMBER, " ", D-SALARY, " ",
ENP- NAVE- ARR | N ENP- NAVE(COUNTER) .

MOVE SPACES TO EMP- NAVE- ARR | N EMP- NAVE(COUNTER) .

Sl G\ OFF.

SQL-

SUBTRACT NUM RET FROM SQLERRD(3) G VI NG PRI NT- NUM
I F (PRINT-NUM > 0) PERFORM PRI NT-1T.
EXEC SQL
CLOSE C1
END- EXEC.
EXEC SQL
COWM T VORK RELEASE
END- EXEC.
DI SPLAY " "
DI SPLAY "HAVE A GOOD DAY.".
DI SPLAY " "
STOP RUN.

ERROR.
EXEC SQL
VHENEVER SQLERROR CONTI NUE
END- EXEC.
DI SPLAY " "
DI SPLAY "ORACLE ERRCR DETECTED: ".
DI SPLAY " "
DI SPLAY SQLERRMC.
EXEC SQL
ROLLBACK WORK RELEASE
END- EXEC.
STCP RUN.

7.14 Additional Array Insert/Select Syntax

The Oracle precompiler also supports the DB2 insert and fetch syntax for the host
tables. The supported additional array insert and fetch syntax are shown in the

following images, respectively.

ORACLE

7-19

ORACLE

Chapter 7
Additional Array Insert/Select Syntax

Figure 7-1 Additional Insert Syntax

\

P»———— INSERT INTO ETABLE NAME

VIEW NAME

(COL NAME)

A\

»—— VALUES EXP

——HOST VAR ARR—

—— NULL/DEFAULT —— FOR —[HOST VARSj ROWS
INTEGER

Figure 7-2 Additional Fetch Syntax

» FETCH FETCH ORIENTATION ﬁ CURSOR NAME ————————— >
FROM
FOR ROWS

\/

INTO HOST VAR ARR

HOS VARS

L INTEGER J

INTO DESCRIPTOR NAME

The optional ROWSET and ROWSET STARTING AT clauses are used in the fetch-
orientation (FIRST, PRIOR, NEXT, LAST, CURRENT, RELATIVE and ABSOLUTE).
Consider the following examples:

FIRST ROWSET

PRIOR ROWSET

NEXT ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT RELATIVEN
ROWSET STARTING AT ABSOLUTEN

Examples of the DB2 array insert/fetch syntax and their comparison with the
corresponding Oracle precompiler syntax are shown in Table 7-3:

7-20

Chapter 7
Additional Array Insert/Select Syntax

Table 7-3 DB2 Array Syntax vs. Oracle Precompiler Syntax
|

DB2 Array Syntax Oracle Precompiler Syntax
EXEC SQL EXEC SQL FOR : NUM_ROAS
I NSERT | NTO DSNB810. ACT I NSERT | NTO DSN8810. ACT
(ACTNO, ACTKWD, ACTDESC) (ACTNO, ACTKWD, ACTDESC)
VALUES (:HVAL, :HVA2, :HVA3) VALUES (:HVAL, :HVA2, :HVA3)
FOR : NUM_ROAS ROV END- EXEC.
END- EXEC.
EXEC SQL EXEC SQL
FETCH NEXT ROASET FROM Cl1 FOR : TVENTY
FOR 20 ROAS FETCH c1
[NTO : HVA_EMPNO, : HVA_LASTNAME, I NTO : HVA_EMPNO, : HVA_LASTNAME,
: HVA_SALARY : HVA_SALARY
END- EXEC. END- EXEC.

In DB2 syntax, a row-set positioned cursor should be first declared before retrieving
row sets of data. To enable a cursor to fetch row sets, 'WITH ROWSET
POSITIONING' clause has to be used in the DECLARE CURSOR statement, which is
not required and relevant in the Oracle precompiler syntax, as shown in the following

table.
DB2 Array Syntax Oracle Precompiler Syntax
EXEC SQL EXEC SQL
DECLARE C1 CURSCR DECLARE C1 CURSCR FOR
W TH ROWSET PCSI TI ONI NG FOR SELECT EMPNO, LASTNAME, SALARY
SELECT EMPNO, LASTNAME, SALARY FROM DSN8810. EMP
FROM DSN8810. EMP END- EXEC.
END- EXEC.

This additional array syntax support can be enabled with the precompiler option
"db2_array", whose default option is "no". The DB2 array syntax support cannot be
used together with the Oracle precompiler syntax; only one of the syntax, either Oracle
precompiler, or DB2 syntax, will be supported at a time.

Example 7-1 Inserting and Fetching Rows by Using the DB2 Array Syntax

This program inserts INSCNT rows into the EMP table by using the DB2 array insert
syntax, and then fetches the inserted rows by using the DB2 array fetch syntax.

tEE RS SRS R RS SRR ER SRR SRR SRR SRR EREEREEREREEEEEEEEEEEEEEEEEEESERSEEE]

* . *
db2ar r deno:
khkhkhkkhhkhkh kb hkkhkkhkkhhkkhkhkhkhhkhkhkhkhkkhhkkhkhkhkkhhkkhhkhkhhhhkhkhhdkhhhhkhkkx

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. db2arrdeno.
ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

* EMBEDDED COBOL (file "DB2ARRDEMO. PCO')

ORACLE 7-21

ORACLE

Chapter 7
Additional Array Insert/Select Syntax

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAVE PIC X(10) VARYING
01 PASSVD PIC X(10) VARYING
01 EMPI NDATA.

02 EMPIN OCCURS 25 TI MES.
03 EWPNOPIC 9(4) COW.
03 ENAME PIC X(10).

03 JBPIC X9).

03 MR PIC 9(4).

03 H REDATE PIC X(9).
03 SAL PIC X(6).

03 COWMPIC X(6).

03 DEPTNO PIC 9(2).

01 EMPOUTDATA.
02 EMPOUT OCCURS 5 TI MES.
03 EWPNOL PIC 9(4) COW.
03 ENAMEL PIC X(10).
03 JOBL PIC X(9).
03 MRL PIC 9(4).
03 HREDATEL PIC X(9).
03 SALL PIC X(6).
03 COWL PIC X(6).
03 DEPTNOL PIC 9(2).

EXEC SQL END DECLARE SECTI ON END- EXEC.

01 INSCNT PIC 9(3) COWP VALUE 25.
01 FETCHCNT PIC 9(3) COWP VALUE 5.
01 CNT PIC 9(4).
01 CNT2 PIC 9(2).

01 STRI NGFI ELDS.
02 STR PIC X(18) VARYI NG

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
BEG N- PGM
EXEC SQL WHENEVER SQLERRCR DO PERFORM SQL- ERROR END- EXEC.

PERFORM LOGON.

* Fill the array elements to insert.
PERFORM FI LL- DATA VARYI NG CNT FROM 1 BY 1
UNTIL CNT > | NSCNT.

* Inserting data using DB2 array insert syntax.
DI SPLAY "Inserting data using DB2 array insert syntax".
EXEC SQL I NSERT | NTO EMP (EMPNO, ENAME, JOB, MR HI REDATE,
SAL, COMM DEPTNO) VALUES (: EMPIN)
FOR : I NSCNT ROAS
END- EXEC.

EXEC SQL SELECT COUNT(*) |INTO : ONT FROM EMP
WHERE ENAME LI KE ' EMP_%

END- EXEC.

DI SPLAY "Nunber of rows successfully inserted into EMP "
"table:", CNT.

7-22

ORACLE

Chapter 7
Additional Array Insert/Select Syntax

DI SPLAY " "
* Declares scrollable cursor to fetch data.
EXEC SQL DECLARE Cl SCROLL CURSOR FOR
SELECT EMPNO, ENAME, JOB, MGR, HI REDATE, SAL,

COW DEPTNO
FROM EMP

WHERE ENAME LI KE ' EMP_%
ORDER BY EMPNO
END- EXEC.

EXEC SQL OPEN Cl END- EXEC.

DI SPLAY "Fetching data using DB2 array fetch syntax "
PERFORM FETCH TAB.
ENDFETCH- TAB.

EXEC SQL CLOSE C1 END- EXEC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

LOGON.
MOVE "scott" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "tiger" TO PASSVWD- ARR
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

* FILLS ARRAY TO | NSERT | NTO EMP TABLE
FI LL- DATA.
MOVE ONT TO ENPNO({ CNT) .

MOVE " " TO STR
STRING "EMP_", CNT INTO STR
END- STRI NG

MOVE STR TO ENAME(CNT) .

MOVE " " TO STR
STRING "JOB ", CNT INTO STR
END- STRI NG

MOVE STR TO JOB(CNT).

MOVE 100 TO MGER(ONT) .

| F CNT > 30 THEN
COWPUTE CNT2 = 30
ELSE
MOVE CNT TO CNT2
END- | F

MOMVE " " TO STR

STRING CNT2, "-JAN-06" | NTO STR
END- STRI NG

MOVE STR TO HI REDATE(CNT) .

MOVE " " TO STR
STRING CNT2, "000" | NTO STR
END- STRI NG

MOVE STR TO SAL(CNT).

7-23

ORACLE

Chapter 7
Additional Array Insert/Select Syntax

MOVE 1000 TO COVM CNT) .
MOVE 10 TO DEPTNO(CNT) .

* FETCHES DATA FROM EMP TABLE
FETCH TAB.

EXEC SQL WHENEVER NOT FOUND GOTO ENDFETCH- TAB END- EXEC.

DI SPLAY "Fetch using FETCH FI RST ROASET".
EXEC SQL FETCH FI RST ROWSET FROM C1 FOR : FETCHCNT ROAS

I NTO : EMPQUT
END- EXEC.
PERFORM PRI NTDATA.

DI SPLAY " "

DI SPLAY "Fetch using FETCH NEXT ROASET".
EXEC SQL FETCH NEXT ROWSET FROM C1 FOR 5 ROWS
I NTO : EMPOUT END- EXEC.

PERFORM PRI NTDATA.

DI SPLAY " "
DI SPLAY "Fetch using FETCH CURRENT ROWSET".
EXEC SQL FETCH CURRENT ROASET FROM C1 FOR : FETCHCNT ROWS
| NTO : EMPQUT
END- EXEC.
PERFORM PRI NTDATA.

DI SPLAY " "
DI SPLAY "Fetch using FETCH LAST ROASET".
EXEC SQL FETCH LAST ROWSET FROM C1 FOR : FETCHCNT ROWS
| NTO : EMPQUT
END- EXEC.
PERFORM PRI NTDATA.

DI SPLAY " "
DI SPLAY "Fetch using FETCH ROWSET STARTI NG AT ABSCLUTE".
COWPUTE CNT = 4 * FETCHCNT.
EXEC SQL FETCH ROASET STARTI NG AT ABSOLUTE : CNT FROM Cl
FOR 5 ROAS | NTO : EMPOUT
END- EXEC.
PERFORM PRI NTDATA.

DI SPLAY " "

DI SPLAY "Fetch using FETCH ROWSET STARTI NG AT RELATI VE".
EXEC SQL FETCH ROASET STARTI NG AT RELATIVE -3 FROM Cl
FOR : FETCHCNT ROWS | NTO : EMPOUT

END- EXEC.

PERFORM PRI NTDATA.

DI SPLAY " "
DI SPLAY "Fetch using FETCH PRI OR ROASET ".
EXEC SQL FETCH PRI OR ROWBET FROM C1 FOR : FETCHCNT ROAS
| NTO : EMPQUT
END- EXEC.
PERFORM PRI NTDATA.

* Prints fetched data
PRI NTDATA.
PERFORM VARYI NG CNT FROM 1 BY 1 UNTIL CNT > FETCHCNT
DI SPLAY "Enpno=", ENPNOL(CNT), ", Ename=", ENANEL(CNT),
", Job=", JOBL(CNT), ", Myr=", MGRL(CNT),

7-24

Chapter 7
Using Implicit Buffered Insert

" Hredate=", H REDATEL(CNT)
DI SPLAY "Sal =", SAL1(CNT), ", Comme", COMML(CNT),
" Deptno=", DEPTNOL(CNT)
END- PERFORM

* HANDLES SQL ERRCR CONDI TI ONS
SQL- ERRR

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.

DI SPLAY " "

DI SPLAY " ORACLE ERRCR DETECTED: "

DI SPLAY " "

DI SPLAY SQLERR\LC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

STOP RUN.

7.15 Using Implicit Buffered Insert

ORACLE

For improved performance, Pro*Cobol application developers can reference host
arrays in their embedded SQL statements. This provides a means to execute an array
of SQL statements with a single round-trip to the database. Despite the significant
performance improvements afforded by array execution, some developers choose not
to use this capability because it is not ANSI standard. For example, an application
written to exploit array execution in Oracle cannot be precompiled using IBM's
precompiler.

One workaround is to use buffered INSERT statements, which enable you to gain
performance benefits while retaining ANSI standard embedded SQL syntax.

The command line option "max_row_insert" controls the number of rows to be buffered
before executing the INSERT statement. By default it is zero and the feature is
disabled. To enable this feature, specify any number greater than zero.

If insert bufering is enabled, precompiler runtime will flag the corresponding cursor
and:

» Allocate or re-allocate extra memory to hold bind values (first execute only).
e Copy bind values from program host variables to internal runtime bind structures.
* Increment the rows buffered count.

e Flush the buffered INSERT statements if MAX_INSERT_ROWS has been
buffered.

* If MAX_INSERT_ROWS has not been hit, then return after copying the values to
the internal bind buffers without flushing.

If you are executing a new embedded SQL statement that results in a flush of the
buffered insert statements:

* Flush the buffers.
e Continue with the call that prompted the flush

The application is informed of the error through the standard precompiler error
mechanisms such as SQLCODE or SQLSTATE in Pro*Cobol.

The "implicit_svpt" option controls whether an implicit savepoint is taken prior to the
start of a new batched insert.

7-25

ORACLE

Chapter 7
Using Implicit Buffered Insert

* If yes, a savepoint is taken prior to the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint" is executed.

» If no, there is no implicit savepoint taken. If an error occurs on the buffered insert,
then it is reported back to the application, but no rollback is executed. Errors are
reported asynchronously for buffer inserts. Errors for inserted rows are not
reported when the INSERT statement is executed in the application.

Some errors for inserted rows are reported later, when the first statement
other than the INSERT is executed. This may include DELETE, UPDATE,
INSERT (into different tables), COMMIT, and ROLLBACK. Any statement that
closes the buffered insert statement can report an error. In such cases, the
statement that reports the error is not executed. You need to first handle the
error and also reexecute the statement on which the buffered insert error is
reported. Otherwise, you may rollback the transaction and reexecute it.

For example, consider using a COMMIT statement to close a buffered insert
loop. COMMIT can report an error because of a duplicate key from an earlier
insert. In this scenario, the commit is not executed. You should first handle the
error and then reexecute COMMIT. Otherwise, you can rollback the
transaction and reexecute it.

Some errors are reported on the insert itself, and may reflect an error of a
previously inserted row. In such cases, no further inserts are executed. You
need to handle the errors of the previously inserted row and continue inserting
the current insert, which is a long process. Instead, you may rollback and
reexecute the transaction.

For example, consider that the limit of internal buffer is 10 rows and the
application is inserting 15 rows in a loop. Suppose there is an error on the 8th
row. The error is reported when the 11th row insert happens and the insert is
no more executed further.

The following are some of the possible errors that you might face during buffered

insert:

* ORA-00001: duplicate key in index

* ORA-01400: mandatory (not null) column is missing or Null during insert

* ORA-01401: inserted value too large for column

* ORA-01438: value larger than specified precision allows for this column

Example 7-2 inserting Buffered Rows into a Table

This program inserts LOOPCNT number of rows into the EMP table. At loop
counter=5, this program attempts to insert an invalid empno. Without the
max_row_insert option, the program inserts all rows except the invalid row. When the
max_row_insert option is set to LOOPCNT, only the first four rows are inserted.

Using the max_row_insert option, when the erroneous statement is removed, the
program performs the same way an array insert program would.

EEEEE SRR R RS SRR EEEEEEE R RS EEEEE SRR EEERE RS EEREEEEREEEEEEEEEEEEEE]

*

L

buf i nsdeno:

This programinserts LOOPCNT nunber of rows into EMP table.
At loop counter=5, this programattenpts to insert an invalid
enpno. Wthout max_row_insert option, this programinserts
all rows except this invalid row. Wen max_row insert option
is set to LOOPCNT, only the first 4 rows are inserted.

I

7-26

*

Chapter 7
Using Implicit Buffered Insert

* Wth max_row_insert option, when this errorneous statenent

* having an array insert in this program

*
*
* is removed, the performance of this programis simlar to *
*
*

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. bufi nsden.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

* EMBEDDED COBOL (file "BUFI NSDEMO. PCO')

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAVE PIC X(10) VARYING
01 PASSVD PIC X(10) VARYING
01 EMPIN

02 EMPNOPIC 9(6) COW.
02 ENAME PIC X(10).
02 JOB PIC X(9).

02 MGR PIC 9(4).

02 H REDATE PIC X(9).
02 SAL PIC X(6).

02 COWPIC X(6).

02 DEPTNO PIC 9(2).

01 ENPOUT.
02 EMPNOL PIC 9(4) COW.
02 ENAMEL PIC X(10).
02 JOBL PIC X(9).
02 MGRL PIC 9(4).
02 H REDATEL PIC X(9).
02 SALL PIC X(6).
02 COMWL PIC X(6).
02 DEPTNOL PIC 9(2).

EXEC SQL END DECLARE SECTI ON END- EXEC.

01 LOOPCNT PIC 9(4) COMP VALUE 100.
01 CNT PIC 9(4).
01 CNT2 PIC 9(2).

01 STRI NGFI ELDS.
02 STR PIC X(18) VARYI NG

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
BEG N- PGM

EXEC SQL WHENEVER SQLERRCR DO PERFORM SQL- ERROR END- EXEC.

PERFORM LOGON.

* \When max_row_insert option is set to LOOPCNT and when the errorneous

* statement is renmoved, all the rows will

be inserted into the database

* in one stretch and hence maxi num perfornmance gain will be achieved.
DI SPLAY "Inserting ", LOOPCNT, " rows into EMP table".

PERFORM | NS- TAB VARYI NG CNT FROM 1 BY 1

ORACLE

7-27

ORACLE

Chapter 7
Using Implicit Buffered Insert

UNTIL CNT > LOOPCNT.
EXEc SQL COWM T END- EXEC.

EXEC SQL SELECT COUNT(*) |INTO : CNT FROM EMP
WHERE ENAME LI KE ' EMP_%

END- EXEC.

DI SPLAY "Nunber of rows successfully inserted into EMP "
"table:", CNT.

DI SPLAY " "

EXEC SQL DECLARE C1 CURSCR FOR
SELECT EMPNO, ENAME, JOB, MGR, HI REDATE, SAL,
COW DEPTNO
FROM EMP
WHERE ENAME LI KE ' EMP_%
ORDER BY EMPNO
END- EXEC.

EXEC SQL OPEN Cl END- EXEC.

DI SPLAY "Fetching inserted rows fromEMP table".
PERFORM FETCH- TAB.
ENDFETCH- TAB.

EXEC SQL CLOSE C1 END- EXEC.
EXEC SQL DELETE FROM EMP VHERE EMPNO < 1000 END- EXEC.

EXEC SQL COWM T WORK RELEASE END- EXEC.
STCP RUN.

LOGON.
MOVE "scott" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "tiger" TO PASSVWD- ARR
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

* | NSERTS DATA | NTO EMP TABLE
I NS- TAB.
IF CNT = 5 THEN
MOVE 10000 TO EMPNO
ELSE
MOVE CNT TO EMPNO
END- | F

MWVE " " TO STR

STRING "EMP_", CNT INTO STR
END- STRI NG

MOVE STR TO ENAME.

MWVE " " TO STR

STRING "JOB_", CNT INTO STR
END- STRI NG

MOVE STR TO JGCB.

MOVE 100 TO MR

7-28

Chapter 7
Using Implicit Buffered Insert

| F CNT > 30 THEN
COWPUTE CNT2 = 30
ELSE
MOVE CNT TO CNT2
END- | F

MWVE " " TO STR

STRING CNT2, "-JAN-06" INTO STR
END- STRI NG

MOVE STR TO HI REDATE.

MWVE " " TO STR

STRING CNT2, "000" INTO STR
END- STRI NG

MOVE STR TO SAL.

MOVE 1000 TO COWM
MOVE 10 TO DEPTNO.

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME, JOB, MGR H REDATE,
SAL, COWM DEPTNO) VALUES (:EMPIN)
END- EXEC.

* FETCHES DATA FROM EMP TABLE
FETCH TAB.

EXEC SQL WHENEVER NOT FOUND GOTO ENDFETCH- TAB END- EXEC.

EXEC SQL FETCH C1 I NTO : EMPOUT END- EXEC.

DI SPLAY "Enmpno=", EMPNOL, ", Enanme=", ENAMEL,
", Job=", JOBL, ", Myr=", MGRI,

", Hredate=", H REDATEL.

DI SPLAY "Sal =", SAL1, ", Comm=", COMML, ", Deptno=", DEPTNOL.

Q0 TO FETCH TAB.

* HANDLES SQL ERRCR CONDI TI ONS
SQL- ERRR
DI SPLAY " ORACLE ERRCR DETECTED: "
DI SPLAY SQLERR\C.

ORACLE 7-29

Error Handling and Diagnostics

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle warnings and errors using the ANSI status variables
SQLCODE and SQLSTATE, or the Oracle SQLCA (SQL Communications Area)
structure. You also learn how to use the WHENEVER statement and how to diagnose
problems using the Oracle ORACA (Oracle Communications Area) structure.

The following topics are discussed:

e Why Error Handling is Needed

e Error Handling Alternatives

e Using the SQL Communications Area

e Using the Oracle Communications Area
* How Errors Map to SQLSTATE Codes

8.1 Why Error Handling is Needed

A significant part of every application program must be devoted to error handling. The
main benefit of error handling is that it enables your program to continue operating in
the presence of errors. Errors arise from design faults, coding mistakes, hardware
failures, invalid user input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors meaningful to your program. For Pro*COBOL, error handling means detecting
and recovering from SQL statement execution errors. You must trap errors because
the precompiler will continue regardless of the errors encountered unless you halt
processing.

You can also prepare to handle warnings such as "value truncated" and status
changes such as "end of data." It is especially important to check for error and warning
conditions after every data manipulation statement because an INSERT, UPDATE, or
DELETE statement might fail before processing all eligible rows in a table.

8.2 Error Handling Alternatives

ORACLE

Pro*COBOL supports two general methods of error handling:

e The Oracle-specific method with SQLCA and optional ORACA.
e The SQL standard method with SQLSTATE status variable.

The precompiler MODE option governs compliance with the SQL standard. When
MODE={ANSI | ANSI14}, you declare the SQLSTATE status variable as PIC X(5).
Additionally, the ANSI SQL-89 SQLCODE status variable is still supported, but it is not
recommended for new programs because it has been removed from the SQL
standard. When MODE={ORACLE | ANSI13}, you must include the SQLCA through

8-1

Chapter 8
Error Handling Alternatives

an EXEC SQL INCLUDE statement. It is possible to use both methods in one program
but usually not necessary.

2 See Also:

Status Variable Combinations for detailed information on mixing methods.

8.2.1 SQLCA

The SQLCA is a record-like, host-language data structure which includes Oracle
warnings, error numbers and error text. Oracle updates the SQLCA after every
executable SQL or PL/SQL statement. (SQLCA values are undefined after a
declarative statement.) By checking return codes stored in the SQLCA, your program
can determine the outcome of a SQL statement. This can be done in two ways:

* Implicit checking with the WHENEVER statement
» Explicit checking of SQLCA variables

When you use the WHENEVER statement to implicitly check the status of your SQL
statements, Pro*COBOL automatically inserts error checking code after each
executable statement. Alternatively, you can explicitly write your own code to test the
value of the SQLCODE member of the SQLCA structure. Include SQLCA by using the
embedded SQL INCLUDE statement:

EXEC SQL | NCLUDE SQLCA END- EXEC.

8.2.2 ORACA

When more information is needed about runtime errors than the SQLCA provides, you
can use the ORACA, which contains cursor statistics, SQL statement text, certain
option settings and system statistics. Include ORACA by using the embedded SQL
INCLUDE statement:

EXEC SQL | NCLUDE ORACA END- EXEC.

The ORACA is optional and can be declared regardless of the MODE setting.

" See Also:

Using the Oracle Communications Area for more information about the ORACA
status variable.

8.2.3 ANSI SQLSTATE Variable

When MODE=ANSI, you can declare the ANSI SQLSTATE variable inside the Declare
Section for implicit or explicit error checking. If the option DECLARE_SECTION is set
to NO, then you can also declare it outside of the Declare Section.

ORACLE 8-2

Chapter 8
Error Handling Alternatives

Note:

When MODE=ANSI, you can also declare the SQLCODE variable with a
picture S9(9) COMP. While it can be used instead of or with the SQLSTATE
variable, this is not recommended for new programs. You can also use the
SQLCA with the SQLSTATE variable. When MODE=ANSI14, then SQLSTATE
is not supported and you must declare either SQLCODE or include SQLCA.
You cannot declare both SQLCODE and SQLCA for any setting of mode.

8.2.4 Declaring SQLSTATE

This section describes how to declare SQLSTATE. SQLSTATE must be declared as a
five-character alphanumeric string as in the following example:

* Decl are the SQLSTATE status variabl e.
EXEC SQ. BEG N DECLARE SECTI ON END- EXEC.

01 SQLSTATE PIC X(5).

EXEC SQL END DECLARE SECTI ON END- EXEC.

8.2.4.1 SQLSTATE Values

ORACLE

SQLSTATE status codes consist of a two-character class code followed by a three-
character subclass code. Aside from class code 00 (successful completion), the class
code denotes a category of exceptions. Aside from subclass code 000 (hot
applicable), the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value '22012' consists of class code 22 (data exception) and
subclass code 012 (division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase
Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the
range A..H are reserved for predefined conditions (those defined in the SQL standard).
All other class codes are reserved for implementation-defined conditions. Within
predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter
in the range A..H are reserved for predefined sub-conditions. All other subclass codes
are reserved for implementation-defined sub-conditions. Figure 8-1 shows the coding
scheme:

8-3

ORACLE

Figure 8-1
0.
Q
c o
e
o
- O
25 A
ww

Chapter 8
Error Handling Alternatives

SQLSTATE Coding Scheme

First Char in Class Code

0..4 5..9 A..H 1..Z

D Predefined D Implementation—defined

Table 8-1 shows the classes predefined by the SQL standard.

Table 8-1 Predefined Classes

Class Condition

00 successful completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

09 triggered action exception

0A feature not supported

0A feature not supported

oD invalid target type specification

OE invalid schema name list specification

OF locator exception

oL invalid grantor

oM invalid SQL-invoked procedure reference
oP invalid role specification

0s invalid transform group name specification
oT target table disagrees with cursor specification
ou attempt to assign to non-updatable column
ov attempt to assign to ordering column

ow prohibited statement encountered during trigger execution
0z diagnostics exception

21 cardinality violation

22 data exception

23 integrity constraint violation

8-4

ORACLE

Chapter 8
Error Handling Alternatives

Table 8-1 (Cont.) Predefined Classes
|

Class Condition
24 invalid cursor state
25 invalid transaction state
26 invalid SQL statement name
27 triggered data change violation
28 invalid authorization specification
2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist
2C invalid character set name
2D invalid transaction termination
2E invalid connection name
2F SQL routine exception
2H invalid collation name
30 invalid SQL statement identifier
33 invalid SQL descriptor name
34 invalid cursor name
35 invalid condition number
36 cursor sensitivity exception
37 dynamic SQL syntax error or access rule violation
38 external routine exception
39 external routine invocation exception
3B savepoint exception
3C ambiguous cursor name
3D invalid catalog name
3F invalid schema name
40 transaction rollback
42 syntax error or access rule violation
44 with check option violation
HZ remote database access
Note:

The class code HZ is reserved for conditions defined in International Standard
ISO/IEC DIS 9579-2, Remote Database Access.

Table 8-4 shows how errors map to SQLSTATE status codes. In some cases, several
errors map to the status code. In other cases, no error maps to the status code (so the
last column is empty). Status codes in the range 60000..99999 are implementation-

defined.

8-5

Chapter 8
Using the SQL Communications Area

8.3 Using the SQL Communications Area

Oracle uses the SQL Communications Area (SQLCA) to store status information
passed to your program at run time. The SQLCA is a record-like, COBOL data
structure that is a updated after each executable SQL statement, so it always reflects
the outcome of the most recent SQL operation. Its fields contain error, warning, and
status information updated by Oracle whenever a SQL statement is executed. To
determine that outcome, you can check variables in the SQLCA explicitly with your
own COBOL code or implicitly with the WHENEVER statement.

When MODE={ORACLE | ANSI13}, the SQLCA is required,; if the SQLCA is not
declared, compile-time errors will occur. The SQLCA is optional when MODE={ANSI |
ANSI14}, but if you want to use the WHENEVER SQLWARNING statement, you must
declare the SQLCA. The SQLCA must also be included when using multibyte NCHAR
host variables.

Note:

When your application uses Oracle Net Services to access a combination of
local and remote databases concurrently, all the databases write to one
SQLCA. There is not a different SQLCA for each database. For more
information, see "Concurrent Logons".

8.3.1 Contents of the SQLCA

ORACLE

The SQLCA contains runtime information about the execution of SQL statements,
such as error codes, warning flags, event information, rows-processed count, and
diagnostics.

Figure 8-2 shows all the variables in the SQLCA.

Figure 8-2 SQLCA Variable Declarations for Pro*COBOL

01 SQLCA.
05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) COMPUTATIONAL.
05 SQLCODE PIC S9(9) COMPUTATIONAL.
05 SQLERRM.
49 SQLERRML PIC S9(4) COMPUTATIONAL.
49 SQLERRMC PIC X(70)
05 SQLERRP PIC X(8).

05 SQLERRD OCCURS 6 TIMES
PIC S9(9) COMPUTATIONAL.
05 SQLWARN.

10 SQLWARNO PIC X(1).
10 SQLWARNL PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARNS PIC X(1).
10 SQLWARNG6 PIC X(1).
10 SQLWARN7 PIC X(1).
05 SQLEXT PIC X(8).

8-6

Chapter 8
Using the SQL Communications Area

8.3.2 Declaring the SQLCA

To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement) in
your Pro*COBOL source file outside the Declare Section as follows:

* I nclude the SQL Conmuni cations Area (SQLCA).
EXEC SQL | NCLUDE SQLCA END- EXEC.

The SQLCA must be declared outside the Declare Section.

WARNING:

Do not declare SQLCODE if SQLCA is declared. Likewise, do not declare
SQLCA if SQLCODE is declared. The status variable declared by the SQLCA
structure is also called SQLCODE, so errors will occur if both error-reporting
mechanisms are used.

When you precompile your program, the INCLUDE SQLCA statement is replaced by
several variable declarations that allow Oracle to communicate with the program.

8.3.3 Key Components of Error Reporting

The key components of Pro*xCOBOL error reporting depend on several fields in the
SQLCA.

8.3.3.1 Status Codes

Every executable SQL statement returns a status code in the SQLCA variable
SQLCODE, which you can check implicitly with WHENEVER SQLERROR or explicitly
with your own COBOL code.

8.3.3.2 Warning Flags

Warning flags are returned in the SQLCA variables SQLWARNO through SQLWARN?7,
which you can check with WHENEVER SQLWARNING or with your own COBOL
code. These warning flags are useful for detecting runtime conditions that are not
considered errors.

8.3.3.3 Rows-Processed Count

The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN
cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

8.3.3.4 Parse Error Offset

Before executing a SQL statement, Oracle must parse it; that is, examine it to make
sure it follows syntax rules and refers to valid database objects. If Oracle finds an
error, an offset is stored in the SQLCA variable SQLERRD(5), which you can check
explicitly. The offset specifies the character position in the SQL statement at which the

ORACLE .

Chapter 8
Using the SQL Communications Area

parse error begins. The first character occupies position zero. For example, if the
offset is 9, the parse error begins at the tenth character.

If your SQL statement does not cause a parse error, Oracle sets SQLERRD(5) to zero.
Oracle also sets SQLERRD(5) to zero if a parse error begins at the first character
(which occupies position zero). So, check SQLERRD(5) only if SQLCODE is negative,
which means that an error has occurred.

8.3.3.5 Error Message Text

The error code and message for errors are available in the SQLCA variable
SQLERRMC. For example, you might place the following statements in an error-
handling routine:

* Handl e SQL execution errors.
MOVE SQLERRMC TO ERROR- MESSAGE.
DI SPLAY ERROR- MESSAGE.

At most, the first 70 characters of message text are stored. For messages longer than
70 characters, you must call the SQLGLM subroutine, which is discussed in "Getting
the Full Text of Error Messages".

8.3.4 SQLCA Structure

This section describes the structure of the SQLCA, its fields, and the values they can
store.

8.3.4.1 SQLCAID

This string field is initialized to "SQLCA" to identify the SQL Communications Area.

8.3.4.2 SQLCABC

This integer field holds the length, in bytes, of the SQLCA structure.

8.3.4.3 SQLCODE

This integer field holds the status code of the most recently executed SQL statement.
The status code, which indicates the outcome of the SQL operation, can be any of the
following numbers:

Status Code Description

0 Oracle executed the statement without detecting an error or
exception.

>0 Oracle executed the statement but detected an exception. This

occurs when Oracle cannot find a row that meets your WHERE-
clause search condition or when a SELECT INTO or FETCH
returns no rows.

ORACLE 8-8

Chapter 8
Using the SQL Communications Area

Status Code Description

<0 When MODE={ANSI | ANSI14 | ANSI113}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when a
subquery returns no rows to process.

Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal.
When they occur, the current transaction should, in most cases, be
rolled back.

Negative return codes correspond to error codes listed in Oracle
Database Error Messages.

8.3.4.4 SQLERRM

This sub-record contains the following two fields:

Fields Description

SQLERRML This integer field holds the length of the message text stored in
SQLERRMC.

SQLERRMC This string field holds the message text for the error code stored in

SQLCODE and can store up to 70 characters. For the full text of
messages longer than 70 characters, use the SQLGLM function.
Verify SQLCODE is negative before you reference SQLERRMC. If
you reference SQLERRMC when SQLCODE is zero, you get the
message text associated with a prior SQL statement.

SQLERRP

This string field is reserved for future use.

8.3.4.5 SQLERRD

This table of binary integers has six elements. Descriptions of the fields in SQLERRD

follow:

Fields Description

SQLERRD(1) This field is reserved for future use.
SQLERRD(2) This field is reserved for future use.

ORACLE 8-9

Chapter 8
Using the SQL Communications Area

Fields

Description

SQLERRD(3)

SQLERRD(4)
SQLERRD(5)

SQLERRD(6)

This field holds the number of rows processed by the most recently
executed SQL statement. However, if the SQL statement failed,
the value of SQLERRD(3) is undefined, with one exception. If the
error occurred during a table operation, processing stops at the
row that caused the error, so SQLERRD(3) gives the number of
rows processed successfully.

The rows-processed count is zeroed after an OPEN statement and
incremented after a FETCH statement. For the EXECUTE,
INSERT, UPDATE, DELETE, and SELECT INTO statements, the
count reflects the number of rows processed successfully. The
count does not include rows processed by an update or delete
cascade. For example, if 20 rows are deleted because they meet
WHERE-clause criteria, and 5 more rows are deleted because
they now (after the primary delete) violate column constraints, the
count is 20 not 25.

This field is reserved for future use.

This field holds an offset that specifies the character position at
which a parse error begins in the most recently executed SQL
statement. The first character occupies position zero.

This field is reserved for future use.

8.3.4.6 SQLWARN

This table of single characters has eight elements. They are used as warning flags.
Oracle sets a flag by assigning it a 'W' (for warning) character value. The flags warn of

exceptional conditions.

For example, a warning flag is set when Oracle assigns a truncated column value to
an output host character variable.

" Note:

Figure 8-2 illustrates SQLWARN implementation in ProxCOBOL as a group
item with elementary PIC X items hamed SQLWARNO through SQLWARN?7.

Descriptions of the fields in SQLWARN follow:

Fields

Description

SQLWARNO
SQLWARN1

ORACLE

This flag is set if another warning flag is set.

This flag is set if a truncated column value was assigned to an
output host variable. This applies only to character data. Oracle
truncates certain numeric data without setting a warning or
returning a negative SQLCODE value.

To find out if a column value was truncated and by how much,
check the indicator variable associated with the output host
variable. The (positive) integer returned by an indicator variable is
the original length of the column value. You can increase the
length of the host variable accordingly.

8-10

Chapter 8
Using the SQL Communications Area

Fields Description

SQLWARN2 This flag is set if one or more NULLs were ignored in the
evaluation of a SQL group function such as AVG, COUNT, or
MAX. This behavior is expected because, except for COUNT(*), all
group functions ignore NULLSs. If necessary, you can use the SQL
function NVL to temporarily assign values (zeros, for example) to
the NULL column entries.

SQLWARNS3 This flag is set if the number of columns in a query select list does
not equal the number of host variables in the INTO clause of the
SELECT or FETCH statement. The number of items returned is
the lesser of the two.

SQLWARN4 This flag is no longer in use.

SQLWARNS5 This flag is set when an EXEC SQL CREATE {PROCEDURE |
FUNCTION | PACKAGE | PACKAGE BODY?} statement fails
because of a PL/SQL compilation error.

SQLWARNG This flag is no longer in use.
SQLWARNY?Y This flag is no longer in use.
8.3.4.7 SQLEXT

This string field is reserved for future use.

8.3.5 PL/SQL Considerations

When your Pro*COBOL program executes an embedded PL/SQL block, not all fields
in the SQLCA are set. For example, if the block fetches several rows, the rows-
processed count, SQLERRD(3), is set to 1, not the actual number of rows fetched. So,
you should rely only on the SQLCODE and SQLERRM fields in the SQLCA after
executing a PL/SQL block.

8.3.6 Getting the Full Text of Error Messages

ORACLE

Regardless of the setting of MODE, you can use SQLGLM to get the full text of error
messages if you have explicitly declared SQLCODE and not included SQLCA. The
SQLCA can accommodate error messages up to 70 characters long. To get the full
text of longer (or nested) error messages, you need the SQLGLM subroutine.

If connected to a database, you can call SQLGLM using the syntax

CALL "SQLGLM' USI NG MSG TEXT, MAX-SIZE, MSG LENGTH

where the parameters are:

Parameter Datatype Parameter Definition
MSG-TEXT PIC X(n) The field in which to store the error message. (Oracle blank-
pads to the end of this field.)
MAX-SIZE PIC S9(9) Aninteger that specifies the maximum size of the MSG-TEXT
COMP field in bytes.
MSG-LENGTH PIC S9(9) An integer variable in which Oracle stores the actual length of
COMP the error message.

8-11

Chapter 8
Using the SQL Communications Area

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The maximum length of an error message is 512 characters including the error code,
nested messages, and message inserts such as table and column names. The
maximum length of an error message returned by SQLGLM depends on the value
specified for MAX-SIZE.

The following example uses SQLGLM to get an error message of up to 200 characters
in length:

* Decl are variables for the SQ.- ERROR subroutine call.
01 MG TEXT Pl C X(200).

01 MAX-SIZE PI C S9(9) COW VALUE 200.

01 MSG LENGTH PIC S9(9) COW.

PROCEDURE DI VI SI ON.
MAI N.
EXEC SQL WHENEVER SQLERRCR GOTO SQL- ERROR END- EXEC.

SQL- ERRCR.

* Clear the previous nessage text.
MOVE SPACES TO MSG TEXT.

* Get the full text of the error nessage.
CALL "SQLGLM' USI NG MSG TEXT, MAX-SIZE, MSG LENGTH.
DI SPLAY MG TEXT.

In the example, SQLGLM is called only when a SQL error has occurred. Always make
sure SQLCODE is negative before calling SQLGLM. If you call SQLGLM when
SQLCODE is zero, you get the message text associated with a prior SQL statement.

Note:

If your application calls SQLGLM to get message text, the message length
must be passed. Do not use the SQLCA variable SQLERRML. SQLERRML is
a PIC S9(4) COMP integer while SQLGLM and SQLIEM expect a PIC S9(9)
COMP integer. Instead, use another variable declared as PIC S9(9) COMP.

8.3.7 DSNTIAR

ORACLE

DB2 provides an assembler routine called DSNTIAR to obtain a form of the SQLCA
that can be displayed. For users migrating to Oracle from DB2, Pro*COBOL provides
DSNTIAR. The DSNTIAR implementation is a wrapper around SQLGLM. The
DSNTIAR interface is as follows

CALL ' DSNTI AR USI NG SQLCA MESSAGE LRECL

where MESSAGE is the output message area, in VARCHAR form of size greater than
or equal to 240, and LRECL is a full word containing the length of the output
messages, between 72 and 240. The first half-word of the MESSAGE argument
contains the length of the remaining area. The possible error codes returned by
DSNTIAR are listed in the following table.

8-12

Chapter 8
Using the SQL Communications Area

Table 8-2 DSNTIAR Error Codes and Their Meanings
|

Error Codes Description

0 Successful execution

4 More data was available than could fit into the provided message
8 The logical record length (LRECL) was not between 72 and 240
12 The message area was not large enough (greater than 240)

8.3.8 WHENEVER Directive

By default, Pro*COBOL ignores error and warning conditions and continues
processing, if possible. To do automatic condition checking and error handling, you
need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle
detects an error, warning condition, or "not found" condition. These actions include
continuing with the next statement, PERFORMing a paragraph, branching to a
paragraph, or stopping.

8.3.8.1 Conditions

You can have Oracle automatically check the SQLCA for any of the following
conditions.

8.3.8.2 SQLWARNING

SQLWARN(O) is set because Oracle returned a warning (one of the warning flags,
SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value
other than +1403. For example, SQLWARN(1) is set when Oracle assigns a truncated
column value to an output host variable.

Declaring the SQLCA is optional when MODE={ANSI | ANSI14}. To use WHENEVER
SQLWARNING, however, you must declare the SQLCA.

" Note:

You have to have included SQLCA for this to work.

8.3.8.3 SQLERROR

SQLCODE has a negative value if Oracle returns an error.

8.3.8.4 NOT FOUND or NOTFOUND

ORACLE

SQLCODE has a value of +1403 (or +100 when MODE={ANSI | ANSI14 | ANSI13} or
when END_OF_FETCH=100) when the end of fetch has been reached. This can
happen when all the rows that meet the search criteria have been fetched or no rows
meet that criteria.

8-13

Chapter 8
Using the SQL Communications Area

You may use the END_OF_FETCH option to override the value use by the MODE
macro option.

END OF FETCH = 100 | 1403 (default 1403)

Related Topics
- END_OF FETCH

8.3.8.5 Actions

You can use the WHENEVER statement to specify the following actions.

8.3.8.6 CONTINUE

Your program continues to run with the next statement if possible. This is the default
action, equivalent to not using the WHENEVER statement. You can use it to "turn off"
condition checking.

8.3.8.7 DO CALL

Your program calls a nested subprogram. When the end of the subprogram is
reached, control transfers to the statement that follows the failed SQL statement.

8.3.8.8 DO PERFORM

Your program transfers control to a COBOL section or paragraph. When the end of the
section is reached, control transfers to the statement that follows the failed SQL
statement.

EXEC SQL
VHENEVER <condi ti on> DO PERFORM <secti on_nane>
END- EXEC.

8.3.89GOTOorGOTO

Your program branches to the specified paragraph or section.

8.3.8.10 STOP

Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off.

" Note:

Though in the generated code EXEC SQL WHENEVER SQLERROR STOP is
converted to IF SQLCODE IN SQLCA IS EQUAL TO 1403 THEN STOP RUN
END-IF, Oracle server will take care of rolling back uncommitted data.

ORACLE 8-14

Chapter 8
Using the SQL Communications Area

8.3.9 Coding the WHENEVER Statement

Code the WHENEVER statement using the following syntax:

EXEC SQL
VHENEVER <condi tion> <action>
END- EXEC.

8.3.9.1 DO PERFORM

When using the WHENEVER ... DO PERFORM statement, the usual rules for
PERFORMIng a paragraph or section apply. However, you cannot use the THRU,
TIMES, UNTIL, or VARYING clauses.

For example, the following WHENEVER ... DO statement is invalid.

PROCEDURE DI VI SI ON.
* Invalid statenent
EXEC SQL WHENEVER SQLERRCR DO
PERFORM DI SPLAY- ERROR THRU LOG OFF
END- EXEC.

DI SPLAY- ERRCR.

LOG CFF.

In the following example, WHENEVER SQLERROR DO PERFORM statements are
used to handle specific errors:

PROCEDURE DI VI SI ON.
MAIN SECTI ON.
MSTART.

EXEC SQL
WHENEVER SQLERRCR DO PERFORM | NS- ERROR
END- EXEC.
EXEC SQL
I NSERT | NTO EMP (EMPNO, ENAVE, DEPTNO)
VALUES (: EMP-NUVBER, : ENP-NAME, : DEPT- NUVBER)
END- EXEC.
EXEC SQL
WHENEVER SQLERRCR DO PERFORM DEL- ERROR
END- EXEC.
EXEC SQL
DELETE FROM DEPT
WHERE DEPTNO = : DEPT- NUVBER
END- EXEC.

MEXI T.
STOP RUN.

I NS- ERROR SECTI ON.

| NSSTART.

* Check for "duplicate key value" Oracle error
| F SQLCA. SQLCODE = -1

* Check for "value too large" Oracle error
ELSE | F SQLCA. SQLCODE = -1401

ORACLE 8-15

ORACLE

*

*

Chapter 8
Using the SQL Communications Area

DEL- ERROR SECTI ON.

Check for the nunmber of rows processed.
| F SQLCA. SQLERRD(3) = 0

Notice how the paragraphs check variables in the SQLCA to determine a course of

action.

8.3.9.2 DO CALL

This clause calls an action subprogram. Here is the syntax of this clause:

EXEC SQL
VHENEVER <condi ti on> DO CALL <subprogram nane>
[USING <paraml> ...]

END- EXEC.

The following restrictions or rules apply:

You cannot use the RETURNING, ON_EXCEPTION, or OVER_FLOW phrases in
the USING clause.

You may have to enter the subprogram name followed by the keyword COMMON
in the PROGRAM-ID statement of your COBOL source code.

You must use a WHENEVER CONTINUE statement in the action subprogram.

The action subprogram name may have to be in double quotes in the DO CALL
clause of the WHENEVER directive.

Here is an example of a program that can call the error subprogram SQL-ERROR from
inside the subprogram LOGON, or inside the MAIN program, without having to repeat
code in two places, as when using the DO PERFORM clause:

| DENTI FI CATI ON DI VI SI ON.

PROGRAM I D. MAIN.
ENVI RONMVENT DI VI SI ON.

PROCEDURE DI VI SI ON.

BEG N- PGM
EXEC SQL
WHENEVER SQLERROR DO CALL " SQL- ERRCR'
END- EXEC.
CALL "LOGON'.

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. LOGON.
DATA DI VI SI ON.

8-16

Chapter 8
Using the SQL Communications Area

WORKI NG- STORAGE SECTI ON.
01 USERNAME PI C X(15) VARYI NG
01 PASSWD PI C X(15) VARYI NG
PROCEDURE DI VI SI ON.

MOVE " SCOTT" TO USERNAME- ARR

MOVE 5 TO USERNAME- LEN,

MOVE "TI GER' TO PASSVWD- ARR

MOVE 5 TO PASSWD- LEN.

EXEC SQL

CONNECT : USERNAME | DENTI FI ED BY : PASSWD

END- EXEC.

DI SPLAY " "

DI SPLAY " CONNECTED TO ORACLE AS USER ", USERNAME- ARR
END PROGRAM LOGON.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. SQL- ERROR COMVON.
PROCEDURE DI VI SI ON.
EXEC SQL
WHENEVER SQLERRCR CONTI NUE
END- EXEC.
DI SPLAY "
DI SPLAY SQLERR\L.
EXEC SQL
ROLLBACK WORK RELEASE
END- EXEC.
END PROGRAM SQL- ERROR
END PROGRAM MAI N.

8.3.9.3 Scope

Because WHENEVER is a declarative statement, its scope is positional, not logical. It
tests all executable SQL statements that follow it in the source file, not in the flow of
program logic. So, code the WHENEVER statement before the first executable SQL
statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER
statement checking for the same condition.

Suggestion: You can place WHENEVER statements at the beginning of each
program unit that contains SQL statements. That way, SQL statements in one program
unit will not reference WHENEVER actions in another program unit, causing errors at
compile or run time.

8.3.9.4 Careless Usage: Examples

Careless use of the WHENEVER statement can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets the NOT FOUND
condition, because no rows meet the search condition:

* | mproper use of WHENEVER
EXEC SQL
WHENEVER NOT FOUND GOTO NO- MORE
END- EXEC.
PERFORM GET- ROAS UNTI L DONE = " VYES'.

GET- ROAS.

EXEC SQL
FETCH enp_cursor | NTO : EMP- NAME, : SALARY

ORACLE 8-17

Chapter 8
Using the SQL Communications Area

END- EXEC.

NO- MORE.
MOVE " YES" TO DONE.
EXEC SQL
DELETE FROM EMP WHERE EMPNO = : EMP- NUMBER
END- EXEC.

In the next example, the NOT FOUND condition is properly handled by resetting the
GOTO target:

* Proper use of WHENEVER
EXEC SQL WHENEVER NOT FOUND GOTO NO- MORE END- EXEC.
PERFORM GET- ROAS UNTI L DONE = "YES'.

CET- ROAS.
EXEC SQL
FETCH enp_cursor | NTO : EMP- NAME, : SALARY
END- EXEC.

NO- MORE.
MOVE " YES' TO DONE.
EXEC SQL WHENEVER NOT FOUND GOTO NONE- FOUND END- EXEC.
EXEC SQL
DELETE FROM EMP WHERE EMPNO = : EMP- NUVBER
END- EXEC.

NONE- FOUND.

8.3.10 Getting the Text of SQL Statements

ORACLE

In many Pro*COBOL applications, it is convenient to know the text of the statement
being processed, its length, and the SQL command (such as INSERT or SELECT) that
it contains. This is especially true for applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library, returns the following
information:

* The text of the most recently parsed SQL statement
* The length of the statement
e A function code

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL Method
1, you can call SQLGLS after the SQL statement is executed. With dynamic SQL
Method 2, 3, or 4, you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:
CALL "SQLGLS" USING SQLSTM STMLEN SQLFC.

Table 8-3 shows the host-language datatypes available for the parameters in the
SQLGLS argument list.tt

8-18

Chapter 8
Using the Oracle Communications Area

Table 8-3 Parameter Datatypes
|

Parameter Datatype
SQLSTM PIC X(n)
STMLEN PIC S9(9) COMP
SQLFC PIC S9(9) COMP

All parameters must be passed by reference. This is usually the default parameter
passing convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer that
holds the returned text of the SQL statement. Your program must statically declare the
buffer or dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set this
parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS returns,
the SQLSTM buffer contains the SQL statement text blank padded to the length of the
buffer. STMLEN returns the actual number of bytes in the returned statement text, not
counting the blank padding. However, STMLEN returns a zero if an error occurred.

Some possible errors follow:

* No SQL statement was parsed.
* You passed an invalid parameter (for example, a negative length value).
e Aninternal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for the
SQL command in the statement. A complete table of the function code for each SQL
command is found in Oracle Call Interface Programmer's Guide.

There are no SQL function codes for these statements:

« CONNECT
« COMMIT

- FETCH

* ROLLBACK
* RELEASE

8.4 Using the Oracle Communications Area

ORACLE

The SQLCA handles standard SQL communications. The Oracle Communications
Area (ORACA) is a similar structure that you can include in your program to handle
Oracle-specific communications. When you need more runtime information than the
SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your
program's use of resources such as the SQL Statement Executor and the cursor
cache, an area of memory reserved for cursor management.

8-19

Chapter 8
Using the Oracle Communications Area

8.4.1 Contents of the ORACA

The ORACA contains option settings, system statistics, and extended diagnostics.
Figure 8-3 shows all the variables in the ORACA:

Figure 8-3 ORACA Variable Declarations for Pro*COBOL

ORACA
01 ORACA.

05 ORACAID PIC X(8).

05 ORACABC PIC S9(9) COMP.

05 ORACCHF PIC S9(9) COMP.

05 ORADBGF PIC S9(9) COMP.

05 ORAHCHF PIC S9(9) COMP.

05 ORASTXTF PIC S9(9) COMP.

05 ORASTXT.
49 ORASTXTL PIC S9(4) COMP.
49 ORASTXTL PIC X(70).

05 ORASFNM.
49 ORASFNML PIC S9(4) COMP.
49 ORASFNMC PIC X(70).

05 ORASLNR PIC X (8).

05 ORAHOC PIC S9(9) COMP.

05 ORAMOC PIC S9(9) COMP.

05 ORACOC PIC S9(9) COMP.

05 ORANOR PIC S9(9) COMP.

05 ORANPR PIC S9(9) COMP.

05 ORANEX PIC S9(9) COMP.

8.4.2 Declaring the ORACA

To declare the ORACA, simply include it (using an EXEC SQL INCLUDE statement) in
your Pro*COBOL source file outside the Declare Section as follows:

* I nclude the Oracle Communications Area (ORACA).
EXEC SQ. | NCLUDE ORACA END- EXEC.

8.4.3 Enabling the ORACA

ORACLE

To enable the ORACA, you must set the ORACA precompiler option to YES on the
command line or in a configuration file with:

CRACA=YES

or inline with:

EXEC Oracl e OPTI ON (ORACA=YES) END- EXEC.
Then, you must choose appropriate runtime options by setting flags in the ORACA.

Enabling the ORACA is optional because it adds to runtime overhead. The default
setting is ORACA=NO.

8-20

Chapter 8
Using the Oracle Communications Area

8.4.4 Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them
nonzero values enables you to:

e Save the text of SQL statements
* Enable DEBUG operations

e Check cursor cache consistency (the cursor cache is a continuously updated area
of memory used for cursor management)

» Check heap consistency (the heap is an area of memory reserved for dynamic
variables)

e Gather cursor statistics

The following descriptions will help you choose the options you need.

8.4.5 ORACA Structure

This section describes the structure of the ORACA, its fields, and the values they can
store.

8.4.5.1 ORACAID

This string field is initialized to ORACA to identify the Oracle Communications Area.

8.4.5.2 ORACABC

This integer field holds the length, expressed in bytes, of the ORACA data structure.

8.4.5.3 ORACCHF

If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor cache
for consistency before every cursor operation.

The runtime library does the consistency checking and can issue error messages,
which are listed in Oracle Database Error Messages.

This flag has the following settings:

Settings Description
0 Disable cache consistency checking (the default).
1 Enable cache consistency checking.

8.4.5.4 ORADBGF

This master flag lets you choose all the DEBUG options. It has the following settings:

Settings Description
0 Disable all DEBUG operations (the default).
1 Allow DEBUG operations to be enabled.

ORACLE 8-21

Chapter 8
Using the Oracle Communications Area

8.4.5.5 ORAHCHF

If the master DEBUG flag (ORADBGF) is set, this flag tells the runtime library to check
the heap for consistency every time Pro*COBOL dynamically allocates or frees
memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot
be cleared; subsequent change requests are ignored. It has the following settings:

Settings Description
0 Enable heap consistency checking (the default).
1 Disable heap consistency checking.

8.4.5.6 ORASTXTF

This flag lets you specify when the text of the current SQL statement is saved. It has
the following settings:

Settings Description

0 Never save the SQL statement text (the default).

1 Save the SQL statement text on SQLERROR only.

2 Save the SQL statement text on SQLERROR or SQLWARNING.
3 Always save the SQL statement text.

The SQL statement text is saved in the ORACA sub-record named ORASTXT.

8.4.5.7 Diagnostics

The ORACA provides an enhanced set of diagnostics; the following variables help you
to locate errors quickly.

8.4.5.8 ORASTXT

This sub-record helps you find faulty SQL statements. It lets you save the text of the
last SQL statement parsed by Oracle. It contains the following two fields:

Settings Description
ORASTXTL This integer field holds the length of the current SQL statement.
ORASTXTC This string field holds the text of the current SQL statement. At

most, the first 70 characters of text are saved.

Statements parsed by Pro*COBOL, such as CONNECT, FETCH, and COMMIT, are
not saved in the ORACA.

ORACLE 8-22

Chapter 8
Using the Oracle Communications Area

8.4.5.9 ORASFNM

This sub-record identifies the file containing the current SQL statement and so helps
you find errors when multiple files are precompiled for one application. It contains the
following two fields:

Settings Description

ORASFNML This integer field holds the length of the filename stored in
ORASFNMC.

ORASFNMC This string field holds the filename. At most, the first 70 characters
are stored.

This integer field identifies the line at (or near) which the current SQL statement can

be found.

8.4.5.11 Cursor Cache Statistics

The following variables let you gather cursor cache statistics. They are automatically
set by every COMMIT or ROLLBACK statement your program issues. Internally, there
is a set of these variables for each CONNECTed database. The current values in the
ORACA pertain to the database against which the last commit or rollback was
executed.

8.4.5.12 ORAHOC

This integer field records the highest value to which MAXOPENCURSORS was set
during program execution.

8.4.5.13 ORAMOC

This integer field records the maximum number of open cursors required by your
program. This number can be higher than ORAHOC if MAXOPENCURSORS was set
too low, which forced Pro*COBOL to extend the cursor cache.

8.4.5.14 ORACOC

This integer field records the current number of open cursors required by your
program.

8.4.5.15 ORANOR

This integer field records the number of cursor cache reassignments required by your
program. This number shows the degree of "thrashing" in the cursor cache and should
be kept as low as possible.

8.4.5.16 ORANPR

This integer field records the number of SQL statement parses required by your
program.

ORACLE 8-23

Chapter 8
Using the Oracle Communications Area

8.4.5.17 ORANEX

This integer field records the number of SQL statement executions required by your
program. The ratio of this number to the ORANPR number should be kept as high as
possible. In other words, avoid unnecessary re-parsing.

Related Topics

* Performance Tuning

8.4.6 ORACA Example Program

ORACLE

The following program prompts for a department number, inserts the name and salary

of each employee in that department into one of two tables, and then displays
diagnostic information from the ORACA:

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. ORACAEX.

ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.
EXEC SQL | NCLUDE SQLCA END- EXEC.
EXEC SQL | NCLUDE ORACA END- EXEC.

EXEC ORACLE OPTI ON (ORACA=YES) END- EXEC.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAVE PI C X(20).

01 PASSWORD PI C X(20).

01 EMP- NAME PIC X(10) VARYI NG
01 DEPT-NUMBER PIC S9(4) COW.
01 SALARY PI C S9(6) V99

DI SPLAY SI GN LEADI NG SEPARATE.
EXEC SQL END DECLARE SECTI ON END- EXEC.

PROCEDURE DI VI SI ON.

DI SPLAY "Username? " W TH NO ADVANCI NG
ACCEPT USERNAME.
DI SPLAY "Password? " W TH NO ADVANCI NG
ACCEPT PASSWORD.
EXEC SQL

WHENEVER SQLERROR GOTO SQL- ERROR
END- EXEC.
EXEC SQL

CONNECT : USERNAVE | DENTI FI ED BY : PASSWORD
END- EXEC.
DI SPLAY " Connected to Oracle".

* -- set flags in the ORACA

* -- enabl e debug operations
MOVE 1 TO ORADBGF.

* -- enable cursor cache consistency check
MOVE 1 TO ORACCHF.

* -- always save the SQL statenent
MOVE 3 TO ORASTXTF.
DI SPLAY "Departnent nunber? " WTH NO ADVANCI NG
ACCEPT DEPT- NUMBER.
EXEC SQL DECLARE EMPCURSOR CURSOR FOR

SELECT ENAME, SAL + NVL(COWM 0)

8-24

Chapter 8
How Errors Map to SQLSTATE Codes

FROM EMP
VHERE DEPTNO = : DEPT- NUMBER
END- EXEC.
EXEC SQL OPEN EMPCURSOR END- EXEC.
EXEC SQL
VWHENEVER NOT FOUND GOTO NO- MORE
END- EXEC.
LOCP.
EXEC SQL
FETCH EMPCURSOR | NTO : EMP- NAME, : SALARY
END- EXEC.
I F SALARY < 2500
EXEC SQL
I NSERT | NTO PAY1 VALUES (: EMP- NAME, : SALARY)
END- EXEC
ELSE
EXEC SQL
I NSERT | NTO PAY2 VALUES (: EMP- NAME, : SALARY)
END- EXEC
END- | F.
GO TO LOCP.

NO- MORE.
EXEC SQL CLOSE EMPCURSOR END- EXEC.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQ. COW T WORK RELEASE END- EXEC.
DI SPLAY "(NO-MORE.) Last SQ statenent: ", ORASTXTC.

DI SPLAY "... at or near line nunber: ", ORASLNR
DI SPLAY " ",
DI SPLAY " Cursor Cache Statistics".
Dl SPLAY M -mm e e e -
DI SPLAY " Maxi mum val ue of MAXOPENCURSORS ", ORAHCC.
DI SPLAY "Maxi mum open cursors required: ", ORAMOC.
DI SPLAY "Current nunber of open cursors: ", ORACCC.
DI SPLAY "Nunber of cache reassignnents: ", ORANCR
DI SPLAY "Nunber of SQL statenent parses: ", ORANPR
DI SPLAY "Nunber of SQL statenent executions: ", ORANEX.
STOP RUN.

SQL- ERROR.

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
DI SPLAY "(SQL-ERROR.) Last SQL statement: ", ORASTXTC.

DI SPLAY "... at or near line nunber: ", ORASLNR.

DI SPLAY " ",

DI SPLAY " Cursor Cache Statistics".

Dl SPLAY M- m e e e
DI SPLAY " MAXI MUM VALUE OF MAXOPENCURSORS ", ORAHCC.
DI SPLAY "Maxi mum open cursors required: ", ORAMOC.
DI SPLAY "Current nunber of open cursors: ", ORACCC.
DI SPLAY "Nunber of cache reassignnents: ", ORANCR
DI SPLAY "Nunber of SQL statenent parses: ", ORANPR
DI SPLAY "Nunber of SQL statenent executions: ", ORANEX.
STOP RUN.

8.5 How Errors Map to SQLSTATE Codes

The following table describes SQLSTATE the codes, what they signify, and the
returned errors.

ORACLE 8-25

ORACLE

Chapter 8
How Errors Map to SQLSTATE Codes

Table 8-4 SQLSTATE Codes

Code Condition Oracle Error

00000 successful completion ORA-00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data - right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero-bit padding

01009 search condition too long for info schema

0100A guery expression too long for info schema

02000 no data ORA-01095
ORA-01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index

08000 connection exception

08001 SQL client unable to establish SQL connection

08002 connection name in use

08003 connection does not exist SQL-02121

08004 SQL server rejected SQL connection

08006 connection failure

08007 transaction resolution unknown

0A000 feature not supported ORA-03000 .. 03099

0A001 multiple server transactions

21000 cardinality violation ORA-01427
SQL-02112

22000 data exception

22001 string data - right truncation ORA-01401
ORA-01406

8-26

ORACLE

Chapter 8

How Errors Map to SQLSTATE Codes

Table 8-4 (Cont.) SQLSTATE Codes
|

Code Condition Oracle Error

22002 null value - no indicator parameter ORA-01405
SQL-02124

22003 numeric value out of range ORA-01426
ORA-01438
ORA-01455
ORA-01457

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA-01800 .. 01899

22009 invalid time zone displacement value

22011 substring error

22012 division by zero ORA-01476

22015 interval field overflow

22018 invalid character value for cast

22019 invalid escape character ORA-00911
ORA-01425

22021 character not in repertoire

22022 indicator overflow ORA-01411

22023 invalid parameter value ORA-01025
ORA-01488
ORA-04000 .. 04019

22024 unterminated C string ORA-01479 .. 01480

22025 invalid escape sequence ORA-01424

22026 string data - length mismatch

22027 trim error

23000 integrity constraint violation ORA-1400, ORA-00001
ORA-02290 .. 02299

24000 invalid cursor state ORA-01001 .. 01003
ORA-01410
ORA-08006
SQL-02114
SQL-02117
SQL-02118
SQL-02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule violation

2B000 dependent privilege descriptors still exist

8-27

ORACLE

Chapter 8

How Errors Map to SQLSTATE Codes

Table 8-4 (Cont.) SQLSTATE Codes
|

Code Condition Oracle Error

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error or access rule violation

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA-02091 .. 02092

40001 serialization failure

40002 integrity constraint violation

40003 statement completion unknown

42000 syntax error or access rule violation ORA-00022
ORA-00251
ORA-00900 .. 00999
ORA-01031
ORA-01490 .. 01493
ORA-01700 .. 01799
ORA-01900 .. 02099
ORA-02140 .. 02289
ORA-02420 .. 02424
ORA-02450 .. 02499
ORA-03276 .. 03299
ORA-04040 .. 04059
ORA-04070 .. 04099

44000 with check option violation ORA-01402

60000 system errors ORA-00370 .. 00429
ORA-00600 .. 00899
ORA-06430 .. 06449
ORA-07200 .. 07999
ORA-09700 .. 09999

61000 resource error ORA-00018 .. 00035
ORA-00050 .. 00068
ORA-02376 .. 02399
ORA-04020 .. 04039

62000 multithreaded server and detached process errors ORA-00100 .. 00120
ORA-00440 .. 00569

8-28

Chapter 8
How Errors Map to SQLSTATE Codes

Table 8-4 (Cont.) SQLSTATE Codes
|

Code Condition Oracle Error
63000 Oracle XA and two-task interface errors ORA-00150 .. 00159
SQL-02128

ORA-02700 .. 02899
ORA-03100 .. 03199
ORA-06200 .. 06249

SQL-02128
64000 control file, database file, and redo file errors; ORA-00200 .. 00369
archival and media recovery errors ORA-01100 .. 01250
65000 PL/SQL errors ORA-06500 .. 06599
66000 Oracle Net Services driver errors ORA-06000 .. 06149

ORA-06250 .. 06429
ORA-06600 .. 06999
ORA-12100 .. 12299
ORA-12500 .. 12599

67000 licensing errors ORA-00430 .. 00439
69000 SQL*Connect errors ORA-00570 .. 00599

ORA-07000 .. 07199
72000 SQL execute phase errors ORA-01000 .. 01099

ORA-01401 .. 01489
ORA-01495 .. 01499
ORA-01500 .. 01699
ORA-02400 .. 02419
ORA-02425 .. 02449
ORA-04060 .. 04069
ORA-08000 .. 08190
ORA-12000 .. 12019
ORA-12300 .. 12499
ORA-12700 .. 21999

82100 out of memory (could not allocate) SQL-02100
82101 inconsistent cursor cache: unit cursor/global cursor SQL-02101
mismatch
82102 inconsistent cursor cache: no global cursor entry SQL-02102
82103 inconsistent cursor cache: out of range cursor cache SQL-02103
reference
82104 inconsistent host cache: no cursor cache available SQL-02104
82105 inconsistent cursor cache: global cursor not found SQL-02105
82106 inconsistent cursor cache: invalid cursor number SQL-02106
82107 program too old for runtime library SQL-02107
82108 invalid descriptor passed to runtime library SQL-02108
82109 inconsistent host cache: host reference is out of range SQL-02109
82110 inconsistent host cache: invalid host cache entry type SQL-02110

ORACLE 8-29

Chapter 8

How Errors Map to SQLSTATE Codes

Table 8-4 (Cont.) SQLSTATE Codes
|

Code Condition Oracle Error
82111 heap consistency error SQL-02111
82112 unable to open message file SQL-02113
82113 code generation internal consistency failed SQL-02115
82114 reentrant code generator gave invalid context SQL-02116
82115 invalid hstdef argument SQL-02119
82116 first and second arguments to sqlrcn both null SQL-02120
82117 invalid OPEN or PREPARE for this connection SQL-02122
82118 application context not found SQL-02123
82119 connect error; can't get error text SQL-02125
82120 precompiler/SQLLIB version mismatch. SQL-02127
82121 FETCHed number of bytes is odd SQL-02129
82122 EXEC TOOLS interface is not available SQL-02130
82123 runtime context in use SQL-02131
82124 unable to allocate runtime context SQL-02131
82125 unable to initialize process for use with threads SQL-02133
82126 invalid runtime context SQL-02134
90000 debug events ORA-10000 .. 10999
99999 catch all all others
HZ000 remote database access

8.5.1 Status Variable Combinations

When MODE={ANSI | ANSI14}, the behavior of the status variables depends on the

following:

* Which variables are declared.

» Declaration placement (inside or outside the Declare Section).
* The ASSUME_SQLCODE setting.

Table 8-5 and Table 8-6 describe the resulting behavior of each status variable

combination when ASSUME_SQLCODE=NO and when ASSUME_SQLCODE=YES,
respectively.

For both Tables: when DECLARE_SECTION=NO, any declaration of a status variable
is treated as IN as far as these tables are concerned.

Do not use ASSUME_SQLCODE=YES with DECLARE_SECTION=NO.

Table 8-5 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14
and DECLARE_SECTION=YES

SQLCODE SQLSTATE SQLCA Behavior
ouT — — SQLCODE is declared and is presumed to be a status variable.
ORACLE 8-30

Chapter 8
How Errors Map to SQLSTATE Codes

Table 8-5 (Cont.) Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI |

ANSI14 and DECLARE_SECTION=YES

SQLCODE SQLSTATE SQLCA Behavior

ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ouT ouT — SQLCODE is declared and is presumed to be a status variable, and
SQLSTATE is declared but is not recognized as a status variable.

ouT ouT ouT This status variable configuration is not supported.

ouT ouT IN This status variable configuration is not supported.

ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared but is not recognized as a status variable.

ouT IN ouT This status variable configuration is not supported.

ouT IN IN This status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — ouT This status variable configuration is not supported.

IN — IN This status variable configuration is not supported.

IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but is not recognized as a status variable.

IN ouT ouT This status variable configuration is not supported.

IN ouT IN This status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN ouT This status variable configuration is not supported.

IN IN IN This status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — ouT SQLCA is declared as a status variable.

— — IN SQLCA is declared as a status host variable.

— ouT — This status variable configuration is not supported.

— ouT ouT SQLCA is declared as a status variable, and SQLSTATE is declared
but is not recognized as a status variable.

— ouT IN SQLCA is declared as a status host variable, and SQLSTATE is
declared but is not recognized as a status variable.

— IN — SQLSTATE is declared as a status variable.

— IN ouT SQLSTATE and SQLCA are declared as status variables.

— IN IN SQLSTATE and SQLCA are declared as status host variables.

Table 8-6 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI | ANSI14
and DECLARE_SECTION=YES

SQLCODE SQLSTATE SQLCA Behavior

ouT — — SQLCODE is declared and is presumed to be a status variable.
ouT — ouT This status variable configuration is not supported.

ouT — IN This status variable configuration is not supported.

ORACLE 8-31

Chapter 8
How Errors Map to SQLSTATE Codes

Table 8-6 (Cont.) Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI |

ANSI14 and DECLARE_SECTION=YES

SQLCODE SQLSTATE SQLCA Behavior
ouT ouT — SQLCODE is declared and is presumed to be a status variable, and
SQLSTATE is declared but is not recognized as a status variable.
ouT ouT ouT This status variable configuration is not supported.
ouT ouT IN This status variable configuration is not supported.
ouT IN — SQLSTATE is declared as a status variable, and SQLCODE is
declared and is presumed to be a status variable.
ouT IN ouT This status variable configuration is not supported.
ouT IN IN This status variable configuration is not supported.
IN — — SQLCODE is declared as a status variable.
IN — ouT This status variable configuration is not supported.
IN — IN This status variable configuration is not supported.
IN ouT — SQLCODE is declared as a status variable, and SQLSTATE is
declared but not as a status variable.
IN ouT ouT This status variable configuration is not supported.
IN ouT IN This status variable configuration is not supported.
IN IN — SQLCODE and SQLSTATE are declared as a status variables.
IN IN ouT This status variable configuration is not supported.
IN IN IN This status variable configuration is not supported.
— — — These status variable configurations are not supported. SQLCODE
— — ouT must be declared when ASSUME_SQLCODE=YES.
— — IN
— ouT —
— ouT ouT
— ouT IN
— IN ouT
— IN IN
ORACLE 8-32

Oracle Dynamic SQL

This chapter shows you how to use dynamic SQL, an advanced programming
technique that adds flexibility and functionality to your applications. After weighing the
advantages and disadvantages of dynamic SQL, you learn four methods—from simple
to complex—for writing programs that accept and process SQL statements "on the fly"
at run time. You learn the requirements and limitations of each method and how to
choose the right method for a given job.

Topics are:

e Dynamic SQL

* Advantages and Disadvantages of Dynamic SQL
* When to Use Dynamic SQL

* Requirements for Dynamic SQL Statements

* How Dynamic SQL Statements Are Processed
e Methods for Using Dynamic SQL

e Using Method 1

e Sample Program 6: Dynamic SQL Method 1

e Using Method 2

e Sample Program 7: Dynamic SQL Method 2

e Using Method 3

e Sample Program 8: Dynamic SQL Method 3

e Using Oracle Method 4

e Using the DECLARE STATEMENT Statement
e Using Host Tables

e Using PL/SQL

e Dynamic SQL Statement Caching

9.1 Dynamic SQL

Most database applications do a specific job. For example, a simple program might
prompt the user for an employee number, then update rows in the EMP and DEPT
tables. In this case, you know the makeup of the UPDATE statement at precompile
time. That is, you know which tables might be changed, the constraints defined for
each table and column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a variety of SQL
statements at run time. For example, a general-purpose report writer must build
different SELECT statements for the various reports it generates. In this case, the

ORACLE 9-1

Chapter 9
Advantages and Disadvantages of Dynamic SQL

statement's makeup is unknown until run time. Such statements can, and probably will,
change from execution to execution. They are aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your
source program. Instead, they are stored in character strings input to or built by the
program at run time. They can be entered interactively or read from a file.

9.2 Advantages and Disadvantages of Dynamic SQL

9.3 When

Host programs that accept and process dynamically defined SQL statements are more
versatile than plain embedded SQL programs. Dynamic SQL statements can be built
interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be
used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more
complex program might allow users to choose from menus listing SQL operations,
table and view names, column names, and so on. Thus, dynamic SQL lets you write
highly flexible applications.

However, some dynamic queries require complex coding, the use of special data
structures, and more runtime processing. While you might not notice the added
processing time, you might find the coding difficult unless you fully understand
dynamic SQL concepts and methods.

to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic SQL
only if you need its open-ended flexibility. Its use is suggested when one or more of
the following items is unknown at precompile time:

e Text of the SQL statement (commands, clauses, and so on)
* The number of host variables
* The datatypes of host variables

» References to database objects such as columns, indexes, sequences, tables,
usernames, and views

9.4 Requirements for Dynamic SQL Statements

ORACLE

To represent a dynamic SQL statement, a character string must contain the text of a
valid DML or DDL SQL statement, but not contain the EXEC SQL clause, host-
language delimiter or statement terminator.

In most cases, the character string can contain dummy host variables. They hold
places in the SQL statement for actual host variables. Because dummy host variables
are just place-holders, you do not declare them and can name them anything you like
(hyphens are not allowed). For example, Oracle makes no distinction between the
following two strings

' DELETE FROM EMP WHERE MGR = : MGRNUMBER AND JOB = : JOBTI TLE
' DELETE FROM EMP WHERE MR = : M AND JOB = :J'

9-2

Chapter 9
How Dynamic SQL Statements Are Processed

9.5 How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a SQL statement and
the values of host variables used in the statement. Then Oracle parses the SQL
statement. That is, Oracle examines the SQL statement to make sure it follows syntax
rules and refers to valid database objects. Parsing also involves checking database
access rights, reserving needed resources, and finding the optimal access path.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the
addresses of the host variables so that it can read or write their values.

If the statement is a query, you define the SELECT variables and then Oracle
FETCHes them until all rows are retrieved. The cursor is then closed.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL
statement requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host
variables.

9.6 Methods for Using Dynamic SQL

This section introduces the four methods you can use to define dynamic SQL
statements. It briefly describes the capabilities and limitations of each method, then
offers guidelines for choosing the right method. Later sections show you how to use
the methods.

The four methods are increasingly general. That is, Method 2 encompasses Method 1,
Method 3 encompasses Methods 1 and 2, and so on. However, each method is most
useful for handling a certain kind of SQL statement, as Appropriate Method to Use
shows:

Table 9-1 Appropriate Method to Use
|

Method Kind of SQL Statement

1 Non-query without input host variables.

2 Non-query with known number of input host variables.

3 Query with known number of select-list items and input host variables.
4 Query with unknown number of select-list items or input host variables.

The term select-list item includes column names and expressions.

9.6.1 Method 1

ORACLE

This method lets your program accept or build a dynamic SQL statement, then
immediately execute it using the EXECUTE IMMEDIATE command. The SQL
statement must not be a query (SELECT statement) and must not contain any place-
holders for input host variables. For example, the following host strings qualify:

' DELETE FROM EMP WHERE DEPTNO = 20’

" GRANT SELECT ON EMP TO SCOTT'

9-3

Chapter 9
Methods for Using Dynamic SQL

With Method 1, the SQL statement is parsed every time it is executed (regardless of
whether you have set HOLD_CURSOR=YES).

9.6.2 Method 2

This method lets your program accept or build a dynamic SQL statement, then
process it using the PREPARE and EXECUTE commands. The SQL statement must
not be a query. The number of place-holders for input host variables and the datatypes
of the input host variables must be known at precompile time. For example, the
following host strings fall into this category:

"I NSERT | NTO EMP (ENAME, JOB) VALUES (: EMPNAME, :JOBTITLE)'
' DELETE FROM EMP WHERE EMPNO = : EMPNUMBER

With Method 2, the SQL statement can be parsed just once by calling PREPARE
once, and executed many times with different values for the host variables. This is not
true when RELEASE_CURSOR=YES is also specified, because the statement has to
be prepared again before each execution.

Note:

SQL data definition statements such as CREATE are executed once the
PREPARE is completed.

9.6.3 Method 3

This method lets your program accept or build a dynamic query then process it using
the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor
commands. The number of select-list items, the number of place-holders for input host
variables, and the datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

" SELECT DEPTNO, M N(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO
" SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = : DEPTNUMBER

9.6.4 Method 4

ORACLE

This method lets your program accept or build a dynamic SQL statement, then
process it using descriptors (discussed in "Using Oracle Method 4"). The number of
select-list items, the number of place-holders for input host variables, and the
datatypes of the input host variables can be unknown until run time. For example, the
following host strings fall into this category:

"I NSERT | NTO EMP (unknown) VALUES (unknown)'

" SELECT unknown FROM EMP WHERE DEPTNO = 20’

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or input host variables.

9-4

Chapter 9
Methods for Using Dynamic SQL

9.6.5 Guidelines

With all four methods, you must store the dynamic SQL statement in a character
string, which must be a host variable or quoted literal. When you store the SQL
statement in the string, omit the keywords EXEC SQL and the statement terminator.

With Methods 2 and 3, the number of place-holders for input host variables and the
datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more
difficult to code. As a rule, use the simplest method you can. However, if a dynamic
SQL statement will be executed repeatedly by Method 1, use Method 2 instead to
avoid re-parsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding and a full
understanding of dynamic SQL concepts. In general, use Method 4 only if you cannot
use Methods 1, 2, or 3.

The decision logic in Figure 9-1, will help you choose the correct method.

9.6.5.1 Avoiding Common Errors

ORACLE

If you use a character array to store the dynamic SQL statement, blank-pad the array
before storing the SQL statement. That way, you clear extraneous characters. This is
especially important when you reuse the array for different SQL statements. As a rule,
always initialize (or re-initialize) the host string before storing the SQL statement.

Do not null-terminate the host string. Oracle does not recognize the null terminator as
an end-of-string marker. Instead, Oracle treats it as part of the SQL statement.

If you use a VARCHAR variable to store the dynamic SQL statement, make sure the
length of the VARCHAR is set (or reset) correctly before you execute the PREPARE or
EXECUTE IMMEDIATE statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to catch mistakes
such as an unconditional update (caused by omitting a WHERE clause), check the
SQLWARN flags after executing the PREPARE statement but before executing the
EXECUTE statement.

Figure 9-1 shows how to choose the right method.

9-5

Figure 9-1 Choosing the Right Method

About the SQL statement...

Does its select list
contain an unknown
number of items?

yes

Is it a query?

Does it
contain an
unknown number of
input host
variables?

Does it contain
input host
variables?

yes

no

Does it

contain an unknown yes

v

Chapter 9
Using Method 1

number of input
host variables?

Will it be executed
repeatedly?

v A\ 4

v

Method 1 Method 2 Method 3 Method 4

9.7 Using Method 1

The simplest kind of dynamic SQL statement results only in "suc
uses no host variables. Some examples follow:

' DELETE FROM t abl e_nane WHERE col unm_name = constant'
' CREATE TABLE table name ...’

" DROP | NDEX i ndex_nang'

" UPDATE tabl e_name SET col uim_nane = constant’

" GRANT SELECT ON tabl e _name TO usernang'

9.7.1 The EXECUTE IMMEDIATE Statement

Method 1 parses, then immediately executes the SQL statement using the EXECUTE
IMMEDIATE command. The command is followed by a character string (host variable
or literal) containing the SQL statement to be executed, which cannot be a query.

ORACLE

The syntax of the EXECUTE IMMEDIATE statement follows:

cess" or "failure" and

9-6

Chapter 9
Using Method 1

EXEC SQL EXECUTE | MVEDI ATE { :HOST-STRING | STRING LI TERAL } END- EXEC.

In the following example, you use the host variable SQL-STMT to store SQL
statements input by the user:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 SQL-STMI PIC X(120);
EXEC SQL END DECLARE SECTI ON END- EXEC.

LOOP.
DI SPLAY ' Enter SQL statenent: ' WTH NO ADVANCI NG
ACCEPT SQL- STMI END- EXEC.

* -- sgl_stnm now contains the text of a SQ statenent
EXEC SQL EXECUTE | MVEDI ATE : SQL- STMI END- EXEC.

NEXT.

Because EXECUTE IMMEDIATE parses the input SQL statement before every
execution, Method 1 is best for statements that are executed only once. Data definition
statements usually fall into this category.

9.7.2 An Example

ORACLE

The following fragment of a program prompts the user for a search condition to be
used in the WHERE clause of an UPDATE statement, then executes the statement
using Method 1:

THE RELEASE _CURSOR=YES OPTI ON | NSTRUCTS PRO*COBOL TO
RELEASE | MPLICI T CURSORS ASSCCI ATED W TH EMBEDDED SQL
STATEMENTS. THI'S ENSURES THAT Oracl e DOES NOT KEEP PARSE
LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANI PULATI ON
OPERATI ONS ON THOSE TABLES DO NOT RESULT I'N PARSE- LOCK
ERRCRS.

* ok k% ok F

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) END- EXEC.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME PIC X(10) VALUE "SCOTT".
01 PASSWD PIC X(10) VALUE "TI GER'.
01 DYNSTMI PIC X(80).

EXEC SQL END DECLARE SECTI ON END- EXEC.
01 UPDATESTMI PI C X(40).
01 SEARCH COND PI C X(40).

DI SPLAY "ENTER A SEARCH CONDI TI ON FOR STATEMENT: ".

MOVE " UPDATE EMP SET COMM = 500 WHERE " TO UPDATESTMT.

DI SPLAY UPDATESTNM.

ACCEPT SEARCH- COND.
* Concat enat e SEARCH COND t o UPDATESTMI and store result
* i n DYNSTM.

STRI NG UPDATESTMT DELI M TED BY SI ZE

SEARCH- COND DELI M TED BY SI ZE | NTO DYNSTMM.
EXEC SQL EXECUTE | MVEDI ATE : DYNSTMI' END- EXEC.

9-7

Chapter 9
Sample Program 6: Dynamic SQL Method 1

9.8 Sample Program 6: Dynamic SQL Method 1

This program uses dynamic SQL Method 1 to create a table, insert a row, commit the
insert, then drop the table.

LR E RS SRS R RS SRR E RS ER SRR SRR SRR R EREEREEREEEEEEEEEEEEEEEEEEEESERSEEE]

* Sanple Program 6: Dynanmic SQL Method 1 *
* *
* This program uses dynamic SQL Method 1 to create a table, *
* insert a row, commt the insert, then drop the table. *

LR EE R SRS R RS SRR EREER SRR SRR SRR EREEREEREEREEEEEEEEEEEEEEEEEESEESEEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. DYNSQLL.
ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.

* I NCLUDE THE ORACLE COVMMUNI CATI ONS AREA, A STRUCTURE
* THROUGH WHI CH ORACLE MAKES ADDI TI ONAL RUNTI ME STATUS
* | NFORVATI ON AVAI LABLE TO THE PROGRAM

EXEC SQL | NCLUDE SQLCA END- EXEC.

* I NCLUDE THE ORACLE COVMMUNI CATI ONS AREA, A STRUCTURE
* THROUGH WHI CH ORACLE MAKES ADDI TI ONAL RUNTI ME STATUS
* | NFORVATI ON AVAI LABLE TO THE PROGRAM

EXEC SQL | NCLUDE ORACA END- EXEC.

* THE OPTI ON ORACA=YES MUST BE SPECI FI ED TO ENABLE USE OF
* THE ORACA

EXEC ORACLE OPTI ON (ORACA=YES) END- EXEC.

THE RELEASE_CURSOR=YES OPTI ON I NSTRUCTS PRO*COBOL TO
RELEASE [MPLICI T CURSORS ASSCCI ATED W TH EMBEDDED SQL
STATEMENTS. THI'S ENSURES THAT CRACLE DCES NOT KEEP PARSE
LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANI PULATI ON
OPERATI ONS ON THOSE TABLES DO NOT RESULT I'N PARSE- LOCK
ERRCRS.

* % % %k % F

EXEC ORACLE OPTI ON (RELEASE_CURSCR=YES) END- EXEC.
EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 USERNAME PIC X(10) VALUE "SCOTT".

01 PASSWD PIC X(10) VALUE "TI GER'.

01 DYNSTMI PIC X(80) VARYING
EXEC SQL END DECLARE SECTI ON END- EXEC.

* DECLARE VARI ABLES NEEDED TO DI SPLAY COVPUTATI ONALS.
01 ORASLNRD PIC 9(9).

PROCEDURE DI VI SI ON.
MAI'N.

* BRANCH TO PARAGRAPH SQLERROR | F AN ORACLE ERROR OCCURS.
EXEC SQL WHENEVER SQLERRCR GOTO SQLERROR END- EXEC.

ORACLE 9-8

ORACLE

* ok k%

Chapter 9
Sample Program 6: Dynamic SQL Method 1

SAVE TEXT OF CURRENT SQL STATEMENT |IN THE ORACA | F AN ERROR
OCCURS.
MOVE 1 TO ORASTXTF.

CONNECT TO CRACLE.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY "CONNECTED TO ORACLE AS USER " W TH NO ADVANCI NG
DI SPLAY USERNAME.
DI SPLAY " "

EXECUTE A STRING LI TERAL TO CREATE THE TABLE. HERE, YOU
GENERALLY USE A STRING VARI ABLE | NSTEAD OF A LITERAL, AS IS
DONE LATER IN TH'S PROGRAM BUT, YOU CAN USE A LITERAL |F
YOU W SH.
DI SPLAY " CREATE TABLE DYNL (COL1 CHAR(4))".
DI SPLAY " "
EXEC SQL EXECUTE | MVEDI ATE

" CREATE TABLE DYNL (COL1 CHAR(4))"
END- EXEC.

ASSI GN A SQL STATEMENT TO THE VARYI NG STRI NG DYNSTM.
SET THE - LEN PART TO THE LENGTH OF THE - ARR PART.

MOVE "I NSERT | NTO DYN1 VALUES (' TEST')" TO DYNSTMI- ARR
MOVE 36 TO DYNSTMI- LEN.

DI SPLAY DYNSTMT- ARR.

DI SPLAY " "

EXECUTE DYNSTMI TO I NSERT A RON THE SQL STATEMENT IS A
STRING VARI ABLE WHOSE CONTENTS THE PROGRAM MAY DETERM NE
AT RUN TI ME.

EXEC SQL EXECUTE | MVEDI ATE : DYNSTMI END- EXEC.

COW T THE | NSERT.
EXEC SQL COWM T WORK END- EXEC.

CHANGE DYNSTMI AND EXECUTE | T TO DROP THE TABLE.
MOVE " DROP TABLE DYNL" TO DYNSTMT- ARR.

MOVE 19 TO DYNSTMI- LEN.

DI SPLAY DYNSTMT- ARR.

DI SPLAY " "

EXEC SQL EXECUTE | MVEDI ATE : DYNSTMI END- EXEC.

COW T ANY PENDI NG CHANGES AND DI SCONNECT FROM CRACLE.
EXEC SQL COW T RELEASE END- EXEC.

DI SPLAY "HAVE A GOOD DAY!".

DI SPLAY " "

STCP RUN.

SQLERRR

ORACLE ERRCR HANDLER. PRI NT DI AGNOSTI C TEXT CONTAI NI NG
ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATI ON OF ERRCR.
DI SPLAY SQLERRMC.

DI SPLAY "IN ", CORASTXTC.

MOVE ORASLNR TO ORASLNRD.

DI SPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

9-9

Chapter 9
Using Method 2

* DI SABLE ORACLE ERROR CHECKI NG TO AVO D AN | NFI NI TE LOOP
* SHOULD ANOTHER ERROR OCCUR W THI N THI' S PARAGRAPH.
EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.

* ROLL BACK ANY PENDI NG CHANGES AND DI SCONNECT FROM CRACLE.
EXEC SQL ROLLBACK RELEASE END- EXEC.
STCP RUN.

9.9 Using Method 2

ORACLE

What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement,
which cannot be a query, is first prepared (named and parsed), then executed.

With Method 2, the SQL statement can contain place-holders for input host variables
and indicator variables. You can PREPARE the SQL statement once, then EXECUTE
it repeatedly using different values of the host variables. Also, if you have not specified
MODE=ANSI, you need not re-prepare the SQL statement after a COMMIT or
ROLLBACK (unless you log off and reconnect).

The syntax of the PREPARE statement follows:

EXEC SQL PREPARE STATEMENT- NAVE
FROM { : HOST-STRING | STRI NG LI TERAL }
END- EXEC.

PREPARE parses the SQL statement and gives it a name.

STATEMENT-NAME is an identifier used by the precompiler, not a host or program
variable, and should not be declared in a COBOL statement. It simply designates the
prepared statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL
EXECUTE STATEMENT- NAME [USI NG HOST- VARI ABLE- LI ST]
END- EXEC.

where HOST-VARIABLE-LIST stands for the following syntax:
: HOST- VARL[: | NDI CATOR1] [, HOST-VARZ[: | NDI CATOR?], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each
input host variable. In the following example, the input SQL statement contains the
place-holder n:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP-NUMBER PIC S9(4) COWP VALUE ZERO
01 DELETE-STMI PIC X(120) VALUE SPACES.

EXEC SQL END DECLARE SECTI ON END- EXEC.
01 WHERE- STMT PI C X(40).
01 SEARCH COND PIC X(40).

MOVE ' DELETE FROM EMP WHERE EMPNO = : N AND ' TO VHERE- STM.
DI SPLAY ' Conpl ete this statenent's search condition:".
DI SPLAY \HERE- STM.
ACCEPT SEARCH- COND.
* Concat enat e SEARCH COND to WHERE- STMI and store in DELETE- STMI

9-10

Chapter 9
Sample Program 7: Dynamic SQL Method 2

STRI NG WHERE- STMTI' DELI M TED BY SI ZE
SEARCH- COND DELIM TED BY SI ZE | NTO
DELETE- STMT.
EXEC SQL PREPARE SQLSTMI FROM : DELETE- STMI' END- EXEC.
LOOP.
DI SPLAY ' Enter enpl oyee nunber: ' WTH NO ADVANCI NG
ACCEPT EMP- NUMBER.
| F EMP-NUMBER = 0
GO TO NEXT.
EXEC SQL EXECUTE SQLSTMI USI NG : EMP- NUMBER END- EXEC.
NEXT.

With Method 2, you must know the datatypes of input host variables at precompile
time. In the last example, EMP-NUMBER was declared as type PIC S9(4) COMP. It
could also have been declared as type PIC X(4) or COMP-1, because Oracle supports
all these datatype conversions to the NUMBER internal datatype.

9.9.1 The USING Clause

When the SQL statement EXECUTE is completed, input host variables in the USING
clause replace corresponding place-holders in the prepared dynamic SQL statement.

Every place-holder in the dynamic SQL statement after PREPARE must correspond to
a host variable in the USING clause. So, if the same place-holder appears two or more
times in the statement after PREPARE, each appearance must correspond to a host
variable in the USING clause. If one of the host variables in the USING clause is an
array, all must be arrays. Otherwise, only one record is then processed.

The names of the place-holders need not match the names of the host variables.
However, the order of the place-holders in the dynamic SQL statement after
PREPARE must match the order of corresponding host variables in the USING clause.

To specify NULLSs, you can associate indicator variables with host variables in the
USING clause.

Related Topics

» Using Indicator Variables

9.10 Sample Program 7: Dynamic SQL Method 2

This program uses dynamic SQL Method 2 to insert two rows into the EMP table and
then delete them.

IR EEE SRR R RS SRR R SRR SRR SRR SRR EEREREEREEREEREEREEER SRR EREEEREEEESEERSEEE]

* Sanple Program 7: Dynanic SQL Method 2 *
* *
* This program uses dynamic SQL Method 2 to insert two rows *
* into the EMP table, then delete them *

IR EE R SRR R RS SRR R SRR SRR SRR SRR R R ERE SRR EREEREEEEEREEEEREEEREEEESEERSEEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. DYNSQL2.
ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

* I NCLUDE THE SQL COVMUNI CATI ONS AREA, A STRUCTURE THROUGH
* WHI CH ORACLE MAKES RUNTI ME STATUS | NFORMATI ON (SUCH AS ERROR

ORACLE 9-11

ORACLE

* Ok k% ok

01
01
01
01
01
01

01
01
01
01

Chapter 9
Sample Program 7: Dynamic SQL Method 2

CODES, WARNI NG FLAGS, AND DI AGNOSTI C TEXT) AVAI LABLE TO THE
PROGRAM
EXEC SQL | NCLUDE SQLCA END- EXEC.

I NCLUDE THE ORACLE COMMUNI CATI ONS AREA, A STRUCTURE THROUGH
VWHI CH ORACLE MAKES ADDI TI ONAL RUNTI ME STATUS | NFORMATI ON
AVAI LABLE TO THE PROGRAM

EXEC SQL | NCLUDE ORACA END- EXEC.

THE OPTI ON ORACA=YES MJUST BE SPECI FI ED TO ENABLE USE OF
THE ORACA
EXEC ORACLE OPTI ON (ORACA=YES) END- EXEC.

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
USERNAME PI C X(10) VALUE "SCOTT".

PASSWD PIC X(10) VALUE "TIGER'.

DYNSTMI PIC X(80) VARYI NG

EMPNO PIC S9(4) COMPUTATI ONAL VALUE 1234.
DEPTNOL Pl C S9(4) COMPUTATI ONAL VALUE 10.
DEPTNC2 Pl C S9(4) COMPUTATI ONAL VALUE 20.
EXEC SQL END DECLARE SECTI ON END- EXEC.

DECLARE VARI ABLES NEEDED TO DI SPLAY COVPUTATI ONALS.
EMPNOD PIC 9(4).
DEPTNOLD PIC 9(2).
DEPTNCRD PIC 9(2).
ORASLNRD PIC 9(9).

PROCEDURE DI VI SI ON.
MAIN.

BRANCH TO PARAGRAPH SQLERRCR | F AN ORACLE ERROR OCCURS.
EXEC SQL WHENEVER SQLERRCR GOTO SQLERROR END- EXEC.

SAVE TEXT OF CURRENT SQL STATEMENT |IN THE ORACA | F AN ERROR
OCCURS.
MOVE 1 TO ORASTXTF.

CONNECT TO CRACLE.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " "
DI SPLAY " CONNECTED TO ORACLE. ".
DI SPLAY " "

ASSI GN A SQL STATEMENT TO THE VARYI NG STRI NG DYNSTMI. BOTH
THE ARRAY AND THE LENGTH PARTS MJST BE SET PROPERLY. NOTE
THAT THE STATEMENT CONTAINS TWO HOST VARI ABLE PLACEHOLDERS,
V1 AND V2, FOR VHl CH ACTUAL | NPUT HOST VAR ABLES MUST BE
SUPPLI ED AT EXECUTE TI ME.
MOVE "I NSERT | NTO EMP (EMPNO, DEPTNO) VALUES (:V1, :V2)"

TO DYNSTMT- ARR
MOVE 49 TO DYNSTMT- LEN.

DI SPLAY THE SQL STATEMENT AND | TS CURRENT | NPUT HOST
VARI ABLES.

DI SPLAY DYNSTMT- ARR.

MOVE EMPNO TO EMPNOD.

MOVE DEPTNOL TO DEPTNOLD.

DI SPLAY " vl =", EMPNCD, " V2 =", DEPTNOLD.

9-12

ORACLE

* ok k%

T N R

Chapter 9
Sample Program 7: Dynamic SQL Method 2

THE PREPARE STATEMENT ASSCCI ATES A STATEMENT NAME W TH A
STRING CONTAI NING A SQL STATEMENT. THE STATEMENT NAME | S
A SQL I DENTI FIER, NOT A HOST VAR ABLE, AND THEREFORE DCES
NOT APPEAR | N THE DECLARE SECTI ON.

A SINGLE STATEMENT NAME MAY BE PREPARED MORE THAN ONCE,
OPTI ONALLY FROM A DI FFERENT STRI NG VARI ABLE.
EXEC SQL PREPARE S FROM : DYNSTMI END- EXEC.

THE EXECUTE STATEMENT EXECUTES A PREPARED SQL STATEMENT
USI NG THE SPECI FI ED | NPUT HOST VARI ABLES, VWH CH ARE

SUBSTI TUTED POSI TI ONALLY FOR PLACEHCOLDERS | N THE PREPARED
STATEMENT. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
STATEMENT THERE MUST BE A VARI ABLE IN THE USI NG CLAUSE.
THAT IS, |F A PLACEHOLDER OCCURS MULTIPLE TIMES IN THE
STATEMENT, THE CORRESPONDI NG VARI ABLE MUST APPEAR

MULTI PLE TIMES I N THE USI NG CLAUSE. THE USI NG CLAUSE MAY
BE OM TTED ONLY | F THE STATEMENT CONTAINS NO PLACEHOLDERS.
A SINGLE PREPARED STATEMENT MAY BE EXECUTED MORE THAN ONCE,
OPTI ONALLY USI NG DI FFERENT | NPUT HOST VARI ABLES.

EXEC SQL EXECUTE S USING : EMPNO, :DEPTNOL END- EXEC.

| NCREMENT EMPNO AND DI SPLAY NEW | NPUT HOST VAR ABLES.
ADD 1 TO EMPNO.

MOVE EMPNO TO EMPNOD.

MOVE DEPTNO2 TO DEPTNO2D.

DI SPLAY " vl =", EMPNCD, " V2 =", DEPTNO2D.

REEXECUTE S TO | NSERT THE NEW VALUE OF EMPNO AND A

DI FFERENT | NPUT HOST VARI ABLE, DEPTNC2. A REPREPARE IS NOT
NECESSARY.

EXEC SQL EXECUTE S USI NG : EMPNO, : DEPTNO2 END- EXEC.

ASSI GN' A NEW VALUE TO DYNSTM.

MOVE " DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = : V2"
TO DYNSTMT- ARR.

MOVE 50 TO DYNSTMTI- LEN.

DI SPLAY THE NEW SQL STATEMENT AND | TS CURRENT | NPUT HOST
VARI ABLES.

DI SPLAY DYNSTMT- ARR.

DI SPLAY " V1l =", DEPTNOLD, " V2 =", DEPTNO2D.

REPREPARE S FROM THE NEW DYNSTMT.
EXEC SQL PREPARE S FROM : DYNSTMI END- EXEC.

EXECUTE THE NEW S TO DELETE THE TWO ROAS PREVI QUSLY
| NSERTED.
EXEC SQL EXECUTE S USI NG : DEPTNOL, : DEPTNO2 END- EXEC.

ROLLBACK ANY PENDI NG CHANGES AND DI SCONNECT FROM ORACLE.
EXEC SQL ROLLBACK RELEASE END- EXEC.

DI SPLAY " ™.

DI SPLAY "HAVE A GOOD DAY!".

DI SPLAY " ™.

STCP RUN.

SQLERROR

ORACLE ERRCR HANDLER. PRI NT DI AGNOSTI C TEXT CONTAI NI NG
ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATI ON OF ERRCR

9-13

Chapter 9
Using Method 3

DI SPLAY SQLERRMC.

DI SPLAY "IN ", CORASTXTC.

MOVE ORASLNR TO ORASLNRD.

DI SPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

* DI SABLE ORACLE ERROR CHECKI NG TO AVO D AN I NFI NI TE LOOP
* SHOULD ANOTHER ERRCR OCCUR W THI N THI S PARAGRAPH.
EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.

* ROLL BACK ANY PENDI NG CHANGES AND DI SCONNECT FROM CRACLE.
EXEC SQL ROLLBACK RELEASE END- EXEC.
STCP RUN.

9.11 Using Method 3

Method 3 is similar to Method 2 but combines the PREPARE statement with the
statements needed to define and manipulate a cursor. This allows your program to
accept and process queries. In fact, if the dynamic SQL statement is a query, you
must use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of place-
holders for input host variables must be known at precompile time. However, the
names of database objects such as tables and columns need not be specified until run
time (they cannot duplicate the names of host variables). Clauses that limit, group, and
sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be
specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

EXEC SQL

PREPARE STATEMENTNAME FROM { : HOST- STRING | STRING LI TERAL }
END- EXEC.
EXEC SQL DECLARE CURSCRNAME CURSCR FOR STATEMENTNAME END- EXEC.
EXEC SQL OPEN CURSORNAME [USI NG HOST- VARI ABLE- LI ST] END- EXEC.
EXEC SQL FETCH CURSORNAME | NTO HOST- VARI ABLE- LI ST END- EXEC.
EXEC SQL CLOSE CURSORNAME END- EXEC.

Now let us look at what each statement does.

9.11.1 PREPARE

ORACLE

The PREPARE statement parses the dynamic SQL statement and gives it a name. In
the following example, PREPARE parses the query stored in the character string
SELECT-STMT and gives it the name SQLSTMT:

MOVE ' SELECT MR, JOB FROM EMP WHERE SAL < : SALARY'
TO SELECT- STM.
EXEC SQL PREPARE SQLSTMI' FROM : SELECT- STMI' END- EXEC.

Commonly, the query WHERE clause is input from a terminal at run time or is
generated by the application.

The identifier SQLSTMT is not a host or program variable, but must be unique. It
designates a particular dynamic SQL statement.

The following statement is correct also:

9-14

Chapter 9

Using Method 3
EXEC SQL
PREPARE SQLSTMI FROM ' SELECT MGR, JOB FROM EMP WHERE SAL < : SALARY'
END- EXEC.

The following PREPARE statement, which uses the '%' wildcard, is also correct:

MOVE " SELECT ENAVE FROM TEST WHERE ENAME LIKE ' SM T%" TO MY- STMT.
EXEC SQL

PREPARE S FROM MY- STMT
END- EXEC.

9.11.2 DECLARE

The DECLARE statement defines a cursor by giving it a name and associating it with a
specific query. The cursor declaration is local to its precompilation unit. Continuing our
example, DECLARE defines a cursor named EMPCURSOR and associates it with
SQLSTMT, as follows:

EXEC SQL DECLARE EMPCURSCR CURSOR FOR SQLSTMT END- EXEC.

The identifiers SQLSTMT and EMPCURSOR are not host or program variables, but
must be unique. If you declare two cursors using the same statement name,
Pro*COBOL considers the two cursor names synonymous. For example, if you
execute the statements

EXEC SQL PREPARE SQLSTMI' FROM : SELECT- STMI' END- EXEC.
EXEC SQL DECLARE EMPCURSCR FOR SQLSTMT END- EXEC.
EXEC SQL PREPARE SQLSTMI' FROM : DELETE- STMI' END- EXEC.
EXEC SQL DECLARE DEPCURSOR FOR SQLSTMT END- EXEC.

when you OPEN EMPCURSOR, you will process the dynamic SQL statement stored
in DELETE-STMT, not the one stored in SELECT-STMT.

9.11.3 OPEN

The OPEN statement allocates a cursor, binds input host variables, and executes the
query, identifying its active set. OPEN also positions the cursor on the first row in the
active set and zeroes the rows-processed count kept by the third element of
SQLERRD in the SQLCA. Input host variables in the USING clause replace
corresponding place-holders in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates EMPCURSOR and assigns the host variable
SALARY to the WHERE clause, as follows:

EXEC SQL OPEN EMPCURSOR USI NG : SALARY END- EXEC.

9.11.4 FETCH

ORACLE

The FETCH statement returns a row from the active set, assigns column values in the
select list to corresponding host variables in the INTO clause, and advances the cursor
to the next row. When no more rows are found, FETCH returns the "no data found"
error code to SQLCODE in the SQLCA.

In our example, FETCH returns a row from the active set and assigns the values of
columns MGR and JOB to host variables MGR-NUMBER and JOB-TITLE, as follows:

EXEC SQL FETCH EMPCURSCR | NTO : MGR- NUMBER, : JOB- Tl TLE END- EXEC.

9-15

Chapter 9

Sample Program 8: Dynamic SQL Method 3

Host tables can be used with Method 3.

9.11.5 CLOSE

The CLOSE statement disables the cursor. Once you CLOSE a cursor, you can no
longer FETCH from it. In our example, the CLOSE statement disables EMPCURSOR,

as follows:

EXEC SQL CLOSE EMPCURSOR END- EXEC.

9.12 Sample Program 8: Dynamic SQL Method 3

This program uses dynamic SQL Method 3 to retrieve the names of all employees in a

ORACLE

given department from the EMP table.

IR EE R SRR R RS SRR SRR SRR SRR SRR R R ER SRR EREER SRR EEREEREREEREEEEEEREEE]

* Sanple Program 8: Dynanic SQL Method 3 *
* *
* This program uses dynamic SQL Method 3 to retrieve the names *
* of all enployees in a given department fromthe EVP table. *

IR EE R SRR R RS SR SRR SRR SRR SRR SRR R R ER SRR EREER SRR ERREEEREREEREEEESEEREEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. DYNSQL3.
ENVI RONMENT DI VI SI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

I NCLUDE THE SQL COMMUNI CATI ONS AREA, A STRUCTURE THROUGH

WH CH ORACLE MAKES RUNTI ME STATUS | NFORMATI ON (SUCH AS ERROR
CODES, WARNI NG FLAGS, AND Di AGNOSTI C TEXT) AVAILABLE TO THE
PROGRAM

EXEC SQL | NCLUDE SQLCA END- EXEC.

* % % ok

* I NCLUDE THE ORACLE COMMUNI CATI ONS AREA, A STRUCTURE THROUGH
* VH CH ORACLE MAKES ADDI TI ONAL RUNTI ME STATUS | NFORMATI ON
* AVAI LABLE TO THE PROGRAM

EXEC SQL | NCLUDE ORACA END- EXEC.

* THE ORACA=YES OPTI ON MJST BE SPECI FI ED TO ENABLE USE OF
* THE ORACA
EXEC ORACLE OPTI ON (ORACA=YES) END- EXEC.

EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.

01 USERNAME PIC X(10) VALUE "SCOTT".

01 PASSWD PIC X(10) VALUE "TIGER'.

01 DYNSTMI PIC X(80) VARYING

01 ENAME PIC X(10).

01 DEPTNO PIC S9999 COVPUTATI ONAL VALUE 10.
EXEC SQL END DECLARE SECTI ON END- EXEC.

* DECLARE VARI ABLES NEEDED TO DI SPLAY COVPUTATI ONALS.
01 DEPTNGD PIC 9(2).
01 ENAMED PIC X(10).
01 SQLERRD3 PIC 9(2).
01 ORASLNRD PIC 9(4).

PROCEDURE DI VI SI ON.
MAI N,

9-16

ORACLE

* Ok F % ok

* ok * %

R

Chapter 9
Sample Program 8: Dynamic SQL Method 3

BRANCH TO PARAGRAPH SQLERROR | F AN ORACLE ERROR OCCURS.
EXEC SQL WHENEVER SQLERRCR GO TO SQLERROR END- EXEC.

SAVE TEXT OF CURRENT SQL STATEMENT |IN THE ORACA | F AN ERROR
OCCURS.
MOVE 1 TO ORASTXTF.

CONNECT TO CRACLE.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " ™.
DI SPLAY " CONNECTED TO ORACLE. ".
DI SPLAY " ™.

ASSI GN A SQL QUERY TO THE VARYI NG STRI NG DYNSTMI. BOTH THE
ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE THAT
THE STATEMENT CONTAINS ONE HOST VARI ABLE PLACEHOLDER, V1,
FOR WH CH AN ACTUAL | NPUT HOST VARI ABLE MUST BE SUPPLI ED
AT OPEN TI ME.
MOVE " SELECT ENAME FROM EMP WHERE DEPTNO = : V1"

TO DYNSTMT- ARR.
MOVE 40 TO DYNSTMT- LEN.

DI SPLAY THE SQL STATEMENT AND | TS CURRENT | NPUT HOST
VARI ABLE.

DI SPLAY DYNSTMT- ARR.

MOVE DEPTNO TO DEPTNCD.

DISPLAY " V1 =", DEPTNOD.
DI SPLAY " ".

DI SPLAY " EMPLOYEE" .

DI SPLAY "--------

THE PREPARE STATEMENT ASSCCI ATES A STATEMENT NAME W TH A
STRING CONTAI NI NG A SELECT STATEMENT. THE STATEMENT NAME,
VH CH MUST BE UNIQUE, IS A SQL | DENTIFIER NOT A HOST
VAR ABLE, AND SO DCES NOT APPEAR IN THE DECLARE SECTI ON.
EXEC SQL PREPARE S FROM : DYNSTMI END- EXEC.

THE DECLARE STATEMENT ASSCCI ATES A CURSOR W TH A PREPARED
STATEMENT. THE CURSOR NAME, LIKE THE STATEMENT NAME, DCES
NOT APPEAR | N THE DECLARE SECTI ON.

EXEC SQL DECLARE C CURSCR FOR S END- EXEC.

THE OPEN STATEMENT EVALUATES THE ACTIVE SET OF THE PREPARED
QUERY USI NG THE SPECI FI ED | NPUT HOST VARI ABLES, WHI CH ARE
SUBSTI TUTED POSI TI ONALLY FOR PLACEHCOLDERS | N THE PREPARED
QUERY. FOR EACH OCCURRENCE OF A PLACEHOLDER I N THE
STATEMENT THERE MUST BE A VARI ABLE IN THE USI NG CLAUSE.
THAT IS, |F A PLACEHOLDER OCCURS MULTI PLE TIMES IN THE
STATEMENT, THE CORRESPONDI NG VARI ABLE MUST APPEAR MULTI PLE
TIMES IN THE USING CLAUSE. THE USI NG CLAUSE MAY BE

OM TTED ONLY | F THE STATEMENT CONTAINS NO PLACEHOLDERS.
OPEN PLACES THE CURSOR AT THE FI RST ROW OF THE ACTI VE SET
I N PREPARATI ON FOR A FETCH.

A SINGLE DECLARED CURSOR MAY BE OPENED MORE THAN ONCE,

OPTI ONALLY USI NG DI FFERENT | NPUT HOST VARI ABLES.
EXEC SQL OPEN C USI NG : DEPTNO END- EXEC.

9-17

Chapter 9
Using Oracle Method 4

* BRANCH TO PARAGRAPH NOTFOUND WHEN ALL ROWS HAVE BEEN
* RETRI EVED.
EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND END- EXEC.

GETROVG.

THE FETCH STATEMENT PLACES THE SELECT LI ST OF THE CURRENT
ROW I NTO THE VARI ABLES SPECI FI ED BY THE | NTO CLAUSE, THEN
ADVANCES THE CURSCR TO THE NEXT ROW | F THERE ARE MORE
SELECT- LI ST FI ELDS THAN QUTPUT HOST VARI ABLES, THE EXTRA

FI ELDS ARE NOT RETURNED. SPECI FYI NG MORE QUTPUT HOST

VARI ABLES THAN SELECT- LI ST FI ELDS RESULTS I N AN ORACLE ERRCR.
EXEC SQL FETCH C I NTO : ENAME END- EXEC.

MOVE ENAME TO ENAMED.

DI SPLAY ENAMED.

L

* LOOP UNTIL NOT FOUND CONDITION | S DETECTED.
GO TO GETROVS.

NOTFOUND.
MOVE SQLERRD(3) TO SQLERRDS.
DI SPLAY " *
DI SPLAY " QUERY RETURNED ", SQLERRD3, " ROWS).".

* THE CLOSE STATEMENT RELEASES RESOURCES ASSOCI ATED W TH THE
* CURSOR
EXEC SQL CLOSE C END- EXEC.

* COW T ANY PENDI NG CHANGES AND DI SCONNECT FROM CRACLE.
EXEC SQL COW T RELEASE END- EXEC.
DI SPLAY " "
DI SPLAY "HAVE A GOOD DAY!".
DI SPLAY " "
STCP RUN.

SQLERRR

* ORACLE ERRCR HANDLER. PRI NT DI AGNOSTI C TEXT CONTAI NI NG
* ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATI ON OF ERRCR
DI SPLAY SQLERRMC.
DI SPLAY "IN ", ORASTXTC.
MOVE ORASLNR TO CORASLNRD.
DI SPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

* DI SABLE ORACLE ERROR CHECKI NG TO AVO D AN I NFI NI TE LOOP
* SHOULD ANOTHER ERRCR OCCUR W THI N THI' S PARAGRAPH.
EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.

* RELEASE RESOURCES ASSOCI ATED W TH THE CURSCR
EXEC SQL CLOSE C END- EXEC.

* ROLL BACK ANY PENDI NG CHANGES AND DI SCONNECT FROM CRACLE.
EXEC SQL ROLLBACK RELEASE END- EXEC.
STCP RUN.

9.13 Using Oracle Method 4

This section gives only an overview. For details, see Oracle Dynamic SQL: Method 4.

ORACLE 9-18

Chapter 9
Using Oracle Method 4

LOBs are not supported in Oracle Method 4. Use ANSI dynamic SQL for LOB
applications and all other new applications.

There is a kind of dynamic SQL statement that your program cannot process using
Method 3. When the number of select-list items or place-holders for input host
variables is unknown until run time, your program must use a descriptor. A descriptor
is an area of memory used by your program and Oracle to hold a complete description
of the variables in a dynamic SQL statement.

Recall that for a multi-row query, you FETCH selected column values INTO a list of
declared output host variables. If the select list is unknown, the host-variable list
cannot be established at precompile time by the INTO clause. For example, you know
the following query returns two column values:

EXEC SQL
SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = : DEPT- NUMBER
END- EXEC.

However, if you let the user define the select list, you might not know how many
column values the query will return.

9.13.1 Need for the SQLDA

To process this kind of dynamic query, your program must issue the DESCRIBE
SELECT LIST command and declare a data structure called the SQL Descriptor Area
(SQLDA). Because it holds descriptions of columns in the query select list, this
structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of place-holders
for input host variables, the host-variable list cannot be established at precompile time
by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE
BIND VARIABLES command and declare another kind of SQLDA called a bind
descriptor to hold descriptions of the place-holders for the input host variables. (Input
host variables are also called bind variables.)

If your program has more than one active SQL statement (it might have used OPEN
for two or more cursors, for example), each statement must have its own SQLDASs
statement. However, non-concurrent cursors can reuse SQLDAs. There is no set limit
on the number of SQLDASs in a program.

9.13.2 The DESCRIBE Statement

ORACLE

DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host
variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines
each select-list item in a prepared dynamic query to determine its name, datatype,
constraints, length, scale, and precision. It then stores this information in the select
descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines
each place-holder in a prepared dynamic SQL statement to determine its hame,
length, and the datatype of its associated input host variable. It then stores this
information in the bind descriptor for your use. For example, you might use place-
holder names to prompt the user for the values of input host variables.

9-19

Chapter 9
Using Oracle Method 4

9.13.3 SQLDA Contents

A SQLDA is a host-program data structure that holds descriptions of select-list items
or input host variables.

Though SQLDAs differ among host languages, a generic select SQLDA contains the
following information about a query select list:

e Maximum number of columns that can be DESCRIBEd
e Actual number of columns found by DESCRIBE

* Addresses of buffers to store column values

e Lengths of column values

e Datatypes of column values

» Addresses of indicator-variable values

* Addresses of buffers to store column names

» Sizes of buffers to store column names

e Current lengths of column names

A generic bind SQLDA contains the following information about the input host
variables in a SQL statement:

* Maximum number of place-holders that can be DESCRIBEd
* Actual number of place-holders found by DESCRIBE
* Addresses of input host variables

* Lengths of input host variables

» Datatypes of input host variables

* Addresses of indicator variables

* Addresses of buffers to store place-holder names

* Sizes of buffers to store place-holder names

e Current lengths of place-holder names

* Addresses of buffers to store indicator-variable names
» Sizes of buffers to store indicator-variable names

e Current lengths of indicator-variable names

9.13.4 Implementing Method 4

ORACLE

With Method 4, you generally use the following sequence of embedded SQL
statements:

EXEC SQL
PREPARE STATENENT- NAVE
FROM { : HOST-STRING | STRING LI TERAL }
END- EXE
EXEC SQL
DECLARE CURSOR- NAVE CURSCR FOR STATENENT- NAVE
END- EXEC.

9-20

Chapter 9
Using the DECLARE STATEMENT Statement

EXEC SQL
DESCRI BE Bl ND VARI ABLES FOR STATEMENT- NAMVE
[NTO Bl ND- DESCRI PTOR- NAVE
END- EXEC.
EXEC SQL
OPEN CURSOR- NAME
[USI NG DESCRI PTOR BI ND- DESCRI PTOR- NAME]
END- EXEC.
EXEC SQL
DESCRI BE [SELECT LI ST FOR] STATEMENT- NAME
[NTO SELECT- DESCRI PTOR- NAMVE
END- EXEC.
EXEC SQL
FETCH CURSOR- NAME
USI NG DESCRI PTCR SELECT- DESCRI PTOR- NAVE
END- EXEC.
EXEC SQL CLOSE CURSOR- NAME END- EXEC.

Select and bind descriptors need not work in tandem. If the number of columns in a
query select list is known, but the number of place-holders for input host variables is
unknown, you can use the Method 4 OPEN statement with the following Method 3
FETCH statement:

EXEC SQL FETCH EMPCURSCR | NTO : HOST- VARI ABLE- LI ST END- EXEC.

Conversely, if the number of place-holders for input host variables is known, but the
number of columns in the select list is unknown, you can use the following Method 3
OPEN statement with the Method 4 FETCH statement:

EXEC SQL OPEN CURSORNAME [USI NG HOST- VARI ABLE- LI ST] END- EXEC.

Note that EXECUTE can be used for non-queries with Method 4.

9.14 Using the DECLARE STATEMENT Statement

ORACLE

With Methods 2, 3, and 4, you might need to use the statement
EXEC SQL [AT dbnane] DECLARE statenentname STATEMENT END- EXEC.

where dbname and statementname are identifiers used by Pro*xCOBOL, not host or
program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the
statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and
DESCRIBE. It is required if you want to execute the dynamic SQL statement at a
nondefault database. An example using Method 2 follows:

EXEC SQL AT renotedb DECLARE sql stnt STATEMENT END- EXEC.
EXEC SQL PREPARE sqltnt FROM :sqlstring END EXEC.
EXEC SQL EXECUTE sgl stnt END- EXEC.

In the example, remotedb tells Oracle where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE
CURSOR statement precedes the PREPARE statement, as shown in the following
example:

EXEC SQL DECLARE sql stnt STATEMENT END- EXEC.
EXEC SQL DECLARE enpcursor CURSOR FOR sql stnt END- EXEC.
EXEC SQL PREPARE sql stnt FROM :sql string END- EXEC.

9-21

Chapter 9
Using Host Tables

The usual sequence of statements is

EXEC SQL PREPARE sqgl stnt FROM :sql string END EXEC.
EXEC SQL DECLARE enpcursor CURSCR FOR sql stnt END- EXEC.

9.15 Using Host Tables

Usage of host tables in static and dynamic SQL is similar. For example, to use input
host tables with dynamic SQL Method 2, use the syntax

EXEC SQL EXECUTE st at ement nane USI NG : HOST- TABLE- LI ST END- EXEC.

where HOST-TABLE-LIST contains one or more host tables. With Method 3, use the
following syntax:

OPEN cursornanme USI NG : HOST- TABLE- LI ST END- EXEC.

To use output host tables with Method 3, use the following syntax:
FETCH cursorname | NTO : HOST- TABLE- LI ST END- EXEC.
With Method 4, you must use the optional FOR clause to tell Oracle the size of your

input or output host table. To learn how this is done, see your host-language
supplement.

9.16 Using PL/SQL

Pro*COBOL treats a PL/SQL block like a single SQL statement. So, like a SQL
statement, a PL/SQL block can be stored in a string host variable or literal. When you
store the PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the
keyword END-EXEC, and the statement terminator.

However, there are two differences in the way Pro*COBOL handles SQL and PL/SQL:

* Al PL/SQL host variables should be treated in the same way as input host
variables regardless of whether they are input or output host variables (or both).

* You cannot FETCH from a PL/SQL block because it might contain any number of
SQL statements. However, you can implement similar functionality by using cursor
variables.

9.16.1 With Method 1

If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE
the PL/SQL string in the usual way.

9.16.2 With Method 2

ORACLE

If the PL/SQL block contains a known number of input and output host variables, you
can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. Once the PL/SQL string
EXECUTE is completed, host variables in the USING clause replace corresponding
place-holders in the string after PREPARE. Though Pro*COBOL treats all PL/SQL
host variables as input host variables, values are assigned correctly. Input (program)

9-22

Chapter 9
Dynamic SQL Statement Caching

values are assigned to input host variables, and output (column) values are assigned
to output host variables.

Every place-holder in the PL/SQL string after PREPARE must correspond to a host
variable in the USING clause. So, if the same place-holder appears two or more times
in the PREPAREC string, each appearance must correspond to a host variable in the
USING clause.

9.16.3 With Method 3

Methods 2 and 3 are the same except that Method 3 allows completion of a FETCH.
Since you cannot FETCH from a PL/SQL block, use Method 2 instead.

9.16.4 With Method 4

If the PL/SQL block contains an unknown number of input or output host variables, you
must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host
variables. Executing DESCRIBE BIND VARIABLES stores information about input and
output host variables in the bind descriptor. Because you refer to all PL/SQL host
variables with the methods associated with input host variables, executing DESCRIBE
SELECT LIST has no effect.

The use of bind descriptors with Method 4 is detailed in your host-language
supplement.

Note that in dynamic SQL Method 4, a host array cannot be bound to a PL/SQL
procedure with a parameter of type "table."

9.16.5 Caution

Do not use ANSI-style Comments (- - ...) in a PL/SQL block that will be processed
dynamically because end-of-line characters are ignored. As a result, ANSI-style
Comments extend to the end of the block, not just to the end of a line. Instead, use C-
style Comments (/* ... */).

9.17 Dynamic SQL Statement Caching

ORACLE

Statement caching refers to the feature that provides and manages a cache of
statements for each session. In the server, it means that cursors are ready to be used
without the need to parse the statement again. Statement caching can be enabled in
the precompiler applications, which will help in the performance improvement of all
applications that rely on the dynamic SQL statements. The performance improvement
is achieved by removing the overhead of parsing the dynamic statements on reuse.
The precompiler application user can obtain this performance improvement using a
new command line option, stmt_cache (for the statement cache size), which will
enable the statement caching of the dynamic statements. By enabling the new option,
the statement cache will be created at session creation time. The caching is only
applicable for the dynamic statements and the cursor cache for the static statements
co-exists with the new feature.

The command line option st nt _cache can be given any value in the range of 0 to
65535. Statement caching is disabled by default (value 0). The st nt _cache option can

9-23

ORACLE

Chapter 9
Dynamic SQL Statement Caching

be set to hold the anticipated number of distinct dynamic SQL statements in the
application.

Example 9-1 Using the stmt_cache Option

This example demonstrates the use of the st nt _cache option. In this program, you
insert rows into a table and select the inserted rows by using the cursor in the loop.
When the stmt_cache option is used to precompile this program, the performance
increases compared to a normal precompilation.

EEEE R SRR SRS E R EE SRR SRR SRR REREER SRR REEEREEREEREEEEEREREEEREEEEERESE]

* stntcache:

*

* NOTE:

* \Wen this programis used to neasure the performnce with and
* without stnt_cache option, do the follow ng changes in the

* program

* 1.

* 2.

*

*

significant portion of the total program execution tine.
khkkkkkhkkkhhdhhhhhhhdhhk

I ncrease ROABCNT to high val ue, say 10000.

*
*
*
*
*
*
*
Remove all the DI SPLAY statenents, usually which consunes *
*
*

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. st ntcache.
ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

* EMBEDDED COBOL (file "STMICACHE. PCO')

01
01
01
01

01
01

01
01

01

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

USERNAME PIC X(10) VARYI NG
PASSVD PIC X(10) VARYI NG
DYNSTMI PI C X(100) VARYI NG

DYNSTMI2 ~ PI C X(100) VARYI NG

ENAME PI C X(10).
COW PI C X(9).

EXEC SQL END DECLARE SECTI ON END- EXEC.

ROWSCNT PI C 9(4) COVP VALUE 10.
LOOPNO PIC 9(4).

STRI NGFI ELDS.
02 STR PI C X(18) VARYING

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
BEG N- PGM

EXEC SQL WHENEVER SQLERRCR DO PERFORM SQL- ERROR END- EXEC.
PERFORM LOGON.
MOVE "I NSERT | NTO BONUS (ENAME, COW) VALUES (: A :B)"
TO DYNSTMT- ARR.
MOVE 53 TO DYNSTMI- LEN.

DI SPLAY "Inserts ", ROABCNT, " rows into BONUS table.".

9-24

ORACLE

Chapter 9
Dynamic SQL Statement Caching

PERFORM | NSDATA VARYI NG LOOPNO FROM 1 BY 1
UNTI L LOOPNO > ROASCNT.

DI SPLAY " "

DI SPLAY "Fetches the inserted rows from BONUS.".
DI SPLAY " ENAVE COMWM'.

MOVE " SELECT ENAME, COWM FROM BONUS WHERE COMVE: A"
TO DYNSTMT2- ARR.
MOVE 43 TO DYNSTMI2- LEN.

MOVE 1 TO LOOPNQ

* Loops for preparing and fetching ROMCNT nunber of tines
FETCHDATA.

* Do the prepare in the loop so that the advantage of

* stmt_caching is visible

EXEC SQL PREPARE S2 FROM : DYNSTMI2 END- EXEC.

EXEC SQL DECLARE C1 CURSCR FOR S2
END- EXEC.

EXEC SQL OPEN C1 USI NG : LOOPNO END- EXEC.

EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND END- EXEC.

GETROVS.
* Close the cursor so that the reparsing is not required for
* stm _cache

EXEC SQL FETCH C1 INTO : ENAME, : COW
END- EXEC.

DI SPLAY ENAME, COWM

GO TO GETROVS.

NOTFQUND.

EXEC SQL CLOSE C1 END- EXEC.
COVPUTE LOOPNO = LOOPNO + 1.

| F LOCOPNO <= ROWSCNT THEN
GO TO FETCHDATA
END- | F.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

LOGON.

MOVE "scott" TO USERNAME- ARR.
MOVE 5 TO USERNAME- LEN.
MOVE "tiger" TO PASSVWD- ARR
MOVE 5 TO PASSWD- LEN.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.

* Popul ates the host variable and insert into the table
| NSDATA.

EXEC SQL PREPARE S1 FROM : DYNSTMI END- EXEC.
MWVE " " TO STR

STRING "EMP_", LOOPNO I NTO STR

END- STRI NG

9-25

Chapter 9
Dynamic SQL Statement Caching

MOVE STR TO ENAME.
MOVE LOOPNO TO COWM

EXEC SQL EXECUTE S1 USI NG : ENAME, : COVM END- EXEC.

* HANDLES SQL ERRCR CONDI TI ONS
SQL- ERRR

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.

DI SPLAY " "

DI SPLAY " ORACLE ERRCR DETECTED: "

DI SPLAY " "

DI SPLAY SQLERR\LC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

STOP RUN.

ORACLE 9-26

Applications

ORACLE

Part Il contains the following chapters:

ANSI Dynamic SQL

Oracle Dynamic SQL: Method 4

Multithreaded Applications

Large Objects (LOBSs)

Precompiler Options

Operating System Dependencies

Reserved Words_ Keywords_ and Namespaces
Performance Tuning

Syntactic and Semantic Checking

Embedded SQL Statements and Precompiler Directives
Pro*COBOL for Windows

ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (that is,
dynamic SQL as specified by the SQL standard) which should be used for new
Method 4 applications. It has enhancements over the older Oracle dynamic SQL
Method 4, which is described in “Oracle Dynamic SQL: Method 4”. The ANSI Method 4
supports all Oracle types, while the older Oracle Method 4 does not support cursor
variables, tables of group items, the DML returning clause, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the
older Oracle dynamic SQL Method 4, descriptors are defined in the user's ProxCOBOL
program. In both cases, with Method 4 your Pro*COBOL program accepts or builds
SQL statements that contain a varying number of host variables.

The main sections in this chapter are:

* Basics of ANSI Dynamic SQL

e Overview of ANSI SQL Statements

* Oracle Extensions

e ANSI Dynamic SQL Precompiler Options

* Full Syntax of the Dynamic SQL Statements
e Sample Programs: SAMPLE12.PCO

Related Topics
* Oracle Dynamic SQL: Method 4

10.1 Basics of ANSI Dynamic SQL

Consider the SQL statement:

SELECT enane, enpno FROM enp WHERE deptno = :deptno_data

The steps you follow to use ANSI dynamic SQL are:

» Declare variables, including a string to hold the statement to be executed.
* Allocate descriptors for input and output variables.

* Prepare the statement.

» Describe input for the input descriptor.

* Set the input descriptor (in our example the one input host bind variable,
deptno_dat a) .

e Declare and open a dynamic cursor.

e Set the output descriptors (in our example, the output host variables ename and
enpno) .

ORACLE 10-1

Chapter 10
Overview of ANSI SQL Statements

* Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and enpno
data fields from each row.

Do something with the data retrieved (output it, for instance).

e Close the dynamic cursor and deallocate the input and output descriptors.

10.1.1 Precompiler Options

Normally, if you are using ANSI dynamic SQL you will be writing to the ANSI standard
for precompilers and will therefore be using the macro command line option MODE=ANSI .
If you wish to use this method and do not wish to use MODE=ANSI, then the
functionality is controlled by the micro command line option: DYNAM C=ANSI .

You can either set the micro precompiler option DYNAMIC to ANSI, or set the macro
option MODE to ANSI. This causes the default value of DYNAMIC to be ANSI. The
other setting of DYNAMIC is ORACLE. For more about micro options, see “Macro and
Micro Options” and “DYNAM C”.

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to ANSI,
or set the macro option MDE to ANSI . This changes the default setting of TYPE_CCODE to
ANSI. To set TYPE_CCDE to ANSI , DYNAM C must also be ANSI .

For a list of the ANSI SQL types see “ANSI SQL Datatypes”. Use the ANSI types with
precompiler option TYPE_CODE set to ANSI if you want your application to be portable
across database platforms and be as compliant to ANSI as possible.

For more details, see “MDE” and “TYPE_CCDE".
Related Topics

* Macro and Micro Options

« DYNAMIC

« MODE

e TYPE_CODE

10.2 Overview of ANSI SQL Statements

ORACLE

Allocate a descriptor area before using it in a dynamic SQL statement.
The ALLOCATE DESCRIPTOR statement syntax is:

EXEC SQL ALLOCATE DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
[WTH MAX {:occurrences | numeric_literal}]
END- EXEC.

A global descriptor can be used in any module in the program. A local descriptor can
be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam is a host variable. A string literal can be used instead.

occurrences is the maximum number of bind variables or columns that the descriptor
can hold, with a default of 100.

When a descriptor is no longer needed, deallocate it to conserve memory.

The deallocate statement is:

10-2

Chapter 10
Overview of ANSI SQL Statements

EXEC SQL DEALLCCATE DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal}
END- EXEC.

Use the DESCRIBE statement to obtain information on a prepared SQL statement.
DESCRIBE INPUT describes bind variables for the dynamic statement that has been
prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of
the output columns. The simplified syntax is:

EXEC SQL DESCRI BE [INPUT | QUTPUT] sql _statenent
USI NG [SQL] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_ literal}
END- EXEC.

If your SQL statement has input and output values, you must allocate two descriptors:
one for input and one for output values. If there are no input values, for example:

SELECT enane, enpno FROM enp

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS,
UPDATES, DELETES and the WHERE clauses of SELECT statements. Use SET
DESCRIPTOR to set the number of input bind variables (stored in COUNT) when you
have not done a DESCRIBE into your input descriptor:

EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
COUNT = {:kount | nuneric_literal}
END- EXEC.

kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR
statement for each host variable, giving at least the data value of the variable:

EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE item nunber DATA = :hv3
END- EXEC.

You can also set the type and length of the input host variable:

Note: If you do not set the type and length, either explicitly, through the SET
DESCRIPTOR statement, or implicitly by doing a DESCRIBE OUTPUT, when
TYPE_CODE=0ORACLE, the precompiler will use values for these derived from the
host variable itself. When TYPE_CODE=ANSI, you must set the type using the values
in Table 10-1. You should also set the length because the ANSI default lengths may
not match those of your host variable.

EXEC SQL SET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE item nunber TYPE = :hvl, LENGTH = :hv2, DATA = :hv3
END- EXEC.

We use the identifiers hvi, hv2, and hv3 to remind us that the values must be supplied
by host variables. item_number is the position of the input variable in the SQL
statement. It can be a host variable or an integer number.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to
ANSI:

ORACLE 10-3

ORACLE

Chapter 10
Overview of ANSI SQL Statements

Table 10-1 ANSI SQL Datatypes

Datatype Type Code
CHARACTER 1
CHARACTER VARYING 12
DATE 9
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
NUMERIC 2
REAL 7
SMALLINT 5

See Table 11-2 for the Oracle type codes. Use the negative value of the Oracle code if
the ANSI datatype is not in the table, and TYPE_CODE = ANSI.

DATA is the host variable value which is input.

You can also set other input values such as indicator, precision and scale. See the
more complete discussion of “SET_DESCRIPTOR” for a list of all the possible
descriptor item names.

The numeric values in the SET DESCRIPTOR statement must be declared as either
PIC S9(9) COWP or PIC S9(4) COWP except for indicator and returned length values which
you must declare as PI C S9(4) COWP.

In the following example, when you want to retrieve empno, set these values:
VALUE=2, because enpno is the second output host variable in the dynamic SQL
statement. The host variable EVPNO TYP is set to 3 (Oracle Type for integer). The length
of a host integer, EMPNO- LEN, is set to 4, which is the size of the host variable. The
DATA is equated to the host variable EMPNO-DATA which will receive the value from
the database table. The code fragment is as follows:

01 DYN- STATEMENT PI C X(58)
VALUE " SELECT enane, enpno FROM emp WHERE deptno =:dept no_nunber".
01 EMPNO- DATA PIC S9(9) COWP.
01 EMPNO-TYP PIC S9(9) COWP VALUE 3.
01 EMPNO-LEN PIC S9(9) COWP VALUE 4.

EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE=: EMPNO-TYP, LENGIH=: EMPNO- LEN,
DATA=: EMPNO- DATA END- EXEC.

After setting the input values, execute or open your statement using the input
descriptor. If there are output values in your statement, set them before doing a
FETCH. If you have done a DESCRIBE OUTPUT, you may have to reset the actual
types and lengths of your host variables because the DESCRIBE execution will
produce internal types and lengths which differ from your host variable external types
and length.

10-4

Chapter 10
Sample Code

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the
returned data. Again we show a simplified syntax with details later in this chapter:

EXEC SQL GET DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}
VALUE it em nunber
chvl = DATA, :hv2 = INDI CATOR :hv3 = RETURNED LENGTH

END- EXEC.

desc_namand i t em nunber can be literals or host variables. A descriptor name can be a
literal such as 'out'. An item number can be a numeric literal such as 2.

hvl, hv2, and hv3 are host variables. They must be host variables, not literals. Only
three are shown in the example. See Table 10-4 for a list of all possible items of
returned data that you can get.

Use either PIC S9(n) COWP where n is the platform-dependent upper limit, PI C
S9(9) COWP or PI C S9(4) cavpfor all numeric values, except for indicator and returned
length variables, which must be PI C S9(4) COWP.

Related Topics
 SET DESCRIPTOR

10.3 Sample Code

ORACLE

The following example demonstrates the use of ANSI Dynamic SQL. It allocates an
input descriptor i n and an output descriptor out to execute a SELECT statement. Input
values are set through the SET DESCRIPTOR statement. The cursor is opened and
fetched from and the resulting output values are retrieved through a GET
DESCRIPTOR statement.

01 DYN- STATEMENT PI C X(58)

VALUE " SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO =: DEPTNO- DAT".
01 EMPNO-DAT PIC S9(9) COWP.
01 EMPNO-TYP PIC S9(9) COWP VALUE 3.
01 EMPNO-LEN PIC S9(9) COWP VALUE 4.
01 DEPTNO-TYP PIC S9(9) COWP VALUE 3.
01 DEPTNO-LEN PIC S9(9) COWP VALUE 4.
01 DEPTNO- DAT PIC S9(9) COWP VALUE 10.
01 ENAME-TYP PIC S9(9) COWP VALUE 3.
01 ENAME-LEN PIC S9(9) COWP VALUE 30.
01 ENAME-DAT PIC X(30).
01 SQLCODE PIC S9(9) COW VALUE 0.

* Place preliminary code, including connection, here

EXEC SQL ALLOCATE DESCRI PTOR "in' END- EXEC.

EXEC SQL ALLOCATE DESCRI PTOR 'out' END-EXEC.

EXEC SQL PREPARE s FROM : DYN- STATEMENT END- EXEC.

EXEC SQL DESCRI BE | NPUT s USI NG DESCRI PTOR "in" END-EXEC.

EXEC SQL SET DESCRI PTOR 'in' VALUE 1 TYPE=: DEPTNO TYP,
LENGTH=: DEPTNO- LEN, DATA=: DEPTNO- DAT END- EXEC.

EXEC SQL DECLARE ¢ CURSCR FOR s END- EXEC.

EXEC SQL OPEN ¢ USI NG DESCRI PTOR "in' END- EXEC.

EXEC SQL DESCRI BE QUTPUT s USI NG DESCRI PTCR 'out' END- EXEC.

EXEC SQL SET DESCRI PTCR 'out' VALUE 1 TYPE=: ENAME- TYP,
LENGTH=: ENAME- LEN, DATA=: ENAME- DAT END- EXEC.

EXEC SQL SET DESCRI PTCR 'out' VALUE 2 TYPE=: EMPNO TYP,
LENGTH=: EMPNO- LEN, DATA=: EMPNO- DAT END- EXEC.

10-5

Chapter 10
Oracle Extensions

EXEC SQL WHENEVER NOT FOUND GOTO BREAK END- EXEC.
LOOP.
| F SQLOCDE NOT = 0
GOTO BREAK.
EXEC SQL FETCH ¢ | NTO DESCRI PTOR ' out' END- EXEC.
EXEC SQL GET DESCRI PTOR ' QUT' VALUE 1 : ENAVE- DAT
EXEC SQL GET DESCRI PTCR ' QUT' VALUE 2 : EVMPNO- DAT
DI SPLAY "ENAME = " W TH NO ADVANCI NG
DI SPLAY ENAVE- DAT W TH NO ADVANCI NG
DI SPLAY "EMPNO = " W TH NO ADVANCI NG
DI SPLAY ENPNO- DAT.
GOTO LOCP.
BREAK:
EXEC SQL CLOSE ¢ END- EXEC.
EXEC SQL DEALLOCATE DESCRI PTCR 'in' END- EXEC.
EXEC SQL DEALLOCATE DESCRI PTCR ' out' END- EXEC.

DATA END- EXEC.
DATA END- EXEC.

10.4 Oracle Extensions

These extensions are described next:
» Reference semantics for data items in SET statements.
« Arrays for bulk operations.

e Support for object types, NCHAR columns, and LOBs.

10.4.1 Reference Semantics

ORACLE

The ANSI standard specifies value semantics. To improve performance, Oracle has
extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses
the addresses of your host variables, avoiding a copy. Thus, reference semantics can
provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

EXEC SQL SET DESCRI PTOR 'out' VALUE 1 TYPE=: ENAMVE- TYP,
LENGTH=: ENAME- LEN, REF DATA=: ENAVE- DAT END- EXEC.

EXEC SQL DESCRI PTOR 'out' VALUE 2 TYPE=: EMPNO- TYP,
LENGTH=: EMPNO- LEN, REF DATA=: EMPNO- DAT END- EXEC.

Then the host variables receive the results of the retrieves. The GET statement is not
needed. The retrieved data is written directly into enane_dat a and enpno_dat a after each
FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and
RETURNED_LENGTH items (which can vary with each row fetched) as in this
fragment of code:

01 INDI PIC S9(4) COW.
01 RETRN-LEN PIC S9(9) COW.

EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=: ENAME- TYP,

LENGTH=: ENAME- LEN, REF DATA=: ENAME- DAT,
REF | NDI CATOR=: I NDI, REF RETURNED_LENGTH =: RETRN- LEN END- EXEC.

10-6

Chapter 10
Oracle Extensions

After each fetch, RETRN- LEN holds the actual retrieved length of the enane field, which is
useful for CHAR or VARCHAR2 data.

ENAME- LEN will not receive the returned length. It will not be changed by the FETCH
statement. Use a DESCRIBE statement, followed by a GET statement to find out the
maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed
them up. Note that with reference semantics, the host variable is used rather than a
value copied into the descriptor area. The host variable data at the time of execution of
the SQL statement is used, not its data at the time of the SET. Here is an example:

MOVE 1 to VAL.

EXEC SQL SET DESCRI PTCR 'val ue' VALUE 1 DATA = : VAL END- EXEC.
EXEC SQL SET DESCRIPTOR 'reference’ VALUE 1 REF DATA = : VAL END- EXEC.
MOVE 2 to VAL.
* WIIl use VAL =1
EXEC SQL EXECUTE s USING DESCRIPTCR 'val ue' END- EXEC.
*WIl use VAL = 2
EXEC SQL EXECUTE s USI NG DESCRI PTOR 'reference' END-EXEC.

See “SET_DESCRIPTOR” for many more details on the differences.

Related Topics
+ SET DESCRIPTOR

10.4.2 Using Tables for Bulk Operations

ORACLE

Oracle's implementation of ANSI dynamic SQL extends the SQL standard's dynamic
SQL by providing bulk operations. To use bulk operations, use the FOR clause with an
array size to specify the amount of input data or the number of rows you want to
process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of
data or number of rows. For example, to use a maximum array size of 100:

EXEC SQL FCR 100 ALLOCATE DESCRI PTOR 'out' END- EXEC.

or:

MOVE 100 TO | NT- ARR- SI ZE.
EXEC SQL FOR : | NT- ARR- SI ZE ALLCCATE DESCRI PTOR ' out' END- EXEC.

The FOR clause is then used in subsequent statements that access the descriptor. In
an output descriptor the FETCH statement must have an array size equal to or less
than the array size already used in the ALLOCATE statement:

EXEC SQL FOR 20 FETCH c1 USI NG DESCRI PTCR 'out' END- EXEC.

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or
RETURNED_LENGTH values, must use the same array size as the FETCH
statement.

01 VAL-DATA OCCURS 20 TIMES PIC S9(9) COW.
01 VAL-INDI OCCURS 20 TIMES PIC S9(4) COW.

10-7

ORACLE

Chapter 10
Oracle Extensions

EXEC SQL FOR 20 GET DESCRI PTCR 'out' VALUE 1 :VAL- DATA = DATA
©VAL-INDI = I NDI CATCR
END- EXEC.

However, GET statements that reference other items which do not vary from row to
row, such as LENGTH, TYPE and COUNT, must not use the FOR clause:

01 ONT PIC S9(9) COW.
01 LEN PIC S9(9) CONP.

EXEC SQL GET DESCRI PTCR ' out' :CNT = COUNT END- EXEC.
EXEC SQL GET DESCRI PTCOR 'out' VALUE 1 :LEN = LENGTH END- EXEC.

The same holds true for SET statements with reference semantics. SET statements
which precede the FETCH and employ reference semantics for DATA, INDICATOR, or
RETURNED_LENGTH must have the same array size as the FETCH:

01 REF-DATA OCCURS 20 TIMES PIC S9(9) COWP.
01 REF-INDI OCCURS 20 TIMES PIC S9(4) COWP.

EXEC SQL FOR 20 SET DESCRI PTOR 'out' VALUE 1 REF DATA = : REF- DATA,
REF | NDI CATOR = : REF- 1 NDI END- EXEC.

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance,
the EXECUTE or OPEN statement must use an array size equal to or less than the
size used in the ALLOCATE statement. The SET statement, for both value and
reference semantics, that accesses DATA, INDICATOR, or RETURNED LENGTH
must use the same array size as in the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

The following code sample illustrates a bulk operation with no output descriptor (there
is no output, only input to be inserted into the table enp). The value of CNT is 2 (there
are two host variables, ENAVE and EMPNO, in the INSERT statement). The data table
ENAME- TABLE holds three character strings: Tom Di ck and Harry, in that order. Their
employee numbers are in the table EMPNO- TABLE. The indicator table ENAVE- | ND has a
value of -1 for the second element; so a NULL will be inserted instead of Di ck.

01 DYN-STATEMENT PIC X(240) val ue
"I NSERT | NTO EMP(ENAME, EMPNO) VALUES (: ENAME, : EVPNO) "

01 ARRAY-SIZE PIC S9(9) COMP VALUE 3.
01 ENAME- VALUES.

05 FILLER PIC X(6) VALUE "Tom ".

05 FILLER PIC X(6) VALUE "Dick ".

05 FILLER PIC X(6) VALUE "Harry ".
01 ENAME- TABLE REDEFI NES ENAVE- VALUES.

05 ENAME PIC X(6) OCCURS 3 TI MES,
01 ENAME-IND PIC S9(4) COVPOCCURS 3 TI MES.
01 ENAME-LEN PIC S9(9) COMP VALUE 6.
01 ENAME-TYP PIC S9(9) COMP VALUE 96.
01 EMPNO- VALUES.

05 FILLER PIC S9(9) COMP VALUE 8001.

05 FILLER PIC S9(9) COMP VALUE 8002.

05 FILLER PIC S9(9) COMP VALUE 8003.
01 ENMPNO TABLE REDEFI NES EMPNO- VALUES.

05 EMPNO PIC S9(9) DI SPLAY SI GN LEADING OCCURS 3 TI MES.
01 EMPNO-LEN PIC S9(9) COWP VALUE 4.
01 EMPNO-TYP PIC S9(9) COWP VALUE 3.
01 CNT PIC S9(9) COWP VALLE 2.

10-8

Chapter 10
ANSI Dynamic SQL Precompiler Options

EXEC SQL FOR : ARRAY- SI ZE ALLOCATE DESCRI PTCR 'in' END- EXEC.
EXEC SQL PREPARE S FROM : DYN- STATEMENT END- EXEC.
MOVE 0 TO ENAME- | ND(1).
MOVE -1 TO ENAME- | ND(2).
MOVE 0 TO ENAME- | ND(3).
EXEC SQL SET DESCRI PTCR 'in' COUNT = : ONT END- EXEC.
EXEC SQL SET DESCRI PTCR 'in' VALUE 1
TYPE = : ENAME- TYP, LENGTH =: ENAVE- LEN
END- EXEC.
EXEC SQL FOR : ARRAY-SI ZE SET DESCRIPTCR 'in' VALUE 1
DATA = : ENAME, |NDI CATCR = : ENAME- | ND
END- EXEC.
EXEC SQL SET DESCRI PTCR 'in' VALUE 2
TYPE = : EWPNO- TYP, LENGTH =: EMPNO- LEN

END- EXEC.

EXEC SQL FOR : ARRAY-SI ZE SET DESCRI PTOR 'in' VALUE 2
DATA = : EMPNO

END- EXEC.

EXEC SQL FCR : ARRAY- SI ZE EXECUTE S
USI NG DESCRI PTCR "in' END EXEC.

The preceding code inserts these values into the table:

EMPNO ENAME
8001 Tom
8002

8003 Harry

See the discussion in “The FOR Clause” for restrictions and cautions.

Related Topics
* The FOR Clause

10.5 ANSI Dynamic SQL Precompiler Options

The macro option MODE (See “MODE") sets ANSI compatibility characteristics and
controls a number of functions. It can have the values ANSI or ORACLE. For individual
functions there are micro options that override the MODE setting.

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic
SQL. The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle
datatype codes are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes
ANSI automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.

The following table describes how the DYNAMIC setting affects various functionality:

Table 10-2 DYNAMIC Option Settings
|

Function DYNAMIC=ANSI DYNAMIC=ORACLE
Descriptor creation. Must use ALLOCATE Must use an Oracle format descriptor.
statement.

ORACLE 10-9

Chapter 10
Full Syntax of the Dynamic SQL Statements

Table 10-2 (Cont.) DYNAMIC Option Settings
|

Function DYNAMIC=ANSI DYNAMIC=ORACLE

Descriptor destruction. May use DEALLOCATE N/A
statement.

Retrieving data. May use both FETCH and Must use only FETCH statement.

GET statements.

Setting input data. May use DESCRIBE INPUT Must set descriptor values in code. Must
statement. Must use SET use DESCRIBE BIND VARIABLES
statement. statement.

Descriptor Single quoted literal or host Host variable, a pointer to SQLDA.

representation. identifier which contains the

descriptor name.

Data types available. All ANSI types except BIT Oracle types except objects, LOBs, and
and all Oracle types. cursor variables.

The micro option TYPE_CODE is set by the precompiler to the same setting as the
macro option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

The following table shows the functionality corresponding to the TYPE_CODE
settings.

Table 10-3 TYPE_CODE Option Settings
|

Function TYPE_CODE=ANSI TYPE_CODE=0ORACLE

Data type code numbers Use ANSI code numbers when Use Oracle code numbers.
input and returned in ANSI type exists. Otherwise, May be used regardless of the
dynamic SQL. use the negative of the Oracle setting of DYNAMIC.

code number.

Only valid when
DYNAMIC=ANSI.

Related Topics
- MODE

10.6 Full Syntax of the Dynamic SQL Statements

For more details on all these statements, see the alphabetical listing in the appendix
“Embedded SQL Statements and Precompiler Directives”.

Related Topics

e Embedded SQL Statements and Precompiler Directives

10.6.1 ALLOCATE DESCRIPTOR

This statement is used only for ANSI dynamic SQL.

ORACLE 10-10

Chapter 10
Full Syntax of the Dynamic SQL Statements

Purpose

Use this statement to allocate a SQL descriptor area. Supply a descriptor, the
maximum number of occurrences of host bind items, and an array size.

Syntax

EXEC SQL [FOR [:]array_size] ALLOCATE DESCRI PTCR [GLOBAL | LOCAL]
{:desc_nam| string_literal} [WTH MAX occurrences]
END- EXEC.

10.6.1.1 Variables

A number of variables can be used with the ALLOCATE descriptor. These include:
array_size, desc_nam, and occurrences.

array_size
The optional array_size clause (an Oracle extension) supports table processing. It
tells the precompiler that the descriptor is usable for table processing.

GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be
accessed only in the file in which it is allocated. A global descriptor can be used in any
module in the compilation unit.

desc_nam

The desc_nam variable defines the local descriptors that must be unique in the
module. A runtime error is generated if the descriptor has been previously allocated,
but not deallocated. A global descriptor must be unique for the application or a
runtime error results.

occurrences

The optional occurrences clause is the maximum number of host variables possible in
the descriptor. The occurrences variable must be an integer constant between 0 and
64K, or an error is returned. The default is 100. A precompiler error results if it does
not conform to these rules.

10.6.1.2 Examples

EXEC SQL ALLOCATE DESCRI PTOR ' SELDES' W TH MAX 50 END- EXEC.

EXEC SQL FOR : BATCH ALLOCATE DESCRI PTOR GLOBAL : BI NDDES W TH MAX 25
END- EXEC.

10.6.2 DEALLOCATE DESCRIPTOR

Purpose

To free memory, use the deallocate statement. This statement deallocates a
previously allocated SQL descriptor area.

ORACLE 10-11

Chapter 10
Full Syntax of the Dynamic SQL Statements

Syntax

EXEC SQL DEALLOCATE DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal}
END- EXEC.

Variables

desc_nam

The only variable available with the deallocate descriptor is desc_nam (for descriptor
name.) A runtime error results when a descriptor with the same name and scope has
not been allocated, or has already been allocated and deallocated.

Examples

EXEC SQL DEALLCCATE DESCRI PTOR GLOBAL ' SELDES' END- EXEC.

EXEC SQL DEALLCCATE DESCRI PTCR : BI NDDES END- EXEC.

10.6.3 GET DESCRIPTOR

ORACLE

Purpose

Use to obtain information from a SQL descriptor area.

Syntax

EXEC SQL [FOR [:]array_size] GET DESCR PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal}
{:hv0 = COUNT | VALUE itemnnunber :hvl = item nanel
[{, :hvN = itemnaneN }]}

END- EXEC.

Variables

array_size
The FOR array_si ze variable is an optional Oracle extension. FOR array_si ze has to be
equal to the array_si ze field in the FETCH statement.

desc_nam
The descriptor name.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

COUNT
The total number of bind variables.

VALUE item_number

The position of the item in the SQL statement. i t em nunber can be a variable or a
constant. If i tem nunber is greater than COUNT, the "no data found" condition is
returned. i t em nunber must be greater than 0.

hvl .. hvN
These are host variables to which values are transferred.

10-12

ORACLE

Chapter 10
Full Syntax of the Dynamic SQL Statements

item_namel .. item_nameN
The descriptor item names corresponding to the host variables. The possible ANSI
descriptor item names are listed in the following table.

Table 10-4 Definitions of Descriptor ltem Names

Descriptor Item Name

Meaning

TYPE

LENGTH

CCTET_LENGTH
RETURNED_LENGTH

RETURNED_OCTET_LENGTH
PRECI SI ON
SCALE

NULLABLE

| NDI CATOR

DATA

NAVE

CHARACTER SET_NAME

See Table 10-1 for the ANSI type codes. See Table 11-2 for the
Oracle type codes. Use the negative value of the Oracle code if
the ANSI datatype is not in the table, and TYPE_CODE = ANSI.

Length of data in the column. In characters for NCHAR, and
otherwise in bytes. Set by the DESCRIBE OUTPUT.

Length of data in bytes.

The actual data length after a FETCH. It is undefined for fixed-
length character types.

Length of the returned data in bytes.
The number of digits.

For exact numeric types, the number of digits to the right of the
decimal point.

If 1, the column can have NULL values. If 0, the column cannot
have NULL values.

The associated indicator value.
The data value.
Column name.

Column's character set.

The following table lists the Oracle extensions to the descriptor item names.

Table 10-5 Oracle Extensions to Definitions of Descriptor ltem Names

Descriptor Item Name

Meaning

NATI ONAL_CHARACTER
| NTERNAL_LENGTH

If 2, NCHAR or NVARCHAR?Z2. If 1, character. If 0, non-character.

The internal length, in bytes.

Usage Notes

Use the FOR clause in GET DESCRIPTOR statements which contain DATA,
INDICATOR, and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input
and output, you must set the type to be the external type of your host variable. TYPE
is the Oracle or ANSI code in Table 10-1. You will receive the negative value of the
Oracle type code if the ANSI type is not in the table.

LENGTH contains the column length in characters for fields that have fixed-width
National Language character sets. It is in bytes for other character columns. It is set in

DESCRIBE OUTPUT.

10-13

Chapter 10
Full Syntax of the Dynamic SQL Statements

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in
bytes or characters as described for LENGTH. The fields OCTET_LENGTH and
RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it
cannot.

CHARACTER_SET_NAME only has meaning for character columns. For other types,
it is undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If
data = NULL, but the indicator was not requested, an error is generated at runtime
("DATA EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").

Oracle-specific Descriptor ltem Names

NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR?2 column. If
the column is a character (but not National Character) column, this item is setto 1. If a
non-character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the
same value as the length member of the Oracle descriptor area. See “Oracle Dynamic
SQL: Method 4".

Examples

EXEC SQL GET DESCRI PTCR : BI NDDES : COUNT = COUNT END- EXEC.

EXEC SQL GET DESCRI PTOR ' SELDES VALUE 1 :TYP = TYPE, :LEN = LENGTH
END- EXEC.

EXEC SQL FOR : BATCH GET DESCRI PTCR LOCAL ' SELDES
VALUE : SEL-I TEM NO : IND = | NDI CATOR, :DAT = DATA END- EXEC.

Related Topics
e Oracle Dynamic SQL: Method 4

10.6.4 SET DESCRIPTOR

Purpose

Use this statement to set information in the descriptor area from host variables. The
SET DESCRIPTOR statement supports only host variables for the item names.

Syntax

EXEC SQL [FOR [:]array_size] SET DESCRI PTOR [GLOBAL | LOCAL]
{:desc_nam| string_literal}
{COUNT = :hv0 | VALUE item nunber
[REF] itemnamel = :hvl
[{, [REF] itemnameN = :hvN}]}
END- EXEC.

ORACLE 10-14

ORACLE

Chapter 10
Full Syntax of the Dynamic SQL Statements

Variables

array_size

This optional Oracle clause permits using arrays when setting the descriptor items
DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in
a SET DESCRIPTOR that contains the FOR clause. All host variable table sizes must
match. Use the same array size for the SET statement that you use for the FETCH
statement.

desc_nam
The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.

COUNT
The number of bind (input) or define (output) variables.

VALUE item_number
Position in the dynamic SQL statement of a host variable.

hvl .. hvN
The host variables (not constants) that you set.

item_namel .. item_nameN
In a similar way to the GET DESCRIPTOR syntax (see “GET DESCRIPTOR?"),
i tem name can take on these values:

Table 10-6 Descriptor Item Names for SET DESCRIPTOR

__|
Descriptor Item Name Meaning
TYPE See Table 10-1 for the ANSI type codes. See Table 11-2 for the

Oracle type codes. Use the negative value of the Oracle type
code if the Oracle type is not in the table, and TYPE_CODE =

ANSI.
LENGTH Maximum length of data in the column.
PRECISION The number of digits.
SCALE For exact numeric types, the number of bytes to the right of the
decimal point.
INDICATOR The associated indicator value. Set for reference semantics.
DATA Value of the data to be set. Set for reference semantics.

CHARACTER_SET_NAME Column's character set.

The Oracle extensions to the descriptor item names are listed in the following table.

Table 10-7 Extensions to Descriptor Item Names for SET DESCRIPTOR

Descriptor Item Name Meaning

RETURNED_LENGTH Length returned after a FETCH. Set if reference semantics is
being used.

NATIONAL_CHARACTER Set to 2 when the input host variable is an NCHAR or
NVARCHAR?2 type.

10-15

Chapter 10
Full Syntax of the Dynamic SQL Statements

Usage Notes

Reference semantics is another optional Oracle extension that speeds performance.
Use the keyword REF before these descriptor items names only: DATA, INDICATOR,
RETURNED_LENGTH. When you use the REF keyword you do not need to use a
GET statement. Complex data types and DML returning clauses require the REF form
of SET DESCRIPTOR. See “DML Returning Clause”.

When REF is used the associated host variable itself is used in the SET. The GET is
not needed in this case. The RETURNED_LENGTH can only be set when you use the
REF semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.
Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

When setting an object type's characteristics, you must set
USER_DEFINED_TYPE_NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED_TYPE_SCHEMA and
USER_DEFINED_TYPE_SCHEMA LENGTH default to the current connection.

Related Topics
* DML Returning Clause
e GET DESCRIPTOR

10.6.4.1 Example

Bulk table examples are found in "Using Tables for Bulk Operations".

OL BINDNO PIC S9
01 IND PIC S9

(VALUE 2.
(

01 DATA PIC X(6
(

9) COwP

4) COW VALUE -1.

) COWP VALUE "ignore".
9

01 BATCH PIC S9(9) COWP VALUE 1.

EXEC SQL FOR :batch ALLOCATE DESCRI PTOR : Bl NDDES END- EXEC.
EXEC SQL SET DESCRI PTOR GLOBAL : BI NDDES COUNT = 3 END- EXEC.
EXEC SQL FOR :batch SET DESCRI PTCR : BI NDDES

VALUE : BI NDNO | NDI CATOR = : I NDI, DATA = :DATA END- EXEC.

10.6.5 Use of PREPARE

Purpose

The PREPARE statement used in this method is the same as the PREPARE
statement used in the Oracle dynamic SQL methods. An Oracle extension allows a
guoted string for the SQL statement, as well as a variable.

Syntax

EXEC SQL PREPARE statement _id FROM :sql _statenent END- EXEC.

ORACLE 10-16

Chapter 10
Full Syntax of the Dynamic SQL Statements

Variables

statement_id
This must not be declared; it is an undeclared SQL identifier associated with the
prepared SQL statement.

sql_statement
A character string (a constant or a variable) holding the embedded SQL statement.

Examples
01 STATEMENT PIC X(255)
VALUE " SELECT ENAME FROM enp WHERE deptno = :d".

EXEC SQL PREPARE S1 FROM : STATEMENT END- EXEC.

10.6.6 DESCRIBE INPUT

Purpose

This statement returns information about the input bind variables.

Syntax

EXEC SQL DESCRI BE | NPUT statement id USING [SQL] DESCRI PTOR
[GLOBAL | LOCAL] {:desc_nam| string_literal}
END- EXEC.

Variables

statement_id
The same as used in PREPARE and DESCRIBE OUTPUT. This must not be
declared; it is a SQL identifier.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
The descriptor name.

Usage Notes
Only COUNT and NAME are implemented for bind variables in this version.

Examples

EXEC SQL DESCRI BE I NPUT S1 USING SQL DESCRI PTOR GLOBAL : BI NDDES END- EXEC.
EXEC SQL DESCRI BE | NPUT S2 USI NG DESCRI PTCR "input' END-EXEC.

10.6.7 DESCRIBE OUTPUT

Purpose

The DESCRIBE INPUT statement is used to obtain information about the columns in a
PREPARE statement. The ANSI syntax differs from the older syntax. The information

ORACLE 10-17

Chapter 10
Full Syntax of the Dynamic SQL Statements

which is stored in the SQL descriptor area is the number of values returned and
associated information such as type, length, and name.

Syntax

EXEC SQL DESCRI BE [QUTPUT] statenent _id USING [SQL] DESCR PTOR
[GLOBAL | LOCAL] {:desc_nam| string_literal}
END- EXEC.

Variables

statement_id
The statement_id is a SQL identifier. It must not be declared.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
The descriptor name. Either a host variable preceded by a "', or a single-quoted
string. OUTPUT is the default and can be omitted.

Examples

01 DESNAME PIC X(10) VALUE "SELDES".

EXEC SQ. DESCRI BE S1 USI NG SQL DESCRI PTCR ' SELDES' END- EXEC.
* O
EXEC SQ. DESCRI BE QUTPUT S1 USI NG DESCRI PTOR : DESNAME END- EXEC.

10.6.8 EXECUTE

ORACLE

Purpose

EXECUTE matches input and output variables in a prepared SQL statement and then
executes the statement. This ANSI version of EXECUTE differs from the older
EXECUTE statement by allowing two descriptors in one statement to support DML
RETURNING.

Syntax

EXEC SQL [FOR [:]array_size] EXECUTE statenent_id
[USING [SQL] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}]
[INTO [SQL] DESCRI PTOR [GLOBAL | LOCAL] {:desc_nam| string_literal}]
END- EXEC.

Variables

array_size
The number of rows the statement will process.

statement_id
The same as used in PREPARE. This must not be declared; it is a SQL identifier. It
can be a literal.

10-18

Chapter 10
Full Syntax of the Dynamic SQL Statements

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam

The descriptor name. Either a host variable preceded by a "', or a single-quoted
string.

Usage Notes

The INTO clause implements the RETURNING clause for INSERT, UPDATE and
DELETE (See “Inserting Rows” and succeeding pages).

Examples
EXEC SQL EXECUTE S1 USING SQL DESCRI PTOR GLOBAL : BI NDDES END- EXEC.

EXEC SQL EXECUTE S2 USI NG DESCRI PTOR : bvl | NTO DESCRI PTCR ' SELDES'
END- EXEC.

Related Topics

e Inserting Rows

10.6.9 Use of EXECUTE IMMEDIATE

Purpose

The EXECUTE IMMEDIATE statement executes a literal or host variable character
string containing the SQL statement.The ANSI SQL form of this statement is the same
as in the older dynamic SQL.:
Syntax

EXEC SQL EXECUTE | MVEDI ATE [:]sql _statenent END-EXEC.

Variables
Only one variable is available with the EXECUTE IMMEDIATE statement.

sql_statement

The sql_statement variable is the SQL statement or PL/SQL block in a character
string. It can be a host variable or a literal.

Examples

EXEC SQL EXECUTE | MVEDI ATE : st at enment END- EXEC.

10.6.10 Use of DYNAMIC DECLARE CURSOR

ORACLE

Purpose

The DYNAMIC DECLARE CURSOR statement declares a cursor that is associated
with a statement which is a query. This is a form of the generic Declare Cursor
statement.

10-19

Chapter 10
Full Syntax of the Dynamic SQL Statements

Syntax
EXEC SQL DECLARE cursor_name CURSOR FOR statenent _i d END- EXEC.
Variables

cursor_name
A cursor variable (a SQL identifier, not a host variable).

statement_id
An undeclared SQL identifier (the same as the one used in the PREPARE statement).

Examples

EXEC SQL DECLARE C1 CURSCR FOR S1 END- EXEC.

10.6.11 OPEN Cursor

ORACLE

Purpose

The OPEN statement associates input parameters with a cursor and then opens the
cursor.

Syntax

EXEC SQL [FOR [:]array_size] OPEN dyn_cursor
[[USING [SQL] DESCRI PTOR [GLOBAL | LOCAL] desc_nant]
[INTO [SQL] DESCRI PTOR [GLOBAL | LOCAL] desc_nan?]]
END- EXEC.

Variables

array_size
This limit is less than or equal to number specified when the descriptor was allocated.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

dyn_cursor
The cursor variable.

desc_naml, desc_nam2
The optional descriptor names.

Usage Notes

If the prepared statement associated with the cursor contains colons or question
marks, a USING clause must be specified, or an error results at runtime. The INTO
clause supports DML RETURNING (See “Inserting Rows” and succeeding sections on
DELETE and UPDATE).

Examples

EXEC SQL OPEN C1 USI NG SQL DESCRI PTOR : Bl NDDES END- EXEC.

EXEC SQL FOR :LIMT OPEN C2 USI NG DESCRI PTCR : B1, :B2

10-20

Chapter 10
Full Syntax of the Dynamic SQL Statements

I NTO SQL DESCRI PTOR : SELDES
END- EXEC.

Related Topics

* Inserting Rows

10.6.12 FETCH

Purpose

The FETCH statement fetches a row for a cursor declared with a dynamic DECLARE
statement.

Syntax
EXEC SQL [FOR [:]array_size] FETCH cursor INTO [SQ.] DESCRI PTOR

[GLOBAL | LOCAL] {:desc_nam| string_literal}
END- EXEC.

Variables

array_size
The number of rows the statement will process.

cursor
The dynamic cursor that was previously declared.

GLOBAL | LOCAL
GLOBAL means that the descriptor name is known to all program files. LOCAL means
that it is known only in the file in which it is allocated. LOCAL is the default.

desc_nam
Descriptor name.

Usage Notes

The optional array_si ze in the FOR clause must be less than or equal to the number
specified in the ALLOCATE DESCRIPTOR statement.

RETURNED_LENGTH is undefined for fixed-length character types.

Examples

EXEC SQL FETCH FROM CL | NTO DESCRI PTOR ' SELDES' END- EXEC.

EXEC SQL FOR : ARSZ FETCH C2 | NTO DESCRI PTCR : DESC END- EXEC.

10.6.13 CLOSE a Dynamic Cursor

ORACLE

Purpose

The CLOSE statement closes a dynamic cursor. Its syntax is identical to the Oracle
Method 4.

Syntax
EXEC SQ. CLOSE cursor END- EXEC.

10-21

Chapter 10
Full Syntax of the Dynamic SQL Statements

Variables

Only one variable is available with the CLOSE statement.

cursor
The cursor variable describes the previously declared dynamic cursor.

Examples

EXEC SQL CLOSE C1 END- EXEC.

10.6.14 Differences From Oracle Dynamic Method 4

The ANSI dynamic SQL interface supports all the features supported by the Oracle
dynamic Method 4, with these additions:

All datatypes, including cursor variables, and LOB types are supported by ANSI
Dynamic SQL.

The ANSI mode uses an internal SQL descriptor area which is an expansion of the
external SQLDA used in Oracle older dynamic Method 4 to store its input and
output information.

New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET
DESCRIPTOR.

The DESCRIBE statement does not return the names of indicator variables in
ANSI Dynamic SQL.

ANSI Dynamic SQL does not allow you to specify the maximum size of the
returned column name or expression. The default size is set at 128.

The descriptor name must be either an identifier in single-quotes or a host variable
preceded by a colon.

For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced
by the optional keyword OUTPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be
replaced by the keyword INPUT. The INTO clause is replaced by the USING
DESCRIPTOR clause, which can contain the optional keyword SQL.

The optional keyword SQL can come before the keyword DESCRIPTOR in the
USING clause of the EXECUTE, FETCH and OPEN statements.

10.6.15 Restrictions

Restrictions in effect on ANSI dynamic SQL are:

ORACLE

You cannot mix the two dynamic methods in the same module.

The precompiler option DYNAMIC must be set to ANSI. The precompiler option
TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSI.

The SET statement supports only host variables as item names.

10-22

Chapter 10
Sample Programs: SAMPLE12.PCO

10.7 Sample Programs: SAMPLE12.PCO

The following ANSI SQL dynamic Method 4 program, SAMPLE12.PCO, is found in the
demo directory. SAMPLE12 mimics SQL*Plus by prompting for SQL statements to be
input by the user. Read the comments at the beginning for details of the program flow.

RS RS E RS R RS SRR SRR RS SRR EREEREEEEEREEREEEEEEEREEREEEEEEEEEEEES]

* Sanpl e Program 12: Dynanmic SQL Method 4 using ANSI Dynamic SQ *
* *
* This program shows the basic steps required to use dynamic *
* SQL Method 4 with ANSI Dynamic SQL. After logging on to *
* ORACLE, the programpronpts the user for a SQ statement, *
* PREPARES the statement, DECLAREs a cursor, checks for any *
* bind variables using DESCR BE | NPUT, OPENs the cursor, and *
* DESCRIBEs any select-list variables. [f the input SQ *
* statement is a query, the program FETCHes each row of dat a, *
* then CLOSEs the cursor. *
* *
* *

use option dynanic=ansi when preconpiling this sanple.
IEEE RS SR SRS R RS SRR R R EEEEEEEEEEE R R R R R R R EREEEEEREEREEREEEEEEEEEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. ANSI DYNSQL4.
ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.

01 USERNAME PIC X(20).

01 PASSWD PIC X(20).

01 BDSC PIC X(6) VALUE "BNDDSC'.
01 SDSC PIC X(6) VALUE "SELDSC'.
01 BNDCNT PIC S9(9) COWP.

01 SELCNT PIC S9(9) COWP.

01 BNDNAME PI C X(80).

01 BNDVAL PI C X(80).

01 SELNAME PI'C X(80) VARYI NG

01 SELDATA PI C X(80).

01 SELTYP PIC S9(4) COWP.

01 SELPREC PIC S9(4) COWP.

01 SELLEN PIC S9(4) COWP.

01 SELIND PIC S9(4) COWP.

01 DYN-STATEMENT Pl C X(80).

01 BND-I NDEX PIC S9(9) COWP.

01 SEL-1 NDEX PIC S9(9) COWP.

01 VARCHAR2-TYP PIC S9(4) COWP VALUE 1.
01 VAR- COUNT PIC 9(2).

01 ROW COUNT PIC 9(4).

01 NO MORE-DATA PIC X(1) VALUE "N'.

01 TNMPLEN PIC S9(9) COWP.

01 MAX-LENGTH PIC S9(9) COWP VALUE 80.

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
START- MAI'N.

EXEC SQL WHENEVER SQLERRCR GOTO SQL- ERROR END- EXEC.

DI SPLAY "USERNAME: " W TH NO ADVANCI NG
ACCEPT USERNAME.

ORACLE 10-23

ORACLE

Chapter 10
Sample Programs: SAMPLE12.PCO

DI SPLAY "PASSWORD: " W TH NO ADVANCI NG

ACCEPT PASSVD.

EXEC SQL CONNECT : USERNAME | DENTI FI ED BY : PASSWD END- EXEC.
DI SPLAY " CONNECTED TO ORACLE AS USER ", USERNAME.

ALLOCATE THE BIND AND SELECT DESCRI PTORS.

EXEC SQL ALLOCATE DESCRI PTOR : BDSC W TH MAX 20 END- EXEC.
EXEC SQL ALLOCATE DESCRI PTOR : SDSC W TH MAX 20 END- EXEC.

GET A SQL STATEMENT FROM THE COPERATOR.

DI SPLAY "ENTER SQL STATEMENT W THOUT TERM NATCR ".
DI SPLAY ">" W TH NO ADVANCI NG

ACCEPT DYN- STATEMENT.

DI SPLAY " "

PREPARE THE SQL STATEMENT AND DECLARE A CURSCR.

EXEC SQL PREPARE S1 FROM : DYN- STATEMENT END- EXEC.
EXEC SQL DECLARE Cl1 CURSCR FOR S1 END- EXEC.

DESCRI BE BI ND VARI ABLES.
EXEC SQL DESCRI BE I NPUT S1 USI NG DESCRI PTCR : BDSC END- EXEC.
EXEC SQL GET DESCRI PTOR : BDSC : BNDCNT = COUNT END- EXEC.

I F BNDCNT < 0
DI SPLAY "TOO MANY BI ND VARI ABLES. *
GO TO END- SQL
ELSE
DI SPLAY "NUMBER OF BIND VARI ABLES: " W TH NO ADVANCI NG
MOVE BNDCNT TO VAR- COUNT
DI SPLAY VAR- COUNT
EXEC SQL SET DESCRI PTCR : BDSC COUNT = : BNDONT END- EXEC
END- | F.

| F BNDCNT = 0
GO TO DESCRI BE- | TEMS.
PERFORM SET- BND- DSC
VARYI NG BND- | NDEX FROM 1 BY 1
UNTIL BND- 1 NDEX > BNDCNT.

OPEN THE CURSOR AND DESCRI BE THE SELECT- LI ST | TEMS.

DESCRI BE- | TENS.

EXEC SQL OPEN C1 USI NG DESCRI PTCR : BDSC END- EXEC.
EXEC SQL DESCRIBE QUTPUT S1 USI NG DESCRI PTCR : SDSC END- EXEC.
EXEC SQL GET DESCRI PTOR : SDSC : SELCNT = COUNT END- EXEC.

I F SELONT < 0
DI SPLAY " TOO MANY SELECT-LI ST | TENS. "
GO TO END- SQL
ELSE
DI SPLAY "NUMBER OF SELECT-LI ST ITEMS, "
W TH NO ADVANCI NG
MOVE SELCNT TO VAR- COUNT
DI SPLAY VAR- COUNT

10-24

Chapter 10
Sample Programs: SAMPLE12.PCO

DI SPLAY " "
* EXEC SQL SET DESCRI PTOR : SDSC COUNT = : SELCNT END- EXEC
END- | F.

* SET THE | NPUT DESCRI PTOR

IF SELCNT > 0
PERFORM SET- SEL- DSC
VARYI NG SEL-1 NDEX FROM 1 BY 1
UNTIL SEL-1NDEX > SELCNT
DI SPLAY " "

* FETCH EACH RON AND PRI NT EACH SELECT- LI ST VALUE.

IF SELCNT > 0
PERFORM FETCH- ROAS UNTI L NO- MORE- DATA = "Y".

DI SPLAY " *
DI SPLAY "NUMBER OF ROWS PROCESSED: " W TH NO ADVANCI NG
MOVE SQLERRD(3) TO ROW COUNT.

DI SPLAY ROW COUNT.

* CLEAN UP AND TERM NATE.

EXEC SQL CLOSE C1 END- EXEC.

EXEC SQL DEALLOCATE DESCRI PTCR : BDSC END- EXEC.
EXEC SQL DEALLOCATE DESCRI PTCR : SDSC END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.

DI SPLAY " "

DI SPLAY "HAVE A GOOD DAY!".

DI SPLAY " "

STCP RUN.

* DI SPLAY ORACLE ERROR MESSAGE AND CODE.

SQL- ERROR
DI SPLAY " "
DI SPLAY SQLERRVC.

END- SQL.
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

* PERFORMED SUBROUTI NES BEG N HERE:

SET A BIND-LI ST ELEMENT' S ATTRI BUTE
LET THE USER FILL IN THE BIND VARI ABLES AND
REPLACE THE 0S DESCRI BED I NTO THE DATATYPE FI ELDS OF THE
BI ND DESCRI PTOR WTH 1S TO AVO D AN "I NVALI D DATATYPE"
ORACLE ERRCR
SET- BND- DSC.
EXEC SQL GET DESCRI PTOR : BDSC VALUE
: BND- | NDEX : BNDNAME = NAME END- EXEC.
DI SPLAY "ENTER VALUE FOR ", BNDNAME.
ACCEPT BNDVAL.
EXEC SQL SET DESCRI PTOR : BDSC VALUE : BND- | NDEX
TYPE = : VARCHAR2- TYP, LENGTH = : MAX- LENGTH,
DATA = : BNDVAL END- EXEC.

R

* SET A SELECT-LI ST ELEMENT' S ATTRI BUTES
SET- SEL- DSC.

ORACLE 10-25

Chapter 10
Sample Programs: SAMPLE12.PCO

MOVE SPACES TO SELNAME- ARR.
EXEC SQL GET DESCRI PTOR : SDSC VALUE : SEL- | NDEX
: SELNAME = NAME, :SELTYP = TYPE,
: SELPREC = PRECI SION, : SELLEN = LENGTH END- EXEC.

* | F DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
| F SELTYP = 12
MOVE 9 TO SELLEN.

* | F DATATYPE |'S NUMBER, SET LENGTH TO PRECI SI ON.
MOVE 0 TO TMPLEN.
| F SELTYP = 2 AND SELPREC = 0
MOVE 40 TO TMPLEN.
| F SELTYP = 2 AND SELPREC > 0
ADD 2 TO SELPREC
MOVE SELPREC TO TMPLEN.

IF SELTYP = 2
I F TMPLEN > MAX- LENGTH
DI SPLAY " COLUMN VALUE TOO LARGE FOR DATA BUFFER "
GO TO END- SQL
ELSE
MOVE TMPLEN TO SELLEN.

* COERCE DATATYPES TO VARCHAR2.
MOVE 1 TO SELTYP.

* DI SPLAY COLUWN HEADI NG
DI SPLAY " ", SELNAME- ARR(1: SELLEN) W TH NO ADVANCI NG

EXEC SQL SET DESCRI PTOR : SDSC VALUE : SEL- | NDEX
TYPE = : SELTYP, LENGTH = : SELLEN END- EXEC.

* FETCH A ROW AND PRINT THE SELECT- LI ST VALUE.

FETCH ROWS.
EXEC SQL FETCH Cl | NTO DESCRI PTCR : SDSC END- EXEC.
I F SQLCODE NOT = 0
MOVE "Y* TO NO- MORE- DATA.
| F SQLCODE = 0
PERFORM PRI NT- COLUMN- VALUES
VARYI NG SEL- | NDEX FROM 1 BY 1
UNTI L SEL- | NDEX > SELCNT
DI SPLAY " "

* PRINT A SELECT-LI ST VALUE.

PRI NT- COLUMN- VALUES.
MOVE SPACES TO SELDATA.
* returned length is not set for blank padded types
| F SELTYP EQUALS 1
EXEC SQL GET DESCRI PTOR : SDSC VALUE : SEL- | NDEX
. SELDATA = DATA, :SELIND = | NDI CATOR,
: SELLEN = LENGTH END- EXEC
ELSE
EXEC SQL GET DESCRI PTOR : SDSC VALUE : SEL- | NDEX
. SELDATA = DATA, :SELIND = | NDI CATCR,
: SELLEN = RETURNED_LENGTH END- EXEC.
|F (SELIND = -1)
move " NULL" to SELDATA.

ORACLE 10-26

Chapter 10
Sample Programs: SAMPLE12.PCO

DI SPLAY SELDATA(1: SELLEN), " "
W TH NO ADVANCI NG

ORACLE' 10-27

Oracle Dynamic SQL: Method 4

This chapter shows you how to implement Oracle dynamic SQL Method 4, which lets
your program accept or build dynamic SQL statements that contain a varying number
of host variables.

New applications should be developed using the newer ANSI SQL Method 4 described
in “ANSI Dynamic SQL”. The ANSI Method 4 supports all Oracle types, while the older
Oracle Method 4 does not support cursor variables, tables of group items, the DML
returning clause, and LOBs.

Subjects discussed include the following:

* Meeting the Special Requirements of Method 4

e Understanding the SQL Descriptor Area (SQLDA)
* The SQLDA Variables

* Prerequisite Knowledge

* The Basic Steps

e A Closer Look at Each Step

* Using Host Tables with Method 4

e Sample Program 10: Dynamic SQL Method 4

" Note:

For a discussion of dynamic SQL Methods 1, 2, and 3, and an overview of
Oracle Method 4, see “Oracle Dynamic SQL".

Related Topics
* ANSI Dynamic SQL
e Oracle Dynamic SQL

11.1 Meeting the Special Requirements of Method 4

ORACLE

Before looking into the requirements of Method 4, you should be familiar with the
terms select-list item and place-holder. Select-list items are the columns or
expressions following the keyword SELECT in a query. For example, the following
dynamic query contains three select-list items:

SELECT ENAME, JOB, SAL + COW FROM EMP WHERE DEPTNO = 20
Place-holders are dummy bind (input) variables that hold places in a SQL statement

for actual bind variables. You do not declare place-holders and can name them
anything you like. Place-holders for bind variables are most often used in the SET,

11-1

Chapter 11
Meeting the Special Requirements of Method 4

VALUES, and WHERE clauses. For example, the following dynamic SQL statements
each contain two place-holders.

I NSERT | NTO EMP (EMPNO, DEPTNO) VALUES (:E, :D)
DELETE FROM DEPT WHERE DEPTNO = : DNUM AND LOC = : DLOC

Place-holders cannot reference table or column names.

11.1.1 Advantages of Method 4

Unlike Methods 1, 2, and 3, dynamic SQL Method 4 lets your program:

e Accept or build dynamic SQL statements that contain an unknown number of
select-list items or place-holders

e Take explicit control over datatype conversion between Oracle and COBOL types

To add this flexibility to your program, you must give the runtime library additional
information.

11.1.2 Information the Database Needs

Pro*COBOL generates calls to Oracle for all executable dynamic SQL statements. If a
dynamic SQL statement contains no select-list items or place-holders, the database
needs no additional information to execute the statement. The following DELETE
statement falls into this category:

* Dynam ¢ SQL statenent. ..
MOVE ' DELETE FROM EMP WHERE DEPTNO = 30" TO STM.

However, most dynamic SQL statements contain select-list items or place-holders for
bind variables, as shown in the following UPDATE statement:

* Dynam ¢ SQ statement with place-hol ders...
MOVE ' UPDATE EMP SET COW = : C WHERE EMPNO = : E' TO STM.

To execute a dynamic SQL statement that contains select-list items or place-holders
for bind variables, or both, the database needs information about the program
variables that will hold output or input values. Specifically, the database needs the
following information:

e The number of select-list items and the number of bind variables
e The length of each select-list item and bind variable
e The datatype of each select-list item and bind variable

 The memory address of each output variable that will store the value of a select-
list item, and the address of each bind variable

For example, to write the value of a select-list item, the database needs the address of
the corresponding output variable.

11.1.3 Where the Information is Stored

All the information the database needs about select-list items or place-holders for bind
variables, except their values, is stored in a program data structure called the SQL
Descriptor Area (SQLDA).

ORACLE 11-2

Chapter 11
Understanding the SQL Descriptor Area (SQLDA)

Descriptions of select-list items are stored in a select SQLDA, and descriptions of
place-holders for bind variables are stored in a bind SQLDA.

The values of select-list items are stored in output buffers; the values of bind variables
are stored in input buffers. You use the library routine SQLADR to store the addresses
of these data buffers in a select or bind SQLDA, so that the database knows where to

write output values and read input values.

How do values get stored in these data variables? A FETCH generates output values
using a cursor, and input values are filled in by your program, typically from
information entered interactively by the user.

11.1.4 How Information is Obtained

You use the DESCRIBE statement to help get the information the database needs.
The DESCRIBE SELECT LIST statement examines each select-list item to determine
its name, datatype, constraints, length, scale, and precision, then stores this
information in the select SQLDA for your use. For example, you might use select-list
names as column headings in a printout. DESCRIBE also stores the total number of
select-list items in the SQLDA.

The DESCRIBE BIND VARIABLES statement examines each place-holder to
determine its name and length, then stores this information in an input buffer and bind
SQLDA for your use. For example, you might use place-holder names to prompt the
user for the values of bind variables.

11.2 Understanding the SQL Descriptor Area (SQLDA)

This section describes the SQLDA data structure in detail. You learn how to declare it,
what variables it contains, how to initialize them, and how to use them in your
program.

11.2.1 Purpose of the SQLDA

Method 4 is required for dynamic SQL statements that contain an unknown number of
select-list items or place-holders for bind variables. To process this kind of dynamic
SQL statement, your program must explicitly declare SQLDAs, also called descriptors.
Each descriptor corresponds to a group item in your program.

A select descriptor stores descriptions of select-list items and the addresses of output
buffers that hold the names and values of select-list items.

Note:

The name of a select-list item can be a column name, a column alias, or the
text of an expression such as SAL + COMM.

A bind descriptor stores descriptions of bind variables and indicator variables and the
addresses of input buffers where the names and values of bind variables and indicator
variables are stored.

ORACLE 11-3

Chapter 11
Understanding the SQL Descriptor Area (SQLDA)

Remember, some descriptor variables contain addresses, not values. Therefore, you
must declare data buffers to hold the values. You decide the sizes of the required input
and output buffers. Because COBOL does not support pointers, you must use the
library subroutine SQLADR to get the addresses of input and output buffers. You learn
how to call SQLADR in the section “Using SQLADR”.

Related Topics
* Using SQLADR

11.2.2 Multiple SQLDAs

If your program has more than one active dynamic SQL statement, each statement
must have its own SQLDA. You can declare any number of SQLDAs with different
names. For example, you might declare three select SQLDAs named SELDSC1,
SELDSC2, and SELDSC3, so that you can FETCH from three concurrently open
cursors. However, non-concurrent cursors can reuse SQLDAS.

11.2.3 Declaring a SQLDA

ORACLE

To declare select and bind SQLDAS, you can code them into your program using the
sample select and bind SQLDAs shown in Figure 11-1. You can modify the table
dimensions to suit your needs.

Note:

For byte-swapped platforms, use COMPS5 instead of COMP when declaring a
SQLDA.

11-4

ORACLE

Chapter 11

Understanding the SQL Descriptor Area (SQLDA)

Figure 11-1 Sample Pro*COBOL SQLDA Descriptors and Data Buffers (32 bit)

01

SELDSC.

05 SQLDNUM PIC S9(9) COMP.
05 SQLDFND PIC S9(9) COMP.
05 SELDVAR OCCURS 20 TIMES.
10 SELDV PIC S9(9) COMP.
10 SELDFMT PIC S9(9) COMP.
10 SELDVLN PIC S9(9) COMP.
10 SELDFMTL PIC S9(4) COMP.
10 SELDVTYP PIC S9(4) COMP.
10 SELDI PIC S9(9) COMP.
10 SELDH-VNAME PIC S9(9) COMP.
10 SELDH-MAX-VNAMEL PIC S9(4) COMP.
10 SELDH-CUR-VNAMEL PIC S9(4) COMP.
10 SELDI-VNAME PIC S9(9) COMP.
10 SELDI-MAX-VNAMEL PIC S9(4) COMP.
10 SELDI-CUR-VNAMEL PIC S9(4) COMP.
10 SELDFCLP PIC S9(9) COMP.
10 SELDFCRCP PIC S9(9) COMP.
01 XSELDI.
05 SEL-DI OCCURS 20 TIMES PIC S9(4) COMP.
01 XSELDIVNAME .
05 SEL-DI-VNAME OCCURS 20 TIMES PIC X(80).
01 XSELDV.
05 SEL-DV OCCURS 20 TIMES PIC X(80).
01 XSELDHVNAME
05 SEL-DH-VNAME OCCURS 20 TIMES PIC X(80).
01 XSEL-DFMT PIC X (6) .
01 BNDDSC.
05 SQLDNUM PIC S9(9) COMP.
05 SQLDFND PIC S9(9) COMP.
05 BNDDVAR OCCURS 20 TIMES.
10 BNDDV PIC S9(9) COMP.
10 BNDDEFMT PIC S9(9) COMP.
10 BNDDVLN PIC S9(9) COMP.
10 BNDDFMTL PIC S9(4) COMP.
10 BNDDVTYP PIC S9(4) COMP.
10 BNDDI PIC S9(9) COMP.
10 BNDDH-VNAME PIC S9(9) COMP.
10 BNDDH-MAX-VNAMEL PIC S9(4) COMP.
10 BNDDH-CUR-VNAMEL PIC S9(4) COMP.
10 BNDDI-VNAME PIC S9(9) COMP.
10 BNDDI-MAX-VNAMEL PIC S9(4) COMP.
10 BNDDI-CUR-VNAMEL PIC S9(4) COMP.
10 BNDDFCLP PIC S9(9) COMP.
10 BNDDFCRCP PIC S9(9) COMP.
01 XBNDDT.
05 BND-DI OCCURS 20 TIMES PIC S9(4) COMP.
01 XBNDDINAME.
05 BND-DI-VNAME OCCURS 20 TIMES PIC X(80).
01 XBNDDV.
05 BND-DV OCCURS 20 TIMES PIC X(80).
01 XBNDDHVNAME
05 BND-DH-VNAME OCCURS 20 TIMES PIC X(80).
01 XBND-DEMT PIC X (6).
\J
< Note:

For 64-bit platforms, use PIC S9(18) declarations instead of PIC S9(9) when
declaring a SQLDA.

You can store the SQLDAs in files (hamed SELDSC and BNDDSC, for example), and

then copy the files into your program with the INCLUDE statement as follows:

EXEC SQL | NCLUDE SELDSC END- EXEC.
EXEC SQL | NCLUDE BNDDSC END- EXEC.

11-5

Chapter 11
The SQLDA Variables

Figure 11-2 shows whether variables are set by SQLADR calls, DESCRIBE
commands, FETCH commands, or program assignments.

Figure 11-2

How Variables Are Set

Dynamic SQL Statement

'SELECT ENAME FROM EMP WHERE EMPNO=:NUM'

! !
select-list item (SLI) placeholder (P) for
bind variable (BV)
Select SQLDA Bind SQLDA
Set by:
SQLADR Address of SLI name buffer Address of P name buffer
SQLADR Address of SLI value buffer Address of BV value buffer
DESCRIBE Length of SLI name Length of P name
DESCRIBE Datatype of select-list item
Program Length of SLI name buffer Length of P name buffer
Program Length of BV value buffer Length of BV value buffer
Program Datatype of SLI value buffer Datatype of BV value buffer
Output Buffers Input Buffers
DESCRIBE Name of select-list item Name of placeholder
FETCH Value of select-list item Value of bind variable

11.3 The SQLDA Variables

ORACLE

This section explains the purpose and use of each variable in the SQLDA.

SQLDNUM

This variable specifies the maximum number of select-list items or place-holders that
can be included in DESCRIBE. Thus, SQLDNUM determines the number of elements
in the descriptor tables.

Before issuing a DESCRIBE command, you must set this variable to the dimension of
the descriptor tables. After the DESCRIBE, you must reset it to the actual number of
variables in the DESCRIBE, which is stored in SQLDFND.

SQLDFND

The SQLDFND variable is the actual number of select-list items or place-holders found
by the DESCRIBE command.

SQLDFND is set by DESCRIBE. If SQLDFND is negative, the DESCRIBE command
found too many select-list items or place-holders for the size of the descriptor. For

11-6

ORACLE

Chapter 11
The SQLDA Variables

example, if you set SQLDNUM to 10 but DESCRIBE finds 11 select-list items or place-
holders, SQLDFND is set to -11. If this happens, you cannot process the SQL
statement without reallocating the descriptor.

After the DESCRIBE, you must set SQLDNUM equal to SQLDFND.

SELDV | BNDDV

The SELDV | BNDDV table contains the addresses of data buffers that store select-list
or bind-variable values.

You must set the elements of SELDV or BNDDV using SQLADR.

Select Descriptors

The following statement

EXEC SQL FETCH ... USING DESCR PTCR ...

directs the database to store FETCHed select-list values in the data buffers addressed
by SELDV(1) through SELDV(SQLDNUM). Thus, the database stores the Jth select-
list value in SEL-DV(J).

Bind Descriptors

You must set the bind descriptors before issuing the OPEN command. The following
statement

EXEC SQL OPEN ... USING DESCRIPTCR ...

directs Oracle to execute the dynamic SQL statement using the bind-variable values
addressed by BNDDV(1) through BNDDV(SQLDNUM). (Typically, the values are
entered by the user.) The database finds the Jth bind-variable value in BND-DV(J).

SELDFMT | BNDDFMT

The SELDFMT | BNDDFMT table contains the addresses of data buffers that store
select-list or bind-variable conversion format strings. You can currently use it only for
COBOL packed decimals. The format for the conversion string is PP.+SS or PP.-SS
where PP is the precision and SS is the scale. For definitions of precision and scale,
see "Extracting Precision and Scale" in Coercing Datatypes.

The use of format strings is optional. If you want a conversion format for the Jth select-
list item or bind variable, set SELDFMT(J) or BNDDFMT(J) using SQLADR, then store
the packed-decimal format (07. +02 for example) in SEL-DFMT or BND-DFMT.
Otherwise, set SELDFMT(J) or BNDDFMT(J) to zero.

SELDVLN | BNDDVLN

The SELDVLN | BNDDVLN table contains the lengths of select-list variables or bind-
variable values stored in the data buffers.

Select Descriptors

DESCRIBE SELECT LIST sets the table of lengths to the maximum expected for each
select-list item. However, you might want to reset some lengths before issuing a
FETCH command. FETCH returns at most n characters, where n is the value of
SELDVLN(J) before the FETCH command.

11-7

ORACLE

Chapter 11
The SQLDA Variables

The format of the length differs among datatypes. For CHAR select-list items,
DESCRIBE SELECT LIST sets SELDVLN(J) to the maximum length in bytes of the
select-list item. For NUMBER select-list items, scale and precision are returned
respectively in the low and next-higher bytes of the variable. You can use the library
routine SQLPRC to extract precision and scale values from SELDVLN. See the
section “Extracting Precision and Scale”.

You must reset SELDVLN(J) to the required length of the data buffer before the
FETCH. For example, when coercing a NUMBER to a COBOL character string, set
SELDVLN(J) to the precision of the number plus two for the sign and decimal point.
When coercing a NUMBER to a COBOL floating point number, set SELDVLN(J) to the
length of the appropriate floating point type on your system.

For more information about the lengths of coerced datatypes, see the section
“Converting Data”.

Bind Descriptors

You must set the Bind Descriptor lengths before issuing the OPEN command. For
example, you can use the following statements to set the lengths of bind-variable
character strings entered by the user:

PROCEDURE DI VI SI ON.

PERFCRM GET- | NPUT- VAR
VARYING J FROM'1 BY 1 UNTIL J > SQLDNUM I N BNDDSC.

GET- | NPUT- VAR
DI SPLAY "Enter value of ", BND- DH VNAME(J).
ACCEPT | NPUT- STRI NG
UNSTRI NG | NPUT- STRI NG DELIM TED BY " "
| NTO BND- DV(J) COUNT | N BNDDVLN(J).

Because Oracle accesses a data buffer indirectly, using the address in SELDV(J) or
BNDDV(J), it does not know the length of the value in that buffer. If you want to
change the length Oracle uses for the Jth select-list or bind-variable value, reset
SELDVLN(J) or BNDDVLN(J) to the length you need. Each input or output buffer can
have a different length.

SELDFMTL | BNDDFMTL

This is a table containing the lengths of select-list or bind-variable conversion format
strings. Currently, you can use it only for COBOL packed decimal.

The use of format strings is optional. If you want a conversion format for the Jth select-
list item or bind variable, set SELDFMTL(J) before the FETCH or BNDDFMTL(J)
before the OPEN to the length of the packed-decimal format stored in SEL-DFMT or
BND-DFMT. Otherwise, set SELDFMTL(J) or BNDDFMTL(J) to zero.

If the value of SELDFMTL(J) or BNDDFMTL(J) is zero, SELDFMT(J) or BNDDFMT(J)
are not used.

SELDVTYP | BNDDVTYP

The SELDVTYP | BNDDVTYP table contains the datatype codes of select-list or bind-
variable values. These codes determine how Oracle data is converted when stored in
the data buffers addressed by elements of SELDV. The datatype descriptor table is
further described in “Converting Data”.

11-8

ORACLE

Chapter 11
The SQLDA Variables

Select Descriptors

DESCRIBE SELECT LIST sets the table of datatype codes to the internal datatype (for
example, VARCHAR2, CHAR, NUMBER, or DATE) of the items in the select list.

Before a FETCH is executed, you might want to reset some datatypes because the
internal format of datatypes can be difficult to handle. For display purposes, it is
usually a good idea to coerce the datatype of select-list values to VARCHAR2. For
calculations, you might want to coerce numbers from Oracle to COBOL format. See
“Coercing Datatypes”.

The high bit of SELDVTYP(J) is set to indicate the NULL/not NULL status of the Jth
select-list column. You must always clear this bit before issuing an OPEN or FETCH
command. Use the library routine SQLNUL to retrieve the datatype code and clear the
NULL/not NULL bit. For more information, see: “Handling NULL/Not NULL Datatypes”.

It is best to change the NUMBER internal datatype to an external datatype compatible
with that of the COBOL data buffer addressed by SELDV(J).

Bind Descriptors

DESCRIBE BIND VARIABLES sets the table of datatype codes to zeros. You must
reset the table of datatypes before issuing the OPEN command. The code represents
the external (COBOL) datatype of the buffer addressed by BNDDV(J). Often, bind-
variable values are stored in character strings, so the datatype table elements are set
to 1 (the VARCHAR?2 datatype code).

To change the datatype of the Jth select-list or bind-variable value, reset
SELDVTYP(J) or BNDDVTYP(J) to the datatype you want.

SELDI | BNDDI

The SELDI | BNDDI table contains the addresses of data buffers that store indicator-
variable values. You must set the elements of SELDI or BNDDI using SQLADR.

Select Descriptors

You must set this table before issuing the FETCH command. When Oracle executes
the statement

EXEC SQL FETCH ... USING DESCRI PTCR ...

if the Jth returned select-list value is NULL, the buffer addressed by SELDI(J) is set to
-1. Otherwise, it is set to zero (the value is not NULL) or a positive integer (the value
was truncated).

Bind Descriptors

You must initialize this table and set the associated indicator variables before issuing
the OPEN command. When Oracle executes the statement

EXEC SQL OPEN ... USI NG DESCR PTCR ...

the buffer addressed by BNDDI(J) determines whether the Jth bind variable is NULL. If
the value of an indicator variable is -1, its associated bind variable is NULL.

11-9

ORACLE

Chapter 11
The SQLDA Variables

SELDH-VNAME | BNDDH-VNAME

The SELDH-VNAME | BNDDH-VNAME table contains the addresses of data buffers
that store select-list or place-holder names as they appear in dynamic SQL
statements. You must set the elements of SELDH-VNAME or BNDDH-VNAME using
SQLADR before issuing the DESCRIBE command.

DESCRIBE directs Oracle to store the name of the Jth select-list item or place-holder
in the data buffer addressed by SELDH-VNAME(J) or BNDDH-VNAME(J). Thus,
Oracle stores the Jth select-list or place-holder name in SEL-DH-VNAME(J) or BND-
DH-VNAME(J).

Note:

The SELDH-VNAME | BNDDH-VNAME table contains only the name of the
column, and not the table-qualifier.column name, even if you provide it in your
SQL statement. If, for example, you were to do a describe of select-list in the
SQL statement sel ect a.owner fromall _tabl es the software will return not

a. owner , but instead, owner . If necessary, you should use column aliases to
correctly identify a column in the select list.

SELDH-MAX-VNAMEL | BNDDH-MAX-VNAMEL

The SELDH-MAX-VNAMEL | BNDDH-MAX-VNAMEL table contains the maximum
lengths of the data buffers that store select-list or place-holder names. The buffers are
addressed by the elements of SELDH-VNAME or BNDDH-VNAME.

You must set the elements of SELDH-MAX-VNAMEL or BNDDH-MAX-VNAMEL
before issuing the DESCRIBE command. Each select-list or place-holder name buffer
can have a different length.

SELDH-CUR-VNAMEL | BNDDH-CUR-VNAMEL

The SELDH-CUR-VNAMEL | BNDDH-CUR-VNAMEL table contains the actual
lengths of the names of the select-list or place-holder. DESCRIBE sets the table of
actual lengths to the number of characters in each select-list or place-holder name.

SELDI-VNAME | BNDDI-VNAME

The SELDI-VNAME | BNDDI-VNAME table contains the addresses of data buffers
that store indicator-variable names.

You can associate indicator-variable values with select-list items and bind variables.
However, you can associate indicator-variable names only with bind variables. You
can use this table only with bind descriptors. You must set the elements of BNDDI-
VNAME using SQLADR before issuing the DESCRIBE command.

DESCRIBE BIND VARIABLES directs Oracle to store any indicator-variable names in
the data buffers addressed by BNDDI-VNAME(1) through BNDDI-
VNAME(SQLDNUM). Thus, Oracle stores the Jth indicator-variable name in BND-DI-
VNAME(J).

11-10

Chapter 11
Prerequisite Knowledge

SELDI-MAX-VNAMEL | BNDDI-MAX-VNAMEL

The SELDI-MAX-VNAMEL | BNDDI-MAX-VNAMEL table contains the maximum
lengths of the data buffers that store indicator-variable names. The buffers are
addressed by the elements of SELDI-VNAME or BNDDI-VNAME.

You can associate indicator-variable names only with bind variables. You can use this
table only with bind descriptors.

You must set the elements BNDDI-MAX-VNAMEL(1) through BNDDI-MAX-
VNAMEL(SQLDNUM) before issuing the DESCRIBE command. Each indicator-
variable name buffer can have a different length.

SELDI-CUR-VNAMEL | BNDDI-CUR-VNAMEL

The SELDI-CUR-VNAMEL | BNDDI-CUR-VNAMEL table contains the actual lengths
of the names of the indicator variables. You can associate indicator-variable names
only with bind variables. You can use this table only with bind descriptors.

DESCRIBE BIND VARIABLES sets the table of actual lengths to the number of
characters in each indicator-variable name.

SELDFCLP | BNDDFCLP

The SELDFCLP | BNDDFCLP table is reserved for future use. It must be present
because Oracle expects the group item SELDSC or BNDDSC to be a certain size. You
must currently set the elements of SELDFCLP and BNDDFCLP to zero.

SELDFCRCP | BNDDFCRCP

The SELDFCRCP | BNDDFCRCP table is reserved for future use. It must be present
because Oracle expects the group item SELDSC or BNDDSC to be a certain size. You
must set the elements of SELDFCRCP and BNDDFCRCP to zero.

Related Topics

e Converting Data

e Coercing Datatypes

e Handling NULL/Not NULL Datatypes

11.4 Prerequisite Knowledge

You need a working knowledge of the following subjects to implement dynamic SQL
Method 4:

e Using the library routine SQLADR

e converting data

e coercing datatypes

e handling NULL/not NULL datatypes

ORACLE 11-11

Chapter 11
Prerequisite Knowledge

11.4.1 Using SQLADR

You must call the library subroutine SQLADR to get the addresses of data buffers that
store input and output values. You store the addresses in a bind or select SQLDA so
that Oracle knows where to read bind-variable values or write select-list values.

Call SQLADR using the syntax
CALL "SQLADR" USI NG BUFFER, ADDRESS.

where:

BUFFER
Is a data buffer that stores the value or name of a select-list item, bind variable, or
indicator variable.

ADDRESS

Is an integer variable that returns the address of the data buffer.

A call to SQLADR stores the address of BUFFER in ADDRESS. The next example
uses SQLADR to initialize the select descriptor tables SELDV, SELDH-VNAME, and
SELDI. Their elements address data buffers for select-list values, select-list names,
and indicator values.

PROCEDURE DI VI SI ON.

PERFORM | NI T- SELDSC
VARYING J FROM1 BY 1 UNTIL J > SQLDNUM I N SELDSC.

| NI T- SELDSC.
CALL "SQLADR' USING SEL-DV(J), SELDV(J).
CALL "SQLADR' USI NG SEL- DH VNAME(J), SELDH VNAVE(J).
CALL "SQLADR' USING SEL-Di (J), SELDI(J).

11.4.2 Converting Data

ORACLE

This section provides more detail about the datatype descriptor table. In host programs
that use neither datatype equivalencing nor dynamic SQL Method 4, the conversion
between internal and external datatypes is determined at precompile time. By default,
Pro*COBOL assigns a specific external datatype to each host variable. For example,
Pro*COBOL assigns the INTEGER external datatype to host variables of type PIC
S9(n) COMP.

However, Method 4 lets you control data conversion and formatting. You specify
conversions by setting datatype codes in the datatype descriptor table.

Internal Datatypes

Internal datatypes specify the formats used by Oracle to store column values in
database tables to represent pseudocolumn values.

When you issue a DESCRIBE SELECT LIST command, Oracle returns the internal
datatype code for each select-list item to the SELDVTYP (datatype) descriptor table.
For example, the datatype code for the Jth select-list item is returned to
SELDVTYP(J).

Table 11-1 shows the internal datatypes and their codes:

11-12

ORACLE

Chapter 11
Prerequisite Knowledge

Table 11-1 Internal Datatypes and Related Codes

Internal Datatype Code
VARCHAR?2 1
NUMBER 2
LONG 8
ROWID 11
DATE 12
RAW 23
LONG RAW 24
CHAR 96

External Datatypes

External datatypes specify the formats used to store values in input and output host
variables.

The DESCRIBE BIND VARIABLES command sets the BNDDVTYP table of datatype
codes to zeros. Therefore, you must reset the codes before issuing the OPEN
command. The codes tell Oracle which external datatypes to expect for the various
bind variables. For the Jth bind variable, reset BNDDVTYP(J) to the external datatype
you want.

The following table shows the external datatypes and their codes, as well as the
corresponding COBOL datatypes:

Table 11-2 Oracle External and Related COBOL Datatypes

Name Code COBOL Datatype

VARCHAR2 1 PIC X(n) when MODE=ANSI

NUMBER 2 PIC X(n)

INTEGER 3 PIC S9(n) COMP
(Use COMP, not COMP5, on SPARC Solaris 64 bit
platforms)

PIC S9(n) COMP5
(COMPS for byte-swapped platforms)

FLOAT 4 COMP-1
COMP-2

STRING (1) 5 PIC X(n)

VARNUM 6 PIC X(n)

DECIMAL 7 PIC S9(n)V9(n) COMP-3

LONG 8 PIC X(n)

VARCHAR (2) 9 PIC X(n) VARYING

PIC N(n) VARYING

ROWID 11 PIC X(n)
DATE 12 PIC X(n)
VARRAW (2) 15 PIC X(n)

11-13

ORACLE

Chapter 11
Prerequisite Knowledge

Table 11-2 (Cont.) Oracle External and Related COBOL Datatypes
|

Name Code COBOL Datatype

RAW 23 PIC X(n)

LONG RAW 24 PIC X(n)

UNSIGNED 68 (not supported)

DISPLAY 91 PIC S9...9V9...9 DISPLAY SIGN LEADING SEPARATE
PIC S9(n)V9(n) DISPLAY SIGN LEADING SEPARATE

LONG VARCHAR (2) 94 PIC X(n)

LONG VARRAW (2) 95 PIC X(n)

CHARF 96 PIC X(n) when MODE = ANSI
PIC N(n) when MODE = ANSI

CHARZ (1) 97 PIC X(n)

CURSOR 102 SQL-CURSOR

Notes:

1. Forusein an EXEC SQL VAR statement only.

2. Include the n-byte length field.

For more information about the datatypes and their formats, see “The Oracle
Database Datatypes”.

PL/SQL Datatypes

PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar
type has no internal components. A composite type has internal components that can
be manipulated individually. “Initialize the Descriptors” shows the predefined PL/SQL
scalar datatypes and their internal datatype equivalence

Table 11-3 PL/SQL Datatype Equivalences with Internal Datatypes
|

PL/SQL Datatype Oracle Internal Datatype
VARCHAR VARCHAR?2
VARCHAR2

11-14

Chapter 11
Prerequisite Knowledge

Table 11-3 (Cont.) PL/SQL Datatype Equivalences with Internal Datatypes

__|
PL/ISQL Datatype Oracle Internal Datatype
BINARY_INTEGER NUMBER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NUMBER
NUMERIC
POSITIVE
REAL
SMALLINT

LONG LONG
ROWID ROWID
DATE DATE

RAW RAW
LONG RAW LONG RAW

CHAR CHAR
CHARACTER
STRING

Related Topics
e The Oracle Database Datatypes

e Initialize the Descriptors

11.4.3 Coercing Datatypes

ORACLE

For a select descriptor, DESCRIBE SELECT LIST can return any of the internal
datatypes. Often, as in the case of character data, the internal datatype corresponds
exactly to the external datatype you want to use. However, a few internal datatypes
map to external datatypes that can be difficult to handle. Thus, you might want to reset
some elements in the SELDVTYP descriptor table.

For example, you might want to reset NUMBER values to FLOAT values, which
correspond to PIC S9(n)V9(n) COMP-1 values in COBOL. Oracle does any necessary
conversion between internal and external datatypes at FETCH time. Be sure to reset
the datatypes after the DESCRIBE SELECT LIST but before the FETCH.

For a bind descriptor, DESCRIBE BIND VARIABLES does not return the datatypes of
bind variables, only their number and names. Therefore, you must explicitly set the
BNDDVTYP table of datatype codes to tell Oracle the external datatype of each bind
variable. Oracle does any necessary conversion between external and internal
datatypes at OPEN time.

11-15

Chapter 11
Prerequisite Knowledge

When you reset datatype codes in the SELDVTYP or BNDDVTYP descriptor table,
you are "coercing datatypes." For example, to coerce the Jth select-list value to
VARCHARZ2, use the following statement:

* Coerce select-list value to VARCHAR2.
MOVE 1 TO SELDVTYP(J).

When coercing a NUMBER select-list value to VARCHAR?2 for display purposes, you
must also extract the precision and scale bytes of the value and use them to compute
a maximum display length. Then, before the FETCH, you must reset the appropriate
element of the SELDVLN (length) descriptor table to tell Oracle the buffer length to
use. To specify the length of the Jth select-list value, set SELDVLN(J) to the length
you need.

For example, if DESCRIBE SELECT LIST finds that the Jth select-list item is of type
NUMBER, and you want to store the returned value in a COBOL variable declared as
PIC S9(n)V9(n) COMP-1, simply set SELDVTYP(J) to 4 and SELDVLN(J) to the length
of COMP-1 numbers on your system.

Exceptions

In some cases, the internal datatypes that DESCRIBE SELECT LIST returns might not
suit your purposes. Two examples of this are DATE and NUMBER. When you
DESCRIBE a DATE select-list item, Oracle returns the datatype code 12 to the
SELDVTYP table. Unless you reset the code before the FETCH, the date value is
returned in its 7-byte internal format. To get the date in its default character format,
you must change the datatype code from 12 to 1 (VARCHAR?2) and increase the
SELDVLN value from 7 to 9.

Similarly, when you DESCRIBE a NUMBER select-list item, Oracle returns the
datatype code 2 to the SELDVTYP table. Unless you reset the code before the
FETCH, the numeric value is returned in its internal format, which is probably not
desired. Therefore, change the code from 2 to 1 (VARCHAR?2), 3 (INTEGER), 4
(FLOAT), or some other appropriate datatype.

Extracting Precision and Scale

The library subroutine SQLPRC extracts precision and scale. Normally, it is used after
the DESCRIBE SELECT LIST, and its first parameter is SELDVLN(J). To call
SQLPRC, use the following syntax

CALL "SQLPRC' USI NG LENGTH, PRECI SI ON, SCALE.

where:
Syntax Description
LENGTH Is an integer variable that stores the length of a NUMBER value.

The scale and precision of the value are stored in the low and
next-higher bytes, respectively.

PRECISION Is an integer variable that returns the precision of the NUMBER
value. Precision is the number of significant digits. It is set to zero if
the select-list item refers to a NUMBER of unspecified size. In this
case, because the size is unspecified, assume the maximum
precision, 38.

ORACLE 11-16

ORACLE

Chapter 11
Prerequisite Knowledge

Syntax Description

SCALE Is an integer variable that returns the scale of the NUMBER value.
Scale specifies where rounding will occur. For example, a scale of
2 means the value is rounded to the nearest hundredth (3.456
becomes 3.46); a scale of -3 means that the number is rounded to
the nearest thousand (3.456 becomes 3000).

The following example shows how SQLPRC is used to compute maximum display
lengths for NUMBER values that will be coerced to VARCHARZ2:

WORKI NG- STORAGE SECTI ON.

01 PRECI SION PIC S9(9) COWP
01 SCALE PIC S9(9) COWP.
01 DISPLAY-LENGTH PIC S9(9) COWP
01 MAX- LENGTH PI'C S9(9) COVP VALUE 80.

PROCEDURE DI VI SI ON.

PERFORM ADJUST- LENGTH
VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM I N SELDSC.
ADJUST- LENGTH.
* If datatype is NUMBER extract precision and scale.
| F SELDVTYP(J) = 2
CALL "SQLPRC' USI NG SELDVLN(J), PRECI SION, SCALE.
MOVE 0 TO DI SPLAY- LENGTH.
* Precision is set to zero if the select-list item
* refers to a NUMBER of unspecified size. W allow for
* a maxi num preci sion of 10.
| F SELDVTYP(J) = 2 AND PRECISION = 0
MOVE 10 TO DI SPLAY- LENGTH.
* Al ow for possible deci mal point and sign.
| F SELDVTYP(J) = 2 AND PRECISION > 0
ADD 2 TO PRECI SION
MOVE PRECI SI ON TO DI SPLAY- LENGTH.

Notice that the first parameter in the subroutine call is the Jth element in the table of
select-list lengths.

The SQLPRC procedure, defined in the SQLLIB runtime library, returns zero as the
precision and scale values for certain SQL datatypes. The SQLPR2 procedure is
similar to SQLPRC in that it has the same syntax and returns the same binary values,
except for the datatypes shown in this table:

Table 11-4 Datatype Exceptions to the SQLPR2 Procedure
|

SQL Datatype Binary Precision Binary Scale
FLOAT 126 -127
FLOAT(n) n (rangeis 1 .. 126) -127
REAL 63 -127
DOUBLE PRECISION 126 -127

11-17

Chapter 11
The Basic Steps

11.4.4 Handling NULL/Not NULL Datatypes

For every select-list column (not expression), DESCRIBE SELECT LIST returns a
NULL/not NULL indication in the datatype table of the select descriptor. If the Jth
select-list column is constrained to be not NULL, the high-order bit of SELDVTYP(J)
datatype variable is clear; otherwise, it is set.

Before using the datatype in an OPEN or FETCH statement, if the NULL status bit is
set, you must clear it. Never set the bit.

You can use the library routine SQLNUL to find out if a column allows NULL datatypes
and to clear the datatype's NULL status bit. You call SQLNUL using the syntax

CALL "SQLNUL" USI NG VALUE-TYPE, TYPE-CODE, NULL- STATUS.

where:

Syntax Description

VALUE-TYPE Is a 2-byte integer variable that stores the datatype code of a
select-list column.

TYPE-CODE Is a 2-byte integer variable that returns the datatype code of the
select-list column with the high-order bit cleared.

NULL-STATUS Is an integer variable that returns the NULL status of the select-list
column. 1 means that the column allows NULLs; 0 means that it
does not.

The following example shows how to use SQLNUL:

WORKI NG- STORAGE SECTI ON.

* Decl are variable for subroutine call.
01 NULL- STATUS PIC S9(9) COwP.

PROCEDURE DI VI SI ON.
MAI'N.
EXEC SQL WHENEVER SQLERROR GOTO SQL- ERROR END- EXEC.

PERFORM HANDLE- NULLS
VARYING J FROM1 BY 1 UNTIL J > SQLDNUM IN SELDSC.

HANDLE- NULLS.

* Find out if colum is NOT NULL, and clear high-order bit.
CALL "SQ.NUL" USI NG SELDVTYP(J), SELDVTYP(J), NULL- STATUS.

* I f NULL-STATUS = 1, NULLs are allowed.

Notice that the first and second parameters in the subroutine call are the same.
Respectively, they are the datatype variable before and after its NULL status bit is
cleared.

11.5 The Basic Steps

Method 4 can be used to process any dynamic SQL statement. In the example in
“Using Host Tables with Method 4", a query is processed so that you can see how
both input and output host variables are handled.

ORACLE 11-18

Chapter 11
A Closer Look at Each Step

To process the dynamic query, our example program takes the following steps:

w

© © N o a &

11.
12.
13.
14.
15.
16.
17.

Declare a host string to hold the query text.
Declare select and bind descriptors.

Set the maximum number of select-list items and place-holders that can be
DESCRIBEd.

Initialize the select and bind descriptors.

Store the query text in the host string.

PREPARE the query from the host string.

DECLARE a cursor FOR the query.

DESCRIBE the bind variables INTO the bind descriptor.

Reset the number of place-holders to the number actually found by DESCRIBE.

. Get values for the bind variables found by DESCRIBE.

OPEN the cursor USING the bind descriptor.

DESCRIBE the select list INTO the select descriptor.

Reset the number of select-list items to the number actually found by DESCRIBE.
Reset the length and datatype of each select-list item for display purposes.
FETCH a row from the database INTO data buffers using the select descriptor.
Process the select-list values returned by FETCH.

CLOSE the cursor when there are no more rows to FETCH.

" Note:

If the dynamic SQL statement is not a query or contains a known number of
select-list items or place-holders, then some of the preceding steps are
unnecessary.

Related Topics

Using Host Tables with Method 4

11.6 A Closer Look at Each Step

This section discusses each step in more detail. A full-length example program
illustrating Method 4 is seen at the end of this chapter. With Method 4, you use the
following sequence of embedded SQL statements:

ORACLE

EXEC SQL
PREPARE <st at enent _nanme>
FROM {: <host _string> | <string_literal>}
END- EXEC.
EXEC SQL
DECLARE <cursor_name> CURSOR FOR <st at ement _nane>
END- EXEC.
EXEC SQL
DESCRI BE Bl ND VARI ABLES FOR <st at enent _nane>

11-19

Chapter 11
A Closer Look at Each Step

I NTO <hi nd_descri ptor _name>
END- EXEC.
EXEC SQL
OPEN <cur sor_name>
[USI NG DESCRI PTOR <bi nd_descri pt or _nane>]
END- EXEC.
EXEC SQL
DESCRI BE [SELECT LI ST FOR] <statenent _nanme>
I NTO <sel ect _descri ptor _nanme>
END- EXEC.
EXEC SQL
FETCH <cursor_name> USI NG DESCRI PTOR <sel ect _descri pt or _nane>
END- EXEC.
EXEC SQL
CLOSE <cursor _name>
END- EXEC.

If the number of select-list items in a dynamic query is known, you can omit
DESCRIBE SELECT LIST and use the following Method 3 FETCH statement:

EXEC SQL FETCH <cursor_nanme> | NTO <host _vari abl e_| i st> END- EXEC.

Alternatively, if the number of place-holders for bind variables in a dynamic SQL
statement is known, you can omit DESCRIBE BIND VARIABLES and use the following
Method 3 OPEN statement:

EXEC SQL OPEN <cursor _nanme> [USI NG <host _variable_l i st>] END EXEC.

The next section illustrates how these statements allow your host program to accept
and process a dynamic SQL statement using descriptors.

Note:

Several figures accompany the following discussion. To avoid cluttering the
figures, it was necessary to confine descriptor tables to 3 elements and to limit
the maximum length of names and values to 5 and 10 characters, respectively.

11.6.1 Declare a Host String

Your program needs a host variable to store the text of the dynamic SQL statement.
The host variable (SELECTSTMT in our example) must be declared as a character
string:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.

01 SELECTSTMI PIC X(120).
EXEC SQL END DECLARE SECTI ON END- EXEC.

11.6.2 Declare the SQLDAs

Because the query in our example might contain an unknown number of select-list
items or place-holders, you must declare select and bind descriptors. Instead of hard-
coding the SQLDAs, you use INCLUDE to copy them into your program, as follows:

ORACLE 11-20

For reference, the INCLUDEdAd declaration of SELDSC follows:

EXEC SQL | NCLUDE SELDSC END- EXEC.
EXEC SQL | NCLUDE BNDDSC END- EXEC.

WORKI NG STORAGE SECTI ON.

01

01

01

01

01

SELDSC.

05 SQLDNUM
05 SQLDFND
05 SELDVAR

10
10
10
10
10
10
10
10
10
10
10
10
10
10

XSELDI .
05 SEL-DI

SELDV

SELDFMI

SELDVLN

SELDFMIL
SELDVTYP

SELDI

SELDH- VNAVE
SELDH- MAX- VNAMEL
SELDH- CUR- VNAMEL
SELDI - VNAVE

SELDI - MAX- VNAMEL
SELDI - CUR- VNAMEL
SELDFCLP
SELDFCRCP

OCCURS 3 TIMES PIC S9(9) COMP.

XSELDI VNAME.

05 SEL-DI-VNAME OCCURS 3 TIMES PIC X(5).

XSELDV.

05 SEL-DV

XSELDHVNAME.

05 SEL-DH VNAME OCCURS 3 TIMES PIC X(5).

11.6.3 Set the Maximum Number to DESCRIBE

PIC S9(9) CONP.
PIC S9(9) CONP.
OCCURS 3 TI MES.
PIC S9(9) CONP.
PIC S9(9) CONP.
PIC S9(9) CONP.
PIC S9(4) CONP.
PIC S9(4) CONP.
PIC S9(9) CONP.
PIC S9(9) CONP.
PIC S9(4) CONP.
PI C S9(4) CONP.
PIC S9(9) CONP.
PIC S9(4) CONP.
PIC S9(4) CONP.
PIC S9(9) CONP.
(9)

OCCURS 3 TIMES PIC X(10).

Chapter 11
A Closer Look at Each Step

You next set the maximum number of select-list items or place-holders that can be
described, as follows:

MOVE 3 TO SQLDNUM I N SELDSC.
MOVE 3 TO SQLDNUM I N BNDDSC.

11.6.4 Initialize the Descriptors

You must initialize several descriptor variables. Some require the library subroutine
SQLADR.

ORACLE

In our example, you store the maximum lengths of name buffers in the SELDH-MAX-
VNAMEL, BNDDH-MAX-VNAMEL, and BNDDI-MAX-VNAMEL tables, and use
SQLADR to store the addresses of value and name buffers in the SELDV, SELDI,
BNDDV, BNDDI, SELDH-VNAME, BNDDH-VNAME, and BNDDI-VNAME tables.

PROCEDURE DI VI SI ON.

PERFCRM | NI T- SELDSC

VARYING J FROM1 BY 1 UNTIL J > SQLDNUM I N SELDSC.

PERFCRM | NI T- BNDDSC

VARYING J FROM 1 BY 1 UNTIL J > SQLDNUM I N BNDDSC.

11-21

I'NI T- SELDSC.

MOVE SPACES TO SEL- DV(J).

MOVE SPACES TO SEL- DH VNAVE(J).

MOVE 5 TO SELDH- MAX- VNAVEL(J) .

CALL "SQLADR' USING SEL-DV(J), SELDV(J).
CALL "SQLADR' USI NG SEL- DH VNAME(J), SELDH VNAVE(J).
CALL "SQLADR' USING SEL-Di (J), SELDI(J).

I NI T- BNDDSC.

MOVE SPACES TO BND- DV(J).

MOVE SPACES TO BND- DH- VNANE(J) .

MOVE SPACES TO BND- DI - VNANE(J) .

MOVE 5 TO BNDDH- MAX- VNAVEL(J) .

MOVE 5 TO BNDDI - MAX- VNAVEL(J) .

CALL "SQLADR' USI NG BND-DV(J), BNDDV(J).
CALL "SQLADR' US| NG BND- DH- VNANE(J), BNDDH VNAME(J).
CALL "SQLADR' USI NG BND-DI (J), BNDDI(J).
CALL "SQLADR' USI NG BND- DI - VNAVE(J), BNDDI - VNAME(J).

Chapter 11
A Closer Look at Each Step

Figure 11-3 and Figure 11-4 represent the resulting descriptors.

Figure 11-3 Initialized Select Descriptor

SQLDNUM
SQLDFND |:|
1[] address of SEL-DV(1)
SELDV 27| address of SEL-DV(2)
3| | address of SEL-DV(3)
T
SELDVLN 2
3
.
SELDTYP 2| |
3
1[| address of SEL-DI(1)
SELDI o[| address of SEL-DI(2)
3[| address Of SEL-DI(3)
1[] address of SEL-DH-VNAME(1)
SELDH_VNAME 2] | address of SEL-DH-VNAME(2)
3| | address of SEL-DH-VNAME(3)
1[5]
SELDH_MAX_VNAMEL 2|5 |
3[5
T
SELDH_CUR_VNAMEL 2| |
3

ORACLE

Data Buffers

For values of select-list items:

1 2 3 45 6 7 8 9 10

For values of indicators:
i

2
3

For names of select-list items:
1
2
3

1 2 3 4 5

11-22

Figure 11-4 Initialized Bind Descriptor

SQLDNUM
SQLDFND |:|
1[] address of BND-DV(1)
BNDDV 2[| address of BND-DV(2)
3[| address of BND-DV(3)
5
BNDDVLN 2]
3
T
BNDDVTYP 2
3
1[] address of BND-DI(1)
BNDDI 2[| address of BND-DI(2)
3[| address of BND-DI(3)
1[| address of BND-DI-VNAME(1)
BNDDH-VNAME 2[| address of BND-DI-VNAME(2)
3[| address of BND-DI-VNAME(3)
1[5]
BNDDH-MAX-VNAMEL 2| 5 |
3|5
5
BNDDH-CUR-VNAMEL 2| |
3
1[| address of BND-DI-VNAME(1)
BNDDH-VNAME 2[| address of BND-DI-VNAME(2)
3|7 | address of BND-DI-VNAME(3)
1[5]
BNDDH-MAX-VNAMEL 2| 3 |
3|5
T
BNDDH-CUR-VNAMEL 2
3

11.6.5 Store the Query Text in the Host String

Next, you prompt the user for a SQL statement, then store the input string in

SELECTSTMT as follows:

DI SPLAY "Enter a SELECT statenent: "

ACCEPT SELECTSTM.

We assume the user entered the following string:

SELECT ENAME, EMPNO, COW FROM EMP WHERE COWM < : BONUS

Chapter 11

A Closer Look at Each Step

. Data Buffers

For values of bind variables:

1

1
2
3

2 3 456 7 8 9 10

For values of indicators:

For names of placeholders:

2

3

1

2 3 4 5

For names of placeholders:

1

2

3

l
1
1
1
l
1
V1
]
l
1
l
l

11.6.6 PREPARE the Query from the Host String

PREPARE parses the SQL statement and gives it a name. In our example, PREPARE
parses the host string SELECTSTMT and gives it the name SQLSTMT, as follows:

ORACLE

1

2 3 4 5

W TH NO ADVANCI NG

11-23

Chapter 11
A Closer Look at Each Step

EXEC SQL PREPARE SQLSTMI FROM : SELECTSTMI END- EXEC.

11.6.7 DECLARE a Cursor

DECLARE CURSOR defines a cursor by giving it a name and associating it with a
specific SELECT statement.

To declare a cursor for static queries, use the following syntax:

EXEC SQ. DECLARE cursor_name CURSOR FOR SELECT ...

To declare a cursor for dynamic queries, the statement name given to the dynamic
query by PREPARE replaces the static query. In our example, DECLARE CURSOR
defines a cursor named EMPCURSOR and associates it with SQLSTMT, as follows:

EXEC SQL DECLARE EMPCURSCR CURSCR FOR SQLSTMI END- EXEC.

Note:

You must declare a cursor for all dynamic SQL statements, not just queries.
With non-queries, OPENing the cursor executes the dynamic SQL statement.

11.6.8 DESCRIBE the Bind Variables

ORACLE

DESCRIBE BIND VARIABLES puts descriptions of bind variables into a bind
descriptor. In our example, DESCRIBE readies BNDDSC as follows:

EXEC SQL
DESCR! BE BI ND VARI ABLES FOR SQLSTMT
| NTO BNDDSC

END- EXEC.

Note that BNDDSC must not be prefixed with a colon.

The DESCRIBE BIND VARIABLES statement must follow the PREPARE statement
but precede the OPEN statement.

Figure 11-5 shows the bind descriptor in our example after the DESCRIBE. Notice that
DESCRIBE has set SQLDFND to the actual number of place-holders found in the
processed SQL statement.

11-24

Figure 11-5 Bind Descriptor after the DESCRIBE
SQLDNUM
SQLDFND — set by DESCRIBE
1[] address of BND-DV(1)
BNDDV 2| | address of BND-DV(2)
3| | address of BND-DV(3)
.
BNDDVLN 2]
3
1[0]
BNDDVTYP 2[o0 set by DESCRIBE
3/ 0
1[| address of BND-DI(1)
BNDDI 2[| address of BND-DI(2)
3| | address of BND-DI(3)
1[| address OF BND-DH-VNAME(1)
BNDDH-VNAME 2| | address OF BND-DH-VNAME(2)
3[| address OF BND-DH-VNAME(3)
1[5]
BNDDH-MAX-VNAMEL 2| 5 |
3|5
1[5]
BNDDH-CUR-VNAMEL 2| 0 | set by DESCRIBE
3|0
1[] address of BND-DI-VNAME(1)
BNDDH-VNAME o[| address of BND-DI-VNAME(2)
3[| address of BND-DI-VNAME(3)
1[5]
BNDDH-MAX-VNAMEL 2[5 |
3[5 |
1[0]
BNDDH-CUR-VNAMEL 2| 0 | set by DESCRIBE
3|0

11.6.9 Reset Number of Place-Holders

Next, you must reset the maximum number of place-holders to the number actually
found by DESCRIBE, as follows:

| F SQLDFND I'N BNDDSC < 0
DI SPLAY "Too many bind variabl es"

GOTO ROLL- BACK
ELSE

MOVE SQLDFND | N BNDDSC TO SQLDNUM I N BNDDSC

END- | F.

ORACLE

Data Buffers

For values of bind variables

Chapter 11
A Closer Look at Each Step

1

For values of indicators:

1
2
3

2 3 45 6 7 8 9 10

For names of placeholders:

1

B

(0]

N

U| S| set by DESCRIBE

2

3

For names of indicators:

1

2 3 4 5

1

2

3

1

2 3 4 5

11-25

Chapter 11
A Closer Look at Each Step

11.6.10 Get Values for Bind Variables

ORACLE

Your program must get values for the bind variables in the SQL statement. How the
program gets the values is up to you. For example, they can be hard-coded, read from
a file, or entered interactively.

In our example, a value must be assigned to the bind variable that replaces the place-
holder BONUS in the query WHERE clause. Prompt the user for the value, then
process it, as follows:

PROCEDURE DI VI SI ON.

PERFORM GET- | NPUT- VAR
VARYING J FROM'1 BY 1 UNTIL J > SQLDNUM I N BNDDSC.

GET- | NPUT- VAR

* Repl ace the 0 DESCRIBEd into the datatype table
* with alto avoid an "invalid datatype" Oracle error.
MOVE 1 TO BNDDVTYP(J).
* Get val ue of bind variable.
DI SPLAY "Enter value of ", BND DH VNAME(J).
ACCEPT | NPUT- STRI NG
UNSTRI NG | NPUT- STRI NG DELI M TED BY "
[NTO BND-DV(J) COUNT I N BNDDVLN(J).

Assuming that the user supplied a value of 625 for BONUS, the next table shows the
resulting bind descriptor.

11-26

Chapter 11
A Closer Look at Each Step

Figure 11-6 Bind Descriptor after Assighing Values

_ | Data Buffers i
SQLDNUM reset by program ! ata Buffers .
SQLDFND : :
1[| address of BND-DV(1) For values of bind variables: !

BNDDV 2[| address of BND-DV(2) 67205 ,
3| | address of BND-DV(3) ' .

— 1 |

1[3] — set by program | |

BNDDVLN 2| | 11 2 3 45 6 7 8 9 10 |
3] | |

1[1] — reset by program ' !

BNDDVTYP 2|0 | |
30 : |

—— 1 For values of indicators: '

1 address of BND-DI(1) b — !

— ' 1] 0| — set by program '

BNDDI 2 address of BND-DI(2) "o |
— 1 |

address of BND-DI(3) N |

— 1 B |

1 address of BND-DH-VNAME(1) |+ For names of placeholders: !

BNDDH-VNAME 2[| address of BND-DH-VNAME(2) [« 1[BJO[NJU[S |
3[" | address of BND-DH-VNAME@3) |, 2 :

—_— [l |

1[5 ' 3 .

BNDDH-MAX-VNAMEL 2|5 | ., 1 2 3 45 \
35 : .

1[5 : .

BNDDH-CUR-VNAMEL 2| 0 | I |
3|0 ! !

— | 1

1[] address of BND-DI-VNAME(1) |' For names of indicators: :

BNDDH-VNAME 2 address of BND-DI-VNAME(2) |+ 1 |
3 address of BND-DI-VNAME(3) |. 2 .

1[5] 3 l

BNDDH-MAX-VNAMEL 2|5 | .1 2 3 45 |
3|5 | |

1[0] : .

BNDDH-CUR-VNAMEL 2| 0 | I |
3[0] : !

11.6.11 OPEN the Cursor

The OPEN statement for dynamic queries is similar to the one for static queries,
except the cursor is associated with a bind descriptor. Values determined at run time
and stored in buffers addressed by elements of the bind descriptor tables are used to
evaluate the SQL statement. With queries, the values are also used to identify the
active set.

In our example, OPEN associates EMPCURSOR with BNDDSC as follows:

EXEC SQL
OPEN EMPCUR USI NG DESCRI PTOR BNDDSC
END- EXEC.

ORACLE 11-27

Chapter 11
A Closer Look at Each Step

Remember, BNDDSC must not be prefixed with a colon.

Then, OPEN executes the SQL statement. With queries, OPEN also identifies the
active set and positions the cursor at the first row.

11.6.12 DESCRIBE the Select List

ORACLE

If the dynamic SQL statement is a query, the DESCRIBE SELECT LIST statement
must follow the OPEN statement but precede the FETCH statement.

DESCRIBE SELECT LIST puts descriptions of select-list items into a select descriptor.
In our example, DESCRIBE readies SELDSC as follows:

EXEC SQL
DESCRI BE SELECT LI ST FOR SQLSTMI | NTO SELDSC
END- EXEC.

Accessing the data dictionary, DESCRIBE sets the length and datatype of each select-
list value.

Figure 11-7 shows the select descriptor in our example after the DESCRIBE. Notice
that DESCRIBE has set SQLDFND to the actual number of items found in the query
select list. If the SQL statement is not a query, SQLDFND is set to zero. Also notice
that the NUMBER lengths are not usable yet. For columns defined as NUMBER, you
must use the library subroutine SQLPRC to extract precision and scale. See the
section “Coercing Datatypes”.

11-28

Figure 11-7 Select Descriptor after the DESCR

SQLDNUM
SQLDFND — set by DESCRIBE
1[] address of SEL-DV(1)
SELDV 2| | address of SEL-DV(2)
3| | address of SEL-DV(3)
1[10] ~]
SELDVLN 2| # | set by DESCRIBE
3[# | ,
L — # =binary number
1[4
SELDTYP 2[27] set by DESCRIBE
3[2 |
1[] address of SEL-DI(1)
SELDI 2 address of SEL-DI(2)
3| | address of SEL-DI(3)
1[]| address of SEL-DH-VNAME(1)
SELDH_VNAME 2 address of SEL-DH-VNAME(2)
3 address of SEL-DH-VNAME(3)
1[5]
SELDH_MAX_VNAMEL 2|5
35
1[5]
SELDH_CUR_VNAMEL 2|5 set by DESCRIBE
3[4]

Related Topics

e Coercing Datatypes

11.6.13 Reset Number of Select-List ltems

Next, you must reset the maximum number of select-list items to the number actually
found by DESCRIBE, as follows:

MOVE SQLDFND I N SELDSC TO SQLDNUM I N SELDSC.

11.6.14 Reset Length/Datatype of Each Select-List Item

Before fetching the select-list values, the example resets some elements in the length
and datatype tables for display purposes.

PROCEDURE DI VI SI ON.

PERFORM COERCE- COLUWN- TYPE
VARYING J FROM1 BY 1 UNTIL J > SQLDNUM I N SELDSC.

COERCE- COLUWMN- TYPE.
* Clear NULL bit.

ORACLE

Chapter 11

A Closer Look at Each Step

Data Buffers

For values of select-list items:

1
2
3

1
2
3

1

2 3 4 5 6 7 8 9

For values of indicators

E[N

A

M

E

0]

E|M
Cc|O
1 2

set by DESCRIBE

P
M
3

A~ Z

For names of select-list items:

10

11-29

Chapter 11
A Closer Look at Each Step

CALL "SQLNUL" USI NG SELDVTYP(J), SELDVTYP(J), NULL- STATUS.

* If datatype is DATE, lengthen to 9 characters.
| F SELDVTYP(J) = 12
MOVE 9 TO SELDVLN(J).

* If datatype is NUMBER, extract precision and scale.
MVE 0 TO DI SPLAY- LENGTH.
| F SELDVTYP(J) = 2 AND PRECISION = 0
MOVE 10 TO DI SPLAY- LENGTH.
| F SELDVTYP(J) = 2 AND PRECISION > 0
ADD 2 TO PRECI SI ON
MOVE PRECI SI ON TO DI SPLAY- LENGTH.
| F SELDVTYP(J) = 2
| F DI SPLAY- LENGTH > MAX- LENGTH
DI SPLAY " Col utm val ue too large for data buffer.”
G0 TO END- PROGRAM
ELSE
MOVE DI SPLAY- LENGTH TO SELDVLN(J).

* Coerce datatypes to VARCHAR2.
MOVE 1 TO SELDVTYP(J).

Figure 11-8 shows the resulting select descriptor. Notice that the NUMBER lengths are
now usable and that all the datatypes are VARCHAR2. The lengths in SELDVLN(2)
and SELDVLN(3) are 6 and 9 because we increased the DESCRIBEd lengths of 4 and
7 by 2 to allow for a possible sign and decimal point.

ORACLE 11-30

Chapter 11
A Closer Look at Each Step

Figure 11-8 Select Descriptor before the FETCH

11.6.15 FETCH Rows from the Active Set

ORACLE

FETCH returns a row from the active set, stores select-list values in the data buffers,
and advances the cursor to the next row in the active set. If there are no more rows,
FETCH sets SQLCODE in the SQLCA, the SQLCODE variable, or the SQLSTATE
variable to the "no data found" error code. In the following example, FETCH returns
the values of columns ENAME, EMPNO, and COMM to SELDSC:

EXEC SQL
FETCH EMPCURSOR US| NG DESCRI PTOR SELDSC
END- EXEC.

“Select Descriptor after the FETCH” shows the select descriptor in our example after
the FETCH. Notice that Oracle has stored the select-list and indicator values in the
data buffers addressed by the elements of SELDV and SELDI.

For output buffers of datatype 1, Oracle, using the lengths stored in SELDVLN, left-
justifies CHAR or VARCHAR2 data, and right-justifies NUMBER data.

The value MARTI N was retrieved from a VARCHAR2(10) column in the EMP table.
Using the length in SELDVLN(1), Oracle left-justifies the value in a 10-byte field, filling
the buffer.

11-31

SQLDNUM . Data Buffers
SQLDFND — set by DESCRIBE !

1{] address of SEL-DV(1) \ For values of select-list items:
SELDV 2| | address of SEL-DV(2) |

3| | address of SEL-DV(3) .

1[10] ~] !
SELDVLN 2| # | set by DESCRIBE .1 2 3 45 6 7 8 9 10

3| # | , |

LI — # = Dbinary number !

11 -
SELDTYP 2[2] set by DESCRIBE .

32] :

1[| address of SEL-DI(1) ! For values of indicators
SELDI 2| | address of SEL-DI(2) P

3| | address of SEL-DI(3) v2 |

L o

1| address of SEL-DH-VNAME(1) | For names of select-list items:
SELDH_VNAME 2 address of SEL-DH-VNAME(2) |, 1 [E[NJA[M[E

3 address of SEL-DH-VNAME3) |! 2| E[M|P|[N]|O

15 '3[C[o|M[™m
SELDH_MAX_VNAMEL 2|5 | ' 1.2 3 45

35 !

1[5] . set by DESCRIBE
SELDH_CUR_VNAMEL 2[5 set by DESCRIBE I

3[4 | !

Chapter 11
A Closer Look at Each Step

The value 7654 was retrieved from a NUMBER(4) column and coerced to 7654.
However, the length in SELDVLN(2) was increased by two to allow for a possible sign

and decimal point, so Oracle right-justifies the value in a 6-byte field.

The value 482.50 was retrieved from a NUMBER(7,2) column and coerced to 482.50.
Again, the length in SELDVLN(3) was increased by two, so Oracle right-justifies the

value in a 9-byte field.

11.6.16 Get and Process Select-List Values

After the FETCH, your program can process the select-list values returned by FETCH.
In our example, values for columns ENAME, EMPNO, and COMM are processed.

11.6.17 CLOSE the Cursor

CLOSE disables the cursor. In our example, CLOSE disables EMPCURSOR as

follows:

EXEC SQL CLOSE EMPCURSCR END- EXEC

Figure 11-9 Select Descriptor after the FETCH

SQLDNUM
SQLDFND
1] | address of SEL-DV(1)
SELDV 2[| address of SEL-DV(2)
3[| address of SEL-DV(3)
1[10]
SELDVLN 2[6 |
3[9]
1[17]
SELDTYP 2[1]
3[1
1[] address of SEL-DI(1)
SELDI 2 address of SEL-DI(2)
3 address of SEL-DI(3)
1[] address of SEL-DH-VNAME(1)
SELDH_VNAME 2[| address of SEL-DH-VNAME(2)
3| | address of SEL-DH-VNAME(3)
1[5]
SELDH_MAX_VNAMEL 2[5 |
35
1[5]
SELDH_CUR_VNAMEL 2|5 |
3[4

ORACLE

Data Buffers

For values of select-list items:

MIA[R|T|I]|N

7654
4(8|2(.[5]0

1 2 3 45 6 7 8 9 10

N
[o[<]<]

T
o
=

Set by FETCH

For values of indicators:

:| Set by FETCH

N

A

M

E

o

N
=|Olmm| >

M
O
2

P
M
3

A~ Z

ames of select-list items:

11-32

Chapter 11
Using Host Tables with Method 4

11.7 Using Host Tables with Method 4

ORACLE

To use input or output host tables with Method 4, you must use the optional FOR
clause to tell Oracle the size of your host table. For more information about the FOR
clause, see “Host Tables”.

Set descriptor entries for the Jth select-list item or bind variable, but instead of
addressing a single data buffer, SELDVLN(J) or BNDDVLN(J) addresses a table of
data buffers. Then use a FOR clause in the EXECUTE or FETCH statement, as
appropriate, to tell Oracle the number of table elements you want to process.

This procedure is necessary because Oracle has no other way of knowing the size of
your host table.

In the following example (32 bit only), two input host tables are used to insert 8 pairs of
values of EMPNO and DEPTNO into the table EMP. Note that EXECUTE can be used
for non-queries with Method 4.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. DYN4I NS.
ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 BNDDSC.
02 SQLDNUM PIC S9(9) COVP VALUE 2.
02 SQLDFND PIC S9(9) COWP.
02 BNDDVAR OCCURS 2 TI MES.
03 BNDDV PIC S9(9) COWP.
03 BNDDFMT PIC S9(9) COWP.
03 BNDDVLN PIC S9(9) COWP.
03 BNDDFMIL PIC S9(4) COWP.
03 BNDDVTYP PIC S9(4) COWP.
03 BNDDI PIC S9(9) COWP.

(9)
(9)
(9)
(4)
(4)
(9)
03 BNDDH VNAVE PIC S9(9)
03 BNDDH MAX- VNAMEL PI C S9(4) COWP.
03 BNDDH CUR- VNAMEL PI C S9(4)
03 BNDDI - VNAVE PIC S9(9)
03 BNDDI - MAX- VNAMEL PI C S9(4)
(4)
(9)
(9)

03 BNDDI - CUR-VNAMEL PIC S9 COWP.
03 BNDDFCLP PIC S9 COWP.
03 BNDDFCRCP PIC S9 COWP.
01 XBNDDI .
03 BND-DI OCCURS 2 TIMES PIC S9(4) COWP.
01 XBNDDI VNAME.
03 BND DI - VNAME OCCURS 2 TIMES PIC X(80).
01 XBNDDV.
* Since you know what the SQL statement will be, you can set
* up a two-dinensional table with a maximumof 2 colums and
* 8 rows. Each element can be up to 10 characters long. (You
* can alter these values according to your needs.)
03 BND- COLUWN OCCURS 2 TI MES.
05 BND- ELEMENT OCCURS 8 TIMES PIC X(10).
01 XBNDDHVNAME.
03 BND DH VNAME OCCURS 2 TIMES PIC X(80).
01 COLUMN | NDEX Pl C 999.
01 ROWINDEX PI C 999.
01 DUMW- I NTEGER Pl C 9999.
EXEC SQ. BEG N DECLARE SECTI ON END- EXEC.
01 USERNAME Pl C X(20).

11-33

Chapter 11
Using Host Tables with Method 4

01 PASSWD PI C X(20).

01 DYN-STATEMENT PIC X(80).

01 NUVBER CF-ROAS PIC S9(4) COWP.
EXEC SQL END DECLARE SECTI ON END- EXEC.

EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
START- MAIN.

EXEC SQL WHENEVER SQLERROR GOTO SQL- ERROR END- EXEC.

MOVE " SCOTT" TO USERNAME.
MOVE "TI GER' TO PASSWD.
EXEC SQL
CONNECT : USERNAVME | DENTI FI ED BY : PASSVWD
END- EXEC.
DI SPLAY " Connected to Oracle".

* Initialize bind and sel ect descriptors.
PERFORM | NI T- BNDDSC THRU | NI T- BNDDSC- EXI T
VARYI NG COLUMN- | NDEX FROM 1 BY 1
UNTIL COLUMN- | NDEX > 2.

* Set up the SQ statement.
MOVE SPACES TO DYN STATEMENT.
MOVE "I NSERT | NTO EMP(EMPNO, DEPTNO) VALUES(: EMPNO, : DEPTNO) "
TO DYN- STATEMENT.
DI SPLAY DYN- STATEMENT.

* Prepare the SQL statenent.
EXEC SQL
PREPARE S1 FROM : DYN- STATEMENT
END- EXEC.

* Describe the bind variabl es.
EXEC SQL
DESCRI BE BI ND VARI ABLES FOR S1 | NTO BNDDSC
END- EXEC.

PERFORM Z- BI ND- TYPE THRU Z- BI ND- TYPE- EXI T
VARYI NG COLUMN- | NDEX FROM 1 BY 1
UNTIL COLUWN- | NDEX > 2.

| F SQLDFAD | N BNDDSC < 0
DI SPLAY "TCO MANY BI ND VAR ABLES. "
GO TO SQL- ERROR

ELSE
DI SPLAY “BIND VARS = " W TH NO ADVANCI NG
MOVE SQLDFND | N BNDDSC TO DUMWY- | NTEGER
DI SPLAY DUMWY- | NTEGER
MOVE SQLDFND | N BNDDSC TO SQLDNUM | N BNDDSC.

MOVE 8 TO NUMBER- OF- ROVS.

PERFORM GET- ALL- VALUES THRU CGET- ALL- VALUES-EXI'T
VARYI NG ROV | NDEX FROM 1 BY 1
UNTI L ROW I NDEX > NUMBER- OF- ROAS.

* Execute the SQL statenent.

EXEC SQL FOR : NUMBER- OF- ROAS
EXECUTE S1 USI NG DESCRI PTOR BNDDSC

ORACLE 11-34

SQL-

END-

INIT
*

*

INIT

Z- Bl
*

*

Z- Bl

Chapter 11
Using Host Tables with Method 4

END- EXEC.

DI SPLAY "I NSERTED " W TH NO ADVANCI NG
MOVE SQLERRD(3) TO DUMW- | NTEGER
DI SPLAY DUMW- | NTEGER W TH NO ADVANCI NG

DI SPLAY " ROAS. "
GO TO END- SQL.
ERROR

Di splay any SQL error nmessage and code.
DI SPLAY SQLERRMC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

SQL.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
EXEC SQL COW T WORK RELEASE END- EXEC.

STCP RUN.

- BNDDSC.
Start of COBOL PERFORM procedures, initialize the bind
descriptor.
MOVE 80 TO BNDDH- MAX- VNANEL (COLUMN- | NDEX) .
CALL "SQLADR" USI NG
BND- DH- VNANME(COLUMN- | NDEX)
BNDDH- VNAME(COLUMN- | NDEX) .
MOVE 80 TO BNDDI - MAX- VNANEL (COLUMN- | NDEX) .
CALL "SQLADR" USI NG
BND- DI - VNAME(COLUMN- | NDEX)
BNDDI - VNAMVE (COLUMN- | NDEX) .
MOVE 10 TO BNDDVLN(COLUMN- | NDEX) .
CALL "SQLADR" USI NG
BND- ELEMENT(COLUMN- | NDEX, 1)
BNDDV(COLUMN- | NDEX) .
MOVE ZERO TO BNDDI (COLUMN- | NDEX) .
CALL "SQLADR" USI NG
BND- DI (COLUMN- | NDEX)
BNDDI (COLUMN- | NDEX) .
MOVE ZERO TO BNDDFMT(COLUMN- | NDEX) .
MOVE ZERO TO BNDDFMTL(COLUMN- | NDEX) .
MOVE ZERO TO BNDDFCLP(COLUMN- | NDEX) .
MOVE ZERO TO BNDDFCRCP(COLUMN- | NDEX) .
- BNDDSC- EXI T.
EXIT.

ND- TYPE.

Repl ace the Os DESCRIBEd into the datatype table with 1s to
avoid an "invalid datatype" Oracle error.

MOVE 1 TO BNDDVTYP(COLUMN- | NDEX) .

ND- TYPE- EXI T.
EXIT.

GET- ALL- VALUES.

*

CGet the bind variables for each row
DI SPLAY "ENTER VALUES FOR ROW NUMBER ", ROW | NDEX.
PERFORM GET- Bl ND- VARS

VARYI NG COLUMN- | NDEX FROM 1 BY 1

UNTIL COLUMN- | NDEX > SQLDFND | N BNDDSC.

CGET- ALL- VALUES-EXI T.

ORACLE

EXIT.

11-35

Chapter 11
Sample Program 10: Dynamic SQL Method 4

GET- Bl ND- VARS.
* CGet the value of each bind variable.
DI SPLAY " ENTER VALUE FOR ", BND- DH VNAME(COLUMN- | NDEX)

W TH NO ADVANCI NG
ACCEPT BND- ELEMENT(COLUWN- | NDEX, ROW | NDEX) .
GET- Bl ND- VARS- EXI T.
EXIT.

Related Topics
* Host Tables

11.8 Sample Program 10: Dynamic SQL Method 4

ORACLE

This program shows the basic steps required to use dynamic SQL Method 4.

" Note:

The following example is 32 bit only. To avoid problems, please use the
example from $ORACLE_HOME/ pr econp/ deno/ pr ocob2/ sanpl 10. pco and include the
correct version of the variable declaration file.

bndsel . cob 64 bit version in preconp/ publ i ¢ (64 bit computer)

bndsel . cob_32 32 bit version in preconp/ publ i c32 (64 bit computer)

After logging on, the program prompts the user for a SQL statement, prepares
statement, declares a cursor, checks for any bind variables using DESCRIBE BIND,
opens the cursor, and describes any select-list variables. If the input SQL statement is
a query, the program fetches each row of data, then closes the cursor.

LR EEEE RS ERE SRS RS R R SRR EE SRR SRR ER SRR EREEREEREEREREEEEEEEEEEEES]

Sanpl e Program 10: Dynanic SQL Method 4

*
*
This program shows the basic steps required to use dynanmic *
SQ Method 4. After logging on to ORACLE, the program *
pronpts the user for a SQL statenent, PREPARES the *
statenent, DECLAREs a cursor, checks for any bind variables *
*
*
*
*
*

% % %k k% ok

usi ng DESCRI BE BIND, OPENs the cursor, and DESCRI BEs any
select-list variables. |f the input SQL statement is a
* query, the program FETCHes each row of data, then CLOSEs

*
the cursor.
IR RS R R S R R S RS S R R R R R R R R R SRR R R R R R R R RS R R R R R R RS R R SRR R R R SRR R R

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. DYNSQL4.
ENVI RONMVENT DI VI SION.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

01 BNDDSC.
02 SQLDNUM PIC S9(9) COWP VALUE 20.
02 SQLDFND PIC S9(9) COW.
02 BNDDVAR OCCURS 20 TI MES.

11-36

ORACLE

01

01

01

01

01

01

01
01
01
01
01

01
01

03
03
03
03
03
03
03
03
03
03
03
03
03
03

XBNDD! .

BNDDV

BNDDFMT

BNDDVLN

BNDDFMTL
BNDDVTYP

BNDDI

BNDDH- VNAMVE
BNDDH- MAX- VINAMEL
BNDDH- CUR- VINAMEL
BNDDI - VNAMVE

BNDDI - MAX- VNAMEL
BNDDI - CUR- VNAMEL
BNDDFCLP
BNDDFCRCP

03 BND-DI

XBNDDI VNAME.
03 BND-DI - VNAME

XBNDDV.

03 BND-DV
XBNDDHVNAME.
03 BND-DH VNAME

SELDSC.

02 SQLDNUM
02 SQLDFND
02 SELDVAR

03
03
03
03
03
03
03
03
03
03
03
03
03
03

XSELDI .

SELDV

SELDFMI

SELDVLN

SELDFMTL
SELDVTYP

SELDI

SELDH- VNAVE
SELDH- MAX- VNAMEL
SELDH- CUR- VNAMEL
SELDI - VNAVE

SELDI - MAX- VNAMEL
SELDI - CUR- VNAMEL
SELDFCLP
SELDFCRCP

03 SEL-DI

XSELDI VNAME.
03 SEL-DI - VNAME

XSELDV.

03 SEL-DV
XSELDHVNAME.
03 SEL- DH VNAME

TABLE- | NDEX
VAR- COUNT
ROW COUNT

NO- MORE- DATA

OCCURS 20
OCCURS 20

OCCURS 20

PIC S9(
PIC S9(
OCCURS
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9
PIC S9

O OB DO OOP~DOOONOO
e T o T o oo T oo o —

g

OCCURS 20

OCCURS 20
OCCURS 20
OCCURS 20

PIC 9(
PIC 9(
PIC 9(

(

3
2).
4
PIC X(1

—_ e —

Chapter 11

Sample Program 10: Dynamic SQL Method 4

TIMES PIC S9(4) COWP.

TI MES PI C X(80).
TI MES PIC X(80).

TI MES PIC X(80).

COWP VALUE 20.
COWP.
TI MES.

TIMES PIC S9(4) COWP.

TI MES PIC X(80).
TI MES PIC X(80).

TI MES PI C X(80).

VALUE "N'.

11-37

ORACLE

01

01
01

01
01
01
01

01
01
01

Chapter 11
Sample Program 10: Dynamic SQL Method 4

NULLS- ALLOVED PIC S9(9) COWP.

PRECI SI ON PIC S9(9) COWP.

SCALE PIC S9(9) COWP.

DI SPLAY- LENGTH PIC S9(9) COWP.

MAX- LENGTH PIC S9(9) COVP VALUE 80.
COLUMN- NAME PIC X(30).

NULL- VAL PIC X(80) VALUE SPACES.
EXEC SQL BEGI N DECLARE SECTI ON END- EXEC.

USERNAME PI C X(20).

PASSVD PI C X(20).

DYN- STATEMENT PI C X(80).
EXEC SQL END DECLARE SECTION END- EXEC.
EXEC SQL | NCLUDE SQLCA END- EXEC.

PROCEDURE DI VI SI ON.
START- MAI N.

EXEC SQL WHENEVER SQLERROR GOTO SQL- ERROR END- EXEC.
DI SPLAY "USERNAME: " W TH NO ADVANCI NG

ACCEPT USERNAME.

DI SPLAY "PASSWORD: " W TH NO ADVANCI NG

ACCEPT PASSVD.

EXEC SQL CONNECT : USERNAME | DENTI FI ED BY : PASSWD END- EXEC.
DI SPLAY " CONNECTED TO ORACLE AS USER ", USERNAME.

I NI TIALI ZE THE BI ND AND SELECT DESCRI PTORS.
PERFORM | NI T- BNDDSC
VARYI NG TABLE- I NDEX FROM 1 BY 1
UNTI L TABLE- I NDEX > 20.
PERFORM | NI T- SELDSC
VARYI NG TABLE- I NDEX FROM 1 BY 1
UNTI L TABLE- I NDEX > 20.
GET A SQL STATEMENT FROM THE OPERATCR.

DI SPLAY "ENTER SQL STATEMENT W THOUT TERM NATCR ".
DI SPLAY ">" WTH NO ADVANCI NG

ACCEPT DYN- STATEMENT.
DI SPLAY " "
PREPARE THE SQL STATEMENT AND DECLARE A CURSCR.

EXEC SQL PREPARE S1 FROM : DYN- STATEMENT END- EXEC.
EXEC SQL DECLARE Cl1 CURSCR FOR S1 END- EXEC.

DESCRI BE ANY BI ND VARI ABLES.

EXEC SQ. DESCRI BE BI ND VARI ABLES FOR S1 | NTO BNDDSC
END- EXEC.

11-38

Chapter 11
Sample Program 10: Dynamic SQL Method 4

I F SQLDFND | N BNDDSC < 0
DI SPLAY "TOO MANY BI ND VARI ABLES. *
GO TO END- SQL
ELSE
DI SPLAY "NUMBER OF BIND VARI ABLES: " W TH NO ADVANCI NG
MOVE SQLDFND | N BNDDSC TO VAR- COUNT
DI SPLAY VAR- COUNT
MOVE SQLDFND | N BNDDSC TO SQLDNUM | N BNDDSC
END- | F.

* REPLACE THE 0S DESCRI BED I NTO THE DATATYPE FI ELDS OF THE
* BI ND DESCRI PTOR WTH 1S TO AVO D AN "I NVALI D DATATYPE"
* ORACLE ERRCR

MOVE 1 TO TABLE- | NDEX.
FI X- BI ND- TYPE.
MOVE 1 TO BNDDVTYP(TABLE- | NDEX)
ADD 1 TO TABLE- | NDEX
| F TABLE- | NDEX <= 20
GO TO FI X- BI ND- TYPE.

* LET THE USER FILL IN THE BI ND VARI ABLES.

| F SQLDFND | N BNDDSC = 0
GO TO DESCRI BE- | TEMS.
MOVE 1 TO TABLE- | NDEX.
GET- BI ND- VAR,
DI SPLAY "ENTER VALUE FOR ", BND-DH VNAME(TABLE- | NDEX) .

ACCEPT BND- DV(TABLE- | NDEX) .

ADD 1 TO TABLE- | NDEX
| F TABLE- | NDEX <= SQLDFND | N BNDDSC
GO TO CET- BI ND- VAR.

* OPEN THE CURSOR AND DESCRI BE THE SELECT- LI ST | TEMS.
DESCRI BE- | TENS.

EXEC SQL OPEN C1 USI NG DESCRI PTCR BNDDSC END- EXEC.
EXEC SQL DESCRI BE SELECT LI ST FOR S1 INTO SELDSC END- EXEC.

I F SQLDFND | N SELDSC < 0
DI SPLAY " TOO MANY SELECT-LI ST | TENS. "
GO TO END- SQL
ELSE
DI SPLAY "NUMBER OF SELECT-LI ST ITEMS, "
W TH NO ADVANCI NG
MOVE SQLDFND | N SELDSC TO VAR- COUNT
DI SPLAY VAR- COUNT
DI SPLAY " *
MOVE SQLDFND | N SELDSC TO SQLDNUM | N SELDSC
END- | F.

* CCERCE THE DATATYPE OF ALL SELECT-LIST I TEMS TO VARCHAR2.

| F SQLDNUM I N SELDSC > 0
PERFORM COERCE- COLUMN- TYPE
VARYI NG TABLE- I NDEX FROM 1 BY 1
UNTI L TABLE- I NDEX > SQLDNUM | N SELDSC
DI SPLAY " ™.

ORACLE 11-39

ORACLE

sQL-

Chapter 11

Sample Program 10: Dynamic SQL Method 4

FETCH EACH RON AND PRI NT EACH SELECT- LI ST VALUE.

I F SQLDNUM I N SELDSC > 0
PERFORM FETCH- ROAS UNTI L NO- MORE- DATA = "Y".

DI SPLAY " *
DI SPLAY "NUMBER OF ROWS PROCESSED: " W TH NO ADVANCI NG
MOVE SQLERRD(3) TO ROW COUNT.

DI SPLAY ROW COUNT.

CLEAN UP AND TERM NATE.

EXEC SQL CLOSE C1 END- EXEC.
EXEC SO COW T WORK RELEASE END- EXEC.
DI SPLAY " "

DI SPLAY "HAVE A GOOD DAY!".

DI SPLAY " "

STCP RUN.

DI SPLAY ORACLE ERROR MESSAGE AND CODE.
ERROR.

DI SPLAY " "
DI SPLAY SQLERRMC.

END- SQL.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

PERFORMED SUBROUTI NES BEG N HERE:

I NI T-BNDDSC: | NI TI ALI ZE THE BI ND DESCRI PTCR.

| NI T- BNDDSC.

MOVE SPACES TO BND- DH- VNANE(TABLE- | NDEX) .
MOVE 80 TO BNDDH- MAX- VNAVEL (TABLE- | NDEX) .
CALL "SQLADR' USING

BND- DH- VNAVE(TABLE- | NDEX)

BNDDH- VNAVE(TABLE- | NDEX,) .

MOVE SPACES TO BND- DI - VNAVE(TABLE- | NDEX) .
MOVE 80 TO BNDDI - MAX- VNAVEL (TABLE- | NDEX) .
CALL "SQLADR' USING

BND- DI - VNAVE(TABLE- | NDEX)

BNDDI - VNAVE (TABLE- | NDEX) .

MOVE SPACES TO BND- DV(TABLE- | NDEX) .
MOVE 80 TO BNDDVLN(TABLE- | NDEX) .
CALL "SQLADR' USING

BND- DV(TABLE- | NDEX)

BNDDV(TABLE- | NDEX) .
MOVE ZERO TO BND- DI (TABLE- | NDEX) .
CALL "SQLADR' USING

BND- DI (TABLE- | NDEX)

BNDDI (TABLE- | NDEX) .

MOVE ZERO TO BNDDFMT(TABLE- | NDEX) .
MOVE ZERO TO BNDDFMTL(TABLE- | NDEX) .
MOVE ZERO TO BNDDFCLP(TABLE- | NDEX) .

11-40

ORACLE

Chapter 11

Sample Program 10: Dynamic SQL Method 4

MOVE ZERO TO BNDDFCRCP(TABLE- | NDEX) .

I NI T- SELDSC: | NI TI ALI ZE THE SELECT DESCRI PTOR.

I NI T- SELDSC.

MOVE SPACES TO SEL- DH VNAVE(TABLE- | NDEX) .
MOVE 80 TO SELDH- MAX- VNAVEL (TABLE- | NDEX) .
CALL "SQLADR' USING

SEL- DH- VNAVE(TABLE- | NDEX)

SEL DH- VNAVE(TABLE- | NDEX) .

MOVE SPACES TO SEL- DI - VNAVE(TABLE- | NDEX) .
MOVE 80 TO SELDI - MAX- VNAVEL (TABLE- | NDEX) .
CALL "SQLADR' USING

SEL- DI - VNAME(TABLE- | NDEX)

SELDI - VNAMVE (TABLE- | NDEX) .

MOVE SPACES TO SEL- DV(TABLE- | NDEX) .
MOVE 80 TO SELDVLN(TABLE- | NDEX) .
CALL "SQLADR' USING

SEL- DV(TABLE- | NDEX)

SELDV(TABLE- | NDEX) .

MOVE ZERO TO SEL- DI (TABLE- | NDEX) .
CALL "SQLADR' USING

SEL- DI (TABLE- | NDEX)

SELDI (TABLE- | NDEX) .

MOVE ZERO TO SELDFMT(TABLE- | NDEX) .
MOVE ZERO TO SELDFMTL(TABLE- | NDEX) .
MOVE ZERO TO SELDFCLP(TABLE- | NDEX) .
MOVE ZERO TO SELDFCRCP(TABLE- | NDEX) .

COERCE SELECT- LI ST DATATYPES TO VARCHARZ.

COERCE- COLUMN- TYPE.

CALL "SQLNUL" USING
SELDVTYP(TABLE- | NDEX)
SELDVTYP(TABLE- | NDEX)
NULLS- ALLOWED.

| F DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
| F SELDVTYP(TABLE- | NDEX) = 12
MOVE 9 TO SELDVLN(TABLE- | NDEX) .

| F DATATYPE IS NUMBER, SET LENGTH TO PRECI SI ON.

| F SELDVTYP(TABLE- | NDEX) = 2
CALL "SQLPRC' USING
SELDVLN(TABLE- | NDEX)
PRECI SI ON
SCALE.
MOVE 0 TO DI SPLAY- LENGTH
| F SELDVTYP(TABLE- I NDEX) = 2 AND PRECI SION = 0
MOVE 40 TO DI SPLAY- LENGTH.
| F SELDVTYP(TABLE- I NDEX) = 2 AND PRECI SION > 0
ADD 2 TO PRECI SI ON
MOVE PRECI S| ON TO DI SPLAY- LENGTH,

| F SELDVTYP(TABLE- | NDEX) = 2
| F DI SPLAY- LENGTH > MAX- LENGTH

11-41

ORACLE

Chapter 11
Sample Program 10: Dynamic SQL Method 4

DI SPLAY "COLUMN VALUE TOO LARGE FOR DATA BUFFER."
GO TO END- SQL

ELSE
MOVE DI SPLAY- LENGTH TO SELDVLN(TABLE- | NDEX) .

* COERCE DATATYPES TO VARCHARZ.
MOVE 1 TO SELDVTYP(TABLE- | NDEX) .

* DI SPLAY COLUWN HEADI NG
MOVE SEL- DH VNAME(TABLE- | NDEX) TO COLUMN- NAME.
DI SPLAY COLUWN- NAME(1: SELDVLN(TABLE- | NDEX)), " "
W TH NO ADVANCI NG

*FETCH A ROWN AND PRINT THE SELECT- LI ST VALUE.

FETCH ROWS.
EXEC SQL FETCH CL USI NG DESCRI PTOR SELDSC END- EXEC.
| F SQLCODE NOT = 0
MOVE "Y" TO NO- MORE- DATA.
| F SQLCODE = 0
PERFORM PRI NT- COLUMN- VALUES
VARY! NG TABLE- | NDEX FROM 1 BY 1
UNTI L TABLE- | NDEX > SQLDNUM | N SELDSC
DI SPLAY "

*PRINT A SELECT- LI ST VALUE.

PRI NT- COLUWN- VAL UES.
| F SEL- DI (TABLE- | NDEX) = -1
DI SPLAY NULL- VAL(1: SELDVLN(TABLE- | NDEX)), " "
W TH NO ADVANCI NG
ELSE
DI SPLAY SEL- DV(TABLE- | NDEX) (1: SELDVLN(TABLE- I NDEX)), " "
W TH NO ADVANCI NG
END- | F.

11-42

Multithreaded Applications

If your development platform does not support threads, you can ignore this chapter.
The sections of this chapter are:

* Introduction to Threads

* Runtime Contexts in Pro*xCOBOL

* Runtime Context Usage Models

* User Interface Features for Multithreaded Applications

e Multithreaded Example

12.1 Introduction to Threads

ORACLE

Multithreaded applications have multiple threads executing in a shared address space.
Threads are "lightweight" subprocesses that execute within a process. They share
code and data segments, but have their own program counters, machine registers,
and stack. Variables declared without the thread-local attribute in working storage (as
opposed to local-storage or thread-local storage) are common to all threads, and a
mutual exclusivity mechanism is often required to manage access to these variables
from multiple threads within an application. Mutexes are the synchronization
mechanism to insure that data integrity is preserved.

For further discussion of mutexes, see texts on multithreading. For more detailed
information about multithreaded applications, see the documentation of your threads
functions.

Pro*COBOL supports development of multithreaded Oracle Server applications (on
platforms that support multithreaded applications) using the following:

e A command-line option to generate thread-safe code.
e Embedded SQL statements and directives to support multithreading.

e Thread-safe SQLLIB and other client-side Oracle libraries.

¢ Note:

While your platform may support a particular thread package, see your
platform-specific Oracle documentation to determine whether Oracle supports
it.

The chapter's topics discuss how to use the preceding features to develop
multithreaded Pro*COBOL applications:

* Runtime contexts for multithreaded applications.

e Two models for using runtime contexts.

12-1

Chapter 12
Runtime Contexts in Pro*COBOL

» User-interface features for multithreaded applications.

* Programming considerations for writing multithreaded applications with
Pro*COBOL.

» Sample multithreaded Pro*COBOL applications.

12.2 Runtime Contexts in Pro*COBOL

ORACLE

To loosely couple a thread and a connection, in Pro*COBOL we introduce the concept
of a runtime context. The runtime context includes the following resources and their
current states:

e Zero or more connections to one or more Oracle servers.
e Zero or more cursors used for the server connections.

* Inline options, such as MODE, HOLD CURSOR, RELEASE_CURSOR, and
SELECT_ERROR.

Rather than simply supporting a loose coupling between threads and connections,
Pro*COBOL enables you to loosely couple threads with runtime contexts. Pro*COBOL
enables your application to define a handle to a runtime context, and pass that handle
from one thread to another.

For example, an interactive application spawns a thread, T1, to execute a query and
return the first 10 rows to the application. T1 then terminates. After obtaining the
necessary user input, another thread, T2, is spawned (or an existing thread is used)
and the runtime context for T1 is passed to T2 so it can fetch the next 10 rows by
processing the same cursor.This is shown in Figure 12-1:

12-2

Chapter 12
Runtime Context Usage Models

Figure 12-1 Loosely Coupling Connections and Threads

Application

Main Program

ENABLE THREADS
ALLOCATE :ctx

Connect...
FREE :ctx
m Shared runtime Execution
Thread context is Time
passed from
I Hieies one thread to
Fetch... e
Thread
USE :ctx L
Fetch... 1
' Thread
USE :ctx
Fetch...

Note: The syntax used in this
and subsequent figures is for
structural use only. for correct
syntax, see the section titled,
"User-interface Features for
Multi-threaded Applications."

Lil-

Server

12.3 Runtime Context Usage Models

Two possible models for using runtime contexts in multithreaded applications are
shown here:

e Multiple threads sharing a single runtime context.
e Multiple threads using separate runtime contexts.

Regardless of the model you use for runtime contexts, you cannot share a runtime
context between multiple threads at the same time. If two or more threads attempt to
use the same runtime context simultaneously, a runtime error occurs

12.3.1 Multiple Threads Sharing a Single Runtime Context

“Context Sharing Among Threads” shows an application running in a multithreaded
environment. The various threads share a single runtime context to process one or
more SQL statements. Again, runtime contexts cannot be shared by multiple threads

ORACLE 12-3

Chapter 12
Runtime Context Usage Models

at the same time. The mutexes in “Context Sharing Among Threads” show how to
prevent concurrent usage.

Figure 12-2 Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE :ctx

USE :ctx
Connect. ..

Spawning Threads. ..
FREE :ctx

II Thread Thread Thread

USE :ctx USE :ctx
Mutex Mutex
Select... Update. ..
UnMutex UnMutex

USE :ctx
Mutex

Select...
UnMutex

i

Server

12.3.2 Multiple Threads Sharing Multiple Runtime Contexts

Figure 12-3 shows an application that executes multiple threads using multiple runtime
contexts. In this situation, the application does not require mutexes, because each
thread has a dedicated runtime context.

ORACLE 12-4

Chapter 12
User Interface Features for Multithreaded Applications

Figure 12-3 No Context Sharing Among Threads

Application

Main Program

ENABLE THREADS
ALLOCATE :ctxl
ALLOCATE :ctx2
ALLOCATE :ctxn
Spawning Threads.. .

FREE :ctxl
FREE :ctx2

FREE :ctxn

n Thread

Thread

Thread

USE :ctxl USE :ctx2 USE :ctxn
Connect. .. Connect. .. Connect. ..
Select. .. Update. .. Select...

v
]
| S—

Server

12.4 User Interface Features for Multithreaded Applications

Pro*COBOL provides the following user-interface features to support multithreaded
applications:

* Host variables can be declared in the LOCAL-STORAGE and the THREAD-
LOCAL-STORAGE sections.

e The command-line option THREADS=YES | NO.
e Embedded SQL statements and directives.

e Thread-safe SQLLIB public functions.

12.4.1 THREADS Option

With THREADS=YES specified on the command line, Pro*COBOL ensures that the
generated code is thread-safe, given that you follow the guidelines described in
“Multithreading Programming Considerations”. With THREADS=YES specified,
Pro*COBOL verifies that all SQL statements execute within the scope of a user-

ORACLE 12-5

Chapter 12
User Interface Features for Multithreaded Applications

defined runtime context. If your program does not meet this requirement, a
precompiler error is returned.

Related Topics

* Multithreading Programming Considerations

12.4.2 Embedded SQL Statements and Directives for Runtime
Contexts

The following embedded SQL statements and directives support the definition and
usage of runtime contexts and threads:

« EXEC SQL ENABLE THREADS END-EXEC.

« EXEC SQL CONTEXT ALLOCATE :context_var END-EXEC.

+ EXEC SQL CONTEXT USE { :context_var | DEFAULT} END-EXEC.
« EXEC SQL CONTEXT FREE :context_var END-EXEC.

For these EXEC SQL statements, context_var is the handle to the runtime context and
must be declared of type SQL-CONTEXT as follows:

01 SQL- CONTEXT context_var END-EXEC.
Using DEFAULT means that the default (global) runtime context will be used in all

embedded SQL statements that lexically follow until another CONTEXT USE
statement overrides it.

Examples illustrating the various uses of context statements are shown.

12.4.2.1 Host Tables of SQL-CONTEXT Are Not Allowed

You cannot declare host tables of SQL-CONTEXT. Instead, declare a host table of
S9(9) COMP variables and then pass them to the subprogram one at a time after
redeclaring them in the subprogram as SQL-CONTEXT.

12.4.2.2 EXEC SQL ENABLE THREADS

This executable SQL statement initializes a process that supports multiple threads.
This must be the first executable SQL statement in a program that contains a
multithreaded application. There can only be one ENABLE THREADS statement in all
files of an application, or an error results. For more detailed information, see “ENABLE
THREADS (Executable Embedded SQL Extension)”.

Related Topics
¢ ENABLE THREADS (Executable Embedded SQL Extension)

12.4.2.3 EXEC SQL CONTEXT ALLOCATE

This executable SQL statement allocates and initializes memory for the specified
runtime context; the runtime-context variable must be declared of type
SQL_CONTEXT. For more detailed information, see “CONTEXT ALLOCATE
(Executable Embedded SQL Extension)”.

ORACLE 12-6

Chapter 12
User Interface Features for Multithreaded Applications

Related Topics
* CONTEXT ALLOCATE (Executable Embedded SQL Extension)

12.4.2.4 EXEC SQL CONTEXT USE

The EXEC SQL CONTEXT USE directive instructs the precompiler to use the
specified runtime context for subsequent executable SQL statements. The runtime
context specified must be previously allocated using an EXEC SQL CONTEXT
ALLOCATE statement.

The EXEC SQL CONTEXT USE directive works similarly to the EXEC SQL
WHENEVER directive in that it affects all executable SQL statements which
positionally follow it in a given source file without regard to standard COBOL scope
rules.

For more detailed information, see “CONTEXT USE (Oracle Embedded SQL
Directive)”, and “CONTEXT ALLOCATE (Executable Embedded SQL Extension)”.

Related Topics
* CONTEXT USE (Oracle Embedded SQL Directive)
* CONTEXT ALLOCATE (Executable Embedded SQL Extension)

12.4.2.5 EXEC SQL CONTEXT FREE

The EXEC SQL CONTEXT FREE executable SQL statement frees the memory
associated with the specified runtime context and places a null pointer in the host
program variable. For more detailed information, see “CONTEXT FREE (Executable
Embedded SQL Extension)”.

Related Topics
« CONTEXT FREE (Executable Embedded SQL Extension)

12.4.3 Communication with Pro*C/C++ Programs

Runtime contexts can be passed using arguments defined in the Linkage Section.
Multithreaded Pro*C/C++ programs can call Pro*COBOL subprograms and
Pro*COBOL programs can call subprograms written in Pro*C/C++.

12.4.4 Multithreading Programming Considerations

ORACLE

While Oracle ensures that the SQLLIB code is thread-safe, you are responsible for
ensuring that your source code is designed to work properly with threads. For
example, carefully consider the scope of the variables you use.

In addition, multithreading requires design decisions regarding the following:

* Including one SQLCA for each runtime context.

» Declaring the SQLDA as a thread-safe group item, like the SQLCA, typically an
auto variable, one for each runtime context.

» Declaring host variables in a thread-safe fashion, in other words, carefully consider
your use of static and global host variables.

* Avoiding simultaneous use of a runtime context in multiple threads.

12-7

Chapter 12
User Interface Features for Multithreaded Applications

* Whether or not to use default database connections or to explicitly define them
using the AT clause.

No more than one executable embedded SQL statement, for example, EXEC SQL
UPDATE, may be outstanding on a runtime context at a given time.

Existing requirements for precompiled applications also apply. For example, all
references to a given cursor must appear in the same source file.

12.4.4.1 Restrictions on Multithreading

The following restrictions be in effect when using threads:
e You cannot use an array of datatype SQL-CONTEXT.
e Concurrent threads should each have its own SQLCA.

» Concurrent threads should each have its own context areas.

12.4.5 Multiple Context Examples

The code fragments in this section show how to use multiple contexts, and
demonstrate the scope of the context use statement.

12.4.5.1 Example 1

In the first example, the precompiler option setting THREADS=YES is not needed,
because we are not generating threads:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. MAI N.

* declare a context area
01 CTX1 SQL- CONTEXT.
01 UDL PIC X(11) VALUE "SCOTT/ Tl GER'.
01 UD2 PIC X(10) VALUE "MARY/LION'

PROCEDURE DI VI SI ON.

* allocate context area
EXEC SQL CONTEXT ALLOCATE : CTX1 END- EXEC.
EXEC SQL CONTEXT USE : CTX1 END- EXEC.
* all statements until the next context use will use CTX1
EXEC SQ.L CONNECT : Ul D1 END- EXEC.
EXEC SQL SELECT
EXEC SQ. CONTEXT USE DEFAULT END- EXEC.
* all statements physically after the preceding lines will use the default context
EXEC SQ. CONNECT : Ul D2 END- EXEC.
EXEC SQL | NSERT ...

12.4.5.2 Example 2

ORACLE

This next example shows multiple contexts. One context is used by the generated
thread while the other is used by the main program. The started thread, SUBPRGM1,
will use context CTX1, which is passed to it through the LINKAGE SECTION. This
example also demonstrates the scope of the CONTEXT USE statement.

12-8

Chapter 12
User Interface Features for Multithreaded Applications

Note:

You must precompile the main program file, and the main program of every
subsequent example in this section, with the option THREADS=YES.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. MAIN.

* declare two context areas
01 CTX1 SQL- CONTEXT.
01 CTX2 SQL- CONTEXT.

PROCEDURE DI VI SI ON.

* enabl e threading
EXEC SQL ENABLE THREADS END- EXEC.

* allocate context areas
EXEC SQL CONTEXT ALLQOCATE : CTX1 END- EXEC.
EXEC SQL CONTEXT ALLOCATE : CTX2 END- EXEC.

* include your code to start thread "SUBPGML" using CTX1 here.

EXEC SQL CONTEXT USE : CTX2 END- EXEC.
* all statenent physically after the preceding lines will use CTX2

EXEC SQL CONNECT : USERI D END- EXEC.
EXEC SQL INSERT

The thread SUBPRGML is in a another file:

PROGRAM | D. SUBPRGML.

01 USERID PIC X(11) VALUE "SCOTT/ TIGER".
LI NKAGE SECTI ON.

01 CTX1 SQL- CONTEXT.

PROCEDURE DI VI SI ON USI NG CTX1.

EXEC SQL CONTEXT USE : CTX1 END- EXEC.

EXEC SQL CONNECT : USERI D END- EXEC.
EXEC SQL SELECT ...

12.4.5.3 Example 3

The following example uses multiple threads. Each thread has its own context. If the
threads are to be executed concurrently, each thread must have its own context.
Contexts are passed to the thread with the USING CLAUSE of the START statement
and are declared in the LINKAGE SECTION of the threaded subprogram.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. MAIN.

DATA DI VI SI ON.

01 CTX1 SQL- CONTEXT.

ORACLE 12-9

Chapter 12
User Interface Features for Multithreaded Applications

01 CTX2 SQL- CONTEXT.
PROCEDURE DI VI SI ON.

EXEC SQL ENABLE THREADS END- EXEC.
EXEC SQL CONTEXT ALLOCATE : CTX1 END- EXEC.
EXEC SQL CONTEXT ALLOCATE : CTX2 END- EXEC.

* include your code to start thread "SUBPGM' using CTXL here.
* include your code to start thread "SUBPGM' using CTX2 here.

The thread SUBPGM is placed in another file:
PROGRAM | D. SUBPGM

DATA DI VI SI ON.
01 USERID PIC X(11) VALUE "SCOTT/ Tl GER'.

LI NKAGE SECTI ON.

01 CTX SQL- CONTEXT.

PROCEDURE DI VI SI ON USI NG CTX.
EXEC SQL CONTEXT USE : CTX END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.
EXEC SQU SELECT

12.4.5.4 Example 4

The next example is based on the previous example, but does the connection in the
top level program and passes the connection with the context to the threaded
subprogram.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. MAI'N.

DATA DI VI SI ON.

01 CTX1 SQL- CONTEXT.
01 CTX2 SQL- CONTEXT.
01 USERID PIC X(11) VALUE "SCOTT/ TI GER".

ROCEDURE Di VI SI ON.

EXEC SQL ENABLE THREADS END- EXEC.

EXEC SQL CONTEXT ALLOCATE : CTX1 END- EXEC.
EXEC SQL CONTEXT ALLOCATE : CTX2 END- EXEC.
EXEC SQL CONTEXT USE : CTX1 END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.

EXEC SQL CONTEXT USE : CTX2 END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.

* include your code to start thread "SUBPGM' using CTXl here.
* include your code to start thread "SUBPGM' using CTX2 here.

The thread SUBPRGMis in another file:

PROGRAM | D. SUBPGM

ORACLE 12-10

Chapter 12
User Interface Features for Multithreaded Applications

LI NKAGE SECTI ON.

01 CTX SQL- CONTEXT.

PROCEDURE DI VI SI ON USI NG CTX.
EXEC SQL CONTEXT USE : CTX END- EXEC.
EXEC SQL SELECT

12.4.5.5 Example 5

The following example shows multiple threads which share a context. Note that in this
case, the threads must be serialized.

[DENTI FI CATI ON DI VI SI ON.
PROGRAM I D. MAI'N.

DATA DI VI SI ON.
01 CTX1 SQL- CONTEXT.
PROCEDURE DI VI SI ON.

EXEC SQL ENABLE THREADS END- EXEC.
EXEC SQL CONTEXT ALLOCATE : CTX1 END- EXEC.

* include your code to start threadl "SUBPGML" using CTX1 here.

* include your code to wait for threadl here.
* include your code to start thread2 "SUBPGW" using CTX1 here.

There are two separate files for the two threads. First there is:
PROGRAM | D. SUBPGML.
DATA DI VI SI ON.
01 USERID PIC X(11) VALUE "SCOTT/ Tl GER'.
LI NKAGE SECTI ON.
01 CTX SQL- CONTEXT.
PRCCEDURE DI VI SI ON USI NG CTX.
EXEC SQL CONTEXT USE : CTX END- EXEC.
EXEC SQ. CONNECT : USERI D END- EXEC.
Another file contains SUBPGM2:
PROGRAM | D. SUBPGMR.
DATA DI VI SI ON.
LI NKAGE SECTI ON.
01 CTX SQL- CONTEXT.
PROCEDURE DI VI SI ON USI NG CTX.

EXEC SQL CONTEXT USE : CTX END- EXEC.
EXEC SELECT

ORACLE 12-11

Chapter 12
Multithreaded Example

12.5 Multithreaded Example

ORACLE

This multi-file application demonstrates one way to use the SQLLIB runtime context
area (SQL-CONTEXT) to support multiple threads. Precompile with THREADS=YES.

The main program, orathrd2, declares an array of S9(9) COMP variables to be used to
hold the sqllib contexts. It enables threading through the

EXEC SQL ENABLE THREADS END- EXEC.

statement and then calls the subprogram oracon (in file oracon. pco) to allocate the
threads. oracon also establishes a connection for each allocated context.

Next, ORTHRD2 passes the context to one of the threaded entry points, THREAD-1 or
THREAD-2. THREAD-1 simply selects and displays the salary for an employee.
THREAD-2 selects and updates the salary for that employee. Since THREAD-2 issues
a commit, the update is visible to threads that do the SELECT after it has committed.
(But not those which run concurrently with the update.) Note that the output will vary
from run to run because the timing of the update and commit is non-determinant.

It is important to remember that concurrent threads must each have their own
contexts. Contexts may be passed to and used by subsequent threads, but threads
may not use the same context concurrently. This model could be used for connection
pooling, where the maximum number of connections are created initially and passed to
threads as available, to execute user's requests.

An array of S9(9) COMP variables is used because you cannot currently declare an
array of SQL-CONTEXT.

Note: This program was developed specifically for a Sun workstation running Solaris
and MicroFocus ServerExpress compiler and uses vendor-specific directives and
functionality.

See your platform-specific documentation for the specific COBOL statements that
support multithreading.

The main program is in file or at hr d2. pco:

$SET REENTRANT M-
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. ORATHRDZ.
ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.
VIORKI NG- STORAGE SECTI ON.
78 MAX- LOOPS VALUE 10.
01 THREAD-1D USAGE POl NTER
01 TP-1 USAGE THREAD- POl NTER OCCURS MAX- LOOPS.
01 | DEN-4 PIC 9(4).
01 LOOP- COUNTER PIC 9(2) COVP-X EXTERNAL.
01 PEMPNO PIC S9(4) COVP EXTERNAL.
01 ISAL PIC S9(4) COMP VALUE ZERO

EXEC SQL

I NCLUDE SQLCA

END- EXEC.
THREAD- LOCAL- STORAGE SECTI ON.
01 CONTEXT- AREA PIC S9(9) COMP OCCURS MAX- LOOPS.
PROCEDURE DI VI SI ON.
MAI N SECTI ON.

12-12

Chapter 12
Multithreaded Example

PERFORM | NI TI ALI SATI ON
PERFORM ORACLE- CONNECTI ONS VARYI NG LOOP- COUNTER
FROM 1 BY 1 UNTIL LOOP- COUNTER > MAX- LOOPS
PERFORM VARYI NG LOOP- COUNTER FROM 1 BY 1
UNTI L LOOP- COUNTER > MAX- LOOPS
PERFORM START- THREAD
END- PERFORM
STCP RUN.

I NI TI ALI SATI ON SECTI ON.

CALL "CBL_THREAD SELF" USI NG THREAD-|I D ON EXCEPTI ON
DI SPLAY "NO THREAD SUPPCRT IN TH' S RTS'
STOP RUN
END- CALL
| F RETURN- CCDE = 1008
DI SPLAY "CANNOT RUN THI'S TEST ON SI NGLE THREADED RTS"
STOP RUN
END- | F
DI SPLAY "MULTI - THREAD RTS"

* ENABLI NG THREADS MUST BE DONE ONCE BEFORE ANY CONTEXT USEAGE
EXEC SQL ENABLE THREADS END- EXEC.
| F SQLOODE NOT = ZERO
DI SPLAY ' ERROR ENABLI NG ORACLE THREAD SUPPORT '
' - ABORTING : ' SQLERRMC
STOP RUN
END- | F

* SET A VALUE FOR THE EMPLOYEE NUMBER. BECAUSE THI' S IS AN
* EXTERNAL VARI ABLE, A COPY OF ITS VALUE IS VISIBLE TO THE
* OTHER MODULES IN THI'S APPLI CATI ON

MOVE 7566 TO PEMPNO

EXI T SECTI ON.

* CREATE THREADS AND START W TH EI THER THREAD-1 OR THREAD- 2

START- THREAD SECTI ON.

I F LOOP- COUNTER = 2 OR LOOP- COUNTER = 5
START " THREAD-2 "
USI NG CONTEXT- AREA(LOCP- COUNTER)
| DENTI FI ED BY TP- 1(LOOP- COUNTER)
STATUS IS | DEN-4
ON EXCEPTI ON DI SPLAY " THREAD CREATE FAI LED"
END- START
IF IDEN-4 NOT = ZERO
DI SPLAY " THREAD CREATE FAI LED RETURNED " | DEN-4
END-| F
ELSE
START "THREAD-1 "
USI NG CONTEXT- AREA(LOCP- COUNTER)
| DENTI FI ED BY TP- 1(LOOP- COUNTER)
STATUS IS | DEN-4
ON EXCEPTI ON DI SPLAY " THREAD CREATE FAI LED"
END- START
IF IDEN-4 NOT = ZERO

ORACLE 12-13

Chapter 12
Multithreaded Example

DI SPLAY "THREAD CREATE FAI LED RETURNED " | DEN-4
END-| F
END- | F.

START- THREAD- END.
EXI T SECTI ON.

ORACLE- CONNECTI ONS SECTI ON.

CALL "(ORACON' US| NG CONTEXT- AREA(LOOP- COUNTER) .
ORACLE- CONNECTI ONS- END.
EXI T SECTI ON

Here is the file t hread- 1. pco:

* This is Thread 1. It selects and displays the data for
* the enployee. The context area upon which a connection

* has been established is passed to the thread through the
* linkage section. In a mlti-file application, you

* can pass the context through the linkage section.

* Preconpile with THREADS=YES.

*

$SET REENTRANT M-

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. THREAD- 1.

ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 PEMPNO PIC S9(4) COVP EXTERNAL.
LOCAL- STORAGE SECTI ON.
01 DEMPNO PIC Z(4) VALUE ZERO
01 PEMP- NAMEL PI'C X(15) VARYING VALUE SPACES.
01 PSAL-VALUEL PI'C S9(7) V99 COWP-3 VALUE ZERO
01 ISAL1 PIC S9(4) COW VALUE ZERO
01 DSAL- VALUE PIC +(7).99 VALUE ZERO,

EXEC SQL

I NCLUDE SQLCA
END- EXEC.

LI NKAGE SECTI ON.
01 CONTEXT- AREAL SQL- CONTEXT.

* USING THE PASSED | N CONTEXT, SELECT AND DI SPLAY THE
* DATA FCR EMPLOYEE.

PROCEDURE Di VI SI ON USI NG CONTEXT- AREAL.

MAIN SECTI ON.

EXEC SQL WHENEVER SQLERRCR GOTO SELECT- ERROR END- EXEC
EXEC SQL CONTEXT USE : CONTEXT- AREA1 END- EXEC
EXEC SQL
SELECT ENAME, SAL
INTO : PEMP-NAMEL, :PSAL-VALUEL: | SAL1
FROM EMP
VWHERE EMPNO = : PEMPNO

ORACLE 12-14

Chapter 12
Multithreaded Example

END- EXEC
I F 1 SAL1 < ZERO
MOVE ZERO TO PSAL- VALUEL
END-| F
MOVE PEMPNO TO DEMPNO
MOVE PSAL- VALUEL TO DSAL- VALUE
DI SPLAY "FOR EMP ", DEMPNO, " NAME ",
PEMP- NAMEL- ARR(1: PEMP- NAMEL- LEN) ,
" THE CURRENT SALARY IS ", DSAL-VALUE
EXIT PROGRAM

SELECT- ERROR SECTI ON.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC
DI SPLAY "HI'T AN ORACLE ERROR SELECTI NG EMPNO 7566"

DI SPLAY "SQLCCDE = ", SQLCODE

DI SPLAY "ERROR TEXT ", SQLERRMC(1: SQLERRM.)
GOBACK

EXI T SECTI ON.

Here is the file t hread- 2. pco:

* This is Thread 2. The programwill select, then update,

* increment, and then commit the salary. It uses the passed-in

* context upon which a connection has previously been established.
* Preconpile with THREADS=YES.

*

$SET REENTRANT M-
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. THREAD- 2.
ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 PEMPNO PIC S9(4) COWP EXTERNAL.
LOCAL- STORAGE SECTI ON.
01 DEMPNO PIC Z(4) VALUE ZERO
01 PEMP- NAME2 PI'C X(15) VARYING VALUE SPACES.
01 PSAL-VALUE2 PI'C S9(7) V99 COWP-3 VALUE 100.
01 I SAL2 PIC S9(4) COW VALUE ZERO
01 DSAL- VALUE PIC +(7).99 VALUE ZERO,

EXEC SQL

I NCLUDE SQLCA
END- EXEC.

LI NKAGE SECTI ON.
01 CONTEXT- AREA2 SQL- CONTEXT.

* USING THE PASSED | N CONTEXT AREA, FIRST SELECT TO GET INITIAL
* VALUES, | NCREMENT THE SALARY, UPDATE AND COW T.

PROCEDURE Di VI SI ON USI NG CONTEXT- AREA2.
MAIN SECTI ON.

EXEC SQL WHENEVER SQLERRCR GOTO UPDATE- ERRCR END- EXEC
EXEC SQL CONTEXT USE : CONTEXT- AREA2 END- EXEC

ORACLE 12-15

ORACLE

EXEC SQL
SELECT ENAME, SAL
INTO : PEMP-NAVE2, :PSAL- VALUE2: | SAL2
FROM EMP
WHERE EMPNO = : PEMPNO

END- EXEC
ADD 10 TO PSAL- VALUE2
EXEC SQL

UPDATE ENP

SET SAL = :PSAL- VALUE2
WHERE EMPNO = : PEVPNO

END- EXEC
MOVE PENPNO TO DEMPNO
MOVE PSAL- VALUE2 TO DSAL- VALUE
DI SPLAY "FOR ENP ", DEMPNO, " NAME ",

PENP- NAVE2- ARR(1: PEMP- NAVE2- LEN) ,

" THE UPDATED SALARY IS ", DSAL-VALUE

* THS COMT IS REQU RED, OTHERW SE THE DATABASE
* WLL BLOCK SINCE THE UPDATES ARE TO THE SAVE ROW

EXEC SQL COW T WORK END- EXEC
EXI T PROGRAM

UPDATE- ERROR SECTI ON.

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC
DI SPLAY "HI'T AN ORACLE ERROR UPDATI NG EMPNO 7566"

DI SPLAY "SQLCCDE = ", SQLCODE

DI SPLAY "ERROR TEXT ", SQLERRMC(1: SQLERRM.)
GOBACK

EXI T SECTI ON.

The file oracon. pco follows:

This program al | ocates SQLLIB runtime contexts, stores
a pointer to the context in the variable which was

and establishes a connection on the allocated context.

*
*
*
*
*
*
* vendor-specific directives and functionality. Preconpile
* with THREADS=YES.
*
$SET REENTRANT MF

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. ORACON.

ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

01 LOGON- STRI NG PI C X(40) VALUE SPACES.

EXEC SQL
| NCLUDE SQLCA
END- EXEC.
LI NKAGE SECTI ON.
01 CONTEXT SQL- CONTEXT.

PROCEDURE DI VI SI ON US| NG CONTEXT.
MAIN SECTI ON.

Chapter 12
Multithreaded Example

passed in fromthe nain programthrough the |inkage section,

This programis witten for Merant M croFocus COBOL and uses

12-16

ORACLE

Chapter 12
Multithreaded Example

ORACLE- CONNECTI ON SECTI ON.

NOVE " SCOTT/ TI GER' TO LOGON- STRI NG
EXEC SQL CONTEXT ALLOCATE : CONTEXT END- EXEC
| F SQLOODE NOT = ZERO

DI SPLAY ' ERROR ALLOCATI NG CONTEXT

"- ABORTING : ' SQLERRMC

GOBACK
ELSE

DI SPLAY ' CONTEXT ALLOCATED
END- | F

EXEC SQL CONTEXT USE : CONTEXT END- EXEC
EXEC SQL CONMMECT : LOGON-STRING END- EXEC
| F SQLOODE NOT = ZERO
DI SPLAY ' ERROR CONNECTI NG SECOND THREAD TO THE DATABASE '
'- ABORT TEST : ' SQLERRMC
GOBACK
ELSE
DI SPLAY ' CONNECTI ON ESTABLI SHED
END- | F
EXI T SECTI ON.

12-17

Large Objects (LOBS)

This chapter describes the support provided by embedded SQL statements for the
LOB (Large Object) datatypes. The four types of LOBs are introduced and compared
to the older LONG and LONG RAW datatypes.

The embedded SQL interface in Pro*xCOBOL is shown to provide similar functionality
to that of the PL/SQL language.

The LOB statements and their options and host variables are presented.
Last, an example of Pro*COBOL programming using the LOB interface.
The main sections are:

e Using LOBs

 How to Use LOBs

* Rules for LOB Statements

* LOB Statements

 LOB Sample Program: LOBDEMO1.PCO

13.1 Using LOBs

LOBs (large objects) are database types that are used to store large amounts of data
(maximum size is 4 Gigabytes) such as ASCII text, text in National Characters, files in
various graphics formats, and sound wave forms.

13.1.1 Internal LOBs

Internal LOBs (BLOBs, CLOBs, NCLOBS) are stored in database table spaces and
have transactional support of the database server. (COMMITT, ROLLBACK, and so
forth work with them.)

BLOBs (Binary LOBS) store unstructured binary (also called "raw") data, such as video
clips.

CLOBs (Character LOBSs) store large blocks of character data from the database
character set.

NCLOBs (National Character LOBSs) store large blocks of character data from the
national character set.

13.1.2 External LOBs

ORACLE

External LOBs are operating system files outside the database tablespaces, that have
no transactional support from the database server.

BFILEs (Binary Files) store data in external binary files. A BFILE can be in GIF, JPEG,
MPEG, MPEG2, text, or other formats.

13-1

Chapter 13
Using LOBs

13.1.3 Security for BFILES

The DIRECTORY object is used to access and use BFILEs. The DIRECTORY is a
logical alias name (stored in the server) for the actual physical directory in the server
file system containing the file. Users are permitted to access the file only if granted
access privilege on the DIRECTORY object.

Two kinds of SQL statements can be used with BFILES:

e The DDL (data definition language) SQL statements CREATE, REPLACE,
ALTER, and DROP.

e The DML (Data Management Language) SQL statements are used to GRANT and
REVOKE the READ system and object privileges on DIRECTORY objects.

A sample CREATE DIRECTORY directive is:
EXEC SQL CREATE OR REPLACE DI RECTORY "Mydir" AS '/usr/home/ nydir' END EXEC.

Other users or roles can read the directory only if you grant them permission with a
DML (Data Manipulation Language) statement, such as GRANT. For example, to allow
user scott to read BFILES in directory / usr/ home/ nydi r :

EXEC SQL GRANT READ ON DI RECTORY "Mydir" TO scott END-EXEC.

Up to 10 BFILES can be opened simultaneously in one session. This default value can
be changed by setting the SESSION_MAX_OPEN_FILES parameter.

See Oracle Database Advanced Application Developer's Guide for more details on
DIRECTORY objects and BFILE security, and the the GRANT command.

13.1.4 LOBs Compared with LONG and LONG RAW

LOBs are different from the older LONG and LONG RAW datatypes in many ways.

* The maximum size of a LOB is 4 Gigabytes versus 2 Gigabytes for LONG and
LONG RAW.

* You can use random as well as sequential access methods on LOBSs; you can only
use sequential access methods on LONG and LONG RAW.

» LOBs (except NCLOBSs) can be attributes of an object type that you define.

e Tables can have multiple LOB columns, but can have only one LONG or LONG
RAW column.

Migration of existing LONG and LONG Raw attributes to LOBs is recommended by
Oracle. Oracle plans to end support of LONG and LONG RAW in future releases. See
Also: Oracle Database Upgrade Guide for more information on migration, and Oracle
Database SecureFiles and Large Objects Developer's Guide for more information on
LOBs.

13.1.5 LOB Locators

A LOB locator points to the actual LOB contents. The locator is returned when you
retrieve the LOB, not the LOB's contents. LOB locators cannot be saved in one
transaction or session and used again in a later transaction or session.

ORACLE 13-2

Chapter 13
How to Use LOBs

13.1.6 Temporary LOBs

You can create temporary LOBs to assist your use of database LOBs. Temporary
LOBs are like local variables and are not associated with any table. They are only
accessible by their creator using their locators and are deleted when a session ends.

There is no support for temporary BFILES. Temporary LOBs are only permitted to be
input variables (IN values) in the WHERE clause of an INSERT statement, in the SET
clause of an UPDATE, or in the WHERE clause of a DELETE statement. Temporary
LOBs have no transactional support from the database server, which means that you
cannot do a COMMIT or ROLLBACK on them.

Temporary LOB locators can span transactions. They are deleted when the server
abnormally terminates, and when an error is returned from a database SQL operation.

13.1.7 LOB Buffering Subsystem

The LBS (LOB Buffering Subsystem) is an area of user memory provided for use as a
buffer for one or more LOBs in the client's address space.

Buffering has these advantages, especially for applications on a client that does many
small reads and writes to specific regions of the LOB:

* The LBS reduces round-trips to the server because you fill the buffer with multiple
reads/writes to the LOBs, and then write to the server when a FLUSH directive is
executed.

» Buffering also reduces the total number of LOB updates on the server. This
creates better LOB performance and saves disk space.

Oracle provides a simple buffer subsystem, not a cache. Oracle does not guarantee
that the contents of a buffer are always synchronized with the server LOB value. Use
the FLUSH statement to actually write updates in the server LOB.

Buffered reads/writes of a LOB are performed through its locator. A locator enabled for
buffering provides a consistent read version of the LOB until you perform a write
through that locator.

After being used for a buffered WRITE, a locator becomes an updated locator and
provides access to the latest LOB version as seen through the buffering subsystem.
All further buffered WRITESs to the LOB can be done only through this updated locator.
Transactions involving buffered LOB operations cannot migrate across user sessions.

The LBS is managed by the user, who is responsible for updating server LOB values
by using FLUSH statements to update them. The LBS is single-user and single-
threaded. Use ROLLBACK and SAVEPOINT actions to guarantee correctness in the
server LOBs. Transactional support for buffered LOB operations is not guaranteed by
Oracle. To ensure transactional semantics for buffered LOB updates, you must
maintain logical savepoints to perform a rollback in the event of an error.

13.2 How to Use LOBSs

There are two methods available to access LOBs in Pro*COBOL.:

e The DBMS_LOB package inside PL/SQL blocks.
 Embedded SQL statements.

ORACLE 13-3

Chapter 13
How to Use LOBs

The imbedded SQL statements are designed to give users a functional equivalent to

the PL/SQL interface.

The following table compares LOB access in PL/SQL and embedded SQL statements
in Pro*xCOBOL. Dashes indicate missing functionality.

Table 13-1 LOB Access Methods

PL/SQL1 Pro*COBOL Embedded SQL
COMPARE() -

INSTR() -

SUBSTR() -

APPEND() APPEND

= ASSIGN

CLOSE() CLOSE

COPY() COPY
CREATETEMPORARY() CREATE TEMPORARY
- DISABLE BUFFERING
- ENABLE BUFFERING
ERASE() ERASE
GETCHUNKSIZE() DESCRIBE

ISOPEN() DESCRIBE
FILECLOSE() CLOSE
FILECLOSEALL() FILE CLOSE ALL
FILEEXISTS() DESCRIBE
FILEGETNAME() DESCRIBE
FILEISOPEN() DESCRIBE
FILEOPEN() OPEN

BFILENAME() FILE SET?2

- FLUSH BUFFER
FREETEMPORARY() FREE TEMPORARY
GETLENGTH() DESCRIBE
ISTEMPORARY() DESCRIBE
LOADFROMFILE() LOAD FROM FILE
OPEN() OPEN

READ() READ

TRIM() TRIM

WRITE() WRITE
WRITEAPPEND() WRITE

1 From dbmslob.sql. All routines are prefixed with 'DBMS_LOB.' except BFILENAME.
2 The BFILENAME() built in SQL function may also be used.

ORACLE

13-4

Chapter 13
How to Use LOBs

Note:

You must explicitly lock the row before using any of the new statements that
modify or change a LOB in any way. Operations that can modify a LOB value
are APPEND, COPY, ERASE, LOAD FROM FILE, TRIM, and WRITE.

13.2.1 LOB Locators in Your Application

To use LOB locators in your Pro*COBOL application use these pseudo-types:

- SQL-BLOB
- SQL-CLOB
- SQL-NCLOB
- SQL-BFILE

For example, to declare an NCLOB variable called MY-NCLOB:
01 MY-NCLOB SQL- NCLOB.

13.2.2 Initializing a LOB

This section discusses how to initialize different varieties of LOBs.

13.2.2.1 Internal LOBs

To initialize a BLOB to empty, use the EMPTY_BLOB() function or use the ALLOCATE
SQL statement. For CLOBs and NCLOBs, use the EMPTY_CLOB() function. See
Oracle Database SQL Language Reference for more about EMPTY_BLOB() and
EMPTY_CLOB(). These functions are permitted only in the VALUES clause of an
INSERT statement or as the source of the SET clause in an UPDATE statement.

For example:

EXEC SQL I NSERT INTO | ob_table (a_blob, a_clob)
VALUES (EMPTY_BLOB(), EMPTY_CLOB()) END-EXEC.

The ALLOCATE statement allocates a LOB locator and initializes it to empty, so, the
following code is equivalent to the previous example:

01 A-BLOB SQL- BLOB.
01 A-CLOB SQL- CLCB.

EXEC SQL ALLOCATE : A- BLOB END- EXEC.
EXEC SQL ALLOCATE : A-CLOB END- EXEC.

EXEC SQL INSERT INTO | ob_table (a_blob, a_clob)
VALUES (:A-BLOB, : A CLOB) END EXEC.

13.2.2.2 External LOBs

Use the LOB FILE SET statement to initialize the DIRECTORY alias of the BFILE and
FILENAME this way:

ORACLE 13-5

Chapter 13
Rules for LOB Statements

01 ALIAS PIC X(14) VARYING

01 FI LENAME PIC X(14) VARYING

01 A-BFILE SQL- BFI LE.

MOVE "l ob_dir" TO ALI AS-ARR
MOVE 7 TO ALI AS- LEN.
MOVE "i mage. gi " TO FI LENAVE- ARR
MOVE 9 TO FI LENAVE- LEN. .
EXEC SQL ALLOCATE : A- BFI LE END- EXEC.
EXEC SQL LOB FILE SET : A BFILE
DI RECTORY = :ALIAS, FILENAME = : FI LENAVE END- EXEC.
EXEC SQL I NSERT INTO file_ table (a_bfile) VALUES (:A-BFILE) END-EXEC.

Refer to Oracle Database Advanced Application Developer's Guide for a complete
description of DIRECTORY object naming conventions and DIRECTORY object
privileges.

Alternatively, you can use the BFILENAME('directory’, filename') function in an
INSERT or UPDATE statement to initialize a BFILE column or attribute for a particular
row, and give the name of the actual physical directory and filename:

EXEC SQL INSERT INTO file_table (a_bfile)
VALUES (BFILENAVE('lob_dir', "image.gif'))
RETURNI NG a_bfile I NTO : A- BFI LE END- EXEC.

¢ Note:

BFILENAME() does not check permissions on the directory or filename, or
whether the physical directory actually exists. Subsequent file accesses that
use the BFILE locator will do those checks and return an error if the file is
inaccessible.

13.2.2.3 Temporary LOBs

A temporary LOB is initialized to empty when it is first created using the embedded
SQL LOB CREATE TEMPORARY statement. The EMPTY_BLOB() and
EMPTY_CLOB() functions cannot be used with temporary LOBs.

13.2.2.4 Freeing LOBs

The FREE statement is used to free the memory used by an ALLOCATE statement:
EXEC SQL FREE : A-BLOB END- EXEC.

13.3 Rules for LOB Statements

Here are the rules for using LOB statements:

13.3.1 For All LOB Statements

These general restrictions and limitations apply when manipulating LOBs with the SQL
LOB statements:

ORACLE 13-6

Chapter 13
Rules for LOB Statements

The FOR clause is not allowed in embedded SQL LOB statements. Only one LOB
locator can be used in those statement. However, the ALLOCATE and FREE
statements do allow FOR clauses.

Distributed LOBs are not supported. Although you may use the AT database
clause in any of the new embedded SQL LOB statements, you cannot mix LOB
locators that were created or allocated using different database connections in the
same SQL LOB statement.

13.3.2 For the LOB Buffering Subsystem

For the LBS, these rules must be followed:

Errors in read or write accesses are reported at the next access to the server.
Therefore, error recovery has to be coded by you, the user.

When updating a LOB with buffered writes, do not update the same LOB with a
method that bypasses the LOB Buffering Subsystem.

An updated LOB locator enabled for buffering can be passed as an IN parameter
to a PL/SQL procedure, but not as an IN OUT or OUT parameter. An error is
returned. An error is also returned when there is an attempt to return an updated
locator.

An ASSIGN of an updated locator enabled for buffering to another locator is not
allowed.

You can append to the LOB value with buffered writes, but the starting offset must
be one character after the end of the LOB. The LBS does not allow APPEND
statements resulting in zero-byte fillers or spaces in LOBs in the database server.

The character sets of the host locator bind variable and the database server CLOB
must be the same.

Only ASSIGN, READ and WRITE statements work with a locator enabled for
buffering.

The following statements result in errors when used with a locator enabled for
buffering: APPEND, COPY, ERASE, DESCRIBE (LENGTH only), SELECT, and
TRIM. Errors are also returned when you use these statements with a locator that
is not enabled for buffering, if the LOB pointed to by the locator is being accessed
in buffered mode by another locator.

Note:

The FLUSH statement must be used on a LOB enabled by the LOB Buffering
Subsystem before

Committing the transaction.
Migrating from the current transaction to another.

Disabling buffer operations on a LOB.

13.3.3 For Host Variables

Use the following rules and notes for the LOB statements:

ORACLE

13-7

Chapter 13
LOB Statements

* src and dst can refer to either internal or external LOB locators, but file refers only
to external locators.

* Numeric host values (ant, src_offset, dst_offset, and so forth.) are declared as
a 4-byte integer variable, PIC S9(9) COMP. The values are restricted between 0
and 4 Gigabytes.

e The concept of NULL is part of a LOB locator. There is no need for indicator
variables in the LOB statements. NULL cannot be used with numeric value
variables such as ant, src_offset, and so forth and result in an error.

* The offset values src_of fset and dst _of f set have default values 1.

Note:

BLOB, CLOB, and NCLOB variables need to respect the alignment
requirements of your platform. Refer to you platform documentation on
alignment restrictions of your particular platform.

13.4 LOB Statements

The statements are presented alphabetically. In all the statements where it appears,
database refers to a database connection

13.4.1 APPEND

ORACLE

Purpose

The APPEND statement appends a LOB value at the end of another LOB.

Syntax
EXEC SQL [AT [:]database] LOB APPEND :src TO :dst END EXEC.

Host Variables

src (IN)
An internal LOB locator uniquely referencing the source LOB.

dsc (IN OUT)
An internal LOB locator uniquely referencing the destination LOB.

Usage Notes

The data is copied from the source LOB to the end of the destination LOB, extending
the destination LOB up to a maximum of 4 Gigabytes. If the LOB is extended beyond 4
Gigabytes, an error will occur.

The source and destination LOBs must already exist and the destination LOB must be
initialized.

Both the source and destination LOBs must be of the same internal LOB type. It is an
error to have enabled LOB buffering for either type of locator.

13-8

Chapter 13
LOB Statements

13.4.2 ASSIGN

Purpose

Assigns a LOB or BFILE locator to another.

Syntax
EXEC SQL [AT [:]database] LOB ASSIGN :src to :dst END EXEC.

Host Variables

src (IN)
LOB or BFILE locator source copied from.

dsc (IN OUT)
LOB or BFILE locator copied to.

Usage Notes

After the assignment, both locators refer to the same LOB value. The destination LOB
locator must be a valid initialized (allocated) locator.

For internal LOBS, the source locator's LOB value is copied to the destination locator's
LOB value only when the destination locator is stored in the table. For Pro*COBOL,
issuing a FLUSH of an object containing the destination locator will copy the LOB
value.

An error is returned when a BFILE locator is assigned to an internal LOB locator and
vice-versa. It is also an error if the src and dst LOBs are not of the same type.

If the source locator is for an internal LOB that was enabled for buffering, and the
source locator has been used to modify the LOB value through the LOB Buffering
Subsystem, and the buffers have not been flushed since the WRITE, then the source
locator cannot be assigned to the destination locator. This is because only one locator
for each LOB can modify the LOB value through the LOB Buffering Subsystem.

13.4.3 CLOSE
Purpose
Close an open LOB or BFILE.

Syntax
EXEC SQL [AT [:]database] LOB CLOSE :src END EXEC.

Host Variables

src (IN OUT)
The locator of the LOB or BFILE to be closed.

ORACLE 13-9

Chapter 13
LOB Statements

Usage Notes

Itis an error to close the same LOB twice either with different locators or with the
same locator. For external LOBs, no error is produced if the BFILE exists but has not
been opened.

It is an error to COMMIT a transaction before closing all previously opened LOBs. At
transaction ROLLBACK time, all LOBs that are still open will be discarded without first
being closed.

13.4.4 COPY

ORACLE

Purpose
Copy all or part of a LOB value into a second LOB.

Syntax

EXEC SQL [AT [:]database] LOB COPY :amt FROM:src [AT :src_offset]
TO :dst [AT :dst_offset] END EXEC

Host Variables

amt (IN)

The maximum number of bytes for BLOBS, or characters for CLOBs and NCLOBs, to
copy.

src (IN)

The locator of the source LOB.

src_offset (IN)

This is the number of characters for CLOB or NCLOB, and the number of bytes for a
BLOB, starting from 1 at the beginning of the LOB.

dst (IN)

The locator of the destination LOB.

dst_offset (IN)

The destination offset. Same rules as for src_offset.

Usage Notes

If the data already exists at the destination's offset and beyond, it is overwritten with
the source data. If the destination's offset is beyond the end of the current data, zero-
byte fillers (BLOBS) or spaces (CLOBs) are written into the destination LOB from the
end of the current data to the beginning of the newly written data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is a runtime error to extend this
LOB beyond 4 Gigabytes.

Itis also an error to try to copy from a LOB that is not initialized.

13-10

Chapter 13
LOB Statements

Both the source and destination LOBs must be of the same type. LOB buffering must
not be enabled for either locator.

To make a temporary LOB permanent, the COPY statement must be used to explicitly
COPY the temporary LOB into a permanent one.The ant variable indicates the
maximum amount to copy. If the end of the source LOB is reached before the
specified amount is copied, the operation terminates without an error.

13.4.5 CREATE TEMPORARY

Purpose

Creates a temporary LOB.

Syntax
EXEC SQL [AT [:]database] LOB CREATE TEMPORARY :src END- EXEC.

Host Variables

src (IN OUT)
Before execution, when IN, src is a LOB locator previously allocated.

After execution, when OUT, src is a LOB locator that will point to a new empty
temporary LOB.

Usage Notes

After successful execution, the locator points to a newly created temporary LOB that
resides on the database server independent of a table. The temporary LOB is empty
and has zero length.

At the end of a session, all temporary LOBs are freed. Reads and Writes to temporary
LOBs never go through the buffer cache.

13.4.6 DISABLE BUFFERING

ORACLE

Purpose

Disables LOB buffering for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB DI SABLE BUFFERI NG :src END-EXEC.

Host Variables

src (IN OUT)

An internal LOB locator.

Usage Notes

This statement does not support BFILEs. Subsequent reads or writes will not be done
through the LBS.

13-11

Chapter 13
LOB Statements

Note: Use a FLUSH BUFFER command to make changes permanent, since the
DISABLE BUFFERING statement does not implicitly flush the changes made in the
LOB Buffering Subsystem.

13.4.7 ENABLE BUFFERING

Purpose

Enables LOB buffering for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB ENABLE BUFFERI NG :src END- EXEC.

Host Variables

src (IN OUT)

An internal LOB locator.

Usage Notes

This statement does not support BFILEs. Subsequent reads and writes are done
through the LBS.

13.4.8 ERASE

ORACLE

Purpose
Erases a given amount of LOB data starting from a given offset.

Syntax

EXEC SQL [AT [:]database] LOB ERASE :ant
FROM :src [AT :src_offset] END EXEC.

Host Variables

amt (IN OUT)

The input is the number of bytes or characters to erase. The returned output is the
actual number erased.

src (IN OUT)

An internal LOB locator.

src_offset (IN)

The offset from the beginning of the LOB, starting from 1.

Usage Notes
This statement does not support BFILESs.

After execution, amt returns the actual number of characters/bytes that were erased.
The actual number and requested number will differ if the end of the LOB value is

13-12

Chapter 13
LOB Statements

reached before erasing the requested number of characters/bytes. If the LOB is
empty, amt will indicate that O characters/bytes were erased.

For BLOBs, erasing means zero-byte fillers overwrite the existing LOB value. For
CLOBs, erasing means that spaces overwrite the existing LOB value.

13.4.9 FILE CLOSE ALL

Purpose

Closes all BFILES opened in the current session.

Syntax
EXEC SQL [AT [:]database] LOB FILE CLOSE ALL END- EXEC.

Usage Notes

If there are any open files in the session whose closure has not been handled
properly, you can use the FILE CLOSE ALL statement to close all files opened in the
session and resume file operations from the beginning.

13.4.10 FILE SET

ORACLE

Purpose

Sets DIRECTORY alias and FILENAME in a BFILE locator.

Syntax

EXEC SQL [AT [:]database] LOB FILE SET :file
DI RECTORY = :alias, FILENAME = :filename END-EXEC.

Host Variables

file (IN OUT)
BFILE locator where the DIRECTORY alias and FILENAME is set.

alias (IN)
DIRECTORY alias name to set.

filename (IN)

The FILENAME to set.

Usage Notes
The given BFILE locator must be first ALLOCATEGd prior to its use in this statement.
Both the DIRECTORY alias name and FILENAME must be provided.

The maximum length of the DIRECTORY alias is 128 bytes. The maximum length of
the FILENAME is 255 bytes.

The only external datatypes supported for use with the DIRECTORY alias hame and
FILENAME attributes are VARCHAR, VARCHAR2 and CHARF-.

13-13

Chapter 13
LOB Statements

It is an error to use this statement with anything but an external LOB locator.

13.4.11 FLUSH BUFFER

Purpose
Writes this LOB's buffers to the database server.

Syntax
EXEC SQL [AT [:]database] LOB FLUSH BUFFER :src [FREE] END- EXEC.

Host Variables

src (IN OUT)

Internal LOB locator.

Usage Notes

Writes the buffer data to the database LOB in the server from the LOB referenced by
the input locator.

LOB buffering must have already been enabled for the input LOB locator.

The FLUSH operation, by default, does not free the buffer resources for reallocation to
another buffered LOB operation. However, if you want to free the buffer explicitly, you
can include the optional FREE keyword to so indicate.

13.4.12 FREE TEMPORARY

Purpose

Free the temporary space for the LOB locator.

Syntax
EXEC SQL [AT [:]database] LOB FREE TEMPORARY :src END- EXEC.

Host Variables

src (IN OUT)

The LOB locator pointing to the temporary LOB.

Usage Notes

The input locator must point to a temporary LOB. The output locator is marked not
initialized and can be used in subsequent LOB statements.

13.4.13 LOAD FROM FILE

Purpose

Copy all or a part of a BFILE into an internal LOB.

ORACLE 13-14

Chapter 13
LOB Statements

Syntax

EXEC SQL [AT [:]database] LOB LOAD :ant
FROM FILE :file [AT :src_offset] INTO:dst [AT :dst_offset] END EXEC.

Host Variables

amt (IN)

Maximum number of bytes to be loaded.

file (IN OUT)

The source BFILE locator.

src_offset (IN)

The number of bytes offset from the beginning of the file, starting from 1.

dst (IN OUT)
The destination LOB locator which can be BLOB, CLOB, be NCLOB.

dst_offset (IN)

The number of bytes (for BLOBS) or characters (CLOBs and NCLOBs) from the
beginning of the destination LOB where writing will begin. It starts at 1.

Usage Notes

The data is copied from the source BFILE to the destination internal LOB. No
character set conversions are performed when copying the BFILE data to a CLOB or
NCLOB. Therefore, the BFILE data must already be in the same character set as the
CLOB or NCLOB in the database.

The source and destination LOBs must already exist. If the data already exists at the
destination's start position, it is overwritten with the source data. If the destination's
start position is beyond the end of the current data, zero-byte fillers (BLOBS) or spaces
(CLOBs and NCLOBSs) are written into the destination LOB from the end of the data to
the beginning of the newly written data from the source.

The destination LOB is extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is an error to extend this LOB
beyond 4 Gigabytes.

Itis also an error to copy from a BFILE that is not initialized.

The amount parameter indicates the maximum amount to load. If the end of the source
BFILE is reached before the specified amount is loaded, the operation terminates
without error.

13.4.14 OPEN

Purpose

Open a LOB or BFILE for read or read/write access.

ORACLE 13-15

Chapter 13
LOB Statements

Syntax

EXEC SQL [AT [:]database] LOB OPEN :src
[READ ONLY | READ WRITE | END- EXEC.

Host Variables

src (IN OUT)
LOB locator of the LOB or BFILE.

Usage Notes
The default mode in which a LOB or BFILE can be Opened is for READ ONLY access.

For internal LOBs, being OPEN is associated with the LOB, not with the locator.
Assigning an already Opened locator to another locator does not count as OPENing a
new LOB. Instead, both locators refer to the same LOB. For BFILEs, being OPEN is
associated with the locator.

Only 32 LOBs can be OPEN at any one time. An error will be returned when the 33rd
LOB is Opened.

There is no support for writable BFILEs. Therefore, when you OPEN a BFILE in READ
WRITE mode, an error is returned.

It is also an error to open a LOB in READ ONLY mode and then attempt to WRITE to
the LOB.

13.4.15 READ

ORACLE

Purpose

Reads all or part of a LOB or BFILE into a buffer.

Syntax

EXEC SQL [AT [:]database] LOB READ :anmt FROM:src [AT :src_offset]
INTO : buffer [WTH LENGTH : bufl en] END EXEC.

Host Variables

amt (IN OUT)

The input is the number of characters or bytes to be read. The output is the actual
number of characters or bytes that were read.

If the amount of bytes to be read is larger than the buffer length it is assumed that the
LOB is being READ in a polling mode. On input if this value is 0, then the data will be
read in a polling mode from the input offset until the end of the LOB.

The number of bytes or characters actually read is returned in ant . If the data is read
in pieces, ant will always contain the length of the last piece read.

When the end of a LOB is reached an ORA-1403: no data found error will be issued.

When reading in a polling mode, the application must invoke the LOB READ
repeatedly to read more pieces of the LOB until no more data is left. Control the use of

13-16

ORACLE

Chapter 13
LOB Statements

the polling mode with the NOT FOUND condition in a WHENEVER directive to catch
the ORA-1403 error.

src (IN)

The LOB or BFILE locator.

src_offset (IN)

This is the absolute offset from the beginning of the LOB value from which to start
reading. For character LOBs it is the number of characters from the beginning of the
LOB. For binary LOBs or BFILEs it is the number of bytes. The first position is 1.

buffer (IN OUT)

A buffer into which the LOB data will be read. The external datatype of the buffer is
restricted to only a few types depending on the type of the source LOB. The maximum
length of the buffer depends on the external datatype being used to store the LOB
value. The following table summarizes the legal external datatypes and their
corresponding maximum lengths categorized by source LOB type:

Table 13-2 Source LOB and Precompiler Datatypes
|

External Internal LOB Precompiler Precompiler PL/SQL PL/ISQL
LoB? External Datatype = Maximum Datatype Maximum
Length 2 Length
BLOB RAW 65535 RAW 32767
BFILE VARRAW 65533
LONG RAW 2147483647
LONG VARRAW 2147483643
- CLOB VARCHAR2 65535 VARCHAR2 32767
VARCHAR 65533
LONG VARCHAR 2147483643
- NCLOB NVARCHAR2 4000 NVARCHAR2 4000

1 Any of the external datatypes shown can be used with BFILES.
2 Lengths are measured in bytes, not characters.

buflen (IN)

Specifies the length of the given buffer when it cannot be determined otherwise.

Usage Notes

A BFILE must already exist on the database server and must have been opened using
the input locator. The database must have permission to read the file and the user
must have read permission on the directory.

It is an error to try to read from an un-initialized LOB or BFILE.
The length of the buffer is determined this way:

e From bufl en, when the WITH LENGTH clause is present.

13-17

Chapter 13
LOB Statements

* Inthe absence of the WITH LENGTH clause, the length is determined by treating
the buffer host variable in OUT mode according to the rules in “Handling Character
Data”.

Related Topics

» Handling Character Data

13.4.16 TRIM

Purpose

Truncates the LOB value.

Syntax
EXEC SQL [AT [:]database] LOB TRIM:src TO :new en END- EXEC.

Host Variables

src (IN OUT)
LOB locator for internal LOB.

newlen (IN)

The new length of the LOB value.

Usage Notes

This statement is not for BFILES. The new length cannot be greater than the current
length, or an error is returned.

13.4.17 WRITE

ORACLE

Purpose

Writes the contents of a buffer to a LOB.

Syntax

EXEC SQL [AT [:]database] LOB WRITE [APPEND] [FIRST | NEXT | LAST | ONE]
camt FROM :buffer [WTH LENGTH : bufl en]
INTO :dst [AT :dst_offset] ENDEXEC.

Host Variables

amt (IN OUT)
The input is the number of characters or bytes to be written.
The output is the actual number of characters or bytes that is written.

When writing using a polling method, ant will return the cumulative total length written
for the execution of the WRITE statement after a WRITE LAST is executed. If the
WRITE statement is interrupted, ant will be undefined.

13-18

Chapter 13
LOB Statements

buffer (IN)
A buffer from which the LOB data is written. See “READ” for the lengths of datatypes.

dst (IN OUT)
The LOB locator.

dst_offset (IN)

The offset from the beginning of the LOB (counting from 1), in characters for CLOBs
and NCLOBs, in bytes for BLOBSs.

buflen (IN)

The buffer length when it cannot be calculated in any other way.

Usage Notes

If LOB data already exists, it is overwritten with the data stored in the buffer. If the
offset specified is beyond the end of the data currently in the LOB, zero-byte fillers or
spaces are inserted into the LOB.

Specifying the keyword APPEND in the WRITE statement causes the data to
automatically be written to the end of the LOB. When APPEND is specified, the
destination offset is assumed to be the end of the LOB. It is an error to specify the
destination offset when using the APPEND option in the WRITE statement.

The buffer can be written to the LOB in one piece (using the ONE orientation which is
the default) or it can be provided piece-wise using a standard polling method.

Polling is begun by using FIRST, then NEXT to write subsequent pieces. The LAST
keyword is used to write the final piece that terminates the write.

Using this piece-wise write mode, the buffer and the length can be different in each
call if the pieces are of different sizes and from different locations.

If the total amount of data passed to Oracle is less than the amount specified by the
ant parameter after doing all the writes, an error results.

The same rules apply for determining the buffer length as in the READ statement. See
“READ".

Related Topics
* READ

13.4.18 DESCRIBE

ORACLE

Purpose

This is a statement that is equivalent to several OCI| and PL/SQL statements. Use the
LOB DESCRIBE SQL statement to retrieve attributes from a LOB. The LOB
DESCRIBE statement has this format:

13-19

Chapter 13
LOB Statements

Syntax
EXEC SQL [AT [:]database] LOB DESCRIBE :src GET attributel [{, attributeN}]

INTO : hvl [[INDI CATOR] :hv_indl] [{, :hvN [[INDI CATOR] :hv_indN }]
END- EXEC.

where an attribute can be any of these choices:
CHUNKSI ZE | DI RECTORY | FILEEXI STS | FILENAME | |SOPEN | | STEMPORARY | LENGTH

Host Variables

src (IN)

The LOB locator of an internal or external LOB.

hvl ... hvN (OUT)

The host variables that receive the attribute values, in the order specified in the
attribute name list.

hv_ind1 ... hv_indN (OUT)

Optional host variables that receive the indicator NULL status in the order of the
attribute name list.

The following table describes the attributes, which LOB it is associated with, and the
COBOL types into which they should be read:

Table 13-3 LOB Attributes

LOB Attribute

Attribute Description Restrictions COBOL
Type

CHUNKSIZE

DIRECTORY

FILEEXISTS

FILENAME

ORACLE

The optimum amount (in bytes for BLOBs and characters for BLOBs, CLOBs PIC S9(9)
CLOBs/NCLOBS) of space of a given tablespace block, which and NCLOBs COMP

is used to store the LOB value. Chunk sizes are not fixed and only

the maximum possible value based on the available chunk

sizes is used for storage. If you make multiple WRITE

requests on the same page or set of pages, data is written to

the disk only when committed and is treated as a single

modification. This allows for data being written in larger chunk

sizes.

The name of the DIRECTORY alias for the BFILE. The FILE LOBs only PIC X(n)
length, n, is between 1 and 128 bytes. Use that length in the [VARYING]
picture.

Determines whether or not the BFILE exists on the server's FILE LOBs only PIC S9(9)
operating system file system. FILEEXISTS is true when it is COMP

nonzero; false when it equals O.

The name of the BFILE. The length, n, is between 1 and 255 FILE LOBs only PIC X(n)
bytes. Use that length in the picture. [VARYING]

13-20

Chapter 13
LOB Statements

Table 13-3 (Cont.) LOB Attributes

LOB Attribute Attribute Description Restrictions COBOL
Type

ISOPEN For BFILEs, if the input BFILE locator was never used inan - PIC S9(9)
OPEN statement, the BFILE is considered not to be OPENed COMP
by this locator. However, a different BFILE locator may have
OPENed the BFILE. More than one OPEN can be performed
on the same BFILE using different locators. For LOBs, if a
different locator opened the LOB, the LOB is still considered
to be OPEN by the input locator. ISOPEN is true when it is
nonzero; false when it equals 0.

ISTEMPORARY Determines whether or not the input LOB locator referstoa BLOBs, CLOBs PIC S9(9)
temporary LOB or not. ISTEMPORARY is true when it is and NCLOBs COMP
nonzero; false when it equals O. only

LENGTH Length of BLOBs and BFILEs in bytes, CLOBs and NCLOBs - PIC 9(9)
in characters. For BFILESs, the length includes EOF if it exists. COMP
Empty internal LOBs have zero length. LOBs/BFILEs that are
not initialized have undefined length.

Usage Notes
Indicator variables should be declared as PIC S9(4) COMP. After execution has
completed, SQLERRD(3) contains the number of attributes retrieved without error. If
there was an execution error, the attribute at which it occurred is one more than the
contents of SQLERRD(3).
DESCRIBE Example
Here is a simple ProxCOBOL example that extracts the DIRECTORY and FILENAME
attributes of a given BFILE:
01 A BFILE SQL- BFI LE.
01 DI RECTORY PI C X(30) VARYING
01 FILENAME PI C X(30) VARYING
01 DIND Pl C S9(4) COWP.
01 F-IND PIC S9(4) COWP.
01 FEXI STS Pl C S9(9) COWP.
01 |SOPN PIC S9(9) COWP.
Finally, select a BFILE locator from some LOB table and do the DESCRIBE:
EXEC SQL ALLOCATE : A- BFI LE END- EXEC.
EXEC SQL INSERT INTO | ob_table (a_bfile) VALUES (BFILENAVE (‘lob.dir",
"imge.gif')) END EXEC.
EXEC SQL SELECT a_bfile INTO : A-BFILE FROM | ob_t abl e WHERE ... END- EXEC.
EXEC SQL DESCRI BE : A-BFI LE GET DI RECTCRY, FILENAME, FILEEXI STS, | SOPEN
INTO : DI RECTORY: D- I ND, :FILENAME: F-1 ND, FEXI STS, |SOPN ND- EXEC.
Indicator variables are valid for use only with the DIRECTORY and FILENAME
attributes. These attributes are character strings whose values may be truncated if the
host variable buffers used to hold their values are not large enough. When truncation
occurs, the value of the indicator will be set to the original length of the attribute.
ORACLE 13-21

Chapter 13
LOB Statements

13.4.19 READ and WRITE Using the Polling Method

Here is an outline of using READ with the polling method:

Start the read polling by setting the amount to zero in the first LOB READ (or set the
amount to the size of the total data to be read). The amount is first set to zero in this
case outline which omits details:

EXEC SQL ALLOCATE : CLOB1 END- EXEC.
EXEC SQL WHENEVER NOT FOUND GOTO END- OF- CLOB END- EXEC.
EXEC SQL SELECT A CLOB INTO : CLOB1 FROM LOB_TABLE WHERE ... END- EXEC.

MOVE 0 TO AMT.
EXEC SQL LOB READ : AMI FROM : VLOB1 AT : OFFSET INTO : BUFFER END- EXEC.

READ- LOOP.
EXEC SQL LOB READ : AMI FROM : CLOB1 | NTO BUFFER $END- EXEC.
GO TO READ- LOCP.

END- OF- CLCB.
EXEC SQL WHENEVER NOT FOUND CONTI NUE END- EXEC.

EXEC SQL FREE : CLOB1 END- EXEC.

The following code outline writes data from a buffer into an internal CLOB. The value
of AMT (16 characters) in the initial write statement should be the length of the entire
data you will write. The buffer is 5 characters long.

If EOF is read in the initial read, then do the LOB WRITE ONE. If not, start polling with
a LOB WRITE FIRST of the buffer. Read the data, and do a LOB WRITE NEXT of the
output. No offset is needed in the LOB WRITE NEXT because data is written at the
end of the last write. After EOF is read, break out of the read loop and do a LOB
WRITE LAST. The amount returned must equal the initial amount value (16).

MOVE 16 TO AM.
PERFCRM READ- NEXT- RECCRD.
MOVE | NREC TO BUFFER- ARR.
MOVE 5 TO BUFFER- LEN
IF (END-OF-FILE = "Y")
EXEC SQL LOB WRITE ONE : AMI FROM : BUFFER | NTO CLCB1
AT : OFFSET END- EXEC.
PERFCRM DI SPLAY- CLOB
ELSE
EXEC SQL LOB WRI TE FI RST : AMI FROM : BUFFER | NTO : CLOB1
AT : OFFSET END- EXEC.
PERFCRM READ- NEXT- RECORD.
PERFORM VIRl TE- TO- CLOB
UNTIL END-OF-FILE = "Y".
MOVE | NREC TO BUFFER- ARR.
MOVE 1 TO BUFFER- LEN
EXEC SQL LOB WRI TE LAST : AMI FROM : BUFFER I NTO : CLOB1 END- EXEC.
PERFCRM DI SPLAY- CLOB.

WRI TE- TO- CLCB.
MOVE | NREC TO BUFFER- ARR.
MOVE 5 TO BUFFER- LEN
EXEC SQL LOB WRI TE NEXT : AMI FROM : BUFFER I NTO : CLOB1 END- EXEC.

ORACLE 13-22

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

PERFORM READ- NEXT RECORD.

READ- NEXT- RECORD.
MOVE SPACES TO | NREC.
READ | NFI LE NEXT RECORD
AT END
MOVE "Y' TO END- OF- FI LE.

13.5 LOB Sample Program: LOBDEMO1.PCO

The LOBDEMO1.PCO program illustrates several LOB embedded SQL statements.
The source code is in your deno directory. The application uses a table named

l'i cense_t abl e whose columns are social security number, name, and a CLOB
containing text summarizing driving offenses. Several simplified SQL operations of a
typical motor vehicle department are modeled.

The possible actions are:

¢ Add new records.

e List records by social security number.

e List information in a record, given a social security number.

e Append a new traffic violation to an existing CLOB's contents.
Here is the listing of LOBDEMO1.PCO:

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* LOB Denp 1: DW Database

*

SCENARI O

V¢ consider the exanple of a database used to store driver's
licenses. The licenses are stored as rows of a table containing
three colums: the sss nunber of a person, his/her name and the
text summary of the info found in his |license.

The sss nunber and the name are the unique social security nunber
and name of an individual. The text summary is a summary of the
information on the individual, including his driving record,

whi ch can be arbitrarily long and may contain comrents and data
regarding the person's driving ability.

APPLI CATI ON OVERVI EW
This exanpl e denonstrate how a Pro*COBCL client can handle the
new LOB datatypes. Demonstrated are the nechanisns for accessing
and storing |obs to/fromtables.
To run the deno:
1. Execute the script, |obdenpl.sql in Server Manager
2. Preconpile using Pro*COBOL
procob | obdermol
3. ConpilelLink (This step is platformspecific)

| obdenol. sql contains the following SQ statenents:

T O T T T R

R T T T T T R

connect scott/tiger;

ORACLE 13-23

ORACLE

Chapter 13

LOB Sample Program: LOBDEMO1.PCO

drop table license_table;

create table license_table(
sss char (9),

name var char2(50),
txt_summary clob);

insert into license_table
val ues(' 971517006', 'Denni s Kerni ghan',
"Wearing a Bright Orange Shirt');

insert into license_table
val ues(' 555001212', 'Eight H Nunber',
"Driving Under the Influence');

insert into license_table
val ues(' 010101010', 'P. Doughboy',
"I npersonating An Oracle Enployee');

insert into license_table
val ues(' 555377012', 'Calvin N. Hobbes',
"Driving Under the Influence');

The main program provides the menu of actions that can be
performed. The program stops when the nunber 5 (Quit) option
is entered. Depending on the input, this main programcalls
the appropriate nested programto execute the chosen action.

I T T T . I R R TR

EREEEEEEEEEEEEEEEEEEEEREREEE]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. LOBDEMOL.

DATA DI VI SI ON.
VIORKI NG- STORAGE SECTI ON,

01 USERNAMVE PIC X(5).

01 PASSVD PIC X(5).

01 CHOCE PIC 9 VALUE 0.

01 SSS PIC X(9).

01 SSSEXI STS PIC 9 VALUE ZERO
01 LICENSE-TXT SQL-CLOB .

01 NEVWCR ME PIC X(35) VARYI NG
01 SSSCOUNT PIC S9(4) CONP.

01 THE- STRING PI C X(200) VARYI NG
01 TXT-LENGTH PIC S9(9) COW.
01 CRIMES.
05 FILLER PIC X(35) VALUE "Driving Under the Influence".
05 FILLER PIC X(35) VALUE "Grand Theft Auto".
05 FILLER PIC X(35) VALUE "Driving Wthout a License".
05 FILLER PIC X(35) VALUE
"I npersonating an Oracl e Enpl oyee".
05 FILLER PIC X(35) VALUE "Wearing a Bright Orange Shirt".
01 CRIMELI ST REDEFI NES CRI MES.
05 CRIME PIC X(35) OCCURS 5 TI MES.
01 CRIME-INDEX PIC 9.

01 TXT-LEN PI C S9(9) COWP.
01 ORI ME-LEN PI C S9(9) COWP.
01 NAMEL PIC X(50) VARYI NG
01 NEVWAME PI C X(50).

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEREREEEEREEEEEEEEEEEEEEEEEEE]

EXEC SQL | NCLUDE SQLCA END- EXEC.

13-24

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

PROCEDURE DI VI SI ON.
A000- CONTRCL SECTI ON.

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREREEREEREEREEEEEEEEEEEEEEE]

* A000- CONTROL

* Overal |l control section
khkhkkkhkhhkhkhkhkhkhkhkhkhhhkhkhkhhhkhkhhhkhkhkdhhkhkdhhhkhhhhkhkhhhkhkhhkhhkhkhhkdhkhkhkhhhkhkhdhkhkkddkxx
A000- CNTRL.
EXEC SQL
WHENEVER SQLERRCR DO PERFCRM Z900- SQLERROR
END- EXEC.

PERFCRM B00O- LOGON.
PERFCRM C000- MAIN UNTIL CHO CE = 5.
PERFCRM D000- LOGOFF.
A000- EXIT.
STCP RUN.

BO0O0- LOGON SECTI ON.
khkkhkkkhkhhkhkhkhkhkhkhkhkhhhkhkhkhhkhkhkhhhkhkhdhhkhdhhhkhhkhhkhkhhhkhkhhkhhkhkhhkdhkhkhkhhhkhkhkdhkhkhddkxx
* B000- LOGON
* Log on to database.

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREEREEEEEEEREEEEREEEEEEEEEE]

B00O- LG\.
DI SPLAY IR SRR SRR RS SRR R SRR S S SRS SRR SRR SRR R R R R R R SRR EEEEEEEEEE S .
DI SPLAY ' * %l cone to the DW Dat abase *

DI SPLAY RS S S S SRS SRR R R R R EEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEESL .

MOVE "scott" TO USERNAME.
MOVE "tiger" TO PASSWD.
EXEC SQL
CONNECT : USERNAME | DENTI FI ED BY : PASSWD
END- EXEC.
DI SPLAY " ".
DI SPLAY "Connecting to |icense database account: ",
USERNAME, "/", PASSVD.
DI SPLAY " ".
B000- EXI T.
EXIT.
C000- MAI N SECTI ON.
EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREEEEREEREREEEEEEEEEEEEEEE]
* C000- MAIN
* Display the main nenu and action requests

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREEEEEEREEEEEEEEEEEEEEEEE]

C000- MN.

DI SPLAY " ".

DI SPLAY "License Options:".

DI SPLAY "1. List available records by SSS nunber".
DI SPLAY "2. Get information on a particular record".
DI SPLAY "3. Add crime to a record".

DI SPLAY "4. Insert new record to database".

DI SPLAY "5. Quit".

DI SPLAY " ".

MOVE ZERO TO CHO CE.
PERFORM Z300- ACCEPT-CHO CE UNTIL CHO CE < 6

AND CHOI CE > 0.
IF (CHOCE = 1)
PERFORM CL0O- LI ST- RECCRDS.
IF (CHOCE = 2)
PERFORM C200- GET- RECCRD.
IF (CHOICE = 3)

13-25

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

PERFORM C300- ADD- CRI ME.

| F (CHOICE = 4)
PERFORM CA00- NEW RECCRD.
C000- EXI T.

EXIT.

C100- LI ST- RECORDS SECTI ON.
R RS SR SRR SRS SR SRR E R SRR SRR SRR SRR EE SRR SRR R R R SRR EREREEEEEEEEEEEEREEEE]
* CL00- LI ST- RECORDS
* Select Social Security Nunbers from LI CENCSE_TABLE
* and display the |ist

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREREEEREREEEEREEEEEEEEEEEEEEEEEEE]

C100- LST.

EXEC SQL DECLARE SSS_CURSCR CURSCR FOR
SELECT SSS FROM LI CENSE_TABLE
END- EXEC.

EXEC SQL OPEN SSS_CURSOR END- EXEC.
DI SPLAY "Avail abl e records:".

PERFORM C110- DI SPLAY- RECORDS UNTI L SQLCODE = 1403.

EXEC SQL CLOSE SSS_CURSOR END- EXEC.
C100- EXIT.

EXIT.
C110- DI SPLAY- RECORDS SECTI ON.
EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREEREEREEEEEEEEEEEEEEEEEEE]
* C110- DI SPLAY- RECORDS
* Fetch the next record fromthe cursor and display it.
EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEEEEREREEEEEEEEEEEEEEEEEEEEEEE]
C110- DSPLY.

EXEC SQL FETCH SSS_CURSOR | NTO : SSS END- EXEC.

I F SQLCCDE = 0 THEN

Dl SPLAY SSS.

Cl110-EXIT.

EXIT.

C200- GET- RECORD SECTI ON.
IR R SRR SRR SRS R R SRS E R SRR SRR R R SRR SRR R SRR SRR EEEER SRR EEEEEEEEEEEEEEEREES
* C200- GET- RECORD
* Al locates the global clob LI CENSE-TXT then sel ects
* the name and text which corresponds to the client-supplied
* sss. It then calls Z200- PRI NTCRI ME to print the information and
* frees the clob.
IR R SRR SRR SR SRR SRS SRS R R SRR ER SRR SRR R SRR SRR EEEEREEEEEEEEEEEEEEEEEEREES
C200- GTRECRD.
PERFORM Z100- GET- SSS.
| F (SSSEXI STS = 1)
EXEC SQL ALLCCATE : LI CENSE- TXT END- EXEC
EXEC SQL SELECT NAME, TXT_SUMMARY
I NTO : NAMEL, : LI CENSE- TXT FROM LI CENSE_TABLE
WHERE SSS = : SSS END- EXEC

DI SPLAY "

DI SPLAY " "

DI SPLAY "NAME: ", NAMEl-ARR "SSS: ", SSS

DI SPLAY " "

PERFORM Z200- PRI NTCRI ME

DI SPLAY " "

DI SPLAY "

13-26

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

EXEC SQL FREE : LI CENSE- TXT END- EXEC
ELSE
DI SPLAY "SSS Nunber Not Found"
C200-EXI T
EXIT.
C310- GETNEWCRI ME SECTI ON.
IR RS R SRR SR SRR SRS SRS E R SRR R SRR SRR RS R SRR EREEEREEEEEEEEEEEEEEEEEEREES
* C310- GETNEWCRI VE
* Provides a list of the possible crimes to the user and
* stores the user's correct response in the variable
* NEWCRI ME.

EREE R R EEES

C310- GTNWCRM

EXEC SQL WHENEVER SQLERRCR CONTI NUE END- EXEC.

DI SPLAY " ",
DI SPLAY "Select fromthe follow ng:"
PERFORM C311- DI SPLAY- CRI ME
VARYI NG CRI ME- | NDEX FROM 1 BY 1
UNTIL CRI ME-1NDEX > 5.
MOVE ZERO TO CHO CE
PERFORM Z300- ACCEPT-CHO CE UNTIL CHOCE < 6
AND CHO CE > 0.
MOVE CRI ME(CHOI CE) TO NEWCRI ME- ARR.
MOVE 35 TO NEWCRI ME- LEN.
MOVE ZERO TO CHO CE
C310-EXIT.
EXIT.
C311- DI SPLAY- CRI ME SECTI ON.
IR R SRR SRR SRS R R SRS SRS R R SRR R SRR SRR R R R SRR EREEEREEEEEEEEEEEEEEEEEEREES
* C311- DI SPLAY- CRI ME
* Display an elenent of the crime table
IR R SRR SRR SR SRR SRS SRS R R SRR ER SRR SRR R SRR SRR EREEEREEEEEEREEEEEEEEEEEERESS
C311- DSPLYCRM
DI SPLAY " (", CRIME-INDEX, ") ", CRI ME(CRI ME- | NDEX).
C311-EXIT.
EXIT.
C320- APPENDTOCLOB SECTI ON.
IR R SRR SRR SR SRR SRS SRS R R SRR ER SRR SRR R R R SRR EREEEREEEEEEEEEEEEEEEEEEREES
* C320- APPENDTOCLOB
* Obtains the length of the global clob LI CENSE-TXT and
* uses that in the LOB WRITE statenent to append the NEWCRI ME
* character buffer to the global clob LI CENSE-TXT
* The name corresponding the global SSSis then selected
* and di splayed to the screen along with value of LI CENSE-TXT
* The caller to this function nust allocate, select and later
* free the global clob LI CENSE-TXT

EREE R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEES

C320- PPNDTCLB.
EXEC SQL
WHENEVER SQLERROR DO PERFCRM Z900- SQLERROR
END- EXEC.

EXEC SQL LOB DESCRI BE : LI CENSE- TXT GET LENGTH
I NTO : TXT- LEN END- EXEC.

MOVE NEWCR! ME- LEN TO CRI ME- LEN.
I F (TXT-LEN NOT = 0)

13-27

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

ADD 3 TO TXT-LEN
ELSE
ADD 1 TO TXT- LEN.
EXEC SQL LOB WRI TE : CRI ME- LEN FROM : NEWCRI ME
I NTO : LI CENSE- TXT AT : TXT- LEN END- EXEC.

EXEC SQL SELECT NAME | NTO : NAVEL FROM LI CENSE_TABLE
WHERE SSS = : SSS END- EXEC.

DI SPLAY " ™.

DI SPLAY "NAME: ", NAMEL-ARR "SSS: ", SSS.

DI SPLAY " ™.

PERFORM Z200- PRI NTCRI ME.

DI SPLAY " ™.

C320-EXIT.
EXIT.

C300- ADD- CRI ME SECTI ON.
EREEES
* ADD- CRI ME

* Obtains a sss and crine fromthe user and appends

* the crime to the list of crimes of the corresponding sss.

ERE R R R EEES

C300- DDCRM

EXEC SQL
VWHENEVER SQLERROR DO PERFORM Z900- SQLERROR
END- EXEC.

PERFORM Z100- GET- SSS.
| F (SSSEXI STS = 1)
EXEC SQL ALLCCATE : LI CENSE- TXT END- EXEC
PERFORM C310- GETNEWCRI VE
EXEC SQL SELECT TXT_SUMMARY | NTO : LI CENSE- TXT
FROM LI CENSE_TABLE WHERE SSS = : SSS
FOR UPDATE END- EXEC
PERFORM C320- APPENDTOCLOB
EXEC SQL FREE : LI CENSE- TXT END- EXEC
ELSE
DI SPLAY "SSS Nunber Not Found".
C300-EXIT.
EXIT.

CA400- NEW RECORD SECTI ON.
khkhkkkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhkhkhhhkhkhdhhkhhhhkhhhhkhkhhhhkhkhhkdhkhkhkhdhkhkhhkdhkhkhhdkkxd
* C400- NEW RECORD

* (ot ains the sss and name of a new record and inserts them

* along with an enpty_clob() for the clob in the table.

ERE R R R R R EEES

CA00- NVRCRD.

PERFORM Z100- GET- SSS.
| F (SSSEXI STS = 1)
DI SPLAY "Record with that sss nunber already exists"

ELSE
DI SPLAY "Nane? " W TH NO ADVANCI NG
ACCEPT NEWWNAME
DI SPLAY " .

EXEC SQL ALLOCATE : LI CENSE- TXT END- EXEC
EXEC SQL | NSERT | NTO LI CENSE_TABLE
VALUES (:SSS, :NEWNAME, EMPTY_CLOB()) END-EXEC

13-28

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

EXEC SQL SELECT TXT_SUMVARY | NTO : LI CENSE- TXT
FROM LI CENSE_TABLE WHERE SSS = : SSS END- EXEC
DI SPLAY "

DI SPLAY "NAME: ", NEWNAME, "SSS: ", SSS
PERFORM Z200- PRI NTCRI ME
DI SPLAY "
EXEC SQL FREE : LI CENSE- TXT END- EXEC.
C400- EXIT.
EXIT.
D000- LOGOFF SECTI ON.
IR R SRR SRR SR SRR SRS SRS E R SRR ER SRR SRR RS R SRR EEEEREEEEEEEEEEEEEEEEEEREES
* D000- LOGOFF
* Commit the work done to the database and |og of f
IR R SRR SRR SRS R SRS E R SRR SRR R SRR SRR RS RS REREEER SRR EEEEEEEEEEEEEEEREES
D000- LGFF.
EXEC SQ. COW T WORK RELEASE END- EXEC.
DI SPLAY " ",
DI SPLAY "HAVE A GOOD DAY!".
DI SPLAY " ",
D000- EXI T.
STCP RUN.
Z100- GET- SSS SECTI ON.
IR R SRR SRR SR SRR SRS SRS R R SRR R SRR SRR R R R SRR EREEEREEEEEEEEEEEEEEEEEEREES
* 7100- GET- SSS
* Fills the global variable SSSwith the client-supplied sss
* Sets the global variable SSSEXISTS to 0 if the sss does not
* correspond to any entry in the database, else sets it to 1

EREEES

Z100- GTSSS.
DI SPLAY "Social Security Nunmber? " WTH NO ADVANCI NG
ACCEPT SSS.
DI SPLAY " ".

EXEC SQL SELECT COUNT(*) INTO : SSSCOUNT FROM LI CENSE_TABLE
WHERE SSS = : SSS END- EXEC.

| F (SSSCOUNT = 0)
MOVE 0 TO SSSEXI STS
ELSE
MWVE 1 TO SSSEXI STS.
Z100-EXIT.
EXIT.
Z200- PRI NTCRI ME SECTI ON.
IR R SRR SRR SRS R SRR E R SRR SRR RS ERE RS EREREREREEEREEEEEEEEEEEEEEEEEEREES
Z200- PRI NTCRI ME
Obtains the length of the global clob LI CENSE-TXT and
uses that in the LOB READ statenent to read the clob
into a character buffer to display the contents of the clob.
The caller to this function nust allocate, select and later
free the global clob LI CENSE-TXT.
IR R SRR SRR SRS R R SRS SRS R R SRR R SRR SRR R SRR SRR EEEEREEEEEEEEEEEEEEEEEEREES
Z200- PRNTCRM
DI SPLAY "
DI SPLAY " CRI ME SHEET SUMMARY ".
DI SPLAY "

%k k% k%

MOVE SPACE TO THE- STRI NG ARR.
EXEC SQL LOB DESCRI BE : LI CENSE- TXT GET LENGTH
I NTO : TXT- LENGTH END- EXEC.

13-29

ORACLE

Chapter 13
LOB Sample Program: LOBDEMO1.PCO

| F (TXT-LENGTH = 0)
DI SPLAY "Record is clean"
ELSE
EXEC SQL LOB READ : TXT- LENGTH FROM : LI CENSE- TXT
| NTO : THE- STRI NG END- EXEC
DI SPLAY THE- STRI NG ARR.

Z200-EXIT.
EXIT.
Z300- ACCEPT- CHO CE SECTI ON.

EREEES

* Z300- ACCEPT- CHO CE

* Accept a choice between 1 and 5
khkkhkkkhkhhkhkhkhkhkhkhkhkhhhkhkhkhhhkhkhhhkhkhdhhkhhhhkhhhhkhkhhhhkhkhhkdkhkhkhkhdhkhkhkhkdhkhkhkrdkxkhd
Z300- CCPT.

DI SPLAY "Your Selection (1-5)? " WTH NO ADVANCI NG

ACCEPT CHO CE.

DI SPLAY " ",

IF CHOCE >5 OR CHO CE < 1 THEN
DI SPLAY "lInvalid Selection"
DI SPLAY "Pl ease Choose fromthe indicated list".
Z300-EXIT.
EXIT.

Z900- SQLERROR SECTI ON.
khkkhkkkhkhhkhkhkhkhkhkhkhkhhhkhkhkhhhkhkhhhkhkhkdhhkhhhhhkhhhkhkhkhhkhkhkhhdhkhkhkhdhhkhhkdhkhkhkhdkkkhd
* 7900- SQLERROR
* Cal | ed whenever a SQLERROR occurs.
* Display the Error, Roll Back any work done and Log Off
khkhkkkhkhhkhkhkhkhkhkhkhkhhhkhkhhhkhkhkhhhkhkhhhhkhhhhkhkhhhkhkhhhkhkhkhhkdkhkhkhkhhhkhkhkdhkhrkhkddkkkhd
Z900- SQLRRR.

EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.

DI SPLAY " ".

DI SPLAY " ORACLE ERROR DETECTED:".

DI SPLAY " ".

DI SPLAY SQLERRMC.

EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
Z900-EXIT.

STOP RUN.

13-30

Precompiler Options

This chapter describes the precompiler options of Pro*COBOL. This chapter includes:

e The procob Command

e Actions During Precompilation
e About the Options

e Entering Precompiler Options
e Scope of Precompiler Options
e Quick Reference

e Using Pro*COBOL Precompiler Options

14.1 The procob Command

ORACLE

The location of ProxCOBOL differs from system to system. Typically, your system
manager or DBA defines environment variables or aliases or uses other operating
system-specific means to make the Pro*COBOL executable accessible.

To run the Oracle Pro*xCOBOL Precompiler, you issue the command

procob [option_name=val ue] [option_nane=val ue] ...

The option value is always separated from the option name by an equals sign (=), with
no white space around the equals sign.

For example, the INAME option specifies the source file to be precompiled. The
command:

procob | NAVE=t est

precompiles the file test.pco in the current directory, since ProxCOBOL assumes that
the filename extension is .pco.

You need not use a file extension when specifying INAME unless the extension is
nonstandard.

Input and output filenames need not be accompanied by their respective option
names, INAME and ONAME. When the option names are not specified, Pro*COBOL
assumes that the first filename specified on the command line is the input filename
and that the second filename is the output filename.

Thus, the command

procob MODE=ANSI nyfile nyfile.cob

is equivalent to

procob MODE=ANS| | NAME=nyfile.pco ONAME=nyfile. cob

14-1

Chapter 14
Actions During Precompilation

14.1.1 Case-Sensitivity

In general, you can use either uppercase or lowercase for command-line option names
and values. However, if your operating system is case-sensitive (as in UNIX for
example) you must specify filename values, including the name of ProxCOBOL
executable, using the correct combination of upper and lowercase letters.

Note: Option names and option values that do not name specific operating system
objects, such as filenames, are not case-sensitive. In the examples in this guide,
option names are written in upper case or lower case, and option values are usually in
lower case. Filenames, including the name of the Pro*COBOL executable itself,
always follow the case conventions used by the operating system on which it is
executed.

With some operating systems and user shells, such as UNIX C shell, the ? may need
to be preceded by an "escape"” character, such as a back-slash (\). For example,
instead of procob ?, you might need to use procob \? to list the Pro*xCOBOL option
settings.

Consult your platform-specific documentation.

14.2 Actions During Precompilation

During precompilation, Pro*COBOL generates COBOL code that replaces the SQL
statements embedded in your host program. The generated code includes data
structures that contain the datatype, length, and address of each host variable, as well
as other information required by the Oracle runtime library, SQLLIB. The generated
code also contains the calls to SQLLIB routines that perform the embedded SQL
operations.

Pro*COBOL can issue warnings and error messages. These messages are described
in Oracle Database Error Messages.

14.3 About the Options

ORACLE

Many useful options are available at precompile time. They let you control how
resources are used, how errors are reported, how input and output are formatted, and
how cursors are managed.

The value of an option is a literal, which represents text or numeric values. For
example, for the option

. I NAME=ny_t est

the value is a string literal that specifies a filename.
For the option

. PREFETCH=100

the value is numeric.

Some options take Boolean values, which you can represent with the strings YES or
NO, TRUE or FALSE, or with the integer literals 1 or 0, respectively. For example, the
option

14-2

Chapter 14
About the Options

. SELECT_ERROR=YES

is equivalent to

. SELECT_ERROR=TRUE

or

. SELECT_ERROR-1

You leave no white space around the equals (=) sign. This is because spaces delimit
individual options. For example, you might specify the option AUTO_CONNECT on the
command line as follows:

. AUTO_CONNECT=YES

You can abbreviate the names of options unless the abbreviation is ambiguous. For
example, you cannot use the abbreviation MAX because it might stand for
MAXLITERAL or MAXOPENCURSORS.

A handy reference to the Pro*COBOL options is available online. To see the online
display, enter the ProxCOBOL command, with no arguments, at your operating system
prompt:

procob
The display gives the name, syntax, default value, and purpose of each option.

Options marked with an asterisk (*) can be specified inline as well as on the command
line.

14.3.1 Precedence of Option Values

ORACLE

Option values are determined by the following, in order of increasing precedence:

* Adefault built in to Pro*COBOL

* Avalue set in the system configuration file
* Avalue set in a user configuration file

* Avalue entered in the command line

* Avalue set in an inline specification

For example, the option MAXOPENCURSORS specifies the maximum number of
cached open cursors. The built-in Pro*COBOL default value for this option is 10.
However, if MAXOPENCURSORS=32 is specified in the system configuration file, the
value becomes 32. The user configuration file could set it to yet another value, which
then overrides the system configuration value.

If the MAXOPNCURSORS option is set on the command line, the new command-line
value takes precedence. Finally, an inline specification takes precedence over all
preceding defaults. For more information, see “Entering Precompiler Options”.

Related Topics

e Entering Precompiler Options

14-3

Chapter 14
About the Options

14.3.2 Macro and Micro Options

Option MODE is known as a macro option. Some newer options, such as
END_OF_FETCH, control only one function and are known as micro options. When
setting a macro and a micro option, you must remember that the macro option has
precedence over micro options. This is the case if, and only if, the macro option is at a
higher level of precedence than the micro option. (As described in the section
“Precedence of Option Values”.) This behavior is a change from releases of
Pro*COBOL prior to 8.0.

For example, the default for MODE is ORACLE, and for END_OF_FETCH is 1403. If
you specify MODE=ANSI in the user configuration file, Pro*COBOL will return a value
of 100 at the end of fetch, overriding the default END_OF_FETCH value of 1403. If
you specify both MODE=ANSI and END_OF_ FETCH=1403 in the configuration file,
then 1403 will be returned. If you specify END_OF_FETCH=1403 in your configuration
file and MODE=ANSI on the command line, then 100 will be returned.

The following table lists the values of micro options set by the macro option values:

Table 14-1 How Macro Option Values Set Micro Option Values

|
Macro Option Micro Option
MODE=ANSI | ISO CLOSE_ON_COMMIT=YES
DECLARE_SECTION=YES
END_OF_FETCH=100
DYNAMIC=ANSI
TYPE_CODE=ANSI

MODE=ANSI14 | ANSI13 | ISO14 | ISO13 CLOSE_ON_COMMIT=NO
DECLARE_SECTION=YES
END_OF_FETCH=100

MODE=ORACLE CLOSE_ON_COMMIT=NO
DECLARE_SECTION=NO
END_OF_FETCH=1403
DYNAMIC=ORACLE
TYPE_CODE=ORACLE

Related Topics

* Precedence of Option Values

14.3.3 Determining Current Values

ORACLE

You can interactively determine the current value for one or more options by using a
guestion mark on the command line. For example, if you issue the command

procob ?

the complete option set, along with current values, is displayed on your terminal. In
this case, the values are those built into Pro*COBOL, overridden by any values in the
system configuration file. But if you issue the following command

procob CONFI G=ny_config_file.cfg ?

14-4

Chapter 14
Entering Precompiler Options

and there is a file named ny_config_file. cfg in the current directory, the options from
the ny_config file.cfg file are listed with the other default values. Values in the user
configuration file supply missing values, and they supersede values built into
Pro*COBOL and values specified in the system configuration file.

You can also determine the current value of a single option by simply specifying the
option name followed by =? as in

procob MAXOPENCURSORS=?

14.4 Entering Precompiler Options

All Pro*COBOL options (except CONFIG) can be entered on the command line or from
a configuration file. Many options can also be entered inline. During a given run,
Pro*COBOL can accept options from all three sources.

14.4.1 On the Command Line

You enter precompiler options on the command line using ... [option_name=val ue]
[option_nanme=val ue] ...

Separate each option with one or more spaces. For example, you might enter the
following options:

. ERRORS=no LTYPE=short

14.4.2 Inline

Enter options inline by coding EXEC ORACLE OPTION statements, using the
following syntax:

EXEC ORACLE OPTI ON (option_nanme=val ue) END-EXEC.

For example, you might code the following statement:

EXEC ORACLE OPTI ON (RELEASE_CURSOR=YES) END- EXEC.

An option entered inline overrides the same option entered on the command line.

14.4.2.1 Advantages

The EXEC ORACLE feature is especially useful for changing option values during
precompilation. For example, you might want to change the HOLD_CURSOR and
RELEASE_CURSOR values on a statement-by-statement basis. “Performance
Tuning” shows you how to use inline options to optimize runtime performance.

Specifying options inline is also helpful if your operating system limits the number of
characters you can enter on the command line, and you can store inline options in
configuration files. These are discussed in the next section.

Related Topics

* Performance Tuning

ORACLE 14-5

Chapter 14
Entering Precompiler Options

14.4.2.2 Scope of EXEC ORACLE

An EXEC ORACLE statement stays in effect until textually superseded by another
EXEC ORACLE statement specifying the same option. In the following example,
HOLD_CURSOR=NO stays in effect until superseded by HOLD_CURSOR=YES:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
01 EMP-NAME PIC X(20) VARYI NG
01 EMP-NUMBER PIC S9(4) COWP VALUE ZERO.
01 SALARY PI C S9(5) V99 COWP-3 VALUE ZERQ
01 DEPT-NUMBER PI C S9(4) COW VALUE ZERO.
EXEC SQL END DECLARE SECTI ON END- EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO NO- MORE END- EXEC.
EXEC CORACLE OPTI ON (HOLD_CURSOR=NO) END- EXEC.

EXEC SQ. DECLARE enp_cursor CURSCR FOR
SELECT EMPNO, DEPTNO FROM EMP

END- EXEC.

EXEC SQ. OPEN enp_cursor END- EXEC.

DI SPLAY ' Enpl oyee Nunber Dept'.
DI SPLAY ' ----mcmmieaam -
PERFORM
EXEC SQ.
FETCH enp_cursor | NTO : EMP- NUMBER, : DEPT- NUMBER
END- EXEC
DI SPLAY EMP- NUMBER, DEPT- NUMBER END- EXEC
END- PERFORM

NO- MORE.
EXEC SQL WHENEVER NOT FOUND CONTI NUE END- EXEC.
PERFORM
DI SPLAY ' Enpl oyee nunber? '
ACCEPT EMP- NUMBER
I F EMP-NUMBER IS NOT = 0
EXEC ORACLE OPTI ON (HOLD_CURSOR-YES) END- EXEC
EXEC SQL SELECT ENAME, SAL
I NTO : EMP- NAME, : SALARY
FROM EMP
WHERE EMPNO = : EMP- NUMBER
DI SPLAY 'Salary for ', EMP-NAME, ' is ', SALARY
END- EXEC
END- | F
END- PERFORM
NEXT- PARA.

14.4.3 Configuration Files

A configuration file is a text file that contains precompiler options. Each record (line) in
the file contains one option, with its associated value or values. For example, a
configuration file might contain the lines

FI PS=YES
MODE=ANSI

ORACLE 14-6

Chapter 14
Entering Precompiler Options

to set values for the FIPS and MODE options.

There is a single system configuration file for each system. The name of the system
configuration file is

pchefg. cfg

The location of the file is operating system-specific. On most UNIX systems, the
Pro*COBOL configuration file is usually located in the SORACLE_HOME/precomp/
admin directory, where $ORACLE_HOME is the environment variable for the database
software.

Note that before release 8.0 of Pro*COBOL, the configuration file was called
pccob.cfg.

The Pro*COBOL user can have one or more user configuration files. The name of the
configuration file must be specified using the CONFIG command-line option. For more
information, see “Determining Current Values”.

Note: You cannot nest configuration files. This means that CONFIG is not a valid
option inside a configuration file.

Related Topics

e Determining Current Values

14.4.4 Column Properties Support

ORACLE

Column properties are returned in an 8 byte value where each bit indicates a column
property. Three column properties are supported:

|

| | -> auto-increnment colum

|-> auto val ue al ways generated
-> if generated by default when null

You can get the Column Properties through dynamic statements using the new
SQLDA member (sgl da->CP[]).

01 SELDSC.

02 SQLDNUM PIC S9(9) COMP VALUE 20.

02 SQLDFND PIC S9(9) CONP.

02 SELDVAR OCCURS 20 TI MES.
03 SELDV PIC S9(9) CONP.
03 SELDFMT PIC S9(9) CONP.
03 SELDVLN PIC S9(9) CONP.
03 SELDFMIL PIC S9(4) CONP.
03 SELDVTYP PIC S9(4) CONP.
03 SELDI PIC S9(9) CONP.
03 SELDH VNAME PIC S9(9) CONP.
03 SELDH MAX- VNAVEL PIC S9(4) COWP.
03 SELDH CUR- VNAVEL PIC S9(4) COWP.
03 SELDI - VNAVE PIC S9(9) CONP.
03 SELDI - MAX- VNAVEL PIC S9(4) COWP.
03 SELDI - CUR- VNAVEL PIC S9(4) COWP.
03 SELDFCLP PIC S9(9) CONP.
03 SELDFCRCP PIC S9(9) CONP.

14-7

Chapter 14
Scope of Precompiler Options

02 SQLDSCCp OCCURS 20 TIMES PIC S9(18) COWP-5.

This member SQLDSCCP is updated as part of a meta data DESCRIBE.

You can get the Column Properties through static statements using the new function
SQLGet Col Prop() which gets the column properties from the last executed statement.

voi d SQLGet Col Prop(

void *uga, ->|N-- run tinme context

text *coln, -> |N -- colum nane

ub2 “*colatr, -> |N-- colum attributes

ub8 *colprop -->INOQUT -- colum attribute/ub8 value that holds col um
properties

)
SQLGet Col Prop() returns values determined by the column attribute col atr.

e SQL_ATTR_COL_PROPERTIES: Returns an 8 byte value (col prop) containing the
column properties of the named column

e SQL_ATTR_COL_PROPERTY_IS_IDENTITY col prop is true if the named column
is an identity column

* SQL_ATTR_COL_PROPERTY_IS_GEN_ALWAYS col prop is true if the named
column always generates an auto increment value

e SQL_ATTR_COL_PROPERTY_IS_GEN_BY_DEF _ON_NULL col prop is true if
the named column generates an auto increment value in the case of a default-null
column constraint.

14.5 Scope of Precompiler Options

A precompilation unit is a file containing COBOL code and one or more embedded
SQL statements. The options specified for a given precompilation unit affect only that
unit; they have no effect on other units.

For example, if you specify HOLD_CURSOR=YES and RELEASE_CURSOR=YES for
unit A but not unit B, SQL statements in unit A run with these HOLD _CURSOR and
RELEASE_CURSOR values, but SQL statements in unit B run with the default values.
However, the MAXOPENCURSORS setting that is in effect when you connect to
Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline option affects
SQL statements that follow it in the source file, not in the flow of program logic. An
option setting stays in effect until the end-of-file unless you re-specify the option.

14.6 Quick Reference

ORACLE

The following table is a quick reference to the ProxCOBOL options. Options marked
with an asterisk can be entered inline.

Another handy reference is available online. To see the online display, just enter the
Pro*COBOL command without options at your operating system prompt. The display
gives the name, syntax, default value, and purpose of each option.

14-8

ORACLE

Note:

instead.

Added CWH_SQL99 option for feature 255467

Table 14-2 Option List

Chapter 14
Quick Reference

There are some platform-specific options. For example, on byte-swapped
platforms the option COMP5 governs the use of certain COMPUTATIONAL
items. Check your system-specific Oracle manuals.

COMPS5 is not supported on SPARC Solaris 64 bit Computers. Use COMP

Syntax Default Specifies

ASACC={YES | NO} NO If YES, use ASA carriage control for
listing.

ASSUME_SQLCODE={YES | NO} NO If YES, assume SQLCODE variable
exists.

AUTO_CONNECT={YES | NO} NO If YES, allow automatic connect to
ops$ accounts before the first
executable statement.

CLOSE_ON_COMMIT* NO If YES, close all cursors on COMMIT.

CONFIG=filename (none) Specifies name of user-defined
configuration file.

CWH_SQL99={YES | NO} YES If YES, close held cursors on
ROLLBACK (SQL standard behavior.)

DATE_FORMAT LOCAL Specifies date string format.

DBMS={NATIVE | V7 | V8} NATIVE Version-specific behavior of Oracle at
precompile time.

DECLARE_SECTION NO If YES, DECLARE SECTION is
required.

DEFINE=symbol * (none) Define a symbol used in conditional
precompilation.

DYNAMIC ORACLE Specifies Oracle or ANSI dynamic
semantics in SQL Method 4.

END_OF_FETCH 1403 End-of-fetch SQLCODE value.

ERRORS={YES | NO} * YES If YES, display errors on the terminal.

FIPS={YES | NO} NO If YES, ANSI/ISO extensions are
flagged.

FORMAT={ANSI | TERMINAL | ANSI Format of input file COBOL

VARIABLE} statements.

HOLD_CURSOR={YES | NO}* NO If YES, hold OraCursor (do not re-
assign).

HOST={COBOL | COB74} COBOL COBOL version used in input file
(COBOL 85 or COBOL 74).

[INAME=]filename (none) Name of input file.

14-9

ORACLE

Table 14-2 (Cont.) Option List

Chapter 14
Quick Reference

Syntax Default Specifies

INCLUDE=path* (none) Pathname for EXEC SQL INCLUDE
files.

IRECLEN=integer 80 Record length of input file.

LITDELIM={APOST | QUOTE} QUOTE Delimiters for COBOL strings.

LNAME=filename (none) Name of listing file.

LRECLEN=integer 132 Record length of listing file.

LTYPE={LONG | SHORT | NONE}* LONG Type of listing.

MAXLITERAL=integer * 256 Maximum length of strings. (120 on
IBM-proprietary S370 OS)

MAXOPENCURSORS=integer * 10 Maximum number of OraCursors
cached (1).

MODE={ORACLE | ANSI} ORACLE If ANSI, follow the ANSI/ISO SQL
standard.

NESTED={YES | NO} YES If YES, nested programs are
supported.

NLS_LOCAL={YES | NO} NO If YES, use NCHAR semantics of
previous Pro*COBOL releases.

[ONAME-=]filename iname.cob Name of output file.

ORACA={YES | NO}* NO If YES, use ORACA communications
area.

ORECLEN=integer 80 Record length of output file.

PAGELEN=integer 66 Lines for each page in listing.

PICX CHARF Datatype of PIC X COBOL variables.

PLAN_BASELINE={module_name | NO Specify a module name to create a

YES | NO} SQL Plan Baseline.

PLAN_PREFIX={prefix_name| none} none Ensures that the plan name does not
exceed 128 bytes.

PLAN_RUN={YES | NO} NO Executes the generated SQL file

PLAN_FIXED={YES | NO} YES Specifies whether or not the created
plan baseline is fixed or non-fixed

PLAN_ENABLED={YES | NO} YES Enables the Plan Baseline that is
created.

MEMFORPREFETCH=0..429496729 none Speed up queries by pre-fetching rows

4 that fill the specified memory.

PREFETCH 1 Speed up queries by pre-fetching a
given number of rows.

RELEASE_CURSOR={YES | NO}* NO If YES, release OraCursor after
execute.

SELECT_ERROR={YES | NO}* YES If YES, generate FOUND error on
SELECT.

SQLCHECK={SEMANTICS | SYNTAX SQL checking level.

SYNTAX}*

THREADS={YES | NO} NO Indicates a multithreaded application.

14-10

Table 14-2 (Cont.) Option List

Chapter 14
Using Pro*COBOL Precompiler Options

Syntax Default Specifies

TYPE_CODE ORACLE Use Oracle or ANSI type codes for
dynamic SQL method 4.

UNSAFE_NULL={YES | NO} NO If YES, unsafe null fetches are allowed
(disables the ORA-01405 message).

USERID=username/ (none) Oracle username, password, and

password[@dbname] optional database.

VARCHAR={YES | NO} NO If YES, accept user-defined
VARCHAR group items.

XREF={YES | NO}* YES If YES, generate symbol cross

references in listing.

14.7 Using Pro*COBOL Precompiler Options

This section is organized for easy reference. It lists the Pro*xCOBOL precompiler

options alphabetically and for each option gives its purpose, syntax, and default value.
Usage notes that help you understand how the option works are also provided. Unless
the usage notes say otherwise, the option can be entered on the command line, inline,

or from a configuration file.

14.7.1 ASACC

Purpose

Specifies whether the listing file follows the ASA convention of using the first column in

each line for carriage control.

Syntax
ASACC={YES | NO}
Default

NO

Usage Notes

Cannot be entered inline.

14.7.2 ASSUME_SQLCODE

ORACLE

Purpose

Instructs Pro*COBOL to presume that SQLCODE is declared whether or not it is

declared in the program, or of the proper type.

Syntax
ASSUME_SQLCODE={YES | NO}

14-11

Chapter 14
Using Pro*COBOL Precompiler Options

Default
NO

Usage Notes
Cannot be entered inline.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=YES, SQLCODE can
be declared outside a Declare Section.

When DECLARE_SECTION=YES and ASSUME_SQLCODE=NO, SQLCODE is
recognized as the status variable if and only if at least one of the following criteria is
satisfied:

* ltis declared with exactly the right datatype.

* Pro*COBOL finds no other status variable. If Pro*COBOL finds a SQLSTATE
declaration (of exactly the right type of course), or finds an include of a SQLCA,
then it will not presume SQLCODE is declared.

When ASSUME_SQLCODE=YES, and when SQLSTATE and/or SQLCA are declared
as status variables, Pro*COBOL presumes SQLCODE is declared whether or not it is
declared or of the proper type.

14.7.3 AUTO_CONNECT

ORACLE

Purpose

Specifies whether your program connects automatically to the default user account.

Syntax
AUTO_CONNECT={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as Pro*COBOL encounters an executable
SQL statement, your program tries to log on to Oracle automatically with the userid

<pref i x><user name>

where <prefix> is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and <username> is your
operating system user or task name. In this case, you cannot override the default
value for MAXOPENCURORS (10), even if you specify a different value on the
command line.

When AUTO_CONNECT=NO (the default), you must use the CONNECT statement to
logon to Oracle.

14-12

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.4 CHARSET _PICX

Purpose

Specifies the character set form used by PIC X variables used in select, insert, or
update statements.

Syntax
CHARSET_PICX={NCHAR_CHARSET | DB_CHARSET }

Default
DB_CHARSET

Usage Notes
Can be used on the command line or in a configuration file, but not inline.

If CHARSET_PICX = NCHAR_CHARSET, the PIC X bind or define buffer is converted
according to the server-side National Character Set. Possible performance impact
might be seen when target column is CHAR. Similarly, if CHARSET_PICX =
DB_CHARSET, the PIC X bind or define buffer is converted according to server-side
Database Character Set. There can be some data loss when target column is NCHAR.

14.7.5 CHARSET_PICN

Purpose

Specifies the character set form used by PIC N variables used in select, insert, or
update statements.

Syntax
CHARSET_PICN={NCHAR_CHARSET | DB_CHARSET }

Default
NCHAR_CHARSET

Usage Notes
Can be used on the command line or in a configuration file, but not inline.

If CHARSET_PICN = DB_CHARSET, the PIC N bind or define buffer is converted
according to the server-side Database Character Set. There can be some data loss
when target column is NCHAR. Similarly, if CHARSET_PICN = NCHAR_CHARSET,
the PIC N bind or define buffer is converted according to server-side National
Character Set. Possible performance impact might be seen when target column is
CHAR.

ORACLE 14-13

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.6 CLOSE_ON_COMMIT

Purpose

Specifies whether or not all cursors declared without the WITH HOLD clause are
closed on commit.

Syntax
CLOSE_ON_COMMIT={YES | NO}

Default
NO

Usage Notes
Can be used only on the command line or in a configuration file.

This option will only have an effect when a cursor is not coded using the WITH HOLD
clause in a DECLARE CURSOR statement, since that will override both the new
option and the existing behavior which is associated with the MODE option. If MODE
is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. For example, the defaults are MODE=ORACLE and
CLOSE_ON_COMMIT=NO. If the user specifies MODE=ANSI on the command line,
then any cursors not using the WITH HOLD clause will be closed on commit.

When CLOSE_ON_COMMIT=NO (when MODE=ORACLE), issuing a COMMIT or
ROLLBACK will close only cursors that are declared using the FOR UPDATE clause
or are referenced in a CURRENT OF clause. Other cursors are not affected by the
COMMIT or ROLLBACK statement, remain open, if they are open already. However,
when CLOSE_ON_COMMIT=YES (when MODE=ANSI), issuing a COMMIT or
ROLLBACK closes all cursors.

For a further discussion of the precedence of this option see “Macro and Micro
Options”.

Related Topics

e Macro and Micro Options

14.7.7 COMMON_PARSER

ORACLE

Purpose

Specifies that the SQL99 syntax for SELECT, INSERT, DELETE, UPDATE and body
of the cursor in a DECLARE CURSOR statement will be supported.

Syntax
COMMON_PARSER={YES | NO}

Default
NO

14-14

Chapter 14
Using Pro*COBOL Precompiler Options

Usage Notes

Can be entered in the command line.

14.7.8 CONFIG

Purpose

Specifies the name of a user configuration file.

Syntax
CONFIG=filename

Default

None

Usage Notes
Can be entered only on the command line.

Pro*COBOL can use a configuration file containing preset command-line options.
However, you can specify any of several alternative files, called user configuration
files. For more information, see “Entering Precompiler Options”.

You cannot nest configuration files. Therefore, you cannot specify the option CONFIG
in a configuration file.

Related Topics

* Entering Precompiler Options

14.7.9 DATE_FORMAT

ORACLE

Purpose

Species the string format in which dates are returned.

Syntax
DATE_FORMAT={ISO | USA | EUR | JIS | LOCAL | 'fmt" (default LOCAL)

Default
LOCAL

Usage Notes

Can only be entered on the command line or in a configuration file. The date strings
are shown in the following table:

Table 14-3 Formats for Date Strings

|
Format Name Abbreviation Date Format

International Standards Organization ISO yyyy-mm-dd

14-15

Chapter 14
Using Pro*COBOL Precompiler Options

Table 14-3 (Cont.) Formats for Date Strings
|

Format Name Abbreviation Date Format

USA standard USA mm/dd/yyyy

European standard EUR dd.mm.yyyy

Japanese Industrial Standard JIS yyyy-mm-dd
installation-defined LOCAL Any installation-defined form.

'fmt' is a date format model, such as "Month dd, yyyy". See “Datetime Format
Elements” for the list of date format model elements.

There is one restriction on the use of the DATE_FORMAT option: All compilation units
to be linked together must use the same DATE_FORMAT value. An error occurs when
there is a mismatch in the values of DATE_FORMAT across compilation units

14.7.10 DB2_ARRAY

Purpose

Based on this option, the precompiler activates the additional array insert/select
syntax.

Syntax
DB2_ARRAY={YES |NO}
Default

NO

Usage Notes

If this option is set to NO, the Oracle precompiler syntax is supported, otherwise the
DB2 insert/select array syntax is supported.

14.7.11 DBMS

ORACLE

Purpose

Specifies whether Oracle follows the semantic and syntactic rules of Oracle7
Database, Oracle8i, or the native version of Oracle (that is, the version to which your
application is connected).

Syntax
DBMS={V7 | V8 | NATIVE}

Default

NATIVE

Usage Notes

Cannot be entered inline.

14-16

Chapter 14
Using Pro*COBOL Precompiler Options

With the DBMS option you control the version-specific behavior of Oracle. When
DBMS=NATIVE (the default), Oracle follows the semantic and syntactic rules of the
native version of Oracle.

14.7.12 DECLARE_SECTION

Purpose

Specifies whether or not only declarations in a Declare Section are allowed as host
variables.

Syntax
DECLARE_SECTION={YES | NO}

Default
NO

Usage Notes
Can be entered only on the command line or in a configuration file.

When MODE=ORACLE, use of the BEGIN DECLARE SECTION and END DECLARE
SECTION statements are optional, starting with release 8.0 of Pro*COBOL. The
DECLARE_SECTION option is provided for backward compatibility with previous
releases. DECLARE_SECTION is a micro option of MODE.

This option allows the user to specify MODE=ORACLE together with
DECLARE_SECTION=YES to get the same effect that previous releases provided
when using MODE=ORACLE alone. (Only variables declared inside the DECLARE
statements are allowed as host variables.) For a discussion of precedence of this
option, see “Precedence of Option Values”.

Related Topics

* Precedence of Option Values

14.7.13 DEFINE

ORACLE

Purpose

Specifies a user-defined symbol that is used to include or exclude portions of source
code during a conditional precompilation. For more information, see “Conditional
Precompilations”

Syntax
DEFINE=symbol

Default

None

Usage Notes

If you enter DEFINE inline, the EXEC ORACLE statement takes the following form:

14-17

Chapter 14
Using Pro*COBOL Precompiler Options

EXEC ORACLE DEFI NE symbol END- EXEC.

Related Topics

» Conditional Precompilations

14.7.14 DYNAMIC

Purpose

This micro option of MODE specifies the descriptor behavior in dynamic SQL Method
4,

Syntax
DYNAMIC={ORACLE | ANSI}

Default
ORACLE

Usage Notes
Cannot be entered inline by use of the EXEC ORACLE OPTION statement.
See the DYNAMIC option settings in “ANSI Dynamic SQL Precompiler Options”.

Related Topics
e ANSI Dynamic SQL Precompiler Options

14.7.15 END_OF_FETCH

ORACLE

Purpose

This micro option of MODE specifies which SQLCODE value is returned when an
END-OF-FETCH condition occurs after execution of a SQL statement.

Syntax
END_OF_FETCH={100 | 1403}

Default

1403

Usage Notes
Can be entered only on the command line or in a configuration file.

END_OF_FETCH is a micro option of MODE. For further discussion, see “Macro and
Micro Options”.

If you specify MODE=ANSI in a configuration file, Pro*COBOL returns the SQLCODE
value 100 at the END_OF_FETCH, overriding the default END_OF_ FETCH=1403.

If you specify MODE=ANSI and END_OF_FETCH=1403 in the configuration file, then
Pro*COBOL will return the SQLCODE value 1403 at the END_OF_FETCH.

14-18

Chapter 14
Using Pro*COBOL Precompiler Options

If you specify MODE=ANSI in the configuration file and END_OF_FETCH=1403 on the
command line, which has a higher precedence than your configuration file,
Pro*COBOL will again return the SQLCODE value 1403 at the END_OF_FETCH.

Related Topics

* Macro and Micro Options

14.7.16 ERRORS

Purpose

Specifies whether Pro*xCOBOL error messages are sent to the terminal and listing file
or only to the listing file.

Syntax
ERRORS={YES | NO}

Default

YES

Usage Notes
When ERRORS=YES, error messages are sent to the terminal and listing file.

When ERRORS=NO, error messages are sent only to the listing file.

14.7.17 File_ID

Purpose

Denotes the unique identifier for the generated Cobol file. The generated files contain
a unigue number associated with the "SQLCTX" variable. The file_id option can be
used to set the value of the SQLCTX variable. The option is useful while precompiling
multiple source files, so that the user can ensure uniqgue SQLCTX values associated
with the different generated files.

Syntax
FILE_ID=Range is 0 to 65535

Default
0

Usage Notes

The file_id option can be used to directly assign values to "SQLCTX" variable in the
generated Cobol file.

ORACLE 14-19

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.18 FIPS

ORACLE

Purpose

Specifies whether extensions to ANSI/ISO SQL are flagged (by the FIPS Flagger). An
extension is any SQL element that violates ANSI/ISO format or syntax rules, except
privilege enforcement rules.

Syntax

FIPS={YES | NO}

Default
NO

Usage Notes

When FIPS=YES, the FIPS Flagger issues warning (not error) messages if you use an
Oracle extension to the Entry level of SQL-92 or use a feature of Entry level SQL-92 in
a nonconforming manner.

The following extensions to ANSI/ISO SQL are flagged at precompile time:

e Array interface including the FOR clause

e SQLCA, ORACA, and SQLDA data structures

e Dynamic SQL including the DESCRIBE statement
« Embedded PL/SQL blocks

e Automatic datatype conversion

« DATE, COMP-3, NUMBER, RAW, LONG RAW, VARRAW, ROWID, and
VARCHAR datatypes

e« ORACLE OPTION statement for specifying runtime options

« EXEC TOOLS statements in user exits

* CONNECT statement

 TYPE and VAR datatype equivalencing statements

* AT db_name clause

 DECLARE...DATABASE, ...STATEMENT, and ...TABLE statements

e SQLWARNING condition in WHENEVER statement

¢ DO and STOP actions in WHENEVER statement

+ COMMENT and FORCE TRANSACTION clauses in COMMIT statement
*+ FORCE TRANSACTION and TO SAVEPOINT clauses in ROLLBACK statement
e RELEASE parameter in COMMIT and ROLLBACK statements

e Optional colon-prefixing of WHENEVER...DO labels and of host variables in the
INTO clause

14-20

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.19 FORMAT

Purpose

Specifies the format of COBOL statements.

Syntax
FORMAT={ANSI | TERMINAL | VARIABLE}

Default
ANSI

Usage Notes
Cannot be entered inline.

The format of input lines is system-dependent. Check your system-specific Oracle
manuals, or your COBOL compiler.

When FORMAT=ANSI, the format of input lines conforms as much as possible to the
current ANSI standard for COBOL. When FORMAT=TERMINAL, input lines can start
in column 1. Example code in this book is in TERMINAL format. Use
FORMAT=VARIABLE to allow Flexible B Area Length. See “Coding Areas” for a more
complete description.

Related Topics

* Coding Areas

14.7.20 HOLD_CURSOR

ORACLE

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
HOLD_CURSOR={YES | NO}

Default
NO

Usage Notes

You can use HOLD_CURSOR to improve the performance of your program. For more
information, see “Performance Tuning”.

When a SQL data manipulation statement is executed, its associated cursor is linked
to an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
HOLD_CURSOR controls what happens to the link between the cursor and cursor
cache.

14-21

Chapter 14
Using Pro*COBOL Precompiler Options

When HOLD CURSOR=NO, after Oracle executes the SQL statement and the cursor
is closed, Pro*COBOL marks the link as reusable. The link is reused as soon as the
cursor cache entry to which it points is needed for another SQL statement. This frees
memory allocated to the private SQL area and releases parse locks.

When HOLD_CURSOR=YES, the link is maintained; Pro*xCOBOL does not reuse it.
This is useful for SQL statements that are executed often because it speeds up
subsequent executions and there is no need to re-parse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set HOLD_CURSOR before opening the
cursor.

For information showing how the HOLD _CURSOR and RELEASE_CURSOR options
interact, see “Performance Tuning”.

Related Topics

* Performance Tuning

14.7.21 HOST

Purpose

Specifies the host language to be used.

Syntax
HOST={COB74 | COBOL}

Default
COBOL

Usage Notes
Cannot be entered inline.

COBY74 refers to the 1974 version of ANSI-approved COBOL. COBOL refers to the
1985 version. Other values might be available on your platform.

14.7.22 IMPLICIT_SVPT

ORACLE

Purpose

Controls whether an implicit savepoint is taken prior to the start of a new batched
insert.

Syntax
implicit_svpt={YES|NO}
Default

NO

14-22

Chapter 14
Using Pro*COBOL Precompiler Options

Usage Notes

If yes, a savepoint is taken prior to the start of a new batch of rows. If an error occurs
on the insert, an implicit "rollback to savepoint" is executed. This option exists for DB2
compatibility, the obvious downside being the extra round-trip.

If no, there is no implicit savepoint taken. If an error occurs on the buffered insert, then
it is reported back to the application, but no rollback is executed.

14.7.23 INAME

Purpose

Specifies the name of the input file.

Syntax
INAME=filename

Default

None

Usage Notes
Cannot be entered inline.
All input file names must be unique at precompilation time.

When specifying the name of your input file on the command line, the keyword INAME
is optional. For example, in Pro*COBOL, you can specify myprog.pco instead of
INAME=myprog.pco.

You need not use a file extension when specifying INAME unless the extension is
nonstandard. On the UNIX platform, Pro*COBOL assumes the default input file
extension pco.

14.7.24 INCLUDE

ORACLE

Purpose

Specifies a directory path for EXEC SQL INCLUDE files. It only applies to operating
systems that use directories.

Syntax
INCLUDE=path
Default

Current directory

Usage Notes

Pro*COBOL searches first in the current directory, then in the directory specified by
INCLUDE, and finally in a directory for standard INCLUDE files. Hence, you need not
specify a directory path for standard files.

14-23

Chapter 14
Using Pro*COBOL Precompiler Options

You must still use INCLUDE to specify a directory path for nonstandard files unless
they are stored in the current directory. You can specify more than one path on the
command line, as follows:

. I NCLUDE=pat h1 | NCLUDE=path2 ...

Pro*COBOL searches first in the current directory, then in the directory named by
pathl, then in the directory named by path2, and finally in the directory for standard
INCLUDE files.

Note: Pro*xCOBOL looks for a file in the current directory first—even if you specify a
directory path. Therefore, if the file you want to INCLUDE resides in another directory,
make sure no file with the same name resides in the current directory.

The syntax for specifying a directory path is system-specific. Follow the conventions of
your operating system.

14.7.25 IRECLEN

Purpose

Specifies the record length of the input file.

Syntax
IRECLEN=Integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of ORECLEN. The
maximum value allowed is system-dependent.

14.7.26 LITDELIM

ORACLE

Purpose

The LITDELIM option specifies the delimiters for string constants and literals in the
COBOL code generated by Pro*COBOL.

Syntax
LITDELIM={APOST | QUOTE}

Default
QUOTE

Usage Notes

When LITDELIM=APOST, Pro*COBOL uses apostrophes when generating COBOL
code. If you specify LITDELIM=QUOTE, quotation marks are used, as in

14-24

Chapter 14

Using Pro*COBOL Precompiler Options

CALL "SQLROL" USI NG SQL- TMPO.

In SQL statements, you must use quotation marks to delimit identifiers containing

special or lowercase characters, as in

EXEC SQL CREATE TABLE "Enp2" END- EXEC.

but you must use apostrophes to delimit string constants, as in

EXEC SQL SELECT ENAME FROM EMP WHERE JOB = ' CLERK' END- EXEC.

Regardless of which delimiters are used in the Pro*COBOL source file, Pro*COBOL

generates the delimiters specified by the LITDELIM value.

14.7.27 LNAME

Purpose

Specifies a nondefault name for the listing file.

Syntax
LNAME=filename
Default

Input

Usage Notes

Cannot be entered inline.

By default, the listing file is written to the current directory.

14.7.28 LRECLEN

ORACLE

Purpose

Specifies the record length of the listing file.
Syntax

LRECLEN=integer

Default
132

Usage Notes

Cannot be entered inline.

The value of LRECLEN can range from 80 through 132. If you specify a value below
the range, 80 is used instead. If you specify a value above the range, an error occurs.

LRECLEN should exceed IRECLEN by at least 8 to allow for the insertion of line

numbers.

14-25

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.29 LTYPE

Purpose

Specifies the listing type.

Syntax
LTYPE={LONG | SHORT | NONE}

Default
LONG

Usage Notes

Cannot be entered inline.

Table 14-4 Types of Listings

Listing Types Description

LTYPE=LONG input lines appear in the listing file.
LTYPE=SHORT input lines do not appear in the listing file.
LTYPE=NONE no listing file is created.

14.7.30 MAX_ROW_INSERT

Purpose

Controls the number of rows that need to be buffered before executing the INSERT
statement.

Syntax

max_row_insert={0...1000}

Default
0

Usage Notes

Any number greater than zero enables buffered insert feature and buffers that many
rows before executing the INSERT statement.

14.7.31 MAXLITERAL

ORACLE

Purpose

Specifies the maximum length of string literals generated by Pro*COBOL so that
compiler limits are not exceeded. For example, if your compiler cannot handle string
literals longer than 132 characters, you can specify MAXLITERAL=132 on the
command line.

14-26

Chapter 14
Using Pro*COBOL Precompiler Options

Syntax
MAXLITERAL=integer

Default
1024

Usage Notes

The maximum value of MAXLITERAL is compiler-dependent. The default value is
language-dependent, but you may have to specify a lower value. For example, some
COBOL compilers cannot handle string literals longer than 132 characters, so you
would specify MAXLITERAL=132.

Strings that exceed the length specified by MAXLITERAL are divided during
precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value just once, and
the EXEC ORACLE statement must precede the first EXEC SQL statement.
Otherwise, Pro*COBOL issues a warning message, ignores the extra or misplaced
EXEC ORACLE statement, and continues processing.

14.7.32 MAXOPENCURSORS

ORACLE

Purpose

Specifies the number of concurrently open cursors that Pro*xCOBOL tries to keep
cached.

Syntax
MAXOPENCURSORS=integer

Default
10

Usage Notes

You can use MAXOPENCURSORS to improve the performance of your program. For
more information, see “Performance Tuning”.

When precompiling separately, use MAXOPENCURSORS as described in “Separate
Precompilations”.

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor cache.

When an implicit statement is executed and HOLD_CURSOR=NO, or an explicit
cursor is closed, the cursor entry is marked as reusable. If this statement is issued
again and the cursor entry has not been used for another statement, it is reused.

If a new cursor is needed and the number of cursors allocated is less than
MAXOPENCURSORS, then the next one in the cache is allocated. Once
MAXOPENCCURSORS has been exceeded, Oracle first tries to reuse a previous
entry. If there are no free entries, then an additional cache entry is allocated. Oracle
continues to do this until the program runs out of memory or the database parameter
OPEN_CURSORS is exceeded.

14-27

Chapter 14
Using Pro*COBOL Precompiler Options

During normal processing, when using HOLD_CURSOR=NO and
RELEASE_CURSOR=NO (the default), it is advisable to set MAXOPENCURSORS to
no more than 6 less than the database parameter OPEN_CURSORS to allow for the
cursors used by the data dictionary to process statements.

As your program's need for concurrently open cursors grows, you might want to re-
specify MAXOPENCURSORS to match the need. A value of 45 to 50 is not
uncommon, but remember that each cursor requires another private SQL area in the
user process memory space. The default value of 10 is adequate for most programs.

Related Topics
e Performance Tuning

e Separate Precompilations

14.7.33 MODE

ORACLE

Purpose

This macro option specifies whether your program observes Oracle practices or
complies with the current ANSI SQL standard.

Syntax
MODE={ANSI | ISO | ANSI14 | ISO14 | ANSI13 | ISO13 | ORACLE}

Default
ORACLE

Usage Notes
Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and ISO, ANSI14 and
ISO14, ANSI13 and 1ISO13.

When MODE=ORACLE (the default), your embedded SQL program observes Oracle
practices.

When MODE={ANSI14 | ANSI13}, your program complies closely with the current
ANSI SQL standard.

When MODE=ANSI, your program complies fully with the ANSI standard and the
following changes go into effect:

* You cannot open a cursor that is already open or CLOSE a cursor that is already
closed. (When MODE=0ORACLE, you can reOPEN an open cursor to avoid re-
parsing.)

* No error message is issued if Oracle assigns a truncated column value to an
output host variable.

When MODE={ANSI | ANSI14}, a 4-byte integer variable named SQLCODE or a 5-
byte character variable named SQLSTATE must be declared. For more information,
see “Error Handling Alternatives”.

Related Topics

e Error Handling Alternatives

14-28

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.34 NESTED

Purpose

Indicates whether GLOBAL clauses in nested programs are to be generated. If the
compiler supports nested programs, use YES as the value of NESTED.

Syntax
NESTED={YES | NO}

Default
YES

Usage Notes

Cannot be entered inline.

14.7.35 NLS_LOCAL

Purpose

The NLS_LOCAL option determines whether Globalization Support (formerly called
NLS) character conversions are performed by the Pro*COBOL runtime library or by
the Oracle Server.

Syntax

NLS_LOCAL={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

This option is for use when passing National Character Set variables to and from the
server.

When NLS_LOCAL=YES, the runtime library (SQLLIB) locally performs blank-padding
and blank-stripping for host variables that have multibyte Globalization Support
datatypes. Continue to use this value only for Pro*COBOL applications written for
releases before releases 8.0.

When NLS_LOCAL=YES, because dynamic SQL statements are not processed at
precompile time, this option has no effect on dynamic SQL statements.

Also, when NLS_LOCAL=YES, columns storing multibyte Globalization Support data
cannot be used in embedded data definition language (DDL) statements. This
restriction cannot be enforced when precompiling, so the use of these column types
within embedded DDL statements results in an execution error rather than a
precompile error.

ORACLE 14-29

Chapter 14
Using Pro*COBOL Precompiler Options

When NLS_LOCAL=NO, blank-padding and blank-stripping operations are performed
by the Oracle Server for host variables that have multibyte Globalization Support
datatypes. Use for all new release 8.0, or later, applications.

The environment variable NLS_NCHAR specifies the character set used for National
Character Set data. (NCHAR, NVARCHAR2, NCLOB). If it is not specified, the
character set defined or defined indirectly by NLS _LANG will be used. See “Setting Up
a Globalization Support Environment” for details.

14.7.36 ONAME

Purpose

Specifies the name of the output file.

Syntax
ONAME=filename

Default

System dependent

Usage Notes
Cannot be entered inline.

Use this option to specify the name of the output file, where the name differs from that
of the input file. For example, if you issue

procob | NAME=ny _t est

the default output filename is my_t est . cob. If you want the output filename to be
nmy_test_1.cob, issue the command

procob | NAME=ny test ONAME=ny test 1.cob

Note that you should add the .cob extension to files specified using ONAME. There is
no default extension with the ONAME option.

Attention: Oracle recommends that you not let the output filename default, but rather
name it explicitly using ONAME.

14.7.37 ORACA

ORACLE

Purpose

Specifies whether a program can use the Oracle Communications Area (ORACA).

Syntax
ORACA={YES | NO}

Default

NO

14-30

Chapter 14
Using Pro*COBOL Precompiler Options

Usage Notes

When ORACA=YES, you must place the INCLUDE ORACA statement in your
program.

14.7.38 ORECLEN

Purpose

Specifies the record length of the output file.

Syntax
ORECLEN-=integer

Default
80

Usage Notes
Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value of IRECLEN.
The maximum value allowed is system-dependent.

14.7.39 OUTLINE

ORACLE

Purpose

Indicates that the outline SQL file needs to be generated for the SQL statements.

Syntax

outline={yes | no | category_name}

Default

no

Usage Notes

The outline SQL file should be in the DEFAULT category if the value is yes and the
generated outline format is

DEFAULT _<fil ename>_<fil et ype>_<sequence_no>

If the category name is mentioned, then the SQL file should be generated in the
category mentioned. The generated outline format for this is

<category_nane> <filename>_<fil et ype>_<sequence_no>
The outline SQL file is not generated if the value is no.

Semantic check should be full when this option is turned on, which means option
sqglcheck=full/semantics. If sqlcheck=syntax/limited/none, then error will be generated.

14-31

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.40 OUTLNPREFIX

Purpose

Controls the generation of the outline names.

Syntax

outlnprefix={none | prefix_name}

Default

no

Usage Notes

If outlnprefix=prefix_name, then the outline format
<cat egory_name> <fil enanme> <filetype>

is replaced with <prefi x_name> for the outline names.

If the length of the outline name exceeds 128 bytes, then this option is helpful for the
user who can just specify the prefix name.

If outinprefix=none, then the outline names are generated by the system. The
generated format is

<category_nane>_<fil ename>_<fil et ype>_<sequence_no>
Semantic check should be full when this option is turned on, which means option

sqlcheck=full/semantics. If sqlcheck=syntax/limited/none, and/or outline=false, then
error will be generated.

14.7.41 PAGELEN

Purpose

Specifies the number of lines for each physical page of the listing file.

Syntax
PAGELEN=integer

Default
66

Usage Notes

Cannot be entered inline. The maximum value allowed is system-dependent.

ORACLE 14-32

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.42 PICN_ENDIAN

Purpose

Maintains platform endianness (little endian for Linux and Windows; big endian for
Solaris) in PIC N variables.

Syntax
picn_endian={BIG | OS}
Default

BIG

Usage Notes
If picn_endian=big, then PIC N variables are bound with character set ID AL16UTF16.
If picn_endian=0s then PIC N variables are bound with character set ID UCS2.

The default value for this option is "big" to preserve the current behavior. This option is
ignored if NLS_NCHAR is not AL16UTF16.

Character set form for PIC N variables can be set by using the existing Pro*Cobol
command line option: charset_picn={nchar_charset | db_charset}

14.7.43 PICX

ORACLE

Purpose

Specifies the default datatype of PIC X variables.

Syntax
PICX={CHARF | VARCHARZ2}

Default
CHARF

Usage Notes
Can be entered only on the command line or in a configuration file.

Starting in Pro*xCOBOL 8.0, the default datatype of PIC X, N, or G variables was
changed from VARCHAR2 to CHARF. PICX is provided for backward compatibility.

This new default behavior is consistent with the normal COBOL move semantics. Note
that this is a change in behavior for the case where you are inserting a PIC X variable
(with MODE=ORACLE) into a VARCHAR2 column. Any trailing blanks which had
formerly been trimmed will be preserved. Note also, that the new default lessens the
occurrence of the following anomaly: Using a PIC X bind variable initialized with
trailing blanks in a WHERE clause would never match a value with the same number
of trailing blanks which was stored in a char column because the bind variable's trailing
blanks were stripped before the comparison.

14-33

Chapter 14
Using Pro*COBOL Precompiler Options

When PICX=VARCHAR2, Oracle treats local CHAR variables in a PL/SQL block like
variable-length character values. When PICX=CHARF, however, Oracle treats the
CHAR variables like ANSI-compliant, fixed-length character values. See “Default for
PIC X" for an extensive discussion.

Related Topics
e Default for PIC X

14.7.44 PLAN_BASELINE

Purpose

Creates a SQL Plan Baseline by specifying the module name.
Syntax
PLAN_BASELINE={module_name | YES | NO}

Default

NO

Usage Notes

The module name will become a part of the unique plan name generated by
appending the filename, file type, and sequence number.

14.7.45 PLAN_PREFIX

Purpose

Ensures that the plan name does not exceed 128 bytes.
Syntax

PLAN_PREFIX={prefix_name | none}

Default

none

Usage Notes

It is an optional command. The default is none which means that no prefix name is
used, and if the plan name exceeds 128 bytes an error message is generated.

14.7.46 PLAN_RUN

ORACLE

Purpose

Executes the generated SQL file.

Syntax
PLAN_RUN={YES | NO}

14-34

Chapter 14
Using Pro*COBOL Precompiler Options

Default

NO

Usage Notes

If the PLAN_RUN option is not set then the generated SQL file is not executed.

14.7.47 PLAN_FIXED

Purpose

Specifies whether or not the created plan baseline is fixed or non-fixed.

Syntax
PLAN_FIXED={ YES | NO }

Default

YES

Usage Notes

When set to NO, a non-fixed Plan Baseline is created.

14.7.48 PLAN_ENABLED

Purpose

Enables the use of the Plan Baseline that is created.

Syntax
PLAN_ENABLED={ YES | NO }

Default
YES

Usage Notes

When set to the default, YES, the created Plan Baseline is used for plan selection.
When set to NO, the Plan Baseline is created, but is not used until enabled manually.

14.7.49 MEMFORPREFETCH

ORACLE

Purpose

Use this option to speed up queries by pre-fetching the number of rows that can be
accommodated in the specified memory.

Syntax
MEMFORPREFETCH=integer

14-35

Chapter 14
Using Pro*COBOL Precompiler Options

Default

No value set.

Usage Notes

This option can be used in configuration file or on the command line. The value of the
integer is used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used inline it must be placed before OPEN statements with explicit cursors.
Then the number of rows pre-fetched when that OPEN is done is determined by the
last in-line MEMFORPREFETCH option in effect.

The MEMFORPREFETCH default is no-value-is-set. To turn off prefetching, use
MEMFORPREFETCH=0 on the command line.

Prefetching is turned off when LONG or LOB columns are being accessed.
MEMFORPREFETCH is used to enhance the performance of single row fetches.
MEMFORPREFETCH values have no effect when doing array fetches, regardless of
which value is assigned.

There is no single perfect prefetch memory value that can be used to assist all the
fetches in an application.

Therefore, when using the MEMFORPREFETCH option, you should test different
values to give a general improvement across all statements in the program. Note that
if certain statements need to be tuned individually, the MEMFORPREFETCH option
can be specified inline using EXEC ORACLE OPTION. Note that this will affect all
fetch statements that follow the command in your program. Select the appropriate
prefetch memory to enhance the performance of any particular FETCH statement. To
achieve this individual prefetch count, you should use the inline prefetch option rather
than from the command line.

14.7.50 PREFETCH

ORACLE

Purpose

Use this option to speed up queries by pre-fetching a given number of rows.

Syntax
PREFETCH=integer

Default
1

Usage Notes

Can be used in a configuration file or on the command-line. The value of the integer is
used for execution of all queries using explicit cursors, subject to the rules of
precedence.

When used in-line it must be placed before OPEN statements with explicit cursors.
Then the number of rows pre-fetched when that OPEN is done is determined by the
last in-line PREFETCH option in effect.

14-36

Chapter 14
Using Pro*COBOL Precompiler Options

The PREFETCH default is 1. To turn off prefetching, use PREFETCH=0 on the
command line.

Prefetching is turned off when LONG or LOB columns are being accessed.
PREFETCH is used to enhance the performance of single row fetches. PREFETCH
values have no effect when doing array fetches, regardless of which value is assigned.

There is no single perfect prefetch number that can be used to assist all the fetches in
an application.

Therefore, when using the PREFETCH option, you should test different values to give
a general improvement across all statements in the program. Note that if certain
statements need to be tuned individually, the PREFETCH option can be specified in
line using EXEC ORACLE OPTION. Note that this will affect all fetch statements that
follow the command in your program. Select the appropriate prefetch number to
enhance the performance of any particular FETCH statement. To achieve this
individual prefetch count, you should use the inline prefetch option. (Rather than from
the command line.)

The maximum value is 9999. See “The PREFETCH Precompiler Option” for further
discussion.

Related Topics
¢ The PREFETCH Precompiler Option

14.7.51 RELEASE_CURSOR

ORACLE

Purpose

Specifies how the cursors for SQL statements and PL/SQL blocks are handled in the
cursor cache.

Syntax
RELEASE_CURSOR={YES | NO}

Default

NO

Usage Notes

You can use RELEASE_CURSOR to improve the performance of your program. For
more information, see .

When a SQL data manipulation statement is executed, its associated cursor is linked
to an entry in the cursor cache. The cursor cache entry is in turn linked to an Oracle
private SQL area, which stores information needed to process the statement.
RELEASE_CURSOR controls what happens to the link between the cursor cache and
private SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, ProxCOBOL immediately removes the link. This frees memory
allocated to the private SQL area and releases parse locks. To make sure that
associated resources are freed when you CLOSE a cursor, you must specify
RELEASE_CURSOR=YES.

14-37

Chapter 14
Using Pro*COBOL Precompiler Options

When RELEASE_CURSOR=NO, the link is maintained. Pro*xCOBOL does not reuse
the link unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are executed often
because it speeds up subsequent executions. There is no need to re-parse the
statement or allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before executing the SQL
statement. For inline use with explicit cursors, set RELEASE_CURSOR before
opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD CURSOR=YES. For
information showing how these two options interact, see “Performance Tuning”.

Related Topics

* Precompiler Options

14.7.52 RUNOUTLINE

Purpose

Provides the developer with the option of executing "create outline" statements either
by using precompiler or by the developer manually at a later time.

Syntax

runoutline={yes | no}

Default

no

Usage Notes

If runoutline=yes, then the generated 'create outline' statements are executed by the
precompiler/translator at the end of a successful precompilation.

The outline option should be set to true or category_name when runoutline is used.
Semantic check should be full when this option is turned on, which means option
sqglcheck=full/semantics. If sqlcheck=syntax/limited/none, then error will be generated.

14.7.53 SELECT_ERROR

ORACLE

Purpose

Specifies whether your program generates an error when a SELECT statement returns
more than one row or more rows than a host array can accommodate.

Syntax
SELECT_ERROR={YES | NO}

Default
YES

14-38

Chapter 14
Using Pro*COBOL Precompiler Options

Usage Notes

When SELECT_ERROR=YES, an error is generated if a single-row select returns too
many rows or an array select returns more rows than the host array can
accommodate.

When SELECT_ERROR=NO, no error is generated when a single-row select returns
too many rows or when an array select returns more rows than the host array can
accommodate.

Whether you specify YES or NO, a random row is selected from the table. To ensure a
specific ordering of rows, use the ORDER BY clause in your SELECT statement.
When SELECT_ERROR=NO and you use ORDER BY, Oracle returns the first row, or
the first n rows if you are selecting into an array. When SELECT_ERROR=YES,
whether or not you use ORDER BY, an error is generated if too many rows are
returned.

14.7.54 SQLCHECK

ORACLE

Purpose
Specifies the type and extent of syntactic and semantic checking..

When SQLCHECK=SEMANTICS or FULL, the SQL statements are packaged/bundled
into an IDL objects using a generic grammar during parsing. The generic grammar will
not try to understand the SQL syntax, it can only identify the host variables, indicator
variables, and the possible SQL identifiers. During the semantic phase, the validity of
the host and indicator variables are checked in the same manner it is now being done
for SQL. The semantics like the table name ,column names,types will be checked in
the same way it is now being handled for SQL.

The new unified parser:

1. Precompiles all the existing precompiler applications.

2. Supports the following SQL statements completely (all clauses of these SQL
statements):

a. SELELCT statement
b. INSERT statement

DELETE statement

d. UPDATE statement

e. Body of the cursor in a DECLARE CURSOR statement

0

Syntax
SQLCHECK={SEMANTICS | FULL | SYNTAX | LIMITED}

Default

SYNTAX

Usage Notes

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED.

14-39

ORACLE

Chapter 14
Using Pro*COBOL Precompiler Options

Pro*COBOL can help you debug a program by checking the syntax and semantics of
embedded SQL statements and PL/SQL blocks. Any errors found are reported at
precompile time.

You control the level of checking by entering the SQLCHECK option inline or on the
command line, or both inline and on the command line. However, the level of checking
you specify inline cannot be higher than the level you specify (or accept by default) on
the command line.

Pro*COBOL generates an error when PL/SQL reserved words are used in SQL
statements, even though the SQL statements are not themselves PL/SQL. If a PL/SQL
reserved word must be used as an identifier, you can enclose it in double-quotes (*).

When SQLCHECK=SEMANTICS, Pro*COBOL checks the syntax and semantics of

» Data manipulation statements such as INSERT and UPDATE
e PL/SQL blocks

However, Pro*COBOL checks only the syntax of remote data manipulation statements
(those using the AT db_name clause).

Pro*COBOL gets the information for a semantic check from embedded DECLARE
TABLE statements or, if you specify the option USERID, by connecting to Oracle and
accessing the data dictionary. You need not connect to Oracle if every table
referenced in a data manipulation statement or PL/SQL block is defined in a
DECLARE TABLE statement.

If you connect to Oracle but some information cannot be found in the data dictionary,
you must use DECLARE TABLE statements to supply the missing information. During
precompilation, a DECLARE TABLE definition overrides a data dictionary definition if
they conflict.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed
PL/SQL blocks in a host program, you must specify SQLCHECK=SEMANTICS and
the option USERID.

When SQLCHECK=SEMANTICS or FULL, the SQL statements are first locally parsed.
The verification of the host and indicator variables, and checking for the validity of SQL
identifiers is done by using embedded DECLARE TABLE statement or by connecting
to server when userid is specified in command line. Now the parsing is done twice
when SQLCHECK = SEMANTICS or FULL once by the precompiler and once by the
PL/SQL. When a new syntax is made available by SQL, the precompiler fails on the
new syntax before calling PL/SQL interfaces if the local SQL grammar is not updated
to accept the new syntax.

When SQLCHECK=SYNTAX, Pro*COBOL checks the syntax of data manipulation
statements. The SQL statements are locally parsed. With this command line option,
the precompiler does not verify the table name or column names. When
SQLCHECK=SYNTAX, the syntax of the SQL statements is checked by using the
client side SQL interface.

No semantic checking is done. DECLARE TABLE statements are ignored and PL/SQL
blocks are not allowed. When checking data manipulation statements, Pro*COBOL
uses Oracle syntax rules, which are downwardly compatible. Specify
SQLCHECK=SYNTAX when migrating your precompiled programs.

Table 14-5 summarizes the checking done by SQLCHECK. For more information
about syntactic and semantic checking, see “Syntactic and Semantic Checking”.

14-40

ORACLE

Chapter 14
Using Pro*COBOL Precompiler Options

Table 14-5 Checking Done by SQLCHECK
|

- SQLCHECK= - SQLCHECK=S -
SEMANTICS YNTAX

- Syntax Semantics Syntax Semantics

DML X X X -

Remote X - X -

DML

PL/SQL X X - -

Restrictions of Unified Parser
The restrictions of unified parser for Pro*COBOL are:

* Pro*COBOL does not support variables without a ":' (colon).

» Define tables cannot be used. In CSF mode, plsqgl fails when decl are table
statement is passed to plsql.

* The following example fails if sql check=synt ax and conmon_par ser =yes is used:

sel ect enane into :enpname from emp@bl ink;

In earlier versions, only local parsing is done when sqglcheck=syntax is used. But
now when sql check=synt ax and cormmmon_par ser =yes, the statement is just bundled
and sent to pcisyn(). PLSQL fails if connection is not there when dblinks are used.

The above statement can be precompiled with:
sql check=ful | userid=<userid> commn_par ser=yes

« Error handling for insert does not follow the usual sequence. Consider the
following statement where XYZ is a group item.

insert into emp (enpno, enane) values (:XYZ)

PLSQL does not allow group items or structures while doing syntax check for
insert statements (restriction from PLSQL.). It expects that the group item be
broken into the individual elements for inserts. So the precompiler should expand
the above statementtoinsert into enp (enpno, enanme) values (:bl,:b2) inthe
syntax phase itself.

This expansion is not possible in syntax phase. Therefore, pci syn() is not called in
syntax phase of precompiler the way it is done for other statements. The
statement is deferred till semantic phase of precompiler for insert statement only.
The net effect is that the error messages might not be following the usual
sequence. For example:

EXEC SQL insert into enp (enmpno, enanme) alues (:XYZ) END EXEC
AAANN gyntax error at 'al ues'
EXEC SQL sel ect enane into :enpnane fro enp END- EXEC.
AN syntax error at 'fro'

Ideally error sequence should be as follows:

syntax error at "alues' in | NSERT
syntax error at 'fro' in SELECT

14-41

Chapter 14
Using Pro*COBOL Precompiler Options

Because of the restrictions discussed earlier, the error sequence will be:

syntax error at 'fro' in SELECT
syntax error at 'alues' in | NSERT

Note:

The line numbers will be there in the reported errors. Therefore, Pro*Cobol
programmers can identify the line very easily, even though it is not in the
order used in the program.

Related Topics

e Syntactic and Semantic Checking Basics

14.7.55 STMT_CACHE

Purpose

Denotes the Statement cache size for the dynamic SQL statements.
Syntax
STMT_CACHE = Range is 0 to 65535

Default
0

Usage Notes

The stmt_cache option can be set to hold the anticipated number of distinct dynamic
SQL statements in the application.

14.7.56 TYPE_CODE

ORACLE

Purpose

This micro option of MODE specifies whether ANSI or Oracle datatype codes are used
in ANSI dynamic SQL method 4. Its setting is the same as the setting of MODE option.

Syntax
TYPE_CODE={ORACLE | ANSI}

Default
ORACLE

Usage Notes
Cannot be entered inline.

See the possible option settings in “TYPE_CODE Option Settings”.

14-42

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.57 UNSAFE_NULL

Purpose

Specifying UNSAFE_NULL=YES prevents generation of ORA-01405 messages when
fetching NULLs without using indicator variables.

Syntax
UNSAFE_NULL={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.
The UNSAFE_NULL=YES is allowed only when MODE=ORACLE.

The UNSAFE_NULL option has no effect on host variables in an embedded PL/SQL
block. You must use indicator variables to avoid ORA-01405 errors.

When UNSAFE_NULL=YES, no error is returned if a SELECT or FETCH statement
selects a NULL, and there is no indicator variable associated with the output host
variable. When UNSAFE_NULL=NO, selecting or fetching a NULL column or
expression into a host variable that has no associated indicator variable causes an
error (SQLSTATE is 22002; SQLCODE is ORA-01405).

14.7.58 USERID

ORACLE

Purpose

Specifies an Oracle username and password.

Syntax
USERID=username/password[@dbname]

Default

None

Usage Notes
Cannot be entered inline.

When SQLCHECK=SEMANTICS, if you want Pro*COBOL to get needed information
by connecting to Oracle and accessing the data dictionary, you must also specify
USERID. The database alias is optional. Do not enter the brackets.

14-43

Chapter 14
Using Pro*COBOL Precompiler Options

14.7.59 VARCHAR

Purpose

The VARCHAR option instructs Pro*COBOL to treat the COBOL group item described
in “Embedded SQL" as a VARCHAR datatype.

Syntax
VARCHAR={YES | NO}

Default
NO

Usage Notes
Cannot be entered inline.

When VARCHAR=YES, the implicit group item described in “Embedded SQL” is
accepted as a VARCHAR external datatype with a length field and a string field.

When VARCHAR=NO, Pro*COBOL does not accept the implicit group items as
VARCHAR external datatypes.

Related Topics
* Embedded SQL

14.7.60 XREF

Purpose

Specifies whether a cross-reference section is included in the listing file.
Syntax

XREF={YES | NO}

Default

YES

Usage Notes

When XREF=YES, cross references are included for host variables, cursor names,
and statement names. The cross references show where each object is defined and
referenced in your program.

When XREF=NO, the cross-reference section is not included.

ORACLE 14-44

Operating System Dependencies

Some details of COBOL programming vary from one system to another. This appendix
is a collection of all system-specific issues regarding Pro*COBOL. References are
provided, where applicable, to other sources in your document set.

A.1 System-Specific References in this Manual

System-specific references are described in the following section, grouped by subject
area.

A.1.1 COBOL Versions

The Pro*COBOL Precompiler supports the standard implementation of COBOL for
your operating system (usually COBOL-85 or COBOL-74). Some platforms may
support both COBOL implementations. Check your Oracle system-specific
documentation.

A.1.2 Host Variables

How you declare and name host variables depends on which COBOL compiler you
use. Check your COBOL user's guide for details about declaring and naming host
variables.

A.1.2.1 Declaring

Declare host variables according to COBOL rules, specifying a COBOL datatype
supported by Oracle. Table 4-6 shows the COBOL datatypes and pseudotypes you
can specify. However, your COBOL implementation might not include all of them.

A.1.2.2 Naming

Host variable names must consist only of letters, digits, and hyphens. They must begin
with a letter. They can be any length, but only the first 30 characters are significant.
Your compiler might allow a different maximum length.

Due to a ProxCOBOL limitation, when interacting with SQLLIB (C routines), some
unpredictable results may occur unless boundaries for host variables are properly
aligned. Refer to your COBOL documentation for specific information on defining host
variable boundary alignment. Work-arounds could include:

e Manual alignment using FILLER
* FORCE the boundary by using 01 level entries

» If the data source is third party code, then use temporary variables at 77 level
entries or 01 level entries, and use those as host variables.

ORACLE A-1

Appendix A
System-Specific References in this Manual

A.1.3 INCLUDE Statements

You can INCLUDE any file. When you precompile your Pro*xCOBOL program, each
EXEC SQL INCLUDE statement is replaced by a copy of the file named in the
statement.

If your system uses file extensions but you do not specify one, the Pro*COBOL
Precompiler assumes the default extension for source files (usually COB). The default
extension is system-dependent. Check your Oracle system-specific documentation.

If your system uses directories, you can set a directory path for included files by
specifying the precompiler option INCLUDE=path. You must use INCLUDE to specify
a directory path for nonstandard files unless they are stored in the current directory.
The syntax for specifying a directory path is system-specific. Check your Oracle
system-specific documentation.

A.1.4 MAXLITERAL Default

With the MAXLITERAL precompiler option you can specify the maximum length of
string literals generated by the precompiler, so that compiler limits are not exceeded.
The MAXLITERAL default value is 256, but you might have to specify a lower value.

For example, if your COBOL compiler cannot handle string literals longer than 132
characters, specify "MAXLITERAL=132." Check your COBOL compiler user's guide.
For more information about the MAXLITERAL option, see Precompiler Options

A.1.5 PIC N or Pic G Clause for Multi-byte Globalization Support
Characters

Some COBOL compilers may not support the use of the PIC N or PIC G clause for
declaring multibyte Globalization Support character variables. Check your COBOL
user's guide before writing source code that uses these clauses to declare multibyte
character variables.

A.1.6 RETURN-CODE Special Register May Be Unpredictable.

The contents of the RETURN-CODE special register (for those systems that support it)
are unpredictable after any SQL statement or SQLLIB function.

A.1.7 Byte-Order of Binary Data

On some platforms, the COBOL compiler reverses the byte-ordering of binary data.
See your platform-specific documentation for the COMP5 precompiler option.

Removed reference to NT - user comment 9561

ORACLE A-2

Reserved Words, Keywords, and
Namespaces

Topics in this appendix include:

* Reserved Words and Keywords

* Reserved Namespaces

B.1 Reserved Words and Keywords

Some words are reserved by Oracle. That is, they have a special meaning to Oracle
and cannot be redefined. For this reason, you cannot use them to name database
objects such as columns, tables, or indexes. To view the lists of the Oracle reserved
words for SQL and PL/SQL, see the Oracle Database SQL Language Reference and
the Oracle Database PL/SQL Language Reference.

Like COBOL keywords, you cannot use Pro*COBOL keywords as variables in your
program(s). Otherwise, an error will be generated. An error may result if they are used
as the name of a database object such as a column. Here are the keywords used in

Pro*COBOL.
Keywords Keywords Keywords
all allocate alter
analyze and any
append arraylen as
asc assign at
audit authorization avg
begin between bind
both break buffer
buffering by call
cast char character
character_set _name charf charz
check chunksize close
collection comment commit
connect constraint constraints
context continue convbufsz
copy count create
current currval cursor
data database date
dateformat datelang datetime_interval_code
datetime_interval_precision day deallocate

ORACLE

B-1

Appendix B
Reserved Words and Keywords

Keywords Keywords Keywords
dec decimal declare
default define delete
deref desc describe
descriptor directory disable
display distinct do

double drop eject

else enable end

endif end-exec erase
escape exec execute
exists explain extract
fetch file fileexists
filename first float

flush for force
found free from
function get global

go goto grant
group having hold
host_stride_length hour iaf
identified ifdef ifndef
immediate in include
indicator indicator_stride_length input
insert integer internal_length
intersect interval into

is isopen istemporary
last leading length
level like list

load lob local

lock long max
message min minus
minute mode month
multiset name national_character
nchar nchar_cs next
nextval noaudit not
notfound nowait null
nullable number numeric
nvarchar nvarchar2 object

ocibfilelocator
ocidate

ociraw

ORACLE

ocibloblocator
ociextproccontext

ocirowid

ocicloblocator
ocinumber

ocistring

B-2

Appendix B
Reserved Words and Keywords

Keywords Keywords Keywords
octet_length of one

only open option

or oracle order
output overlaps overpunch
package partition perform
precision prepare prior
procedure put raw

read real ref
reference register release
rename replace return
returned_length returned_octet_length returning
revoke role rollback
rowid rownum savepoint
scale second section
select set skipl

skip2 skip3 smallint
some sql sql-context
sql-cursor sglerror sqglwarning
start statement stddev
stop string sum
sysdate sysdba sysoper
table temporary threads
time timestamp timezone_hour
timezone_minute to tools

title trailing transaction
trigger trim truncate
type uid ulong_varchar
union unique unsigned

user_defined_type_name

user_defined_type_name_length

user_defined_type_schema

user_defined_type_schema_le user_defined_type_version update

ngth

use user using

validate value values

var varchar varchar2

variables variance varnum

varraw view whenever

where with work

write year zone
ORACLE B-3

Appendix B
Reserved Namespaces

B.2 Reserved Namespaces

Table B-1 contains a list of namespaces that are reserved by Oracle. The initial
characters of subprogram names in Oracle libraries are restricted to the character
strings in this list. Because of potential name conflicts, use subprogram names that do
not begin with these characters.

ORACLE

For example, the Oracle Net Transparent Network Service functions all begin with the
characters "NS," so avoid writing subprograms with names beginning with "NS."

Table B-1 Reserved Namespaces
___|
Namespace Library

XA external functions for XA applications only

SQ external SQLLIB functions used by Oracle Precompiler and SQL*Module

applications

0O, OClI external OCI functions internal OCI functions

UPI, KP function names from the Oracle UPI layer

NA Oracle Net Native services product

NC Oracle Net RPC project

ND Oracle Net Directory

NL Oracle Net Network Library layer

NM Oracle Net Net Management Project

NR Oracle Net Interchange

NS Oracle Net Transparent Network Service

NT Oracle Net Drivers

NZ Oracle Net Security Service

OSN Oracle Net V1

TTC Oracle Net Two task

GEN, L, ORA Core library functions

LI, LM, LX function names from the Oracle Globalization Support layer
S function names from system-dependent libraries

B-4

Performance Tuning

This appendix shows you some simple, easy-to-apply methods for improving the
performance of your applications. Using these methods, you can often reduce
processing time by 25 percent or more. Topics are:

» Causes of Poor Performance

e Improving Performance

e Using Host Tables

e Using PL/SQL and Java

e Optimizing SQL Statements

e Using Indexes

e Taking Advantage of Row-Level Locking
e Eliminating Unnecessary Parsing

e About Using Oracle Connection Manager in Traffic Director Mode

C.1 Causes of Poor Performance

ORACLE

One cause of poor performance is high Oracle communication overhead. Oracle must
process SQL statements one at a time. Thus, each statement results in another call to
Oracle and higher overhead. In a networked environment, SQL statements must be
sent over the network, adding to network traffic. Heavy network traffic can slow down
your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so
flexible, you can get the same result using two different statements. Using one
statement might be less efficient. For example, the following two SELECT statements
return the same rows (the name and number of every department having at least one
employee):

EXEC SQL SELECT DNAME, DEPTNO

FROM DEPT

WHERE DEPTNO I N (SELECT DEPTNO FROM EMP)
END- EXEC.

Contrasted with:

EXEC SQL SELECT DNAME, DEPTNO

FROM DEPT

VHERE EXI STS

(SELECT DEPTNO FROM EMP VHERE DEPT. DEPTNO = EMP. DEPTNO)
END- EXEC.

The first statement is slower because it does a time-consuming full scan of the EMP
table for every department number in the DEPT table. Even if the DEPTNO column in
EMP is indexed, the index is not used because the subquery lacks a WHERE clause
naming DEPTNO.

C-1

Appendix C
Improving Performance

Another cause of poor performance is unnecessary parsing and binding. Recall that
before executing a SQL statement, Oracle must parse and bind it. Parsing means
examining the SQL statement to make sure it follows syntax rules and refers to valid
database objects. Binding means associating host variables in the SQL statement with
their addresses so that Oracle can read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and
binding, which adds noticeably to processing overhead.

C.2 Improving Performance

If you are unhappy with the performance of your precompiled programs, there are
several ways you can reduce overhead.

You can greatly reduce Oracle communication overhead, especially in networked
environments, by

e Using host tables

* Using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by
e Optimizing SQL statements

* SQL Statement Caching

* Using indexes

e Taking advantage of row-level locking

* Eliminating unnecessary parsing

* Avoiding unnecessary reparsing

The following sections look at each of these ways to cut overhead.

C.3 Using Host Tables

ORACLE

Host tables can boost performance because they let you manipulate an entire
collection of data with a single SQL statement. For example, suppose you want to
insert salaries for 300 employees into the EMP table. Without tables your program
must do 300 individual inserts—one for each employee. With arrays, only one INSERT
is necessary. Consider the following statement:

EXEC SQL | NSERT I NTO EMP (SAL) VALUES (: SALARY) END- EXEC.

If SALARY is a simple host variable, Oracle executes the INSERT statement once,
inserting a single row into the EMP table. In that row, the SAL column has the value of
SALARY. To insert 300 rows this way, you must execute the INSERT statement 300
times.

However, if SALARY is a host table of size 300, Oracle inserts all 300 rows into the
EMP table at once. In each row, the SAL column has the value of an element in the
SALARY table.

For more information, see Host Tables

C-2

Appendix C
Using PL/SQL and Java

C.4 Using PL/SQL and Java

As Figure C-1 shows, if your application is database-intensive, you can use control
structures to group SQL statements in a PL/SQL block, then send the entire block to
Oracle. This can drastically reduce communication between your application and the
database.

Also, you can use PL/SQL and Java subprograms to reduce calls from your
application to the database. For example, to execute ten individual SQL statements,
ten calls are required, but to execute a subprogram containing ten SQL statements,
only one call is required.

Unlike anonymous blocks, PL/SQL and Java subprograms can be compiled separately
and stored in a database. When called, they are passed to the PL/SQL engine
immediately. Moreover, only one copy of a subprogram need be loaded into memory
for execution by multiple users.

Figure C-1 PL/SQL Boosts Performance
PL/SQL Increases Performance
Especially in Networked Environments
SQL >
— SQL
Application Other DBMSs
SQL — >
= SQL
Application Oracle8i
with PL/SQL
Oracle8i

and Stored
Procedures

C.5 Optimizing SQL Statements

ORACLE

For every SQL statement, the optimizer generates an execution plan, which is a series
of steps that Oracle takes to execute the statement. These steps are determined by
rules given in the Oracle Database Advanced Application Developer's Guide.
Following these rules will help you write optimal SQL statements.

C-3

Appendix C
SQL Statement Caching

C.5.1 Optimizer Hints

For every SQL statement, the optimizer generates an execution plan, which is a series
of steps that Oracle takes to execute the statement. In some cases, you can suggest
the way to optimize a SQL statement. These suggestions, called hints, let you
influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit the
scope of information used to optimize a SQL statement, while others suggest overall
strategies. You can use hints to specify the:

e Optimization approach for a SQL statement
e Access path for each referenced table
e Join order for a join

e Method used to join tables

C.5.1.1 Giving Hints

You give hints to the optimizer by placing them in a C-style Comment immediately
after the verb in a SELECT, UPDATE, or DELETE statement. You can choose rule-
based or cost-based optimization. With cost-based optimization, hints help maximize
throughput or response time. In the following example, the ALL_ROWS hint helps
maximize query throughput:

EXEC SQL SELECT /*+ ALL_ROAS (cost-based) */ EMPNO, ENAME, SAL
| NTO : EMP- NUMBER, : EMP- NAME, : SALARY
FROM EMP
WHERE DEPTNO = : DEPT- NUMBER

END- EXEC.

The plus sign (+), which must immediately follow the Comment opener, indicates that
the Comment contains one or more hints. Notice that the Comment can contain
remarks as well as hints.

For more information about optimizer hints, see Performance and Scalability.
Trace Facility

You can use the SQL trace facility and the EXPLAIN PLAN statement to identify SQL
statements that might be slowing down your application. The trace facility generates
statistics for every SQL statement executed by Oracle. From these statistics, you can
determine which statements take the most time to process. You can then concentrate
your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement in
your application. You can use the execution plan to identify inefficient SQL statements.

See Also: Tools for Performance for instructions on using trace tools and analyzing
their output.

C.6 SQL Statement Caching

Performance improvement is achieved in precompiler applications using statement
caching. Any program using dynamic SQL statements, where the cursors have to be

ORACLE C-4

Appendix C
Using Indexes

used with reparsing of the statements will have performance gain with statement
caching. With this new feature, the overall execution time will be decreased.

The stmt_cache option can be set to hold the anticipated number of distinct dynamic
SQL statements in the application. The customer can set the stmt_cache size with the
new precompiler command line option. An optimal value of stmt_cache can not be set,
as it depends on the input program behavior.

The performance can be measured with the change in the execution time (with and
without statement caching).

C.7 Using Indexes

Using rowids, an index associates each distinct value in a table column with the rows
containing that value. An index is created with the CREATE INDEX statement. For
details, see CREATE INDEX.

You can use indexes to boost the performance of queries that return less than 15% of
the rows in a table. A query that returns 15% or more of the rows in a table is executed
faster by a full scan, that is, by reading all rows sequentially. Any query that names an
indexed column in its WHERE clause can use the index. For guidelines that help you
choose which columns to index, see Using Indexes in Database Applications.

C.8 Taking Advantage of Row-Level Locking

By default, Oracle locks data at the row level rather than the table level. Row-level
locking allows multiple users to access different rows in the same table concurrently.
The resulting performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction
processing option. For more information about table locking, see "Using the LOCK
TABLE Statement” on "Using the LOCK TABLE Statement".

Applications that do online transaction processing benefit most from row-level locking.
If your application relies on table-level locking, modify it to take advantage of row-level
locking. In general, avoid explicit table-level locking.

C.9 Eliminating Unnecessary Parsing

ORACLE

Eliminating unnecessary parsing requires correct handling of cursors and selective use
of the following cursor management options:

* MAXOPENCURSORS
* HOLD_CURSOR
* RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL
areas.

Note: You can use the ORACA to get cursor cache statistics. See "Using the Oracle
Communications Area".

C-5

Appendix C
Eliminating Unnecessary Parsing

C.9.1 Handling Explicit Cursors

Recall that there are two types of cursors: implicit and explicit (see "Errors and
Warnings "). Oracle implicitly declares a cursor for all data definition and data
manipulation statements. However, for queries that return more than one row, you
should explicitly declare a cursor and fetch in batches rather than select into a host
table. You use the DECLARE CURSOR statement to declare an explicit cursor. How
you handle the opening and closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The OPEN
statement will use any new host-variable values. You can save processing time if you
do not close the cursor first.

Only CLOSE a cursor when you want to free the resources (memory and locks)
acquired by OPENIing the cursor. For example, your program should close all cursors
before exiting.

Note: To make performance tuning easier, the precompiler lets you reopen an already
open cursor. However, this is an Oracle extension to the ANSI/ISO embedded SQL
standard. So, when MODE=ANSI, you must close a cursor before reopening it.

C.9.1.1 Cursor Control

In general, there are three factors that affect the control of an explicitly declared
cursor:

* Using the DECLARE, OPEN, FETCH, and CLOSE statements.
* Using the PREPARE, DECLARE, OPEN, FETCH, and CLOSE statements
e COMMIT closes the cursor when MODE=ANSI

With the first way, beware of unnecessary parsing. The OPEN statement does the
parsing, but only if the parsed statement is unavailable because the cursor was closed
or never opened. Your program should declare the cursor, re-open it every time the
value of a host variable changes, and close it only when the SQL statement is no
longer needed.

With the second way, which is used in dynamic SQL Methods 3 and 4, the PREPARE
statement does the parsing, and the parsed statement is available until a CLOSE
statement is executed. Your program should prepare the SQL statement and declare
the cursor, re-open the cursor every time the value of a host variable changes, re-
prepare the SQL statement and re-open the cursor if the SQL statement changes, and
close the cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a
potential cause of unnecessary re-parsing of the SQL statement. In the next example,
both the OPEN and CLOSE statements are inside the outer loop. When MODE=ANSI,
the CLOSE statement must be positioned as shown, because ANSI requires a cursor
to be closed before being re-opened.

EXEC SQ. DECLARE enp_cursor CURSOR FOR
SELECT ENAME, SAL FROM EMP
WHERE SAL > : SALARY
AND SAL <= :SALARY + 1000
END- EXEC.
MOVE 0 TO SALARY.
TOP.

ORACLE C-6

Appendix C
Eliminating Unnecessary Parsing

EXEC SQL OPEN enp_cursor END- EXEC.
LOOP.
EXEC SQL FETCH enp_cursor INTO

IF SQLCCDE = 0
GO TO LOOP
ELSE
ADD 1000 TO SALARY
END- | F.
EXEC SQL CLOSE enp_cursor END- EXEC.
| F SALARY < 5000
GO TO TOP.

With MODE=ORACLE, however, by placing the CLOSE statement outside the outer
loop, you can avoid possible re-parsing at each iteration of the OPEN statement.

TOP.

EXEC SQL OPEN enp_cursor END-EXEC.
LOOP.

EXEC SQL FETCH enp_cursor INTO

IF SQLCCDE = 0
GO TO LOOP
ELSE
ADD 1000 TO SALARY
END- | F.
| F SALARY < 5000
GO TO TOP.
EXEC SQL CLOSE enp_cursor END- EXEC.

C.9.2 Using the Cursor Management Options

A SQL statement need be parsed only once unless you change its makeup. For
example, you change the makeup of a query by adding a column to its select list or
WHERE clause. The HOLD_CURSOR, RELEASE_CURSOR, and
MAXOPENCURSORS options give you some control over how Oracle manages the
parsing and re-parsing of SQL statements. Declaring an explicit cursor gives you
maximum control over parsing.

C.9.2.1 Private SQL Areas and Cursor Cache

When any statement is executed, its associated cursor is linked to an entry in the
cursor cache. The cursor cache is a continuously updated area of memory used for
cursor management. The cursor cache entry is in turn linked to a private SQL area.

The private SQL area, a work area created dynamically at run time by Oracle, contains
the parsed SQL statement, the addresses of host variables, and other information
needed to process the statement. Dynamic Method 3 lets you name a SQL statement,
access the information in its private SQL area, and, to some extent, control its
processing.

Figure C-2 represents the cursor cache after your program has done an insert and a
delete.

ORACLE ..

Appendix C
Eliminating Unnecessary Parsing

Figure C-2 Cursors Linked through the Cursor Cache

Cursor Cache

EXEC SQL INSERT ... €=—————>p E(1) <4——p Context Area
Cursor
EXEC SQL DELETE ... &—» E(2) <4——> Context Area
Cursor
E(MAXOPENCURSORS)

C.9.2.2 Resource Use

The maximum number of open cursors for each user session is set by the initialization
parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is
needed and there are no free cache entries, Oracle tries to reuse an entry. Its success
depends on the values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit
cursors, on the status of the cursor itself.

If the value of MAXOPENCURSORS is less than the number of statements that need
to be cached during the execution of the program, Oracle will search for cursor cache
entries to reuse once MAXOPENCURSORS cache entries have been exhausted. For
example, suppose the cache entry E(1) for an INSERT statement is marked as
reusable, and the number of cache entries already equals MAXOPENCURSORS. If
the program executes a new statement, cache entry E(1) and its private SQL area
might be reassigned to the new statement. To reexecute the INSERT statement,
Oracle would have to re-parse it and reassign another cache entry.

Oracle allocates an additional cache entry if it cannot find one to reuse. For example, if
MAXOPENCURSORS=8 and all eight entries are active, a ninth is created. If
necessary, Oracle keeps allocating additional cache entries until it runs out of memory
or reaches the limit set by OPEN_CURSORS. This dynamic allocation adds to
processing overhead.

Thus, specifying a low value for MAXOPENCURSORS with HOLD_CURSOR=NO (the
default) saves memory but causes potentially expensive dynamic allocations and de-
allocations of new cache entries. Specifying a high value for MAXOPENCURSORS
assures speedy execution but uses more memory.

C.9.2.3 Infrequent Execution

ORACLE

Sometimes, the link between an infrequently executed SQL statement and its private
SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle executes the SQL statement
and the cursor is closed, the precompiler marks the link between the cursor and cursor
cache as reusable. The link is reused as soon as the cursor cache entry to which it
points is needed for another SQL statement. This frees memory allocated to the

C-8

Appendix C
Eliminating Unnecessary Parsing

private SQL area and releases parse locks. However, because a prepared cursor must
remain active, its link is maintained even when HOLD_CURSOR=NO.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the
cursor is closed, the private SQL area is automatically freed and the parsed statement
lost. This might be necessary if, for example, you wish to conserve memory.

When RELEASE_CURSOR=YES, the link between the private SQL area and the
cache entry is immediately removed and the private SQL area freed. Even if you tried
to specify HOLD CURSOR=YES, Oracle must still reallocate memory for a private
SQL area and re-parse the SQL statement before executing it. Therefore, specifying
RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

C.9.2.4 Frequent Execution

The links between a frequently executed SQL statement and its private SQL area
should be maintained, because the private SQL area contains all the information
needed to execute the statement. Maintaining access to this information makes
subsequent execution of the statement much faster.

When HOLD CURSOR=YES, the link between the cursor and cursor cache is
maintained after Oracle executes the SQL statement. Thus, the parsed statement and
allocated memory remain available. This is useful for SQL statements that you want to
keep active because it avoids unnecessary re-parsing.

C.9.2.5 Effect on the Shared SQL Area

Oracle caches the parsed representations of SQL statements and PL/SQL in its
Shared SQL Cache. These representations are maintained until aged out by the need
for the space to be used for other statements. For more information, see the Oracle
Database Concepts manual. The behavior of the Oracle server in this respect is
unaffected by the Precompiler's cursor management settings and so can have the
following effects:

When RELEASE_CURSOR=YES and a statement is re executed, a request will
be sent to the server to parse the statement but a full parse may not be necessary
since the statement may still be cached.

* When using HOLD CURSOR=YES no locks are held on any objects referred to in
the statement and so a redefinition of one of the objects in the statement will force
the cached statement to become invalid and for the server to automatically
reparse the statement. This may cause unexpected results.

* Nonetheless, when RELEASE_CURSOR=YES, the re-parse might not require
extra processing because Oracle caches the parsed representations of SQL
statements and PL/SQL blocks in its Shared SQL Cache. Even if its cursor is
closed, the parsed representation remains available until it is aged out of the
cache.

C.9.2.6 Embedded PL/SQL Considerations

ORACLE

For the purposes of cursor management, an embedded PL/SQL block is treated just
like a SQL statement. When an embedded PL/SQL block is executed, a parent cursor
is associated with the entire block and a link is created between the cache entry and
the private SQL area in the PGA for the embedded PL/SQL block. Be aware that each
SQL statement inside the embedded block also requires a private SQL area in the
PGA. These SQL statements use child cursors that PL/SQL manages itself. The

C-9

Appendix C
Avoiding Unnecessary Reparsing

disposition of the child cursors is determined through its associated parent cursor.
That is, the private SQL areas used by the child cursors are freed after the private
SQL area for its parent cursor is freed.

Note:

Using the defaults, HOLD_CURSOR=YES and RELEASE_CURSOR=NO, after
executing a SQL statement with an earlier Oracle version, its parsed representation
remains available. With Oracle, under similar conditions, the parsed representation
remains available only until it is aged out of the Shared SQL Cache. Normally, this is
not a problem, but you might get unexpected results if the definition of a referenced
object changes before the SQL statement is re-parsed.

C.9.2.7 Parameter Interactions

HOLD_CURSOR and RELEASE _CURSOR Interactions shows how HOLD CURSOR
and RELEASE_CURSOR interact. Notice that HOLD CURSOR=NO overrides
RELEASE_CURSOR=NO and that RELEASE_CURSOR=YES overrides
HOLD_CURSOR=YES.

Table C-1 HOLD CURSOR and RELEASE CURSOR Interactions
]

HOLD_CURSOR RELEASE_CURSOR Links are...

NO NO marked as reusable
YES NO maintained

NO YES removed immediately
YES YES removed immediately

C.10 Avoiding Unnecessary Reparsing

When an embedded SQL statement is executed in a loop, it gets parsed only once.
However, the execute phase of the SQL statement can result in errors, and statements
are reparsed, with the following exceptions:

* ORA-1403 (not found)
e ORA-1405 (truncation)
e ORA-1406 (null value)

By correcting the errors, you can eliminate this unnecessary reparsing.

C.11 About Using Oracle Connection Manager in Traffic
Director Mode

ORACLE

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed between
supported database clients and database instances.

Supported clients from Oracle Database 11g Release 2 (11.2) and later can connect to
Oracle Connection Manager in Traffic Director Mode. Oracle Connection Manager in
Traffic Director Mode provides improved high availability (HA) for planned and
unplanned database server outages, connection multiplexing support, and load

C-10

ORACLE

Appendix C
About Using Oracle Connection Manager in Traffic Director Mode

balancing. Support for Oracle Connection Manager in Traffic Director Mode is
described in more detail in the following sections

* Modes of Operation

* Key Features

Modes of Operation

Oracle Connection Manager in Traffic Director Mode supports the following modes of
operation:

* In pooled connection mode, Oracle Connection Manager in Traffic Director Mode
supports any application using the following database client releases:

— OCI, OCCI, and Open Source Drivers (Oracle Database 11g release 2
(11.2.0.4) and later))

— JDBC (Oracle Database 12c release 1 (12.1) and later)
— ODP.NET (Oracle Database 12c release 2 (12.2) and later)

In addition, applications must use DRCP. That is, the application must enable
DRCP in the connect string (or in the t nsnanes. or a alias).

* In non-pooled connection (or dedicated) mode, Oracle Connection Manager in
Traffic Director Mode supports any application using database client releases
Oracle Database 119 release 2 (11.2.0.4) and later. In this mode, some
capabilities, such as connection multiplexing are not available.

Key Features

Oracle Connection Manager in Traffic Director Mode furnishes support for the
following:

* Transparent performance enhancements and connection multiplexing, which
includes:

— Statement caching, rows prefetching, and result set caching are auto-enabled
for all modes of operation.

— Database session multiplexing (pooled mode only) using the proxy resident
connection pool (PRCP), where PRCP is a proxy mode of Database Resident
Connection Pooling (DRCP). Applications get transparent connect-time load
balancing and run-time load balancing between Oracle Connection Manager in
Traffic Director Mode and the database.

— For multiple Oracle Connection Manager in Traffic Director Mode instances,
applications get increased scalability through client-side connect time load
balancing or with a load balancer (BIG-1P, NGINX, and others)

e Zero application downtime
— Planned database maintenance or pluggable database (PDB) relocation
* Pooled mode

Oracle Connection Manager in Traffic Director Mode responds to Oracle
Notification Service (ONS) events for planned outages and redirects work.
Connections are drained from the pool on Oracle Connection Manager in
Traffic Director Mode when the request completes. Service relocation is
supported for Oracle Database 11g release 2 (11.2.0.4) and later.

C-11

Appendix C
About Using Oracle Connection Manager in Traffic Director Mode

For PDB relocation, Oracle Connection Manager in Traffic Director Mode
responds to in-band notifications when a PDB is relocated, that is even
when ONS is not configured (for Oracle Database release 18c, version
18.1 and later server only)

* Non-pooled or dedicated mode

When there is no request boundary information from the client, Oracle
Connection Manager in Traffic Director Mode supports planned outage for
many applications (as long as only simple session state and cursor state
need to be preserved across the request/transaction boundaries). This
support includes:

* Stop service/PDB at the transaction boundary or it leverages Oracle
Database release 18c continuous application availability to stop the
service at the request boundary

* Oracle Connection Manager in Traffic Director Mode leverages
Transparent Application Failover (TAF) failover restore to reconnect
and restore simple states.

Unplanned database outages for read-mostly workloads

* High Availability of Oracle Connection Manager in Traffic Director Mode to avoid a
single point of failure. This is supported by:

Multiple instances of Oracle Connection Manager in Traffic Director Mode
using a load balancer or client side load balancing/failover in the connect
string

Rolling upgrade of Oracle Connection Manager in Traffic Director Mode
instances

Graceful close of existing connections from client to Oracle Connection
Manager in Traffic Director Mode for planned outages

In-band notifications to Oracle Database release 18c and later clients

For older clients, notifications are sent with the response of the current request

» For security and isolation, Oracle Connection Manager in Traffic Director Mode
furnishes:

ORACLE

Database Proxy supporting transmission control protocol/transmission control
protocol secure (TCP/TCPS) and protocol conversion

Firewall based on the IP address, service name, and secure socket layer/
transport layer security (SSL/TLS) wallets

Tenant isolation in a multi-tenant environment
Protection against denial-of-service and fuzzing attacks

Secure tunneling of database traffic across Oracle Database on-premises and
Oracle Cloud

C-12

ORACLE

Appendix C
About Using Oracle Connection Manager in Traffic Director Mode

¢ See Also:

Oracle Database Net Services Administrator's Guide for information about
configuring cnan. or a configuration file to set up Oracle Connection Manager
in Traffic Director Mode

Oracle Database Net Services Administrator's Guide for information about
configuring databases for Oracle Connection Manager in Traffic Director
Mode proxy authentication

Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for
unplanned down events

Oracle Database Net Services Administrator's Guide for information about
configuring Oracle Connection Manager in Traffic Director Mode for
planned down events

Oracle Database Net Services Administrator's Guide for information about
configuring proxy resident connection pools for use by Oracle Connection
Manager in Traffic Director Mode

Oracle Database Net Services Administrator's Guide for information about
functionality not supported for all drivers with Oracle Connection Manager
in Traffic Director Mode

Oracle Database Net Services Reference for an overview of Oracle CMAN
configuration file

C-13

Syntactic and Semantic Checking

By checking the syntax and semantics of embedded SQL statements and PL/SQL
blocks, the Oracle Precompilers help you quickly find and fix coding mistakes. This
appendix shows you how to use the SQLCHECK option to control the type and extent
of checking.

Topics are:

e Syntactic and Semantic Checking Basics
e Controlling the Type and Extent of Checking
» Specifying SQLCHECK=SEMANTICS

D.1 Syntactic and Semantic Checking Basics

Rules of syntax specify how language elements are sequenced to form valid
statements. Thus, syntactic checking verifies that keywords, object names, operators,
delimiters, and so on are placed correctly in your SQL statement. It also applies to
procedures and functions called from PL/SQL blocks. For example, the following
embedded SQL statements contain syntax errors:

* -~ msspelled keyword WHERE
EXEC SQ. DELETE FROM EMP WERE DEPTNO = 20 END- EXEC.
* -- mssing parentheses around col um names COW and SAL
EXEC SQL
| NSERT | NTO EMP COW SAL VALUES (NULL, 1500)
END- EXEC.

Rules of semantics specify how valid external references are made. Thus, semantic
checking verifies that references to database objects and host variables are valid and
that host-variable datatypes are correct. For example, the following embedded SQL
statements contain semantic errors:

* -- nonexistent table, EMPP
EXEC SQL DELETE FROM EMPP WHERE DEPTNO = 20 END- EXEC.
* -- undecl ared host variable, EMP-NAME
EXEC SQL SELECT * FROM EMP WHERE ENAME = : EMP- NAME END- EXEC.

The rules of SQL syntax and semantics are defined in the Oracle Database SQL
Language Reference.

D.2 Controlling the Type and Extent of Checking

ORACLE

You control the type and extent of checking by specifying the SQLCHECK option on
the command line. With SQLCHECK, the type of checking can be syntactic, or both
syntactic and semantic. The extent of checking can include data manipulation
statements and PL/SQL blocks. However, SQLCHECK cannot check dynamic SQL
statements because they are not defined fully until run time.

You can specify the following values for SQLCHECK:

D-1

Appendix D
Specifying SQLCHECK=SEMANTICS

* SEMANTICS | FULL
* SYNTAX| LIMITED

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and
LIMITED. The default value is SYNTAX.

D.3 Specifying SQLCHECK=SEMANTICS

When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of

« Data manipulation statements such as INSERT and UPDATE.
PL/SQL blocks.

However, only syntactic checking is done on data manipulation statements that use
the AT db