
Oracle® OLAP
DML Reference

18c
E91570-01
February 2018

Oracle OLAP DML Reference, 18c

E91570-01

Copyright © 1994, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributors: Sarika Surampudi, Donna Carver, Chris Chiappa, Roger Johnson, A.A. Hopeman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxviii

Documentation Accessibility xxviii

Related Documents xxviii

Conventions xxviii

 Changes in This Release for Oracle OLAP DML Reference

Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.2) xxx

Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.1) xxx

1 OLAP DML Basic Concepts

What is the OLAP DML? 1-1

Cube-Aware OLAP DML Statements 1-1

OLAP DML Statements that Work Directly on Analytic Workspace Objects 1-2

Basic Syntactic Units of the OLAP DML 1-3

How to Execute OLAP DML Statements 1-4

Introduction to Analytic Workspaces 1-4

Privileges Needed to Create and Delete Analytic Workspaces 1-5

Defining a New Analytic Workspace 1-5

Working with Previously-Defined Analytic Workspaces 1-6

Viewing Information About an Analytic Workspace 1-6

Introduction to Analytic Workspace Data Objects 1-7

Types of Analytic Workspace Data Objects 1-7

Variables 1-8

Objects that Can Dimension Variables 1-9

Relations 1-11

Valueset and Surrogate Objects 1-11

Objects that Support the Use of Hierarchies 1-12

Hierlist Dimension 1-13

Parentrel Relation 1-14

Levellist Dimension 1-15

iii

Hierlevels Valueset 1-15

Inhier Valueset or Variable 1-16

Levelrel Relation 1-18

Familyrel Relation 1-19

Gidrel Relation 1-20

OLAP DML Statements Apply to All of the Values of a Data Object 1-21

Changing the Default Looping Behavior of Statements 1-22

How to Specify the Set of Data that OLAP DML Operations Work Against 1-22

About Status Lists 1-22

Default Status Lists 1-22

Current Status Lists 1-23

Changing the Current Status of a Dimension to Work with a Subset of Data 1-23

Saving and Restoring Current Dimension Status 1-23

Using a Subset of Data Without Changing Status 1-24

Populating Multidimensional Hierarchical Data Objects 1-24

2 Data Types, Operators, and Expressions

OLAP DML Data Types 2-1

Numeric Data Types 2-4

Using LONGINTEGER Values 2-4

Using NUMBER Values 2-4

Text Data Types 2-5

Text Literals 2-5

Escape Sequences 2-5

Date-only Data Type 2-6

Date-only Input Values 2-6

Date-only Dimension Values 2-8

DATE-only Variable Display Styles 2-8

Datetime and Interval Data Types 2-8

Datetime and Interval Fields 2-9

Datetime Format Templates 2-10

String-to-Date Conversion Rules 2-11

DATETIME Data Type 2-11

TIMESTAMP Data Type 2-13

TIMESTAMP_TZ Data Type 2-13

TIMESTAMP_LTZ Data Type 2-14

YMINTERVAL Data Type 2-15

DSINTERVAL Data Type 2-16

Boolean Data Type 2-17

RAW Data Type 2-17

iv

Row Identifier Data Types 2-18

ROWID Data Type 2-18

UROWID Data Type 2-19

Converting from One Data Type to Another 2-19

Automatic Conversion of Textual Data Types 2-19

Automatic Conversion of Numeric Data Types 2-19

OLAP DML Operators 2-20

Arithmetic Operators 2-21

Comparison and Logical Operators 2-21

Assignment Operator 2-22

OLAP DML Expressions 2-22

About OLAP DML Expressions 2-23

How the Data Type of an Expression is Determined 2-23

How the Dimensionality of an Expression is Determined 2-24

Using Workspace Objects in Expressions 2-25

How OLAP DML Data Objects Behave in Expressions 2-25

Syntax for Specifying an Object in an Expression 2-26

Specifying Values of Dimensions and Composites in Expressions 2-29

Using Variables and Relations in Expressions 2-30

Limiting a Dimension to a Single Value Without Changing Status 2-31

Working with Empty Cells in Expressions 2-35

Specifying a Value of NA 2-35

Controlling how NA values are treated 2-35

Numeric Expressions 2-35

Mixing Numeric Data Types 2-36

Using Text Dimensions in Arithmetic Expressions 2-36

Limitations of Floating Point Calculations 2-36

Controlling Errors During Calculations 2-37

Text Expressions 2-37

Language of Text Expressions 2-37

Working with DATETIME Values in Text Expressions 2-38

Working with NTEXT Data 2-38

Datetime and Interval Expressions 2-38

Datetime Expressions 2-38

Interval Expressions 2-39

Datetime/Interval Arithmetic 2-39

Date-only Expressions 2-41

Boolean Expressions 2-42

Creating Boolean Expressions 2-43

Comparing NA Values in Boolean Expressions 2-43

Controlling Errors When Comparing Numeric Data 2-44

v

Comparing Dimension Values 2-45

Comparing Dates 2-46

Comparing Text Data 2-46

Conditional Expressions 2-47

IF...THEN...ELSE expression 2-48

SWITCH Expressions 2-49

Substitution Expressions 2-50

3 Formulas, Models, Aggregations, and Allocations

Creating Calculation Objects 3-1

OLAP DML Formulas 3-2

OLAP DML Model Objects 3-3

What is an OLAP DML Model? 3-3

Creating Models 3-3

Nesting Models 3-4

Dimension Status and Model Equations 3-4

Using Data from Past and Future Time Periods 3-5

Handling NA Values in Models 3-5

Solving Simultaneous Equations 3-6

Modeling for Multiple Scenarios 3-6

Compiling Models 3-6

Resolving Names in Equations 3-7

Code for Looping Over Dimensions 3-8

Evaluating Program Arguments 3-8

Dependencies Between Equations 3-8

Obtaining Analysis Results 3-10

Checking for Additional Problems 3-10

Running a Model 3-11

Syntax for Running a Model 3-11

Dimensions of Solution Variables 3-12

Debugging a Model 3-13

OLAP DML Aggregation Objects 3-13

What is an OLAP DML Aggregation? 3-13

Aggregating Data Using the OLAP DML 3-14

Compiling Aggregation Specifications 3-15

Executing the Aggregation 3-15

Creating Custom Aggregates 3-16

OLAP DML Allocation Objects 3-16

Introduction to Allocating Data Using the OLAP DML 3-16

Features of Allocation in Oracle OLAP 3-17

vi

Allocating Data 3-17

Handling NA Values When Allocating Data 3-18

4 OLAP DML Properties

About OLAP DML Properties 4-1

System Properties: Alphabetical Listing 4-1

System Properties by Category 4-2

$AGGMAP 4-2

$AGGREGATE_FORCECALC 4-5

$AGGREGATE_FORCEORDER 4-6

$AGGREGATE_FROM 4-6

$AGGREGATE_FROMVAR 4-7

$ALLOCMAP 4-8

$COUNTVAR 4-9

$DEFAULT_LANGUAGE 4-10

$GID_DEPTH 4-15

$GID_LIST 4-16

$GID_TYPE 4-16

$LOOP_AGGMAP 4-17

$LOOP_DENSE 4-17

$LOOP_TYPE 4-18

$LOOP_VAR 4-19

$NATRIGGER 4-20

$STORETRIGGERVAL 4-22

$VARCACHE 4-23

5 OLAP DML Options

About Options 5-1

Options: Alphabetical Listing 5-1

Options by Category 5-4

ALLOCERRLOGFORMAT 5-8

ALLOCERRLOGHEADER 5-9

AWWAITTIME 5-10

BADLINE 5-11

BMARGIN 5-12

CALENDARWEEK 5-13

COLWIDTH 5-14

COMMAS 5-16

COMPILEMESSAGE 5-17

vii

COMPILEWARN 5-17

DATEFORMAT 5-18

DATEORDER 5-22

DAYABBRLEN 5-23

DAYNAMES 5-25

DECIMALCHAR 5-26

DECIMALOVERFLOW 5-26

DECIMALS 5-27

DEFAULTAWSEGSIZE 5-28

DIVIDEBYZERO 5-29

DSECONDS 5-30

ECHOPROMPT 5-31

EIFBYTES 5-32

EIFEXTENSIONPATH 5-32

EIFNAMES 5-33

EIFSHORTNAMES 5-34

EIFTYPES 5-34

EIFUPDBYTES 5-35

EIFVERSION 5-36

ERRNAMES 5-37

ERRORNAME 5-37

ERRORTEXT 5-38

ESCAPEBASE 5-39

EXPTRACE 5-39

INF_STOP_ON_ERROR 5-40

LCOLWIDTH 5-41

LIKECASE 5-43

LIKEESCAPE 5-44

LIKENL 5-46

LIMIT.SORTREL 5-47

LIMITSTRICT 5-48

LINENUM 5-50

LINESLEFT 5-52

LOCK_LANGUAGE_DIMS 5-53

LSIZE 5-55

MAXFETCH 5-56

MODDAMP 5-57

MODERROR 5-60

MODGAMMA 5-61

MODINPUTORDER 5-64

MODMAXITERS 5-66

viii

MODOVERFLOW 5-67

MODSIMULTYPE 5-69

MODTOLERANCE 5-71

MODTRACE 5-74

MONTHABBRLEN 5-77

MONTHNAMES 5-78

MULTIPATHHIER 5-80

NASKIP 5-82

NASKIP2 5-85

NASPELL 5-88

NLS_CALENDAR 5-89

NLS_CURRENCY 5-90

NLS_DATE_FORMAT 5-90

NLS_DATE_LANGUAGE 5-91

NLS_DUAL_CURRENCY 5-91

NLS_ISO_CURRENCY 5-92

NLS_LANG 5-92

NLS_LANGUAGE 5-93

NLS_NUMERIC_CHARACTERS 5-93

NLS_SORT 5-94

NLS_TERRITORY 5-95

NOSPELL 5-96

OKFORLIMIT 5-96

OKNULLSTATUS 5-97

OUTFILEUNIT 5-98

PAGENUM 5-99

PAGEPRG 5-100

PAGESIZE 5-102

PAGING 5-103

PARENS 5-105

PERMITERROR 5-106

PERMITREADERROR 5-108

PRGTRACE 5-109

RANDOM.SEED.1 and RANDOM.SEED.2 5-110

RECURSIVE 5-113

ROLE 5-113

ROOTOFNEGATIVE 5-114

SECONDS 5-115

SESSCACHE 5-116

SESSION_NLS_LANGUAGE 5-117

SPARSEINDEX 5-118

ix

SQLBLOCKMAX 5-119

SQLCODE 5-120

SQLERRM 5-120

SQLMESSAGES 5-121

STATIC_SESSION_LANGUAGE 5-122

THIS_AW 5-123

THOUSANDSCHAR 5-123

TMARGIN 5-124

TRACEFILEUNIT 5-125

TRIGGERMAXDEPTH 5-125

TRIGGERSTOREOK 5-127

USERID 5-129

USETRIGGERS 5-129

VARCACHE 5-130

WEEKDAYSNEWYEAR 5-131

WRAPERRORS 5-132

YESSPELL 5-133

YRABSTART 5-133

ZEROROW 5-134

ZSPELL 5-136

6 OLAP DML Programs

Programs Provided With the OLAP DML 6-1

Creating OLAP DML Programs 6-2

Specifying Program Contents 6-3

Creating User-Defined Functions 6-3

Passing Arguments 6-4

Using Multiple Arguments 6-4

Handling Arguments Without Converting Values to a Specific Data Type 6-4

Passing Arguments as Text with Ampersand Substitution 6-4

Program Flow-of-Control 6-5

Preserving the Environment Settings 6-6

Changing the Program Environment 6-7

Ways to Save and Restore Environments 6-7

Saving the Status of a Dimension or the Value of an Option 6-7

Saving Several Values at Once 6-8

Using Level Markers 6-8

Using CONTEXT to Save Several Values at Once 6-8

Handling Errors 6-8

Trapping an Error 6-9

x

Passing an Error to a Calling Program 6-9

Suppressing Error Messages 6-10

Creating Your Own Error Messages 6-11

Handling Errors in Nested Programs 6-11

Handling Errors While Saving the Session Environment 6-11

Compiling Programs 6-12

Finding Out If a Program Has Been Compiled 6-12

Programming Methods That Prevent Compilation 6-12

Testing and Debugging Programs 6-12

Generating Diagnostic Messages 6-13

Identifying Bad Lines of Code 6-13

Sending Output to a Debugging File 6-13

Executing Programs 6-14

Common Types of OLAP DML Programs 6-14

Startup Programs 6-14

Permission Programs 6-15

OnAttach Programs 6-16

Autogo Programs 6-17

Data Import and Export Programs 6-17

Importing Data to and Exporting Data from Relational Tables 6-18

Importing Data to and Exporting Data from Flat Files 6-18

Importing Data to and Exporting Data from Spreadsheets 6-19

Trigger Programs 6-19

Creating an Object Trigger Program 6-19

Characteristics of Object Trigger Programs 6-20

Aggregation, Allocation, and Modeling Programs 6-23

Forecasting Programs 6-23

Programs to Export and Import Workspace Objects 6-23

User-Written Programs Looked For by Oracle OLAP 6-24

AUTOGO 6-24

ONATTACH 6-25

ONDETACH 6-26

PERMIT_READ 6-27

PERMIT_WRITE 6-28

TRIGGER_AFTER_UPDATE 6-29

TRIGGER_AW 6-30

TRIGGER_BEFORE_UPDATE 6-31

TRIGGER_DEFINE 6-32

xi

7 OLAP DML Functions: A - K

About OLAP DML Functions 7-1

Functions: Alphabetical Listing 7-1

Functions by Category 7-8

ABS 7-15

ADD_MONTHS 7-16

AGGCOUNT 7-17

AGGMAPINFO 7-20

AGGREGATE function 7-24

AGGREGATION 7-32

AGGROPS 7-33

ALLOCOPS 7-34

ANTILOG 7-34

ANTILOG10 7-35

ANY 7-35

ARCCOS 7-37

ARCSIN 7-38

ARCTAN 7-38

ARCTAN2 7-39

ARG 7-40

ARGCOUNT 7-41

ARGFR 7-42

ARGS 7-44

ASCII 7-45

ASCIISTR 7-46

AVERAGE 7-46

AW function 7-48

BACK 7-51

BASEDIM 7-52

BASEVAL 7-54

BEGINDATE 7-55

BIN_TO_NUM 7-56

BITAND 7-57

BLANKSTRIP 7-57

CALLTYPE 7-58

CATEGORIZE 7-59

CEIL 7-61

CHANGEBYTES 7-62

CHANGECHARS 7-62

CHANGEDRELATIONS 7-63

xii

CHANGEDVALUES 7-64

CHARLIST 7-65

CHARTOROWID 7-65

CHGDIMS 7-66

CHR 7-68

COALESCE 7-69

COLVAL 7-69

CONTEXT function 7-70

CONVERT 7-71

CORRELATION 7-79

COS 7-82

COSH 7-82

COUNT 7-83

CUMSUM 7-84

CURRENT_DATE 7-87

CURRENT_TIMESTAMP 7-87

DAYOF 7-88

DBTIMEZONE 7-89

DDOF 7-89

DECODE 7-90

DEPRDECL 7-93

DEPRDECLSW 7-97

DEPRSL 7-102

DEPRSOYD 7-105

ENDDATE 7-108

ENDOF 7-109

EVERY 7-109

EXISTS 7-111

EXP 7-112

EVERSION 7-112

EXTBYTES 7-113

EXTCHARS 7-114

EXTCOLS 7-115

EXTLINES 7-116

EXTRACT 7-117

FCOPEN 7-118

FCQUERY 7-119

FILEERROR 7-123

FILEGET 7-126

FILENEXT 7-127

FILEOPEN 7-128

xiii

FILEQUERY 7-130

FILTERLINES 7-133

FINDBYTES 7-134

FINDCHARS 7-135

FINDLINES 7-137

FINTSCHED 7-138

FLOOR 7-140

FPMTSCHED 7-141

FROM_TZ 7-144

GET 7-144

GREATEST 7-148

GROUPINGID function 7-149

GROWRATE 7-150

HEXTORAW 7-151

HIERCHECK 7-151

HIERHEIGHT 7-154

HIERSHAPE 7-158

INFO 7-160

INFO (FORECAST) 7-160

INFO (MODEL) 7-162

INFO (PARSE) 7-169

INFO (REGRESS) 7-171

INITCAP 7-174

INLIST 7-174

INSBYTES 7-175

INSCHARS 7-176

INSCOLS 7-177

INSLINES 7-178

INSTAT 7-179

INSTR functions 7-182

INTPART 7-183

IRR 7-184

ISDATE 7-185

ISINFINITE 7-186

ISEMPTY 7-187

ISNAN 7-187

ISSESSION 7-188

ISVALUE 7-188

JOINBYTES 7-189

JOINCHARS 7-190

JOINCOLS 7-191

xiv

JOINLINES 7-193

KEY 7-194

8 OLAP DML Functions: L - Z

LAG 8-1

LAGABSPCT 8-4

LAGDIF 8-6

LAGPCT 8-7

LARGEST 8-9

LAST_DAY 8-11

LEAD 8-12

LEAST 8-14

LENGTH functions 8-14

LIMIT function 8-15

LIMITMAPINFO 8-19

LNNVL 8-20

LOCALTIMESTAMP 8-20

LOG function 8-21

LOG10 8-22

LOWCASE 8-22

LOWER 8-23

LPAD 8-23

LTRIM 8-24

MAKEDATE 8-25

MAX 8-26

MAXBYTES 8-27

MAXCHARS 8-28

MEDIAN 8-29

MIN 8-30

MMOF 8-31

MODE 8-31

MODULO 8-33

MONTHS_BETWEEN 8-34

MOVINGAVERAGE 8-34

MOVINGMAX 8-37

MOVINGMIN 8-38

MOVINGTOTAL 8-40

NA2 8-42

NAFILL 8-42

NAFLAG 8-43

xv

NEW_TIME 8-44

NEXT_DAY 8-45

NLS_CHARSET_ID 8-46

NLS_CHARSET_NAME 8-47

NLSSORT 8-47

NONE 8-48

NORMAL 8-50

NPV 8-51

NULLIF 8-52

NUMBYTES 8-53

NUMCHARS 8-54

NUMLINES 8-55

NUMTODSINTERVAL 8-55

NUMTOYMINTERVAL 8-56

NVL 8-56

NVL2 8-57

OBJ 8-58

OBJLIST 8-73

OBJORG 8-74

OBSCURE 8-80

ORA_HASH 8-82

PARTITION 8-83

PARTITIONCHECK 8-84

PERCENTAGE 8-85

QUAL 8-87

RANDOM 8-89

RANK 8-90

RAWTOHEX 8-95

RECNO 8-96

REGEXP_COUNT 8-97

REGEXP_INSTR 8-98

REGEXP_REPLACE 8-100

REGEXP_SUBSTR 8-101

REM 8-102

REMAINDER 8-103

REMBYTES 8-103

REMCHARS 8-104

REMCOLS 8-106

REMLINES 8-107

REPLACE 8-108

REPLBYTES 8-108

xvi

REPLCHARS 8-110

REPLCOLS 8-112

REPLLINES 8-113

RESERVED 8-114

ROUND 8-115

ROUND (datetime) 8-116

ROUND (number) 8-118

ROW function 8-121

ROWIDTOCHAR 8-122

ROWIDTONCHAR 8-123

RPAD 8-123

RTRIM 8-124

RUNTOTAL 8-125

SESSIONTIMEZONE 8-127

SIGN 8-127

SIN 8-127

SINH 8-128

SMALLEST 8-129

SMOOTH 8-130

SORT function 8-133

SORTLINES 8-134

SOUNDEX 8-135

SQLFETCH 8-135

SQRT 8-136

STARTOF 8-136

STATALL 8-138

STATCURR 8-138

STATDEPTH 8-139

STATEQUAL 8-140

STATFIRST 8-140

STATLAST 8-141

STATLEN 8-142

STATLIST 8-143

STATMAX 8-144

STATMIN 8-145

STATRANK 8-147

STATVAL 8-149

STDDEV 8-151

SUBSTR functions 8-153

SUBTOTAL 8-154

SYS_CONTEXT 8-155

xvii

SYSDATE 8-157

SYSINFO 8-157

SYSTEM 8-158

SYSTIMESTAMP 8-159

TALLY 8-159

TAN 8-161

TANH 8-161

TCONVERT 8-162

TEXTFILL 8-168

TO_BINARY_DOUBLE 8-170

TO_BINARY_FLOAT 8-171

TO_CHAR 8-172

TO_DATE 8-175

TO_DSINTERVAL 8-176

TO_NCHAR 8-176

TO_NUMBER 8-179

TO_TIMESTAMP 8-180

TO_TIMESTAMP_TZ 8-182

TO_YMINTERVAL 8-182

TOD 8-183

TODAY 8-183

TOTAL 8-184

TRANSLATE 8-186

TRIGGER function 8-187

TRIM 8-189

TRUNCATE 8-190

TRUNCATE (datetime) 8-190

TRUNCATE (number) 8-191

TZ_OFFSET 8-192

UNIQUELINES 8-193

UNRAVEL 8-194

UPPER 8-196

UPPER 8-196

VALSPERPAGE 8-197

VALUES 8-198

VINTSCHED 8-201

VPMTSCHED 8-203

VSIZE 8-206

WEEKOF 8-206

WIDTH_BUCKET 8-207

WKSDATA 8-209

xviii

WRITABLE 8-210

YYOF 8-211

9 OLAP DML Commands: A-G

About OLAP DML Commands 9-1

Commands: Alphabetical Listing 9-2

Commands by Category 9-5

ACQUIRE 9-10

ACROSS 9-14

ADD_CUBE_MODEL 9-15

ADD_DIMENSION_MEMBER 9-16

ADD_MODEL_DIMENSION 9-21

AGGMAP 9-22

AGGINDEX 9-39

BREAKOUT DIMENSION 9-42

CACHE 9-44

DIMENSION (for aggregation) 9-47

DROP DIMENSION 9-47

MEASUREDIM (for aggregation) 9-49

MODEL (in an aggregation) 9-50

PRECOMPUTE 9-51

RELATION (for aggregation) 9-52

AGGMAP ADD or REMOVE model 9-64

AGGMAP SET 9-66

AGGREGATE command 9-67

ALLCOMPILE 9-75

ALLOCATE 9-76

ALLOCMAP 9-82

CHILDLOCK 9-86

DEADLOCK 9-87

DIMENSION (for allocation) 9-87

ERRORLOG 9-88

ERRORMASK 9-89

MEASUREDIM (for allocation) 9-89

RELATION (for allocation) 9-90

SOURCEVAL 9-95

VALUESET 9-96

ALLSTAT 9-99

ARGUMENT 9-100

AW command 9-104

xix

AW ALIASLIST 9-105

AW ATTACH 9-106

AW CREATE 9-112

AW DELETE 9-114

AW DETACH 9-115

AW FREEZE 9-117

AW LIST 9-118

AW PURGE CACHE 9-119

AW ROLLBACK TO FREEZE 9-119

AW SEGMENTSIZE 9-119

AW THAW 9-120

AW TRUNCATE 9-120

AWDESCRIBE 9-120

BLANK 9-122

BREAK 9-123

CALL 9-124

CDA 9-127

CHGDFN 9-128

CLEAR 9-135

COMMIT 9-138

COMPILE 9-139

CONSIDER 9-143

CONTEXT command 9-143

CONTINUE 9-146

COPYDFN 9-146

CREATE_LOGICAL_MODEL 9-147

DATE_FORMAT 9-148

DBGOUTFILE 9-155

DEFINE 9-157

DEFINE AGGMAP 9-159

DEFINE COMPOSITE 9-161

DEFINE DIMENSION 9-165

DEFINE DIMENSION (simple) 9-166

DEFINE DIMENSION (DWMQY) 9-169

DEFINE DIMENSION (conjoint) 9-172

DEFINE DIMENSION CONCAT 9-175

DEFINE DIMENSION ALIASOF 9-177

DEFINE FORMULA 9-179

DEFINE MODEL 9-181

DEFINE PARTITION TEMPLATE 9-183

DEFINE PROGRAM 9-184

xx

DEFINE RELATION 9-186

DEFINE SURROGATE 9-188

DEFINE VALUESET 9-190

DEFINE VARIABLE 9-193

DEFINE WORKSHEET 9-211

DELETE 9-213

DESCRIBE 9-214

DO ... DOEND 9-216

EDIT 9-217

EQ 9-218

EXPORT 9-220

EXPORT (EIF) 9-220

EXPORT (spreadsheet) 9-226

FCCLOSE 9-227

FCEXEC 9-228

FCSET 9-231

FETCH 9-237

FILECLOSE 9-239

FILECOPY 9-240

FILEDELETE 9-241

FILEMOVE 9-241

FILEPAGE 9-242

FILEPUT 9-243

FILEREAD 9-245

FILESET 9-259

FILEVIEW 9-261

FOR 9-269

FORECAST 9-272

FORECAST.REPORT 9-277

FULLDSC 9-278

GOTO 9-280

GROUPINGID command 9-282

10

OLAP DML Commands: H-Z

HEADING 10-1

HIDE 10-2

HIERDEPTH 10-3

HIERHEIGHT command 10-5

IF...THEN...ELSE command 10-8

IMPORT 10-9

xxi

IMPORT (EIF) 10-10

IMPORT (text) 10-18

IMPORT (spreadsheet) 10-22

INFILE 10-25

LD 10-27

LIMIT command 10-27

LIMIT (using values) command 10-37

LIMIT using LEVELREL command 10-47

LIMIT (using related dimension) command 10-49

LIMIT (using parent relation) 10-51

LIMIT NOCONVERT command 10-57

LIMIT command (using POSLIST) 10-58

LIMIT BASEDIMS 10-58

LISTBY 10-60

LISTFILES 10-61

LISTNAMES 10-61

LOAD 10-63

LOG command 10-64

MAINTAIN 10-66

MAINTAIN ADD 10-68

MAINTAIN ADD for TEXT, ID, and INTEGER Values 10-69

MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values 10-71

MAINTAIN ADD SESSION 10-72

MAINTAIN ADD TO PARTITION 10-77

MAINTAIN DELETE 10-78

MAINTAIN DELETE dimension 10-78

MAINTAIN DELETE composite 10-80

MAINTAIN DELETE FROM PARTITION 10-81

MAINTAIN MERGE 10-83

MAINTAIN MOVE 10-84

MAINTAIN MOVE dimension value 10-85

MAINTAIN MOVE TO PARTITION 10-87

MAINTAIN RENAME 10-88

MODEL 10-89

DIMENSION (in models) 10-93

INCLUDE 10-97

MODEL.COMPRPT 10-100

MODEL.DEPRT 10-101

MODEL.XEQRPT 10-102

MONITOR 10-104

MOVE 10-107

xxii

OUTFILE 10-109

PAGE 10-111

PARSE 10-113

PERMIT 10-114

PERMITRESET 10-121

POP 10-123

POPLEVEL 10-124

PROGRAM 10-125

PROPERTY 10-127

PUSH 10-129

PUSHLEVEL 10-130

RECAP 10-133

REDO 10-135

REEDIT 10-136

REGRESS 10-138

REGRESS.REPORT 10-140

RELATION command 10-141

RELEASE 10-144

REMOVE_CUBE_MODEL 10-147

REMOVE_DIMENSION_MEMBER 10-149

REMOVE_MODEL_DIMENSION 10-152

RENAME 10-152

REPORT 10-154

RESYNC 10-163

RETURN 10-164

REVERT 10-166

ROW command 10-168

SET 10-176

SET1 10-186

SET_INCLUDED_MODEL 10-186

SET_PROPERTY 10-189

SHOW 10-190

SIGNAL 10-192

SLEEP 10-194

SORT command 10-194

SQL 10-201

SQL CLEANUP 10-204

SQL CLOSE 10-205

SQL DECLARE CURSOR 10-205

SQL EXECUTE 10-210

SQL FETCH 10-210

xxiii

SQL IMPORT 10-217

SQL OPEN 10-222

SQL PREPARE 10-222

SQL PROCEDURE 10-225

SQL SELECT 10-227

STATUS 10-229

STDHDR 10-231

SWITCH command 10-232

TEMPSTAT 10-234

TRACE 10-235

TRACKPRG 10-237

TRAP 10-241

TRIGGER command 10-243

TRIGGERASSIGN 10-254

UNHIDE 10-258

UPDATE 10-259

UPDATE_ATTRIBUTE_VALUE 10-261

UPDATE_DIMENSION_MEMBER 10-264

VARIABLE 10-268

VNF 10-270

WHILE 10-276

ZEROTOTAL 10-277

A OLAP_TABLE SQL Functions

Creating Relational Views Using OLAP_TABLE A-1

Required OLAP DML Objects A-2

Creating Logical Tables for Use by OLAP_TABLE A-2

Using OLAP_TABLE With Predefined ADTs A-3

Using OLAP_TABLE With Automatic ADTs A-4

Adding Calculated Columns to the Relational View A-5

Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements A-5

Using OLAP DML Expressions as Single-Row Functions A-5

Modifying an Analytic Workspace From Within a SELECT FROM OLAP_TABLE
Statement A-6

OLAP_TABLE A-6

OLAP_CONDITION A-24

OLAP_EXPRESSION A-29

OLAP_EXPRESSION_BOOL A-32

OLAP_EXPRESSION_DATE A-35

xxiv

OLAP_EXPRESSION_TEXT A-36

B DBMS_AW PL/SQL Package

Managing Analytic Workspaces B-1

Embedding OLAP DML in SQL Statements B-2

Methods for Executing OLAP DML Commands B-2

Guidelines for Using Quotation Marks in OLAP DML Commands B-2

Using the Sparsity Advisor B-3

Data Storage Options in Analytic Workspaces B-3

Selecting the Best Data Storage Method B-3

Using the Sparsity Advisor B-4

Example: Evaluating Sparsity in the GLOBAL Schema B-4

Advice from Sample Program B-6

Information Stored in AW_SPARSITY_ADVICE Table B-6

Using the Aggregate Advisor B-6

Aggregation Facilities within the Workspace B-6

Example: Using the ADVISE_REL Procedure B-7

Summary of DBMS_AW Subprograms B-10

ADD_DIMENSION_SOURCE Procedure B-11

ADVISE_CUBE Procedure B-13

ADVISE_DIMENSIONALITY Function B-14

ADVISE_DIMENSIONALITY Procedure B-16

ADVISE_PARTITIONING_DIMENSION Function B-19

ADVISE_PARTITIONING_LEVEL Function B-20

ADVISE_REL Procedure B-21

ADVISE_SPARSITY Procedure B-22

AW_ATTACH Procedure B-24

AW_COPY Procedure B-26

AW_CREATE Procedure B-27

AW_DELETE Procedure B-28

AW_DETACH Procedure B-28

AW_RENAME Procedure B-29

AW_TABLESPACE Function B-30

AW_UPDATE Procedure B-31

CONVERT Procedure B-32

EVAL_NUMBER Function B-33

EVAL_TEXT Function B-33

EXECUTE Procedure B-34

GETLOG Function B-36

INFILE Procedure B-37

xxv

INTERP Function B-37

INTERPCLOB Function B-38

INTERP_SILENT Procedure B-39

OLAP_ON Function B-40

OLAP_RUNNING Function B-41

PRINTLOG Procedure B-42

RUN Procedure B-43

SHUTDOWN Procedure B-44

SPARSITY_ADVICE_TABLE Procedure B-45

STARTUP Procedure B-46

C OLAP_API_SESSION_INIT PL/SQL Package

Initialization Parameters for the OLAP API C-1

Viewing the Configuration Table C-1

ALL_OLAP_ALTER_SESSION View C-2

Summary of OLAP_API_SESSION_INIT Subprograms C-2

ADD_ALTER_SESSION Procedure C-2

CLEAN_ALTER_SESSION Procedure C-3

DELETE_ALTER_SESSION Procedure C-3

D Changes in Previous Releases

OLAP DML Statement Changes for Oracle Database 11g D-1

Statements Added in Oracle Database 11g D-1

Statements Deleted in Oracle Database 11g D-3

Statements Changed in Oracle Database 11g D-3

Statements Renamed in Oracle Database 11g D-3

OLAP DML Statement Changes for Oracle Database 10g D-4

Statements Added in Oracle Database 10g D-4

Statements Deleted in Oracle Database 10g D-5

Statements Changed in Oracle Database 10g D-6

Statements Renamed in Oracle Database 10g D-7

OLAP DML Statement Changes for Oracle Database 9i D-7

Statements Added in Oracle Database 9i D-7

Statements Deleted in Oracle Database 9i D-8

Statements Changed in Oracle Database 9i D-10

Statements Renamed in Oracle Database 9i D-11

xxvi

Index

xxvii

Preface

Oracle OLAP DML Reference provides a complete description of the OLAP Data
Manipulation Language (OLAP DML) used to create analytic workspace definitions
that are stored within an analytic workspace and to manipulate these object.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle OLAP DML Reference is intended for programmers and database
administrators who write OLAP DML programs and who create analytic workspaces
and analytic workspace objects using the OLAP DML.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information about working with Oracle OLAP, see these Oracle resources:

• Oracle OLAP User's Guide

• Oracle OLAP Java API Reference

• Oracle OLAP Java API Developer's Guide

Conventions
The following text conventions are used in this document:

Preface

xxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

This reference presents OLAP DML syntax in a simple variant of Backus-Naur Form
(BNF) that includes the following symbols and conventions.

Symbol or Convention Meaning

[] Brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates alternatives.

... Ellipsis points show that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown.

italics Words appearing in italics are placeholders for which you must
substitute a name or a value. Words that are not in italics are
keywords. They must be typed as shown.

Preface

xxix

Changes in This Release for Oracle OLAP
DML Reference

This preface describes changes in Oracle OLAP DML Reference in this release. For
information on changes in earlier releases, see the Oracle OLAP DML Reference
manual.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.2)

The following change is in Oracle OLAP DML Reference for Oracle Database 12c
Release 2 (12.2):

• The OBJ function has the new keyword CHANGEDPAGES, which returns the
number of pages in the analytic workspace that have changed since the last
update.

Also, Active Data Guard (ADG) read-only active standby instances now support read-
only OLAP applications. An active standby instance must have real-time apply
operating.

You can now offload to ADG active standby instances applications that query
CUBE_TABLE and OLAP_TABLE functions that use dynamic abstract data types
(ADTs). The initial ADT creation triggers a request to create it on the ADG primary.
Real-time apply propagates the new ADT to the active standby instance, which allows
the query to run after a short delay. If the ADT fails to appear on the standby in a
reasonable time, then an error condition occurs.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.1)

The following are changes in Oracle OLAP DML Reference for Oracle Database 12c
Release 1 (12.1).

• New Features

• Other Changes

New Features
The following features are new in this release:

• Increased maximum line length

The maximum line length of text has changed from 4,000 to 32,767.

Changes in This Release for Oracle OLAP DML Reference

xxx

See the descriptions of TEXT and NTEXT in Text Data Types, and the EXTCOLS,
INSCOLS, JOINBYTES, JOINCOLS, REMCOLS, and REPLCOLS functions.

Other Changes
The following are additional changes in the release:

• Performance enhancement

A new highly compact storage format for valuesets.

See the NOORDER keyword of DEFINE VALUESET.

• Changes in statements

The following statements have been changed in the OLAP DML in Oracle
Database 12c:

DEFINE VALUESET
EXTCOLS
INSCOLS
JOINBYTES
JOINCOLS
REMCOLS
REPLCOLS

Changes in This Release for Oracle OLAP DML Reference

xxxi

1
OLAP DML Basic Concepts

This chapter contains the following topics:

• What is the OLAP DML?

• Basic Syntactic Units of the OLAP DML

• How to Execute OLAP DML Statements

• Introduction to Analytic Workspaces

• Introduction to Analytic Workspace Data Objects

• OLAP DML Statements Apply to All of the Values of a Data Object

What is the OLAP DML?
The OLAP DML is the original language for defining Oracle OLAP objects and
manipulating Oracle OLAP data.

There are two major types of OLAP DML statements:

• OLAP DML statements that work against Oracle OLAP cubes and cube
dimensions that have been previously defined in the Oracle data dictionary using
the OLAP API. For an introduction to these statements, see "Cube-Aware OLAP
DML Statements".

• OLAP DML statements that create and manipulate lower-level OLAP objects that
are defined and stored in an analytic workspace. For an introduction to these
statements, see "OLAP DML Statements that Work Directly on Analytic
Workspace Objects".

Cube-Aware OLAP DML Statements
OLAP cubes are first-class Oracle OLAP objects and are defined in the Oracle data
dictionary. Some OLAP DML statements work against cubes and other first-class
OLAP objects.

See Also:

Oracle OLAP User's Guide for information on OLAP cubes and other first-level
OLAP objects.

The following OLAP DML programs work with previously-defined OLAP cubes and
cube dimensions.

ADD_CUBE_MODEL
ADD_DIMENSION_MEMBER
ADD_MODEL_DIMENSION

1-1

CREATE_LOGICAL_MODEL
REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
SET_INCLUDED_MODEL
SET_PROPERTY
UPDATE_ATTRIBUTE_VALUE
UPDATE_DIMENSION_MEMBER

Typically, these programs take, as input, the Oracle data dictionary name of an OLAP
cube or cube dimension. When the programs execute they not only make the
necessary changes to the cube or cube dimension, they also make changes to all of
the analytic workspace objects that underlie these cubes and cube dimensions.

Also, you can use the OBJORG function in OLAP DML statements that are not cube-
aware to specify the analytic workspace objects that underlie OLAP cubes and cube
dimensions.

OLAP DML Statements that Work Directly on Analytic Workspace
Objects

Historically, OLAP DML statements did not work against first-level OLAP objects as
defined in the OLAP data dictionary. Instead, OLAP DML statements create and
manipulate lower-level OLAP objects that are defined and stored in an analytic
workspace. This remains the case for most OLAP DML statements today.

Note:

Unless otherwise stated, statements and information provided in this manual
applies to OLAP DML statements that are not cube-aware (that is, OLAP DML
statements work directly on analytic workspace objects).

For OLAP DML statements that work directly on analytic workspace objects, if an
object name is needed as input to the statement, the object name is the name of an
object as defined in the analytic workspace, not as defined in the Oracle data
dictionary.

You can use these OLAP DML statements to create programs that analyze analytic
workspace data without using SQL, Java, the OLAP API, or the Oracle OLAP tools.
You can use the OLAP DML to define the analytic workspaces and the objects that are
stored in analytic workspaces. For example, you can:

• Create an analytic workspace as described in "Defining a New Analytic
Workspace".

• Define the multidimensional data objects in an analytic workspace using the
DEFINE command.

• Define calculation objects and programs that analyze the data as described in
Formulas, Models, Aggregations, and Allocations.

• Populate and analyze the data in the multidimensional data objects.

Chapter 1
What is the OLAP DML?

1-2

Basic Syntactic Units of the OLAP DML
The basic syntactic units of the OLAP DML are options, properties, commands,
functions, and programs. All of these are sometimes collectively referred to as OLAP
DML statements.

OLAP DML Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You cannot define your own options as part of an analytic workspace. However, you
can use any of the options that are defined as part of the Oracle OLAP DML. The
options are documented as reference topics in OLAP DML Options .

OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. These system properties are documented as
reference topics in OLAP DML Properties.

OLAP DML Functions

OLAP functions work in much the same way as commands in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All of
the Values of a Data Object".

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information.Additionally, you can augment
the functionality of the OLAP DML by writing an OLAP DML program for use as a
function.

The built-in OLAP DML functions are documented as reference topics in OLAP DML
Functions: A - K and OLAP DML Functions: L - Z .

OLAP DML Commands

OLAP DML commands work in much the same way as commands in other
programming languages—the one exception is the looping nature of OLAP DML
commands as discussed in "OLAP DML Statements Apply to All of the Values of a
Data Object".

Many OLAP DML commands perform complex actions. Some of these commands are
data definition commands like the AW command which you use to create an analytic
workspace and the DEFINE command which you use to define objects within an
analytic workspace. Other OLAP DML commands are data manipulation commands.
Some commands are recognized by Oracle OLAP as events that can trigger the

Chapter 1
Basic Syntactic Units of the OLAP DML

1-3

execution of OLAP DML programs. (See "Trigger Programs" for more information.)
Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a command.

The built-in OLAP DML commands are documented as reference topics in Chapter 8,
OLAP DML Commands: A-G and OLAP DML Commands: H-Z.

OLAP DML Programs

Several OLAP DML programs are provided as part of the OLAP DML. Some of these
programs produce reports that you can print or see online. Other programs provided
as part of the OLAP DML perform standard calculations of use to programmers and
database administrators. For more information on the programs delivered with the
OLAP DML, see "Programs Provided With the OLAP DML".

You can also write your own OLAP DML programs to augment the functionality of the
OLAP DML as described in OLAP DML Programs.

How to Execute OLAP DML Statements
The simplest way to execute OLAP DML statement is by using the OLAP Worksheet.
The OLAP Worksheet is delivered as part of the Analytic Workspace Manager. To
open the OLAP worksheet from within the Analytic Workspace Manager:

1. Connect to an Oracle Database instance.

2. Select a Schema.

3. Select Tools, then OLAP Worksheet.

You can also execute OLAP DML statements in SQL and Java:

• Using the PL/SQL DBMS_AW package you can execute OLAP DML statements as
described in the Oracle OLAP DML Reference manual.

• Using SPL_Executor delivered as part of Oracle OLAP Java API you can embed
OLAP DML statements within a Java program.

See Also:

Oracle OLAP Java API Reference

Introduction to Analytic Workspaces
Conceptually, an analytic workspace is that portion of Oracle Database that is used by
Oracle OLAP to perform OLAP analysis. Physically, an analytic workspace is stored in
the database as LOBs in a table named AW$workspacename.

An analytic workspace also contains the following types of objects and the OLAP DML
definitions for these objects:

• Multidimensional data objects that contain the data to analyze and the results of
the analysis.

• Calculation objects (that is, formulas, models, aggregations, and allocations) that
contain OLAP DML statements that specify the analysis.

Chapter 1
How to Execute OLAP DML Statements

1-4

• OLAP DML programs that perform complex analysis.

See Also:

"Introduction to Analytic Workspace Data Objects", Formulas, Models,
Aggregations, and Allocations and OLAP DML Programs

Privileges Needed to Create and Delete Analytic Workspaces
Because an analytic workspace is physically stored as a table in an Oracle Database
instance, you need SQL GRANT privileges to work with an analytic workspace. The
privileges you need vary depending on whether the analytic workspace is in a schema
that you own or in a schema that you do not own:

• When you are the owner of the schema, you only need SQL GRANT privileges
when you want to create an analytic workspace or attach an analytic workspace.
The privileges you must be granted to perform these tasks and the OLAP DML
commands that relate to these tasks are outlined in the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic
workspace

AW CREATE CREATE TABLE

Attach an analytic
workspace AS OF

AW ATTACH with ASOF
keyword

FLASHBACK TABLE

• When you are not the owner of the schema, you need SQL GRANT privileges to
create an analytic workspace, to attach an analytic workspace in ASOF mode, to
drop an analytic workspace, and to truncate an analytic workspace as shown in
the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic
workspace

AW CREATE CREATE ANY TABLE, SELECT
ANY TABLE, UPDATE ANY
TABLE

Attach an analytic workspace
AS OF

AW ATTACH with ASOF
keyword

FLASHBACK ANY TABLE

Delete an analytic workspace AW DELETE DROP ANY TABLE

Truncate an analytic
workspace

AW TRUNCATE TRUNCATE ANY TABLE

Note that Oracle Database does not turn on roles when you run a named PL/SQL
procedure. In this case, the you must have the CREATE TABLE privilege directly.

Defining a New Analytic Workspace
You can use the OLAP DML to create analytic workspaces. To create an analytic
workspace, issue an AW command with the CREATE keyword, followed by an
UPDATE statement and a COMMIT statement.

Chapter 1
Introduction to Analytic Workspaces

1-5

Working with Previously-Defined Analytic Workspaces
Before you can work with a previously-defined analytic workspace, you must first
attach the analytic workspace by issuing an AW ATTACH statement. You can attach
an analytic workspace in any of the following attachment modes:

• Read-only: Users can make private changes to the data in the workspace to
perform what-if analysis but cannot commit any of these changes. Any number of
users can be attached in Read Only mode.

• Read/write access mode: Only one user can have an analytic workspace open in
read/write at a time. The user has to commit either all or none of the changes
made to the workspace.

• Read/write exclusive access mode: The read/write exclusive attach mode is not
compatible with any other access modes. A user cannot attach an analytic
workspace in read/write exclusive mode when another user has it attached in any
mode. Only one user can have an analytic workspace open in read/write exclusive
at a time. The user has to commit either all or none of the changes made to the
workspace.

• Multiwriter access mode: An analytic workspace that is attached in multiwriter
mode can be accessed simultaneously by several sessions. In multiwriter mode,
users can simultaneously modify the same analytic workspace in a controlled
manner by specifying the attachment mode (read-only or read/write) for individual
variables, relations, valuesets, and dimensions.

For more information on the various attachment modes, see the syntax and notes for
the AW ATTACH statement.

Viewing Information About an Analytic Workspace
The following table lists the OLAP DML statements that you can use to view
information about an analytic workspace

Table 1-1 Statements for Viewing Information About an Analytic Workspace

Statement Description

AW function Returns information about currently attached workspaces.

AWDESCRIBE program Sends information about the current analytic workspace to the
current outfile.

EXISTS function Returns a value that indicates whether an object is defined in any
attached workspace.

LISTBY program Lists all objects in an analytic workspace that are dimensioned by
or related to one or more specified dimensions or composites.

LISTNAMES program Lists the names of the objects in an analytic workspace.

OBJ function Returns information about an analytic workspace object.

OBJLIST function Lists the objects that are in one or more workspaces that you
specify.

DESCRIBE command Lists the simple definition of one or more workspace objects.

FULLDSC program Lists the complete definition of one or more workspace objects,
including the properties and triggers of the object(s).

Chapter 1
Introduction to Analytic Workspaces

1-6

Introduction to Analytic Workspace Data Objects
A relational database typically stores data values in tables that represent third normal
form data. In this type of implementation, the values of key columns of a relational
database table are unique values of a single level of data. For example, at one level in
the relational database you might have a table with a key column named City that
contains the names of cities and at the next highest level in the database a table with a
key column named state that contains the names of states, and so on and so on.

In an analytic workspace the objects that hold the data to analyze are arrays called
variables. The keys into variables are stored in other objects which act as the
dimensions of the variables. To support performant OLAP analysis, values from
multiple levels are stored within a single dimension called a hierarchical dimension.
For example, an analytic workspace might have a hierarchical dimension named geog
that had as values the names of both cities and states.

The objects that store values that relate values of two or more dimensions are called
relations. Thus the one-to-many relationship between values of different levels in a
hierarchical dimension are stored in an analytic workspace. For example, the
relationship between the city and state values in a hierarchical geog dimension would
be stored in an analytic workspace relation typically called a parentrel relation. (See
"Parentrel Relation" for more information.)

Additional analytic workspace objects are typically defined to keep additional
information about the hierarchical dimension. Several important OLAP DML
commands and functions (such as the LIMIT command) presume the existences of
these objects in your analytic workspace as the name of these objects is one
argument in the syntax of the statement.

The data objects that you define using the OLAP DML are multidimensional objects
that are stored in an analytic workspace. When you use OLAP DML statements to
perform operations against these multidimensional data objects, those operations
apply all at once to entire set of values contained by these objects.

See Also:

"Types of Analytic Workspace Data Objects" and"Objects that Support the Use
of Hierarchies".

Types of Analytic Workspace Data Objects
The OLAP DML supports the use of the following types of analytic workspace data
objects:

Variables
Simple Dimensions
Concat Dimensions
Composites
Partition Templates
Alias Dimensions
Relations

Chapter 1
Introduction to Analytic Workspace Data Objects

1-7

Valueset and Surrogate Objects

Tip:

You can use the OBJORG function to specify analytic workspace objects that
underlie cubes and cube dimensions.

Variables
The most important data object in an analytic workspace is the variable. A variable is
an object that stores data. All of the data in a variable must have the same data type.
Typically, you use variables to contain data values that quantify a particular aspect of
your business For example, your business might have several categories of
transactions (measured in dollars, units, percentages, and so on) and each category is
stored in its own variable. For example, you might record sales data in dollars (a sales
variable) and units (a units variable).

Because the OLAP DML is a multidimensional programming language, variables are
multidimensional and correspond to what other OLAP languages sometimes call
measures. Conceptually, you can think of a variable with two dimensions as a table, a
variable with three dimensions as a cube, and so on. Physically, variables are stored
as multidimensional arrays with the actual structure of the arrays determined by the
object by which the variable is dimensioned.

The scope and permanence of a variable can vary. A permanent variable is a variable
for which both the variable values and definitions are stored in an analytic workspace.
Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded. You
can also define variables in programs.

You can define scalar variables in programs, but most variables that you define using
the OLAP DML are dimensioned variables. Dimensioned variables are arrays that hold
multiple values. The indexes or dimensions of the variable provide the organization for
the variable. The values of the dimension are similar to keys in a relational table, in
that they uniquely identify a data value. For example, if you have a sales variable that
is dimensioned by time, geography, and product dimensions, then each combination of
the values of time, geography, and product identifies a value in sales. (Note that the
indexes of variables are not actually the values of the dimension, but, instead, are the
INTEGER positions of the values in the dimension.)

Variables can be dimensioned by either flat or hierarchical dimensions. A flat
dimension exists when the values within a dimension are all at the same level; no
value is the child or parent of another value. A hierarchical dimension exists when the
values with a single dimension are in a one-to-many (parent-to-child) relationship with
each other.

A hierarchical dimension is a means of organizing and structuring this type of data
within a single dimension. You can then use it to dimension a variable that contains
data for all the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.You
use a hierarchical dimension to define a variable that contains data of varying levels of
aggregation within a single variable. Storing all of these values in a single variable

Chapter 1
Introduction to Analytic Workspace Data Objects

1-8

affords a quicker response time for users who want to view the data, particularly when
the variable is large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the variable
that correspond to the lower level dimension values. For example, in a sales variable
that is defined with a hierarchical dimension representing time, the cells of the variable
for each quarter might represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add variable
data to the lowest level of the hierarchy, and then calculate or aggregate the values for
the higher levels of the hierarchy. Conversely, you can distribute or allocate data from
higher levels to lower levels of the hierarchy.

See:

DEFINE VARIABLE

Objects that Can Dimension Variables
How variable and relation data is actually structured and stored is dependent on what
type of object you use to dimension the variable or relation and the order in which
those objects appear in the definition of the variable or relation. Variables can be
dimensioned by simple dimensions, concat dimensions, composites, partition
templates, and alias dimensions. The object by which you choose to dimension a
variable determines how the data of the variable is stored.

See Also:

"Objects that Support the Use of Hierarchies"

Simple Dimensions

The members of a simple dimension are data values that all have the same data type.
When a variable is dimensioned by a simple dimension, there is one cell in the
variable for every member of the dimension. When there is a dimension member for
which the variable has no data, Oracle OLAP stores an NA value in the variable for
that empty value. If storing such NA values would result in a full page of NA values,
then Oracle OLAP does not actually store the NA values.

See:

DEFINE DIMENSION (simple)

Concat Dimensions

You define concat dimensions over previously-defined simple dimensions or conjoint
dimensions. Consequently, the base dimensions of a concat dimension can be of

Chapter 1
Introduction to Analytic Workspace Data Objects

1-9

different data types. You can represent a hierarchy with a concat dimension that has
two or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in relational
tables and thereby promote more efficient loading of data from the relational structures
into the analytic workspace structures.

See:

DEFINE DIMENSION CONCAT

Composites

You define composites over previously-defined dimensions. Conceptually, you can
think of a composite consisting of two structures:

• The composite object itself. The composite contains the dimension-value
combinations (that is, the composite tuples) that Oracle OLAP uses to determine
the structure of any variables that are dimensioned by the composite.

• An index between the composite values and its base dimension values.

For a variable that is dimensioned by a composite, Oracle OLAP does not create a cell
for every value in the base dimensions as it would if the variable was dimensioned by
a simple dimension. Instead, it creates array elements (that is, variable cells) only for
those dimension values that are stored in the tuples of the composite. Data for the
variable is stored in order, cell by cell, for each tuple in the composite. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. Consequently, when you
define a variable with one regular dimension and one composite, the data for the
variable is stored as though it was a two-dimensional variable. Using composites to
reduce the number of elements created for a variable results in more efficient data
storage.

See:

DEFINE COMPOSITE

Partition Templates

You define a partition template over previously-defined dimensions or composites. A
partition template is a specification for the partitions of a partitioned variable. A
partitioned variable is stored as multiple rows in the relational table of LOBs that is the
analytic workspace—each partition is a row in the table.

See:

DEFINE PARTITION TEMPLATE

Chapter 1
Introduction to Analytic Workspace Data Objects

1-10

Alias Dimensions

An alias dimension is an alias for a simple dimension. An alias dimension has the
same type and values as its base dimension. Typically, you define an alias dimension
when you want to dimension a variable by the same dimension twice.

See:

DEFINE DIMENSION ALIASOF

Relations
A relation is an object that establishes a correspondence between the values of a
given dimension and the values of that same dimension or other dimensions in the
analytic workspace. Relations are dimensioned arrays. Each cell in a relation holds the
index of the value of a dimension. You can define relations between two or more
dimensions, multiple relations between a set of dimensions, or a dimension with itself
(a self-relation).

Most frequently, a relation is a self-relation for a hierarchical dimension. By creating a
relation between values in a dimension that participate in a one-to-many (parent-to-
child) relationship, you can organize your data by the child values and view
aggregates of data by the parent values. For example, you can create a geog.parent
relation for a geography dimension to define the relationships between the city and
state values in geography. In this way you can organize the data by city and view the
aggregates of data by state.

See Also:

DEFINE RELATION

Valueset and Surrogate Objects
The OLAP DML provides the following special data objects that you use not when you
are defining your variables, but instead, when you are querying them,

Valueset Objects

A valueset is a list of dimension values for one or more previously-defined dimensions.
You use a valueset to save dimension status lists across sessions.

See:

DEFINE VALUESET

Chapter 1
Introduction to Analytic Workspace Data Objects

1-11

Surrogates

A dimension surrogate is an alternative set of values for a previously-defined
dimension. You cannot dimension a variable by a surrogate, but you can use a
surrogate rather than a dimension in a model, in a LIMIT command, in a qualified data
reference, or in data loading with statements such as FILEREAD, FILEVIEW, SQL
FETCH, and SQL IMPORT.

See:

DEFINE SURROGATE

Objects that Support the Use of Hierarchies
Typically, variables are dimensioned by hierarchical objects. For example, you might
have a sales variable that is dimensioned by geog, time, and product. The geog
dimension might have two hierarchies (one for political divisions and another for sales
regions) and each of these hierarchies could have several levels with the top level of
the political geography hierarchy being All Country and the top level of the sales
geography hierarchy being All Regions. Example 1-1 illustrates defining and
populating this type of hierarchical geography dimension.

Typically, after you define a hierarchical dimension, you define the following objects for
that dimension:

• hierlist dimension that lists the names of the hierarchies for the dimension. See
"Hierlist Dimension" for more information and an example.

• parentrel relation that defines the hierarchies. A dimension is only a hierarchical
dimension when it has a parentrel defined for it. See "Parentrel Relation" for more
information and an example.

• levellist relation that lists the names of all of the levels of all of the hierarchies. See
"Levellist Dimension" for more information and an example.

• hierlevels valueset that is the values of the levels of each hierarchy. See
"Hierlevels Valueset" for more information and an example.

• inhier valueset or variable that identifies the values of each hierarchy. See "Inhier
Valueset or Variable" for more information and examples.

• levelrel relation that relates each value of the hierarchical dimension to its level in
the hierarchy. See "Levelrel Relation" for more information and an example.

• familyrel relation that is each hierarchical dimension value and its related values.
See "Familyrel Relation" for more information and an example.

• gidrel relation that is the grouping ids of each value within each hierarchy. See
"Gidrel Relation" for more information and an example.

Example 1-1 Defining and Populating a Hierarchical Dimension Named geog

DEFINE geog DIMENSION TEXT
LD A dimension with two hierarchies for geography
"Populate the dimension with City, State, Region, and Country values
MAINTAIN geog ADD 'Boston' 'Springfield' 'Hartford' 'Mansfield' 'Montreal' 'Walla
Walla' 'Portland' 'Oakland' 'San Diego' 'MA' 'CT' 'WA' 'CA' 'Quebec' 'East' 'West'

Chapter 1
Introduction to Analytic Workspace Data Objects

1-12

'All Regions' 'USA' 'Canada' 'All Country'

"Display the values in geog

REPORT geog

GEOG

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland
San Diego
MA
CT
WA
CA
Quebec
East
West
All Regions
USA
Canada
All Country

Hierlist Dimension
A hierlist dimension is a TEXT dimension in the analytic workspace that has as values
the names of the hierarchies of a hierarchical dimension. For example, if the company
has a different calendar and fiscal year, the time dimension for that company would
have two hierarchies: one for calendar and another for year. The hierlist dimension
that supported that time hierarchy would have two values: Calendar and Fiscal.

For consistency's sake, analytic workspaces include a hierlist dimension for every
hierarchical dimension -- even when that hierarchical dimension has only one
hierarchy.

Example 1-2 Defining and Populating a hierlist Dimension Named geog_hierlist

This example illustrates defining and populating this type of dimension.

DEFINE geog_hierlist DIMENSION TEXT
LD List of Hierarchies for geog dimension
"Populate the geog_hierlist dimension
MAINTAIN geog_hierlist ADD 'Political_Geog' 'Sales_Geog'
"Display the values of the geog_hierlist dimension
REPORT geog_hierlist

GEOG_HIERLIST

Political_Geog
Sales_Geog

Chapter 1
Introduction to Analytic Workspace Data Objects

1-13

Parentrel Relation
A parentrel relation is a relation between the hierarchical dimension and itself (a self-
relation) and the hierlist dimension. It identifies the parent of each dimension member
within a hierarchy.

Example 1-3 Defining and Populating a parentrel Relation named
geog_parentrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_parentrel RELATION geog <geog geog_hierlist>
LD Self-relation for geog showing parents of each value
"Populate each cell in the relation "with the parent of the geog value
"This example using assignment statement with QDRs to do that
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Boston') = 'MA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Hartford') = 'CT'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Springfield') = 'MA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Mansfield') = 'CT'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Montreal') = 'Quebec'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Walla Walla') = 'WA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Portland') = 'WA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Oakland') = 'CA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'San Diego') = 'CA'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'CT') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'MA') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'WA') = 'West'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'CA') = 'West'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'Quebec') = 'East'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'East') = 'All Regions'
geog_parentrel (geog_hierlist 'Sales_Geog' geog 'West') = 'All Regions'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Boston') = 'MA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Hartford') = 'CT'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Springfield') = 'MA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Mansfield') = 'CT'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Montreal') = 'Quebec'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Walla Walla') = 'WA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Portland') = 'WA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Oakland') = 'CA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'San Diego') = 'CA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'CT') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'MA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'WA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'CA') = 'USA'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Quebec') = 'Canada'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'USA') = 'All Country'
geog_parentrel (geog_hierlist 'Political_Geog' geog 'Canada') = 'All Country'

"Display the values of geog_parentrel
REPORT DOWN geog W 20 geog_parentrel
 -------------GEOG_PARENTREL--------------
 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------
Boston MA MA
Springfield MA MA
Hartford CT CT
Mansfield CT CT
Montreal Quebec Quebec

Chapter 1
Introduction to Analytic Workspace Data Objects

1-14

Walla Walla WA WA
Portland WA WA
Oakland CA CA
San Diego CA CA
MA USA East
CT USA East
WA USA West
CA USA West
Quebec Canada East
East NA All Regions
West NA All Regions
All Regions NA NA
USA All Country NA
Canada All Country NA
All Country NA NA

Levellist Dimension
A levellist dimension is a TEXT dimension that has as values the names all of the
levels of the hierarchies of a hierarchical dimension.

Example 1-4 Defining and Populating a levellist Dimension Named
geog_levellist

This example illustrates defining and populating this type of dimension.

DEFINE geog_levellist DIMENSION TEXT
LD List of levels used by hierarchies of the geog dimension
"Populate the geog_levellist dimension with the names of the levels of both the
"Political_Geog and Sales_Geog hierarchies
MAINTAIN geog_levellist ADD 'All Country' 'Country' 'All Regions' 'Region' MAINTAIN
geog_levellist ADD 'State-Prov' 'City'
"Display the values of the geog_levellist dimension

REPORT geog_levellist

GEOG_LEVELLIST

All Country
Country
All Regions
Region
State-Prov
City

Hierlevels Valueset
A hierlevels valueset is those values of the hierlevels dimension (typically ordered from
bottom to top) that are included in each hierarchy of the hierarchical dimension.

Example 1-5 Defining and Populating a hierlevels Valueset named geog_hierlevels

This example illustrates defining and populating this type of valueset.

DEFINE geog_hierlevels VALUESET geog_levellist <geog_hierlist>
"Using LIMIT populate the valueset with the appropriate values for each hierarchy
LIMIT geog_hierlevels TO ALL

LIMIT geog_hierlevels (geog_hierlist 'Political_Geog') TO 'City' 'State-Prov' 'Country' 'All Country'

Chapter 1
Introduction to Analytic Workspace Data Objects

1-15

LIMIT geog_hierlevels (geog_hierlist 'Sales_Geog') TO 'City' 'State-Prov' 'Region' 'All Regions'

"Display the values in the valueset
REPORT W 22 geog_hierlevels

GEOG_HIERLIST GEOG_HIERLEVELS
-------------- ----------------------
Political_Geog City
 State-Prov
 Country
 All Country
Sales_Geog City
 State-Prov
 Region
 All Regions

Inhier Valueset or Variable
An inhier valueset is those values of the inhier dimension that are in each hierarchy.

An inhier variable is a BOOLEAN variable that is dimensioned by the hierarchical
dimension and the hierlist dimension. For each hierarchy, it has a TRUE value for
each dimension value that is in that hierarchy.

Example 1-6 Defining and Populating an inhier Valueset Named geog_inhier

This example illustrates defining and populating inhier valueset.

"Define the valueset
DEFINE geog_inhier VALUESET geog <geog_hierlist>
"Using LIMIT commands, populate the valueset
LIMIT geog_inhier (geog_hierlist 'Political_Geog') REMOVE 'East' 'West' 'All Regions'
LIMIT geog_inhier (geog_hierlist 'Sales_Geog') REMOVE 'Canada' 'USA' 'All Country'
"Display the values in the valueset

REPORT W 20 geog_inhier

GEOG_HIERLIST GEOG_INHIER
-------------- --------------------
Political_Geog Boston
 Springfield
 Hartford
 Mansfield
 Montreal
 Walla Walla
 Portland
 Oakland
 San Diego
 MA
 CT
 WA
 CA
 Quebec
 USA
 Canada
 All Country
Sales_Geog Boston
 Springfield
 Hartford
 Mansfield

Chapter 1
Introduction to Analytic Workspace Data Objects

1-16

 Montreal
 Walla Walla
 Portland
 Oakland
 San Diego
 MA
 CT
 WA
 CA
 Quebec
 East
 West
 All Regions

Example 1-7 Defining and Populating an inhier Variable Named geog_inhiervar

This example illustrates defining and populating an inhier variable valueset.

DEFINE geog_inhiervar VARIABLE BOOLEAN <geog geog_hierlist>

"Using LIMIT commands and assignment statements, populate
" the variable
LIMIT geog_hierlist TO ALL
LIMIT geog_hierlist TO 'Political_Geog'
LIMIT geog TO 'East' 'West' 'All Regions'
geog_inhiervar = FALSE
LIMIT geog COMPLEMENT
geog_inhiervar = TRUE
LIMIT geog_hierlist TO ALL
LIMIT geog_hierlist TO 'Sales_Geog'
LIMIT geog TO ALL
LIMIT geog TO 'Canada' 'USA' 'All Country'
geog_inhiervar = FALSE
LIMIT geog COMPLEMENT
geog_inhiervar = TRUE
LIMIT geog TO ALL
LIMIT geog_hierlist TO ALL

"Display the values of the variable
REPORT DOWN geog geog_inhiervar

 ---GEOG_INHIERVAR----
 ----GEOG_HIERLIST----
 Political_
GEOG Geog Sales_Geog
-------------- ---------- ----------
Boston yes yes
Springfield yes yes
Hartford yes yes
Mansfield yes yes
Montreal yes yes
Walla Walla yes yes
Portland yes yes
Oakland yes yes
San Diego yes yes
MA yes yes
CT yes yes
WA yes yes
CA yes yes
Quebec yes yes

Chapter 1
Introduction to Analytic Workspace Data Objects

1-17

East no yes
West no yes
All Regions no yes
USA yes no
Canada yes no
All Country yes no

Levelrel Relation
A levelrel relation is a relation between the levellist and hierlist dimensions that records
the level for each member of the hierarchical dimension

Example 1-8 Defining and Populating a levelrel Relation named geog_levelrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_levelrel RELATION geog_levellist <geog geog_hierlist>
LD Level of each dimension member for geog

"Populate the relation
"This example uses assignment statements with QDRs to populate
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Boston') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Hartford') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Springfield') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Mansfield') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Montreal') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Walla Walla') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Portland') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Oakland') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'San Diego') = 'City'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'CT') = 'State-Prov'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'MA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'WA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'CA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'Quebec') = 'State-Prov'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'East') = 'Region'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'West') = 'Region'
geog_levelrel (geog_hierlist 'Sales_Geog' geog 'All Regions') = 'All Regions'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Boston') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Hartford') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Springfield') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Mansfield') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Montreal') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Walla Walla') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Portland') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Oakland') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'San Diego') = 'City'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'CT') = 'State-Prov'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'MA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'WA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'CA') = 'State-Prov'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Quebec') = 'State-Prov'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'USA') = 'Country'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'Canada') = 'Country'
geog_levelrel (geog_hierlist 'Political_Geog' geog 'All Country') = 'All Country'

"Display the values
REPORT DOWN geog W 20 geog_levelrel

 --------------GEOG_LEVELREL--------------

Chapter 1
Introduction to Analytic Workspace Data Objects

1-18

 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------
Boston City City
Springfield City City
Hartford City City
Mansfield City City
Montreal City City
Walla Walla City City
Portland City City
Oakland City City
San Diego City City
MA State-Prov State-Prov
CT State-Prov State-Prov
WA State-Prov State-Prov
CA State-Prov State-Prov
Quebec State-Prov State-Prov
East NA Region
West NA Region
All Regions NA All Regions
USA Country NA
Canada Country NA
All Country All Country NA

Familyrel Relation
The familyrel relation is a relation between the hierarchical dimension and the levellist
and hierlist dimensions that provides the full parentage of each dimension member in
the hierarchy.

Example 1-9 Defining and Populating a familyrel Relation named geog_familyrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_familyrel RELATION geog <geog geog_levellist geog_hierlist>
LD FEATURES Family/Ancestry structure for the geog dimension

"Populate the relation using the HIERHEIGHT command
HIERHEIGHT geog_parentrel INTO geog_familyrel USING geog_levelrel

"Display the values of the familyrel relation
"First the values for the Political_Geog hierarchy are displayed
"Then the values for the Sales_Geog hierarchy
REPORT DOWN geog W 12 geog_familyrel

GEOG_HIERLIST: Political_Geog
 -------------------------------GEOG_FAMILYREL--------------------------------
 -------------------------------GEOG_LEVELLIST--------------------------------
GEOG All Country Country All Regions Region State-Prov City
-------------- ------------ ------------ ------------ ------------ ------------ ------------
Boston All Country USA NA NA MA Boston
Springfield All Country USA NA NA MA Springfield
Hartford All Country USA NA NA CT Hartford
Mansfield All Country USA NA NA CT Mansfield
Montreal All Country Canada NA NA Quebec Montreal
Walla Walla All Country USA NA NA WA Walla Walla
Portland All Country USA NA NA WA Portland
Oakland All Country USA NA NA CA Oakland
San Diego All Country USA NA NA CA San Diego
MA All Country USA NA NA MA NA

Chapter 1
Introduction to Analytic Workspace Data Objects

1-19

CT All Country USA NA NA CT NA
WA All Country USA NA NA WA NA
CA All Country USA NA NA CA NA
Quebec All Canada NA NA Quebec NA
 Countries
East NA NA NA NA NA NA
West NA NA NA NA NA NA
All Regions NA NA NA NA NA NA
USA All Country USA NA NA NA NA
Canada All Country Canada NA NA NA NA
All Country All Country NA NA NA NA NA

GEOG_HIERLIST: Sales_Geog
 -------------------------------GEOG_FAMILYREL--------------------------------
 -------------------------------GEOG_LEVELLIST--------------------------------
GEOG All Country Country All Regions Region State-Prov City
-------------- ------------ ------------ ------------ ------------ ------------ ------------
Boston NA NA All Regions East MA Boston
Springfield NA NA All Regions East MA Springfield
Hartford NA NA All Regions East CT Hartford
Mansfield NA NA All Regions East CT Mansfield
Montreal NA NA All Regions East Quebec Montreal
Walla Walla NA NA All Regions West WA Walla Walla
Portland NA NA All Regions West WA Portland
Oakland NA NA All Regions West CA Oakland
San Diego NA NA All Regions West CA San Diego
MA NA NA All Regions East MA NA
CT NA NA All Regions East CT NA
WA NA NA All Regions West WA NA
CA NA NA All Regions West CA NA
Quebec NA NA All Regions East Quebec NA
East NA NA All Regions East NA NA
West NA NA All Regions West NA NA
All Regions NA NA All Regions NA NA NA
USA NA NA NA NA NA NA
Canada NA NA NA NA NA NA
All Country NA NA NA NA NA NA

Gidrel Relation
A gidrel relation is a relation between a NUMBER dimension, the hierarchical
dimension, and the hierlist dimension that contains the grouping ID of each dimension
member in each hierarchy of the hierarchical dimension. It also has a $GID_DEPTH
property that identifies the depth within a hierarchy of each dimension member.

Example 1-10 Defining and Populating a gidrel Relation named geog_gidrel

This example illustrates defining and populating this type of relation.

"Create a dimension that has values that are numbers
DEFINE gid_dimension DIMENSION NUMBER (38,0)"Add values to that dimension
"This example uses MAINTAIN ADD to add a few numbers
MAINTAIN gid_dimension ADD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"Define the gidrel relation
DEFINE geog_gidrel RELATION gid_dimension <geog geog_hierlist>
"Display the complete definition of the geog_gidrel relation
"Note that it has no properties
DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
"Populate the gidrel relation using the GROUPINGID command

Chapter 1
Introduction to Analytic Workspace Data Objects

1-20

GROUPINGID geog_parentrel INTO geog_gidrel USING geog_levelrel INHIERARCHY geog_inhier
"Display the values of the geog_gidrel relation

REPORT down geog w 20 geog_gidrel

 ---------------GEOG_GIDREL---------------
 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------
Boston 0 0
Springfield 0 0
Hartford 0 0
Mansfield 0 0
Montreal 0 0
Walla Walla 0 0
Portland 0 0
Oakland 0 0
San Diego 0 0
MA 1 1
CT 1 1
WA 1 1
CA 1 1
Quebec 1 1
East NA 3
West NA 3
All Regions NA 7
USA 3 NA
Canada 3 NA
All Country 7 NA

"Display the complete definition of the geog_gidrel relation
"Note that it now has a $GID_DEPTH property
DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
PROPERTY '$GID_DEPTH' 4

OLAP DML Statements Apply to All of the Values of a Data
Object

The OLAP DML is a multidimensional language. Consequently, operations in the
OLAP DML apply all at once to an entire set of values. Again, conceptually, you can
think of these operations as applying to the values in all of the cells in a variable; or,
physically, you can think of these operations as applying to all of the elements in the
array that is the variable. Consequently, if you use the OLAP DML assignment
statement (that is, SET or =), then you do not need to code explicit loops to assign
values to all of the elements in a variable. Instead, when you issue a statement against
an object that has one or more dimensions, the statement loops over the values in
status for each dimension of the object and performs the requested operation.

Assume, for example, that there is a dimension named prodid that has three values,
Prod01, Prod02, and Prod03, and you have a variable named quantity that is
dimensioned by prodid. As the following code snippet illustrates, if Prod01, Prod02, and
Prod03 are all in status, when you assign the value 3 to quantity, Oracle OLAP assigns
the value 3 to all of the elements in quantity.

quantity = 3
REPORT quantity

PRODID QUANTITY

Chapter 1
OLAP DML Statements Apply to All of the Values of a Data Object

1-21

-------------- ----------
PROD01 3.00
PROD02 3.00
PROD03 3.00

Other OLAP DML statements (for example, REPORT, ROW, and FOR) also loop
through all of the in status elements of a dimensioned object when they execute.

Changing the Default Looping Behavior of Statements
By default, statements loop through the values of a dimensioned object using the order
in which the dimensions of the object are listed in the definition of the object. Also,
when a variable is dimensioned by a composite, most looping statements loop through
the variable as though it was not dimensioned by a composite, but was, instead,
dimensioned by the base dimensions of the composite.

The OLAP DML provides ways for you to change the default looping behavior or to
explicitly request looping:

• ACROSS phrase—Some looping command (such as assignment statements that
you use to assign values) have an ACROSS phrase that you can use to specify
non-default looping behavior. For detailed documentation of the ACROSS phrase,
see the SET (=) command.

• ACROSS command—When an OLAP DML statement is not a looping statement
or does not include an ACROSS phrase, you can request looping behavior by
coding the DML statement as an argument of the ACROSS command.

How to Specify the Set of Data that OLAP DML Operations
Work Against

For each defined dimension, Oracle OLAP uses lists called status lists to keep track
of the dimension values that are accessible to the user.

About Status Lists
Oracle OLAP uses two kinds of status lists: default status lists and current status lists.
The values in the current status lists of the dimensions in an analytic workspace
determine the set of data that is available to the OLAP DML at any given moment in
time.

Default Status Lists
The default status list of a dimension is the list of all of the values of the dimension
that have read permission, in the order in which the values are stored, when you first
attach an analytic workspace. You can change the default status list of a dimension in
the following ways:

• You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command or adding dimension values in other ways (for example,
using a SQL FETCH statement).

• You can change the read permission of values that are associated with a
dimension by using a PERMIT or PERMITRESET statement.

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

1-22

Current Status Lists
The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be "in status." When you first attach an analytic workspace, the default and current
status lists of each dimension are the same.

The current status list of a dimension determines the accessibility of the data in the
analytic workspace:

• For dimensions, only those dimension values that are in the current status list are
visible and accessible to OLAP DML expressions.

• For dimensioned objects like variables, only those data values that are indexed by
dimension values in the current status list are visible and accessible to OLAP DML
expressions. As a loop is performed through a dimensioned object, the order of
the dimension values in the current status list is used to determine the order in
which the values of the object are accessed.

Note that a dimension and any surrogate for that dimension share the same status.
Setting the status of a dimension surrogate sets the status of its dimension and setting
the status of a dimension sets the status of any dimension surrogates for it.
Throughout this documentation, references to dimensions apply equally to dimension
surrogates, except where noted. Additionally, composites are not dimensions, and
therefore they do not have any independent status. The values of a composite that are
in status are determined by the status of the base dimensions of the composite.

Note:

Whether or not a dimension value is in status merely restricts the OLAP DML's
view of the value during a given session; it does not permanently affect the
values that are stored in the analytic workspace.

Changing the Current Status of a Dimension to Work with a Subset of
Data

Because the current status list of a dimension determines the accessibility of the data
in the analytic workspace, the way to work with a subset of analytic workspace data is
to change the current status lists of one or more dimensions.

You change the values and the order of the values in the current status list of a
dimension using the LIMIT command. The LIMIT command is a very complex OLAP
DML command that lets you specify what values you want in the current status list by
specifying the values explicitly or implicitly using relations. At it simplest level,
Example 10-20 illustrates how you can use the LIMIT command to change the current
status list of a dimension so you can work with a subset of data.

Saving and Restoring Current Dimension Status
There are several different ways that you can save the current status of a dimension.
The scope of each way is different:

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

1-23

• Any session—To save the current status for use in any session, create a named
valueset with that status. Use a DEFINE VALUESET command to define the
valueset. Use a LIMIT command to assign the values to the valueset.

• Current session—To save, access, or update the current status for use in the
current session, use a named context. Use the CONTEXT command to define the
context.

• Current program—To save the current status for use in the current program, then
use the PUSHLEVEL and PUSH commands. You can restore the current status
values using the POPLEVEL and POP commands.

Using a Subset of Data Without Changing Status
Sometimes you want to have an individual OLAP DML statement or expression work
against a subset of data without actually changing the current status list of a
dimension. To support this need, some OLAP DML statements allow you to specify the
name of a previously-defined valueset object instead of the name of a dimension.
Additionally, on-the-fly, you can specify a data subset without changing the current
status list of dimensions using one of the following:

• The CHGDIMS function which, during the evaluation of expression, changes the
dimensionality of an expression or changes the dimension status.

• The LIMIT function which, during the evaluation of expression, returns the
dimension or dimension surrogate values that result from a specified LIMIT
command or a specified dimension status stack.

• Use a qualified data reference (QDR) which is a way of limiting one or more
dimensions of an expression to a single value when you want to specify a single
value of a data object without changing the current status.

Populating Multidimensional Hierarchical Data Objects
Frequently you first populate the base values of your variables from relational tables or
from flat files. You then calculate other values from these base values using OLAP
DML calculation objects. For example, you might define aggregation objects to
aggregate the values that are higher up the hierarchy.

You can also assign values to variables, relations, and dimension surrogates using
assignment statements (see SET and SET1) and add values to dimensions using
MAINTAIN statements.

Tip:

Formulas, Models, Aggregations, and Allocations

Chapter 1
Populating Multidimensional Hierarchical Data Objects

1-24

2
Data Types, Operators, and Expressions

This chapter contains information about the following:

• OLAP DML Data Types

• OLAP DML Operators

• OLAP DML Expressions

OLAP DML Data Types
In the OLAP DML, as in other languages, a data type is a collection of values and the
definition of one or more operations on those values.

The Oracle OLAP DML supports the data types outlined in the following table.

Table 2-1 Summary of OLAP DML Data Types

Data Type Abbreviation Description

BOOLEAN BOOL Represents the logical TRUE and FALSE values.

DATE None Does not correspond to the SQL data type of the same
name; but, instead, is an older data type that is unique
to the OLAP DML.

Day, month, and year data (but not hour and minute
data) between January 1, 1000 A.D. and December
31, 9999 A.D.

DATETIME None Corresponds to the SQL DATE data type.

Valid date range from January 1, 4712 BC to
December 31, 9999 AD. The default format is
determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This data type
contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It does not have fractional
seconds or a time zone.

TIMESTAMP None Corresponds to the SQL TIMESTAMP data type.

Year, month, and day values of date, and hour,
minute, and second values of time up to a precision of
9 places for the fractional part of the SECOND datetime
field. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes. This
data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

2-1

Table 2-1 (Cont.) Summary of OLAP DML Data Types

Data Type Abbreviation Description

TIMESTAMP_TZ None Corresponds to the SQL TIMESTAMP WITH TIME ZONE
data type.

All values of TIMESTAMP as well as time zone
displacement value, with a precision of 9 places for the
fractional part of the SECOND datetime field. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 13 bytes. This data
type contains the datetime fields YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an
explicit time zone.

TIMESTAMP_LTZ Corresponds to the SQL TIMESTAMP WITH LOCAL TIME
ZONE data type.

All values of TIMESTAMP_TZ, with the following
exceptions:

• Data is normalized to the database time zone
when it is stored in the database.

• When the data is retrieved, users see the data in
the session time zone.

The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes.

DSINTERVAL None Corresponds to the SQL INTERVAL DAY TO SECOND
data type.

Stores a period of time in days, hours, minutes, and
seconds.

YMINTERVAL None Corresponds to the SQL INTERVAL YEAR TO MONTH
data type.

Stores a period of time in years and months.

INTEGER INT A whole number in the range of (-2**31) to (2**31)-1.

SHORTINTEGER SHORTINT A whole number in the range of (-2**15) to (2**15)-1.

LONGINTEGER LONGINT A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL DEC A decimal number with up to 15 significant digits in the
range of -(10**308) to +(10**308).

SHORTDECIMAL SHORT A decimal number with up to 7 significant digits in the
range of -(10**38) to +(10**38).

NUMBER [(p,[s])] None A decimal number with up to 38 significant digits in the
range of -(10**125) to +(10**125).

TEXT None Up to 32,767 bytes for each line in the database
character set. This data type is equivalent to the CHAR
and VARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACE64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

Chapter 2
OLAP DML Data Types

2-2

Table 2-1 (Cont.) Summary of OLAP DML Data Types

Data Type Abbreviation Description

NTEXT None Up to 32,767 bytes for each line in UTF-8 character
encoding. This data type is equivalent to the NCHAR
and NVARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACE64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

ID None Up to 8 single-byte characters for each line in the
database character set. (ID is valid only for values of
simple dimensions, see DEFINE DIMENSION
(simple).)

RAW (size) None Raw binary data of length size bytes. Maximum size is
2000 bytes. You must specify size for a RAW value.
(Note that when defining a variable of this data type
you specify the RANSPACE64 keyword in the DEFINE
VARIABLE statement to increase the maximum
number of characters for the values of the variable
from nearly 2**32 to nearly 2**64.)

ROWID None. Base 64 string representing the unique address of a
row in its table. This data type is primarily for values
returned by the ROWID pseudocolumn.

UROWID None Base 64 string representing the logical address of a
row of an index-organized table. The optional size is
the size of a column of type UROWID. The maximum
size and default is 4,000 bytes.

WORKSHEET Specified for arguments and temporary variables in an
OLAP DML program when you want to handle
arguments without converting values to a specific data
type. Use the WKSDATA function to retrieve the data
type of an argument with a WORKSHEET data type.

Categories of Data Types

Frequently, these data types are thought of as belonging to the following categories:

• Numeric Data Types which are INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL,
SHORTDECIMAL, and NUMBER

• Text Data Types which are TEXT, NTEXT and ID.

• Datetime and Interval Data Types which include the datetime data types of
DATETIME, TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP-LTZ and the interval data types of
DSINTERVAL and YMINTERVAL.

• Date-only Data Type which is the DATE data type that is unique to the OLAP DML.

• Boolean Data Type which is BOOLEAN.

• Row Identifier Data Types which are ROWID and UROWID.

Which OLAP DML Data Objects Can Have Which Data Type?

Different objects support the use of different data types for their values:

Chapter 2
OLAP DML Data Types

2-3

• For variables, all of the data types are supported.

• For dimensions and surrogates, the INTEGER, NUMBER, TEXT, ID (simple dimensions
only), NTEXT, DATETIME, TIMESTAMP, TIMESTAMP_TZ, TIMESTAMP-LTZ, DSINTERVAL, and
YMINTERVAL data types are supported. Additionally, when you define a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR using a DEFINE DIMENSION
(DWMQY) statement, the data type of the values of that dimension are DATE-only.

Numeric Data Types
The numeric data types described in the following table are supported.

Table 2-2 OLAP DML Numeric Data Types

Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.

SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.

LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits in the range of -(10**308)
to +(10**308).

SHORTDECIMAL A decimal number with up to 7 significant digits in the range of -(10**38) to
+(10**38).

NUMBER A decimal number with up to 38 significant digits in the range of -(10**125)
to +(10**125).

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Note, however, that a comma is required before a
negative number that follows another numeric expression, or the minus sign is
interpreted as a subtraction operator. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by the
NLS_NUMERIC_CHARACTERS option.

Using LONGINTEGER Values
Most of the numeric data types return NA when a value is outside its range. However,
the LONGINTEGER data type does not have overflow protection and returns an incorrect
value when, for example, a calculation produces a number that exceeds its range. Use
the NUMBER data type instead of LONGINTEGER when this is likely to be a problem.

Using NUMBER Values
When you define a NUMBER variable, you can specify its precision (p) and scale (s) so
that it is sufficiently, but not unnecessarily, large. Precision is the number of significant
digits. Scale can be positive or negative. Positive scale identifies the number of digits
to the right of the decimal point; negative scale identifies the number of digits to the left
of the decimal point that can be rounded up or down.

The NUMBER data type is supported by Oracle Database standard libraries and operates
the same way as it does in SQL. It is used for dimensions and surrogates when a text
or INTEGER data type is not appropriate. It is typically assigned to variables that are not
used for calculations (like forecasts and aggregations), and it is used for variables that
must match the rounding behavior of the database or require a high degree of

Chapter 2
OLAP DML Data Types

2-4

precision. When deciding whether to assign the NUMBER data type to a variable, keep
the following facts in mind to maximize performance:

• Analytic workspace calculations on NUMBER variables is slower than other numeric
data types because NUMBER values are calculated in software (for accuracy) rather
than in hardware (for speed).

• When data is fetched from an analytic workspace to a relational column that has
the NUMBER data type, performance is best when the data has the NUMBER data type
in the analytic workspace because a conversion step is not required.

Text Data Types
The text data types described in the following table are supported by Oracle OLAP.

Table 2-3 OLAP DML Text Data Types

Data Type Data Value

TEXT Up to 32,767 bytes for each line in the database character set.
This data type is equivalent to the CHAR and VARCHAR2 data types
in the database.

NTEXT Up to 32,767 bytes for each line in UTF-8 character encoding.
This data type is equivalent to the NCHAR and NVARCHAR2 data
types in the database.

ID Up to 8 single-byte characters for each line in the database
character set. (ID is valid only for values of simple dimensions,
see DEFINE DIMENSION (simple).)

Text Literals
Enclose text literals in single quotes. Oracle OLAP recognizes unquoted alpha-
numeric values as object names and double quotes as the beginning of a comment.

You can embed quoted strings within a quoted string, which is necessary when you
want to specify the base dimension value of a composite or conjoint dimension or
when a value includes an apostrophe. Because a single quotation mark is used in
Oracle OLAP to indicate a text string, it is considered a special character when used
within such a string. Consequently, to specify the literal value of a single quotation
mark within a text string, precede the quotation mark with a backslash.

For example, suppose you want to find out if New York and Apple Sauce are a valid
combination of base dimension values in the markprod conjoint dimension. The
following statement produces the answer YES or NO.

SHOW ISVALUE(markprod, '<\'New York\' \'Apple Sauce\'>')

When embedded quoted strings have a further level of embedding, you must use
backslashes before each special character, such as the apostrophe and the backslash
that must precede it in "Joe's Deli," as shown in the following statement.

SHOW ISVALUE(markprod, '<\'Joe\\\'s Deli\' \'Apple Sauce\'>')

Escape Sequences
The following table shows escape sequences that are recognized by Oracle OLAP.

Chapter 2
OLAP DML Data Types

2-5

Table 2-4 Recognized Escape Sequences

Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal escape
and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a hexadecimal
escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and nnnn is
a four-digit hexadecimal INTEGER that represents the Unicode codepoint with the
value U+nnnn. The U must be a capital letter.

Date-only Data Type
The Oracle OLAP DML DATE data type does not correspond to the SQL data type of
the same name. It is, instead, is an older data type that is unique to the OLAP DML.
The OLAP DML DATE data type is a valid data type for variables and for dimensions of
type DAY, WEEK, MONTH, QUARTER, and YEAR as discussed in the DEFINE
DIMENSION (DWMQY) command topic. It is used to store day, month, and year data
(but not hour and minute data) between January 1, 1000 A.D. and December 31, 9999
A.D. Because the OLAP DML DATE data type does not include hour and minute data, it
is often referred to as the DATE-only data type.

Tip:

The Oracle OLAP DML data type that corresponds to the SQL DATE data type
is named DATETIME. See DATETIME Data Type for more information.

See Also:

"Date-only Data Type Options".

Date-only Input Values
A valid input literal value of type DATE must conform to one of three styles: numeric,
packed numeric, or month name. You can mix these styles throughout a session.

Chapter 2
OLAP DML Data Types

2-6

Tip:

To determine whether a text expression (such as an expression with a data
type of TEXT or ID) represents a valid DATE-only value, use the ISDATE
program

Numeric style

Specify the day, month, and year as three INTEGER values with one or more separators
between them, using these rules:

• The day and month components can have one digit or two digits.

• For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

• To separate the components, you can use a space, dash (-), slash (/), colon (:),
or comma (,).

Examples: '24/4/97' or '24-04-1997'

Packed numeric style

Specify the day, month, and year as three INTEGER values with no separators between
them, using these rules:

• The day and month components must have two digits. When the day or month is
less than 10, it must be preceded by a zero.

• For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

• You cannot use any separators between the date components.

Examples: '240497' or '04241997'

Month name style

Specify the day and year as INTEGER values and the month as text, using these rules:

• The month component must match one name listed in the MONTHNAMES option.
You can abbreviate the month name to one letter or more, when you supply
enough letters to uniquely match the beginning of a name in MONTHNAMES. The
case of the letters in the month component (uppercase or lowercase) does not
need to match the case in MONTHNAMES.

• The day component can have one digit or two digits.

• For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

• When the day and year components are adjacent, they must have at least one
separator between them. As separators, you can use a space, dash (-), slash (/),
colon (:), or comma (,). When you want, you can place one or more separators
between the day and month or between the year and month.

Chapter 2
OLAP DML Data Types

2-7

Examples: '24APR97' or '24 ap 97' or 'April 24, 1997'

Date-only Dimension Values
The format of a DATE -only value of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is determined by the value name format (VNF) associated with
the object. A VNF is a template that controls the input and display format for DATE -only
values. The template can include format specifications for any of the components that
identify a time period (day, month, calendar year, fiscal year, and period within a fiscal
year). You associate a VNF with an object by adding a VNF statement to its definition.
When you do not add a VNF to the definition of an object, the object uses the default
VNF shown in the following table.

Table 2-5 Default VNFs for DWMQY Dimensions

Type of Dimension Default VNF Example

DAY <DD><MTXT><YY> 01JAN95

WEEK W<P>.<FF> W1.95

Multiple WEEK <NAME><P>.<FF> MYWEEK1.95

MONTH <MTXT><YY> JAN95

Multiple MONTH <NAME><P>.<FF> MYMONTH1.95

QUARTER Q<P>.<FF> Q1.95

YEAR YR<YY> YR95

DATE-only values have independent input and output formats. You can enter DATE-only
values in one style and report them in a different style.

DATE-only Variable Display Styles
When you show a DATE-only variable value in output, the format depends on the
DATEFORMAT option. The default format is a 2-digit day, a 3-letter month, and a 2-
digit year; for example, 03MAR97. The text for the month names depends on the
MONTHNAMES option. To change the order of the month, day, and year components,
see the DATEORDER option.

Datetime and Interval Data Types
The OLAP DML has data types that correspond to SQL datetime and interval data
types. As outlined in the following table, the names of the data types are different in
OLAP DML than they are in SQL.

Table 2-6 OLAP DML Datetime and Interval Data Types and the Corresponding
SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type

DATETIME DATE

TIMESTAMP TIMESTAMP

TIMESTAMP_TZ TIMESTAMP WITH TIMEZONE

Chapter 2
OLAP DML Data Types

2-8

Table 2-6 (Cont.) OLAP DML Datetime and Interval Data Types and the
Corresponding SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type

TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE

DSINTERVAL INTERVAL DAY TO SECOND

YMINTERVAL INTERVAL YEAR TO MONTH

In the OLAP DML, the datetime data types are DATETIME, TIMESTAMP, TIMESTAMP_TZ, and
TIMESTAMP_LTZ. The interval data types are YMINTERVAL and DSINTERVAL. Both datetimes
and intervals are made up of fields as discussed in "Datetime and Interval Fields".

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. (The OLAP DML DATE data
type was implement before the SQL datetime and interval data types were
implemented in the OLAP DML.) The OLAP DML DATE data type stores only
date values (no time values) and is therefore sometimes referred to as the
DATE-only data type.

Datetime and Interval Fields
Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. The following table lists the datetime fields and
their possible values for datetimes and intervals.

Tip:

To avoid unexpected results in your operations on datetime data, you can verify
the database and session time zones using DBTIMEZONE and
SESSIONTIMEZONE If the time zones have not been set manually, Oracle
Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the
default value.

Table 2-7 Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0 to 11

Chapter 2
OLAP DML Data Types

2-9

Table 2-7 (Cont.) Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types

DAY 01 to 31 (limited by the values of MONTH and YEAR,
according to the rules of the current NLS calendar
parameter)

Any positive or negative
integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time
fractional seconds. The 9(n) portion is not applicable
for DATETIME.

0 to 59.9(n), where 9(n) is the
precision of interval fractional
seconds

TIMEZONE_HOUR -12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATETIME or
TIMESTAMP.

Not applicable

TIMEZONE_MINUTE

(See note at end of table)

00 to 59. Not applicable for DATETIME or TIMESTAMP. Not applicable

TIMEZONE_REGION Query the TZNAME column of the V$TIMEZONE_NAMES
data dictionary view. Not applicable for DATETIME or
TIMESTAMP.

For a complete listing of all time zone regions, refer
to Oracle Database Globalization Support Guide.

Not applicable

TIMEZONE_ABBR Query the TZABBREV column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATETIME or TIMESTAMP.

Not applicable

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as an
entity in the format +|- hh:mm, with values ranging from -12:59 to +14:00.

See Also:

"Datetime and Interval Expressions"

Datetime Format Templates
A datetime format template is a template that describes the format of datetime data
stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date, a format model determines how Oracle Database interprets the string. In OLAP
DML statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

• The format for Oracle to use to return a value from the database

• The format for a value you have specified for Oracle to store in the database

You can use datetime format templates in the following functions:

• In the TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions

Chapter 2
OLAP DML Data Types

2-10

are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_YMINTERVAL, and
TO_DSINTERVAL.)

• In the TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

The default datetime formats are specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY.
You can change the default datetime formats for your session with the ALTER SESSION
statement. You can override this default and specify a datetime format for use with a
particular OLAP DML object by using the DATE_FORMAT command to add a
datetime format to the definition of the object.

String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to
datetime values (unless you have used the FX or FXFM modifiers in the format model to
control exact format checking):

• You can omit punctuation included in the format string from the date string if all the
digits of the numeric format elements, including leading zeros, are specified. In
other words, specify 02 and not 2 for two-digit format elements such as MM, DD,
and YY.

• You can omit time fields found at the end of a format string from the date string.

• If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in the following table.

Table 2-8 Oracle Format Matching

Original Format Element Additional Format Elements to Try instead Of the Original

'MM'
'MON' and 'MONTH'

'MON 'MONTH'

'MONTH' 'MON'

'YY' 'YYYY'

'RR' 'RRRR'

DATETIME Data Type
The OLAP DML DATETIME data type corresponds to the SQL DATE data type. As
such, the format and language of DATETIME values are controlled by the settings of the
NLS_DATE_FORMAT and NLS_DATE_LANGUAGE options. The DATETIME data type
is supported by Oracle Database standard libraries and operates the same way in the
OLAP DML as it does the DATE data type in SQL.

Chapter 2
OLAP DML Data Types

2-11

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. The OLAP DML DATE data
type stores only date values (no time values) and is therefore sometimes
referred to as the DATE-only data type. The DATEORDER, DATEFORMAT,
and MONTHNAMES options, which control the formatting of DATE values, have
no effect on DATETIME values. However, DATETIME and DATE values can be used
interchangeably in most DML statements.

You can specify a DATETIME value as a string literal, or you can convert a character or
numeric value to a date value with the TO_DATE function.

To specify a DATETIME value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATETIME '1998-12-25'

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY-MM-DD').

Alternatively you can specify a DATETIME value us the TO_DATE function and
include, as in the following example:

TO_DATE('98-DEC-25 17:30','YY-MON-DD HH24:MI')

The default date format template for an Oracle DATETIME value is specified by the
initialization parameter NLS_DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default datetime format
into datetime values when they are used in datetime expressions.

If you specify a datetime value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a datetime value without a date, then the default date is the first day of the
current month.

Values of DATETIME always contain both the date and time fields. Therefore, if you use
DATETIME values in an expression, you must either specify the time field in your query or
ensure that the time fields in the DATETIME values are set to midnight. Otherwise, Oracle
may not return the results you expect. You can use the TRUNC (date) function to set the
time field to midnight, or you can include a greater-than or less-than condition in the
query instead of an equality or inequality condition. However, if the expression
contains DATETIME values other than midnight, then you must filter out the time fields
in the query to get the correct result.

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see "Datetime functions" and the
DATE_FORMAT command.

Chapter 2
OLAP DML Data Types

2-12

TIMESTAMP Data Type
The TIMESTAMP data type is an extension of the DATETIME data type. It stores the year,
month, and day of the DATETIME data type, plus hour, minute, and second values. This
data type is useful for storing precise time values.

SHOW SYSDATE
26-JUL-06

DEFINE mytimestamp VARIABLE TIMESTAMP
mytimestamp = SYSDATE
COLWIDTH = 30
REPORT mytimestamp
MYTIMESTAMP

 26-JUL-06 10.44.42 AM

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the fractional
seconds precision value can be any number of digits up to 9, as follows:

TIMESTAMP '1997-01-31 09:26:50.124'

TIMESTAMP_TZ Data Type
TIMESTAMP_TZ corresponds to the SQL TIMESTAMP WITH TIMEZONE data type. It is a variant
of TIMESTAMP that includes a time zone offset in its value. The time zone offset is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This data type is useful for collecting and
evaluating date information across geographic regions.

Oracle from the public domain information available at http://www.iana.org/time-zones.
Oracle time zone data may not reflect the most recent data available at this site.

The TIMESTAMP_TZ data type is a variant of TIMESTAMP that includes a time zone offset.
When you specify TIMESTAMP_TZ as a literal, the fractional seconds precision value can
be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Two TIMESTAMP_TZ values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP '1999-04-15 8:00:00 -8:00'

equals

TIMESTAMP '1999-04-15 11:00:00 -5:00'

That is, 8:00 a.m. Pacific Standard Time equals 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

Chapter 2
OLAP DML Data Types

2-13

http://www.iana.org/time-zones

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TZD format element. The following example
ensures that the preceding example returns a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression.

See Also:

"Datetime and Interval Expressions"

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to
TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous datetime
as standard time in the specified region.

TIMESTAMP_LTZ Data Type
TIMESTAMP_LTZ corresponds to the SQL TIMESTAMP WITH LOCAL TIMEZONE data type. It is
another variant of TIMESTAMP that includes a time zone offset in its value. It differs from
TIMESTAMP_LTZ in that data stored in the database is normalized to the database time
zone, and the time zone offset is not stored as part of the column data. When a user
retrieves the data, Oracle returns it in the user's local session time zone. The time
zone offset is the difference (in hours and minutes) between local time and UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). This data type is
useful for displaying date information in the time zone of the client system in a two-tier
application.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones. Oracle time zone data may not reflect the most recent
data available at this site.

The TIMESTAMP_LTZ data type differs from TIMESTAMP_TZ in that data stored in the
database is normalized to the database time zone. The time zone offset is not stored
as part of the column data. There is no literal for TIMESTAMP_LTZ. Rather, you represent
values of this data type using any of the other valid datetime literals. The table that
follows shows some formats you can use to add a TIMESTAMP_LTZ value into object,
along with the corresponding value returned by an OLAP DML statement such as a
SHOW command.

Value Specified When Adding Value Value Returned

'19-FEB-2004' 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

Chapter 2
OLAP DML Data Types

2-14

http://www.iana.org/time-zones

Value Specified When Adding Value Value Returned

TO_DATE('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000
AM

TIMESTAMP'2004-02-19 8:00:00 US/Pacific'); 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

YMINTERVAL Data Type
YMINTERVAL corresponds to the SQL INTERVAL YEAR TO MONTH data type. It stores a period
of time using the YEAR and MONTH datetime fields. This data type is useful for
representing the difference between two datetime values when only the year and
month values are significant.

Specify YMINTERVAL interval literals using the following syntax.

INTERVAL 'integer [- integer]' YEAR|MONTH [(precision)] [TO YEAR | MONTH]

where

• 'integer [-integer]' specifies integer values for the leading and optional trailing
field of the literal. If the leading field is YEAR and the trailing field is MONTH, then the
range of integer values for the month field is 0 to 11.

• precision is the maximum number of digits in the leading field. The valid range of
the leading field precision is 0 to 9 and its default value is 2.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following YMINTERVAL literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH and
indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default
precision is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

Chapter 2
OLAP DML Data Types

2-15

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

DSINTERVAL Data Type
DSINTERVAL corresponds to the SQL INTERVAL DAY TO SECOND data type. It stores a
period of time in terms of days, hours, minutes, and seconds. This data type is useful
for representing the precise difference between two datetime values.

Specify DSINTERVAL interval literals using the following syntax.

INTERVAL 'integer|integer time_expr|time_expr

DAY|HOUR|MINUTE [(leading_precision)] | SECOND [leading_precision[,
fractional_seconds_precision])]

[TO DAY|HOUR|MINUTE|SECOND [(fractional_seconds_precision)]]

where

• integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

• time_expr specifies a time in the format HH[:MI[:SS[.n]]] or MI[:SS[.n]] or SS[.n],
where n specifies the fractional part of a second. If n contains more digits than the
number specified by fractional_seconds_precision, then n is rounded to the
number of digits specified by the fractional_seconds_precision value. You can
specify time_expr following an integer and a space only if the leading field is DAY.

• leading_precision is the number of digits in the leading field. Accepted values are
0 to 9. The default is 2.

• fractional_seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. Because of this restriction, if SECOND is the
leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

• HOUR: 0 to 23

• MINUTE: 0 to 59

• SECOND: 0 to 59.999999999

Examples of the various forms of DSINTERVAL literals follow, including some abbreviated
versions:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO
SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds, and
222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY(3) 400 days.

INTERVAL '11:12:10.2222222' HOUR TO
SECOND(7)

11 hours, 12 minutes, and 10.2222222
seconds.

Chapter 2
OLAP DML Data Types

2-16

Form of Interval Literal Interpretation

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second
'12345' is rounded to '1235' because the
precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal. For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Boolean Data Type
A BOOLEAN data type enables you to represent logical values. In code, BOOLEAN values
are represented by values for "no" and "yes" (in any combination of uppercase and
lowercase characters). The actual values that are recognized in your version of Oracle
OLAP are determined by the language identified by the NLS_LANGUAGE option. You
can use the read-only NOSPELL and YESSPELL options to obtain the values
represent BOOLEAN values. In English language code, you can represent BOOLEAN values,
using:

• YES, TRUE, ON

• NO, FALSE, OFF

Working with BOOLEAN expressions is discussed in "Boolean Expressions".

RAW Data Type
The RAW data type stores data that is not to be interpreted (that is, not explicitly
converted when moving data between different systems) by Oracle Database. The RAW
data type is intended for binary data or byte strings.

The syntax for specifying RAW data is as follows:

RAW (size)

where you must specify a size up to the maximum of 2000 bytes

RAW is a variable-length data type, however Oracle Net (which connects user sessions
to the instance) and Oracle Database utilities do not perform character conversion
when transmitting RAW data.

When Oracle automatically converts RAW data to and from text data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every

Chapter 2
OLAP DML Data Types

2-17

four bits of RAW data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as CB.

See Also:

HEXTORAW and RAWTOHEX functions

Row Identifier Data Types
The row identifier data types are used to store an address of a row in a relational table.
The OLAP DML supports two different data types that you can use to copy this data
from a relational table into objects in an analytic workspace:

• ROWID Data Type

• UROWID Data Type

ROWID Data Type
You can examine a row address of a relational table by querying the pseudocolumn
ROWID. Values of this pseudocolumn are strings representing the address of each
row. These strings have the data type ROWID.

Note:

Although you can create relational tables and clusters that contain actual
columns having the ROWID data type. Oracle Database does not guarantee
that the values of such columns are valid rowids

The extended ROWID data type stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an identification
number assigned to every database segment. You can retrieve the data object number
from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and
ALL_OBJECTS. Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-
z, 0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROWID, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

See Also:

"ROWID Pseudocolumn" in Oracle Database SQL Language Reference.

Chapter 2
OLAP DML Data Types

2-18

UROWID Data Type
The rows of some relational tables have addresses that are not physical or permanent
or were not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change if the primary key does not change. The ROWID pseudocolumn of an
index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(that is, using a SELECT ... ROWID statement). To store the rowids of an index-
organized table, then define a column of type UROWID for the table and retrieve the
value of the ROWID pseudocolumn into that column.

See Also:

UROWID in Oracle Database SQL Language Reference.

Converting from One Data Type to Another
In many cases, Oracle OLAP performs automatic data type conversion for you as
discussed in "Automatic Conversion of Textual Data Types" and "Automatic
Conversion of Numeric Data Types". Additionally there are a number of OLAP DML
functions that you can use to convert values from one data type to another.

Automatic Conversion of Textual Data Types
Oracle OLAP automatically converts NTEXT values to TEXT when they are specified as
arguments to OLAP DML statements. This can result in data loss when the NTEXT
values cannot be represented in the database character set

Automatic Conversion of Numeric Data Types
Oracle OLAP automatically converts SHORTINTEGER variables and INTEGER variables (with
a fixed width of 1 byte to INTEGER (with a width of 4 bytes) for calculations. When you
calculate a total of SHORTINTEGER variables, then you can obtain and report a result
greater than 32,767 or less than -32,768. When you calculate a total of 1-byte INTEGER
variables, then you can obtain and report a result greater than 127 or less than -128.
However, when you try to assign the result to a SHORTINTEGER variable or a 1-byte
INTEGER variable respectively, then the variable is set to NA.

Oracle OLAP automatically converts numeric data types according to the following
rules:

Chapter 2
OLAP DML Data Types

2-19

• When you use a value with the SHORTINTEGER or SHORTDECIMAL data type in an
expression, then the value is converted to its long counterpart before using it. See
"Boolean Expressions" for information about problems that can occur when you
mix SHORTDECIMAL and DECIMAL data types in a comparison expression.

• When you save the results of a calculation as a value with the SHORTINTEGER data
type, then NA is stored when the result is outside the range of a SHORTINTEGER (‐
32768 to 32767).

• When you assign the value of a DECIMAL expression to an object with the INTEGER
data type, then the value is rounded before storing or using it.

Note:

When a DECIMAL value is outside the range of an INTEGER, then an NA is
stored.

• When you use a decimal value where a value with the INTEGER data type is
required, then the value is rounded before storing or using it.

Note:

When the DECIMAL value is outside the range of an INTEGER, then an
NA is stored.

• When you assign the value of a decimal expression to a variable with the
SHORTDECIMAL data type, then only the first 7 significant digits are stored.

• When you combine NUMBER values with other numeric data types, then all values
are converted to NUMBER.

When these conversion are not what you want, then you can use the CONVERT,
TO_CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different
results.

OLAP DML Operators
An operator is a symbol that transforms a value or combines it in some way with
another value. The following table describes the categories of OLAP DML operators.

Table 2-9 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with numeric data to produce
a numeric result. You can also use some arithmetic operators in date
expressions with a mix of date and numeric data, which returns either a date or
numeric result. For a list of arithmetic operators, see "Arithmetic Operators". For
more information on numeric expressions, see "Numeric Expressions"

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean), which returns a BOOLEAN result.
For a list of comparison operators, see "Comparison and Logical Operators". For
more information on BOOLEAN expressions, see "Boolean Expressions".

Chapter 2
OLAP DML Operators

2-20

Table 2-9 (Cont.) OLAP DML Operators

Category Description

Logical The AND, OR, and NOT operators that you can use to transform BOOLEAN values
using logical operations, which returns a BOOLEAN result. For a list of logical
operators, see "Comparison and Logical Operators". For more information on
BOOLEAN expressions, see "Boolean Expressions".

Assignment An operator that you use to assign the results of an expression into an object or
to assign a value to an OLAP DML option. For more information on using
assignment statements, see the SET, and SET1 commands, and "Assignment
Operator".

Conditional The IF...THEN...ELSE, SWITCH, and CASE operators that you can use to use to
select between values based on a condition. For more information, see
"Conditional Expressions".

Substitution The & (ampersand) operator that you can use to evaluate an expression and
substitute the resulting value. For more information, see "Substitution
Expressions".

Arithmetic Operators
The following table shows the OLAP DML arithmetic operators, their operations, and
priority where priority is the order in which that operator is evaluated. Operators of the
same priority are evaluated from left to right. When you use two or more operators in a
numeric expression, the expression is evaluated according to standard rules of
arithmetic. You must code a comma before a negative number that follows another
numeric expression, or the minus sign is interpreted as a subtraction operator. For
example, intvar,-4

Table 2-10 Arithmetic Operators

Operator Operation Priority

- Sign reversal 1

** Exponentiation 2

* Multiplication 3

/ Division 3

* Addition 4

- Subtraction 4

Comparison and Logical Operators
You use comparison and logical operators to make expressions in much the same way
as arithmetic operators. Each operator has a priority that determines its order of
evaluation. Operators of equal priority are evaluated left to right, unless parentheses
change the order of evaluation. However, the evaluation is halted when the truth value
is decided.

The following table shows the OLAP DML comparison operators and logical operators
(AND, OR, and NOT). It lists the operator, the operations, example, and priority where

Chapter 2
OLAP DML Operators

2-21

priority is the order in which that operator is evaluated. Operators of the same priority
are evaluated from left to right.

Table 2-11 Comparison and Logical Operators

Operator Operation Example Priority

NOT Returns opposite of
BOOLEAN expression

NOT(YES) = NO 1

EQ Equal to 4 EQ 4 = YES 2

NE Not equal to 5 NE 2 = YES 2

GT Greater than 5 GT 7 = NO 2

LT Less than 5 LT 7 = YES 2

GE Greater than or equal to 8 GE 8 = YES 2

LE Less than or equal to 8 LE 9 = YES 2

IN Is a date in a time period? '1Jan02' IN myDimension = YES 2

LIKE Does a text value match a
specified text pattern?

'Finance' LIKE '%nan%' = YES 2

AND Both expressions are true 8 GE 8 AND 5 LT 7 = YES 3

OR Either expression is true 8 GE 8 OR 5 GT 7 = YES 4

Assignment Operator
In the OLAP DML, as in many other programming languages, the = (equal) sign is
used as an assignment operator.

An expression creates temporary data; you can display the resulting values, but these
values are not automatically stored in your analytic workspace for future reference
during a session. You use an assignment statement to store the result of an
expression in an object that has the same data type and dimensions as the
expression. If you update and commit the object, then the values are available to you
in future sessions.

Like other programming languages, an assignment statement in the OLAP DML sets
the value of the target expression equal to the results of the source expression.
However, an OLAP DML assignment statement does not work exactly as it does in
other programming languages. Like many other OLAP DML statements it does not
assign a value to a single cell, instead, when the target-expression is a
multidimensional object, Oracle OLAP loops through the cells of the target object
setting each one to the results of the source-expression. Additionally, you can use
UNRAVEL to copy the values of an expression into the cells of a target object when
the dimensions of the expression are different from the dimensions of the target object.

For more information on using assignment statements in the OLAP DML, see SET and
SET1.

OLAP DML Expressions
Expressions represent data values in the syntax of the OLAP DML. This section
provides the following information about OLAP DML expressions:

• "About OLAP DML Expressions"

Chapter 2
OLAP DML Expressions

2-22

• "Using Workspace Objects in Expressions".

• "Working with Empty Cells in Expressions"

• Detailed information about the various types of OLAP DML expressions:

Numeric Expressions
Text Expressions
Datetime and Interval Expressions
Date-only Expressions
Boolean Expressions
Conditional Expressions
Substitution Expressions

About OLAP DML Expressions
An OLAP DML expression has a data type and can also have dimensions. You can
use expressions as arguments in statements. An expression often performs a
mathematical or logical operation. It always evaluates to a result in a workspace data
type.

An expression can be:

• A literal value. For example, 10 or 'East'

• An analytic workspace object that contains multiple values. For example, the
variable sales

• A function that returns one or more values. For example, TOTAL or JOINLINES

• Another expression that combines literal values, dimensions, variables, formulas,
and functions with operators. For example, inflation*1.02

You can save an expression as a formula as described in "OLAP DML Formulas"

How the Data Type of an Expression is Determined
The data type of an expression is the data type of the resulting value. It might not be
the same as the data type of the data objects that constitute the expression; it
depends on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN...ELSE operator is
supported. A conditional expression returns a value whose data type depends on the
expressions in the THEN and ELSE clauses, not on the expression in the IF clause, which
must be BOOLEAN.

Note:

Do not confuse a conditional expression with the IF...THEN...ELSE command
in a program, which has similar syntax but a different purpose. The IF
statement does not have a data type and is not evaluated like an expression.

Chapter 2
OLAP DML Expressions

2-23

How the Dimensionality of an Expression is Determined
An expression is dimensioned by a union of the dimensions of all of the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression:

• Variables, relations, and formulas are dimensioned by the dimensions listed in the
definition of the object.

Example 1: When the price variable is dimensioned by month and product, then
the expression price * 1.2 is also dimensioned by month and product.

Example 2: When the units variable is dimensioned by month, product, and
district, then the expression units * price is dimensioned by month, product, and
district (even though the dimensions of the price variable are month and product
only).

• Qualified data references (QDRs) are dimensioned by all of the dimensions of the
associated object, except for the dimensions being qualified. (For more information
about qualified data references, see "Limiting a Dimension to a Single Value
Without Changing Status".)

• The return values of most OLAP DML functions are, in most cases, dimensioned
by the union of the dimensions of the input arguments. However, some functions
(such as aggregation functions) have fewer dimensions than the input arguments.
In these cases, the dimensionality of the return value is documented in the topic
for the function in OLAP DML Functions: A - K.

Note:

Unless otherwise noted, when you specify breakout dimensions or relations
in an aggregation function, you change the dimensionality of the
expression. The first dimension that you specify as a breakout dimension is
the slowest varying and the last dimension that you specify is the fastest
varying.

Note:

You can change the dimensionality of an expression or subexpression using
the CHGDIMS function

Determining the Dimensions of an Expression
You can find out the dimensions of an expression by issuing a PARSE statement,
followed by the INFO function. PARSE evaluates the text of an expression; the INFO
indicates how the expression is interpreted.

This example illustrates the use of the DIMENSION keyword with the INFO function to
retrieve the dimensions of the expression just analyzed by PARSE. Assume that you
issue the following statement.

PARSE 'TOTAL(sales region)'

Chapter 2
OLAP DML Expressions

2-24

The statement produces the following output.

SHOW INFO(PARSE DIMENSION)
REGION

How Dimension Status Affects the Number of Values in the Results of Expressions
The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, when
three dimension values are in status for month, and two for product, then the expression
price GT 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an expression
are limited to the range of data you want to consider. In addition, you must consider
any PERMIT statements that might limit access to the dimensions of the data.

When you want to specify a single value without changing the current status you can
use a qualified data reference (QDR). Using a QDR, you can qualify a dimension
(which enables you to specify one dimension value in an expression) or one or more
dimensions of a variable or relation. For more information on dimension status, see
"How to Specify the Set of Data that OLAP DML Operations Work Against"; for more
information on QDRs, see "Limiting a Dimension to a Single Value Without Changing
Status".

Using Workspace Objects in Expressions
You can use an analytic workspace data object in an expression by specifying its
name as described in "Syntax for Specifying an Object in an Expression". When
calculating the expression, Oracle OLAP uses the data in the specified object as
described in "How OLAP DML Data Objects Behave in Expressions".

How OLAP DML Data Objects Behave in Expressions
The following table summarizes how Oracle OLAP uses the data in an object used as
an argument in an expression.

Table 2-12 Objects in Expressions

Object Use in Expressions

Variables As a one-dimensional or multi-dimensional array of data, depending on its
definition. For example, as the target or source expression in an assignment
statement.

See also "Using Variables and Relations in Expressions" and " OLAP DML
Commands: H-Z".

Chapter 2
OLAP DML Expressions

2-25

Table 2-12 (Cont.) Objects in Expressions

Object Use in Expressions

Relations As a one-dimensional or multi-dimensional of data, depending on its definition.
For example, as the target or source expression in an assignment statement as
outlined in " OLAP DML Commands: H-Z".

• When you use a relation in a text expression, the relation value is referenced
as a text value. The values of the related dimension that is contained in the
relation are converted into text, and you can use these values in an
expression. You can also compare a text literal to a relation.

• When you use a relation in a numeric expression, the relation value is
referenced by its position (an INTEGER) in its related dimension array. You
can use this numeric value in an expression. The position number is based
on the default status list of the dimension, not the current status list of the
dimension.

See also "Using Variables and Relations in Expressions" , "Using Related
Dimensions in Expressions".

Dimensions As a one-dimensional array of data. When you use a TEXT dimension value in a
numeric expression or compare values in a non-numeric dimension, Oracle
OLAP uses the INTEGER position number of the value in the array (as based on
the default status list) rather than the value itself.

See also "Specifying a Value of a CONCAT Dimension" and "Using Related
Dimensions in Expressions".

Composites You can use a composite wherever you can use a dimension.

See also "Specifying a Value of a Composite" .

Valuesets As a list of dimension values.

See also "Using Variables and Relations in Expressions" and the DEFINE
VALUESET command.

Dimension
surrogates

As a one-dimensional array. A surrogate provides an alternative set of values for
a dimension. When you use a TEXT surrogate value in a numeric expression or
compare values in a non-numeric surrogate, Oracle OLAP uses the INTEGER
position number of the value in the array (as based on the default status list)
rather than the value itself.

Note: You can use a surrogate rather than a dimension in a model, in a LIMIT
command, in a qualified data reference, or in data loading with statements such
as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT. A surrogate cannot
be a participant object in any argument in a DEFINE statement that defines
another object.

Formulas As a sub-expression or as an expression in a statement.

Programs For a program that does not return a value, use the program name as you would
an OLAP DML command. For a program that returns a value, invoke the program
the same way that you invoke an OLAP DML function: use the program name in
the expression and enclose the program arguments, if any, in parentheses.

Syntax for Specifying an Object in an Expression
You can specify an analytic workspace object in an expression using the following
syntax.

[[schema-name.]analytic-workspace-name!]object-name

Chapter 2
OLAP DML Expressions

2-26

schema-name
The name of the schema in which the analytic workspace was defined when it was
created. By default, an analytic workspace is created in the schema for the database
user ID of the user issuing the AW CREATE statement. In almost any DML statement,
you can specify the full name of an analytic workspace (for example, Scott.demo).

analytic-workspace-name
The name of the workspace that contains the desired object. By specify the analytic
workspace name along with the object name you create a qualified object name
(QON) for the object. Using a qualified object name for an object is recommended
except in those situations described in "When Not to Use Qualified Object Names".
You can specify the value for analytic-workspace-name in any of the following ways:

• The name of an analytic workspace. A workspace name is assigned when an
analytic workspace is created with an AW CREATE statement.

• The alias name of an analytic workspace. An analytic workspace alias is an
alternative name for an attached analytic workspace. You can assign or delete an
alias with an AW ALIAS LIST statement. An alias is in effect from the time it is
assigned to the time that the workspace is detached (or until the alias is deleted).
Therefore, each time you attach an unattached workspace, you must reassign its
aliases.

One reason for assigning an alias is to have a short way to reference an analytic
workspace that belongs to a schema that is not yours. For example, you can use
the alias in qualified object names and statements that reference such an analytic
workspace. Another reason for assigning an alias is to write generic code that
includes a reference to an analytic workspace but does not hard-code its name.
With the alias providing a generic reference, you can assign the alias and run the
code on different workspaces at different times.

• Within an aggregation specification, model, or program, you can use THIS_AW to
qualify an object name. When Oracle OLAP compiles an object, it interprets any
occurrence of THIS_AW as the name of the workspace in which the object is being
compiled. Thus if you have an analytic workspace named myworkspace that
contains a program named myprog and a variable named myvar, Oracle OLAP
interprets a statement myvar=1 as though it was written myworkspace!myvar=1.
Within a program, you can retrieve the value of THIS_AW using the THIS_AW
option.

When you do not specify a value for analytic-workspace-name, Oracle OLAP
assumes that the specified object is in the current analytic workspace. The current
analytic workspace is the first analytic workspace in the list of the active analytic
workspaces that you view with an AW LIST statement. You can retrieve the name of
the current analytic workspace by using the AW function with the NAME keyword.

Note:

Your session does not have to have a current analytic workspace. When you
start Oracle OLAP without specifying an analytic workspace name, then the
EXPRESS analytic workspace is first on the list. However, in this case, the
EXPRESS analytic workspace is not current; there is no current analytic
workspace until you specify one with the AW command.

Chapter 2
OLAP DML Expressions

2-27

object-name
The name of the object unless the object is an unnamed composite. When the object
is an unnamed composite, use the following syntax.

SPARSE <basedims....>

For the basedims argument, specify the names of the dimensions, separated by
spaces, for which the unnamed composite was created. For an example of using an
unnamed composite in an OLAP DML statement, see Example 10-104.
Objects with the same name in different workspaces are treated as completely
separate objects, and no similarity or relationship is assumed to exist between them.
Any OLAP DML language restrictions that apply between objects in different
workspaces apply even when the objects have the same name. For example, you
cannot dimension an object in one workspace by a dimension that resides in another
workspace, even when both workspaces have dimensions with the same name.

Considerations When Creating and Using Qualified Object Names
Although the use of qualified object names for objects is typical, there are several
considerations to keep in mind:

• There are some situations where you cannot use a qualified object name or do not
need to use a qualified object name. See "When Not to Use Qualified Object
Names" for more information

• Before you use ampersand substitution when creating a qualified object name you
must understand how and when the substitution occurs. See "Using Ampersand
Substitution for Workspace and Object Names" for more information.

• Special considerations apply when passing a qualified object name as an
argument to a program. See "Passing Qualified Object Names to Programs" for
more information.

When Not to Use Qualified Object Names

Generally it is good practice to use a qualified object name in an expression. However,
there are some situations where you cannot use a qualified object name or when a
qualified object name is not necessary:

• The following objects cannot have qualified object names:

– An object that is local to a particular program because it was created by an
ARGUMENT or VARIABLE statement.

– The NAME dimension of any given workspace. When you reference the
NAME dimension, Oracle OLAP always uses the NAME dimension of the
current workspace.

• You do not need to use a qualified object name in the following circumstances:

– In the qualifiers of a qualified data reference (QDR). Only the object being
qualified needs to be named with a qualified object name. Any unqualified
names are assumed to apply to objects in the same workspace as the object
being qualified.

– In an unnamed composite, when you specify one base dimension as a
qualified object name, then all the others are assumed to come from the same
workspace.

– In a named composite, when the name is a qualified object name then its base
dimensions are assumed to come from the same workspace.

Chapter 2
OLAP DML Expressions

2-28

– In a model, when you specify the solution variable as a qualified object name,
then all the dimensions named in DIMENSION statements are assumed to
come from the same workspace.

Using Ampersand Substitution for Workspace and Object Names

The workspace name, or the object name, or both can be supplied using ampersand
substitution. However, take care when using a qualified object name with ampersand
substitution because Oracle OLAP parses the qualified object name (with its
exclamation point) before it resolves the ampersand reference. For example, in the
expression &awname!objname, the ampersand (&) applies to the entire qualified object
name, not just to the workspace name.

Passing Qualified Object Names to Programs

When you pass a qualified object name as an argument to a program and you use an
ARGUMENT statement and the ARG, ARGFR, and ARGS functions, the entire
qualified object name is considered to be a single argument. Its component parts are
not passed separately.

Specifying Values of Dimensions and Composites in Expressions
In most cases, you refer to the value of a dimension by specifying the value following
the conventions for the data type of the value. For example, assume that you have a
TEXT dimension named geog. You can add the value "World" to the dimension by
issuing the following statement.

MAINTAIN geog ADD 'World'

Note, however, that when you use a TEXT dimension value in a numeric expression or
compare values in a non-numeric dimension, Oracle OLAP uses the INTEGER position
number of the value in the array (as based on the default status list) rather than the
value itself.

Special considerations apply to specifying the values of composites and concat
dimensions.

Specifying a Value of a Composite
You can specify a value of a composite in the following ways:

• By specifying a set of values of the base dimensions of the composite using the
following syntax.

 {composite_name | SPARSE} {<base_dimension_name
base_dimension_value }, ...>

• (Named composites only) By specifying just the values of the composite using the
following syntax.

 composite_name <base_dimension_value ...>

where base_dimension_value is a set of values of the base dimensions, in the
order in which they were defined in the composite, separated by spaces.

Chapter 2
OLAP DML Expressions

2-29

Specifying a Value of a CONCAT Dimension
Once you have defined a unique CONCAT dimension, you can refer to its values
simply by specifying the values of the base dimensions.

However, you must specify a value of a nonunique CONCAT dimension as a
concatenation of the name of the base dimension and the base dimension value
separated by a colon (:) and a space and enclosed in angle brackets(<>). In an
expression, use the following format.

 <BASE_DIMENSION_NAME: base_dimension value>

For example, assume that you have defined the base dimensions named city and
state and, a CONCAT dimension for them named geog. When you report on the geog
dimension, the values of geog include the names of the base dimensions along with the
values.

DEFINE city DIMENSION TEXT
DEFINE state DIMENSION TEXT
DEFINE geog DIMENSION CONCAT(city state)
MAINTAIN city ADD 'New York'
MAINTAIN state ADD 'New York'
REPORT geog

 GEOG

<CITY: New York>
<STATE: New York>

Using Related Dimensions in Expressions
The syntax of some OLAP DML statements (for example, some variations of the LIMIT
command) include two dimension arguments referred to as a dimension, and a related
dimension. Other OLAP DML statements (for example, AVERAGE, ANY, COUNT,
CUMSUM, NONE, LARGEST, SMALLEST, and TOTAL) allow you to specify the
dimensionality of the result in terms of a related dimension. In these contexts, the
related dimension is any dimension that shares a relation with another dimension.

Even though the value that you specify for the arguments in these statements is the
name of a dimension, in actuality Oracle OLAP uses a relation between the
dimensions to perform its calculations. When the two dimensions share only one
relation, the behavior is clear. Oracle OLAP performs the calculation based on the
values in that relation.

However, when two dimensions share multiple relations, then the behavior is less
clear. In some cases, as with a LIMIT using LEVELREL command, you can specify the
shared relation you want Oracle OLAP to use. In other cases, the statement syntax
does not allow you to specify the name of a relation. In this case, Oracle OLAP
chooses among the multiple relations as described in " OLAP DML Commands: H-Z".

Using Variables and Relations in Expressions
In expressions, a variable is referenced as an array containing values of the specified
data type. A relation is referenced as an array containing values of the specified
dimension. In most other respects, variables and relations (both typically
multidimensional objects) share the same characteristics.

Chapter 2
OLAP DML Expressions

2-30

In most cases, when you use OLAP DML statements with variables that are defined
with composites, the statements treat those variables as if they were defined with base
dimensions:

• You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

• The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and therefore,
they do not have any independent status.

When you use a REPORT statement or any other statement that loops over a variable
that uses a composite, the default behavior is to evaluate all the combinations of the
values of the base dimensions of the composite that are in status. Any combinations
that do not exist in the composite display NA for their associated data.

For example, the following statements create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Because no coupons were issued in March 2002, the report displays NA in that
column.

LIMIT month TO 'Jan02' 'Feb02' 'Mar02'
LIMIT market TO 'East'
LIMIT product TO 'Sportswear'
REPORT coupons

MARKET: EAST
 ------------COUPONS-------------
 -------------MONTH--------------
PRODUCT Jan02 Feb02 Mar02
-------------- ---------- ---------- ----------
Sportswear 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
statements such as REPORT, ROW, and the assignment statement (SET) so that they
loop over the values in the composite rather than all of the base dimension values.

Limiting a Dimension to a Single Value Without Changing Status
A qualified data reference (QDR) is a way of limiting one or more dimensions of a data
object to a single value. QDRs are useful when you want to specify a single value of a
data object without changing the current status. Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or one
or more dimensions of a variable or relation.

Sometimes the syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error. In this case, you can use the QUAL function to explicitly specify
a qualified data reference (QDR).

Syntax of a Qualified Data Reference
You specify a qualified data reference using the following syntax

 expression(dimname1 dimexp1 [, dimname2 dimexp2. . .])

The dimname argument is the name of a dimension or a dimension surrogate of the
dimension, of the expression and the dimexp argument is one of the following:

• A value of dimname.

Chapter 2
OLAP DML Expressions

2-31

Note:

The setting of the LIMITSTRICT option determines how Oracle OLAP
behaves when a QDR specifies a nonexistent value. By default, when you
specify a nonexistent value, Oracle OLAP treats the nonexistent value as
an invalid value and issues an error. If, instead, you want Oracle OLAP to
treat a nonexistent value as an NA value, set the value of LIMITSTRICT to
NO.

• A text expression whose result is a value of dimname.

• A numeric expression whose result is the logical position of a value of dimname.

• A relation of dimname.

Note:

When syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error, use the QUAL function to explicitly specify a qualified
data reference (QDR).

Qualifying a Variable
You can qualify any or all of the dimensions of a variable using either of the following
techniques:

• The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

• The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the qualifier.
The dimension is temporarily replaced by the dimension(s) of the relation.

For example, the variable sales has three dimensions, month, product, and district.
You might want to compare total sales in Boston to the total sales in all cities. In a
single statement, you want district to be limited to two different values:

• For the numerator of the expression, you want the status of district to be Boston.

• For the denominator of the expression, you want the status of district to be ALL.

The following statement lets you calculate this result by using a QDR.

SHOW sales(district 'Boston')/TOTAL(sales)

You can qualify multiple dimensions of a variable. For example, when you qualify all
the dimensions of the sales variable by specifying one dimension value of each
dimension, then you narrow sales down to a single–cell value.

To fetch sales for Jun02, Tents, and Seattle, use the following QDR.

SHOW sales(month 'Jun02', product 'Tents', district 'Seattle')

This statement fetches a single value.

Chapter 2
OLAP DML Expressions

2-32

You can use a qualified data reference with the target expression of an assignment
(SET) statement. This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales composite
that is specified in the qualified data reference. When the composite named sales does
not have a value for the combination Boston and Tents, then this value combination is
added to the composite, thus adding the data cell.

sales(market 'Boston' product 'Tents' month 'Jan99')= 10200

Replacing a Dimension in a Variable
When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be related
to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

Example 2-1 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by month,
product, and district. A third variable, division.mgr, is dimensioned by month and
division. You also have a relation between division and product, called
division.product. These objects have the following definitions.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue
DEFINE quota VARIABLE DECIMAL <month product district>
DEFINE division.mgr VARIABLE TEXT <month division>
DEFINE division.product RELATION division <product>
LD Division for each product

The following statement produces the report following it.

REPORT division.mgr

-------------------DIVISION.MGR----------------------
 ----------------------MONTH--------------------------
DIVISION JAn02 Feb02 Mar02 Apr02 May02 Jun02
-------- -------- -------- -------- -------- -------- --------
Camping Hawley Hawley Jones Jones Jones Jones
Sporting Carey Carey Carey Carey Carey Musgrave
Clothing Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product, as the
qualifier. The QDR replaces the division dimension with product, so that it has the
same dimensions as the other expression in the report sales / quota. The following
statement produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
 'MANAGER' division.mgr(division division.product)

DISTRICT: BOSTON
 -----------------------------PRODUCT------------------------------------
 ----TEnts---- ---canoes---- --racquets--- --sportswear-- ---footwear---
 Sales/ Sales/ Sales/ Sales/ Sales/
Month Quota Manager Quota Manager Quota Manager Quota Manager Quota Manager
------ ----- ------- ----- ------- ----- ------- ----- -------- ----- --------

Chapter 2
OLAP DML Expressions

2-33

Jan02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
Feb02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
Mar02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
Apr02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave
...

Qualifying a Relation
You can also use a QDR to qualify a relation (which is really a special kind of variable).

Suppose the region.district relation is dimensioned by district. When you qualify
district with the value Seattle, then the value of the expression is the value of the
relation for Seattle. Because the QDR specifies one value of district, the expression
has a single–cell result.

The definition of region.district is as follows.

DEFINE region.district RELATION region <district>
LD The region for each district

The following statement displays the value WEST.

SHOW region.district(district 'Seattle')

Qualifying a Dimension
You can use a QDR to qualify the dimension itself, which enables you to specify one
dimension value in an expression. The following expression specifies one value of
district, the one contained in the single‐cell variable mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying a
value from a base dimension of the concat dimension. The following expression
specifies one value of reg.dist.ccdim, a concat dimension that has region and
district as its base dimensions. The costs variable is dimensioned by the division
and reg.dist.ccdim dimensions.

SHOW reg.dist.ccdim(district 'Boston')

The preceding expression produces the following result.

<DISTRICT: Boston>

Using Ampersand Substitution with QDRs
An ampersand character (&) at the beginning of an expression substitutes the value of
the expression for the expression itself in a statement. When you use an ampersand
with a QDR, you must enclose the whole expression in parentheses when you want
the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype 'actual'))

Chapter 2
OLAP DML Expressions

2-34

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptype.

Working with Empty Cells in Expressions
At any given time, some cells of an analytic workspace data object may be empty. An
empty cell occurs when a specific data value has not been assigned to it or when a
data value cannot be calculated for the cell. The value of any empty cell in an object is
NA. An NA value has no specific data type. Certain functions (for example, the
aggregation functions) return NA when the requested information is not available or
cannot be calculated. Similarly, an expression whose value cannot be calculated has
NA as its value.

Note:

To support OLAP DML composite-dimensioned variables that correspond to
relational fact tables with null facts, OLAP has a special NA value which is
controlled by an NA2 bit. For more information on how Oracle OLAP manages
NA values controlled by NA2 bits, see "NA2 Bits and Null Tracking".

Specifying a Value of NA
There are cases in which you might specify an operation for which no data is available.
For example, there might be no appropriate value for a given cell in a variable, for the
return value of a function, or for the value of an expression that includes an arithmetic
operator. In these cases, an NA (Not Available) value is automatically supplied.

To set the values of a variable or relation to NA, you can use an assignment statement
(SET), as shown in the following example.

sales = NA

Controlling how NA values are treated
Several options and functions control how NA values are treated. For example:

• The NA options listed in "Options by Category".

• The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function in
an expression to control the format of its value.

• System properties listed in OLAP DML Properties.

Numeric Expressions
A numeric expression evaluates to any of the numeric data types. The data in a
numeric expression can be any combination of the following:

• Numeric literals as discussed in "Numeric Data Types".

• Numeric variables or formulas

• Dimensions

Chapter 2
OLAP DML Expressions

2-35

• Functions that yield numeric results

• Date literals, variables, formulas, or functions

In addition, you can join any of these expressions with the arithmetic operators for a
more complex numeric expression. You use arithmetic operators in numeric
expressions with numeric data, which returns a numeric result. You can also use some
arithmetic operators in date expressions with a mix of date and numeric data, to
retrieve either a date or numeric result.

Several options determine how Oracle OLAP handles numeric expressions.

Mixing Numeric Data Types
You can include any type of numeric data in the same numeric expression.

The data type of the result is determined according to the following rules:

• When all the data in the expression is INTEGER or SHORTINTEGER, and the only
operations are addition, subtraction, and multiplication, then the result is INTEGER.

• When any of the data is NUMBER, then the result is NUMBER.

• When any of the data is DECIMAL or SHORTDECIMAL, and no data is NUMBER, then the
result is DECIMAL.

• When you perform any division or exponentiation operations, then the result is
DECIMAL.

Using Text Dimensions in Arithmetic Expressions
When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an INTEGER) and is used as a numeric. The
position number is based on the default status list, not on current status.

Limitations of Floating Point Calculations
All decimal data is converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a mantissa
and an exponent. The mantissa and the exponent are stored as binary numbers. The
mantissa is a binary fraction which, when multiplied by a number equal to 2 raised to
the exponent, produces a number that equals or closely approximates the original
decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers can result in further
approximations, and the inaccuracy gradually increases with the number of operations.
In addition to the approximation factor, the available number of significant digits affects
the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable can differ in the least
significant digits from a result you compute by hand. Because the SHORTDECIMAL data
type provides a maximum of only seven significant digits, you see more of these
differences with SHORTDECIMAL data. Therefore, you might want to use the NUMBER data

Chapter 2
OLAP DML Expressions

2-36

type when accuracy is more important than computational speed, such as variables
that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type offers a
different and closer approximation than the SHORTDECIMAL data type, because it has
more significant digits. This can lead to problems when SHORTDECIMAL and DECIMAL data
types are mixed in a comparison expression. For information on how to handle such
comparisons, see "Boolean Expressions" .

Controlling Errors During Calculations
You can control the following types of errors:

• Division by zero. When you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non‐NA value by zero normally produces an error. When a
divide‐by‐zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use REPORT or an
assignment statement (SET), values are reported or stored as they are calculated,
so the division by zero halts the loop before it has gone through all the values.

When you want to suppress the divide‐by‐zero error, then you can change the
value of the DIVIDEBYZERO option to YES. Consequently, the result of any
division by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

• Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non‐integer power). When
you want to suppress the error message and allow the calculation of roots for non‐
negative values of the expression to continue, then set the ROOTOFNEGATIVE
option to YES.

• Overflow errors. The DECIMALOVERFLOW option works in a similar manner to
DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions
A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

• Text literals. For example, 'Boston' or 'Current Sales Report'

• Text dimensions. For example, district or month

• Text variables or formulas. For example, product.name

• Functions that yield text results. For example, JOINLINES('Product: ' product.name)

Language of Text Expressions
Oracle OLAP supports text expressions in all languages that you can identify using the
NLS_LANGUAGE option. It also supports multi-language programs and applications
using a language dimension.

Chapter 2
OLAP DML Expressions

2-37

See Also:

"Language of Text Expressions"in $DEFAULT_LANGUAGE

Working with DATETIME Values in Text Expressions
When you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is expected, or
when you store a DATETIME value in a text variable, then the DATETIME value is
automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option. Once
a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT setting has no
impact.

Working with NTEXT Data
TEXT and NTEXT data are interchangeable in most cases. However, implicit conversion
can occur, such as when an NTEXT value is assigned to a TEXT variable. When TEXT is
converted to NTEXT, no data loss occurs because the UTF-8 character encoding of the
NTEXT data type encompasses most other data types. However, when NTEXT is
converted to TEXT, data loss occurs when NTEXT characters are not represented in the
workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the JOINCHARS
function, the TEXT value is converted to NTEXT and an NTEXT value is returned.

Datetime and Interval Expressions
As discussed in "Datetime and Interval Data Types", the OLAP DML supports the
same datetime and interval data types that are supported by SQL. This section
discusses:

• "Datetime Expressions "

• "Interval Expressions "

• "Datetime/Interval Arithmetic "

Datetime Expressions
A datetime expression yields a value of a datetime data type. A datetime expression
has the following syntax.

datetime_value_expr AT LOCAL |

TIME ZONE { ' [+ | -] hh:mm' | DBTIMEZONE | 'time_zone_name' | expr }

A datetime_value_expr can be a datetime value or a compound expression that yields a
datetime value. Datetimes and intervals can be combined according to the rules
defined in Table 2-7. The three combinations that yield datetime values are valid in a
datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.

The settings for AT TIME ZONE are interpreted as follows:

Chapter 2
OLAP DML Expressions

2-38

• The string '(+|-)HH:MM' specifies a time zone as an offset from UTC.

• DBTIMEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

• SESSIONTIMEZONE: Oracle uses the session time zone established by default or in
the most recent ALTER SESSION statement.

• time_zone_name: Oracle returns the datetime_value_expr in the time zone indicated
by time_zone_name. For a listing of valid time zone names, query the
V$TIMEZONE_NAMES dynamic performance view.

Note:

Timezone region names are needed by the daylight savings feature. The
region names are stored in the time zone files under oracore/zoneinfo. The
server always uses the large time zone file corresponding to the version
number recorded in sys.props$.

• expr: If expr returns a character string with a valid time zone format, Oracle returns
the input in that time zone. Otherwise, Oracle returns an error.

Interval Expressions
An interval expression yields a value of DSNTERVAL or MYINTERVAL where the expression
has the following syntax.

interval_value_expr DAY [(leading_field_precision)] TO

SECOND [(fractional_second_precision)]| YEAR [(leading_field_precision)] TO
MONTH

The interval_value_expr can be a DSNTERVAL or MYINTERVAL value or a compound
expression that yields a DSNTERVAL or MYINTERVAL value. Datetimes and intervals can be
combined according to the rules defined in Table 2-7 . The six combinations that yield
interval values are valid in an interval expression.

Both leading_field_precision and fractional_second_precision can be any integer
from 0 to 9. If you omit the leading_field_precision for either DAY or YEAR, then Oracle
Database uses the default value of 2. If you omit the fractional_second_precision for
second, then the database uses the default value of 6. If the value returned by a query
contains more digits that the default precision, then Oracle Database returns an error.
Therefore, it is good practice to specify a precision that you know is at least as large
as any value returned by the query.

Datetime/Interval Arithmetic
You can perform several arithmetic operations on date (DATETIME), timestamp
(TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP_LTZ) and interval (DSINTERVAL and YMINTERVAL)
data. Oracle calculates the results based on the following rules:

• You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the

Chapter 2
OLAP DML Expressions

2-39

hire_date column of the sample table employees from SYSDATE returns the number of
days since each employee was hired. You cannot multiply or divide date or
timestamp values.

• Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

• Each DATETIME value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATETIME data. For example, the
MONTHS_BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

• If one operand is a DATETIME value or a numeric value (neither of which contains
time zone or fractional seconds components), then:

– Oracle implicitly converts the other operand to DATETIME data. (The exception is
multiplication of a numeric value times an interval, which returns an interval.)

– If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

– If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

• When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATETIME data type, Oracle implicitly converts the non-
DATETIME value to a DATETIME value.

• When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error.

• Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP_LTZ, Oracle
converts the datetime value from the database time zone to UTC and converts
back to the database time zone after performing the arithmetic. For TIMESTAMP_TZ,
the datetime value is always in UTC, so no conversion is necessary.

The following table is a matrix of datetime arithmetic operations. Dashes represent
operations that are not supported.

Table 2-13 Matrix of Datetime Arithmetic

Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric

DATETIME — — — —

+ — — DATETIME DATETIME

- DATETIME DATETIME DATETIME DATETIME

* — — — —

/ — — — —

TIMESTAMP — — — —

+ — — TIMESTAMP —

- INTERVAL INTERVAL TIMESTAMP TIMESTAMP

* — — — —

/ — — — —

INTERVAL — — — —

Chapter 2
OLAP DML Expressions

2-40

Table 2-13 (Cont.) Matrix of Datetime Arithmetic

Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric

+ DATETIME TIMESTAMP INTERVAL —

- — — INTERVAL —

* — — — INTERVAL

/ — — — INTERVAL

Numeric — — — —

+ DATETIME DATETIME — NA

- — — — NA

* — — INTERVAL NA

/ — — — NA

Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order_date.

Date-only Expressions
A date-only expression is an expression that evaluates to the OLAP DML DATE data
type as discussed in "Date-only Data Type". The expression might be a function that
returns a date-only value, a date-only literal, or a more complex expression.

See Also:

"Date-only Input Values", "Date-only Dimension Values", and "DATE-only
Variable Display Styles".

Calculating DATE-only Values

You can add numbers to a DATE value, or subtract numbers from them. Whole numbers
are calculated as days, and decimal values are calculated as fractions of a day. For
example, SYSDATE+1.5 adds 1 day and 12 hours to the current date and time. You
cannot divide or multiply DATE values, and you cannot subtract them from numbers. For
example, 1-SYSDATE and 1*SYSDATE return errors.

Using DATE-only Values in Arithmetic Expressions

When you use DATE values in arithmetic expressions, the result can be numeric or it
can be a date. The legal operations for dates and the data type of the result are
outlined in the following table:

Chapter 2
OLAP DML Expressions

2-41

Table 2-14 Legal Operations for DATE Values

Operation Result

Add or subtract a number from a
date

Future or prior date

Subtract a date from a date The number of days between the dates.

Add or subtract a number from a
time period.

The time period at the appropriate interval in the future or
the past, similar to the return values of the LEAD or LAG
function. The result is NA when there is no dimension
value that corresponds to the result. The calculation is
made based on the positions of the values in the default
status list of the dimension.

Boolean Expressions
A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean
expressions can compare data of any type if both parts of the expression have the
same basic data type. You can test data to see if it is equal to, greater than, or less
than other data.

A Boolean expression can consist of Boolean data, such as the following:

• BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and FALSE)

• BOOLEAN variables or formulas

• Functions that yield BOOLEAN results

• BOOLEAN values calculated by comparison operators

For example, assume that your code contains the following Boolean expression.

 actual GT 20000

When processing this expression, Oracle OLAP compares each value of the variable
actual to the constant 20,000. When the value is greater than 20,000, then the
statement is TRUE; when the value is less than or equal to 20,000, then the statement is
FALSE.

When you are supplying a Boolean value, you can type either YES, ON, or TRUE for a true
value, and NO, OFF, or FALSE for a false value. When the result of a Boolean calculation
is produced, the defaults are YES and NO in the language specified by the
NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options record the
YES and NO values.

Table 2-11 shows the comparison and logical operators. Each operator has a priority
that determines its order of evaluation. Operators of equal priority are evaluated left to
right, unless parentheses change the order of evaluation. However, the evaluation is
halted when the truth value is decided. For example, in the following expression, the
TOTAL function is never executed because the first phrase determines that the whole
expression is true.

 yes EQ yes OR TOTAL(sales) GT 20000

Chapter 2
OLAP DML Expressions

2-42

Creating Boolean Expressions
A Boolean expression is a three-part clause that consists of two items to be compared,
separated by a comparison operator. You can create a more complex Boolean
expression by joining any of these three-part expressions with the AND and OR logical
operators. Each expression that is connected by AND or OR must be a complete Boolean
expression in itself, even when it means specifying the same variable several times.

For example, the following expression is not valid because the second part is
incomplete.

 sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

 sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be valid
even when the truth value can be determined by the first part of the expression. The
whole expression is compiled before it is evaluated, so when there are undefined
variables in the second part of a Boolean expression, you get an error.

Use the NOT operator, with parentheses around the expression, to reverse the sense of
a Boolean expression.

The following two expressions are equivalent.

 district NE 'BOSTON'
 NOT(district EQ 'BOSTON')

Example 2-2 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for each
product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO 'BOSTON'
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT statement returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY: BOSTON
 ---F.SALES GT 7500---
 --------TIME---------
PRODUCT Jan02 Feb02
-------------- ---------- ----------
Portaudio NO NO
Audiocomp YES YES
TV NO NO
VCR NO NO
Camcorder YES YES
Audiotape NO NO
Videotape YES YES

Comparing NA Values in Boolean Expressions
When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, when you test

Chapter 2
OLAP DML Expressions

2-43

whether an NA value equals a non‐NA value, then the result is NO. However, when the
result would be misleading, then NA is returned. For example, testing whether an NA
value is less than or greater than a non–NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non‐NA values:

Table 2-15 Boolean Expressions with NA Values that Result in non-NA Values

Expressions Result

NA EQ NA YES

NA NE NA NO

NA EQ non-NA NO

NA NE non-NA YES

NA AND NO NO

NA OR YES YES

Controlling Errors When Comparing Numeric Data
When you get unexpected results when comparing numeric data, then there are
several possible causes to consider:

• A number you are comparing might have a small decimal part that does not show
in output because of the setting of the DECIMALS option.

• You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

• You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle recommends that you use the ABS and ROUND functions to do approximate
tests for equality and avoid all three causes of unexpected comparison failure. When
using ABS or ROUND, you can adjust the absolute difference or the rounding factor to
values you feel are appropriate for your application. When speed of calculation is
important, then you probably want to use the ABS rather than the ROUND function.

Controlling Errors Due to Numerical Precision
Suppose expense is a decimal variable whose value is set by a calculation. When the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value appears in output as 100.00. However, the output of the following statement
returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Controlling Errors When Comparing Floating Point Numbers
A standard restriction on the use of floating point numbers in a computer language is
that you cannot expect exact equality in a comparison of two floating point numbers
when either number is the result of an arithmetic operation. For example, on some
systems, the following statement returns a NO instead of the expected YES.

Chapter 2
OLAP DML Expressions

2-44

SHOW .1 + .2 EQ .3

When you deal with decimal data, do not code direct comparisons. Instead, use the
ABS or the ROUND function to allow a tolerance for approximate equality. For
example, either of the following two statements produce the desired YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types
You cannot expect exact equality between SHORTDECIMAL and DECIMAL or NUMBER
representations of a decimal number with a fractional component, because the DECIMAL
and NUMBER data types have more significant digits to approximate fractional
components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a fractional
decimal number, then compare the SHORTDECIMAL number to the fractional decimal
number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the literal is
automatically typed as DECIMAL and converts the SHORTDECIMAL variable sdvar to DECIMAL,
which extends the decimal places with zeros. A bit-by-bit comparison is then
performed, which fails. The same comparison using a variable with a DECIMAL or a
NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

• Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in comparisons. To avoid
mixing these two data types, generally avoid defining variables with decimal
components as SHORTDECIMAL.

• Use the ABS or ROUND function to allow for approximate equality. The following
statements both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values
Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of the
dimension. This enables you to specify statements like the following statement.

REPORT district LT 'Seattle'

Statements are interpreted such as these using the following process:

1. The text literal 'Seattle' is converted to its position in the district default status
list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

Chapter 2
OLAP DML Expressions

2-45

3. As shown by the following report, the value YES is returned for districts that are
positioned before Seattle in the district default status list of the dimension, and
NO for Seattle itself.

REPORT 22 WIDTH district LT 'Seattle'

District DISTRICT LT 'Seattle'
-------------- ----------------------
Boston YES
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the position
of the values in the month dimension. Because it is a time dimension, the values are in
chronological order.

quota = IF month LE 'Jun02' THEN 100 ELSE LAG(quota, 1, month)* 1.15

However, when you compare values from different dimensions, such as in the
expression region lt district, then the only common denominator is TEXT, and text
values are compared, not dimension positions.

Comparing Dates
You can compare two dates with any of the Boolean comparison operators. For dates,
"less" means before and "greater" means after. The expressions being compared can
include any of the date calculations discussed in Table 2-11. For example, in a billing
application, you can determine whether today is 60 or more days after the billing date
to send out a more strongly worded bill.

bill.date + 60 LE SYSDATE

Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE
functions to change a value from a DATE to an INTEGER or an INTEGER to a DATE for
comparison.

Comparing Text Data
When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter of
each employee's name is greater than the letter "M."

EXTCHARS(employee.name, 1, 1) GT 'M'

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text. Ordering is
based on the values of the characters. This can produce unexpected results because
the text is evaluated from left to right. For example, the text literal 1234 is greater than
100,999.00 because 2, the second character in the first text literal, is greater than 0, the
second character in the second text literal.

Chapter 2
OLAP DML Expressions

2-46

Suppose name.label is an ID variable whose value is 3-Person and name.desc is a TEXT
variable whose value is 3-Person Tents.

The result of the following SHOW statement is NO.

SHOW name.desc EQ name.label

The result of the following statements is YES.

name.desc = '3-Person'
SHOW name.desc EQ name.label

Comparing a Text Value to a Text Pattern
The Boolean operator LIKE is designed for comparing a text value to a text pattern. A
text value is like another text value or pattern when corresponding characters match.

Besides literal matching, LIKE lets you use wildcard characters to match multiple
characters in a string:

• An underscore (_) character in a pattern matches any single character.

• A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of %AT_ matches any text that contains zero or more characters,
followed by the characters AT, followed by any other single character. Both DATA and
ERRATA return YES when LIKE is used to compare them with the pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following statement is NO.

SHOW NOT ('Boston' LIKE 'Bo%')

Comparing Text Literals to Relations
You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, region.district holds values of region, so you can do the following
comparison.

region.district EQ 'West'

Conditional Expressions
A conditional expression is an expression you can use to select between values based
on a condition. You can use conditional expression as part of any other expression if
the data type is appropriate. Oracle OLAP supports the use of the following conditional
expressions:

• IF...THEN...ELSE expression

• SWITCH Expressions

Chapter 2
OLAP DML Expressions

2-47

IF...THEN...ELSE expression
An IF expression is an expression you can use to select one of two values based on a
Boolean condition.

Note:

Do not confuse the IF expression with the IF...THEN...ELSE command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The IF...THEN...ELSE command does not have a data
type and is not evaluated like an expression.

An IF expression has the following syntax.

IF Boolean-expression THEN expression1 ELSE expression2

In most cases, expression1 and expression2 must be of the same basic data type
(numeric, text, or Boolean) and the data type of the whole expression is determined
using the same rules as those for the binary operators. However, when the data type
of either expression1 or expression2 is DATE, it is possible for the other expression to
have a numeric or text data type. Because Oracle OLAP expects both data types to be
DATE, it converts the numeric or text value to a DATE. Also, when the value of one
expression is a dimension value then the value of the other expression is converted to
a dimension value as it is for QDRs.

You can nest IF expressions; however, in this case, you might want to use a SWITCH
expression instead as discussed in "SWITCH Expressions".

An IF expression is processed by first evaluating the Boolean expression; then:

• When the result of the Boolean expression is TRUE, then expression1 is evaluated
and returns that value.

• When the result of the Boolean expression is FALSE, then expression2 is evaluated
and returns that value.

The expression1 and expression2 arguments are any valid OLAP DML expressions that
evaluate to the same basic data type. However, when the data type of either value is
DATE, it is possible for the other value to have a numeric or text data type. Because
both data types are expected to be DATE, Oracle OLAP converts the numeric or text
value to a DATE. The data type of the whole expression is the same as the two
expressions. When the result of the Boolean expression is NA, then NA is returned.

Example 2-3 Using an IF Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but when sales in the district are below budget, then the
bonus is zero.

LIMIT month TO 'Jan02' TO 'Jun02'
LIMIT product TO 'Tents'
REPORT DOWN district IF sales-sales.plan LT 0 THEN 0
 ELSE .05*(sales-sales.plan)

PRODUCT: TENTS

Chapter 2
OLAP DML Expressions

2-48

 ---IF SALES-SALES.PLAN LT 0 THEN 0 ELSE .05*(SALES-SALES.PLAN)---
 ----------------------MONTH------------------------------
DISTRICT Jan02 Feb02 Mar02 Apr02 May02 Jun02
--------- -------- -------- -------- ------- --------- ----------
Boston 229.53 0.00 0.00 0.00 584.51 749.13
Atlanta 0.00 0.00 0.00 190.34 837.62 1,154.87
Chicago 0.00 0.00 0.00 84.06 504.95 786.81
...

SWITCH Expressions
A SWITCH expression consists of a series of CASE expressions. You can use a
SWITCH expression as an alternative to a complicated, nested IF ... THEN ... ELSE
expression when all the conditions are equality comparisons with a single value.

Note:

Do not confuse the SWTICH expression with the SWITCH command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The SWITCH command is not evaluated like an
expression.

A SWITCH expression has the following syntax.

SWITCH expression DO { case-label ... exp [,] } ... DOEND

where case-label has the following syntax:

CASE exp: | DEFAULT:

When processing a SWITCH expression, Oracle OLAP compares each CASE
expression in succession until it finds a match. When a match is found, it returns the
value specified after the last label of the current case group. When no match is found
and a DEFAULT label is specified, it returns the value specified for the DEFAULT
case; otherwise it returns NA.

Example 2-4 Using a SWITCH Expression Instead of an IF Expression

Assume that you have coded the following OLAP DML statement which includes
nested IF...THEN...ELSE statements.

 testprogram = IF testtype EQ 0 -
 THEN 'program0' -
 ELSE IF testtype EQ 1 -
 THEN 'program1' -
 ELSE IF testtype EQ 2 OR testtype EQ 3 -
 THEN 'program2'
 ELSE NA

You could, instead, code the same behavior using a SWITCH expression as shown
below.

 testprogram = SWITCH testtype DO -
 CASE 0: 'program0', -
 CASE 1: 'program1', -
 CASE 2: -

Chapter 2
OLAP DML Expressions

2-49

 CASE 3: 'program2', -
 DEFAULT: NA -
 DOEND

You could also code the same behavior using a SWITCH statement that spans fewer
lines, omits commas, and omits the DEFAULT case because NA is the default return
value when a match is not found.

 testprogram = SWITCH testtype DO CASE 0: 'program0' CASE 1: 'program1' -
 CASE 2: CASE 3: 'program2' DOEND

Substitution Expressions
To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that Oracle
OLAP evaluates an expression containing a substitution expression as follows:

1. Evaluate the expression following the ampersand (the substitution expression).

2. Evaluate the rest of the expression using the result of step 1 (that is, the result of
the substitution expression).

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable that
holds the name of another variable, the value of the expression becomes the data in
the second variable. Ampersand substitution lets you write more general programs
that can operate on data that is chosen when the program is run. Note, however, that,
Oracle OLAP does not compile program lines with ampersand substitution; instead
these lines are interpreted when the program runs. To avoid ampersand substitution in
a program, you can often use an IF or SWITCH command instead.

You cannot use ampersand substitution in model equations.

Using Ampersand Substitution with QDRs

When you use an ampersand with a QDR, you must enclose the whole expression in
parentheses if you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype 'actual'))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptyp

Example 2-5 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of a dimension in the
analytic workspace (product). When you execute the following statement, then
REPORT produces the single value, product, which is the actual value stored in the
curname variable.

REPORT curname

CURNAME

Chapter 2
OLAP DML Expressions

2-50

PRODUCT

However, when you execute the following statement, then REPORT produces the
values of the dimension product.

REPORT &curname

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

Chapter 2
OLAP DML Expressions

2-51

3
Formulas, Models, Aggregations, and
Allocations

Calculation objects are OLAP DML objects that contain OLAP DML statements that
specify analysis to be performed. Calculation objects include: formulas, models,
aggregation specifications, allocation specifications, and programs.

This chapter contains information on the following

• Creating Calculation Objects

• OLAP DML Formulas

• OLAP DML Model Objects

• OLAP DML Aggregation Objects

• OLAP DML Allocation Objects

For information on creating OLAP DML programs, see OLAP DML Programs.

Creating Calculation Objects
The general process of creating a calculation specification object is the following two
step process:

1. Define the calculation object using the appropriate DEFINE statement.

2. Add the calculation specification to the object definition. You can add the
calculation specification to the definition of a calculation object in the following
ways:

• At the command line level of the OLAP Worksheet, in an input file, or as an
argument to a PL/SQL function. In this case, ensure that the object is the
current object (issue a CONSIDER statement, if necessary), and, then, issue
the appropriate statement that includes the specification as a multiline text
argument. To code the specification as a multiline text, you can use a
JOINLINES function where each of the text arguments of JOINLINES is a
statement that specifies the desired processing, and where the final statement
is END.

• In an Edit Window of the OLAP Worksheet. In this case, at the command line
level of the OLAP Worksheet, issue an EDIT statement with the appropriate
keyword. An EDIT statement opens an Edit Window for the specified object.
You can then type each statement as an individual line in the Edit Window.
Saving the specification and closing the Edit Window when you are finished.

The following table outlines the OLAP DML statements that you use to create each
type of calculation specification.

3-1

Table 3-1 Commands for Defining calculation objects

Calculations Definition Statement Specification Statement For More Information

Formula DEFINE FORMULA EQ "OLAP DML Formulas"

Model DEFINE MODEL MODEL "OLAP DML Model
Objects"

Aggregation DEFINE AGGMAP AGGMAP "OLAP DML Aggregation
Objects"

Allocation DEFINE AGGMAP ALLOCMAP " OLAP DML Allocation
Objects"

Program DEFINE PROGRAM PROGRAM OLAP DML Programs

OLAP DML Formulas
You can save an expression in a formula. Frequently, you define a formula for ease of
use and to save storage space. Once you have defined a formula for an expression,
you can use the name of the formula to represent the expression. Oracle OLAP does
not store the data for a formula in a variable; instead it calculates the data at run time
each time the data is requested.

Before you create a formula, decide whether you want to specify the expression when
you first define the formula object or whether you want to specify the expression for
the formula after you define the formula object:

• To specify the expression when you first define the formula object:

1. Issue a DEFINE FORMULA statement to define the formula object. Include the
expression in the definition. Do not specify values for the datatype or
dimensions arguments.

2. (Optional) Issue a COMPILE statement to compile the formula.

3. When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

• To specify the expression for the formula after you define the formula object:

1. Issue a DEFINE FORMULA statement to define the formula object. Specify
values for the datatype or dimensions arguments, but do not specify a value for
the expression itself.

2. Issue a CONSIDER statement to make the formula the current definition and
then issue an EQ statement to specify the expression for the formula.

3. (Optional) Issue a COMPILE statement to compile the formula.

4. When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE dollar.sales FORMULA units * price

You can use TRACE to help you debug a forumula.

Chapter 3
OLAP DML Formulas

3-2

OLAP DML Model Objects
This topic provides information about creating and executing OLAP DML models. It
includes the following subtopics:

• What is an OLAP DML Model?

• Creating Models

• Compiling Models

• Running a Model

• Debugging a Model

What is an OLAP DML Model?
An OLAP DML model is a set of interrelated equations that can assign results either to
a variable or to a dimension value. For example, in a financial model, you can assign
values to specific line items, such as gross.margin or net.income.

gross.margin = revenue - cogs

When an assignment statement assigns data to a dimension value or refers to a
dimension value in its calculations, then it is called a dimension-based equation. A
dimension-based equation does not refer to the dimension itself, but only to the values
of the dimension. Therefore, when the model contains any dimension-based
equations, then you must specify the name of each of these dimensions in a DIMENSION
statement at the beginning of the model.

When a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both a
source of data and the assignment target of model equations. It holds the input data
used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the line dimension, you might specify actual as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Because you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the actual variable, the budget variable, or any other variable that is
dimensioned by line.

Models can be quite complex. You can:

• Include one model within another model as discussed in "Nesting Models"

• Use data from different time periods as discussed in "Using Data from Past and
Future Time Periods"

• Solve simultaneous equations as discussed in "Solving Simultaneous Equations"

• Create models for different scenarios as described in "Modeling for Multiple
Scenarios"

Creating Models
To create an OLAP DML model, take the following steps:

Chapter 3
OLAP DML Model Objects

3-3

1. Issue a DEFINE MODEL command to define the program object.

2. Issue a MODEL command which adds a specification to the model to specify the
processing that you want performed.

3. Compile the model as described in "Compiling Models".

4. (Optional) If necessary, change the settings of model options listed in "Model
Options".

5. Execute the model as described in "Running a Model".

6. Debug the model as described in "Debugging a Model".

7. When you want the model to be a permanent part of the analytic workspace, save
the model using an UPDATE command followed by COMMIT.

For an example of creating a model, see Example 10-57.

Nesting Models
You can include one model within another model by using an INCLUDE statement
within a MODEL command. The MODEL command that contains the INCLUDE
statement is referred to as the parent model. The included model is referred to as the
base model. You can nest models by placing an INCLUDE statement in a base
model. For example, model myModel1 can include model myModel2, and model myModel2
can include model myModel3. The nested models form a hierarchy. In this example,
myModel1 is at the top of the hierarchy, and myModel3 is at the root.

When a model contains an INCLUDE statement, then it cannot contain any
DIMENSION statements. A parent model inherits its dimensions, if any, from the
DIMENSION statements in the root model of the included hierarchy. In the example
just given, models myModel1 and myModel2 both inherit their dimensions from the
DIMENSION statements in model myModel3.

The INCLUDE statement enables you to create modular models. When certain
equations are common to several models, then you can place these equations in a
separate model and include that model in other models as needed.

The INCLUDE statement also facilitates what-if analyses. An experimental model can
draw equations from a base model and selectively replace them with new equations.
To support what-if analysis, you can use equations in a model to mask previous
equations. The previous equations can come from the same model or from included
models. A masked equation is not executed or shown in the MODEL.COMPRPT
report for a model.

Dimension Status and Model Equations
When a model contains an assignment statement to assign data to a dimension value,
then the dimension is limited temporarily to that value, performs the calculation, and
restores the initial status of the dimension.

For example, a model might have the following statements.

DIMENSION line
gross.margin = revenue - cogs

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

Chapter 3
OLAP DML Model Objects

3-4

PUSH line
LIMIT line TO gross.margin
actual = actual(line revenue) - actual(line cogs)
POP line

The fact that using a solution variable in a model causes this behind-the-scenes code
construction allows you perform complex calculations with simple model equations.
For example, line item data might be stored in the actual variable, which is
dimensioned by line. However, detail line item data might be stored in a variable
named detail.data, with a dimension named detail.line.

When your analytic workspace contains a relation between line and detail.line,
which specifies the line item to which each detail item pertains, then you might write
model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between detail.line and line is used automatically to aggregate the
detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the line
dimension. For example, while the equation for the revenue item is calculated, line is
temporarily limited to revenue, and the TOTAL function returns the total of detail items for
the revenue value of line.

Using Data from Past and Future Time Periods
Several OLAP DML functions make it easy for you to use data from past or future time
periods. For example, the LAG function returns data from a specified previous time
period, and the LEAD function returns data from a specified future period.

When you run a model that uses past or future data in its calculations, you must
ensure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement that bases an estimate of
the revenue line item for the current month on the revenue line item for the previous
month.

DIMENSION line month
...
revenue = LAG(revenue, 1, month) * 1.05

When the month dimension is limited to Apr2004 to Jun2004 when you run the model,
then you must ensure that the solution variable contains revenue data for Mar96.

When your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, when you want to calculate data for the
months of April through June of 2004, and when the model retrieves data from one
month in the future, then the solution variable must contain data for July 2004 when
you run the model.

Handling NA Values in Models
Oracle OLAP observes the NASKIP2 option when it evaluates equations in a model.
NASKIP2 controls how NA values are handled when + (plus) and - (minus) operations

Chapter 3
OLAP DML Model Objects

3-5

are performed. The setting of NASKIP2 is important when the solution variable
contains NA values.

The results of a calculation may be NA not only when the solution variable contains an
NA value that is used as input, but also when the target of a simultaneous equation is
NA. Values in the solution variable are used as the initial values of the targets in the first
iteration over a simultaneous block. Therefore, when the solution variable contains NA
as the initial value of a target, an NA result may be produced in the first iteration, and
the NA result may be perpetuated through subsequent iterations.

To avoid obtaining NA for the results, you can ensure that the solution variable does not
contain NA values or you can set NASKIP2 to YES before running the model.

Solving Simultaneous Equations
An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation. The new value is compared to the
value from the previous iteration. When the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. When the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

When all the equations in the block converge, then the block is considered solved.
When any equation diverges or fails to converge within a specified number of
iterations, then the solution of the block (and the model) fails and an error occurs.

You can exercise control over the solution of simultaneous equations with the OLAP
DML options described in "Model Options". For example, using these options, you can
specify the solution method to use, the factors to use in testing for convergence and
divergence, the maximum number of iterations to perform, and the action to take when
the assignment statement diverges or fails to converge.

Modeling for Multiple Scenarios
Instead of calculating a single set of figures for a month and division, you might want
to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate profit
based on optimistic, pessimistic, and best-guess figures.

To build a scenario model:

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.

3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

For an example of building a scenario model see, Example 10-58.

Compiling Models
When you finish writing the statements in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.

Chapter 3
OLAP DML Model Objects

3-6

When you do not use COMPILE before you run the model, then the model is compiled
automatically before it is solved.You can use the OBJ function with the ISCOMPILED
choice to test whether a model is compiled.

SHOW OBJ(ISCOMPILED 'myModel')

When you compile a model, either by using a COMPILE statement or by running the
model, the model compiler checks for problems that are unique to models. You receive
an error message when any of the following occurs:

• The model contains any statements other than DIMENSION, INCLUDE, and
assignment (SET) statements.

• The model contains both a DIMENSION statement and an INCLUDE statement.

• A DIMENSION or INCLUDE statement is placed after the first equation in the
model.

• The dimension values in a single dimension-based equation refer to two or more
different dimensions.

• An equation refers to a name that the compiler cannot identify as an object in any
attached analytic workspace. When this error occurs, it may be because an
equation refers to the value of a dimension, but you have neglected to include the
dimension in a DIMENSION statement. In addition, a DIMENSION statement may
appear to be missing when you are compiling a model that includes another model
and the other model fails to compile. When a root model (the innermost model in a
hierarchy of included models) fails to compile, the parent model cannot inherit any
DIMENSION commands from the root model. In this case the compiler may report
an error in the parent model when the source of the error is actually in the root
model. See INCLUDE for additional information.

Resolving Names in Equations
The model compiler examines each name in an equation to determine the analytic
workspace object to which the name refers. Because you can use a variable and a
dimension value in the same way in a model equation (basing calculations on it or
assigning results to it), a name might be the name of a variable or it might be a value
of any dimension listed in a DIMENSION statement.

To resolve each name reference, the compiler searches through the dimensions listed
in explicit or inherited DIMENSION statements, in the order they are listed, to
determine whether the name matches a dimension value of a listed dimension. The
search concludes as soon as a match is found.

Therefore, when two or more listed dimensions have a dimension value with the same
name, the compiler assumes that the value belongs to the dimension named earliest in
a DIMENSION statement.

Similarly, the model compiler might misinterpret the dimension to which a literal
INTEGER value belongs. For example, the model compiler assumes that the literal value
'200' belongs to the first dimension that contains either a value at position 200 or the
literal dimension value 200.

To avoid an incorrect identification, you can specify the desired dimension and enclose
the value in parentheses and single quotes. See "SET".

When the compiler finds that a name is not a value of any dimension specified in a
DIMENSION statement, it assumes that the name is the name of an analytic

Chapter 3
OLAP DML Model Objects

3-7

workspace variable. When a variable with that name is not defined in any attached
analytic workspace, an error occurs.

Code for Looping Over Dimensions
The model compiler determines the dimensions over which the statements loop. When
an equation assigns results to a variable, the compiler constructs code that loops over
the dimensions (or bases of a composite) of the variable.

When you run a model that contains dimension-based equations, the solution variable
that you specify can be dimensioned by more dimensions than are listed in
DIMENSION statements.

Evaluating Program Arguments
When you specify the value of a model dimension as an argument to a user-defined
program, the compiler recognizes a dependence introduced by this argument.

For example, an equation might use a program named weight that tests for certain
conditions and then weights and returns the Taxes line item based on those conditions.
In this example, a model equation might look like the following one.

Net.Income = Opr.Income - weight(Taxes)

The compiler correctly recognizes that Net.Income depends on Opr.Income and Taxes.
However, when the weight program refers to any dimension values or variables that
are not specified as program arguments, the compiler does not detect any hidden
dependencies introduced by these calculations.

Dependencies Between Equations
The model compiler analyzes dependencies between the equations in the model. A
dependence exists when the expression on the right-hand side of the equal sign in one
equation refers to the assignment target of another equation. When an equation
indirectly depends on itself as the result of the dependencies among equations, a
cyclic dependence exists between the equations.

The model compiler structures the model into blocks and orders the equations within
blocks and the blocks themselves to reflect dependencies. When you run the model, it
is solved one block at a time. The model compiler can produce three types of solution
blocks:

• Simple Solution Blocks—Simple blocks include equations that are independent
of each other and equations that have dependencies on each other that are non-
cyclic.

For example, when a block contains equations that solve for values A, B, and C, a
non-cyclic dependence can be illustrated as A>B>C. The arrows indicate that A
depends on B, and B depends on C.

• Step Solution Blocks—Step blocks include equations that have a cyclic
dependence that is a one-way dimensional dependence. A dimensional
dependence occurs when the data for the current dimension value depends on
data from previous or later dimension values. The dimensional dependence is
one-way when the data depends on previous values only or later values only, but

Chapter 3
OLAP DML Model Objects

3-8

not both. For more information on one-way dimensional dependence, see
"Ensuring One-Way Dimensional Dependence".

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. When a block contains equations that
solve for values A and B, a one-way dimensional dependence can be illustrated as
A>B>LAG(A). The arrows indicate that A depends on B, and B depends on the value
of A from a previous time period.

• Simultaneous Solution Blocks—Simultaneous blocks include equations that
have a cyclic dependence that is other than one-way dimensional. The cyclic
dependence may involve no dimensional qualifiers at all, or it may be a two-way
dimensional dependence. For more information on two-way dimensional
dependence, see "Structures for Which the Model Compiler Assumes Two-Way
Dimensional Dependence".

When a model contains a block of simultaneous equations, COMPILE gives you a
warning message. In this case, you may want to check the settings of the options
that control simultaneous solutions before you run the model. "Model Options" lists
these options.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as A>B>C>A. The arrows indicate that A depends on B, B
depends on C, and C depends on A.

An example of a cyclic dependence that is a two-way dimensional dependence
can be illustrated as A>LEAD(B)>LAG(A). The arrows indicate that A depends on the
value of B from a future period, while B depends on the value of A from a previous
period.

Order of Simultaneous Equations

The solution of a simultaneous block of equations is sensitive to the order of the
equations. In general, rely on the model compiler to determine the optimal order for the
equations. In some cases, however, you may be able to encourage convergence by
placing the equations in a particular order.

To force the compiler to leave the simultaneous equations in each block in the order in
which you place them, set the MODINPUTORDER option to YES before compiling the
model. (MODINPUTORDER has no effect on the order of equations in simple blocks
or step blocks.)

Structures for Which the Model Compiler Assumes Two-Way Dimensional
Dependence

When dependence is introduced through any of the following structures, the model
compiler assumes that two-way dimensional dependence occurs:

• A two-way dimensional dependence can occur when you use an aggregation
function, such as AVERAGE, TOTAL, ANY, or COUNT.

Opr.Income = Gross.Margin -
 (TOTAL(Marketing + Selling + R.D))
Marketing = LAG(Opr.Income, 1, month)

• A two-way dimensional dependence can occur when you use a time-series
function that requires a time-period argument, such as CUMSUM, LAG, or LEAD

Chapter 3
OLAP DML Model Objects

3-9

(except for the specific functions and conditions described in "Ensuring One-Way
Dimensional Dependence").

• A two-way dimensional dependence also can occur when you use a financial
function, such as DEPRSL or NPV.

A cyclic dependence across a time dimension that you introduce through a loan or
depreciation function may cause unexpected results. The loan functions include
FINTSCHED, FPMTSCHED, VINTSCHED, and VPMTSCHED. The depreciation
functions include DEPRDECL, DEPRDECLSW, DEPRSL, and DEPRSOYD.

Ensuring One-Way Dimensional Dependence

When dependence between equations is introduced through any of the following
structures, a one-way dimensional dependence occurs:

• A one-way dimensional dependence occurs when you use a LAG or LEAD
function and when the argument for the number of time periods is coded as an
explicit number (either as a value or a constant) or as the result of ABS.
(Otherwise, there may be a two-way dependence, involving both previous and
future dimension values, and the compiler assumes that a simultaneous solution is
required.) The following example illustrates this use of LAG.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

• A one-way dimensional dependence occurs when you use a MOVINGAVERAGE,
MOVINGMAX, MOVINGMIN, or MOVINGTOTAL function, when the start and stop
arguments are non-zero numbers, and when both the start and top arguments are
positive or both are negative. Otherwise, two-way dimensional dependence is
assumed.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = MOVINGAVERAGE(Opr.Income, -4, -1, 1, month)

Obtaining Analysis Results
After compiling a model, you can use the following tools to obtain information about
the results of the analysis performed by the compiler:

• The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks
with a cross-dimensional dependence, the report lists the dimensions involved in
the dependence.

• The MODEL.DEPRT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

• The INFO function lets you obtain specific items of information about the structure
of the model.

Checking for Additional Problems
The compiler does not analyze the contents of any programs or formulas that are used
in model equations. Therefore, you must check the programs and formulas yourself to
make sure they do not do any of the following:

• Refer to the value of any variable used in the model.

Chapter 3
OLAP DML Model Objects

3-10

• Refer to the solution variable.

• Limit any of the dimensions used in the model.

• Invoke other models.

When a model or program violates any of these restrictions, the results of the model
may be incorrect.

See Also:

MODTRACE, TRACE

Running a Model
When you run a model, keep these points in mind:

• Before you run a model, the input data must be available in the solution variable.

• Before running a model that contains a block of simultaneous equations, you might
want to check or modify the values of some OLAP DML options that control the
solution of simultaneous blocks. These options are described briefly in "Model
Options".

• When your model contains any dimension-based equations, then you must
provide a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all of the dimensions on which model equations are based and
also by the other dimensions of the solution variable on which you are not basing
equations.

• When you run a model, a loop is performed automatically over the values in the
current status list of each of the dimensions of the solution variable on which you
have not based equations.

• When a model equation bases its calculations on data from previous time periods,
then the solution variable must contain data for these previous periods. When it
does not, or when the first value of the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is in status, then the results of the calculation are NA.

Syntax for Running a Model
To run or solve a model, use the following syntax.

 model-name [solution-variable] [NOWARN]

where:

• model-name is the name of the model.

• solution-variable is the name of a numeric variable that serves as both the
source and the target of data in a model that contains dimension-based equations.
The solution variable is usually dimensioned by all the dimensions on which model
equations are based (as specified in explicit or included DIMENSION commands).
The solution-variable argument is required when the model contains any
dimension-based equations. When all the model equations are based only on
variables, a solution variable is not needed and an error occurs when you supply

Chapter 3
OLAP DML Model Objects

3-11

this argument. See "Dimensions of Solution Variables" for more information on
dimensions of solution variables.

• NOWARN is an optional argument that specifies that you do not want to be warned
when the model contains a block of simultaneous equations.

Dimensions of Solution Variables
In a model with dimension-based equations, the solution variable is usually
dimensioned by the dimensions on which model equations are based. Or, when a
solution variable is dimensioned by a composite, the model equations can be based
on base dimensions of the composite. The dimensions on which model equations are
based are listed in explicit or inherited DIMENSION statements.

Special Cases of Solution Variables

The following special cases regarding the dimensions of the solution variable can
occur:

• The solution variable can have dimensions that are not listed in DIMENSION
commands. Oracle OLAP automatically loops over the values in the status of the
extra dimensions. For example, the model might contain a DIMENSION statement
that lists the line and month dimensions, but you might specify a solution variable
dimensioned by line, month, and division. Oracle OLAP automatically loops over
the division dimension when you run the model. The solution variable can also be
dimensioned by a composite that has one or more base dimensions that are not
listed in DIMENSION commands. See "Solution Variables Dimensioned by a
Composite"

• When the solution variable has dimensions that are not listed in DIMENSION
commands and when any of these other dimensions are the dimension of a step
or simultaneous block, an error occurs.

• Oracle OLAP loops over the values in the status of all the dimensions listed in
DIMENSION commands, regardless of whether the solution variable is
dimensioned by them. Therefore, Oracle OLAP does extra, unnecessary work
when the solution variable is not dimensioned by all the listed dimensions. Oracle
OLAP warns you of this situation before it starts solving the model.

• The inclusion of an unneeded dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR in a DIMENSION statement causes incorrect results when
you use a loan, depreciation, or aggregation function in a model equation. The
incorrect results occur because any component of a model equation that refers to
the values of a model dimension behaves as if that component has all the
dimensions of the model.

Solution Variables Dimensioned by a Composite

When a solution variable contains a composite in its dimension list, Oracle OLAP
observes the sparsity of the composite whenever possible. As it solves the model,
Oracle OLAP confines its loop over the composite to the values that exist in the
composite. It observes the current status of the composite's base dimensions as it
loops.

However, for proper solution of the model, Oracle OLAP must treat the following base
dimensions of the composite as regular dimensions:

• A base dimension that is listed in a DIMENSION statement.

Chapter 3
OLAP DML Model Objects

3-12

• A base dimension that is implicated in a model equation created using SET (for
example, an equation that assigns data to a variable dimensioned by the base
dimension).

• A base dimension that is also a base dimension of a different composite that is
specified in the ACROSS phrase of an equation. (See SET for more information
on assignment statements and the use of ACROSS phrase.)

When a base dimension of a solution variable's composite falls in any of the preceding
three categories, Oracle OLAP treats that dimension as a regular dimension and loops
over all the values that are in the current status.

When the solution variable's composite has other base dimensions that do not fall in
the special three categories, Oracle OLAP creates a temporary composite of these
extra base dimensions. The values of the temporary composite are the combinations
that existed in the original composite. Oracle OLAP loops over the temporary
composite as it solves the model.

Debugging a Model
The following tools are available for debugging models:

• To see the order in which the equations in a model are solved, you can set the
MODTRACE option to YES before you run the model.When you set MODTRACE to
YES, you can use a DBGOUTFILE statement to send debugging information to a
file. The file produced by DBGOUTFILE interweaves each line of your model with
its corresponding output.

• You can use the MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT
programs and the INFO function to obtain information about the structure of a
compiled model and the solution status of a model you have run.

OLAP DML Aggregation Objects
This topic provides information about aggregating data using the OLAP DML.It
includes the following subtopics:

• What is an OLAP DML Aggregation?

• Aggregating Data Using the OLAP DML

• Compiling Aggregation Specifications

• Executing the Aggregation

• Creating Custom Aggregates

What is an OLAP DML Aggregation?
Historically, aggregating data was summing detail data to provide subtotals and totals.
However, using OLAP DML aggmap objects you can specify more complex
aggregation calculations:

• The summary data dimensioned by a hierarchical dimension can be calculated
using many different types of methods (for example, first, last, average, or
weighted average). For an example of this type of aggregation, see Example 9-18.

• The summary data dimensioned by a nonhierarchical dimension can be calculated
using a model. Using a model to calculate summary data is useful for calculating

Chapter 3
OLAP DML Aggregation Objects

3-13

values for dimensions, such as line items, that do not have a hierarchical structure.
Instead, you create a model to calculate the values of individual line items from
one or more other line items or workspace objects. For an example of this type of
aggregation, see Example 9-17.

• The detail data used to calculate the summary data can be in the variable that
contains the summary data or in one or more other variables. The variable that
contains the summary data does not have to have the same dimensions as the
variables that contain the detail data. For an examples of this type of aggregation,
see Example 9-15 and Example 9-32.

• The data can be aggregated as a database maintenance procedure, in response
to user requests for summarized data, or you can combine these approaches. See
"Executing the Aggregation" for more information.

• Data that is aggregated in response to user requests can be calculated each time
it is requested or stored or cached in the analytic workspace for future queries.

• The specification for the aggregation can be permanent or temporary as described
in "Creating Custom Aggregates".

Aggregating Data Using the OLAP DML
To aggregate data using the OLAP DML, take the following steps:

1. Decide if you want to aggregate all of the data as a database maintenance
procedure using the AGGREGATE command or on-the-fly at run time using the
AGGREGATE function or the $AGGMAP property, or if you want to combine these
approaches and precalculate some values and calculate others at run time. For a
discussion of the various approaches, see "Executing the Aggregation".

2. Issue a DEFINE AGGMAP statement to define the aggmap object as type
AGGMAP.

3. Write the aggregation specification as described in AGGMAP.

4. When aggregating a partitioned variable, run PARTITIONCHECK to check that the
aggregation specification created in the previous step is compatible with the
variable's partitioning. If it is not, either rewrite the aggregation specification or
repartition the variable using CHGDFN.

5. When some or all of the data is to be aggregated using the AGGREGATE
function:

a. Compile the aggmap object as described in "Compiling Aggregation
Specifications".

b. Add the triggering property, object, or event. For example, add a formula that
has the AGGREGATE function as its expression and add $NATRIGGER
property to the variable to trigger the execution of that formula in response to a
run-time request for data.

6. When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

7. For data that is to be calculated using the AGGREGATE command:

a. (Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the
aggregation operation.

Chapter 3
OLAP DML Aggregation Objects

3-14

b. Use the AGGREGATE command, followed by UPDATE and COMMIT to
precalculate the data and store it in the analytic workspace.

Compiling Aggregation Specifications
Compiling the aggmap object is important for aggregation performed at run-time using
the AGGREGATE function. Unless the compiled version of the aggmap has been
saved, the aggmap is recompiled by each session that uses it.

There are two ways you can compile an aggmap objects:

• Issue a COMPILE statement.

A COMPILE statement is the only way to compile an aggmap object that is used
by an AGGREGATE function. Explicitly compiling an aggmap is also useful for
finding syntax errors in the aggmap before attempting to use it to generate data.
The following statement compiles the sales.agg aggmap.

COMPILE gpct.aggmap

• When you aggregate the data using an AGGREGATE command, include the
FUNCDATA phrase in the statement.

When you use the FUNCDATA phrase in an AGGREGATE command, Oracle
OLAP compiles the aggmap before it aggregates the data. For example, this
statement compiles and precalculates the aggregate data.

AGGREGATE sales USING gpct.aggmap FUNCDATA

Note:

When some data is calculated on the fly, then you must compile and save
the aggmap after executing the AGGREGATE command.

Executing the Aggregation
The OLAP DML provides two ways to aggregate data:

• As a data maintenance procedure using the AGGREGATE command. To use this
method of aggregating data within an aggregation specification, identify data that
you want to aggregate in this manner using the PRECOMPUTE statement or
PRECOMPUTE clause of the RELATION statement.

• At run-time when needed using the AGGREGATE function or adding
an $AGGMAP property to the variable.

You can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria. You can also combine
these approaches and precalculate some values and calculate others at run time. In
this case, frequently, you use the same aggmap with the AGGREGATE command and
the AGGREGATE function. However, in some cases you might use different aggmaps.

One step that you can take to achieve overall good performance is to balance the
amount of the data that you aggregate and store in an analytic workspace with the
amount of data that you specify for calculation on the fly. You can use a
PRECOMPUTE statement or clause within your aggregation specification to ask
Oracle OLAP to use special functionality called the Aggregate Advisor to automatically

Chapter 3
OLAP DML Aggregation Objects

3-15

determine what values to aggregate as a data maintenance procedure using the
AGGREGATE command, or to explicitly identify the values yourself.

Creating Custom Aggregates
The definitions for most aggregations persist from one session to another. However,
you might need to create session-only aggregates at run time for forecasting or what-if
analysis, or just because you want to view the data in an unforeseen way. Adding
session-only aggregates is sometimes called creating custom aggregates. You can
create non-persistent aggregated data without permanently changing the specification
for the aggregation in the following ways:

• Using a MAINTAIN ADD SESSION statement, define temporary dimension
members and include an aggregation specification as part of the definition of these
members. The aggregation specification can either be a model or an aggmap. For
an example of using this method to create a temporary aggregation, see
Example 10-42 .

• Create a model that specifies the aggregation. Use an AGGMAP ADD statement
to add the model to an aggmap at run time. After a session, Oracle OLAP
automatically removes any models that you have added to an aggmap in this
manner. See AGGMAP ADD or REMOVE model for more information.

OLAP DML Allocation Objects
Allocating data involves creating lower-level data from summary data. This topic
provides an overview of how to allocate data using OLAP DML statements. It includes
the following subtopics:

• Introduction to Allocating Data Using the OLAP DML

• Features of Allocation in Oracle OLAP

• Allocating Data

• Handling NA Values When Allocating Data

Introduction to Allocating Data Using the OLAP DML
You can specify data allocation in an ALLOCMAP type aggmap object. To implement
the allocation, execute an ALLOCATE command for the ALLOCMAP aggmap. The
target is a variable that is dimensioned by one or more hierarchical dimensions. The
source data is specified by dimension values at a higher level in a hierarchical
dimension than the values that specify the target cells.

ALLOCATE uses an aggmap to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some allocation operations are based on existing data. The object containing that data
is the basis object for the allocation. In those operations, ALLOCATE distributes the
data from the source based on the values of the basis object.

ALLOCATE has operations that are the inverse of the operations of the AGGREGATE
command. The allocation operation methods range from simple allocations, such as
copying the source data to the cells of the target variable, to very complex allocations,
such as a proportional distribution of data from a source that is a formula, with the

Chapter 3
OLAP DML Allocation Objects

3-16

amount distributed being based on another formula, with multiple variables as targets,
and with an aggmap that specifies different methods of allocation for different
dimensions.

Features of Allocation in Oracle OLAP
The Oracle OLAP allocation system is very flexible and has many features, including
the following:

• The source, basis, and target objects can be the same variable or they can be
different objects.

• The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

• You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex.

• You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

• You can specify an amount to add to or multiply by the allocated value before the
result is assigned to the target cell.

• You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. When you
lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can
choose to not normalize the source data.

• You can specify minimum, maximum, floor, or ceiling values for certain operations.

• You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

• You can specify ways of handling allocations when the basis has a null value.

• You can use the same aggmap in different ALLOCATE commands to use the
same set of dimension hierarchy values, operations, and arguments with different
source, basis, or target objects.

Allocating Data
To allocate data using an aggmap object, use the following OLAP DML statements in
the order indicated:

1. Issue a DEFINE AGGMAP statement to define the aggmap object.

Note:

When using the OLAP Worksheet, at the command line level, immediately
after the DEFINE AGGMAP statement, enter an "empty" allocation
specification by coding an ALLOCMAP statement. For example:

DEFINE myaggmap AGGMAP
ALLOCMAP 'END'

Chapter 3
OLAP DML Allocation Objects

3-17

2. Add a specification to the aggmap object that specifies the allocation that you want
performed. See ALLOCMAP for more information.

3. When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

4. (Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the allocation
operation.

5. (Optional) Redesign the allocation error log by setting the
ALLOCERRLOGFORMAT and ALLOCERRLOGHEADER options to nondefault
values.

6. (Optional) Set the $ALLOCMAP property on one or more variables to specify that
the aggmap is the default allocation specification for the variables.

7. (Recommended, but optional) Limit the variable to the target cells (that is, the cells
into which you want to allocate data).

8. Issue an ALLOCATE statement to allocate the data.

Handling NA Values When Allocating Data
Sometimes you want to overwrite existing data when allocating values to a target
variable and at other times you want to write allocated values to target cells that have
an NA basis before the allocation. For example, when you create a product in your
product dimension, then no basis exists for the new product in your budget variable.
You want to allocate advertising costs for the entire product line, including the new
product.

You can handle NA values using formulas and hierarchical operators in a RELATION
statement in the following ways:

• Handling NA data with formulas—The preferred method for handling the NA values
is to construct a basis that only describes the desired target cells. You can refine
your choice of basis values by deriving the basis from a formula. The following
statements define a formula that equates the values of the new product to twice
the value of an existing product. You could use such a formula as the basis for
allocating advertising costs to the new product.

DEFINE formula_basis FORMULA DECIMAL <product>
EQ IF product EQ 'NEWPRODUCT' -
 THEN 2 * product.budget(product 'EXISTINGPRODUCT') -
 ELSE product.budget

• Handling NA data with hierarchical operators—To allocate data to target cells that
currently have NA values, use a hierarchical operator in a RELATION statement in
the allocation specification. The hierarchical operators use the hierarchy of the
dimension rather than existing data as the allocation basis. A danger in using
hierarchical operators is the possibility of densely populating your detail level data,
which can result in a much larger analytic workspace and require much more time
to aggregate the data.

To continue the example of allocating the advertising cost for the new product, you
could use the hierarchical last operator HLAST to specify allocating the cost to the
new (and presumably the last) product in the product dimension hierarchy.

Chapter 3
OLAP DML Allocation Objects

3-18

4
OLAP DML Properties

This chapter contains the following topics:

• About OLAP DML Properties

• System Properties: Alphabetical Listing

• System Properties by Category

• One topic for each of the OLAP DML system properties, arranged alphabetically
beginning with $AGGMAP.

For other reference topics for the OLAP DML, see OLAP DML Options , OLAP DML
Functions: A - K, OLAP DML Functions: A - K, OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

About OLAP DML Properties
A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. In particular, you can assign system properties
that interact with the OLAP DML.

System Properties: Alphabetical Listing
$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$ALLOCMAP
$COUNTVAR
$DEFAULT_LANGUAGE
$GID_DEPTH
$GID_LIST
$GID_TYPE
$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE
$LOOP_VAR
$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

4-1

System Properties by Category
The OLAP DML provides system properties that set or retrieve values that influence
how the OLAP DML performs the following:

Aggregation Properties
Allocation Property
Grouping Id Properties
Formula Properties
Language Property
NA Value Properties

Aggregation Properties

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$COUNTVAR
$VARCACHE

Allocation Property

$ALLOCMAP

Grouping Id Properties

$GID_DEPTH
$GID_LIST
$GID_TYPE

Formula Properties

$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE
$LOOP_VAR

Language Property

$DEFAULT_LANGUAGE

NA Value Properties

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

$AGGMAP
The $AGGMAP property specifies that Oracle OLAP use the identified aggmap to
automatically aggregate non-precomputed data to substitute for NA values that are in

Chapter 4
System Properties by Category

4-2

the dimensioned variable, but not in the session cache for the variable (if any).
Consequently, you do not need to explicitly use the AGGREGATE function to
aggregate non-precomputed data in a variable that has an $AGGMAP property.

Additionally, the aggmap specified in the $AGGMAP property of a variable is the
aggmap that Oracle OLAP uses when the variable is the target of an AGGREGATE
command that does not include a USING phrase.

Syntax

You add or delete an $AGGMAP property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$AGGMAP' agggmap-name

• To delete the property, issue the following statement.

PROPERTY DELETE '$AGGMAP'

Parameters

aggmap-name
A TEXT expression that is the name of a previously defined aggmap object.

Examples

Example 4-1 Using $AGGMAP To Dynamically Aggregate Data

Assume that you have a hierarchical dimension named geog,a simple dimension
named year, and the following variable named sales which is dimensioned by both and
which has data only at the detail level.

Assume that you want to explicitly specify the value of 8000 for the sales cell for
Connecticut in 2005. To do this you issue the following assignment statement and a
report of sales shows the value.

sales (geog 'Connecticut' year '2005') = 8000
REPORT sales;

 -----------SALES-----------
 -----------YEAR------------
GEOG 2004 2005 2006 2007
-------------- ------ ------ ------ ------
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA
Connecticut NA 8,000 NA NA
Massachusetts NA NA NA NA
Canada NA NA NA NA
USA NA NA NA NA
All Geog NA NA NA NA

Chapter 4
$AGGMAP

4-3

Now assume that you define an aggmap for sales. The aggmap has the following
definition which specifies that only the upper-level data for Canada and the top level
(All Geog) be aggregated by the AGGREGATE command.

DEFINE MYAGGMAP AGGMAP
AGGMAP
RELATION geogParentrel PRECOMPUTE ('Quebec' 'Ontario' 'Canada' 'All Geog')
END

Now assume you issue the following statements:

CONSIDER sales
PROPERTY '$AGGMAP' 'Myaggmap'

As a result of using the $AGGMAP property to make myaggmap as the default aggmap
for sales, a simple REPORT statement for sales causes Oracle OLAP to aggregate all
of the data for the USA. (Note that only those values that were not specified as
PRECOMPUTE and that previously had NA values are calculated. The 8,000 value for
Connecticut in 2005 that was specifically assigned is not recalculated.)

REPORT sales

 -----------SALES-----------
 -----------YEAR------------
GEOG 2004 2005 2006 2007
-------------- ------ ------ ------ ------
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271
Canada NA NA NA NA
USA 6,964 5,699 5,808 6,008
All Geog NA NA NA NA

Once you aggregate sales using the AGGREGATE command, Oracle OLAP
aggregates values for all of the PRECOMPUTE cells in sales.

REPORT sales

 -----------SALES-----------
 -----------YEAR------------
GEOG 2004 2005 2006 2007
-------------- ------ ------ ------ ------
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581

Chapter 4
$AGGMAP

4-4

Ontario 2,131 3,200 3,797 3,027
Quebec 3,485 3,482 2,702 3,752
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271
Canada 5,616 6,682 6,499 6,779
USA 6,964 5,699 5,808 6,008
All Geog 12,580 12,381 12,307 12,787

Example 4-2 The $AGGMAP Property Effect on an AGGREGATE Command

$AGGREGATE_FROM illustrates how the AGGREGATE command shown in
Example 9-13 can be simplified to the following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you place an $AGGMAP
property on the sales_by_revenue variable. To define an $AGGMAP property on the
sales_by_revenue variable, issue the following statements.

CONSIDER sales_by_revenue
PROPERTY '$AGGMAP' 'revenue_aggmap'

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a USING clause.

AGGREGATE sales_by_revenue

$AGGREGATE_FORCECALC
The $AGGREGATE_FORCECALC property specifies the same behavior as that
specified by the FORCECALC keyword in an AGGREGATE function. By adding
an $AGGREGATE_FORCECALC property to a variable you can ensure this behavior
when the variable is aggregated using an AGGREGATE function, even when that
function does not include the FORCECALC keyword.

The behavior specified by both the $AGGREGATE_FORCECALC property and the
FORCECALC keyword is that when an AGGREGATE function aggregates the
variable, Oracle OLAP recalculates any value that is not specified in a PRECOMPUTE
clause of a RELATION (for aggregation) statement in the aggmap of a variable, even
when there is a value stored in the desired cell. Recalculating values that are not
specified in a PRECOMPUTE clause is the desired behavior when you want users to
be able to change detail data cells and see the changed values reflected in
dynamically-computed aggregate cells.

Syntax

You add or delete an $AGGREGATE_FORCECALC property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCECALC'

• To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FORCECALC'

Chapter 4
$AGGREGATE_FORCECALC

4-5

$AGGREGATE_FORCEORDER
The $AGGREGATE_FORCEORDER property specifies the same behavior as that
specified by the FORCEORDER keyword in an AGGREGATE command or an
AGGREGATE function. By adding an $AGGREGATE_FORCEORDER property to a
variable you can ensure this behavior when the variable is aggregated, even when it is
aggregated by an AGGREGATE statement does not include the FORCEORDER
keyword.

The behavior specified by both the $AGGREGATE_ORDER property and the
FORCEORDER keyword is that the calculations must be performed in the order in
which the RELATION (for aggregation) statements are listed in the aggmap used for
the aggregation. Typically, you want this behavior when some values calculated
through aggregation have changed because, otherwise, the optimization methods
used by AGGREGATE may cause the modified values to be ignored. (Note, however,
that forcing the order of execution can slow performance.)

Syntax

You add or delete an $AGGREGATE_FORCEORDER property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCEORDER'

• To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FORCEORDER'

$AGGREGATE_FROM
The $AGGREGATE_FROM property specifies the same behavior as that specified by
a FROM clause in an AGGREGATE command or an AGGREGATE function. By
adding an $AGGREGATE_FROM property to a variable you can ensure this behavior
when the variable is aggregated, even when it is aggregated by an AGGREGATE
statement does not include the FROM clause.

Both the $AGGREGATE_FROM property and the FROM clause specify an object from
which Oracle OLAP obtains the detail data for the aggregation.

Note:

OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROM property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) by issuing a PROPERTY
statement:

• To add the property, issue the following statement.

Chapter 4
$AGGREGATE_FORCEORDER

4-6

PROPERTY '$AGGREGATE_FROM' fromspec

• To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROM'

Parameters

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

Examples

Example 4-3 Using the $AGGREGATE_FROM Property

Example 9-15 uses the following AGGREGATE command to populate the
total_sales_exclud_north variable with aggregate values computed from the sales
variable.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales

You can place a $AGGREGATE_FROM property on the total_sales_exclud_north
variable by issuing the following statements.

CONSIDER total_sales_exclud_north
PROPERTY '$AGGREGATE_FROM' 'sales'

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a FROM clause.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north

$AGGREGATE_FROMVAR
The $AGGREGATE_FROMVAR property specifies the same behavior as that
specified by a FROMVAR clause in an AGGREGATE command or an AGGREGATE
function. By adding an $AGGREGATE_FROMVAR property to a variable you can
ensure this behavior when the variable is aggregated, even when it is aggregated by
an AGGREGATE statement that does not include the FROMVAR clause.

Both the $AGGREGATE_FROMVAR property and the FROMVAR clause specify two
or more objects from which Oracle OLAP obtains the detail data for the aggregation.

Note:

OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROMVAR property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

• To add the property, issue the following statement.

Chapter 4
$AGGREGATE_FROMVAR

4-7

PROPERTY '$AGGREGATE_FROMVAR' textvar ACROSS dimname

• To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROMVAR'

Parameters

textvar
A TEXT expression that specifies an arbitrarily dimensioned variable or formula that
specifies the names of the objects from which to obtain detail data when performing a
capstone aggregation. Specify NA to indicate that a node does not need detail data to
calculate the value.

ACROSS dimname
Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in the objects specified by textvar. Because the objects specified by
textvar can be formulas, you can realize a significant performance advantage by
supplying a looping dimension that eliminates the sparsity.

Examples

Example 4-4 Capstone Aggregation Using the $AGGREGATE_FROMVAR
Property

Example 9-32 uses the following AGGREGATE command to perform the final
capstone aggregation.

AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

As the following statements illustrate, you can omit the FROMVAR clause if you create
the appropriate FROMVAR property on sales-capstone76.

CONSIDER sales_capstone76
PROPERTY '$AGGREGATE_FROMVAR' 'capstone_source'
AGGREGATE sales_capstone76 USING capstone_aggmap

$ALLOCMAP
The $ALLOCMAP property specifies the default aggmap for allocation for a variable
which is the aggmap that Oracle OLAP uses when the variable is the target variable of
an ALLOCATE statement that does not include a USING phrase.

Syntax

You add or delete an $ALLOCMAP property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

• To add the property, issue the following statement.

PROPERTY '$ALLOCMAP' aggmap-name

• To delete the property, issue the following statement.

PROPERTY DELETE '$AALLOCMAP'

Chapter 4
$ALLOCMAP

4-8

Parameters

aggmap-name
A TEXT expression that specifies the name of a previously defined ALLOCMAP type
aggmap object.

Examples

Example 4-5 Using $ALLOCMAP to Specify a Default Allocation Specification

The following statement allocates data in the projbudget variable using the projbudgmap
allocation specification.

ALLOCATE projbudget USING projbudgmap

You can specify that projbudgmap is the default allocation specification for the
projbudget variable by issuing the following statements.

CONSIDER projbudget
PROPERTY '$ALLOCMAP' "projbugmap'

Now, by issuing the following statement, you can allocate data in the projbudget
variable using the projbudgmap allocation specification.

ALLOCATE projbudget

For other examples of using the $ALLOCMAP property, see the ALLOCATE
command.

$COUNTVAR
The $COUNTVAR property specifies the same behavior as that specified by a
COUNTVAR clause in an AGGREGATE command or an AGGREGATE function. By
adding an $COUNTVAR property to a variable you can ensure this behavior when the
variable is aggregated, even when it is aggregated by an AGGREGATE statement
does not include the COUNTVAR clause.

The behavior specified by both the $COUNTVAR property and the COUNTVAR clause
is that Oracle OLAP uses a variable that you have previously-defined (sometimes
called a Countvar variable) to store the non-NA counts of the number of leaf nodes
that contributed to aggregate values calculated for RELATION (for aggregation)
statements that have an AVERAGE, HAVERAGE, HWAVERAGE, or WAVERAGE
operator.

Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations; instead, you use an Oracle OLAP-created Aggcount
variable. You cannot use a Countvar variable when the aggregation
specification includes a RELATION (for aggregation) statement with an
average operator is for a compressed composite. See "Aggcount Variables" in
DEFINE VARIABLE for more information.

Chapter 4
$COUNTVAR

4-9

Syntax

You add or delete a $COUNTVAR property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$COUNTVAR' countvar

• To delete the property, issue the following statement.

PROPERTY DELETE '$COUNTVAR'

Parameters

countvar
A TEXT expression that specifies the name of a previously defined Countvar variable.
The Countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions as the variable on which you add the $COUNTVAR
property.

Examples

Example 4-6 Using $COUNTVAR

For a variable named v1, the following statements cause Oracle OLAP to count the
number of leaf nodes that contributed to an aggregate value that is the result of the
execution of the myaggmap aggmap object by an AGGREGATE function.

CONSIDER v1
PROPERTY '$COUNTVAR' 'mycountvar'

$DEFAULT_LANGUAGE
$DEFAULT_LANGUAGE property identifies a dimension as the language dimension
for the analytic workspace in which it is defined and specifies the default language for
that language dimension.

Note:

There can be only one language dimension in an analytic workspace and only
that dimension can have a $DEFAULT_LANGUAGE property.

See Also:

LOCK_LANGUAGE_DIMS, SESSION_NLS_LANGUAGE, and
STATIC_SESSION_LANGUAGE options.

Syntax

Before you add or delete a $DEFAULT_LANGUAGE property to your language
dimension, you must make that dimension the most recently defined or considered

Chapter 4
$DEFAULT_LANGUAGE

4-10

object (see DEFINE and CONSIDER commands). You add $DEFAULT_LANGUAGE
property using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$DEFAULT_LANGUAGE' language

• To delete the property, issue the following statement.

PROPERTY DELETE '$DEFAULT_LANGUAGE'

Parameters

language
A TEXT expression that is a value in your language dimension, or an empty string.

Usage Notes

Working with Language Dimensions

A language dimension is a dimension that has a $DEFAULT_LANGUAGE property
defined for it. There can only be one language dimension in an analytic workspace.
Working with language dimensions involves:

• Creating a Language Dimension

• Defining Multi-language Variables that are Dimensioned by the Language
Dimension

• Working with Language Dimension Status

Creating a Language Dimension

To create a language dimension, take the following steps:

1. Define a TEXT dimension using DEFINE DIMENSION.

2. Populate the language dimension with the names of the languages you want to
support. As language names, use valid values for NLS_LANGUAGE.

3. Add the $DEFAULT_LANGUAGE property to the dimension thereby identifying the
dimension to Oracle OLAP as the language dimension in the analytic workspace.

Defining Multi-language Variables that are Dimensioned by the Language
Dimension

To create multi-language variables, you include the language dimension as a
dimension of the variable as illustrated in Example 4-8.

Working with Language Dimension Status

When an analytic workspace with a language dimension is attached, Oracle OLAP
initializes the status of the language dimension, as follows:

1. Oracle OLAP limits the language dimension to the value of the
SESSION_NLS_LANGUAGE option when the language dimension contains that
value.

2. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set, then Oracle OLAP limits the language
dimension to the language specified in the dimension's $DEFAULT_LANGUAGE
property when the $DEFAULT_LANGUAGE property contains a value and when
that value is a value of the language dimension.

Chapter 4
$DEFAULT_LANGUAGE

4-11

3. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set and if the language
dimension's $DEFAULT_LANGUAGE property is empty or names a nonexistent
value, Oracle OLAP limits the language dimension to the value of the language
dimension to the first value in the dimension's default order.

By default, after initialization, the status of a language dimension cannot be changed.
However, you can change this behavior by changing the value of the
LOCK_LANGUAGE_DIMS option from TRUE to FALSE which changes the status of
the language dimension to ALL and enables issuing LIMIT statements against the
dimension.

Exporting Language Dimensions

When exporting an analytic workspace using EXPORT (EIF), Oracle OLAP takes the
following steps to determine what values of the language dimension to export:

• If the value of the LOCK_LANGUAGE_DIMS option is FALSE when an EXPORT
statement executes, Oracle OLAP honors the current status of the language
dimension and performs the export accordingly.

• If the value of the LOCK_LANGUAGE_DIMS option is TRUE when an EXPORT
statement executes, Oracle OLAP:

1. Changes the value of the LOCK_LANGUAGE_DIMS option to FALSE (thereby
setting the status to ALL) before executing the EXPORT statement.

2. Executes the EXPORT statement. Oracle OLAP exports all of the values of
the language dimension.

3. Changes the value of the LOCK_LANGUAGE_DIMS option to TRUE and
resets the status of the language dimension according to the value of the
SESSION_NLS_LANGUAGE option.

Examples

Example 4-7 Creating a Language Dimension

This example illustrates creating a language dimension named mylangs that supports
the use of both French and American and that specifies that the default language is
American.

NLS_LANGUAGE = 'AMERICAN'
DEFINE mylangs DIMENSION TEXT
MAINTAIN mylangs ADD 'FRENCH' 'AMERICAN'
CONSIDER mylangs
PROPERTY '$DEFAULT_LANGUAGE' 'AMERICAN'

SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN

REPORT mylangs
MYLANGS

FRENCH
AMERICAN

Example 4-8 Attaching a Language Dimension

Assume that in an analytic workspace named myaw that you have created a language
dimension named mylangs as described in Example 4-7. Assume also that you have

Chapter 4
$DEFAULT_LANGUAGE

4-12

created a products dimension and a prod-desc variable with the following definitions
and values.

DEFINE MYLANGS DIMENSION TEXT
SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN

DEFINE PRODUCTS DIMENSION TEXT
DEFINE PROD_DESC VARIABLE TEXT <PRODUCTS MYLANGS>

MYLANGS

FRENCH
AMERICAN

PRODUCTS

PROD01
PROD02

 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
FRENCH Pantalons JupesAMERICAN Trousers Skirts

Assume that you attach the analytic workspace. By displaying the options for the
analytic workspace and requesting a report of mylangs and prod_desc, shows that
Oracle OLAP has limited the mylangs dimension to American which is the value of the
SESSION_NLS_LANGUAGE option.

SHOW NLS_LANGUAGE
AMERICAN
AW ATTACH myaw RW
" Get the default language in our language dimension
SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN
SHOW SESSION_NLS_LANGUAGE
AMERICAN
SHOW LOCK_LANGUAGE_DIMS
yes
SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs

MYLANGS

AMERICAN

REPORT prod_desc
 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
AMERICAN Trousers Skirts

Chapter 4
$DEFAULT_LANGUAGE

4-13

Example 4-9 Changing NLS_LANGUAGE

Assume that you have attached the analytic workspace myaw as described in
Example 4-8. Now you change the value of NLS_LANGUAGE to French. Because the
value of STATIC_SESSION_LANGUAGE is set to NO, making this change effectively
changes the value of the SESSION_NLS_LANGUAGE option to French. When the
value of SESSION_NLS_LANGUAGE option is French, as a report of mylangs and
prod_desc illustrates, Oracle OLAP limits the mylangs dimension to French.

SET NLS_LANGUAGE= 'FRENCH'
SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN
SHOW NLS_LANGUAGE
FRENCH
SHOW SESSION_NLS_LANGUAGE
FRENCH
SHOW LOCK_LANGUAGE_DIMS
oui
SHOW STATIC_SESSION_LANGUAGE
non

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc
 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
FRENCH Pantalons Jupes

Example 4-10 Setting NLS_LANGUAGE to a Value that is Not in a Language
Dimension

Assume that in the analytic workspace named myaw (described in Example 4-9) the
value of NLS_LANGUAGE is set first to American and then set to Spanish. As
illustrated in the following code, because the language dimension, mylangs, does not
include Spanish as one of its values, Oracle OLAP limits the mylangs dimension using
the value of the $DEFAULT_LANGUAGE property which is American.

"Change the value of NLS_LANGUAGE to AMERICAN
SET NLS_LANGUAGE= 'AMERICAN'
"Change the value of NLS_LANGUAGE to SPANISH
SET NLS_LANGUAGE= 'SPANISH'

SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN

SHOW NLS_LANGUAGE
SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS
sí

SHOW STATIC_SESSION_LANGUAGE

Chapter 4
$DEFAULT_LANGUAGE

4-14

no

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc
 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
AMERICAN Trousers Skirts

Assume that you had defined the mylangs language dimension without specifying a
default language using the following code.

DEFINE mylangs DIMENSION TEXT
MAINTAIN mylangs ADD 'FRENCH' 'AMERICAN'
CONSIDER mylangs
PROPERTY '$DEFAULT_LANGUAGE' ''

In this case, when you set the value of NLS_LANGUAGE to Spanish, because the
language dimension, mylangs does not have a value specified for
its $DEFAULT_LANGUAGE property, Oracle OLAP limits the mylangs dimension using
the first value in the mylangs dimension which is French.

NLS_LANGUAGE = 'SPANISH'
SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')

SHOW NLS_LANGUAGE
SPANISH
SHOW SESSION_NLS_LANGUAGE
SPANISH
SHOW LOCK_LANGUAGE_DIMS
sí
SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc
 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
FRENCH Pantalons Jupes

$GID_DEPTH
The $GID_DEPTH property specifies the number of levels of grouping ids in the
grouping id relation to which it is added.

The $GID_DEPTH property, which is automatically created and set when a
GROUPINGID command populates a grouping id relation, specifies the number of
levels of grouping ids in the grouping id relation to which it is added.

Chapter 4
$GID_DEPTH

4-15

Syntax

You cannot explicitly define a $GID_DEPTH property. Oracle OLAP automatically
creates a $GID_DEPTH property on a grouping id relation when the execution of a
GROUPIONGID command creates the relation.

$GID_DEPTH = intlevels

Parameters

intlevels
An INTEGER value that specifies the number of levels of grouping ids.

For an example of using the $GID_DEPTH property, see Example 9-145.

$GID_LIST
The $GID_LIST property contains the names of the levels used to create the grouping
ids.

The $GID_LIST property contains the names of the levels used to create the grouping
ids in a relation created when the GROUPINGID command with either the ROLLUP or
GROUPSET keyword executes.

Syntax

You cannot explicitly define a $GID_LIST property. Oracle OLAP automatically creates
a $GID_LIST property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_LIST = levels

Parameters

levels
A TEXT expression which is the levels, separated by hyphens (-), of the hierarchies of
the dimension for which grouping ids were created.

$GID_TYPE
$GID_TYPE property specifies the grouping type of the grouping ids.

The $GID_TYPE property, which is automatically created and set when a
GROUPINGID command with either the ROLLUP or GROUPSET keyword populates
a grouping id relation, specifies whether the grouping type of the grouping ids.

Syntax

You cannot explicitly define a $GID_TYPE property. Oracle OLAP automatically
creates a $GID_TYPE property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_TYPE = ROLLUP | GROUPSET

Chapter 4
$GID_LIST

4-16

Parameters

ROLLUP
Specifies that the grouping ids are of the rollup type.
For more information on this type of grouping type, see the discussion of ROLLUP in
the rollup cube clause of a SQL SELECT statement in Oracle Database SQL Language
Reference.

GROUPSET
Specifies that the grouping ids are of the grouping set type.
For more information on this type of grouping type, see the discussion of grouping
sets in the grouping sets clause of a SQL SELECT statement in Oracle Database SQL
Language Reference.

$LOOP_AGGMAP
The $LOOP_AGGMAP property is used to determine how to loop the formula on
which it is assigned when a SQL OLAP_TABLE function with the LOOP OPTIMIZED
clause is executed. It specifies the name of an aggmap object to use when Oracle
OLAP generates a UNION subclause that includes the formula. The value that you
specify for this property overrides all other aggmaps associated with a variable (for
example, aggmaps for which the variable has an $AGGMAP property) and can be
used to clarify which aggmap Oracle OLAP should use when the underlying variables
of a formula are associated with different aggmaps.

Syntax

You add or delete a $LOOP_AGGMAP property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

• To add the property, issue the following statement.

PROPERTY '$LOOP_AGGMAP' agggmap-name

• To delete the property, issue the following statement.

PROPERTY DELETE '$LOOP_AGGMAP'

Parameters

aggmap_name
The name of an aggmap object.

$LOOP_DENSE
The $LOOP_DENSE property is used to determine how to loop the formula on which it
is assigned when an OLAP_TABLE SQL function with the LOOP OPTIMIZED clause
is executed.

It specifies that Oracle OLAP loops densely over the formula (that is, that it loops over
every tuple of the formula—even those member cells that do not have values).

Chapter 4
$LOOP_AGGMAP

4-17

See Also:

• Oracle OLAP DML Reference for information on looping in OLAP_TABLE

• SET_PROPERTY

Syntax

You add or delete a $LOOP_DENSE property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

• To add the property, issue the following statement.

PROPERTY '$LOOP_DENSE' dimension_list

• To delete the property, issue the following statement.

PROPERTY DELETE '$LOOP_DENSE'

Parameters

dimension_list
One or more names of the dimensions of the formula separated by commas.

$LOOP_TYPE
The $LOOP_TYPE property specifies how to loop over a formula that contains multiple
variables when the formula is used in an OLAP_TABLE SQL function that has the
LOOP OPTIMIZED clause.

The type of looping can impact performance and the number rows that are returned
when the formula contains NA aware functions such as NVL or if NULL TRACKING is
disabled. For information on null tracking, see "NA2 Bits and Null Tracking".

Syntax

You add or delete a $LOOP_TYPE property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$LOOP_TYPE' {'DENSE' | 'INNER' | 'OUTER'}

• To delete the property, issue the following statement.

PROPERTY DELETE '$LOOP_TYPE'

Parameters

DENSE
Returns variable values for all possible combinations of tuples. If null tracking is not
specified for a composite, you get NA values for non-existent data as well as for
intentionally null values.

Chapter 4
$LOOP_TYPE

4-18

DENSE is similar to a cross join in a SQL SELECT statement. It results in the
Cartesian product of all of the base dimensions of the variables.

INNER
(Default) Returns variable values only when a tuple has data in all of the variables.
NVL values are not included.
INNER is similar to a SQL inner join.

OUTER
Returns a variable value when the tuple has data in any of the variables. NVL values
are included.
OUTER is similar to a SQL outer join.

$LOOP_VAR
The $LOOP_VAR property specifies that when an OLAP_TABLE SQL function with
the LOOP OPTIMIZED clause is executed, the formula on which it is assigned is
looped in the same manner as the variable or QDR specified in the property.

See Also:

• Oracle OLAP DML Reference for more information on looping in
OLAP_TABLE

• SET_PROPERTY

Syntax

You add or delete a $LOOP_VAR property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$LOOP_VAR' qdr | variable

• To delete the property, issue the following statement.

PROPERTY DELETE '$LOOP_VAR'

Parameters

qdr
A QDR for a dimension of the formula.

variable
A variable with the same dimensions as the formula.

Chapter 4
$LOOP_VAR

4-19

$NATRIGGER
The $NATRIGGER property specifies values for Oracle OLAP to substitute for NA
values that are in a dimensioned variable, but not in the session cache for the variable
(if any).

To calculate the values, Oracle OLAP takes the steps described in "Usage
Notes", $NATRIGGER. The results of the calculation are either stored in the variable
or cached in the session cache for the variable as described in "Usage Notes",
VARCACHE.

Note:

When you want to trigger the aggregation of a variable, you can use
the $AGGMAP property rather than the $NATRIGGER property.

Syntax

You add or delete a $NATRIGGER property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$NATRIGGER' value

• To delete the property, issue the following statement.

PROPERTY DELETE '$NATRIGGER'

Parameters

value
A TEXT expression that is the value of the property. The text can be any expression
that is valid for defining a formula.

Usage Notes

How Oracle OLAP Calculates Data for a Variable with NA Values

When calculating the data for a dimensioned variable, Oracle OLAP takes the
following steps for each cell in the variable:

1. Is there is a session cache for the variable.

• Yes. Go to step 2.

• No. Go to step 3.

2. Does that cell in the session cache for the variable have an NA value.

• Yes. Go to step 3.

• No. Go to step 7.

3. Does that cell in variable storage have an NA value.

• Yes. Go to step 4.

Chapter 4
$NATRIGGER

4-20

• No. Go to step 7.

4. Does the variable have an $AGGMAP property?

• Yes. Aggregate the variable using the aggmap specified for the $AGGMAP
property and, then, go to step 5.

• No. Go to step 6.

5. What is the value of the cell after aggregating the variable?

• NA, go to step 6.

• Non-NA, go to step 7.

6. Does the variable have a $NATRIGGER property?

• Yes. Execute the expression specified for the $NATRIGGER property and,
then, go to step 7.

• No. Go to step 7.

7. Calculate the data.

8. Apply the NAFILL function or the NASKIP, NASKIP2, or NASPELL options, as
appropriate.

Making NA Triggers Recursive or Mutually Recursive

You can make NA triggers recursive or mutually recursive by including triggered
objects within the value expression. You must set the RECURSIVE option to YES
before a formula, program, or other $NATRIGGER expression can invoke a trigger
expression again while it is executing. For limiting the number of triggers that can
execute simultaneously, see the TRIGGERMAXDEPTH option.

Using $NATRIGGER with Composites

You can set an $NATRIGGER expression on a variable that is dimensioned by a
composite, but Oracle OLAP evaluates the $NATRIGGER expression only for the
dimension-value combinations that exist in the composite.

$NATRIGGER Ignored by EXPORT and AGGREGATE

The AGGREGATE command and the AGGREGATE function ignore
the $NATRIGGER property setting for a variable during an aggregation operation. The
statements fetch the stored value only, and do not invoke the $NATRIGGER
expression. The $NATRIGGER property remains in effect for other operations.

In executing an EXPORT (EIF) statement, Oracle OLAP does not evaluate
the $NATRIGGER property expression on a variable when it simply exports the
variable. However, Oracle OLAP does evaluate the $NATRIGGER property
expression when the variable is part of an expression that Oracle OLAP calculates
during the export operation.

Examples

Example 4-11 Adding an $NATRIGGER Property to a Variable

The following statements define a dimension with three values and define a variable
that is dimensioned by the dimension. They add the $NATRIGGER property to the
variable, then put a value in one cell of the variable and leave the other cells empty so
their values are NA. Finally, they report the values in the cells of the variable.

Chapter 4
$NATRIGGER

4-21

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' '500.0'
v1(d1 1) = 333.3
REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------
 1 333.3
 2 500.0
 3 500.0

$STORETRIGGERVAL
The $STORETRIGGERVAL property specifies whether, when a $NATRIGGER
expression executes, Oracle OLAP replaces the NA values in the variable with the
results of the expression.

Note:

Applications typically use the $VARCACHE property rather than
the $STORETRIGGERVAL property because the functionality of
the $STORETRIGGERVAL property is subsumed within the $VARCACHE
property.

See also "How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

Syntax

You add or delete a $STORETRIGGERVAL property to the most recently defined or
considered object using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$STORETRIGGERVAL' value

• To delete the property, issue the following statement.

PROPERTY DELETE '$ASTORETRIGGERVAL'

Parameters

value
A BOOLEAN expression that contains the value of the property.

Examples

Example 4-12 Storing an $NATRIGGER Property Value

The following statements cause Oracle OLAP to store the $NATRIGGER expression
value in the NA cells of the v1 variable when Oracle OLAP evaluates the expression.

Chapter 4
$STORETRIGGERVAL

4-22

TRIGGERSTOREOK = yes
CONSIDER v1
PROPERTY '$STORETRIGGERVAL' yes

$VARCACHE
The $VARCACHE property specifies whether Oracle OLAP stores or caches variable
data that is the result of the execution of an AGGREGATE function or a $NATRIGGER
expression.

Syntax

You add or delete a $VARCACHE property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

• To add the property, issue the following statement.

PROPERTY '$VARCACHE' value

• To delete the property, issue the following statement.

PROPERTY DELETE '$VARCACHE'

Parameters

value
One of the following TEXT expressions that indicate where Oracle OLAP should place
variable data that is the result of calculations performed when the AGGREGATE
function or $NATRIGGER value executes:

• VARIABLE specifies that Oracle OLAP populates the variable with data that is the
result of the execution of the AGGREGATE function or $NATRIGGER property.
When you specify this option, the data that is the result of the aggregation is
permanently stored in the variable when the analytic workspace is updated and
committed.

• SESSION specifies that Oracle OLAP caches data that is the result of the
execution of the AGGREGATE function or $NATRIGGER property in the session
cache (See "What is an Oracle OLAP Session Cache?"). When you specify this
option, the data that is the result of the execution of the AGGREGATE function
or $NATRIGGER property is ignored during updates and commits and is
discarded after the session.

Important:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data
even when you specify SESSION. In this case, specifying SESSION is the
same as specifying NONE.

• NONE specifies that Oracle OLAP calculates new variable data each time the
AGGREGATE function or $NATRIGGER value executes; Oracle OLAP does not
store or cache the data.

Chapter 4
$VARCACHE

4-23

• DEFAULT specifies that you do not want Oracle OLAP to use the $VARCACHE
property when determining what to do with data that is calculated by the
AGGREGATE function. (See "How Oracle OLAP Determines Whether to Store or
Cache Aggregated Data".)

Usage Notes

How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER

When a $NATRIGGER expression executes, what Oracle OLAP does with variable
data that results from the execution of the expression is determined based on whether
or not the variable that has the $NATRIGGER property also has
a $STORETRIGGERVAL property and, if not, if the value of the $NATRIGGER
property is an AGGREGATE function.

When a $NATRIGGER expression executes, Oracle OLAP goes through the following
process:

1. Does the variable with the $NATRIGGER property also have
a $STORETRIGGERVAL property? If it does, then Oracle OLAP goes to step 1a.
If it does not, then Oracle OLAP goes to step 2.

a. Is the value of the TRIGGERSTOREOK option, YES or NO? If it is YES, then
Oracle OLAP goes to step 1b. If it is NO, then Oracle OLAP goes to step 2.

b. Is the value of the $STORETRIGGERVAL property, YES or NO? If it is YES,
then Oracle OLAP stores the results of the $NATRIGGER expression and end
decision-making process. If it is NO, then Oracle OLAP does not store the
results of the $NATRIGGER expression and end decision-making process.

2. Is the $NATRIGGER expression an AGGREGATE function? If it is, then Oracle
OLAP follows the steps described in "How Oracle OLAP Determines Whether to
Store or Cache Aggregated Data" to determine what to do with the result
of $NATRIGGER expression execution. If it is not, then Oracle OLAP goes to step
3.

3. Does the variable with the $NATRIGGER property also have a $VARCACHE
property? If it does, then Oracle OLAP goes to step 4. If it does not, then Oracle
OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then go to
step 5. If it does not, then Oracle OLAP uses the value of the $VARCACHE
property (that is, STORE, CACHE, or NONE) to determine what happens to the variable
data values that are the result of $NATRIGGER expression execution and end
decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data values that are the result of $NATRIGGER expression execution
and end decision-making process.

How Oracle OLAP Determines Whether to Store or Cache Aggregated Data

When an AGGREGATE command executes, Oracle OLAP always stores the results of
the calculation directly in the variable in the same way it stores the results of an
assignment statement. However, when an AGGREGATE function executes, Oracle
OLAP sometimes stores the results of the calculation directly in the variable and
sometimes caches it in the session cache. (See "What is an Oracle OLAP Session
Cache?" in SESSCACHE for more information about the session cache.)

Chapter 4
$VARCACHE

4-24

To determine where to place the data that is the result of AGGREGATE function
execution, Oracle OLAP goes through the following process to determine whether to
store or cache aggregated variable data:

1. Is there a CACHE statement in the specification for the aggmap that is being used
by the current AGGREGATE function? If there is, then Oracle OLAP goes to step
2. If there is not, then Oracle OLAP goes to step 3.

2. Is the CACHE statement a CACHE DEFAULT statement? If it is, then Oracle
OLAP goes to step 3. If it is not, then Oracle OLAP uses the CACHE statement in
the aggregation specification to determine what to do with variable data that is the
result of the calculation and ends the decision-making process.

3. Does the variable being aggregated have a $VARCACHE property? If it does, then
Oracle OLAP goes to Step 4. If it does not, then Oracle OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then Oracle
OLAP goes to step 5. If it does not, then Oracle OLAP uses the value of
the $VARCACHE property determines what happens to the variable data
calculated using the AGGREGATE function, and ends the decision-making
process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data calculated using the AGGREGATE function. End decision-
making process.

See Also:

• "How Oracle OLAP Determines Whether to Store or Cache Aggregated
Data"

• "How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

• "What is an Oracle OLAP Session Cache?"

• The description of the NA keyword of the CACHE statement for information
on caching NA values calculated by the AGGREGATE function

Examples

Example 4-13 Setting the $VARCACHE Property

For a variable named v1, the following statements cause Oracle OLAP to cache the
variable data that is the result of the execution of an AGGREGATE function
or $NATRIGGER expression.

CONSIDER v1
PROPERTY '$SVARCACHE' 'v1'

Chapter 4
$VARCACHE

4-25

5
OLAP DML Options

This chapter contains the following topics:

• About Options

• Options: Alphabetical Listing

• Options by Category

• One topic for each of the OLAP DML options, arranged alphabetically beginning
with ALLOCERRLOGFORMAT.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Functions: A - K, OLAP DML Functions: L - Z , OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

About Options
An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You can use the SET (=) command to retrieve the value of an option into a predefined
variable and to specify a new value for a read/write option. Use the SHOW command
to display the value of an option.

Options: Alphabetical Listing
A

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER
AWWAITTIME

B

BADLINE
BMARGIN

C

CALENDARWEEK
COLWIDTH
COMMAS
COMPILEMESSAGE
COMPILEWARN

5-1

D

DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DECIMALCHAR
DECIMALOVERFLOW
DECIMALS
DEFAULTAWSEGSIZE
DIVIDEBYZERO
DSECONDS

E

ECHOPROMPT
EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION
ERRNAMES
ERRORNAME
ERRORTEXT
ESCAPEBASE
EXPTRACE

I

INF_STOP_ON_ERROR

L

LCOLWIDTH
LIKECASE
LIKEESCAPE
LIKENL
LIMIT.SORTREL
LIMITSTRICT
LINENUM
LINESLEFT
LOCK_LANGUAGE_DIMS
LSIZE

M

MAXFETCH
MODDAMP
MODERROR
MODGAMMA

Chapter 5
Options: Alphabetical Listing

5-2

MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE
MONTHABBRLEN
MONTHNAMES
MULTIPATHHIER

N

NASKIP
NASKIP2
NASPELL
NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY
NOSPELL

O

OKFORLIMIT
OKNULLSTATUS
OUTFILEUNIT

P

PAGENUM
PAGEPRG
PAGESIZE
PAGING
PARENS
PERMITERROR
PERMITREADERROR
PRGTRACE

R

RANDOM.SEED.1 and RANDOM.SEED.2
RECURSIVE
ROLE
ROOTOFNEGATIVE

Chapter 5
Options: Alphabetical Listing

5-3

S

SECONDS
SESSCACHE
SESSION_NLS_LANGUAGE
SPARSEINDEX
SQLBLOCKMAX
SQLCODE
SQLERRM
SQLMESSAGES
STATIC_SESSION_LANGUAGE

T

THIS_AW
THOUSANDSCHAR
TMARGIN
TRACEFILEUNIT
TRIGGERMAXDEPTH
TRIGGERSTOREOK

U

USERID
USETRIGGERS

V

VARCACHE

W

WEEKDAYSNEWYEAR
WRAPERRORS

Y

YESSPELL
YRABSTART

Z

ZEROROW
ZSPELL

Options by Category
Analytic Workspace Options
Globalization Support
Multi-Language Support Options
Aggregation Options
Allocation Options
Model Options

Chapter 5
Options by Category

5-4

Compilation Options
Error Options
Debugging Options
SQL Embed Options
File Reading and Writing Options
EIF Options
Report Options
NA Values Options
Date-only Data Type Options
Datetime Options
Numeric Options
RANK Function Monitoring Options

Analytic Workspace Options

AWWAITTIME
DEFAULTAWSEGSIZE

Globalization Support

NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY

Multi-Language Support Options

LOCK_LANGUAGE_DIMS
NLS_DATE_LANGUAGE
NLS_LANG
NLS_LANGUAGE
SESSION_NLS_LANGUAGE
STATIC_SESSION_LANGUAGE

Aggregation Options

MULTIPATHHIER
SESSCACHE
VARCACHE

Allocation Options

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER

Chapter 5
Options by Category

5-5

Model Options

MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE

Compilation Options

COMPILEMESSAGE
COMPILEWARN
THIS_AW

Error Options

BADLINE
ERRNAMES
ERRORNAME
ERRORTEXT
INF_STOP_ON_ERROR
MODERROR
PERMITERROR
PERMITREADERROR
SQLERRM
SQLMESSAGES
WRAPERRORS

Debugging Options

EXPTRACE
MODTRACE
PRGTRACE

SQL Embed Options

SQLBLOCKMAX
SQLCODE
SQLERRM
SQLMESSAGES

File Reading and Writing Options

ECHOPROMPT
ESCAPEBASE
INF_STOP_ON_ERROR
OUTFILEUNIT

Chapter 5
Options by Category

5-6

EIF Options

EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION

Report Options

BMARGIN
COLWIDTH
COMMAS
DECIMALCHAR
DECIMALS
LCOLWIDTH
LINENUM
LINESLEFT
LSIZE
NASPELL
NOSPELL
PAGENUM
PAGEPRG
PAGESIZE
PAGING
PARENS
THOUSANDSCHAR
TMARGIN
YESSPELL
ZEROROW
ZSPELL

NA Values Options

LIMITSTRICT
NASKIP
NASKIP2
NASPELL
RECURSIVE
TRIGGERMAXDEPTH
TRIGGERSTOREOK

Date-only Data Type Options

CALENDARWEEK
DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES

Chapter 5
Options by Category

5-7

DSECONDS
MONTHABBRLEN
MONTHNAMES
WEEKDAYSNEWYEAR
YRABSTART

Datetime Options

CALENDARWEEK
DSECONDS
SECONDS

Numeric Options

DECIMALOVERFLOW
DIVIDEBYZERO
RANDOM.SEED.1 and RANDOM.SEED.2
ROOTOFNEGATIVE

RANK Function Monitoring Options

RANK_CALLS
RANK_CELLS
RANK_SORTS

ALLOCERRLOGFORMAT
The ALLOCERRLOGFORMAT option determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument to the ALLOCATE
command.

Syntax

ALLOCERRLOGFORMAT = text

Parameters

text
Characters that determine the contents and formatting of the error log that you specify
with an ERRORLOG statement in an ALLOCMAP command. By placing an INTEGER
value before the formatting character, you can specify the number of characters that
the object occupies in the error log. You can specify escape sequences as formatting
characters. For valid escape sequences, see "Escape Sequences". The following
table lists the characters that specify the contents of the error log. The default value of
ALLOCERRLOGFORMAT is the following.

'%8p %8y %8z %e (%n)'

Character Output Specified

b The basis object being processed.

c The child node of the dimension being processed.

d The name of the dimension being processed.

Chapter 5
ALLOCERRLOGFORMAT

5-8

Character Output Specified

e A description of the error encountered.

n The error code of the error encountered.

p The parent node of the dimension being processed.

r The name of the relation being allocated down.

s The source object being processed.

t The target object being processed.

n The basis value of the child cell receiving the allocation.

y The source value of the parent cell being allocated.

z The basis value of the parent cell being allocated.

Examples

Example 5-1 Setting the ALLOCERRLOGFORMAT Option

This example sets the ALLOCERRLOGFORMAT option and produces the results
shown in the last line.

ALLOCERRLOGFORMAT = '%8p %8y %8z %e (%n)'
SHOW ALLOCERRLOGFORMAT
%8p %8y %8z %e (%n)

ALLOCERRLOGHEADER
The ALLOCERRLOGHEADER option determines the column headings for the error
log that you specify with the ERRORLOG argument to the ALLOCATE command. To
specify additional formatting for the error log, use the ALLOCERRLOGFORMAT
option.

Syntax

ALLOCERRLOGHEADER = text

Parameters

text
Characters that determine the content and formatting of the column headers that are
the first line of the error log that you specify with the ALLOCATE command. (See
ALLOCERRLOGFORMAT for a list of the characters you can use.)
When you specify NA as the value for this option, then ALLOCATE does not write any
header to the error log. The following is the default value of
ALLOCERRLOGHEADER.

'Dim Source Basis\n%-8d %-8v %-8b Description\n
-------- -------- -------- -----------'

Examples

Example 5-2 Setting the ALLOCERRLOGHEADER Option

The following statements define the heading for the error log specified by an
ALLOCATE statement and show the value of the ALLOCERRLOGHEADER option.

Chapter 5
ALLOCERRLOGHEADER

5-9

ALLOCERRLOGHEADER = 'Dim Source Basis\n %-8d %-8v %-8b Description \n
-------- -------- -------- -----------'
SHOW ALLOCERRLOGHEADER

The preceding statement produces the following results.

Dim Source Basis
%-8d %-8s %-8b Description
-------- -------- -------- -----------

An allocation operation that has a variable named budget as both the source and basis
objects and which encounters a deadlock when allocating down the division
dimension produces the following entry in the error log.

Dim Source Basis
Division Budget Budget Description
-------- -------- -------- -----------
Accdiv 650000 NA A deadlock occurred allocating data (5)

AWWAITTIME
The AWWAITTIME option holds the number of seconds that an AW ATTACH
command with the WAIT keyword waits for an analytic workspace to become available
for access. The default value of AWWAITTIME is 20 seconds.

Data Type

INTEGER

Syntax

AWWAITTIME = seconds

Parameters

seconds
The number of seconds to wait for an analytic workspace to be available. The default
value is 20 seconds.

Usage Notes

Workspace Sharing

When your user ID has the appropriate access rights and no user has read/write
exclusive access to the workspace, you can get read-only access to an analytic
workspace, no matter how many other users are using it. When another user has read/
write access and commits the workspace, your view of the workspace does not
change; you must detach and reattach the workspace to see the changes.

Examples

Example 5-3 Specifying a Wait Time of One Minutes

Assume that you want to wait for 60 seconds when attaching an analytic workspace.
To do so, reset the value of the AWWAITTIME option by issuing the following
statement.

AWWAITTIME = 60

Chapter 5
AWWAITTIME

5-10

BADLINE
When a program, model, or input file is executing, the BADLINE option controls
whether Oracle OLAP records, in the current outfile, the line that caused an error.

See Also:

PROGRAM, MODEL, and INFILE.

Data Type

BOOLEAN

Syntax

BADLINE = {YES|NO}

Parameters

YES
When an error occurs during the execution of a program, model, or input file, Oracle
OLAP records in the current outfile the name of the program, model, or file in which
the error occurred and the line that caused the error. When an error message is
included in the output, the BADLINE information appears immediately after the error
message.

NO
(Default) When an error occurs in a program, model, or input file, Oracle OLAP does
not record the error in the current outfile.

Examples

Example 5-4 Using the BADLINE Option

In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM
VARIABLE myint1 INTEGER
VARIABLE myint2 INTEGER
myint1 = 0
myint2 = 250/myint1
END

When you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMO!TEST PROGRAM:
myint2 = 250/myint1

Chapter 5
BADLINE

5-11

Example 5-5 Finding Errors in Program Lines

In a simple program called test, the variable myint1 is divided by 0 (zero).

DEFINE test PROGRAM
PROGRAM
VARIABLE myint1 INTEGER
VARIABLE myint2 INTEGER
myint1 = 0
myint2 = 250/myint1
END

When you run the program, an error occurs because division by zero is not allowed
(that is, when DIVIDEBYZERO is set to NO).

When BADLINE is set to NO only the error is recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When BADLINE is set to YES, the line that causes the error and the name of the
program in which the error occurred are recorded in the current outfile.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)
In TESTBAD PROGRAM:
myint2 = 250/myint1
In EDDE.RUNCMD PROGRAM:

BMARGIN
The BMARGIN option defines the number of blank lines for the bottom margin of
output pages. BMARGIN is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and DESCRIBE. The BMARGIN option is
usually set in the initialization section of report programs.

Data Type

INTEGER

Syntax

BMARGIN = n

Parameters

n
An INTEGER expression that specifies the number of lines to set aside for the bottom
margin in a report. The default is 1.

Usage Notes

Setting BMARGIN for a File

To set BMARGIN for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set BMARGIN to the desired value. The new value

Chapter 5
BMARGIN

5-12

remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, BMARGIN
returns to its default value of 1 for the file.

When you set BMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE statements that send output to a file.
That is, the value of BMARGIN is automatically saved for the default outfile

Examples

Example 5-6 Setting the Bottom Margin of a Report Page

Suppose you want to be able to make notes on the bottom of a report page. You can
set a large bottom margin of 5 lines. Here is the statement that you would include in
the initialization section of your report program.

BMARGIN = 5

CALENDARWEEK
The CALENDARWEEK option determines whether weeks should be aligned with the
actual calendar year.

Note:

You can only use this function with dimensions of type WEEK.

Data Type

BOOLEAN

Syntax

CALENDARWEEK = {YES|NO}

Parameters

YES
(Default) Specifies that weeks are aligned with the calendar year. For example, if you
have defined a dimension of type WEEK, Oracle OLAP numbers its values so that the
first week in the calendar year is week 1, the second week in the calendar year is
week 2, and so on. Weeks are aligned with the calendar year regardless of any
beginning or ending date specified in the WEEK dimension definition.

NO
Specifies that weeks are not aligned with the calendar year. Instead, weeks are
numbered so that they are aligned with the date specified in the dimension definition.
For example, if you have defined a dimension of type WEEK with a beginning or
ending date, its values are numbered so that the week corresponding to the date in
the dimension definition is week 1, the following week is week 2, and so on.

Usage Notes

Fiscal Years

Chapter 5
CALENDARWEEK

5-13

Setting CALENDARWEEK to NO causes weeks to be numbered so that the number 1 is
assigned to the week beginning or ending on the date specified in the DEFINE
DIMENSION statement. This week is then assigned to a fiscal year, which is the
calendar year of the first January 1 on or after the week's starting date. For example, if
you define a dimension of type WEEK with a starting date of 02Jan1996 (or,
equivalently, an ending date of 08Jan1996), the week starting 02Jan1996 is considered
week 1 of fiscal year 1997. If, by contrast, you had given the dimension a starting date
between 02Jan1995 and 01Jan1996, then the week starting on that date is week 1 of
fiscal year 1996.

Examples

Example 5-7 Aligning Weeks with the Calendar Year

The following statements define a dimension of type WEEK, define its ending date,
add values to the dimension, and produce a report.

DEFINE week dimension WEEK ENDING '18Jan97'
MAINTAIN week ADD '21Dec96' '25Jan97'
REPORT W 22 CONVERT(week DATE)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
w51.96 21Dec96
w52.96 28Dec96
w1.97 04Jan97
w2.97 11Jan97
w3.97 18Jan97
w4.97 25Jan97

Example 5-8 Aligning Weeks with a Specified Ending Date

The following statements set the CALENDARWEEK option to NO, which aligns the
weeks with the ending date that is specified in the definition of the week dimension in
"Example 5-7" .

CALENDARWEEK = NO
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
w50.97 21Dec96
w51.97 28Dec96
w52.97 04Jan97
w53.97 11Jan97
w1.98 18Jan97
w2.98 25Jan97

COLWIDTH
The COLWIDTH option controls the default width of data columns in report output. For
output from the ROW command and HEADING command, COLWIDTH affects all
columns except the first column. For output from REPORT, COLWIDTH affects all
data columns and the label columns for a composite or a conjoint dimension.

Chapter 5
COLWIDTH

5-14

Note:

For an individual column, the COLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

Data Type

INTEGER

Syntax

COLWIDTH = n

Parameters

n
An INTEGER expression that specifies the desired column width in number of
characters. You can set COLWIDTH to any value from 1 to 4,000. The default is 10.

Note:

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000
characters.

Examples

Example 5-9 Setting the Default Column Width in a Report

Suppose you want to look at unit sales for six months. Because the data values are
not large, you do not need a width of 10 characters for your data columns. You can set
COLWIDTH to provide a narrower default column.

LIMIT district TO 'Atlanta'
LIMIT month TO 'Oct95' TO 'Mar96'
COLWIDTH = 6
REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA
 ------------------UNITS------------------
 ------------------MONTH------------------
PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
-------------- ------ ------ ------ ------ ------ ------
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

Chapter 5
COLWIDTH

5-15

COMMAS
The COMMAS option controls the use of the character that separates thousands and
millions in numeric output. This character is typically a comma; however, it might be
different depending on your NLS_TERRITORY setting. The THOUSANDSCHAR
option records the character that is currently being used for separating thousands. The
COMMAS option controls whether the character appears in numeric output.

COMMAS affects all commands that produce output, including the ROW command,
HEADING, REPORT, and SHOW.

Note:

You can use the COMMA and NOCOMMA attributes of a HEADING, REPORT,
or ROW command to override the COMMAS setting.

Data Type

BOOLEAN

Syntax

COMMAS = {NO|YES}

Parameters

NO
Numeric output does not contain a character that separates thousands, millions, and
so on.

YES
(Default) Numeric output contains a character that separates thousands, millions, and
so on.

Examples

Example 5-10 Showing Numerical Data Without Commas

Suppose you want to look at the cost of goods sold, without commas in the data
values. You can set COMMAS to NO before producing your report.

COMMAS = NO
LIMIT line TO 'Cogs'
LIMIT month TO 'Jan96' 'Feb96'
REPORT DOWN division ACROSS month: DECIMAL 0 actual

These statements produce the following output.

LINE: COGS
 -----ACTUAL------
 ------MONTH------
DIVISION Jan96 Feb96
-------------- -------- ----------
Camping 368044 385120

Chapter 5
COMMAS

5-16

Sporting 287558 315299
Clothing 567767 610727

COMPILEMESSAGE
You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP to
send to the current outfile non-irrecoverable error messages during execution of the
COMPILE command. Non-irrecoverable error messages are those indicating errors
that do not prevent a program from compiling.

See Also:

For more information about compiling objects, see COMPILE.

Data Type

BOOLEAN

Syntax

COMPILEMESSAGE = {YES|NO}

Parameters

YES
(Default) Indicates that Oracle OLAP should record non-irrecoverable error messages
during execution of the COMPILE command.

NO
Indicates that Oracle OLAP should suppress non-irrecoverable error messages during
execution of the COMPILE command.

Examples

Example 5-11 Suppressing Error Messages During Compilation

The following statement specifies that Oracle OLAP should suppress non-
irrecoverable error messages during execution of the COMPILE command.

COMPILEMESSAGE = NO

COMPILEWARN
The COMPILEWARN option controls whether Oracle OLAP records a warning
message in the current outfile when a compilable object, such as a program or a
model, is being compiled automatically. (When you use the COMPILE command to
explicitly compile an object, Oracle OLAP does not display the COMPILEWARN
message.)

A compilable object is automatically compiled in the following cases:

• The first time it is executed after being edited.

Chapter 5
COMPILEMESSAGE

5-17

• The first time it is executed in a session when it was compiled in a previous
session after the last time the analytic workspace was updated and committed.

• After an analytic workspace object referred to in the code has been renamed or
deleted. When the object name in the code has not been redefined, you receive an
error message.

• When the code refers to objects in another analytic workspace and the objects in
the currently attached analytic workspace do not have the same object type
(variable, relation, and so on), data type (INTEGER, TEXT, and so on), or dimensions
as the objects available when the code was previously compiled.

Data Type

BOOLEAN

Syntax

COMPILEWARN = {YES|NO}

Parameters

YES
Oracle OLAP records a message warning you that a compilable object is being
compiled automatically. The message explains why the compilation was necessary.

NO
(Default) Oracle OLAP does not record a message warning you that an object is being
compiled automatically.

Examples

Example 5-12 Specifying That You Want Compiler Warnings

When COMPILEWARN is set to YES, when you run the do_report program just after
editing it, Oracle OLAP places the following message in your current outfile before the
do_report output.

DO_REPORT is being automatically compiled.

DATEFORMAT
The DATEFORMAT option holds the template used for displaying DATE-only data
type values and converting DATE-only values to text values. The template can include
format specifications for any of the four components of a date (day, month, year, and
day of the week). It can also include additional text.

See Also:

"Date-only Data Type Options"

Data Type

TEXT

Chapter 5
DATEFORMAT

5-18

Syntax

DATEFORMAT = template

Parameters

template
A TEXT expression that specifies the template for displaying dates. Each component
in the template must be preceded by a left angle bracket and followed by a right angle
bracket. You can include additional text before, after, or between the components.
The default template is '<DD><MTXT><YY>'.
The following tables present the valid formats for each component. The tables provide
two display examples, one for March 1, 1990 and another for November 12, 2051.
The following table presents the valid formats for days.

Format Meaning March 1, 1990 November 12, 2051

<D> One digit or two digits 1 12

<DD> Two digits 01 12

<DS> Space-padded, two digits 1 12

<DT> Ordinal, uppercase 1ST 12TH

<DTL> Ordinal, lowercase 1st 12th

The following table presents the valid formats for weeks. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051

<W> Numeric 4 1

<WT> First letter,
uppercase

W S

<WTXT> First three letters,
uppercase.

WED SUN

<WTXTL> First three letters,
lowercase

Wed Sun

<WTEXT> Full name,
uppercase

WEDNESDAY SUNDAY

<WTEXTL> Full name,
lowercase

Wednesday Sunday

Note that when you specify a format of <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL>, the case
in which the value is specified in DAYNAMES affects the displayed value:

• When the name in DAYNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

• When the name in DAYNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in DAYNAMES.

The following table presents the valid formats for months. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Chapter 5
DATEFORMAT

5-19

Format Meaning March 1, 1990 November 12,
2051

<M> One digit or two digits 1 11

<MM> Two digits 03 11

<MS> Space-padded, two digits 3 11

<MT> First letter, uppercase M N

<MTXT> First three letters,
uppercase

MAR NOV

<MTXTL> First three letters,
lowercase

Mar Nov

Note that when you specify a format of <MTXT> or <MTXTL>, the case in which the value
is specified in MONTHNAMES affects the displayed value:

• When the name in MONTHNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

• When the name in MONTHNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in MONTHNAMES.

The following table presents the valid formats for years. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051

<YY> Two digits or four
digits

90 2051

<YYYY> Four digits 1990 2051

Usage Notes

Specifying Angle Brackets as Text in a DATEFORMAT Template

To include an angle bracket as additional text in a template, specify two angle brackets
for each angle bracket to be included as text (for example, to display the entire date in
angle brackets, specify '<<<D><M><YY>>>').

Month and Day Names

The names used in the month component for the MT, MTXT, MTXTL, MTEXT, and
MTEXTL formats are drawn from the current setting of the MONTHNAMES option.
The names used in the day-of-the-week component for the WT, WTXT, WTXTL,
WTEXT, and WTEXTL formats are drawn from the current setting of the DAYNAMES
option.

Specifying Abbreviations for Day and Month

You can set the DAYABBRLEN and MONTHABBRLEN options to use abbreviations of
different lengths for day and month names.

Out-of-Range Years for DATEFORMAT

When you specify the YY format, and a year outside the range of 1950 to 2049 is to be
displayed, the year is displayed in four digits.

Chapter 5
DATEFORMAT

5-20

Automatic Conversion of DATE-only Values to Text Values

When you use a value with DATE-only data type where a text data type is expected.
Oracle OLAP also uses the date template in the DATEFORMAT option to
automatically convert the date to a text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Once a DATE-only value is stored in a text variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

DATE-only Dimension Values

The DATEFORMAT option does not how Oracle OLAP displays DATE-only values of
DAY, WEEK, MONTH, QUARTER, and YEAR dimensions. How these values are
displayed is controlled by a VNF (value name format) attached to the dimension
definition, or by default conventions for DAY, WEEK, MONTH, QUARTER, and YEAR
dimensions as described in the Default VNFs for DWMQY Dimensions table in Date-
only Dimension Values.

Examples

Example 5-13 Changing the Format of Dates

The following statements define a DATE-only variable and set its value to March 24,
1997, then set the date format to two digits each in the order of day, month, and year,
and send the result to the current outfile.

DEFINE datevar VARIABLE DATE
datevar = '24Mar97'
DATEFORMAT = '<DD>/<MM>/<YY>'
SHOW datevar

These statements produce the following output.

24/03/97

The following statements change the date format to month (text), day (two digits), and
year (four digits), and send the result to the current outfile.

DATEFORMAT = '<MTEXTL> <D>, <YYYY>'
SHOW DATEVAR

These statements produce the following output.

March 24, 1997

The following statements change the date format to day of the week (text), month
(text), day (one or two digits), and year (four digits), and send the result to the current
outfile.

DATEFORMAT = '<WTEXTL> <MTEXTL> <D>, <YYYY>'
SHOW DATEVAR

These statements produce the following output.

Monday March 24, 1997

Chapter 5
DATEFORMAT

5-21

Example 5-14 Including Text in the Format of a Date

The following statements save and then change the DATEFORMAT option to include
extra text for an analytic workspace startup greeting.

PUSH DATEFORMAT
DATEFORMAT = 'Hello. Today is <wtextl>, the <dtl> -
OF <MTEXTL>.'
SHOW TODAY
POP DATEFORMAT

When today's date is May 30, 1997, the following output is sent to the current outfile
when the program is run.

Hello. Today is Friday, the 30th of May.

DATEORDER
The DATEORDER option holds three characters that indicate the intended order of the
month, day, and year components of the DATE-only values in an analytic workspace
for those cases in which their interpretation is ambiguous. Oracle OLAP automatically
refers to DATEORDER whenever you enter an ambiguous DATE-only value or convert
one from a text value. For information about date values, see "Date-only Data Type".

Data Type

ID

Syntax

DATEORDER = order

Parameters

order
One of the following text expressions: 'MDY', 'DMY', 'YMD', 'YDM', 'MYD', 'DYM'. Each
letter represents a component of the date. M stands for the month, D for the day, and Y
for the year. The default date order is 'MDY'.

Usage Notes

Ambiguous Dates

When you enter an unambiguous DATE-only value or convert a text value that has
only one interpretation as a date, it is handled without consulting the DATEORDER
option. For example, in 03-24-97 the 97 can only refer to the year. Considering what is
left, the 24 cannot refer to the month, so it must be the day. Only 03 is left, so it must be
the month. When, however, the interpretation is ambiguous, as in the value 3-5-97, the
current value of DATEORDER is used to interpret the meaning of each component.

DATEORDER and TEXT-to-DATE-only Conversion

When you use a text value where a DATE-only value is expected, or when you store a
text value in a DATE-only variable, the text value must conform to a style listed "Date-
only Input Values". Oracle OLAP automatically converts the text value to a DATE-only
value. When the meaning of the text value is ambiguous, the current setting of
DATEORDER is used to interpret the value.

Chapter 5
DATEORDER

5-22

To override the current DATEORDER setting in converting a text value to a DATE-only
value, use the CONVERT function with the date-order argument.

Essential Date Components

Suppose you want to assign a date value to a DAY, WEEK, MONTH, QUARTER, or
YEAR dimension using a MAINTAIN statement or to a valueset using the LIMIT
command. When you specify the value in the form of a DATE-only expression or a text
literal, Oracle OLAP uses the DATEORDER option to interpret the value. When
supplying a text literal, you can use any valid input style for dates. However, you must
supply only the date components that are necessary for identifying a time period in the
particular type of dimension or valueset you are using. For example, for a MONTH
dimension or its valueset, you can specify a complete date, such as 30jun97, or you
can provide only the essential components, such as jun97 or 0697.

DWMQY Dimension Phases

The DATEORDER option is used to interpret a phase argument to a DEFINE
DIMENSION statement for DAY, WEEK, MONTH, QUARTER, and YEAR dimensions.

Examples

Example 5-15 Changing the Date Order

The following statements define and assign a value to a DATE-only variable, specify
the date format and the date order, and send the output to the current outfile.

DEFINE datevar VARIABLE DATE
dATEFORMAT = '<MTXT> <D>, <YYYY>'
DATEORDER = 'MDY'
DATEVAR = '3 5 1997'
SHOW DATEVAR

These statements produce the following output.

MAR 5, 1997

The following statements change the date order, and, therefore, the way the same
value of the DATE-only variable is interpreted.

DATEORDER = 'DMY'
SHOW DATEVAR

These statements produce the following output.

MAY 3, 1997

DAYABBRLEN
The DAYABBRLEN option specifies the number of characters to use for abbreviations
of day names that are stored in the DAYNAMES option. You can specify how many
characters to use for abbreviating particular day names when you specify the <WT>,
<WTXT>, and <WTXTL> formats with the DATEFORMAT text option.

Data Type

TEXT

Chapter 5
DAYABBRLEN

5-23

Syntax

DAYABBRLEN = specification [;|, specification]...

where specification is a text expression that has the following form:

 startpos [- endpos] : length

You can define many different groups of days, each with different abbreviation lengths.
When you do so, separate the groups with a comma or a semicolon as shown in the
syntax.

Parameters

startpos [- endpos]
Numbers that represent the first and last days whose abbreviation length is defined by
length. These numeric positions apply to the corresponding lines of text in the
DAYNAMES option. You can specify these ranges of values in reverse order, endpos
[-startpos], when you prefer.
The DAYNAMES option can have more than seven lines, so you can specify startpos
and endpos greater than seven in the setting of DAYABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
DAYNAMES option, then Oracle OLAP has no text values to abbreviate for that
range. When you later change your day names list so that startpos is valid, the
specified abbreviation is applied.

length
A number that specifies the length in characters (not bytes) of abbreviated day
names. When you do not specify an abbreviation length for a given position in the
DAYNAMES option, or when you explicitly set a given position to zero, Oracle OLAP
uses the default abbreviations of one character for <WT> and three characters for
<WTXT> and <WTXTL>. Oracle OLAP never uses abbreviations when you have
designated the full name specifications <WTEXT> and <WTEXTL>.

Usage Notes

Ambiguous Day Names

You can use DAYABBRLEN to interpret ambiguous names, for example, whether 'T'
stands for Tuesday or Thursday. When the DAYABBRLEN for Tuesday was 1 and for
Thursday was 2, then 'T' would always match Tuesday, and it would require at least
'Th' to match Thursday. This interpretation does not depend on the order of Tuesday
and Thursday in the week; it would work the same way when the two days were
reversed. If, on the other hand, the DAYABBRLEN for each of these was 2, then 'T'
would not match either one, and you would have to enter at least 'Tu' or 'Th' to get a
match.

Examples

Example 5-16 Specifying Day Abbreviations

The following DAYABBRLEN setting specifies that the first five days of the week are
abbreviated with one character and the last two days are abbreviated with two
characters.

DAYABBRLEN = '1-5:1, 6-7:2'
DATEFORMAT = '<WTXT> <MTXT> <D>, <YYYY>'
SHOW CONVERT ('2 august 2005' DATE)

Chapter 5
DAYABBRLEN

5-24

These statements product the following result, with Tuesday abbreviated to one
character.

T AUGUST 2, 2005

DAYNAMES
The DAYNAMES option holds the list of valid names for the days of the week. The
names are used to display values of type DATE-only or to convert DATE-only values
to text.

Oracle OLAP consults the DAYNAMES list when it displays or converts a date using
the <WT>, <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL> formats. These formats are specified in
the DATEFORMAT option. When you have multiple sets of day names, Oracle OLAP
chooses the synonym whose number of characters and capitalization pattern best
match the DATEFORMAT specification.

Data Type

TEXT

Syntax

DAYNAMES = name-list

Parameters

name-list
A multiline text expression that lists the names of the seven days of the week. Each
name occupies a separate line. Regardless of which day you are treating as the first
day of the week, the list must begin with the name for Sunday. The default value is
the list of English names for the days of the week, in uppercase. You can include
multiple sets of seven names in your list. The eighth name is a synonym for the first
name, the ninth name is a synonym for the second name, and so on.

Examples

Example 5-17 Specifying Day Names

The following statements set DAYNAMES to the French names for the days of the
week and send the output to the current outfile.

DAYNAMES = 'dimanche\nlundi\n-
mardi\nmercredi\njeudi\nvendredi\nsamedi'
SHOW DAYNAMES

These statements produce the following output.

dimanche
lundi
mardi
mercredi
jeudi
vendredi
samedi

Chapter 5
DAYNAMES

5-25

DECIMALCHAR
(Read-only) The DECIMALCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option.

DECIMALCHAR only affects the way Oracle OLAP formats numbers in output. When
you format numbers for input, use a period (.) for the decimal marker. To use a
different decimal marker, enclose the value in single quotes and use the TO_NUMBER
function to convert the value from text to a valid number.

Data Type

ID

Syntax

DECIMALCHAR

Examples

Example 5-18 Identifying the Decimal and Thousands Markers

The statements in this example show the DECIMALCHAR and THOUSANDSCHAR
values.

• The following statement might produce a comma as output.

SHOW THOUSANDSCHAR

• The following statement might produce a period as output.

SHOW DECIMALCHAR

• With these values, the following statement might produce the output that follows it.

SHOW TOTAL(sales)
63,181,743.50

DECIMALOVERFLOW
The DECIMALOVERFLOW option controls the result of arithmetic operations that
produce out-of-range numbers. Decimal numbers are stored as a mantissa and an
exponent. Decimal overflow occurs when the result of a calculation is very large and
can no longer be represented by the exponent portion of the decimal representation.

Data Type

BOOLEAN

Syntax

DECIMALOVERFLOW = YES|NO

Chapter 5
DECIMALCHAR

5-26

Parameters

YES
Allows overflow. A calculation that generates overflow executes without error, and the
results of the calculation are NA.

NO
(Default) Disallows overflow. A calculation involving overflow stops executing, and an
error message is produced.

Examples

produce the following result.

NA

Example 5-19 The Effect of DECIMALOVERFLOW

This example shows the effect of changing the value of the DECIMALOVERFLOW
option.

When you execute a SHOW statement such as the following without changing
DECIMALOVERFLOW from its default value of NO, an error occurs.

SHOW 1000000.0 ** 133

When you change DECIMALOVERFLOW to YES, the same statement executes without
an error and produces NA as the result of the operation. The statements

DECIMALOVERFLOW = YES
SHOW 1000000.0 ** 133

DECIMALS
The DECIMALS option controls the number of decimal places that are shown in
numeric output. Values are rounded to fit the specified number of decimal places.
(Note, however, that the setting of DECIMALS does not affect the format of INTEGER
values in output. INTEGER values are shown with no decimal places, unless you
explicitly apply a DECIMAL attribute to them in a HEADING, REPORT, or ROW
command.)

Data Type

INTEGER

Syntax

DECIMALS = n

Parameters

n
An INTEGER expression that specifies the number of decimal places to include in all
output of DECIMAL and SHORTDECIMAL values; n can be any number in the range
0 to 40 or the number 255. (When you set DECIMALS to 255, you are specifying the

Chapter 5
DECIMALS

5-27

formats for values of both SHORTDECIMAL and DECIMAL data types. See
"Example 5-21".) The default is 2.

Examples

Example 5-20 Showing Data with No Decimal Places

To show no decimal places in numeric output, set the DECIMALS option to 0 (zero)
before you produce your report.

DECIMALS = 0
LIMIT line TO 'COGS'
LIMIT month TO 'Jan96' 'Feb96'
REPORT DOWN division ACROSS month: budget

These statements produce the following output.

LINE: COGS
 -------BUDGET--------
 --------MONTH--------
DIVISION Jan96 Feb96
-------------- ---------- ----------
Camping 355,933 385,308
Sporting 279,773 323,982
Clothing 528,370 546,468

Example 5-21 Comparing 2 Decimal Places with Best Presentation Format

This example contrasts the effects of setting DECIMALS to 2 and setting it to 255 ("best
presentation" format).

The OLAP DML statements

DECIMALS = 2
SHOW JOINCHARS(1.1 'A')

produce the following output.

1.10A

The OLAP DML statements

DECIMALS = 255
SHOW JOINCHARS(1.1 'A')

produce the following output.

1.1A

DEFAULTAWSEGSIZE
The DEFAULTAWSEGSIZE option holds the default maximum segment size for an
analytic workspace created in your database session. The setting is in effect for the
duration of your session. For each new session, DEFAULTAWSEGSIZE reverts to the
default value.

Chapter 5
DEFAULTAWSEGSIZE

5-28

Tip:

To change the maximum size for new segments in an existing workspace, use
the AW command with the SEGMENTSIZE keyword. To discover the current
maximum size for new segments, use the AW function with the
SEGMENTSIZE keyword.

Syntax

DEFAULTAWSEGSIZE = n

Parameters

n
The number of bytes.

Examples

Example 5-22 Displaying the Maximum Segment Size for a Session

The following statement lists the current maximum segment size for workspaces.

SHOW DEFAULTAWSIZE

Example 5-23 Setting the Maximum Segment Size for a Session

The following statement sets the maximum segment size to approximately 1/2
gigabyte.

DEFAULTAWSIZE = 536870910

DIVIDEBYZERO
The DIVIDEBYZERO option controls the result of division by zero. (Note that division
by zero includes raising zero to a negative power; for example, 0 ** -2.)

Data Type

BOOLEAN

Syntax

DIVIDEBYZERO = YES|NO

Parameters

YES
Allows division by zero. A statement involving division by zero executes without error;
however, the result of the division by zero is NA. When you are dividing by a
dimensioned variable or expression, setting DIVIDEBYZERO to YES enables you to
get results for most of the expression's values when a few calculations might involve
dividing by zero.

Chapter 5
DIVIDEBYZERO

5-29

NO
(Default) Disallows division by zero. A statement involving division by zero stops
executing and produces an error message.

Examples

Example 5-24 The Effect of DIVIDEBYZERO

This example shows the effect of changing the value of the DIVIDEBYZERO option.

When you execute a SHOW statement, such as the following, without changing the
DIVIDEBYZERO option from its default value of NO, Oracle OLAP attempts to divide
100 by 0 and then produces an error message.

SHOW 100 / 0

When you change DIVIDEBYZERO to YES, the same statement executes without error
and produces NA as the result of the division. The statements

DIVIDEBYZERO = YES
SHOW 100 / 0

produce the following result.

NA

DSECONDS
(Read-only) The DSECONDS option returns the elapsed time as a DECIMAL value.
When Oracle is installed on UNIX, the DSECONDS option is the elapsed number of
seconds since Oracle was started. When Oracle is installed on Windows, the
DSECONDS option is the elapsed number of seconds since the computer on which
Oracle is installed was rebooted. As an aid to enhancing a program's speed,
DSECONDS can be used to determine how much time elapses while the program is
running.

Note:

The SECONDS option for information about retrieving elapsed time as an
INTEGER value.

Data Type

DECIMAL

Syntax

DSECONDS

Examples

Example 5-25 Timing a Program Using DSECONDS

The following program puts the value of DSECONDS at the start of the program in a
variable called t1 and then displays the difference between t1 and the value of
DSECONDS after the program executes.

Chapter 5
DSECONDS

5-30

DEFINE prodsummary PROGRAM
PROGRAM
VARIABLE t1 DECIMAL
t1 = dseconds
LIMIT product TO ALL
BLANK
FOR product
DO
 ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL 0 LSET -
 '$'WIDTH 18 <RSET ' (Actual)' sales rset ' (Plan)' sales.plan>
DOEND
BLANK
ROW WIDTH 35 LSET 'The program took ' rset ' seconds.' -
 (dseconds - t1)
END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

 The program took .20 seconds.

ECHOPROMPT
The ECHOPROMPT option determines if input lines and error messages should be
echoed to the current outfile. When ECHOPROMPT is set to YES and you have
specified a debugging file with DBGOUTFILE, the input lines and error messages are
echoed to the debugging file instead of the current outfile.

Data Type

BOOLEAN

Syntax

ECHOPROMPT = {YES|NO}

Parameters

YES
Input lines and error messages are echoed to the current outfile or the debugging file
specified by DBGOUTFILE.

NO
(Default) Input lines and error messages do not appear in the current outfile or in the
debugging file.

Examples

Example 5-26 Using ECHOPROMPT

Suppose you want to have all input lines and error messages included in the disk file
that contains your output. Set ECHOPROMPT to YES before issuing an OUTFILE
statement that sends the output to the disk file. In the following statements, the disk file
is in the current directory object.

Chapter 5
ECHOPROMPT

5-31

ECHOPROMPT = YES
OUTFILE 'newcalc.dat'

EIFBYTES
(Read-only) The EIFBYTES option holds the number of bytes read by the most recent
IMPORT (EIF) command or written by the most recent EXPORT (EIF) command.

Data Type

INTEGER

Syntax

EIFBYTES

Examples

Example 5-27 Finding Out the Number of Bytes

To find out how many bytes of information were exported to an EIF file when you
exported the dimensions of the demo workspace, you use the following statements.

LIMIT name TO OBJ(TYPE) EQ 'DIMENSION'
EXPORT ALL TO EIF FILE 'myfile.eif'
SHOW EIFBYTES

The SHOW statement produces the following output.

2,038

EIFEXTENSIONPATH
The EIFEXTENSIONPATH option contains a list of directory objects that identify the
locations where EIF extension files should be created.

Data Type

TEXT

Syntax

EIFEXTENSIONPATH = path-expression

Parameters

path-expression
A text expression that contains one or more directory object names. When you specify
multiple aliases, you must enter each one on a separate line. Specify multiple aliases
in the order in which they should be used for storing EIF extension files.

Usage Notes

When Extension Files Are Created

When the size of an EIF file grows beyond the size specified for EIF files by the
FILESIZE argument to the EXPORT (EIF) command, or the current disk or location
becomes full, an EIF extension file is created.

Chapter 5
EIFBYTES

5-32

Before creating a new extension file, the location specified by EIFEXTENSIONPATH is
checked for sufficient disk space. The required amount of disk space is the amount
specified for FILESIZE in the EXPORT (EIF). When no value has been specified for
FILESIZE, then a check is made for at least 80K of disk space (the minimum size
allowed by FILESIZE). When there is insufficient disk space, checking continues
through the list until a location with enough available disk space is found.

Multiple Paths in EIFEXTENSIONPATH

When EIFEXTENSIONPATH contains multiple directory objects, the first extension file
is created in the first alias in the list. The second extension file is created in the second
alias on the list, and so on. When the end of the list is reached, the process starts over
again at the beginning. When EIFEXTENSIONPATH contains a single directory object,
all extension files are created in that location.

Examples

Example 5-28 Establishing a Location for Extension Files

The following statement establishes the eifext directory object as the location in which
EIF extension files should be created.

EIFEXTENSIONPATH = 'eifext'

EIFNAMES
The EIFNAMES option holds a list of the names of all the objects imported by the most
recent IMPORT (EIF) command.

Data Type

TEXT

Syntax

EIFNAMES

Examples

Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from the
demo analytic workspace to a file called myfile.eif. After importing the contents of the
file into a new workspace, you can use the EIFNAMES option to see the names of the
objects you have just imported.

The following statements

AW CREATE mytest
IMPORT ALL FROM EIF FILE 'myfile.eif'
SHOW EIFNAMES

produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

Chapter 5
EIFNAMES

5-33

EIFSHORTNAMES
The EIFSHORTNAMES option controls the structure of the extension of EIF overflow
(extension) file names.

Data Type

BOOLEAN

Syntax

EIFSHORTNAMES = YES|NO

Parameters

YES
Sets the extension of EIF overflow (extension) file names to xx, where each x is an
automatically assigned lowercase letter between a and z.

NO
(Default) Sets the extension of EIF overflow (extension) file names have the structure
filename.ennn, where nnn is a three-digit number beginning with 001, to distinguish
them from workspace extension file names. For example, when an EIF file is named
export.eif, the extension files are named export.e001, export.e002, and so on,

Examples

Example 5-29 Limiting the Extension of a File Name to Three Characters

The following statement specifies that the file extension for EIF extension file names
must be in the form xx.

EIFSHORTNAMES = YES

EIFTYPES
The EIFTYPES option holds a list of the types of objects that are contained in the list
produced by the EIFNAMES option. The types are listed in the same order as the
corresponding object names in the EIFNAMES list.

Data Type

TEXT

Syntax

EIFTYPES

Examples

Example 5-30 Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from an
analytic workspace named demo to a file called myfile.eif. After importing the contents
of the file into a new workspace, you can use the EIFNAMES and EIFTYPES options
to see the names and object types of the objects you have just imported.

Chapter 5
EIFSHORTNAMES

5-34

Create the workspace and import the objects with these statements.

AW CREATE mytest
IMPORT ALL FROM EIF FILE 'myfile.eif'

Send the names of the imported objects to the current outfile with this statement

SHOW EIFNAMES

to produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

Send the types of the imported objects to the current outfile with this statement

SHOW EIFTYPES

to produce this output.

DIMENSION
DIMENSION
DIMENSION
VARIABLE
VALUESET

EIFUPDBYTES
The EIFUPDBYTES option controls the frequency of updates when you are using the
IMPORT (EIF) command with its UPDATE keyword. The value of EIFUPDBYTES has
an effect only when the UPDATE keyword is specified in this command.

Data Type

INTEGER

Syntax

EIFUPDBYTES = n

Parameters

n
An INTEGER expression that specifies the minimum number of bytes to be read
between updates, during an import. When EIFUPDBYTES has a value of 0, an
update is triggered after each analytic workspace object is imported. When
EIFUPDBYTES has a value greater than 0, an update is triggered each time the
specified number of bytes is imported. The default is 0 (zero).

Examples

Example 5-31 Reducing Update Frequency

In the following example, the UPDATE keyword in the IMPORT (EIF) command
ensures that updates occur periodically. The setting of EIFUPDBYTES ensures that
the updates do not occur too often.

Chapter 5
EIFUPDBYTES

5-35

EIFUPDBYTES = 500000
IMPORT ALL FROM EIF FILE 'finance.eif' UPDATE

EIFVERSION
The EIFVERSION option is used with the EXPORT (EIF) and IMPORT (EIF)
commands to copy data between different versions of Express® Server or Oracle
OLAP. The version from which the data is exported is referred to as the source. The
version to which the data is imported is referred to as the target.

Before you use the EXPORT command to export data to an EIF file, you use the
EIFVERSION option to specify the internal version or build number of the target. Then,
when you use EXPORT to copy data from the source to an EIF file, the data is in a
format that can be imported by the target. Generally, you can import data from an EIF
file into any target that has a later version number than the one you specify for the EIF
file with EIFVERSION. However, when you set EIFVERSION to a value that is lower
than the default version (that is, the version number of the current process), and you
try to export data that the earlier version cannot manage, an error is generated. For
example, when you try to export an aggmap to a 6.2 version of Express Server, an
error is generated because Express Server 6.2 cannot manage aggmap.

You can use the EVERSION function to determine the internal version or build number
of the target.

Syntax

EIFVERSION = n

Parameters

n
The internal version or build number of an Express Server or Oracle OLAP process
which is the target into which you want the data imported.
By default, EIFVERSION is set to the internal version or build number of the current
process.

Examples

Example 5-32 Exporting and Importing Between Different Versions

This example shows how to use EIFVERSION when you want to export data from
Oracle OLAP to an EIF file and then import it into Express Server version 6.2.0.

This statement (issued from the target 6.2.0 Express Server)

SHOW EVERSION

returns the following version and build information

Module Mgr, Version: 6.2.0.0.0, Build: 60232
OES Kernel, Version: 6.2.0.0.0, Build: 60232

The following statements export the data from Oracle OLAP (which has a higher build
number than 60232) to an EIF file that can be read in Express 6.2.0

EIFVERSION = 60232
EXPORT ALL TO EIF FILE 'myeif.eif'

Chapter 5
EIFVERSION

5-36

ERRNAMES
The ERRNAMES option controls whether the value of the ERRORTEXT option
contains the name of the error (that is, the value of the ERRORNAME option) and the
text of the error message.

Data Type

BOOLEAN

Syntax

ERRNAMES = {NO|YES}

Parameters

NO
ERRORTEXT contains only the text of the error message.

YES
(Default) ERRORTEXT contains the name and the text of the error message.

Examples

Example 5-33 ERRORTEXT Value Depending on ERRNAMES Setting

Suppose that you run the following program.

VARIABLE myint INTEGER
myint = 35/0
SHOW ERRORTEXT

When the value of ERRNAMES is set to YES, the program returns the following value
for ERRORTEXT.

ERROR: (MXXEQ01) A division by zero was attempted. (If you want NA to
 be returned as the result of a division by zero, set the DIVIDEBYZERO
 option to YES.)

When the value of ERRNAMES is set to NO, the program returns the following value for
ERRORTEXT.

ERROR: A division by zero was attempted. (If you want NA to be
 returned as the result of a division by zero, set the DIVIDEBYZERO
 option to YES.)

ERRORNAME
The ERRORNAME option holds the name of the first error that occurs when you
execute a program or when you execute an OLAP DML statement.

Data Type

TEXT

Chapter 5
ERRNAMES

5-37

Syntax

ERRORNAME

Usage Notes

ERRORNAME and SIGNAL

You can create your own error conditions in a program with the SIGNAL command.
SIGNAL sets ERRORNAME and ERRORTEXT to the values you specify.

You can use the special name PRGERR with the SIGNAL command to communicate to a
calling program that an error has occurred. The command SIGNAL PRGERR sets
ERRORNAME to a blank value and passes an error condition to the calling program
without causing another error message to be displayed. For information on using
SIGNAL to pass an Oracle OLAP error up a chain of nested programs, see the TRAP
command.

Examples

Example 5-34 Using ERRORNAME with TRAP

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error name to the current outfile.

DEFINE myreport PROGRAM
LD Monthly Report
PROGRAM
TRAP ON CLEANUP NOPRINT
PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1
 ...
POP month DECIMALS LSIZE PAGESIZE
RETURN
CLEANUP:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT
END

ERRORTEXT
The ERRORTEXT option holds the text of the first error message that occurs when
you execute a program or a statement. The name of the error whose message is
found in ERRORTEXT is contained in the ERRORNAME option.

See Also:

ERRORNAME option, ERRNAMES option, TRAP command

Data Type

TEXT

Chapter 5
ERRORTEXT

5-38

Syntax

ERRORTEXT

Examples

Example 5-35 ERRORTEXT with the SIGNAL Command

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error message to the current outfile.

DEFINE myreport PROGRAM
LD Monthly Report
PROGRAM
TRAP ON CLEANUP NOPRINT
PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1
 ...
POP month DECIMALS LSIZE PAGESIZE
RETURN
CLEANUP:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT
END

ESCAPEBASE
The ESCAPEBASE option specifies the type of escape that is produced by the INFILE
keyword of the CONVERT function.

Syntax

ESCAPEBASE = 'escape-type'

Parameters

escape-type
Specify 'd' for decimal escape, 'x' for hexadecimal escape.
The default escape type is decimal, which produces the INTEGER value for a character
in the following form.

 '\dnnn'

A hexadecimal escape is the INTEGER value for a character in the following form.

 '\xnn'

Examples

For an example of using ESCAPEBASE with CONVERT to convert a text value to an
escape sequence, see Example 7-50.

EXPTRACE
The EXPTRACE option controls whether OLAP DML programs in the analytic
workspace named EXPRESS are traced when the PRGTRACE option is set to YES. The
EXPRESS analytic workspace is always attached and contains, among other things,

Chapter 5
ESCAPEBASE

5-39

OLAP DML programs documented as OLAP DML statements and other "helper" OLAP
DML programs.

Data Type

BOOLEAN

Syntax

EXPTRACE = {YES|NO}

Parameters

YES
All programs are traced, including OLAP DML programs provided as OLAP DML
statements.

NO
(Default) OLAP DML programs provided as OLAP DML statements are not traced.
Only other types of programs are traced.

Usage Notes

How to Identify OLAP DML Programs Provided as OLAP DML Statements

Some OLAP DML statements are implemented as OLAP DML programs. These
programs are affected by EXPTRACE. To send to the current outfile a list of these
programs, issue the following statement.

SHOW AW(PROGRAM 'express')

Examples

Example 5-36 Tracing System DML Programs

After the following statements are issued, system DML programs such as LISTNAMES
and ALLSTAT are traced in addition to user-defined programs.

PRGTRACE = YES
EXPTRACE = YES

INF_STOP_ON_ERROR
The INF_STOP_ON_ERROR option specifies the behavior of Oracle OLAP when an
error occurs during the execution of an INFILE statement.

Syntax

INF_STOP_ON_ERROR = {YES|NO}

Parameters

YES
When an error occurs, report the error and stop reading from the file.

NO
When an error occurs, report the error and continue reading from the file.

Chapter 5
INF_STOP_ON_ERROR

5-40

Examples

Example 5-37 Using INF_STOP_ON_ERROR with DBMS_EXECUTE

Assume that you have an file named attachmyaw.inf that includes the following OLAP
DML statement that detaches an analytic workspace named myaw

AW DETACH myaw

Assume that the myaw workspace is not attached when a SQL application issues the
DBMS_AW.EXECUTE statement with an OLAP DML INFILE statement to read the
attachmyaw.infinfile file.

When the INF_STOP_ON_ERR option is set to NO then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP continues to read the file, and the
DBMS_AW.EXECUTE procedure completes successfully.

DBMS_AW.EXECUTE('INF_STOP_ON_ERR = NO ');
DBMS_AW.EXECUTE('INFILE attachmyaw.inf');

The current directory is MYDIR.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.

PL/SQL procedure successfully completed.

When the INF_STOP_ON_ERR option is set to YES then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP stops reading the file, and the
DBMS_AW.EXECUTE procedure aborts.

DBMS_AW.EXECUTE('INF_STOP_ON_ERR = YES ');
DBMS_AW.EXECUTE('INFILE attachmyaw.inf');

The current directory is MYSPL.
DECLARE
 *
ERROR at line 1:
ORA-35166: (ORA-34344) Analytic workspace MYAW is not attached.
ORA-06512: at "SYS.DBMS_AW", line 27
ORA-06512: at "SYS.DBMS_AW", line 115
ORA-06512: at line 8

LCOLWIDTH
The LCOLWIDTH option controls the default width of the label column in reports. For
output from ROW command and HEADING, LCOLWIDTH affects the first column. For
output from REPORT, LCOLWIDTH affects the first column unless the first column is a
data column or part of a set of columns that represent the base dimensions of a
composite or a conjoint dimension.

Note:

For an individual column, the LCOLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

Chapter 5
LCOLWIDTH

5-41

See Also:

COLWIDTH

Data Type

INTEGER

Syntax

LCOLWIDTH = n

Parameters

n
An INTEGER expression that specifies the desired column width in number of
characters. You can set LCOLWIDTH to any value from 1 to 4000. The default is 14.

Note:

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000
characters

Examples

Example 5-38 Setting Default Column Widths

Suppose you want to look at unit sales for six months. Because the longest product
name is 10 characters, you do not need the default width of 14 for your label column.
Also, because the sales figures are not large, you do not need a width of 10 characters
for your data columns. You can set LCOLWIDTH and COLWIDTH to give smaller
default column widths.

LIMIT district TO 'Atlanta'
LIMIT month TO 'Oct95' TO 'Mar96'
LCOLWIDTH = 10
COLWIDTH = 6
REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA
 ------------------UNITS------------------
 ------------------MONTH------------------
PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
---------- ------ ------ ------ ------ ------ ------
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

Chapter 5
LCOLWIDTH

5-42

LIKECASE
The LIKECASE option controls whether the LIKE operator is case sensitive.

Tip:

The LIKENL option controls whether the LIKE operator recognizes newline
characters.

Data Type

BOOLEAN

Syntax

LIKECASE = {YES|NO}

Parameters

YES
(Default) Specifies that the LIKE operator is case sensitive.

NO
Specifies that the LIKE operator is not case sensitive.

Examples

Example 5-39 The Effect of LIKECASE

The following statements show the use of the LIKECASE option.

LIKECASE = YES
SHOW 'oracle' LIKE 'Oracle%'

The output of this SHOW statement is

NO

The SHOW statement

SHOW 'ORACLE' LIKE '%orc%'

produces the following output.

NO

The statements

LIKECASE = NO
SHOW 'ORACLE' like 'orc%'

produce the following output.

YES

Chapter 5
LIKECASE

5-43

LIKEESCAPE
The LIKEESCAPE option lets you specify an escape character for the LIKE operator.

Data Type

ID

Syntax

LIKEESCAPE = char

Parameters

char
A text expression that specifies the character to use as an escape character in a LIKE
text comparison. The default is no escape character.
The LIKE escape character affects the LISTNAMES program, which accepts a LIKE
argument that it uses in a LIKE text comparison.

Usage Notes

Using the Escape Character

The LIKE escape character lets you find text expressions that contain the LIKE
operator wildcard characters, which are an underscore (_), which matches any single
character, and a percent character (%), which matches any string of zero or more
characters.

To include an underscore or percent character in a text comparison, first specify an
escape character with the LIKEESCAPE option. Then, in your LIKE expression,
precede the underscore or percent character with the LIKEESCAPE character you
specified.

You might want to avoid using a backslash (\) as the LIKE escape character, because
the backslash is the standard OLAP DML escape character. You would therefore need
two backslashes to indicate that LIKEESCAPE should treat the second backslash as a
literal character.

Examples

Example 5-40 Using an Escape Character with the LIKE Operator

This example demonstrates how to specify an escape character and how to use it with
the LIKE operator.

Suppose you have a variable named prodstat that contains the following text values.

DEFINE prodstat TEXT <product>
prodstat(product 'Tents') = -
'What are the results of the fabric testing?'
prodstat(product 'Canoes') = -
'How has the flooding affected distribution?'
prodstat(product 'Racquets') = -
'The best-selling model is Whack_it!'
prodstat(product 'Sportswear') = -
'90% of the stock is ready to ship.'

Chapter 5
LIKEESCAPE

5-44

prodstat(product 'Footwear') = -
'When are the new styles going to be ready?'

Suppose you have the following program, named findeschar, to find certain characters
in the text contained in the cells of the prodstat variable. The program uses the LIKE
operator.

ARGUMENT findstring TEXT
FOR product
 IF prodstat LIKE findstring
 THEN SHOW JOINCHARS(product ' - ' prodstat)

Before the program can find a text value that contains a percent character (%) or an
underscore (_), you must specify an escape character by using the LIKEESCAPE
option. Suppose you want to use a question mark (?) as the escape character. Before
you set the escape character to a question mark, the following statement finds text that
contains a question mark.

CALL findeschar('%?%') "Find any text that contains a question mark.

The preceding statement produces the following output.

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

The following statements specify the question mark (?) as the escape character and
then call the FINDESCHAR program.

LIKEESCAPE = '?'
CALL findeschar('%?%') "Find any text that ends with a percent character.

The preceding statement does not find any text because none of the text values in
prodstat ends in a percent character. To find any text that contains a percent
character, the following statement adds another wildcard character. LIKEESCAPE
interprets the first percent character as the wildcard that matches zero or more
characters, the second percent character as the literal percent character (%) because
it is preceded by the question mark escape character, and the third percent character
as another wildcard character. The result is that LIKEESCAPE looks for a percent
character preceded by and followed by zero or more characters.

CALL findeschar('%?%%') "Find any text that contains a percent character.

The preceding statement produces the following output.

Sportswear - 90% of the stock is ready to ship.

The following statement finds text that contains an underscore.

CALL findeschar('%?%') "Find any text that contains an underscore.

The preceding statement produces the following output.

Racquets - The best-selling model is Whack_it!

The following statement doubles the escape character to find text that contains the
escape character.

CALL findeschar('%??%') "Find any text that contains a question mark.

The preceding statement produces the following output.

Chapter 5
LIKEESCAPE

5-45

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

Example 5-41 Using an Escape Character with the LISTNAMES Program

This example demonstrates how to find the name of an object that contains a LIKE
argument wildcard character. These following statements use the LIKEESCAPE option
to specify an escape character, define a couple of object names that contain an
underscore, and then list the dimensions whose names include an underscore.

LIKEESCAPE = '?'
DEFINE my_textdim DIMENSION TEXT
DEFINE my_intdim DIMENSION INTEGER
LISTNAMES DIMENSION LIKE '%?%'

The preceding statement produces the following output.

3 DIMENSIONs

MY_INTDIM
MY_TEXTDIM
_DE_LANGDIM

LIKENL
The LIKENL option controls whether the LIKE operator recognizes newline characters
between lines of a text expression, when deciding whether a text value is like a text
pattern. (In the OLAP DML, the representation of a newline character is "\n".)

The LIKENL option applies to the text expressions on either side of the LIKE operator.

Data Type

BOOLEAN

Syntax

LIKENL = {YES|NO}

Parameters

YES
(Default) Specifies that the LIKE operator recognizes newline characters between
lines of a text expression.

NO
Specifies that the LIKE operator ignores newline characters between lines of a text
expression. Newline characters are ignored in both of the expressions being
compared.

Examples

Example 5-42 The Effect of LIKENL

The following statements show the use of the LIKENL option:

• The statement

SHOW textvar

Chapter 5
LIKENL

5-46

produces the following output.

Hello
world

• The statements

LIKENL = YES
SHOW textvar LIKE '%low%'

produce the following output.

NO

• The statement

SHOW ' Hello\nworld' LIKE '%\n%'

produces the following output.

YES

• The statement

SHOW 'Hello\nworld' LIKE '%low%'

produces the following output.

NO

• The statements

LIKENL = NO
SHOW textvar LIKE '%low%'

produce the following output.

YES

• The statement

SHOW 'Hello\nworld' LIKE '%\n%'

produces the following output.

YES

• The statement

SHOW 'Hello\nworld' LIKE '%low%'

produces the following output.

YES

LIMIT.SORTREL
The LIMIT.SORTREL option controls if a sort is done when you limit a dimension to a
related dimension.

Data Type

BOOLEAN

Chapter 5
LIMIT.SORTREL

5-47

Syntax

LIMIT.SORTREL = {YES|NO}

Parameters

YES
(Default) Oracle OLAP performs a sort when you limit a dimension to a related
dimension.

NO
Oracle OLAP does not perform a sort when limiting to a related dimension.

Usage Notes

The Sorting Explained

Normally, when you limit a dimension to a related dimension, the values of the
dimension being limited are arranged in the order of the related dimension. When
there are multiple values of the first dimension related to a value of the related
dimension, the values are sorted in the order of the default status of the first
dimension. It is this sort that LIMIT.SORTREL suppresses.

Output Lists when LIMIT.SORTREL Is NO

When LIMIT.SORTREL is NO, the output for any given dimension may not list values in
logical order.

Examples

Example 5-43 Efficient Processing

You are performing calculations on a variable dimensioned by a large dimension
named product. Your product dimension has all levels of the product hierarchy
embedded in it: category, vendor, brand, and so on. You are performing the
calculations one level at a time, using the relationship between product and
productlevel. Because the order of the dimension values is not important for the
calculations and because you are limiting product using a related dimension, you use
LIMIT.SORTREL to suppress unnecessary sorting which makes the process more
efficient.

LIMIT.SORTREL = NO

LIMITSTRICT
The LIMITSTRICT option is a BOOLEAN option that determines how Oracle OLAP
behaves when a list of values in a LIMIT command, a LIMIT function, or a QDR
contains a nonexistent value.

Syntax

LIMITSTRICT = YES | NO

Chapter 5
LIMITSTRICT

5-48

Parameters

YES
(Default) When a list of values in a LIMIT command, a LIMIT function, or a QDR
contains a nonexistent value, Oracle OLAP stops executing the limit and issues an
error.

NO
When a list of values in a LIMIT command, a LIMIT function, or a QDR contains a
nonexistent value, Oracle OLAP processes the limit while treating the specified value
as an NA.

Examples

Example 5-44 Limiting with LIMITSTRICT Set to YES

Assume that you have two dimensions (prod and year) and one variable (sales) with
the following definitions and values.

DEFINE prod DIMENSION TEXT
DEFINE year DIMENSION TEXT
DEFINE sales VARIABLE INTEGER <prod year>

PROD

Radios
TVs

YEAR

2003
2004

 --------SALES--------
 --------PROD---------
YEAR Radios TVs
-------------- ---------- ----------
2003 2,459 3,534
2004 3,366 3,018

When LIMITSTRICT is set to YES, then Oracle OLAP treats requests to limit by the
nonexistent prod value of 'IDontExist', as a request to limit by an invalid value:

• Limiting prod to just nonexistent value, results in the error message ORA-34706
and does not change the values in status for prod.

->LIMIT prod to 'Idontexist'
ORA-34706: Idontexist is not a valid TESTLIMITSTRICT!PROD.

->REPORT prod

PROD

Radios
TVs

Chapter 5
LIMITSTRICT

5-49

• Limiting prod to a list of values that includes the nonexistent value results in the
error message ORA-34706 and does not change the values in status for prod

->LIMIT prod to 'Idontexist' 'Radios'
ORA-34706: Idontexist is not a valid TESTLIMITSTRICT!PROD.

->REPORT prod

PROD

Radios
TVs

• Specifying a nonexistent prod value in a QDR for sales also results in the error
message ORA-34706.

->REPORT sales (year '2004'prod 'IDontExist')
ORA-34706: IDontExist is not a valid TESTLIMITSTRICT!PROD.

Example 5-45 Limiting with LIMITSTRICT Set to NO

Assume that you have the same two dimensions (prod and year) and variable (sales)
described in Example 5-44.

When LIMITSTRICT is set to NO, then Oracle OLAP treats requests to limit by the
nonexistent prod value of 'IDontExist', as a request to limit by an NA value:

• Limiting prod to just nonexistent value, results in the error message ORA-35654
and does not change the values in status for prod.

->LIMIT prod to 'Idontexist'
ORA-35654: The status of the TESTLIMITSTRICT!PROD dimension cannot be set to
null.

->REPORT prod
PROD

Radios
TVs

• Limiting prod to a list of values that includes a nonexistent value does not result in
an error message. Instead, prod is limited to the existing values.

->LIMIT prod to 'Idontexist' 'Radios'

->REPORT prod

PROD

Radios

• Specifying a nonexistent prod value in a QDR for sales does not result in an error
message. Instead, a report of sales displays an NA value.

->REPORT sales (year '2004'prod 'IDontExist')
---------- NA

LINENUM
The LINENUM option contains the current line number of the output. Its value is
incremented automatically as output lines are produced. The LINENUM option is

Chapter 5
LINENUM

5-50

meaningful only when PAGING is set to YES and only for output from commands such
as REPORT and LISTNAMES.

See Also:

RECNO

Data Type

INTEGER

Syntax

LINENUM = n

Parameters

n
An INTEGER expression. Normally you do not want to set LINENUM explicitly, but just
want to check its current value.

Usage Notes

Starting a New Page

When PAGING is set to YES, LINENUM increases by 1 after each line of output. When
LINENUM equals PAGESIZE minus BMARGIN, a new page automatically begins.

At the beginning of each new page, LINENUM is automatically reset to 1.

LINENUM Compared to PAGESIZE

Because the lines in the bottom margin are included in PAGESIZE, LINENUM can
never reach PAGESIZE when BMARGIN is set to a number greater than 0 (zero).

The Effect of PAGING on LINENUM

When PAGING is set to NO (its default), the value of the LINENUM option continues to
increment as more output lines are produced. When you set PAGING to YES,
LINENUM is set to 1 and it begins counting lines on the current page.

The Effect of OUTFILE on LINENUM

When you use an OUTFILE statement to direct output to a file, LINENUM is set to 1 for
the file. When you use OUTFILE with the EOF keyword to redirect output to the default
outfile, LINENUM contains the value that it last held for the default outfile.

Sending LINENUM in Output

When you produce output that contains the value of LINENUM, and a new page is
created by this output, the value of LINENUM is recorded as 1 when your output
consists of a single line. However, when the output is a multiline value, the value of
LINENUM may be recorded as a value that is larger than PAGESIZE.

Chapter 5
LINENUM

5-51

Examples

Example 5-46 Keeping the Heading Size Constant

Suppose you have a heading that varies between one and two lines from page to
page. Regardless of this variation, you want to draw a line across the page at a
constant position below the heading. Include the following statement in the page
heading program that you use with your report program.

WHILE LINENUM LT 5
BLANK
ROW W LSIZE ROW CENTER '--------------------------------'

LINESLEFT
(Read-only) The LINESLEFT option contains the number of lines left on the current
page. The LINESLEFT option is meaningful only when PAGING is set to YES and only
for output from commands such as REPORT and LISTNAMES.

Data Type

INTEGER

Syntax

LINESLEFT

Usage Notes

Controlling Page Breaks

LINESLEFT is used primarily in report programs to check the number of lines left on a
particular page. When the number of lines left is less than that required for a part of
the report that you do not want interrupted by a page break, you can then use a PAGE
statement to skip to a new page.

The Effect of PAGESIZE on LINESLEFT

When you change the value of PAGESIZE, the value of LINESLEFT is adjusted
accordingly. First, LINESLEFT is subtracted from the old value of PAGESIZE, which
gives the lines already used. This result is then subtracted from the new value of
PAGESIZE which gives the new value of LINESLEFT. When LINESLEFT becomes
less than 1, a new page is started at the next output line.

The Effect of PAGING on LINESLEFT

When you set PAGING to NO, LINESLEFT is set to the value of PAGESIZE, and it
keeps this value until PAGING is set to YES. When you set PAGING to YES, LINESLEFT
begins counting the lines on the current page.

The Effect of OUTFILE on LINESLEFT

When you use an OUTFILE statement to direct output to a file, LINESLEFT is set to 66
for the file, to match the default value of PAGESIZE. When you set PAGESIZE to a
new value for the current outfile, LINESLEFT is adjusted accordingly. For example,
assume that you direct output to a file and then set PAGESIZE to 40. In this case,
Oracle OLAP sets LINESLEFT to 40 for the file which ensures that the first line of
output to the file triggers a new page when PAGING is set to YES.

Chapter 5
LINESLEFT

5-52

When you use an OUTFILE statement with the EOF keyword to redirect output to the
default outfile, LINESLEFT contains the value that it last held for the default outfile.

Sending LINESLEFT in Output

When you produce output that contains the value of LINESLEFT, the lines that contain
this value are never included in the value recorded for LINESLEFT.

Examples

Example 5-47 Including a Footnote

In a report, you want a one-line footnote preceded by two blank lines at the bottom of a
page. Use the following statements to generate the footnote when three lines remain
on the page.

IF LINESLEFT EQ 3
 THEN DO
 BLANK 2
 ROW W 50 'Subject To Change Without Notice.'
 DOEND

LOCK_LANGUAGE_DIMS
The LOCK_LANGUAGE_DIMS option specifies if the status of language dimension
can be changed.

See Also:

"Working with Language Dimension Status"
in $DEFAULT_LANGUAGE, $DEFAULT_LANGUAGE property,
SESSION_NLS_LANGUAGE option, and STATIC_SESSION_LANGUAGE
option.

Data Type

BOOLEAN

Syntax

LOCK_LANGUAGE_DIMS= TRUE | FALSE

Parameters

TRUE
Specifies that Oracle OLAP returns an error if a LIMIT statement tries to limit the
status of a language dimension.
When a program changes the value the LOCK_LANGUAGE_DIMS option from
FALSE to TRUE, Oracle OLAP resets the status of the language dimension in any
attached analytic workspace according to the value of the
SESSION_NLS_LANGUAGE option.

Chapter 5
LOCK_LANGUAGE_DIMS

5-53

FALSE
Sets the status of the language dimension to ALL, and specifies that programs can
modify the status of the language dimension using LIMIT.
When a program changes the value the LOCK_LANGUAGE_DIMS option from TRUE
to FALSE, Oracle OLAP resets the status of the language dimension in any attached
analytic workspace to ALL.

Examples

Example 5-48 Explicitly Limiting a Language Dimension

Assume that your analytic workspace contains a language dimension named mylangs
that has the following definition and values.

DEFINE MYLANGS DIMENSION TEXT
PROPERTY '$DEFAULT_LANGUAGE' -
'AMERICAN'

MYLANGS

FRENCH
AMERICAN

Assume also, as shown by the following report, that when you attach the analytic
workspace that the status of mylangs is American.

REPORT mylangs

MYLANGS

AMERICAN

As the following code illustrates, you can explicitly change the status of mylangs to
French using LIMIT if you first set the value of LOCK_LANGUAGE_DIMS to FALSE.
You cannot use LIMIT against a language dimension when the value of
LOCK_LANGUAGE_DIMS has its default value of TRUE.

" Try to LIMIT mylangs

LIMIT mylangs to 'FRENCH'
ORA-33558: The status or contents of the MYAW3!MYLANGS dimension cannot be changed
while the LOCK_LANGUAGE_DIMS option is set to yes.

" Got an error
SHOW LOCK_LANGUAGE_DIMS
TRUE

" Got the error because LOCK_LANGUAGE_DIMS was TRUE
"Change LOCK_LANGUAGE_DIMS to FALSE
LOCK_LANGUAGE_DIMS = FALSE

" Try to LIMIT mylangs again

LIMIT mylangs TO 'FRENCH'

" Verify if the LIMIT worked. It did
REPORT mylangs
MYLANGS

Chapter 5
LOCK_LANGUAGE_DIMS

5-54

FRENCH

" Then relock the language
LOCK_LANGUAGE_DIMS = TRUE

LSIZE
The LSIZE option defines the line size within which the STDHDR program centers the
standard header. LSIZE can be set in the initialization section of a report program.

Data Type

INTEGER

Syntax

LSIZE = n

Parameters

n
An INTEGER expression that specifies the line size within which the STDHDR program
centers the standard header, or the maximum line size for output from a HEADING
statement. The default is 80 characters for a line.
The maximum width of any line in a report, including a heading line, is 4,000
characters. Therefore, it generally makes sense to set LSIZE to a value of 4000 or
less.

Usage Notes

Centering Report Segments

Because STDHDR centers the running page heading within the width of LSIZE, you
can use it with LSIZE to center parts of your report. (Start by setting LSIZE to the width
of the longest line in your report.)

Creating Centered Headings

You can use LSIZE in centering your own headings for each page or at the beginning
of a section. Start by setting LSIZE to the width of your line. Then use a HEADING
statement with a WIDTH of LSIZE and the keyword CENTER before the text of your
heading. See Example 5-49.

Setting LSIZE for a File

To set LSIZE for a file, first make the file your current outfile by specifying its name in
an OUTFILE statement, then set LSIZE to the desired value. The new value remains
in effect until you reset it or until you use an OUTFILE statement to direct output to a
different outfile. When you direct output to a different outfile, LSIZE returns to its
default value of 80 for the file.

When you set LSIZE for the default outfile, the new value remains in effect until you
reset it, regardless of intervening OUTFILE commands that send output to a file. That
is, the value of LSIZE is automatically saved for the default outfile.

Chapter 5
LSIZE

5-55

Examples

Example 5-49 Centering a Heading

Suppose you design a quarterly sales report to have a short line width of 50 characters
so that readers have plenty of room to make notes in the margins. To center your
headings, include the following lines near the beginning of your report program.

PAGEPRG = 'stdhdr'
LSIZE = 50
PAGING = YES
PAGE
HEADING WIDTH LSIZE CENTER 'Quarterly Sales'

The following output is produced at the beginning of the report.

96/05/13 15:05:16 PAGE 1

 Quarterly Sales

MAXFETCH
The MAXFETCH option sets an upper limit on the size of a data block generated by a
FETCH statement specified in the OLAP_command parameter of the OLAP_TABLE
function.

See Also:

For more information on using FETCH statements, see FETCH command. For
more information on The OLAP_TABLE function, see Oracle OLAP DML
Reference.

Return Value

INTEGER

Syntax

MAXFETCH = integer-expression

Parameters

integer-expression
An INTEGER expression representing the maximum size in bytes of a data block
generated by FETCH. The minimum value for MAXFETCH is 1K (approximately 1,000
bytes), and the maximum value is 2GB (approximately 2,000,000,000 bytes). The
default value of MAXFETCH is 256K.

Usage Notes

Improving Performance of Queries Using OLAP_TABLE

The setting of MAXFETCH can effect the performance of queries using the OLAP_TABLE
function. Large queries with joins of OLAP_TABLE function may run faster with higher

Chapter 5
MAXFETCH

5-56

settings. However, larger settings use more memory which can cause slower
performance when there are multiple users. The setting of MAXFETCH does not affect
a SELECT using only one OLAP_TABLE function.

MAXFETCH can cause a FETCH error

When FETCH cannot package a data block within the size limit set by MAXFETCH, it
produces an error, and no data is returned to the client. By setting MAXFETCH, you
can produce an error, rather than run out of memory, when you attempt to fetch too
much data.

Examples

Limiting Data Blocks to 4K

The following statement limits the size of data blocks to 4K.

 MAXFETCH = 4096

MODDAMP
The MODDAMP option specifies a weighting factor that damps out oscillations
between iterations when you use the Gauss-Seidel method for solving simultaneous
equations in a model. MODDAMP can allow the solution of models that would
otherwise never converge because the oscillation between equations is stable. In
these cases, the oscillations never decay without damping.

With the Gauss-Seidel method, Oracle OLAP tests each model equation for
convergence or divergence in each iteration over a block of simultaneous equations.
The tests are made by comparing the results of the current iteration to the results from
the previous iteration. When MODDAMP specifies a weighting factor that is greater
than zero, the value that Oracle OLAP tests and stores after each iteration is a
weighted average of the current and previous results. For equations that oscillate
between iterations, you can therefore use MODDAMP to damp out the oscillations and
either prevent divergence or speed up the convergence of the equations.

Data Type

DECIMAL

Syntax

MODDAMP = {n|0.00}

Parameters

n
A decimal value, greater than or equal to zero and less than one, that specifies the
weighting factor. The closer MODDAMP is to 0.00, the more weight is given to the
value from the current iteration. The default value is 0.00, which gives full weight to
the current iteration.
When MODDAMP is greater than zero, Oracle OLAP calculates the weighted average
for the current iteration as follows.

calcvalue * (1 - MODDAMP) + weightavg

where:

Chapter 5
MODDAMP

5-57

• calcvalue is the value calculated from the model equation in the current
iteration.

• weightavg is the weighted average calculated in the previous iteration.

See "Stored Weighted Average".

Usage Notes

Specifying the Solution Method

The MODDAMP option is used only with the Gauss-Seidel method for solving
simultaneous equations. The MODSIMULTYPE option determines the solution method
that is being used. The possible settings for MODSIMULTYPE are GAUSS, for the
Gauss-Seidel method, and AITKENS, for the Aitkens delta-squared method.

Effect of MODDAMP on Convergence Speed

MODDAMP is used in calculating the results of all model equations in every
simultaneous block, whether they oscillate between iterations or not. For equations
that do not oscillate, convergence is slowed down when the value of MODDAMP is
greater than zero. Therefore, when your model contains some equations that oscillate
and some that do not, you might be able to speed up overall convergence by setting
MODDAMP to a small nonzero value, such as 0.20. A small nonzero value slows down
the convergence of non-oscillating equations only slightly, while speeding up the
convergence of oscillating equations.

Stored Weighted Average

When the model equation does not converge or diverge on the current iteration, the
weighted average calculated in the current iteration is stored. In the next iteration,
Oracle OLAP uses this stored average as weightavg (that is, the weighted average
calculated in the previous iteration) in the formula for the weighted average.

In the first iteration over a block, Oracle OLAP uses the starting value of the target
variable (or dimension value) as the weightavg (that is, the weighted average
calculated in the previous iteration).

Iteration Results Compared

In tests for convergence and divergence in each iteration, Oracle OLAP compares the
results of the current iteration to the results from the previous iteration. When
MODDAMP is greater than zero, Oracle OLAP tests a comparison value that is
calculated as follows.

(weightavg - weightavg) / (weightavg PLUS MODGAMMA)

where weightavg is the weighted average calculated in the previous iteration

For an explanation of the test for convergence, see the MODTOLERANCE option. For
an explanation of the test for divergence, see the MODOVERFLOW option.

Options to Control the Solution of Simultaneous Blocks

Altering the value of MODDAMP is just one step you can take in attempting to speed
up or attain convergence of a simultaneous block. MODEL lists additional options that
you can use to control the solution of simultaneous blocks and provides information on
running and debugging models.

Chapter 5
MODDAMP

5-58

Examples

Example 5-50 Using the Default MODDAMP Value

The following statements trace a model called income.bud, specify that the Gauss-
Seidel method should be used for solving simultaneous blocks, limit a dimension, and
run the income.bud model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.bud budget

These statements produce the following output.

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.BUD) ITERATION 1: EVALUATION
(MOD= INCOME.BUD) revenue = marketing * 300 - cogs
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 35) = 368.650399101
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 36) = 369.209604252
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 37) = 368.718556135
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 38) = 369.149674626
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 39) = 368.771110244
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 40) = 369.103479583
(MOD= INCOME.BUD) END BLOCK 1

The MODDAMP option is set to its default value of 0.00. The equation for the Revenue
line item converged in 40 iterations over a block of simultaneous equations. In the
trace lines, you can see the results that were calculated for the Revenue line item in
the final 6 iterations.

Example 5-51 Setting MODDAMP to Speed Up the Convergence of a Model

The following statements change the value of MODDAMP and run the income.bud
model.

MODDAMP = 0.2
income.bud budget

These statements produce the following output.

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.BUD) ITERATION 1: EVALUATION
(MOD= INCOME.BUD) revenue = marketing * 300 - cogs
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 1) = 276.200000000
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 2) = 416.187139753
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 3) = 368.021098186
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 4) = 367.209906847
 ...
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 5) = 369.271224267
 ...

Chapter 5
MODDAMP

5-59

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH 'JAN97' ITER 6) = 368.965397407
(MOD= INCOME.BUD) END BLOCK 1

In "Example 5-50", the equation for the Revenue line item converged in 40 iterations.
With MODDAMP set to 0.2 in the current example, the same equation converged in
just 6 iterations.

MODERROR
The MODERROR option determines the action that Oracle OLAP takes when a block
of simultaneous equations in a model cannot be solved within a specified number of
iterations.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks

Data Type

ID

Syntax

MODERROR = {'STOP'|'CONTINUE'}

Parameters

'STOP'
(Default) Oracle OLAP sends an error message to the current outfile and stops
executing the model.

'CONTINUE'
Oracle OLAP sends a warning message to the current outfile, stops executing the
current block, and resumes execution at the next block in the model.

Usage Notes

Block-Solution Failure

When every equation in a simultaneous block passes a convergence test, the block is
considered solved. When any equation diverges or fails to converge within a specified
number of iterations, the solution of the block fails and an error occurs. MODERROR
controls the action that Oracle OLAP takes when an error occurs.

Attaining Convergence for a Simultaneous Block in a Model

When an error occurs, you might be able to attain convergence for the block by
changing the value of one or more options that control the solution of simultaneous
blocks. For example, you can increase the number of iterations that is attempted or
you can change the criteria used in testing for convergence and divergence.

Using 'STOP'

Chapter 5
MODERROR

5-60

When MODERROR is set to STOP and execution of the model halts because of an
error, you can run the MODEL.XEQRPT program to produce a report about the
execution of the model. The report specifies the block where the solution failed and
shows the values of the model options that were used in solving simultaneous blocks.

Using 'CONTINUE'

When MODERROR is set to CONTINUE and one block in the model is a simultaneous
block that either diverges or fails to converge, Oracle OLAP executes any remaining
blocks in the model.

Moreover, Oracle OLAP executes the model for the remaining values in the status of
any additional dimensions of the solution variable that are not dimensions of the
model. In this case, when you run the MODEL.XEQRPT program when Oracle OLAP
finishes executing the model, you see a report on the solution for the final values of the
additional dimensions.

When the simultaneous blocks in the model converged when the model was executed
for the final values of the additional dimensions, then MODEL.XEQRPT reports that the
blocks were solved, even though an earlier execution of the model for another
dimension value might have failed. When you want to see the MODEL.XEQRPT for the
dimension values where the failure occurred, you can set MODERROR to STOP and
rerun the model.

Examples

Example 5-52 Debugging a Model

This example assumes that you are connected through OLAP Worksheet and enter
the following statements in the Command Input window. The statements set
MODERROR to DEBUG so that you can debug the myModel model (which contains a
block of simultaneous equations) when the simultaneous block fails to converge.

MODERROR = 'DEBUG'
myModel actual

When the simultaneous block fails to converge, you can type an Oracle OLAP or
debugger command in the Command Input window in OLAP Worksheet. Because the
solution variable, actual, is dimensioned by division, you might want to display the
current value of division.

SHOW division
Camping

MODGAMMA
The MODGAMMA option specifies a value to use in testing how much an equation in a
simultaneous block of a model is changing between iterations. MODGAMMA controls
the degree to which the test compares the absolute amount of the change between
iterations versus the proportional change. MODGAMMA is especially important in
testing equations that result in very small values.

Chapter 5
MODGAMMA

5-61

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks.

Data Type

INTEGER

Syntax

MODGAMMA = {n|1}

Parameters

n
An INTEGER value to use in testing for convergence and divergence. As Oracle OLAP
calculates each equation in a simultaneous block, it constructs a comparison value
that is based on the results of the equation for the current iteration and the previous
iteration. When the comparison value passes a tolerance test, the equation is
considered to have converged. When the comparison value meets an overflow test,
the equation is considered to have diverged.
The comparison value that is tested is as follows.

(thisResult - prevResult) DIVIDED BY (prevResult PLUS MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration.
Oracle OLAP calculates the absolute value of the enclosed expression. The default
value of MODGAMMA is 1.

Usage Notes

Testing Convergence

In the test for convergence, the MODTOLERANCE option determines how closely the
results of an equation must match between successive iterations. With the default
value of 3 for MODTOLERANCE, the equation is considered to have converged when
the comparison value is less than 0.001.

Testing Divergence

In the test for divergence, the MODOVERFLOW option determines how dissimilar the
results of an equation must be in successive iterations. With the default value of 3 for
MODOVERFLOW, the equation is considered to have diverged when the comparison
value is greater than 1000.

Comparison Value

The comparison value that Oracle OLAP evaluates in tests of convergence and
divergence is fundamentally a proportional value. It expresses the change between
iterations as a proportion of the previous results. In the test for convergence, the
change between iterations must be small in proportion to the previous results. In the
test for divergence, the change between iterations must be large in proportion to the
previous results. By testing a proportional value, rather than testing the absolute

Chapter 5
MODGAMMA

5-62

amount of change, Oracle OLAP can apply the same test criteria to all equations,
regardless of the magnitude of the equation results.

However, the comparison value that Oracle OLAP tests is not strictly proportional.
When the results of an equation are very close to zero, the denominator of a strictly
proportional comparison value would also be very close to zero, and thus the
comparison value itself would generally be large. Therefore, the test for convergence
would be difficult to satisfy, while the test for divergence would be easy to meet. To
solve this problem, Oracle OLAP adds the value of MODGAMMA to the denominator
of the comparison value. When the default value of 1 is used for MODGAMMA, the
effect of MODGAMMA is as follows:

• When the equation results are close to zero, the denominator is close to one and
the test is essentially a test of the absolute change between iterations.

• When the equation results are very large, the effect of adding MODGAMMA to the
denominator is negligible, and the test is close to being a strictly proportional test.

Controlling Test Sensitivity

For equation values close to zero, you can control the sensitivity to the tests for
convergence and divergence by changing the value of MODGAMMA. When equation
values are very small, you essentially scale the changes in model values between
iterations when you change the value of MODGAMMA. For example, when you
change MODGAMMA from 1 to 2, the comparison value is essentially cut in half. As a
consequence, you reduce the likelihood that divergence occurs.

Ways to Increase Speed of Convergence of Model Equations

The default value of MODGAMMA is appropriate in most situations. When you
increase the value of MODGAMMA, the model equations converge more quickly, but
the results are less precise. The smaller the equation value, the more pronounced is
the effect of increasing MODGAMMA; convergence is attained relatively more quickly
for small model values, while more precision is lost.

You can also force the simultaneous blocks of a model to converge more quickly by
decreasing the value of MODTOLERANCE and thereby relaxing the test for
convergence. However, when you do this, you sacrifice the precision of all the results,
not just the results of equations with small values.

Therefore, when a model contains some equations with large values and some
equations with very small values, it might be preferable to increase MODGAMMA
rather than decreasing MODTOLERANCE. By increasing MODGAMMA, you might be
able to force equations with small values to converge more quickly while retaining the
precision of equations with large values.

Examples

Example 5-53 Using the Default MODGAMMA Value

The following statements specify a trace for a model called income.bud, specify that the
Gauss-Seidel method should be used for solving simultaneous blocks, limit a
dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.bud budget

These statements produce the following output.

Chapter 5
MODGAMMA

5-63

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 16) = 0.026243533
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 17) = 0.024054312
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 18) = 0.025788293
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 19) = 0.024390642
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 20) = 0.025501664
 ...
(MOD= INCOME.BUD) BUDGET (LINE NET.INCOME MONTH 'JAN97' ITER 21) = 0.024608562

In the trace, you can see the results that were calculated for the NET.INCOME line
item in the final six iterations over a block of simultaneous equations.

The value of MODTOLERANCE is its default value of 3. Consequently, for an equation
to pass the convergence test, its comparison value must be less than .001.

MODGAMMA is set to its default value of 1. The equation for the NET.INCOME line
item passed the convergence test in the twenty-first iteration. The comparison value
for Net.Income in the twenty-first iteration was calculated as follows.

(0.024608562967 - 0.025501664970 = 0.00087) / (0.025501664970 + 1)

Example 5-54 Setting MODGAMMA to Speed up the Convergence of a Model

The following statements change the MODGAMMA setting and run the income.bud
model.

MODGAMMA = 2
income.bud budget

With MODGAMMA set to 2, the equation for Net.Income converges in the eighteenth
iteration. The comparison value for Net.Income in the eighteenth iteration is calculated
as follows.

(0.025788293304 - 0.024054312748 = 0.00086) / (0.024054312748 + 2)

MODINPUTORDER
The MODINPUTORDER option controls whether the equations in a simultaneous
block of a model are executed in the order in which you place them or in an order
determined by the model compiler. MODINPUTORDER has no effect on the order of
equations in simple blocks and step blocks.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks.

Data Type

BOOLEAN

Chapter 5
MODINPUTORDER

5-64

Syntax

MODINPUTORDER = {YES|NO}

Parameters

YES
The equations in a simultaneous block of a model are executed in the order in which
they appear in the model.

NO
(Default) The equations in a simultaneous block are executed in an order determined
by the model compiler.

Examples

Example 5-55 Using the Default Order

The following statements define the income.calc model.

DEFINE income.calc MODEL
MODEL
DIMENSION line month
Net.Income = Opr.Income - Taxes
Opr.Income = Gross.Margin - TOTAL(Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)
Gross.Margin = Revenue - Cogs
END

The following statements compile the model and produce a compilation report using
the MODEL.COMPRPT program.

COMPILE income.calc
MODEL.COMPRPT income.calc

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>
 BLOCK 1 (SIMPLE)
INCOME.CALC 5: gross.margin = revenue - cogs
 BLOCK 2 (SIMULTANEOUS <MONTH>)
INCOME.CALC 4: marketing = lag(opr.income, 1, month)
INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)
 END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes
 END BLOCK 1

When you compile income.calc with MODINPUTORDER set to its default value of NO,
you can see that the compiler reverses the order of the equations in the simultaneous
block.

Example 5-56 Changing the MODINPUT Value

The following statements set the value of MODINPUTORDER to YES, compile the
model, and produce a compilation report.

MODINPUTORDER = YES
COMPILE income.calc
MODEL.COMPRPT income.calc

Chapter 5
MODINPUTORDER

5-65

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>
 BLOCK 1 (SIMPLE)
INCOME.CALC 5: gross.margin = revenue - cogs
 BLOCK 2 (SIMULTANEOUS <MONTH>)
INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)
INCOME.CALC 4: marketing = lag(opr.income, 1, month)
 END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes
 END BLOCK 1

You can see that the compiler leaves the simultaneous equations in the order in which
you placed them.

MODMAXITERS
The MODMAXITERS option determines the maximum number of iterations Oracle
OLAP performs in attempting to solve a block of simultaneous equations in a model.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks, and

Data Type

INTEGER

Syntax

MODMAXITERS = {n|50}

Parameters

n
A positive INTEGER value that indicates the maximum number of iterations Oracle
OLAP should perform in attempting to solve a simultaneous block. The default is 50.

Usage Notes

Reporting Model Execution Results

When any equation in a simultaneous block diverges or fails to converge within the
number of iterations specified by MODMAXITERS, the solution of the block fails and
an error occurs. You can use the MODEL.XEQRPT program to produce a report on
the results of the model's execution. The report indicates whether a simultaneous
block diverged or failed to converge. When a block failed to converge, you can
experiment with increasing the value of MODMAXITERS to see if convergence can be
attained.

Chapter 5
MODMAXITERS

5-66

Examples

Example 5-57 Model with MODMAXITERS

Suppose a model named MYMODEL contains a block of simultaneous equations that
failed to converge within 50 iterations. The following statements increase the value of
MODMAXITERS and run the model again.

MODMAXITERS = 100
myModel actual

MODOVERFLOW
The MODOVERFLOW option is used in testing whether any equation in a
simultaneous block of a model has diverged. MODOVERFLOW determines how
dissimilar the results of an equation must be in successive iterations for the equation
to be considered to have diverged.

Note:

"Model Options" for a list of all of the options that control the solution of
simultaneous blocks.

Data Type

INTEGER

Syntax

MODOVERFLOW = {n|3}

Parameters

n
An INTEGER value to use in testing for divergence. As Oracle OLAP calculates each
equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value meets a divergence test, the equation is considered to have
diverged.
The comparison value that is tested is as follows.

(thisResult - prevResult) / (prevResult + MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration
In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of MODGAMMA
is 1.
In the divergence test, Oracle OLAP tests whether the comparison value is greater
than 10 to the power of MODOVERFLOW. The calculation for this test is as follows.

Comparison value > 10**MODOVERFLOW

Chapter 5
MODOVERFLOW

5-67

For the equation to be considered to have diverged, the comparison value must meet
the test described earlier. The default value of MODOVERFLOW is 3. With this
default, the comparison value meets the test when it is greater than 1000.

Usage Notes

Equation Divergence

When an equation diverges, an error occurs. The MODERROR option controls the
action that Oracle OLAP takes when an error occurs.

Faster Divergence During Development

While you are developing a model, you can sometimes save time by using a small
value for MODOVERFLOW. When Oracle OLAP is performing many iterations over a
particular simultaneous block, a smaller value of MODOVERFLOW can cause rapid
divergence of that block. When you set the MODOVERFLOW option to CONTINUE,
execution of the model continues when the divergence occurs, and you can
concentrate on debugging the other blocks in the model. After you have debugged the
model, you can use a larger value for MODOVERFLOW.

Examples

Example 5-58 Using the Default MODOVERFLOW Value

The following statements specify a trace for a model called income.est, limit a
dimension, and run the model.

MODTRACE = YES
LIMIT division TO 'Camping'
income.est budget

These statements produce the following output.

(MOD= INCOME.EST) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.EST) ITERATION 1: EVALUATION
(MOD= INCOME.EST) selling = marketing * 3
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 1) = 3
 ...
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 2) = -997
 ...
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 3) = 6.00902708124
 ...
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 49) = 34.2715693388
 ...
(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH 'JAN97' ITER 50) = -7.22300601861

In the trace, you can see the results that were calculated for the Selling line item in the
first three iterations and the forty-ninth and fiftieth iterations over a block of
simultaneous equations. The block failed to converge after 50 iterations.

The value of MODOVERFLOW is its default value of 3. Consequently, for an equation
to meet the divergence test, its comparison value must be greater than 1000.

Example 5-59 Speeding Up the Divergence

The following statements change the MODOVERFLOW setting and run the income.est
model.

Chapter 5
MODOVERFLOW

5-68

MODOVERFLOW = 2
income.est budget

With MODOVERFLOW set to 2, any comparison value of more than 100 meets the
test for divergence. In this example, the equation for Selling meets the test in the
second iteration. In the second iteration, Oracle OLAP calculates the comparison
value for Selling as follows.

(-997 - 3) / (3 + 1) = 250

Because this comparison value is greater than 100, the equation for Selling diverges
in the second iteration.

MODSIMULTYPE
The MODSIMULTYPE option specifies the method to use for solving simultaneous
blocks in a model.

Note:

"Model Options" for a list of all of the options that control the solution of
simultaneous blocks.

Data Type

ID

Syntax

MODSIMULTYPE = {'AITKENS'|'GAUSS'}

Parameters

'AITKENS'
(Default) Oracle OLAP uses the Aitkens delta-squared solution method. In the first
two of every three iterations over a block of simultaneous equations, the equations
are solved using the values from the previous iteration, and the results are tested for
convergence and divergence. In every third iteration, the results are obtained not by
solving the equations, but by making a next-guess calculation. This calculation uses
the results of the previous three iterations. The results of the guesses are not tested
for convergence and divergence, and the solution always continues to the next
iteration.

'GAUSS'
Oracle OLAP uses the Gauss-Seidel solution method. Equations in a simultaneous
block are solved in each iteration over the block. The results are tested for
convergence and divergence in each iteration.

Usage Notes

Solving Simultaneous Blocks

Chapter 5
MODSIMULTYPE

5-69

Oracle OLAP uses an iterative method to solve the equations in a simultaneous block.
In each iteration, except the next-guess iterations in an Aitkens solution, a comparison
value is calculated from the result of the current iteration and the result of the previous
iteration. When the comparison value falls within a specified tolerance (see the
MODTOLERANCE option), the equation is considered to have converged. When the
comparison value is too great (see the MODOVERFLOW option), the equation is
considered to have diverged and solution of the block ends.

When all equations in a block converge, the block is considered solved. When any
equation diverges or when any equation fails to converge after a specified number of
iterations (see the MODMAXITERS option), solution of the block (and of the model)
fails and Oracle OLAP generates an error.

Next-Guess Calculation

The Aitkens method requires three values to perform a next-guess calculation.
Therefore, in the first three iterations over a simultaneous block, Oracle OLAP solves
the equations. The fourth iteration is a next-guess iteration that uses the results from
the first three iterations in its calculation.

Thereafter, every third iteration is a next-guess iteration that calculates results by
using the previous guess and the equation results from the intervening two iterations.
For example, the seventh iteration makes a next-guess calculation that is based on the
guess from the fourth iteration and the equation results from the fifth and sixth
iterations.

Memory Required

The Aitkens method usually speeds convergence, and it generally produces more
accurate results than the Gauss-Seidel method. However, the Aitkens method requires
more memory because the results of three previous iterations are stored.

In general, use the Aitkens method. Use the Gauss-Seidel method only when limited
memory is a problem on your system.

Handling NA Values When Solving Simultaneous Blocks in a Model

In calculating equation results and making next-guess calculations, Oracle OLAP
observes the setting of the NASKIP2 option. NASKIP2 controls how NA values are
handled when + (plus) and - (minus) operations are performed. The setting of
NASKIP2 is important when you specify a solution variable that contains NA values.
Because the values in the solution variable are used as the initial values in the first
iteration over a simultaneous block, the results of the equations might be NA when
there are NA values in the solution variable. An NA result in the first iteration might also
produce NA results in later iterations. Therefore, to avoid obtaining NA for the results,
you can ensure that the solution variable does not contain NA values or you can set
NASKIP2 to YES before running the model.

Data Type Problems

A simultaneous equation might fail to converge when it assigns data to a variable with
an INTEGER data type or when you specify a solution variable with an INTEGER data
type for a dimension-based model. Oracle OLAP converts the data to decimal values
when it calculates the equation in each iteration, but the results are stored in the
INTEGER variable between iterations which has the effect of rounding the values and
thereby interfering with a progression toward convergence.

Function Problems

Chapter 5
MODSIMULTYPE

5-70

A simultaneous equation might fail to converge when it contains a function that
produces rounded values (such as INSTRB or ROUND) or when it contains a function
that introduces discontinuities in the data (such as MAX or MIN).

Starting-Value Problems

The solution of a simultaneous block is sensitive to starting values. For example, when
a model has a proportional relationship between two model values, then starting
values close to zero inhibits convergence. Consequently, attempt to use starting
values that are reasonable for the equations being solved.

Order of Equations

The solution of a simultaneous block is also sensitive to the order of the equations.
When you compile a model, the model compiler determines an optimal equation order
that is based on the dependencies among the equations.

To force the equations in a simultaneous block to be solved in a particular order, you
can write the equations in the desired order and set the MODINPUTORDER option to
YES before compiling the model. When MODINPUTORDER is YES, the model compiler
leaves the equations in a simultaneous block in the order in which they appear in the
model.

By placing simultaneous equations in a particular order and setting
MODINPUTORDER to YES before compiling the model, you might be able to
encourage convergence in some models. In general, however, it is preferable to rely
on the model compiler to order the equations.

Producing an Execution Report

After running a model, you can use the MODEL.XEQRPT program to produce a report
about the execution of the model.

Examples

Example 5-60 Economizing on Memory Requirements

When a model named budget98 is a complex model that iterates over a large number
of dimension values in a simultaneous block, you can economize on the memory
requirements of the model solution by using the Gauss-Seidel method.

The following statements specify the Gauss-Seidel method and run the model.

MODSIMULTYPE = 'GAUSS'
budget98 budget

MODTOLERANCE
The MODTOLERANCE option is used in testing whether each equation in a
simultaneous block of a model has converged. MODTOLERANCE determines how
closely the results of an equation must match between successive iterations for the
equation to be considered to have converged.

Data Type

INTEGER

Chapter 5
MODTOLERANCE

5-71

Syntax

MODTOLERANCE = {n|3}

Parameters

n
An INTEGER value to use in testing for convergence. As Oracle OLAP calculates each
equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value passes a tolerance test, the equation is considered to have
converged.
The comparison value that is tested is as follows.

(thisResult - prevResult) / (prevResult+ MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration
In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of MODGAMMA
is 1.
In the tolerance test, Oracle OLAP tests whether the comparison value is less than 10
to the negative power of MODTOLERANCE. The calculation for this test is as follows.

Comparison value < 10**-MODTOLERANCE

An equivalent way of writing this calculation is as follows.

Comparison value < (1 / (10**MODTOLERANCE))

For the equation to be considered to have converged, the comparison value must
meet the test described earlier. The default value of MODTOLERANCE is 3. With this
default, the comparison value meets the test when it is less than 0.001.

Usage Notes

Failure to Converge

When an equation fails to converge after a specified number of iterations, an error
occurs. The MODMAXITERS option controls the maximum number of iterations that
are attempted. The MODERROR option controls the action that Oracle OLAP takes
when an error occurs.

Precision of Results

Because MODTOLERANCE controls how closely results of an equation must match
between iterations, it therefore controls the precision of the results of the solution. A
small value of MODTOLERANCE results in less precision, while a large value provides
more precision.

Large and Small Values

When a model contains some equations with large values and some equations with
very small values, it might be preferable to increase the value of the MODGAMMA
option rather than decreasing MODTOLERANCE. By increasing MODGAMMA, you

Chapter 5
MODTOLERANCE

5-72

might be able to force equations with small values to converge more quickly while
retaining the precision of equations with large values.

Faster Convergence During Development

While you are developing a model, you might want to use a small value for
MODTOLERANCE. While this gives less precise results, the model equations
converges more quickly. After you have debugged the model, you can increase the
value of MODTOLERANCE and thereby increase the precision of the final results.

Options for Controlling the Solution of Simultaneous Blocks

For a list of all the options that you can use to control the solution of simultaneous
blocks, see "Model Options".

Examples

Example 5-61 Using the Default MODTOLERANCE Value

The following statements specify a trace for a model called income.plan, specify that
the Gauss-Seidel method should be used for solving simultaneous blocks, limit a
dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = 'GAUSS'
LIMIT division TO 'Camping'
income.plan budget

These statements produce the following output.

(MOD= INCOME.PLAN) BLOCK 1: SIMULTANEOUS
(MOD= INCOME.PLAN) ITERATION 1: EVALUATION
(MOD= INCOME.PLAN) marketing = .15 * net.income
(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 1) = 11887.403671736
 ...
(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 6) = 73379.713232251
 ...
(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 7) = 73474.784648631
 ...
(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH 'JAN97' ITER 8) = 73446.025848156
(MOD= INCOME.PLAN) END BLOCK 1

In the trace, you can see the results that were calculated for the Marketing line item in
the final three iterations over a block of simultaneous equations.

MODTOLERANCE is set to its default value of 3. Consequently, for an equation to
pass the convergence test, its comparison value must be less than 0.001. In the
seventh iteration, Oracle OLAP calculates the comparison value for Marketing as
follows.

(73474.784648631100 - 73379.713232251300) / (73379.713232251300 + 1) = 0.0013

This comparison value is greater than 0.001, so it did not pass the test for
convergence.

In the eighth iteration, Oracle OLAP calculated the comparison value as follows.

(73446.025848156700 - 73474.784648631100) /(73474.784648631100 + 1) = 0.0004

Because this comparison value is less than 0.001, it passed the convergence test.

Chapter 5
MODTOLERANCE

5-73

Example 5-62 Setting MODTOLERANCE to Speed Up the Convergence of a
Model

The following statements change the MODTOLERANCE value and run the income.bud
model.

MODTOLERANCE = 2
income.plan budget

With MODTOLERANCE set to 2, any comparison value of less than 0.01 passes the
test for convergence. In this example, the equation for Marketing passes the test in the
seventh iteration.

MODTRACE
The MODTRACE option controls whether each equation in a model is recorded in a
file during execution of the model. MODTRACE is used primarily as a debugging tool
to uncover problems by tracing the execution of a model.

Tip:

The INFO function lets you obtain specific items of information about the
structure of the compiled model and the solution status of a model you have
run. See INFO (MODEL).

Data Type

BOOLEAN

Syntax

MODTRACE = {YES|NO}

Parameters

YES
Oracle OLAP sends the text of each model equation to the current outfile before
calculating the model equation, and then sends the results of the calculation to the
current outfile.
When you have used a DBGOUTFILE statement to specify a debugging file, Oracle
OLAP sends MODTRACE output to the debugging file instead of the current outfile.

NO
(Default) Oracle OLAP does not send the text of model equations and results to a file
while a model executes.

Usage Notes

Previewing the Solution Order

MODTRACE sends the equations of a model to the current outfile in the order in which
they are being solved. Before you run the model, you might want to use the
MODEL.COMPRPT program to get a preview of the solution order. A preview can be
especially helpful when the model is large and complex. The MODEL.COMPRPT program,
which you can run after compiling a model, produces a report that shows how the

Chapter 5
MODTRACE

5-74

compiler has organized the model equations into blocks and the order in which the
blocks and equations are solved.

Understanding Trace Information

MODTRACE shows the name of the current model on each line of the trace. The trace
includes the following types of lines.

• Block. A block line gives the block number and block type of the block that is about
to be executed. The type of block can be simple, step-forward, step-backward, or
simultaneous. For a step-forward or step-backward block, the block line specifies
the dimension being stepped over. For a simultaneous block with a cross-
dimensional dependency, the block line specifies the dimensions involved in the
dependency. See MODEL command for information on blocks in a model.

• Iteration. These lines occur in simultaneous blocks and specify the number of the
iteration that is about to be performed for the current block. When you are using
the Aitkens solution method, the next-guess iterations are identified. (The
MODSIMULTYPE option determines the solution method being used.)

• Equation. The equation that is about to be calculated.

• Results. A results line follows each equation line and shows the results assigned
by the equation. It shows the variable to which the results were assigned and the
current value of each model dimension. In a simultaneous block, it also shows the
current iteration number. For example, when actual is the solution variable and the
model dimensions are line and month, a results line in a simultaneous block might
look like the following one.

(MOD= INCOME.CALC) ACTUAL (LINE OPR.INCOME MONTH 'JAN96'
 ITER 1) = 108.9600000

Using MODTRACE with Dimension-Based Equations

When you run a model that contains dimension-based equations, Oracle OLAP
automatically loops over all the dimensions of the solution variable. In the trace, the
results lines show the current value of each dimension listed in a DIMENSION
statement, but they do not show the current values of extra dimensions that are not
listed in DIMENSION statement. See DIMENSION (in models) for more information
about using DIMENSION statements.

Thus, when the model dimensions are line and month, and when the solution variable
is dimensioned by line, month, and division, the current value of division is not shown
in the results lines. Oracle OLAP executes the entire model for the first value in the
status of division, then for the second value in the status, and so on.

When you run a model that assigns values to variables, Oracle OLAP automatically
loops over all the dimensions (or bases of a composite) of those variables. In this
case, the current value of each of the variable's dimensions is shown in the trace.

Examples

Example 5-63 Debugging a Model with MODTRACE

The following statements define a model named income.budget.

DEFINE income.budget MODEL
LD Model for estimating budget items
MODEL
DIMENSION line month

Chapter 5
MODTRACE

5-75

Opr.Income = Gross.Margin - Marketing
Gross.Margin = Revenue - Cogs
Revenue = LAG(Revenue, 1, month) * 1.02
Cogs = LAG(Cogs, 1, month) * 1.01
Marketing = LAG(Opr.Income, 1, month) * 0.20
END

This model estimates budget line items on an income statement. The model equations
are based on a line dimension. The following statements compile the model and run
the MODEL.COMPRPT program.

COMPILE income.budget
MODEL.COMPRPT income.budget

The MODEL.COMPRPT statement produces the following compilation report.

MODEL INCOME.BUDGET <LINE MONTH>
 BLOCK 1 (SIMPLE)
INCOME.BUDGET 4: revenue = lag(revenue, 1, month) * 1.02
INCOME.BUDGET 5: cogs = lag(cogs, 1, month) * 1.01
INCOME.BUDGET 3: gross.margin = revenue - cogs
 BLOCK 2 (STEP-FORWARD <MONTH>)
INCOME.BUDGET 6: marketing = lag(opr.income, 1, month) * 0.20
INCOME.BUDGET 2: opr.income = gross.margin - marketing
 END BLOCK 2
 END BLOCK 1

When you want to debug this model, you can trace its execution, line by line, by
turning on MODTRACE before running the model.

The following statements limit dimensions, specify tracing, and run the model.

LIMIT month TO 'Jan97' TO 'Mar97'
LIMIT division TO 'Camping'
MODTRACE = YES
income.budget budget

These statements produce the following line-by-line results.

(MOD= INCOME.BUDGET) BLOCK 1: SIMPLE
(MOD= INCOME.BUDGET) revenue = lag(revenue, 1, month) * 1.02
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'JAN97') = 744491.1966
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'FEB97') = 759381.020532
(MOD= INCOME.BUDGET) BUDGET (LINE REVENUE MONTH 'MAR97') = 774568.64094264
(MOD= INCOME.BUDGET) cogs = lag(cogs, 1, month) * 1.01
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'JAN97') = 382386.2323
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'FEB97') = 386210.094623
(MOD= INCOME.BUDGET) BUDGET (LINE COGS MONTH 'MAR97') = 390072.19556923
(MOD= INCOME.BUDGET) gross.margin = revenue - cogs
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'JAN97') = 362104.9643
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'FEB97') = 373170.925909
(MOD= INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH 'MAR97') = 384496.44537341
(MOD= INCOME.BUDGET) BLOCK 2 STEP-FORWARD <MONTH>
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'JAN97') = 39938.192
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'JAN97') = 322166.7723
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'FEB97') = 64433.35446
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'FEB97') = 308737.571449
(MOD= INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20

Chapter 5
MODTRACE

5-76

(MOD= INCOME.BUDGET) BUDGET (LINE MARKETING MONTH 'MAR97') = 61747.5142898
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD= INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH 'MAR97') = 322748.93108361
(MOD= INCOME.BUDGET) END BLOCK 2
(MOD= INCOME.BUDGET) END BLOCK 1

In Block 1, which is a simple block, Oracle OLAP solved the equations one at a time,
looping over the three values in the status of month as it solved each equation. In Block
2, which is a step-forward block over the month dimension, Oracle OLAP stepped over
the values in the status of month, solving all the equations in the block for each month
in turn.

MONTHABBRLEN
The MONTHABBRLEN option specifies the number of characters to use for
abbreviations of month names that are stored in the MONTHNAMES option. You can
specify how many characters to use for abbreviating particular month names when you
specify the <MT>, <MTXT>, and <MTXTL> formats with the DATEFORMAToption or a VNF
(value name format) specified for a dimension of type dimensions of type DAY, WEEK,
MONTH, QUARTER, or YEAR.

Data Type

TEXT

Syntax

MONTHABBRLEN = specification [;|, specification]...

where specification is a text expression that has the following form:

 startpos [- endpos] : length

Parameters

startpos [-endpos]
Numbers that represent the first and last months whose abbreviation length is defined
by length. These numeric positions apply to the corresponding lines of text in the
MONTHNAMES option. You can specify these ranges of values in reverse order,
endpos [-startpos], if you prefer.
The MONTHNAMES option can have more than 12 lines, so you can specify startpos
and endpos greater than 12 in the setting of MONTHABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
MONTHNAMES option, MONTHABBRLEN has no text values to abbreviate for that
range. When you later change your month names list so that startpos is valid, the
specified abbreviation is applied.

length
A number that specifies the length in characters (not bytes) of abbreviated month
names. When you do not specify an abbreviation length for a given position in the
MONTHNAMES option, or when you explicitly set a given position to zero, the default
abbreviation is used. The default abbreviations are one character for <MT> and three
characters for <MTXT> and <MTXTL>. Abbreviations are never used when you have
designated the full name specifications <MTEXT> and <MTEXTL>.

Chapter 5
MONTHABBRLEN

5-77

Usage Notes

Ambiguous Month Names

You can use MONTHABBRLEN to interpret ambiguous names, for example, whether A
stands for April or August. When the MONTHABBRLEN for April was 1 and for August
was 2, then A would always match April, and it would require at least Au to match
August. This interpretation does not depend on the order of April and August in the
year; it would work the same way when the two months were reversed. If, on the other
hand, the MONTHABBRLEN for each of these was 2, then A would not match either
one, and you would have to enter at least Ap or Au to get a match.

Examples

Example 5-64 Specifying Month Abbreviations

The following MONTHABBRLEN setting specifies that the first 10 months of the year
are abbreviated to one character and the last 2 months are abbreviated to two
characters.

MONTHABBRLEN = '1-10:1, 11-12:2'
SHOW CONVERT ('2 August 2005' DATE)

These statements product the following result, with August abbreviated to the letter A.

02A05

MONTHNAMES
The MONTHNAMES option holds the list of valid names for months that is used in
handling values with a DATE-only data type and values of dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR. The list of names is used to interpret dates
that are entered and to format dates that are displayed or converted to text values.

The MONTHNAMES list is used when you enter a date that includes a month name or
abbreviation. See the DATEFORMAT option for a discussion of methods for entering
DATE-only values. The MONTHNAMES list is also used when you display or convert a
date using the <MT>, <MTXT>, <MTXTL>, <MTEXT>, or <MTEXTL> formats. These formats are
specified in the DATEFORMAT option. When you have multiple sets of month names,
Oracle OLAP chooses the synonym whose number of characters and capitalization
pattern best match the DATEFORMAT specification.

See Also:

MONTHABBRLEN option

Data Type

TEXT

Syntax

MONTHNAMES = name-list

Chapter 5
MONTHNAMES

5-78

Parameters

name-list
A multiline text expression that lists the names of the 12 months of the year. Each
month name occupies a separate line. Regardless of which month you are treating as
the first month of the year, the list must begin with the name for January. The default
value is the list of English month names, all in capital letters.
You can include more than 1 set of 12 names in your list. Any name in the list is
considered a valid name for input. The thirteenth name is a synonym for the first
name, the fourteenth name is a synonym for the second name, and so on.

Examples

Example 5-65 Specifying Two Sets of Month Names

The following statement creates two sets of month names, one in uppercase English
and the second in lowercase French.

MONTHNAMES = -
'JANUARY -
...
DECEMBER -
janvier -
...
decembre'

Example 5-66 Specifying English Month Names

The following statements define a DATE-only variable, assign a value to that variable,
assign a setting to DATEFORMAT, and send the output to the current outfile. The
DATEFORMAT value includes <MTEXT>, which specifies uppercase, so the English
month names are used.

DEFINE datevar DATE
datevar = '27feb98'
DATEFORMAT = '<MTEXT> <D>, <YYYY>'
SHOW datevar

These statements produce the following output.

FEBRUARY 27, 1998

Example 5-67 Specifying French Month Names

The following statements assign a new setting to DATEFORMAT and send the output
to the current outfile. The DATEFORMAT value includes <MTEXTL>, which specifies
lowercase, so the French month names are used.

DATEFORMAT = 'le <D> <MTEXTL> <YYYY>'
SHOW datevar

These statements produce the following output.

le 27 fevrier 1998

Chapter 5
MONTHNAMES

5-79

MULTIPATHHIER
The MULTIPATHHIER option specifies that a given cell that contains detail data can
have multiple paths into a cell that contains aggregated data. Certain calculations
require this kind of multiple-path aggregation.

Data Type

BOOLEAN

Syntax

MULTIPATHHIER = {YES|NO}

Parameters

YES
Allows a detail data cell to aggregate in multiple paths to the same ancestor cell.

NO
(Default) Disallows a detail data cell to aggregate in multiple paths to the same
ancestor cell.

Usage Notes

When to Use MULTIPATHHIER

The only time you set the MULTIPATHHIER option to YES is when a calculation
requires the use of multiple paths.

Interpreting an XSHIERCK01 Error Message

When you use the AGGREGATE command, dimension hierarchies are automatically
checked for circularity. When MULTIPATHHIER is set to NO, or when the default of NO
has not been changed, then the following error message is displayed when a detail
data cell uses multiple paths to the same aggregate data cell.

ERROR: (XSHIERCK01) One or more loops have been detected
in your hierarchy n over N. The loops include 2 items
(UNDIRECTED: X and Y).

In the preceding error message, X is the name of the detail data cell, and Y is the name
of the ancestor cell into which the detail data cell takes multiple paths to aggregate.
For more information, see Example 5-68.

This error message is displayed because the multiple paths taken by the detail data
cell have been interpreted as a circular hierarchy. When this is a mistake and you did
not intend to create multiple paths, then change the hierarchy. Otherwise, set the
MULTIPATHHIER option to YES.

Examples

Example 5-68 Defining Multiple Paths in a Hierarchy

This example shows how you can define multiple paths in a hierarchy, the error
message that results when you attempt to aggregate data, how to interpret that
message, and how to resolve the problem.

Chapter 5
MULTIPATHHIER

5-80

The following statements create two paths from a detail data cell to an ancestor cell
that contains aggregated data.

DEFINE geog TEXT DIMENSION
DEFINE path INTEGER DIMENSION
DEFINE geog.geog RELATION geog <geog path>
MAINTAIN geog ADD 'A1' 'b1' 'b2' 'Top'
MAINTAIN path ADD 2
geog.geog(geog 'A1' path 1) = 'B1'
geog.geog(geog 'A1' path 2) = 'B2'
geog.geog(geog 'B1' path 1) = 'Top'
geog.geog(geog 'B2' path 1) = 'Top'

First, a geography dimension named geog and a second dimension named path are
defined.

A relation named geog.geog is defined, in which the geography dimension is
dimensioned by itself and the path dimension.

Dimension values named A1, B1, B2, and Top are added to the geog dimension.

Two dimension values are added to the path dimension. Because path was defined
with an INTEGER data type, the dimension values that are automatically assigned to it
are the INTEGER values 1 and 2.

Finally, the hierarchy for the geog dimension is created. The A1 dimension value is the
detail data. The B1 and B2 dimension values are the second level of the hierarchy. The
Top dimension value is the top of the hierarchy.

A1 has two aggregation paths: A1 aggregates into B1, which aggregates into Top; A1
aggregates into B2, which aggregates into Top.

The following statements define a variable named myvar, assign a data value of 1 to its
detail data level (A1), and define an aggmap for that variable.

DEFINE myvar INTEGER VARIABLE <geog>
myvar(geog 'A1') = 1
DEFINE myvar.aggmap <geog>
AGGMAP 'RELATION geog.geog'

An attempt to aggregate myvar generates the following error message.

AGGREGATE myvar USING myvar.aggmap
ERROR: (XSHIERCK01) One or more loops have been detected
in your hierarchy GEOG.GEOG over GEOG. The loops include 2
items (UNDIRECTED: A1 and TOP).

The multiple paths of aggregation that have been created for A1 have been interpreted
as a circular hierarchy, because the MULTIPATHHIER option is currently set to NO.

When you had made a mistake and created these multiple paths by mistake, you
would fix the problem in the hierarchy.

However, in this case, the multiple paths have been created because a calculation
requires them. Therefore, the solution is to set MULTIPATHHIER to YES. Now you can
execute the AGGREGATE command without error.

Chapter 5
MULTIPATHHIER

5-81

NASKIP
The NASKIP option controls whether NA values are considered as input to aggregation
functions.

See Also:

$NATRIGGER property, NASKIP2 option which controls how NA values are
treated with the + (plus) and - (minus) operators, and NASPELL option.

Data Type

BOOLEAN

Syntax

NASKIP = NO|YES

Parameters

NO
(Default) NA values are considered by aggregation functions. When any of the values
being considered are NA, the function returns NA for that value.

YES
NA values are ignored by aggregation functions. Only expressions with actual values
are used in calculations.

Usage Notes

Statements Affected by NASKIP

The following OLAP DML statements are affected by NASKIP.

AGGREGATE command
AGGREGATE function
ANY
AVERAGE
COUNT
CUMSUM
DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD
EVERY
FINTSCHED
FPMTSCHED
IRR
LARGEST
MEDIAN
MOVINGAVERAGE

Chapter 5
NASKIP

5-82

MOVINGMAX
MOVINGMIN
MOVINGTOTAL
NONE
NPV
SMALLEST
STDDEV
TCONVERT
TOTAL
VINTSCHED
VPMTSCHED

Other statements are not affected by the setting of NASKIP, they always ignore NA
values.

Examples

Example 5-69 The Effect of NASKIP on the TOTAL Function

In the demo workspace, the 1997 values for sales are NA. The TOTAL function returns
different results depending on the setting of NASKIP.

The statements

ALLSTAT
NASKIP = YES
SHOW TOTAL(sales)

produce the following result.

63,181,743.50

In contrast, the OLAP DML statements

NASKIP = NO
SHOW TOTAL(sales)

produce the following result.

NA

Example 5-70 The Effect of NASKIP on the MOVINGMIN Function

This example aggregates values for three months: the current month and the two
months before it. The first report of SALES shows the NA values for months in 1997.
When NASKIP is YES, the MOVINGMIN function returns NA only for March 1997
because all the values considered for that month were NA. When NASKIP is NO, the
third statement (REPORT DOWN month sales) shows NA values for January through
March 1997, because at least one value considered by MOVINGMIN for those months
was NA.

LIMIT district TO 'Seattle'
LIMIT month TO 'Jul96' TO 'Mar97'
REPORT DOWN month sales

The preceding statements produce the following report of SALES data.

Chapter 5
NASKIP

5-83

DISTRICT: SEATTLE
 ------------------------SALES-------------------------
 -----------------------PRODUCT------------------------
MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ---------
Jul96 123,700.17 157,274.03 60,198.52 78,305.97 78,019.87
Aug96 120,650.72 128,660.89 45,046.71 66,853.26 83,347.55
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 99,464.05
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,537.58
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

The statements

NASKIP = YES
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for March 1997.

DISTRICT: SEATTLE
 -----------MOVINGMIN(SALES -2, 0, 1, MONTH)-----------
 ---------------------PRODUCT--------------------------
MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ---------
Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Feb97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Mar97 NA NA NA NA NA

The statements

NASKIP = NO
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for January through March 1997.

DISTRICT: SEATTLE
 ----------MOVINGMIN(SALES -2, 0, 1, MONTH)-------------
 ------------------------PRODUCT------------------------
MONTH Tents Canoes Racquets Sportswear Footwear
----- ---------- ---------- ---------- ---------- ----------
Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

Chapter 5
NASKIP

5-84

NASKIP2
The NASKIP2 option controls how NA values are treated in arithmetic operations with
the + (plus) and - (minus) operators. The result is NA when any operand is NA unless
NASKIP2 is set to YES.

See Also:

$NATRIGGER property, NASKIP option, and NASPELL option.

Data Type

BOOLEAN

Syntax

NASKIP2 = YES|NO

Parameters

YES
Zeroes are substituted for NA values in arithmetic operations using the + (plus) and -
(minus) operators. The two special cases of NA + NA and NA - NA both result in NA.

NO
(Default) NA values are treated as NAs in arithmetic operations using the + (plus) and -
(minus) operators. When any of the operands being considered is NA, the arithmetic
operation evaluates to NA.

Usage Notes

Operators in Function Arguments

NASKIP2 is independent of NASKIP. NASKIP2 applies only to arithmetic operations
with the + (plus) and - (minus) operators. NASKIP applies only to aggregation
functions. However, when an expression argument to an aggregation function contains
a+ (plus) and - (minus) operator, the results of the calculation depend on both NASKIP
and NASKIP2. See Example 5-71.

How NASKIP2 Works

The following four lines show four steps in the evaluation of a complex expression that
contains NAs when NASKIP2 is set to YES.

3 * (NA + NA) - 5 * (NA + 3)
 3 * NA - 5 * 3
 NA - 15
 -15

Chapter 5
NASKIP2

5-85

Examples

Example 5-71 Effects of NASKIP and NASKIP2 When an Expression in an
Aggregation Function Contains a Negative Values

In the following examples, INTEGER variables X and Z, dimensioned by the INTEGER
dimension INTDIM, have the values shown in the second and third columns of the
report. The sum of X + Z is given for each combination of NASKIP and NASKIP2
settings, starting with their defaults. The example also shows that when the + (plus)
operator is used in the expression argument to the TOTAL function, the results that
are returned by TOTAL depend on the settings of both NASKIP and NASKIP2.

• NASKIP Set to YES, NASKIP2 Set to NO

In this example, NASKIP is set to YES, which means NA values are ignored by the
TOTAL function. NASKIP2 is set to NO, which means that the result of a + (plus)
operation is NA when any of the operands are NA.

NASKIP = YES
NASKIP2 = NO
COLWIDTH = 5
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following output. With NASKIP2 set to NO, the
expression X + Z evaluates to NA when either X or Z is NA.

INTDIM X Z x + z
------ ----- ----- -----
1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

13

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

18

• NASKIP Set to YES, NASKIP2 Set to YES

In this example, NASKIP is set to YES, which means NA values are ignored by the
TOTAL function. NASKIP2 is set to YES, which means that NA values are ignored by
the + (plus) operator

NASKIP = YES
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim x, z, x + z

Chapter 5
NASKIP2

5-86

These statements produce the following output. With NASKIP2 set to YES, NA
values are ignored when the expression X + Z is evaluated.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 2
2 3 NA 3
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

18

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

18

• NASKIP Set to NO, NASKIP2 Set to YES

In this example, NASKIP is set to NO, which means that when any values
considered by the TOTAL function are NA, TOTAL returns NA. NASKIP2 is set to
YES, which means that NA values are ignored by the + (plus) operator.

NASKIP = NO
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following result.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 2
2 3 NA 3
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

18

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

NA

• NASKIP Set to NO, NASKIP Set to NO

Chapter 5
NASKIP2

5-87

In this example, NASKIP is again set to NO, which means that when any values
considered by the TOTAL function are NA, TOTAL returns NA. NASKIP2 is also set
to NO, which means that the result of a + (plus) operation is NA when any of the
operands are NA.

NASKIP = NO
NASKIP2 = NO
REPORT LEFT W 6 DOWN intdim x, z, x + z

These statements produce the following result.

INTDIM X Z X + Z
------ ----- ----- -----
1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

NA

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(x) + TOTAL(z)

This statement produces the following result.

NA

NASPELL
The NASPELL option controls the spelling that is used for NA values in output.

Data Type

TEXT

Syntax

NASPELL = {'text'|'NA'}

Parameters

text
The spelling to use for any NA value in output. When you specify an expression rather
than a text literal, you can omit the single quotes. The default is NA.

Usage Notes

Setting NASPELL to "0"

Setting NASPELL to the text character 0 (zero) causes NA values to appear as 0.
However, they are still treated as NAs in calculations.

Chapter 5
NASPELL

5-88

Assigning NA Values

NASPELL affects only Oracle OLAP output; it does not affect the way you assign an NA
value. For example, even when you have set NASPELL to NONE, you assign an NA
value as follows.

var1 = NA

$NATRIGGER Takes Precedence over NASPELL

Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NASPELL option. When the $NATRIGGER expression is NA, then the NASPELL option
has an effect.

Examples

Example 5-72 Showing NA Values as "NONE"

Suppose you have a variable called current.month, which has a value of NA whenever
no current month has been specified. In this case, you would like the value to appear
as None rather than NA.

When NASPELL is set to its default value of NA, the OLAP DML statement

SHOW current.month

produces the following output.

NA

In contrast, the OLAP DML statements

NASPELL = 'None'
SHOW current.month

produce the following output.

None

NLS_CALENDAR
The NLS_CALENDAR option specifies the calendar for the session.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_CALENDAR = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Chapter 5
NLS_CALENDAR

5-89

Examples

Example 5-73 Changing Calendar Systems

The following statement sets NLS_CALENDAR to the Thai Buddha calendar.

NLS_CALENDAR = 'THAI BUDDHA'

NLS_CURRENCY
The NLS_CURRENCY option specifies the local currency symbol for the L number
format element for the session. (See the TO_NUMBER function for a description of
number format elements.)

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_CURRENCY = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_DATE_FORMAT
The NLS_DATE_FORMAT option specifies the default format for datetime values.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_DATE_FORMAT = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

See Example 5-74.

Chapter 5
NLS_CURRENCY

5-90

NLS_DATE_LANGUAGE
The NLS_DATE_LANGUAGE option specifies the language for days, months, and
similar language-dependent datetime format elements.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_DATE_LANGUAGE = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

Example 5-74 Setting the Language for Dates

The following statements set the language for dates to Spanish and change the default
date format.

NLS_DATE_LANGUAGE = 'SPANISH'
NLS_DATE_FORMAT = 'Month DD, YYYY'

A SHOW SYSDATE statement now generates the date in Spanish.

Septiembre 08, 2000

NLS_DUAL_CURRENCY
The NLS_DUAL_CURRENCY option specifies a second currency symbol that takes
the place of the letter U in a number format mode and is used primarily to identify the
Euro symbol. (Note that when you want to identify the Euro symbol as the value of
NLS_DUAL_CURRENCY, the instance character set must support that symbol.)

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_DUAL_CURRENCY= option-value

Chapter 5
NLS_DATE_LANGUAGE

5-91

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_ISO_CURRENCY
The NLS_ISO_CURRENCY option specifies the international currency symbol for the
C number format element.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_ISO_CURRENCY = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_LANG
(Read-only) The NLS_LANG option specifies the current language, territory, and
database character set, which are determined by session-wide globalization
parameters.

Data Type

TEXT

Syntax

NLS_LANG

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

Example 5-75 Checking the Current Value of NLS_LANG

A SHOW NLS_LANG statement might produce the following.

AMERICAN_AMERICA.WE8ISO8859P1

Chapter 5
NLS_ISO_CURRENCY

5-92

NLS_LANGUAGE
The NLS_LANGUAGE option specifies the current language for the session. the
setting of this option determines the value of the SESSION_NLS_LANGUAGE option.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_LANGUAGE = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

Example 5-76 Effects of Changing NLS_LANGUAGE

In this example, the NLS_LANG option is initially set to:

AMERICAN_AMERICA.WE8ISO8859P1

The value of YESSPELL is yes.

A change to the language setting:

NLS_LANGUAGE = 'FRENCH'

changes the value of NLS_LANG to

FRENCH_AMERICAN.WE8ISO8859P1

The value of YESSPELL is now oui.

NLS_NUMERIC_CHARACTERS
The NLS_NUMERIC_CHARACTERS option specifies the decimal marker and
thousands group marker for the session. NLS_NUMERIC_CHARACTERS affects the
display of numeric data and the setting of the OLAP DML THOUSANDSCHAR option,
the DECIMALCHAR option, or both.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Chapter 5
NLS_LANGUAGE

5-93

Syntax

NLS_NUMERIC_CHARACTERS = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

Example 5-77 Changing the Decimal Marker to a Comma

The following statement changes the decimal marker to a comma, and the thousands
marker to a space.

NLS_NUMERIC_CHARACTERS = ', '

The result of the following statement

show 1234.56

is now

1 234,56

NLS_SORT
The NLS_SORT option specifies the sequence of character values used when sorting
or comparing text. The value of NLS_SORT affects the GT, GE, LT, and LE operators,
SORT command, and the SORTLINES function.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_SORT = option-value

Parameters

See NLS_SORT in Oracle Database Globalization Support Guide for more information
about the NLS_SORT parameter.

Examples

Example 5-78 Binary and Linguistic Sorts

A dimension named words has the following values.

cerveza, Colorado, cheremoya, llama, luna, lago

This example shows the results of a binary sort.

Chapter 5
NLS_SORT

5-94

NLS_SORT = 'BINARY'
SORT words A words
STATUS words
The current status of WORDS is:
Colorado, cerveza, cheremoya, lago, llama, luna

A Spanish language sort results in this order.

NLS_SORT = 'SPANISH'
SORT words A words
STATUS words
The current status of WORDS is:
cerveza, cheremoya, Colorado, lago, llama, luna

An extended Spanish language sort results in this order.

NLS_SORT = 'XSPANISH'
SORT words A words
STATUS words
The current status of WORDS is:
cerveza TO cheremoya, lago TO llama

NLS_TERRITORY
The NLS_TERRITORY option specifies current territory for the session.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET option =
value.

Data Type

TEXT

Syntax

NLS_TERITORRY = option-value

Parameters

See NLS_TERRITORY in Oracle Database Globalization Support Guide for
information about NLS_TERRITORY parameters.

Examples

Example 5-79 Effects of Changing NLS_TERRITORY

In this example, the NLS_LANG option is initially set to:

AMERICAN_AMERICA.WE8ISO8859P1

The thousands marker is a comma (,), and the decimal marker is a period (.).

SHOW TO_NUMBER('12345')
12,345.00

A change to the territory setting:

NLS_TERRITORY = 'FRANCE'

Chapter 5
NLS_TERRITORY

5-95

changes the value of NLS_LANG to

AMERICAN_FRANCE.WE8ISO8859P1

The thousands marker is now a period (.), and the decimal marker is a comma (,).

SHOW TO_NUMBER('12345')
12.345,00

NOSPELL
(Read-only) The NOSPELL option holds the text that is used for FALSE Boolean values
in the output of OLAP DML statements.

The value of the NOSPELL option is the word for "no" in the current language, as
specified by the NLS_LANGUAGE option. For example, when NLS_LANGUAGE is set
to "American," then the default value of NOSPELL is NO.

Data Type

TEXT

Syntax

NOSPELL

Examples

Example 5-80 Seeing the Effect of the NOSPELL Option

Suppose you have a variable called BOOLVAR that currently has a value of NO. When
"non" is the word for "no" in the language specified by the NLS_LANGUAGE option,

SHOW boolvar

produces the following output.

non

OKFORLIMIT
The OKFORLIMIT option controls whether you can limit the dimension you are looping
over within an explicit FOR loop.

Tip:

To set the status of the dimension you are looping over in a loop that is
generated by a REPORT statement, use a TEMPSTAT statement.

Data Type

BOOLEAN

Syntax

OKFORLIMIT = {NO|YES}

Chapter 5
NOSPELL

5-96

Parameters

NO
(Default) You cannot limit the dimension you are looping over within an explicit FOR
loop.

YES
You can limit the dimension you are looping over within an explicit FOR loop.

Examples

Example 5-81 Allowing Limits Within a Loop

The following program excerpt sets OKFORLIMIT to YES, thereby allowing the user to
limit market within a FOR loop.

 ...
OKFORLIMIT = YES
FOR market
 DO
 LIMIT market TO CHILDREN USING market.market
 REPORT market
 DOEND
 ...

OKNULLSTATUS
The OKNULLSTATUS option determines whether Oracle OLAP allows a dimension
status list to be set to null. The default is to not allow an empty status list. When null
status lists are not allowed, Oracle OLAP produces an error message when you
execute a LIMIT command that would result in a null status list.

Data Type

BOOLEAN

Syntax

OKNULLSTATUS = {YES|NO}

Parameters

YES
Indicates that null status lists are allowed. With this setting, when you execute a LIMIT
command (without the IFNONE argument) that results in a dimension status list being
null, the status list is set to null, and no error message is produced.

NO
(Default) Indicates that null status lists are not allowed. With this setting, when you
execute a LIMIT command (without the IFNONE argument and without the NULL
keyword) that would result in a dimension status list being null, the status list is not
changed and an error message is produced.

Usage Notes

Conditions When OKNULLSTATUS Has No Effect

Chapter 5
OKNULLSTATUS

5-97

The value of OKNULLSTATUS has no effect in the following situations.

• When a LIMIT command includes an IFNONE argument.

• When a LIMIT command uses the NULL keyword to set a dimension status list to
null.

• When a LIMIT command sets a valueset to null (unless the IFNONE argument is
used). The valueset is set to null, and no error message is produced, even when
OKNULLSTATUS is NO.

• When a LIMIT function is specified to return a null dimension status list. The value
returned is NA, and no error message is produced, even when OKNULLSTATUS is
NO.

See the LIMIT command for more information about using null status in dimensions
and valuesets.

Examples

Example 5-82 Using OKNULLSTATUS

The following statement turns off error messages about the null status of dimensions
and allows dimension status lists to be set to null.

OKNULLSTATUS = YES

OUTFILEUNIT
(Read-only) The OUTFILEUNIT option holds the file unit number of the current
OUTFILE destination, set by the last OUTFILE statement. The first time you redirect
output to a given file, OUTFILE assigns that file an arbitrary INTEGER as a file unit
number.

Data Type

INTEGER

Syntax

OUTFILEUNIT

Usage Notes

OUTFILE and OUTFILEUNIT

You automatically change the setting of OUTFILEUNIT whenever you specify a
different file with an OUTFILE statement. For example, after the statement OUTFILE
myfilename, the value of OUTFILEUNIT is the file unit number assigned to myfilename.

Examples

Example 5-83 Using OUTFILEUNIT with FILEQUERY

Suppose you have saved the file unit number for a file in a variable called filenum.
Your current outfile is another disk file. You want to set the value of PAGEPRG for the
first file to the value that it has for the current outfile. Because the file unit number for
the current outfile is contained in the OUTFILEUNIT option, you can use FILEQUERY
with the OUTFILEUNIT number to get the PAGEPRG setting for the current outfile.

Chapter 5
OUTFILEUNIT

5-98

FILESET filenum PAGEPRG FILEQUERY(OUTFILEUNIT PAGEPRG)

PAGENUM
The PAGENUM option holds the current page number of output. You can use
PAGENUM with PAGEPRG to produce the page number on each page of a report.
The PAGENUM option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data Type

INTEGER

Syntax

PAGENUM = n

Parameters

n
An INTEGER expression that specifies the page number to use for the next page of
output. The default is 1.

Usage Notes

Starting with Page 1

When you are sending output to the default outfile, set both PAGENUM and LINENUM
to 1 whenever you want to produce a report starting on page 1. You can set these
options in the initialization section of your report program. When you use an OUTFILE
statement to send output to a file, PAGENUM is automatically set to 1.

Setting PAGENUM in Mid-Page

The value of PAGENUM is incremented automatically when the last line of output has
been generated on a page. When you set PAGENUM when an output page is only
partially full, the value of PAGENUM is incremented by 1 before the next page is
produced. Consequently, you usually have to set PAGENUM to a value of one less
than the number you want to show on the following page.

The Effect of PAGING on PAGENUM

When you set PAGING to NO, PAGENUM stops counting and keeps its last value.
When you reset PAGING to YES, PAGENUM resumes counting at the page number
where it left off.

The Effect of OUTFILE on PAGENUM

When you use an OUTFILE statement to direct output to a file, PAGENUM is set to 1
for the file. When you use an OUTFILE statement with the EOF keyword to redirect
output to the default outfile, PAGENUM contains the number that it last held for the
default outfile.

Examples

Example 5-84 Changing the Heading for Page 2

Suppose you want each page of a report to have a standard running page heading
and a custom title, and pages after the first page to also have the heading

Chapter 5
PAGENUM

5-99

"(Continued)". You can define a page heading program called report.head that uses
the PAGENUM value to determine when to add the "(Continued)" heading.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
PAGING = YES
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
IF PAGENUM GT 1
 THEN HEADING WIDTH LSIZE CENTER '(Continued)'
BLANK
END

In your report program, set the PAGEPRG option to use the report.head program.

PAGEPRG = 'report.head'

When you run the report program, each page after the first page starts with a heading
such as the following.

15JAN95 15:05:16 Page 2
 Annual Sales Report

 (Continued)

PAGEPRG
The PAGEPRG option holds the name of a program or the text of a statement to be
executed at the beginning of each page of output. You can use this program or
statement to create titles and column headings on multiple pages of a report. A
program can also contain other statements appropriate for execution at the start of
every page. Normally, you set the value of PAGEPRG in the initialization section of a
report program.

The PAGEPRG option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data Type

TEXT

Syntax

PAGEPRG = {'program'|'statement'|'NONE'|'STDHDR'}

Parameters

program
The name of a program to be executed after every page break. When you specify the
program name as a text expression, you can omit the single quotes.

statement
The text of a statement to be executed after every page break. When you specify the
statement as a text expression, you can omit the single quotes.

Chapter 5
PAGEPRG

5-100

NONE
Indicates that no statement or program is executed automatically after a page break.

STDHDR
(Default) Makes STDHDR the program name that PAGEPRG stores. You can also set
PAGEPRG to 'DEFAULT' to make STDHDR the program name that PAGEPRG stores.
STDHDR produces a heading with the date and time on the left and the page number
on the right.

Usage Notes

Using a STDHDR Program in a PAGPRG Program

When you create a PAGEPRG program, you can include the STDHDR program as a
line in the program. Generally, you place STDHDR before the other statements that
produces the custom heading. See Example 5-85.

Keeping Header Information Current

You can use Oracle OLAP functions such as TODAY, TOD, and PAGENUM in a
program that is specified by the PAGEPRG option. You can also have a header
program that accepts arguments, such as the title for a particular report. In this case
you would set the PAGEPRG option to a text expression that invokes the report
header program with arguments. See Example 5-86.

Setting PAGEPRG for a File

To set PAGEPRG for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set PAGEPRG to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
PAGEPRG returns to its default value of 'STDHDR' for the file.

When you set PAGEPRG for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of PAGEPRG is automatically saved for the default outfile.

Examples

Example 5-85 Creating a Custom Heading

Suppose you want each page of a report to include both the standard running page
heading and the title "Annual Sales Report." To accomplish this, create a program
called report.head.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
IF PAGENUM GT 1
 THEN HEADING WIDTH LSIZE CENTER '(Continued)'
BLANK
END

Specify this program to execute after every page break by setting the PAGEPRG
option in the report program. You can include PUSH and POP commands to save the
PAGEPRG setting that is active.

Chapter 5
PAGEPRG

5-101

PUSH PAGEPRG PAGING
PAGEPRG = 'report.head'
PAGING = YES
 ... (body of report program)
 POP PAGEPRG PAGING

When you run the report, each page contains the following heading.

15JAN98 15:05:16 Page 1

 Annual Sales Report

Each page after the first page also contains the subheading "(Continued)" because of
the PAGENUM test in the IF statement.

Example 5-86 Using Program Arguments

As an alternative to specifying the report name in the report.head program, you can
pass the report name to the report.head program from your report program. You can
do this by setting the PAGEPRG option to a text expression that invokes the
report.head program with the report name as an argument. Suppose your report
program contains the following statement.

PAGEPRG = 'CALL report.head(\'Annual Sales Report\')'

Then you can change the first few lines of the report.head program to the following.

ARGUMENT titlevar TEXT
STDHDR
BLANK
HEADING WIDTH LSIZE CENTER titlevar

PAGESIZE
The PAGESIZE option specifies the size of a page of output. The value of PAGESIZE
is the number of output lines to be produced on each page. PAGESIZE is usually used
in the initialization section of report programs. The PAGESIZE option is meaningful
only when PAGING is set to YES and only for output from statements such as REPORT
and LISTNAMES. PAGESIZE also controls the LINELEFT option. When PAGESIZE is
changed, Oracle OLAP adjusts LINELEFT accordingly.

See Also:

PAGE command, PAGING option, LINESLEFT option

Data Type

INTEGER

Syntax

PAGESIZE = n

Chapter 5
PAGESIZE

5-102

Parameters

n
An INTEGER expression that specifies the number of output lines on a page; n includes
the top and bottom margins (controlled by the TMARGIN and BMARGIN options). The
default is 66 lines, which is suitable for printing report output on 8 1/2" by 11" paper.

Usage Notes

Usable Output Lines with Standard Heading and Default Settings

When you use the standard heading and the default settings for the PAGESIZE,
TMARGIN, and BMARGIN options, the total number of usable output lines is 61.

 Output Lines
Lines from PAGESIZE 66
Lines for TMARGIN - 2
Lines for the standard heading - 2
Lines for BMARGIN - 1
Lines available for output 61

Eliminating Headings and Page Breaks

You can produce pages with no headings by using the statement PAGEPRG='NONE' or
suppress page breaks entirely by using the statement PAGING = NO.

Setting PAGESIZE for a File

To set PAGESIZE for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set PAGESIZE to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
PAGESIZE returns to its default value of 66 for the file.

When you set PAGESIZE for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of PAGESIZE is automatically saved for the default outfile.

Examples

Example 5-87 Printing on Legal Paper

In this example, you want to produce a report on legal-size paper (8 1/2" by 14").
Include the following statement in the initialization section of your report program.

PAGESIZE = 84

PAGING
The PAGING option controls the production of paged output in Oracle OLAP. When
you set PAGING to YES, output from statements such as DESCRIBE, REPORT, ROW
command, HEADING, SHOW, and LISTNAMES is produced in a page-oriented
format. Output is produced in page-size segments with standard top and bottom
margins and headings. You can use a variety of paging-related options to change the
size of the page, the size of the margins, and the headings on each page.

Chapter 5
PAGING

5-103

Paging is useful primarily for making output more attractive when you plan to print
output that you send to a file. However, you can also send paged output to the default
outfile. Normally you would set the PAGING option in the initialization section of a
report program to turn paging on for your report.

Data Type

BOOLEAN

Syntax

PAGING = {YES|NO}

Parameters

YES
Produces output with page breaks, top and bottom margins, and page headings.

NO
(Default) Produces output that contains no page breaks, top and bottom margins, or
page headings. Output is continuous, one line after another.

Usage Notes

Setting PAGING for a File

To set PAGING for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set PAGING to the desired value. The new value
remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, PAGING
returns to its default value of NO for the file.

When you set PAGING for the default outfile, the new value remains in effect until you
reset it, regardless of intervening OUTFILE commands that send output to a file. That
is, the value of PAGING is automatically saved for the default outfile.

Paging-Related Options

Oracle OLAP uses default values for page length, page headings, and top and bottom
margins. You can change these values by setting the PAGESIZE, PAGEPRG,
TMARGIN, and BMARGIN options. Other paging options that become meaningful
when PAGING is set to YES are LINENUM, LINELEFT, and PAGENUM.

The value of PAGING for the current outfile determines whether the paging-related
options are used. You must set PAGING to YES for the current outfile to make the
paging options take effect.

Toggling PAGING On and Off

Toggling PAGING on and off, has the following effect on paging options:

• When you toggle PAGING from on (YES) to off (NO):

– The value of the LINENUM option continues to increment as more output lines
are produced.

– The LINELEFT option is set to PAGESIZE.

– The PAGENUM option stops counting and retains its current value

• When you toggle PAGING from off (NO) to on (YES):

Chapter 5
PAGING

5-104

– LINENUM is set to 1 and it begins counting lines on the current page.

– LINELEFT begins counting the lines left on the current page.

– PAGENUM resumes counting at the page number where it left off.

Changing Outfiles

When you use an OUTFILE statement to direct output to a file, all the paging-related
options are set to their default values for the file. When you use an OUTFILE
statement with the EOF keyword to redirect output to the default outfile, the paging-
related options contain the values that they last held for the default outfile.

Examples

Example 5-88 Setting Paging Options

Suppose you are writing a report program and you want to control page breaks and
the top margin. You can include the following lines in the initialization section of your
program. These lines send output to a file named repfile.txt, turn the PAGING option
on, and change the page size and top margin.

OUTFILE 'repfile.txt'
PAGING = YES
PAGESIZE = 84
TMARGIN = 6

PARENS
The PARENS option controls whether negative numbers are represented in output
with parentheses or a minus sign.

Data Type

BOOLEAN

Syntax

PARENS = {YES|NO}

Parameters

YES
Encloses negative values in parentheses, instead of using a minus sign.

NO
(Default) Uses a minus sign to represent negative values.

Usage Notes

Overriding PARENS

The setting of the PARENS option is overridden by a PAREN or NOPAREN attribute in
a HEADING, REPORT, or ROW command. The PAREN attribute specifies the use of
parentheses; the NOPAREN attribute specifies the use of a minus sign.

Allowing Space for Parentheses

When you use parentheses to represent negative values in a report, Oracle OLAP
lines up the positive and negative values in the column. To do this, it reserves the

Chapter 5
PARENS

5-105

right-most character in each numeric column for the closing parenthesis. The column
is always reserved, even when there are no negative values in the output.
Consequently, each value requires more space than when you use the minus sign,
and you might have to increase your column width to accommodate your data.

Examples

Example 5-89 Showing Negative Values in Parentheses

In a report, you would like to show negative values in parentheses, so you first set
PARENS to YES.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
LIMIT month TO 'Jan96' TO 'Jun96'
PARENS = YES
DECIMALS = 0
REPORT DOWN month budget actual budget-actual

These statements produce the following output.

DIVISION: SPORTING
 --------------LINE--------------
 --------------COGS--------------
 BUDGET-ACT
MONTH BUDGET ACTUAL UAL
-------------- ---------- ---------- ----------
Jan96 279,773 287,558 (7,785)
Feb96 323,982 315,299 8,683
Mar96 302,178 326,185 (24,007)
Apr96 386,101 394,544 (8,443)
May96 433,998 449,862 (15,864)
Jun96 448,042 457,348 (9,305)

PERMITERROR
The PERMITERROR option controls if an error is signaled on attempted access of a
variable for which read or write permission is denied by a PERMIT statement.

See Also:

"Startup Programs", PERMITREADERROR option, PERMIT command, and
PERMITRESET command.

Data Type

BOOLEAN

Syntax

PERMITERROR = NO | YES

Chapter 5
PERMITERROR

5-106

Parameters

NO
When you set PERMITERROR to NO, an error condition is not created on attempted
access of a variable for which read or write permission is denied with a PERMIT
statement. Values for which you do not have read permission are displayed as NAs.
When you try to change a value for which you do not have write permission, the
request is ignored.

YES
(Default) When PERMITERROR is YES, an error is signaled upon attempted access of
a variable for which read or write permission is denied with a PERMIT statement. The
error, which can be trapped, terminates the Oracle OLAP operation that initiated the
illegal access.

Usage Notes

PERMITERROR With Non-Data Objects

The setting of PERMITERROR is ignored for violations of permission for non-data
objects such as programs, models, and valuesets. Attempted access of variables and
relations with permission, whether or not they have dimensionality, is always affected
by the setting of PERMITERROR.

Maintaining Dimensions

The setting of PERMITERROR is ignored for violations of maintain and permit
permission. Attempted violations of permission to maintain dimensions and to change
permission are always treated as errors. Attempted violations of read or write
permission for dimensions are, similarly, always treated as errors.

Obtaining Data Without Full Permission

When PERMITERROR is YES and you attempt to fetch a dimensioned variable that
contains values that do not have read permission, an error condition is created when
the first of those values is encountered. You can avoid creating an error condition by
limiting the dimensions in advance so that only permissible values are in status, or by
setting PERMITERROR to NO, before doing the report.

Examples

Example 5-90 Report Without Full Permission

In the following example, the read permission on the price variable prevents you from
seeing price data for any values of product other than Tents. However, when you set
PERMITERROR to NO, you can still do a report of the price variable for Dec. 1996
without creating an error condition.

PERMITERROR = no
DESCRIBE price

The output of this statement is

DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price
PERMIT READ WHEN product eq 'Tents'

The statements

Chapter 5
PERMITERROR

5-107

LIMIT month TO 'Dec96'
REPORT price

produce the following output.

 ----PRICE----
 ----MONTH----
PRODUCT DEC96
---------------- -------------
Tents 165.64
Canoes NA
Racquets NA
Sportswear NA
Footwear NA

The statements

PERMITERROR = yes
REPORT price

produce the following error,

ERROR: You do not have permission to read this value of PRICE

and the following output.

 ---PRICE---
 ---MONTH---
PRODUCT DEC96
--------------- -----------
Tents 165.64

PERMITREADERROR
The PERMITREADERROR option controls if an error is signaled on attempted read of
a variable, valueset, formula, or relation for which read or write permission is denied by
a PERMIT statement.

See Also:

"Startup Programs", PERMITERROR option, PERMIT command, and
PERMITRESET command.

Data Type

BOOLEAN

Syntax

PERMITREADERROR = NO | YES

Chapter 5
PERMITREADERROR

5-108

Parameters

NO
(Default) When the value ofPERMITREADERROR is YES, an error condition is not
created on attempted access of a variable, valueset, formula, or relation for which
read or write permission is denied with a PERMIT statement. Values for which you do
not have read permission are displayed as NAs. When you try to change a value for
which you do not have write permission, the request is ignored.

YES
When PERMITERROR is YES , an error is signaled upon attempted to read a variable,
valueset, formula, or relation for which read or write permission is denied with a
PERMIT statement. The error, which can be trapped, terminates the Oracle OLAP
operation that initiated the illegal access.

PRGTRACE
The PRGTRACE option controls whether each line of a program is recorded in the
current outfile or in a debugging file during execution of the program. PRGTRACE is
primarily used as a debugging tool to uncover problems by tracing the execution of a
program.

OLAP DML programs provided as OLAP DML statements are not traced unless
EXPTRACE is set to YES.

When you have used a DBGOUTFILE statement to specify a debugging file, Oracle
OLAP sends PRGTRACE output to the debugging file instead of the current outfile.

Data Type

BOOLEAN

Syntax

PRGTRACE = {YES|NO}

Parameters

YES
Oracle OLAP records each line in a program before it is executed.

NO
(Default) Oracle OLAP does not record each line in a program.

Usage Notes

PRGTRACE Output

PRGTRACE records the name of the current program at the beginning of each
program line. It includes an equals sign to indicate a compiled line.

(PRG= SALESREP) . . .

It includes a colon to indicate an uncompiled line.

(PRG: SALESREP) . . .

Chapter 5
PRGTRACE

5-109

A compiled line is a line that has been translated into an efficient internal form,
whereas an uncompiled line has not. Oracle OLAP ordinarily stores lines in compiled
form to make programs work more efficiently, especially programs that contain loops.

Uncompiled Program Lines

Oracle OLAP compiles a program before running it. Therefore, the only lines that are
marked as uncompiled in the PRGTRACE output are lines that cannot be compiled,
such as lines that include ampersand substitution.

Examples

Example 5-91 Tracing Program Execution

Suppose you have a program called salesrep that produces a simple budget report.

DEFINE salesrep PROGRAM
PROGRAM
PUSH month division line
TRAP ON cleanup
LIMIT month TO &ARGS
LIMIT division TO ALL
LIMIT line TO FIRST 1
REPORT DOWN division across month: dec 0 budget

cleanup:
POP month division line
END

When you want to debug this program, you can trace the execution of each of its lines
by turning on PRGTRACE and executing the program.

PRGTRACE = yes
salesrep FIRST 3

PRGTRACE produces the following output in the current outfile or debugging file.

(PRG= SALESREP) push month division line
(PRG= SALESREP) trap on cleanup
(PRG: SALESREP) limit month to &args
(PRG= SALESREP) limit division to all
(PRG= SALESREP) limit line to first 1
(PRG= SALESREP) report down division across month: dec0 budget
LINE: REVENUE
 -------------BUDGET-------------
 -------------MONTH--------------
DIVISION JAN95 FEB95 MAR95
-------------- ---------- ---------- ----------
CAMPING 679,149 707,945 780,994
SPORTING 482,771 517,387 525,368
CLOTHING 983,888 1,016,528 992,331
(PRG= SALESREP) cleanup:
(PRG= SALESREP) pop month division line

RANDOM.SEED.1 and RANDOM.SEED.2
The RANDOM.SEED.1 and RANDOM.SEED.2 options specify values used by
RANDOM when computing random numbers. To compute the number, RANDOM
uses the values of the options RANDOM.SEED.1 and RANDOM.SEED.2, and then
changes the values for the next time.

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.2

5-110

When you want to reproduce the same sequence of random numbers when you are
developing and debugging your application programs set RANDOM.SEED.1 and
RANDOM.SEED.2 to some specific values just before using RANDOM.

Data Type

INTEGER

Syntax

RANDOM.SEED.1|RANDOM.SEED.2 = n

Parameters

n
An INTEGER expression that specifies the value to use when generating random
numbers. The default is for RANDOM.SEED.1 is 12345 and RANDOM.SEED.2 is
1073.

Usage Notes

Reproducing a Random Sequence

As illustrated in Example 8-64, when you want to reproduce the same sequence of
random numbers when you are developing and debugging your application programs,
set RANDOM.SEED.1 and RANDOM.SEED.2 to some specific values just before
using RANDOM. To duplicate the sequence, set these options to the same values just
before using RANDOM again. Then changes in the behavior of your programs are
caused by your changes to the programs and not by differing sequences of random
numbers.

Examples

Example 5-92 Explicitly Seeding RANDOM for a Test

Assume that you have the following dimension and variable in your analytic workspace

DEFINE id DIMENSION TEXT
DEFINE myvar VARIABLE INTEGER <id>

As shown in the following code, when you use RANDOM to populate myvar without
seeding it first. Oracle OLAP populates myvar with different values each time the
RANDOM executes.

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 11
a2 19
a3 14

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.2

5-111

-------------- ----------
a1 16
a2 13
a3 12

Now, assume that you want to write a test that uses RANDOM to create predictable
values for myvar. As the following code illustrates, to ensure that the results of
RANDOM are the same from time to time, you must set the values of
RANDOM.SEED.1 and RANDOM.SEED.2 right before the execution of RANDOM.

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
 myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

The values that you set for RANDOM.SEED.1 and RANDOM.SEED.2 do not stay the
same throughout a session. As the following code illustrates, when you do not reseed
with the same values before each execution, the values produced by RANDOM are
not the same.

myvar = 0RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 10
a2 16
a3 13

myvar = 0
 myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR
-------------- ----------
a1 11
a2 16
a3 20

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.2

5-112

RECURSIVE
The RECURSIVE option controls the ability of a formula or $NATRIGGER expression
to call itself.

Syntax

RECURSIVE = {YES|NO}

Parameters

YES
Specifying YES allows a formula or $NATRIGGER expression to call itself. Set this
option to YES when you define a formula or an expression for the $NATRIGGER
property that uses a recursive method of computation.

NO
(Default) Specifying NO prevents a formula or $NATRIGGER expression from calling
itself. When you attempt to evaluate a recursive formula or $NATRIGGER expression,
then Oracle OLAP displays an error message, which states that the RECURSIVE
option is currently set to NO. Until the workspace contains a recursive formula
or $NATRIGGER expression, keep this option set to NO to detect errors that could
result in infinite looping behavior.

Usage Notes

For Formulas and $NATRIGGER Expressions Only

When you set RECURSIVE to YES, only formulas and $NATRIGGER property
expressions are affected. This option does not affect programs; that is, a program can
be recursive regardless of the setting of the RECURSIVE option unless the program is
a $NATRIGGER expression. A $NATRIGGER expression cannot call itself unless the
RECURSIVE option is YES.

Limiting $NATRIGGER Recursion

You can limit the depth of recursion for $NATRIGGER property expressions with the
TRIGGERMAXDEPTH option, which sets the maximum number of $NATRIGGER
expressions that Oracle OLAP executes simultaneously.

ROLE
(Read-only) The ROLE option holds a list of Oracle Database roles associated with the
user ID under which an Oracle OLAP session is running.

Data Type

TEXT

Syntax

ROLE

Chapter 5
RECURSIVE

5-113

Examples

Example 5-93 Displaying a List of Groups or Roles

This statement displays a list of the roles associated with the current session user ID.

SHOW ROLE

ROOTOFNEGATIVE
The ROOTOFNEGATIVE option determines the result of any attempt to obtain a root
of a negative number.

Data Type

BOOLEAN

Syntax

ROOTOFNEGATIVE = YES|NO

Parameters

YES
Allows any attempt to obtain a root of a negative number. Consequently, a statement
that attempts to obtain a root of a negative number executes without an error;
however, the result of the attempt to obtain the root is NA. When you are working with
a dimensioned variable or expression, setting ROOTOFNEGATIVE to YES enables
you to obtain the root of most of the expression's values when a few of the values
might be negative.

NO
(Default) Disallows any attempt to obtain a root of a negative number. Any statement
that attempts to obtain a root of a negative number stops executing and an error
message is produced.

Usage Notes

Raising to a Noninteger Power

Raising a number to a noninteger power (for example, 5 ** 0.3 or 14 ** 2.7) is an
attempt to obtain a root.

Examples

Example 5-94 The Effect of ROOTOFNEGATIVE

The following example shows the effect of changing the value of the
ROOTOFNEGATIVE option. The variable TESTNUMBER has a value of -56. When
you execute a SHOW statement such as the following one, without changing the
ROOTOFNEGATIVE option from its default value of NO, an attempt is made to obtain
the square root and then an error message is produced.

SHOW SQRT(testnumber)

When you change ROOTOFNEGATIVE to YES, the same statement executes without
error

Chapter 5
ROOTOFNEGATIVE

5-114

ROOTOFNEGATIVE = YES
SHOW SQRT(testnumber)

and produces the following result.

NA

SECONDS
(Read-only) The SECONDS option holds the number of seconds since January 1,
1970. As an aid to enhancing a program's speed, SECONDS can be used to
determine how many real seconds elapse while the program is running.

Data Type

INTEGER

Syntax

SECONDS

Examples

Example 5-95 Timing a Program Using SECONDS

The following program puts the value of SECONDS at the start of the program in a
variable called t1, then displays the difference between t1 and the value of SECONDS
after the program executes.

DEFINE prodsummary PROGRAM
PROGRAM
VARIABLE t1 INTEGER
t1 = seconds
LIMIT product TO ALL
BLANK
FOR product
DO
 ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL 0 LSET -
 '$'WIDTH 18 <RSET ' (actual)' sales RSET ' (plan)' sales.plan>
DOEND
BLANK
ROW WIDTH 35 LSET 'the program took ' RSET ' SECOND(s).' -
 (SECONDS-t1)
END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

 The program took 2 second(s).

Chapter 5
SECONDS

5-115

SESSCACHE
Typically used only when debugging, the SESSCACHE option controls whether Oracle
OLAP creates an Oracle OLAP session cache described in "What is an Oracle OLAP
Session Cache".

Data Type

BOOLEAN

Syntax

SESSCACHE = {YES|NO}

Parameters

YES
The session cache is created to hold the data described in "What is an Oracle OLAP
Session Cache".

NO
Oracle OLAP does not read or write to the session cache. When you specify NO,
caching does not occur even when you have specified caching by coding a CACHE
SESSION statement in the specification for one or more aggmap objects, by setting
one or more $VARCACHE properties to SESSION, or by setting the VARCACHE option
to SESSION.

Usage Notes

What is an Oracle OLAP Session Cache?

An Oracle OLAP session cache is a special place in memory used to hold:

• All data that was calculated on the fly when an AGGREGATE function executed in
the following situations:

– The specification for the aggregation included a CACHE SESSION.

– The specification for the aggregation did not include a CACHE SESSION
statement, but the variable being aggregated had a $VARCACHE property
with the value of SESSION.

– The specification for the aggregation did not include a CACHE SESSION
statement and the variable being aggregated did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

• The NA values (only) that were calculated when an AGGREGATE function
executed and the specification for the aggregation included a CACHE NA
statement.

• All data that was calculated when a $NATRIGGER expression executed in the
following situations:

– The variable with the $NATRIGGER property also had a $VARCACHE
property with the value of SESSION.

– The variable with the $NATRIGGER property did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

Chapter 5
SESSCACHE

5-116

There is one internal cache for a session. Cached data is ignored by UPDATE and
COMMIT statements. However, once data is cached, Oracle OLAP uses the values in
the cache for all calculations unless an AGGREGATE function with the FORCECALC
keyword executes. In this case, the FORCECALC keyword specifies that Oracle OLAP
recalculate the values.

When a session is terminated, its cache is cleared. To clear the session cache without
terminating the session, issue a CLEAR statement.

The effectiveness of a session cache is tracked in the V$AW_CALC dynamic performance
view.

SESSION_NLS_LANGUAGE
(Read-only) The SESSION_NLS_LANGUAGE option is an OLAP session-wide, option
that holds the value of NLS_LANGUAGE when the value of
STATIC_SESSION_LANGUAGE is NO; or, when the value of
STATIC_SESSION_LANGUAGE is YES, the value of NLS_LANGUAGE the last time
that the value of STATIC_SESSION_LANGUAGE was NO.

See Also:

"SESSION_NLS_LANGUAGE" in $DEFAULT_LANGUAGE

Data Type

TEXT

Syntax

SESSION_NLS_LANGUAGE

Examples

For examples of retrieving how the value of SESSION_NLS_LANGUAGE is impacted
by changes in the value of NLS_LANGUAGE and STATIC_SESSION_LANGUAGE,
see Example 4-9 and Example 5-102.

Example 5-96 SESSION_NLS_LANGUAGE is a Session-Wide Option

Assume that you have two analytic workspace, one named myaw3 and another named
myaw4. Assume also, as shown in the following code, that they both have language
dimensions named mylangs and that the languages for mylangs in myaw3are American
and French and that the languages for mylangs in myaw4 are American and German.

REPORT myaw3!mylangs
MYLANGS

AMERICAN
FRENCH

REPORT myaw4!mylangs
MYLANGS

AMERICAN

Chapter 5
SESSION_NLS_LANGUAGE

5-117

GERMAN

Now assume that you attach both of these analytic workspaces while
NLS_LANGUAGE and SESSION_NLS_LANGUAGE are set to American. As shown in
the following code, Oracle OLAP limits mylangs in both analytic workspace to
American.

REPORT myaw3!mylangs
MYLANGS

AMERICAN

REPORT myaw4!mylangs
MYLANGS

AMERICAN

SPARSEINDEX
The SPARSEINDEX option controls the type of index algorithm that composites use to
load and access their values. The value of SPARSEINDEX at the time a named
composite is defined, or an unnamed composite is created, determines the type of
algorithm the composite uses by default. When you specify an index algorithm in a
DEFINE COMPOSITE statement, this overrides the default specified by the
SPARSEINDEX option.

Choosing an index algorithm is important only in regard to performance issues. Any
recommendations are for the version of Oracle OLAP that is associated with this
documentation. You can test how using different algorithms affect performance by
using a CHGDFN statement to change the algorithm for a composite (for example,
before loading data).

Data Type

TEXT

Syntax

SPARSEINDEX = {'BTREE'|'HASH'}

Parameters

BTREE
A standard indexing method that is recommended for composites. Use BTREE unless
you are an advanced user. BTREE tends to group similar values together, which
results in better locality of access. BTREE is the default algorithm.

HASH
A standard indexing method that should only be used when a composite has only two
or three base dimensions. HASH is generally not recommended for composites
because using HASH results in a very large index table, which can be too large to fit
into memory.

Chapter 5
SPARSEINDEX

5-118

Examples

Example 5-97 Using the HASH Algorithm

The following example sets SPARSEINDEX to HASH so that composites that are
subsequently defined or created are created using the HASH index algorithm by
default.

SPARSEINDEX = 'HASH'

SQLBLOCKMAX
The SQLBLOCKMAX option controls the maximum number of records retrieved from
an Oracle Database instance at one time. This option provides a means of fine-tuning
the performance of data fetches.

Data Type

INTEGER

Syntax

SQLBLOCKMAX = records

Parameters

records
An INTEGER that identifies the number of records you want fetched at one time. While
you can set SQLBLOCKMAX to any INTEGER, no appreciable change in performance
results in setting it over 100. The default is 10 records.

Usage Notes

Opening Cursors

Only cursors opened after SQLBLOCKMAX is reset use the new block size.

Number of Records

When a program typically opens a cursor, reads one record, and closes the cursor, set
SQLBLOCKMAX to 1. Otherwise, the SQL FETCH statement retrieves 10 records and
discards 9 of them. The same is true for other routine fetches of less than 10 records.

Block Size

When your program is fetching small records, you can increase SQLBLOCKMAX to
reduce the number of blocks required for the fetch. Oracle OLAP fetches the data into
a 64K buffer. The block size in bytes is the number of records multiplied by the size of
the records. When the block size exceeds the 64K limit imposed by the buffer, Oracle
OLAP automatically reduces the number of records fetched. See Example 5-98.

Examples

Example 5-98 Defining a Cursor with SQLBLOCKMAX

The following program fragment defines a cursor for fetching 50-byte records from a
database. The new block size easily fits into Oracle OLAP's 64K buffer (50 bytes * 100
= 50k block size).

Chapter 5
SQLBLOCKMAX

5-119

SQLBLOCKMAX = 100
SQL DECLARE CURSOR c1 FOR SELECT * FROM mydata
SQL OPEN c1

SQLCODE
(Read-only) The SQLCODE option holds the value returned by the Oracle RDBMS
after the most recently attempted SQL operation.

Return Value

INTEGER. 0 after a successful operation, -1 after an error, or 100 after all requested
rows have been fetched.

Syntax

SQLCODE

Usage Notes

Handling SQL Errors

Oracle OLAP does not signal an error when SQLCODE becomes nonzero. Therefore,
your program must test the value of SQLCODE and take the appropriate action.
Because each SQL operation sets SQLCODE, you must test for errors after each
operation to avoid missing an error condition.

Tip:

After an error, the SQLERRM option typically contains an error message.

You can write programs that look for a specific error code. For example, the most
common warning code is 100, which indicates that the cursor reached the end of its
table selection and the FETCH statement is complete.

Examples

Example 5-99 Using SQLCODE When Fetching Data

The following program fragment includes a WHILE loop that tests for the value of
SQLCODE and stops trying to fetch data when the end of the cursor's active set is
reached.

WHILE SQLCODE EQ 0
 SQL FETCH cursor1 INTO :employee, :title

SQLERRM
(Read-only) After the database reports an error and SQLCODE has a nonzero value,
the SQLERRM option usually contains text that explains the problem.

Data Type

TEXT

Chapter 5
SQLCODE

5-120

Syntax

SQLERRM

Usage Notes

Oracle Relational Manager

You can set the SQLMESSAGES option to YES to send the value of SQLERRM to the
current output file automatically.

Examples

Example 5-100 Displaying Error Messages

The following statements attempt to create a table and check for error messages
afterward.

SQL CREATE TABLE Products -
 (Prod_ID CHAR(8) -
 Prod_Name VARCHAR(30) -
 Suggested_Price DECIMAL(10,2))
IF SQLCODE NE 0
 SHOW SQLERRM

Example 5-101 Sample Error Message

The following statement is incomplete and does not provide sufficient information to
create a table.

SQL CREATE TABLE Products

The Oracle RDBMS returns an error message such as the following.

ORA-00906: Missing left parenthesis.

SQLMESSAGES
The SQLMESSAGES option controls whether error messages are sent to the current
output file.

Data Type

BOOLEAN

Syntax

SQLMESSAGES = {YES|NO}

Parameters

YES
Error messages are sent to the current output file.

NO
(Default) Error messages are only stored as values of SQLERRM.

Chapter 5
SQLMESSAGES

5-121

Usage Notes

Typical Usage

You want to set SQLMESSAGES to YES while you are developing an application so
that you can diagnose errors quickly. When your application is in use, you probably
want it to capture and handle errors in a different manner with SQLMESSAGES set to
NO.

STATIC_SESSION_LANGUAGE
The STATIC_SESSION_LANGUAGE option is a read/write option that controls if
Oracle OLAP keeps the value of the SESSION_NLS_LANGUAGE option
synchronized with the value of the NLS_LANGUAGE option.

See Also:

"Working with Language Dimension Status" in $DEFAULT_LANGUAGE

Data Type

BOOLEAN

Syntax

STATIC_SESSION_LANGUAGE = NO | YES

Parameters

NO
Specifies that whenever the value of the NLS_LANGUAGE option changes, Oracle
OLAP changes the value of SESSION_NLS_LANGUAGE to the value of the
NLS_LANGUAGE option. (Default)

YES
Specifies that the value of SESSION_NLS_LANGUAGE does not change when the
value of NLS_LANGUAGE changes.

Examples

Example 5-102 Changing NLS_LANGUAGE Without Changing the Language of
the OLAP Session

Example 4-9 illustrates how changing the NLS_LANGUAGE value can change the
language of the OLAP session. This example illustrates how you can keep the
language of the OLAP session the same even as the value of the NLS_LANGUAGE
option changes.

Assume that you attach your analytic workspace while the NLS_LANGUAGE is
American. As the following code illustrates by changing the value of the
STATIC_SESSION_LANGUAGE to Yes, you can insure that even as the value of the
NLS_LANGUAGE option is changed to French, the value of the

Chapter 5
STATIC_SESSION_LANGUAGE

5-122

SESSION_NLS_LANGUAGE stays American which means that Oracle OLAP limits
the language dimension (mylangs) to American.

SHOW NLS_LANGUAGEFRENCH
AMERICAN

" Make the session language static
STATIC_SESSION_LANGUAGE = yes

"Change the value of NLS_LANGUAGE to FRENCH
SET NLS_LANGUAGE= 'FRENCH'

SHOW OBJ(PROPERTY '$DEFAULT_LANGUAGE' 'mylangs')
AMERICAN
SHOW NLS_LANGUAGE
FRENCH
SHOW SESSION_NLS_LANGUAGE
AMERICAN
SHOW LOCK_LANGUAGE_DIMS
oui
SHOW STATIC_SESSION_LANGUAGE
oui

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc
 ------PROD_DESC------
 ------PRODUCTS-------
MYLANGS PROD01 PROD02
-------------- ---------- ----------
AMERICAN Trousers Skirts

THIS_AW
(Read-only) The THIS_AW option is the value of the workspace name that Oracle
OLAP uses when it replaces occurrences of the THIS_AW keyword to create a
qualified object name.

Data Type

TEXT

Syntax

THIS_AW

THOUSANDSCHAR
(Read-only) The THOUSANDSCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option discussed in NLS Options.

Chapter 5
THIS_AW

5-123

Note:

The value of THOUSANDSCHAR only affects the way Oracle OLAP formats
numbers in output. It does not affect the way numbers should be formatted for
input.

Data Type

ID

Syntax

THOUSANDSCHAR

Examples

Example 5-103 Displaying the Decimal and Thousands Markers

The following statements show the DECIMALCHAR and THOUSANDSCHAR values.
Assume that you issue the following statements.

SHOW THOUSANDSCHAR
SHOW DECIMALCHAR

Assume that a comma is displayed as the marker for THOUSANDSCHAR and that a
period is displayed as the marker for DECIMALCHAR. With these values, a SHOW
TOTAL(sales) statement would produce the following output.

63,181,743.50

TMARGIN
The TMARGIN option defines the number of blank lines for the top margin of output
pages, above the running page heading. In other words, the top margin lines are
produced before the program that is defined by PAGEPRG, if any, is run.

TMARGIN is meaningful only when PAGING is set to YES and only for output from
statements such as REPORT and DESCRIBE. The TMARGIN option is usually set in
the initialization section of report programs.

Data Type

INTEGER

Syntax

TMARGIN = n

Parameters

n
An INTEGER expression that specifies the number of lines to set aside for the top
margin in a report. The default is 2.

Chapter 5
TMARGIN

5-124

Usage Notes

Setting TMARGIN for a File

To set TMARGIN for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set TMARGIN to the desired value. The new value
remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, TMARGIN
returns to its default value of 2 for the file.

When you set TMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of TMARGIN is automatically saved for the default outfile.

Examples

Example 5-104 Setting the Top Margin of a Report

In this example, you want to save space when you produce a long report, so you set a
small top margin of 1 line. Here is the statement that you would include in the
initialization section of your report program.

TMARGIN = 1

TRACEFILEUNIT
(Read-only) The TRACEFILEUNIT option records the unit number of the Oracle trace
file which is a writable output file that collects information about the activity in the
Oracle session.

Syntax

TRACEFILEUNIT

Usage Notes

Use of the TRACEFILEUNIT Value

With the OUTFILE or DBGOUTFILE commands, you can specify the unit number
stored in the TRACEFILEUNIT option to send the output to the Oracle trace file.

Examples

Example 5-105 Specifying the Oracle Trace File with DBGOUTFILE

In the following code, the DBGOUTFILE command specifies the value of
TRACEFILEUNIT option.

DBGOUTFILE TRACEFILEUNIT

TRIGGERMAXDEPTH
The TRIGGERMAXDEPTH option determines the maximum number of $NATRIGGER
property expressions that Oracle OLAP can execute simultaneously.

Chapter 5
TRACEFILEUNIT

5-125

Data Type

INTEGER

Syntax

TRIGGERMAXDEPTH = n

Parameters

n
An INTEGER expression that specifies the maximum number of $NATRIGGER property
expressions that can execute simultaneously. The default value is 50.

Usage Notes

About the $NATRIGGER Property

The TRIGGERMAXDEPTH option works with the $NATRIGGER property of a
variable.

Recursive Triggers

While a $NATRIGGER expression is executing, it cannot be invoked again by a
formula, program, or other $NATRIGGER expression that it invokes unless the
RECURSIVE option is set to YES. The TRIGGERMAXDEPTH option governs the
depth of recursion of $NATRIGGER expressions and prevents infinite recursions or
excessively deep recursions, which can cause Oracle OLAP to malfunction.

Examples

Example 5-106 Setting the Maximum Trigger Depth

This example sets the maximum trigger depth, exceeds it, then sets the depth to a
higher value. Usually the TRIGGERMAXDEPTH value would be much higher than 2,
which is used in this example. The default value is 50.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 2
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v2 + 1'
DEFINE v2 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v3 + 1'
DEFINE v3 DECIMAL <d1>
PROPERTY '$NATRIGGER' 'v4 + 1'
DEFINE v4 DECIMAL <d1>
v4(d1 1) = 333.3
RECURSIVE = YES
TRIGGERMAXDEPTH = 2
SHOW v1

The preceding statements produce the following output.

ERROR: Depth of NA trigger calls exceeds allowable (maximum depth 2)

The following statements set the maximum trigger depth to a higher value and show
the value of the variable.

Chapter 5
TRIGGERMAXDEPTH

5-126

TRIGGERMAXDEPTH = 3
SHOW v1

The preceding statements produce the following output.

336.3

TRIGGERSTOREOK
The TRIGGERSTOREOK option controls whether you can
use $STORETRIGGERVAL properties to specify that NA values in an object be
permanently replaced by the values specified by a $NATRIGGER property.

Note:

The value of the TRIGGERSTOREOK option is only one factor that Oracle
OLAP uses to determine what to do with variable data that is the result
of $NATRIGGER expression execution. For a discussion of the other factors
and their interrelationship, see "How Oracle OLAP Determines Whether to
Store or Cache Results of $NATRIGGER".

Data Type

BOOLEAN

Syntax

TRIGGERSTOREOK = {NO|YES}

Parameters

NO
(Default) NA values are not permanently replaced with the $NATRIGGER property
expression that is set for a variable.

YES
NA values are permanently replaced with the $NATRIGGER property expression that
is set for a variable. The default value is NO.
For Oracle OLAP to permanently replace NA values for a variable with the
valid $NATRIGGER property expression that is set for the variable, you must set both
the TRIGGERSTOREOK option and the $STORETRIGGERVAL property for the
variable to YES.

Usage Notes

About the $NATRIGGER and STORETRIGGERVAL Properties

The TRIGGERSTOREOK option works with the $NATRIGGER
and $STORETRIGGERVAL properties of a variable.

Chapter 5
TRIGGERSTOREOK

5-127

Examples

Example 5-107 Replacing NA Values Temporarily

This example replaces the NA values in the cells of a variable temporarily. The
following statements define a dimension with three values and define a variable
dimensioned by the dimension. They add the $NATRIGGER property to the variable,
then put a value in one cell of the variable and leave the other cells empty, so that their
values are NA. Finally, they report the values in the cells of the variable.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3
DEFINE v1 DECIMAL <d1>
PROPERTY '$NATRIGGER' '500.0'
v1(d1 1) = 333.3

REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------
 1 333.30
 2 500.00
 3 500.00

This statement deletes the $NATRIGGER property from the v1 variable.

CONSIDER v1
PROPERTY DELETE '$NATRIGGER'
REPORT v1

The preceding statements produce the following output.

D1 V1
--------- ----------
 1 333.30
 2 NA
 3 NA

Example 5-108 Replacing NA Values Permanently

The following statements add the $NATRIGGER property to the v1 variable that was
defined in the previous example and set the TRIGGERSTOREOK option and
the $STORETRIGGERVAL properties to YES. They then report the values in the cells
of the variable.

CONSIDER v1
PROPERTY '$NATRIGGER' '800.0'
TRIGGERSTOREOK = YES
PROPERTY 'STORETRIGGERVAL' YES
REPORT v1

The preceding statements produce the following output.

D1 V1
-------------- ----------
 1 333.30
 2 800.00
 3 800.00

Chapter 5
TRIGGERSTOREOK

5-128

The following statements delete the $NATRIGGER property from the v1 variable and
report the values in the cells of the variable.

CONSIDER v1
PROPERTY DELETE '$NATRIGGER'
REPORT v1

The preceding statements produce the following output.

D1 V1
-------------- ----------
 1 333.30
 2 800.00
 3 800.00

USERID
(Read-only) The USERID option holds the user ID for the current Oracle Database
session which is the same value as that returned by SYSINFO(USER).

Data Type

TEXT

Syntax

USERID

Examples

Example 5-109 Displaying the Session User ID

This statement displays the Oracle user ID associated with the current session.

SHOW USERID

USETRIGGERS
The USETRIGGERS option determines if a trigger program as triggers execute.

Tip:

Oracle OLAP does not support recursive triggers. Set the USETRIGGERS
option to NO before you issue the same DML statement within a trigger program
that triggered the program itself. For example, assume that you have written a
TRIGGER_DEFINE program. Within the TRIGGER_DEFINE program, you
must set the USETRIGGERS option to NO before you issue a DEFINE
statement

See Also:

"Trigger Programs"

Chapter 5
USERID

5-129

Data Type

BOOLEAN

Syntax

USETRIGGERS = {NO|YES}

Parameters

YES
(Default) Trigger programs execute.

NO
Trigger programs do not execute.

Examples

Example 5-110 Changing USETRIGGERS to NO

Assume you have just created a new analytic workspace. As illustrated in the following
statement, the default value of the USETRIGGERS option is YES, but you can set the
option to NO at any time.

SHOW USETRIGGERS
yes

USETRIGGERS = NO
SHOW USETRIGGERS
no

VARCACHE
The VARCACHE option specifies whether Oracle OLAP stores or caches all variable
data that is the result of the execution of an AGGREGATE function or $NATRIGGER
property expression.

Note:

The value of the VARCACHE option is only one factor that Oracle OLAP uses
to determine whether variable data computed when the AGGREGATE function
or $NATRIGGER property executes is stored or cached. For a discussion of
the other factors and their interrelationship, see "How Oracle OLAP Determines
Whether to Store or Cache Results of $NATRIGGER" and "How Oracle OLAP
Determines Whether to Store or Cache Aggregated Data".

Syntax

VARCACHE = {VARIABLE | SESSION | NONE}

Chapter 5
VARCACHE

5-130

Parameters

VARIABLE
Specifies that Oracle OLAP stores the data in the variable in the database. When you
specify this option, the results of the calculation are permanently stored in the variable
when the analytic workspace is updated and committed.

SESSION
Specifies that Oracle OLAP caches the calculated data in the session cache (See
"What is an Oracle OLAP Session Cache?"). When you specify this option, the results
of the calculation are ignored during updates and commits and are discarded after the
session.

Note:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data even
when you specify SESSION. In this case, specifying SESSION is the same as
specifying NONE.

NONE
For data that is calculated on the fly using the AGGREGATE function, specifies that
Oracle OLAP calculates the data each time the AGGREGATE function executes;
Oracle OLAP does not store or cache the data calculated by the AGGREGATE
function

Usage Notes

The VARCACHE Option Can Affect All Variables

When you set the VARCACHE option, its setting can affect all variables. When you
have not set the $VARCACHE property on a variable and there is no CACHE statement in
the aggmaps that you use with the AGGREGATE function to calculate data on the fly,
then it is the VARCACHE option that determines how or if that data is stored.

WEEKDAYSNEWYEAR
For a dimension of type WEEK, the WEEKDAYSNEWYEAR option determines how
many days of the new year there must be for a week to be identified as week 1 of the
new year.

By default, week 1 in a given year is the first week that contains at least one day in the
new year. For example, January 1, 2000, is a Saturday. Using the default, the first
week in that year (W1.00) is the period from Sunday, December 26, 1999, through
Saturday, January 1, 2000.

Using WEEKDAYSNEWYEAR, you can specify how many days of the year must be
present in week 1 in that year. When you use WEEKDAYSNEWYEAR to specify that
the first week in a year must contain two or more days, then the week of December 26,
1999, through January 1, 2000, is the last week in 1999 (W53.99), and the week of
January 2 through January 8 is the first week in the year 2000 (W1.00).

Chapter 5
WEEKDAYSNEWYEAR

5-131

Data Type

INTEGER

Syntax

WEEKDAYSNEWYEAR = days

Parameters

days
An INTEGER expression in the range 1 through 7 that indicates how many days in the
year must be present in week 1 of that year. The default value for days is 1.

Examples

The Effect of WEEKDAYSNEWYEAR

The following statements send a list of weeks with the associated ending dates for
each of those weeks to the current outfile.

DEFINE week DIMENSION WEEK
MAINTAIN week ADD '12 18 99' '1 15 00'
weekdaysnewyear = 2
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
-------------- --------------------
W51.99 18DEC99
W52.99 25DEC99
W53.99 01JAN00
W1.00 08JAN00
W2.00 15JAN00

January 1, 2000, is a Saturday, so setting WEEKDAYSNEWYEAR to 2 causes the
week from January 2 through January 8 to appear as W1.00.

WRAPERRORS
The WRAPERRORS option determines if Oracle OLAP displays long error messages
as multiple lines with each line being 72 characters in length.

Data Type

BOOLEAN

Syntax

WRAPERRORS = NO | YES

Parameters

NO
Error messages are not wrapped. (Default)

Chapter 5
WRAPERRORS

5-132

YES
Error message are wrapped. Oracle OLAP inserts a line break after each group of 72
characters.

Usage Notes

Change in Default Behavior as of Oracle OLAP 10.2

In pre 10.2 releases of Oracle OLAP, long error messages are always wrapped.

YESSPELL
(Read-only) The YESSPELL option holds the text that is used for TRUE Boolean values
in the output of OLAP DML statements.

The value of the YESSPELL option is the word for "yes" in the current language, as
specified by the NLS_LANGUAGE option. For example, when NLS_LANGUAGE is set
to American, then the value of YESSPELL is YES. When NLS_LANGUAGE is set to
Spanish, then the value of YESSPELL is SI.

Data Type

TEXT

Syntax

YESSPELL

Examples

Example 5-111 Seeing the Effect of the YESSPELL Value

Suppose you have a variable called BOOLVAR that currently has a value of YES. When
"si" is the word for "yes" in the language specified by the NLS_LANGUAGE option,

SHOW boolvar

produces the following output.

si

YRABSTART
The YRABSTART option sets the specific 100-year period associated with years that
are read or displayed using a two-digit abbreviation.

Data Type

INTEGER

Syntax

YRABSTART = year

Chapter 5
YESSPELL

5-133

Parameters

year
A four-digit INTEGER expression that indicates the year at which the 100-year period
begins. You can specify any value in the range 1000 to 9999. However, when you
specify a value greater than 9900 for year, requests to read or display two-digit year
values that correspond to a year later than 9999 result in a return value of NA. The
default is 1950; two-digit year abbreviations are interpreted as being in the range
1950 to 2049 unless a different range is set through YRABSTART.

Examples

Example 5-112 Using the Default Value

The following statements specify a date format and send output to the current outfile.

DATEFORMAT = '<Mtextl> <d>, <yyyy>'
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 1996

Example 5-113 Setting the 100-Year Period for a Date

The following statements set a 100-year period of 2000 to 2099 and send the output to
the current outfile.

YRABSTART = 2000
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 2096

ZEROROW
For output produced by the REPORT and ROW commands, the ZEROROW option
suppresses report rows with numeric values that are all NAs or all zeros or would be
represented as zeros. When your report includes a small number, such as 0.004, the
number of decimal places being shown affects whether ZEROROW treats that number
as zero. When you are producing a report with totals, the actual number is used to
calculate the total, even when the number is suppressed.

Data Type

BOOLEAN

Syntax

ZEROROW = {YES|NO}

Parameters

YES
Suppresses report rows that contain any numeric values when all the numeric values
would be shown either as zeros or NAs.

Chapter 5
ZEROROW

5-134

NO
(Default) Produces all rows of the report, regardless of the values they contain.

Usage Notes

Non-Numeric Data

Even when a row contains non-numeric data, such as TEXT, ID, or BOOLEAN values,
along with numeric values, the row is suppressed when ZEROROW is YES and all the
numeric values would be shown either as zeros or NAs.

The Effect of NASPELL and ZSPELL

The value of NASPELL does not affect the way ZEROROW handles NA values. The
value of ZSPELL does not affect the functioning of ZEROROW; numeric zero values
are treated as zeros regardless of their spelling in output.

Examples

Example 5-114 Suppressing Report Rows of All-Zero Data

Suppose you have a variable called worstcase, that is dimensioned by division, month,
and line, in which you store the results of calculations to project sales. When you
produce a report of the results, you want to suppress any rows for which the value of
the worst-case projections is zero for all months in the status. Set ZEROROW to YES,
as shown in the following statements.

ZEROROW = YES
LIMIT line TO 'Revenue'
LIMIT month TO 'Nov95' TO 'Feb96'
REPORT WIDTH 8 DOWN division ACROSS month: worstcase

These statements produce the following report.

LINE: REVENUE
 -----------------WORSTCASE-----------------
 -------------------MONTH-------------------
DIVISION Nov95 Dec95 Jan96 Feb96
-------- ---------- ---------- ---------- ----------
Camping 0.00 0.00 45,500.00 47,400.00
Sporting 0.00 0.00 29,200.00 28,400.00
Clothing 0.00 0.00 15,200.00 14,900.00

In the preceding report, no rows are suppressed, because some months for each
division have projected sales. However, when you lay out this report with month down
and division across, the rows for Nov95 and Dec95 are suppressed, because these
months have no projected sales.

REPORT DOWN month ACROSS division: worstcase

This statement produces the following report.

LINE: REVENUE
 -----------WORSTCASE------------
 ------------DIVISION------------
MONTH Camping Sporting Clothing
-------------- ---------- ---------- ----------
Jan96 45,500.00 29,200.00 15,200.00
Feb96 47,400.00 28,400.00 14,900.00

Chapter 5
ZEROROW

5-135

ZSPELL
The ZSPELL option holds the default text that is used for representing numeric zero
values in output produced by the HEADING, REPORT, and ROW commands.

Data Type

TEXT

Syntax

ZSPELL = {'text'|'OFF'}

Parameters

text
The spelling to use as the default spelling for numeric zero values. When you specify
an expression rather than a text literal, you can omit the single quotes.

OFF
(Default) Shows a zero (0) with the appropriate number of decimal places (determined
by a DECIMAL attribute) for each numeric zero value.

Usage Notes

Assigning Zero Values

ZSPELL affects output only; it does not affect the way you assign a zero value. For
example, even when you have set ZSPELL to NONE, you still assign a zero value as
follows.

var1 = 0

Showing Decimal Places

The default of OFF means that a zero value is shown as 0 (zero), with the number of
decimal places indicated by a DECIMAL attribute (for example, 0.00). When you set
ZSPELL to the text character 0, zero values are shown as a 0 with no decimal places,
regardless of any DECIMAL specification.

Effect of ZSPELL on Values Close to Zero

When your output includes a small number, such as 0.004, the number of decimal
places shown affects whether ZSPELL treats the number as zero. See
Example 5-116.

Examples

Example 5-115 Showing Zero Values as NONE

This example changes the value of ZSPELL, so that a zero value in the DECIMAL
variable testvar is shown as NONE in report output. When ZSPELL is set to its default
value of OFF, the Oracle OLAP statements

testvar = 0.00
ROW testvar

Chapter 5
ZSPELL

5-136

produce the following output.

 0.00

In contrast, these OLAP DML statements

ZSPELL = 'NONE'
ROW testvar

produce the following output.

 NONE

Example 5-116 Showing Very Small Numbers

This example illustrates how the number of decimal places shown in output affects
whether ZSPELL treats very small numbers as zeros. When ZSPELL is set to its
default value of OFF, these OLAP DML statements

ZSPELL = 'OFF'
testvar = 0.004
ROW DECIMAL 3 testvar

produce the following output.

 0.004

The following statements set ZSPELL to NONE and specify two decimal places for the
output.

ZSPELL = 'NONE'
ROW DECIMAL 2 testvar

These statements produce the following output.

 NONE

With ZSPELL still set to NONE, the following statement specifies three decimal places
for the output.

ROW DECIMAL 3 testvar

This statement produces the following output.

 0.004

Chapter 5
ZSPELL

5-137

6
OLAP DML Programs

This chapter provides information about creating OLAP DML programs. It includes the
following topics:

• Programs Provided With the OLAP DML

• Creating OLAP DML Programs

• Specifying Program Contents

• Compiling Programs

• Testing and Debugging Programs

• Executing Programs

• Common Types of OLAP DML Programs

• User-Written Programs Looked For by Oracle OLAP

Programs Provided With the OLAP DML
The OLAP DML provides a number of programs that you can use to work with OLAP
cubes and cube dimensions as previously defined in the Oracle Database data
dictionary. These programs are listed in "Cube-Aware OLAP DML Statements".

It also provides the following programs that work directly on the analytic workspace:

• ALLCOMPILE which uses the COMPILE command to compile every compilable
object in your current analytic workspace, one at a time.

• ALLSTAT sets the status of all dimensions in the current analytic workspace to the
default status list of the dimension.

• AWDESCRIBE sends information about the current analytic workspace to the
current outfile. After a summary page, it provides a report in two parts: An
alphabetic list of analytic workspace objects showing name, type, and description;
and a DESCRIBE of each object by object type.

• COPYDFN defines a new object in the analytical workspace by copying the
definition from an already-defined object in the current workspace or in an
attached workspace.

• FORECAST.REPORT produces a standard report of a forecast created using the
FORECAST command. The report shows the parameters of the forecast, including
the forecast formula and Mean Absolute Percent Error, followed by a display of the
forecasted values.

• FULLDSC produces a report that lists the definition of one or more workspace
objects, including the properties and triggers of the object(s).

• ISDATE determines whether a text expression to see if it can be converted to a
DATE value It returns YES when the text expression represents a valid date; NO
when it does not. (Note that, ISDATE does not actually make the conversion. You
must use CONVERT to make the conversion.)

6-1

• LISTBY produces a report of the names of all objects in an analytic workspace that
are dimensioned by or related to one or more specified dimensions or composites.
You can use LISTBY with a dimension or composite in any attached workspace.

• LISTNAMES produces a report that lists the names of the objects in an analytic
workspace. You can limit the list to particular types of objects, and you can have
the names for each type of object listed in alphabetical order.

• MODEL.COMPRPT produces a report that shows how model equations are
grouped into blocks. For step blocks and for simultaneous blocks with a cross-
dimensional dependence, the report lists the dimensions involved in the
dependence.

• MODEL.DEPRT produces a report that lists the variables and dimension values on
which each model equation depends. When a dependence is dimensional, the
report gives the name of the dimension.

• MODEL.XEQRPT produces a report about the execution of the model. The report
specifies the block where the solution failed and shows the values of the model
options that were used in solving simultaneous blocks.

• PAGE, commonly used in report programs or with LISTNAMES, forces a page
break in output when PAGING is set to YES. An optional argument to PAGE
specifies a conditional page break based on how many lines are left on the page.

• REGRESS.REPORT produces a standard report of a regression performed using
the REGRESS command.

• STATUS sends to the current outfile the status of one or more dimensions,
dimension surrogates, or valuesets, or the status of all dimensions in an analytic
workspace.

• STDHDR generates the standard Oracle OLAP heading at the top of every page
of report output.

• VALSPERPAGE calculates the maximum number of values for a variable of a
specified width that fits on one page. Pages are units of storage in the workspace.

Because the ISDATE and VALSPERPAGE programs are like simple functions, they
are documented in alphabetical sequence along with OLAP DML functions in OLAP
DML Functions: A - K and OLAP DML Functions: L - Z . The other programs provided
with the OLAP DML are documented in alphabetical sequence along with the OLAP
DML commands in OLAP DML Commands: A-G and OLAP DML Commands: H-Z.

Creating OLAP DML Programs
An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis task.
You can write OLAP DML programs to perform tasks that you must do repeatedly in
the analytic workspace, or you can write them as part of an application that you are
developing.

To create an OLAP DML program, take the following steps:

1. Issue a DEFINE PROGRAM statement to define the program object. When the
program that you are defining is used is a function, include the datatype or the
dimension argument.

2. Add contents to the program that specify the processing that you want performed
as described in "Specifying Program Contents".

Chapter 6
Creating OLAP DML Programs

6-2

3. Compile the program as described in "Compiling Programs".

4. Test and debug the program as described in "Testing and Debugging Programs".

5. Execute the program as described in "Executing Programs".

Specifying Program Contents
The content of a program consists of the following OLAP DML statements:

1. A PROGRAM statement that indicates the beginning of the program contents.
(Omit when coding the specification in an Edit window of the OLAP Worksheet.)

2. (Optional) VARIABLE statements that define any local variables.

3. (Optional) ARGUMENT statements that declare arguments. (See "Passing
Arguments" for more information.)

4. Additional OLAP DML statements that specify the processing you want performed.
You can use almost any of the OLAP DML statements in a program. There are
also some OLAP DML statements, such as flow-of-control statements, that are
only used in programs.

Use the following formatting guidelines as you add lines to your program:

• Each line of code can have a maximum of 4,000 bytes.

• To continue a single statement on the next line, place a hyphen (-) at the end
of the line to be broken. The hyphen is called a continuation character.

• You cannot use a continuation character in the middle of a text literal.

• To write multiple statements on a single line, separate the statements with
semicolon (;).

• Enclose literal text in single quotation marks ('). To include a single quotation
mark within literal text, precede it with a backslash (\). To specify escape
sequences, see "Escape Sequences".

• Precede comments with double quotation marks ("). You can place a
comment, preceded by double quotation marks, either at the beginning of a
line or at the end of a line, after some statements.

5. A final END statement that indicates the end of the contents of the program. (Omit
when coding the specification in an Edit window of the OLAP Worksheet.)

Creating User-Defined Functions
One type of program that is commonly written is a user-define function that you can
use in OLAP DML statements in much the same way as you use an OLAP DML
function. A user-defined function is simply an OLAP DML program that returns a value.
For an example of a user-defined function, see Example 9-44.

When you create a user‐defined function, you use a DEFINE PROGRAM statement
that includes the datatype and dimension arguments. Within the program, you
include a RETURN statement that returns a value. The return expression in the
program should match the data type that is specified in its definition. When the data
type of the return value does not match the data type that is specified in its definition,
then the value is converted to the data type in the definition.

Chapter 6
Specifying Program Contents

6-3

User-defined functions can accept arguments. A user-defined function returns only a
single value. However, when you supply an argument to a user‐defined function in a
context that loops over a dimension (for example, in a REPORT statement), then the
function returns results with the same dimensions as its argument.

You must declare the arguments using an ARGUMENT statement within the program,
and you must specify the arguments in parentheses following the name of the
program.

See Also:

"Passing Arguments" for more information about using arguments with
programs.

Passing Arguments
Use ARGUMENT statements to declare both simple and complex arguments (such as
expressions). ARGUMENT statement also make it convenient to pass arguments from
one program to another, or to create your own user‐defined functions because by
using these statements you can declare an argument of any data type, dimension, or
valueset. Any ARGUMENT statements must precede the first executable line in the
program. When you run the program, these declared arguments are initialized with the
values you provided as arguments to the program. The program can then use these
arguments in the same way it would use local variables.

Using Multiple Arguments
A program can declare as many arguments as needed. When the program is executed
with arguments specified, the arguments are matched positionally with the declared
arguments in the program. When you run the program, you must separate arguments
with spaces rather than with commas or other punctuation. Punctuation is treated as
part of the arguments. For an example of passing multiple arguments, see
Example 9-45.

Handling Arguments Without Converting Values to a Specific Data Type
Sometimes you want your OLAP DML program to be able to handle arguments without
converting values to a specific data type. In this case, you can specify a data type of
WORKSHEET in the ARGUMENT and VARIABLE statements that define the arguments
and temporary variables for the program. You can use WKSDATA to determine the
actual data type of the argument or variable.

Passing Arguments as Text with Ampersand Substitution
It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to write more general programs or pass a
more complicated text argument, such as an argument that is all of the data in an
analytic workspace object or the results of an expression. In these cases, you can
pass the argument using a substitution expression. Passing an argument in this way is
called ampersand substitution.

Chapter 6
Specifying Program Contents

6-4

For the following types of arguments, you must always use an ampersand to make the
appropriate substitution:

• Names of workspace objects, such as units or product

• Statement keywords, such as COMMA or NOCOMMA in the REPORT statement, or A or D
in the SORT command

When you use ampersand substitution to pass the names rather than the values of
workspace objects to a program, the program has access to the objects themselves.
This feature is useful when the program must manipulate the objects in several
operations.

Note:

You cannot compile and save any program line that contains an ampersand.
Instead, the line is evaluated at run time, which can reduce the speed of your
programs. Therefore, to maximize performance, avoid using ampersand
substitution when another technique is available.

For an example of using ampersand substitution to pass multiple dimension values,
see Example 10-18. For an example of using ampersand substitution to pass the text
of an expression, see Example 9-47. For an example of using ampersand substitution
to pass object names and keywords, see Example 9-48.

See Also:

"Substitution Expressions" for more information about ampersand substitution.

Program Flow-of-Control
Like most programming languages, the OLAP DML has several statements that you
can use to determine the flow-of-control within a program. However, you must code
explicit loops less frequently in an OLAP DML program because of the intrinsic looping
nature of many OLAP DML statements.

The following table lists OLAP DML flow-of-control statements. The looping
characteristic of OLAP DML statements is discussed in "OLAP DML Statements Apply
to All of the Values of a Data Object".

The OLAP DML contains the flow-of-control statements typically found in a
programming language. The following table lists these statements:

Table 6-1 Statements For Determining Flow-of-Control

Statement Description

BREAK Transfers program control from within a SWITCH, FOR, or WHILE
statement to the statement immediately following the DOEND
associated with SWITCH, FOR, or WHILE.

Chapter 6
Specifying Program Contents

6-5

Table 6-1 (Cont.) Statements For Determining Flow-of-Control

Statement Description

CONTINUE Transfers program control to the end of a FOR or WHILE loop
(just before the DO/DOEND statement), allowing the loop to
repeat. You can use CONTINUE only within programs and only
with FOR or WHILE.

DO ... DOEND Brackets a group of one or more statements. DO and DOEND are
normally used to bracket a group of statements that are to be
executed under a condition specified by an IF statement, a group
of statements in a repeating loop introduced by FOR or WHILE, or
the CASE labels for a SWITCH statement.

FOR Specifies one or more dimensions whose status controls the
repetition of one or more statements.

GOTO Alters the sequence of statement execution within the program by
indicating the next program statement to execute.

IF...THEN...ELSE
command

Executes one or more statements in a program if a specified
condition is met. Optionally, it also executes an alternative
statement or group of statements when the condition is not met.

OKFORLIMIT An option that determines whether you can limit the dimension
you are looping over within an explicit FOR loop.

RETURN Terminates execution of a program before its last line. You can
optionally specify a value that the program returns.

SIGNAL Produces an error message and halts normal execution of the
program. When the program contains an active trap label,
execution branches to the label. Without a trap label, execution of
the program terminates and, if the program was called by another
program, execution control returns to the calling program.

SWITCH command Provides a multipath branch in a program. The specific path taken
during program execution depends on the value of the control
expression that is specified with SWITCH.

TEMPSTAT Limits the dimension you are looping over, inside a FOR loop or
inside a loop that is generated by a REPORT statement. Status is
restored after the statement following TEMPSTAT. If a DO ...
DOEND phrase follows TEMPSTAT, status is restored when the
matched DOEND or a BREAK or GOTO statement is
encountered.

TRAP Causes program execution to branch to a label when an error
occurs in a program or when the user interrupts the program.
When execution branches to the trap label, that label is
deactivated.

WHILE Repeatedly executes a statement while the value of a Boolean
expression remains TRUE.

Preserving the Environment Settings
There are two types of environments:

• Session environment. The dimension status, option values, and output destination
that are in effect before a program is run constitute the session environment.

Chapter 6
Specifying Program Contents

6-6

• Program environment. The dimension status, option values, and output destination
that you use in a program constitute the program environment.

Changing the Program Environment
To perform a task within a program, you often must change the output destination or
some dimension and option values. For example, you might run a monthly sales report
that always shows the last six months of sales data. You might want to show the data
without decimal places, include the text "No Sales" where the sales figure is zero, and
send the report to a file. To set up this program environment, you can use the following
statements in your program.

LIMIT month TO LAST 6
DECIMALS = 0
ZSPELL = 'No Sales'
OUTFILE monsales.txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that are set in the program.
After the program executes, you can restore the saved environment, so that other
programs do not need to be concerned about whether any values have been changed.
In addition, when you have sent output to a file, then the exit sections should return the
output destination to the default outfile.

Ways to Save and Restore Environments
The following suggestions let you save the environment of a program or a session:

• When you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable that is changed in the current program, then use
PUSHLEVEL and PUSH statements. You can restore the current status values
using POPLEVEL and POP statements.

• When you want to save, access, or update the current status or value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation for
use in the current session, then use a named context. Use the CONTEXT
command to define the context.

Contexts are the most sophisticated way to save object values for use during a
session. With contexts, you can access, update, and commit the saved object values.
In contrast, PUSH and POP simply allow you to save and restore values. Typically,
you use PUSH and POP statements within a program to make changes that apply only
during the execution of the program.

Saving the Status of a Dimension or the Value of an Option
A PUSH statement saves the current status of a dimension, the value of an option, or
the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the program,
use the following statement in the initialization section.

PUSH DECIMALS

You do not need to know the original value of the option to save it or to restore it later.
You can restore the saved value with a POP statement.

Chapter 6
Specifying Program Contents

6-7

POP DECIMALS

You must make sure a POP statement is executed when errors cause abnormal
termination of the program and when the program ends normally. Therefore, place the
POP statement in the normal and abnormal exit sections of the program.

Saving Several Values at Once
You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH statement, and you can restore the values with
a single POP statement, as shown in the following example.

PUSH month DECIMALS ZSPELL
 ...
POP month DECIMALS ZSPELL

Using Level Markers
When you are saving the values of several dimensions and options, then PUSHLEVEL
and POPLEVEL statements provide a convenient way to save and restore the session
environment.

You first use a PUSHLEVEL statement to establish a level marker. Once the level
marker is established, you use a PUSH statement to save the status of dimensions
and the values of options or single-cell variables.

When you place multiple PUSH statements between the PUSHLEVEL and
POPLEVEL statements, then all the objects that are specified in those PUSH
statements are restored with a single POPLEVEL statement.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you must only type the list of objects once. You also reduce the risk
of omitting an object from the list or misspelling the name of an object.

For an example of creating level markers, see Example 10-85. Example 10-86
illustrates nesting PUSHLEVEL and POPLEVEL statements.

Using CONTEXT to Save Several Values at Once
As an alternative to using PUSHLEVEL and POPLEVEL, you can use the CONTEXT
command. After you create a context, you can save the current status of dimensions
and the values of options, single-cell variables, valuesets, and single-cell relations in
the context. You can then restore some or all of the object values from the context.
The CONTEXT function returns information about objects in a context.

Handling Errors
When an error occurs anywhere in a program, Oracle OLAP performs the following
actions:

1. Stores the name of the error in the ERRORNAME option, and the text of the error
message in the ERRORTEXT option.

Chapter 6
Specifying Program Contents

6-8

Note:

When the ERRNAMES option is set to the default value of YES, the
ERRORTEXT option contains the name of the error (that is, the value of
the ERRORNAME option) and the text of the error message.

2. When ECHOPROMPT is YES, then Oracle OLAP echoes input lines, error
messages, and output lines, to the current outfile. When you use the OUTFILE or
DBGOUTFILE statement, you can capture the error messages in a file. See
Example 10-69 for an example of directing output to a file.

3. When error trapping is off, then the execution of the program is halted. When error
trapping is on, then the error is trapped.

Trapping an Error
To make sure the program works correctly, anticipate errors and set up a system for
handling them. You can use a TRAP statement to turn on an error-trapping
mechanism in a program. When error trapping is on and an error is signaled, then the
execution of the program is not halted. Instead, error trapping does the following:

1. Turns off the error‐trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP statement

3. Executes the statements following the label

Passing an Error to a Calling Program
To pass an error to a calling program, you can use one of two methods. The method
you use depends on when you want the error message to be produced. With the first
method, Oracle OLAP produces the message immediately and then the error condition
is passed through the chain of programs. With the second method, Oracle OLAP
passes the error through the chain of programs first and then produces the message.
See "Passing an Error: Method One" and "Passing an Error: Method Two" for details.

With both methods, the appropriate error handling happens in each program in the
chain, and at some point Oracle OLAP sends an error message to the current outfile.

Passing an Error: Method One
Using this method, Oracle OLAP produces the message immediately and then the
error condition is passed through the chain of programs.

Use a TRAP statement with the (default) PRINT option. When an error occurs, Oracle
OLAP produces an error message, and execution branches to the trap label. After the
trap label, perform whatever cleanup you want, and then execute the following
statement.

SIGNAL PRGERR

Using this statement creates an error condition that is passed up to the program from
which the current program was run. However, PRGERR does not produce an error
message. PRGERR sets the ERRORNAME option to a blank value.

Chapter 6
Specifying Program Contents

6-9

When the calling program contains a trap label, execution branches to the label. When
each of the programs in a sequence of nested programs uses TRAP and SIGNAL in
this way, you can pass the error condition up through the entire sequence of
programs.

Passing an Error: Method Two
Using this method, Oracle OLAP passes the error through the chain of programs first
and then produces the message.

Use a TRAP statement with the NOPRINT option. When an error occurs, execution
branches to the trap label, but the error message is suppressed. After the trap label,
perform whatever cleanup you want, then execute the following statement.

SIGNAL ERRORNAME ERRORTEXT

The options ERRORNAME and ERRORTEXT contain the name and message of the
original error, so this SIGNAL statement reproduces the original error. The error is
then passed up to the program from which the current program was run.

When the calling program also contains a trap label, execution branches to its label.
When each of the programs in a sequence of nested programs uses TRAP...NOPRINT
and SIGNAL ERRORNAME ERRORTEXT in this way, you can pass the error condition up
through the entire sequence of programs. Oracle OLAP produces the error message
at the end of the chain.

When you reach a level where you want to handle the error and continue the
application, omit the SIGNAL statement. You can display your own message with a
SHOW statement.

Suppressing Error Messages
When you do not want to produce the error message that is normally provided for a
given error, then you can use TRAP statement with a NOPRINT keyword.

TRAP ON error NOPRINT

When you use the NOPRINT keyword with TRAP, control branches to the error label, and
an error message is not issued when an error occurs. The statements following the
error label are then executed.

When you suppress the error message, you might want to produce your own message
in the abnormal exit section. A SHOW statement produces the text you specify but does
not signal an error.

TRAP ON error NOPRINT
 ...
error:
 ...
SHOW 'The report will not be produced.'

The program continues with the next statement after producing the message.

Chapter 6
Specifying Program Contents

6-10

Creating Your Own Error Messages
All errors that occur when a statement or statement sequence does not conform to its
requirements are signaled automatically. In your program, you can establish additional
requirements for your own application. When a requirement is not met, you can
execute a SIGNAL statement to signal an error.

You can give the error any name. When a SIGNAL statement is executed, the error
name you specify is stored in the ERRORNAME option, just as an OLAP DML error name is
automatically stored. When you specify your own error message in a SIGNAL statement,
then your message is produced just as an OLAP DML error message is produced.
When you are using a TRAP statement to trap errors, a SIGNAL statement branches to
the TRAP label after the error message is produced.

For an example of signaling an error, see Example 10-123.

When you want to produce a warning message without branching to an error label,
then you can use a SHOW statement as illustrated in Example 10-121.

Handling Errors in Nested Programs
When handling errors in nested programs, the error-handling section in each program
should restore the environment. It can also handle any special error conditions that are
particular to that program. For example, when your program signals its own error, then
you can include statements that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want the
error message to be produced:

• The error message is produced immediately, and the error condition is then
passed through the chain of programs as illustrated in Example 10-157.

• The error is passed through the chain of programs first, and the error message is
produced at the end of the chain as illustrated inExample 10-158.

A SIGNAL statement is used in both methods.

Handling Errors While Saving the Session Environment
To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL statement before the TRAP statement and your PUSH
statements after the TRAP statement.

PUSHLEVEL 'firstlevel'
TRAP ON error
PUSH
 ...

In the abnormal exit section of your program, place the error label (followed by a
colon) and the statements that restore the session environment and handle errors. The
abnormal exit section might look like this.

Chapter 6
Specifying Program Contents

6-11

error:
POPLEVEL 'firstlevel'
OUTFILE EOF

These statements restore saved dimension status and option values and reroute
output to the default outfile.

Compiling Programs
You can explicitly compile a program by using a COMPILE statement. If you do not
explicitly compile a program, then it is compiled when you run the program for the first
time.

When a program is compiled, it translates the program statements into efficient
processed code that executes much more rapidly than the original text of the program.
When errors are encountered in the program, then the compilation is not completed,
and the program is considered to be uncompiled.

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic workspace
after compiling a program, the compiled code is saved in your analytic workspace and
used to run the program in future sessions. Therefore, be sure to update and commit
after compiling a program. Issuing an update and commit after program compilation is
particularly critical when the program is part of an application that is run by many
users. Unless the compiled version of the program is saved in the analytic workspace,
the program is recompiled individually in each user session.

Example 9-69 illustrates using COMPILE to compile a program

Finding Out If a Program Has Been Compiled
You can use the ISCOMPILED choice of the OBJ function to determine whether a specific
program in your analytic workspace has been compiled since the last time it was
modified. The function returns a Boolean value.

SHOW OBJ(ISCOMPILED 'myprogram')

Programming Methods That Prevent Compilation
Program lines that include ampersand substitution are not compiled. Any syntax errors
are not caught until the program is run. A program whose other lines compiled
correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program cannot be compiled. COMPILE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

Testing and Debugging Programs
Even when your program compiles cleanly, you must also test the program by running
it. Running a program helps you detect errors in statements with ampersand
substitution, errors in logic, and errors in any nested programs.

Chapter 6
Compiling Programs

6-12

To test a program by running it, use a full set of test data that is typical of the data that
the program processes. To confirm that you test all the features of the program,
including error-handling mechanisms, run the program several times, using different
data and responses. Use test data that:

• Falls within the expected range

• Falls outside the expected range

• Causes each section of a program to execute

Generating Diagnostic Messages
Each time you run the program, confirm that the program executes its statements in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW or TRACE statements in the program
to produce diagnostic or status messages. Then delete the these statements after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the rest
of this section.

Identifying Bad Lines of Code
When you set the BADLINE option to YES, additional information is produced, along
with any error message when a bad line of code is encountered. When the error
occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile. You can edit the specified program to
correct the error and then run the original program. See Example 5-4 for an example
of using BADLINE.

Sending Output to a Debugging File
When your program contains an error in logic, then the program might execute without
producing an error message, but it executes the wrong set of statements or produces
incorrect results. For example, suppose you write a Boolean expression incorrectly in
an IF statement (for example, you use NE instead of EQ). The program executes the
statements you specified, but it does so under the wrong conditions.

To find an error in program logic, you must often see the order in which the statements
are being executed. One way you can do this is to create a debugging file and then
examine the file to diagnose any problems in your programs by issuing the following
DML statements:

1. Create a debugging file, by issuing an DBGOUTFILE statement.

2. Specify that you want each program line to be sent to the debugging file when a
line executes by setting the PRGTRACE option to YES.

3. (Optional) When you want the debugging file to interweave the program lines with
both the program input and error messages, set the ECHOPROMPT option to YES.

Chapter 6
Testing and Debugging Programs

6-13

See Also:

The following examples of using a debugging file:

• Example 9-76

• Example 9-77

Executing Programs
You can invoke a program that does not return a value by using a CALL statement.
You enclose arguments in parentheses, and they are passed by value. For example,
suppose you create a simple program named addit to add two INTEGER values. You
can use a CALL statement in the main program of your application to invoke the
program.

You can also invoke programs in much the same way as you issue OLAP DML
statements. You invoke user-defined functions in the same way as you use built-in
functions. You use the program name in an expression and enclose the program
arguments, if any, in parentheses. For a program that does not return a value (a user-
defined command), you use the program name as you would an OLAP DML
command. When you invoke a user-defined program as a function, the program
returns NA.

You can also create programs that execute automatically when Oracle OLAP:

• Executes an AW ATTACH. AW CREATE, AW DELETE, AW DETACH, DEFINE,
MAINTAIN, PROPERTY, UPDATE, or SET statement as described in "Trigger
Programs".

• Encounters an NA value as described in $NATRIGGER.

Common Types of OLAP DML Programs
This section provides overview information about the following types of programs:

• Startup Programs

• Data Import and Export Programs

• Trigger Programs

• Aggregation, Allocation, and Modeling Programs

• Forecasting Programs

• Programs to Export and Import Workspace Objects

Startup Programs
Startup programs are programs that you write and that Oracle OLAP checks for by
name when an AW ATTACH statement executes. Startup programs do not exist within
an analytic workspace unless you define and write them. In a startup program you can
execute any OLAP DML statements, or run any of your own programs. For example, a
startup program might set options to values appropriate to your application.

Chapter 6
Executing Programs

6-14

When you first attach an analytic workspace, Oracle OLAP looks for and executes the
Oracle OLAP startup programs (if they exist) in the order indicated:

1. Permission programs. The execution of a permission program is determined by
the attachment mode specified in the AW ATTACH statement and whether or not
a related permission program exists in the analytic workspace you are attaching.
For more information, see "Permission Programs".

2. OnAttach programs. The execution of an OnAttach program is determined by how
you code the ONATTACH and NOONATTACH clauses of the AW ATTACH
statement and whether or not a program named ONATTACH exists in the analytic
workspace you are attaching. For more information, see "OnAttach Programs".

3. Autogo programs. The execution of an Autogo program is determined by how you
code the AUTOGO and NOAUTOGO clauses of the AW ATTACH statement and
whether or not a program named AUTOGO exists in the analytic workspace you
are attaching. For more information, see "Autogo Programs".

4. Trigger program. The execution of a Trigger program is determined by whether or
not a program named TRIGGER_AW exists in an already attached analytic
workspace. When a TRIGGER_AW program exists in one attached analytic
workspace, it is executed whenever you create, attach, detach, or delete any other
analytic workspace. For more information, see "Trigger Programs" and
TRIGGER_AW.

Note:

Within a session, when you:

• Reattach an attached workspace, Oracle OLAP does not look for and
execute permission programs and OnAttach programs.

• Reattach a previously detached workspace, Oracle OLAP does not execute
permission programs, OnAttach programs, or Autogo programs, unless you
detached that workspace using an AW DETACH statement that included
the NOCACHE keyword .

Permission Programs
Permission programs are programs that you write that give permission to users to
access workspace data. When a user first attaches an analytic workspace, Oracle
OLAP checks to see if a permission program that is appropriate for the attachment
mode exists.

Note:

When you reattach an attached workspace, Oracle OLAP does not look for and
execute permission programs.

The permission program for each attachment mode must have a particular name as
outlined in the following table:

Chapter 6
Common Types of OLAP DML Programs

6-15

Table 6-2 Names of Permission Programs for Different Attachment Modes

Attachment Modes Name of Program

Read-only PERMIT_READ

Multiwriter, Read/write PERMIT_WRITE

When an appropriate permission program exists, Oracle OLAP executes the program.
When a user specifies a password when attaching the analytic workspace, then the
password is passed as an argument to the permission program for processing.

Note:

A dimension surrogate has the access permissions of its dimension. Use a
PERMIT on a dimension to grant or deny permission to access the values of a
dimension surrogate for that dimension.

Permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

• Access at the analytic workspace level—Depending on the return value of the
permission program, the user is or is not granted access to the entire analytic
workspace. You can use the return value to indicate to Oracle OLAP whether or
not the user has the right to attach the workspace.

• Access at the object level—Within a permission program for read-only or read/
write attachment, you can specify PERMIT statements that grant or restrict access
to individual workspace objects. PERMIT programs must be in the same
workspace as the objects for which they issue PERMIT statements.

Note:

All of the objects referred to in a given permission program must exist in the
same analytic workspace.

To create a permission program, define a user-defined function (as described in
"Creating User-Defined Functions") with a recognized name, then define the contents
for the program as described in "Specifying Program Contents".

OnAttach Programs
An OnAttach program can have any name or it can explicitly be named ONATTACH.

Chapter 6
Common Types of OLAP DML Programs

6-16

Note:

When an analytic workspace is created as an OLAP cube using the OLAP API,
the OLAP API may also create a program named ONATTACH. You cannot modify
an ONATTACH program that is automatically created in this way. Additionally,
overriding the execution of ONATTACH is not recommended.

Consequently, when this type of ONATTACH program exists in an analytic
workspace, create a different type of startup program to specify behavior that
you want performed when that analytic workspace is attached.

How you specify the execution of an OnAttach program varies depending on its name:

• When a program named ONATTACH. exists in an analytic workspace, each time you
attach the workspace, that program executes automatically unless you include a
NOOTTACH keyword in the AW ATTACH statement, or unless you include an
ONATTACH clause that specifies a different program name.

• To execute an OnAttach program that is not named ONATTACH, specify the name of
the program within the ONATTACH clause of AW ATTACH statement.

Note:

When you reattach an attached cached workspace, Oracle OLAP does not look
for and execute OnAttach programs. To force an analytic worksapce to be fully
detached so that Oracle OLAP will look for and execute OnAttach programs
when you retach the workspace, specify the NOCACHE keyword in the
DETACH statement that detaches the analytic workspace.

Autogo Programs
An Autogo program can have any name or it can explicitly be named AUTOGO.

How you specify the execution of an Autogo program varies depending on its name:

• When a program named AUTOGO exists in an analytic workspace, each time you
attach the workspace, that program executes automatically unless you include a
NOAUTOGO keyword in the AW ATTACH statement, or unless you include an
AUTOGO clause that specifies a different program name.

• To execute an Autogo program that is not named AUTOGO, specify the name of the
program within the AUTOGO clause of AW ATTACH statement.

Data Import and Export Programs
The OLAP DML provides support for importing data from relational tables, flat files,
and spreadsheets into analytic workspace objects; and for exporting data from analytic
workspace objects to relational tables, flat files, and spreadsheets.

Chapter 6
Common Types of OLAP DML Programs

6-17

Importing Data to and Exporting Data from Relational Tables
You can embed SQL statements in OLAP DML programs using the OLAP DML SQL
statement. Using the OLAP DML SQL statement you can import data from relational
tables into analytic workspace objects and export data from analytic workspace
objects to relational tables.

Importing Data From Relational Tables to Workspace Objects
Using the OLAP DML SQL statement within an OLAP DML program you can copy
relational data into analytic workspace objects using either an implicit cursor or an
explicit cursor:

• To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the SQL SELECT statement. You can use this OLAP DML
statement interactively in the OLAP Worksheet or within an OLAP DML program.

• To copy data from relational tables into analytic workspace objects using an
explicit cursor, use the following statements in the order indicated. You can only
use these statements within an OLAP DML program. You cannot use them
interactively in the OLAP Worksheet.

1. SQL DECLARE CURSOR defines a SQL cursor by associating it with a
SELECT statement or procedure.

2. SQL OPEN activates a SQL cursor.

3. SQL FETCH and SQL IMPORT retrieve and process data specified by a
cursor.

4. SQL CLOSE closes a SQL cursor.

5. SQL CLEANUP cancels a SQL cursor declaration and frees the memory
resources of an SQL cursor.

For examples of programs that copy table data into workspace objects, see SQL
FETCH and SQL IMPORT.

Exporting Data from OLAP DML Objects to Relational Tables
Within a program, you can use an OLAP DML SQL statement with the INSERT
keyword to copy data from analytic workspace objects into relational tables. Typically,
you do this by issuing the following statements in your OLAP DML program:

1. SQL PREPARE statements, to precompile the INSERT and UPDATE statements.

2. SQL EXECUTE statements, to execute the statements that you precompiled in
Step 1.

Importing Data to and Exporting Data from Flat Files
Oracle OLAP provides several statements that you can use to read data from flat files
or to write data to flat files. These statements are frequently used together in a special
program.

Chapter 6
Common Types of OLAP DML Programs

6-18

Importing Data to and Exporting Data from Spreadsheets
Within an OLAP DML program you can use an IMPORT statement to import data from
a spreadsheet into analytic workspace objects. You can use an EXPORT statement to
export data from analytic workspace objects into a spreadsheet.

Trigger Programs
DEFINE, MAINTAIN, PROPERTY, SET (=) UPDATE, and AW commands are
recognized by Oracle OLAP as events that can trigger the execution of OLAP DML
programs.

• Programs triggered by DEFINE, MAINTAIN, PROPERTY, UPDATE, or SET
commands, are called object trigger programs and are discussed in this section
and in the topic for the TRIGGER command.

• A program named TRIGGER_AW that is defined within one analytic workspace
and which is triggered when another analytic workspace is created, attached,
detached or deleted. See the discussion of the "TRIGGER_AW" for more
information.

Trigger programs are frequently written to maintain application-specific metadata.
Trigger programs have certain characteristics depending on the statement that triggers
them. Some trigger programs execute before the triggering statement executes; some
after. Oracle OLAP passes arguments to programs triggered by some statements, but
not others. Oracle OLAP does not change dimension status before most trigger
programs execute, but does change dimension status before some MAINTAIN
statements trigger program execution. In most cases, you can give a trigger program
any name that you choose, but some events require a program with a specific name.
"Characteristics of Object Trigger Programs" discusses these characteristics.

See Also:

The following statements:

• TRIGGER function, DESCRIBE command, and OBJ function that retrieve
information about triggers.

• USETRIGGERS option that you can use to disable all triggers.

Creating an Object Trigger Program
Once an object is defined in an analytic workspace, you can create a trigger program
for that object by following the following procedure:

1. Define the program as described in DEFINE PROGRAM.

2. Determine what to name the program and whether the program can be a user-
defined program. (See Table 6-3.) If the program can be a user-defined program,
decide whether or not you want to define the trigger program as a user-defined
function.

3. Code the actual program as described in"Specifying Program Contents".

4. Keep the following points in mind when coding trigger programs:

Chapter 6
Common Types of OLAP DML Programs

6-19

• Use Table 6-3 to determine if Oracle OLAP passes values to the program. If it
does, use an ARGUMENT statement to declare these arguments in your
program and the VARIABLE statement to define program variables for the
values. (See Table 6-4 for specific information about the arguments.)

• A program that is triggered by an Assign event is executed each time Oracle
OLAP assigns a value to the object for which the event was defined. Thus, a
program triggered by an Assign event is often executed over and over again
as the assignment statements loops through an object assigning values. You
can use TRIGGERASSIGN to assign a value that is different from the value
specified by the assignment statement that triggered the execution of the
program.

• In some cases, Oracle OLAP changes the status of the dimension being
maintained when a Maintain event triggers the execution of a program. See
Table 6-5 for details

• Use the CALLTYPE function within a program to identify that the program was
invoked as a trigger.

5. When the trigger program is not a TRIGGER_AFTER_UPDATE,
TRIGGER_BEFORE_UPDATE, or TRIGGER_DEFINE program, associate the
program with the desired object and event using the TRIGGER command.

6. There is no support for recursive triggers. You must set the USETRIGGERS
option to NO before you issue the same DML statement within a trigger program
that triggered the program itself. For example, assume that you have written a
program named TRIGGER_MAINTAIN_ADD that is triggered by MAINTAIN ADD
statements. Within the TRIGGER_MAINTAIN_ADD program, you must set the
USETRIGGERS option to NO before you issue a MAINTAIN statement.

Characteristics of Object Trigger Programs
Object trigger programs have certain characteristics depending on the statement that
triggers them. Some trigger programs execute before the triggering statement
executes; some after. Oracle OLAP passes arguments to programs triggered by some
statements, but not others. Oracle OLAP does not change dimension status before
most trigger programs execute, but does change dimension status before some
MAINTAIN statements trigger program execution. In most cases, you can give a
trigger program any name that you choose, but some events require a program with a
specific name.

Table 6-3 lists the OLAP DML statements that trigger programs, the required name of
the program (if any), whether or not Oracle OLAP uses values returned by the
program, and whether or not Oracle OLAP passes arguments to the program.

Keep the following points in mind when designing trigger programs:

• Triggers that execute before the DML statement—For trigger programs that
execute before the triggering OLAP DML statement executes, you can define the
trigger program as a user-defined function that returns a BOOLEAN value. The value
returned by the program determines if Oracle OLAP executes the statement that
triggered the execution of the trigger program. When the program returns FALSE,
Oracle OLAP does not execute the triggering statement; when it returns TRUE or NA,
the triggering statement executes.

• Arguments passed to trigger programs—Oracle OLAP passes arguments to some
trigger programs. These programs are identified in Table 6-3. Descriptions of
these arguments are provided in Table 6-4. Use the ARGUMENT statement to

Chapter 6
Common Types of OLAP DML Programs

6-20

declare these arguments in your program. Use VARIABLE to define program
variables for the values. Use the WKSDATA function to retrieve the data type of an
argument with a WORKSHEET data type.

• Assign trigger programs—Oracle OLAP executes a program triggered by an
Assign event each time it assigns a value to the object for which the event was
defined. Thus, a program triggered by an Assign event is often executed over and
over again as the assignment statements loops through an object assigning
values. With each execution, the value to be assigned is passed as argument1 to
the Assign trigger program. (See Table 6-4 for more information and
Example 10-163 for an example.) Within the Assign trigger program, you can use
a TRIGGER ASSIGN statement to assign a different value than that specified by
the assignment statement that triggered the execution of the Assign trigger
program.

You can only assign values to a formula when the formula has an Assign trigger
defined for it. When you assign a value to a formula with an Assign event, Oracle
OLAP executes the trigger program for the event for assigned value and passes
the assigned value to the trigger program. The Assign trigger does not change the
definition of the formula itself. See Example 10-165 for an example of an Assign
trigger on a formula.

• Maintain trigger programs and dimension status —In some cases, Oracle OLAP
changes the status of the dimension being maintained when a Maintain event
triggers the execution of a program. See Table 6-5 for details.

• Maintain triggers and dimension surrogates—Maintain triggers for dimension
surrogates are different than Maintain triggers for other objects. You can only
successfully issue a MAINTAIN statement against a dimension surrogate, when
the dimension surrogate has a Maintain trigger. Issuing a MAINTAIN statement for
a surrogate dimension that does not have a Maintain trigger, returns an error.
Also, for Maintain Add and Maintain Merge triggers, whether or not an argument is
passed to the program depends on the object on which the trigger is defined:

– For dimension surrogates with a Maintain trigger, Oracle OLAP executes the
trigger program one time for each value added or merged and passes that
value into the program.

– For other objects with a Maintain trigger, Oracle OLAP executes the trigger
program only once after the MAINTAIN statement executes and no values are
passed into the program

Table 6-3 Object Trigger Program Characteristics

Triggering Statement (event) Program Name Return
Values

Passed
Arguments

= (assignment) statement (SET) No required name No Yes

DEFINE TRIGGER_DEFINE No No

MAINTAIN ADD No required name No No

MAINTAIN DELETE (not ALL) No required name Yes No

MAINTAIN DELETE ALL No required name Yes No

MAINTAIN MERGE No required name No No

MAINTAIN MOVE No required name Yes Yes

MAINTAIN RENAME No required name Yes Yes

Chapter 6
Common Types of OLAP DML Programs

6-21

Table 6-3 (Cont.) Object Trigger Program Characteristics

Triggering Statement (event) Program Name Return
Values

Passed
Arguments

PROPERTY No required name Yes Yes

UPDATE (Update AW) TRIGGER_AFTER_UPDATE No No

UPDATE (Update AW) TRIGGER_BEFORE_UPDATE Yes No

UPDATE (Update Multi) No required name No No

Table 6-4 Arguments Passed to Trigger Programs

Event Argument1 Argument2

Property When the PROPERTY statement is
assigning a property to an object, the
name of the property. When the
PROPERTY statement is deleting one or
more properties, the literal DELETE.
(TEXT data type)

When the value of argument1 is
DELETE, the name of the property or
the literal ALL. In all other cases, the
name of the property. (WORKSHEET
data type)

Assignment The value to assign. When you know the
data type of the object to which the value
is assigned, specify that data type for the
argument. When you do not know the
actual data type, specify WORKSHEET as the
data type of the argument.

None. Oracle OLAP passes only
one argument to the program.

Maintain
Add

(Dimension surrogates only) The
value added. (WORKSHEET data
type)

Maintain
Rename

The dimension value to rename. (TEXT
data type)

The new name of the dimension
member. (WORKSHEET data type)

Maintain
Merge

(Dimension surrogates only) The
value merged. (WORKSHEET data
type)

Maintain
Move

The position of the dimension value to
move. (TEXT data type)

The literal BEFORE or AFTER.
(WORKSHEET data type)

Table 6-5 How Programs Triggered by Maintain Events Effect Dimension
Status

Event Subevent Dimension Status Before Program Execution

Maintain Add Status set to dimension values just added.

Maintain Delete Status set to dimension values about to be deleted.

Maintain Delete All Current status is not changed.

Maintain Merge Status set to dimension values just merged.

Maintain Move Status set to dimension values about to be moved.

Maintain Rename Current status is not changed.

Chapter 6
Common Types of OLAP DML Programs

6-22

Aggregation, Allocation, and Modeling Programs
To aggregate, allocate, or model data using the OLAP DML, you first specify the
calculation that you want performed by defining a calculation specification as outlined
in "Creating Calculation Objects". Later, to populate variables with aggregated,
allocated or modeled values as a database maintenance procedure, write a program
to execute the calculation object. For more information on the OLAP DML statements
that you use in these programs, see "Running a Model", "Executing the Aggregation",
and "Allocating Data".

Forecasting Programs
The OLAP DML has several related statements that allow you to forecast data using
the Geneva Forecasting engine which is a statistical forecasting engine from Roadmap
Technologies that is used extensively in demand planning applications.

To forecast using the Geneva Forecasting engine, take the following steps:

1. Add the future time values to the time dimension.

2. Create a variable to hold the results of the forecast.

3. Write a forecasting program. Within the program, issue the following statements in
the order indicated:

a. FCOPEN function -- Creates a forecasting context.

b. FCSET command -- Specifies the forecast characteristics.

c. FCEXEC command -- Executes a forecast and populates Oracle OLAP
variables with forecasting data.

d. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

e. FCCLOSE command -- Closes a forecasting context.

For examples of using these statements to forecast data see Example 9-119.

Programs to Export and Import Workspace Objects
You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of an analytic workspace object to a specially formatted EIF file.
Then you can import the information into a different workspace within the same
schema or a different one.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, issue an
EXPORT statement to put all the data in an EIF file, create another workspace with a
different name, and then use an IMPORT statement to import the EIF file into the new
workspace. When you have imported into the same database, you can delete the old
workspace and refer to the new one with the same workspace alias that you used for
the original one.

The following statement copies all the data and definitions from the current analytic
workspace to an EIF file called reorg.eif in a directory object called mydir.

Chapter 6
Common Types of OLAP DML Programs

6-23

EXPORT ALL TO EIF FILE 'mydir/reorg.eif'

User-Written Programs Looked For by Oracle OLAP
Oracle OLAP looks for the Oracle OLAP programs with the following names and
executes them as explained in the topic for each program.

AUTOGO
ONATTACH
ONDETACH
PERMIT_READ
PERMIT_WRITE
TRIGGER_AFTER_UPDATE
TRIGGER_AW
TRIGGER_BEFORE_UPDATE
TRIGGER_DEFINE

AUTOGO
An AUTOGO program is a program that you can create and that Oracle OLAP checks
for by name when an AW ATTACH command executes.

When you attach an analytic workspace that contains a program named AUTOGO,
unless the AW ATTACH statement includes an NOAUTOGO clause or an AUTOGO
clause that specifies a program with a different name, Oracle OLAP executes the
ONATTACH program.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

Return Value

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the Autogo program has thrown an exception.

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name AUTOGO use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-24

AUTOGO (password)

Parameters

See AW ATTACH for explanation of password.

Examples

For examples of how attachment programs behave, see Example 9-50.

ONATTACH
An ONATTACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH command executes.

When you attach an analytic workspace that contains a program named ONATTACH,
unless the AW ATTACH statement includes an NOONATTACH clause or an
ONATTACH clause that specifies a program with a different name, Oracle OLAP
executes the ONATTACH program.

Depending on the statements in the onattach program, the user is granted or denied
access to specific objects or sets of object values. For multiwriter attachment, you can
use ACQUIRE commands to provide access to individual workspace objects. For
read-only and read/write attachment, you can use PERMIT commands that grant or
restrict access to individual workspace objects. All of the objects referred to in a given
onattach program must exist in the same analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

Return Value

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the onattach program has thrown an exception.

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name ONATTACH use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

ONATTACH ({READ|WRITE|EXCLUSIVE|MULTI} password)

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-25

Parameters

See AW ATTACH for explanations of the attachment modes (that is, READ, WRITE,
EXCLUSIVE, and MULTI) and password.

Usage Notes

ONATTACH Programs Created by the OLAP API

When an analytic workspace is created as an OLAP cube using the OLAP API, the
OLAP API may also create a program named ONATTACH. You can not modify an
ONATTACH program that is automatically created in this way. Additionally, overriding
the execution of this ONATTACH is not recommended.

Consequently, when this type of ONATTACH program exists in an analytic workspace,
create a different type of startup program to specify behavior that you want performed
when that analytic workspace is attached.

Examples

For examples of how attachment programs behave, see Example 9-50.

ONDETACH
An ONDETACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW DETACH command executes. Depending on the
value returned by the program, Oracle OLAP executes the code within the program
immediately after detaching the analytic workspace.

Note:

Oracle OLAP checks for other programs when a user attaches an analytic
workspace. See "Startup Programs" for more information.

Return Value

BOOLEAN

TRUE when Oracle OLAP has successfully detached the analytic workspace; or FALSE
when it has not or when the detach program has thrown an exception.

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name ONDETACH use the syntax shown in DEFINE
PROGRAM.

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-26

PERMIT_READ
A PERMIT_READ program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read-only command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_read program the user is granted or denied access to specific objects or sets of
object values. Within permit_read program, you can specify PERMIT commands that
grant or restrict access to individual workspace objects. All of the objects referred to in
a given permit_read must exist in the same analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

See Also:

PERMITERROR option, PERMITREADERROR option, and PERMIT_WRITE
program

Return Value

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_read program has thrown an exception

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name PERMIT_READ use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_READ (password)

Parameters

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument
to the program for processing.

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-27

Examples

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 9-50.

PERMIT_WRITE
A PERMIT_WRITE program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read/write command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_write program, the user is granted or denied access to specific objects or sets
of object values. Within permit_write program, you can specify PERMIT commands
that grant or restrict access to individual workspace object. All of the objects referred
to in a given permit_write program must exist in the same analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

See Also:

PERMITERROR option, PERMITREADERROR option, and PERMIT_READ
program

Return Value

BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_write program has thrown an exception

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name PERMIT_WRITE use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_WRITE (password)

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-28

Parameters

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument
to the program for processing.

Examples

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 9-50.

TRIGGER_AFTER_UPDATE
A TRIGGER_AFTER_UPDATE program is a program that you can create in an
analytic workspace and that Oracle OLAP checks for by name when an UPDATE
command for that analytic workspace executes. When the program exists in the same
analytic workspace that you are updating, Oracle OLAP executes the program after
executing the UPDATE.

Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_AFTER_UPDATE program to execute

Note:

"Trigger Programs".

Syntax

To create a program with the name TRIGGER_AFTER_UPDATE, follow the guidelines
presented in "Trigger Programs".

Examples

Example 6-1 TRIGGER_AFTER_UPDATE Program

Assume you have defined the following program in your analytic workspace.

DEFINE TRIGGER_AFTER_UPDATE PROGRAM
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
END

When you issue an UPDATE statement the program executes and displays the
following output.

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-29

calltype = TRIGGER
triggering event = AFTER_UPDATE
triggering subevent = AW

TRIGGER_AW

A TRIGGER_AW program is a program that you can create in one analytic workspace
and that Oracle OLAP checks for by name when that analytic workspace is current
and you create, attach, detach, or delete any other analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

See Also:

"Trigger Programs"

Return Value

None.

Syntax

To create a program with the name TRIGGER_AW, follow the guidelines presented in"How
to Create a TRIGGER_AW Program".

Usage Notes

How to Create a TRIGGER_AW Program

You create a TRIGGER_AW program by following the following procedure:

1. Define the program as described in DEFINE PROGRAM.

2. Name the program TRIGGER_AW.

3. Code the actual program as described in "Specifying Program Contents".

Note:

There is no support for recursive triggers. You must set the
USETRIGGERS option to NO before you issue an AW statement within an
TRIGGER_AW program

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-30

Examples

Example 6-2 A TRIGGER_AW Program

Assume that you have defined a program with the following definition in an analytic
workspace named my_aw.

DEFINE TRIGGER_AW PROGRAM
PROGRAM
SHOW CALLTYPE
SHOW TRIGGER(EVENT)
SHOW TRIGGER(SUBEVENT)
SHOW TRIGGER(NAME)
END

When attach the my_aw workspace, the specified values are displayed.

AW ATTACH MY_AW

TRIGGER
AW
ATTACH
MY_AW

TRIGGER_BEFORE_UPDATE
A TRIGGER_BEFORE_UPDATE program is a program that you can create and that
Oracle OLAP checks for by name when an UPDATE command executes. When the
program exists in the same analytic workspace that you are updating, Oracle OLAP
executes the program and then, depending on the value returned by the program (if
any), either does nor does not update the workspace.

Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_BEFORE_UPDATE program to execute

Note:

"Trigger Programs"

Return Value

You can write the program as a function that returns a BOOLEAN value. In this case,
when the program returns FALSE, Oracle OLAP does not execute the UPDATE
statement that triggered the execution of the TRIGGER_BEFORE_UPDATE program;
when the program returns TRUE or NA, the UPDATE statement executes.

Syntax

To create a program with the name TRIGGER_UPDATE, follow the guidelines presented in
"Trigger Programs".

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-31

Examples

Example 6-3 TRIGGER_BEFORE_UPDATE Program

Assume that an analytic workspace named myaw has an
TRIGGER_BEFORE_UPDATE program with the following definition.

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

Assume that you define a TEXT variable named myvar and, then, issue an UPDATE
statement. The TRIGGER_BEFORE_UPDSATE program executes.

calltype = TRIGGER
triggering event = BEFORE_UPDATE
triggering subevent = AW

Because the program returned TRUE, the definition for myvar exists after you detach
and reattach the workspace.

AW DETACH myaw
AW ATTACH myaw
DESCRIBE

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

DEFINE MYVAR VARIABLE TEXT

However, if you modified the program so that it returned FALSE, then when you detach
and reattach the workspace, not only would the myvar definition not in the workspace,
the definition for the TRIGGER_BEFORE_UPDATE program would also not be in the
workspace.

TRIGGER_DEFINE
A TRIGGER_DEFINE program is a program that you create and that Oracle OLAP
checks for by name when a DEFINE command executes. When the program exists in
the same analytic workspace in which you are defining a new object, Oracle OLAP
executes the program.

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-32

Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_DEFINE program to execute

Note:

"Trigger Programs"

Syntax

To create a program with the name TRIGGER_DEFINE, follow the guidelines presented in
"Trigger Programs".

Examples

Example 6-4 A TRIGGER_DEFINE Program

Assume that you have written a TRIGGER_DEFINE program with the following
description in your analytic workspace.

DEFINE TRIGGER_DEFINE PROGRAM
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('fully qualified object name ='TRIGGER(NAME))
SHOW JOINCHARS ('type of object = 'OBJ(TYPE TRIGGER(NAME))
DESCRIBE &TRIGGER(NAME)
END

Assume, as shown in the following statements, that you issue a DEFINE VARIABLE
statement to define a variable named myvar. As shown by the output following the
statement, Oracle OLAP defines the variable and executes the TRIGGER_DEFINE
program.

DEFINE myvar VARIABLE TEXT
calltype = TRIGGER
triggering event = DEFINE
fully qualified object name =MYAW!MYVAR
type of object = VARIABLE

DEFINE MYVAR VARIABLE TEXT

Chapter 6
User-Written Programs Looked For by Oracle OLAP

6-33

7
OLAP DML Functions: A - K

This chapter contains the following topics:

• About OLAP DML Functions

• Functions: Alphabetical Listing

• Functions by Category

• One topic for each of the OLAP DML functions that begins with the letters A - K,
beginning with ABS.

Reference topics for the remaining OLAP DML functions appear in alphabetical order
in OLAP DML Functions: L - Z .

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Options , OLAP DML Commands: A-G, and OLAP DML Commands: H-Z.

About OLAP DML Functions
OLAP functions work in much the same way as functions work in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All of
the Values of a Data Object".

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information. For example, the OLAP DML
provides the AW and OBJ functions that you can use to retrieve many different types
of information about an analytic workspace and its objects and the AGGREGATE
function that you can use to calculate aggregate data on-the-fly at user request.

Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a function.

Tip:

Many OLAP DML statements can be coded as a 3-character abbreviation that
consists of the first letter of the statement plus the next two consonants.

Functions: Alphabetical Listing
A

ABS
ADD_MONTHS
AGGCOUNT
AGGMAPINFO

7-1

AGGREGATE function
AGGREGATION
AGGROPS
ALLOCOPS
ANTILOG
ANTILOG10
ANY
ARCCOS
ARCSIN
ARCTAN
ARCTAN2
ARG
ARGCOUNT
ARGFR
ARGS
ASCII
ASCIISTR
AVERAGE
AW function

B

BACK
BASEDIM
BASEVAL
BEGINDATE
BIN_TO_NUM
BITAND
BLANKSTRIP

C

CALLTYPE
CHARTOROWID
CATEGORIZE
CEIL
CHANGEBYTES
CHANGECHARS
CHANGEDRELATIONS
CHANGEDVALUES
CHARLIST
CHGDIMS
CHR
COALESCE
COLVAL
CONTEXT function
CONVERT
CORRELATION
COS
COSH

Chapter 7
Functions: Alphabetical Listing

7-2

COUNT
CUMSUM
CURRENT_DATE
CURRENT_TIMESTAMP

D

DAYOF
DBTIMEZONE
DDOF
DECODE
DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD

E

ENDDATE
ENDOF
EVERY
EXISTS
EXP
EVERSION
EXTBYTES
EXTCHARS
EXTCOLS
EXTLINES
EXTRACT

F

FCOPEN
FCQUERY
FILEERROR
FILEGET
FILENEXT
FILEOPEN
FILEQUERY
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
FINTSCHED
FLOOR
FPMTSCHED
FROM_TZ

G

GET
GREATEST

Chapter 7
Functions: Alphabetical Listing

7-3

GROUPINGID function
GROWRATE

H

HEXTORAW
HIERCHECK
HIERHEIGHT
HIERSHAPE

I

INFO
INITCAP
INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTAT
INSTR functions
INTPART
IRR
ISDATE
ISEMPTY
ISINFINITE
ISNAN
ISSESSION
ISVALUE

J

JOINBYTES
JOINCHARS
JOINCOLS
JOINLINES

K

KEY

L

LAG
LAGABSPCT
LAGDIF
LAGPCT
LARGEST
LAST_DAY
LEAD
LEAST
LIMIT function
LIMITMAPINFO

Chapter 7
Functions: Alphabetical Listing

7-4

LNNVL
LOCALTIMESTAMP
LOG function
LOG10
LOWCASE
LOWER
LPAD
LTRIM

M

MAKEDATE
MAX
MAXBYTES
MAXCHARS
MEDIAN
MIN
MMOF
MODE
MODULO
MONTHS_BETWEEN
MOVINGAVERAGE
MOVINGMAX
MOVINGMIN
MOVINGTOTAL

N

NA2
NAFILL
NAFLAG
NEW_TIME
NEXT_DAY
NLS_CHARSET_ID
NLS_CHARSET_NAME
NLSSORT
NONE
NORMAL
NPV
NULLIF
NUMBYTES
NUMCHARS
NUMLINES
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVL
NVL2

O

OBJ

Chapter 7
Functions: Alphabetical Listing

7-5

OBJLIST
OBJORG
OBSCURE
ORA_HASH

P

PARTITION
PARTITIONCHECK
PERCENTAGE

Q

QUAL

R

RANDOM
RANK
RAWTOHEX
RECNO
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REM
REMAINDER
REMBYTES
REMCHARS
REMCOLS
REMLINES
REPLACE
REPLBYTES
REPLCHARS
REPLCOLS
REPLLINES
RESERVED
ROUND
ROW function
ROWIDTOCHAR
ROWIDTONCHAR
RPAD
RTRIM
RUNTOTAL

S

SESSIONTIMEZONE
SIGN
SIN
SINH
SMALLEST

Chapter 7
Functions: Alphabetical Listing

7-6

SMOOTH
SORT function
SORTLINES
SOUNDEX
SQLFETCH
SQRT
STARTOF
STATALL
STATDEPTH
STATEQUAL
STATFIRST
STATLAST
STATLEN
STATLIST
STATMAX
STATMIN
STATRANK
STATVAL
STDDEV
SUBSTR functions
SUBTOTAL
SYS_CONTEXT
SYSDATE
SYSINFO
SYSTEM
SYSTIMESTAMP

T

TALLY
TAN
TANH
TCONVERT
TEXTFILL
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR
TO_DATE
TO_DSINTERVAL
TO_NCHAR
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TOD
TODAY
TOTAL
TRANSLATE
TRIGGER function
TRIM

Chapter 7
Functions: Alphabetical Listing

7-7

TRUNCATE
TZ_OFFSET

U

UNIQUELINES
UNRAVEL
UPPER
UPPER

V

VALSPERPAGE
VALUES
VINTSCHED
VPMTSCHED
VSIZE

W

WEEKOF
WIDTH_BUCKET
WKSDATA
WRITABLE

Y

YYOF

Functions by Category
The OLAP DML provides the typical numeric and text functions:

Conversion functions
Datetime functions
Date-only functions
Financial functions
File management functions
NA functions
Numeric (general) functions
Numeric aggregation functions
Program argument and context functions
Reporting functions
Statistical and forecasting functions
Text functions

It also has functions that are unique to its data model:

Analytic workspace and object information functions
Aggregation, allocation, and model specification functions
System and Database information functions
Time-series functions
Object value retrieval functions

Chapter 7
Functions by Category

7-8

Status manipulation functions

Analytic workspace and object information functions

AW function
CHANGEDRELATIONS
CHANGEDVALUES
BASEDIM
EXISTS
ISEMPTY
ISSESSION
ISVALUE
LIMITMAPINFO
OBJ
OBJLIST
OBJORG
PARTITION
RESERVED
TALLY
TRIGGER function
VALSPERPAGE
VSIZE
WRITABLE

Aggregation, allocation, and model specification functions

AGGCOUNT
AGGMAPINFO
AGGREGATE function
AGGREGATION
AGGROPS
ALLOCOPS
HIERCHECK
INFO
CHANGEDRELATIONS
CHANGEDVALUES
ISEMPTY
PARTITIONCHECK

Conversion functions

ASCII
ASCIISTR
BIN_TO_NUM
CHR
CONVERT
FROM_TZ
HEXTORAW
RAWTOHEX
TCONVERT
TO_BINARY_DOUBLE

Chapter 7
Functions by Category

7-9

TO_BINARY_FLOAT
TO_CHAR
TO_DATE
TO_NCHAR
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ

System and Database information functions

CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
LOCALTIMESTAMP
SESSIONTIMEZONE
SYS_CONTEXT
SYSDATE
SYSINFO
SYSTEM

Datetime functions

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT
FROM_TZ
LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
ROUND (datetime)
NEW_TIME
NUMTODSINTERVAL
NUMTOYMINTERVAL
SESSIONTIMEZONE
SYSDATE
SYSTIMESTAMP
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TOD
TRIM
TRUNCATE (datetime)
TZ_OFFSET

Date-only functions

BEGINDATE

Chapter 7
Functions by Category

7-10

DAYOF
DDOF
ENDDATE
ENDOF
ISDATE
MAKEDATE
MMOF
STARTOF
TODAY
WEEKOF
YYOF

Financial functions

DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD
FINTSCHED
FPMTSCHED
GROWRATE
IRR
NPV
VINTSCHED
VPMTSCHED

File management functions

FILEERROR
FILEGET
FILENEXT
FILEOPEN
FILEQUERY
GET
RECNO

NA functions

COALESCE
NA2
NAFILL
NAFLAG
NULLIF
NVL
NVL2

Numeric (general) functions

ABS
ANTILOG
ANTILOG10
ARCCOS

Chapter 7
Functions by Category

7-11

ARCSIN
ARCTAN
ARCTAN2
BIN_TO_NUM
BITAND
CEIL
COS
COSH
DECODE
EXP
FLOOR
GREATEST
INTPART
ISINFINITE
ISNAN
LEAST
LOG function
LOG10
MAX
MIN
MODULO
NULLIF
ORA_HASH
RANDOM
RANK
REM
REMAINDER
ROUND (number)
SIGN
SIN
SINH
SMOOTH
SORT function
SQRT
TAN
TANH
TRUNCATE (number)
VSIZE
WIDTH_BUCKET

Numeric aggregation functions

ANY
AVERAGE
COUNT
EVERY
LARGEST
MEDIAN
MODE
NONE

Chapter 7
Functions by Category

7-12

PERCENTAGE
SMALLEST
TCONVERT
TOTAL

Object value retrieval functions

BASEVAL
CHGDIMS
HIERHEIGHT
KEY
QUAL
ROW function
SORT function
UNRAVEL
VALUES
WKSDATA

Program argument and context functions

ARG
ARGCOUNT
ARGFR
ARGS
BACK
CALLTYPE
CONTEXT function

Reporting functions

COLVAL
RUNTOTAL
SUBTOTAL

Statistical and forecasting functions

CATEGORIZE
CORRELATION
FCOPEN
FCQUERY
INFO
NORMAL
ORA_HASH
RANDOM
STDDEV

Status manipulation functions

CHGDIMS
INSTAT
LIMIT function
STATALL
STATDEPTH

Chapter 7
Functions by Category

7-13

STATEQUAL
STATFIRST
STATLAST
STATLEN
STATLIST
STATMAX
STATMIN
STATRANK
STATVAL
VALUES

Text functions

ASCII
ASCIISTR
BLANKSTRIP
CHANGEBYTES
CHANGECHARS
CHARLIST
EXTBYTES
EXTCHARS
EXTCOLS
EXTLINES
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
INITCAP
INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTR functions
JOINBYTES
JOINCHARS
JOINCOLS
JOINLINES
LEAST
LENGTH functions
LOWCASE
LOWER
LPAD
LTRIM
MAXBYTES
MAXCHARS
NLS_CHARSET_ID
NLS_CHARSET_NAME
NLSSORT
NULLIF

Chapter 7
Functions by Category

7-14

NUMBYTES
NUMCHARS
NUMLINES
OBSCURE
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REMBYTES
REMCHARS
REMCOLS
REMLINES
REPLACE
REPLBYTES
REPLCHARS
REPLCOLS
REPLLINES
RPAD
RTRIM
SORT function
SORTLINES
SOUNDEX
SUBSTR functions
TEXTFILL
TRANSLATE
TRIM
UNIQUELINES
UPPER
UPPER
VSIZE

Time-series functions

CUMSUM
LAG
LAGABSPCT
LAGDIF
LAGPCT
LEAD
MOVINGAVERAGE
MOVINGMAX
MOVINGMIN
MOVINGTOTAL

ABS
The ABS function calculates the absolute value of an expression. Because the
absolute value of a real number is its numeric value without regard to its sign, this
function always returns a positive value. For example, 3 is the absolute value of both 3
and -3.

Chapter 7
ABS

7-15

Return Value

DECIMAL.

The dimensionality of the result is the same as the specified expression.

Syntax

ABS(expression)

Parameters

expression
The expression whose absolute value is to be calculated.

Examples

Example 7-1 Finding Values in an Absolute Range

Suppose you are interested in how close your planned 1996 sales figures for
sportswear in Boston were to the actual sales. You would like to see those months
where budgeted figures are off by more than $5,000 in either direction. You can use
ABS to help you find those months.

LIMIT product TO 'Sportswear'
LIMIT district TO 'Boston'
LIMIT month TO YEAR 'Yr96'
LIMIT month KEEP ABS(sales - sales.plan) GT 5000
REPORT DOWN month sales sales.plan sales - sales.plan

These statements produce the following output.

DISTRICT: BOSTON
 ------------PRODUCT-------------
 -----------SPORTSWEAR-----------
 SALES -
MONTH SALES SALES.PLAN SALES.PLAN
-------------- ---------- ---------- ----------
Jun96 79,630.20 73,568.52 6,061.68
Jul96 95,707.30 80,744.18 14,963.12
Aug96 82,004.00 71,811.45 10,192.55
Sep96 89,988.60 78,282.07 11,706.53
Dec96 50,281.40 56,720.87 -6,439.47

ADD_MONTHS
The ADD_MONTHS function returns the date that is n months after the specified date.

Return Value

DATETIME

Syntax

ADD_MONTHS(start_datetime, n)

Chapter 7
ADD_MONTHS

7-16

Parameters

start_datetime
A DATETIME expression that identifies the starting date. When the day component of
start_datetime is the last day of the month or when the returned month has fewer
days, then the returned day component is the last day of the month. Otherwise, the
day component of the returned date is the same as the day component of
start_datetime. See Example 7-2.

n
An INTEGER that identifies the number of months to be added to start_datetime.

Examples

Example 7-2 End-of-Month Calculation

The following statement displays the date of the day that is one month after January
30, 2000.

SHOW ADD_MONTHS('30Jan00', 1)

Because February 29 was the last day of February 2000, ADD_MONTHS returns
February 29, 2000.

29-Feb-00

AGGCOUNT
The AGGCOUNT function retrieves the values of the Aggcount variable associated
with the specified variable. An Aggcount variable is an INTEGER variable that Oracle
OLAP automatically creates when it executes a DEFINE VARIABLE statement that
includes a USING AGGOUNT phrase.

See Also:

"Aggcount Variables"

Return Value

INTEGER

The values of the Aggcount variable that are the non-NA counts of the number of leaf
nodes that contribute to the calculation of aggregate values when RELATION (for
aggregation) statements that have an AVERAGE, HAVERAGE, WAVERAGE, or
HWAVERAGE execute.

Syntax

AGGCOUNT(variable-name)

Chapter 7
AGGCOUNT

7-17

Parameters

variable-name
The name of the variable with which the Aggcount variable is associated.

Examples

Example 7-3 Reporting on an Aggcount Variable

Assume that within your analytic workspace you have objects with the following
definitions.

DEFINE geog DIMENSION TEXT
DEFINE time DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE cc_geog_product COMPOSITE <geog product> COMPRESSED
DEFINE sales VARIABLE DECIMAL <time cc_geog_product <geog product>> WITH AGGCOUNT
DEFINE geog_parentrel RELATION geog <geog>
DEFINE product_parentrel RELATION product <product>
DEFINE time_parentrel RELATION time <time>
DEFINE aggsales AGGMAP
 AGGMAP
 RELATION time_parentrel OPERATOR AVERAGE ARGS COUNT YES
 RELATION geog_parentrel
 RELATION product_parentrel
 END

Notice that the definition for the sales variable includes a request for an Aggcount
variable and that, within the aggsales aggmap, the RELATION statement for the
time_parentrel relation incudes an AVERAGE operator.

Assume also that when only the base values of the sales variable are populated, sales
has the following values for Radios and TVs.

REPORT sales

PRODUCT: Radio
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 122.93 176.69 NA
California 168.32 150.92 NA
Quebec NA NA NA
Ontario 187.46 164.46 NA
USA NA NA NA
Canada NA NA NA
World NA NA NA

PRODUCT: TV
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 184.75 135.40 NA
California 139.89 145.71 NA
Quebec NA NA NA
Ontario 123.63 113.32 NA
USA NA NA NA

Chapter 7
AGGCOUNT

7-18

Canada NA NA NA
World NA NA NA

PRODUCT: AV
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine NA NA NA
California NA NA NA
Quebec NA NA NA
Ontario NA NA NA
USA NA NA NA
Canada NA NA NA
World NA NA NA

Because no aggregation has occurred, for AV, Oracle OLAP has not yet populated the
Aggcount variable and the Aggcount variable for sales contains only NA values.

Now assume that you aggregate the sales variable by issuing the following statement.

AGGREGATE sales USING aggsales

A report of sales shows the following values.

REPORT sales

PRODUCT: Radio
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 122.93 176.69 149.81
California 168.32 150.92 159.62
Quebec NA NA NA
Ontario 187.46 164.46 175.96
USA 291.24 327.61 309.42
Canada 187.46 164.46 175.96
World 478.70 492.07 485.38

PRODUCT: TV
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 184.75 135.40 160.07
California 139.89 145.71 142.80
Quebec NA NA NA
Ontario 123.63 113.32 118.47
USA 324.64 281.11 302.87
Canada 123.63 113.32 118.47
World 448.27 394.42 421.35

PRODUCT: AV
 -------------SALES--------------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 307.67 312.08 309.88
California 308.21 296.63 302.42

Chapter 7
AGGCOUNT

7-19

Quebec NA NA NA
Ontario 311.09 277.78 294.43
USA 615.88 608.71 612.30
Canada 311.09 277.78 294.43
World 926.97 886.49 906.73

A report of the Aggcount variable shows that it is populated with the INTEGER values
that are needed to aggregate the average sales.

REPORT AGGCOUNT (sales)

PRODUCT: Radio
 --------AGGCOUNT (SALES)--------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine NA NA 2
California NA NA 2
Quebec NA NA NA
Ontario NA NA 2
USA 2 2 4
Canada NA NA 2
World 3 3 6

PRODUCT: TV
 --------AGGCOUNT (SALES)--------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine NA NA 2
California NA NA 2
Quebec NA NA NA
Ontario NA NA 2
USA 2 2 4
Canada NA NA 2
World 3 3 6

PRODUCT: AV
 --------AGGCOUNT (SALES)--------
 --------------TIME--------------
GEOG 2004 2005 Average
-------------- ---------- ---------- ----------
Maine 2 2 4
California 2 2 4
Quebec NA NA NA
Ontario 2 2 4
USA 4 4 8
Canada 2 2 4
World 6 6 12

AGGMAPINFO
The AGGMAPINFO function returns information about the specification of an aggmap
object in your analytic workspace.

You can get information about an aggregation specification (that is, an aggmap object
with a map type of AGGMAP) only after it has been compiled. You can compile an
aggregation specification using a COMPILE statement or by including the FUNCDATA
keyword when you execute the AGGREGATE command. When an aggregation
specification has not been compiled before you use it with the AGGMAPINFO function,

Chapter 7
AGGMAPINFO

7-20

then it is compiled by AGGMAPINFO. You do not have to compile an aggmap for use
with ALLOCATE.

Return Value

Varies depending on the type of information that is requested. See the following table
for more information.

Syntax

AGGMAPINFO (name {choice | {choice-at-position rel-pos} })

Parameters

name
The name of the aggmap object.

choice
Specifies the type of information returned. See the following table for details.

Table 7-1 Keywords for the choice Parameter of the AGGMAPINFO function

Keyword Data Type Description

ADDED_MODELS TEXT The models that are currently added to an aggmap using
AGGMAP ADD or REMOVE model statements.The
names of the models are returned as a multi-line text
string.

AGGINDEX BOOLEAN Indicates the setting for the AGGINDEX statement in the
aggmap. A YES setting specifies that all possible indexes
(composite tuples) are created whenever the aggmap is
recompiled. (Applies to AGGMAP type aggmaps only.)

CHILDREN member-
name

TEXT The dimension members used in the right-hand side of
equations used to calculate temporary calculated
members added using MAINTAIN ADD SESSION
statements. The names of the members are returned as
a multi-line text string.

CUSTOMMEMBERS TEXT The members added using MAINTAIN ADD SESSION
statements. The names of the members are returned as
a multi-line text string.

DIMENSION TEXT The names of the dimensions of the models or relations
used by the aggmap. The names of the members are
returned as a multi-line text string.

FCACHE BOOLEAN Indicates whether Oracle OLAP has a cache for the
AGGREGATE function. (Applies to AGGMAP type
aggmaps only.)

Chapter 7
AGGMAPINFO

7-21

Table 7-1 (Cont.) Keywords for the choice Parameter of the AGGMAPINFO
function

Keyword Data Type Description

MAPTYPE TEXT The type of the aggmap.

• Returns AGGMAP for an aggregation specification
(that is, when the specification has been entered
with an AGGMAP statement). You can use this type
of aggmap only with the AGGREGATE command or
AGGREGATE function.

• Returns ALLOCMAP for an allocation specification
(that is, when the specification has been entered
with an ALLOCMAP statement). You can use this
type of aggmap only with ALLOCATE.

• Returns NA when the aggmap has been defined but
a specification has not been entered with an
AGGMAP or ALLOCMAP statement.

MODELS TEXT The models in the aggmap. The names of the models
are returned as a multi-line text string.

NUMRELS INTEGER The total number of RELATION statements in an
aggmap specification.

RELATIONS TEXT The name of relation that is specified by a RELATION
statement in the aggmap specification. Each statement
is displayed on a separate line.

STORE BOOLEAN Indicates whether the CACHE statement in the aggmap
is set to STORE. A YES setting specifies that the data
that is calculated on the fly is stored in the cache.
(Applies to AGGMAP-type aggmaps only.)

VARIABLES TEXT The variables for which this aggmap object has been
specified as the default aggmap using AGGMAP ADD or
REMOVE model statements or the $AGGMAP property.
The names of the variables are returned as a multi-line
text string.

choice-at-position
Specifies exactly which piece of information you want returned.
PRECOMPUTE returns the text of the limit clause that follows the PRECOMPUTE
keyword in a RELATION statement. You must use the rel-pos argument to specify a
single RELATION statement. Returns NA when the RELATION statement does not
have a PRECOMPUTE keyword. (Applies to AGGMAP type aggmaps only.)
RELATION returns the name of the relation that follows the RELATION statement that
you specify with the rel-pos argument.
STATUS returns the status list that results from the compilation of the PRECOMPUTE
clause in the RELATION statement that you specify with the rel-pos argument.
(Applies to AGGMAP type aggmaps only.)

rel-pos
An INTEGER that specifies a RELATION statement in the aggmap. The INTEGER
indicates the position of the statement in the list of RELATION statements. You can
use the rel-pos argument only with the RELATION, PRECOMPUTE, or STATUS
keywords. For example, to get information about the first RELATION statement in an
aggmap, use an INTEGER with a value of 1 as the rel-pos argument. To get information

Chapter 7
AGGMAPINFO

7-22

about the fourth RELATION statement in an aggmap, use the INTEGER 4, and so on.
You may use any INTEGER between 1 and the total number of RELATION statements
in an aggmap specification. You can use the NUMRELS keyword to obtain the total
number of RELATION statements for an aggmap object.

Examples

Example 7-4 Retrieving Information About an Aggmap Object

Suppose an aggmap named sales.agg has been defined with the following statement.

DEFINE sales.agg AGGMAP <time, product, geography>

Suppose the following specification has been added to sales.agg with an AGGMAP
statement.

AGGMAP
RELATION time.r PRECOMPUTE (time ne 'Year98')
RELATION product.r
RELATION geography.r
CACHE STORE
END

Once a specification has been added to the aggmap, you can use AGGMAPINFO to
get information about its specification.

To see the names of the hierarchies that are specified by the RELATION statements,
use the following statement.

SHOW AGGMAPINFO(sales.agg RELATIONS)

The following results are displayed.

time.r
product.r
geography.r

The following statement and result tell you how many RELATION statements are in
the aggmap object.

SHOW AGGMAPINFO(sales.agg NUMRELS)
3

The following statement and result verifies that data that is calculated on the fly is
stored in the cache for the session. The result is YES because the aggmap contains a
CACHE STORE statement.

show AGGMAPINFO(sales.agg STORE)
YES

The following statement displays the relation name that is specified in the second
RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg RELATION 2)
product.r

The following statement displays the limit clause that follows the PRECOMPUTE
keyword in the first RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg PRECOMPUTE 1)
time NE 'YEAR98'

Chapter 7
AGGMAPINFO

7-23

Suppose the time dimension values are Jan98 to Dec99, Year98, and Year99. The
following statement displays the status list for the dimension in the first RELATION
statement in the aggmap.

SHOW AGGMAPINFO(sales.agg STATUS 1)
Jan98 TO Dec99, Year99

Because the limit clause in the RELATION statement specifies that the time dimension
values should not equal Year98, all time dimension values other than Year98 are
included in its status.

The following statement displays the aggmap type of sales.agg.

SHOW AGGMAPINFO(sales.agg MAPTYPE)
AGGMAP

AGGREGATE function
The AGGREGATE function calculates the data in the variable that is not specified as
PRECOMPUTE in the specified aggmap. (For information about specifying
precompute data, see PRECOMPUTE statement and the PRECOMPUTE clause of
the RELATION (for aggregation) statement.) The aggregation is limited to those values
that are currently in status.

See Also:

AGGREGATE command

Note:

When the variable you want to aggregate has an $AGGMAP property, you do
not have to use the AGGREGATE function to aggregate the data that has not
been precomputed.

Return Value

The same data type as the aggregated variable.

Syntax

AGGREGATE (var ... [USING aggmap] - [FROM fromspec|FROMVAR
textvar] [FORCECALC FORCEORDER] [COUNTVAR countvar])

Parameters

var
The name of the variable whose data is calculated (if necessary) and returned.

USING
This keyword indicates that the aggregation is performed using the specified aggmap.

Chapter 7
AGGREGATE function

7-24

aggmap
The name of a previously-defined aggmap that specifies how the data is aggregated.
For information about aggmaps, see DEFINE AGGMAP.

FROM
This keyword indicates that the detail data is obtained from a different object. A
FROM clause is only one way in which you can specify the variable from which detail
data should be obtained when performing aggregation. See "Ways of Specifying
Where to Obtain Detail Data for Aggregation".

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

FROMVAR
This keyword indicates that the detail data is obtained from different objects to
perform a capstone aggregation. A FROMVAR clause is only one way in which you
can specify the variable from which detail data should be obtained when performing
aggregation. See "Ways of Specifying Where to Obtain Detail Data for Aggregation".

textvar
An arbitrarily dimensioned variable used to resolve any leaf nodes. Specify NA to
indicate that a node does not need detail data to calculate the value.

FORCECALC
Specifies that any value that is not specified in a PRECOMPUTE clause of a
RELATION statement that is in the aggmap should be recalculated, even when there
is a value stored in the desired cell. Use the FORCECALC keyword when you want
users to be able to change detail data cells and see the changed values reflected in
dynamically-computed aggregate cells.

Note:

You can also set an $AGGREGATE_FORCECALC property on a variable to
specify this behavior as the default aggregation behavior. In this case, you do
not have to include the FORCECALC keyword with the AGGREGATE function.

FORCEORDER
Specifies that the calculation must be performed in the order in which the RELATION
statements are listed in the aggmap. Use this option when you have changed some
values calculated by the AGGREGATE command. Otherwise, the optimization
methods used by the AGGREGATE function may cause the modified values to be
ignored. FORCEORDER slows performance.

Note:

You can also set an $AGGREGATE_FORCEORDER property on a variable to
specify this behavior as the default aggregation behavior. In this case, you do
not have to include the FORCEORDER keyword with the AGGREGATE
function.

Chapter 7
AGGREGATE function

7-25

COUNTVAR countvar
Indicates that Oracle OLAP should use the user-defined variable specified by
countvar to store the non-NA counts of the number of leaf nodes that contributed to
aggregate values calculated for RELATION (for aggregation) statements that have an
AVERAGE, HAVERAGE, HWAVERAGE, or WAVERAGE operator.

Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations. Instead, you use an Oracle OLAP-created Aggcount
variable. You must use an Aggcount variable when the aggregation
specification includes a RELATION (for aggregation) statement with an
average operator that is for a compressed composite.
For more information on Aggcount variables, see "Aggcount Variables".

The countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions of the variable specified by var. When you aggregate
several variables together, you must define an INTEGER variable for each one to record
the results.

Usage Notes

Steps for Supporting Run-Time Calculations

Follow these steps when combining pre-aggregation with run-time aggregation:

1. Create an aggmap that limits the amount of data to be precalculated.

2. Execute the AGGREGATE command with the FUNCDATA argument.

3. When you have made any changes after executing the AGGREGATE command
(see "Compiling the Aggmap"), recompile the aggmap with a COMPILE statement.

4. Add an $AGGREGATE_FROM property to the data variables (see "Using NA
Values to Trigger Run-Time Calculations").

5. UPDATE and COMMIT the analytic workspace.

Compiling the Aggmap

Be sure to compile the aggmap at the time you load data, either with an explicit
COMPILE statement or with the FUNCDATA argument to the AGGREGATE
command. Otherwise, the aggmap is recompiled at run time for each session in which
the AGGREGATE function is used. Perform other calculations (such as calculating
models) before you compile the aggmap.

You must recompile the aggmap after maintaining any of the dimensions in the
aggmap definition or any of the relations that are included in the text of the aggmap.

Run-Time Changes to Data Values

When users are able to change data values at run time, then the data may get out of
synchronization. You can prevent this problem in the following ways:

• Use an ALLOCATE statement to distribute the data in a new aggregate to the
contributing values lower in the hierarchy.

Chapter 7
AGGREGATE function

7-26

• Do not precalculate the data that is subject to run-time changes because the
stored aggregates cannot be altered to reflect changes made at run time to the
contributing values.

Using NA Values to Trigger Run-Time Calculations

By adding an $NATRIGGER property to a variable, you can implicitly call the
AGGREGATE function each time the data is queried. The following statements cause
sales data to be aggregated using the sales.aggmap aggmap.

CONSIDER sales
PROPERTY '$NATRIGGER' 'AGGREGATE(sales USING sales.aggmap)'

From now on, a statement such as REPORT SALES executes the AGGREGATE function,
so that computed values are returned instead of NAs.

Using the AGGREGATE Function after Partial Rollups

When your batch window is not sufficiently long to preaggregate all of the data to
generate, you can perform the aggregation in stages on consecutive days and use the
AGGREGATE function to calculate the balance. For each stage, you must do the
following:

1. Change the PRECOMPUTE phrase of the RELATION statement in the aggmap so
that new data is aggregated.

2. Execute the AGGREGATE command with the FUNCDATA keyword.

3. Verify that the $NATRIGGER property is set on the variables so that the
AGGREGATE function calculates the balance of the data.

Using Multiple Aggmaps

Whenever possible, use only one aggmap to rollup a variable. However, in some
situations, a variable requires multiple aggmaps to roll up the data in the desired
manner. When a variable requires multiple aggmaps to rollup data problems are
created when some data is calculated on the fly, because the metadata retained for
the AGGREGATE function corresponds to the last aggmap. The AGGREGATE
function needs metadata that is the union of all of the aggmaps used by the
AGGREGATE command. The solution is to create an additional aggmap for use by the
AGGREGATE function that correctly identifies the NA values. Be sure to compile this
aggmap.

Do not use the AGGREGATE function with multiple aggmaps unless you feel
comfortable answering the following question:

When the aggmap is compiled for use by the AGGREGATE function, does the
status that results from each PRECOMPUTE clause accurately define the nodes
within that dimension at which data has been pre-computed?

When you cannot answer "yes" to this question with confidence, do not use the
AGGREGATE function with multiple aggmaps.

Examples

This section contains several examples of using the AGGREGATE function. For
additional aggregation examples, see the examples for the AGGMAP command.

Chapter 7
AGGREGATE function

7-27

Example 7-5 Using the AGGREGATE Function as the Formula of an
Expression

Example 9-32 illustrates performing the final capstone aggregation using an
AGGREGATE command. You could also perform the capstone aggregation at run
time as the expression of a formula.

Assume that your analytic workspace contains the following object definitions.

DEFINE GEOG.D DIMENSION TEXT
DEFINE GEOG.PARENTREL RELATION GEOG.D <GEOG.D>
DEFINE TIME.D DIMENSION TEXT
DEFINE TIME.PARENTREL RELATION TIME.D <TIME.D>
DEFINE SALES_JAN76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_FEB76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_MAR76 VARIABLE INTEGER <GEOG.D>
DEFINE SALES_CAPSTONE76 VARIABLE INTEGER <GEOG.D TIME.D>
DEFINE CAPSTONE_SOURCE VARIABLE TEXT <TIME.D>

Now you create two aggmap objects with the following definitions. Note that in this
case the capstone_aggmap consists of a RELATION statement with a PRECOMPUTE NA
clause.

DEFINE LEAF_AGGMAP AGGMAP
AGGMAP
RELATION geog.parentrel OPERATOR SUM
END

DEFINE CAPSTONE_AGGMAP AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM PRECOMPUTE (NA)
END

In Example 9-32, the final capstone aggregation is performed using an AGGREGATE
command. In this example, the capstone aggregation is defined as a formula named
f_sales_capstone76 that has an AGGREGATE function as the expression of the
formula.

DEFINE F_SALES_CAPSTONE76 FORMULA INTEGER <GEOG.D TIME.D>
EQ AGGREGATE (sales_capstone76 USING capstone_aggmap fromvar capstone_source)

When you report on the unaggregated variables and formulas in your analytic
workspace, you see the following results.

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts NA NA NA
California NA NA NA
United States NA NA NA

 --------------------F_SALES_CAPSTONE76---------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000

Chapter 7
AGGREGATE function

7-28

San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

 ---------------------SALES_CAPSTONE76----------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 NA
Medford 2,000 4,000 6,000 NA
San Diego 3,000 6,000 9,000 NA
Sunnydale 4,000 8,000 12,000 NA
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

Now you aggregate the leaf variables using the following AGGREGATE statement.

AGGREGATE sales_jan76 sales_feb76 sales_mar76 USING leaf_aggmap

A report of the leaf variables shows that they are aggregated.

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts 3,000 6,000 9,000
California 7,000 14,000 21,000
United States 10,000 20,000 30,000

A report of the f_sales_capstone76 formula shows the aggregated values for 76Q1.

 --------------------F_SALES_CAPSTONE76---------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000
San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts 3,000 6,000 9,000 18,000
California 7,000 14,000 21,000 42,000
United States 10,000 20,000 30,000 60,000

While a report of the sales_capstone76 variable does not show the aggregated values
for 76Q1 because they are not stored in the variable.

 ---------------------SALES_CAPSTONE76----------------------
 --------------------------TIME.D---------------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- -------------- -------------- -------------- --------------
Boston 1,000 2,000 3,000 NA
Medford 2,000 4,000 6,000 NA
San Diego 3,000 6,000 9,000 NA
Sunnydale 4,000 8,000 12,000 NA
Massachusetts 3,000 6,000 9,000 NA

Chapter 7
AGGREGATE function

7-29

California 7,000 14,000 21,000 NA
United States 10,000 20,000 30,000 NA

Example 7-6 Aggregating Data on the Fly for a Report

The units variable is aggregated entirely on the fly using the tp.agg aggmap.

This is the object definitions for the variable units.

DEFINE units VARIABLE INTEGER <time product>

The parent relation for time contains these values.

 ---TIME.PARENTREL----
 --TIME.HIERARCHIES---
TIME STANDARD YTD
---------- ---------- ----------
Jan01 Q1.01 Last.Ytd
Feb01 Q1.01 Last.Ytd
Mar01 Q1.01 Last.Ytd
Q1.01 2001 NA

The parent relation for the product dimension contains these values.

 PRODUCT.PA
PRODUCT RENTREL
---------- ----------
Food Na
Snacks Food
Drinks Food
Popcorn Snacks
Cookies Snacks
Cakes Snacks
Soda Drinks
Juice Drinks

In the units variable, data is stored only at the lowest level of each dimension
hierarchy.

 -------------------UNITS-------------------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food NA NA NA NA
Snacks NA NA NA NA
Drinks NA NA NA NA
Popcorn 2 2 4 NA
Cookies 3 6 3 NA
Cakes 4 4 2 NA
Soda 7 3 9 NA
Juice 1 3 2 NA

The aggmap specifies that all data is calculated on the fly.

DEFINE tp.agg AGGMAP
LD <time product> Aggmap
AGGMAP
RELATION time.parentrel PRECOMPUTE (NA)
RELATION product.parentrel PRECOMPUTE (NA)
END

Chapter 7
AGGREGATE function

7-30

The following REPORT statement uses the AGGREGATE function to calculate the
data.

REPORT aggregate(units USING tp.agg)

 -------AGGREGATE(UNITS USING TP.AGG)-------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food 17 18 20 55
Snacks 9 12 9 30
Drinks 8 6 11 25
Popcorn 2 2 4 8
Cookies 3 6 3 12
Cakes 4 4 2 10
Soda 7 3 9 19
Juice 1 3 2 6

Example 7-7 Using $NATRIGGER to Aggregate Data

When the AGGREGATE function is added to units in the $NATRIGGER property, a
simple REPORT statement displays aggregated results.

CONSIDER units
PROPERTY '$NATRIGGER' 'AGGREGATE(units USING tp.agg)'
REPORT units

 -------------------UNITS-------------------
 -------------------TIME--------------------
PRODUCT Jan01 Feb01 Mar01 Q1.01
----------- ---------- ---------- ---------- ----------
Food 17 18 20 55
Snacks 9 12 9 30

Example 7-8 Calculating all but one Value on the Fly

The AGGREGATE function calculates the complement of the data specified in the
PRECOMPUTE clause of the RELATION statement. It returns those values that are
currently in status.

For example, when you are using an aggmap that contains this RELATION statement.

RELATION letter.letter PRECOMPUTE ('AA')

Then the AGGREGATE function calculates all aggregations except AA, as shown here.

REPORT AGGREGATE(units USING letter.aggmap)

 AGGREGATE(UNITS
LETTER USING LETTER.AGGMAP)
-------------- --------------------
A 3
AA NA
AB 3
AAB 2
ABA 1
ABB 2
AAAA 1
AABA 2
ABAA 1
ABBB 1

Chapter 7
AGGREGATE function

7-31

ABBA 1
...

AGGREGATION
Within a model, the AGGREGATION function allows you to create a model that
represents a custom aggregate. Such an aggmap can be used for dynamic
aggregation with the AGGREGATE function.

Note:

Because the AGGREGATION function is intended only for dynamic
aggregation, a model that contains such a function cannot be used with the
AGGREGATE command.

Syntax

AGGREGATION(dimval-list)

Parameters

dimval-list
A list of one or more dimension values to include in the custom aggregation. The
specified values must belong to the same dimension to which the target dimension
value belongs. You must specify each dimension value as a text literal. That is, they
cannot be represented by a text expression such as a variable.

Examples

Example 7-9 Using the AGGREGATION Function to Create a Custom
Aggregate

The following lines of code from a program perform these steps:

1. Add the new dimension value my_time to the time dimension.

MAINTAIN time ADD 'My_Time'

2. Define the model mytime_custagg and set the specification of the model using the
AGGREGATION function.

DEFINE mytime_custagg MODEL
MODEL JOINLINES('DIMENSION time' 'My_Time = AGGREGATION(\'23\' \'24\')')

(Note that backslash escape characters are required to include quotation marks
within a quoted string.)

3. Define the sales_aggmap aggmap.

DEFINE sales_aggmap AGGMAP <time cpc <customer product channel> >
AGGMAP
RELATION prntrel.time
RELATION prntrel.chan
RELATION prntrel.prod
RELATION prntrel.cust
END

Chapter 7
AGGREGATION

7-32

4. Add the model mytime_custagg to sales_aggmap.

AGGMAP ADD mytime_custagg TO sales_aggmap

5. Limit the dimensions to the values of interest and run a report.

" Run a report
LIMIT time TO 'My_Time' '23' '24'
LIMIT channel TO '5'
LIMIT product TO '70'
LIMIT customer TO '114'
REPORT DOWN time AGGREGATE(sales USING sales_aggmap)

The report generates the following output.

CHANNEL: 5
PRODUCT: 70
 --AGGREGATE(SALES---
 USING SALES_AGGMAP)-
 ------CUSTOMER------
TIME 114
-------------- --------------------
my_time 682,904.34
23 84,982.92
24 597,921.42

AGGROPS
The AGGROPS function returns the keywords for all of the aggregation operators that
you can specify in a RELATION (for aggregation) statement, listed one name on each
line in a multiline text value.

Return Value

TEXT

Syntax

AGGROPS

Example

Example 7-10 Displaying a List of the Aggregation Operators

When you issue an AGGROPS statement, Oracle OLAP returns a list of all of the
aggregation operators.

SHOW AGGROPS

SUM
WSUM
SSUM
AND
OR
FIRST
LAST
HFIRST
HLAST
AVERAGE
WAVERAGE
HAVERAGE

Chapter 7
AGGROPS

7-33

HWAVERAGE
MIN
MAX
WFIRST
WLAST
HWFIRST
HWLAST
WMIN
WMAX
NOAGG

ALLOCOPS
The ALLOCOPS function returns the keywords for all of the allocation operators that
you can specify in a RELATION (for allocation) statement, listed one name on each
line in a multiline text value.

Return Value

TEXT

Syntax

ALLOCOPS

Examples

Example 7-11 Displaying a List of the Allocation Operators

When you issue an ALLOCOPS statement, Oracle OLAP returns a list of all of the
allocation operators.

SHOW ALLOCOPS

FIRST
LAST
HFIRST
HLAST
MIN
MAX
EVEN
HEVEN
COPY
HCOPY
PROPORTIONAL

ANTILOG
The ANTILOG function calculates the value of e (the base of natural logarithms) raised
to a specific power.

Return Value

DECIMAL

Syntax

ANTILOG(n)

Chapter 7
ALLOCOPS

7-34

Parameters

n
The power of e to be returned by the ANTILOG function.

Examples

Example 7-12 Calculating the Value of e Raised to the Second Power

The following function calculates the value of e raised to the second power.

ANTILOG(2)

This function returns the following value.

7.38906

ANTILOG10
The ANTILOG10 function calculates the value of 10 raised to a specified power.

Return Value

DECIMAL

Syntax

ANTILOG10(n)

Parameters

n
The power of 10 to be returned by the ANTILOG10 function.

Examples

Example 7-13 Calculating the Value of Ten Raised to the Third Power

The following function calculates the value of 10 raised to the third power.

ANTILOG10(3)

This function returns the following value.

1,000.00

ANY
The ANY function returns YES when any values of a Boolean expression are TRUE, or NO
when none of the values of the expression are TRUE.

Return Value

BOOLEAN.

Chapter 7
ANTILOG10

7-35

Syntax

ANY(boolean-expression [CACHE] [dimension ...])

Parameters

boolean-expression
The Boolean expression to be evaluated

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.
By default, ANY returns a single YES or NO value. When you indicate one or more
dimensions for the result, ANY tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes

The Effect of NASKIP on ANY

ANY is affected by the NASKIP option. When NASKIP is set to YES (the default), ANY
ignores NA values and returns YES when any of the values of the expression that are not
NA are TRUE and returns NO when none of the values are TRUE. When NASKIP is set to
NO, ANY returns NA when any value of the expression is NA. When all the values of the
expression are NA, ANY returns NA for either setting of NASKIP.

Data with a Type of DAY, WEEK, MONTH, QUARTER, or YEAR

When boolean-expression is dimensioned by a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other dimension of this type as a
related dimension. Oracle OLAP uses the implicit relation between these dimensions.
To control the mapping of one of these dimension to another (for example, from weeks
to months), you can define an explicit relation between the dimensions and specify the
name of the relation as the dimension argument to the ANY function.

For each time period in the related dimension, Oracle OLAP tests the data values for
all the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods.

Chapter 7
ANY

7-36

Examples

Example 7-14 Testing for Any True Values by District

Suppose you want to find out which districts had at least one month with sales greater
than $150,000 for sportswear. You use the ANY function to determine whether the
Boolean expression (sales GT 150000) is TRUE for any month. To have the result
dimensioned by district, specify district as the second argument in the ANY
function.

LIMIT product TO 'SPORTSWEAR'
REPORT HEADING 'High Sales' ANY(sales GT 150000, district)

The preceding statements produce the following output.

DISTRICT High Sales
-------------- ----------
Boston NO
Atlanta YES
Chicago NO
Dallas YES
Denver NO
Seattle NO

Example 7-15 Testing for Any True Values by Region

You might also want to find out which regions had at least one month in which at least
one district had sportswear sales greater than $150,000. Because the region
dimension is related to the district dimension, you can specify region instead of
district as a dimension for the results of ANY.

report heading 'High Sales' any(sales gt 150000, region)

The preceding statement produces the following output.

REGION High Sales
-------------- ----------
East YES
Central YES
west NO

ARCCOS
The ARCCOS function calculates the angle value (in radians) of a specified cosine.

Return Value

NUMBER

Syntax

ARCCOS(expression)

Parameters

expression
An expression that contains the decimal value of a cosine.

Chapter 7
ARCCOS

7-37

Usage Notes

Invalid Cosine Values

When you provide an ineligible value for the cosine expression (that is, a value greater
than 1 or less than -1), ARCCOS returns a value of NA.

Examples

Example 7-16 Calculating the Arc of a Cosine

This example calculates the arc of a cosine that has a value of 0.54030. The statement

SHOW ARCCOS(.54030)

produces the following result.

1.00

ARCSIN
The ARCSIN function calculates the angle value (in radians) of a specified sine.

Return Value

NUMBER

Syntax

ARCSIN(expression)

Parameters

expression
An expression that contains the decimal value of a sine.

Usage Notes

Invalid Sine Values

When you provide an ineligible value for the sine expression (that is, a value greater
than 1 or less than -1), ARCSIN returns a value of NA.

Examples

Example 7-17 Calculating the Arc of a Sine

This example calculates the arc of a sine that has a value of 0.84147. The statement

SHOW ARCSIN(.84147)

produces the following result.

1.00

ARCTAN
The ARCTAN function calculates the angle value (in radians) of a specified tangent.

Chapter 7
ARCSIN

7-38

To retrieve a full-range (0 - 2 pi) numeric value indicating the arc tangent of a given
ratio, use ARCTAN2.

Return Value

NUMBER

Syntax

ARCTAN(expression)

Parameters

expression
An expression that contains the decimal value of a tangent.

Examples

Example 7-18 Calculating the Arc of a Tangent

This example calculates the arc of a tangent that has a value of 1.56. The statement

SHOW ARCTAN(1.56)

produces the following result.

1.00

ARCTAN2
The ARCTAN2 function returns a full-range (0 - 2 pi) numeric value indicating the arc
tangent of a given ratio. The function returns values in the range of -pi to pi, depending
on the signs of the arguments. The values are expressed in radians.

To calculate the angle value (in radians) of a specified tangent that is not a ratio, use
ARCTAN.

Return Value

NUMBER

Syntax

ARCTAN2 (n / m)

Parameters

n
A numeric expression that specifies one component of the ratio. The argument n can
be in an unbounded range.

m
A numeric expression that specifies the other component of the ratio.

Examples

Example 7-19 Finding the Arc Tanget

The following example returns the arc tangent of.3 and.2.

Chapter 7
ARCTAN2

7-39

SHOW ARCTAN2(.3/.2)

.982793723

ARG
Within an OLAP DML program, the ARG function lets you reference arguments
passed to a program. The function returns one argument as a text value.

Note:

Typically users use an ARGUMENT statement to define arguments in a
program, thereby negating the need for using the ARG function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Argruments that Are Passed Into a Program" .

Return Value

TEXT

Syntax

ARG(n)

Parameters

n
The number by position of the argument whose value you want to reference. ARG(1)
returns the first argument to the program, ARG(2) returns the second argument, and so
forth. When the program is called with fewer than n arguments, ARG returns a null
value. ARG also returns a null value when n is zero or negative.

Examples

Example 7-20 Assigning Arguments

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any two periods of months, so you do not want to limit the month
dimension to any particular month in the program. Instead, you use ARG functions in
the LIMIT command so that the starting and ending months for the two periods can be
supplied as arguments when the program is run.

Notice the UPCASE function preceding the ARG functions. UPCASE allows the
arguments to be specified in upper- or lowercase, even though dimension values in
the analytic workspace are in uppercase. A prefixed & (ampersand) would have a
similar effect because it tells Oracle OLAP to substitute the values of ARG before the
LIMIT command is executed -- in this case, a value of the month dimension. However,
an & (ampersand) has the disadvantage of preventing compilation of program lines in
which it appears, and slower execution results.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH month product district

Chapter 7
ARG

7-40

TRAP ON cleanup
LIMIT month TO UPCASE(ARG(1)) TO UPCASE(ARG(2))
LIMIT product TO 'CANOES'
LIMIT district TO all
REPORT grandtotals DOWN district sales
LIMIT month TO UPCASE(ARG(3)) TO UPCASE(ARG(4))
REPORT grandtotals DOWN district sales
cleanup:
POP month product district
END

To run the program, you specify the program name (salesrpt) followed by two sets of
months to mark the beginning and the end of the two periods of sales to be reported.
Then, when the LIMIT MONTH statements are executed, Oracle OLAP passes the
months specified on the command line as return values for ARG(1), ARG(2), ARG(3), and
ARG(4) in the LIMIT commands.

salesrpt 'Jan95' 'Mar95' 'Jan96' 'Mar96'

This statement produces the following output.

PRODUCT: Canoes
 ------------SALES--------------
 ------------MONTH--------------
DISTRICT Jan95 Feb95 Mar95

Boston 66,013.92 76,083.84 91,748.16
Atlanta 49,462.88 54,209.74 67,764.20
Chicago 45,277.56 50,595.75 63,576.53
Dallas 33,292.32 37,471.29 43,970.59
Denver 45,467.80 51,737.01 58,437.11
Seattle 64,111.50 71,899.23 83,943.86
 ---------- --------- ---------
 303,625.98 341,996.86 409,440.44
 ========== ========== ==========
PRODUCT: Canoes
 ------------SALES---------------
 ------------MONTH---------------
DISTRICT Jan96 Feb96 Mar96

Boston 70,489.44 82,237.68 97,622.28
Atlanta 56,271.40 61,828.33 77,217.62
Chicago 48,661.74 54,424.94 68,815.71
Dallas 35,244.72 40,218.43 46,810.68
Denver 44,456.41 50,623.19 57,013.01
Seattle 67,085.12 74,834.29 87,820.04
 ---------- --------- ---------
 322,208.83 364,166.86 435,299.35
 ========== ========== ==========

ARGCOUNT
Within an OLAP DML program, the ARGCOUNT function returns the number of
arguments that were specified when the current program was invoked.

Return Value

INTEGER

Chapter 7
ARGCOUNT

7-41

Syntax

ARGCOUNT

Examples

Example 7-21 Checking the Number of Arguments

In the following example, the program, a user-defined function, verifies that three
arguments are passed. When the number of arguments passed is not equal to 3, the
program terminates with -1 as a return value.

DEFINE threearg PROGRAM INTEGER
LD User-defined function expecting three arguments
PROGRAM
ARGUMENT division TEXT
ARGUMENT product TEXT
ARGUMENT month MONTH
IF ARGCOUNT NE 3
 THEN RETURN -1
 ELSE
 DO
 ...

ARGFR
Within an OLAP DML program, the ARGFR function lets you reference the arguments
that are passed to a program. The function returns a group of one or more arguments,
beginning with the specified argument number, as a single text value. You can use
ARGFR only within a program that is invoked as a command, not as a user-defined
function or with a CALL statement.

Note:

Typically, users use an ARGUMENT statement to define arguments in a
program, thereby negating the need for using the ARGFR function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Arguments that Are Passed Into a Program" .

Return Value

TEXT

Syntax

ARGFR(n)

Parameters

n
The number by position of the first argument in the group of arguments you want to
reference. ARGFR(1) returns the first argument and all subsequent arguments, ARGFR(2)

Chapter 7
ARGFR

7-42

returns the second argument and all subsequent arguments, and so forth. When there
are fewer than n arguments, ARGFR returns a null value. ARGFR also returns a null
value when n is 0 (zero) or negative.

Examples

Example 7-22 Passing Arguments Using ARG and ARGFR

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any product and any period of months, so you do not want to
limit the product and month dimensions to specific values in the program. Instead, you
can use the LIMIT command using ARG for the product argument and an ARGFR
function for the month argument. This way, these items can be specified when the
program is run.

When ARGFR is included in the LIMIT command preceded by an ampersand (&),
Oracle OLAP substitutes the values of &ARGFR before the command is executed and,
consequently, treats the whole argument as a phrase of the LIMIT command. The
salesrprt program has a LIMIT command that includes &ARGFR.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH product month district
TRAP ON cleanup
LIMIT product TO UPCASE(ARG(1))
LIMIT month TO &ARGFR(2)
LIMIT district TO ALL
REPORT grandtotals DOWN district sales
cleanup:
POP product month district
END

The command line for the salesrpt program must include two or more arguments. The
first argument is the product for the report, and the second and subsequent arguments
are the months. In the LIMIT month statement, the &ARGFR(2) function returns the
months that were specified as arguments on the command line.

The following statement executes the salesrpt program, specifying Jan96, Feb96, Mar96,
and Apr96 for the values of month.

salesrpt 'Canoes' 'Jan96' TO 'Apr96'

The statement produces the following output.

PRODUCT: CANOES
 -------------------SALES------------------
 -------------------MONTH------------------
DISTRICT Jan96 Feb96 Mar96 Apr96
------- ---------- ---------- ---------- ---------
Boston 70,489.44 82,237.68 97,622.28 134,265.60
Atlanta 56,271.40 61,828.33 77,217.62 109,253.38
Chicago 48,661.74 54,424.94 68,815.71 93,045.46
Dallas 35,244.72 40,218.43 46,810.68 64,031.28
Denver 44,456.41 50,623.19 57,013.01 78,038.13
Seattle 67,085.12 74,834.29 87,820.04 119,858.56
 ---------- ---------- ---------- ----------
 322,208.83 364,166.86 435,299.34 598,492.41
 ========== ========== ========== ==========

The following statement specifies the first three months of 1996.

Chapter 7
ARGFR

7-43

salesrpt 'Tents' quarter 'Q1.96'

The statement produces the following output.

PRODUCT: TENTS
 -------------SALES-------------
 -------------MONTH-------------
DISTRICT Jan96 Feb96 Mar96
-------------- ---------- ---------- ---------
Boston 50,808.96 34,641.59 45,742.21
Atlanta 46,174.92 50,553.52 58,787.82
Chicago 31,279.78 31,492.35 42,439.52
Dallas 50,974.46 53,702.75 71,998.57
Denver 35,582.82 32,984.10 44,421.14
Seattle 45,678.41 43,094.80 54,164.06
 ---------- ---------- ---------
 260,499.35 246,469.11 317,553.32
 ========== ========== ==========

ARGS
Within an OLAP DML program, the ARGS function lets you reference the arguments
that are passed to a program. The function returns all the arguments as a single text
value. You can use the ARGS function only within a program that is be invoked as a
command, not as a user-defined function or with a CALL statement.

Note:

Typically, programmers use an ARGUMENT statement to define arguments in
a program, thereby negating the need for using the ARGS function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Arguments that Are Passed Into a Program" .

Return Value

TEXT

When no arguments have been specified for the program, ARGS returns a null value

Syntax

ARGS

Examples

Example 7-23 Passing Arguments Using ARGS

Assume you have a program that produces a simple sales report. You want to be able
to produce this report for any month, so you do not want to limit the month dimension to
any fixed month in the program. You can use the ARGS function in your LIMIT
command so that the months for the report can be supplied as an argument when the
program is run.

When ARGS is included in the LIMIT command preceded by an ampersand (&), Oracle
OLAP substitutes the values of &ARGS before the command is executed and,

Chapter 7
ARGS

7-44

consequently, treats the whole argument as a phrase of the LIMIT command. The
salesreport program has a LIMIT command that includes &ARGS.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH month product district
TRAP ON cleanup
LIMIT month TO &ARGS
LIMIT product TO 'CANOES'
LIMIT district TO ALL
REPORT grandtotals DOWN district sales
cleanup:
POP month product district
END

When you execute the following statement, the LIMIT command uses the values Jan96
and Feb96 for the month dimension.

salesrpt 'Jan96' 'Feb96'

The statement produces the following output.

PRODUCT: CANOES
 --------SALES--------
 --------MONTH--------
DISTRICT Jan96 Feb96

Boston 70,489.44 82,237.68
Atlanta 56,271.40 61,828.33
Chicago 48,661.74 54,424.94
Dallas 35,244.72 40,218.43
Denver 44,456.41 50,623.19
Seattle 67,085.12 74,834.29
 ---------- ---------- --
 322,208.83 364,166.86
 ========== ========== ==

ASCII
The ASCII function returns the decimal representation of the first character of an
expression.

Return Value

INTEGER

Syntax

ASCII (text-exp)

Parameters

text-exp
A text expression.

Usage Notes

Returning EBCDIC Values

Chapter 7
ASCII

7-45

When your database character set is 7-bit ASCII, then this function returns an ASCII
value. When your database character set is EBCDIC Code, then this function returns
an EBCDIC value. There is no corresponding EBCDIC character function

Examples

Example 7-24 Finding the ASCII Decimal Equivalent of a Character

The following example returns the ASCII decimal equivalent of the letter "Q".

SHOW ASCII('Q')
81

ASCIISTR
The ASCIISTR function takes a string in any character set and returns an ASCII
version of that string.

Returns

NTEXT

Syntax

ASCIISTR(text-exp)

Parameters

text-exp
A text expression.

Usage Notes

How ASCIISTR Converts Non-ASCII Characters

The ASCIISTR function converts non-ASCII characters to \xxxx, where xxxx
represents a UTF-16 code unit.

See:

Implementing a Unicode Solution in the Database for information on Unicode
character sets and character semantics.

AVERAGE
The AVERAGE function calculates the average of the values of an expression.

Return Value

DECIMAL

Syntax

AVERAGE(expression [CACHE] [dimension ...])

Chapter 7
ASCIISTR

7-46

Parameters

expression
The expression whose values are to be averaged.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.
By default, AVERAGE returns a single value. When you indicate one or more
dimensions for the result, AVERAGE calculates values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Usage Notes

NA Values and AVERAGE

AVERAGE is affected by the NASKIP option in the same manner as other aggregate
functions. When NASKIP is set to YES (the default), AVERAGE ignores NA values and
returns the average of the values that are not NA. When NASKIP is set to NO,
AVERAGE returns NA when any value of the expression is NA. When all the values of
the expression are NA, AVERAGE returns NA for either setting of NASKIP.

Averaging Over a Dimension of Type DAY, WEEK, MONTH, QUARTER, or YEAR

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimension that has one of these types
as a related dimension. Oracle OLAP uses the implicit relation between the two
dimensions. To control the mapping of one of these types of dimensions to another
(for example, from weeks to months), you can define an explicit relation between the
two dimensions and specify the name of the relation as the dimension argument to the
AVERAGE function.

For each time period in the related dimension, Oracle OLAP averages the data for all
the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods. To control the
way in which data is aggregated or allocated between the periods of two dimensions,
you can use the TCONVERT function.

Chapter 7
AVERAGE

7-47

Examples

Example 7-25 Calculating Average Monthly Sales

This example shows how to calculate the average monthly sales of sportswear for
each sales district.

LIMIT product TO 'SPORTSWEAR'
REPORT W 14 HEADING 'Average Sales' AVERAGE(sales district)

The preceding statements produce the following output.

DISTRICT Average Sales
----------- --------------
Boston 69,150.41
Atlanta 151,192.36
Chicago 95,692.99
Dallas 162,242.89
Denver 88,892.72
Seattle 54,092.32

You might also want to see the average monthly sales for each region. Because the
region dimension is related to the district dimension, you can specify region instead
of district as a dimension for the results of AVERAGE.

AW function
The AW function returns information about currently attached workspaces.

Return Value

The return value depends on the keyword you specify, as described in the following
table.

Syntax

AW(keyword [workspace])

Parameters

keyword
Indicates the specific information you want. The keywords that you can use with the
AW function are listed in the following table with the data type of the value they return
and the meaning of the information.

Keyword Data Type Information Returned

ACQUIRED TEXT When an analytic workspace is attached in
multiwriter mode, returns the names of any
acquired variables, relations, valuesets,
dimension names, or partitions, in the analytic
workspace

AGGMAP TEXT A list of all aggmap objects in the workspace.
When there are several, Oracle OLAP returns
a multiline text value with each object name on
a separate line.

Chapter 7
AW function

7-48

Keyword Data Type Information Returned

ALIASLIST TEXT A list of currently assigned aliases for the
workspace. When there are several, Oracle
OLAP returns a multiline text value with each
alias on a separate line.

ATTACHED BOOLEAN Indicates whether the specified workspace is
attached. The workspace argument is required.

CHANGED BOOLEAN When you have read/write access to the
workspace, indicates whether you have made
changes since the last time the workspace was
updated. When you have read-only access to
the workspace, indicates whether another user
has updated the workspace and committed the
changes since you attached it.

COMPOSITE TEXT A list of all named composite objects in the
specified workspace.

DATE DATE The date of your most recent update in the
current session. When you have not updated in
the current session, it returns the date of the
most recent commit before you attached the
workspace. When you have attached a shared
workspace as read-only, DATE does not take
into account any updates or commits that have
occurred since you attached the workspace.

DIMENSION TEXT A list of all the dimensions defined in the
workspace. When there are several
dimensions, Oracle OLAP returns a multiline
text value with each dimension name on a
separate line.

EXISTS BOOLEAN Indicates whether the specified analytic
workspace has been defined in the Oracle
Database instance.

FORMULA TEXT A list of all the formulas defined in the
workspace. When there are several formulas,
Oracle OLAP returns a multiline text value with
each formula name on a separate line.

FROZEN Boolean TRUE if the specified analytic workspace is
currently frozen, or FALSE if it is not.

FULLNAME TEXT The full name of the specified workspace. The
full name includes the schema that contains
the workspace.

ISUPDATED TEXT When the specified analytic workspace is not
attached in multiwriter mode, returns TRUE
when the workspace is updated but not
committed. When he specified analytic
workspace is attached in multiwriter mode,
returns TRUE when at least one variable or
dimension belonging to the workspace is
updated but not committed.

Chapter 7
AW function

7-49

Keyword Data Type Information Returned

LIST TEXT A list of all currently attached workspaces.
Each line of the multiline text value contains
the name of an analytic workspace.

LISTNAMES TEXT A list of all the objects defined in the
workspace. Each line of the multiline text value
contains the name of an analytic workspace
object.

MODEL TEXT A list of all the models defined in the
workspace. When there are several models,
Oracle OLAP returns a multiline text value with
each model name on a separate line.

MULTI TEXT Indicates if you have multi-writer access to the
analytic workspace.

NAME TEXT The name of the current workspace.

OPTION TEXT A list of all the Oracle OLAP options defined in
the EXPRESS workspace. When the workspace
is not EXPRESS, AW(OPTION) returns NA,
because options are defined only in the
EXPRESS workspace. For the EXPRESS
workspace, AW(OPTION) returns a multiline text
value with each option name on a separate
line.

PAGESIZE INTEGER The size of the page, in bytes.

PROGRAM TEXT A list of all the programs defined in the
workspace. When there are several programs,
Oracle OLAP returns a multiline text value with
each program name on a separate line.

READERS INTEGER The total number of current users of the
database who have read-only access.

RELATION TEXT A list of all the relations defined in the
workspace. When there are several relations,
Oracle OLAP returns a multiline text value with
each relation name on a separate line

RO TEXT Indicates whether you have read-only access
to the workspace.

RW TEXT Indicates whether you have read/write access
to the workspace.

SEGMENTSIZ
E

DECIMAL The current maximum segment size for the
workspace. It is the most recent value
specified using an AW SEGMENTSIZE statement.

SHARED BOOLEAN Indicates whether the workspace is being
shared by other users.

Chapter 7
AW function

7-50

Keyword Data Type Information Returned

TIME ID The time of your most recent update in the
current session. When you have not updated in
the current session, it returns the time of the
most recent commit before you attached the
workspace. When you have attached a shared
workspace as read-only, TIME does not take
into account any updates or commits that have
occurred since you attached the workspace.

VALUSET TEXT A list of all the valuesets that are defined in the
workspace. When there are several valuesets,
Oracle OLAP returns a multiline text value with
each valueset name on a separate line.

VARIABLE TEXT A list of all the variables defined in the
workspace. When there are several variables,
Oracle OLAP returns a multiline text value with
each variable name on a separate line.

WRITERS INTEGER The number of current users of the database
who have write access.

workspace
A text expression that indicates the name of the workspace for which you want
information. When you do not specify this argument, the AW function ordinarily
returns information about the current workspace. The ATTACHED, LIST, and NAME
keywords are exceptions to this rule.

Usage Notes

Analytic Workspace Status Information

You can use the SHARED, CHANGED, RO, and RW keywords to get information
about the current status of a shared workspace. You can check if SHARED, RO, and
CHANGED are TRUE to find out if another user has updated an analytic workspace
since you attached it.

Examples

Example 7-26 Ascertaining the Active Workspace

The following program line checks which workspace is currently active so the program
can choose the appropriate data to report. With this method, you can use the same
report program in several workspaces, each containing different data.

REPORT IF AW(NAME) EQ 'mysales' THEN mysales ELSE gensales

BACK
The BACK function returns the names of all currently executing programs, listed one
name on each line in a multiline text value. When multiple programs are executing,
one program has called another in a series of nested executions.

The first name in the return value is that of the program containing the call to BACK.
The last name is that of the initial program, which made the first call to another
program.

Chapter 7
BACK

7-51

BACK can only be used in a program.

Return Value

TEXT

Syntax

BACK

Examples

Example 7-27 Debugging a Program Using the BACK Function

The following example uses three programs. program1 calls program2, and program2
calls program3.

DEFINE program1 PROGRAM
PROGRAM
SHOW 'This is program number 1'
CALL program2
END
DEFINE program2 PROGRAM
PROGRAM
SHOW 'This is program number 2'
CALL program3
END
DEFINE program3 PROGRAM
PROGRAM
SHOW 'This is program number 3'
SHOW 'These programs are currently executing:'
SHOW BACK
END

Executing program1 produces the following output.

This is program number 1
This is program number 2
This is program number 3
These programs are currently executing:
PROGRAM3
PROGRAM2
PROGRAM1

BASEDIM
The BASEDIM function loops over a concat dimension and returns the name of the
dimension from which the current value of a concat dimension comes.

Return Value

TEXT

Syntax

BASEDIM(concatdim [LEAF])

Chapter 7
BASEDIM

7-52

Parameters

concatdim
Specifies the concat dimension for which you want the names of the base or
component dimensions. The data type of the values returned is TEXT.

LEAF
The LEAF keyword causes BASEDIM to return the names of the component
dimensions of the concatdim dimension. The base dimensions of a concat dimension
are the simple, conjoint, or other concat dimensions that you specify with the
basedimlist argument when you define the concat. Simple dimensions and conjoint
dimensions are the bottom-level components, or leaves, of a concat dimension.
When you specify a concat dimension as a base dimension when defining a concat,
then the base dimensions of that inner concat are component dimensions of the outer
concat. Using the LEAF keyword results in BASEDIM returning the names of the
component simple and conjoint dimensions of the inner concat dimension.
When the base dimensions are all simple dimensions or conjoint dimensions, then the
base dimensions are the bottom-level components and therefore BASEDIM returns
the names of those dimensions whether or not you use the LEAF keyword.

When the base dimensions are all simple dimensions or conjoint dimensions, then the
base dimensions are the bottom-level components and therefore BASEDIM returns
the names of those dimensions whether or not you use the LEAF keyword.

Examples

Example 7-28 Returning Base Dimension Names

In this example the product dimension is limited to two values, the district dimension
is limited to its first three values and the region dimension has only three values. The
example defines a nonunique concat dimension with region and district as its base
dimensions and then defines another nonunique concat dimension with product and
the first concat dimension as its base dimensions. The example then gets the names
of the base dimensions of the outer concat.

LIMIT district TO 'Boston' TO 'Chicago'
LIMIT product TO 'Tents''Canoes'
DEFINE region.district DIMENSION CONCAT(region district)
DEFINE product.region.district DIMENSION CONCAT(product region.district)
REPORT BASEDIM(product.district.region)

The preceding statements return the following.

PRODUCT
PRODUCT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT

Example 7-29 Returning Component Dimension Names

This example uses the same objects as the previous example. It gets the names of the
component dimensions of the concat dimension.

REPORT BASEDIM(product.region.district LEAF)

Chapter 7
BASEDIM

7-53

The preceding statement returns the following.

PRODUCT
PRODUCT
REGION
REGION
REGION
DISTRICT
DISTRICT
DISTRICT

BASEVAL
The BASEVAL function loops over a concat dimension and returns the values of the
base dimensions of a concat dimension. When a base dimension is a concat
dimension, then the values of its base dimensions are returned, also.

Return Value

The following are the rules that determine the data types of the values returned by
BASEVAL:

• The data type of the return value is NTEXT when any of the component
dimensions of concatdim is of type NTEXT, or when any component dimension is
a conjoint that uses a simple dimension of type NTEXT.

• The data type of the return value is the data type of the component dimensions
when all of the component dimensions have the same data type and when none of
the component dimensions is a conjoint.

• The data type of the return value is TEXT in all other cases.

Syntax

BASEVAL(concatdim)

Parameters

concatdim
Specifies the concat dimension for which you want the base values. The data types of
the values returned depend on the data types of the base dimensions of the concat
dimension.

Examples

Example 7-30 Returning NTEXT Values

The following example creates two simple dimensions and a nonunique concat
dimension, then gets the values of the concat dimension.

DEFINE textdim DIMENSION TEXT
DEFINE ntextdim DIMENSION NTEXT
MAINTAIN textdim ADD 'v1' 'v2'
MAINTAIN ntextdim ADD 'n1' 'n2'
DEFINE concatdim DIMENSION CONCAT(textdim ntextdim)
REPORT w 18 BASEVAL(concatdim)

The preceding statement returns the following.

Chapter 7
BASEVAL

7-54

CONCATDIM BASEVAL(CONCATDIM)
-------------------- ------------------
<textdim: v1> v1
<textdim: v2> v2
<ntextdim: n1> n1
<ntextdim: n2> n2

The data type of the returned values is NTEXT. The BASEVAL function converted the
v1 and v2 TEXT values into NTEXT values before returning them.

Example 7-31 Returning the Base Values of a Base Concat Dimension

This example defines the simple dimensions state and city and adds values to them.
It defines a nonunique concat dimension, statecity, with state and city as the bases
and then defines another nonunique concat dimension, geog, with region, district, and
statecity as its bases. Finally, the REPORT statement returns the values returned by
the BASEVAL function.

DEFINE city DIMENSION TEXT
DEFINE state DIMENSION TEXT
MAINTAIN city ADD 'Boston' 'Worcester' 'Portsmouth' 'Portland' -
 'Burlington' 'Hartford' 'New York' 'Albany'
MAINTAIN state ADD 'MA' 'NH' 'ME' 'VT' 'CT' 'NY'
DEFINE statecity DIMENSION CONCAT(state city)
DEFINE geog DIMENSION CONCAT(region district statecity)
LCOLWIDTH = 20
REPORT W 16 BASEVAL(geog)

The preceding statement returns the following.

GEOG BASEVAL(GEOG)
-------------------- ----------------
<region: East> East
<region: Central> Central
<region: West> West
<district: Boston> Boston
<district: Atlanta> Atlanta
<district: Chicago> Chicago
<district: Dallas> Dallas
<district: Denver> Denver
<district: Seattle> Seattle
<state: MA> MA
<state: NH> NH
<state: ME> ME
<state: VT> VT
<state: CT> CT
<state: NY> NY
<city: Boston> Boston
<city: Worcester> Worcester
<city: Portsmouth> Portsmouth
<city: Portland> Portland
<city: Burlington> Burlington
<city: Hartford> Hartford
<city: New York> New York
<city: Albany> Albany

BEGINDATE
For dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR, the BEGINDATE
function returns the first date of the first time period in dimension status for which the

Chapter 7
BEGINDATE

7-55

expression has a non-NA value. For example, assume that an expression is
dimensioned by month, and that Jan97 is the first dimension value for which the
expression has a non-NA value. In this case, BEGINDATE returns the date January 1,
1997.

Note:

You cannot use this function for time dimensions that are implemented as
hierarchical dimensions of type TEXT.

Return Value

DATE-only or text

When all the values of the expression are NA, BEGINDATE returns NA.

Syntax

BEGINDATE(expression)

Parameters

expression
The expression must have exactly one dimension that has a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

Examples

Example 7-32 Finding the Beginning Date

The following statements limit the values in the month, product, and district
dimensions, then send the first date for which the units variable contains a non-NA
value for unit sales of tents in the Chicago district to the current outfile.

LIMIT month TO ALL
LIMIT product TO 'TENTS'
LIMIT district TO 'CHICAGO'
SHOW BEGINDATE(units)

These statements produce the following output.

01JAN95

BIN_TO_NUM
The BIN_TO_NUM function converts a bit vector to its equivalent number.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of
interest using grouping sets.

Return Values

NUMBER

Chapter 7
BIN_TO_NUM

7-56

Syntax

BIN_TO_NUM(expression [, expression]...)

Parameters

expression
An expression that evaluates to either 0 (zero) or 1 (one) which is the value of a bit in
the bit vector.

Examples

Example 7-33 Converting Bit Vectors to a Number

SHOW BIN_TO_NUM(1,0,1,0)
10.00

BITAND
The BITAND function computes a logical AND operation on the bits of two nonnegative
values. This function is commonly used with the DECODE function.

An AND operation compares two bit values. When the values are the same, the
operator returns 1. When the values are different, the operator returns 0. Only
significant bits are compared. For example, an AND operation on the integers 5
(binary 101) and 1 (binary 001 or 1) compares only the rightmost bit, and results in a
value of 1 (binary 1).

Return Value

INTEGER

Syntax

BITAND (argument1 , argument2)

Parameters

argument1
A nonnegative INTEGER expression.

argument2
A nonnegative INTEGER expression.

Examples

See Example 7-65.

BLANKSTRIP
The BLANKSTRIP function removes leading or trailing blank spaces from text values.
BLANKSTRIP is useful for such purposes as removing unwanted blank spaces from
imported fixed-length fields.

Chapter 7
BITAND

7-57

Return Value

TEXT or NTEXT

Syntax

BLANKSTRIP(text-expression [TRAILING|LEADING|BOTH])

Parameters

text-expression
A text expression from which to remove blank spaces. When you specify a TEXT
expression, the return value is TEXT. When you specify an NTEXT expression, the
return value is NTEXT.

TRAILING
Removes blank spaces at the end of the text.

LEADING
Removes blank spaces at the beginning of the text.

BOTH
Removes both leading and trailing spaces.

Examples

Example 7-34 Stripping Leading and Trailing Blanks

In this example, we remove both leading and trailing blank spaces from the field
prodlabel in an imported worksheet and store the results in a variable called product.

product = BLANKSTRIP(prodlabel, BOTH)

CALLTYPE
Within an OLAP DML program, the CALLTYPE function indicates whether a program
was invoked as a function, as a command, by using a CALL statement, or triggered by
the execution of an OLAP DML statement.

Return Value

TEXT

The return value of CALLTYPE is:

• FUNCTION when the program was invoked as a function that returns a value.

• COMMAND when the program was invoked as a command.

• CALL when the program was invoked using a CALL statement.

• TRIGGER when the program is a trigger program (that is, when a TRIGGER
command associated the program with an object event) was invoked in response
to an OLAP DML statement.

Syntax

CALLTYPE

Chapter 7
CALLTYPE

7-58

Examples

Example 7-35 Determining the Calling Method

This sample program, called myprog, demonstrates how CALLTYPE returns different
values depending on how the program is invoked.

DEFINE myprog PROGRAM
PROGRAM
SHOW CALLTYPE
RETURN('This is the return value')
END

The following statements invoke myprog: 1) as command; 2) with a CALL statement; 3)
as a function.

myprog
CALL myprog
SHOW myprog

The three statements send the following output to the current outfile. Note that the
return value of myprog appears only when the program is called as a function.

COMMAND
CALL
FUNCTION
This is the return value

CATEGORIZE
The CATEGORIZE function groups the values of a numeric expression into
categories. You define the categories by specifying a series of increasing numeric
values. The result that CATEGORIZE returns is dimensioned by all the dimensions of
expression. For each cell in expression, CATEGORIZE returns one of the following:
the category in which the number falls, zero (0) for a value below the range of the first
category, minus one (-1) for a value above the range of the last category, or NA for an
NA value.

Return Value

DECIMAL

Syntax

CATEGORIZE(expression {values|group-expression})

where values has the following syntax:

 bottom-value [next-lowest-break-value] top-value

Parameters

expression
The numeric expression whose values are to be categorized.

Chapter 7
CATEGORIZE

7-59

bottom-value
A number that specifies the lowest number in the series and sets the bottom limit of
category 1.

next-lowest-break-value
A number that specifies the beginning of the range of the next category.

top-value
A number that specifies the highest number in the series and sets the upper limit of
the highest category.

group-expression
A one-dimensional numeric expression that defines the break values for the
categories.

Examples

Example 7-36 Specifying Category Range Values

Assume that your analytic workspace contains the following geography and items
dimensions and sales2 variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the sales2 variable has the following data values.

 -------------SALES2-------------
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

This statement reports the result of categorizing the sales2 variable.

REPORT CATEGORIZE(sales2 10 15 20 25)

The preceding statement produces the following output.

 -CATEGORIZE(SALES2 10 15 20 25)-
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 -1.00 2.00 1.00
Item2 1.00 3.00 2.00
Item3 2.00 3.00 3.00
Item4 -1.00 3.00 3.00
Item5 NA 0.00 3.00

Example 7-37 Specifying a Group-Expression

These statements define a groups dimension and a groupval variable.

Chapter 7
CATEGORIZE

7-60

DEFINE groups DIMENSION TEXT
MAINTAIN groups ADD 'Grp1' 'Grp2' 'Grp3' 'Grp4'
DEFINE groupvals DECIMAL <groups>
groupvals(groups 'Grp1') = 10
groupvals(groups 'Grp2') = 15
groupvals(groups 'Grp3') = 20
groupvals(groups 'Grp4') = 25

This statement reports the result of calling the CATEGORIZE function with the sales
variable as the expression argument and the groupvals variable as the group-
expression argument of the call.

REPORT CATEGORIZE(sales, groupvals)

The preceding statement produces the same output as the statement in the
"Example 7-36" .

CEIL
The CEIL function returns the smallest whole number greater than or equal to a
specified number.

Return Value

NUMBER

Syntax

CEIL(n)

Parameters

n
A number (NUMBER data type) that you specify.

Examples

Example 7-38 Displaying the Smallest Integer Greater Than or Equal to a
Number

The following statements show results returned by CEIL.

• The statement

SHOW CEIL(15.7)

produces the following result

16

• The statement

SHOW CEIL(-6.457)

produces the following result.

-6

Chapter 7
CEIL

7-61

CHANGEBYTES
The CHANGEBYTES function changes one or more occurrences of a specified string
in a text expression to another string.

Return Value

TEXT

Syntax

CHANGEBYTES(text-expression oldtext newtext [number])

Parameters

text-expression
A TEXT expression in which bytes are to be changed. When text-expression is a
multiline TEXT expression, CHANGEBYTES preserves the line breaks in the returned
value.

oldtext
A TEXT expression that contains one or more bytes that to be changed.

newtext
A TEXT expression that contains one or more bytes that to replace oldtext.

number
An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

Examples

Example 7-39 Changing Text Values Using Bytes

This example shows how to change one instance of a portion of a text value.

The statement

SHOW CHANGEBYTES('Hello there, Joe\nHello there, Jane',
 'there', - 'to you', 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHANGECHARS
The CHANGECHARS function changes one or more occurrences of a specified string
in a text expression to another string.

Return Value

When all arguments are TEXT values, the return value is TEXT. When all arguments
are NTEXT values, the return value is NTEXT. When the arguments include both

Chapter 7
CHANGEBYTES

7-62

TEXT and NTEXT values, the function converts all TEXT values to NTEXT before
performing the function operation, and the return value is NTEXT.

Syntax

CHANGECHARS(text-expression oldtext newtext [number] [UPCASE])

Parameters

text-expression
The TEXT or NTEXT expression in which characters are to be changed. When text-
expression is a multiline text value, CHANGECHARS preserves the line breaks in the
returned value.

oldtext
A TEXT or NTEXT expression that contains one or more characters to be changed.

newtext
A TEXT or NTEXT expression that contains one or more characters to replace oldtext.

number
An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

UPCASE
Specifies that CHANGECHARS should uppercase text-expression and oldtext before
trying to find a match. CHANGECHARS does not uppercase the return value.

Examples

Example 7-40 Changing the Values of Text Characters

This example shows how to change one instance of a portion of a text value.

The statement

SHOW CHANGECHARS('Hello there, Joe\nHello there, Jane',
 'there', - 'to you', 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHANGEDRELATIONS
For a given variable and aggmap object, the CHANGEDRELATIONS function
determines if there are any changes in the aggmap and the relations in the aggmap
since the last time the variable was aggregated.

Return Value

BOOLEAN.

TRUE when changes have occurred, FALSE when they have not, or NA when the function
cannot determine if changes have occurred.

Chapter 7
CHANGEDRELATIONS

7-63

Syntax

CHANGEDRELATIONS(variable [[(PARTITION partition [,PARTITION partition]...)]
aggmap])

Parameters

variable
The name of the variable whose aggmap object you want to check for changes.

partition
The name of one or more partitions of variable, separated by commas, whose
aggmap you want to check for changes.

aggmap
The name of the aggmap object you want to check for changes. When you do not
specify a value for aggmap, the function uses the aggmap specified in the $AGGMAP
property for variable, if any.

CHANGEDVALUES
The CHANGEDVALUES function identifies if any value in a variable has changed (or
the number of values that have changed) since the last time a variable was
aggregated.

Return Value

BOOLEAN unless you specify NUMBER for returntype.

When the function returns a BOOLEAN value, that value is TRUE when any value has
changed since the variable was last aggregated, FALSE when no values have
changed, or NA when the function cannot determine if any values have changed or
not.

When the function returns a NUMBER value, that value is the number of values that
have changed since the variable was last aggregated.

Syntax

CHANGEDVALUES (variable [(PARTITION partition [,PARTITION partition]...)]
[returntype])

Parameters

variable
The name of the variable to check for changed values.

partition
The name of one or more partitions of variable, separated by commas, to check for
changed values.

returntype
NUMBER when you want the function to return a numeric value that is the number of
values that have changed. When you want the function to return whether or not any

Chapter 7
CHANGEDVALUES

7-64

value has changed since the last aggregation, specify BOOLEAN or leave this
argument empty as BOOLEAN is the default value for returntype.

CHARLIST
The CHARLIST function transforms an expression into a multiline text value with a
separate line for each value of the original expression.

Return Value

NTEXT when the expression is NTEXT; otherwise, TEXT.

Syntax

CHARLIST(expression [dimensions])

Parameters

expression
The expression to be transformed into a multiline text value. When the expression has
a data type other than TEXT or NTEXT, CHARLIST automatically converts the expression
to TEXT.

dimensions
The dimensions of the return value. When you do not specify a dimension, CHARLIST
returns a single value. When you provide one or more dimensions for the return value,
CHARLIST returns a multiline text value for each value in the current status list of the
specified dimension. Each dimension must be an actual dimension of the expression;
it cannot be a related or base dimension.

Examples

Example 7-41 Deleting Workspace Objects

You can use CHARLIST with the NAME dimension to create lists of workspace
objects. Suppose you want to delete all objects of a certain type in your workspace, for
example, all worksheets. You can use CHARLIST and an ampersand (&) to do this.

LIMIT NAME TO OBJ(TYPE) EQ 'WORKSHEET'
DELETE &CHARLIST(NAME)

Example 7-42 Creating a List of Top Sales People

Assume you have stored the names of the sales people who sold the most for each
product in product.memo, a text variable with the dimensions of product and . You then
want to create a list of top sales people broken out by product. To do this, you can
created a variable dimensioned by product and then use CHARLIST with the product
to create a separate list of all of the top sales people for each product.

DEFINE topsales VARIABLE TEXT <product>
topsales = CHARLIST(product.memo product)

CHARTOROWID
The CHARTOROWID function converts a value from a text data type to ROWID data
type.

Chapter 7
CHARLIST

7-65

Return Value

ROWID

Syntax

CHARTOROWID(char)

Parameters

char
A text expression to convert.

Examples

Example 7-43 Converting a Value from Text to a Rowid

Assume that your analytic workspace contains the erowid dimension with the following
definition.

DEFINE erowid DIMENSION ROWID

As the following code illustrates, you can add text values to it using the
CHARTOROWID function.

MAINTAIN erowid ADD CHARTOROWID('AAAFd1AAFAAAABSAA/')
REPORT erowid

EROWID

AAAFd1AAFAAAABSAA/

CHGDIMS
The CHGDIMS function changes the dimensionality of an expression or changes the
dimension status during the evaluation of expression.

Return Value

Data type of the original expression.

Syntax

CHGDIMS (expression, limit-type)

where limit-type is one of the following:

[CACHE] LIMITSAVE valueset-list

[CACHE] LIMIT valueset-list

TO dimension-list

ADD dimension-list

Parameters

expression
The expression you want to modify.

Chapter 7
CHGDIMS

7-66

CACHE
Specifies that Oracle OLAP caches the result of the limit and saves it for use in
subsequent executions of CHGDIMS until the OLAP DML statement that called
CHGDIMS finishes execution.

LIMITSAVE
Specifies that Oracle OLAP sets the value of dimension status for expression to the
position before the CHGDIMS command executed (that is, specifying LIMITSAVE
does not change the current dimension status value). For example, you specify
CHGDIMS with LIMITSAVE if expression is the LAG function so that the lag is from
the current value; or if you are coding CHGDIMS inside of an outer loop, like a SQL
SELECT statement, and you want to keep the dimension status value set by the outer
loop.

LIMIT
Specifies the Oracle OLAP sets the value of dimension status for expression to the
first position in the new status before evaluating expression in much the same way as
if a LIMIT TO command was issued just before evaluating expression.

valueset-list
The name of a valueset or a LIMIT function.

TO dimension-list
Specifies that Oracle OLAP evaluate expression as though the dimensions of
expression are the dimensions specified by dimension-list.

ADD dimension-list
Specifies that Oracle OLAP evaluateexpression as though the dimensions of
expression are the dimensions of expression plus the dimensions specified by
dimension-list

Examples

Assume that you have the following objects in your analytic workspace.

DEFINE PRODUCT DIMENSION TEXT
DEFINE GEOG DIMENSION TEXT
DEFINE SALES VARIABLE INTEGER <PRODUCT GEOG>

Assume, also, that the sales variable has the following values.

 -------------------SALES-------------------
 ------------------PRODUCT------------------
GEOG Trousers Skirts Dresses Shoes
-------------- ---------- ---------- ---------- ----------
USA 13 20 32 18
Canada 17 32 15 28

The following lines of code show how the value returned by a TOTAL(sales) expression
varies depending on how you qualify that expression.

"Total over all dims with standard status
SHOW TOTAL(sales)
175

"Total over all dims using new status for product
SHOW CHGDIMS(TOTAL(sales) LIMIT LIMIT(product TO FIRST 2))

Chapter 7
CHGDIMS

7-67

82

"Total just over product
SHOW TOTAL(CHGDIMS(sales TO product))
83

CHR
The CHR function converts an integer value (or any value that can be implicitly
converted to an integer value) into a character.

Note:

Use of this function results in code that is not portable between ASCII- and
EBCDIC-based architectures.

Return Value

A text value. For single-byte character sets, if number > 256, the function returns the
binary equivalent of number MOD 256. For multibyte character sets, number must resolve
to one entire code point. Invalid code points are not validated, and the result of
specifying invalid code points is indeterminate.

Syntax

CHR(number [USING NCHAR_CS])

Parameters

number
An integer value, or any value that can be implicitly converted to an integer value.

See Also:

"Automatic Conversion of Numeric Data Types"

USING NCHAR_CS
Specifies that the function returns the value in the national character set. When you
do not specify this clause, the function returns the value in the database character set.

Examples

Example 7-44 Converting an Integer Value Into a Character

Assume that you have an ASCII-based system with the WE8ISO8859P1 database
character set. In this case, the following statement returns the letter C.

SHOW CHR(67)
C

Chapter 7
CHR

7-68

COALESCE
The COALESCE function returns the first non-NA expression in a list of expressions, or
NA when all of the expressions evaluate to NA.

Return Value

Data type of the first argument.

Syntax

COALESCE (expr [, expr]...)

Parameters

expr
An expression.

Examples

Example 7-45 Using COALESCE to Determine the Sales Price of a Product

Assume that you have defined the following objects in your analytic workspace. (Note
that the sale formula uses the COALESCE function for its calculations.)

DEFINE product_id DIMENSION TEXT
DEFINE supplier_id DIMENSION TEXT
DEFINE list_price VARIABLE DECIMAL <product_id supplier_id>
DEFINE min_price VARIABLE DECIMAL <product_id supplier_id>

DEFINE sale FORMULA DECIMAL <Product_id supplier_id>
EQ COALESCE(0.9*list_price, min_price, 5)

The following code illustrates limiting supplier_id to a single value and displaying a
report that shows the list price, minimum price, and sale price for the products
provided by that supplier.

LIMIT supplier_id TO '102050'
REPORT DOWN product_id list_price min_price sale

 ----------SUPPLIER_ID-----------
 -------------102050-------------
PRODUCT_ID LIST_PRICE MIN_PRICE SALE
-------------- ---------- ---------- ----------
2382 850.00 731.00 765.00
3355 NA NA 5.00
1770 NA 73.00 73.00
2378 305.00 247.00 274.50
1769 48.00 NA 43.20
1660 16.45 16.45 14.80

COLVAL
The COLVAL function returns a numeric value from a column to the left of the current
column in the same row of a report. COLVAL can only be used in the ROW command
and the REPORT command.

Chapter 7
COALESCE

7-69

Return Value

DECIMAL when the selected column contains numeric or Boolean data; NA when the
column (n) contains only a TEXT or ID value; or an error when the specified column is
the current column, a column to the right of the current column, or a nonexistent
column

Syntax

COLVAL(n)

Parameters

n
The number of the column in the current row whose value you want; n can be any
INTEGER expression.
Use a positive number to identify an absolute column number (counting left to right
from the left margin of the report). In figuring an absolute column number, you must
count all columns shown in the report. For example, when you are using a REPORT
command that produces a column of labels down the left side of the report, you count
this column of labels as column 1.For example, COLVAL(2) identifies the second
column from the left margin of the report.
Use a negative number to identify a relative column number (counting right to left from
the current column). For example, COLVAL(-2) identifies the column that is two
columns to the left of the current column.

Examples

Example 7-46 Performing Column Calculations in a Report

Suppose in a report you want to show actual sales and planned sales, along with the
difference between the two. You can use the COLVAL function to calculate this
difference.

LIMIT month TO 'Jun96'
LIMIT district TO 'Boston'
FOR product
 ROW product sales sales.plan COLVAL(2)-COLVAL(3)

These statements produce the following output.

Tents 95,120.83 80,138.18 14,982.65
Canoes 157,762.08 132,931.39 24,830.69
Racquets 97,174.44 84,758.46 12,415.98
Sportswear 79,630.20 73,568.52 6,061.68
Footwear 153,688.02 109,219.15 44,468.87

CONTEXT function
The CONTEXT function lets you obtain information about object values that are saved
in a context. You must first create the context with the CONTEXT command.

Return Value

The data type of the return value of the CONTEXT function depends on the arguments
you provide. When you use the CONTEXT function without supplying any arguments,

Chapter 7
CONTEXT function

7-70

it returns a multiline text value that contains the names of all the contexts in the current
session.

Syntax

CONTEXT ([context-name [UPDATE|name]])

Parameters

context-name
A text expression that contains the name of the context. Using the CONTEXT function
with only the context-name returns a multiline text value that contains the names of all
the objects saved in that context.

UPDATE
When you specify UPDATE with the CONTEXT function, the return value is the
number of times values have been saved or dropped from the context.

name
The name of an object whose value is saved in the context. When you specify name
with the CONTEXT function, the return value is the saved status or value of that
object.

Examples

Example 7-47 Listing Context Names

In the following statement, the CONTEXT function returns the name of the only context
in the current session which is the same context used in Example 9-72.

SHOW CONTEXT

The statement produces the following output.

democontext1

Example 7-48 Listing Saved Values

In the following statement, the CONTEXT function returns the values of the product
dimension that are saved in the context named democontext1.

SHOW CONTEXT('democontext1' product)

The statement produces the following output.

Tents
Canoes

CONVERT
The CONVERT function converts values from one type of data to another.

Return Value

The return value depends on the value of the type argument.

Syntax

CONVERT(expression, type [argument...])

Chapter 7
CONVERT

7-71

Parameters

expression
The expression or variable to be converted.

type
The type of data to which you want to convert expression. The keywords that
represent the types are described in the following table:

Keyword Description

BINARY Does not indicate conversion to a standard Oracle data type
but allows additional conversion capabilities. BINARY does
no conversion. The internal representation of every value,
regardless of data type, is returned as a text value.
• For TEXT data types, the result is the value itself and is,

therefore, of variable length.
• For ID and DECIMAL data types, the result is 8 bytes

long; ID values is blank filled, when necessary.

• For BOOLEAN or INTEGER, the default result is 2 or 4
bytes long respectively (see the arguments explanation
for an additional argument that lets you vary the width
slightly).

• For all other data types, the result is 4 bytes long.
See "PACKED and BINARY Conversion".

BOOLEAN Conversion to Oracle OLAP BOOLEAN data type.

BYTE Converts a single character into an ASCII INTEGER value in
the range 0 to 255. Or BYTE converts an INTEGER within this
range into a character. An INTEGER outside this range is
taken modulo 256 and then converted; that is, 256 is
subtracted from the INTEGER until the remainder is less
than 256, and that within-range remainder is then converted
into a character.

DATE Conversion to Oracle OLAP DATE data type.

DATETIME Conversion to Oracle OLAP DATETIME data type.

DECIMAL Conversion to Oracle OLAP DECIMAL data type.

DSINTERVAL Conversion to Oracle OLAP DML DSINTERVAL data type.

ID Conversion to Oracle OLAP ID data type.

INFILE Encloses an ID, TEXT, DATE, or RELATION value within
single quotes, so that it can be read with an INFILE
statement. Consequently, expression must have ID, TEXT,
DATE, or RELATION value values. In the case of TEXT values
with no alphanumeric equivalent, INFILE converts them to
the correct escape sequences.

INTEGER Conversion to Oracle OLAP INTEGER data type.

LONGINTEGE
R

Conversion to Oracle OLAP LONGINTEGER data type.

Chapter 7
CONVERT

7-72

Keyword Description

NTEXT Conversion to standard Oracle OLAP data types.
Corresponds to the NCHAR and NVARCHAR2 SQL data types.
An NTEXT character is encoded in UTF8 Unicode. This
encoding might be different from the NCHAR character set of
the database, which can be UTF16. A conversion from NTEXT
to TEXT can result in data loss when the NTEXT value cannot
be represented in the database character set.

NUMBER [(p,
[s])]

Conversion to Oracle OLAP NUMBER data type.

PACKED Converts a number to a decimal value and then to packed
format -- a text value 8 bytes long containing 15 digits and a
plus or minus sign. Fractions cannot be represented in
packed numbers; therefore the conversion process rounds
decimal numbers to the nearest INTEGER. See "PACKED
and BINARY Conversion".

ROWID Converts a text value to a ROWID value.

SHORTDECIM
AL

Conversion to Oracle OLAP SHORTDECIMAL data type.

SHORTINTEG
ER

Conversion to Oracle OLAP SHORTINTEGER data type.

TEXT Conversion to standard Oracle OLAP data types.
Corresponds to CHAR and VARCHAR2 data types in SQL. A
TEXT character is encoded in the database character set.

TIMESTAMP Conversion to Oracle OLAP DML TIMESTAMP data type.

TIMESTAMP_L
TZ

Conversion to Oracle OLAP DML TIMESTAMP_LTZ data
type.

TIMESTAMP_
TZ

Conversion to Oracle OLAP DML TIMESTAMP_TZ data type.

UROWID Converts a text value to a UROWID value.

YMINTERVAL Conversion to Oracle OLAP DML YMINTERVAL data type.

argument
When you specify TEXT, NTEXT, ID, DATE, or INFILE for the type, you can specify
additional arguments to determine how the conversion should be done as outlined in
the following table:

Keyword
for type
argument

When
Converti
ng From

Syntax for All Parameters

TEXT Any
numeric

TEXT [decimal-int|DECIMALS [comma-bool|
COMMAS [paren-bool|PARENS]]]

NTEXT Any
numeric

NTEXT [decimal-int|DECIMALS [comma-bool|
COMMAS [paren-bool|PARENS]]]

ID Any
numeric

ID [decimal-int|DECIMALS]

TEXT,
NTEXT,
or ID

Any
datetime

ID|TEXT|NTEXT ['date_format']

Chapter 7
CONVERT

7-73

Keyword
for type
argument

When
Converti
ng From

Syntax for All Parameters

TEXT,
NTEXT,
or ID

DATE ID|TEXT|NTEXT ['dateformat']

ID or
TEXT for
a
dimensio
n of type
DAY,
WEEK,
MONTH,
QUARTE
R, or
YEAR
with VNF

DATE ID [dwmqy-dimension]|TEXT [dwmqy-dimension|'vnf ']

DATE TEXT,
NTEXT,
or ID

DATE [date-order|dwmqy-dimname]

NTEXT TEXT NOXLATE

TEXT NTEXT NOXLATE

INFILE INFILE [width-exp|LSIZE [escape-int|0]]

IBINARY
with
BOOLEAN

or
INTEGER

BINARY [width-exp]

decimal-int
An INTEGER expression that controls the number of decimal places to be used when
converting numeric data to TEXT or ID values. When this argument is omitted,
CONVERT uses the current value of the DECIMALS option (the default is 2).

comma-bool
A Boolean expression that determines whether commas are used to mark thousands
and millions in the text representation of the numeric data. When the value of the
expression is YES, commas are used. When this argument is omitted, CONVERT uses
the current value of the COMMAS option (the default is YES).

paren-bool
A Boolean expression that determines whether negative values are enclosed in
parentheses in the text representation of the numeric data. When the value of the
expression is YES, parentheses are used; when the value is NO, a minus sign precedes
negative values. When this argument is omitted, CONVERT uses the current value of
the PARENS option (the default is NO).

date_format
A text expression that specifies the template to use when converting a datetime
expression to text. The valid formats for each date field are the same as the formats
that you can specify using the DATE_FORMAT command.

Chapter 7
CONVERT

7-74

When you do not include the date_format argument, the format of the result is
determined by the default date format for the session as described in "Default
Datetime Format Template".

dateformat
A text expression that specifies the template to use when converting a DATE-only
expression to text. The template can include format specifications for any of the four
components of a date (day, month, year, and day of the week). Each component in
the template must be preceded by a left angle bracket (<)and followed by a right angle
bracket (>). You can include additional text before, after, or between the components.
The valid formats for each date component are the same as the formats allowed in
the DATEFORMAT option.
In the following statement, CONVERT returns today's date as a text value that is
formatted by a dateformat argument.

SHOW CONVERT(TODAY TEXT '<MM>-<DD>-<YY>')

In this example, today's date is March 31, 1998, and the SHOW statement presents it
in the following format.

03-31-98

When you do not include the dateformat argument, the format of the result is
determined by the current setting of the DATEFORMAT option.

dwmqy-dimension
The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. Oracle
OLAP uses the VNF of dwmqy-dimension when converting a DATE-only value to a
TEXT or an ID value. When you have not specified the VNF of dwmqy-dimension,
Oracle OLAP uses its default VNF.
In the following statement, CONVERT returns today's date as a text value that is
formatted by the VNF of the YEAR dimension.

show convert(today text year)

In this example, today's date is March 31, 1998, and the SHOW statement presents it
in the following format.

YR98

vnf
A text template that specifies the value name format to use when converting values of
a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR to text. The template
can include format specifications for any of the components of a time period. Time
period components include all the components of a date (day, month, year, and day of
the week), plus the fiscal year and period components. The template can also include
the name of the DAY, WEEK, MONTH, QUARTER, or YEAR dimension as a
component. Each component in the template must be preceded by a left angle
bracket and followed by a right angle bracket. You can include additional text before,
after, or between the components.
The vnf argument to the CONVERT function is similar to the template in a VNF
command. However, a VNF command template must be designed for precise and
unambiguous interpretation of input, while the vnf argument is not so constrained.
Therefore, the format styles allowed in the vnf argument are more extensive than
those allowed in a VNF command template.
Valid format styles for a vnf argument include all the format styles allowed in the
template of a VNF command, plus all the format styles allowed in a DATEFORMAT

Chapter 7
CONVERT

7-75

template. DATEFORMAT provides the following format styles that are not allowed in
VNF command templates but that are valid in the vnf argument to the CONVERT
function:

• Ordinal styles for the day of the month (DT and DTL)

• First-letter style for the month (MT)

• Styles for the day of the week (W, WT, WTXT, WTXTL, WTEXT, and WTEXTL)

Append a B code to any of these formats to indicate that you want to display the
beginning day or month of the period, rather than the final day or month.
You can use any combination of VNF and DATEFORMAT format styles with for any
dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. This syntax contrasts
with the template in a VNF command, in which only certain format combinations are
valid for each type of dimension.
In the following statement, CONVERT returns the current value of the MONTH
dimension as a text value that is formatted by a vnf argument.

SHOW CONVERT(month TEXT '<MTEXTL>, <YYYY>')

In this example, the first MONTH value in status is DEC97, and the SHOW statement
presents it in the following format.

December, 1997

When you do not include the vnf argument, the format of the result is determined by
the VNF of the dimension whose values you are converting. When the dimension has
no VNF, the result is formatted according to the default VNF for the type of dimension
being converted.

date-order
A text expression that specifies how to interpret the specified text value as a DATE-
only value when the order of the text value's components (month, day, and year) is
ambiguous. The expression can be one of the following: 'MDY', 'DMY', 'YMD', 'YDM',
'MYD', or 'DYM'. Each letter represents a component of the date: M stands for month, D
stands for day, and Y stands for year.
When you do not include the date-order or dwmqy-dimname argument, any ambiguity
in the interpretation of a text expression is resolved by the current setting of the
DATEORDER option. Refer to the DATEORDER option for a complete description of
DATE-only values and how they are interpreted.

dwmqy-dimname
The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR whose
VNF or default date-order determines how to interpret the specified text value as a
DATE-only value when the order of the text value's components is ambiguous.
When you do not include the date-order or dwmqy-dimname argument, any ambiguity
in the interpretation of a text expression is resolved by the current setting of the
DATEORDER option. Refer to the DATEORDER option for a complete description of
DATE-only values and how they are interpreted.

width-exp
An INTEGER expression that indicates the width of the output from CONVERT. The
minimum width is 7. The default width is the current value of the LSIZE option. This
argument is required when you specify the escape-int argument.

Chapter 7
CONVERT

7-76

escape-int
Indicates whether escape sequences are to be used in the output. For this argument
you can specify a value listed in the following table:

Valu
e

Description

-1 Do not use escapes. Precede -1 with a comma (,-1) so that Oracle
OLAP does not subtract 1 from a preceding WIDTH argument.

0 (Default) Use escapes for unprintable characters.

1 Use escapes for all characters.

For more information on escape sequences in the OLAP DML, see "Escape
Sequences".

width-exp
An INTEGER expression that controls the width of the converted result. It can evaluate
to 1, 2, or 4 bytes. The default width is 2 for BOOLEAN, or 4 for INTEGER. When an INTEGER
value is too large to fit in the specified width, the result is NA. When the width is invalid
or specified for some other data type, an error occurs.

NOXLATE
A keyword indicating that no character set conversion should be performed. Instead,
Oracle OLAP only tags the converted value with the target data type, leaving the data
as it was before the CONVERT function was called. Use this keyword only when it is
necessary to store binary data in a TEXT or NTEXT variable.

Usage Notes

INFILE Conversion

The maximum number of characters in a line is 4,000. An error occurs when you try an
INFILE conversion that produces a line with more than 4,000 characters. This type of
error can occur when the source line exceeds 99 characters and enough of them need
escape sequences.

Converting DATE-only Values to Numeric Values

The result of converting a value that has the DATE-only data type to a value with any
numeric data type is the sequence number that represents the date (the sequence
number 1 represents January 1, 1900).

Oracle OLAP first converts the DATE-only value to an INTEGER value that is the
sequence number that represents the DATE-only value. When the target data type is a
numeric data type other than INTEGER, Oracle OLAP then converts that INTEGER
value to the specified numeric data type.

The value 32,767 is the largest possible value for a SHORTINTEGER, and (as an
INTEGER value) represents the date September 17, 1992. Therefore, CONVERT
returns NA when you attempt to convert any DATE-only later than September 17, 1992
to a SHORTINTEGER value.

Converting Numeric Values to DATE-only Values

The result is the DATE-only whose sequence number matches the specified number
(January 1, 1900 is represented by the sequence number 1); or NA, when the result
is outside the range of valid dates. Valid dates range from January 1, 1900 (sequence
number 1) to December 31, 9999 (sequence number 2,958,464).

Chapter 7
CONVERT

7-77

When the numeric data type is an INTEGER data type, Oracle OLAP converts the
INTEGER value directly to the DATE-only value whose sequence number matches the
specified number. When the numeric data type is not INTEGER, Oracle OLAP first
converts the numeric value to an INTEGER value and then converts that INTEGER
value to a DATE-only value.

Converting DATE-only Dimension Values to ID Values

When the result is more than eight characters long, the result is truncated.

Converting Relation Values to INTEGER Values

The result is an INTEGER value that represents the position of the value in the
relation's dimension. This behavior reflects the fact that the values of a relation are
dimension values, not TEXT values.

Converting Values From One Numeric Data Type to Another

The result is the value in the specified data type; or NA when the value is outside the
range of valid values for the target data type.

Thus, when you try to convert an INTEGER value that is larger than 32,767 or smaller
than -32,767 to a SHORTINTEGER value, CONVERT returns NA.

String-to-Datetime Conversion Rules

The following formatting rules apply when converting string values to datetime values:

• You can omit punctuation included in the format string from the datetime string if
all the digits of the numeric format elements, including leading zeros, are specified.
In other words, specify 02 and not 2 for two-digit format elements such as MM,
DD, and YY.

• You can omit time fields found at the end of a format string from the datetime
string.

• When a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in the following table:

Table 7-6 Oracle Format Matching

Original Format Element Additional Format Elements to Try instead Of the Original

'MM'
'MON' and 'MONTH'

'MON 'MONTH'

'MONTH' 'MON'

'YY' 'YYYY'

'RR' 'RRRR'

Converting Null and Blank Text Values to BYTE Values

CONVERT returns the same value for a null string ('') as it does for a blank string
(' '). In both cases, you get a result of 32.

PACKED and BINARY Conversion

Chapter 7
CONVERT

7-78

The PACKED and BINARY types are useful for creating binary files that contain
PACKED and BINARY data. To create such a file, use FILEOPEN statement with the
BINARY keyword to open the file and FILEPUT to write values to it. You can use the
ROW function as an argument to the FILEPUT statement to help format the file.

Examples

Example 7-49 Converting Decimal Values to Text

This example shows how to use the JOINCHARS and CONVERT functions to
combine some text with the value of the variable price for a product and month, and
show the price without decimal places.

LIMIT month TO 'Jul96'
LIMIT product to 'Canoes'
SHOW JOINCHARS('Price of Canoes = $' CONVERT(price TEXT 0))
Price of Canoes = $200

Example 7-50 Converting Text Values to Escape Sequences

This example shows how to use the CONVERT function with the ESCAPEBASE
option to convert a TEXT value from its default decimal escape sequences to
hexadecimal escape sequences.

DEFINE textvar VARIABLE TEXT
textvar = 'testvalue'
SHOW CONVERT(textvar INFILE 9 1)
'\d116\d101\d115\d116\d118\d097\d108\d117\d101'
ESCAPEBASE = 'x'
SHOW CONVERT(textvar INFILE 9 1)
'\x74\x65\x73\x74\x76\x61\x6C\x75\x65'

CORRELATION
The CORRELATION function returns the correlation coefficients for the pairs of data
values in two expressions. A correlation coefficient indicates the strength of
relationship between the data values. The closer the correlation coefficient is to
positive or negative 1, the stronger the relationship is between the data values in the
expressions. A correlation coefficient of 0 (zero) means no correlation and a +1 (plus
one) or -1 (minus one) means a perfect correlation. A positive correlation coefficient
indicates that as the data values in one expression increase (or decrease), the data
values in the other expression also increase (or decrease). A negative correlation
coefficient indicates that as the data values in one expression increase, the data
values in other expression decrease.

Return Value

DECIMAL

Syntax

CORRELATION(expression1 expression2 [PEARSON|SPEARMAN|KENDALL] -
 [BASEDON dimension-list])

Chapter 7
CORRELATION

7-79

Parameters

expression1
A dimensioned numeric expression with at least one dimension in common with
expression2.

expression2
A dimensioned numeric expression with at least one dimension in common with
expression1.

PEARSON
Calculates the Pearson product-moment correlation coefficient. Use this method when
the data is interval-level or ratios, such as units sold and price for each unit, and the
data values in the expressions have a linear relationship and are distributed normally.

SPEARMAN
Calculates Spearman's rho correlation coefficient. Use this nonparametric method
when the expressions do not have a linear relationship or a normal distribution. In
computing the correlation coefficient, this method ranks the data values in
expression1 and in expression2 and then compares the rank of each element in
expression1 to the corresponding element in expression2. This method assumes that
most of the values in the expressions are unique.

KENDALL
Calculates Kendall's tau correlation coefficient. This nonparametric method is similar
to the SPEARMAN method in that it also first ranks the data values in expression1
and in expression2. The KENDALL method, however, compares the ranks of each
pair to the successive pairs. Use this method when few of the data values in
expression1 and in expression2 are unique.

BASEDON dimension-list
An optional list of dimensions along which CORRELATION computes the correlation
coefficient. Both expression1 and expression2 must be dimensioned by all of the
dimension-list dimensions. CORRELATION correlates the data values of expression1
to those of expression2 along all of the dimension-list dimensions. CORRELATION
returns an array that contains one correlation coefficient for each cell that is
dimensioned by all of the dimensions of expression1 and expression2 except those in
dimension-list.
When you do not specify a dimension-list argument, then CORRELATION computes
the correlation coefficient over all of the common dimensions of expression1 and
expression2. When all of the dimensions of the two expressions are the same, then
CORRELATION returns a single correlation coefficient. When either expression
contains dimensions that are not shared by the other expression, then
CORRELATION returns an array that contains one correlation coefficient for each cell
that is dimensioned by the dimensions of the expressions that are not shared.

Usage Notes

The Effect of NASKIP on CORRELATION

CORRELATION is affected by the NASKIP option. When NASKIP is set to YES (the
default), then CORRELATION ignores NA values. When NASKIP is set to NO, then an
NA value in the expressions results in a correlation coefficient of NA.

Chapter 7
CORRELATION

7-80

Examples

Example 7-51 Correlating with the PEARSON Method

Assume that your analytic workspace contains two variables named units and price.
The two dimensions of the price variable, month and product, are shared by the units
variable, which has a third dimension, district.

The following CORRELATION statement does not specify a dimension-list argument.
The output of the CORRELATION function in the statement is one correlation
coefficient for each of the dimension values in the dimension that the variables do not
have in common.

REPORT CORRELATION(units price pearson)

The preceding statement produces the following output.

 CORRELATION
 (UNITS
 PRICE
DISTRICT PEARSON)
-------------- -----------
Boston -0.75
Atlanta -0.85
Chicago -0.83
Dallas -0.66
Denver -0.83
Seattle -0.69

The following statements limit the month and product dimensions.

LIMIT month to 'Jan96' TO 'Mar96'
LIMIT product TO 'Tents' TO 'Racquets'

The following statement reports the correlation coefficient based on the product
dimension for the limited dimension values that are in status.

REPORT CORRELATION(units price pearson basedon product)

 CORRELATION(UNITS PRICE PEARSON-
 --------BASEDON PRODUCT)--------
 -------------MONTH--------------
DISTRICT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------
Boston -0.96 -0.90 -0.89
Atlanta -0.97 -0.97 -0.97
Chicago -0.96 -0.95 -0.95
Dallas -0.98 -0.98 -0.99
Denver -0.97 -0.97 -0.97
Seattle -0.89 -0.83 -0.83

The following statement reports the correlation coefficient based on the month
dimension for the limited dimension values.

REPORT CORRELATION(units price pearson basedon month)

 CORRELATION(UNITS PRICE PEARSON-
 ---------BASEDON MONTH)---------
 ------------PRODUCT-------------
DISTRICT Tents Canoes Racquets

Chapter 7
CORRELATION

7-81

-------------- ---------- ---------- ----------
Boston -0.59 -0.92 -0.55
Atlanta -0.73 -0.83 0.03
Chicago -0.91 -0.84 -0.68
Dallas -0.86 -0.92 0.31
Denver -0.98 -0.94 -0.67
Seattle -0.98 -0.89 -0.70

COS
The COS function calculates the cosine of an angle expression.

Return Value

NUMBER

The result returned by COS is a value with the same dimensions as the specified
expression.

Syntax

COS(angle-expression)

Parameters

angle-expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 7-52 Calculating the Cosine of an Angle in Radians

This example calculates the cosine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW COS(1)

produce the following result.

0.54030

Example 7-53 Calculating the Cosine of an Angle in Degrees

This example calculates the cosine of an angle of 60 degrees. Because 1 degree =
2 * (pi) / 360 radians, 60 degrees is about 60 * 2 * 3.14159 / 360 radians. The
statement

SHOW COS(60 * 2 * 3.14159 / 360)

produces the following result.

0.50000

COSH
The COSH function calculates the hyperbolic cosine of an angle expression.

Chapter 7
COS

7-82

Return Value

NUMBER

Syntax

COSH(expression)

Parameters

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 7-54 Calculating the Hyperbolic Cosine of an Angle

This example calculates the hyperbolic cosine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW COSH(1)

produce the following result.

1.54030

COUNT
The COUNT function counts the number of TRUE values of a Boolean expression. It
returns 0 (zero) when no values of the expression are TRUE.

Return Value

INTEGER

Syntax

COUNT(boolean-expression [CACHE] [dimension...])

Parameters

boolean-expression
The Boolean expression whose TRUE values are to be counted.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.
By default, COUNT returns a single YES or NO value. When you indicate one or more
dimensions for the result, COUNT tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

Chapter 7
COUNT

7-83

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes

The Effect of NASKIP on COUNT

COUNT is affected by the NASKIP option. When NASKIP is set to YES (the default),
COUNT returns the number of TRUE values of the Boolean expression, regardless of
how many other values are NA. When NASKIP is set to NO, COUNT returns NA when
any value of the expression is NA. When all the values of the expression are NA,
COUNT returns NA for either setting of NASKIP.

Examples

Example 7-55 Counting True Values by District

You can use COUNT to find the number of months in which each district sold more
than 2,000 units of sportswear. To obtain a count for each district, specify district as
the dimension for the result.

LIMIT product TO 'SPORTSWEAR'
REPORT HEADING 'Count' COUNT(units GT 2000, district)

The preceding statement statements produce the following output.

DISTRICT Count
-------------- ----------
Boston 0
Atlanta 23
Chicago 11
Dallas 24
Denver 7
Seattle 0

CUMSUM
The CUMSUM function computes cumulative totals over time or over another
dimension. When the data being totaled is one-dimensional, CUMSUM produces a
single series of totals, one for all values of the dimension. When the data has
dimensions other than the one being totaled over, CUMSUM produces a separate
series of totals for each combination of values in the status of the other dimensions.

Return Value

DECIMAL

Chapter 7
CUMSUM

7-84

Syntax

CUMSUM(cum-expression [STATUS] total-dim [reset-dim] [INSTAT])

Parameters

cum-expression
A numeric variable or calculation whose values you want to total, for example UNITS.

STATUS
When cum-expression is multidimensional, CUMSUM creates a temporary variable to
use while processing the function. When you specify the STATUS keyword,
CUMSUM uses the current status instead of the default status of the dimensions for
calculating the size of this temporary variable. When the dimensions of the expression
are limited to a few values and are physically fragmented, you can improve the
performance of CUMSUM by specifying STATUS.
When you use CUMSUM with the STATUS keyword in an expression that requires
going outside of status for results (for example, with the LEAD or LAG functions or
with a qualified data reference), the results outside of status are returned as NA.

Note:

When you specify the STATUS keyword when the data being totaled is one-
dimensional, an error results

total-dim
The dimension of cum-expression over which you want to total.

reset-dim
Specifies that the cumulative totals in a series should start over with each new reset
dimension value, for example at the start of each new year. The reset dimension can
be any of the following:

• Any dimension related to total-dim through an explicitly defined relation.

• Any dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR, when
total-dim also has a type of DAY, WEEK, MONTH, QUARTER, or YEAR.
CUMSUM uses the implicit relation between the two dimensions, so they do not
have to be related through an explicit relation. See "Overriding an Implicit
Relation".

• A relation dimensioned by total-dim. CUMSUM uses the related dimension as the
reset dimension which enables you to choose which relation is used when there
are multiple relations.

INSTAT
Specifies that CUMSUM uses only the values of total-dim that are currently in status.
When you do not specify INSTAT, CUMSUM produces a total for all the values of
total-dim, independent of its current status. See "INSTAT Ignores Current Status By
Default".

Usage Notes

Overriding an Implicit Relation

Chapter 7
CUMSUM

7-85

When you specify dimensions with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR for both the total-dim argument and the reset-dim argument, CUMSUM uses the
implicit relation between the two dimensions even when an explicit relation exists.
However, you can override the default and use the explicit relation by specifying the
name of the relation for the reset-dim argument.

INSTAT Ignores Current Status By Default

Unless you specify the INSTAT keyword, CUMSUM ignores the current status in
calculating totals. Suppose MONTH is the dimension being totaled over (and INSTAT
has not been specified). The CUMSUM total for a given month uses the values for all
preceding months, even when some are not in the status. When a reset dimension is
specified, the total for a given month uses the values for all preceding months that
correspond to the same value of the reset dimension (for example, all preceding
months in the same year). To calculate year-to-date totals, specify YEAR as the reset
dimension.

Examples

The totals for CUMSUM(UNITS, MONTH) include values for all months beginning with
the first month, JAN95. The totals for CUMSUM(UNITS, MONTH YEAR) include only
the values starting with JAN96.

Example 7-56 Multiple CUMSUM Calculations

This example shows cumulative units totals for tents and canoes in the Atlanta district
for the first six months of 1996. The report shows the units figures themselves, year-to-
date totals calculated using year as the reset dimension, and totals calculated with no
reset dimension using all preceding months. Assume that you issue the following
statements.

LIMIT district TO 'Atlanta'
LIMIT product TO 'Tents' 'Canoes'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month units CUMSUM(units, month year) -
 CUMSUM(units, month)

The following report is displayed.

DISTRICT: ATLANTA
 ------------------------PRODUCT------------------------
 ---------TENTS------------- ---------CANOES------------
 CUMSUM(UNI CUMSUM(UNI
 TS, MONTH CUMSUM(UNI TS, MONTH CUMSUM(UNI
MONTH UNITS YEAR) TS, MONTH) UNITS YEAR) TS, MONTH)
----- -------- --------- ---------- ------- --------- ----------
Jan96 279 279 5,999 281 281 5,162
Feb96 305 584 6,304 309 590 5,471
Mar96 356 940 6,660 386 976 5,857
Apr96 537 1,477 7,197 546 1,522 6,403
May96 646 2,123 7,843 525 2,047 6,928
Jun96 760 2,883 8,603 608 2,655 7,536

Example 7-57 Resetting for a Quarter

This example shows cumulative totals for the same products and district, for the entire
year 1996. Because quarter is specified as the reset dimension, totals start
accumulating at the beginning of each quarter. The cumulative totals for Jan96, Apr96,
Jul96, and Oct96 are the same as the units figures for those months. Assume that you
issue the following statements.

Chapter 7
CUMSUM

7-86

LIMIT district TO 'Atlanta'
LIMIT product TO 'Tents' 'Canoes'
limit month TO year 'Yr96'
REPORT DOWN month units CUMSUM(units, month quarter)

A report displays.

DISTRICT: ATLANTA
 ------------------PRODUCT------------------
 --------TENTS-------- -------CANOES--------
 CUMSUM(UNI CUMSUM(UNI
 TS, MONTH TS, MONTH
MONTH UNITS QUARTER) UNITS QUARTER)
------------ ---------- ---------- ---------- ----------
Jan96 279 279 281 281
Feb96 305 584 309 590
Mar96 356 940 386 976
Apr96 537 537 546 546
May96 646 1,183 525 1,071
Jun96 760 1,943 608 1,679
Jul96 852 852 626 626
Aug96 730 1,582 528 1,154
Sep96 620 2,202 520 1,674
Oct96 554 554 339 339
Nov96 380 934 309 648
Dec96 284 1,218 288 936

CURRENT_DATE
The CURRENT_DATE function returns the current date in the session time zone, as a
value in the Gregorian calendar.

Return Values

DATETIME

Syntax

CURENT_DATE

Examples

Example 7-58 Retrieving the Current Date

Assume you want to retrieve the date when the date is February 13, 2007.

SHOW NLS_DATE_FORMAT
DD-MON-RR
SHOW CURRENT_DATE
13-FEB-07

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns the current date and time in the session
time zone, as a value of data type TIMESTAMP_TZ. The time zone offset reflects the
current local time of the session.

When you want to retrieve the current date and time in the session time zone as a
TIMESTAMP value, use the LOCALTIMESTAMP function.

Chapter 7
CURRENT_DATE

7-87

Return Values

TIMESTAMP_TZ

Syntax

CURRENT_TIMESTAMP [(precision)]

Parameters

precision
The fractional second precision of the time value returned. When you omit this
argument, then the function uses a default value of 6.

Examples

Example 7-59 Retrieving the Current Timestamp

Assume you want to retrieve the current timestamp.

SHOW CURRENT_TIMESTAMP
13-FEB-07 09.11.33.454685 AM -08:00

DAYOF
The DAYOF function returns an INTEGER in the range of 1 through 7, giving the day of
the week on which a specified date falls. A result of 1 refers to Sunday. The result has
the same dimensions as the specified DATE expression.

Return Value

INTEGER

Syntax

DAYOF(date-expression)

Parameters

date-expression
An expression that has the DATE data type, or a text expression that specifies a date.
Instead of a DATE expression, you can specify a text expression that has values that
conform to a valid input style for dates. DAYOF automatically converts the values of
the text expression to DATE values, using the current setting of the DATEORDER
option to resolve any ambiguity.

Examples

Example 7-60 Finding Today's Weekday

The following statement sends the day of the week on which today's date falls to the
current outfile.

SHOW DAYOF(TODAY)

When today's date is January 15, 1997, which is a Wednesday, this statement
produces the following output.

Chapter 7
DAYOF

7-88

4

Example 7-61 Finding the Weekday of a Date

The following statement sends the day of the week on which July 4 fell in 1996 to the
current outfile.

SHOW DAYOF('04jul96')

This statement produces the following output.

5

DBTIMEZONE
The DBTIMEZONE function returns the value of the database time zone.

Return Values

A time zone offset (a character type in the format '[+|-]TZH:TZM') or a time zone
region name, depending on how the user specified the database time zone value in
the most recent CREATE DATABASE or ALTER DATABASE statement.

Syntax

DBTIMEZONE

Examples

Example 7-62 Retrieving the Database Time Zone

SHOW DBTIMEZONE
-08:00

DDOF
The DDOF function returns an INTEGER in the range of 1 through 31, giving the day of
the month on which a specified date falls. The result returned by DDOF has the same
dimensions as the specified DATE expression.

Return Value

INTEGER

Syntax

DDOF(date-expression)

Parameters

date-expression
An expression that has the DATE data type, or a text expression that specifies a date.
See "Date-only Input Values" for valid formats for a text expression.

Chapter 7
DBTIMEZONE

7-89

Examples

Example 7-63 Finding Today's Day of the Month

The following statement returns the day of the month on which today's date falls.

SHOW DDOF(TODAY)

When today's date is September 8, 2000, this statement produces the following output.

8

DECODE
The DECODE function compares one expression to one or more other expressions
and, when the base expression equals a search expression, returns the corresponding
result expression; or, when no match is found, returns the default expression when it is
specified, or NA when it is not.

Return Value

The data type of the first result argument.

Syntax

DECODE (expr , search, result [, search , result]... [, default])

Parameters

expr
The expression to be searched. The function automatically converts expr to the data
type of the first search value before comparing

search
An expression to search for. The function automatically each search value to the data
type of the first search value before comparing

result
The expression to return when expression equals search.

default
An expression to return when expression is not equal to search.

Usage Notes

Order of Value Evaluation

The search, result, and default values can be derived from expressions. The function
evaluates each search value only before comparing it to expr, rather than evaluating
all search values before comparing any of them with expr. Consequently, the function
never evaluates a search when a previous search equals expr.

Chapter 7
DECODE

7-90

Examples

Example 7-64 Decoding an ID Field

Assume that your analytic workspace contains the following objects. Note that the
inventory_location formula uses the DECODE function to identify text values that
correspond to the INTEGER values of warehouse_id.

DESCRIBE
DEFINE product_id DIMENSION TEXT
DEFINE warehouse_id DIMENSION INTEGER
DEFINE inventories VARIABLE DECIMAL <product_id warehouse_id>
DEFINE inventory_location FORMULA TEXT <warehouse_id>
EQ -
DECODE (warehouse_id, 1, 'Southlake', 2, 'San Francisco', 4, 'Seattle', -
'Non domestic')

REPORT inventories
 ---------------INVENTORIES---------------
 ---------------PRODUCT_ID----------------
WAREHOUSE_ID 1770 1775
-------------------- -------------------- --------------------
 1 30.63 79.02
 2 71.49 55.83
 3 88.71 68.02
 4 86.27 41.86

REPORT inventory_location
WAREHOUSE_ID INVENTORY_LOCATION
-------------------- --------------------
 1 Southlake
 2 San Francisco
 3 Non domestic
 4 Seattle

The following reports illustrate how you can use inventory_location to display the
decoded values of warehouse_id in a report rather than displaying the actual values of
warehouse_id.

LIMIT product_id to '1775'

REPORT DOWN warehouse_id inventories
 ----INVENTORIES-----
 -----PRODUCT_ID-----
WAREHOUSE_ID 1775
-------------------- --------------------
 1 79.02
 2 55.83
 3 68.02
 4 41.86

REPORT DOWN inventory_location inventories
 ----INVENTORIES-----
 -----PRODUCT_ID-----
INVENTORY_LOCATION 1775
-------------------- --------------------
Southlake 79.02
San Francisco 55.83

Chapter 7
DECODE

7-91

Non domestic 68.02
Seattle 41.86

Example 7-65 DECODE with BITAND

Assume that you have the following objects with the reported values within your
analytic workspace.

DEFINE order_id DIMENSION TEXT
DEFINE customer_id DIMENSION TEXT
DEFINE order_customer COMPOSITE <order_id customer_id>
DEFINE order_status VARIABLE NUMBER(2) <order_customer<order_id customer_id>>

REPORT DOWN order_customer order_status
 ORDER_ID CUSTOMER_ID ORDER_STATUS
------------ ------------ ------------
2458 101 0.00
2397 102 1.00
2454 103 1.00
2354 104 0.00
2358 105 2.00
2381 106 3.00
2440 107 3.00
2357 108 5.00
2394 109 5.00
2435 144 6.00
2455 145 7.00
2356 105 5.00
2360 107 4.00

Assume that the value of order_status is used as a bitmap where the first three bits
hold information about the order and the other bits are always 0:

• The first bit is used for location information:

0 = Post Office, which corresponds to integer values of 0, 2, 4, and 6.

1 = Warehouse, which corresponds to the integer values of 1, 3, 5, and 7.

• The second bit is used for method:

0 = Air, which corresponds to the integer values of 0, 1, 4, and 5.

1 = Ground, which corresponds to the integer values of 2, 3, 6, and 7.

• The third bit is used for receipt:

0 = Certified, which corresponds the integer values of 0, 1, 2, and 3.

1 =Insured, which corresponds to the integer values of 4, 5, 6, and 7.

The following formulas use DECODE to substitute the text values for the bit values.

DEFINE location FORMULA DECODE(BITAND(order_status, 1), 1, 'Warehouse', 'PostOffice')
DEFINE method FORMULA DECODE(BITAND(order_status, 2), 2, 'Ground', 'Air')
DEFINE receipt FORMULA DECODE(BITAND(order_status, 4), 4, 'Insured', 'Certified')

Now, you can issue a report to display the decoded values.

REPORT DOWN order_customer order_status location method receipt

 ORDER_ID CUSTOMER_ID ORDER_STATUS LOCATION METHOD RECEIPT
------------ ------------ ------------ ------------ ------------ ------------

Chapter 7
DECODE

7-92

2458 101 0.00 PostOffice Air Certified
2397 102 1.00 Warehouse Air Certified
2454 103 1.00 Warehouse Air Certified
2354 104 0.00 PostOffice Air Certified
2358 105 2.00 PostOffice Ground Certified
2381 106 3.00 Warehouse Ground Certified
2440 107 3.00 Warehouse Ground Certified
2357 108 5.00 Warehouse Air Insured
2394 109 5.00 Warehouse Air Insured
2435 144 6.00 PostOffice Ground Insured
2455 145 7.00 Warehouse Ground Insured
2356 105 5.00 Warehouse Air Insured
2360 107 4.00 PostOffice Air Insured

DEPRDECL
The DEPRDECL function calculates the depreciation expenses for a series of assets.
DEPRDECL uses the declining balance method, as described in "Calculation Method
Used by DEPRDECL", to depreciate the assets over the specified lifetime of the
assets. The starting value and ending value are specified for the assets acquired in
each time period.

Tip:

The pure declining-balance method of depreciation used by DEPRDECL is not
the most widely used form of the declining-balance method. For a more
commonly used form of the declining-balance method, see the DEPRDECLSW
function, which uses a combination of the declining-balance and straight-line
methods.

Return Value

DECIMAL

The return value is dimensioned by all the dimensions of start-exp.

Syntax

DEPRDECL(start-exp end-exp n [STATUS] [decline-factor [{FULL|HALF|portion-exp}
[time-dimension]]])

Parameters

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a

Chapter 7
DEPRDECL

7-93

corresponding end-exp value. For example, when the assets acquired in 1996 have a
salvage value of $200, then the value of end-exp for 1996 is $200.

n
An INTEGER expression that contains the number of periods for the depreciation life of
the assets. The n expression can have any of the non-time dimensions of start-exp,
but it cannot have a time dimension.

STATUS
Specifies that DEPRDECL should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
depreciation expenses. By default DEPRDECL uses the default status list.

decline-factor
A numeric expression that gives the declining balance rate to use for calculating the
depreciation expenses. The decline-factor expression can have any of the non-time
dimensions of start-exp, but it cannot have a time dimension.
A factor of 2 indicates a double declining balance. The default is 2.

FULL
(Default) Specifies that the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges the full amount to
all of the assets in the series.

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. When you specify HALF as the portion of
depreciation expenses to charge to the period of acquisition, the HALF factor is
applied to each period. Half of each period's full depreciation is rolled to the next
period, and the final half period of depreciation takes place in the time period n + 1.
You might want to use HALF when assets are acquired during the second half of the
time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR,
the time-dimension argument is optional.

Usage Notes

Calculation Method Used by DEPRDECL

DEPRDECL calculates the depreciation expense for a given time period as the sum of
that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it was
acquired.

For each time period, DEPRDECL calculates the declining balance depreciation
expense by multiplying the current value of an asset by the decline-factor and dividing
the result by the number of periods in the lifetime of an asset. However, when the

Chapter 7
DEPRDECL

7-94

calculation for a specific time period results in an asset's current value going below the
ending value, then the depreciation expense is adjusted. In this instance, the
depreciation expense is calculated as the current value minus the ending value.

Low Ending Value

When the ending value specified for an asset is low enough that the depreciation
expense for the last period does not have to be adjusted, then the total depreciation
expense over all the periods is typically less than the starting value minus the specified
ending value.

High Ending Value

When the ending value specified for an asset is relatively high, then an asset might be
totally depreciated in fewer periods than were specified for the lifetime of the
depreciation. In this instance, when you want the depreciation expense applied across
the specified lifetime of the depreciation, you can lower the decline-factor.

DEPRDECL and NA Values

When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

DEPRDECL is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRDECL treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRDECL returns NA for all affected time periods.

Examples

Example 7-66 Using DEPRDECL to Calculate Depreciation Expenses for
Assets Acquired in a Single Period

This example shows how to use DEPRDECL to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The assets variable contains the starting value of the assets acquired in 1995. The
salvage variable contains the ending value of the assets acquired in 1995.

The following statement reports asset and salvage values, along with depreciation
expenses for the assets. Note that the call to DEPRDECL to calculate the depreciation
expenses specifies an asset lifetime of 5 periods (in this case, years) and a decline
factor of 2 (double-declining balance).

Chapter 7
DEPRDECL

7-95

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRDECL(assets salvage 5 2 FULL year)

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 144.00
Yr98 0.00 0.00 86.40
Yr99 0.00 0.00 29.60
Yr00 0.00 0.00 0.00

In this example, the depreciation expense for 1999 is adjusted so that the current
asset value does not fall below the salvage value. The current asset value is
calculated by subtracting the accumulated depreciation expense from the starting
asset value. For example, for 1998 the accumulated depreciation expense is $870.40
($400.00 + $240.00 + $144.00 + $86.40 = $870.40). Thus, the current asset value for
1998 is $129.60 ($1,000.00 - $870.40 = $129.60). In this example, the depreciation
expense is usually calculated by multiplying the current asset value by 2 and then
dividing the result by 5. Now, if $129.60 is multiplied by 2, then divided by 5, the
resulting depreciation expense is $51.84. If this depreciation expense is subtracted
from the 1998 current asset value of $129.60, the current asset value for 1999 would
be $77.76, which is below the salvage value of $100. Instead of letting the current
asset value fall below the salvage value, the DEPRDECL function subtracts the
salvage value ($100.00) from the current asset value ($129.60) to calculate the
depreciation expense ($29.60).

Example 7-67 Using DEPRDECL to Calculate the Depreciation Expenses for
Assets Acquired in Multiple Periods

You can also use DEPRDECL to calculate the depreciation expenses for a series of
assets.

Suppose you change the values for the year 1997 in the variables assets and salvage
to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997

The following statement reports the values of assets and salvage, and uses
DEPRDECL to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years, and a decline factor of 2 (double declining balance).

REPORT assets SALVAGE W 12 HEADING 'Depreciation' -
 DEPRDECL(assets salvage 5 2 FULL year)

This statement produces the following output. (Notice that the depreciation expense
increases in 1997 due to the assets acquired in that year.)

Chapter 7
DEPRDECL

7-96

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 500.00 50.00 344.00
Yr98 0.00 0.00 206.00
Yr99 0.00 0.00 101.00
Yr00 0.00 0.00 43.20
Yr01 0.00 0.00 14.80
Yr02 0.00 0.00 0.00

DEPRDECLSW
The DEPRDECLSW function calculates the depreciation expenses for a series of
assets. DEPRDECLSW uses a variation on the declining balance method, as
described in "Calculation Method Used by DEPRDECLSW", to depreciate assets over
the specified lifetime of the assets. DEPRDECLSW begins by using the declining
balance method, then switches over to the straight-line method at one of the following
points in the time series:

• The first period for which straight-line depreciation over the remaining periods
exceeds the declining balance depreciation for those periods (the default)

• The period specified by the switch-period argument

This variation on the declining-balance method is the most commonly used form of
declining-balance depreciation methods.

Return Value

DECIMAL, dimensioned by all the dimensions of start-exp.

Syntax

DEPRDECLSW(start-exp end-exp n [STATUS] [decline-factor [{FULL|HALF|
portion-exp} [switch-period [time-dimension]]]])

Parameters

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time dimensions.

end-exp
A numeric expression that contains the ending value of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1990 have a
salvage value of $200, then the value of end-exp for 1990 is $200.

n
An INTEGER expression that contains the number of periods for the depreciation life of
the assets. The n expression can have any of the non-time dimensions of start-exp,
but it cannot have a time dimension.

Chapter 7
DEPRDECLSW

7-97

STATUS
Specifies that DEPRDECLSW should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
depreciation expenses. By default DEPRDECLSW uses the default status list.

decline-factor
A numeric expression that gives the declining balance rate to use for calculating the
depreciation expenses. The decline-factor expression can have any of the non-time
dimensions of start-exp, but it cannot have a time dimension.
A factor of 2 indicates a double declining balance. The default is 2.

FULL
(Default) Specifies that the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges the full amount to
all of the assets in the series. This argument is optional; however, when you include it,
you must also include the preceding optional arguments.

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. You might want to use HALF when assets
are acquired during the second half of the time period. When you specify HALF as the
portion of depreciation expenses to charge to the period of acquisition, the HALF
factor is applied to each period. Half of each period's full depreciation is rolled to the
next period, and the final half period of depreciation takes place in the time period n +
1. This argument is optional; however, when you include it, you must also include the
preceding optional arguments.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF. This argument is optional; however, when
you include it, you must also include the preceding optional arguments.

switch-period
An INTEGER expression that indicates the time period in which the calculation should
switch to the straight-line method. This argument is optional; however, when you
include it, you must also include the preceding optional arguments.
A common accounting practice is to switch to a straight-line method in the first period
for which straight-line depreciation over the remaining periods exceeds the declining-
balance depreciation. You can specify this behavior by not specifying the switch-
period argument.
When the switch-period argument is not specified or has a value of NA or 0, the
calculation switches from the declining method to the straight-line method in the first
period for which straight-line depreciation over the remaining periods exceeds the
declining-balance depreciation. In this case, the DEPRDECLSW function behaves just
like the DEPRDECL function.
When you want to specify different switch periods for different assets, you can supply
an expression that is dimensioned by any of the non-time dimensions of start-exp.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR,

Chapter 7
DEPRDECLSW

7-98

the time-dimension argument is optional. When you include this argument, you must
also include the preceding optional arguments

Usage Notes

Calculation Method Used by DEPRDECLSW

DEPRDECLSW calculates the depreciation expense for a given time period as the
sum of that period's depreciation expenses for all assets in the series that are not yet
fully depreciated. The first period of depreciation for an asset is the period in which it
was acquired.

For each time period in which DEPRDECLSW is calculating depreciation according to
the declining balance method, it calculates the depreciation expense by multiplying the
current value of an asset by the decline-factor and dividing the result by the number of
periods in the lifetime of the asset. When DEPRDECLSW switches to the straight-line
method, it subtracts the depreciation expense (from previous periods) from the value
of an asset and divides the resulting amount by the number of periods left in the
lifetime of the asset. However, when the depreciation expense calculated for a specific
time period would result in an asset's current value going below its ending value, then
the depreciation expense is adjusted. In this instance, the depreciation expense is
calculated as the current value minus the ending value.

The straight-line method as used by DEPRDECLSW differs from the traditional
straight-line method as used by DEPRSL. Unlike other methods of depreciation, the
declining-balance methods of depreciation ignore the salvage value for an asset until
the period in which the calculated depreciation would exceed the remaining
depreciable value. Even DEPRDECLSW ignores the salvage value in this manner
after it switches from the declining-balance method to the straight-line method. For
example, suppose the beginning value for an asset is 16,000 and the salvage value is
1,000 over 5 periods. The total depreciation through the periods using declining
balance method (here the first three) is 11,544. The straight-line calculations for the
remaining periods would be based on the overall remaining value of 16,000 minus
11,544 (3,456), rather than the overall value minus the salvage value (2,456). Thus the
depreciation for the last two periods would be 1,728; but for the very last period the
salvage value is subtracted out and thus is 728.

Unexpected-Balance Method

When the ending value specified for an asset is relatively high, then an asset might be
totally depreciated in fewer periods than were specified for the lifetime of the
depreciation. In this instance, when you want the depreciation expense applied across
the specified lifetime of the depreciation, you can lower the decline-factor.

DEPRDECLSW and NA Values

When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

DEPRDECLSW is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRDECLSW treats the values as zeros when calculating the depreciation
expenses. When NASKIP is NO, DEPRDECLSW returns NA for all affected time periods.

Chapter 7
DEPRDECLSW

7-99

Examples

Example 7-68 Calculating Depreciation Expenses for Assets Acquired in a
Single Period

This example shows how to use DEPRDECLSW to calculate depreciation expenses
for assets acquired in a single time period. It also shows the behavior of
DEPRDECLSW when you do not specify a switch period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
------- ---------- -----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of the assets acquired in 1995. salvage
contains the ending value of the assets acquired in 1995.

The following statement reports the values of assets and salvage, and uses
DEPRDECLSW to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years, and a decline factor of 2 (double declining balance). The statement
does not specify a switch-period argument. Because of this, DEPRDECLSW uses the
default for switch-period, which is to switch from the declining balance method of
depreciation in the first period for which straight-line depreciation over the remaining
periods exceeds the declining-balance depreciation.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRDECLSW (assets salvage 5 2 FULL)

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
------- ---------- ----------- --------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 144.00
Yr98 0.00 0.00 108.00
Yr99 0.00 0.00 8.00
Yr00 0.00 0.00 0.00

Example 7-69 Specifying the Switch Period

Alternatively, you can specify the period in which the switch occurs.

To switch from the declining balance method to the straight-line method of
depreciation in the third year (Yr97), specify 3 as the switch period, as shown in the
following statement.

REPORT assets salvage W 12 HEADING 'DEPRECIATION' -
 DEPRDECLSW (assets salvage 5 2 FULL 3 year)

Chapter 7
DEPRDECLSW

7-100

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------- ---------- ----------- --------------
Yr95 1,000.00 100.00 400.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 120.00
Yr98 0.00 0.00 120.00
Yr99 0.00 0.00 20.00
Yr00 0.00 0.00 0.00

Example 7-70 Calculating the Depreciation Expenses for Assets Acquired in
Multiple Periods

You can use DEPRDECLSW to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets and
salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRDECLSW to calculate the
depreciation expenses specifies an asset lifetime of 5 periods (in this case, years) and
a decline factor of 2 (double-declining balance). The statement does not specify a
switch-period argument. Because of this, DEPRDECLSW uses the default for switch-
period, which is to switch from the declining balance method of depreciation in the first
period for which straight-line depreciation over the remaining periods exceeds the
declining-balance depreciation.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRDECLSW(assets salvage 5 2 FULL)

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100. 00 400.00
Yr96 0.00 0.00 240.00
Yr97 500.00 50.00 344.00
Yr98 0.00 0.00 228.00
Yr99 0.00 0.00 80.00
Yr00 0.00 0.00 54.00
Yr01 0.00 0.00 4.00
Yr02 0.00 0.00 0.00

Notice that the depreciation expense increases in 1997 due to the assets acquired in
that year.

Chapter 7
DEPRDECLSW

7-101

DEPRSL
The DEPRSL function calculates the depreciation expenses for a series of assets.
DEPRSL uses the straight-line method, as described in "DEPRSL Calculation
Method", to depreciate the assets over the specified lifetime of the assets. The starting
and ending values are specified for the assets acquired in each time period.

Return Value

DECIMAL, dimensioned by all the dimensions of start-exp.

Syntax

DEPRSL(start-exp end-exp n [STATUS] [{FULL|HALF| portion-exp} [time-dimension]])

Parameters

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1995 have a
salvage value of $200, then the value of end-exp for 1995 is $200.

n
An INTEGER expression that contains the depreciation lifetime of the assets. The n
expression can have any of the non-time dimensions of start-exp, but it cannot have a
time dimension.

STATUS
Specifies that DEPRSL should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the
depreciation expenses. By default DEPRSL uses the default status list.

FULL
(Default) Specifies that the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges the full amount to
all of the assets in the series.

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. When you specify HALF as the portion of
depreciation expenses to charge to the period of acquisition, the HALF factor is
applied to each period. Half of each period's full depreciation expense is rolled to the
next period, and the final half period of depreciation takes place in the time period n +

Chapter 7
DEPRSL

7-102

1. You might want to use HALF when assets are acquired during the second half of
the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are dimensioned.
When the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR,
the time-dimension argument is optional.

Usage Notes

DEPRSL Calculation Method

DEPRSL calculates the depreciation expense for a given time period as the sum of
that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it was
acquired.

DEPRSL and NA Values

When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

DEPRSL is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRSL treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRSL returns NA for all affected time periods.

Examples

Example 7-71 Using DEPRSL to Calculate Depreciation Expenses for Assets
Acquired in a Single Period

This example shows how to use DEPRSL to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of assets acquired in 1995. The
variable salvage contains the ending value of the assets acquired in 1995.

Chapter 7
DEPRSL

7-103

The following statement reports the values of assets and salvage, and uses DEPRSL
to calculate depreciation expenses for each year, specifying an asset lifetime of 5
years.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSL(assets salvage 5 FULL year)

This statement produces the following output.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 180.00
Yr96 0.00 0.00 180.00
Yr97 0.00 0.00 180.00
Yr98 0.00 0.00 180.00
Yr99 0.00 0.00 180.00
Yr00 0.00 0.00 0.00

Example 7-72 Using DEPRSL to Calculate the Depreciation Expenses for
Assets Acquired in Multiple Periods

You can also use DEPRSL to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets and
salvage to the values shown in the following report.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 500.00 50.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00
Yr01 0.00 0.00
Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRSL to calculate the depreciation
expenses specifies an asset lifetime of 5 periods (in this case, years).

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSL(assets salvage 5 FULL year)

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ------------- --------------------
Yr95 1,000.00 100.00 180.00
Yr96 0.00 0.00 180.00
Yr97 500.00 50.00 270.00
Yr98 0.00 0.00 270.00
Yr99 0.00 0.00 270.00
Yr00 0.00 0.00 90.00
Yr01 0.00 0.00 90.00
Yr02 0.00 0.00 0.00

The assets acquired in 1995 were fully depreciated in 1999. Therefore, for 2000 and
2001, DEPRSL returns a figure that includes the depreciation expense for the assets
acquired in 1997 only.

Chapter 7
DEPRSL

7-104

DEPRSOYD
The DEPRSOYD function calculates the depreciation expenses for a series of assets.
DEPRSOYD uses the sum-of-years'-digits method, as described in "Calculation
Method Used by DEPRSOYD", to depreciate the assets over the specified lifetime of
the assets. The starting and ending values are specified for the assets acquired in
each time period.

Return Value

DECIMAL, dimensioned by all the dimensions of start-exp.

Syntax

DEPRSOYD(start-exp end-exp n [STATUS] [{FULL|HALF| portion-exp} [time-
dimension]])

Parameters

start-exp
A numeric expression that contains the starting values of the assets. The start-exp
expression must be dimensioned by a time dimension. For each value of the time
dimension, start-exp contains the initial value of the assets acquired during that time
period. In addition to a time dimension, start-exp can also have non-time dimensions.

end-exp
A numeric expression that contains the ending values of the assets. The end-exp
expression must be dimensioned by the same dimensions as start-exp. For each
value of the time dimension, end-exp contains the final (or salvage) value for the
assets acquired during that time period. Each value of start-exp must have a
corresponding end-exp value. For example, when the assets acquired in 1995 have a
salvage value of $200, then the value of end-exp for 1995 is $200.

n
An INTEGER expression that contains the depreciation lifetime of the assets. The n
expression can have any of the non-time dimensions of start-exp, but it cannot have a
time dimension.

STATUS
Specifies that DEPRSOYD should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
depreciation expenses. By default DEPRSOYD uses the default status list.

FULL
(Default) Specifies that the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges the full amount to
all of the assets in the series.

HALF
Specifies that half of the full amount of a time period's depreciation expense is
charged to the time period in which assets were acquired. Charges half the full
amount to all of the assets in the series. When you specify HALF as the portion of
depreciation expenses to charge to the period of acquisition, the HALF factor is
applied to each period. Half of each period's full depreciation expense is rolled to the

Chapter 7
DEPRSOYD

7-105

next period, and the final half period of depreciation expense takes place in the n + 1
time period. You might want to use HALF when assets are acquired during the
second half of the time period.

portion-exp
When you want to charge the full amount for some assets and half the amount for
other assets, you can supply a portion-exp expression that is dimensioned by any of
the non-time dimensions of start-exp. The portion-exp expression must be a text
expression with values of FULL or HALF.

time-dimension
The name of the time dimension by which start-exp and end-exp are
dimensioned.When the time dimension has a type of DAY, WEEK, MONTH,
QUARTER, or YEAR, the time-dimension argument is optional.

Usage Notes

Calculation Method Used by DEPRSOYD

DEPRSOYD calculates the depreciation expense for a given time period as the sum of
that period's depreciation expenses for all assets in the series that are not yet fully
depreciated. The first period of depreciation for an asset is the period in which it was
acquired.

For each time period in the lifetime of an asset, DEPRSOYD bases the depreciation
expense calculation on a specific cut of the total amount to be depreciated. The value
of the cut is such that the full depreciation expense can be achieved over the lifetime
of an asset by multiplying the cut by the number of time periods not yet depreciated.

For example, when the lifetime of an asset is 5 years, then DEPRSOYD calculates the
cut, x, as follows.

5x + 4x + 3x + 2x + 1x = total depreciation

In this case, the cut is 1/15th of the total depreciation. When the initial asset is $1,000
and its salvage value is $100, then the total depreciation is $900.00, and x is $60
($900/15). For the first time period, the depreciation is $300 ($60 x 5). For the second
time period, the depreciation is $240 ($60 x 4) and so on.

DEPRSOYD and NA Values

When a value of start-exp is NA and the corresponding value of end-exp is not NA, an
error occurs. Similarly, when a value of end-exp is NA and the corresponding value of
start-exp is not NA, an error occurs.

DEPRSOYD is affected by the NASKIP option when a value of start-exp and the
corresponding value of end-exp are both NA. When NASKIP is YES (the default),
DEPRSOYD treats the values as zeros when calculating the depreciation expenses.
When NASKIP is NO, DEPRSOYD returns NA for all affected time periods.

Examples

Example 7-73 Using DEPRSOYD to Calculate Depreciation Expenses for
Assets Acquired in a Single Period

This example shows how to use DEPRSOYD to calculate depreciation expenses for
assets acquired in a single time period.

The following statements create two variables called assets and salvage.

Chapter 7
DEPRSOYD

7-106

DEFINE assets DECIMAL <year>
DEFINE salvage DECIMAL <year>

Suppose you assign the following values to the variables assets and salvage.

YEAR ASSETS SALVAGE
-------------- ---------- ----------
Yr95 1,000.00 100.00
Yr96 0.00 0.00
Yr97 0.00 0.00
Yr98 0.00 0.00
Yr99 0.00 0.00
Yr00 0.00 0.00

The variable assets contains the starting value of assets acquired in 1995. The
variable salvage contains the ending value of the assets acquired in 1995.

The following statement reports the values of assets and salvage, and uses
DEPRSOYD to calculate depreciation expenses for each year, specifying an asset
lifetime of 5 years.

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSOYD(assets salvage 5 FULL year)

This statement produces the following report.

YEAR ASSETS SALVAGE Depreciation
-------------- ---------- ---------- ------------
Yr95 1,000.00 100.00 380.00
Yr96 0.00 0.00 240.00
Yr97 0.00 0.00 180.00
Yr98 0.00 0.00 120.00
Yr99 0.00 0.00 60.00
Yr00 0.00 0.00 0.00

Example 7-74 Using DEPRSOYD to Calculate the Depreciation Expenses for
Assets Acquired in Multiple Periods

You can also use DEPRSOYD to calculate the depreciation expenses for a series of
assets. Suppose you change the values for the year 1997 in the variables assets and
salvage to the values shown in the following report.

 YEAR ASSETS SALVAGE
 -------------- ---------- ----------
 Yr95 1,000.00 100.00
 Yr96 0.00 0.00
 Yr97 500.00 50.00
 Yr98 0.00 0.00
 Yr99 0.00 0.00
 Yr00 0.00 0.00
 Yr01 0.00 0.00
 Yr02 0.00 0.00

Now assets and salvage contain nonzero values for 1995 and for 1997.

The following statement reports asset and salvage values along with depreciation
expenses for the assets. Note that the call to DEPRSOYD to calculate the depreciation
expenses specifies an asset lifetime of 5 periods (in this case, years).

REPORT assets salvage W 12 HEADING 'Depreciation' -
 DEPRSOYD(assets salvage 5 FULL year)

Chapter 7
DEPRSOYD

7-107

This statement produces the following output.

 YEAR ASSETS SALVAGE Depreciation
 -------------- ---------- ---------- ------------
 Yr95 1,000.00 100.00 300.00
 Yr96 0.00 0.00 240.00
 Yr97 500.00 50.00 330.00
 Yr98 0.00 0.00 240.00
 Yr99 0.00 0.00 160.00
 Yr00 0.00 0.00 60.00
 Yr01 0.00 0.00 30.00
 Yr02 0.00 0.00 0.00

Notice that as a result of the second asset, the depreciation expenses increase in
1997. The depreciation is the total depreciation of $180.00 ($60 x 3) for the first asset
and $150.00 ($30 x 5) for the second asset.

ENDDATE
For expressions dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, the ENDDATE function returns the final date of the last time
period in the dimension status for which the expression has a non-NA value. For
example, when an expression is dimensioned by a dimension of type MONTH, and
when DEC98 is the last dimension value for which the expression has a non-NA value,
ENDDATE returns the date December 31, 1998.

Return Value

DATE-only or text

Syntax

ENDDATE(expression)

Parameters

expression
The expression must have exactly one dimension that has the type of DAY, WEEK,
MONTH, QUARTER, or YEAR. When all the values of the expression are NA,
ENDDATE returns NA.

Examples

Example 7-75 Finding the End Date

The following statements limit the values of the dimensions of the units variable, then
sends the last date associated with a non-NA value to the current outfile.

LIMIT month TO ALL
LIMIT product TO 'Tents'
LIMIT district TO 'Chicago'
SHOW ENDDATE(units)

These statements produce the following output.

31DEC96

Chapter 7
ENDDATE

7-108

ENDOF
For expressions dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, the ENDOF function returns the last date of a time period that is
first in the current status list of the dimension.

ENDOF is particularly useful when the dimension has a phase that differs from the
default or when the time periods are formed from multiple weeks or years. For
example, when the dimension has four-week time periods, the ENDOF function
identifies the final date of a particular four-week period.

Return Value

DATE-only or text

Syntax

ENDOF(dwmqy-dimension)

Parameters

dwmqy-dimension
A dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. When you have
explicitly defined your own relation between dimensions of this type, you can use the
name of this time relation here.

Examples

Example 7-76 Finding the Fiscal Year End Date

The following statements define a year dimension (called taxyear, for a tax year that
begins in July), add dimension values for tax years 1998 through 2000, and produce a
report showing the last date of each tax year.

DEFINE taxyear DIMENSION YEAR BEGINNING july
VNF 'TY<ffb>'
MAINTAIN taxyear ADD '01july98' '01july00'
REPORT W 14 ENDOF(taxyear)

These statements produce the following output.

TAXYEAR ENDOF(TAXYEAR)
-------------- --------------
TY98 30JUN99
TY99 30JUN00
TY00 30JUN01

EVERY
The EVERY function returns YES when every value of a Boolean expression is TRUE, or
NO when any value of the expression is FALSE.

Return Value

BOOLEAN

Chapter 7
ENDOF

7-109

Syntax

EVERY(boolean-expression [CACHE] [dimension...])

Parameters

boolean-expression
The Boolean expression whose values are to be evaluated.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.
By default, EVERY returns a single YES or NO value. When you indicate one or more
dimensions for the result, EVERY tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes

The Effect of NASKIP on EVERY

EVERY is affected by the NASKIP option. When NASKIP is set to YES (the default),
EVERY ignores NA values and returns YES when every value of the expression that is
not NA is TRUE and returns NO when any values are not TRUE. When NASKIP is set to NO,
EVERY returns NA when any value of the expression is NA. When all the values of the
expression are NA, EVERY returns NA for either setting of NASKIP.

Examples

Example 7-77 Testing for All-True Values by District

You can use the EVERY function to test whether each district's sales of sportswear
have exceeded $50,000 in every month. To have the results dimensioned by district,
specify district as the second argument to EVERY.

LIMIT product TO 'Sportswear'
REPORT HEADING 'Top Sales' EVERY(sales GT 50000, district)

The preceding statements produce the following output.

Chapter 7
EVERY

7-110

DISTRICT Top Sales
-------------- ----------
Boston No
Atlanta Yes
Chicago Yes
Dallas Yes
Denver Yes
Seattle NO

Example 7-78 Testing for All-True Values by Region

You might also want to find out the regions for which every district has sportswear
sales that exceed $50,000 in every month. Because the region dimension is related to
the district dimension, you can specify region instead of district as a dimension for
the results of EVERY.

REPORT HEADING 'Top Sales' EVERY(sales GT 50000, region)

The preceding statement produces the following output.

REGION Top Sales
-------------- ----------
East No
Central Yes
West NO

EXISTS
The EXISTS function determines whether an object is defined in any attached
workspace. The EXISTS function is useful in a program to test whether a definition
exists before you try to use it.

Return Value

BOOLEAN

Syntax

EXISTS(name-expression)

Parameters

name-expression
A text expression that specifies the name you want to test.

Usage Notes

Specifying More Than One Name

When name-expression contains multiple object names, EXISTS returns NO even when
all the objects specified by name-expression exist in attached workspaces.

Examples

Example 7-79 Using EXISTS

This example tests whether the variable actual has been defined in any attached
workspace. The statement

SHOW EXISTS('actual')

Chapter 7
EXISTS

7-111

produces the following result.

YES

EXP
The EXP function returns e raised to the nth power, where e equals 2.71828183....

Return Value

NUMBER

Syntax

EXP (n)

Parameters

n
The power by which you want to raise e.

Examples

Example 7-80 Raising an Expression to a Power

The following example returns e to the 4th power.

SHOW EXP(4)

54.59815

EVERSION
The EVERSION function returns a text value that specifies the internal Oracle OLAP
build number.

Return Value

TEXT

Syntax

EVERSION

Usage Notes

EVERSION and Major Releases

The build number in the output of the EVERSION function is not the Oracle Database
version number. The EVERSION value does not change only with major releases of
the database.

Chapter 7
EXP

7-112

Examples

Example 7-81 Obtaining the Version Number

The following statement produces text output that indicates the Oracle OLAP build
number.

SHOW EVERSION

This statement produces output like the following.

Oracle OLAP Build 80020

EXTBYTES
The EXTBYTES function extracts a portion of a text expression.

Return Value

TEXT

Syntax

EXTBYTES(text-expression [start [length]])

Parameters

text-expression
A TEXT expression from which a portion is to be extracted. When text-expression is a
multiline TEXT value, EXTBYTES preserves the line breaks in the returned value.

start
An INTEGER that represents the byte position at which to begin extracting. The position
of the first byte in text-expression is 1. When you omit this argument, EXTBYTES
starts with the first byte.

length
An INTEGER that represents the number of bytes to be extracted. When length is not
specified, or exceeds the number of bytes from start to the end of text-expression, the
part from start to the end of text-expression is extracted.

Examples

Example 7-82 Extracting Text Characters Using Bytes

This example shows how to extract portions of text from the TEXT value
'hellotherejoe'.

• The statement

SHOW EXTBYTES('hellotherejoe', 6, 5)

produces the following output.

there

• The statement

SHOW EXTBYTES('hellotherejoe', 11)

Chapter 7
EXTBYTES

7-113

produces the following output.

joe

EXTCHARS
The EXTCHARS function extracts a portion of a text expression.

Tip:

When you are using a multibyte character set, you can use the EXTBYTES
function instead of the EXTCHARS function.

Return Value

TEXT or NTEXT

Syntax

EXTCHARS(text-expression [start [length]])

Parameters

text-expression
A TEXT or NTEXT expression from which a portion is to be extracted. When text-
expression is a multiline text value, EXTCHARS preserves the line breaks in the
returned value.

start
An INTEGER that represents the character position at which to begin extracting. The
position of the first character in text-expression is 1. When you omit this argument,
EXTCHARS starts with the first character.

length
An INTEGER that represents the number of characters to be extracted. When length is
not specified, or exceeds the number of characters from start to the end of text-
expression, the part from start to the end of text-expression is extracted.

Examples

Example 7-83 Extracting Text Characters

This example shows how to extract portions of text from the TEXT value
'hellotherejoe'.

• The statement

SHOW EXTCHARS('hellotherejoe', 6, 5)

produces the following output.

there

• The statement

SHOW EXTCHARS('hellotherejoe', 11)

Chapter 7
EXTCHARS

7-114

produces the following output.

joe

EXTCOLS
The EXTCOLS function extracts specified columns from each line of a multiline text
value. The function returns a multiline text value that includes only the extracted
columns. Columns refer to the character positions in each line of a multiline text value.
The first character in each line is in column one, the second is in column two, and so
on.

Return Value

TEXT or NTEXT

EXTCOLS always returns a text value that has the same number of lines as text-
expression, though some lines may be empty.

Syntax

EXTCOLS(text-expression [start [numcols]])

Parameters

text-expression
The TEXT or NTEXT expression from which the specified columns should be extracted.
When text-expression is a multiline text value, the characters in the specified columns
are extracted from each one of its lines.

start
An INTEGER, between 1 and 32767, that represents the column position at which to
begin extracting. The column position of the first character in each line of text-
expression is 1. When you specify a starting column that is to the right of the last
character in a given line in text expression, the corresponding line in the return value
is empty.

numcols
An INTEGER that represents the number of columns to be extracted. When you do not
specify numcols, EXTCOLS extracts all the characters from the starting column to the
end of each line. When you specify a length that exceeds the number of characters
that follow the starting position in a given line in text expression, the corresponding
line in the return value includes only existing characters. EXTCOLS does not return
spaces at the end of the line to fill in the missing columns.

Examples

Example 7-84 Extracting Text Columns

In this example, four columns are extracted from each line of citylist, starting from
the second column.

DEFINE citylist VARIABLE TEXT
citylist = 'Boston\nHouston\nChicago'

• The statement

SHOW citylist

Chapter 7
EXTCOLS

7-115

produces the following output.

Boston
Houston
Chicago

• The statement

SHOW EXTCOLS(citylist 2 4)

produces the following output.

osto
oust
hica

EXTLINES
The EXTLINES function extracts lines from a multiline text expression.

Return Value

TEXT or NTEXT

Syntax

EXTLINES(text-expression [start [numlines]])

Parameters

text-expression
A multiline TEXT or NTEXT expression from whose values one or more lines are to be
extracted.

start
An INTEGER that represents the line number at which to begin extracting. The position
of the first line in text-expression is 1. When you omit this argument, EXTLINES
begins with line 1.

numlines
An INTEGER representing the number of lines to be extracted. When you do not specify
numlines, or when you specify a number greater than the number of lines from start to
the end of text-expression, all the lines from start to the end of text-expression are
copied.

Examples

Example 7-85 Extracting One Text Line

This example shows how to extract the second line from a multiline text value in a
variable called mktglist. The mktglist variable has the following values.

Salespeople
Products
Services

The statement

SHOW EXTLINES(mktglist 2 1)

Chapter 7
EXTLINES

7-116

produces the following output.

Products

EXTRACT
The EXTRACT function extracts and returns the value of a specified datetime value
from a datetime or interval value expression. This function can be very useful for
manipulating datetime values in very large variables.

Return Values

The value returned varies:

• When extracting from a datetime with a time zone value, the function returns a
value in UTC.

• When you extract a TIMEZONE_REGION or TIMEZONE_ABBR (abbreviation),
the function returns a text string that is the appropriate time zone name or
abbreviation.

• When you extract any of the other values, the function returns a value in the
Gregorian calendar.

• When the values you specify results in an ambiguity, the function returns NA.

Syntax

EXTRACT(time |timezone_hour_or_nimute |timezone_regn_or_abbr FROM
datetime_exp| interval_exp)

Parameters

time
One of the following keywords: YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND
which specify the portion of the time that you want the function to return.

timezone_hour_or_minute
One of the following keywords: TIMEZONE_HOUR or TIMEZONE_MINUTE which
specify that you want the function to return either the hour or minute portion of a
TIMESTAMP_TZ expression.

timezone_regn_or_abbr
One of the following keywords: TIMEZONE_REGION or TIMEZONE_ABBR which
specify that you want the function to return a string that is either the region name or its
abbreviation.

datetime_exp
A DATETIME, TIMESTAMP, TIMESTAMP_TZ, or TIMESTAMP_LTZ expression. See "Datetime
Expressions " for information on how to specify these expressions.

interval_exp
A DSINTERVAL or YMINTERVAL expression. See "Interval Expressions " for information on
how to specify these expressions.

Chapter 7
EXTRACT

7-117

Usage Notes

The value you are extracting must be a value of the appropriate datetime_exp or
interval_exp. For example, you can extract only YEAR, MONTH, and DAY from a
DATETIME value. Likewise, you can extract TIMEZONE_HOUR and
TIMEZONE_MINUTE only from the TIMESTAMP_TZ data type.

Examples

Example 7-86 Extracting the Hour from a Timestamp

DEFINE mytimestamptz VARIABLE TIMESTAMP_TZ
REPORT mytimestamptz

MYTIMESTAMPTZ

 26-MAR-06 12.00.00 AM -04:00

SHOW EXTRACT (TIMEZONE_HOUR FROM mytimestamptz)
-4.00

FCOPEN
The FCOPEN function creates a forecasting context and returns a handle to this
context.

You must use the FCOPEN function in combination with other OLAP DML statements
as outlined in "Forecasting Programs".

Return Value

INTEGER

Syntax

FCOPEN(text-expression [prototype-handle])

Parameters

text-expression
The name of the forecasting context.

prototype-handle
An INTEGER expression that is the handle to a different forecasting context that was
previously-created using the FCOPEN function. Oracle OLAP initializes the new
forecasting context with the same options as the forecasting context specified by this
parameter. (See the FCSET command for descriptions of the options that specify the
characteristics of a forecasting context.)

Examples

For an example of a forecasting program, see Example 9-119.

Chapter 7
FCOPEN

7-118

FCQUERY
The FCQUERY function queries the results of a forecast created when the FCEXEC
command executed.

You must use the FCQUERY function in combination with other OLAP DML
statements as outlined in "Forecasting Programs".

Return Value

The return value depends on the option that you use as described in the tables for this
entry.

Syntax

FCQUERY(HANDLELIST|handle-expression option - [TRIAL trial-num]
[CYCLE cycle-num])

Parameters

HANDLELIST
When you specify the HANDLELIST keyword, the FCQUERY function returns a
multiline text expression that is a list of the handles to forecasting contexts that are
currently open.

handle-expression
An INTEGER expression that is the handle to forecast context that you want to query
and that was previously opened using the FCOPEN function.

option
The specific information to retrieve:

• When you want information about the options specified for the entire forecast, do
not use the TRIAL keyword. In this case, option can be any of the options that you
can specify using the FCSET command and any of the options listed in the
following table.

Keyword Return type Description

HANDLEID TEXT The name of the forecasting context when
a value was specified when the
forecasting context was opened using the
FCOPEN command; or NA when no name
was specified at that time.

TRIALSRUN INTEGER The number of trials for which data is
available; or NA when no trials were run.

• When you want information about a specific trial, use the TRIAL trial-num phrase.
In this case, option can be any of the options listed in the following table.

Chapter 7
FCQUERY

7-119

Option Return
Value

Description

ALLOCLAST BOOLEAN Indicates whether the risk of over-
adjustment should be reduced by
allocating, instead of forecasting, the last
cycle.

ALPHA DOUBLE The value of Alpha for this trial of the
forecast. Alpha is the level or baseline
parameter that is used for the Single
Exponential Smoothing, Double
Exponential Smoothing, and Holt-Winters
forecasting methods.

BETA DOUBLE The value of Beta for this trial of the
forecast. Beta is the trend parameter that
controls the estimate of the trend. Beta is
used for the Double Exponential
Smoothing and Holt-Winters forecasting
methods.

COMPSMOO
TH

BOOLEAN Indicates whether optimization should be
done on the median smoothed data
series.

CYCDECAY DOUBLE The value of the cyclic decay parameter
for this trial of the forecast. Cyclical decay
pertains to how seriously Oracle OLAP
considers deviations from baseline activity
when it performs linear and nonlinear
regressions.

GAMMA DOUBLE The value of Gamma for this trial of the
forecast. Gamma is the seasonal
parameter that is used for the Holt-
Winters forecasting method.

HISTUSED INTEGER The number of historical periods actually
used, after all leading NA values are
bypassed.

MAD DOUBLE The mean absolute deviation (MAD) for
this trial of the forecast.

MAPE DOUBLE The mean average percent error (MAPE)
for this trial of the forecast.

MAXFCFAC
TOR

DECIMAL The upper bound of the forecast data.

METHOD TEXT The forecasting method that Oracle OLAP
used for this trial of the forecast. See the
METHOD option of the FCSET command
for descriptions of the various methods.

MINFCFACT
OR

DECIMAL The lower bound of the forecast data.

Chapter 7
FCQUERY

7-120

Option Return
Value

Description

MPTDECAY DOUBLE The value of the parameter that Oracle
OLAP used when it adjusted the decay of
estimates of base values that were used
when it unraveled the predictions on the
moving periodic total (MPT) series for this
trial of the forecast.

NCYCLES INTEGER The number of cycles specified using the
PERIODICITY argument to FCSET.

PERIODICIT
Y

INTEGER The length, in periods, of one or more
cycles. The return value depends on the
way you call the FCQUERY function:
When you specify the CYCLE argument,
PERIODICITY returns the number of
periods in the specified cycle.
When you do not specify the CYCLE
argument and FCSET ALLOCLAST is NO,
PERIODICITY returns the product of all
cycle lengths.
When you do not specify the CYCLE
argument and FCSET ALLOCLAST is
YES, PERIODICITY returns the product of
all cycle lengths leaving out the length of
the last (least aggregate) cycle.

RMSE DOUBLE The root mean squared error (RMSE) for
this trial of the forecast.

SMOOTHIN
G

BOOLEAN Indicates whether Oracle OLAP smoothed
the data for this trial of the forecast. YES
indicates that Oracle OLAP smoothed the
data; NO indicates that Oracle OLAP did
not smooth the data.

TRANSFOR
M

TEXT The data filter that Oracle OLAP used for
this trial of the forecast. See the
TRANSFORM option of the FCSET
command for descriptions of the various
filters.

TRENDHOL
D

DOUBLE The value of the trend hold parameter for
this trial of the forecast. trend hold
parameter that indicates trend reliability in
Double Exponential Smoothing and Holt-
Winters forecasting methods.

trial-num
An INTEGER expression that is the number of the trial for which you want to retrieve
information.

cycle-num
An INTEGER expression that specifies a cycle for which you want information from
the PERIODICITY option (see Table 7-8). When you specified a series of cycles using
the PERIODICITY argument in the FCSET command, then the value of cycle-num
indicates the position of the cycle of interest in the specified series. For example,

Chapter 7
FCQUERY

7-121

assume that FCSET PERIODICITY <52,7> was specified. In this case, a cycle-num of 1
returns 52 and a cycle-num of 2 returns 7. When you did not specify a series of cycles
using the PERIODICITY argument in the FCSET command, then it is unnecessary to
specify this argument.

Usage Notes

Using Options

You can retrieve information about the options specified for the entire forecast or
information about a specific trial.

• When you want information about the options specified for the entire forecast, do
not use the TRIAL keyword. In this case, option can be HANDLEID, TRIALSRUN,
or any of the options that you can specify using the FCSET command.

• When you want information about a specific trial, use the TRIAL trial-num phrase.
In this case, option can be ALPHA, BETA, CYCDECAY, GAMMA, MAD, MAPE,
METHOD, MPTDECAY, RMSE, SMOOTHING, TRANSFORM, or TRENDHOLD.

Accessing Dimensioned Data

When multiple time series are in status when the FCEXEC command executes, then
the TRIALSRUN and the NTRIAL-dimensioned data are also be dimensioned by the
extra dimensions of the time-series expression. Although Oracle OLAP treats the
value returned by the FCQUERY function as a scalar expression, you can access its
dimensioned data in any of the following ways:

• In a FOR loop, FCQUERY returns data for the current values of the FOR
dimensions

• In a QUAL function, FCQUERY returns data for the specified values of the
qualified dimensions.

• In all other cases, FCQUERY returns data for the first value in status of each of its
dimensions.

Examples

Example 7-87 Querying a Forecast

The autofcst program illustrated in Example 9-119 calls a program named queryall.
The queryall program retrieves the characteristics of the trials of the forecast using the
following code.

DEFINE queryall PROGRAM
PROGRAM
VARIABLE numtrials INTEGER
VARIABLE loopindx INTEGER
numtrials = FCQUERY(hndl trialsrun)
row numtrials 'TRIALS'
loopindx = 1
WHILE loopindx LE numtrials
 DO
 ROW loopindx 'METHOD' FCQUERY(hndl method trial loopindx)
 ROW loopindx 'TRANSFORM' FCQUERY(hndl transform trial loopindx)
 ROW loopindx 'SMOOTHING' FCQUERY(hndl smoothing trial loopindx)
 ROW loopindx 'ALPHA' FCQUERY(hndl alpha trial loopindx)
 ROW loopindx 'BETA' FCQUERY(hndl beta trial loopindx)
 ROW loopindx 'GAMMA' FCQUERY(hndl gamma trial loopindx)
 ROW loopindx 'TRENDHOLD' FCQUERY(hndl trendhold trial loopindx)

Chapter 7
FCQUERY

7-122

 ROW loopindx 'CYCDECAY' FCQUERY(hndl cycdecay trial loopindx)
 row loopindx 'MPTDECAY' FCQUERY(hndl mptdecay trial loopindx)
 ROW loopindx 'MAD' FCQUERY(hndl mad trial loopindx)
 ROW loopindx 'MAPE' FCQUERY(hndl mape trial loopindx)
 ROW loopindx 'RMSE' FCQUERY(hndl rmse trial loopindx)
 loopindx = loopindx + 1
 DOEND
END

A sample report created from the output of the QUERYALL program follows.

 3 TRIALS
 1 METHOD HOLT/WINTERS
 1 TRANSFORM TRNOSEA
 1 SMOOTHING NO
 1 ALPHA 0.2
 1 BETA 0.3
 1 GAMMA 0.3
 1 TRENDHOLD 0.8
 1 CYCDECAY -1
 1 MPTDECAY -1
 1 MAD 324.97047
 1 MAPE 23.6192147
 1 RMSE 389.40202
 2 METHOD HOLT/WINTERS
 2 TRANSFORM TRNOSEA
 2 SMOOTHING NO
 2 ALPHA 0.2
 2 BETA 0.3
 2 GAMMA 0.2
 2 TRENDHOLD 0.8
 2 CYCDECAY -1
 2 MPTDECAY -1
 2 MAD 324.97047
 2 MAPE 23.6192147
 2 RMSE 389.40202
 3 METHOD HOLT/WINTERS
 3 TRANSFORM TRNOSEA
 3 SMOOTHING NO
 3 ALPHA 0.2
 3 BETA 0.3
 3 GAMMA 0.1
 3 TRENDHOLD 0.8
 3 CYCDECAY -1
 3 MPTDECAY -1
 3 MAD 324.97047
 3 MAPE 23.6192147
 3 RMSE 389.40202

FILEERROR
The FILEERROR function returns information about the first error that occurred when
you are processing a record from an input file with the data reading statements
FILEREAD and FILEVIEW. It can tell you what type of error occurred and where
Oracle OLAP was in the record. The keyword you specify as an argument determines
the kind of information that is returned.

Call FILEERROR once to find out the type of error. Then, you can call FILEERROR
again to get more details about what caused the error. The return values for the type
of error are also FILEERROR keywords. When FILEERROR returns a value other

Chapter 7
FILEERROR

7-123

than NA, then you would probably call FILEERROR a second time using the return
value itself as an argument.

The abbreviation for FILEERROR is FILEERR

Return Value

Varies depending on the specified keyword.

Syntax

FILEERROR (TYPE|POSITION|WIDTH|VALUE|DIMENSION)

Parameters

TYPE
Returns a text expression that specifies the type of error that has occurred. The types
of errors and their meanings are listed in the following table:

Return
Value

Meaning

DIMENSI
ON

The data reading statements tried to set the status of a dimension
(through an implicit or explicit MATCH attribute), but the specified
position or value did not exist.

NA No error occurred in the processing of the current record.

POSITIO
N

The data reading program tried to read from an invalid location in
the record. A POSITION error can occur when the field or column
is before the beginning of the record or when the field extends
past the end of the record. An error beyond the end of the record
occurs only for binary or packed data; for symbolic (textual) data,
the data reading statements pad short records with blanks.

VALUE The value could not be converted to the requested data type. For
packed data, the record had an invalid hexadecimal digit.

WIDTH The data reading statements specified an invalid field width.
Invalid widths depend on the format of the data, which can be
symbolic, packed, or binary:
• For symbolic format, the width is invalid when it is less than 1

or when it is NA. Note that NA is acceptable for ID data.

• For packed format, the width is invalid when it is less than 1,
greater than 8, or NA.

For binary format, the width requirement depends on whether the
data is INTEGER or DECIMAL (floating-point). Integer data must
have a width of 1, 2, or 4. Decimal data must have a width of 4 or
8.

POSITION
Returns an INTEGER that is the column number (for RULED records) or field number
(for STRUCTURED records) when the error occurred.

WIDTH
Returns an INTEGER that is the current field width. It returns NA when NA was
specified as the width or the error was a POSITION error. A POSITION error stops
processing before the width can be evaluated.

Chapter 7
FILEERROR

7-124

VALUE
When the error type is VALUE, it returns a text expression that is the value that could
not be converted. When the data is packed, the invalid value is shown as
hexadecimal escapes. When the error type is DIMENSION, it returns the value that
did not match any existing dimension value. For other error types, it returns NA.

DIMENSION
When the error type was DIMENSION, it returns a text expression that is the name of
the dimension that had no matching dimension values. For other error types, it returns
NA.

Usage Notes

Flow of Control

When an error occurs in FILEREAD or FILEVIEW, processing of the current record
stops and Oracle OLAP displays an appropriate error message. Then, when your
program has a trap label, control branches to the label where you might call
FILEERROR to investigate the problem. When you branch back to a FILEREAD or
FILENEXT function, processing continues with the next record. When there are more
errors in the record, those errors are not evaluated.

Displaying Error Messages in the Current Outfile

Set ECHOPROMPT to YES in your data reading program when you want error
messages to be displayed in the current outfile. When the error occurred during
FILEREAD or FILEVIEW, any evaluation by FILEERROR occurs after the error
message.

Examples

Example 7-88 Error-Handling with TRAP

This example shows a sample trap label (ERROR:) and the error-handling code that
follows it. (For information on error trapping and trap labels, see the TRAP command.)
The code checks whether the file has been opened. If so, it checks whether the error
that caused the branch is a data reading error. When it is, the program calls
FILEERROR in a SHOW command to display information about the error. The body of
the program (not shown) contains code that opens the file and assigns a file unit
number to the variable fil.unit. ERRTYPE is a local variable that is declared at the
beginning of the program.

error:
IF fil.unit EQ NA
 THEN DO
 POPLEVEL 'save'
 RETURN
 DOEND
IF ERRORNAME NE 'attn'
 THEN DO
 ERRTYPE = FILEERROR(TYPE)
 IF ERRTYPE NE NA
 THEN SHOW JOINCHARS('Error in record ' RECNO(fil.unit) -
 ' in column ' FILEERROR(POSITION) ': ' -
 ERRTYPE ' ' FILEERROR(&ERRTYPE))
 TRAP ON ERROR
 GOTO NEXT
 DOEND
FILECLOSE fil.unit

Chapter 7
FILEERROR

7-125

POPLEVEL 'save'
RETURN

FILEGET
The FILEGET function returns text from a non-binary file that has been opened for
reading. When FILEGET reaches the end of the file, it returns NA. All text read with
FILEGET is translated into the database character set. FILEGET cannot read data that
cannot be represented in the database character set.

Return Value

TEXT

Syntax

FILEGET(fileunit [LENGTH int-expression])

Parameters

fileunit
An INTEGER value that was assigned to a file opened for reading in a previous call to
the FILEOPEN function.

LENGTH int-expression
An INTEGER expression specifying the number of bytes FILEGET returns from the
file. When an end-of-line character is reached in the input file, FILEGET simply starts
a new line in the result it is constructing. When LENGTH is omitted, FILEGET reads
one line or record regardless of how many bytes it contains.

Usage Notes

Difference Between Number of Bytes Read and Number of Bytes Returned

The value specified by LENGTH refers to the number of bytes that the FILEGET
function returns, not to the number of bytes that it reads. In some cases, these values
may differ. For example, when the file being read contains a tab character, the number
of bytes returned by FILEGET includes the bytes for tab expansion (if any);
consequently, the number of bytes returned by FILEGET could be larger than the
number of bytes read by FILEGET.

Examples

Example 7-89 Program for Reading a File

Suppose you have a program called readfile that takes a file name as its argument. It
opens the file, reads the lines of the file, adds them to a multiline text variable named
wholetext, then closes it. readfile uses local variables to store the fileunit number and
each line of the file as it is read.

DEFINE wholetext VARIABLE TEXT
LD Multiline text variable
DEFINE readfile PROGRAM
LD Program to store data from a file in a multiline text variable
PROGRAM
VARIABLE fil.unit INTEGER "Local Var To Store File Unit
VARIABLE fil.text TEXT "Local Var To Store Single Lines
FIL.UNIT = FILEOPEN(ARG(1) READ)

Chapter 7
FILEGET

7-126

FIL.TEXT = FILEGET(fil.unit) "Read The First Line
WHILE fil.text NE NA "Test For End-of-file
 DO
 wholetext = JOINLINES(wholetext, fil.text)
 fil.text = FILEGET(fil.unit) "Read The Next Line
 DOEND
FILECLOSE fil.unit
END

FILENEXT
The FILENEXT function makes a record available for processing by the FILEVIEW
command. It returns YES when it was able to read a record and NO when it reached the
end of the file.

Return Value

BOOLEAN

Syntax

FILENEXT(fileunit)

Parameters

fileunit
An INTEGER value that is assigned to a file that is opened for reading in a previous call
to the FILEOPEN function or by the OUTFILE command.

Usage Notes

Opening and Closing Files

Before you can get records from a file with FILENEXT, use the FILEOPEN function to
open the file for reading (READ mode). When you are finished, close the file with a
FILECLOSE statement.

Processing Data

After reading a record with FILENEXT, use a FILEVIEW statement to process the
record. FILEVIEW processes input data and assigns the data to analytic workspace
objects or local variables according to a description of each field. You can call
FILEVIEW more than once for continued processing of the same record. To process
another record, call FILENEXT again.

Automatic Looping

When all the records are being processed in essentially the same way, the FILEREAD
command is easier to use because it loops over the records in a file automatically.

Writing Records

To write selected records to an output file, see the FILEPUT command.

Record Numbers

Use the RECNO function to get the current record number for any file that is opened
for read-only access.

Reading Binary and Text Files

Chapter 7
FILENEXT

7-127

When you did not specify BINARY for the file when you opened it, FILENEXT reads
data up to and including the next newline character. When you specified BINARY for
the file when you opened it, you must use FILESET to set LSIZE to the appropriate
record length before using the FILENEXT function. Then, FILENEXT reads data one
record at a time.

Examples

Example 7-90 Program That Uses FILENEXT

Suppose you receive monthly sales data in a file with the following record layout.

Column Width Format Data

1 1 Text Division code
2 10 Text District name
12 10 Text Product name
30 4 Packed binary Sales in dollars
34 4 Packed binary Sales in units

You want to process records only for your division, whose code is A. The following
program excerpt opens the file, reads the lines of the file, determines if the data is for
division A and, if so, reads the sales data, then closes the file. The file name is given
as an argument on the statement line after the program name.

VARIABLE fil.unit INTEGER
. . .
fil.unit = FILEOPEN(arg(1) READ)
LIMIT month TO &arg(2)

WHILE FILENEXT(fil.unit)
 DO
 FILEVIEW fil.unit WIDTH 1 rectype
 IF rectype EQ 'A'
 THEN FILEVIEW fil.unit COLUMN 2 WIDTH 10 district -
 WIDTH 10 product -
 COLUMN 30 WIDTH 4 BINARY sales -
 WIDTH 4 BINARY UNITS
 DOEND
FILECLOSE fil.unit

FILEOPEN
The FILEOPEN function opens a file, assigns it a fileunit number (an arbitrary INTEGER),
and returns that number. You use the fileunit number, rather than a file name, in any
further references to the file. When Oracle OLAP cannot open the file, an error occurs.

See Also:

OUTFILE

Return Value

INTEGER

Chapter 7
FILEOPEN

7-128

Syntax

FILEOPEN(file-name {READ|WRITE|APPEND} [BINARY]) [NLS_CHARSET charset-
exp]

Parameters

file-name
A text expression specifying the name of the file you want to open. Unless the file is in
the current directory, you must include the name of the directory object in the name of
the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

READ
(Abbreviated R) Opens the file for reading.

WRITE
(Abbreviated W) Opens the file for writing. File access begins at the top of the file.
Therefore, opening an existing file in WRITE mode erases its contents completely
even before anything is written to the file.

APPEND
Opens the file for writing. File access begins at the end of the file, and data is added
to the existing contents.

BINARY
Opens a binary-format file (a file with packed or binary data). When you specify
BINARY, Oracle OLAP considers every character in the file to be data. Rather than
using newline characters to tell when records end, it assumes records of a fixed
length, which you can set with FILESET(...LSIZE). The default record length is 80.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when reading data from the file
specified by file-name. When this argument is omitted, then Oracle OLAP handles the
data in the file as having the database character set, which is recorded in the
NLS_LANG option.

Usage Notes

Multiple File Units

You can open as many files at the same time as your operating system allows.

Access Modes

The mode of access, READ, WRITE, or APPEND, must be appropriate to the file.

Chapter 7
FILEOPEN

7-129

Examples

Example 7-91 FILEOPEN with an Argument Passed into a Program

The following line from a program opens a file whose name was specified as a
program argument and saves the fileunit number in the variable fil.unit.

fil.unit = FILEOPEN(ARG(1), READ)

Example 7-92 FILEOPEN with a Binary File

The following statements open a binary file and set the record length.

VARIABLE filenum INTEGER
filenum = FILEOPEN('mydata' READ BINARY)
FILESET filenum LSIZE 132

FILEQUERY
The FILEQUERY function returns information about a file. The attribute argument you
specify in your FILEQUERY function call determines the type of information that is
returned.

Return Value

The data type of the return value depends on the attribute you specify. See Table 7-10
for more information.

Syntax

FILEQUERY(file-id attrib-arg)

Parameters

file-id
A fileunit number or a file name.

• A fileunit number is a number that Oracle OLAP assigned to a file you opened
through a previous call to the FILEOPEN function or through the OUTFILE
command. You can use the return value of the FILEOPEN function or the value of
the OUTFILEUNIT option.

• A file name is a text expression specifying the name of the file you want to move
or rename. Unless the file is in the current directory, you must include the name of
the directory object in the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can
read and write files.

Chapter 7
FILEQUERY

7-130

Some attributes require that you specify a fileunit number; others require the file
name. In many cases, you can specify either. See Table 7-10 for more information.

attrib-arg
Specifies the type of information you want to retrieve about the file. The data type of
FILEQUERY's return value depends on the attribute you specify. The attribute you
specify must be appropriate for the file; otherwise, an error occurs. The following table
lists the valid keywords for attrib-arg and, for each keyword, provides a description
and indicates whether you specify a file-unit-number of a file-name for the file-id
argument.

Keyword Return Values Return Data
Type

file-id
Parameter

APPEND TRUE when the file is open for writing at the end (that is,
TRUE for APPEND and WRITE); FALSE when it is not.

BOOLEAN Fileunit number

BMARGIN The number of blank lines that form the bottom margin. INTEGER Fileunit number

CHANGED TRUE when the file's archive bit is set; FALSE when it is not. BOOLEAN Fileunit number
or file name

EOF TRUE when end-of-file has been reached; FALSE when it is
not.

BOOLEAN Fileunit number

EXISTS TRUE when the file exists; FALSE when it is not. BOOLEAN Fileunit number
or file name

FILENAME The file name associated with the fileunit. TEXT Fileunit number

LINENUM The current line number. Resets after each page break
when PAGING is on; keeps incrementing when PAGING
is off. When file is currently open in READ mode, returns
the current record number.

INTEGER Fileunit number

LINESLEFT The number of lines left on the page. INTEGER Fileunit number

LSIZE For a file that is open for writing, the line length for the
standard Oracle OLAP page heading. (See the STDHDR
program.) For a fileunit that is open for reading, specifies
the record length for binary input files.

INTEGER Fileunit number

NLS_CHARSET The character set being used for this fileunit. See the
FILEOPEN function for more information.

TEXT Fileunit number

NUMBYTES The size of the file in bytes. INTEGER Fileunit number
or file name

ORIGIN The type of computer on which the file was created. The
ORIGIN attribute, which is relevant only for files that are
open for reading, is set when you issue a FILESET
statement.

TEXT Fileunit number

PAGENUM The current page number. See "Paging Attributes". INTEGER Fileunit number

PAGEPRG The Oracle OLAP program or statement that produces
headings when output is paged. See "Paging Attributes".

TEXT Fileunit number

PAGESIZE The number of lines on each page. See "Paging
Attributes".

INTEGER Fileunit number

PAGING TRUE when the output is formatted in pages; FALSE when it
is not. See "Paging Attributes".

BOOLEAN Fileunit number

PAUSEATPAGEE
ND

TRUE when Oracle OLAP pauses after each page; FALSE
when it does not. See "Paging Attributes".

BOOLEAN Fileunit number

Chapter 7
FILEQUERY

7-131

Keyword Return Values Return Data
Type

file-id
Parameter

R[EAD] TRUE when the file is open for reading; FALSE when it is
not.

BOOLEAN Fileunit number

RO TRUE when the file's read-only attribute is set; FALSE when
it is not.

BOOLEAN Fileunit number
or file name

TABEXPAND TRUE when the tab characters are expanded when the file
is read by FILEGET or FILEREAD; FALSE when they are
not. See "Tab Treatment".

BOOLEAN Fileunit number
or file name

TMARGIN The number of blank lines that form the top margin. INTEGER Fileunit number

UNIT The file unit for the specified file name. INTEGER File name

W[RITE] TRUE when the file is open for writing; FALSE when it is not. BOOLEAN Fileunit number

Usage Notes

Tab Treatment

When you want tab characters in the source file to be expanded when read by
FILEGET or FILEREAD, you can specify the TABEXPAND attribute with the FILESET
command. When TABEXPAND is zero, tab characters are not expanded. A value
greater than 0 indicates the distance, in bytes, between tab stops. The default value of
TABEXPAND is 8.

Paging Attributes

The paging attributes apply only to files that currently, unless otherwise noted, have
PAGING set to YES and are open in WRITE mode -- such as files opened with
FILEOPEN(...WRITE) or FILEOPEN(...APPEND). You can set any of the paging
attributes with the FILESET command.

Wildcard Characters

(UNIX only) When querying for UNIX file names, wildcard characters (that is, * ?) are
allowed when searching with the EXISTS attribute argument.

Examples

Example 7-93 Setting Paging Options for a File Opened for Writing

The following statements show how the paging options are set for a file opened for
writing.

DEFINE fil.unit INTEGER
fil.unit = FILEOPEN('REPORT' WRITE)

• The statement

SHOW FILEQUERY(fil.unit PAGING)

produces the following output.

YES

• The statement

SHOW FILEQUERY(fil.unit PAGESIZE)

produces the following output.

Chapter 7
FILEQUERY

7-132

66

• The statement

SHOW FILEQUERY(fil.unit TMARGIN)

produces the following output.

5

The following statement closes the file.

FILECLOSE fil.unit

FILTERLINES
The FILTERLINES function applies a filter expression that you create to each line of a
multiline text expression.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

Syntax

FILTERLINES(source-expression filter-expression)

Parameters

source-expression
A multiline text expression whose lines should be modified according to filter-
expression.

filter-expression
An expression to be applied as a filter to each line of source-expression. The terms of
the filter expression dictate the processing that FILTERLINES performs on each line
of the source expression.
The filter expression may produce NA, which means that there is no line in the
resulting text expression corresponding to the current line of the source expression.
You can use the keyword VALUE in your filter expression to represent the current line
of the source expression.

Usage Notes

The Result of FILTERLINES

FILTERLINES returns a text expression composed of the lines that result from the
action of the filter expression on each line of the source expression. The filter

Chapter 7
FILTERLINES

7-133

expression may return multiline text for any or all of the input source lines. None of
these lines are acted on again by the filter expression.

Examples

Example 7-94 Removing Extension From File Names

The following example shows how FILTERLINES could be used on a list of file names
to produce a list of those same file names without extensions.

With a multiline text variable named filelist that evaluates to

myfile1.txt
file2.txt
myfile3
file4.txt

the statement

SHOW FILTERLINES(FILELIST -
 IF FINDCHARS(VALUE '.') GT 0 -
 THEN EXTCHARS(VALUE 1 FINDCHARS(VALUE '.') -1) -
 ELSE VALUE)

produces the following output.

myfile1
file2
myfile3
file4

FINDBYTES
The FINDBYTES function returns the byte position of the beginning of a specified
group of bytes within a text expression.

Tip:

When you are using a single-byte character set, you can use the FINDCHARS
function instead of the FINDBYTES function.

Return Value

INTEGER

Syntax

FINDBYTES(text-expression, bytes [starting-pos [LINENUM]])

Parameters

text-expression
The TEXT expression in which you are searching for the specified bytes. The value of
text-expression can be a multiline value. In this case, FINDBYTES searches all lines

Chapter 7
FINDBYTES

7-134

for the specified bytes. The match must be exact, including a match of upper- and
lowercase characters.

Tip:

When you must use this function on NTEXT values, use the CONVERT or
TO_CHAR function to convert the NTEXT value to TEXT.

bytes
The group of bytes for which you are searching. When bytes is a multiline value,
FINDBYTES ignores all lines except the first one.
When bytes is not found in text-expression, FINDBYTES returns zero. When the
group of bytes occurs more than once, FINDBYTES returns the position of its first
occurrence.

starting-pos
An INTEGER expression that specifies the byte position where the search in text-
expression should start. The default is at position 1 (the first byte) in text-expression.

LINENUM
Specifies that FINDBYTES should return the line number instead of the byte position
of the beginning of the specified text.

Examples

Example 7-95 Finding the Starting Position of a Byte Group

This example shows how to find the starting position of various groups of bytes in the
literal TEXT value hellotherejoe.

The statement

SHOW FINDBYTES('hellotherejoe', 'joe')

produces the following output.

11

The statement

SHOW FINDBYTES('hellotherejoe', 'al')

produces the following output.

0

FINDCHARS
The FINDCHARS function returns the character position of the beginning of a
specified group of characters within a text expression.

Chapter 7
FINDCHARS

7-135

Tip:

When you are using a multibyte character set, you can use the FINDBYTES
function instead of the FINDCHARS function.

Return Value

INTEGER

Syntax

FINDCHARS(text-expression, characters [starting-pos [LINENUM]])

Parameters

text-expression
The text expression in which you are searching for the specified characters. Text-
expression can be a multiline value. In this case, FINDCHARS searches all lines for
the specified characters. The match must be exact, including a match of upper- and
lowercase characters.
FINDCHARS accepts TEXT values and NTEXT values as arguments. When only one
argument is NTEXT, then FINDCHARS automatically converts the other argument to
NTEXT before performing the function operation

characters
The group of characters for which you are searching. When characters is a multiline
value, FINDCHARS ignores all lines except the first one.
When characters is not found in text-expression, FINDCHARS returns zero. When the
group of characters occurs more than once, FINDCHARS returns the position of its
first occurrence.

starting-pos
An INTEGER expression that specifies the character position where the search in
text-exp should start. The default is at position 1 (the first character) in text-exp.

LINENUM
Specifies that FINDCHARS should return the line number instead of the character
position of the beginning of the specified text.

Examples

Example 7-96 Finding the Starting Position of a Character Group

This example shows how to find the starting position of various groups of characters in
the literal TEXT value hellotherejoe.

The statement

SHOW FINDCHARS('hellotherejoe', 'joe')

produces the following output.

11

The statement

Chapter 7
FINDCHARS

7-136

SHOW FINDCHARS('hellotherejoe', 'al')

produces the following output.

0

FINDLINES
The FINDLINES function determines the position of one or more lines in a multiline
text expression.

Return Value

INTEGER

Syntax

FINDLINES(text-expression, lines)

Parameters

text-expression
A text expression within whose values you want to locate a certain line or group of
lines. FINDLINES searches text-expression for the specified lines. The match must be
exact, including a match of uppercase and lowercase characters. Also, when you
specify two or more lines, FINDLINES searches for all the specified lines as a single
continuous block in text-expression. When all the lines occur in text-expression, but
are not in a continuous block, FINDLINES returns 0 (not found).
FINDLINES accepts TEXT values and NTEXT values as arguments. When only one
argument is NTEXT, then FINDLINES automatically converts the other argument to
NTEXT before performing the function operation.
Note that when the value of text-expression is NA, FINDLINES returns NA.

lines
A second text expression containing the line(s) for which you are searching. When
lines is not found in text-expression, FINDLINES returns 0. When lines occurs more
than once, FINDLINES returns the line number of its first occurrence.

Examples

Example 7-97 Finding Two Sequential Lines

This example shows how to find the location of the two lines "products" and "services"
in a multiline value in a TEXT variable called newlist. The newlist variable has the
following values.

salespeople
products
services
regions
priorities

The characters "\n" in the lines argument to the following FINDLINES function call
indicates a line break to show that "product" and "services" are separate lines.

SHOW FINDLINES(newlist, 'products\nservices')

The result of this statement is

Chapter 7
FINDLINES

7-137

2

FINTSCHED
The FINTSCHED function calculates the interest portion of the payments on a series
of fixed-rate installment loans that are paid off over a specified number of time periods.
For each time period, you specify the amount of the loans incurred during that time
period and a single interest rate that applies to those loans over their lifetime.

FINTSCHED calculates the result for a given time period as the sum of the interest
due on each loan that is incurred or outstanding in that period.

Return Value

DECIMAL

The result returned by the FINTSCHED function is dimensioned by the union of all the
dimensions of loans, rates, n, and the dimension used as the time-dimension
argument.

Syntax

FINTSCHED(loans, rates, n, [time-dimension] [STATUS])

Parameters

loans
A numeric expression that contains the initial amounts of the loans. When loans does
not have a time dimension, or when loans is dimensioned by multiple time
dimensions, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a different
time dimension. When rates is dimensioned by a time dimension, you specify the
interest rate in each time period that applies to the loans incurred in that period. The
interest rate for the time period in which a loan is incurred applies throughout the
lifetime of that loan. The rates are expressed as decimal values; for example, a 5
percent rate is expressed as.05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be a dimensioned variable, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period of
the dimension specified in the time-dimension argument. For example, one payment
is made each month when loans is dimensioned by MONTH.

time-dimension
The name of the dimension along which the interest payments are calculated. When
the time dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR, the
time-dimension argument is optional, unless loans has multiple time dimensions.

Chapter 7
FINTSCHED

7-138

STATUS
Specifies that FINTSCHED should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
interest portion of the payments. By default FINTSCHED uses the default status list.

Usage Notes

FINTSCHED and NA Values

When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

FINTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
FINTSCHED depends on whether the corresponding interest rate has a value of NA or
a value other than NA. The following table illustrates how NASKIP affects the results
when a loan or rate value is NA for a given time period:

Table 7-11 Effect of NASKIP When Loan or Rate Values are NA for a Time
Period

Loan Value Rate Value Result When NASKIP = YES Result When NASKIP =
NO

Non-NA NA Error Error

NA Non-NA Interest values

(NA loan value is treated as
zero)

NA for the affected time
periods

NA NA NA for affected time periods NA for the affected time
periods

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997 but both have values other than NA for succeeding years.
When the number of payments is 3, FINTSCHED returns NA for 1997, 1998, and 1999.
For 2000, FINTSCHED returns the interest portion of the payment due for loans
incurred in 1998, 1999, and 2000.

FINTSCHED Ignores the Status of the Time Dimension

The FINTSCHED calculation begins with the first time dimension value, regardless of
how the status of that dimension may be limited. For example, suppose loans is
dimensioned by year, and the values of year range from Yr95 to Yr99. The calculation
always begins with Yr95, even when you limit the status of year so that it does not
include Yr95.

However, when loans is not dimensioned by the time dimension, the FINTSCHED
calculation begins with the first value in the current status of the time dimension. For
example, suppose loans is not dimensioned by year, but year is specified as time-
dimension. When the status of year is limited to Yr97 to Yr99, the calculation begins
with Yr97 instead of Yr95.

Examples

Example 7-98 Calculating Interest

The following statements create two variables called loans and rates.

Chapter 7
FINTSCHED

7-139

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.00
Yr99 0.00 0.00

For each year, loans contains the initial value of the fixed-rate loan incurred during that
year. For each year, the value of rates is the interest rate that is charged for any loans
incurred in that year; for those loans, this same rate is charged each year until the
loans are paid off.

The following statement specifies that each loan is to be paid off in three payments,
calculates the interest portion of the payments on the loans,

REPORT W 20 HEADING 'Payment' FINTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 5.00
Yr96 15.41
Yr97 30.98
Yr98 18.70
Yr99 7.48

The interest payment for 1995 is interest on the loan of $100 incurred in 1995, at 5
percent. The interest payment for 1996 is the sum of the interest on the remaining
principal of the 1995 loan, at 5 percent, plus interest on the loan of $200 incurred in
1996, at 6 percent. The 1997 interest payment is the sum of the interest on the
remaining principal of the 1995 loan, at 5 percent; interest on the remaining principal of
the 1996 loan, at 6 percent; and interest on the loan of $300 incurred in 1997, at 7
percent. Because the 1995 loan is paid off in 1997, the payment for 1998 represents
interest on the remaining principal of the 1996 and 1997 loans. In 1999, the interest
payment is on the remaining principal of the 1997 loan.

FLOOR
The FLOOR function returns the largest whole number equal to or less than a
specified number.

Return Value

NUMBER

Syntax

FLOOR(n)

Chapter 7
FLOOR

7-140

Parameters

n
A number.

Examples

Example 7-99 Displaying the Largest Integer Equal to or Less Than a Number

The following statements show results returned by the FLOOR function.

• The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(15.7)

15

• The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(4)

4

• The following SHOW FLOOR statement produces the result that follows it.

SHOW FLOOR(-6.457)

-7

FPMTSCHED
The FPMTSCHED function calculates a payment schedule (principal plus interest) for
paying off a series of fixed-rate installment loans over a specified number of time
periods. For each time period, you specify the amount of the loans incurred during that
time period and a single interest rate that applies to those loans over their lifetime.

FPMTSCHED calculates the payment for a given time period as the sum of the
principal and interest due on each loan that is incurred or outstanding in that period.

Return Value

DECIMAL

The result returned by the FPMTSCHED function is dimensioned by the union of all
the dimensions of loans and rates and the dimension used as the time-dimension
argument.

Syntax

FPMTSCHED(loans, rates, n, [time-dimension] [STATUS])

Parameters

loans
A numeric expression that contains the initial amounts of the loans. When loans does
not have a time dimension, or when loans is dimensioned by multiple time
dimensions, the time-dimension argument is required.

Chapter 7
FPMTSCHED

7-141

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a different
time dimension. When rates is dimensioned by a time dimension, you specify the
interest rate in each time period that applies to the loans incurred in that period. The
interest rate for the time period in which a loan is incurred applies throughout the
lifetime of that loan. The rates are expressed as decimal values; for example, a 5
percent rate is expressed as.05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period of
the dimension specified in the time-dimension argument. For example, one payment
each month is made when loans is dimensioned by month.

time-dimension
The name of the dimension along which the interest payments are calculated. When
the time dimension for loans has a type of DAY, WEEK, MONTH, QUARTER, or
YEAR, the time-dimension argument is optional, unless loans has multiple time
dimensions.

STATUS
Specifies that FPMTSCHED should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
payment schedule. By default FPMTSCHED uses the default status list.

Usage Notes

FPMTSCHED and NA Values

When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

FPMTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
FPMTSCHED depends on whether the corresponding interest rate has a value of NA or
a value other than NA. See the Usage Notes of the FINTSCHED function for
information on illustrates how NASKIP affects the results when a loan or rate value is
NA for a given time period.

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997 but both have values other than NA for succeeding years.
When the number of payments is 3, FPMTSCHED returns NA for 1997, 1998, and
1999. For 2000, FPMTSCHED returns the payment due for loans incurred in 1998,
1999, and 2000.

FPMTSCHED Ignores the Status of the Time Dimension

The FPMTSCHED calculation begins with the first time dimension value, regardless of
how the status of that dimension may be limited. For example, suppose loans is
dimensioned by year, and the values of year range from Yr95 to Yr99. The calculation
always begins with Yr95, even when you limit the status of year so that it does not
include Yr95.

However, when loans is not dimensioned by the time dimension, the FPMTSCHED
calculation begins with the first value in the current status of the time dimension. For

Chapter 7
FPMTSCHED

7-142

example, suppose loans is not dimensioned by year, but year is specified as time-
dimension. When the status of year is limited to Yr97 to Yr99, the calculation begins
with Yr97 instead of Yr95.

Examples

Example 7-100 Calculating a Payment Schedule

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

year loans rates
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.00
Yr99 0.00 0.00

For each year, loans contains the initial value of the fixed-rate loan incurred during that
year. For each year, the value of rates is the interest rate that is charged for any loans
incurred in that year; for those loans, this same rate is charged each year until the
loans are paid off.

The following statement specifies that each loan is to be paid off in three payments,
calculates the schedule for paying off the principal and interest on the loans,

REPORT W 20 HEADING 'Payment' FPMTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 36.72
Yr96 111.54
Yr97 225.86
Yr98 189.14
Yr99 114.32

The payment for 1995 is the principal due on the loan of $100 incurred in 1995, plus
interest on the loan at 5 percent. The payment due in 1996 is the sum of the second
payment on the loan incurred in 1995 (principal plus 5 percent interest), plus the first
payment on the loan of $200 incurred in 1996 (principal plus 6 percent interest). The
1997 payment is the sum of the third and final payment on the loan incurred in 1995,
the second of the three payments on the 1996 loan, and the first payment on the loan
of $300 incurred in 1997 (principal plus 7 percent interest). Because the 1995 loan is
paid off in 1997, the payment for 1998 covers the principal and interest for the 1996
and 1997 loans. The payment for 1999 is the final payment of principal and interest for
the 1997 loan.

Example 7-101 Determining Monthly Payments

The following statement determines what the monthly payments would be on
a $125,000 loan with an 8.75 percent annual interest rate,

SHOW FPMTSCHED(125000, .0875/12, 360, month)

Chapter 7
FPMTSCHED

7-143

and produces the following output.

983.38

FROM_TZ
The FROM_TZ function converts a timestamp value and a time zone to a TIMESTAMP_TZ
value.

Return Values

TIMESTAMP_TZ

Syntax

FROM_TZ (timestamp_value , time_zone_value)

Parameters

timestamp_value
A text expression with a TIMESTAMP data type.

time_zone_value
A text expression that returns a string in the format TZH:TZM or in TZR with optional
TZD format.

See Also:

See "Datetime Expressions " for information on specifying timestamp and time
zone values.

Examples

Example 7-102 Creating a TIMESTAMP_TZ Value from a Timestamp Value and
a Time Zone

DEFINE mytimestamp VARIABLE TIMESTAMP
DEFINE mytimezone VARIABLE TEXT
DEFINE mytimestamptz VARIABLE TIMESTAMP_TZ
mytimestamp = '26-MAR-06'
mytimezone = '-04:00'
mytimestamptz = FROM_TZ (mytimestamp mytimezone)
REPORT mytimestamptz

MYTIMESTAMPTZ

 26-MAR-06 12.00.00 AM -04:00

GET
The GET function requests input from the current input stream. The input may be a
single item of data, a dimension value, an analytic workspace object, or simply the
next item in the input stream. The simplest form of the GET function requests a value
of a certain data type.

Chapter 7
FROM_TZ

7-144

GET(datatype)

GET also provides several arguments that verify the input.

Because GET is a function, it must be used in an OLAP DML command. It also may
be used in an assignment statement to store the input in a variable for later use, or in a
LIMIT command to set the status of a dimension. GET can be used in programs to
request information necessary for the completion of the program.

Return Value

The return value depends on the input that you request, as described in the syntax.

Syntax

GET({RAW TEXT|[NEW|VALID|POSLIST] input} - [VERIFY condition-
exp [IFNOT result-exp]])

where input is one of the following:

dim-name
NAME

datatype

Parameters

dim-name
A text expression specifying the name of a dimension. When you specify dim-name,
GET requests a value of this dimension as input and verifies that the input is a valid
value of the dimension.

RAW TEXT
Specifies that GET should return the next item in the input stream exactly as it is
entered. See "GET with RAW TEXT".

NEW dim-name
The NEW keyword with the dim-name argument causes GET to request a new value
for the dimension. When requesting a dimension value with NEW, GET verifies that
the input is not already a value of the dimension.

VALID dim-name
The VALID keyword with the dim-name argument causes GET to request either a new
value or an existing value of the dimension. When requesting a dimension value with
VALID, GET verifies that the input is either an existing dimension value or a valid new
dimension value.

POSLIST dim-name
The POSLIST keyword with the dim-name argument causes GET to request a
dimension value identified by its position in the dimension. When requesting a
dimension value with POSLIST, GET verifies that the input is an existing position
number in the dimension. See "GET with POSLIST".

NAME
Indicates that GET is requesting the name of an object in the current analytic
workspace. When you specify NAME, GET verifies that the input is an object that
exists in the current analytic workspace. The object name must not be enclosed in

Chapter 7
GET

7-145

single quotes, and it must follow the rules for valid object names explained in the main
DEFINE entry. GET automatically converts the object name to uppercase.

NEW NAME
The NEW NAME keywords cause GET to request a name for a new analytic
workspace object. When requesting an analytic workspace object name with NEW,
GET verifies that the input is not already the name of an object in any attached
analytic workspace (including EXPRESS.DB).

VALID NAME
The VALID NAME keywords cause GET to request a name for an analytic workspace
object. When requesting an analytic workspace object name with VALID, GET verifies
that the input follows the rules for valid object names, even when there is no current
analytic workspace and regardless of whether the name exists.

POSLIST NAME
The POSLIST NAME keywords cause GET to request an analytic workspace object
name identified by its position in the NAME dimension. When requesting an analytic
workspace object name with POSLIST, GET verifies that the input is an existing
position number in the NAME dimension.

datatype
Specifies the type of data being requested by GET which can be any of the Oracle
OLAP data types: INTEGER, SHORTINTEGER, DECIMAL, SHORTDECIMAL,
BOOLEAN, ID, TEXT, or DATE. GET accepts a value of NA when requesting any data
type.

VERIFY condition-exp [IFNOT result-exp]
With VERIFY, you can specify a Boolean condition that must be satisfied by the input
to GET. The keyword VALUE may be used in condition-exp to test the input before
any assignment is made. For example, when requesting a value of LSIZE, the
Boolean condition might be as follows.

VALUE NE NA AND VALUE GE 1 AND VALUE LE 80

The IFNOT clause specifies a text expression to provide for occasions when the input
does not satisfy condition-exp. For example, you might jump to an error-handling
routine in your program. When you do not use IFNOT and an error occurs, GET
produces an error message and then resumes waiting for input.

Usage Notes

Current Input Stream

Oracle OLAP obtains statements for processing from the current input stream. You
can override your default input stream with an INFILE statement. INFILE causes
Oracle OLAP to read input from a file. Each line of the infile must contain a single
statement.

Input from INFILE

When the GET function is in an infile, Oracle OLAP considers the next line in the infile
to be the input to GET. You must be sure you supply the expected input for GET in the
line or lines following the statement that invokes the GET function.

For example, suppose your infile contains a line invoking a report program that calls
GET to obtain the number of decimal places to use. The infile then continues with
other statements. When you do not put the desired number of decimal places on the

Chapter 7
GET

7-146

line following the program call, GET examines line after line in the infile looking for the
expected numeric response, rather than executing those lines as statements. See
"Using GET to Obtain Textual Value".

INTEGER Dimension Values

When GET requests a value of an INTEGER dimension, the input should usually be in
the form of a dimension-value position number

Non-INTEGER Dimension Values

Non-integer dimension values must be entered in uppercase and enclosed in single
quotes.

Entering Values for DWMQY Dimensions

Values of DAY, WEEK, MONTH, QUARTER, or YEAR dimensions may be entered in
the format of the dimension's VNF (or in the format of the default VNF when the
dimension does not have a VNF of its own) or as a date. See the VNF command for
an explanation of how to enter values in a VNF format. See "Date-only Input Values"
for an explanation the valid input styles for entering values as dates.

Whether you use the VNF format or specify the value as a date, you must specify only
the date components that are relevant for this type of time dimension. For example, for
a MONTH dimension, you must supply only the month and year.

TEXT or ID Values

TEXT and ID values provided as input to GET retain the case in which they were
entered. You do not have to enclose TEXT and ID values in quotes unless they begin
with single or double quotes, or contain embedded blanks or escape sequences, such
as \dnnn or \n. (Remember to precede any single quote in the value with a backslash
(\') so Oracle OLAP interprets it literally.)

DATE-only Values

When GET requests a DATE value, you can provide the input in any of the valid styles
for dates, as explained in "Date-only Input Values". Oracle OLAP uses the current
value of the DATEORDER option to resolve any ambiguity in the DATE-only value.

Numeric Values

GET rounds a SHORTDECIMAL or DECIMAL value when converting it into an
INTEGER value. When GET requests an INTEGER or SHORTINTEGER value and
the input is a number beyond the range for that data type, GET produces an error
message and resumes waiting for input.

GET with RAW TEXT

When GET requests RAW TEXT input and no input is provided, GET returns a null
string (''). For any type of information other than RAW TEXT, GET waits until input is
provided.

GET with POSLIST

When you use the POSLIST keyword with the GET function, Oracle OLAP requires
that you enter a position value to identify the dimension value rather than the
dimension name. The syntax for the POSLIST keyword depends on whether you are
using the GET function with either an assignment statement created using an
assignment statement or the LIMIT command. When you want to set a variable equal
to the result of a GET function, use the following syntax.

Chapter 7
GET

7-147

expression = GET(POSLIST dimension)

When you want to limit a dimension to a value returned by a GET function, you specify
the POSLIST keyword twice, as shown in the following syntax.

LIMIT dimension TO POSLIST GET(POSLIST dimension)

Examples

Example 7-103 Using GET to Obtain Textual Value

Suppose you have written an Oracle OLAP program called myconn. This program
contains a call to GET that requests a textual value.

DEFINE myconn PROGRAM
PROGRAM
...
MYTEXT = GET(TEXT)
...
END

GREATEST
The GREATEST function returns the largest expression in a list of expressions. All
expressions after the first are implicitly converted to the data type of the first
expression before the comparison.

To retrieve the smallest expression in a list of expressions, use LEAST.

Return Value

The data type of the first expression.

Syntax

GREATEST (expr [, expr]...)

Parameters

expr
An expression.

Examples

Example 7-104 Finding the Text Expression that is Last Alphabetically

The following statement selects the string that is last in alphabetic sequence.

SHOW GREATEST ('Harry', 'Harriot', 'Harold')
Harry

Example 7-105 Finding the Largest Numerical Expression

The following statement selects the number with the greatest value.

SHOW GREATEST (5, 3, 18)
18

Chapter 7
GREATEST

7-148

GROUPINGID function
The GROUPINGID function retrieves a grouping id for the value of a hierarchical
dimension using a grouping relation previously created by the GROUPINGID
command.

Return Values

NUMBER

Syntax

GROUPINGID (gidrel...)

Parameters

gidrel
A grouping id relation for the hierarchical dimension that you previously created using
the GROUPINGID command.

Examples

Example 7-106 Retrieving the Value of a Single GroupingID

Assume that you have use the GROUPINGID command to define grouping ids for the
two hierarchies in the geog dimension as described in Example 9-145. Now you can
use the GROUPINGID function to retrieve the grouping id of a value in the geog
dimension.

" For the Political Geog hierarchy
LIMIT geog TO 'Hartford'
LIMIT geog_hierlist TO 'Political_Geog'
SHOW GROUPINGID(geog_gidrel)
0.00
SHOW OBJ(PROPERTY '$GID_DEPTH' 'geog_gidrel')
4
LIMIT geog TO ALL
LIMIT geog TO 'Canada'
SHOW GROUPINGID(geog_gidrel)
3.00
SHOW OBJ(PROPERTY '$GID_DEPTH' 'geog_gidrel')
4

" For the Sales Geog hierarchy
LIMIT geog TO 'Hartford'
LIMIT geog_hierlist TO 'Sales_Geog'
SHOW GROUPINGID(geog_gidrel)
0.00
SHOW OBJ(PROPERTY '$GID_DEPTH' 'geog_gidrel')
4
LIMIT geog TO ALL
LIMIT geog TO 'West'
SHOW GROUPINGID(geog_gidrel)
3.00
SHOW OBJ(PROPERTY '$GID_DEPTH' 'geog_gidrel')
4

Chapter 7
GROUPINGID function

7-149

GROWRATE
The GROWRATE function calculates the growth rate of a time-series expression,
based on the first and last values of the series.

GROWRATE bases its calculation on the values of expression that correspond to the
first and last values in the status of time-dimension. The intervening values of
expression are ignored. GROWRATE uses the following calculation.

GROWRATE = ((last/first)**(1/(n-1))-1

In the exponent, n is the number of values in the status of the time dimension.

Return Value

DECIMAL

The result returned by GROWRATE is dimensioned by all the dimensions of
expression except the dimension specified by time-dimension.

Syntax

GROWRATE(expression [time-dimension])

Parameters

expression
A numeric expression for which you want to calculate the growth rate. The expression
must be dimensioned by a time dimension.The following rules apply to the first and
last values of expression:

• The first value of expression cannot be zero. (This is to avoid a division by zero in
the GROWRATE calculation.)

• The first and last values of expression must both be positive or both negative. (Or
the last value of expression can be zero, regardless of whether the first value is
positive or negative.)

• Neither the first value nor the last value of expression can be NA.

time-dimension
The name of the time dimension by which expression is dimensioned. When the time
dimension has a type of DAY, WEEK, MONTH, QUARTER, or YEAR, the time-
dimension argument is optional, unless loans has multiple time dimensions.

Examples

Example 7-107 Determining Growth Rate

The following statements limit the dimensions of the actual variable and produce a
report.

LIMIT month TO 'Dec95' TO 'Mar96'
LIMIT line TO 'net.income'
REPORT DOWN division ACROSS month: actual

These statements produce the following report.

Chapter 7
GROWRATE

7-150

LINE: NET.INCOME
 ------------------ACTUAL-------------------
 -------------------MONTH-------------------
DIVISION Dec95 Jan96 Feb96 Mar96
-------------- ---------- ---------- ---------- ----------
Camping 4,378.09 19,915.13 22,510.38 34,731.63
Sporting 6,297.02 13,180.29 17,429.17 18,819.14
Clothing 87,471.74 107,257.85 133,566.01 127,132.55

The statement REPORT W 20 GROWRATE(actual)produces a report that shows the growth
rate of the actual net income in the demo workspace between December 1995 and
March 1996.

 --GROWRATE(ACTUAL)--
 --------LINE--------
DIVISION NET.INCOME
-------------- --------------------
Camping 0.99
Sporting 0.44
Clothing 0.13

HEXTORAW
The HEXTORAW function converts a character string of hexadecimal digits to a raw
value.

See Also:

"RAW Data Type" and the RAWTOHEX function.

Returns

RAW

Syntax

HEXTORAW(text-exp)

Parameters

text-exp
A text expression containing hexadecimal digits.

HIERCHECK
The HIERCHECK function checks the hierarchy in the specified relation or all of the
relations of the specified aggmap to see if there is any circularity. A hierarchical
dimension's parent relation specifies the parent for each of the dimension's values.
(Circularity occurs when a dimension value has inadvertently been specified as its own
ancestor or descendant in the parent relation.)

You can also specify that HIERCHEK check the hierarchy for other conditions.

Chapter 7
HEXTORAW

7-151

See Also:

HIERSHAPE function

Return Value

BOOLEAN

Syntax

As Command

HIERCHECK parent-relation [STATUS|NOSTATUS|valueset-name] [MULTIPATH]
[CONSISTENT]- [BALANCED levelrelation-name]

or

HIERCHECK aggmap-name [MULTIPATH] [CONSISTENT]levelrelation-name]

Parameters

parent-relation
A text expression indicating the name of the parent relation to be checked.

aggmap-name
A text expression indicating the name of the aggmap. HIERCHECK checks all of the
relations in the aggmap.

STATUS
Specifies that HIERCHECK uses the current status of the relation dimension.

valueset
Specifies the values of the relation dimension that HIERCHECK considers in status.

NOSTATUS
Specifies that HIERCHECK uses the default status of the relation dimension.

MULTIPATH
Specifies that HIERCHECK checks whether there are multiple paths from any child to
its parent.

CONSISTENT
Specifies that HIERCHECK checks whether the hierarchy is consistent. If the
hierarchy is consistent, that means all nodes in the different hierarchies should have
the same children.

BALANCED levelrel-name
Using the level relation identified by levelrel-name, specifies that HIERCHECK checks
to see if all of the following are true:

• All of the elements of a hierarchy which have an NA level are either roots with no
leaves or leaves.

• All of the elements of a hierarchy at the same (non NA) level have the same depth
from the root (roots) of the hierarchy.

Chapter 7
HIERCHECK

7-152

• Elements of a hierarchy for different levels (non NA) have a different depth.

Usage Notes

Why Use HIERCHECK

It is a good strategy to use HIERCHECK at the time you build your hierarchies as a
way to verify that they are valid. In other words, do not attempt to roll up a variable's
data unless you have verified that its dimensions' hierarchies are structured correctly.
For example, the AGGREGATE command uses HIERCHECK to prevent infinite
looping once the statement has been executed. Check a parent relation for loops after
you set up the levels of a hierarchical dimension, before you load data into any
variable that is dimensioned by the hierarchical dimension, or before you use the
AGGREGATE command for the first time with a variable. Although it is possible to roll
up a variable without first having checked the parent relations of all of its hierarchical
dimensions with HIERCHECK, make it a practice to use HIERCHECK first.

Status When Using HIERCHECK with an Aggmap

When there is any valueset inside a relation in aggmap, HIERCHECK uses this
valueset to determine the status of the dimension of the relation. In all other cases,
HIERCHECK uses the default status of the relation dimension.

For all dimensions other than relation dimensions, HIERCHECK uses the current
status of the dimension.

Error Messages Triggered by HIERCHECK

When you use HIERCHECK, it signals an error when it finds a loop in the parent
relation and stops execution (that is, HIERCHECK always stops in the first error
message). The error message identifies the dimension values that are involved in the
loop, the name of the hierarchy (referred to as the "extra dimension values") in which
the loop occurs (when the parent relation has one or more named hierarchies), and
the name of the parent relation in which the loop was found. When a parent relation
has no loops, no message is displayed. See Checking for Loops.

Examples

Example 7-108 Checking for Loops

This example shows how to create a parent relation and check it for loops. You would
begin by defining a dimension and adding values to it.

DEFINE geography DIMENSION ID
MAINTAIN geography ADD 'U.S.'
MAINTAIN geography ADD 'East' 'Central' 'West'
MAINTAIN geography ADD 'Boston' 'Atlanta' 'Chicago' 'Dallas' 'Denver' 'Seattle'

Next, relate the dimension to itself. The following statement defines a parent relation
called GEOG.GEOG, which relates the GEOGRAPHY dimension to itself.

define geog.geog RELATION geography <geography>

You would then specify the hierarchy of the dimension values. In this example, there
are three levels in the hierarchy: country, regions, and cities. When you specify the
hierarchy, you assign parent dimension values (such as East) to child dimension
values (such as Boston) for every level except the highest level. To do this, you store
values in the relation. First, group the children with a LIMIT command, then assign a
parent to those children.

Chapter 7
HIERCHECK

7-153

LIMIT geography TO 'East' 'Central' 'West'
geog.geog = 'U.S.'
LIMIT geography TO 'Boston' 'Atlanta'
geog.geog = 'East'
LIMIT geography TO 'Chicago' 'Dallas'
geog.geog = 'Central'
LIMIT geography TO 'Denver' 'Seattle'
geog.geog = 'West'

Now you can check for loops in the parent relation geog.geog, as shown by the
following statement.

HIERCHECK geog.geog

In this case, HIERCHECK produces no message output, which means there are no
loops in geog.geog. It sets HIERCHK.LOOPFND to NO, and leaves
HIERCHK.LOOPVALS and HIERCHK.XTRADIMS set to NA.

Now suppose the following mistake had been made in the storing of values in the
relation.

LIMIT geography TO 'East' 'Central' 'West'
geog.geog = 'East'

The preceding statements inadvertently make East its own parent, which would cause
an aggregation to loop infinitely. When you now check the geog.geog relation for loops,
the following statement produces the following error message.

HIERCHECK geog.geog
ERROR: HIERCHECK has detected one or more loops in the hierarchy represented by GEOG.
GEOG. The values involved are 'East'.

HIERHEIGHT
The HIERHEIGHT function returns the value of a node at a specified level for the first
value in the current status list of a hierarchical dimension.

To populate a previously-defined relation with the values of a specified hierarchical
dimension by level, use the HIERHEIGHT command.

Return Value

The data type returned by HIERHEIGHT is the data type of the dimension value of
parentrel.

Syntax

HIERHEIGHT(fparentrel [,] level)

Parameters

parentrel
A child-parent self-relation for the hierarchical dimension. See "Parentrel Relation" for
more information.

level
An INTEGER value that represents a level of the hierarchical dimension. The value 1
(one) represents the lowest-level of the hierarchical dimension.

Chapter 7
HIERHEIGHT

7-154

Usage Notes

Limiting the Hierarchical Dimension

The HIERHEIGHT function always returns a single value of the hierarchical dimension.
When you do not limit the hierarchical dimension to a single value before calling the
HIERHEIGHT function, the HIERHEIGHT function executes against the first value in
the current status list of the dimension. Typically, you either limit the hierarchical
dimension to a single value before you call the HIERHEIGHT function or you use the
HIERHEIGHT function after a FOR statement to execute the HIERHEIGHT function for
each value of the hierarchical dimension.

Examples

Example 7-109 Using HIERHEIGHT as a Simple Command

Assume that your analytic workspace has a hierarchical dimension named geography
and a relation named g0.stanparent that is a self-relation of the geography values for
the Standard hierarchy of geography.

DEFINE g0.newparent RELATION geography <geography>
LD Parent-child when hierarchy of geography is 1

Issuing a statement like REPORT g0.stanparent displays the values in g0.stanparent.

GEOGRAPHY G0.STANPARENT
---------------- ----------------
World NA
Americas World
Canada Americas
Toronto Canada
Montreal Canada
Ottawa Canada
... ...
USA Americas
Boston USA
LosAngeles USA
... ...
Mexico Americas
Mexicocity Mexico
Argentina Americas
BuenosAires Argentina
Brazil Americas
Saopaulo Brazil
Colombia Americas
Bogota Colombia
Australia World
East.Aust Australia
Sydney East.Aust
Madrid Spain
Budapest Hungary
Athens Greece
Vienna Austria
Melbourne East.Aust
Central.aust Australia
... ...
Perth West.Aust
Bombay India
Malaysia Asia

Chapter 7
HIERHEIGHT

7-155

Europe World
France Europe
Caen France
Paris France

Now you limit geography to the value Americas by issuing the following OLAP DML
statement.

LIMIT geography TO 'Americas'

When you use the HIERHEIGHT function to find the node for Americas for the lowest-
level of the hierarchy (level 1) by issuing the following OLAP DML statement.

REPORT HIERHEIGHT(g0.stanparent 1)

The following report is produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

When you use the HIERHEIGHT function to find the node for Americas for the highest-
level of the hierarchy (level 4) by issuing the following OLAP DML statement.

REPORT HIERHEIGHT(g0.stanparent 4)

The following report is produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

When you use the HIERHEIGHT function to find the node for Americas for the levels 2
and 3 of the hierarchy by issuing the following OLAP DML statements.

REPORT HIERHEIGHT(g0.stanparent 2)
REPORT HIERHEIGHT(g0.stanparent 3)

The following reports are produced.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Americas

Notice that the output for each level corresponds in between the values that are
created for a relation created using HIERHEIGHT command. For example, assume
you created a relation named geog.stanhierrel for the standard hierarchy for geography
and limit geography to 'Americas. A report of geog.stanhierrel would show the same
geography values for each level.

LIMIT geography TO 'AMERICAS'
REPORT DOWN geography geog.stanhierrel

Chapter 7
HIERHEIGHT

7-156

 ---------------------------GEOG.STANHIERREL--------------------
 ----------------------------GEOG.LVLDIM------------------------
GEOGRAPHY 1 2 3 4
---------------- ---------------- ---------------- ---------------- ------------
Americas NA NA Americas World

Example 7-110 Using HIERHEIGHT After a FOR Statement

Assume that your analytic workspace has the following program named findnodes that
finds the nodes of all of the geography values in status.

DEFINE FINDNODES PROGRAM
PROGRAM
VARIABLE level INTEGER
FOR geography
DO
counter = 1
WHILE counter LE statlen(geog.lvldim)
DO
REPORT HIERHEIGHT(g0.stanparent level)
level = level + 1
DOEND
DOEND
END

Assume also that you limit geography to Americas and Asia and call the HIERHEIGHT
function for each level of the Standard hierarchy by issuing the following OLAP
statements.

LIMIT geography TO 'Americas', 'Asia'
CALL findnodes

The output of the findnodes program for the geography values Americas and Asia is
follows. The program first reports on the value of each level for Americas is provided.
Then it reports on the value of each level for Asia.

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Americas

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

Chapter 7
HIERHEIGHT

7-157

HIERHEIGHT(G0.STANPARENT
COUNTER)

NA

HIERHEIGHT(G0.STANPARENT
COUNTER)

Asia

HIERHEIGHT(G0.STANPARENT
COUNTER)

World

Notice that the output for each level corresponds in between the values that are
created for a relation created using the HIERHEIGHT command

LIMIT geography TO 'Americas' 'Asia'
REPORT DOWN geography geog.stanhierrel

 ---------------------------GEOG.STANHIERREL--------------------
 ----------------------------GEOG.LVLDIM------------------------
GEOGRAPHY 1 2 3 4
---------------- ---------------- ---------------- ---------------- ------------
Americas NA NA Americas World
Asia NA NA Asia World

HIERSHAPE
The HIERSHAPE function identifies whether a hierarchical dimension has a specified
shape.

Return Value

BOOLEAN

Syntax

HIERSHAPE(parent-relation[(qdr)] {LEVEL | RAGGED | SKIPLEVEL | REGULAR}
USING levelrel -

[INHIERARCHY inhvalueset] LEVELORDER levelvalueset)

Parameters

parent-relation
A text expression that is the name of the child-parent self-relation for the hierarchical
dimension. (See "Parentrel Relation".)

qdr
A text expression that is the name of a QDR that qualifies parent-relation.

LEVEL
This option determines whether all of the members are part of the same level as
defined by the levelrel.

Chapter 7
HIERSHAPE

7-158

RAGGED
A hierarchy where leaf-nodes are located at different levels within the hierarchy.

SKIPLEVEL
A hierarchy where one or more leaf nodes link to a higher-level parent above its next
most obvious level.

REGULAR
A traditional level-based hierarchy where each child has a parent at the next level up
in the hierarchy.

levelrel
A text expression that is the name of the level relation for the hierarchical dimension.
(See "Levelrel Relation".)

inhvalueset
A text expression that is the name of the inhier valueset for the hierarchical
dimension. (See "Inhier Valueset or Variable".)

levelvalueset
A text expression that is the name of the hierlevels valueset for the hierarchical
dimension. (See "Hierlevels Valueset".)

Usage Notes

Star-consistent Hierarchies

A dimension is "star consistent" if all of the level hierarchies of the dimension can be
represented as a single table with one column per dimension level and one row per
leaf member. A dimension is "star inconsistent" if it cannot be represented in this way.

For an example of a dimension that is not "star consistent", suppose that a time
dimension has three levels, YEAR, QUARTER, and MONTH, and that it has two
hierarchies, FISCAL and CALENDAR. Both hierarchies have the levels, in descending
order, YEAR, QUARTER, and MONTH. Suppose that the hierarchies have the
following members.

CALENDAR hierarchy:

CY2012
 CYQ1_2012
 Jan_2012
 Feb_2012
 Mar_2012
 CYQ2_2012
 Apr_2012
 May_2012
 Jun_2012
 ...

FISCAL hierarchy:

FY2012
 FYQ1_2012
 Apr_2012
 May_2012
 Jun_2012
 FYQ2_2012
 Jul_2012
 Aug_2012

Chapter 7
HIERSHAPE

7-159

 Sep_2012
 ...

This is a valid and consistent dimension, but it is not star consistent because you
cannot represent it using only three columns in a table. For example, the row in which
MONTH is "Apr_2012" would need to have two different values for QUARTER,
"CYQ2_2012" and "FYQ1_2012", which is not possible.

To make this dimension star consistent, you would need to replace the MONTH level
with two distinct levels, FISCAL_MONTH and CALENDAR_MONTH, and similarly
replace the year YEAR level with FISCAL_YEAR and CALENDAR_YEAR.

INFO
The INFO function obtains information that has been produced by a FORECAST,
PARSE, or REGRESS statement or that has been produced for a model in your
analytic workspace.

Because the syntax of the INFO function is different depending on the type of
information being obtained, four separate entries are provided:

• INFO (FORECAST)

• INFO (MODEL)

• INFO (PARSE)

• INFO (REGRESS)

INFO (FORECAST)
The INFO (FORECAST) function obtains information produced by a FORECAST
statement and stored internally by Oracle OLAP. Through the use of keywords, INFO
lets you extract specific pieces of information about the forecast you have calculated.

Note:

Before using INFO, familiarize yourself with FORECAST.REPORT that is a
standard report of its results, which may give you all the information you need.
INFO is useful primarily for creating customized reports or for performing
further analysis on the results.

When you try to extract information without having calculated a forecast, INFO
produces an error. You can use the keyword AVAILABLE to determine whether any
results are currently available.

Return Value

The return value depends on the keyword you use, as described in the tables in this
entry. INFO returns NA when you use an index that is out of range or for any choice
that does not apply to the forecasting method last used. For example, when your
forecast formula has two coefficients and you request the twelfth one, INFO returns NA.

Chapter 7
INFO

7-160

Syntax

INFO(FORECAST choice [index])

Parameters

FORECAST
Indicates that you want to obtain information produced by a FORECAST statement.

choice
The specific information you want. The choices available for FORECAST are listed in
Choices for All Methods, Table 7-13, and Choices for WINTERS Forecasts. Choices
marked as indexed require the index argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, a trend equation might have several
coefficients. You would use index to specify which coefficient you want information
about. When you omit index for a choice that requires it, an error occurs.

Table 7-12 Choices for All Methods

Keyword Type Indexed? Meaning

AVAILABLE BOOL No Is there a computed forecast for which to obtain
information?

DEPENDENT TEXT No The variable or expression being forecast.

METHOD TEXT No The forecast method.

MAPE DEC No The mean absolute percent error (a measure of
goodness of fit).

LENGTH INT No The number of forecast periods calculated.

TIME TEXT No The dimension along which forecasting is
performed.

FCNAME TEXT No The name of the variable that contains the fitted and
forecasted values (NA when no forecasts were
saved).

Table 7-13 Choices for TREND and EXPONENTIAL Forecasts

Keyword Type Indexed? Meaning

FORMULA TEXT No The text of the forecasting equation.

NUMCOEFS INT No The number of coefficients.

COEFFICIENT DEC Yes The specified coefficient in the forecasting equation;
index specifies which one you want.

Table 7-14 Choices for WINTERS Forecasts

Keyword Type Indexed? Meaning

PERIODICITY INT No The number of periods in a seasonal cycle.

Chapter 7
INFO

7-161

Table 7-14 (Cont.) Choices for WINTERS Forecasts

Keyword Type Indexed? Meaning

ALPHA DEC No The smoothing constant for the smoothed data
series.

BETA DEC No The smoothing constant for the seasonal index
series.

GAMMA DEC No The smoothing constant for the trend series.

STSMOOTHED DEC No The starting value of the smoothed data series.

STSEASONAL DEC Yes The starting values for the seasonal index series;
index specifies which one you want.

STTREND DEC No The starting value for the trend series.

FCSMOOTHED TEXT No The variable that holds the smoothed data series.

FCSEASONAL TEXT No The variable that holds the seasonal index series.

FCTREND TEXT No The variable that holds the trend series.

Examples

Example 7-111 Getting Forecast Information

In this example, suppose you forecasted sales.

The following statements limit the dimensions of the sales variable, then obtain the
formula for your forecast.

LIMIT product TO 'Sportswear'
LIMIT district TO 'Chicago'
LIMIT month TO 'Jan95' TO 'Dec96'
FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst time -
month sales
SHOW INFO(FORECAST FORMULA)

These statements produce the following output.

87718.0009541865 * (1.005533834579 ** MONTH)

The next statement obtains the mean absolute percent error for your forecast.

SHOW INFO(FORECAST MAPE)

This statement produces the following output.

.17

INFO (MODEL)
The INFO (MODEL) function obtains information that is produced for the models in
your analytic workspace and stored internally by Oracle OLAP. Through the use of
keywords, INFO lets you extract specific pieces of information about the structure of a
compiled model or the status of a model that you have run in your current session.

Chapter 7
INFO

7-162

Note:

Before using INFO, familiarize yourself with the reports created by
MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT that might give
you all the information you need.

Use INFO with the keyword AVAILABLE to determine whether any model results are
currently available. When you try to extract any other information without having
considered or defined a model in your current session, INFO produces an error.

Return Value

The return value depends on the keyword you use, as described in the tables in this
entry. INFO returns NA when you use an index that is out of range or when you request
information that is not relevant. For example, if the model contains 5 statements and
you request information about statement 6, INFO returns NA; or if you specify the
DIMENSION REFERENCE choice when the assignment target is actually a variable,
INFO returns NA.

Syntax

INFO(MODEL choice [index1 [index2 [index3]]])

where index is an argument specifies the result you want for a choice that can have
several different results. Depending on the keyword choice, you can supply one or
more of the following index arguments:

block-num

dimension-num

element-num

model-num

qualifier-num

source-num

stmnt-num

Parameters

MODEL
Indicates that you want to obtain information about a model in your analytic
workspace. INFO returns information about the model that you have most recently
defined or considered in the current session (see the DEFINE MODEL and
CONSIDER commands).

choice
A keyword that specifies the information you want. The choices available for models
are listed in the following tables that represent different informational categories:

• Table 7-15.

• Table 7-16.

Chapter 7
INFO

7-163

• Table 7-17. These choices provide information about statements that are
equations. Equations have the form assignment target = expression. The
expression can refer to one or more data sources. Assignment targets and data
sources can be either variables or dimension values, and they can have qualifiers
that affect their dimensionality.

• Table 7-18. All of these choices (except XEQSTATUS) are relevant only after
running a model with a simultaneous block. When the current model has not been
compiled, Oracle OLAP returns an error when you use any choice except
AVAILABLE or NAME.

Each table consists of four columns that provide the following information: keyword,
data type of returned value; index argument associated with the keyword; and
meaning.

Keywords Data
Type

Index Arguments Meaning

AVAILABLE BOOL (No arguments) Is there a model for which information is available?

NAME TEXT [MODEL model-
num]

Without model-num (or with model-num equal to 0), the
name of the current model. With model-num greater than 0,
the name of the included model that is the specified model-
num within the current model.

COUNT
STATEMENTS

INT (No arguments) The number of statements in the current model. The count
includes comments, equations, and DIMENSION and
INCLUDE commands (if any), it but does not include the
statements in an included model.

STATEMENT TEXT stmnt-num The text of statement stmnt-num.

SIMULTANEOUS BOOL (No arguments) Does the current model contain a simultaneous block?

Keyword(s) Data Type Index Argument(s) Meaning

COUNT ELEMENTS INT [BLOCK block-num] Without block-num, the number of blocks in the current
model. With block-num, the total number of statements
and nested blocks within block block-num in the current
model.
When you request further information about a particular
element (for example, with the TYPE ELEMENT
choice), you always specify the block number to which
the element belongs and the number of the element
within that block.

TYPE ELEMENT TEXT element-num BLOCK
block-num

Returns BLOCK or STATEMENT, depending on
whether element element-num of block block-num is a
nested block or a statement.

NUMBER BLOCK INT element-num BLOCK
block-num

The block number of the nested block that is element
element-num of block block-num.

TYPE BLOCK TEXT block-num Returns SIMPLE, STEP-FORWARD, STEP-
BACKWARD, or SIMULTANEOUS, depending on the
execution type of block block-num.

COUNT DIMS INT [BLOCK block-num] Without block-num, the number of model dimensions of
the current model. With block-num, the number of step-
forward, step-backward, or simultaneous dimensions of
block block-num within the current model.

Chapter 7
INFO

7-164

Keyword(s) Data Type Index Argument(s) Meaning

DIMENSION TEXT dimension-num
[BLOCK block-num]

Without block-num, the name of model dimension
dimension-num of the current model. With block-num,
the name of the specified step-forward, step-backward,
or simultaneous dimension of block block-num.

NUMBER
STATEMENT

INT element-num BLOCK
block-num

The statement number of the statement that is element
element-num of block block-num.
The statement number refers to the position of the
statement within its own model. To request further
information about the statement (for example, with the
HIDDEN choice), its model must be the model that you
are currently considering.

HIDDEN BOOL stmnt-num Has statement stmnt-num been masked by a
subsequent statement?

NUMBER MODEL INT element-num BLOCK
block-num

The number of the included model from which the
statement that is element element-num of block block-
num is taken.

Keyword(s) Data Type Index Argument Meaning

COUNT SOURCES INT STATEMENT stmnt-num The number of data sources in statement
stmnt-num within the current model.

TYPE REFERENCE TEXT STATEMENT stmnt-num
[SOURCE source-num]

Without source-num, the object type of the
assignment target of statement stmnt-num.
With source-num, the object type of data
source source-num in statement stmnt-
num. The object type is VARIABLE when
the reference is to a variable. The type is
DIMENSION when the reference is to the
value of a dimension.

VARIABLE REFERENCE TEXT STATEMENT stmnt-num
[SOURCE source-num]

Without source-num, the name of the
variable that is the assignment target of
statement stmnt-num. With source-num, the
name of the variable that is data source
source-num in statement stmnt-num.

VALUE REFERENCE TEXT STATEMENT stmnt-num
[SOURCE source-num]

Without source-num, the dimension value
that is the assignment target of statement
stmnt-num. With source-num, the
dimension value that is data source source-
num in statement stmnt-num.

DIMENSION
REFERENCE

TEXT STATEMENT stmnt-num
[SOURCE source-num]

Without source-num, the model dimension
of the target dimension value in statement
stmnt-num. With source-num, the model
dimension of source dimension value
source-num in statement stmnt-num.

COUNT QUALIFIERS INT STATEMENT stmnt-num
[SOURCE source-num]

Without source-num, the number of
qualifiers of the assignment target in
statement stmnt-num. With source-num, the
number of qualifiers of data source source-
num in statement stmnt-num.

Chapter 7
INFO

7-165

Keyword(s) Data Type Index Argument Meaning

TYPE QUALIFIER TEXT qualifier-num STATEMENT
stmnt-num [SOURCE
source-num]

Without source-num, the qualifier type of
qualifier qualifier-num of the target of
statement stmnt-num. With source-num, the
qualifier type of qualifier qualifier-num of
data source source-num in statement
stmnt-num. The qualifier type can indicate
dimensional dependence: LAG (previous
dimension values only), LEAD (later values
only), BOTH (both previous and later
values), and VARIABLE (either previous or
later values, depending on the value of a
variable when the model is run). The
qualifier type can also be QDR (qualified
data reference).

DIMENSION QUALIFIER TEXT qualifier-num STATEMENT
stmnt-num [SOURCE
source-num]

qualifier-num STATEMENT stmnt-num
[SOURCE source-num]
Without source-num, the dimension of
qualifier qualifier-num of the assignment
target in statement stmnt-num. With source-
num, the dimension of qualifier qualifier-
num of data source source-num in
statement stmnt-num.

Keyword(s) Data Type Index Argument Meaning

XEQSTATUS TEXT [BLOCK block-num] Without block-num, the execution status of the model
as a whole; when the model has not been run, the
status is NOT EXECUTED. With block-num, the
execution status of block block-num; when the model
has not been run, an error is returned. When the
model has been run, the status for the model as a
whole or for a block can be SOLVED, DIVERGED, or
FAILED TO CONVERGE. The status of an outer-level
block can be EXECUTION INCOMPLETE when a
nested block within it diverged or failed to converge.

COUNT
ITERATIONS

INT BLOCK block-num The number of iterations that were performed for
block block-num before it was solved or it diverged or
failed to converge.

DAMP DEC (No arguments) The value of the MODDAMP option when the model
was run. (Relevant only when the solution method is
GAUSS.)

DIVERGSTMT INT BLOCK block-num The element number of the statement that diverged
during the calculations for block block-num.

GAMMA INT (No arguments) The value of the MODGAMMA option when the model
was run.

MAXITERS INT (No arguments) The value of the MODMAXITERS option when the
model was run.

OVERFLOW INT (No arguments) The value of the MODOVERFLOW option when the
model was run.

Chapter 7
INFO

7-166

Keyword(s) Data Type Index Argument Meaning

SIMULTYPE TEXT (No arguments) The value of the MODSIMULTYPE option when the
model was run: AITKENS or GAUSS.

TOLERANCE INT (No arguments) The value of the MODTOLERANCE option when the
model was run.

block-num
An INTEGER expression that specifies the block for which you want information.
Block-num corresponds to the block numbers that are identified in the report produced
by the MODEL.COMPRPT program.

dimension-num
An INTEGER expression that specifies the model dimension or block dimension for
which you want information. For the model as a whole, the first dimension listed for
the model is dimension-num 1, and so on. For example, assume that the
MODEL.COMPRPT specifies the model dimensions as <line month>. In this case,
line is dimension-num 1 and month is dimension-num 2. For a simultaneous block in
the current model, the first dimension of the block is dimension-num 1, and so on. A
step-forward or step-backward block has a single dimension, so the dimension of the
block is always dimension-num 1. To see a list of the dimensions for the model as a
whole and for each block of the model, you can run the MODEL.COMPRPT program.

element-num
An INTEGER expression that specifies the element for which you want information.
When you request information about an element, you always specify the block
number to which the element belongs. An element is either a statement in the
specified block, or it is a nested block within the specified block. The element
numbers correspond to the order of the statements and blocks in the compiled model.
You can run the MODEL.COMPRPT program to see the list of elements in the
compiled model.
For example, suppose the current model has the following compiled structure.

block 1
statement a
 block 2
 statement b
 statement c
 END block 2
statement d
END block 1

When you request information about block 1 in the preceding model, statement a is
element-num 1; block 2 is element-num 2; and statement d is element-num 3. When
you request information about block 2, statement b is element-num 1 and statement c is
element-num 2.

model-num
For a hierarchy of included models, an INTEGER expression that specifies the model
for which you want information. The model you are currently considering is model-
num 0 (zero), the model it includes is model-num 1, and so on. The root model has the
highest model number in the hierarchy.

qualifier-num
An INTEGER expression that specifies the qualifier for which you want information.
Qualifiers change the dimensionality of a variable or dimension value reference. The

Chapter 7
INFO

7-167

reference can be qualified by a function, such as LAG, LEAD, or TOTAL or by a
qualified data reference (QDR). To see the qualifiers for a statement, you can run the
MODEL.DEPRT program for the model that contains the statement.
For each equation in the model, the MODEL.DEPRT report lists the assignment target
and its qualifiers on one line, followed by the data sources. Each data source is listed
on a separate line, together with its qualifiers. The MODEL.DEPRTreport also
specifies the type of each qualifier: LAG, LEAD, BOTH, VARIABLE, or QDR (see the
TYPE QUALIFIER choice in the third group of INFO keyword choices).
For the target and each source, qualifier-num corresponds to the order in which the
qualifiers are listed in the MODEL.DEPRT report.

source-num
An INTEGER expression that specifies the data source for which you want
information. In a calculation, each reference to a variable or a dimension value is
counted as a source of data for the assignment target. A constant value is not
counted as a source.
To see the data sources in a statement, you can run the MODEL.DEPRT program for
the model that contains the statement. For each equation in the model, the
MODEL.DEPRT report lists the assignment target on one line, followed by its data
sources. Each data source is listed on a separate line.

stmnt-num
An INTEGER expression that specifies the statement for which you want information.
Stmnt-num always refers to a statement from the model you are currently considering.
It does not refer to a statement taken from an included model.
To see the statement numbers in the current model, you can run the
MODEL.COMPRPT program. To the left of each statement, the report lists the model
from which the statement is taken and the statement number within that model.

Examples

Example 7-112 Getting Qualifier Information

Assume that the following statement is statement 3 of a model called income.plan.

budget(line revenue) = LAG(actual(line revenue), 1, month) -
 + plan.factor

You can run the MODEL.DEPRPT program to see the qualifiers of the target and sources in
this statement.

MODEL.DEPRPT income.plan

This statement produces the following output.

MODEL INCOME.PLAN
...
3 BUDGET(QDR <LINE>):
 ACTUAL(LAG <MONTH>)(QDR <LINE>)
 PLAN.FACTOR
...

This report shows that the assignment target, budget, has two data sources, actual and
plan.factor.

Example 7-113 Checking Qualifier Information

The following statements make INCOME.PLAN the current model and check the
number and type of the qualifiers of the assignment target of statement 3.

Chapter 7
INFO

7-168

CONSIDER income.plan
SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3)

These statements produce the following output.

1

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 1 STATEMENT 3)

produces the following output.

QDR

Example 7-114 Checking Different Data Sources

The following statements check the number and type of the qualifiers of the two data
sources in statement 3.

The OLAP DML statement

SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3 SOURCE 1)

produces the following output.

2

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 1 STATEMENT 3 SOURCE 1)

produces the following output.

LAG

The OLAP DML statement

SHOW INFO(MODEL TYPE QUALIFIER 2 STATEMENT 3 SOURCE 1)

produces the following output.

QDR

The OLAP DML statement

SHOW INFO(MODEL COUNT QUALIFIERS STATEMENT 3 SOURCE 2)

produces the following output.

0

INFO (PARSE)
The INFO (PARSE) function obtains information produced by a PARSE statement and
stored internally by Oracle OLAP. Through the use of keywords, INFO lets you extract
specific pieces of information about the expression that you have parsed.

Return Value

The return value depends on the keyword you use, as described in INFO PARSE
Keywords. When you try to extract unavailable information or use an index that is out

Chapter 7
INFO

7-169

of range, INFO returns NA. For example, if you parse a phrase that contains four
expressions and then ask for the twelfth FORMULA, INFO returns NA.

Syntax

INFO(PARSE choice [index])

Parameters

PARSE
Indicates that you want to obtain information produced by a PARSE statement.

choice
The specific information you want. The choices available for PARSE are listed in
INFO PARSE Keywords. Choices marked as indexed can take the optional index
argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, when you parse text that contains three
expressions, each expression has its own formula and data type. You would use
index to specify which expression you are interested in.
When you omit index, INFO returns all the information as a multiline value.

Keyword Type Indexe
d?

Meaning

PARSEABLE BOOL No Was Oracle OLAP able to parse the
text?

ERRORTEXT TEXT No The text of an error message when the
expressions were not parsed.

NUMFORMUL
AS

INT No The number of expressions (formulas)
that were parsed.

NUMDIMS INT No The number of dimensions in the union
of all the expressions that were
parsed.

FORMULA TEXT Yes The text (formula) of the specified
expression; index specifies which one
you want.

DATA TEXT Yes The data type of the specified
expression.

TYPE TEXT Yes The type of object of the specified
expression; when the expression is the
name of an object, it returns the type;
when the expression is a qualified data
reference, it returns QDR; when the
expression is anything else, it returns
EXP.

DIMENSION TEXT Yes The name of the specified dimension
in the union of all dimensions of the
expressions.

Chapter 7
INFO

7-170

Examples

Example 7-115 Getting Parsed Information

In a simple report program, you want to allow the user to specify the data to be
reported as an argument to the program. You want to allow the user to specify an
expression and the name of a data variable. You cannot process expression
arguments with an ARGS statement, so you use PARSE and INFO to parse the
program arguments and produce the report.

The following statements create a simple report program.

DEFINE report1 PROGRAM
PROGRAM
PUSH month product district DECIMALS
DECIMALS = 0
LIMIT month TO FIRST 2
LIMIT product TO ALL
LIMIT district TO 'Chicago'
PARSE ARGS
REPORT ACROSS month: WIDTH 8 <&INFO(PARSE FORMULA 1) -
 WIDTH 13 &INFO(PARSE FORMULA 2)>
POP month product district DECIMALS
END

When users run the program, they can supply either the name of a variable (sales) or
an expression (sales-expense) or both as arguments.

The following statement

REPORT1 sales sales-expense

produces the following output.

DISTRICT: CHICAGO
 --------------------MONTH--------------------
 --------Jan95--------- --------Feb95---------
PRODUCT SALES SALES-EXPENSE SALES SALES-EXPENSE
------------ -------- ------------- -------- -------------
Tents 29,099 1,595 29,010 1,505
Canoes 45,278 292 50,596 477
Racquets 54,270 1,400 58,158 1,863
Sportswear 72,123 7,719 80,072 9,333
Footwear 90,288 8,117 96,539 13,847

INFO (REGRESS)
The INFO (REGRESS) function obtains information produced by an REGRESS
statement and stored internally by Oracle OLAP. Through the use of keywords, INFO
lets you extract specific pieces of information about the regression you have
calculated.

Chapter 7
INFO

7-171

Note:

Before using INFO, familiarize yourself with REGRESS.REPORT that produces
a standard report of its results, which might give you all the information you
need. INFO is useful primarily for creating customized reports or for performing
further analysis on the results

Return Value

The return value depends on the keyword you use, as described in INFO REGRESS
Keywords.

Syntax

INFO(REGRESS choice [index])

Parameters

REGRESS
Indicates that you want to obtain information produced by an REGRESS statement.

choice
The specific information you want. The choices available for REGRESS are listed in
INFO REGRESS Keywords. Choices marked as indexed require the index argument.

index
An INTEGER expression that specifies which result you want for a choice that can
have several different results. For example, in a regression there may be multiple
independent variables. You would use index to specify which independent variable
you want information about. When you omit index for a choice that requires it, an error
occurs.

Keyword Type Indexed? Meaning

AVAILABLE BOOL No Is there a computed regression
from which to extract information?

DEPENDENT TEXT No The name of the dependent
variable in the regression.

NOINTERCEPT BOOL No Was the regression calculated with
the intercept suppressed?

WEIGHTED BOOL No Was the last regression weighted?

WEIGHT TEXT No The expression used to weight the
last regression.

NUMCOEFS INT No The number of coefficients.

INDEPENDENT TEXT Yes An independent variable; index
specifies which one you want
(Intercept to be first unless it was
suppressed).

COEFFICIENT DEC Yes An estimated coefficient; index
specifies which one you want.

Chapter 7
INFO

7-172

Keyword Type Indexed? Meaning

STDERROR DEC Yes The standard error of an estimated
coefficient; index specifies which
one you want.

TRATIO DEC Yes The t-ratio for an estimated
coefficient; index specifies which
one you want.

NUMOBS INT No The number of observations that
were used.

FRATIO DEC No The F-ratio for the regression.

RBSQ DEC No The corrected R-squared for the
regression.

FORMULA TEXT No The regression formula.

STDERROREST DEC No The standard error of estimate for
the regression

RESET BOOL Use when you want to reset the
original state of AVAILABLE back
to NO

Usage Notes

Determining Regression Results Availability

When you try to extract information without having performed a regression, INFO
produces an error. You can use the keyword AVAILABLE to determine whether any
results are currently available. Once a successful regression has run, AVAILABLE
remains true even when one or more unsuccessful regressions follow, because the
results of the previous successful regression are still available. AVAILABLE remains
true until you use RESET to change the AVAILABLE state back to its original value of
NO.

NA Results Due to Index

INFO returns NA when you use an index that is out of range. For example, when your
regression has five independent variables and you request the coefficient of the twelfth
one, INFO returns NA.

Examples

Example 7-116 Getting Regression Information

The following statement sends the third coefficient from your most recently calculated
regression to the current outfile.

SHOW INFO(REGRESS COEFFICIENT 3)

This statement produces the following result.

7.55

Chapter 7
INFO

7-173

INITCAP
The INITCAP function returns a specified text expression, with the first letter of each
word in uppercase and all other letters in lowercase. Words are delimited by white
space or characters that are not alphanumeric.

Return Value

The same data type as the expression.

Syntax

INITCAP (text-exp)

Parameters

text-exp
A text expression.

Examples

Example 7-117 Capitalizing the First Character in Each World

The following example capitalizes each word in the string.

SHOW INITCAP('the soap')
The Soap

INLIST
The INLIST function determines whether every line of a text value is a line in a second
text value. Normally, INLIST is used to determine whether all the lines of a list (in the
form of a multiline text value) can be found in a master list (in the form of a second
multiline text value).

INLIST accepts TEXT values and NTEXT values as arguments. When only one
argument is NTEXT, then INLIST automatically converts the other argument to NTEXT
before performing the function operation.

Return Value

BOOLEAN

Syntax

INLIST(masterlist list)

Parameters

masterlist
A multiline text expression to which the lines of list are compared.

list
A multiline text expression whose lines are compared with the lines of masterlist.
When every line of list can be found as a line of masterlist, INLIST returns the value

Chapter 7
INITCAP

7-174

YES. When one or more lines of list are not found in masterlist, INLIST returns the
value NO.

Examples

Example 7-118 Comparing a List to a Master List

This example shows how to use INLIST to determine whether the lines of one list can
be found in a master list. The master list in this case is a multiline text value in a
variable called depts. The depts variable has the following values.

Marketing
Purchasing
Accounting
Engineering
Personnel

The first function call compares a list, which is specified as a text literal, with the
master list. The return value is YES.

INLIST(depts, 'Accounting\nPersonnel')

The second function call compares a variable newlist that has the following values,

Development
Accounting

with the master list in depts. The return value is NO.

INLIST(depts, newlist)

INSBYTES
The INSBYTES function inserts one or more bytes into a text expression.

When you are using a single-byte character set, you can use INSCHARS.

Return Value

TEXT

Syntax

INSBYTES(text-expression bytes [after])

Parameters

text-expression
A TEXT expression into which the bytes are to be inserted. When text-expression is a
multiline TEXT value, INSBYTES preserves the line breaks in the returned value.

bytes
One or more bytes that you insert into text-expression.

after
An INTEGER that represents the byte position after which the specified bytes are to be
inserted. The position of the first byte in text-expression is 1. To insert bytes at the

Chapter 7
INSBYTES

7-175

beginning of the text, specify 0 for after. When you omit this argument, INSBYTES
inserts the bytes after the last byte in text-expression.
When you specify a value for after that is greater than the length of text-expression,
INSBYTES adds blanks to the last line of text-expression. The number of inserted
blanks is the difference between the value of after and the length of text-expression.
For example, insbytes('abc' 'def' 4) inserts one blank space before adding def to
abc, resulting in.

abc def

Examples

Example 7-119 Inserting Bytes in Text

This example shows how to insert the bytes there in the TEXT value hellojoe.

The function

INSBYTES('hellojoe', 'there', 5)

returns the following value.

hellotherejoe

INSCHARS
The INSCHARS function inserts one or more characters into a text expression.

When you are using a multibyte character set, you can use the INSBYTES function
instead of the INSCHARS function.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

Syntax

INSCHARS(text-expression characters [after])

Parameters

text-expression
The expression into which the characters are to be inserted. When text-expression is
a multiline TEXT value, INSCHARS preserves the line breaks in the returned value.

characters
One or more characters that you insert into text-expression.

Chapter 7
INSCHARS

7-176

after
An INTEGER that represents the character position after which the specified characters
are to be inserted. The position of the first character in text-expression is 1. To insert
characters at the beginning of the text, specify 0 for after. When you omit this
argument, INSCHARS inserts the characters after the last character in text-
expression.
When you specify a value for after that is greater than the length of text-expression,
INSCHARS adds blanks to the last line of text-expression. The number of inserted
blanks is the difference between the value of after and the length of text-expression.
For example, INSCHARS('abc' 'def' 4) inserts one blank before adding 'def' to 'abc',
resulting in.

abc def

Examples

Example 7-120 Inserting Characters in Text

This example shows how to insert the characters there in the TEXT value hellojoe.

INSCHARS('hellojoe', 'there', 5)

hellotherejoe

INSCOLS
The INSCOLS function inserts into the columns of a multiline TEXT value all the
columns of another TEXT value. The inserted columns are placed after the column
position you specify, and the original columns in each line are moved to the right. The
function returns a multiline TEXT value composed of the resulting columns.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

The number of lines in the return value is always the same as the number of lines in
text-expression. When the columns TEXT expression has fewer lines, INSCOLS
repeats its last line in each subsequent line of the return value.

Syntax

INSCOLS(text-expression columns [after])

Parameters

text-expression
The expression into which you want to insert columns.

Chapter 7
INSCOLS

7-177

columns
The expression containing one or more columns in each line. All the columns of this
expression is inserted into the corresponding lines of text-expression.

after
An INTEGER between 0 and 32,767 representing the column position after which
columns should be inserted. The column position of the first character in each line
is 1. When you do not specify after, insertion begins at the end of each line. The total
length of a line cannot exceed 32,767 columns of single-byte characters or fewer
columns for multi-byte characters.
When you specify an after column that is to the right of the last character in a given
line in text-expression, the corresponding line in the return value has spaces filling in
the intervening columns.

Examples

Example 7-121 Inserting Text Columns

In the following example, a color code (stored in the multiline TEXT value itemcolor) is
inserted into item identifiers that are stored in the itemid text value. The columns are
inserted after Column 3.

itemcolor has the following value.

Blu
Red
Gre
Ora

itemid has the following value.

542-Fra
379-Eng
968-USA
369-Can

The INSCOLS function call

INSCOLS(itemid itemcolor 3)

returns the following.

542Blu-Fra
379Red-Eng
968Gre-USA
369Ora-Can

INSLINES
The INSLINES function inserts one or more lines into a multiline text expression.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

Chapter 7
INSLINES

7-178

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

Syntax

INSLINES(text-expression lines [after])

Parameters

text-expression
A multiline expression into whose values one or more lines are to be inserted.

lines
An expression that represents one or more lines of text that you insert into text-
expression.

after
An INTEGER that represents the line number after which the specified lines are to be
inserted. The position of the first line in text-expression is 1 (one). To insert lines at the
very beginning, specify 0 (zero) for after. When you omit this argument, INSLINES
inserts the new lines after the last line of text-expression.

Examples

Example 7-122 Inserting Text Lines

This example shows how to insert a new line into a multiline text value in a variable
called mktglist with the following value.

Salespeople
Products
Services

The INSLINES function

INSLINES(mktglist, 'Advertising', 2)

returns the following.

Salespeople
Products
Advertising
Services

INSTAT
The INSTAT function checks whether a dimension or dimension surrogate value is in
the current status list or whether a dimension value is in a valueset.

Return Value

BOOLEAN

YES if the value is in the current status list or in a valueset and NO if it is not.

Chapter 7
INSTAT

7-179

Syntax

INSTAT(dimension, value)

Parameters

dimension
The name of the dimension, dimension surrogate, or valueset.

value
The dimension or dimension surrogate value you want to test, either a text literal
(enclosed in single quotes) or an expression that specifies the value. To specify the
value of a conjoint dimension or a concat dimension, enclose the value in angle
brackets. For a conjoint dimension, separate the base dimension values with a
comma and space. For a concat dimension, separate the base dimension and its
value with a colon and a space.

Usage Notes

Checking an Invalid Value

When you specify a dimension name and value in an INSTAT statement, Oracle OLAP
tells you whether that value is in the current status list for that dimension. Conversely,
the ISVALUE function tells you whether an item is a value of a dimension, regardless
of whether it is in the status. INSTAT produces an error when value is not a dimension
value, but ISVALUE simply returns a value of FALSE.

Examples

Example 7-123 Using INSTAT With a Valueset

Assume that within your analytic workspace you have a geog dimension with the
following definition and values.

DEFINE geog TEXT DIMENSION
GEOG

Austria
Belgium
Canada

Assume, also, that you define a mygeogs valueset and identify a value for that valueset
using the following statements.

DEFINE mygeogs VALUESET geog
LIMIT mygeogs TO 'Belgium'

You cannot issue a REPORT on a valueset. If you attempt to, Oracle OLAP issues an
error message.

REPORT mygeogs
ORA-34104: INSTATTEST!MYGEOGS is not a type of object that contains data values.

However, you can use the INSTAT function to display which values of a dimension are
in a valueset.

Chapter 7
INSTAT

7-180

REPORT INSTAT (mygeogs, geog)

GEOG INSTAT (MYGEOGS, GEOG)
-------------- ------------------------
Austria no
Belgium yes
Canada no

Example 7-124 Checking Current Status

In the following example, a program accepts a value of the month dimension as an
argument. The first lines of the program use INSTAT to check whether the dimension
value that was passed as an argument is in the current status for month. When it is, the
program calls a report program. When it is not, the program branches to its error-
handling section.

ARGUMENT onemonth month

IF INSTAT(month onemonth)
 THEN sales_report
 ELSE GOTO error
...

Example 7-125 Using INSTAT When the Dimension is a Conjoint Dimension

When the dimension that you specify is a conjoint dimension, then the entire value
must be enclosed in single quotes. For example, suppose the analytic workspace has
a region dimension and a product dimension. The region dimension values include
East, Central, and West. The product dimension values include Tents, Canoes, and
Racquets.

The following statements define a conjoint dimension, and add values to it.

DEFINE reg.prod DIMENSION <geography product>
MAINTAIN reg.prod ADD <'East', 'Tents'> <'West', 'Canoes'>

To specify base positions, use a statement such as the following.

SHOW INSTAT(reg.prod '<1, 1>')
YES

To specify base text values, use a statement such as the following.

SHOW INSTAT(reg.prod '<\'East\', \'Tents\'>')
YES

Example 7-126 Using INSTAT When the Dimension is a Concat Dimension

When the dimension that you specify is a concat dimension, then you must enclose
the entire <component dimension: dimension value> pair in single quotes. The following
statement defines a concat dimension that has as its base dimensions region and
product.

DEFINE reg.prod.ccdim DIMENSION CONCAT(region product)

A report of reg.prod.ccdim returns the following.

REG.PROD.CCDIM

<region: East>
<region: Central>

Chapter 7
INSTAT

7-181

<region: West>
<product: Tents>
<product: Canoes>
<product: Racquets>

To specify a base dimension position, use a statement such as the following.

SHOW INSTAT(reg.prod.ccdim '<product: 3>')
yes

To specify base dimension text values, use a statement such as the following.

SHOW INSTAT(reg.prod.ccdim '<product: Tents>')
YES

INSTR functions
The INSTR functions (INSTR, INSTRB, and INSTRC) search a string for a substring
using characters and return the position in the string that is the first character of a
specified occurrence of the substring. The functions vary in how they determine the
position of the substring to return.

• INSTR calculates lengths using characters as defined by the input character set.

• INSTRB calculates lengths using bytes.

• INSTRC calculates lengths using Unicode complete characters.

Return Value

A nonzero INTEGER when the search is successful or 0 (zero) when it is not.

Syntax

{INSTR | INSTRB | INSTRC} (string , substring [, position [, occurrence]])

Parameters

string
The text expression to search.

substring
The string to search for.

position
A nonzero INTEGER indicating where in string the function begins the search. INSTR
calculates position using characters as defined by the input character set. INSTRB
calculates position using bytes. INSTRC calculates position using Unicode complete
characters.
When position is negative, then INSTR counts and searches backward from the end
of string. The default value of position is 1, which means that the function begins
searching at the beginning of string.

occurrence
An INTEGER indicating which occurrence of string the function should search for. The
value of occurrence must be positive. The default values of occurrence is 1, meaning
the function searches for the first occurrence of substring.

Chapter 7
INSTR functions

7-182

Examples

Example 7-127 Using Character Position to Search Forward to Find the
Position of a Substring

The following example searches the string "Corporate Floor", beginning with the third
character, for the string "or". It returns the position in "Corporate Floor" at which the
second occurrence of "or" begins.

SHOW INSTR('Corporate Floor','or', 3, 2)
14

Example 7-128 Using Character Position to Search Backward to Find the
Position of a Substring

In this next example, the function counts backward from the last character to the third
character from the end, which is the first "o" in "Floor". The function then searches
backward for the second occurrence of "or", and finds that this second occurrence
begins with the second character in the search string.

SHOW INSTR('Corporate Floor','or', -3, 2)
2

Example 7-129 Using a Multibyte Character Set to Find the Position of a
Substring

This example assumes a multibyte database character set.

SHOW INSTRB('Corporate Floor','or',5,2)
27

INTPART
The INTPART function calculates the integer part of a decimal number by truncating
its decimal fraction.

Return Value

INTEGER

Syntax

INTPART(expression)

Parameters

expression
The decimal expression whose integer part is to be returned.

Usage Notes

Large Values

When expression has a value larger than is allowed for an INTEGER (a value between
-2,147,483,647 and 2,147,483,647), INTPART returns an NA value.

Chapter 7
INTPART

7-183

Examples

Example 7-130 Calculating the Integer Part of a Decimal Number

The following example shows the integer part of the number 3.14. The statement

show intpart(3.14)

produces the following result.

3

IRR
The IRR function computes the internal rate of return associated with a series of cash
flow values. Each value of the result is calculated to be the discount rate for each
period that makes the net present value of the corresponding cash flows equal to zero.

Return Value

DECIMAL (For example, n 8.25 percent internal rate of return produces a result value
of .0825.)

The result returned by the IRR function is dimensioned by all the dimensions of
cashflows except its time dimension. When cashflows is dimensioned only by the time
dimension, IRR returns a single value.

Syntax

IRR(cashflows, [time-dimension])

Parameters

cashflows
A numeric expression dimensioned by time-dimension, that specifies the series of
cash flow values.

Note:

All the cash flows used to compute a result value are assumed to occur at the
same relative point within the period with which they are associated. Cash
flows that corresponds to out-of-status dimension positions are ignored

time-dimension
A name that specifies the time dimension. When cashflows has a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, the time-dimension argument is optional
because IRR automatically uses the DAY, WEEK, MONTH, QUARTER, or YEAR
dimension of cashflows when you do not specify a value for time-dimension.

Usage Notes

Multiple Discount Rates

Some series of cash flows have multiple discount rates, which make the net present
value equal to zero. In such cases, IRR finds and returns only one of these discount

Chapter 7
IRR

7-184

rates as the internal rate of return. When there is only a single solution and it is
between -99.9 percent and 10,000 percent, the IRR function finds it. When IRR cannot
calculate an internal rate of return, the corresponding value in the result is NA.

Examples

Example 7-131 Calculating the Internal Rate of Return

The following statements create a dimension called project, add values to it, and
create a variable called cflow, which is dimensioned by year and project.

DEFINE project DIMENSION TEXT
MAINTAIN project ADD 'a' 'b' 'c' 'd' 'e'
DEFINE cflow VARIABLE DECIMAL <project year>

Once you have assigned the following values to CFLOW,

 ------------------------CFLOW----------------------
 -----------------------PROJECT---------------------
YEAR a b c d e
-------------- ---------- ---------- ---------- ---------- -------
Yr95 -200.00 -200.00 -300.00 -100.00 -200.00
Yr96 100.00 150.00 200.00 25.00 25.00
Yr97 100.00 400.00 200.00 100.00 200.00

then the following statement

REPORT IRR(cflow, year)

produces the following report of the internal rate of return.

 IRR(CFLOW,
PROJECT YEAR)
-------------- ----------
a 0.00
b 0.84
c 0.22
d 0.13
E 0.06

ISDATE
The ISDATE program determines whether a text expression represents a valid date.
ISDATE only tests a text expression to see if it can be converted to a DATE-only
value; it does not actually make the conversion. You must use CONVERT to make the
conversion.

Return Value

BOOLEAN

YES when the text expression represents a valid date; NO when it does not.

Syntax

ISDATE(test-date)

Chapter 7
ISDATE

7-185

Parameters

test-date
A single-line ID or TEXT expression to be examined to see if it represents a valid
date, as defined by the DATE-only data type. For a description of the valid styles for
entering dates, see "Date-only Input Values".

Examples

Example 7-132 Testing a Text Expression

In the following statement, the ISDATE program tests a literal text expression to see if
it is a valid date, and the output is sent to the current outfile.

SHOW ISDATE('3 5 1995')

This statement produces the following output.

YES

ISINFINITE
The ISINFINITE function returns a value that indicates if a the value of a numeric
expression is infinity.

See Also:

This function provides information similar to that provided by the SQL IS [NOT]
INFINITE floating point condition as described in Oracle Database SQL
Language Reference.

Return Value

BOOLEAN

Returns TRUE when the expression is either +INF (or -INF when NOT is not specified);
otherwise it returns FALSE.

Note:

The OLAP DML converts +INF or -INF values to NA when it performs calculation.
Consequently, this function can only possibly return TRUE when executed
against data that has been imported into an analytic workspace from a SQL-
populated database but not yet used in an OLAP DML calculation.

Syntax

ISINFINITE(expression)

Chapter 7
ISINFINITE

7-186

Parameters

expression
A decimal expression.

ISEMPTY
The ISEMPTY function identifies if a variable or one or more of its partitions has
values.

Return Value

BOOLEAN

FALSE when the specified variable or partitions have values; TRUE when they are
empty.

Syntax

ISEMPTY(variable [(PARTITION partition [,PARTITION partition]...)])

Parameters

variable
The name of the variable to check for values.

partition
The name of one or more partitions of variable, separated by commas, to check for
values.

ISNAN
The ISNAN function returns a value that indicates if a the value of a numeric
expression is the special NaN value.

See Also:

This function provides information similar provided by the SQL IS [NOT] NAN
floating point condition as described in Oracle Database SQL Language
Reference.

Return Value

BOOLEAN

Returns TRUE when the expression is either +NaN (or -NaN when NOT is not specified);
otherwise it returns FALSE.

Chapter 7
ISEMPTY

7-187

Note:

The OLAP DML converts +NaN or -NaN values to NA when it performs calculation.
Consequently, this function can only possibly return TRUE when executed
against data that has been imported into an analytic workspace from a SQL-
populated database but not yet used in an OLAP DML calculation.

Syntax

ISNAN(expression)

Parameters

expression
A decimal expression.

ISSESSION
The ISSESSION function determines whether the current member of a specified
dimension is a temporary member (that is, a member added when a MAINTAIN ADD
SESSION statement executes).

Return value

BOOLEAN

YES when the member is a temporary member; NO when it is not.

Syntax

ISSESSION([RECURSIVE]dimension)

Parameters

RECURSIVE
Specifies that for a dimension with base dimensions, that Oracle OLAP tests the
values of the base dimensions when making its determination.

dimension
The name of the dimension whose current member value is to be tested by Oracle
OLAP.

ISVALUE
The ISVALUE function tests whether a dimension or a composite has a specified
value.

Tip:

Use INSTAT to determine whether a value of a dimension is in the current
status of the dimension.

Chapter 7
ISSESSION

7-188

Return Value

BOOLEAN

Syntax

ISVALUE(name, value)

Parameters

name
The name of the dimension or the composite to be checked.
When the composite is unnamed, use the SPARSE keyword to refer to the composite
(for example, SPARSE <market product>).

value
The value you want to test, either a text literal or text expression for an ID or TEXT
dimension, an INTEGER for an INTEGER dimension, or a combination of values
enclosed by angle brackets for composites and conjoint dimensions.

Examples

Example 7-133 Testing Valid Values

Suppose you want to find out if Packs is a value of the product dimension. The following
statement produces the answer YES or NO.

SHOW ISVALUE(product, 'Packs')

Example 7-134 Testing Logical Position Numbers

You can test for the logical position numbers of base dimension values in a conjoint
dimension. For example, suppose market and product are the base dimensions of the
conjoint dimension markprod. The following statement tests whether or not there is a
value assigned to the combination of the fourth market dimension value and the third
product dimension value.

SHOW ISVALUE(markprod, '<4 3>')

JOINBYTES
The JOINBYTES function joins two or more text values as a single line.

JOINBYTES ignores any arguments that have a value of NA and removes line breaks
from the text it joins. (To preserve the breaks in a multiline text expression, use the
INSCHARS function.) Also, when the length of the joined line exceeds 32,767 (that is,
the maximum length of a joined line), JOINBYTES automatically breaks the line and
puts the remaining bytes on the next line. The line break could occur between the
bytes of a multibyte character. JOINBYTES would then end one line after one of the
bytes and start the next line with the next byte of the character.

Return Value

TEXT

Chapter 7
JOINBYTES

7-189

Syntax

JOINBYTES(first-expression, next-expression...)

Parameters

first-expression
An expression to which JOINBYTES joins next-expression. When the first-expression
has a data type other than TEXT or NTEXT, JOINBYTES converts it to TEXT. Use the
CONVERT or TO_CHAR function to convert a NTEXT expression to TEXT.

next-expression…
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT or NTEXT, JOINBYTES converts it to
TEXT. Use the CONVERT or TO_CHAR function to convert a NTEXT expression to
TEXT.

Examples

Example 7-135 Using JOINBYTES to Concatenate Values

This example shows how you can use JOINBYTES to combine text with the current
values of the two variables name.product and price. The variable price has a data type
of DECIMAL; however, JOINBYTES automatically converts its value to TEXT to join it
with the other text values.

LIMIT product TO 'Canoes'
LIMIT month TO 'Dec96'

The JOINBYTES function

JOINBYTES('Current Price for ' name.product ' is: $' price)

returns the following value.

Current Price for Aluminum Canoes is: $200.03

JOINCHARS
The JOINCHARS function joins two or more non-NA expressions as a single line text.
JOINCHARS removes line breaks from the text it joins. (Use INSCHARS to preserve
line breaks.)

When the length of the joined line exceeds 32,767 bytes, JOINCHARS automatically
breaks the line and puts the remaining characters on the next line. When the line
break would occur between the bytes of a multibyte character, JOINCHARS does not
split the multibyte character; instead, it puts all of the bytes of the multibyte character
on the next line.

Tip:

When you are using a multibyte character set, you can use the JOINBYTES
function instead of the JOINCHARS function.

Chapter 7
JOINCHARS

7-190

Return Value

TEXT or NTEXT

The data type of the return value depends on the data type of the values specified for
the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

Syntax

JOINCHARS(first-expression, next-expression...)

Parameters

first-expression
An expression to which JOINCHARS joins next-expression. When the first-expression
has a data type other than TEXT or NTEXT, JOINCHARS converts it to TEXT.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT or NTEXT, JOINCHARS converts it
to TEXT.

Examples

Example 7-136 Using JOINCHARS to Concatenate Values

This example shows how you can use JOINCHARS to combine text with the current
values of the two variables name.product and price. The variable price has a data type
of DECIMAL; however, JOINCHARS automatically converts its value to TEXT to join it
with the other text values.

LIMIT product TO 'Canoes'
LIMIT month TO 'Dec96'

The JOINCHARS function

JOINCHARS('Current Price for ' name.product ' is: $' price)

returns the following value.

Current Price for Aluminum Canoes is: $200.03

JOINCOLS
The JOINCOLS function joins the corresponding lines of two or more multiline text
values. The function returns a multiline text value composed of the concatenated lines
up to a length of 32,767 bytes (the maximum length of a single concatenated line).

The number of lines in the return value is always the same as that in the argument
expression that has the most lines. When a given argument expression has fewer
lines, JOINCOLS repeats its last line in each subsequent line of the return value. This

Chapter 7
JOINCOLS

7-191

repeating feature is useful when an argument expression is a single-line separator,
such as a space or hyphen. See Joining the Columns of Two Text Expressions.

Return Value

TEXT or NTEXT

When all arguments are TEXT values, the return value is TEXT. When all arguments
are NTEXT values, the return value is NTEXT. When the arguments include both
TEXT and NTEXT values, the function converts all TEXT values to NTEXT before
performing the function operation, and the return value is NTEXT.

Syntax

JOINCOLS(first-expression, next-expression...)

Parameters

first-expression
An expression whose lines JOINCOLS joins with those of next-expression. When the
expression has a data type other than TEXT or NTEXT, JOINCOLS converts it to
TEXT. JOINCOLS ignores any arguments that have a value of NA.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT or NTEXT, JOINCOLS converts it to
TEXT. JOINCOLS ignores any arguments that have a value of NA.

Examples

Example 7-137 Joining the Columns of Two Text Expressions

In the following example, each line in citylist is joined with a quoted text value, and
the corresponding line from cityreps.

citylist has the following values.

Boston
Houston
Chicago
Denver

cityrep has the following values.

Brady
Lopez
Alfonso
Cody

The JOINCOLS function

JOINCOLS(citylist ' -- ' cityreps)

returns the following.

Boston -- Brady
Houston -- Lopez
Chicago -- Alfonso
Denver -- Cody

Chapter 7
JOINCOLS

7-192

JOINLINES
The JOINLINES function joins the values of two or more expressions into a single
multiline textual value. When multiline text values are joined, all the lines of the first
expression appear first, followed by all the lines of the second expression, and so
forth. Normally the arguments for JOINLINES are text values, but they can have other
data types.

Return Value

TEXT or NTEXT

When all arguments are TEXT values, the return value is TEXT. When all arguments
are NTEXT values, the return value is NTEXT. When the arguments include both
TEXT and NTEXT values, the function converts all TEXT values to NTEXT before
performing the function operation, and the return value is NTEXT.

Syntax

JOINLINES(first-expression next-expression...)

Parameters

first-expression
An expression to which JOINLINES adds next-expression. When the expression has
a data type other than TEXT or NTEXT, JOINLINES converts it to TEXT. JOINLINES
ignores any arguments that have a value of NA.

next-expression...
One or more expressions to join with first-expression. When an expression you want
to concatenate has a data type other than TEXT, JOINLINES converts it to TEXT.
JOINLINES ignores any arguments that have a value of NA.

Examples

Example 7-138 Joining the Lines of Two Text Expressions

This example shows how to make a new list by adding the value Regions to the end of
a variable called mktglist.

mktglist has the following initial values.

Salespeople
Products
Services

The statement

newlist = JOINLINES(mktglist 'Regions')

assigns the following to newlist.

Salespeople
Products
Services
Regions

Chapter 7
JOINLINES

7-193

KEY
The KEY function returns the value of the specified base dimension for a value of a
conjoint dimension or a composite.

Return Value

The return value depends on the data type of the specified base dimension.

Syntax

KEY(dimension-exp, base-dimension-exp)

Parameters

dimension-exp
An expression that specifies a value of a conjoint dimension or a composite. When
you specify the conjoint dimension itself, KEY uses the first value in status. When you
specify the composite itself, KEY uses the first value in status for every base
dimension in the composite.

base-dimension-exp
An expression that specifies the name of a base dimension of the previously specified
conjoint dimension or composite for which you want to know the dimension value.

Examples

Example 7-139 Reporting with a Conjoint

Suppose you want to produce a report of data dimensioned by a conjoint dimension.
You can label each row with the base values of each conjoint dimension value with the
KEY function. Each base value occupies its own column and you have more control
over the layout.

The following program excerpt loops over the conjoint dimension proddist, whose
values are a combination of product and district. Assume also that there is a variable
named dsales which is dimensioned by proddist.

DEFINE proddist DIMENSION <product district>
LD Conjoint dimension made up of combinations of product and district values
DEFINE dsales VARIABLE DECIMAL <month proddist>
LD Sparse sales data made dense by dimensioning by conjoint dimension proddist

The program excerpt shows dsales for three months. The base values of the conjoint
dimension value each occupy their own column. For contrast, the second loop uses
the conjoint dimension directly, without the KEY function. The conjoint dimension
values are displayed in one column, with angle brackets.

LIMIT month TO FIRST 3
FOR proddist
 ROW KEY(proddist district) KEY(proddist product) ACROSS month: dsales
BLANK 2
FOR proddist
 ROW W 25 proddist ACROSS month: dsales

The program produces the following report.

Chapter 7
KEY

7-194

Boston Tents 32,153.52 32,536.30 43,062.75
Denver Canoes 45,467.80 51,737.01 58,437.11
Atlanta Sportswear 114,446.26 123,164.92 138,601.64
<Tents, Boston> 32,153.52 32,536.30 43,062.75
<Canoes, Denver> 45,467.80 51,737.01 58,437.11
<Sportswear, Atlanta> 114,446.26 123,164.92 138,601.64

Chapter 7
KEY

7-195

8
OLAP DML Functions: L - Z

This chapter provides reference topics for the second set (in alphabetical order) of the
OLAP DML functions. There is one topic for each of the OLAP DML functions that
begins with the letters L-Z, beginning with LAG.

Alphabetical and categorical listings of the OLAP DML functions and reference topics
for the remaining OLAP DML functions appear in OLAP DML Functions: A - K.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Options , OLAP DML Commands: A-G, and OLAP DML Commands: H-Z.

Tip:

Many OLAP DML statements can be coded as a 3-character abbreviation that
consists of the first letter of the statement plus the next two consonants.

LAG
The LAG function returns the values of a dimensioned variable or expression at a
specified offset of a dimension before the current value of that dimension. Typically,
you use the LAG function to retrieve values for a previous time period.

Return Value

The data type of the variable argument or NA when you try to lag before the first period
of a time dimension.

Syntax

LAG(variable n, dimension, [STATUS|NOSTATUS|limit-clause])

Parameters

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAG uses this value to
determine the number of values that LAG should go back in dimension to retrieve the
value of variable.
Typically, n is a positive INTEGER that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n, it
indicates the number of time periods after the current o ne. In other words, using a
negative value for n turns LAG into a LEAD function.

8-1

Note:

When using LAG in a model, see "Ensuring One-Way Dimensional
Dependence" for information on how to code a value for n so that Oracle OLAP
does not use simultaneous blocks when solving the model.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level (for
example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.
When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAG to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAG should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

NOSTATUS
(Default) Specifies that LAG should use the default status (that is, a list all the
dimension values in their original order) when computing the lag.

limit-clause
Specifies that LAG should use the default status limited by limit-clause when
computing the lag.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
To specify that LAG should use the current status limited by limit-clause when
computing the lag, specify a LIMIT function for limit-clause.

Usage Notes

Assigning Results to a Time-Series Variable

Use care when assigning the results of LAG back into the time-series variable. Results
are assigned one cell at a time, so you can overwrite the whole array with the first
value returned, instead of moving all the values over n positions. You can, however,
use LAG to calculate a series of values based on the initial value.

Examples

Example 8-1 Using LAG

Assume that you have the following definitions in your analytic workspace.

DEFINE time DIMENSION TEXT
DEFINE timelevels DIMENSION TEXT
DEFINE timelevelrel RELATION timelevels <time>
DEFINE product DIMENSION TEXT
DEFINE district DIMENSION TEXT

Chapter 8
LAG

8-2

DEFINE sales VARIABLE DECIMAL <time product district>

Assume also that those object have the values shown in the following reports.

REPORT timelevelrel

TIME TIMELEVELREL
-------------- ----------
AllYears AllYears
2004 Years
2005 Years
2006 Years
Jan2005 Months
Feb2005 Months
Mar2005 Months
Apr2005 Months
... ...
Oct2006 Months
Nov2006 Months
Dec2006 Months

REPORT product

PRODUCT

TVs
DVDs
Computers

REPORT district

DISTRICT

All Districts
Mass
Conn
Boston
Springfield
Hartford
New Haven

Now assume that you issue the following LIMIT statements to limit product, district,
and time.

LIMIT product TO 'TVs'
LIMIT district TO 'Hartford'
LIMIT time TO 'Jan2006' 'Feb2006' 'Mar2006' 'Apr2006' 'May2006' 'Jun2006' 'Jul2006'
'Aug2006' 'Sep2006' 'Oct2006' 'Nov2006' 'Dec2006'

You can issue a REPORT statement with LAG to show the value of sales for months
in both 2006 and for 2005.

REPORT DOWN time HEADING 'Sales 2006' sales HEADING 'Sales 2005' LAG(sales, 12, time, RELATION timelevelrel)

DISTRICT: Hartford
 -------PRODUCT-------
 ---------TVs---------

Chapter 8
LAG

8-3

TIME Sales 2006 Sales 2005
-------------- ---------- ----------
Jan2006 1,542.91 1,627.51
Feb2006 1,786.07 1,100.13
Mar2006 1,794.43 1,667.61
Apr2006 1,942.92 1,346.66
May2006 1,530.08 1,509.51
Jun2006 1,613.60 1,242.47
Jul2006 1,666.35 1,307.17
Aug2006 1,413.79 1,033.93
Sep2006 1,526.98 1,773.96
Oct2006 1,112.85 1,103.78
Nov2006 1,193.41 1,132.39
Dec2006 1,851.19 1,543.62

LAGABSPCT
The LAGABSPCT function returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a dimension before the
current value of that dimension and the current value of the dimensioned variable or
expression.

Unlike the LAGPCT function, which always uses the sign of the previous period value
in calculating the result, LAGABSPCT uses the absolute value of the previous period
value and therefore provides the direction of the percentage difference.

See Also:

"Example 8-2"

Return Value

DECIMAL value that corresponds to a percent difference or NA when you try to lag
before the first period of a time dimension.

Syntax

LAGABSPCT(variable, n, dimension, [STATUS|NOSTATUS|limit-clause])

Parameters

time-series
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAGABSPCT uses this
value to determine the number of values that LAGABSPCT should go back in
dimension to retrieve the value of variable.
Typically, n is a positive INTEGER that indicates the number of time periods (or
dimension values) before the current one. When you specify a negative value for n, it
indicates the number of time periods after the current one. In this case, LAGABSPCT
compares the current value of the time series with a subsequent value.

Chapter 8
LAGABSPCT

8-4

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level (for
example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.
When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAGABSPCT to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAGABSPCT should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
lag.

NOSTATUS
(Default) Specifies that LAGABSPCT should use the default status (that is, a list all
the dimension values in their original order) when computing the lag.

limit-clause
Specifies that LAGABSPCT should use the default status limited by limit-clause when
computing the lag.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
To specify that LAG should use the current status limited by limit-clause when
computing the lag, specify a LIMIT function for limit-clause.

Usage Notes

Formula Used by LAGABSPCT

To obtain its results, LAGABSPCT uses the following formula.

(currentvalue - previousvalue) / ABS(previousvalue)

When the Previous Value of the Time Series Used by LAGABSPCT is Zero

When the previous value of the time series used by LAGABSPCT is zero, the result
LAGABSPCT returns is determined by the DIVIDEBYZERO option. When
DIVIDEBYZERO is set to NO, an error occurs. When DIVIDEBYZERO is set to YES,
LAGABSPCT returns NA.

Examples

Example 8-2 Using LAGDIF and LAGABSPCT

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, and dimensions called district and products. Assume also
that there is a dimension named timelevels that contains the names of the levels of
the time dimension (that is, Month and Year) and a relation named timelevelrel that is
dimensioned by time and that has values from timelevels (that is, the related
dimension of timelevelrel is timelevels).

Chapter 8
LAGABSPCT

8-5

You want to compare sales for racquets in Dallas for the January, 2000 and the
previous year. You can use the LAG function to display sales from the previous years.
You can use the LAGABSPCT function to calculate the percentage difference between
the two months and indicate the direction of the change. For example, when sales
increase, the percentage difference LAGABSPCT returns is positive. When sales
decrease, the percentage difference LAGABSPCT returns is negative.

You can also use the LAGPCT function to calculate the percentage difference
between two years. You can multiply the values returned by LAGABSPCT by 100 to
display them as percentage points.

The following statements

ALLSTAT
LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT time TO 'Jan2000'
REPORT DOWN time sales -
HEADING 'Last Jan' LAG(sales, 12, time, time LEVELREL timelevelrel)-
HEADING 'Lagdif' LAGDIF(sales, 12, time, time LEVELREL timelevelrel)-
HEADING 'Lagabspct' rset '%' d 0 LAGABSPCT(sales, 12, time, -
 time LEVELREL timelevelrel) * 100

produce this report.

DISTRICT: Dallas
 ------------------PRODUCT------------------
 -----------------Racquets------------------
TIME SALES Last Jan Lagdif Lagabspct
-------------- ---------- ---------- ---------- ----------
Jan2000 125,879.86 118,686.75 7,193.11 6%

LAGDIF
The LAGDIF function returns the difference between the value of a dimensioned
variable or expression at a specified offset of a dimension before the current value of
that dimension and the current value of the dimensioned variable or expression.

See Also:

"Example 8-2"

Return Value

DECIMAL or NA when you try to lag before the first period of a time dimension.

Syntax

LAGDIF(variable, n, dimension, [STATUS|NOSTATUS|limit-clause])

Parameters

variable
A variable or expression that is dimensioned by dimension.

Chapter 8
LAGDIF

8-6

n
The offset (that is, the number of dimension values) to lag. LAGDIF uses this value to
determine the number of values that LAGDIF should go back in dimension to retrieve
the value of variable. Typically, n is a positive INTEGER that indicates the number of
time periods (or dimension values) before the current one. When you specify a
negative value for n, it indicates the number of time periods after the current one. In
this case, LAGDIF compares the current value of the time series with a subsequent
value.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level (for
example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.
When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAGDIF to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAGDIF should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

NOSTATUS
(Default) Specifies that LAGDIF should use the default status (that is, a list all the
dimension values in their original order) when computing the lag.

limit-clause
Specifies that LAGDIF should use the default status limited by limit-clause when
computing the lag.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
To specify that LAG should use the current status limited by limit-clause when
computing the lag, specify a LIMIT function for limit-clause.

Examples

For an example of using LAGDIF, see Example 8-2.

LAGPCT
The LAGPCT function returns the percentage difference between the value of a
dimensioned variable or expression at a specified offset of a dimension before the
current value of that dimension and the current value of the dimensioned variable or
expression.

See Also:

"Using LAGPCT"

Chapter 8
LAGPCT

8-7

Return Value

DECIMAL or NA when you try to lag before the first period of a dimension of a time
dimension.

Syntax

LAGPCT(variable, n, [dimension], [STATUS|NOSTATUS|limit-clause])

Parameters

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lag. LAGPCT uses this value to
determine the number of values that LAGPCT should go back in dimension to retrieve
the value of variable. Typically, n is a positive INTEGER that indicates the number of
time periods (or dimension values) before the current one. When you specify a
negative value for n, it indicates the number of time periods after the current one. In
this case, LAGPCT compares the current value of the time series with a subsequent
value.

dimension
The dimension along which the lag occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level (for
example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER or YEAR.
When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LAGPCT to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LAGPCT should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lag.

NOSTATUS
(Default) Specifies that LAGPCT should use the default status (that is, a list all the
dimension values in their original order) when computing the lag.

limit-clause
Specifies that LAGPCT should use the default status limited by limit-clause when
computing the lag.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
To specify that LAG should use the current status limited by limit-clause when
computing the lag, specify a LIMIT function for limit-clause.

Usage Notes

Formula Used by LAGPCT

Chapter 8
LAGPCT

8-8

To obtain its results, LAGPCT uses the following formula.

(currentvalue - previousvalue) / previousvalue

When the Previous Value of the Time Series Used by LAGPCT is Zero

When the previous value of the time series used by LAGPCT is zero, the result
LAGPCT returns is determined by the DIVIDEBYZERO option. When DIVIDEBYZERO
is set to NO, an error occurs. When DIVIDEBYZERO is set to YES, LAGPCT returns NA.

Examples

Example 8-3 Using LAGPCT

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, and dimensions called district and products. Assume also
that there is a dimension named timelevels that contains the names of the levels of
the time dimension (that is, Month and Year) and a relation named timelevelrel that is
dimensioned by time and that has values from timelevels (that is, the related
dimension of timelevelrel is timelevels).

You can compare racquet sales in Dallas for 2000 with sales for 1999 by using the
LAG function to show 199 values. You can use the LAGPCT function to calculate the
percentage difference between the two. You can multiply the value LAGPCT returns
by 100 and include a percent sign to display the difference as percentage points.

ALLSTAT
LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT TIME TO '2000'
REPORT DOWN time sales HEADING 'Last Year' -
LAG(sales, 1, time, time LEVELREL timelevelrel)-
HEADING 'LAGPCT (Decimal Format)' -
LAGPCT(sales, 1, time LEVELREL timelevelrel) -
HEADING 'LAGPCT (Percent Format)' rset '%' -
LAGPCT(sales, 1, time LEVELREL timelevelrel) * 100

produce this report.

DISTRICT: Dallas
 ------------------PRODUCT------------------
 -----------------racquets------------------
 LAGPCT LAGPCT
 (Decimal (Percent
TIME SALES Last Year Format) Format)
-------------- ---------- ---------- ---------- ----------
2000 93,000,003 89,000,891 0.04 4.49%

LARGEST
The LARGEST function returns the largest value of an expression. You can use this
function to compare numeric values or date values.

Return Value

The data type of the expression. It can be INTEGER, LONGINT, DECIMAL, or DATE.

Chapter 8
LARGEST

8-9

Syntax

LARGEST(expression [CACHE] [dimension...])

Parameters

expression
The expression whose largest value is to be returned.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.
By default, LARGEST returns a single value. When you indicate one or more
dimensions for the result, LARGEST tests for values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Usage Notes

NA Values and LARGEST

LARGEST is affected by the NASKIP option in the same manner as other aggregate
functions. When NASKIP is set to YES (the default), LARGEST ignores NA values and
returns the largest value or values that are not NA. When NASKIP is set to NO,
LARGEST returns NA when any value of the expression is NA. When all the values of
the expression are NA, LARGEST returns NA for either setting of NASKIP.

Using LARGEST With an Expression Dimensioned by a DWMQY Dimension

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH, QUARTER, or
YEAR dimension as a related dimension. Oracle OLAP uses the implicit relation
between the dimensions. To control the mapping of one DAY, WEEK, MONTH,
QUARTER, or YEAR dimension to another (for example, from weeks to months), you
can define an explicit relation between the two dimensions and specify the name of the
relation as the dimension argument to the LARGEST function.

For each time period in the related dimension, Oracle OLAP finds the largest data
value in any source time period that ends in the target time period. This method is
used regardless of which dimension has the more aggregate periods.

Chapter 8
LARGEST

8-10

Examples

Example 8-4 Finding the Largest Monthly Sales

This example uses the LARGEST function to find the largest monthly sportswear sales
for each district during the first half of 1996. To see the largest sales figure for each
district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'Largest Sales' LARGEST(sales district)

The preceding statements produce the following output.

 Largest
DISTRICT Sales
-------------- ----------
Boston 79,630.20
Atlanta 177,967.49
Chicago 112,792.78
Dallas 175,716.31
Denver 97,236.88
Seattle 60,322.88

LAST_DAY
The LAST_DAY function returns the last day of the month in which a particular date
falls.

Return Value

DATETIME

Syntax

LAST_DAY(datetime-expression)

Parameters

datetime-expression
An expression that has the DATETIME data type.

Examples

Example 8-5 Calculating Remaining Days in a Month

The following statement calculates how many days remain between today's date and
the end of the month.

SHOW JOINCHARS('Days left: ' LAST_DAY(SYSDATE) - SYSDATE)

When today's date is September 8, 2000, then this statement returns the following.

Days left: 22

Chapter 8
LAST_DAY

8-11

LEAD
The LEAD function returns the values of a dimensioned variable or expression at a
specified offset of a dimension after the current value of that dimension. Typically, you
use the LEAD function to retrieve values for a future time period.

Return Value

The data type of the variable argument or NA when you try to retrieve a value from
beyond the last period defined for the time dimension.

Syntax

LEAD(variable, n, [time-dimension], [[STATUS|NOSTATUS|limit-clause])

Parameters

variable
A variable or expression that is dimensioned by dimension.

n
The offset (that is, the number of dimension values) to lead. LEAD uses this value to
determine the number of values that LEAD should go ahead in dimension to retrieve
the value of variable. To count the values, LEAD uses the default status, unless you
use the STATUS keyword or the limit-clause argument to specify a different
dimension status.
Normally, n is a positive INTEGER that indicates the number of time periods (or
dimension values) after the current one. When you specify a negative value for n, it
indicates the number of time periods before the current one. In effect, using a
negative value for n turns LEAD into a LAG function.

Note:

When using LEAD in a model, see "Ensuring One-Way Dimensional
Dependence" for information on how to code a value for n so that Oracle OLAP
does not use simultaneous blocks when solving the model.

dimension
The dimension along which the lead occurs. While this can be any dimension, it is
typically a hierarchical time dimension of type TEXT that is limited to a single level (for
example, the month or year level) or a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.
When variable has a dimension with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR and you want LEAD to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that LEAD should use the current status list (that is, only the dimension
values currently in status in their current status order) when computing the lead.

Chapter 8
LEAD

8-12

NOSTATUS
Specifies that LEAD should use the default status (that is, a list all the dimension
values in their original order) when computing the lead.

limit-clause
Specifies that LEAD should use the default status limited by limit-clause when
computing the lead.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
To specify that LAG should use the current status limited by limit-clause when
computing the lag, specify a LIMIT function for limit-clause.

Examples

Example 8-6 Using LEAD

Assume that you have a sales variable that is dimensioned by three dimensions of the
TEXT type (named product, district, and time). The time dimension is a hierarchical
dimension with the following values.

1999
2000
Jan1999
Feb1999
...
Dec1999
Jan2000
Feb2000
...
Dec2000

Also, assume that there is a dimension named timelevels that contains the names of
the levels of the time dimension (that is, Month and Year) and a relation named
timelevelrel that is dimensioned by time and that has values from timelevels (that is,
the related dimension of timelevelrel is timelevels). A report of timelevelrel shows
these relationships.

TIME TIMELEVELREL
-------------- ------------
1999 Year
2000 Year
Jan1999 Month
Feb1999 Month
... ...
Dec1999 Month
Jan2000 Month
Feb2000 Month
... ...
Dec2000 Month

Suppose you want to compare racquet sales in Dallas for the first two months of 1999
with sales for the corresponding months of 2000. You can use the LEAD function to
produce the values from 2000 in the same report with the 1999 values. The following
statements

Chapter 8
LEAD

8-13

LIMIT product TO 'Racquets'
LIMIT district TO 'Dallas'
LIMIT time TO 'JAN1999' 'FEB1999'
REPORT DOWN time sales HEADING 'Following Year' LEAD(sales, 12, time, time LEVELREL
timelevelrel)

produce this report.

DISTRICT: DALLAS
 -------PRODUCT-------
 ------RACQUETS-------
TIME SALES Following Year
-------------- ---------- ---------------------
Jan2000 118,686.75 125,879.86
Feb2000 142,305.99 150,833.64

LEAST
The LEAST function returns the smallest expression in a list of expressions. All
expressions after the first are implicitly converted to the data type of the first
expression before the comparison.

To retrieve the largest expression in a list of expressions, use GREATEST.

Return Value

The data type of the first expression.

Syntax

LEAST (expr [, expr]...)

Parameters

expr
An expression.

Examples

Example 8-7 Finding the Text Expression that is First Alphabetically

The following statement returns the string that is first in alphabetic sequence.

SHOW LEAST('Harry','Harriot','Harold')
Harold

Example 8-8 Finding the Smallest Numerical Expressions

The following statement selects the number with the smallest value.

SHOW LEAST (5, 3, 18)
3

LENGTH functions
The LENGTH functions return the length of a text expression including trailing blanks.
LENGTH calculates length using characters as defined by the input character set.
LENGTHB uses bytes instead of characters. LENGTHC uses Unicode complete
characters.

Chapter 8
LEAST

8-14

Return Value

NUMBER or NA if the expression is an empty string or NA

Syntax

{ LENGTH | LENGTHB | LENGTHC}(char)

Parameters

char
A text expression.

LIMIT function
The LIMIT function returns the dimension or dimension surrogate values that result
from a specified LIMIT command or a specified dimension status stack. A dimension
and any surrogate for that dimension share the same status. The LIMIT function does
not change the status of a dimension or a valueset.

See Also::

LIMIT command

Return Value

The return value varies depending on the use of the function and whether or not you
specify the INTEGER keyword:

• When the LIMIT function is an argument to an OLAP DML statement (including a
user-defined command or function) that expects a valueset, it returns a valueset.

• When the LIMIT function returns an empty valueset, it returns it as a valueset with
null status.

• In all other cases, the LIMIT function returns either a TEXT value or an INTEGER
value depending on whether or not you include the INTEGER keyword. When it
returns a TEXT value that represents empty status, it returns it as NA.

Syntax

The syntax of the LIMIT function varies depending on whether you want to retrieve the
values of the dimension or dimension surrogate values that result from a specified
LIMIT command or the values of a specified dimension status stack.

Syntax for Retrieving Values From a LIMIT Command

LIMIT([INTEGER] {dimension | valueset | LIMIT_function} [concat-component] limit-
type - [limit-clause] [IFNONE label])

Syntax for Retrieving Values From a Dimension Status Stack

LIMIT([INTEGER] dimension STATDEPTH stack-position] [IFNONE label])

Chapter 8
LIMIT function

8-15

Parameters

dimension
See the LIMIT command for a complete description of this argument.

valueset
See the LIMIT command for a complete description of this argument.

LIMIT_function
Another LIMIT function.

Note:

When you nest LIMIT functions inside each other in this manner, the first
argument of the innermost LIMIT function must be the a dimension or a
valueset. See also "Nesting the LIMIT Function".

concat-component
See the LIMIT command for a complete description of this argument.

limit-type
See the LIMIT command for a complete description of this argument.

limit-clause
Specifies the values to use for the limit. There are several types of limit clauses— for
example, a limit clause you can use to specifying the limit using values (including
using a valueset) and a limit clause you can use to specify the limit using a related
dimension. Each of these types of limit clauses has a very complex syntax. Because
the syntax is complex, the syntax for the various types of limit clauses are
documented separately as part of the following topics:

LIMIT (using values) command
LIMIT using LEVELREL command
LIMIT (using related dimension) command
LIMIT (using parent relation)
LIMIT NOCONVERT command
LIMIT command (using POSLIST)

In the syntax of each of these LIMIT command topics, the limit-clause is that portion of
the syntax following the limit-type argument.

INTEGER
When you use the INTEGER keyword, the function returns the position numbers of
the values in the default dimension status rather than the names. When you use
INTEGER with a valueset, the function returns the position numbers of the values in
the default dimension status, not in the valueset.

STATDEPTH
Specifies that Oracle OLAP retrieve the status list values for the status list stack for
the specified dimension.

Chapter 8
LIMIT function

8-16

stack-position
An INTEGER value that specifies the position in the status list stack from which to
retrieve the values. Keep the following in mind when specifying a value:

• Values from 0 to 1-STATDEPTH(dimension) retrieve stacked values from the top
(current status) to the bottom (oldest status.)

• Values from 1 to STATDEPTH(dimension) retrieve stacked values from the bottom of
the stack (that is, the oldest status) to the top of the stack (that is, the current
status).

See the STATDEPTH function for more information about status list stacks.

Usage Notes

Nesting the LIMIT Function

Use the following syntax to return the result of several LIMIT commands for the same
dimension by nesting the LIMIT function.

LIMIT (LIMIT (LIMIT (lim-exp1) lim-exp2) lim-exp3)

Use this nested construction to find the status of a series of LIMIT commands. For
example, the following are some LIMIT commands.

LIMIT product TO division 'Camping'
LIMIT product KEEP -
 EVERY(sales GT 50000, product)
LIMIT product KEEP FIRST 1

To see the status of the preceding LIMIT commands, you execute the following
statement.

REPORT LIMIT(LIMIT(LIMIT(product TO -
 division 'Camping') KEEP EVERY -
 (sales GT 50000, product))KEEP FIRST 1)

Limiting with a Component of a Concat Dimension

You can limit a concat dimension to the current status of one of its component
dimensions as in the following statement.

LIMIT(reg.dist.ccdim TO district)

You can also limit a concat dimension to a set of the values of one of its component
dimensions as in the following statement.

LIMIT(reg.dist.ccdim TO district 'Boston' 'Chicago' 'Seattle')

Returning Multidimensional Results

The LIMIT function returns multidimensional results when evaluating multidimensional
expressions. In the following example, the sales variable has three dimensions:
product, district, and month.

LIMIT product TO ALL
LIMIT district TO 'Boston'
LIMIT month TO 'Jan95' 'Feb95' 'Mar95'

A REPORT sales statement produces the following output.

Chapter 8
LIMIT function

8-17

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT Jan95 Feb95 Mar95
--------- ---------- ---------- ----------
Tents 32,153.52 32,536.30 43,062.75
Canoes 66,013.92 76,083.84 91,748.16
Racquets 52,420.86 56,837.88 58,838.04
Sportswear 53,194.70 58,913.40 62,797.80
Footwear 91,406.82 86,827.32 100,199.46

Suppose you want a list of products whose sales exceed $90,000 for the status shown
in the preceding report. The LIMIT function evaluates the product sales in each month
and district combination and produces a list that is dimensioned by the months and
districts in status.

A REPORT limit (product TO sales GT 90000) statement produces the following output.

 ---LIMIT (PRODUCT TO SALES GT---
 -------------90000)-------------
 -------------MONTH--------------
DISTRICT Jan95 Feb95 Mar95
--------- ---------- ---------- ----------
Boston Footwear NA Canoes
 Footwear

Examples

Example 8-9 Returning Multidimensional Results

This example prints a report of the products whose sales were greater than $50,000 in
the first two months of 1995 in Boston and Atlanta. Notice that the LIMIT function
returns multidimensional results.

These statements

LIMIT month TO 'Jan95' 'Feb95'
LIMIT district TO 'Boston' 'Atlanta'
LIMIT product TO ALL
REPORT LIMIT (product TO sales GT 50000)

produce this report.

 --LIMIT (PRODUCT TO--
 ---SALES GT 50000)---
 --------MONTH--------
DISTRICT JAn95 Feb95
-------------- ---------- ----------
Boston Canoes Canoes
 Racquets Racquets
 Sportswear Sportswear
 Footwear Footwear
Atlanta Racquets Canoes
 Sportswear Racquets
 Footwear Sportswear
 Footwear

Example 8-10 LIMIT Command with the LIMIT Function

The following example shows the LIMIT function being used as an argument to the
LIMIT command. The result of the LIMIT function is converted to a valueset.

Chapter 8
LIMIT function

8-18

ALLSTAT
LIMIT month TO LIMIT (LIMIT (month TO LAST 10) KEEP FIRST 3)

After the preceding LIMIT statement, a STATUS month statement produces this output.

The current status of MONTH is:
MAR97 TO MAY97

LIMITMAPINFO
The LIMITMAPINFO function returns the analytic workspace expression that a
specified limit map uses to map data into a specified column of a relational table.

Return Value

A TEXT expression.

Syntax

LIMITMAPINFO ([aw], limit-map, column-name)

Parameters

aw
The name of the analytic workspace that contains the analytic workspace object.

limit-map
The limit map as a text expression.

column-name
The name of the column of a relational table as it appears in limit-map.

Examples

Example 8-11 Retrieving the Name of a Dimension

Assume that you have an analytic workspace named myaw that contains a text variable
named mylimitmap that is a limit map that maps some analytic workspace data to a
relational table with a column named et_product.

MEASURE sales FROM aw_f.sales
DIMENSION et_chan FROM aw_channel WITH
HIERARCHY aw_channel.parent
GID gid_chan FROM aw_channel.gid
DIMENSION et_prod FROM aw_product WITH
HIERARCHY aw_product.parent
GID gid_prod FROM aw_prod.gid
DIMENSION et_geog FROM aw_geography WITH
HIERARCHY aw_geography.parent
GID gid_geog FROM aw_geog.gid
DIMENSION et_time FROM aw_time WITH
HIERARCHY time.parent
GID gid_time FROM aw_time.gid

To retrieve the name of the analytic workspace object from which data for the et_prod
column is retrieved, you issue the following OLAP DML statement.

show LIMITMAPINFO ('myaw', mylimitmap, 'et_prod')

Chapter 8
LIMITMAPINFO

8-19

The following value displays because the et_prod column is mapped to the aw_product
dimension.

aw_product

LNNVL
The LNNVL function provides a concise way to evaluate a condition when one or both
operands of the condition may be null. LNNVL can be used anywhere a scalar
expression can appear, even in contexts where the IS [NOT] NULL, AND, or OR conditions
are not valid but would otherwise be required to account for potential nulls.

Return Values

TRUE if the condition is false or unknown and FALSE if the condition is true.

Syntax

LNNVL(condition)

Parameters

condition
An expression constructed using any scalar values. Note that you cannot specify an
expression that contains AND, OR, or BETWEEN.

Examples

Example 8-12 Evaluating Expressions Using LNNVL

SHOW LNNVL('apples' EQ 'oranges')
yes

SHOW LNNVL(7 LT 11)
no

SHOW LNNVL('vegetables' EQ NA)
yes

LOCALTIMESTAMP
The LOCALTIMESTAMP function returns the current date and time in the session time
zone as a value of data type TIMESTAMP.

When you want to retrieve the current date and time in the session time zone as a
TIMESTAMP_TZ value, use the CURRENT_TIMESTAMP function.

Return Values

TIMESTAMP

Syntax

LOCALTIMESTAMP [(timestamp-precision)]

Chapter 8
LNNVL

8-20

ARGUMENTS

timestamp-precision
Specifies the fractional second precision of the time value returned

Examples

Example 8-13 Retrieving the Local Timestamp

SHOW LOCALTIMESTAMP
13-FEB-07 12.11.33.454834 PM

LOG function
The LOG function computes the logarithm of an expression.

Note:

Do not confuse the LOG function with the function of the same name which
creates a log file.

Return Value

DECIMAL

Syntax

LOG([base,] expression)

Parameters

base
The base by which to compute the logarithm. When you do not specify a value, the
function computes the natural logarithm of the expression by using e for the base
where e equals 2.718281828459.

expression
A numeric expression which is greater than zero. When the value is equal to or less
than zero, LOG returns an NA value.

Examples

Example 8-14 Calculating a Natural Logarithm

In this example the LOG function is used to calculate the natural logarithm of the
expression 4,000 + 6,000. The statements

DECIMALS = 5
SHOW LOG(4000 + 6000)

produce the following result.

9.21034

Chapter 8
LOG function

8-21

LOG10
The LOG10 function computes the logarithm base 10 of an expression.

Return Value

DECIMAL

Syntax

LOG10(expression)

Parameters

expression
The value of expression must be greater than zero. When the value is equal to or less
than 0 (zero), LOG10 returns an NA value.

Examples

Example 8-15 Calculating a Base 10 Logarithm

This example uses the LOG10 function to calculate the base 10 logarithm of 1,000.
The statement

SHOW LOG10(1000)

produces the following result.

3.00

LOWCASE
The LOWCASE function converts all alphabetic characters in a text expression into
lowercase.

Return Value

TEXT or NTEXT

When the expression is TEXT, the return value is TEXT. When the expression is
NTEXT, the return value is NTEXT

Syntax

LOWCASE(text-expression)

Parameters

text-expression
The text expression whose characters are to be converted.

Chapter 8
LOG10

8-22

Examples

Example 8-16 Converting Part of an Expression to Lowercase

Suppose you get some new data to add to a mailing list. In the existing mailing list,
people's names have only the first letter capitalized. In the new data, however, the
whole name is capitalized. You can use LOWCASE to make the new data correspond
to the current data with a statement similar to the following.

lastname = JOINCHARS(EXTCHARS(lastname, 1, 1), -
 LOWCASE(EXTCHARS(lastname, 2, NUMCHARS(lastname))))

LOWER
The LOWER function converts all alphabetic characters in a text expression into
lowercase.

Return Value

The data type of text-expression.

See Also:

The LOWER function in Oracle Database SQL Language Reference

Syntax

LOWER(text-expression)

Parameters

text-expression
The text expression whose characters are to be converted.

LPAD
The LPAD function returns an expression, left-padded to a specified length with the
specified characters; or, when the expression to be padded is longer than the length
specified after padding, only that portion of the expression that fits into the specified
length.

To right-pad a text expression, use RPAD.

Return Value

TEXT or NTEXT based on the data type of the expression you want to pad (text-exp).

Syntax

LPAD (text-exp , length [, pad-exp])

Chapter 8
LOWER

8-23

Parameters

text-exp
A text expression to pad.

length
The total length of the return value as it is displayed on your screen. In most character
sets, this is also the number of characters in the return value. However, in some
multibyte character sets, the display length of a character string can differ from the
number of characters in the string.
When you specify a value for length that is shorter than the length of text-exp, then
this function returns only that portion of the expression that fits into the specified
length.

pad-exp
A text expression that specifies the padding characters. The default value of pad-exp
is a single blank.

Examples

Example 8-17 Left-Padding a String

The following example left-pads a string with the characters "*" and ".".

SHOW LPAD('Page 1',15,'*.')
..*.*.*Page 1

LTRIM
The LTRIM function removes characters from the left of a text expression, with all the
leftmost characters that appear in another text expression removed. The function
begins scanning the base text expression from its first character and removes all
characters that appear in the trim expression until reaching a character that is not in
the trim expression and then returns the result.

To trailing characters, use RTRIM. To trim both leading or trailing characters, use
TRIM.

Return Value

TEXT or NTEXT based on the data type of the first argument.

Syntax

LTRIM (text-exp [, trim-exp])

Parameters

text-exp
A text expression that you want trimmed.

trim-exp
A text expression that is the characters to trim. The default value of trim-exp is a
single blank.

Chapter 8
LTRIM

8-24

Examples

Example 8-18 Trimming Left-Most Characters

The following example trims all of the left-most x's and y's from a string.

SHOW LTRIM('xyxxxyLast Word','xy')
Last Word

MAKEDATE
The MAKEDATE function returns the DATE value that corresponds to specified
INTEGER values for a year, month, and day.

Return Value

DATE or text

Syntax

MAKEDATE(year month day)

Parameters

year
An INTEGER expression that represents the year of the test date. For any year, you can
specify the year as a four-digit number in the range 1000 to 9999. For years in the
range 1950 to 2049 (the default) or some other range (as set through the
YRABSTART option), you have the alternative of specifying a two-digit number that
represents the last two digits of the year (96 represents 1996, for example).

month
Any INTEGER expression, normally in the range 1 to 12. When you specify an INTEGER
less than 1 or greater than 12, MAKEDATE returns a date in a year before or after the
year specified by the INTEGER expression for year.
For example, if the arguments to MAKEDATE are (97 14 21), MAKEDATE returns the
date February 21, 1998 because, in effect, February 1998 is the fourteenth month of
1997.

day
An INTEGER expression in the range 1 to 31.

Usage Notes

Format of the Result Returned by MAKEDATE

When you display the result returned by MAKEDATE, the date is formatted according
to the date template in the DATEFORMAT option. When the day of the week or the
name of the month is used in the date template, the day names specified in the
DAYNAMES option and the month names specified in the MONTHNAMES option are
used. You can use the result returned by MAKEDATE anywhere that a DATE value is
expected.

Invalid Dates

When the arguments to MAKEDATE do not represent a valid date between January 1,
1000, and December 31, 9999, MAKEDATE returns an NA value.

Chapter 8
MAKEDATE

8-25

Examples

Example 8-19 Converting Integers to a Date

The following statements specify the date format and send the output to the current
outfile.

DATEFORMAT = '<mtextl> <d>, <yyyy>'
SHOW MAKEDATE(97 11 14)

These statements produce the following output.

November 14, 1997

Example 8-20 Calculating a Date Using YYOR, MMOF, and DDOF Functions

The following statement calculates the date one year from today, and sends the output
to the current outfile. The TODAY function returns today's date. The INTEGER
functions YYOF, MMOF, and DDOF return the INTEGER values that correspond to
the year, month, and day of today's date.

SHOW MAKEDATE(YYOF(TODAY) + 1 MMOF(TODAY) DDOF(TODAY))

When today's date is January 15, 1995, this statement produces the following output.

January 15, 1996

MAX
The MAX function calculates the larger value of two expressions.

Return Value

DECIMAL. The results of MAX are dimensioned by the union of the dimensions of the
two expressions

Syntax

MAX(expression1, expression2)

Parameters

expression1
One expression to be compared.

expression2
The other expression to be compared.

Examples

Example 8-21 Calculating Whether Actual or Budget Values Are Larger

Suppose, for each of the first six months of 1996, you want to find whether the actual
value or the budget value is larger for the line item Cost of Goods Sold (Cogs) in the
Sporting division.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'

Chapter 8
MAX

8-26

LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month actual budget MAX(actual budget)

The preceding statements produce the following output.

DIVISION: SPORTING
 --------------LINE--------------
 --------------COGS--------------
 MAX
 (ACTUAL
MONTH ACTUAL BUDGET BUDGET)
-------------- ---------- ---------- ----------
Jan96 287,557.87 279,773.01 287,557.87
Feb96 315,298.82 323,981.56 323,981.56
Mar96 326,184.87 302,177.88 326,184.87
Apr96 394,544.27 386,100.82 394,544.27
May96 449,862.25 433,997.89 449,862.25
Jun96 457,347.55 448,042.45 457,347.55

MAXBYTES
The MAXBYTES function counts the number of bytes in the longest line of a multiline
text expression. The result returned by MAXBYTES has the same dimensions as the
specified expression.

Return Value

INTEGER

Syntax

MAXBYTES(text-expression)

Parameters

text-expression
The TEXT expression whose bytes for each line are to be counted.

Examples

Example 8-22 Finding the Length of the Longest Line Using Bytes

You would like to know the length of the longest line in a text variable called mytext.
The following example shows the value of the variable and the result returned by
MAXBYTES.

The statement

SHOW mytext

produces the following output.

This is a multiline text variable.
The longest line is this one in the middle.
The third line is short.

The statement

SHOW MAXBYTES(mytext)

Chapter 8
MAXBYTES

8-27

produces the following output.

43

MAXCHARS
The MAXCHARS function counts the number of characters in the longest line of a
multiline text expression. The result returned by MAXCHARS has the same
dimensions as the specified expression.

Tip:

When you are using a multibyte character set, you can use the MAXBYTES
function instead of the MAXCHARS function.

Return Value

INTEGER

Syntax

MAXCHARS(text-expression)

Parameters

text-expression
The text expression whose characters for each line are to be counted. MAXCHARS
accepts either a TEXT or NTEXT argument. It does not perform an automatic
conversion to either data type. It returns the information that is correct for the data
type of the specified argument.

Examples

Example 8-23 Finding the Length of the Longest Line Using Characters

You would like to know the length of the longest line in a text variable called mytext.
The following example shows the value of the variable and the result returned by
MAXCHARS.

The statement

SHOW mytext

produces the following output.

This is a multiline text variable.
The longest line is this one in the middle.
The third line is short.

The statement

SHOW MAXCHARS(mytext)

produces the following output.

43

Chapter 8
MAXCHARS

8-28

MEDIAN
The MEDIAN function calculates the median of the values of an expression. The
median is the middle number in a given sequence of numbers.

Return Value

DECIMAL

Syntax

MEDIAN(expression [CACHE] [dimension...])

Parameters

expression
The expression whose median value is to be calculated.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.
By default, MEDIAN returns a single value. When you indicate one or more
dimensions for the result, MEDIAN calculates values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Usage Notes

NA Values and MEDIAN

MEDIAN is affected by the NASKIP option in the same manner as other aggregate
functions. When NASKIP is set to YES (the default), MEDIAN ignores NA values and
returns the median of the values that are not NA. When NASKIP is set to NO, MEDIAN
returns NA when any value of the expression is NA. When all the values of the
expression are NA, MEDIAN returns NA for either setting of NASKIP.

Chapter 8
MEDIAN

8-29

Examples

Example 8-24 Calculating Median Monthly Sales

This example shows how to calculate the median monthly sales of sportswear for each
sales district.

LIMIT product TO 'Sportswear'
REPORT W 12 HEADING 'Median Sales' MEDIAN(sales district)

The preceding statements produce the following output.

DISTRICT Median Sales
----------------- ------------
Boston 67,923.05
Atlanta 152,186.52
Chicago 94,372.06
Dallas 160,854.60
Denver 86,745.40
Seattle 53,950.28

MIN
The MIN function calculates the smaller value of two expressions.

Return Value

DECIMAL. The results of MIN are dimensioned by the union of the dimensions of the
two expressions.

Syntax

MIN(expression1, expression2)

Parameters

expression1
One expression to be compared.

expression2
The other expression to be compared.

Examples

Example 8-25 Calculating Whether Actual or Budget Values Are Smaller

Suppose, for each of the first six months of 1996, you want to find whether the actual
value or the budget value is smaller for the line item Cost of Goods Sold (Cogs) in the
Sporting division.

LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT DOWN month actual budget MIN(actual budget)

The preceding statements produce the following output.

DIVISION: SPORTING
 --------------LINE--------------

Chapter 8
MIN

8-30

 --------------COGS--------------
 MIN
 (ACTUAL
MONTH ACTUAL BUDGET BUDGET)
-------------- ---------- ---------- ----------
Jan96 287,557.87 279,773.01 279,773.01
Feb96 315,298.82 323,981.56 315,298.82
Mar96 326,184.87 302,177.88 302,177.88
Apr96 394,544.27 386,100.82 386,100.82
May96 449,862.25 433,997.89 433,997.89
Jun96 457,347.55 448,042.45 448,042.45

MMOF
The MMOF function returns an INTEGER in the range of 1 to 12, giving the month in
which a specified date falls. The result returned by MMOF has the same dimensions
as the specified DATE expression.

Return Value

INTEGER

Syntax

MMOF(date-expression)

Parameters

date-expression
An expression that has the DATE data type, or a text expression that specifies a date.
The values of the text expression are converted automatically to DATE values, using
the current setting of the DATEORDER option to resolve any ambiguity.

Examples

Example 8-26 Finding the Current Month

The following statement determines the month in which today's date falls.

SHOW MMOF(TODAY)

When today's date is January 15, 1996, this statement produces the following output.

1

MODE
The MODE function returns the mode (the most frequently occurring value) of a
numeric expression. When there are no duplicate values in the data, then MODE
returns NA.

Return Value

DECIMAL

Syntax

MODE(expression [CACHE} [dimensions])

Chapter 8
MMOF

8-31

Parameters

expression
The numeric expression whose mode is to be calculated.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimensions
The dimensions of the result. When you do not specify any dimensions, MODE
calculates the mode over all the dimensions of expression and it returns a single
value. When you specify one or more dimensions (but fewer than all of the
dimensions of expression) in the dimension argument, then MODE calculates the
mode for each value of the dimensions that you specified and returns an array of
values. Each dimension must be a dimension of expression.

Usage Notes

The Effect of NASKIP on MODE

MODE is not affected by the NASKIP option.

More Than One Set of Duplicate Values

When multiple values qualify as having the greatest number of occurrences in the
expression, then MODE sorts the values and returns the lowest one. For example, for
the data series {4,5,2,3,7,4,6,2,1}, the mode for the series is 2 even though 2 and 4
both occur twice.

Examples

Example 8-27 Reporting the Mode

These examples use the following geography and items dimensions and sales2
variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the sales2 variable has the following data values.

 -------------SALES2-------------
 -----------GEOGRAPHY------------
ITEMS G1 G2 G3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

• This statement reports the mode that is calculated over the geography dimension.

REPORT W 22 MODE(sales2, geography)

Chapter 8
MODE

8-32

The preceding statement produces the following output.

 MODE(SALES2,
GEOGRAPHY GEOGRAPHY)
-------------- ----------------------
g1 30.00
g2 20.00
g3 NA

• This statement reports the mode that is calculated over the items dimension.

REPORT W 18 MODE(sales2, items)

The preceding statement produces the following output.

 MODE(SALES2,
ITEMS ITEMS)
-------------- ------------------
Item1 NA
Item2 NA
Item3 NA
Item4 25.00
ITEM5 NA

• This statement reports the mode that is calculated over all of the dimensions of the
sales2 variable.

REPORT MODE(sales2)

The preceding statement produces the following output.

Mode

15

MODULO
The MODULO function, like the SQL MOD function, returns the remainder after a
number is divided by another; or the number if the divisor is 0 (zero).

Return Values

Numeric.

Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type

Syntax

MOD(dividend, divisor)

Parameters

dividend
A numeric expression (or an expression that Oracle OLAP can implicitly convert to a
numeric expression) that is the number you want to divide.

divisor
A numeric expression (or an expression that Oracle OLAP can implicitly convert to a
numeric expression) that is the divisor.

Chapter 8
MODULO

8-33

Examples

Example 8-28 Using MODULO to Find the Remainder After Division

SHOW MODULO(13,7)
6.00

MONTHS_BETWEEN
The MONTHS_BETWEEN function calculates the number of months between two
dates. When the two dates have the same day component or are both the last day of
the month, then the return value is a whole number. Otherwise, the return value
includes a fraction that considers the difference in the days based on a 31-day month.
The return value is positive when the first date is later than the second date, and
negative when the first date is earlier than the second date.

Return Value

NUMBER

Syntax

MONTHS_BETWEEN(datetime_expression1, datetime_expression2)

Parameters

datetime-expression1
One expression that has the DATETIME data type, or a text expression that specifies a
date.

datetime-expression2
A second expression that has the DATETIME data type, or a text expression that
specifies a date.

Examples

Example 8-29 Calculating the Number of Months Between Dates

The following statement calculates the number of months between March 26, 2004,
and July 6, 2001.

SHOW months_between('06Jul2005' '17Jul2003')
23.65

Example 8-30 Last Days

The return value is a whole number when both dates are the last day of the month.

SHOW months_between('29Feb2000', '30Sep2000')
-7.00

MOVINGAVERAGE
The MOVINGAVERAGE function (abbreviated MVAVG) computes a series of
averages for the values of a dimensioned variable or expression over a specified
dimension. For each dimension value in status, MOVINGAVERAGE computes the
average of the data in the range specified, relative to the current dimension value.

Chapter 8
MONTHS_BETWEEN

8-34

When the data being averaged has only one dimension, MOVINGAVERAGE produces
a single series of averages, one for each dimension value in status. When the data
has dimensions other than the one being averaged over, MOVINGAVERAGE
produces a separate series of averages for each combination of values in the status
list of the other dimensions.

Return Value

DECIMAL when the data type of expression is DECIMAL or SHORT; otherwise,
NUMBER.

Syntax

MOVINGAVERAGE(expression, start, stop, step, -

 [dimension [STATUS|limit-clause]])

Parameters

expression
A numeric variable or calculation whose values you want to average; for example,
units or sales-expense.

start
stop
Integer values that specify the range of values over which you want to average. The
value of start specifies the beginning of the range. The value of stop specifies the end
of the range. Specify the values of start and stop relative to the current value of
dimension. To specify a negative position for start or stop precede the value with a
comma. Thus, you specify zero (0) for the current dimension value, and -1 for the
value preceding the current value. (See also "How the Moving Functions Handle Out-
of-Range and NA Values".)

Note:

By default this function uses the default status list when identifying the range of
values to average. You can specify either the STATUS or limit-clause phrase
to change this behavior.

Tip:

When you want to range to the end of status, for convenience and to
document your intent, specify the value of stop as OBJ function with the
DIMMAX keyword

step
A positive whole number that specifies whether to average over every value in the
range, every other value, every third value, and so on. A value of 1 for step means
average over every value. A value of 2 means average over the first value, the third
value, the fifth value, and so on. For example, when the current month is Jun96 and
the start and stop values are -3 and 3, a step value of 2 means average over Mar96,
May96, Jul96, and Sep96.

Chapter 8
MOVINGAVERAGE

8-35

dimension
The dimension over which the moving average is calculated. The data type of
dimension can be of any type, but typically, is a time dimension.
When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want the function to use that dimension, you can omit the dimension
argument.

STATUS
Specifies that MOVINGAVERAGE should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating the
moving average.

limit-clause
Specifies that MOVINGAVERAGE uses the values specified by a LIMIT function or
those specified with the same syntax as any of the limit-clause arguments in the
various forms of the LIMIT command (that is, the syntax of the LIMIT command after
the limit-type argument such as "TO"). For the syntax of these arguments, see LIMIT
(using values) command, LIMIT using LEVELREL command, LIMIT (using parent
relation), LIMIT (using related dimension) command, LIMIT NOCONVERT command,
and LIMIT command (using POSLIST).

Usage Notes

How the Moving Functions Handle Out-of-Range and NA Values

As a moving function loops through the values, at each step in the loop, if the in-loop
dimension position is NA or out of range, then the function considers expression as an
NA value. The function treats these NA values in the manner specified by the setting of
the NASKIP option (by default, as NA) so, typically, the function ignores out-of-range
(NA) values and does not evaluate the expression for that step in the loop.

Examples

Example 8-31 Calculating a Moving Average

Suppose you have a variable called sales that is dimensioned by a hierarchical
dimension named time, a dimension named product, a dimension named
timelevelnames that contains the names of the levels of time (for example, Quarter and
Year), and a relation named time.levelrels that relates the values of time to the values
of timelevelnames. Assume also that using the following statements you limit product to
Womens - Trousers and time to quarters from Q4-1999 to present.

LIMIT product TO 'Womens - Trousers'
LIMIT timelevelnames TO 'Quarter'
LIMIT time TO time.levelrels
LIMIT time REMOVE 'Q1-1999' 'Q2-1999' 'Q3-1999'

After you have limited product and sales, you issue the following report statement.

REPORT DOWN time sales -
HEADING 'Running Yearly\nTotal' MOVINGTOTAL(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Minimum\nQuarter' MOVINGMIN(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Maximum\nQuarter' MOVINGMAX(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels) -
HEADING 'Average\nQuarter' MOVINGAVERAGE(sales, -4, 0, 1, time, -
 LEVELREL time.levelrels)

Chapter 8
MOVINGAVERAGE

8-36

The following report was created by the preceding statement.

 -----------------------PRODUCT------------------------
 ------------------Womens - Trousers-------------------
 Running
 Yearly Minimum Maximum Average
TIME SALES Total Quarter Quarter Quarter
-------------- ---------- ---------- ---------- ---------- ----------
Q4-1999 416 1,386 233 480 346.50
Q1-2000 465 1,851 233 480 370.20
Q2-2000 351 1,969 257 480 393.80
Q3-2000 403 2,115 351 480 423.00
Q4-2000 281 1,916 281 465 383.20
Q1-2001 419 1,919 281 465 383.80
Q2-2001 349 1,803 281 419 360.60
Q3-2001 467 1,919 281 467 383.80
Q4-2001 484 2,000 281 484 400.00
Q1-2002 362 2,081 349 484 416.20
Q2-2002 237 1,899 237 484 379.80
Q3-2002 497 2,047 237 497 409.40
Q4-2002 390 1,970 237 497 394.00

MOVINGMAX
The MOVINGMAX function (abbreviated MVMAX) returns a series of maximum values
of a dimensioned variable or expression over a specified dimension. For each
dimension value in status, MOVINGMAX searches the data for the maximum value in
the range specified, relative to the current dimension value.

When the variable or expression has only the specified dimension, MOVINGMAX
produces a single series of maximum values, one for each dimension value in the
status. When the variable or expression has dimensions other than the one specified,
MOVINGMAX produces a separate series of maximum values for each combination of
values in the status list of the other dimensions

Return Value

DECIMAL when the data type of expression is DECIMAL or SHORT; otherwise,
NUMBER.

Syntax

MOVINGMAX(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Parameters

expression
A numeric variable or calculation from whose values you want to find the maximum
values; for example, units or sales-expense.

start
stop
Integer values that specify the range of values over which you want to find the
maximum values. The value of start specifies the beginning of the range. The value of
stop specifies the end of the range. Specify the values of start and stop relative to the
current value of dimension. To specify a negative position for start or stop precede the
value with a comma. Thus, you specify zero (0) for the current dimension value, and

Chapter 8
MOVINGMAX

8-37

-1 for the value preceding the current value. (See also "How the Moving Functions
Handle Out-of-Range and NA Values".)

Note:

By default this function uses the default status list when identifying the range of
values to average. You can specify either the STATUS or limit-clause phrase
to change this behavior.

Tip:

When you want to range to the end of status, for convenience and to
document your intent, specify the value of stop as OBJ function with the
DIMMAX keyword

step
A positive whole number that specifies whether to search every value in the range,
every other value, every third value, and so on. A value of 1 for step means search
every value. A value of 2 means check the first value, the third value, the fifth value,
and so on. For example, when the current month is Jun96 and the start and stop
values are -3 and 3, a step value of 2 means search the months Mar96, May96, Jul96,
and Sep96 and return the maximum value that occurs in one of those four months.

dimension
The dimension over which the moving maximum is calculated. While this can be any
dimension, it is typically a hierarchical time dimension of type TEXT that is limited to a
single level (for example, the month or year level) or a dimension with a type of DAY,
WEEK, MONTH, Quarter, or YEAR.
When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGMAX to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGMAX uses the values specified by a LIMIT function or those
specified with the same syntax as any of the limit-clause arguments in the various
forms of the LIMIT command (that is, the syntax of the LIMIT command after the limit-
type argument such as "TO"). For the syntax of these arguments, see LIMIT (using
values) command, LIMIT using LEVELREL command, LIMIT (using parent relation),
LIMIT (using related dimension) command, LIMIT NOCONVERT command, and
LIMIT command (using POSLIST).

Examples

For an example of calculating maximum sales, see Calculating a Moving Average.

MOVINGMIN
The MOVINGMIN function (abbreviated MVMIN) returns a series of minimum values
for the values of a dimensioned variable or expression over a specified dimension. For
each dimension value in status, MOVINGMIN searches the data for the minimum
value in the range specified, relative to the current dimension value.

Chapter 8
MOVINGMIN

8-38

When the variable or expression has only the specified dimension, MOVINGMIN
produces a single series of minimum values, one for each dimension value in the
status. When the variable or expression has dimensions other than the one specified,
MOVINGMIN produces a separate series of minimum values for each combination of
values in the status list of the other dimensions.

Return Value

DECIMAL when the data type of expression is DECIMAL or SHORT; otherwise,
NUMBER.

Syntax

MOVINGMIN(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Parameters

expression
A numeric variable or calculation from whose values you want to find the minimum
values; for example, UNITS or SALES-EXPENSE.

start
stop
Integer values that specify the range of values over which you want to find minimum
values. The value of start specifies the beginning of the range. The value of stop
specifies the end of the range. Specify the values of start and stop relative to the
current value of dimension. To specify a negative position for start or stop precede the
value with a comma. Thus, you specify zero (0) for the current dimension value, and
-1 for the value preceding the current value. (See also "How the Moving Functions
Handle Out-of-Range and NA Values".)

Note:

By default this function uses the default status list when identifying the range of
values to average. You can specify either the STATUS or limit-clause phrase
to change this behavior.

Tip:

When you want to range to the end of status, for convenience and to
document your intent, specify the value of stop as OBJ function with the
DIMMAX keyword

step
A positive whole number that specifies whether to search every value in the range, or
every other value, or every third value, and so on. A value of 1 for step means search
every value. A value of 2 means check the first value, the third value, the fifth value,
and so on. For example, when the current month is Jun96 and the start and stop
values are -3 and 3, a step value of 2 means search the months Mar96, May96, Jul96
and Sep96 and return the minimum value that occurs in one of those four months.

Chapter 8
MOVINGMIN

8-39

dimension
The dimension over which the moving minimum is calculated. While this can be any
dimension, it is typically a hierarchical time dimension of type TEXT that is limited to a
single level (for example, the month or year level) or a dimension with a type of DAY,
WEEK, MONTH, Quarter, or YEAR.
When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGMIN to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGMIN should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating the
moving minimum.

limit-clause
Specifies that MOVINGMIN uses the values specified by a LIMIT function or those
specified with the same syntax as any of the limit-clause arguments in the various
forms of the LIMIT command (that is, the syntax of the LIMIT command after the limit-
type argument such as "TO"). For the syntax of these arguments, see LIMIT (using
values) command, LIMIT using LEVELREL command, LIMIT (using parent relation),
LIMIT (using related dimension) command, LIMIT NOCONVERT command, and
LIMIT command (using POSLIST).

Examples

For an example of calculating minimum sales, see Calculating a Moving Average.

MOVINGTOTAL
The MOVINGTOTAL function (abbreviated MVTOT) computes a series of totals for the
values of a dimensioned variable or expression over a specified dimension. For each
dimension value in status, MOVINGTOTAL computes the total of the data in the range
specified, relative to the current dimension value.

When the variable or expression has only the specified dimension, MOVINGTOTAL
produces a single series of totals, one for each dimension value in the status. When
the variable or expression has dimensions other than the one specified,
MOVINGTOTAL produces a separate series of totals for each combination of values in
the status list of the other dimensions.

Return Value

DECIMAL when the data type of expression is DECIMAL or SHORT; otherwise,
NUMBER.

Syntax

MOVINGTOTAL(expression, start, stop, step, [dimension [STATUS|limit-clause]])

Parameters

expression
A numeric variable or calculation whose values you want to total; for example, UNITS
or SALES-EXPENSE.

Chapter 8
MOVINGTOTAL

8-40

start
stop
Integer values that specify the range of values over which you want to total. The value
of start specifies the beginning of the range. The value of stop specifies the end of the
range. Specify the values of start and stop relative to the current value of dimension.
To specify a negative position for start or stop precede the value with a comma. Thus,
you specify zero (0) for the current dimension value, and -1 for the value preceding
the current value. (See also "How the Moving Functions Handle Out-of-Range and NA
ValuesHow the Moving Functions Handle Out-of-Range and NA Values".)

Note:

By default this function uses the default status list when identifying the range of
values to average. You can specify either the STATUS or limit-clause phrase
to change this behavior.

Tip:

When you want to range to the end of status, for convenience and to
document your intent, specify the value of stop as OBJ function with the
DIMMAX keyword

step
A positive whole number that specifies whether to total over every value in the range,
every other value, every third value, and so on. A value of 1 for step means total over
every value. A value of 2 means total over the first value, the third value, the fifth
value, and so on. When the current month is Jun96 and the start and stop values are
-3 and 3, a step value of 2 means total over Mar96, May96, Jul96, and Sep96.

dimension
The dimension over which the moving total is calculated. While this can be any
dimension, it is typically a time dimension.
When expression has a dimension with a type of DAY, WEEK, MONTH, QUARTER,
or YEAR and you want MOVINGTOTAL to use that dimension, you can omit the
dimension argument.

STATUS
Specifies that MOVINGTOTAL should use the current status list (that is, only the
dimension values currently in status in their current status order) when calculating the
moving total.

limit-clause
Specifies that MOVINGTOTAL uses the values specified by a LIMIT function or those
specified with the same syntax as any of the limit-clause arguments in the various
forms of the LIMIT command (that is, the syntax of the LIMIT command after the limit-
type argument such as "TO"). For the syntax of these arguments, see LIMIT (using
values) command, LIMIT using LEVELREL command, LIMIT (using parent relation),
LIMIT (using related dimension) command, LIMIT NOCONVERT command, and
LIMIT command (using POSLIST).

Chapter 8
MOVINGTOTAL

8-41

Examples

For an example of calculating a moving total sales, see Calculating a Moving Average.

NA2
Used for debugging and testing variables defined with null tracking, the NA2 function
returns an NA value that takes the NA2 bit into consideration.

See Also:

"NA2 Bits and Null Tracking"

Return Value

An NA value with the NA flag set to TRUE.

Syntax

NA2

Examples

See Defining a Variable with Null Tracking.

NAFILL
The NAFILL function returns the values of the source expression with any NA values
replaced with the specified fill expression.

Return Value

The value returned is the same data type as source-expression. When the fill and
source expressions do not have the same data type, Oracle OLAP converts the fill
expression to the data type of the source expression when possible. Otherwise, an
error is produced. When both the source and fill expressions equal NA, then NAFILL
returns NA.

Syntax

NAFILL(source-expression fill-expression)

Parameters

source-expression
The expression being evaluated. For values of source-expression that do not equal
NA, NAFILL returns the corresponding values of source-expression. Source-
expression determines the dimensions and data type of the result.

Chapter 8
NA2

8-42

fill-expression
The expression to be substituted in the return value. Fill-expression must have the
same data type as source-expression. Fill-expression is only evaluated for values of
source-expression that equal NA.

Usage Notes

Functions in the Fill Expression

You can use any functions in the fill expression if they return the same data type as
the source expression.

NATRIGGER Takes Precedence Over NAFILL

Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NAFILL function. When the $NATRIGGER expression is NA, then the NAFILL function
has an effect.

Examples

Example 8-32 Filling NA Values with Zeros

Suppose you have NA values in the variable sales and you want to calculate an
average that counts those values as zeros. Ordinarily, AVERAGE ignores NA values
and does not count them in the number of values being averaged. You can use
NAFILL inside the AVERAGE function to temporarily treat those values as zeros so
the NA values count in calculating the average.

REPORT AVERAGE(NAFILL(sales 0.0))

NAFLAG
Used for debugging and testing variables defined with null tracking, the function
identifies if a value is a NA2 value or a non-NA value.

See Also:

"NA2 Bits and Null Tracking"

Return Values

INTEGER

0 for a non-NA value, 2 if the NA value is an NA2 value, or 1 for all other NA values

Syntax

NAFLAG (expression)

Parameters

expression
An OLAP DML expression.

Chapter 8
NAFLAG

8-43

Examples

See Example 9-104.

NEW_TIME
The NEW_TIME function converts a date and time from one time zone to another.

Return Value

DATETIME

Syntax

NEW_TIME(datetime-exp this_zone new_zone)

Parameters

this_zone
A text expression that indicates the time zone from which you want to convert
datetime-exp. It must be a valid time zone, as listed in the following table.

new_zone
A text expression that indicates the time zone into which you want to convert
datetime-exp. It is the time zone of the return value. It must be a valid time zone, as
listed in the following table.

Table 8-1 Time Zones

AST Atlantic Standard Time

ADT Atlantic Daylight Time

BST Bering Standard Time

BDT Bering Daylight Time

CST Central Standard Time

CDT Central Daylight Time

EST Eastern Standard Time

EDT Eastern Daylight Time

GMT Greenwich Mean Time

HST Alaska-Hawaii Standard Time

HDT Alaska-Hawaii Daylight Time

MST Mountain Standard Time

MDT Mountain Daylight Time

NST Newfoundland Standard Time

PST Pacific Standard Time

PDT Pacific Daylight Time

YST Yukon Standard Time

YDT Yukon Daylight Time

Chapter 8
NEW_TIME

8-44

Examples

Example 8-33 Using the Current Time of day

The SYSDATE function returns the current date and time to the NEW_TIME function.

SHOW new_time(SYSDATE 'EST' 'PST')

When the date and time in Eastern Standard Time are October 20, 2000, at 1:20 A.M.,
then the date in Pacific Standard Time, which is three hours earlier, is October 19,
2000. Because SYSDATE uses the format specified by NLS_DATE_FORMAT, which
by default only shows the date, the time is not displayed.

19-OCT-00

Example 8-34 Specifying the Time of day

In the following example, the TO_DATE function converts a text string to a valid date
and time. The TO_CHAR function includes a date format that temporarily overrides the
date format specified by the NLS_DATE_FORMAT option.

SHOW TO_CHAR(NEW_TIME(TO_DATE('11-27-00 22:15:00', 'MM-DD-YY HH24:MI:SS'), -
 'HST' 'PST') 'MM-DD-YY HH24:MI:SS')

This statement converts November 27 at 10:15 P.M. (22:15:00) Alaska-Hawaii
Standard Time to November 28 at 12:15 A.M. (00:15:00) Pacific Standard Time. The
date format specified in the TO_CHAR function allows the time to be displayed along
with the date.

11-28-00 00:15:00

Alternatively, you can change the value of NLS_DATE_FORMAT.

NLS_DATE_FORMAT = 'MM-DD-YY HH24:MI:SS'

Then this statement produces the same result, without requiring the use of TO_CHAR.

SHOW NEW_TIME(TO_DATE('11-27-00 22:15:00', 'MM-DD-YY HH24:MI:SS'), -
 'HST' 'PST')

NEXT_DAY
The NEXT_DAY function returns the date of the first instance of a particular day of the
week that follows the specified date.

Return Value

DATETIME

Syntax

NEXT_DAY(datetime-expression, weekday)

Parameters

datetime-expression
An expression that has the DATETIME data type.

Chapter 8
NEXT_DAY

8-45

weekday
A text expression that identifies a day of the week (for example, Monday). Valid
names are controlled by the NLS_DATE_LANGUAGE option.

Examples

Example 8-35 Getting a Future Date

The following statement returns the date of the first Tuesday following today's date.

SHOW NEXT_DAY(SYSDATE, 'Tues')

When today is Friday, September 8, 2000, then the following Tuesday is

11-SEP-00

NLS_CHARSET_ID
The NLS_CHARSET_ID function returns the character set identification number
corresponding to a specified character set name.

See Also:

NLS_CHARSET_NAME

Return Value

INTEGER when you specify a valid value for the name of the character set, a number;
otherwise NA.

Syntax

NLS_CHARSET_ID (charset_name)

Parameters

charset_name
A VARCHAR2 text expression that is a valid character set name or one of the
following values:

• CHAR_CS which specifies that the function return the database character set
identification number of the server.

• NCHAR_CS which specifies that the function return the national character set id
number of the server.

See Also:

Choosing a Character Set in Oracle Database Globalization Support Guide for
a list of character set identifiers.

Chapter 8
NLS_CHARSET_ID

8-46

NLS_CHARSET_NAME
The NLS_CHARSET_NAME function returns the name of the character set
corresponding to a specified character set identification number.

See Also:

Choosing a Character Set in Oracle Database Globalization Support Guide for
a list of character set names.

Return Value

When the number is recognized as a valid character, VARCHAR2; otherwise, NA.

Syntax

NSL_CHARSET_NAME (number-exp)

Parameters

number-exp
A number that is the character set ID.

See Also:

Choosing a Character Set in Oracle Database Globalization Support Guide for
a list of character set identifiers

NLSSORT
The NLSSORT function returns a string of bytes used to sort a text string. You can use
this function to specify sorting and comparison operations based on a linguistic sort
sequence rather than on the binary value of a string.

See Also:

Linguistic Sorting and Matching in Oracle Database Globalization Support
Guide

Return Value

RAW

Syntax

NLSSORT(char [, 'NLS_SORT = sort[_ai |_ci]'])

Chapter 8
NLS_CHARSET_NAME

8-47

Parameters

char
A text expression.

sort
An NLS language.

_ai
Specifies an accent-insensitive sort.

_ci
Specifies a case-insensitive sort.

Examples

Example 8-36 Determining the Bytes by Which Values Are Sorted Based on
Linguistic Sort Sequence

Assume you want to know the bytes by which a single value is sorted in the German
language without regard to case. To do this you can execute the following SHOW
command.

show NLSSORT('Mary Ann' , 'NLS_SORT = German_ai')
501464820114555500010101010201010100

To see this same data for all of the values in a text dimension named myname are
sorted, you can execute the following statement.

REPORT NLSSORT(MYname , 'NLS_SORT = German_ci')

MYNAME NLSSORT(MYNAME , 'NLS_SORT = German_ci')
---------------- --
Adelaid 1423284B143C23000101010101010100
Maryann 50146482145555000101010101010100
Mary Ann 501464820114555500010101010201010100
Donna 235A55551400010101010100

NONE
The NONE function returns YES when none of the values of a Boolean expression are
TRUE. It returns NO when any value of the expression is TRUE.

Return Value

BOOLEAN or NA if all the values of the expression are NA

Syntax

NONE(boolean-expression [CACHE] [dimension...])

Parameters

boolean-expression
The Boolean expression to be evaluated.

Chapter 8
NONE

8-48

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.
By default, NONE returns a single YES or NO value. When you indicate one or more
dimensions for the result, NONE tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes

The Effect of NASKIP on NONE

NONE is affected by the NASKIP option. When NASKIP is set to YES (the default), and
all of the values in the expression are NA NONE returns NA; if even one value is not NA,
NONE ignores all of the NA values in the expression. When NASKIP is set to NO, NONE
returns NA when any value of the expression is NA.

Examples

Example 8-37 Testing for No True Values by District

Suppose you want to find out which districts had no months in which sales fell
below $50,000. Use the NONE function to determine whether the Boolean expression
(SALES LT 50000) is TRUE for no months. To have the results dimensioned by district,
specify district as the second argument to NONE.

LIMIT product TO 'Sportswear'
REPORT NONE(sales LT 50000, district)

The preceding statements produce the following output.

 NONE(SALES
 LT 50000,
DISTRICT DISTRICT)
-------------- ----------
Boston NO
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

Chapter 8
NONE

8-49

Example 8-38 Testing for No True Values by Region

You might also want to find out which regions had no months in which no districts had
sportswear sales of less than $50,000. Because the region dimension is related to the
district dimension, you can specify region instead of district as a dimension for the
results of ANY.

REPORT NONE(sales LT 50000, region)

The preceding statement produces the following output.

 NONE(SALES
 LT 50000,
REGION REGION)
-------------- ----------
East NO
Central YES
West NO

NORMAL
The NORMAL function returns a random value from a normal distribution with a
specified mean and standard deviation. The result returned by NORMAL is
dimensioned by all the dimensions of the mean and standard deviation expressions.

Return Value

DECIMAL

Syntax

NORMAL(mean standard-deviation)

Parameters

mean
A numeric expression that represents the mean of a normal distribution. When mean
is NA, NORMAL returns NA.

standard-deviation
A numeric expression that represents the standard deviation of a normal distribution.
When standard-deviation is NA, NORMAL returns the mean.

Examples

Example 8-39 Showing Random Values

Each of the following examples shows a random number that might be returned from a
normal distribution with a mean of 0 and a standard deviation of 1.

The first time you execute the following statement,

SHOW NORMAL(0 1)

it might produce the following result.

-0.75

Chapter 8
NORMAL

8-50

However, when you execute the same statement again, it might produce the following
result.

0.87

NPV
The NPV function computes the net present value of a series of cash flow values.

Return Value

DECIMAL

The result returned by the NPV function is dimensioned by all the dimensions of
cashflows except its time dimension. When cashflows is dimensioned only by the time
dimension, NPV returns a single value.

Syntax

NPV(cashflows, discount-rate, [time-dimension])

Parameters

cashflows
A numeric expression that is dimensioned by time-dimension and specifies the series
of cash flow values.

Note:

All cash flows are assumed to occur at the beginning of the time period with
which they are associated. The cash flows are discounted back to the
beginning of the earliest time period that appears in the current status of the
time dimension. NPV ignores cash flows that corresponds to out-of-status
dimension positions.

discount-rate
A numeric expression that specifies the interest rate for each period to be used to
discount the cash flow values. It can either be a single value or an array of values with
one or more non-time dimensions. Express the discount rate as a decimal quantity;
for example, 8.25 percent as .0825.
NPV accepts any positive discount rate, and it also accepts a negative discount rate
when the rate is greater than minus one (that is, rate > -1). When you supply a
negative rate, you must precede it with a comma.

time-dimension
A name that specifies the time dimension. When cashflows has a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR, NPV automatically uses that dimension,
and you can omit the time-dimension argument.

Usage Notes

NA Discount Rate

When the discount rate used to compute a result value equals NA, then that result
value is NA.

Chapter 8
NPV

8-51

Cash Flow Timing

Different assumptions about the intra-period timing of the cash flows, or the base time
point for the present value calculations, can be accommodated by multiplying the
result of the NPV function by the following quantity: one plus the discount rate, raised
to an appropriate positive or negative power.

Examples

Example 8-40 Computing the Net Present Value

The following statements create a dimension called project, add values to it, and
create a variable called cflow, which is dimensioned by year and project.

DEFINE project DIMENSION TEXT
MAINTAIN project ADD 'a' 'b' 'c' 'd' 'e'
DEFINE cflow VARIABLE DECIMAL <project year>

When you assign the following values to CFLOW,

 ------------------------CFLOW----------------------
 -----------------------PROJECT---------------------
YEAR a b c d e
------------ ---------- ---------- ---------- ---------- -------
Yr95 -200.00 -200.00 -300.00 -100.00 -200.00
Yr96 100.00 150.00 200.00 25.00 25.00
Yr97 100.00 400.00 200.00 100.00 200.00

then the following statement

REPORT NPV(cflow, .08, year)

uses a discount rate of 8 percent to create the following report of the net present value
of the cflow data.

 NPV(CFLOW,
PROJECT .08, YEAR)
-------------- ----------
a -21.67
b 281.82
c 56.65
d 8.88
e -5.38

NULLIF
The NULLIF function compares one expression with another and returns NA when the
expressions are equal, or the base expression when they are not.

Return Value

NA when the expressions are equal, or the base expression when they are not.

Syntax

NULLIF (expr1 , expr2)

Chapter 8
NULLIF

8-52

Parameters

expr1
An expression. The base expression for the comparison.

expr2
An expression to compare to expr1.

Examples

Example 8-41 Comparing Values Using NULLIF

SHOW NULLIF(1, '1')
NA

SHOW NULLIF('red', 'Red')
red

NUMBYTES
The NUMBYTES function counts the number of bytes in a text expression. When the
value is a multiline text value, NUMBYTES returns the total number of bytes in all the
lines. The result returned by NUMBYTES has the same dimensions as the specified
expression.

Return Value

INTEGER

Syntax

NUMBYTES(text-expression)

Parameters

text-expression
The TEXT expression whose bytes are to be counted.

Examples

Example 8-42 Counting the Bytes in the Longest Name

You would like to know the length of the names of your products so you can specify
the appropriate width for the label column in a report. You can use the NUMBYTES
function in combination with the LARGEST function to find the length of the longest
label. Then use that value to set the column size. The following statements in a
program find the longest name and use the byte count to format a report.

firstcol = LARGEST(NUMBYTES(name.product))+1
LIMIT month TO FIRST 3
FOR product
 DO
 ROW WIDTH FIRSTCOL name.product WIDTH 6 ACROSS month -
 FIRST 3: units
 DOEND

When the program is run, it produces the following output.

Chapter 8
NUMBYTES

8-53

3-Person Tents 200 203 269
Aluminum Canoes 347 400 482
Tennis Racquets 992 1,076 1,114
Warm-up Suits 1,096 1,214 1,294
Running Shoes 2,532 2,405 2,775

NUMCHARS
The NUMCHARS function counts the number of characters in a text expression. When
the value is a multiline text value, NUMCHARS returns the total number of characters
in all the lines. The result returned by NUMCHARS has the same dimensions as the
specified expression.

Tip:

When you are using a multibyte character set, you can use the NULLIF function
instead of the NUMCHARS function.

Return Value

INTEGER

Syntax

NUMCHARS(text-expression)

Parameters

text-expression
The text expression whose characters are to be counted. NUMCHARS accepts either
a TEXT or NTEXT argument. It does not perform an automatic conversion to either
data type. It returns the information that is correct for the data type of the specified
argument.

Examples

Example 8-43 Counting the Characters in the Longest Name

You would like to know the length of the names of your products so you can specify
the appropriate width for the label column in a report. You can use the NUMCHARS
function in combination with the LARGEST function to find the length of the longest
label. Then use that value to set the column size. The following statements in a
program find the longest name and use the character count to format a report.

firstcol = LARGEST(NUMCHARS(name.product))+1
LIMIT month TO FIRST 3
FOR product
 DO
 ROW WIDTH FIRSTCOL name.product WIDTH 6 ACROSS month -
 FIRST 3: units
 DOEND

When the program is run, it produces the following output.

3-Person Tents 200 203 269
Aluminum Canoes 347 400 482

Chapter 8
NUMCHARS

8-54

Tennis Racquets 992 1,076 1,114
Warm-up Suits 1,096 1,214 1,294
Running Shoes 2,532 2,405 2,775

NUMLINES
The NUMLINES function counts the number of lines in each value of a text expression.
The result returned by NUMLINES has the same dimensions as the specified
expression.

NUMLINES accepts either a TEXT or NTEXT argument. It does not perform an
automatic conversion to either data type.

Return Value

INTEGER

Syntax

NUMLINES(text-expression)

Parameters

text-expression
The text expression whose lines are to be counted.

Examples

Example 8-44 Counting the Number of Lines

In this example, you want to determine the number of lines in the multiline text variable
LASTNAMES. The LASTNAMES variable has the following values.

Adamson
Jones
Smith
Taylor

The statement

SHOW NUMLINES(lastnames)

produces the following output.

4

NUMTODSINTERVAL
The NUMTODSINTERVAL function converts a number to a DSINTERVAL literal.

Syntax

NUMTODSINTERVAL (number, interval_unit)

Chapter 8
NUMLINES

8-55

Parameters

number
Any NUMBER value or an expression that can be implicitly converted to a NUMBER
value.

interval_unit
A text value that specifies the unit of number and must resolve to one of the following
string values: DAY, HOUR, MINUTE, or SECOND.
interval_unit is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, the precision of the return is 9.

NUMTOYMINTERVAL
The NUMTOYMNTERVAL function converts a number to a YMINTERVAL literal.

Syntax

NUMTOYMINTERVAL (number, interval_unit)

Parameters

number
Any NUMBER value or an expression that can be implicitly converted to a NUMBER
value.

interval_unit
A text value that specifies the unit of number and must resolve to one of the following
string values: YEAR or MONTH.
interval_unit is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, the precision of the return is 9.

NVL
The NVL function replaces a NA value or an empty string with a string.

To evaluate a specified expression and replace a non-NA value or empty string with
one value and a NA value with another, use NVL2.

Return Value

The specified replacement value when the value of the base expression is NA, or the
base expression when the value of the base expression is not NA. The data type of the
return value is always the same as the data type of the base expression.

Syntax

NVL (exp , replacement-exp)

Parameters

expr
The expression to replace when it has a NA value or an empty string.

Chapter 8
NUMTOYMINTERVAL

8-56

replacement-exp
The value with which you want to replace a NA value.

Examples

Example 8-45 Working with NVL

SHOW NVL('First String', 'Second String')
First String

SHOW NVL('', 'Second String')
Second String

NVL2
The NVL2 function returns one value when the value of a specified expression is not
NA or an empty string, or another value when the value of the specified expression is
an empty string or NA.

To replace a NA value or an empty string with a string, use NVL.

Return Value

The data type of the return value is always the data type of expr2 (that is, the
expression whose value is returned when the value of expr1 is not NA).

Syntax

NVL2 (expr1 , expr2 , expr3)

Parameters

expr1
The expression whose value this function evaluates.

expr2
An expression whose value is returned when the value of expr1 is not an empty string
or NA.

expr3
An expression whose value is returned when the value of expr1 is NA.

Usage Notes

Comparing Values of Different Data Types

When the data types of expr2 and expr3 are different, then the function converts expr3
to the data type of expr2 before comparing them.

Examples

Example 8-46 Working with NVL2

SHOW NVL2('Which string?', 'First String', 'Second String')
First String

SHOW NVL2('', 'First String', 'Second String')
Second String

Chapter 8
NVL2

8-57

OBJ
The OBJ function returns information about an analytic workspace object.

Return Value

The return value depends on the value specified for choice. Also, when choice is
applicable to only a specific type of object, and you specify a different type of object for
object-name, then OBJ returns NA unless otherwise noted.

Syntax

OBJ(choice [object-name])

Parameters

object-name
A TEXT expression that is the name of the object that you want to retrieve information
about.

choice
A keyword or keyword phrase which indicates the type of information you want. The
following table lists the syntax, data type of the returned value, and description of valid
keywords.

Keyword for choice Data Type Description of Returned Value

ACQUIRED BOOLEAN Whether the specified object has been acquired for modification in
multiwriter mode. For a partitioned variable, returns YES only when
all of the partitions of that variable have been acquire.

ACQUIREDPARTITIONS TEXT
(multiline)

The names of the partitions of the variable specified by object-name
that are acquired for modification in multiwriter mode.

AGGMAP TEXT
(multiline)

The specification of the specified aggmap.

AGGMAPLIST TEXT
(multiline)

The names of the aggmap objects in the specified formula.

ALIASLIST TEXT
(multiline)

The names of the alias dimensions for the specified dimension.

ALIASOF TEXT The name of the base dimension for the specified alias dimension.

AW TEXT The name of an attached workspace that contains the specified
object. When the specified object is in only one attached workspace,
AW returns the name of the workspace. When the specified object
is in multiple attached workspaces, AW still returns only one
workspace name. You must use the AWLIST keyword to get all the
relevant workspace names. When the object is not in any attached
workspace, AW returns NA.

AWLIST TEXT
(multiline)

The names of the attached workspaces that contain an object with
the specified name. When you specify a qualified object name for
the object, AWLIST returns only the relevant workspace name.
When no workspace contains the specified object, AWLIST returns
NA.

Chapter 8
OBJ

8-58

Keyword for choice Data Type Description of Returned Value

BTREE BOOLEAN Whether a BTREE index was defined for the specified conjoint
dimension or composite.

CACHEEMPTY BOOLEAN Whether a session cache has been emptied of data for the specified
variable. A cache can be emptied by using a CLEAR statement with
the CACHE keyword. When object-name is not a variable or when it
has no session cache, then CACHEEMPTY returns NA. (For more
information on the session cache, see "What is an Oracle OLAP
Session Cache?".)

CACHECOUNT LONG
INTEGER

The number of non-NA cells in the session cache for the specified
variable. When object-name is not a variable or when it does not
have a no session cache, then CACHECOUNT returns NA. (For
more information on the session cache, see "What is an Oracle
OLAP Session Cache?".).)

CHANGED BOOLEAN Whether the specified variable, relation, dimension, or valueset has
been modified since the last UPDATE.

CHANGEDPAGES INTEGER The number of pages in the analytic workspace that have changed
since the last update. This is approximately the number of pages
that an UPDATE command will write to disk. The larger the number
of changed pages, the longer the UPDATE command takes to
complete.

CLASS TEXT The storage class of the specified object. Possible return values are:
• TEMPORARY — An object whose values are not saved in the

workspace; applicable to valuesets, variables, relations, and
worksheets.

• An empty string — A permanent object whose values, when
modified, are stored in a new place in the workspace until you
update and are then included in the update; applicable to all
object types.

DATA TEXT The data type of the specified object.
• For dimensions, variables, and formulas, possible return values

are INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL, NUMBER,
SHORT (for SHORTDECIMAL), BOOLEAN, ID, TEXT, NTEXT, DATE or
DATETIME.

• For a relation, it returns the name of the related dimension.
• For a concat dimension, conjoint dimension, composite, or

partition template, it returns the names of the base dimensions
of an object as a multiline text value.

• For a program defined with a data type, it returns the name of
the data type. For a program defined to return a value of a
dimension, returns the name of the dimension.

• For a valueset, it returns the name of the dimension for which
the valueset was defined.

• For other types of objects, it returns NA.

DEFINE TEXT
(multiline)

The description of the specified object. The value is the same value
that DESCRIBE would display for the object minus the words
DEFINE and the name of the object.

DFNCHANGED BOOLEAN Whether the definition of the specified object has changed since the
last UPDATE.

Chapter 8
OBJ

8-59

Keyword for choice Data Type Description of Returned Value

DFNDIMS TEXT
(multiline)

The names of the dimensions and composites in the dimension list
that is used to define the specified object. Note that:
• For an unnamed composite, it returns the form used in the

object definition: SPARSE<dim1 dim2 ...>.

• For a dimension surrogate, it returns the name of the dimension
for which the surrogate was defined.

• When no dimension list was used when the specified object
was defined, it returns NA.

DIMMAX INTEGER The number of values in the specified dimension. For other object
types, it returns 0 (zero).
Note: When you use the DIMMAX choice with a dimension that has
a read permission that restricts access to the dimension values, the
result returned depends on whether the dimension has previously
been loaded. Permissions are evaluated when an object is loaded.
Generally, the first time you refer to an object in your session,
Oracle OLAP loads the object and evaluates its permissions.
However, the OBJ function does not load objects, because it is just
providing information about them. When you use DIMMAX with a
dimension that has not yet been loaded, the result reflects the entire
number of values in the dimension, regardless of whether the
dimension has read permissions. When a dimension with
permissions has been loaded, then the DIMMAX choice reflects the
permitted size. To ensure that the DIMMAX choice returns the
permitted size, you can execute a LOAD statement before using the
OBJ function.

DIMS TEXT
(multiline)

The names of the dimensions of the specified object. Specifically:
• For dimensions, simple, concat, or conjoint, it returns the name

of the dimension itself. To find out the base dimensions of a
concat or conjoint dimension, use the DATA keyword.

• For composites, it returns the base dimensions of the
composite.

• For a dimension surrogate, it returns the name of the dimension
for which the surrogate was defined.

• For dimensioned objects, it returns the names of the
dimensions of the object.

• When an object has no dimensions, it returns NA.

DIMTYPE TEXT The type of the specified dimension. Specifically:
• For a concat dimension, it returns CONCAT.

• For a conjoint dimension, it returns CONJOINT.

• For a composite, it returns COMPOSITE.

• For a simple dimension, it returns the data type of the
dimension.

• For a partition template object, it returns PARTITION TEMPLATE.

• For all other objects, it returns NA.

DISKSIZE INTEGER The total number of pages used to store the specified object.
Note: For a temporary object, OBJ(DISKSIZE) returns a value of 0
(zero), because the values of a temporary object are stored in
temporary storage and not in the database file.

FORMULA TEXT The expression in the definition of the specified formula.

Chapter 8
OBJ

8-60

Keyword for choice Data Type Description of Returned Value

HASAGGCOUNT BOOLEAN Whether an Aggcount object is associated with the specified
variable. (For more information on Aggcount variables, see
"Aggcount Variables".)

HASCACHE BOOLEAN Whether a session cache that is local to the session has been
established to store data for the specified variable. (For more
information on the session cache, see "What is an Oracle OLAP
Session Cache?".)

HASH BOOLEAN Whether a HASH index was defined for the specified conjoint
dimension or composite.

HASHSIZE INTEGER The number of pages allocated for the specified hashed dimension's
TBLSPACE (that is, the page space containing the anchors for the
hash table's K/V node lists). Note that this does not include the
number of pages used for the actual Key/Value nodes, which are
allocated from the RANSPACE's page space (KVPAGES).

HASPROPERTY prop-name BOOLEAN Whether the property specified by prop-name exists for the specified
object. (Abbreviated HASPRP)

HIDDEN BOOLEAN Whether the text of the specified program or model has been
hidden. (For more information on hiding programs and models, see
the HIDE and UNHIDE commands.)

INDEXSIZE INTEGER The total size of all inversions associated with the specified relation
or conjoint dimension.

INORDER BOOLEAN Whether the logical order of the values of the underlying dimensions
of the specified object matches the physical order in the analytic
workspace. INORDER returns TRUE when the logical order of the
values of the dimension has not been specified using MAINTAIN
with the keywords ADD FIRST, ADD AFTER, ADD BEFORE, or
MOVE.

ISBY [RECURSIVE] dimname BOOLEAN When you supply object-name, whether the specified object is
dimensioned by, related to, or a surrogate for the specified
dimension (dimname). When you supply only dimname, whether an
object is dimensioned by the dimension you specify in dimname; or
when the object is an aggmap, whether the specified dimension is a
dimension of any relations or models in the aggmap.
• RECURSIVE specifies that Oracle OLAP should search for

dimname in the base dimensions of the specified object, at any
level. the. See OBJ With ISBY .

• dimname is a text expression that is the name of a dimension.
(Oracle OLAP automatically converts the name to uppercase.)
When dimname is a composite, the value returned by ISBY
indicates if an object was defined with the composite.

Specify a value for object-name when the object is a dimension
surrogate, variable, relation, or valueset name to learn if that object
is dimensioned by or related to or a surrogate for the specified
dimension. You can omit object-name when you are looping through
the list of workspace objects to obtain information about multiple
objects, or when you are using OBJ to limit the NAME dimension.

Chapter 8
OBJ

8-61

Keyword for choice Data Type Description of Returned Value

ISCOMPILED BOOLEAN Whether the compilation status of the specified compilable object
(such as a program, model, or formula). The value returned
depends on the type of object and on whether a compilation error
was found in that object. For example:
• For programs, returns YES when the program has been

processed by the compiler since the last time it was modified. A
return value of YES does not necessarily indicate that all lines of
the program are compiled. See the COMPILE command for
more information.

• For formulas, returns YES only when the formula was compiled
without finding a single error and when the formula can be
saved. When the formula contains ampersand substitution, it
cannot be saved. When the formula is empty, the ISCOMPILED
choice returns NO.

• For models, returns YES only when the model was compiled
without a single error found or when the model is empty.

• For programs, formulas, and models, returns NO when you
delete an object that the program, formula, or model
references.

ISCOMPRESSED BOOLEAN Whether the specified object is a compressed composite.

ISLATEST BOOLEAN Whether the specified object is the latest version of the object. This
syntax is the equivalent of OBJ(VERSION)EQ OBJ(LATESTVER).

ISSOLVED BOOLEAN When the specified object is a variable which is dimensioned by a
compressed composite, whether the variable has been aggregated.

KVSIZE INTEGER The number of pages currently allocated to hash and BTREE
indexes.

LATESTVER INTEGER The current state of the specified object, referring to the most
recently committed version of the object. The returned value is
either equal to or greater than the value returned by OBJ(VERSION).
When the value returned by LATESTVER is greater than that
returned by OBJ(VERSION), then another user has updated this
object since the analytic workspace was attached in read-only or
read/write mode, or, if the analytic workspace was attached in
multiwriter mode, since the last synchronization.

LD TEXT
(multiline)

The LD (long description) of the specified object.

MODEL TEXT
(multiline)

The specification of the specified model.

NACACHECOUNT INTEGER The total number of NA cached cells.

NACACHEEMPTY BOOLEAN Whether the NA cache is empty.

NAPAGES INTEGER The number of pages that contain only NA values and are not stored
in the database.

NOHASH BOOLEAN Whether the specified conjoint dimension uses the NOHASH index
algorithm to load and access data.

NUMCELLS INTEGER The total number of physical cells within the specified variable.
Oracle OLAP determines this value by finding the Cartesian product
of the OBJ(DIMMAX) values for the dimensions of the variable, taking
composites into account.

Chapter 8
OBJ

8-62

Keyword for choice Data Type Description of Returned Value

NUMDELS DECIMAL The number of deleted cells for the specified dimensioned object.

NUMDFNDIMS INTEGER The number of dimensions or composites in the dimension list used
to define the specified object. For this count, each composite counts
as one, and the dimensions within the dimension list of the
composite are not counted. An object defined with a dimension list
could be a variable, relation, formula, valueset, concat or conjoint
dimension, dimension surrogate, or composite. When no dimension
list was used when defining the object (as for single-cell variables,
programs, and so on.), it returns 0 (zero).

NUMDIMS INTEGER The number of dimensions of the specified dimensioned object; or
the number of base dimensions of the specified composite. When
the specified object is a dimension is a dimension or dimension
surrogate, it returns 1, and for all other objects, it returns 0 (zero).

NUMSEGS INTEGER The number of analytic workspace segments associated with the
specified object when that object has multiple dimensions. (Note
that Oracle OLAP uses segments internally to keep track of the
physical storage of the object's values. Too many segments may
slow the retrieval of information.)

NUMVALS INTEGER The number of values or cells in the specified object. For a
compressed composite or a variable dimensioned by a compressed
composite, returns an INTEGER value that is the number of logical
values in the object (that is, the value that would be returned if the
composite was a b-tree composite).

OWNSPACE BOOLEAN When the specified object is a conjoint dimension or a composite
defined with a BTREE index algorithm, whether the object is using
private page space to store BTREE nodes. When the specified
object is a variable-width text dimension, a relation, or a variable-
width text variable, whether the data for the object is stored in one
or more private page spaces that are associated with that object.

PARTBY TEXT
(multiline)

The names of the partition dimensions of the specified partitioned
variable or partition template object. The names are returned as a
multiline text value (one line for each dimension).

PARTDIMS partitions TEXT
(multiline)

The names of the dimensions of the partitions of the specified
partition template or a partitioned variable. The value is returned as
a multiline text value (one line for each dimension).
partitions is a multiline text value (one line for each partition name)
that specifies which partitions you're asking about. When you
specify a partition name that is not a valid partition in partitions, an
error occurs.

PARTITION partitions TEXT
(multiline)

For a partitioned variable or a partition template object, a textual
description of the partitions of the specified partition template or a
partitioned variable. When called on a partition template, the
returned description is similar to the DEFINE PARTITION
TEMPLATE statement. When called on a partitioned variable, the
returned description is similar to the DEFINE VARIABLE statement.
partitions is a multiline text value (one line for each partition name)
that specifies which partitions you're asking about.When you specify
a partition name that is not a valid partition in partitions, an error
occurs.

Chapter 8
OBJ

8-63

Keyword for choice Data Type Description of Returned Value

PARTMETH TEXT The method (RANGE or LIST) by which the specified partition
template or a partitioned variable is partitioned.

PARTNAMES TEXT
(multiline)

A multiline TEXT value containing the names of all the defined
partitions of the specified partition template. When name is the
name of a partitioned variable, returns a multiline TEXT value
containing the names of all the partitions of the variable.
Note: Not all of the partitions defined by a partition template
necessarily exist in each partitioned variable. Calling
OBJ(PARTNAMES)on a partitioned variable returns only those
partitions that actually exist within the variable.

PARTRANGE partitions TEXT
(multiline)

The values of the LESS THAN clause for each of the partitions for the
specified RANGE partition template or RANGE partitioned variable.
partitions is a multiline text value (one line for each partition name)
that specifies which partitions you're asking about. When you
specify a partition name that is not a valid partition in partitions, an
error occurs.

PERIOD TEXT When the specified object is a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, the type of the dimension plus an
indication of multiple periods or phasing, if any.

PHYSMAX INTEGER The maximum physical value for positions within the specified
dimension or composite.

PMTMAINTAIN TEXT The permission condition for the maintain permission associated
with the specified dimension. When there is no maintain permission
for the dimension, it returns NA.

PMTPERMIT TEXT The permission condition for the permit permission associated with
the specified object. When there is no permit permission for the
object, it returns NA.

PMTREAD TEXT The permission condition for the read permission associated with
the specified object. When there is no read permission for the
object, it returns NA.

PMTWRITE TEXT The permission condition for the write permission associated with
the specified object. When there is no write permission for the
object, it returns NA.

PRECISION INTEGER The precision of the specified NUMBER dimension or variable. The
precision is the total number of digits. When the variable was
defined without a precision specification, then OBJ returns NA.

PROGRAM TEXT
(multiline)

The text of the specified program.

PROPCHANGED BOOLEAN Whether the properties of the specified object have changed since
the last UPDATE.

PROPERTY prop-name WORKSHE
ET

The value of the specified object's property as specified by prop-
name which is a text expression that specifies the name of the
property. The data type of the return value is determined at run time.
When the named property does not exist, it returns NA. (Abbreviated
PRP)

Chapter 8
OBJ

8-64

Keyword for choice Data Type Description of Returned Value

PROPERTYLIST TEXT
(multiline)

The names of the properties associated with the specified object,
one property on a line. The names are in uppercase letters and are
stored in the collating sequence for ASCII characters. For objects
without properties, it returns NA. (Abbreviated PRPLIST)

PROPERTYTYPE prop-name TEXT The data type of object's property as specified by prop-name which
is a text expression that specifies the name of the property. The
type is derived from the expression used in the PROPERTY
statement that created the property. Possible return values are
BOOLEAN, TEXT, ID, DATE, DATETIME, NUMBER, INTEGER, LONGINTEGER,
DECIMAL, and SHORT.When the named property does not exist or has
a value of NA, it returns NA. (Abbreviated PRPTYPE)

PUSHCOUNT INTEGER The number of times PUSH has executed for the specified executed
(that is, the number of pushed values currently saved for the
specified object).

REFERS [RECURSIVE] text-
expression

TEXT
(multiline)

The words found in the specified compilable object (for example, a
program) that match the ones you specify in text-expression.
REFERS returns NA when it does not find any of the specified
words, when the specified object is not a compilable object, or when
the workspace does not contain any compilable objects. When you
supply both arguments, REFERS searches only the specified object
for the listed words. When you omit object-name, REFERS
searches all the compilable objects in the current workspace.
• text-expression is a multiline TEXT expression that is the words

for which it should search. Each line in the text value is
considered a separate word to be searched for. When, for text-
expression, you specify a list of words that is the result of the
OBJLIST function, you can produce a cross-reference for
compilable objects in the current workspace.

• RECURSIVE specifies that Oracle OLAP should search
(following the calling tree) for the text-expression to retrieve a
list of all of the occurrences of text-expression, at any level.

Tip: The search is not case-sensitive; REFERS treats TEXTVAR and
Textvar as the same word. REFERS ignores all text that is included
in a comment or enclosed in single quotes.

Chapter 8
OBJ

8-65

Keyword for choice Data Type Description of Returned Value

RELATION relation-query TEXT
(multiline)

The default relation (as specified the RELATION command) for the
specified object. The values that are returned vary depending on
what you specify for relation-query. The syntax for relation-query is:
DEFINELIST | DIMLIST | ACTUAL rel-dimname |

SPECIFIED rel-dimname
where:
• DEFINELIST specifies that the function return all of the names

of the dimensions and their associated default relations. As
shown in the following example, the names are returned and it
associated default relation are returned one per line, alternating
between dimension name and its associated default relation.

 dimname1
 relname1
 dimname2
 relname2

• DIMLIST specifies that the function return all of the names of
the dimensions for which default relations have been specified.
As shown in the following example, Oracle OLAP returns the
values one dimension name per line.

 dimname1
 dimname2

• ACTUAL dimname specifies that the function return the
relation that Oracle OLAP uses as the default relation between
object-name and its related dimension specified by rel-
dimname.

• SPECIFIED dimname specifies that the function return the
name of the relation specified in the RELATION command as
the default relation between object-name and its related
dimension specified by rel-dimname which is the value as
actually entered in the RELATION command, even if an error
occurred entering the data and there is no such relation in the
analytic workspace.

RSSIZE INTEGER The number of random subset pages used by main object.

SCALE INTEGER The scale of a NUMBER dimension or variable. A positive scale
indicates the number of digits to the right of the decimal point. A
negative scale indicates the number of rounded digits to the left of
the decimal point. When the variable was defined without a scale
specification, then OBJ returns NA.

SEGWIDTH {dim-name|ALL} TEXT
(multiline)

The default or user-specified segment size of a variable that has
multiple dimensions and that is associated with either a particular
dimension or all dimensions. Each line begins with a segment-size
(up to 11 digits) followed by the name of the associated dimension
or composite. The dimension name is not included in the line when
you specify a dimension and its dimensioned object. In that case
only the segment value is returned. When the segment size is
reported as zero, it means the default segment size is in effect, and
therefore you may have to use CHGDFN to set an appropriate size
for the variable's segments.
• dim-name is a text expression that is the name of a dimension.
• ALL specifies all dimensions.

Chapter 8
OBJ

8-66

Keyword for choice Data Type Description of Returned Value

SESSION BOOLEAN Whether the specified object is a session object.

SHAREMAP BOOLEAN When the specified object is dimensioned by a compound
dimension, whether the compound dimension is shared with other
objects.

SPARSE TEXT
(multiline)

The composites used in the definition of the specified object.

SURROGATELIST TEXT
(multiline)

The surrogates defined for the specified surrogate or dimension.

TRIGGER [triggering-event} TEXT
(multiline)

TRIGGER without a triggering-event keyword returns all the
triggering-event keywords and trigger programs names associated
with the specified object; or NA when the object does not have any
trigger programs associated with it. TRIGGER with a triggering-
event keyword returns the names of the trigger programs associated
with the specified object event.
Specify the triggering-event using one of the following keywords:

MAINTAIN
DELETE
PROPERTY
ASSIGN
BEFORE_UPDATE
AFTER_UPDATE

TYPE TEXT The object type of the specified object.

UNIQUE BOOLEAN Whether the specified concat dimension is unique. Returns FALSE
for other dimensions, and NA for other object types (including
Partition Templates).

UPDATED BOOLEAN When the analytic workspace is attached in multiwriter mode,
whether the specified object been updated. For other attachment
modes, returns NA.

VALCOUNT INTEGER The number of logical uncompressed values in the specified
compressed composite. For all other dimensions the result is
identical to DIMMAX.

VALSIZE INTEGER The number of pages used to store the specified object's values.
For text dimensions and variables defined without the WIDTH
keyword, OBJ(VALSIZE) counts only those pages that contain the
four-byte pointers to the text, not the storage for the text itself. For a
temporary variable, OBJ(VALSIZE) returns a value of 0 (zero)
because the values of a temporary variable are stored in temporary
storage and not in the analytic workspace.

VERSION INTEGER The current state of the attached version of the specified object.
(Note that changes that are updated and committed increase this
number.)

VNF TEXT When the specified object is a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR for which you have defined a VNF
(value name format), the VNF of the dimension. For other types of
objects, it returns NA.

Chapter 8
OBJ

8-67

Keyword for choice Data Type Description of Returned Value

WIDTH INTEGER The width, in bytes, of the storage area of each value of the
specified object:
• For dimensioned INTEGER and BOOLEAN variables that you

defined with a width, it returns 1.

• For dimensioned text variables and text dimensions that you
defined with a width, it returns a value between 1 and 4000,
which identifies the defined width.

• For all other objects, it returns NA.

object-name
A text expression that contains the name of the object in which you are interested.
The object can be in any attached workspace. When you specify object-name as a
text literal, you must enclose it in single quotes. (Oracle OLAP automatically converts
the name to uppercase.) When you specify the name of a program as the object-
name and you omit the quotes, Oracle OLAP runs the program and uses its return
value as the name of the object to be supplied as object-name.
You can omit object-name when you are using the OBJ function as part of a
statement, such as the LIMIT command, that loops through the NAME dimension. In
this case, the return value is dimensioned by the NAME dimension in the current
workspace.

Examples

See Also:

Example 10-95 for examples of using the OBJ function to retrieve default
relation information

Example 8-47 Listing Dimensions

Suppose you want a list of all the dimensions in an analytic workspace. First, use a
LIMIT command and the OBJ function to limit the status of the NAME dimension. Then
use a STATUS statement to produce a list of dimensions. Because the values
returned by OBJ(TYPE) are always in uppercase, you must use 'DIMENSION' (not
'dimension') in the LIMIT statement to get a match. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'DIMENSION'
STATUS NAME

produce the following output.

The current status of NAME is:
PRODUCT, DISTRICT, DIVISION, LINE, REGION, MARKETLEVEL, MARKET,
MONTH, YEAR, QUARTER

Example 8-48 Listing Relations

Suppose you want to see the definitions of all the relations in an analytic workspace.
Use the LIMIT command and the OBJ function to select these names. Then use
DESCRIBE to produce a list of their definitions. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

Chapter 8
OBJ

8-68

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT

DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Example 8-49 OBJ With ISBY

For example, the following statement limits NAME to all the objects dimensioned by
month.

LIMIT NAME TO OBJ(ISBY 'month')

You can use ISBY to find out if a dimension is a base dimension of a concat or
conjoint dimension or a composite. For example, assume that you had a conjoint
dimension named proddist whose base dimensions were product and district. In this
case, the following statement returns YES.

SHOW OBJ(ISBY 'district' 'proddist')

You can use ISBY to find out if a dimension is a dimension of a relation or a model
used in an aggmap. For example, assume that you had an aggmap called myaggmap
and you wanted to find out if a dimension named mydimension was used in any
relations or models within myaggmap. In this case, you could issue the following
statement.

SHOW OBJ(ISBY 'mydimension' 'myaggmap')

To determine whether a specified dimension is a base dimension at any level, you
must use ISBY with the RECURSIVE keyword. For example, assume that you had a
conjoint dimension named proddist.mon whose base dimensions were proddist and
month and a variable proddist.sales dimensioned by proddist. In this case, each of the
following statements would return NO.

SHOW OBJ(ISBY 'district' 'proddist.mon')
SHOW OBJ(ISBY 'district' 'proddist.sales')

However, when you use ISBY with the RECURSIVE keyword, each of the following
statements would return YES.

SHOW OBJ(ISBY RECURSIVE 'district' 'proddist.mon')
SHOW OBJ(ISBY RECURSIVE 'district' 'proddist.sales')

Example 8-50 Getting Information about a Variable

This example illustrates the use of several choices of the OBJ function to obtain
information about the variable sales. The definition of sales is as follows.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue

• The statement

SHOW OBJ(TYPE 'sales')

Chapter 8
OBJ

8-69

produces the following output.

VARIABLE

• The statement

SHOW OBJ(DATA 'sales')

produces the following output.

DECIMAL

• The statement

SHOW OBJ(DIMS 'sales')

produces the following output.

MONTH
PRODUCT
DISTRICT

• The statement

SHOW OBJ(ISBY 'product' 'sales')

produces the following output.

YES

• The statement

SHOW OBJ(LD 'sales')

produces the following output.

Sales Revenue

Example 8-51 Returning the Name of the Object or the Type of the Object

Suppose textvar is a variable whose value is geog, which is the name of a dimension.
Whether you enclose the word textvar in quotation marks determines whether the
following OBJ function calls return the word VARIABLE (the type of object textvar is) or
DIMENSION (the type of object geog is).

SHOW OBJ(TYPE 'textvar')
VARIABLE

SHOW OBJ(TYPE textvar)
DIMENSION

Example 8-52 Using OBJ to Select Objects

This example uses OBJ and DESCRIBE to look at the definitions of all the relations in
an analytic workspace. The Oracle OLAP statements

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT

DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

Chapter 8
OBJ

8-70

DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Example 8-53 Counting Compiled Objects

The following statements count how many compilable objects in your workspace are
compiled and how many are not compiled. Each statement loops over the objects in
the current workspace. The OBJ function returns YES for each object that is compiled,
NO for each compilable object that is not compiled, and NA for objects that are not
compilable. When NASKIP is YES (the default), the COUNT function in the first
statement counts the number of YES values that are returned by OBJ, and in the
second statement it counts the number of NO values that are returned.

SHOW COUNT(OBJ(ISCOMPILED))
SHOW COUNT(NOT OBJ(ISCOMPILED))

Example 8-54 OBJ with REFERS

The following statement searches the compilable objects in the current workspace for
references to the objects in all the attached workspaces. The output lists the non-
compilable objects in the current workspace too, but the return value for them is NA.

REPORT OBJ(REFERS OBJLIST(AW(LIST)))

In the following example, OBJ(REFERS) tells you whether var1, var2, or var3 appears in
the myprog program. The return value of OBJ(REFERS) is a multiline text value that
contains the references it finds. When only var1 and var3 appear in the program, then
the return value contains those two names, each on a separate line. The statement

SHOW OBJ(REFERS 'var1\nvar2\nvar3' 'myprog')

produces the following output.

VAR1
VAR3

When you do not specify the name of a program or formula to be searched,
OBJ(REFERS) returns a single-line or multiline text value for each object in the NAME
dimension of the current workspace. For objects that are not programs or formulas, NA
is returned. The statement

REPORT OBJ(REFERS 'var1\nvar2\nvar3')

produces the following output.

 OBJ(REFERS
 'var1
 var2
NAME var3')
-------------- ----------
PRODUCT NA
DISTRICT NA
DIVISION NA
LINE NA
QUARTER NA
REGION NA
YEAR NA
MONTH NA

Chapter 8
OBJ

8-71

 ...
MYPROG VAR1
 VAR3
VAR1 NA
VAR2 NA
VAR3 NA

Example 8-55 OBJ with PROPERTY

In the following example, OBJ(PROPERTY) returns information about the decplace
property of the actual variable. (See the PROPERTY command for more information.)
The user created this property to store the number of decimal places and now wants to
obtain that value to produce a report of the actual variable.

The statements

CONSIDER actual
PROPERTY 'decplace' 4
LIMIT month TO FIRST 1
LIMIT division TO 'Camping'
REPORT ACROSS month W 20 DECIMAL OBJ(PROPERTY 'decplace' -
'actual') actual

produce the following output.

DIVISION: CAMPING
 -------ACTUAL-------
 -------MONTH--------
LINE JAN 95
-------------- --------------------
Revenue 533,362.8800
Cogs 360,810.6600
Gross.Margin 172,552.2200
Marketing 37,369.5000
Selling 89,007.3800
R.D 24,307.5000
Opr.Income 21,867.8400
Taxes 15,970.3900
Net.Income 5,897.4500

Example 8-56 OBJ with SEGWIDTH

The following statements show how to change and display segment size values for all
of a variable's dimensions.

CHGDFN sales SEGWIDTH 150 5000 50
SHOW OBJ(SEGWIDTH ALL 'sales')

These statements produce the following output.

 150 MONTH
5000 PRODUCT
 50 DISTRICT

The following statement shows how to obtain the segment size value for a specific
dimension.

SHOW OBJ(SEGWIDTH 'product' 'sales')

This statement produces the following output.

5000

Chapter 8
OBJ

8-72

The following statement shows how to obtain a list of segment sizes for every
multidimensional variable or relation associated with the dimension.

When object-name is not specified, you must use REPORT rather than SHOW to
obtain a value for each object in the NAME dimension.

REPORT OBJ(SEGWIDTH 'product')

This statement produces the following output.

NAME OBJ(SEGWIDTH 'product')
-------------- -----------------------
SALES 5000
SALES.FORECAST 5000
SALES.PLAN 5000
SHARE 5000
UNITS 5000
UNITS.M 0
 ...

The following statement shows how to produce a list of segment sizes for all
dimensions in the current workspace.

REPORT OBJ(SEGWIDTH ALL)

This statement produces the following output.

NAME OBJ(SEGWIDTH ALL)
-------------- -----------------
SALES 150 MONTH
 5000 PRODUCT
 50 DISTRICT

SALES.FORECAST 150 MONTH
 5000 PRODUCT
 50 DISTRICT
 ...

OBJLIST
The OBJLIST function provides a list of the objects that are contained in one or more
workspaces that you specify. The list of workspace objects returned by OBJLIST has
duplicates removed and it is sorted in ascending order. The specified workspaces
must be currently attached when you use the function.

The result, a multiline TEXT value, can be used as an argument to the OBJ function
with the REFERS keyword. This usage helps in producing a cross-reference list for
compilable objects, such as programs and models, in the current workspace.

Note:

OBJLIST always returns the names of all the objects in a given workspace,
even when you have limited its NAME dimension.

Chapter 8
OBJLIST

8-73

Return Value

TEXT

Syntax

OBJLIST[(text-expression)]

Parameters

text-expression
A text expression that contains a single name or several names of currently attached
workspaces. Each workspace name must be on a separate line of a multiline TEXT
value. When you do not supply this argument, OBJLIST uses the current workspace
name. When text-expression includes the name of an analytic workspace that is not
attached, OBJLIST does not return a value. Instead, it signals an error.

Examples

Example 8-57 Listing Objects in Three Workspaces

In the following example, OBJLIST returns a multiline TEXT value that includes all the
objects in the three workspaces specified: mycode, mydata, and mytools. The statement

SHOW OBJLIST('mycode\nmydata\nmytools')

produces the following output.

ACTUAL
ADDFIVE
ADVERTISING
BUDGET
CITYLIST
CITYREPINIT
CITYREPS
 ...
YEAR

Example 8-58 Listing Referenced Objects

In the following example, OBJ(REFERS) returns a multiline TEXT value that contains
every object from the mycode, mydata, and mytools workspaces that is referenced in the
myprog program. The statement

SHOW OBJ(REFERS OBJLIST('mycode\nmydata\nmytools') 'myprog')

produces the following output.

ACTUAL
BUDGET
 ...
YEAR

OBJORG
The OBJORG function takes, as input, the name of an OLAP cube or cube dimension
as defined in the Oracle data dictionary (sometimes called a "logical OLAP object")

Chapter 8
OBJORG

8-74

and returns information about the lower-level, "physical," analytic workspace objects
by which that cube or cube dimension is implemented.

Use this function in OLAP DML statements that require an analytic workspace object
name rather than an OLAP cube or cube dimension name.

See Also:

"Cube-Aware OLAP DML Statements"

Return value

Analytic workspace object name or TEXT; or NA if an analytic workspace has the
requested definition information, but the field is empty.

Syntax

OBJORG(keyword [OWNER owner] top-level-object-name [sub-object-name])

Parameters

keyword
The valid keywords vary by the type of top-level-object or sub-object specified, as
documented in:

• Table 8-3.

• Table 8-4.

• Table 8-5.

• Table 8-6.

• Table 8-7.

• Table 8-8.

• Table 8-9.

Keyword Returns

Aggmap The aggmap for the cube. (Note: The function will
never return NA when you specify this keyword.)

Composite When a composite is used for the cube, the name of
the composite; or NA if the cube's sparsity type is
DENSE, or if the cube is partitioned. (See also the
keyword PartitionComposite.)

CubeStorageType (Property.) The DML data type used for all of the
cube's measures; or NA if there is no such single
data type (that is, if different measures have different
data types).

MeasureDim When the value returned for the keyword
CubeStorageType is not NA, the analytic workspace
measure dimension used to refer to the cube's base
measures; or NA when the value returned for the
keyword CubeStorageType is NA.

Chapter 8
OBJORG

8-75

Keyword Returns

PartitionCompositeV

ar

The text variable, dimensioned by PartitionDim,
that holds the names of the composites for the
cube's partitions; or NA if the cube's sparsity type is
DENSE, or if the cube is not partitioned. (See also
the Composite keyword.)

PartitionDim The analytic workspace dimension that contains the
names of the partitions for the cube; or NA if the
cube is not partitioned.

PartitionRel The relation, dimensioned by PartitionDim, that
relates each cube partition to its corresponding root
dimension value; or NA if the cube is not partitioned.

PartitionTemplate The partition template relating each cube partition to
its corresponding analytic workspace dimension
values; or NA if the cube is not partitioned.

SharedMeasureVar When the cube has a storage type, the variable (of
that type) that stores all of the cube's measures; or
NA when it does not.

SparseType (Property.) The cube sparsity type. Valid values are:
COMPRESSED, SPARSE, DENSE, or
SPARSE_GLOBAL. Corresponds to column
SPARSE_TYPE in the USER_CUBES and
ALL_CUBES views.

Keyword Returns

Measure When the value returned when you specify the
CubeStorageType keyword for a cube is NA, the
variable that stores this measure; or when not NA,
the formula extracting this measure from the cube's
top level variable.

OverrideAggMap The aggmap for the measure, if the measure has
one; otherwise returns NA. (Note that when the
measure has no aggmap, then the cube's aggmap is
used.)

Keyword Returns

AggFloorValueSet If the cube's consistent solve specification specifies
an aggregation at a specific level, the valueset
consisting of all members of the dimension that
belong to that level; otherwise, NA.

HierValueSet The valueset containing the names of all hierarchies
of the analytic workspace dimension over which the
cube is aggregated. (Note that when you specify this
keyword, the function never returns NA.)

OperVar If at least one of the cube's measures has an
OverrideAggMap, the variable, dimensioned by the
cube's measure dimension, that contains the
aggregation operator used for each measure for
which an OverrideAggMap exists.; otherwise, NA.

Chapter 8
OBJORG

8-76

Keyword Returns

PrecomputeValueSet When the cube organization specifies a precompute
condition, the valueset containing all members of the
dimension that satisfy that condition; otherwise NA.
(In particular, when the cube organization specifies a
precompute percent, returns NA.)

Keyword Returns

AggRel The relation, dimensioned by Dim and HierDim, that
relates each dimension value (in each hierarchy) to
its parent dimension value (in that hierarchy). (Note
that when you specify this keyword, the function
never returns NA, even if the dimension has no
hierarchies.)

AttributeCubeGIDRel The relation, dimensioned by Dim, that relates each
dimension value to its cube GID (including attribute
columns) in ___AW_GID_DIMENSION.
AttributeCubeGIDRel is the same as CubeGIDRel,
except it includes attribute columns. (Note that when
you specify this keyword, the function never returns
NA.)

CubeGIDRel The relation, dimensioned by Dim, that relates each
dimension value to its cube GID in
___AW_GID_DIMENSION. When the dimension does not
have a materialized view (MV), then CubeGIDRel is
empty. The difference between a GID and a cube
GID is that cube GIDs span all hierarchies. (Note that
when you specify this keyword, the function never
returns NA.)

Dim The analytic workspace physical dimension
corresponding to this logical dimension. (Note that
when you specify this keyword, the function never
returns NA.)

DimOrderVar The variable, dimensioned by Dim and
___AW_ALL_LANGUAGES, that contains integers (for
each dimension value, in each language) used for
sorting. (Note that when you specify this keyword,
the function never returns NA.)

FamilyRel The relation, dimensioned by Dim, LevelDim, and
HierDim, that relates each dimension value (in each
level, in each hierarchy) to the dimension value (at
that level, in that hierarchy), if any, of which it is a
descendant. FamilyRel is similar to ParentRel, but it
allows you to specify a level rather than automatically
choosing the next level up. FamilyRel is similar to
ValueFamilyRel, but used for level hierarchies. (Note
that when you specify this keyword, the function
never returns NA.)

Chapter 8
OBJORG

8-77

Keyword Returns

GIDRel The relation, dimensioned by Dim and HierDim, that
relates each dimension value (in each hierarchy) to
its GID, if any, in ___AW_GID_DIMENSION. (Note that
when you specify this keyword, the function never
returns NA.)

HierDim The dimension containing all hierarchies for this
dimension. (Note that when you specify this keyword,
the function never returns NA.)

HierLevelValueSet The valueset, dimensioned by HierDim, that (for each
hierarchy) contains all levels (from the LevelDim) that
belong to that hierarchy. (Note that when you specify
this keyword, the function never returns NA.)

HierOrderVar The variable, dimensioned by Dim, HierDim, and
___AW_ALL_LANGUAGES, that contains integers (for
each dimension value, in each hierarchy, in each
language) used for sorting. (Note that when you
specify this keyword, the function never returns NA.)

InHierValueSet The valueset, dimensioned by HierDim, that (for each
hierarchy) contains all dimension values (contained
in that hierarchy). (Note that when you specify this
keyword, the function never returns NA, even if the
dimension has no hierarchies.)

LevelDim The dimension containing all levels for this
dimension. (Note that when you specify this keyword,
the function never returns NA, even if the dimension
has no levels.)

LevelRel The relation, dimensioned by the Dim, that relates
each dimension value to a level in the LevelList.
(Note that when you specify this keyword, the
function never returns NA.)

MemberDepthRel The relation, dimensioned by Dim and HierDim, that
relates each dimension value (in each hierarchy) to
its depth (if any) in ___AW_DEPTH_DIMENSION. (Note
that when you specify this keyword, the function
never returns NA.)

MemberSourceRel The relation, dimensioned by Dim, that relates each
dimension value to an element of
___AW_MEMBER_SOURCES. (Note that when you specify
this keyword, the function never returns NA.)

ParentRel The relation, dimensioned by Dim and HierDim, that
relates each dimension value (in each hierarchy) to
its parent dimension value (in that hierarchy). (Note
that when you specify this keyword, the function
never returns NA, even if the dimension has no
hierarchies.)

Chapter 8
OBJORG

8-78

Keyword Returns

ValueFamilyRel The relation, dimensioned by Dim,
___AW_GID_DIMENSION, and HierDim, that relates
each dimension value (for each GID, in each
hierarchy) to the dimension value (with that GID, in
that hierarchy), if any, of which it is a descendant.
ValueFamilyRel is similar to FamilyRel, but used for
value hierarchies. (Note that when you specify this
keyword, the function never returns NA.)

Keyword Returns

Attribute The value returned varies depending on whether or
not the dimension is indexed.
• When the dimension is not indexed, the

(physical) variable, dimensioned by Dim
corresponding to the attribute's dimension and
used to hold this (logical) attribute.

• When the dimension is indexed, the (physical)
relation, dimensioned by Dim corresponding to
the attribute's dimension, that relates each
dimension value to a corresponding value from
AttributeDim.

(Note that when you specify this keyword, the
function never returns NA.)

AttributeDim When the attribute is indexed, the dimension that
stores all of the attributes values; otherwise NA.

HierUniqueKeyRel When the attribute is a unique key attribute, the
relation, dimensioned by Dim and HierDim
corresponding to the attribute's dimension, that
relates each analytic workspace dimension value (in
each hierarchy) to a corresponding value from
AttributeDim; otherwise, NA.

UniqueKeyRel When the attribute is a unique key attribute (that is,
indexed), the relation, dimensioned by Dim, that
corresponds to the attribute's dimension, that relates
each dimension value to a corresponding value from
AttributeDim.; otherwise, NA.

Keyword Returns

SurrogateDim The surrogate for the owning dimension's Dim that
contains only those dimension values contained in
this dimension level. (Note that when you specify this
keyword, the function never returns NA.)

Keyword Returns

Model The model corresponding to this dimension's
calculation model. (Note that when you specify this
keyword, the function never returns NA.)

Chapter 8
OBJORG

8-79

OWNER owner
The owner of the cube or cube dimension identified by top-level-object. If you do not
include this clause, the function uses the current owner.

top-level-object
A text expression that specifies the name of the cube or the cube dimension for which
information is requested.

sub-object
A text expression that specifies the name of the "logical" OLAP sub-object, if any, for
which information is requested. Valid values vary depending on whether the top-level-
object is a cube or a cube dimension:

• When top-level-object is a cube, you can specify the name of a measure or
dimensionality

• When top-level-object is a cube dimension, you can specify the name of a base
attribute, hierarchy, dimension level, or dimension calculation model.

Examples

Examples of using OBJORG with various keyword appear in several sample OLAP
DML programs described within this manual:

• For examples of using OBJORG with the Dim keyword, see the following sample
OLAP DML programs:

– ADD_L1_2 program in Example 9-5

– REMOVE_L2_1 program in Example 10-98

– SETUP_PRE_MODEL and SETUP_POST_MODEL programs in
Example 10-118

– ADD_L1_2_DATES program in Example 10-169

• For an example of using OBJORG with the Measure keyword, see the ADD_L1_2
program in Example 9-5.

• For an example of using OBJORG with the Parentrel keyword, see the
REMOVE_L2-1 program in Example 10-98.

• For examples of using OBJORG with the Attribute keyword, see the following
sample programs:

– SETUP_POST_MODEL program in Example 10-118

– ADD_L1_2_DATES program in Example 10-169

OBSCURE
The OBSCURE function provides two mechanisms for encoding a single-line text
expression. Depending on the mechanism you use, OBSCURE can also restore the
encoded value to its original form.

Chapter 8
OBSCURE

8-80

Note:

This function performs simple encoding. For information on using secure
encryption and other security features in Oracle, see About Oracle Database
Security in Oracle Database Security Guide.

Return Value

TEXT

Note:

The return value of the OBSCURE function always has a text data type.
However, unless you specify the TEXT keyword, the actual value returned by
OBSCURE(HASH) and OBSCURE(HIDE) is binary. When you want to be able to
manage these encoded values as text (for example, when you want to be able
to store them in a text file), you must specify the TEXT keyword. See
Generating Text Data.

Syntax

OBSCURE({HASH|HIDE|UNHIDE} [TEXT] seed-exp input-exp)

Parameters

HASH
Specifies that Oracle OLAP encodes the input text expression according to the seed
expression that you specify. With the HASH keyword:

• Encoded values cannot be restored to their original form.

• The same seed expression and input text always produce the same result.

HIDE
Specifies that Oracle OLAP encodes the input text expression according to the seed
expression that you specify. With the HIDE keyword:

• Encoded values can be un-encoded to their original form with UNHIDE.

• The same seed expression and input text always produce different results.

The HIDE keyword provides a mechanism for storing values in encoded form while
actually comparing their un-encoded values.

UNHIDE
When specified with the original seed expression, decodes values encoded with the
HIDE keyword to their original form. See "Decoding Text".

TEXT
The TEXT keyword causes OBSCURE to convert binary data to text, such that the
return value consists only of text data. When you do not specify the TEXT keyword,
the output of OBSCURE is binary data. See "Decoding Text", and "Generating Text
Data".

Chapter 8
OBSCURE

8-81

seed-exp
A single-line case-sensitive text expression that is used as a seed value when
encoding of the input text expression.

input-exp
A single-line case-sensitive text expression to be encoded or decoded by OBSCURE.

Usage Notes

Decoding Text

When you have used OBSCURE(HIDE) with the TEXT keyword to encode a text
expression, you must also specify the TEXT keyword with OBSCURE(UNHIDE) to decoded
expression to its original value.

Examples

Example 8-59 Generating Text Data

The following statements illustrate the use of the TEXT keyword.

DEFINE encoded_text VARIABLE TEXT
DEFINE unencoded_text VARIABLE TEXT

unencoded_text = 'max'
encoded_text = OBSCURE(HIDE TEXT 'XXXX' unencoded_text)
SHOW encoded_text

This SHOW statement generates the following output.

c5WF/XfABuY

The same statements without the TEXT keyword would produce binary output from the
SHOW statement.

ORA_HASH
The ORA_HASH function computes a hash value for a given expression. This function
is useful for operations such as analyzing a subset of data and generating a random
sample.

Return Value

NUMBER

Syntax

ORA_HASH (expr [, max_bucket [, seed_value]])

Parameters

expr
The data for which you want the function to compute a hash value. There are no
restrictions on the type or length of data represented by expr.

max_bucket
The maximum bucket value returned by the function. You can specify any value
between 0 and 4294967295. The default is 4294967295.

Chapter 8
ORA_HASH

8-82

seed_value
A value between 0 and 4294967295. The default is 0. When you want to produce
different has values for the same set of data, specify a value for this argument.

PARTITION
The PARTITION function returns the name of the partition in which a value is stored.

Return Value

Text

Syntax

PARTITION (partition_template_values)

Parameters

partition_template_values
An expression that represents one or more values of the partition template (for
example, the name of a partition template or a QDR).

Examples

Example 8-60 Retrieving the Name of a Partition

Assume that you have defined the following objects.

DEFINE time DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE time_parentrel RELATION time <time>
DEFINE partition_sales_by_year PARTITION TEMPLATE <time product> -
PARTITION BY LIST (time)(PARTITION time_2003 VALUES -
('2003','Dec2003', 'Jan2003','31Dec2003','01Dec2003','31Jan2003','01Jan2003')-
<time product> PARTITION time_2002 VALUES -
('2002', 'Dec2002', 'Jan2002', '31Dec2002', '01Dec2002','31Jan2002','01Jan2002')-
 <time product>)
DEFINE sales DECIMAL <partition_sales_by_year<time product>>

Assume that these object have the values shown in the following report.

REPORT DOWN PARTITION(partition_sales_by_year) time product sales

PARTITION(PART
ITION_SALES_BY
_YEAR) TIME PRODUCT SALES
-------------- ---------- ---------- ----------
TIME_2003 2003 00001 NA
TIME_2003 Dec2003 00001 NA
TIME_2003 Jan2003 00001 NA
TIME_2003 31Dec2003 00001 14.78
TIME_2003 01Dec2003 00001 15.52
TIME_2003 31Jan2003 00001 13.61
TIME_2003 01Jan2003 00001 10.39
TIME_2003 2003 00002 NA
TIME_2003 Dec2003 00002 NA
TIME_2003 Jan2003 00002 NA
TIME_2003 31Dec2003 00002 16.05
TIME_2003 01Dec2003 00002 12.27
TIME_2003 31Jan2003 00002 10.83

Chapter 8
PARTITION

8-83

TIME_2003 01Jan2003 00002 11.07
TIME_2002 2002 00001 NA
TIME_2002 Dec2002 00001 NA
TIME_2002 Jan2002 00001 NA
TIME_2002 31Dec2002 00001 18.80
TIME_2002 01Dec2002 00001 13.64
TIME_2002 31Jan2002 00001 12.41
TIME_2002 01Jan2002 00001 16.97
TIME_2002 2002 00002 NA
TIME_2002 Dec2002 00002 NA
TIME_2002 Jan2002 00002 NA
TIME_2002 31Dec2002 00002 17.47
TIME_2002 01Dec2002 00002 16.58
TIME_2002 31Jan2002 00002 18.94
TIME_2002 01Jan2002 00002 18.36

As shown in the following code, you can use the PARTITION function to retrieve the
names of the partition in which a value is stored.

SHOW partition_sales_by_year
<2003, 00001>

" Use a QDR to identify the partition of a specific time value
SHOW PARTITION(partition_sales_by_year (time '31Jan2002'))
TIME_2002

REPORT DOWN time PARTITION(partition_sales_by_year)

 PARTITION(PARTITION_S
 ----ALES_BY_YEAR)----
 -------PRODUCT-------
TIME 00001 00002
-------------- ---------- ----------
2003 TIME_2003 TIME_2003
2002 TIME_2002 TIME_2002
Dec2003 TIME_2003 TIME_2003
Jan2003 TIME_2003 TIME_2003
Dec2002 TIME_2002 TIME_2002
Jan2002 TIME_2002 TIME_2002
31Dec2003 TIME_2003 TIME_2003
01Dec2003 TIME_2003 TIME_2003
31Jan2003 TIME_2003 TIME_2003
01Jan2003 TIME_2003 TIME_2003
31Dec2002 TIME_2002 TIME_2002
01Dec2002 TIME_2002 TIME_2002
31Jan2002 TIME_2002 TIME_2002
01Jan2002 TIME_2002 TIME_2002

PARTITIONCHECK
The PARTITIONCHECK function identifies whether an aggmap object is compatible
with the partitioning specified by a partition template object.

Aggregation can cross partitions; however, the data flow must always be in one
direction. The data cannot go both in and out of the same partition; this processing
causes Oracle OLAP to produce an error during the aggregation.

Chapter 8
PARTITIONCHECK

8-84

Return Value

BOOLEAN.

YES when Oracle OLAP would not issue an error when aggregating a variable
partitioned using the specified partition template using the specified aggmap; or NO
when an error would occur.

Syntax

PARITITONCHECK (aggmap parttition-template)

Parameters

aggmap
A text expression that is the name of an aggmap object.

partition-template
A text expression that is the name of the partition template object to check for
compatibility with aggregation.

PERCENTAGE
The PERCENTAGE function computes the percent of total for each value in a numeric
expression.

Return Value

DECIMAL

Syntax

PERCENTAGE(expression [CACHE] [BASEDON dimension-list])

Parameters

expression
The numeric expression for which percent figures are to be computed.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

BASEDON dimension-list
An optional list of one or more of the dimensions of expression on which to base the
percentage for each value. When you do not specify the dimensions, then
PERCENTAGE bases the percentage on the total of all of the values of all of the
dimensions of expression.

Usage Notes

The Effect of NASKIP on PERCENTAGE

PERCENTAGE is affected by the NASKIP option. When NASKIP is set to YES (the
default), then PERCENTAGE ignores NA values. When NASKIP is set to NO, then
PERCENTAGE returns NA for any cell in expression whose value is NA.

Chapter 8
PERCENTAGE

8-85

Examples

Example 8-61 Calculating the Percentage

The following statements s limit the month and district dimensions, and report the
data values, with subtotals, for the units variable.

LIMIT month TO 'Jul96' TO 'Sep96'
LIMIT district TO 'Denver'
REPORT SUBTOTALS W 8 units

The preceding statement produces the following output.

DISTRICT: DENVER
 ----------UNITS-----------
 ----------MONTH-----------
PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 608 517 441
Canoes 467 363 411
Racquets 3,006 2,836 2,838
Sportswear 2,395 2,039 2,138
Footwear 1,581 1,532 1,667
-------------- -------- -------- --------
TOTAL DENVER 8,057 7,287 7,495

This statement reports the percentage that each month value represents of the total
month values for each of the product values that are in status. The total of the values
that PERCENTAGE returns for each product value is 1.

REPORT SUBTOTALS W 8 DOWN month PERCENTAGE(units BASEDON month)

DISTRICT: DENVER
 -----------PERCENTAGE(UNITS BASEDON MONTH)------------
 -----------------------PRODUCT------------------------
MONTH Tents Canoes Racquets Sportswear Footwear
-------- ---------- ---------- ---------- ---------- ----------
Jul96 0.39 0.38 0.35 0.36 0.33
Aug96 0.33 0.29 0.33 0.31 0.32
Sep96 0.28 0.33 0.33 0.33 0.35
-------- ---------- ---------- ---------- ---------- ----------
TOTAL 1.00 1.00 1.00 1.00 1.00
DENVER

This statement reports the percentage that each product value represents of the total
product values for each of the month values that are in status.

REPORT SUBTOTALS W 8 PERCENTAGE(units BASEDON product)

DISTRICT: DENVER
 -PERCENTAGE(UNITS BASEDON-
 ---------PRODUCT)---------
 ----------MONTH-----------
PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 0.08 0.07 0.06
Canoes 0.06 0.05 0.05
Racquets 0.37 0.39 0.38
Sportswear 0.30 0.28 0.29
Footwear 0.20 0.21 0.22

Chapter 8
PERCENTAGE

8-86

-------------- -------- -------- --------
TOTAL DENVER 1.00 1.00 1.00

This statement reports the percentage based on all of the dimensions of the units
variable. The total of all of the values that PERCENTAGE returns is 1.

REPORT SUBTOTALS W 8 PERCENTAGE(units)

DISTRICT: DENVER
 ----PERCENTAGE(UNITS)-----
 ----------MONTH-----------
PRODUCT Jul96 Aug96 Sep96
-------------- -------- -------- --------
Tents 0.03 0.02 0.02
Canoes 0.02 0.02 0.02
Racquets 0.13 0.12 0.12
Sportswear 0.10 0.09 0.09
Footwear 0.07 0.07 0.07
-------------- -------- -------- --------
TOTAL DENVER 0.35 0.32 0.33

The total for all of the values for both the product and month dimensions is 1.00.

QUAL
The QUAL function lets you explicitly specify a qualified data reference (QDR). Use
QUAL in cases where the syntax of a QDR is ambiguous and could either be
misinterpreted by Oracle OLAP or cause a syntax error.

QDRs provide a mechanism for limiting one or more dimensions of an expression to a
single value. QDRs are useful when you want to temporarily reference a value that is
not in the current status.

Return Value

The value that is returned has the same data type as the expression being qualified.

Syntax

QUAL(expression, dimname1 dimexp1 [, dimnameN dimexpN])

Parameters

expression
The expression being qualified. Use QUAL to qualify complex expressions that
contain computation, function calls, or ampersand substitution. You can also use
QUAL when the expression is a simple variable name. However, QUAL is not
required for simple expressions, and you can use the following standard QDR syntax.

expression(dimname1 dimexp1 [, dimname2 dimexp2 ...])

dimname
The dimension to be limited. You can specify one or more of the dimensions of the
expression. Each dimension must be paired with a dimexp. You can specify a
dimension surrogate instead of the dimension.

Chapter 8
QUAL

8-87

dimexp
An expression that represents the value to which the dimension should be limited.
The expression can be a value of the dimension, a text expression whose result is a
value of the dimension, a numeric expression whose result is the logical position of a
value of the dimension, or a relation of the dimension.
When the dimension being limited is a conjoint dimension, then dimexp must be
enclosed in angle brackets and must include a value for each of its base dimensions.
When the dimension being limited is a concat dimension, then dimname and dimexp
can be one combination listed in the following table:

dimname dimexp

The name of the concat dimension A value of the concat
dimension

The name of the concat dimension The name of a base
dimension

The name of a base dimension of the concat
dimension

A value of the base
dimension

The name of a base dimension of the concat
dimension

The name of the concat
dimension

Examples

Example 8-62 Using QUAL with MAX

The following example first shows how you might view your data by limiting its
dimensions, and then how you might view it by using QUAL.

Assume that you issue the following OLAP DML statements to limit the view of the
Cogs line data in the Sporting division to January 1996 through June 1996, and, then,
report by month on the maximum value of actual costs or budgeted costs or
MAX(actual,budget), actual costs, and budgeted costs for each month.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT line TO 'Cogs'
LIMIT division TO 'Sporting'
REPORT DOWN month W 11 MAX(actual,budget) W 11 actual W 11 budget

The preceding statements produce the following report.

DIVISION: SPORTING
 ---------------LINE----------------
 ---------------COGS----------------
 MAX(ACTUAL,
MONTH BUDGET) ACTUAL BUDGET
-------------- ----------- ----------- -----------
Jan96 287,557.87 287,557.87 279,773.01
Feb96 323,981.56 315,298.82 323,981.56
Mar96 326,184.87 326,184.87 302,177.88
Apr96 394,544.27 394,544.27 386,100.82
May96 449,862.25 449,862.25 433,997.89
Jun96 457,347.55 457,347.55 448,042.45

Now consider how you might view the same figures for MAX(actual,budget) without
changing the status of line or division.

ALLSTAT
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'For Cogs in Sporting Division' DOWN month -

Chapter 8
QUAL

8-88

 W 11 HEADING 'MAX(actual,budget)'-
 QUAL(MAX(actual,budget), line 'Cogs', division 'Sporting')

For Cogs in
Sporting MAX(actual,
Division budget)
-------------- -----------
Jan96 287,557.87
Feb96 323,981.56
Mar96 326,184.87
Apr96 394,544.27
May96 449,862.25
Jun96 457,347.55

When you attempt to produce the same report with standard QDR syntax, Oracle
OLAP signals an error.

REPORT HEADING 'For Cogs in Sporting Division' DOWN month -
 W 11 HEADING 'MAX(actual,budget)'-
 MAX(actual,budget) (line cogs, division sporting)

The following error message is produced.

ERROR: A right parenthesis or an operator is expected after LINE.

Example 8-63 Using QUAL with a Concat Dimension

The following example shows two ways of limiting the values of a concat dimension in
a QUAL function. The reg.dist.ccdim concat dimension has region and district as its
base dimensions. The rdsales variable is dimensioned by month, product, and
reg.dist.ccdim.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT product TO 'Tents' 'Canoes'

" Limit the concat by specifying one of its component dimensions
REPORT W 30 QUAL(rdsales * 2, month 'Feb96', district 'Boston')

These statements produce the following report.

 QUAL(RDSALES * 2, MONTH
PRODUCT 'Feb96', DISTRICT 'Boston')
-------------- ------------------------------
Tents 69,283.18
Canoes 164,475.36

" Limit the concat by specifying one of its values
REPORT W 30 QUAL(rdsales * 2, month 'Mar96', reg.dist.ccdim '<district: Boston>')

 QUAL(RDSALES * 2, MONTH
 'Mar96', REG.DIST.CCDIM
PRODUCT '<district: Boston>')
-------------- ------------------------------
TENTS 91,484.42
CANOES 195,244.56

RANDOM
The RANDOM function produces a number that is randomly distributed between
specified low and high boundaries. Randomly generated numbers are useful when

Chapter 8
RANDOM

8-89

building and duplicating tests of applications. They are especially useful for simulation
and forecasting applications.

Tip:

To compute the number, RANDOM uses the values of the RANDOM.SEED.1
and RANDOM.SEED.2 options and then changes the values for the next time.
When you create your own seeds, set the value of both options to odd
numbers. This practice enhances the randomness of the numbers that are
produced.

Return Value

DECIMAL

Syntax

RANDOM([lowbound] [highbound])

Parameters

lowbound
A numeric expression that specifies the lower boundary for the random number
series. The default is 0. When lowbound is NA, the RANDOM function produces NA.

highbound
A numeric expression that specifies the upper boundary for the random number
series. The default is 1. When highbound is NA, the RANDOM function produces NA

Examples

Example 8-64 Producing Random Numbers

This example assigns random numbers between 100 and 200 to a variable called test,
which is dimensioned by product.

test = RANDOM(100 200)
REPORT test

These statements produce a report such as the following.

PRODUCT TEST
-------------- ----------
Tents 122.93
Canoes 176.69
Racquets 168.32
Sportswear 150.92
Footwear 187.46

RANK
The RANK function computes the rank of values in a numeric expression.

Return Value

DECIMAL

Chapter 8
RANK

8-90

Syntax

RANK(expression method [attributes] [BASEDON dimension-list])

where attributes is one or more of the following:

RESET

NAFIRST

NALAST

LIMITSAVE (limit-expression...)

TIEBREAKERS (target-expression...)

Parameters

expression
The numeric expression for which rankings are to be computed.

method
The method to use in computing the rank of the values in expression. The method
argument can be one of the following keywords. See also "Results of Method Values".

Method Description

MIN Identical values get the same minimum rank.

MAX Identical values get the same maximum rank.

AVERAGE Identical values get the same average rank.

PACKED Identical values get the same rank but the results are packed
into consecutive INTEGER values.

UNIQUE All values get a unique rank; for identical values the rank is
arbitrary.

PERCENTI
LE

Values are ranked from 1 to 100, based on the relative
frequency of their occurrence in the expression.

DECILE Values are ranked from 1 to 10, based on the relative frequency
of their occurrence in the expression.

QUARTILE Values are ranked from 1 to 4, based on the relative frequency
of their occurrence in the expression.

RESET
Changes how Oracle OLAP computes RANK within a looping statement (for example,
an assignment statement):

• When you do not specify RESET, Oracle OLAP ranks the members of each group
only once and, then caches those ranked values. As the looping statement
continues to execute and RANK executes against same set of values, Oracle
OLAP uses those cached values to return values for RANK.

• When you include RESET, Oracle OLAP recomputes RANK each and every time
it executes within the looping statement. This behavior significantly increases the
time it takes for Oracle OLAP to execute the looping statement that contains
RANK.

Within a looping statement, the only time you use RANK with RESET is when you
know that within any group the rankings of members within that group will change
during the execution of the looping statement.

Chapter 8
RANK

8-91

NAFIRST
Specifies that Oracle OLAP converts all NA values to the largest positive decimal
number or (10**308) before ranking the values.

Note:

An NA expression value produces an NA rank unless you specify either
NAFIRST or NALIST.

NALAST
Specifies that Oracle OLAP converts all NA values to the largest negative decimal
number or -(10**308) before ranking the values.

Note:

An NA expression value produces an NA rank unless you specify either
NAFIRST or NALIST.

LIMITSAVE
Specifies the status of the dimensions that Oracle OLAP uses when calculating
RANK. By specifying LIMITSAVE within the RANK function, rather than specify
CHGDIMS with LIMITSAVE, you insure that Oracle OLAP evaluates the status only
once when RANK needs to calculate a new result.

limit-expression
The dimension values that Oracle OLAP uses to determine dimension status while
executing RANK. For the limit-expression argument, you can specify any expression
including a valueset, a LIMIT function, or a SORT function.

TIEBREAKERS
Specifies how Oracle OLAP sequences values of equal rank.

tiebreaker-expression
Any expression including a valueset, a LIMIT function, or a SORT function. Oracle
OLAP executes the tiebreaker-expressions in the order in which they are specified.
The status of the dimensions of each tiebreaker-expression is the current status of the
dimensions or the status specified in the LIMITSAVE clause, if any.

Note:

When you specify a valueset for tiebreaker-expression, Oracle OLAP returns
the ranked items in -(STATRANK) order.

BASEDON dimension-list
An optional list of one or more of the dimensions of expression to include in the
ranking. When you do not specify the dimensions, then RANK bases the ranking on
all of the dimensions of expression.

Chapter 8
RANK

8-92

Note:

When the current value of a BASEDON dimension is not in ranking status,
Oracle OLAP returns a rank of NA.

Usage Notes

Monitoring the Behavior of RANK

The OLAP DML provides the RANK_CALLS, RANK_CELLS, and RANK_SORTS
options that you can use to monitor the behavior of the RANK function.

RANK_CALLS

The RANK_CALLS option is an INTEGER, read-only option that holds the number of
calls that Oracle OLAP has made to the RANK function.

RANK_CELLS

The RANK_CELLS option is an INTEGER, read-only option that holds the number of
values that Oracle OLAP has computed when executing the RANK function.

RANK_SORTS

The RANK_SORTS option is a read-only option that holds the number of sorts that
have been triggered by the execution of the RANK function

Results of Method Values

This note describes the results of the different methods of ranking values. The results
are based on the sales2 variable, which is described in "Ranking Values", with the
geography dimension limited to G2 as the following statements demonstrate.

LIMIT geography TO 'G2'
SORT items D sales2
REPORT DOWN geography sales2

The preceding statements produce the following output.

 ------------------------SALES2------------------------
 ------------------------ITEMS-------------------------
GEOGRAPHY ITEM4 ITEM2 ITEM3 ITEM1 ITEM5
-------------- ---------- ---------- ---------- ---------- ----------
G2 25.00 20.00 20.00 15.00 7.00

The following table shows the results of the different methods of ranking that are
produced by a statement of the form

REPORT DOWN geography RANK(sales2 MIN BASEDON items)

with the different method keywords substituted for MIN.

Table 8-12 Results of Different Methods of Ranking

Methods (ITEM4, G2) =
25

(ITEM2, G2) =
20

(ITEM3, G2) =
20

(ITEM1,G2) =
15

(ITEM5,G2)
= 7

MIN 1 2 2 4 5

Chapter 8
RANK

8-93

Table 8-12 (Cont.) Results of Different Methods of Ranking

Methods (ITEM4, G2) =
25

(ITEM2, G2) =
20

(ITEM3, G2) =
20

(ITEM1,G2) =
15

(ITEM5,G2)
= 7

MAX 1 3 3 4 5

AVERAGE 1 2.5 2.5 4 5

PACKED 1 2 2 3 4

UNIQUE 1 2 3 4 5

PERCENTILE 100 62 62 25 1

DECILE 10 7 7 3 1

QUARTILE 4 3 3 1 1

Note that the value that is returned by the UNIQUE method for Item2 and Item3 can be
either 2 or 3, because the RANK function randomly assigns a unique rank for identical
values in the expression.

Examples

Example 8-65 Ranking Values

Assume that your analytic workspace contains geography and items dimensions and
sales2 variable.

DEFINE geography DIMENSION TEXT
MAINTAIN geography ADD 'g1' 'g2' 'g3'
DEFINE items DIMENSION TEXT
MAINTAIN items ADD 'Item1' 'Item2' 'Item3' 'Item4' 'Item5'
DEFINE sales2 DECIMAL <geography items>

Assume the sales2 variable has the following data values.

 -------------SALES2-------------
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 30.00 15.00 12.00
Item2 10.00 20.00 18.00
Item3 15.00 20.00 24.00
Item4 30.00 25.00 25.00
Item5 NA 7.00 21.00

This statement reports the results of using the MIN method to rank the sales2 values
based on the items dimension.

report rank(sales2 min basedon items)

The preceding statement produces the following output.

 -RANK(SALES2 MIN BASEDON ITEMS)-
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 4.00 5.00
Item2 4.00 2.00 4.00
Item3 3.00 2.00 2.00

Chapter 8
RANK

8-94

Item4 1.00 1.00 1.00
Item5 NA 5.00 3.00

This statement reports the results of using the MIN method to rank the sales2 values
based on the geography dimension.

REPORT RANK(sales2 MIN BASEDON geography)

The preceding statement produces the following output.

 ----RANK(SALES2 MIN BASEDON-----
 -----------GEOGRAPHY)-----------
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 2.00 3.00
Item2 3.00 1.00 2.00
Item3 3.00 2.00 1.00
Item4 1.00 2.00 2.00
Item5 NA 2.00 1.00

This statement reports the results of using the MIN method to rank the sales2 values
based on all of its dimensions.

REPORT RANK(sales2, MIN)

The preceding statement produces the following output.

 -------RANK(SALES2, MIN)--------
 -----------GEOGRAPHY------------
ITEMS g1 g2 g3
-------------- ---------- ---------- ----------
Item1 1.00 10.00 12.00
Item2 13.00 7.00 9.00
Item3 10.00 7.00 5.00
Item4 1.00 3.00 3.00
Item5 NA 14.00 6.00

RAWTOHEX
The RAWTOHEX function converts a raw value to a character string of hexadecimal
digits.

See Also:

"RAW Data Type" and the HEXTORAW function

Returns

TEXT

Syntax

RAWTOHEX(raw-exp)

Chapter 8
RAWTOHEX

8-95

Parameters

raw-exp
A raw expression.

RECNO
The RECNO function reports the current record number of a file opened for reading. It
returns NA when Oracle OLAP has reached the end of the file.

Return Value

INTEGER

Syntax

RECNO(fileunit)

Parameters

fileunit
A file unit number assigned to a file opened for reading in a previous call to the
FILEOPEN function.

Usage Notes

Opening Files

Before you can use the RECNO function, you must open the file for reading. When the
file unit number is not associated with an open file or the file has been opened for
writing, RECNO returns an error.

Using RECNO with FILEGET

RECNO is usually used with FILEREAD or FILENEXT, which read whole records.
When you are reading data from a file with the FILEGET function, which can read
partial records, RECNO returns the number of times you have read data from the file,
not the number of actual records.

LINENUM Option

See also the LINENUM option, which holds the current line number of output.

Records in Text Files

When the file is a text file, a record is delimited by a newline character. When the file is
a binary file, you must set the file's LSIZE attribute to the record length with a FILESET
statement. TEXT is the default file type.

Examples

Example 8-66 Using RECNO with FILEREAD

In the following example code, a FILEREAD statement maintains the INTEGER
dimension, adding each record number associated with filename. The text associated
with each record number becomes each value of the variable textvar.

Chapter 8
RECNO

8-96

DEFINE dim1 INTEGER DIMENSION
DEFINE textvar TEXT <dim1>
x = FILEOPEN('filename' R)
FILEREAD x APPEND dim1 = RECNO(x) W 8 TEXTVAR

REGEXP_COUNT
The REGEXP_COUNT function returns the number of times a pattern occurs in a
source string. The function evaluates strings using characters as defined by the input
character set.

See Also:

REGEXP_INSTR

Return value

When a match is found, an INTEGER that indicates the number of occurrences of the
pattern; otherwise 0.

Syntax

REGEXP_COUNT (source_char, pattern [, position [, match_param]])

Parameters

source_char
The text expression for which the function searches.

pattern
The text expression for which the function searches. It is usually a text literal and can
contain up to 512 bytes. If the data type of pattern is different from the data type of
source_char, then the function converts pattern to the data type of source_char.
Note that the function ignores subexpression parentheses in pattern. For example, the
pattern '(123(45))' is equivalent to '12345'. Also, the function interprets a period as a
wildcard character that matches any character.

See:

For a listing of the operators you can specify in pattern, see "Oracle Regular
Expression Support" in Oracle Database SQL Language Reference.

See Also:

"Oracle Regular Expression Support" in Oracle Database SQL Language
Reference for a listing of the operators that you can specify in pattern

Chapter 8
REGEXP_COUNT

8-97

position
A positive INTEGER indicating the character of source_char where the function
should begin the search. The default is 1, meaning that the function begins the search
at the first character of source_char. After finding the first occurrence of pattern, the
function searches for a second occurrence beginning with the first character following
the first occurrence.

match_parameter
A text expression that lets you change the default matching behavior of the function.
You can specify one or more of the values shown in the following table.

Value Specifies

c Case-sensitive matching.

i Case-insensitive matching.

m Treat the source string as multiple lines. The function interprets ^
(caret) and $ (dollar sign) as the start and end, respectively, of any
line anywhere in the source string, rather than only at the start or
end of the entire source string. By default, the function treats the
source string as a single line.

n A newline character is among the characters matched by a period
(the wildcard character). By default, it is not.

x Ignores whitespace characters.

If you specify multiple contradictory values for this argument, then the function uses
the last value. For example, if you specify 'ic', then the function uses case-sensitive
matching. If you specify a character other than those shown above, then the function
returns an error.
If you omit this optional argument, then the default case sensitivity is determined by
the value of the NLS_SORT parameter; a period (.) does not match the newline
character; and the source string is treated as a single line.

REGEXP_INSTR
The REGEXP_INSTR function searches a string for a substring with a specified
pattern and returns the position of that substring.

The function evaluates strings using characters as defined by the input character set.

See Also:

REGEXP_COUNT, REGEXP_REPLACE, and REGEXP_SUBSTR

Return Value

When the pattern is found a NUMBER; otherwise 0.

Syntax

REGEXP_INSTR (source_char, pattern[, position[, occurrence[, return_option[,
match_parameter]]]])

Chapter 8
REGEXP_INSTR

8-98

Parameters

source_char
The text expression for which the function searches.

pattern
The text expression for which the function searches. It is usually a text literal and can
contain up to 512 bytes. The function interprets a period as a wildcard character that
matches any character.

position
A positive integer that indicates the character of source_char at which the function
begins the search. The default value of position is 1, which means that the function
begins searching at the first character of source_char.

occurrence
A positive integer that indicates which occurrence of pattern the function should
search for. The default value of occurrence is 1, meaning that the function searches
for the first occurrence of pattern.

return_option
Specify 0 (zero) when you want the function to return the position of the first matched
character (default), or 1 when you want the function to return the position of the
character following the match.

match_parameter
A text expression that lets you change the default matching behavior of the function.
You can specify one or more of the values shown in the following table.

Value Specifies

c Case-sensitive matching.

i Case-insensitive matching.

m Treat the source string as multiple lines. The function interprets ^
(caret) and $ (dollar sign) as the start and end, respectively, of any
line anywhere in the source string, rather than only at the start or
end of the entire source string. By default, the function treats the
source string as a single line.

n A newline character is among the characters matched by a period
(the wildcard character). By default, it is not.

x Ignores whitespace characters.

Examples

The following statement

REGEXP_INSTR('Mississippi', 'i', 1, 3)

searches the string Mississippi for the third instance of the letter i, beginning the
search at the first letter. It returns the value 8.

Chapter 8
REGEXP_INSTR

8-99

REGEXP_REPLACE
The REGEXP_REPLACE function searches a string for a substring with a specified
pattern and replaces that substring with another substring.

See Also:

REGEXP_COUNT, REGEXP_INSTR, and REGEXP_SUBSTR

Return Value

VARCHAR2

Syntax

REGEXP_REPLACE(source_char, pattern[, replace_string[, position[, occurrence[,
match_parameter]]]])

Parameters

source_char
The text expression for which the function searches.

pattern
The text expression for which the function searches. It is usually a text literal and can
contain up to 512 bytes. The function interprets a period as a wildcard character that
matches any character.

replace_string
The text that replaces pattern in source_char.

position
A positive integer that indicates the character of source_char at which the function
begins the search. The default value of position is 1, which means that the function
begins searching at the first character of source_char.

occurrence
A positive integer that indicates which occurrence of pattern the function should
search for. The default values of occurrence is 1, meaning that the function searches
for the first occurrence of pattern.

match_parameter
A text expression that lets you change the default matching behavior of the function.
You can specify one or more of the values shown in the following table.

Value Specifies

c Case-sensitive matching.

i Case-insensitive matching.

Chapter 8
REGEXP_REPLACE

8-100

Value Specifies

m Treat the source string as multiple lines. The function interprets ^
(caret) and $ (dollar sign) as the start and end, respectively, of any
line anywhere in the source string, rather than only at the start or
end of the entire source string. By default, the function treats the
source string as a single line.

n A newline character is among the characters matched by a period
(the wildcard character). By default, it is not.

x Ignores whitespace characters.

Example

The following statement

REGEXP_REPLACE('500 Oracle Parkway, Redwood Shores, CA', '(){2,}', ' ')

eliminates extra spaces and returns the following string

500 Oracle Parkway, Redwood Shores, CA

REGEXP_SUBSTR
The REGEXP_SUBSTR function searches a string for a substring of a specified
pattern and returns that substring.

See Also:

REGEXP_COUNT, REGEXP_INSTR, and REGEXP_REPLACE

Return Value

VARCHAR2 | CLOB

Syntax

REGEXP_SUBSTR(source_char, pattern[, position[, occurrence[,
match_parameter]]])

Parameters

source_char
The text expression for which the function searches.

pattern
The text expression for which the function searches. It is usually a text literal and can
contain up to 512 bytes. The function interprets a period as a wildcard character that
matches any character

position
A positive integer that indicates the character of source_char at which the function
begins the search. The default value of position is 1, which means that the function
begins searching at the first character of source_char.

Chapter 8
REGEXP_SUBSTR

8-101

occurrence
A positive integer that indicates which occurrence of pattern the function should
search for. The default value of occurrence is 1, which means that the function
searches for the first occurrence of pattern.

match_parameter
A text expression that lets you change the default matching behavior of the function.
You can specify one or more of the values shown in the following table.

Value Specifies

c Case-sensitive matching.

i Case-insensitive matching.

m Treat the source string as multiple lines. The function interprets ^
(caret) and $ (dollar sign) as the start and end, respectively, of any
line anywhere in the source string, rather than only at the start or
end of the entire source string. By default, the function treats the
source string as a single line.

n A newline character is among the characters matched by a period
(the wildcard character). By default, it is not.

x Ignores whitespace characters.

Examples

Example 8-67 Using REGEXP_SUBSTRING to search for a case-insensitive
substring

The following statement

REGEXP_SUBSTR('7 W 96th St, New York, New York', 'new york', 10, 2, 'i')

starts searching at the tenth character and matches the second instance of New York
in a case-insensitive match.

Example 8-68 Using REGEXP_SUBSTRING to return a substring from a string
enclosed in single quotes

The following statement

REGEXP_SUBSTR('parsley, sage, rosemary, thyme', ',[^,]+,', 1)

matches the first substring enclosed in single quotes ('), and returns the value, sage,.

REM
The REM function returns the remainder after one numeric expression is divided by
another.

Return Value

DECIMAL

Syntax

REM(expression1 expression2)

Chapter 8
REM

8-102

Parameters

expression
REM returns the remainder of expression1 divided by expression2.

Examples

Example 8-69 Calculating a Remainder

This example illustrates the use of REM to find the remainder after 14 is divided by 5.
The statement

SHOW REM(14 5)

produces the following result.

4.00

REMAINDER
The REMAINDER function returns the remainder when one number is divided by
another.

Return Values

Numeric. Oracle OLAP determines the argument with the highest numeric
precedence, implicitly converts the remaining arguments to that data type, and returns
that data type.

Syntax

REMAINDER (diviidend, divisor)

Parameters

dividend
A numeric expression (or an expression that Oracle OLAP can implicitly convert to a
numeric expression) that is the number you want to divide.

divisor
A numeric expression (or an expression that Oracle OLAP can implicitly convert to a
numeric expression) that is the divisor.

Examples

Example 8-70 Finding the Remainder After Division

SHOW REMAINDER(18,7)
-3.00

REMBYTES
The REMBYTES function removes one or more bytes from a text expression and
returns the value that remains.

Chapter 8
REMAINDER

8-103

Return Value

TEXT

Syntax

REMBYTES(text-expression start [length])

Parameters

text-expression
The TEXT expression from which REMBYTES removes bytes. When the characters to
be removed from text-expression contain embedded line breaks, these breaks are
also removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters removed.

Tip:

When you must use this function on NTEXT values, use the CONVERT or
TO_CHAR function to convert the NTEXT value to TEXT.

start
An INTEGER that represents the character position at which to begin removing
characters. The position of the first character in text-expression is 1. When the value
of start is greater than the length of text-expression, REMBYTES simply returns text-
expression.

length
An INTEGER that represents the number of characters to be removed. When length is
not specified, only the character at start is removed.

Examples

Example 8-71 Using REMBYTES to Remove a Substring

This example shows how to remove the substring there from the text value
hellotherejoe.

The statement

SHOW REMBYTES('hellotherejoe', 6, 5)

produces the following output.

hellojoe

REMCHARS
The REMCHARS function removes one or more characters from a text expression and
returns the value that remains.

Chapter 8
REMCHARS

8-104

Tip:

When you are using a multibyte character set, you can use the REMBYTES
function instead of the REMCHARS function.

Return Value

TEXT or NTEXT

Syntax

REMCHARS(text-expression start [length])

Parameters

text-expression
The expression from which REMCHARS removes characters. When the characters to
remove from text-expression contain embedded line breaks, these breaks are also
removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters removed.
When you specify a TEXT expression, the return value is TEXT. When you specify an
NTEXT expression, the return value is NTEXT.

start
An INTEGER that represents the character position at which to begin removing
characters. The position of the first character in text-expression is 1. When the value
of start is greater than the length of text-expression, REMCHARS simply returns text-
expression.

length
An INTEGER that represents the number of characters to be removed. When length is
not specified, only the character at start is removed.

Examples

Example 8-72 Using REMCHARS to Remove a Substring

This example shows how to remove the substring there from the text value
hellotherejoe.

SHOW REMCHARS('hellotherejoe', 6, 5)

hellojoe

Example 8-73 Removing a Single Character

This example shows how to remove the character t from the text value hellotherejoe.

SHOW REMCHARS('hellotherejoe', 6)

helloherejoe

Chapter 8
REMCHARS

8-105

REMCOLS
The REMCOLS function removes specified columns from every line of a multiline
TEXT value. The function returns a multiline text value that includes only the remaining
columns.

Columns refer to the character positions in each line of a multiline TEXT value. The
first character in each line is in column one, the second is in column two, and so on.

Return Value

TEXT or NTEXT

REMCOLS always returns a TEXT value that has the same number of lines as text-
expression, though some lines may be empty.

Syntax

REMCOLS(text-expression start [length])

Parameters

text-expression
The text expression from which the specified columns should be removed. When text-
expression is a multiline TEXT value, the characters in the specified columns are
removed from each one of its lines.
When you specify a TEXT expression, the return value is TEXT. When you specify an
NTEXT expression, the return value is NTEXT.

start
An INTEGER, between 1 and 32,767, representing the column position at which to begin
removing columns. The column position of the first character in each line of text-
expression is 1. When you specify a starting column that is to the right of the last
character in a given line in text expression, the corresponding line in the return value
is identical to the given line.

length
An INTEGER representing the number of columns to be removed. When you do not
specify length, REMCOLS removes only the starting column. When you specify a
length that exceeds the number of characters that follow the starting position in a
given line in text expression, the corresponding line in the return value includes only
the characters that precede the starting column.

Examples

Example 8-74 Removing Text Columns

In the following example, four columns are removed from each line of CITYLIST,
starting from the second column.

DEFINE citylist VARIABLE TEXT
CITYLIST = 'Boston\nHouston\nChicago\nDenver'

The statement

SHOW citylist

Chapter 8
REMCOLS

8-106

produces the following output.

Boston
Houston
Chicago
Denver

The statement

SHOW REMCOLS(citylist 2 4)

produces the following output.

Bn
Hon
Cgo
Dr

REMLINES
The REMLINES function removes one or more lines from a multiline TEXT expression
and returns the value that remains.

Return Value

TEXT or NTEXT

Syntax

REMLINES(text-expression start [length])

Parameters

text-expression
A multiline text expression from whose values REMLINES removes one or more lines.
When you specify a TEXT expression, the return value is TEXT. When you specify an
NTEXT expression, the return value is NTEXT.

start
An INTEGER that represents the line number at which to begin removing lines. The
position of the first line in text-expression is 1.

length
An INTEGER that represents the number of lines to be extracted. When you do not
specify length, only the line at start is removed.

Examples

Example 8-75 Removing Text Lines

This example shows how to remove the second line from a multiline text value in a
variable called mktglist with the following values.

Salespeople
Products
Services

The statement

Chapter 8
REMLINES

8-107

SHOW REMLINES(mktglist, 2)

produces the following output.

Salespeople
Services

REPLACE
The REPLACE function returns a specified character each time a specified string is
replaced with another string; or removes all occurrences of a specified string.

REPLACE provides functionality related to that provided by the TRANSLATE function.
TRANSLATE provides single-character, one-to-one substitution. REPLACE lets you
substitute one string for another as well as to remove character strings.

See Also:

REPLACE function in Oracle Database SQL Language Reference for more
details

Return Value

The same data type as char.

Syntax

REPLACE (char, search_string [, replacement_string])

Parameters

char
A text expression that is the character that you want returned when a replacement is
made.

search_string
A text expression that is the string you want to replace. When you specify NA, then
the function returns char.

replacement_string
A text expression that is the string with which you want to replace search_string.
When you do not specify a value for this argument or when you specify the value of
NA, all occurrences of search_string are removed.

REPLBYTES
The REPLBYTES function replaces one or more bytes in a text expression.

Chapter 8
REPLACE

8-108

Tip:

When you are using a single-byte character set, you can use the REPLCHARS
function instead of the REPLBYTES function. Also, to change one or more
occurrences of a specified string in a text value to another string, use the
CHANGECHARS function

Return Value

TEXT

Syntax

REPLBYTES(text-expression replacement [start])

Parameters

text-expression
A TEXT expression in which REPLBYTES replaces bytes. When the bytes to replace
from text-expression contain embedded line breaks, these breaks are removed. Other
line breaks are preserved. Removed line breaks are not counted toward the total
number of bytes replaced. Line breaks in the replacement expression are retained in
the output of REPLBYTES, but are likewise not counted.

Tip:

When you must use this function on NTEXT values, use the CONVERT or
TO_CHAR function to convert the NTEXT value to TEXT.

replacement
A text expression that contains one or more bytes that replaces existing bytes in text-
expression.

start
An INTEGER that represents the byte position at which to begin replacing bytes. The
position of the first byte in text-expression is 1. When you omit this argument,
REPLBYTES starts with the first byte. REPLBYTES replaces as many bytes of text-
expression as are required for the bytes specified by replacement. When the value of
start is greater than the length of text-expression, REPLBYTES simply returns text-
expression.

Examples

Example 8-76 Replacing Text as Bytes

This example shows how to replace a portion of the text value Hello there, Joe.

The statement

SHOW REPLBYTES('Hello there, Joe', 'Jane', 14)

produces the following output.

Hello there, Jane

Chapter 8
REPLBYTES

8-109

Example 8-77 How REPLBYTES Handles Line Breaks

This example shows how REPLBYTES preserves but ignores line breaks.

var1 = JOINLINES('Hello' 'there' 'Joe')
var2 = JOINLINES('Hi' 'Jane')

The statement

SHOW REPLBYTES(var1 var2)

produces the following output.

Hi
Janehere
Joe

REPLBYTES has replaced the first 6 bytes of var1 (Hellot of HellothereJoe) with the 6
bytes of var2 (HiJane). It has preserved the line breaks following Hi (from var2) and
there (from var1).

To replace all 13 bytes in var1, you must specify 13 replacement bytes; for example,
you can add 7 spaces after Jane.

var2 = JOINLINES('Hi' 'Jane ')

The statement

SHOW REPLBYTES(var1 var2)

produces the following output.

Hi
Jane

REPLCHARS
The REPLCHARS function replaces one or more characters in a text expression.

Tip:

When you are using a multibyte character set, you can use the REPLBYTES
function instead of the REPLCHARS function. Also, you can use the
CHANGECHARS function to change one or more occurrences of a specified
string in a text value to another string.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

Chapter 8
REPLCHARS

8-110

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

Syntax

REPLCHARS(text-expression characters [start])

Parameters

text-expression
The expression in which characters are to be replaced. When the characters to be
replaced from text-expression contain embedded line breaks, these breaks are
removed. Other line breaks are preserved. Removed line breaks are not counted
toward the total number of characters replaced. Line breaks in the replacement
expression are retained in the output of REPLCHARS, but are likewise not counted.

characters
A text expression that contains one or more characters that replaces existing
characters in text-expression.

start
An INTEGER that represents the character position at which to begin replacing
characters. The position of the first character in text-expression is 1. When you omit
this argument, REPLCHARS starts with the first character. REPLCHARS replaces as
many characters of text-expression as are required for the specified new characters.
When the value of start is greater than the length of text-expression, REPLCHARS
simply returns text-expression.

Examples

REPLCHARS has replaced the first 6 characters of var1 (Hellot of HellothereJoe) with
the 6 characters of var2 (HiJane). It has preserved the line breaks following Hi (from
var2) and there (from var1).

To replace all 13 characters in var1, you must specify 13 replacement characters; for
example, you can add 7 spaces after Jane.

var2 = JOINLINES('Hi' 'Jane ')

The statement

SHOW REPLCHARS(var1 var2)

produces the following output.

Hi
Jane

Example 8-78 Replacing Text Characters

This example shows how to replace a portion of the text value Hello there, Joe.

The statement

SHOW REPLCHARS('Hello there, Joe', 'Jane', 14)

produces the following output.

Hello there, Jane

Chapter 8
REPLCHARS

8-111

Example 8-79 How REPLCHARS Handles Line Breaks

This example shows how REPLCHARS preserves but ignores line breaks.

var1 = JOINLINES('Hello' 'there' 'Joe')
var2 = JOINLINES('Hi' 'Jane')

The statement

show REPLCHARS(var1 var2)

produces the following output.

Hi
Janehere
Joe

REPLCOLS
The REPLCOLS function replaces some or all of the character columns in one
multiline TEXT value with the columns of another. The function returns a multiline
TEXT value composed of the resulting lines.

Columns refer to the character positions in each line of a multiline TEXT value. The
first character in each line is in column one, the second is in column two, and so on.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments:

• When all arguments are TEXT values, the return value is TEXT.

• When all arguments are NTEXT values, the return value is NTEXT.

• When the arguments include both TEXT and NTEXT values, the function converts
all TEXT values to NTEXT before performing the function operation, and the return
value is NTEXT.

The number of lines in the return value is always the same as the number of lines in
text-expression. When the columns text expression has fewer lines, REPLCOLS
repeats its last line in each subsequent line of the return value.

Syntax

REPLCOLS(text-expression columns [start])

Parameters

text-expression
The text expression in which you want to replace one or more columns.

columns
A text expression containing one or more lines. This expression provides the columns
to replace some or all of the columns in text-expression.

Chapter 8
REPLCOLS

8-112

start
An INTEGER, between 1 and 32,767, representing the column position at which to begin
replacing. The column position of the first character in each line of text-expression
is 1. When you do not specify start, replacement begins with Column 1. When you
specify a starting column that is to the right of the last character in a given line in text-
expression, the corresponding line in the return value has spaces filling in the
intervening columns. See Joining and Aligning Columns.

Examples

Example 8-80 Joining and Aligning Columns

In the following example, the citylist and cityreps lines are joined so that the values
are aligned, one under the other. The replacement begins at Column 11. When
JOINCOLS were used instead of REPLCOLS, the cityreps list would be misaligned.

The statement

SHOW citylist

produces the following output.

Boston
Houston
Chicago
Denver

The statement

SHOW cityreps

produces the following output.

Brady
Lopez
Alfonso
Cody

The statement

SHOW REPLCOLS(citylist cityreps 11)

produces the following output.

Boston Brady
Houston Lopez
Chicago Alfonso
Denver Cody

REPLLINES
The REPLLINES function replaces one or more lines in a multiline TEXT expression.

Return Value

TEXT or NTEXT

This function accepts TEXT values and NTEXT values as arguments. The data type of
the return value depends on the data type of the values specified for the arguments.
When all arguments are TEXT values, the return value is TEXT. When all arguments

Chapter 8
REPLLINES

8-113

are NTEXT values, the return value is NTEXT. When the arguments include both
TEXT and NTEXT values, the function converts all TEXT values to NTEXT before
performing the function operation, and the return value is NTEXT.

Syntax

REPLLINES(text-expression lines [start])

Parameters

text-expression
A multiline text expression in which you want to replace one or more lines.

lines
A text expression that contains one or more lines that replace the existing lines in text-
expression.

start
An INTEGER that represents the line number at which to begin replacing. The position
of the first line in text-expression is 1. When you omit this argument, REPLLINES
starts with line 1. REPLLINES replaces as many lines of text-expression as are
required for the specified new lines.

Examples

Example 8-81 Replacing a Text Line

This example shows how to replace the second line in a multiline TEXT value in a
variable called mktglist. Assume first that the statement SHOW mktglist produces the
following output.

Salespeople
Products
Services

By using REPLLINES, you can display a different value for "Products".

SHOW REPLLINES(mktglist, 'advertising', 2)

Salespeople
Advertising
Services

RESERVED
The RESERVED function can provide a list of all the words that are reserved because
they are known to the OLAP DML parser, or it can indicate if a word that you specify is
known to the OLAP DML parser. Some other words are also reserved as discussed in
"Other Reserved Words".

Return Value

Either a multiline text expression or BOOLEAN, depending on whether or not you
specify an argument to the function.

Syntax

RESERVED [(word-expression)]

Chapter 8
RESERVED

8-114

Parameters

word-expression
A text expression that represents a word that may or may not be reserved in the
OLAP DML. When you specify word-expression, the RESERVED function returns a
BOOLEAN value indicating if the word is reserved in OLAP DML. When you do not
specify an argument, RESERVED returns a TEXT value consisting of all the reserved
words in OLAP DML, with each word on a separate line.

Usage Notes

Other Reserved Words

The RESERVED function only recognizes words known to the OLAP DML parser. The
RESERVED function des not recognize the names of option objects and some other
objects in the EXPRESS analytic workspace. The names of these objects are reserved in
Oracle OLAP, but are ignored by the RESERVED function. To identify the names of
these objects, issue the following statements.

AW ATTACH EXPRESS
LISTNAMES

NA is Reserved

When you specify NA for the argument, the RESERVED function returns NO. When you
specify NA, the RESERVED function returns YES.

Case-Sensitivity

The list of reserved words returned by the RESERVED function contains some words
in all uppercase and some in mixed case. Words all in uppercase are reserved in their
entirety. Words in mixed case can be abbreviated to the uppercase portion. For such
words, any subset of the word containing the uppercase portion is reserved. For
example, one word in the list returned by RESERVED is CODEVERsion. The following are
all reserved: codever, codeversi, codeversio, and codeversion. However, codeve is not
reserved.

Examples

Example 8-82 Determining If a Word Is Reserved

The following example shows how you can use the RESERVED function to determine
if a word is reserved in OLAP DML.

The function call

SHOW RESERVED('update')

returns the following value

YES

ROUND
Depending on the syntax you specify, the ROUND function performs a numeric
operation or a date and time operation. Because the syntax for the ROUND function
differs for each type of operation, there are two topics for the ROUND function:

Chapter 8
ROUND

8-115

• ROUND (datetime)

• ROUND (number)

ROUND (datetime)
The ROUND (datetime) function returns date rounded to the unit specified by the
format model fmt. The value returned is always of data type DATETIME, even if you
specify a different datetime data type for date.

Return Value

DATETIME

Syntax

ROUND(datetime_exp, [format])

Parameters

datetime-exp
A datetime expression that identifies a date and time number.

format
A text expression that specifies a format model shown in the following table. A format
model indicates how the date and time number should be rounded.
If you omit this argument, then datetime-exp is rounded to the nearest day.
The following table lists the format models you can use with the ROUND and TRUNC date
functions and the units to which they round and truncate dates. The default model,
'DD', returns the date rounded or truncated to the day with a time of midnight.

Format
Model

Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

ISO Year

Q Quarter (rounds up on the sixteenth day of the second month
of the quarter)

Chapter 8
ROUND

8-116

Format
Model

Rounding or Truncating Unit

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

The starting day of the week used by the format models DAY, DY, and D is specified
implicitly by the initialization parameter NLS_TERRITORY.

Examples

Example 8-83 Rounding to the Nearest Year

When the value of the NLS_DATE_FORMAT option is DD-MON-YY, then this statement:

SHOW ROUND (TO_DATE('27-OCT-92'),'year')

returns this value:

01-JAN-93

Example 8-84 Rounding to Different Formats

Assume that you have a variable named mydatetime with the following definition and
value defined in your analytic workspace.

DEFINE MYDATETIME VARIABLE DATETIME
DATE_FORMAT = 'MON-RRRR-DD-HH24'
mydatetime = CURRENT_TIMESTAMP
SHOW mydatetime
= 'AUG-2006-07-13'

Chapter 8
ROUND

8-117

As the following SHOW statements illustrate, depending on what date format value
you specify, the ROUND function returns different values for the mydatetime variable.

SHOW ROUND(mydatetime, 'RRRR')
01-JAN-07

SHOW ROUND(mydatetime, 'MON')
01-AUG-06

SHOW ROUND(mydatetime, 'DD')
08-AUG-06

SHOW ROUND(mydatetime)
= 'AUG-2006-08-00'

ROUND (number)
When a number is specified as an argument, the ROUND function returns the number
rounded to the nearest multiple of a second number you specify or to the number of
decimal places indicated by the second number.

Return Value

DECIMAL (when the round type is MULTIPLE)

NUMBER (when the round type is DECIMAL)

Syntax

ROUND(number_exp roundvalue) [MULTIPLE|DECIMAL]

Parameters

number_exp
An expression that identifies the number to round.

roundvalue
A value that specifies the basis for rounding.
When the round type is MULTIPLE:

• number_exp is rounded to the nearest multiple of roundvalue.

• roundvalue can be an INTEGER or decimal number.

When the round type is DECIMAL:

• roundvalue specifies the number of places to the right or left of the decimal point
to which number_exp should be rounded. When roundvalue is positive, digits to
the right of the decimal point are rounded. When it is negative, digits to the left of
the decimal point are rounded.

• When roundvalue is omitted, number_exp is rounded to 0 decimal places.

• roundvalue must be an INTEGER.

MULTIPLE
(Default) Specifies that rounding is performed by rounding to the nearest multiple of
roundvalue.

Chapter 8
ROUND

8-118

DECIMAL
Specifies that rounding is performed by rounding to the number of decimal places
indicated by roundvalue.

Usage Notes

Using ROUND to Compare Expressions

A DECIMAL value might be stored in a slightly different form than shows up at the
level of significant digits you are using. This small difference can cause unexpected
results when you are comparing two expressions. The problem can occur even when
you are comparing INTEGER expressions that involve calculations because many
calculations are done only after converting INTEGER values to DECIMAL values. You
do not generally see the difference in reports because reports usually show only two or
three decimal places.

For example, when you compare two numbers with the EQ or NE operators, you
probably want to ignore any difference caused by the least significant digits. When
expense was stored as 100.00000001, the least significant digit would not be ignored by
the simple form of the comparison.

The statement

SHOW expense EQ 100.00

produces the following result.

NO

However, you can use ROUND to force EQ or NE to ignore the least significant digits.

SHOW ROUND(expense, .01) EQ 100.00

This statement produces the following result.

YES

Using ABS to Compare Expressions

When speed of calculation is important in your application, you may want to use the
ABS function with LT to compare numbers, instead of using ROUND with EQ or NE.

Examples

Example 8-85 Rounding to Different Multiples

The following statements show the results of rounding the expression 2/3 to different
multiples. The value of the DECIMALS setting is 2.

The statement

SHOW ROUND(2/3, .01)

produces the following result.

0.67

The statement

SHOW ROUND(2/3, .1)

Chapter 8
ROUND

8-119

produces the following result.

0.70

The statement

SHOW ROUND(2/3, .5)

produces the following result.

0.50

Example 8-86 Rounding to the Nearest Thousand

The following example shows sales rounded to the nearest thousand.

LIMIT month TO FIRST 4
LIMIT district TO FIRST 1
REPORT ROUND(sales 1000)

These statements produce the following output.

DISTRICT: BOSTON
 -------------ROUND(SALES 1000)-------------
 -------------------MONTH-------------------
PRODUCT Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
Tents 32,000.00 33,000.00 43,000.00 58,000.00
Canoes 66,000.00 76,000.00 92,000.00 126,000.00
Racquets 52,000.00 57,000.00 59,000.00 69,000.00
Sportswear 53,000.00 59,000.00 63,000.00 68,000.00
Footwear 91,000.00 87,000.00 100,000.00 108,000.00

Example 8-87 Rounding to the Nearest Multiple of 12

To show units rounded to the nearest multiple of 12, use the following statements.

LIMIT month TO FIRST 4
LIMIT district TO FIRST 1
REPORT DECIMAL 0 ROUND(units 12)

These statements produce the following output.

DISTRICT: BOSTON
 --------------ROUND(UNITS 12)--------------
 -------------------MONTH-------------------
PRODUCT Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
Tents 204 204 264 360
Canoes 348 396 480 660
Racquets 996 1,080 1,116 1,308
Sportswear 1,092 1,212 1,296 1,404
Footwear 2,532 2,400 2,772 2,976

Example 8-88 Rounding to Decimal Places

The following statements show the results of rounding 15.193 to various decimal
places.

The statement

ROUND(15.193, 1)

Chapter 8
ROUND

8-120

produces the following result

15.2

The statement

ROUND(15.193, -1)

produces the following result

20

ROW function
The ROW function returns a line of data in cells, one after another in a single row. It is
identical to the ROW command, except that it returns a text value, instead of sending
the text to the current outfile.

The ROW function, just like the ROW command, consists of a series of column
descriptions that specify the data to be returned and, optionally, the way in which it is
to be formatted. The ROW function lets you assign the returned value to a text
variable, send it to your current outfile with the SHOW or REPORT command, or
process it further as an argument to a character manipulation function.

See Also:

ROW command

Return Value

TEXT

Syntax

ROW([attribs] [ACROSS dimension [limit-clause]:] {exp1|SKIP} -
 [[attribs] [ACROSS dimension [limit-clause]:] {expn|SKIP}])

See the ROW command for a complete description of the arguments.

The ROW function without any arguments returns a blank line.

Usage Notes

The notes for the ROW command also apply to the ROW function.

Examples

Example 8-89 Assigning Output to a Text Variable

The following assignment statement assigns three lines of output to the text variable
textvar.

textvar = ROW(OVER '-' UNDER '=' 'This is a Row.')
SHOW textvar

These statements produce the following output.

Chapter 8
ROW function

8-121

This is a Row.
==============

Example 8-90 Producing Multiple Rows of Output

You can use the ROW function with JOINLINES in a program to loop over a group of
dimension values and assign several rows of data to a text variable. Instead of using
the SHOW command in the following program excerpt, you could use the contents of
textvar for some other purpose.

LIMIT month TO 'Jan95' 'Feb95'
LIMIT district TO 'Boston' 'Atlanta' 'Chicago'
textvar = NA
textvar = ROW(W 8 SKIP ACROSS month: <month SKIP>)
textvar = JOINLINES(textvar ROW(W 8 SKIP ACROSS month: -
 CENTER <'Sales' 'Plan'>))
FOR district
textvar = JOINLINES(textvar ROW(W 8 district ACROSS month: -
 <sales sales.plan>))
SHOW textvar

These statements produce the following output.

OUTPUT:
 Jan95 Feb95
 Sales Plan Sales Plan
Boston 32,153.52 42,346.89 32,536.30 43,265.50
Atlanta 40,674.20 54,583.41 44,236.55 57,559.87
Chicago 29,098.94 36,834.37 29,010.20 37,667.66

ROWIDTOCHAR
The ROWIDTOCHAR function converts a value of the ROWID data type to a value of the
TEXT data type.

Return Value

TEXT

The result of this conversion is always in the national character set and is 18
characters long.

Syntax

ROWIDTOCHAR (rowid)

Parameters

rowid
The value of type ROWID to convert.

Examples

Example 8-91 Converting ROWID Data to TEXT or NTEXT Data

Assume the following your analytic workspace has the following object definitions.

Chapter 8
ROWIDTOCHAR

8-122

DEFINE myrowid DIMENSION ROWID
DEFINE mytext VARIABLE TEXT
DEFINE myntext VARIABLE NTEXT

Now you populate myrowid which has a data type of ROWID using a MAINTAIN
statement. Then you use the ROWIDTOCHAR function to populate mytext which has a
data type of TEXT and ROWIDTONCHAR function to populate myntext which has a
data type of NTEXT. Reports show that all of the variables are populated.

MAINTAIN myrowid ADD CHARTOROWID('AAAFd1AAFAAAABSAA/')
mytext = ROWIDTOCHAR (myrowid)
myntext = ROWIDTONCHAR (myrowid)

MYROWID

AAAFd1AAFAAAABSAA/

MYTEXT

AAAFd1AAFAAAABSAA/

MYNTEXT

AAAFd1AAFAAAABSAA/

ROWIDTONCHAR
The ROWIDTONCHAR function converts a value of the ROWID data type to a value of
the NCHAR data type. The result of this conversion is always in the national character set
and is 18 characters long.

Return Value

NCHAR

The result of this conversion is always in the national character set and is 18
characters long.

Syntax

ROWIDTONCHAR (rowid)

Parameters

rowid
The value of type ROWID to convert.

Examples

See Example 8-91.

RPAD
The RPAD function returns an expression, right-padded to a specified length with the
specified characters; or, when the expression to be padded is longer than the length
specified after padding, only that portion of the expression that fits into the specified
length.

Chapter 8
ROWIDTONCHAR

8-123

Return Value

TEXT or NTEXT based on the data type of the expression you want to pad (text-exp).

Syntax

RPAD (text-exp , length [, pad-exp])

Parameters

text-exp
A text expression to pad.

length
The total length of the return value as it is displayed on your terminal screen. In most
character sets, this is also the number of characters in the return value. However, in
some multibyte character sets, the display length of a character string can differ from
the number of characters in the string.
When you specify a value for length that is shorter than the length of text-exp, then
this function truncates the expression to the specified length.

pad-exp
A text expression that specifies the padding characters. The default value of pad-exp
is a single blank.

Examples

Example 8-92 Right-Padding a String

The following example right-pads a name with the letters "ab" until it is 12 characters
long.

SHOW RPAD('Morrison',12,'ab')
Morrisonabab

RTRIM
The RTRIM function removes characters from the right of a text expression, with all
the rightmost characters that appear in another text expression removed. The function
begins scanning the base text expression from its last character and removes all
characters that appear in the trim expression until reaching a character that is not in
the trim expression and then returns the result.

Return Value

TEXT or NTEXT based on the data type of the first argument.

Syntax

RTRIM (text-exp [, trim-exp])

Parameters

text-exp
A text expression that you want trimmed.

Chapter 8
RTRIM

8-124

trim-exp
A text expression that is the characters to trim. The default value of trim-exp is a
single blank.

Examples

Example 8-93 Trimming Right-Most Characters

The following example trims all of the right-most x's and y's from a string.

SHOW RTRIM('Last Wordxxyxy','xy')
Last Word

RUNTOTAL
The RUNTOTAL function returns the running total of an expression. You can use the
RUNTOTAL function in a ROW command, ROW function, or REPORT command to
generate a running total of the value of an expression.

Return Value

DECIMAL

Syntax

RUNTOTAL(n)

Parameters

n
One of the 32 subtotals (1 to 32) that Oracle OLAP accumulates for the current
column of a report. RUNTOTAL returns the value of this subtotal for the specified
column, but does not reset the value of the subtotal to zero.
The numbers by which the 32 subtotals are referenced (1 to 32) have no intrinsic
significance; all the subtotals are the same until you reference them.

Usage Notes

How RUNTOTAL Works

Unlike the SUBSTR function, RUNTOTAL does not reset the indicated subtotal to
zero, nor does it add the value returned by RUNTOTAL to the indicated subtotal.
However, the value returned by RUNTOTAL is added to the other 31 accumulating
totals for the current column.

Accessing Data from Another Column

You can obtain a running total of an expression shown in another column of a report
by adding that expression to RUNTOTAL. You can use the COALESCE function to
refer to the values in the other column. For example, to show the sales for each month
in the first data column of a row, and a cumulative total of sales in the second data
column, you could use this statement.

ROW month sales COLVAL(-1) + RUNTOTAL(1)

Resetting Subtotals

Chapter 8
RUNTOTAL

8-125

When you use a ROW statement to produce a report, you can use a ZEROTOTAL
statement to reset any subtotal of any column to zero. Typically, use ZEROTOTAL at
the beginning of a report program to make sure all totals begin at zero. A REPORT
statement automatically resets all subtotals to zero before producing output.

NA Values and RUNTOTAL

RUNTOTAL ignores NA values unless all values are NA. When all values are NA, the
total is NA.

Examples

Example 8-94 Calculating a Running Total in a Report

In a report, suppose you want column 2 to contain a running total of the values in
column 1.

Assume that you issue the following OLAP DML statements

ZEROTOTAL ALL
ROW W 4 R 2 RUNTOTAL(1) + COLVAL(1)
ROW W 4 R 5 RUNTOTAL(1) + COLVAL(1)
ROW W 4 R 3 RUNTOTAL(1) + COLVAL(1)

These statements produce the following output.

2 2.00
5 7.00
3 10.00

Example 8-95 Calculating a Running Total over Two Districts

In this example, you want your report to contain the unit sales of tents for two districts
for the first six months of 1996. Along with the monthly sales figures, you want to see a
running total of tent sales for these two districts for the year to date. To produce this
cumulative total, use the RUNTOTAL function.

LIMIT product TO 'Tents'
LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT district TO 'Boston' 'Chicago'
REPORT ACROSS district: units -
 DECIMAL 0 TOTAL(units, month)+RUNTOTAL(1)

These statements produce the following output.

PRODUCT: TENTS
 --------UNITS--------
 ------DISTRICT-------
 TOTAL(UNIT
 S,
 MONTH)+RUN
MONTH Boston Chicago TOTAL(1)
-------------- ---------- ---------- ----------
Jan96 307 189 496
Feb96 209 190 895
Mar96 277 257 1,429
Apr96 372 318 2,119
May96 525 433 3,077
Jun96 576 466 4,119

Chapter 8
RUNTOTAL

8-126

SESSIONTIMEZONE
The SESSIONTIMEZONE function returns the time zone of the current session.

Return Values

A time zone offset (a character type in the format '[+|]TZH:TZM') or a time zone region
name, depending on how the user specified the session time zone value in the most
recent ALTER SESSION statement

Syntax

SESSIONTIMEZONE

Examples

Example 8-96 Retrieving the Session Time Zone

SHOW SESSIONTIMEZONE
-05:00

SIGN
The SIGN function returns a value that indicates when a specified number is less than,
equal to, or greater than 0 (zero).

Return Value

INTEGER. SIGN returns -1 when n<0, 0 (zero) when n=0, or 1 when n>0.

Syntax

SIGN (n)

Parameters

n
A numeric expression.

Examples

Example 8-97 Determining if the Result of a Numeric Expression is Greater or
Less Than Zero

The following example indicates that the function's argument (-15) is less than 0
(zero).

SHOW SIGN(-15)
 -1

SIN
The SIN function calculates the sine of an angle expression.

Chapter 8
SESSIONTIMEZONE

8-127

Return Value

NUMBER

The result returned by SIN is a value with the same dimensions as the specified
expression.

Syntax

SIN(angle-expression)

Parameters

angle-expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 8-98 Calculating the Sine of an Angle in Radians

This example calculates the sine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW SIN(1)

produce the following result.

0.84147

Example 8-99 Calculating the Sine of an Angle in Degrees

This example calculates the sine of an angle of 30 degrees. Because 1 degree =
2*(pi)/360 radians, 30 degrees is about 30*2*3.14159/360 radians. The OLAP DML
statement

SHOW SIN(30 * 2 * 3.14159 / 360)

produces the following result.

0.50000

SINH
The SINH function calculates the hyperbolic sine of a number.

Return Value

NUMBER

Syntax

SINH(expression)

Parameters

expression
A numeric expression that contains an angle value, which is specified in radians.

Chapter 8
SINH

8-128

Examples

Example 8-100 Calculating the Hyperbolic Sine of an Angle

This example calculates the hyperbolic sine of an angle of 1 radian. The statements

DECIMALS = 5
SHOW SINH(1)

produce the following result.

1.17520

SMALLEST
The SMALLEST function returns the smallest value of an expression. You can use this
function to compare numeric values or date values.

Return Value

The data type of the expression. It can be INTEGER, LONGINT, DECIMAL, or DATE.

Syntax

SMALLEST(expression [CACHE] [dimension...])

Parameters

expression
The expression whose smallest value is to be returned.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.
By default, SMALLEST returns a single value. When you indicate one or more
dimensions for the result, SMALLEST tests for values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Chapter 8
SMALLEST

8-129

Usage Notes

NA Values and SMALLEST

SMALLEST is affected by the NASKIP option in the same manner as other aggregate
functions. When NASKIP is set to YES (the default), SMALLEST ignores NA values and
returns the smallest value or values that are not NA. When NASKIP is set to NO,
SMALLEST returns NA when any value of the expression is NA. When all the values of
the expression are NA, SMALLEST returns NA for either setting of NASKIP.

Examples

Example 8-101 Finding the Month with the Least Amount of Sportswear Sales

This example uses the SMALLEST function to find the smallest monthly sportswear
sales for three districts during the first half of 1996. To see the smallest sales figure for
each district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
LIMIT district TO FIRST 3
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT HEADING 'Smallest Sales' SMALLEST(sales district)

The preceding statements produce the following output.

 Smallest
DISTRICT Sales
-------------- ----------
Boston 57,079.10
Atlanta 129,616.08
Chicago 77,489.51

SMOOTH
The SMOOTH function computes a single or a double exponential smoothing of a
numeric expression.

Return Value

DECIMAL

Syntax

SMOOTH(expression {SINGLE alpha|DOUBLE alpha beta m} [BASEDON dimension-
list])

Parameters

expression
The numeric expression whose values are to be smoothed.

SINGLE
DOUBLE
The method to use in the exponential smoothing of the values in expression. The
SINGLE method specifies single exponential smoothing and requires an alpha
argument. The DOUBLE method specifies double exponential smoothing (also known

Chapter 8
SMOOTH

8-130

as Holt's linear exponential smoothing) and requires an alpha argument, a beta
argument, and an m argument.

alpha
A number in the range from 0 to 1 that smooths the difference between the observed
data forecast and the last forecast. The higher the value, the more weight the most
recent forecast has, so smoothing decreases as the smoothing factor increases. A
smoothing factor of 0 completely smooths the forecasts and always returns the first
forecast, which is the first data observation. A smoothing factor of 1 produces no
smoothing at all and returns the previous data observation. (See "alpha ".)

beta
A number in the range from 0 to 1 that smooths the difference between the previous
forecast and the current forecast. As with the alpha argument, smoothing decreases
as the smoothing factor increases.

m
A positive INTEGER between 1 and the total number of periods of data in the data
series. The m argument specifies the number of periods on which to base the
forecasts.

BASEDON dimension-list
An optional list of one or more of the dimensions of expression to include in the
exponential smoothing. When you do not specify the dimensions, then SMOOTH
bases the smoothing on all of the dimensions of expression.

Usage Notes

The Effect of NASKIP on SMOOTH

SMOOTH is affected by the NASKIP option. When NASKIP is set to YES (the default),
then SMOOTH ignores NA values. When NASKIP is set to NO, then SMOOTH returns NA
for every forecast after the NA value.

Results of alpha Values

This note illustrates the results of using different alpha values for single exponential
smoothing. The results are based on the sales variable with the dimensions limited by
the following statements.

LIMIT month TO 'Jan96' TO 'Dec96'
LIMIT product TO 'Tents'
LIMIT district TO 'Boston'
REPORT DOWN month SMOOTH(sales, SINGLE, ALPHA, BASEDON month)

The following table shows the data values of the sales variable and also shows the
results of the SMOOTH function in the preceding statement when the alpha argument
variable has the different values shown in the table.

MONTH Sales of
tents in
Boston

alpha = 0 alpha = .1 alpha = .5 alpha = .9

Jan96 50,808.96 NA NA NA NA

Feb96 34,641.59 50,808.96 50,808.96 50,808.96 50,808.96

Mar96 45,742.21 50,808.96 49,192.22 42,725.28 36,258.33

Apr96 61,436.19 50,808.96 48,847.22 44,233.74 44,793.82

Chapter 8
SMOOTH

8-131

MONTH Sales of
tents in
Boston

alpha = 0 alpha = .1 alpha = .5 alpha = .9

May96 86,699.67 50,808.96 50,106.12 52,834.97 59,771.95

Jun96 95,120.83 50,808.96 53,765.47 69,767.32 84,006.90

Jul96 93,972.49 50,808.96 57,901.01 82,444.07 94,009.44

Aug96 94,738.05 50,808.96 61,508.16 88,208.28 93,976.18

Sep96 75,407.66 50,808.96 64,831.15 91,473.17 94,661.86

Oct96 70,622.91 50,808.96 65,888.80 83,440.41 77,333.08

Nov96 46,124.99 50,808.96 66,362.21 77,031.66 71,293.93

Dec96 36,938.27 50,808.96 64,338.49 61,578.33 48,641.88

Examples

Example 8-102 Smoothing Values

These statements limit the dimensions of the sales variable, set the data column width
for reports, and report the data values for sales.

LIMIT month TO 'Jan96' TO 'Dec96'
LIMIT product TO 'Tents'
LIMIT district TO 'Boston'
COLWIDTH = 14

REPORT W 6 DOWN month sales

The preceding statements produce the following output.

DISTRICT: Boston
 ----SALES-----
 ---PRODUCT----
MONTH Tents
------ --------------
Jan96 50,808.96
Feb96 34,641.59
Mar96 45,742.21
Apr96 61,436.19
...
Nov96 46,124.99
Dec96 36,938.27

This statement reports the results of using the SMOOTH function on the sales variable
with the SINGLE method, a data smoothing factor of .5, and based on the month
dimension.

REPORT W 6 DOWN month SMOOTH(sales, SINGLE, .5, BASEDON month)

The preceding statement produces the following output.

DISTRICT: Boston
 SMOOTH(SALES,-
 -SINGLE, .5,--
 BASEDON MONTH)
 ---PRODUCT----
MONTH Tents
------ --------------

Chapter 8
SMOOTH

8-132

Jan96 NA
Feb96 50,808.96
Mar96 42,725.28
Apr96 44,233.74
...
Nov96 77,031.66
Dec96 61,578.33

SORT function
The SORT function returns the dimension or dimension surrogate values that result
from a specified SORT command.

See Also:

SORT command

Return value

The return value varies depending on the use of the function:

• When the SORT function is an argument to an OLAP DML statement (including a
user-defined command or function) that expects a valueset, it returns a valueset.
When the SORT function returns an empty valueset, it returns it as a valueset with
null status.

• When you include the INTEGER keyword, the SORT function returns the position
numbers of the values as INTEGERS.

• In all other cases, the SORT function returns either a TEXT value. When it returns
a TEXT value that represents empty status, it returns the value as NA.

Syntax

SORT([INTEGER]dimension [byhierarchy] [bycriterion...])

where:

• byhierarchy is an optional phrase that uses a parent relation to arrange the
order of values in the current status list of a hierarchical dimension or its
dimension surrogate, or to assign values to a valueset, based on family
relationships within the hierarchy. You can include only one byhierarchy phrase
in a SORT statement. It must be the first phrase in a SORT statement.

HIERARCHY parent-relation [INVERT] [DEPTH n] [SORTORPHANS]

• bycriterion uses an explicit criterion to arrange the order of values in the
current status list of a dimension or its dimension surrogate, or to assign values to
a valueset. You can include as many bycriterion phrases as you want in a
SORT statement.

{A|D} [NAFIRST] criterion

Parameters

See the SORT command for a complete description of all arguments except
INTEGER.

Chapter 8
SORT function

8-133

INTEGER
When you use the INTEGER keyword, the function returns the position numbers of
the values in the default dimension status rather than the names. When you use
INTEGER with a valueset, the function returns the position numbers of the values in
the default dimension status, not in the valueset.

SORTLINES
The SORTLINES function sorts the lines in a multiline TEXT value.

Return Value

TEXT or NTEXT

Syntax

SORTLINES(text-expression [A|D])

Parameters

text-expression
A multiline text expression whose lines SORTLINES sorts. When you specify a TEXT
expression, the return value is TEXT. When you specify an NTEXT expression, the
return value is NTEXT.

A
D
Specifies whether the sorting order should be ascending, or alphabetical (A), or
descending, or reverse alphabetical (D). The default is A (ascending). The sort order
is controlled by the NLS_SORT option.

Examples

Example 8-103 Sorting Text Lines

This example shows how to sort the lines in a multiline text value in a variable called
MKTREGIONS.

The statement

SHOW mktregions

produces the following output.

New York
Boston
Atlanta
San Francisco

The statement

SHOW SORTLINES(mktregions)

produces the following output.

Atlanta
Boston
New York
San Francisco

Chapter 8
SORTLINES

8-134

SOUNDEX
The SOUNDEX function returns a character string containing the phonetic
representation of a text expression. This function lets you compare words that are
spelled differently, but sound alike in English.

See Also:

The SOUNDEX function in Oracle Database SQL Language Reference for a
discussion of how the phonetic representation is constructed

Return Value

The same data type as text_exp.

Syntax

SOUNDEX(text_exp)

Parameters

text_exp
The expression for which you want a phonetic representation. It can be any of the text
data types.

SQLFETCH
The SQLFETCH function retrieves one or more rows of a column in a relational text.

Return value

TEXT

Syntax

SQLFETCH (cursorname [COLUMN column-number} {STOPAFTER number-of-rows])

Parameters

cursorname
A TEXT expression that is the name of the SQL cursor. The cursor must be opened
and closed by the caller.

column-number
An INTEGER value that is the number of the column. (Default is 1.)

number-of-rows
The number of rows to read. (Default is all remaining rows).

Chapter 8
SOUNDEX

8-135

SQRT
The SQRT function computes the square root of an expression.

Return Value

DECIMAL

Syntax

SQRT(expression)

Parameters

expression
The numeric expression whose square root is to be computed.

Usage Notes

Negative Expressions

When expression is negative and ROOTOFNEGATIVE is set to NO, an error occurs.
When expression is negative and ROOTOFNEGATIVE is set to YES, SQRT returns the
value NA.

Examples

Example 8-104 Calculating a Square Root

This example calculates the square root of 144. The statement

SHOW SQRT(144)

produces the following result.

12.00

STARTOF
The STARTOF function returns the starting date of a time period in a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR.

Note:

You can only use this function with dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR.You cannot use this function for time dimensions that are
implemented as hierarchical dimensions of type TEXT.

Return Value

DATE or text

Chapter 8
SQRT

8-136

Syntax

STARTOF(dwmqy-dimension)

Parameters

dwmqy-dimension
A dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. When you have
explicitly defined your own relation between dimensions of this type, you can use the
name of this time relation here.

Usage Notes

How STARTOF Works

STARTOF returns the first date of the time period that is first in the current status list of
the dimension.

Phased or Multiple Periods

STARTOF is particularly useful when the dimension has a phase that differs from the
default or when the time periods are formed from multiple weeks or years. For
example, when the dimension has four-week time periods, the STARTOF function
identifies the starting date of a particular four-week period.

Format of the Result Returned by STARTOF

When you display the result returned by STARTOF, the date is formatted according to
the date template in the DATEFORMAT option. When the day of the week or the name
of the month is used in the date template, the day names specified in the DAYNAMES
option and the month names specified in the MONTHNAMES option are used. You
can use the result returned by STARTOF anywhere that a DATE value is expected.

Retrieving the Last Valid Date of a Time Period

The ENDOF function, which returns the last date of a time period.

Examples

Example 8-105 Finding the Fiscal Year Starting Date

The following statements define a year dimension (called FYEAR, for a fiscal year that
ends in June), specify how the year is formatted, add dimension values for fiscal years
1996 through 1998, and produce a report of the starting date of each fiscal year.

DEFINE fyear DIMENSION YEAR ENDING June
VNF 'FY<ff>'
MAINTAIN fyear ADD '30JUN96' '30JUN98'
REPORT W 14 STARTOF(fyear)

These statements produce the following output.

FYEAR STARTOF(FYEAR)
--------- --------------
FY96 01JUL95
FY97 01JUL96
FY98 01JUL97

Chapter 8
STARTOF

8-137

STATALL
The STATALL function indicates whether default status is currently in effect for a given
dimension. That is, STATALL returns YES when STATLIST would return ALL.
Otherwise, STATALL returns NO.

Return Value

BOOLEAN

Syntax

STATALL(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension or dimension surrogate.

Usage Notes

STATALL Compared to STATLIST

STATALL provides an alternative to running the STATLIST program to determine if the
status of a specified dimension is ALL.

Examples

Example 8-106 Using STATALL

With the following statement, you can see whether the status of the MONTH
dimension is ALL.

SHOW STATALL(month)

The return value is either YES or NO.

STATCURR
The STATCURR function returns the values of a specified status list for a dimension

Return Value

The data type of the returned value varies depending on the data type of the
dimension.

Syntax

STATCURR (dimension, integer)

Parameters

dimension
The name of the dimension for which the function searches for status lists.

Chapter 8
STATALL

8-138

integer
Specifies the position in the status list stack of the status list the function returns.

Value Specifies

0 The current value of the dimension.

-1 Returns the current value of status for the previous status
list in the status list stack for the dimension.

1 Returns the current value of the status list on the bottom of
the status list stack for the dimension.

STATDEPTH
The STATDEPTH function returns the number of status lists that Oracle OLAP has
saved for a specified dimension. The current status list of a dimension is at the top of
the stack which means that it has a depth of 1 (one.

Return Value

INTEGER

Syntax

STATDEPTH (dimension)

Parameters

dimension
The name of the dimension for which you want to retrieve information.

Usage Notes

What is a Status List Stack?

A status list stack for a dimension is a stack of the dimension statuses that Oracle
OLAP uses to manage status when executing PUSH and POP statements. The depth
of the list varies depending on what Oracle OLAP statements have executed:

• When you first attach an analytic workspace, the current status of each dimension
is ALL and the status list stack for each dimension has a depth of one (that is,
there is only one status list in the stack).

• The depth of the status list stack for a dimension stays at one (for the current
status list) no matter how often current status changes (that is, no matter how
many LIMIT commands execute against it), except in the following situations:

– Oracle OLAP executes a PUSH statement for the dimension. After a PUSH
statement executes, each time a LIMIT command executes for a pushed
dimension, Oracle OLAP adds status list to the status list stack for that
dimension. A POP statement for the dimension originally pushed, clears the
status list stack for the dimension. The status list stack for the dimension, once
again becomes one.

– Oracle OLAP executes a statement (like CHGDIMS or TEMPSTAT) that
temporarily changes the status of the dimension. In this case, Oracle OLAP
adds a status list to the status list stack during the time the statement is in
effect, and removes it immediately afterward. You can only access the status
list from the status list stack while the temporary status is in effect.

Chapter 8
STATDEPTH

8-139

STATEQUAL
The STATEQUAL function compares the status lists of a dimension.

Return Value

BOOLEAN

Syntax

STATEQUAL (statlist1, statlist2 [INORDER])

Parameters

statlist1
The status list of a dimension as specified using the name of the dimension, a
valueset dimensioned by the dimension; or a LIMIT or SORT function for the
dimension.

statlist2
The status list of the same dimension as that specified by statlist1. You can specify
statlist2 using the name of the dimension, a valueset dimensioned by the dimension;
or a LIMIT or SORT function for the dimension.

INORDER
Specifies that the values must be in the same order.

STATFIRST
 The STATFIRST function returns the first value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value

The data type returned by STATFIRST is either the data type of the dimension or
dimension surrogate value or an INTEGER that indicates its position in the default status
list of the dimension.The dimension value returned by STATFIRST is converted to a
number or a text value, as appropriate to the context. See Example 8-107.

Syntax

STATFIRST(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

Examples

Example 8-107 Assigning value of STATFIRST to Variables of Different Types

The following statements

Chapter 8
STATEQUAL

8-140

DEFINE textvar TEXT
textvar = STATFIRST(month)
SHOW textvar

produce this output.

Jun95

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATFIRST(month)
SHOW INTVAR

produce this output.

6

Example 8-108 STATFIRST with KEEP

The following line from a program uses STATFIRST to limit month to all values in the
status up to a value that has been stored previously in a variable called onemonth. The
keyword KEEP means the new status is always a subset of the old status.

LIMIT month KEEP STATFIRST(month) TO onemonth

STATFIRST is used here, rather than a particular month value, so that the limit can
work on any status list.

STATLAST
The STATLAST function returns the last value in the current status list of a dimension
or a dimension surrogate, or in a valueset.

Return Value

The data type returned by STATLAST is either the data type of the dimension or
dimension surrogate value or an INTEGER that indicates its position in the default status
list of the dimension. See "Automatic Data Conversion of Returned Dimension
Values".

Syntax

STATLAST(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

Usage Notes

Automatic Data Conversion of Returned Dimension Values

The dimension value returned by STATLAST is converted to a number or a text value,
as appropriate to the context. Suppose, for example, that jun95 is the sixth month value
but the last value in the current status list. The value of STATLAST(month) can be
assigned either to a text variable or a numeric variable.

Chapter 8
STATLAST

8-141

The following statements produce a text output value.

DEFINE textvar TEXT
TEXTVAR = statlast(MONTH)
SHOW textvar

Jun95

In contrast, these statements produce a numeric output value.

DEFINE intvar INTEGER
INTVAR = STATLAST(month)
SHOW INTVAR

6

Examples

Example 8-109 Setting Status with STATLAST

The following line from a program uses STATLAST to limit month to the values in the
status, beginning with a month that has been stored previously in a variable called
onemonth, and ending with the last value in the status.

LIMIT month KEEP onemonth TO STATLAST(month)

STATLAST is used here, rather than a particular month value, so that the limit can work
on any status list.

STATLEN
The STATLEN function returns the number of values in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value

INTEGER

Syntax

STATLEN(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

Examples

Example 8-110 Counting Months in Status

The following statement sends to the current outfile the number of months in the
current status list of the month dimension.

SHOW STATLEN(month)

Chapter 8
STATLEN

8-142

STATLIST
The STATLIST function returns a list of all values in the current status list of a
dimension or dimension surrogate, or in a valueset. You can format the list to a
specified width. The STATLIST function is employed by the STATUS command, which
summarizes the status of a dimension. Use STATLIST rather than STATUS when you
want to control the width or placement of the display.

Return Value

STATLIST returns a list of TEXT values that contains either the dimension or
dimension surrogate values themselves (for example, Jan95) or numbers (for example,
6) that represent the positions of the values in the default status list.

The returned values are in the form value TO value, for example, Jan96 TO Jun96.
When default status is in effect, it displays ALL. When the current status list or the
valueset is empty, it displays NULL.

Syntax

STATLIST(dimension [keyword] [width])

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

keyword
A keyword from the following table. The keywords allow you to specify the form in
which you want the values in the current status list to appear.

Keyword Description

INTEGE
R

Specifies that STATLIST should return the list of values in the
current status of a dimension in the form of the INTEGER positions
of those values in the default status list of the dimension.

TEXT (Default) Specifies that STATLIST should return the list of values
in the current status of a dimension in the form of the value names
of those values.

width
An optional INTEGER expression that specifies the width of the list in characters. When
no width is specified, STATLIST uses the current value of the LSIZE option. LSIZE
has a default value of 80.

Examples

Example 8-111 Producing a Status List with ROW

This example lists months in which total sales exceed $3,000,000.

These statements

LIMIT month TO TOTAL(sales, month) GE 3000000
ROW W 40 'Months with total sales over $3,000,000: '-
 W 40 STATLIST(month, 40)

Chapter 8
STATLIST

8-143

produce the following output.

Months with total sales over $3,000,000: Jun95 TO Sep95, May96 TO Sep96

Example 8-112 Producing a Status List with SHOW

The following STATLIST statement formats dimension values to a 20-character width.

LIMIT month TO 'Jan95' 'Mar95' 'May95' 'Jul96' 'Sep96' 'Nov96'
SHOW STATLIST(month 20)

These statements produce this output.

Jan95, Mar95, May95,
Jul96, Sep96, Nov96

This statement lists dimension positions.

SHOW STATLIST(month INTEGER 20)

This is the output.

1, 3, 5, 19, 21, 23

STATMAX
The STATMAX function returns the latest value in the current status list of a dimension
or a dimension surrogate, or in a valueset.

Return Value

The data type returned by STATMAX is either the data type of the dimension or
dimension surrogate value or an INTEGER that indicates its position in the default status
list of the dimension or surrogate. See "Automatic Conversion of Values Returned by
STATMAX".

Syntax

STATMAX(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

Usage Notes

Automatic Conversion of Values Returned by STATMAX

The value that STATMAX returns is converted to a number or a text value as
appropriate to the context. For example, suppose that the status of month is limited to
Jun95 to Dec95 and that Dec95 is the twelfth month in the default status list. The value of
STATMAX(month) can be assigned either to a text variable or a numeric variable.

The following statements

DEFINE textvar TEXT
textvar = STATMAX(month)
SHOW textvar

Chapter 8
STATMAX

8-144

produce this output.

Dec95

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATMAX(month)
SHOW intvar

produce this output.

12

Examples

Example 8-113 STATMAX Used in a Title

The following statements from a program use STATMAX to determine the latest of the
10 months with the highest total sales.

LIMIT month TO BOTTOM 10 BASEDON TOTAL(sales, month)
SHOW JOINCHARS(STATMAX(month) ' is the latest month -
 of the ten months with the lowest sales.')
SHOW JOINCHARS('the months range from ' STATMIN(month) ' to '-
 STATMAX(month))

These statements produce the following sales report.

Dec96 is the latest month of the ten months with the lowest sales.
The months range from Jan95 to Dec96

When you used STATLAST instead of STATMAX, you could have produced a different
value, because the LIMIT command arranged the month values by increasing sales
rather than chronologically.

STATMIN
The STATMIN function returns the earliest value in the current status list of a
dimension or a dimension surrogate, or in a valueset.

Return Value

Either a dimension or surrogate value or an INTEGER that indicates the position of the
value in the default status list of the dimension or surrogate. The return value varies
depending on the dimension argument and the object receiving the return value. See
"Automatic Data Type Conversion of Values Returned by STATMIN".

Syntax

STATMIN(dimension)

Parameters

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

Chapter 8
STATMIN

8-145

Usage Notes

Automatic Data Type Conversion of Values Returned by STATMIN

The dimension value that STATMIN returns is converted, if necessary, to a number or
a text value. For example, suppose the status of month is limited to Jun95 to Dec95, and
Jun95 is the sixth month value in the default status list. The value of STATMIN(month) can
be assigned either to a text variable, a numeric variable, or DATE variable.

The following statements

DEFINE textvar TEXT
textvar = STATMIN(month)
SHOW textvar

produce this output.

Jun95

In contrast, these statements

DEFINE intvar INTEGER
intvar = STATMIN(month)
SHOW intvar

produce this output.

6

Examples

Example 8-114 Using STATMIN in a Title

The following statements from a program use STATMIN to determine the earliest of
the 10 months with the highest total sales.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
SHOW JOINCHARS(STATMIN(month) ' is the earliest of the -
 ten months with the highest sales.')
SHOW JOINCHARS('The months range from ' statmin(month) ' TO '-
 statmax(month))

The preceding statements produce the following sales report.

May95 is the earliest of the ten months with the highest sales.
The months range from May95 to Sep96

Example 8-115 Comparing to STATFIRST

In the following example, you can see the difference between STATMIN and
STATFIRST, which returns the first value in the current status list.

Assume that you issue the following statements.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
REPORT WIDTH 20 TOTAL(sales, month)

When the proceeding statements execute, the following report is produced.

MONTH TOTAL(SALES, MONTH)
-------------- --------------------
Jul96 3,647,085.39

Chapter 8
STATMIN

8-146

Jun96 3,458,438.30
Jul95 3,414,210.05
Aug96 3,246,601.97
Jun95 3,228,824.80
Sep96 3,215,883.93
May96 3,112,854.59
Aug95 3,044,694.29
Sep95 3,006,242.58
May95 2,908,539.45

Notice that the month values in this report are arranged by decreasing sales rather than
chronologically, and this is now the order in which they occur in the status list:

• STATMIN gives the chronologically first value in the status (though it is positionally
last) as illustrated in the following statement and output.

SHOW STATMIN(month)
May95

• STATFIRST gives the value that is positionally first in the status (though it is
chronologically eighth) as illustrated in the following statement and output.

SHOW STATFIRST(month)
Jul96

STATRANK
The STATRANK function returns the position of a dimension or dimension surrogate
value in the current status list or in a valueset.

Return Value

INTEGER

Syntax

STATRANK(dimension [value])

Parameters

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

value
The value you want to check, which is an appropriate data type for dimension. For
example, value can be a text expression for an ID or TEXT dimension, an INTEGER for
an INTEGER dimension, a date for a time dimension, or a combination of values
enclosed by angle brackets for conjoint or concat dimensions. The value of a text
expression must have the same capitalization as the actual dimension value. When
you use a text expression, it must be a single-line value.
When you specify the value of a conjoint dimension, be sure to enclose the value in
angle brackets, and separate the base dimension values with a comma and space.
When you specify the value of a concat dimension, be sure to enclose the value in
angle brackets, and separate the base dimension name from the value with a colon
and space.

Chapter 8
STATRANK

8-147

When you do not specify value, STATRANK returns the position of the current value.
When you specify the name of a valid dimension value that is not in the current status
list or in the valueset, STATRANK returns NA.

Examples

Example 8-116 Using STATRANK to Identify Position Numbers

Suppose you want to produce a report of the top five months by total sales, displayed
in order as a numbered list. You can use STATRANK to number each month. Assume
that you have written a report program with the following definition and contents.

DEFINE sales.rpt PROGRAM
PROGRAM
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
SHOW 'Top five months by total sales:'
for month
 ROW WIDTH 4 JOINCHARS(STATRANK(month) '.') WIDTH 5 month
END

The report program produces the following output.

Top five months by total sales:
1. Jul96
2. Jun96
3. Jul95
4. Aug96
5. Jun95

After executing the sales.rpt program, you can use a SHOW statement with the
STATRANK function to learn the position of a particular month within the top five
months by total sales.

The following statement

SHOW STATRANK(month Jun96)

produces this output.

2

Example 8-117 Using STATRANK When the Dimension Is a Conjoint
Dimension

When the dimension that you specify is a conjoint dimension, then the entire value
must be enclosed in single quotes.

For example, suppose the analytic workspace has a region dimension and a product
dimension. The region dimension values include East, Central, and West. The product
dimension values include Tents, Canoes, and Racquets.

The following statements define a conjoint dimension, and add values to it.

DEFINE reg.prod DIMENSION <region product>
MAINTAIN reg.prod ADD <'East', 'Tents'> <'West', 'Canoes'>

To specify base positions, use a statement such as the following. Because the position
of East in the region dimension is 1 and the position of Tents in the product dimension
is 1, the following statement returns the position of the corresponding reg.prod value.

Chapter 8
STATRANK

8-148

SHOW STATRANK(reg.prod '<1, 1>')

1

To specify base text values, use a statement such as the following.

SHOW STATRANK(reg.prod '<\'East\', \'Tents\'>')

1

Example 8-118 Using STATRANK When the Dimension Is a Concat Dimension

When the dimension that you specify is a concat dimension, then the entire value must
be enclosed in single quotes. The following statement defines a concat dimension
named reg.prod.ccdim that has as its base dimensions region and product.

DEFINE reg.prod.ccdim DIMENSION CONCAT(region product)

A report of reg.prod.ccdim returns the following.

REG.PROD.CCDIM

<Region: East>
<Region: Central>
<Region: West>
<Product: Tents>
<Product: Canoes>
<Product: Racquets>

To specify a base dimension position, use a statement such as the following. Because
the position of racquets in the product dimension is 3, the statement returns the
position in reg.prod.ccdim of the <product: Racquets> value.

SHOW STATRANK(reg.prod.ccdim '<product: 3>')

6

To specify base dimension text values, use a statement such as the following.

SHOW STATRANK(reg.prod.ccdim '<product: Tents>')

4

STATVAL
The STATVAL function returns the dimension value that corresponds to a specified
position in the current status list of a dimension or a dimension surrogate, or in a
valueset.

Return Value

The data type returned by STATVAL is either the data type of the dimension or
dimension surrogate value or an INTEGER that indicates its position in the default status
list of the dimension. The dimension value that STATVAL returns is converted to a
number or a text value, as appropriate to the context. To ensure that STATVAL returns
an INTEGER value, specify the INTEGER keyword. See Example 8-120.

Syntax

STATVAL(dimension position [INTEGER])

Chapter 8
STATVAL

8-149

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

position
An INTEGER expression that specifies the position in the current status list of a
dimension or a valueset. When you specify a position that has no values, STATVAL
returns NA.

INTEGER
Specifies that STATVAL must return an INTEGER that represents the position of the
dimension value in the default status list.

Usage Notes

STATVAL in a FOR Loop

In a FOR loop over a dimension, the status is limited to a single dimension value for
each iteration of the loop. Therefore, STATVAL has a value only for position 1. For
other positions, STATVAL returns NA.

Examples

Example 8-119 STAVAL with Qualified Data References

Suppose you want to know the sales figures for the month ranked fifth among the 10
months with the highest total sales. After limiting month to the TOP 10, use STATVAL in a
qualified data reference to produce sales figures for the month ranked fifth.

LIMIT month TO TOP 10 BASEDON TOTAL(sales, month)
REPORT month

These statements produce the following report.

MONTH

Jul96
Jun96
Jul95
Aug96
Jun95
Sep96
May96
Aug95
Sep95
MAY95

Using STATVAL in the following REPORT statement produces a different report.

REPORT W 8 DOWN district HEADING -
 JOINCHARS('Sales: 5th of Top Ten - ' STATVAL(month 5)) -
 sales(month STATVAL(month 5))

This is the report produced by the preceding statement.

 ------------Sales: 5th of Top Ten - Jun95-------------
 -----------------------PRODUCT------------------------

Chapter 8
STATVAL

8-150

DISTRICT Tents Canoes Racquets Sportswear Footwear
-------- ---------- ---------- ---------- ---------- ----------
Boston 88,996.35 147,412.44 90,840.60 75,206.30 144,162.66
Atlanta 110,765.24 106,327.17 109,695.31 155,652.78 146,364.99
Chicago 70,908.96 108,039.05 100,030.29 104,900.66 148,386.81
Dallas 128,692.56 71,899.23 176,452.58 164,823.10 32,421.25
Denver 91,717.46 99,099.20 140,961.37 99,951.60 70,149.77
Seattle 113,806.48 143,037.62 54,926.87 57,739.03 75,457.04

Notice that the qualified data reference in the following statement means "sales for the
fifth month in the default status of month."

sales(month 5)

While the qualified data reference in the following statement means "sales for the fifth
month in the current status of month."

sales(month STATVAL(month 5))

The following statements show the different values that are returned for a qualified
data reference of month and for STATVAL with month as an argument.

SHOW month(month 5)
SHOW STATVAL(month 5)

The preceding statements produce the following output.

May95
Jun95

Example 8-120 Ensuring that STATVAL Returns an INTEGER

Depending on the context, STATVAL may return an INTEGER value without your
specifying the INTEGER keyword.

The following statements

LIMIT month TO 'Jun95' TO 'Dec95'
SHOW STATVAL(month 3)

produce this output.

Aug95

With the INTEGER keyword,

SHOW STATVAL(month 3 INTEGER)

the following output is produced.

8

STDDEV
The STDDEV function calculates the standard deviation of the values of an
expression.

When STDDEV is affected by the NASKIP option. When NASKIP is set to YES (the
default), STDDEV ignores NA values and returns the standard deviation of the values
that are not NA. When NASKIP is set to NO, STDDEV returns NA when any value in the

Chapter 8
STDDEV

8-151

calculation is NA. When all data values for a calculation are NA, STDDEV returns NA for
either setting of NASKIP.

Return Value

DECIMAL

Syntax

STDDEV(expression [dimensions])

Parameters

expression
The numeric expression whose standard deviation is to be calculated.

dimensions
The dimensions of the result. By default, STDDEV returns a single value. When you
indicate one or more dimensions for the results, STDDEV calculates a standard
deviation along the specified dimension(s) and returns an array of values. Each
dimension must be either a dimension of expression or related to one of its
dimensions. When it is a related dimension, you can specify the name of the relation
instead of the dimension name which enables you to choose the relation to use when
there are multiple relations between dimensions.

Usage Notes

Using STDDEV With an Expression Dimensioned by a DWMQY Dimension

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimensions of type DAY, WEEK,
MONTH, QUARTER, or YEAR as a related dimension. Oracle OLAP uses the implicit
relation between the dimensions. To control the mapping of one dimensions of type
DAY, WEEK, MONTH, QUARTER, or YEAR to another (for example, from weeks to
months), you can define an explicit relation between the two dimensions and specify
the name of the relation as the dimension argument to the STDDEV function.

For each time period in the related dimensions of type DAY, WEEK, MONTH,
QUARTER, and YEAR, Oracle OLAP calculates the standard deviation of the data
values of the source time periods that end in the target time period. This method is
used regardless of which dimension has the more aggregate time periods. To control
the way in which data is aggregated or allocated between the periods of two
dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, you can use the
TCONVERT function.

Examples

Example 8-121 Calculating the Standard Deviation of Monthly Sales

This example calculates the average number of tents sold during the first three months
of 1996, along with the standard deviation from that average.

LIMIT district TO ALL
LIMIT month TO 'Jan96' TO 'Mar96'
LIMIT product TO 'Tents'
REPORT HEADING 'Average' AVERAGE(units month) -
 HEADING 'Stddev'STDDEV(units months)

These statements produce the following output.

Chapter 8
STDDEV

8-152

MONTH Average Stddev
-------------- ---------- ----------
Jan96 262.33 49.32
Feb96 247.83 57.37
Mar96 320.50 68.17

SUBSTR functions
The SUBSTR functions (SUBSTR, SUBSTRB, and SUBSTRC) return a portion of a
string, beginning at a specified position in the string.

The functions vary in how they calculate the length of the substring to return.

• SUBSTR calculates lengths using characters as defined by the input character set.

• SUBSTRB calculates lengths using bytes.

• SUBSTRC calculates lengths using Unicode complete characters.

Return Value

The return value is the same data type as string.

Syntax

{SUBSTR | SUBSTRB | SUBSTRC }(string, position [, substring_length])

Parameters

string
A text expression that is the base string from which the substring is created.

position
The position at which the first character of the returned string begins.

• When position is 0 (zero), then it is treated as 1.

• When position is positive, then the function counts from the beginning of string to
find the first character.

• When position is negative, then the function counts backward from the end of
string.

substring_length
The length of the returned string. SUBSTR calculates lengths using characters as
defined by the input character set. SUBSTRB uses bytes instead of characters.
SUBSTRC uses Unicode complete characters.
When you do not specify a value for this argument, then the function returns all
characters to the end of string. If you specify a value that is less than 1 or a value that
is greater than the number of characters in the string, then the function returns NA.

Examples

Example 8-122 Retrieving a Character Substring

The following example returns the specified substrings of "abcdefg".

SHOW SUBSTR('abcdefg',3,4)
cdef

Chapter 8
SUBSTR functions

8-153

SHOW SUBSTR('abcdefg',-5,4)
cdef

Example 8-123 Retrieving a Substring Using Bytes

Assume an AL32UTF8 database character set. For the string Fußball, the following
statement returns a substring 4 bytes long, beginning with the second byte.

SHOW SUBSTRB('Fußball',2,4)
ußb

SUBTOTAL
The SUBTOTAL function returns the value of one subtotal accumulated in a report.
You normally use the SUBTOTAL function in a ROW command to include a subtotal or
grand total in the report. Because Oracle OLAP maintains 32 running totals for each
column, you can include up to 32 levels of subtotals

Note:

In a REPORT statement, use the GRANDTOTALS and SUBTOTALS keywords
to include rows of grand totals and subtotals.

Return Value

DECIMAL

Syntax

SUBTOTAL(n)

Parameters

n
An INTEGER value that indicates the level of a running total for each numeric column in
a report. For example, a "Total" may be a level 1 subtotal and a "Grand Total" may be
a level 2 subtotal. Because it is possible to have up to 32 levels of running totals in a
column, n must be an INTEGER between 1 and 32. SUBTOTAL returns the value of this
subtotal for the current column and then resets the value of subtotal n to zero.
The numbers by which the 32 subtotals are referenced (1 to 32) have no intrinsic
significance; all the subtotals are the same until you reference them.

Usage Notes

Resetting Subtotals Automatically

When you use the SUBTOTAL function in a ROW command to include a subtotal of
the current column, the subtotal at that level is reset to zero.

Resetting Subtotals with ZEROTOTAL

When you use the ROW command to produce a report, you can use a ZEROTOTAL
statement to reset any subtotal of any column to zero.Typically, use ZEROTOTAL this
at the beginning of a report program to make sure all totals begin at zero.

Chapter 8
SUBTOTAL

8-154

NA Values and SUBTOTAL

SUBTOTAL ignores NA values. When all values are NA, SUBTOTAL returns zero.

Examples

Example 8-124 Calculating Subtotals and Grand Totals in a Report

In a sales report, suppose you want to show a subtotal for each region. You also want
to see a grand total of all sales at the end of the report. You can use SUBTOTAL(1) to
produce the subtotal for each region. This subtotal is reset to 0 each time you use it, so
it provides a separate subtotal for each region. At the end of the report you can use
SUBTOTAL(2) to produce the grand total. Because you have not yet used it in your
report, it holds a total of the sales figures for all regions.

LIMIT month TO FIRST 3
LIMIT region TO ALL
ZEROTOTAL ALL
FOR region
 DO
 ROW region
 LIMIT DISTRICT TO region
 FOR district
 DO
 ROW INDENT 5 district ACROSS month: sales
 DOEND
 ROW INDENT 5 'Total' ACROSS month: OVER '-' SUBTOTAL(1)
 BLANK
 DOEND
ROW 'Grand Total' ACROSS month: OVER '=' SUBTOTAL(2)

The program produces the following output.

East
 Boston 32,153.52 32,536.30 43,062.75
 Atlanta 40,674.20 44,236.55 51,227.06
 ---------- ---------- ----------
 Total 72,827.72 76,772.85 94,289.81
Central
 Chicago 29,098.94 29,010.20 39,540.89
 Dallas 47,747.98 50,166.81 67,075.44
 ---------- ---------- ----------
 Total 76,846.92 79,177.01 106,616.33
West
 Denver 36,494.25 33,658.24 45,303.93
 Seattle 43,568.02 41,191.28 51,547.23
 ---------- ---------- ----------
 Total 80,062.27 74,849.52 96,851.16

 ========== ========== ==========
Grand Total 229,736.91 230,799.38 297,757.30

SYS_CONTEXT
The SYS_CONTEXT function returns the value of parameter associated with the
context namespace.

Chapter 8
SYS_CONTEXT

8-155

See Also:

For more information, see the SYS_CONTEXT function in Oracle Database
SQL Language Reference

Return Values

VARCHAR2.

Syntax

SYS_CONTEXT(namespace, parameter [, length])

Parameters

namespace
A text expression that specifies a namespace which is a valid SQL identifier. The
context namespace must have been created, and the associated parameter and its
value must also have been set using the DBMS_SESSION.set_context procedure.

parameter
A text expression that specifies an attribute associated with a namespace. This
parameter and its value must have previously been set using the
DBMS_SESSION.set_context procedure. The parameter is not case sensitive, but it
cannot exceed 30 bytes in length.

length
A numeric expression that specifies the maximum size of the return value. The value
that you specify must be a NUMBER (or a value that can be implicitly converted to
NUMBER) and in the range of 1 to 4000 bytes,. If you specify an invalid value, then
Oracle OLAP ignores it and uses the default value of 256 bytes.

Usage Notes

USERENV Built-In Namespace

Oracle provides a built-in namespace called USERENV, which describes the current
session.

For more information on the predefined parameters of namespace USERENV, see the
SYS_CONTEXT function in Oracle Database SQL Language Reference.

Examples

Example 8-125 Retrieving the Name of the User of the Session

The following hypothetical example retrieves the value JOHNSMITH which is the name of
the user who logged onto the database.

SHOW SYS_CONTEXT ('USERENV', 'SESSION_USER')
JOHNSMITH

Chapter 8
SYS_CONTEXT

8-156

SYSDATE
The SYSDATE function returns the current date and time as a DATETIME value. The
format of the date is controlled by the NLS_DATE_FORMAT option. The default
DATETIME format (DD-MM-RR) does not display the time.

Return Value

DATETIME

Syntax

SYSDATE

Examples

Example 8-126 Displaying the Current Date

The following statement:

SHOW SYSDATE

displays the current date:

08-Sep-00

SYSINFO
The SYSINFO function provides information about the Oracle user ID for the current
session.

Return Value

TEXT

Syntax

SYSINFO (keyword)

where keyword is one of the following:

USER

ROLES

PROFILES

HOSTNAME

OSUSER

INSTNAME

PID

PROGNAME

CHOSTNAME

COSUSER

TERMNAME

Chapter 8
SYSDATE

8-157

Parameters

USER
Returns a TEXT value that indicates the user ID under which the Oracle Database
session is running which is the same value that is returned by USERID.

ROLES
Returns a multiline TEXT value that lists the roles that apply to the user ID of the
session.

PROFILES
Returns a multiline TEXT value that lists the profiles that apply to the user ID of the
session.

OSUSER
Returns TEXT value that indicates the operating system user name under which the
Oracle Database server is running.

INSTNAME
Returns a TEXT value that is the instance name of the Oracle Database server.

PID
Returns a TEXT value that is the operating system id number of your Oracle
Database session.

HOSTNAME
Returns a TEXT value that is the host name of the Oracle Database server.

PROGNAME
Returns a TEXT value that identifies the client that is connecting to the database.

CHOSTNAME
Returns a TEXT value that is the host name of the client.

COSUSER
Returns a TEXT value that is the operating system user name of the client.

TERMNAME
Returns a TEXT value that is the terminal name of the client.

Examples

Example 8-127 Obtaining the User ID

You can use the SYSINFO function to obtain the user of the current session.

SHOW SYSINFO(USER)

produces output like the following.

Scott

SYSTEM
The SYSTEM function identifies the platform on which Oracle OLAP is running.

Chapter 8
SYSTEM

8-158

Data Type

TEXT

Syntax

SYSTEM

Usage Notes

Relevance of the Platform

Because Oracle OLAP is incorporated in Oracle Database, the operating system on
which it is running should not be an important factor in its behavior.

Note:

All references to external files are made through directory objects, which are
not platform specific

Examples

Example 8-128 Displaying the Platform

Issuing the following SYSTEM statement on Intel NT returns the value NTX86.

SHOW SYSTEM

NTX86

SYSTIMESTAMP
The SYSTIMESTAMP function returns the current date and time as a
TIMESTAMP_TZ value.

Data Type

TIMESTAMP_TZ

Syntax

SYSTIMESTAMP

Examples

Example 8-129 Retrieving the current date and time as a TIMESTAMP value.

SHOW systimestamp
26-APR-07 02.18.47.030587 PM -04:00

TALLY
The TALLY function counts the number of values of a dimension that correspond to
each value of one or more related dimensions.

Chapter 8
SYSTIMESTAMP

8-159

Return Value

INTEGER

Syntax

TALLY(dimension [related-dimensions])

Parameters

dimension
A dimension whose values are to be counted. When you specify related-dimensions,
TALLY counts the number of values of dimension that correspond to each value of a
single related dimension, or to each combination of values of two or more related
dimensions. When you do not specify related-dimensions, TALLY counts the number
of values in the dimension. Only values in the current status of dimension are
counted.

related-dimensions
One or more related dimensions for the results. These must be related to dimension.
Alternatively, you can specify the name of the relation instead of the dimension name
which enables you to choose which relation is used when there are multiple relations
between dimensions. When no related-dimensions are specified, TALLY returns the
total number of values in the current status of dimension.

Usage Notes

TALLY with NA

TALLY returns NA for any related-dimension position that has no dimension values
corresponding to it.

TALLY with DWMQY Dimensions

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR as a related-dimension. Oracle OLAP uses the implicit
relation between the dimensions. To control the mapping of one DAY, WEEK,
MONTH, QUARTER, or YEAR dimension to another (for example, from weeks to
months), you can define an explicit relation between the two dimensions and specify
the name of the relation as the related-dimension argument to the TALLY function.

For each time period in the related dimension, Oracle OLAP tallies all the source time
periods that end in the target time period. This method is used regardless of which
dimension has the more aggregate time periods.

Examples

Example 8-130 Breaking Out TALLY Results

Here you use TALLY to determine how many products are produced by each division.
The division.product relation records the division to which each product belongs. The
following is a report of division.product.

PRODUCT DIVISION.PRODUCT

Tents Camping
Canoes Camping

Chapter 8
TALLY

8-160

Racquets Sporting
Sportswear Clothing
Footwear Clothing

The following statement includes TALLY to present the number of products produced
by each division.

REPORT HEADING 'Products' TALLY(product, division)

The statement produces this report.

DIVISION Products

Camping 2
Sporting 1
Clothing 2

TAN
The TAN function calculates the tangent of an angle expression.

Return Value

NUMBER

Syntax

TAN(expression)

Parameters

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 8-131 Calculating the Tangent of an Angle

This example calculates the tangent of an angle of 1 radian. The statements

DECIMALS = 5
SHOW TAN(1)

produce the following result.

1.55741

TANH
The TANH function calculates the hyperbolic tangent of an angle expression.

Return Value

NUMBER

Syntax

TANH(expression)

Chapter 8
TAN

8-161

Parameters

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples

Example 8-132 Calculating the Hyperbolic Tangent of an Angle

This example calculates the hyperbolic tangent of an angle of 1 radian. The statements

DECIMALS = 5
SHOW TANH(1)

produce the following result.

0.76159

TCONVERT
The TCONVERT function converts time-series data from one dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR to another dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You can specify an aggregation method or an
allocation method to use in the conversion.

Note:

You can only use this function with dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR.You cannot use this function for time dimensions that are
implemented as hierarchical dimensions of type TEXT.

Return Value

The value returned by the TCONVERT function depends on the type of conversion
you specify and the type of the dimension being converted.

Syntax

TCONVERT(expression time-dimension method [method])

where the syntax for method varies by method type:

 SUM|AVERAGE|LAST [BY PERIOD|BY DAY] [STATUS|NOSTATUS]

 SPLIT|REPEAT|INTERPOLATE [BY PERIOD|BY DAY]

Parameters

expression
An expression whose values you want to convert. Expression must be dimensioned
by a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. This dimension
is referred to as the source dimension. Usually expression is numeric, but with some
conversion methods you can also convert text data. See "Converting Text Data".

Chapter 8
TCONVERT

8-162

time-dimension
The DAY, WEEK, MONTH, QUARTER, or YEAR dimension to which you want to
convert the expression. This dimension is referred to as the target dimension.

method
The method to use for converting data from the source dimension to the target
dimension. You can specify an aggregation method or an allocation method:

• Aggregation methods are SUM, AVERAGE, and LAST. They are typically used to
convert data from smaller time periods to larger time periods (for example, months
to years).

• Allocation methods are SPLIT, REPEAT, and INTERPOLATE. They are typically
used to convert data from larger to smaller time periods (for example, years to
quarters). The allocation methods all use the full default status of the source
dimension to determine the periods that contribute to the allocation.

Except for a case in which the source dimension and target dimension have
overlapping periods of equal length (as with a calendar year and a fiscal year), you
can specify both an aggregation method and an allocation method. See "Compatible
Aggregation and Allocation Methods" and "Using Both Aggregation and Allocation".

For all methods, results are calculated for the values in the current status of the target
dimension.

The results you obtain depend on the method you specify and on whether you convert
data between dimensions with periods of equal length or unequal length. See "Using
Both Aggregation and Allocation", "Overlapping Periods of Equal Length", and
"Substituting a Compatible Method".

SUM [BY PERIOD]
Aggregates data to a target period by totaling the data of the contributing source
periods. For each target period, SUM BY PERIOD returns the total for all the source
periods that end in the target period. SUM uses the implicit relation between the
source and target dimensions.

SUM BY DAY
Weights each source value according to the portion of target days it represents. For
each target period, SUM BY DAY multiplies each contributing source period value by
a weighting factor that has this form where source-days-in-target is the Number of
source-period days that actually fall in target period and total-days-in-period is the
total number of days in source period:

source-days-in-target / total-days-in-period

SUM BY DAY then returns the total of these weighted source values. When you use
SUM BY DAY, the value of an individual source period may be apportioned across
adjacent target periods.
For example, suppose you convert weekly data to monthly data. When three days of a
week fall in January and four fall in February, then SUM BY DAY adds 3/7 of the data
for that week to the January total and 4/7 to the February total. In contrast, SUM BY
PERIOD adds the entire data value for the week to the February total (because the
week ends in February).
As another example, suppose you want to convert calendar year data to a fiscal year
ending in June. Calendar year 1996 (Cal96) is the only calendar year that ends in
fiscal year 1997 (Fy97). The SUM BY PERIOD method assigns the value for Cal96 to
Fy97. In contrast, SUM BY DAY apportions the Cal96 value to the fiscal years Fy96 and

Chapter 8
TCONVERT

8-163

Fy97, according to the number of calendar days that fall in each fiscal year. Of the 366
days of Cal96, 182 days (January 1 - June 30) fall in Fy96 and 184 days (July 1 -
December 31) fall in Fy97. Therefore, for the CAL96 data, SUM BY DAY uses a
weighting factor of 182/366 for Fy96 and a factor of 184/366 for Fy97.

AVERAGE [BY PERIOD]
Aggregates data to a target period by averaging the data of the contributing source
periods. For each target period, AVERAGE BY PERIOD adds up the data from all the
source periods that end within the target period and divides this total by the number of
source periods. AVERAGE BY PERIOD uses the implicit relation between the two
time dimensions.

AVERAGE BY DAY
Weights the value of each contributing source period by the portion of target days it
represents. For each target period, AVERAGE BY DAY multiplies the value of each
source period by the number of days of that source period that actually fall within the
target period. The average is then calculated by adding these weighted source values
and dividing by the total number of days in the target period. When you use
AVERAGE BY DAY, the value of a single source period may be apportioned across
adjacent target periods.

LAST [BY PERIOD]
For each target period, LAST BY PERIOD returns the data value from the last source
period that ends within the target period. It uses the implicit relation between the
source and target dimensions.

LAST BY DAY
Has the same effect as LAST BY PERIOD, provided you are converting data from
smaller periods to larger periods. See "Substituting a Compatible Method".

STATUS
Indicates that the current status of the source dimension is used. It is the default for
the SUM and AVERAGE methods.

NOSTATUS
Indicates that the full default status of the source dimension is used. It is the default
for the LAST method.

SPLIT [BY PERIOD]
Allocates data to target periods by splitting the data from the source periods. SPLIT
BY PERIOD divides a source value evenly among the target periods that end in that
source period. SPLIT BY PERIOD uses the implicit relation between the two DAY,
WEEK, MONTH, QUARTER, or YEAR dimensions.

SPLIT BY DAY
Weights each source value according to the portion of target days it represents. For
each target period, SPLIT BY DAY multiplies each contributing source period value by
a weighting factor that has this form where target-days-in-source is the Number of
target-period days that actually fall in source period and total-period-days is the total
number of days in source period:

target-days-in-source / total-period-days

SPLIT BY DAY then returns the total of these weighted source values. When you use
SPLIT BY DAY, the value of an individual source period may be apportioned across
adjacent target periods.

Chapter 8
TCONVERT

8-164

REPEAT
For each target period, REPEAT returns the value of a source period. The target
periods are the periods that end within the source period. REPEAT uses the implicit
relation between the source and target dimensions. REPEAT BY DAY has the same
effect as REPEAT BY PERIOD, provided you are converting data from larger time
periods to smaller time periods. See "Substituting a Compatible Method".

INTERPOLATE [BY PERIOD]
The INTERPOLATE method allocates data to target periods by first calculating the
difference between the values of the current and previous source periods, and then
splitting the result incrementally over the target periods. INTERPOLATE divides the
difference between the current and previous source period values by the number of
target periods that end in the source period, and it increments each target period by
this amount.

INTERPOLATE BY DAY
For each target period, adds the value of the previous source period to a value that is
calculated as follows where end-days is the number of days from end of previous
source period to end of current target period and period-days is the total number of
days in current source period:

(end-days / period-days) * (current-source-value - previous-source-value)

When a target period has days that fall in multiple source periods, a similar calculation
is made for each source period.

Usage Notes

Dimensions of the Result Returned by TCONVERT

The results returned by TCONVERT are dimensioned by the target DAY, WEEK,
MONTH, QUARTER, or YEAR dimension and by all of expression dimensions that are
not DAY, WEEK, MONTH, QUARTER, or YEAR dimensions.

Status Used with Allocation

The STATUS and NOSTATUS keywords have no effect with the allocation methods.
The allocation methods always use the full default status of the source dimension to
determine the contributing periods.

Compatible Aggregation and Allocation Methods

Except for a case in which the source dimension and the target dimension have
overlapping periods of equal length, you can specify both an aggregation method and
an allocation method. However, the two methods must be compatible. The following
table shows the compatible methods:

Table 8-15 Compatible Aggregation and Allocation Methods

Aggregation Compatible Allocation

SUM SPLIT

AVERAGE REPEAT

LAST INTERPOLATE

When you specify both an aggregation method and an allocation method, you can
specify BY PERIOD or BY DAY with either method. When you specify BY PERIOD

Chapter 8
TCONVERT

8-165

(explicitly or by default) for one method and BY DAY for the other method, BY DAY
takes precedence.

Using Both Aggregation and Allocation

When you specify both an aggregation method and a compatible allocation method,
Oracle OLAP handles this as follows:

• When you convert data from smaller periods to larger periods, Oracle OLAP uses
the aggregation method (with BY DAY, if specified for either method).

• When you convert data from larger periods to smaller periods, Oracle OLAP uses
the allocation method (with BY DAY, if specified for either method).

• When you convert data between dimensions that have non-overlapping periods of
equal length, such as a quarter ending in March and a quarter ending in June, the
results of the aggregation and allocation methods are identical.

Overlapping Periods of Equal Length

When you convert data between two dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR that have overlapping periods of equal length, such as a
calendar year and a fiscal year, or a quarter ending in March and a quarter ending in
April, you must specify either an aggregation method or allocation method, but not
both. For these dimensions, the compatible aggregation and allocation methods may
yield different results.

For example, when you convert data from a calendar year dimension to a fiscal year
dimension that ends in June, the SUM and SPLIT methods return different results:

• The SUM method totals up the data from the source periods that end in the target
period. Because the calendar year 1996 ends in fiscal year 1997, the SUM method
assigns the value for calendar year 1996 to fiscal year 1997.

• The SPLIT method allocates a source data value to the target periods that end in
the source period. Because the fiscal year 1996 ends in calendar year 1996, the
SPLIT method assigns the value for calendar year 1996 to fiscal year 1996.

Substituting a Compatible Method

When you specify a single conversion method, and you use an aggregation method to
convert data from a larger period to a smaller period (for example, from months to
weeks) Oracle OLAP automatically uses the compatible allocation method instead of
the specified aggregation method. Similarly, when you use an allocation method to
convert data from a smaller period to a larger period, Oracle OLAP automatically uses
the compatible aggregation method. See "Compatible Aggregation and Allocation
Methods".

Data Type of the Result

When possible, TCONVERT returns results that have the same data type as
expression. When expression is DECIMAL, the results are always DECIMAL. When
expression is INTEGER, the results are INTEGER when the required calculations do
not involve division. For example, when two dimensions are aligned (that is, they have
the same phase and are based on the same periods, such as a calendar year
dimension and a quarter dimension ending in December), the result is INTEGER when
you use the REPEAT method to convert an INTEGER expression from larger periods
to smaller periods. Similarly, the result is INTEGER when you use the SUM or LAST
method to convert the expression from smaller to larger periods.

Converting Text Data

Chapter 8
TCONVERT

8-166

You can also use TCONVERT to convert the values of a text expression when no
numeric calculations are needed for the conversion. For aligned dimensions, for
example, you can use the LAST method to convert text values from smaller periods to
larger periods, and you can use the REPEAT method to convert text values from
larger periods to smaller periods. You can also use the LAST and REPEAT methods
to convert text data between dimensions that have periods of equal length. When you
attempt to convert a text expression with a method that requires numeric calculations,
you receive an error message.

Methods for Financial Data

When you work with financial data, you can use an appropriate conversion method for
each type of data. The following table gives some examples:

Table 8-16 Examples of Conversion Methods for Different Types of Financial
Data

Type of Financial Data Conversion Conversion Method

Revenue or expenses Month to year SUM

Stock quotations Day to quarter AVERAGE

Balance sheet items Month to quarter LAST

Quarterly tax payment Year to quarter SPLIT BY PERIOD

Money supply Year to quarter INTERPOLATE

How TCONVERT Handles NA Values

TCONVERT is affected by the NASKIP option. When NASKIP is set to NO, TCONVERT
returns an NA value for any target period that receives contributions from a source
period with an NA value.

Examples

Example 8-133 Splitting Data Across Quarters

This example shows the effects of using the SPLIT method and the SPLIT BY DAY
method to allocate an annual budget revenue figure of $120,000 across the quarters of
the year 1996. An existing year dimension is the source dimension and an existing
quarter dimension is the target dimension.

The following statements

DEFINE budget.revenue DECIMAL <year>
budget.revenue(year 'Yr96') = 120000
LIMIT quarter TO year 'Yr96'
REPORT W 12 HEADING 'Split Evenly' -
 TCONVERT(budget.revenue quarter SPLIT) -
 W 12 HEADING 'Split by Day' -
 TCONVERT(budget.revenue quarter Split by day)

produce this report.

QUARTER Split Evenly Split by Day
-------------- ------------ ------------
Q1.96 30,000.00 29,836.07
Q2.96 30,000.00 29,836.07
Q3.96 30,000.00 30,163.93
Q4.96 30,000.00 30,163.93

Chapter 8
TCONVERT

8-167

Example 8-134 Aggregating Weekly Data to Monthly Using TCONVERT

This example aggregates weekly data to monthly data. First, define a week dimension
named week and add weeks that include the dates January 1, 1996 and June 30, 1996
(Oracle OLAP automatically adds the intervening weeks).

DEFINE week DIMENSION WEEK
MAINTAIN week ADD '01Jan96' '30Jun96'

Next, define a variable named weekvar, dimensioned by week, and assign a value of 7 to
each week.

DEFINE weekvar DECIMAL <week>
weekvar = 7

The following statements show that December 31, 1995 is the beginning date of the
first week for which weekvar contains non-NA data and that July 6, 1996 is the ending
date of the final week for which weekvar contains non-NA data.

SHOW BEGINDATE(weekvar)
SHOW ENDDATE(weekvar)

The statements produce this output.

31Dec95
06Jul96

With these beginning and ending dates, when the data is converted to monthly data, it
is aggregated over the months Dec95 through Jul96. The following statements show the
effects of using the SUM method and the SUM BY DAY method to convert the weekly
weekvar data to monthly data.

LIMIT month TO 'Jan96' TO 'Jul96'
REPORT HEADING 'Sum' TCONVERT(weekvar month SUM) -
 HEADING 'Sum by Day' -
 TCONVERT(weekvar month SUM BY day)

These statements produce the following report.

MONTH Sum Sum by Day
-------------- ---------- ----------
Jan96 28.00 31.00
Feb96 28.00 29.00
Mar96 35.00 31.00
Apr96 28.00 30.00
May96 28.00 31.00
Jun96 35.00 30.00
Jul96 7.00 6.00

TEXTFILL
The TEXTFILL function reformats a text value to fit compactly into lines of a specified
width, regardless of its current format. TEXTFILL is commonly used to reformat text
with an unnecessarily ragged right margin or with a bad line width.

Chapter 8
TEXTFILL

8-168

Note:

TEXTFILL joins lines of text while reformatting, whereas ROW and REPORT
reformat without joining lines. See Example 8-135.

Return Value

TEXT or NTEXT

Syntax

TEXTFILL(text-expression, width)

Parameters

text-expression
A text expression to be reformatted to the specified width, regardless of the current
format of the data. When you specify a TEXT expression, the return value is TEXT.
When you specify an NTEXT expression, the return value is NTEXT.

width
The desired width of the reformatted data, entered as an INTEGER value from 1 to 132.
In a structured report, TEXTFILL reformats text-expression to the width you specify if
that width is less than the width of the report column. When width is greater than the
column width, it is ignored by TEXTFILL, and the expression is reformatted to the
width of the column.
TEXTFILL fits as many words of text-expression as it can onto one line, placing just
one space between words and removing extra spaces between words. When a word
is longer than width, TEXTFILL breaks it across two or more lines. In this case there
may be extra spaces at the end of lines.

Examples

Example 8-135 The Effects of TEXTFILL on ROW

The following example shows the effect of TEXTFILL on a ROW command, using the
nicely formatted text variable textvar.

The statement

SHOW textvar

produces the following output.

You can use the following options to control the format of
 your display.

 BMARGIN Controls the bottom margin.
 COLWIDTH Controls column width.
 COMMAS Controls the use of commas in numbers.
 DECIMALS Controls number of decimal places in numbers.
 LSIZE Controls the maximum length of a line.
 NASPELL Controls the spelling of NA values in output.

The ROW statement

ROW W 50 textvar

Chapter 8
TEXTFILL

8-169

produces the following output.

You can use the following options to control the
format of your
display.
BMARGIN Controls the bottom margin.
COLWIDTH Controls column width.
COMMAS Controls the use of commas in
numbers.
DECIMALS Controls the number of decimal
places in numbers.
LSIZE Controls the maximum length of a
line.
NASPELL Controls the spelling of NA values
in output.

By contrast, the ROW statement with TEXTFILL

ROW W 50 TEXTFILL(textvar, 50)

produces the following output.

You can use the following options to control the
format of your display. BMARGIN Controls the
bottom margin. COLWIDTH Controls column width.
COMMAS Controls the use of commas in numbers.
DECIMALS Controls the number of decimal places in
numbers. LSIZE Controls the maximum length of a
line. NASPELL Controls the spelling of NA values
in output.

TO_BINARY_DOUBLE
The TO_BINARY_DOUBLE function converts a text or numeric expression to a
DECIMAL numeric expression.

Return Value

DECIMAL

Syntax

TO_BINARY_DOUBLE(expr [, fmt [, nlsparam]])

Parameters

expr
A text or numeric expression. When expr is a text expression, the function converts
the following case-insensitive values to particular values:

• INF to positive infinity

• -INF to negative infinity

• NaN to NaN (not a number)

fmt
A text expression that specifies a number format model. This argument is valid only
when expr is a text expression.

Chapter 8
TO_BINARY_DOUBLE

8-170

See Also:

"Number Format Models" in Oracle Database SQL Language Reference

The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS.

Note:

You cannot use a floating-point number format element (F, f, D, or d) in a text
expression.

nlsparams
A text expression that specifies how the function uses the thousands group marker,
decimal marker, and currency symbols when converting a text expression. This
argument is valid only when expr is a text expression. This expression contains one or
more of the following parameters, separated by commas:

NLS_CURRENCY symbol NLS_ISO_CURRENCY territory
NLS_NUMERIC_CHARACTERS dg

TO_BINARY_FLOAT
The TO_BINARY_FLOAT function converts a text or numeric expression to a
SHORTDECIMAL numeric expression.

Return Value

SHORTDECIMAL

Syntax

TO_BINARY_FLOAT(expr [, fmt [, nlsparam]])

Parameters

expr
A text or a numeric expression. When expr is a text expression, the function converts
the following case-insensitive values to particular values:

• INF to positive infinity

• -INF to negative infinity

• NaN to NaN (not a number)

fmt
A text expression that specifies a number format model. This argument is valid only
when expr is a text expression.

Chapter 8
TO_BINARY_FLOAT

8-171

See Also:

"Number Format Models" in Oracle Database SQL Language Reference

The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS.

Note:

You cannot use a floating-point number format element (F, f, D, or d) in a text
expression.

nlsparams
A text expression that specifies how the function uses the thousands group marker,
decimal marker, and currency symbols when converting a text expression. This
argument is valid only when expr is a text expression. This expression contains one or
more of the following parameters, separated by commas:

NLS_CURRENCY symbol NLS_ISO_CURRENCY territory
NLS_NUMERIC_CHARACTERS dg

TO_CHAR
The TO_CHAR function converts a DATETIME, number, or NTEXT expression to a
TEXT expression in a specified format. This function is typically used to format output
data.

Return Value

TEXT

Syntax

TO_CHAR(datetime-exp, [datetime-fmt,] [option setting])

or

TO_CHAR(num-exp, [num-fmt,] [nlsparams])

or

TO_CHAR(ntext-exp)

Parameters

datetime-exp
A DATETIME expression to be converted to TEXT.

datetime-fmt
A text expression that identifies a datetime format template. This template specifies
how the conversion from a DATETIME data type to TEXT should be performed. For

Chapter 8
TO_CHAR

8-172

information about datetime format templates, see Datetime Format Elements. The
default value of datetime-fmt is controlled by the NLS_DATE_FORMAT option.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language that you want datetime-exp to be translated into. See
Displaying the Current Date and Time in Spanish.
Do not specify an option that set other options. For example, do not set
NLS_DATE_LANGUAGE or NLS_TERRITORY; set NLS_DATE_LANGUAGE
instead. While TO_CHAR saves and restores the current setting of the specified
option so that it has a new value only for the duration of the statement, TO_CHAR
cannot save and restore any side effects of changing that option. For example,
NLS_TERRITORY controls the value of NLS_DATE_FORMAT,
NLS_NUMERIC_CHARACTERS, NLS_CURRENCY, NLS_CALENDAR, and other
options. When you change the value of NLS_TERRITORY in a call to TO_CHAR, all
of these options are reset to their territory-appropriate default values twice: once when
NLS_TERRITORY is set to its new value for the duration of the TO_CHAR statement,
and again when the saved value of NLS_TERRITORY is restored.

num-exp
A numeric expression to be converted to TEXT.

num-fmt
A text expression that identifies a number format model. This model specifies how the
conversion from a numeric data type (NUMBER, INTEGER, SHORTINTEGER,
LONGINTEGER, DECIMAL, SHORTDECIMAL) to TEXT should be performed.
The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS.

See Also:

"Number Format Models" in Oracle Database SQL Language Reference

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in num-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol NLS_ISO_CURRENCY territory
NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).
These parameters override the default values specified by the NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options.

Chapter 8
TO_CHAR

8-173

ntext-exp
An NTEXT expression to be converted to TEXT. A conversion from NTEXT to TEXT
can result in data loss when the NTEXT value cannot be represented in the database
character set.

Usage Notes

How TO_CHAR Handles Numerical Data Types

The TO_CHAR function converts INTEGER, SHORTINTEGER, LONGINTEGER,
DECIMAL, and SHORTDECIMAL values to NUMBER before converting them to
TEXT. Thus, TO_CHAR converts NUMBER values faster than other numeric data
types.

Possible Effects of TO_CHAR Rounding

All number format models cause the number to be rounded to the specified number of
significant digits. The following table identifies some effects of rounding.

Table 8-17 Possible Effects of Rounding

IF num-exp THEN the return value

has more significant digits to the left of the decimal
place than are specified in the format,

appears as pound signs (#).

is a very large positive value that cannot be
represented in the specified format,

is a tilde (~).

is a very small negative value that cannot be
represented in the specified format,

is a negative sign followed by a tilde (-~).

Examples

Example 8-136 Converting a Date to CHAR

This statement converts today's date and specifies the format.

SHOW TO_CHAR(SYSDATE, 'Month DD, YYYY HH24:MI:SS')

The specified date format allows the time to be displayed along with the date.

November 30, 2000 10:01:29

Example 8-137 Converting a Numerical Value to Text

This statement converts a number to text and specifies a space as the decimal marker
and a period as the thousands group marker.

SHOW TO_CHAR(1013.50, NA, NLS_NUMERIC_CHARACTERS ' .')

The value 1013.50 now appears like this:

1.013 50

Example 8-138 Displaying the Current Date and Time in Spanish

The following statements set the default language to Spanish and specify a new date
format.

NLS_DATE_LANGUAGE = 'spanish'
NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'

Chapter 8
TO_CHAR

8-174

The following statement displays the current date and time in Spanish.

SHOW TO_CHAR(SYSDATE)
Viernes : Diciembre 01, 2000 08:21:17 AM

The NLS_DATE_LANGUAGE option changes the language for the duration of the
statement. The following statement displays the date and time in German.

SHOW TO_CHAR(SYSDATE, NA, NLS_DATE_LANGUAGE 'german')
Freitag : Dezember 01, 2000 08:26:00 AM

TO_DATE
The TO_DATE function converts a formatted TEXT or NTEXT expression to a
DATETIME value.

Return Value

DATETIME

Syntax

TO_DATE(text-exp, [fmt,] [option setting])

Parameters

text-exp
The text expression that contains a date to be converted. The expression can have
the TEXT or NTEXT data type. A conversion from NTEXT can result in an incorrect
result when the NTEXT value cannot be interpreted as a date.

fmt
A text expression that identifies a datetime format template. This template specifies
how the conversion from text to DATETIME should be performed. For information
about datetime format templates, see the datetime_format_template parameter in
DATE_FORMAT.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language of text-exp when it is different from the session
language. See Specifying a Default Language and a Date Format.
Do not specify an option that sets other options. For example, do not set
NLS_LANGUAGE or NLS_TERRITORY; set NLS_DATE_LANGUAGE instead. While
TO_DATE saves and restores the current setting of the specified option so that it has
a new value only for the duration of the statement, TO_DATE cannot save and restore
any side effects of changing that option. For example, NLS_TERRITORY controls the
value of NLS_DATE_FORMAT, NLS_NUMERIC_CHARACTERS, NLS_CURRENCY,
NLS_CALENDAR, and other options. When you change the value of
NLS_TERRITORY in a call to TO_DATE, all of these options are reset to their
territory-appropriate default values twice: once when NLS_TERRITORY is set to its
new value for the duration of the TO_DATE statement, and again when the saved
value of NLS_TERRITORY is restored.

Usage Notes

Capitalization

Chapter 8
TO_DATE

8-175

Capital letters in words, abbreviation, or Roman numerals in a format element produce
corresponding capitalization in the return value. For example, the format element DAY
produces MONDAY, Day produces Monday, and day produces monday.

Unrecognized Dates

When TO_DATE cannot construct a value with a valid DATE value using fmt, it returns
an error. For example, when an alphanumeric character appears in text-exp where fmt
indicates a punctuation character, then an error results.

Examples

Example 8-139 Converting Text Values to DATE Values

The following statement converts January 15, 2002, 11:00 A.M. to the default date
format of 15JAN02, and stores that value in a DATE variable named bonusdate.

bonusdate = TO_DATE('January 15, 2002, 11:00 A.M.', -
 'Month dd, YYYY, HH:MI A.M.')

Example 8-140 Specifying a Default Language and a Date Format

The following statements set the default language to Spanish and specify a new date
format. The NLS_DATE_LANGUAGE option, when used in the TO_DATE function,
allows the American month name to be translated.

NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'
NLS_DATE_LANGUAGE = 'spanish'
SHOW TO_DATE('November 15, 2001', 'Month dd, yyyy', -
 NLS_DATE_LANGUAGE 'american')

The date is translated from American to Spanish and displayed in the new date format.

Jueves : Noviembre 15, 2001 12:00:00 AM

TO_DSINTERVAL
The TO_DSINTERVAL function converts a character to a DSINTERVAL value.

Return Value

DSINTERVAL

Syntax

TO_DSINTERVAL(char)

Parameters

char
Specifies the character string to be converted.

TO_NCHAR
The TO_NCHAR function converts a TEXT expression, date, or number to NTEXT in a
specified format. This function is typically used to format output data.

Chapter 8
TO_DSINTERVAL

8-176

Return Value

NTEXT

Syntax

TO_NCHAR(text-exp)

or

TO_NCHAR(datetime-exp, [datetime-fmt,] [option setting]

or

TO_NCHAR(num-exp, [num-fmt,] [nlsparams]

Parameters

text-exp
A TEXT expression to be converted to NTEXT.

datetime-exp
A DATETIME expression to be converted to NTEXT.

datetime-fmt
A text expression that identifies a datetime format template. This template specifies
how the conversion from a DATETIME data type to NTEXT should be performed. For
information about datetime format templates, see the datetime_format_template
parameter in DATE_FORMAT. The default value of datetime-fmt is controlled by the
NLS_DATE_FORMAT option.

option setting
An OLAP option (such as NLS_DATE_LANGUAGE) and its new setting, which
temporarily overrides the setting currently in effect for the session. Typically, this
option identifies the language that you want datetime-exp to be translated into. See
Specifying the Default Language and a Date Format.
Do not specify an option that sets other options. For example, do not set
NLS_LANGUAGE or NLS_TERRITORY; set NLS_DATE_LANGUAGE instead.While
TO_NCHAR saves and restores the current setting of the specified option so that it
has a new value only for the duration of the statement, TO_NCHAR cannot save and
restore any side effects of changing that option. For example, NLS_TERRITORY
controls the value of NLS_DATE_FORMATE, NLS_NUMERIC_CHARACTERS,
NLS_CURRENCY, NLS_CALENDAR, and other options. When you change the value
of NLS_TERRITORY in a call to TO_NCHAR, all of these options are reset to their
territory-appropriate default values twice: once when NLS_TERRITORY is set to its
new value for the duration of the TO_NCHAR statement, and again when the saved
value of NLS_TERRITORY is restored.

num-exp
A numeric expression to be converted to NTEXT.

num-fmt
A text expression that identifies a number format model. This model specifies how the
conversion from a numeric data type (NUMBER, INTEGER, SHORTINTEGER,
LONGINTEGER, DECIMAL, SHORTDECIMAL) to TEXT should be performed.

Chapter 8
TO_NCHAR

8-177

See Also:

"Number Format Models" in Oracle Database SQL Language Reference

The default number format model uses the decimal and thousands group markers
identified by NLS_NUMERIC_CHARACTERS option.

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in num-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol NLS_ISO_CURRENCY territory
NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).
These parameters override the default values specified by the NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options.

Examples

Example 8-141 Date Conversion

This statement converts today's date and specifies the format.

SHOW TO_NCHAR(SYSDATE, 'Month DD, YYYY HH24:MI:SS')

The specified date format allows the time to be displayed along with the date.

November 30, 2000 10:01:29

Example 8-142 Converting Numerical Data to NTEXT Data

This statement converts a number to NTEXT and specifies a space as the decimal
marker and a period as the thousands group marker.

SHOW TO_NCHAR(1013.50, NA, NLS_NUMERIC_CHARACTERS ' .')

The value 1013.50 now appears like this:

1.013 50

Example 8-143 Specifying the Default Language and a Date Format

The following statements set the default language to Spanish and specify a new date
format.

NLS_DATE_LANGUAGE = 'spanish'
NLS_DATE_FORMAT = 'Day: Month dd, yyyy HH:MI:SS am'

Chapter 8
TO_NCHAR

8-178

The following statement:

SHOW TO_NCHAR(SYSDATE)

Displays the current date and time in Spanish:

Viernes : Diciembre 01, 2000 08:21:17 AM

The NLS_DATE_LANGUAGE option changes the language for the duration of the
statement. The following statement

SHOW TO_NCHAR(SYSDATE, NA, NLS_DATE_LANGUAGE 'german')

displays the date and time in German:

Freitag : Dezember 01, 2000 08:26:00 AM

TO_NUMBER
The TO_NUMBER function converts a formatted TEXT or NTEXT expression to a
number. This function is typically used to convert the formatted numeric output of one
application (which includes currency symbols, decimal markers, thousands group
markers, and so forth) so that it can be used as input to another application.

Return Value

NUMBER. Negative return values contain a leading negative sign, and positive values
contain a leading space, unless the format model contains the MI, S, or PR format
elements.

Syntax

TO_NUMBER(text-exp, [fmt,] [nlsparams])

Parameters

text-exp
A text expression that contains a number to be converted. The expression can have
the TEXT or NTEXT data type. A conversion from NTEXT can result in an incorrect
result when the NTEXT value cannot be interpreted as a number.

fmt
A text expression that identifies a number format model. This model specifies how the
conversion to NUMBER should be performed.

See Also:

"Number Format Models" in Oracle Database SQL Language Reference

The default number format identifies a period (.) as the decimal marker and does not
recognize any other symbol.

Chapter 8
TO_NUMBER

8-179

nlsparams
A text expression that specifies the thousands group marker, decimal marker, and
currency symbols used in text-exp. This expression contains one or more of the
following parameters, separated by commas:

NLS_CURRENCY symbol NLS_ISO_CURRENCY territory
NLS_NUMERIC_CHARACTERS dg

symbol
A text expression that specifies the local currency symbol. It can be no more than 10
characters.

territory
A text expression that identifies the territory whose ISO currency symbol is used.

dg
A text expression composed of two different, single-byte characters for the decimal
marker (d) and thousands group marker (g).
These parameters override the default values specified by the NLS_CURRENCY,
NLS_ISO_CURRENCY, and NLS_NUMERIC_CHARACTERS options. Refer to NLS
Options for additional information.

Usage Notes

Default Number Format Values

The values of some formats are determined by the value of NLS_TERRITORY.

Possible Effects of TO_NUMBER Rounding

All number format models cause the number to be rounded to the specified number of
significant digits. Table 8-17 identifies some effects of rounding.

Examples

Example 8-144 Converting Text Data to Decimal Data

The following statements convert a text string to a DECIMAL data type in the current
number format, which is American. The text-exp parameter is a text string in European
format. The fmt parameter identifies the local currency symbol (L), the thousands
group separator (G), and the decimal marker (D). The NLS_NUMERIC_CHARACTERS
option identifies the characters used for the G and D formats in the text-exp parameter
because they are different from the current setting for the session. In text_exp, D is a
comma and G is a space.

DEFINE money VARIABLE DECIMAL
money = TO_NUMBER('$94 567,00', 'L999G999D00', NLS_NUMERIC_CHARACTERS ', ')
SHOW money

The output of this statement is:

94,567.00

TO_TIMESTAMP
The TO_TIMESTAMP function converts text data to a value of TIMESTAMP data type.

Chapter 8
TO_TIMESTAMP

8-180

Return Values

TIMESTAMP

Syntax

TO_TIMESTAMP(char-exp [, fmt ['nlsparam']])

Parameters

char-exp
A text expression that you want to convert.

fmt
Specifies the datetime format template to be used to convert the text expression. See
the datetime_format_template parameter in DATE_FORMAT for more information
about the datetime format template.
When you omit this argument, the function uses the default format of TIMESTAMP for the
object.

nlsparam
Specifies the language in which month and day names and abbreviations are
returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

If you omit this argument, then this function uses the default date language for your
session.

Examples

Example 8-145 Converting To and Extracting From Timestamp Data

SHOW NLS_DATE_FORMAT
DD-MON-RR

SHOW TO_TIMESTAMP('10-SEP-0614:10:10:10.123000' 'DD MON RR HH24:MI:SS.FF')
10-SEP-14 10.10.10.123 AM

SHOW TO_TIMESTAMP_TZ ('2006-03-26 7:33:00 -4:00', 'YYYY-MM-DD HH:MI:SS TZH:TZM')
26-MAR-06 07.33.00 AM -04:00

DEFINE mytimestamp VARIABLE TIMESTAMP
DEFINE mytimezone VARIABLE TEXT
DEFINE mytimestamptz VARIABLE TIMESTAMP_TZ
mytimestamp = '26-MAR-06'
mytimezone = '-04:00'
mytimestamptz = FROM_TZ (mytimestamp mytimezone)
REPORT mytimestamptz

MYTIMESTAMPTZ

 26-MAR-06 12.00.00 AM -04:00
SHOW EXTRACT (TIMEZONE_HOUR FROM mytimestamptz)
-4.00

Chapter 8
TO_TIMESTAMP

8-181

TO_TIMESTAMP_TZ
The TO_TIMESTAMP_TZ function converts text data to a value with the TIMESTAMP_TZ
data type.

Return Value

TIMESTAMP_TZ

Syntax

TO_TIMESTAMP_TZ (char-exp [, fmt ['nlsparam']])

Parameters

char-exp
A text expression that you wan to convert.

fmt
Specifies the datetime format template to be used to convert the text expression. See
the datetime_format_template parameter in DATE_FORMAT for more information
about the datetime format template.
When you omit this argument, the function uses the default format of TIMESTAMP_TZ for
the object.

nlsparam
Specifies the language in which month and day names and abbreviations are
returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

If you omit this argument, then this function uses the default date language for your
session.

Examples

Example 8-146 Converting Text Data to TIMESTAMP_TZ DAta

SHOW TO_TIMESTAMP_TZ ('2006-03-26 7:33:00 -4:00', 'YYYY-MM-DD HH:MI:SS TZH:TZM')
26-MAR-06 07.33.00 AM -04:00

TO_YMINTERVAL
The TO_YMINTERVAL function converts a character to a YMINTERVAL value.

Return Value

YMINTERVAL

Syntax

TO_YMINTERVAL(char)

Chapter 8
TO_TIMESTAMP_TZ

8-182

Parameters

char
Specifies the character string to be converted.

TOD
The TOD function returns the current time of day in the form hh:mm:ss using a 24-hour
format.

Return Value

ID

Syntax

TOD

Examples

Example 8-147 Displaying the Current Time

The following statement sends the current time of day to the current outfile.

show tod

This statement produces the following output.

17:30:46

TODAY
The TODAY function returns the current date as a DATE or TEXT value.

Return Value

DATE or TEXT depending on the data type that is expected:

• DATE

When you display a returned DATE value, the value has the format specified by
the date template in the DATEFORMAT option. When the day of the week or the
name of the month is used in the date template, TODAY uses the day names
specified in the DAYNAMES option and the month names specified in the
MONTHNAMES option.

• TEXT

Where a text value is expected. TODAY automatically converts the date to a TEXT
value, using the current template in the DATEFORMAT option to format the text
value. When you want to override the current DATEFORMAT template, you can
convert the date result to text by using the CONVERT function with a date-format
argument.

Syntax

TODAY

Chapter 8
TOD

8-183

Examples

Example 8-148 Displaying Today's Date

The following statements send the current date in DATE format to the current outfile.

DATEFORMAT = '<wtextl> <mtextl> <d>, <yyyy>'
SHOW TODAY

When the current date is January 15, 1996, then these statements produce the
following output.

Monday January 15, 1996

Example 8-149 Calculating a Date Using the TODAY Function

The following statement calculates the date 60 days from today.

SHOW TODAY + 60

When the current date is January 15, 1996, then this statement produces the following
output.

Friday March 15, 1996

TOTAL
The TOTAL function calculates the total of the values of an expression.

Return Value

The data type of the expression. It can be INTEGER, LONGINT, or DECIMAL.

Syntax

TOTAL(expression [CACHE] [dimension...])

Parameters

expression
The expression to be totalled.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension
The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.
By default, TOTAL returns a single value. When you indicate one or more dimensions
for the result, TOTAL calculates values along the dimensions that are specified and
returns an array of values. Each dimension must be either a dimension of expression
or related to one of its dimensions.

Chapter 8
TOTAL

8-184

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Usage Notes

How TOTAL Handles NA Values

TOTAL is affected by the NASKIP option. When NASKIP is set to YES (the default),
TOTAL ignores NA values and returns the sum of the values that are not NA. When
NASKIP is set to NO, TOTAL returns NA when any value in the calculation is NA. When
all data values for a calculation are NA, TOTAL returns NA for either setting of NASKIP.

Totaling over a DWMQY Dimension

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other DAY, WEEK, MONTH, QUARTER, or
YEAR dimension as a related dimension. Oracle OLAP uses the implicit relation
between the dimensions. To control the mapping of one DAY, WEEK, MONTH,
QUARTER, or YEAR dimension to another (for example, from weeks to months), you
can define an explicit relation between the two dimensions and specify the name of the
relation as the dimension argument to the TOTAL function.

For each time period in the related dimension, Oracle OLAP totals the data for all the
source time periods that end in the target time period. This method is used regardless
of which dimension has the more aggregate time periods. To control the way in which
data is aggregated or allocated between the periods of two time dimensions, you can
use the TCONVERT function.

Multiple Relations in a TOTAL Function

When you break out the total by a related dimension, you are changing the
dimensionality of the expression, so Oracle OLAP expects values based on this new
dimensionality. It chooses the relation that holds values of that dimension.

When there are multiple relations that hold values of the expected dimension, Oracle
OLAP uses the one that was defined first. When there is no relation in which the
related dimension is the one expected, Oracle OLAP looks for a relation that is
dimensioned by the expected dimension.

For example, assume that there are two relations between district and region, as
follows.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD The region each district belongs to

DEFINE DISTRICT.REGION RELATION DISTRICT <REGION>
LD The primary district in each region

Chapter 8
TOTAL

8-185

When an analytic workspace had the two relations described earlier and you specified
the following TOTAL function, Oracle OLAP would use the relation region.district by
default, because it holds values of the specified dimension.

REPORT TOTAL(sales region)

Examples

Example 8-150 Totaling Sales over All Months

Suppose you would like to see the total sportswear sales for all months for each
district. Use the TOTAL function to calculate the total sales. To see a total for each
district, specify district as the dimension of the results.

LIMIT product TO 'Sportswear'
REPORT W 15 HEADING 'Total Sales' TOTAL(sales district)

The preceding statements produce the following output.

DISTRICT Total Sales
-------------- ---------------
Boston 1,659,609.90
Atlanta 3,628,616.62
Chicago 2,296,631.81
Dallas 3,893,829.30
Denver 2,133,425.29
Seattle 1,298,215.59

TRANSLATE
The TRANSLATE function replaces all occurrences of each character of one string
with the corresponding character in another string.

Note:

TRANSLATE provides functionality related to that provided by the
REPLCHARS function. REPLCHARS lets you substitute a single string for
another single string and remove character strings. TRANSLATE lets you make
several single-character, one-to-one substitutions in one operation.

Return value

Text.

Syntax

TRANSLATE (exp from_string to_string)

Parameters

exp
A text expression in which you want to replace characters.

from_string
A text expression that is the characters you want to replace.

Chapter 8
TRANSLATE

8-186

to_string
A text expression that is the characters to use for replacement in the order of
from_string. When you include fewer characters in this argument than are in
from_string, the function removes the extra characters in from_string from the return
value. Note, however, that to remove all characters in from_string, you cannot specify
an empty string for to_string as an empty string is interpreted as a null argument.

Examples

Example 8-151 Replacing several Characters Using TRANSLATE

The following statement translates a book title into a string that could be used (for
example) as a filename. The from_string contains three characters: an asterisk, a
space, asterisk, and apostrophe (with a backslash as the escape character). The
to_string contains only two underscores which leaves the third character in the
from_string without a corresponding replacement, so the return value does not contain
any apostrophes.

SHOW TRANSLATE ('SQL*Plus User\'s Guide' '* \'' '__')
SQL_Plus_Users_Guide

TRIGGER function
The TRIGGER function retrieves the event, subevent, or name of the object or analytic
workspace that caused the execution of a trigger program (that is, a
TRIGGER_DEFINE, TRIGGER_AFTER_UPDATE, or TRIGGER_BEFORE_UPDATE
program, or any program identified as a trigger program using the TRIGGER
command).

When the current program is a trigger program, the TRIGGER function returns the
trigger information for that program. When it is not, the TRIGGER function returns
trigger information for the most recently executed trigger program.

See Also:

"Trigger Programs" and the "TRIGGER command"

Return Values

TEXT

Syntax

TRIGGER (NAME | EVENT | SUBEVENT)

Parameters

NAME
For a program identified as a trigger program using the TRIGGER command, returns
the object for which the trigger program is association. For a TRIGGER_AW,
TRIGGER_DEFINE, TRIGGER_AFTER_UPDATE, or TRIGGER_BEFORE_UPDATE
program, returns the name of the analytic workspace that caused the program to
execute.

Chapter 8
TRIGGER function

8-187

EVENT
Returns the name of the event (DML statement) that triggered the execution of the
program.

AW

MAINTAIN

DELETE

DEFINE

PROPERTY

ASSIGN

BEFORE_UPDATE

AFTER_UPDATE

See Also:

"Trigger Programs" and "TRIGGER command" for more information on events

SUBEVENT
When the value returned by EVENT is MAINTAIN, AFTER_UPDATE or BEFORE_UPDATE,
returns more information on the OLAP DML statement that triggered the execution of
the program. Valid subevents for AW are outlined in the following table. Valid
subevents for MAINTAIN are outlined in Table 8-19. Valid subevents for UPDATE are
outlined in Table 8-20.

Subevent Description

CREATE Returned when an AW CREATE statement triggered the
execution of the program.

ATTACH Returned when an AW ATTACH statement triggered the
execution of the program.

DELETE Returned when an AW DELETE statement triggered the
execution of the program.

DETACH Returned when an AW DETACH statement triggered the
execution of the program.

Subevent Description

ADD Returned when a MAINTAIN ADD statement triggered the
execution of the program.

DELETE Returned when any MAINTAIN DELETE statement except a
MAINTAIN DELETE ALL statement triggered the execution of
the program.

DELETE
ALL

Returned when a MAINTAIN DELETE ALL statement triggered
the execution of the program.

MERGE Returned when a MAINTAIN MERGE statement triggered the
execution of the program.

MOVE Returned when a MAINTAIN MOVE statement triggered the
execution of the program.

RENAME Returned when a MAINTAIN RENAME statement triggered the
execution of the program.

Chapter 8
TRIGGER function

8-188

Subevent Description

AW Returned when an UPDATE command triggered the execution
of a TRIGGER_AFTER_UPDATE or
TRIGGER_BEFORE_UPDATE program.

MULTI Returned when an UPDATE command triggered the execution
of a program identified as a trigger program using the TRIGGER
command when an object is acquired in multiwriter mode.

Examples

For examples of using the TRIGGER function, see Example 6-3 and Example 10-166.

TRIM
The TRIM function enables you to trim leading or trailing characters (or both) from a
character string.

You can also trim leading characters using LTRIM and trailing characters using
RTRIM.

Return Value

The data type of the string you are trimming (that is, trim-source).

Syntax

TRIM ([{{LEADING|TRAILING|BOTH} [trim_characters])|trim_character} FROM]
trim_source)

Parameters

trim-characters
An expression that specifies the character values to be trimmed. This text expression
can be any of the text data types.
When you specify multiple characters in trim-characters, the function searches for
each character in trim_source, in turn, removing characters from trim_source until it
encounters a character in trim_source that is not in trim-characters.
When you do not specify a value, then the default value is a blank space and the
function removes leading and trailing blank spaces.

LEADING
Specifies that the function removes any leading characters from trim_source that are
equal to trim_characters.

TRAILING
Specifies that the function removes any trailing characters from trim_source that are
equal to trim_characters.

BOTH
Specifies that the function removes leading and trailing characters from trim_source
that are equal to trim_characters.

Chapter 8
TRIM

8-189

trim-source
An expression that is the string value to be trimmed. This text expression can be any
of the text data types.

TRUNCATE
The TRUNCATE function (abbreviated as TRUNC) truncates either a number or a
datetime value. Because the syntax of the TRUNC function is different depending on
the whether it is being used for a number or a date and time value, two separate
entries are provided:

• TRUNCATE (datetime)

• TRUNCATE (number)

TRUNCATE (datetime)
The TRUNCATE (datetime) function returns date with the time portion of the day
truncated to the unit specified by the format model.

Return Value

DATETIME

Syntax

TRUNC (datetime_exp, [fmt])

Parameters

datetime-exp
A datetime expression that identifies a date and time number.

fmt
A text expression that specifies a format model shown in Table 8-13. A format model
indicates how the date and time number should be truncated. If you omit fmt, then
date is truncated to the nearest day.

Examples

Example 8-152 Truncating to the Nearest Year

When the value of the NLS_DATE_FORMAT option is DD-MON-YY, then this statement:

SHOW TRUNC (TO_DATE('27-OCT-92'),'YEAR')

returns this value:

01-JAN-92

Example 8-153 Truncating Using Different Formats

Assume the following option values, variables, and values are in your analytic
workspace.

SHOW NLS_DATE_FORMAT
DD-MON-RR
DEFINE MYDATETIME VARIABLE DATETIME
DATE_FORMAT = 'MON-RRRR-DD-HH24'

Chapter 8
TRUNCATE

8-190

mydatetime = CURRENT_TIMESTAMP
SHOW mydatetime
= 'AUG-2006-07-14'

As the following SHOW statements illustrate, the value you specify for the format
argument of TRUNCATE function determines the value returned by that function.

SHOW TRUNCATE(mydatetime, 'MON')
01-AUG-06
SHOW TRUNCATE(mydatetime, 'DD')
07-AUG-06
SHOW TRUNCATE(mydatetime)
= 'AUG-2006-07-00'

TRUNCATE (number)
When you specify a number as an argument, the TRUNCATE function truncates a
number to a specified number of decimal places.

Return Value

DECIMAL

Syntax

TRUNC (number, truncvalue)

Parameters

number
The number to truncate. The value specified for number must be followed by a
comma.

truncvalue
An INTEGER value that specifies the number of places to the right or left of the decimal
point to which number should be truncated. When truncvalue is positive, digits to the
right of the decimal point are truncated. When it is negative, digits to the left of the
decimal point are truncated (that is, made zero). When truncvalue is omitted, number
is truncated to 0 decimal places.

Examples

Example 8-154 Truncating to the Right of the Decimal Point

The following statement

SHOW TRUNC (15.79, 1)

returns this value

15.7

Example 8-155 Truncating to the Left of the Decimal Point

The following statement

SHOW TRUNC (15.79, -1)

returns this value

Chapter 8
TRUNCATE

8-191

10

TZ_OFFSET
The TZ_OFFSET function returns the time zone offset corresponding to the argument
based on the date the statement is executed.

Note:

Time zone region names are needed by the daylight savings feature. The
region names are stored in two time zone files. The default time zone file is a
small file containing only the most common time zones to maximize
performance. If your time zone is not in the default file, then you do not have
daylight savings support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

Return Values

A text value in the format shown below which represents the offset

'{ + | - } hh : mi'

Syntax

TZ_OFFSET('time_zone_name' | '{ + | - } hh : mi' | SESSIONTIMEZONE |
DBTMEZONE)

Parameters

time_zone_name
A text value that specifies a valid time zone name. For a listing of valid values for
time_zone_name, query the TZNAME column of the V$TIMEZONE_NAMES dynamic
performance view.

Note:

Time zone region names are needed by the daylight savings feature. The
region names are stored in two time zone files. The default time zone file is a
small file containing only the most common time zones to maximize
performance. If your time zone is not in the default file, then you do not have
daylight savings support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

{ + | - } hh : mi'
Specifies a time zone offset from UTC (which simply returns itself)

SESSIONTIMEZONE
Specifies the time zone of the current session.

Chapter 8
TZ_OFFSET

8-192

DBTIMEZONE
Specifies the value of the database time zone.

UNIQUELINES
The UNIQUELINES function removes duplicate lines in a multiline text value and sorts
the lines in ascending order. The function returns a multiline text value composed of
the resulting lines.

Return Value

TEXT or NTEXT

Syntax

UNIQUELINES(text-expression)

Parameters

text-expression
A multiline text expression from which UNIQUELINES removes duplicate lines and in
which it sorts the remaining lines. UNIQUELINES is case-sensitive when it checks for
duplicates, and it compares all characters, including spaces.
When you specify a TEXT expression, the return value is TEXT. When you specify an
NTEXT expression, the return value is NTEXT.

Examples

Example 8-156 Removing Duplicate Text Lines

In the following example, one line is removed from the value of officelist, and the
lines are sorted.

The statement

SHOW officelist

produces the following output.

MIAMI
Providence
Miami
Baltimore
Saratoga
Baltimore

The statement

show uniquelines(officelist)

produces the following output.

Baltimore
Miami
MIAMI
Providence
Saratoga

Chapter 8
UNIQUELINES

8-193

UNRAVEL
The UNRAVEL function is used with an assignment statement to copy the values of an
expression into the cells of a variable when the dimensions of the expression are
different from the dimensions of the variable.

An assignment statement created using an assignment statement assigns the values
obtained from UNRAVEL by looping over the status of the dimensions of the target
variable. The first dimension listed in the variable's definition varies the fastest.
UNRAVEL obtains the values of the expression in the same way, looping over the
status of the dimensions of the expression with the first dimension varying the fastest.
You can alter the order in which UNRAVEL obtains its values by specifying the
dimensions over which to loop.

Return Value

The data type returned by UNRAVEL is the data type of the values specified by the
expression.

Syntax

UNRAVEL(expression [dimension1...])

Parameters

expression
The expression whose values are to be copied.

dimension
Specifies one or more dimensions over which to loop; the dimension specified first
varies fastest as the data is unraveled.
Specifying dimensions in UNRAVEL overrides the default looping order and the extent
to which the expression is unraveled. By default, unraveling extends through all the
dimensions of the expression. However, when you specify some but not all the
dimensions of the expression, any dimensions you have not specified do not unravel.
Instead, the unraveled values include only the first value of each of the omitted
dimensions.

Usage Notes

Moving Worksheet Data

One common use of UNRAVEL is to move data from a worksheet to a variable,
because the worksheet usually does not have the same dimensions as the variable.
See Copying Data from a Worksheet to a Variable.

Filling Extra Target Cells

When there are still more cells in the target for the assignment statement (created
using an assignment statement) to fill after it has used the last value from the
expression, UNRAVEL starts over at the first value again.

Setting Status

Because the order in which unraveled values are assigned depends on the current
status of the dimensions of both the variable and the expression, ensure that the
appropriate LIMIT commands have been given so that the cells match up correctly.

Chapter 8
UNRAVEL

8-194

Assigning Data Values

See SET for information on how data values are assigned.

Examples

Example 8-157 Copying Data from a Worksheet to a Variable

In an analytic workspace, you have imported some product price data from a
spreadsheet into a worksheet. You now want to transfer that data to a variable called
newprice. You can produce a report of a worksheet, called pricedata, with these
statements.

LIMIT wksrow TO 1 TO 6
LIMIT wkscol TO 1 2 3
REPORT pricedata

This is the report.

 -----------PRICEDATA------------
 -------------WKSCOL-------------
WKSROW 1 2 3
-------------- ---------- ---------- ----------
 1 Jan95 Jan96
 2 Tents 191.39 194.00
 3 Canoes 279.92 300.00
 4 Racquets 83.34 85.00
 5 Sportswear 107.90 110.00
 6 Footwear 183.18 195.00

As you can see, row 1 contains month labels, while column 1 contains product labels.
The variable newprice is dimensioned by month and product, as shown in its definition.

DEFINE newprice VARIABLE DECIMAL <month product>
LD Wholesale Unit Selling Price

Even though the worksheet has different dimensions (wkscol and wksrow) than
newprice, the data contained in it is well organized for transferring to the variable.

However, you do not want to take data from all the rows and columns in the
worksheet, so limit wkscol and wksrow to the rows and columns that contain the price
data itself.

LIMIT wkscol TO 2 3
LIMIT wksrow TO 2 TO 6

Also, you only want to set values into the variable newprice for January 1995 and
January 1996. So first limit month to these values, then type an assignment statement
using UNRAVEL to move the values from the worksheet to the variable.

LIMIT month TO 'Jan95' 'Jan96'
newprice = UNRAVEL(pricedata)

You do not have to specify dimensions in the UNRAVEL function because wkscol is
the fastest varying dimension. Consequently, both months unravel for the first product,
then both months for the second product. Because the fastest-varying dimension of
the variable is month, SET assigns values to the variable in the same order.

A report of newprice looks like this.

Chapter 8
UNRAVEL

8-195

 ------NEWPRICE-------
 --------MONTH--------
PRODUCT Jan95 Jan96
-------------- ---------- ----------
Tents 191.39 194.00
Canoes 279.92 300.00
Racquets 83.34 85.00
Sportswear 107.90 110.00
Footwear 183.18 195.00

UPPER
The UPCASE function converts all alphabetic characters in a text expression into
uppercase. When you specify a TEXT expression, the return value is TEXT. When you
specify an NTEXT expression, the return value is NTEXT.

Return Value

TEXT or NTEXT

Syntax

UPCASE(text-expression)

Parameters

text-expression
The text expression whose characters are to be converted.

Examples

Example 8-158 Converting Part of a Text Expression to Uppercase

Suppose you get some new data to add to a mailing list. In the existing mailing list,
people's names have the first letter capitalized. In the new data, however, the whole
name is in lowercase. You can use UPCASE to make the new data correspond to the
current data with a statement similar to the following.

lastname = JOINCHARS(UPCASE(EXTCHARS(lastname, 1, 1)), -
 EXTCHARS(lastname, 2, NUMCHARS(lastname)))

UPPER
The UPPER function converts all alphabetic characters in a text expression into
uppercase.

Return Value

The data type of text-expression.

See Also:

The UPPER function in Oracle Database SQL Language Reference

Chapter 8
UPPER

8-196

Syntax

UPPER(text-expression)

Parameters

text-expression
The text expression whose characters are to be converted.

VALSPERPAGE
The VALSPERPAGE program calculates the maximum number of values for a
variable of a given width that fits on one page. Pages are units of storage in the
workspace.

Return Value

INTEGER

Syntax

VALSPERPAGE(n)

Parameters

n
An INTEGER expression specifying the width of a variable in bytes. This value should be
between 1 and 4000. When you specify a value greater than 4000 or less than 1, the
result is NA.

Usage Notes

Large Variables

Oracle OLAP lets you create very large, multidimensional variables. Theoretically, a
variable can contain up to 2**63 cells, although this maximum is subject to memory
constraints and other factors specific to your system.

Examples

Example 8-159 Calculating the Number of Cells in a Page

The following statement calculates the maximum number of cells available in a single
page for a variable with an INTEGER data type. The default width of an INTEGER value in
Oracle OLAP is 4 bytes.

SHOW VALSPERPAGE(4)

The output of this statement is

992

Chapter 8
VALSPERPAGE

8-197

VALUES
The VALUES function returns the default status list or the current status list of a
dimension or dimension surrogate, or it returns the values in a valueset. VALUES
returns a multiline text value that contains one dimension value on a line.

Note:

Because composites do not have status, you cannot use the VALUES function
with a composite. When you attempt to do so, Oracle OLAP displays an error
message.

Return Value

TEXT

Syntax

VALUES(dimension [keyword] [INTEGER])

Parameters

dimension
A text expression whose value is the name of a dimension, dimension surrogate, or
valueset.

keyword
One of the following keywords that specify whether you want the current status list or
the default status list for a dimension or a surrogate:

• NOSTATUS which indicates that VALUES should return the default status list of a
dimension or dimension surrogate rather than its current status list.

• STATUS which indicates that VALUES should return the current status list of a
dimension or dimension surrogate (Default).

These keywords do not affect valuesets. For a valueset, VALUES returns all the
values in that valueset whether you specify NOSTATUS, STATUS, or nothing.

INTEGER
When you use the INTEGER keyword, the function returns the position numbers of
the dimension or dimension surrogate values rather than the values. When you use
INTEGER with a valueset, the function returns the position numbers of the values in
the existing dimension, not in the valueset.

Usage Notes

Using a LIMIT Statement With a STATUS Keyword Rather than VALUES

When possible, when you want Oracle OLAP to use the dimension values that are
presently in status, use a LIMIT (using values) command with the STATUS keyword
(or a LIMIT function with a similar construction) rather than using a VALUES
statement. A LIMIT with the STATUS keyword is more efficient than a VALUES
(dimname) statement.

Chapter 8
VALUES

8-198

Comparing VALUES to CHARLIST

The VALUES function is very similar to the CHARLIST function. VALUES(MONTH) returns
the same list as CHARLIST(MONTH).

The main differences are:

• For dimensions, the NOSTATUS keyword of VALUES lets you use the default
status without first limiting the dimension values to ALL.

• The VALUES function lets you use a text expression to specify the dimension or
valueset name. See VALUES with Text Variables.

Special Considerations for an Ampersand (&)

Under certain circumstances, an ampersand (&) that is intended to be a character in a
dimension value name is interpreted as ampersand substitution. When this happens,
Oracle OLAP generates an error message.

This happens because Oracle OLAP recognizes special characters in dimension value
names with when they are used in tuples in text expressions. For example, you can
include spaces, such as naming a dimension value New York instead of NewYork. When
you have dimension values that include ampersands in their names, refer to
Workaround for Dimension Value Names Including an Ampersand.

Examples

Example 8-160 Listing the Values of a Valueset

The easiest way to display the values of a valueset is simply by using the name of the
valueset in a SHOW or a REPORT statement. You can also use VALUES to list the
values in that valueset.

For example, suppose an analytic workspace contains a valueset called monthset that
has the values Jan95, May95, and Dec95. The following statement displays the values.

SHOW VALUES(monthset)
Jan95
May95
Dec95

Example 8-161 Listing Position Numbers of a Dimension

You can use VALUES to list the position numbers instead of the actual values in a
dimension or valueset. In this example, because you are using the INTEGER keyword
with a valueset instead of a dimension, the function returns the position numbers of the
values in the month dimension as shown by the output returned by the following
statement.

SHOW VALUES(monthset INTEGER)
61
65
72

Therefore, the value Jan95 is shown as the 61st value in the month dimension, May95 as
the 65th value, and Dec95 as the 72nd value, although they are the first, second, and
third values in monthset.

Chapter 8
VALUES

8-199

Example 8-162 VALUES with Text Variables

This example shows how to assign a dimension name to a text variable and use the
text variable in the VALUES function instead of the variable name itself. As the
following statements illustrate, when the variable textvar has the value district,
VALUES(textvar) returns a list of district values.

textvar = 'district'
SHOW VALUES(textvar)
Boston
Atlanta
Chicago
Dallas
Denver
Seattle

To list the values of district using the CHARLIST function rather than VALUES, you
must use an ampersand.

SHOW CHARLIST(&textvar)

Because ampersands in a program can degrade performance, use VALUES rather
than CHARLIST in such cases.

Example 8-163 Workaround for Dimension Value Names Including an
Ampersand

When a dimension value name contains an ampersand (&) as one of its characters,
and when that dimension is a base dimension of a conjoint dimension, then a text
expression that contains the names of dimension values in a tuple can generate an
error in certain circumstances. This example shows how to avoid this error.

Suppose you use the following statements to define two dimensions.

DEFINE prod DIMENSION TEXT
DEFINE geog DIMENSION TEXT

Next, you use the following statements to define two conjoint dimensions.

DEFINE conj1 DIMENSION <prod geog>
DEFINE conj2 DIMENSION <prod geog>

The following statements add dimension values to the prod and geog dimensions.

MAINTAIN prod ADD 'prod1' 'prod&val2'
MAINTAIN geog ADD 'geog1' 'geog&val2'

The following statements add tuples (combinations of dimension values) to the CONJ1
conjoint dimension.

MAINTAIN conj1 ADD <'prod1' 'geog1'>
MAINTAIN conj1 ADD <'prod&val2' 'geog1'>

Now, suppose you want to use the VALUE function with a MAINTAIN statement to add
those same tuples to the conj2 conjoint dimension. When you attempt to use the
following statement, it generates an error message.

MAINTAIN conj2 ADD VALUES(conj1)
ERROR: (MXMSERR) val2 does not exist in any attached workspace.

Chapter 8
VALUES

8-200

This error occurs because the ampersand in the dimension value name prod&val2 is
interpreted as an attempt at ampersand substitution.

Instead of using the preceding MAINTAIN statement, you can use the following
statement to add the tuples to the CONJ2 conjoint dimension.

MAINTAIN conj2 MERGE < KEY(conj1 prod) KEY(conj1 geog) >

VINTSCHED
The VINTSCHED function calculates the interest portion of the payments on a series
of variable-rate installment loans that are paid off over a specified number of time
periods. VINTSCHED calculates the result for a given time period as the sum of the
interest due on each loan that is incurred or outstanding in that period. For each time
period, you specify the initial amount of the loans incurred in that time period and the
interest rate that is charged in that time period for each new or outstanding loan.

Return Value

DECIMAL

The result returned by the VINTSCHED function is dimensioned by the union of all the
dimensions of loans and rates and the dimension that is used as the time-dimension
argument.

Syntax

VINTSCHED(loans, rates, n, [time-dimension] [STATUS])

Parameters

loans
A numeric expression that contains the initial amounts of the loans. When loans does
not have a time dimension, or when loans is dimensioned by multiple time
dimensions, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a different
time dimension. When rates is dimensioned by a time dimension, you specify the
interest rate in each time period that applies to the loans incurred or outstanding in
that period. The interest rates are expressed as decimal values; for example, a 5
percent rate is expressed as .05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period of
the dimension specified in the time-dimension argument. For example, one payment a
month is made when loans is dimensioned by month.

time-dimension
The name of the dimension along which the interest payments are calculated. When
loans has a dimension of type of DAY, WEEK, MONTH, QUARTER, or YEAR, the

Chapter 8
VINTSCHED

8-201

time-dimension argument is optional, unless loans has multiple dimensions of these
types.

STATUS
Specifies that VINTSCHED should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
interest portion of the payments. By default VINTSCHED uses the default status list.

Usage Notes

VINTSCHED and NA Values

When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

VINTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
VINTSCHED depends on whether the corresponding interest rate has a value of NA or
a value other than NA. The following table illustrates how NASKIP affects the results
when a loan or rate value is NA for a given time period:

Table 8-21 How NASKIP Affects the Results When a Loan or Rate Value is NA
for a Given Time Period

Loan Value Rate Value Result when NASKIP = YES Result when NASKIP = NO

Non-NA NA Error Error

NA Non-NA Interest values (NA loan value is
treated as zero)

NA for affected time periods

NA NA NA for affected time periods NA for affected time periods

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1997, but both have values other than NA for succeeding years.
When the number of payments is 3, VINTSCHED returns NA for 1997, 1996, and 1995.
For 1997, VINTSCHED returns the interest portion of the payment due for loans
incurred in 1995, 1996, and 1997.

VINTSCHED Ignores the Status of a Time Dimension

The VINTSCHED calculation begins with the first value of the time dimension,
regardless of how the status of that dimension may be limited. For example, suppose
loans is dimensioned by year, and the values of year range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year so that it
does not include Yr95.

However, when loans is not dimensioned by the time dimension, the VINTSCHED
calculation begins with the first value in the current status of the time dimension. For
example, suppose loans is not dimensioned by year, but year is specified as time-
dimension. When the status of year is limited to Yr97 to Yr99, the calculation begins
with Yr97 instead of Yr95.

Examples

Example 8-164 Using VINTSCHED

The following statements create two variables called loans and rates.

Chapter 8
VINTSCHED

8-202

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.07
Yr99 0.00 0.07

For each year, loans contains the initial value of the variable-rate loan incurred during
that year. For each year, the value of rates is the interest rate that is charged for that
year on any loans incurred or outstanding in that year.

The following statement specifies that each loan is to be paid off in three payments,
calculates the interest portion of the payments on the loans,

REPORT W 20 HEADING 'Payment' VINTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 5.00
Yr96 16.10
Yr97 33.06
Yr98 19.43
Yr99 7.48

The interest payment for 1995 is interest on the loan of $100 incurred in 1995, at 5
percent. The interest payment for 1996 is the sum of the interest on the remaining
principal of the 1995 loan, plus interest on the loan of $200 incurred in 1996; the
interest rate for both loans is 6 percent. The 1997 interest payment is the sum of the
interest on the remaining principal of the 1995 loan, interest on the remaining principal
of the 1996 loan, and interest on the loan of $300 incurred in 1997; the interest rate for
all three loans is 7 percent. Because the 1995 loan is paid off in 1997, the payment for
1998 represents 7 percent interest on the remaining principal of the 1996 and 1997
loans. In 1999, the interest payment is on the remaining principal of the 1997 loan.

VPMTSCHED
The VPMTSCHED function calculates a payment schedule (principal plus interest) for
paying off a series of variable-rate installment loans over a specified number of time
periods. VPMTSCHED calculates the payment for a given time period as the sum of
the principal and interest due on each loan that is incurred or outstanding in that
period. For each time period, you specify the initial amount of the loans incurred in that
time period and the interest rate that is charged in that time period for each new or
outstanding loan.

Return Value

DECIMAL

Chapter 8
VPMTSCHED

8-203

The result returned by the VPMTSCHED function is dimensioned by the union of all
the dimensions of loans and rates and the dimension used as the time-dimension
argument.

Syntax

VPMTSCHED(loans, rates, n, [time-dimension] [STATUS])

Parameters

loans
A numeric expression that contains the initial amounts of the loans. When loans does
not have a time dimension, or when loans is dimensioned by multiple time
dimensions, the time-dimension argument is required.

rates
A numeric expression that contains the interest rates charged for loans. When rates is
a dimensioned variable, it can be dimensioned by any dimension, including a different
time dimension. When rates is dimensioned by a time dimension, you specify the
interest rate in each time period that applies to the loans incurred or outstanding in
that period. The interest rates are expressed as decimal values; for example, a 5
percent rate is expressed as .05.

n
A numeric expression that specifies the number of payments required to pay off the
loans in the series. The n expression can be dimensioned, but it cannot be
dimensioned by the time dimension argument. One payment is made in each time
period of the time dimension by which loans is dimensioned or in each time period of
the dimension specified in the time-dimension argument. For example, one payment a
month is made when loans is dimensioned by month.

time-dimension
The name of the dimension along which the interest payments are calculated. When
loans has a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR, the time-
dimension argument is optional, unless loans has more than dimension of this type.

STATUS
Specifies that VPMTSCHED should use the current status list (that is, only the
dimension values currently in status in their current status order) when computing the
payment schedule. By default VPMTSCHED uses the default status list.

Usage Notes

VPMTSCHED and NA Values

When loans has a value other than NA and the corresponding value of rates is NA, an
error occurs.

VPMTSCHED is affected by the NASKIP option. When NASKIP is set to YES (the
default), and a loan value is NA for the affected time period, the result returned by
VPMTSCHED depends on whether the corresponding interest rate has a value of NA or
a value other than NA. Table 8-21 illustrates how NASKIP affects the results when a
loan or rate value is NA for a given time period.

As an example, suppose a loan expression and a corresponding interest expression
both have NA values for 1994, but both have values other than NA for succeeding years.
When the number of payments is 3, VPMTSCHED returns NA for 1994, 1995, and

Chapter 8
VPMTSCHED

8-204

1996. For 1997, VPMTSCHED returns the payment due for loans incurred in 1995,
1996, and 1997.

VPTMPTSCHED Ignores the Status of the Time Dimension

The VPMTSCHED calculation begins with the first value of the time dimension,
regardless of how the status of that dimension may be limited. For example, suppose
loans is dimensioned by year, and the values of year range from Yr95 to Yr99. The
calculation always begins with Yr95, even when you limit the status of year so that it
does not include Yr95.

However, when loans is not dimensioned by the time dimension, the VPMTSCHED
calculation begins with the first value in the current status of the time dimension. For
example, suppose loans is not dimensioned by year, but year is specified as time-
dimension. When the status of year is limited to Yr97 to Yr99, the calculation begins
with Yr97 instead of Yr95.

Examples

Example 8-165 Using VPMTSCHED

The following statements create two variables called loans and rates.

DEFINE loans DECIMAL <year>
DEFINE rates DECIMAL <year>

Suppose you assign the following values to the variables loans and rates.

YEAR LOANS RATES
-------------- ---------- ----------
Yr95 100.00 0.05
Yr96 200.00 0.06
Yr97 300.00 0.07
Yr98 0.00 0.07
Yr99 0.00 0.07

For each year, loans contains the initial value of the variable-rate loan incurred during
that year. For each year, the value of rates is the interest rate that is charged for that
year on any loans incurred or outstanding in that year.

The following statement specifies that each loan is to be paid off in three payments,
calculates the schedule for paying off the principal and interest on the loans,

REPORT W 20 HEADING 'Payment' VPMTSCHED(loans, rates, 3, year)

and produces the following report.

YEAR Payment
-------------- --------------------
Yr95 36.72
Yr96 112.06
Yr97 227.78
Yr98 190.19
Yr99 114.32

The payment for 1995 is the principal due on the loan of $100 incurred in 1995, plus
interest on the loan at 5 percent. The payment due in 1996 is the sum of the second
payment of principal on the loan incurred in 1995, plus the first payment of principal on
the loan of $200 incurred in 1996, plus interest on the remaining principals of both
loans at 6 percent. The 1997 payment is the sum of the third and final principal

Chapter 8
VPMTSCHED

8-205

payment on the loan incurred in 1995, the second of the three principal payments on
the 1996 loan, the first payment of principal on the loan of $300 incurred in 1997, plus
interest on the remaining principals of all three loans at 7 percent. Because the 1995
loan is paid off in 1997, the payment for 1998 covers the principal and interest for the
1996 and 1997 loans. The payment for 1999 is the final payment of principal and
interest for the 1997 loan.

VSIZE
The VSIZE function returns the number of bytes in the internal representation of an
expression.

Return Value

INTEGER

If expr is null, then this function returns NA.

Syntax

VSIZE(expr)

Parameters

expr
An expression of any data type.

WEEKOF
The WEEKOF function returns an INTEGER in the range of 1 to 53, which gives the
week of the year in which a specified date falls. The result has the same dimensions
as the specified DATE expression.

Return Value

INTEGER

Syntax

WEEKOF(date-expression)

Parameters

date-expression
An expression that has the DATE data type, or a text expression that specifies a date.
The values of the text expression are converted automatically to DATE values, using
the current setting of the DATEORDER option to resolve any ambiguity.

Usage Notes

Determining Week 1

The value of WEEKDSYSNEWYEAR specifies how many days of the new year there
must be in the week for WEEKOF to consider it to be week 1 of the new year. For
example, when January 1 is on a Wednesday, then the week of December 29 to
January 4 has four days in the new year. WEEKDSYSNEWYEAR must therefore have

Chapter 8
VSIZE

8-206

a value of 4 or less for that week to be counted as week 1. This determination of week
1 affects the numbering of all weeks in the year.

Examples

Example 8-166 Finding Today's Week

The following statement sends the week of the year in which today's date falls to the
current outfile.

SHOW WEEKOF(TODAY)

When today's date is August 5, 1996, which is a Monday, this statement produces the
following output.

32

Example 8-167 Finding the Week of a Date

The following statement sends the week of the year in which July 4 falls in 1996 to the
current outfile.

SHOW WEEKOF('04JUL96')

This statement produces the following output.

27

WIDTH_BUCKET
For a given expression, the WIDTH_BUCKET function returns the bucket number into
which the value of this expression would fall after being evaluated.

Return Value

An INTEGER.

Syntax

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

Parameters

expr
The expression for which the histogram is being created. This expression must
evaluate to a number or a datetime value. When expr evaluates to NA, then the
expression returns NA.

min_value
An expression that resolves to the minimum end point of the acceptable range for
expr. This expression must evaluate to number or datetime values, and cannot
evaluate to NA.

max_value
An expression that resolves to the maximum end point of the acceptable range for
expr. This expression must evaluate to number or datetime values, and cannot
evaluate to NA.

Chapter 8
WIDTH_BUCKET

8-207

num_buckets
An expression that resolves to a constant indicating the number of buckets. This
expression must evaluate to a positive INTEGER.

Usage Notes

Underflow and Overflow Buckets

WIDTH_BUCKET also creates (when needed) an underflow bucket numbered 0 and
an overflow bucket numbered num_buckets+1. These buckets handle values less than
min_value and more than max_value and are helpful in checking the reasonableness
of endpoints.

Constructing Equiwidth Histograms

WIDTH_BUCKET lets you construct equiwidth histograms, in which the histogram
range is divided into intervals that have identical size. (Compare this function with
NTILE, which creates equiheight histograms.) Ideally each bucket is a "closed-open"
interval of the real number line. For example, a bucket can be assigned to cores
between 10.00 and 19.999... to indicate that 10 is included in the interval and 20 is
excluded. A bucket of this size is sometimes denoted as (10, 20).

Examples

Example 8-168 Grouping Values Into a Ten-Bucket Histogram

The following example limits the customers to those customers who have a
customer_id of 825 through 853 and, then, creates a ten-bucket histogram on the
credit_limit variable for those customer. It uses the credit_group formula to calculate
the bucket number for each customer. Customers with credit limits greater than the
maximum value are assigned to the overflow bucket, 11.

DESCRIBE
DEFINE customer_id DIMENSION INTEGER
DEFINE cust_last_name VARIABLE TEXT <customer_id>
DEFINE credit_limit VARIABLE INTEGER <customer_id>
DEFINE credit_group FORMULA INTEGER <customer_id>
EQ WIDTH_BUCKET(credit_limit, 100, 5000, 10)

LIMIT customer_id to 825 TO 853
REPORT cust_last_name, credit_limit, credit_group

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT CREDIT_GROUP
-------------- ---------------- ---------------- ----------------
 825 Dreyfuss 500 1
 826 Barkin 500 1
 827 Siegel 500 1
 828 Minnelli 2,300 5
 829 Hunter 2,300 5
 830 Dutt 3,500 7
 831 Bel Geddes 3,500 7
 832 Spacek 3,500 7
 833 Moranis 3,500 7
 834 Idle 3,500 7
 835 Eastwood 1,200 3
 836 Berenger 1,200 3
 837 Stanton 1,200 3
 838 Nicholson 3,500 7
 839 Johnson 3,500 7
 840 Elliott 1,400 3

Chapter 8
WIDTH_BUCKET

8-208

 841 Boyer 1,400 3
 842 Stern 1,400 3
 843 Oates 700 2
 844 Julius 700 2
 845 Fawcett 5,000 11
 846 Brando 5,000 11
 847 Streep 5,000 11
 848 Olmos 1,800 4
 849 Kaurusmdki 1,800 4
 850 Finney 2,300 5
 851 Brown 2,300 5
 852 Tanner 2,300 5
 853 Palin 400 1

WKSDATA
The WKSDATA function returns the data type of each individual cell in a worksheet or
the data type of a program argument with the WORKSHEET data type. You can use
WKSDATA to help in the process of transferring labels and data between text files and
Oracle OLAP.

Return Value

The data type of individual worksheet cells.

Syntax

WKSDATA(worksheetname)

Parameters

worksheetname
Specifies the name of an Oracle OLAP worksheet object, such as workunits.

Usage Notes

Checking One or More Cells

You can use WKSDATA to return the data type of a single worksheet cell by using a
qualified data reference for the cell, as in the following format.

SHOW WKSDATA(worksheetname(WKSROW n, WKSCOL n))

Or you can use a REPORT statement in this format with WKSDATA to provide the
contents of all the cells in a worksheet side-by-side with their data types.

REPORT worksheetname WKSDATA(worksheetname)

Multiple Data Types

Always use care when using worksheet objects in expressions. Because a worksheet
object can contain multiple data types, the actual data type of individual worksheet
cells is not considered when an OLAP DML statement is compiled. Instead, code is
generated to convert each worksheet cell to the data type it expects at that position in
the expression which may lead to unexpected results in some cases.

Text Data

Chapter 8
WKSDATA

8-209

All textual data (as opposed to numeric, Boolean, date, and so on) in a worksheet has
the TEXT data type. The ID and NTEXT data types are not supported in worksheets.

Examples

Example 8-169 Checking Data Imported from a Worksheet

Suppose you have imported a flat data file into a worksheet called workunits. You can
use WKSDATA to provide a quick way to determine which areas to treat as dimension
values and which as data values in bringing the worksheet into standard OLAP
workspace format.

This statement produces this output following the statement that shows the data in
workunits

REPORT workunits

 -----------------WORKUNITS-----------------
 ------------------WKSCOL-------------------
WKSROW 1 2 3 4
-------------- ---------- ---------- ---------- ----------
 1 NA Jan96 Feb96 Mar96
 2 Tents 307 209 277
 3 Canoes 352 411 488
 4 Racquets 1,024 1,098 1,144
 5 Sportswear 1,141 1,262 1,340
 6 Footwear 2,525 2,660 2,728

This statement uses the WKSDATA function to produce the report following the
statement, which shows the data type of each cell in the worksheet.

REPORT WKSDATA(workunits)

 ------------WKSDATA(WORKUNITS)-------------
 ------------------WKSCOL-------------------
WKSROW 1 2 3 4
-------------- ---------- ---------- ---------- ----------
 1 NA TEXT TEXT TEXT
 2 TEXT INTEGER INTEGER INTEGER
 3 TEXT INTEGER INTEGER INTEGER
 4 TEXT INTEGER INTEGER INTEGER
 5 TEXT INTEGER INTEGER INTEGER
 6 TEXT INTEGER INTEGER INTEGER

WRITABLE
The WRITABLE function returns TRUE when the user has WRITE permission for the
object and FALSE when the user does not or when the object is not a variable,
worksheet object, relation, or valueset.

Return value

BOOLEAN

The result has the same dimensions as expression.

Syntax

WRITABLE (expression)

Chapter 8
WRITABLE

8-210

Parameters

expression
An expression that is the name or QDR of an object that has values (that is, a
variable, relation, valueset, or worksheet object).

YYOF
The YYOF function returns an INTEGER in the range of 1000 to 9999, giving the year in
which a specified date falls. The result returned by YYOF has the same dimensions as
the specified date expression.

Return Value

INTEGER

Syntax

YYOF(date-expression)

Parameters

date-expression
An expression that has the DATE data type, or a text expression that specifies a date.
The values of the text expression are converted automatically to DATE values, using
the current setting of the DATEORDER option to resolve any ambiguity.

Usage Notes

Commas in Year Values

When the COMMAS option is set to YES when you display the value returned by
YYOF, the year is displayed with a comma separating the thousands (for example,
1,996). To avoid this, you can set the COMMAS option to NO before displaying the year.

Examples

Example 8-170 Obtaining the Current Year

The following statements send the year in which today's date falls to the current outfile.

COMMAS = NO
SHOW YYOF(TODAY)

When today's date is January 15, 1996, these statements produce the following
output.

1996

Chapter 8
YYOF

8-211

9
OLAP DML Commands: A-G

This chapter contains the following topics:

• About OLAP DML Commands

• Commands: Alphabetical Listing

• Commands by Category

• One topic for each of the OLAP DML commands that begins with the letters A - G,
beginning with ACQUIRE.

Reference topics for the remaining OLAP DML commands appear in alphabetical
order in OLAP DML Commands: H-Z.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Options , OLAP DML Functions: A - K, and OLAP DML Functions: L - Z .

About OLAP DML Commands
OLAP DML commands work in much the same way as commands in other
programming languages—the one exception is the looping nature of OLAP DML
commands as discussed in "OLAP DML Statements Apply to All of the Values of a
Data Object".

Many OLAP DML commands perform complex actions. Some of these commands are
data definition commands like the AW command which you use to create an analytic
workspace and the DEFINE command which you use to define objects within an
analytic workspace. Other OLAP DML commands are data manipulation commands.
For example, you can use the OLAP DML SQL command to embed SQL statements
in an OLAP DML program to copy data from relational tables into analytic workspace
data objects, or you can use the AGGREGATE command to calculate summary data.
Additionally, the DEFINE, MAINTAIN, PROPERTY, SET (=) UPDATE, and AW
commands are recognized by Oracle OLAP as events that can trigger the execution of
OLAP DML programs. (See "Trigger Programs" for more information.)

Tip:

Many OLAP DML statements can be coded as a 3-character abbreviation that
consists of the first letter of the statement plus the next two consonants.

Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a command.

9-1

Commands: Alphabetical Listing
A

ACQUIRE
ACROSS
ADD_CUBE_MODEL
ADD_DIMENSION_MEMBER
ADD_MODEL_DIMENSION
AGGMAP
AGGMAP ADD or REMOVE model
AGGMAP SET
AGGREGATE command
ALLCOMPILE
ALLOCATE
ALLOCMAP
ALLSTAT
ARGUMENT
AW command
AWDESCRIBE

B

BLANK
BREAK

C

CALL
CDA
CHGDFN
CLEAR
COMMIT
COMPILE
CONSIDER
CONTEXT command
CONTINUE
COPYDFN
CREATE_LOGICAL_MODEL

D

DATE_FORMAT
DBGOUTFILE
DEFINE
DELETE
DESCRIBE
DO ... DOEND

Chapter 9
Commands: Alphabetical Listing

9-2

E

EDIT
EQ
EXPORT

F

FCCLOSE
FCEXEC
FCSET
FETCH
FILECLOSE
FILECOPY
FILEDELETE
FILEMOVE
FILEPAGE
FILEPUT
FILEREAD
FILESET
FILEVIEW
FOR
FORECAST
FORECAST.REPORT
FULLDSC

G

GOTO
GROUPINGID command
HEADING

H

HIDE
HIERDEPTH
HIERHEIGHT command

I

IF...THEN...ELSE command

I

IMPORT
INFILE

L

LD
LIMIT command
LIMIT BASEDIMS
LISTBY

Chapter 9
Commands: Alphabetical Listing

9-3

LISTFILES
LISTNAMES
LOAD
LOG command

M

MAINTAIN
MODEL
MODEL.COMPRPT
MODEL.DEPRT
MODEL.XEQRPT
MONITOR
MOVE

O

OUTFILE

P

PAGE
PARSE
PERMIT
PERMITRESET
POP
POPLEVEL
PROGRAM
PROPERTY
PUSH
PUSHLEVEL

R

RECAP
REDO
REEDIT
REGRESS
REGRESS.REPORT
RELATION command
RELEASE
REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
RENAME
REPORT
RESYNC
RETURN
REVERT
ROW command

Chapter 9
Commands: Alphabetical Listing

9-4

S

SET
SET1
SET_INCLUDED_MODEL
SET_PROPERTY
SHOW
SIGNAL
SLEEP
SORT command
SQL
STATUS
STDHDR
SWITCH command

T

TEMPSTAT
TRACE
TRACKPRG
TRAP
TRIGGER command
TRIGGERASSIGN

U

UNHIDE
UPDATE
UPDATE_ATTRIBUTE_VALUE
UPDATE_DIMENSION_MEMBER

V

VARIABLE
VNF

W

WHILE

Z

ZEROTOTAL

Commands by Category
OLAP Cube and Cube Dimension Modification Commands

ADD_CUBE_MODEL
ADD_DIMENSION_MEMBER
ADD_MODEL_DIMENSION
CREATE_LOGICAL_MODEL

Chapter 9
Commands by Category

9-5

REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
SET_INCLUDED_MODEL
SET_PROPERTY
UPDATE_ATTRIBUTE_VALUE
UPDATE_DIMENSION_MEMBER
See also OBJORG function

Aggregation Commands

AGGMAP
AGGMAP ADD or REMOVE model
AGGMAP SET
AGGREGATE command
DEFINE AGGMAP
HIERDEPTH
HIERHEIGHT command

Allocation Commands

ALLOCATE
ALLOCMAP
DEFINE AGGMAP

Assigment Commands

CLEAR
MAINTAIN
SET
SET1
TRIGGER command
TRIGGERASSIGN

Debugging Commands

DBGOUTFILE
LOG command
MONITOR
SIGNAL
TRACKPRG
TRAP

Analytic Workspace Object Definition Commands

CHGDFN
CONSIDER
COPYDFN
DEFINE
DELETE
DESCRIBE
FULLDSC
GROUPINGID command

Chapter 9
Commands by Category

9-6

HIDE
HIERHEIGHT command
LD
LISTBY
LISTNAMES
LOAD
PROPERTY
RELATION command
RENAME
TRIGGER command
UNHIDE

Dimension Status Commands

ACROSS
ALLSTAT
LIMIT command
LIMIT BASEDIMS
STATUS
TEMPSTAT

Forecast and Regression Commands

FCCLOSE
FCEXEC
FCSET
FORECAST
FORECAST.REPORT
REGRESS
REGRESS.REPORT

Date Formatting Commands

DATE_FORMAT
VNF

Formula Commands

DEFINE FORMULA
EQ
TRACE

Analytic Workspace Management Commands

AW command
COMMIT
EXPORT (EIF)
IMPORT (EIF)
PERMIT
PERMITRESET
RENAME
UPDATE

Chapter 9
Commands by Category

9-7

Analytic Workspace Multiwriter Management Commands

ACQUIRE
RELEASE
RESYNC
REVERT

File Management Commands

CDA
FILECLOSE
FILECOPY
FILEDELETE
FILEMOVE
FILEPAGE
FILEPUT
FILEREAD
FILESET
FILEVIEW
IMPORT (text)
INFILE
LISTFILES
OUTFILE

Data Model Commands

AGGMAP ADD or REMOVE model
DEFINE MODEL
DIMENSION (in models)
INCLUDE
MODEL
MODEL.COMPRPT
MODEL.DEPRT
MODEL.XEQRPT
SET
TRACE

Programming Commands

ALLCOMPILE
ARGUMENT
BREAK
BREAK
CALL
CONTINUE
CONTINUE
DEFINE PROGRAM
DO ... DOEND
FOR
GOTO
HIDE

Chapter 9
Commands by Category

9-8

IF...THEN...ELSE command
PARSE
PROGRAM
RETURN
SLEEP
SWITCH command
TRACE
TRIGGER command
TRIGGERASSIGN
UNHIDE
VARIABLE
WHILE

Reporting Commands

BLANK
HEADING
PAGE
REPORT
ROW command
SHOW
STDHDR
ZEROTOTAL

Save and Restore Value Commands

CONTEXT command
POP
POPLEVEL
PUSH
PUSHLEVEL

Sorting Commands

MOVE
SORT command

Spreadsheet Commands

DEFINE WORKSHEET
EXPORT (spreadsheet)
IMPORT (spreadsheet)

SQL Execution Commands

FETCH
SQL

OLAP DML Statement Edit Commands

EDIT
RECAP
REDO
REEDIT

Chapter 9
Commands by Category

9-9

ACQUIRE
When an analytic workspace is attached in multiwriter mode, the ACQUIRE command
acquires and (optionally) resynchronizes the specified objects so that their changes
can be updated and committed.

See Also:

"Managing Analytic Workspaces Attached in Multiwriter Mode"

Syntax

ACQUIRE {acquired_noresync_objects | RESYNC [CASCADE] - resync_objects
[WAIT] } [CONSISTENT WITH [CASCADE] consistency_objects [WAIT]]

where resync_objects has the following syntax:

resynch_objname [FOR DELETE | [WITH [CASCADE]|WITHOUT] RELATIONS]] , ...

Parameters

acquired_noresync_objects
A list of one or more variables, relations, valuesets, dimension names, separated by
commas, that you want to access in read/write mode without resynchronizing.
To specify individual partitions of a partitioned variable, use the following syntax.

variable_name (PARTITION partition_name [, PARTITION partition_name]...)

Acquiring objects in this manner preserves all read-only changes made to the objects.
You can update variables and dimensions acquired in this manner using an UPDATE
statement.

partition_name
The name of the partition in which you want to acquire the objects.

RESYNC
Specifies acquisition in read/write mode of the latest generation of the specified
objects with all private changes discarded.

CASCADE

resync_objname
The name of a variable, relations, valueset, or dimension name that you want to
access in read/write mode and resynchronize.
To specify individual partitions of a partitioned variable, use the following syntax.

variable_name (PARTITION partition_name [, PARTITION partition_name]...)

WAIT
When you do not specify WAIT, the ACQUIRE statement fails when another user has
acquired any of the objects in resync_objects in read/write mode. When you
specify WAIT, Oracle OLAP waits until all objects in resync_objects it can be
acquired in read/write mode or the wait times out.

Chapter 9
ACQUIRE

9-10

CONSISTENT WITH
Specifies that additional objects are to be accessible in read-only mode.the behavior
of the ACQUIRE statement when a specified object is already acquired by another
user and resynchronizes the specified objects when the ACQUIRE statement
succeeds.

consistency_objects [WAIT]
A list of one or more a list of one or more variables, relations, valuesets, or dimension
names, separated by commas, that you want to acquire in read-only mode.
To specify individual partitions of a partitioned variable, use the following syntax.

variable_name (PARTITION partition_name [, PARTITION partition_name]...)

When you do not specify WAIT, the ACQUIRE statement fails when any of the objects
in the consistency_objects are acquired in read/write mode by another user.
When you specify the WAIT keyword, Oracle OLAP waits to execute the ACQUIRE
statement until none of the objects in consistency_objects are acquired in read/
write mode by another user or until the wait times out.

Usage Notes

Understanding Consistency

To some extent you can think of an ACQUIRE statement with a CONSISTENT WITH
phrase as a combination of ACQUIRE and RELEASE statements.

ACQUIRE [avar...] RESYNC [rvar ...] cvar ... [WAIT]
RELEASE cvar ...

The difference is that an ACQUIRE CONSISTENT WITH statement succeeds even
when the user does not have sufficient permissions to acquire cvar variables.

Failure and Error-Handling

All of the clauses in the ACQUIRE statement must succeed or the statement fails.
Consequently, either all of the requested objects are acquired or none of them are
acquired.

Only one user can acquire an object in read/write mode at a time. You can first acquire
an object in read-only mode, and then, assuming another user has not also acquired it
in read-only mode, you can acquire it in read/write mode without releasing it first.
However, once another user has acquired an object in read-only mode, you cannot
acquire the same object in read/write mode until the other user releases the object.
When a specified object has been acquired by another user or when your read-only
generation for a specified object is not the latest generation for the object, the
ACQUIRE statement fails.

Also, it can take a long time for the ACQUIRE statement to complete when you specify
WAIT for either the RESYNC or CONSISTENT phrase. During the wait, some
variables in the acquisition lists may be released while others may have been
acquired. It is even possible for a deadlock to occur which causes the ACQUIRE
statement to fail with a timeout error.

To avoid problems caused by deadlock, be thoughtful about the order in which you
code ACQUIRE and RELEASE statements and include appropriate error handling
routines.

Chapter 9
ACQUIRE

9-11

Examples

Example 9-1 Acquiring, Updating, and Releasing Objects

A classic use of multiwriter attachment mode is to allow two users to modify two
different objects in the same analytic workspace. For example, assume that an
analytic workspace has two variables: actuals and budget. Assume also that one user
(user A) wants to modify actuals, while another user (user B) wants to modify budget.
In this case, after attaching the analytic workspace in the multiwriter mode, each user
acquires the desired variable, performs the desired modification, updates, commits the
changes, and then, either detaches the workspace or releases the acquired variable.

User A executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
... make modifications
UPDATE MULTI actuals
COMMIT
RELEASE actuals
AW DETACH myworkspace

While, at the same time, User B executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE budget
... make modifications
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Example 9-2 Acquiring and Resynchronizing Objects

Assume that two users (named B1 and B2) both have to make what-if changes to
budget and possibly modify their parts of budget when they like the results of the what-if
changes. Neither user knows if anyone else needs to access budget at the same time
that they are or if they have to make any permanent changes to budget. Consequently,
they do not want to block anyone while they are performing what-if changes.

In this case, both users perform their what-if computation after attaching the analytic
workspace in the multiwriter mode but without acquiring budget. When they later
decide to make their what-if changes permanent, they try to acquire budget in
unresynchronized mode. When the acquire succeeds, they update budget and commit
the changes. The following OLAP DML statements show this scenario.

AW ATTACH myworkspace MULTI
...perform what-if computations
ACQUIRE budget
...maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

However, when the first acquire does not succeed, however, the users try again to
acquire budget in resynchronized mode (possibly requesting a wait). When the
resynchronized acquisition succeeds, they re-create the changes (because some

Chapter 9
ACQUIRE

9-12

relevant numbers might have changed) and then proceed to update and commit their
analytic workspace. The following OLAP DML statements show this scenario.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget
...maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace
AW ATTACH myworkspace MULTI
...perform what-if computations
ACQUIRE budget --> failed
ACQUIRE RESYNC budget WAIT
...determine that the changes are still needed
...make changes to make permanent
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Example 9-3 Acquiring Objects While Keeping Consistency

Sometimes you must keep some objects consistent with each other, which requires
special care in multiwriter mode.

Assume that two users (User B1 and User B2) both have to modify budget, that budget
must be kept consistent with investment, and that another user (User I) needs to
modify investment. In this scenario, even though none of the users needs to modify
both budget and investment, they all must ensure that when they acquire either budget
or investment that no one else has either budget or investment already acquired. To
achieve this effect, each user must issue an ACQUIRE statement with the
CONSISTENT WITH phrase as shown in the following example code. Note that all of
the users must be aware that the objects listed in the CONSISTENT phrase may be
resynchronized by the ACQUIRE statement, if needed.

For example, User B1 could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget CONSISTENT WITH investment
... maybe make some additional final changes
UPDATE MULTI budget
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

User B2 could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
... perform what-if computations
ACQUIRE budget CONSISTENT WITH investment --> failed
ACQUIRE RESYNC budget CONSISTENT WITH investment WAIT
... determine that the changes are still needed
... make changes to make permanent
UPDATE MULTI budget
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

Chapter 9
ACQUIRE

9-13

User I could issue the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE investment CONSISTENT WITH budget --> failed
ACQUIRE RESYNC investment CONSISTENT WITH budget WAIT
... make changes to investment
UPDATE MULTI investment
COMMIT
RELEASE budget, investment
AW DETACH myworkspace

ACROSS
The ACROSS command specifies a text expression that contains one or more
statements to be executed in a loop. ACROSS temporarily sets status to the values
that are in current status for the specified dimensions. After the ACROSS statement
executes, dimension status is restored to what it was before the loop, and execution of
the program resumes with the next statement. The repetition of the statements in the
DO clause statements is controlled by the status of the dimensions and composites
specified in the ACROSS statement and by the results of the WHERE clause when
included.E

Syntax

ACROSS dimension... DO dml-statements [WHERE boolean-expression]

Parameters

dimension
One or more dimensions or composites whose current status controls the repetition of
one or more statements, which are contained in dml-statements. The statements are
repeated for each combination of the values of the specified dimensions in the current
status. When two or more dimensions are specified, the first one varies the slowest.

DO dml-statements
A multiline text expression that is one or more OLAP DML statements to be executed
for each iteration of the loop. You can specify any OALAP DML statement except one
that is typically used as part of a multiple-line construct in a program. For example,
the IF...THEN...ELSE, WHILE, FOR, or SWITCH commands cannot be executed by
an ACROSS statement.

WHERE boolean-expression
For each iteration of the loop, specifies that the command evaluate boolean-
expression before executing dml-statements and, when the result of boolean-
expression is either NA or FALSE, to not execute dml-statements for that iteration.

Usage Notes

Code May Change Between Compilation and Execution

Oracle OLAP does not generate the code for the loop body until an ACROSS
statement or the program that contains it is executed. Waiting until execution to
generate the code allows for the possibility that, because the statements are contained
within a text expression, the contents of an ACROSS loop may change between
compilation and execution.

Chapter 9
ACROSS

9-14

Examples

Example 9-4 Using ACROSS to Repeat ROW Commands

In a report program, you want to show the unit sales of tents for each of three months.
Use the following ACROSS statement to repeat ROW commands for each value of the
month dimension.

LIMIT product TO 'Tents'
LIMIT month TO 'Jan95' to 'Mar95'
ACROSS month DO 'ROW INDENT 5 month WIDTH 6 unit'

 Jan95 533363
 Feb95 572796
 Mar95 707198

ADD_CUBE_MODEL
Adds a MODEL (in an aggregation) statement for a specified model into the
aggregation map of a cube dimension. The changes made when this program
executes are not transactional; an automatic COMMIT is executed as part of the
program.

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL ADD_CUBE_MODEL(logical_cube, logical_dim, model_name, is_static_model,
[position])

Parameters

CALL
Because ADD_CUBE_MODEL is an OLAP DML program with arguments, you invoke
it using the OLAP DML CALL statement.

logical_cube
A text expression that is the name of the cube as defined in the Oracle data
dictionary.

Chapter 9
ADD_CUBE_MODEL

9-15

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

model_name
A text expression that is the name of the logical model that is associated with
logical_dim.

is_static_model
A Boolean expression that specifies whether model_name is added before or after the
RELATION (for aggregation) statements in the aggmap for logical_cube.
The default value is TRUE which means that the MODEL statement added before the
RELATION statements (that is that model_name is a static model).
Specify FALSE if you want the MODEL statement added after the RELATION
statements (that is, that model_name is a dynamic model).

position
An integer that specifies where in the list of either static or dynamic models, the new
model is added. For example, if you specify a value of 0 (zero) for position and FALSE
for is_static_model, then the model is added as the first dynamic model. The default
value of position, is at the end of the list.
When you specify a negative value for position, then the model is added that many
positions from the end of the list.

Examples

For an example of using ADD_CUBE_MODEL in conjunction with
SET_INCLUDED_MODEL, see the example provided for SET_INCLUDED_MODEL.

ADD_DIMENSION_MEMBER
The ADD_DIMENSION_MEMBER program adds a member to an OLAP cube
dimension. An OLAP cube dimension (sometimes also called an "OLAP logical
dimension") is an OLAP dimension that is defined as a first-class data object in the
Oracle data dictionary.

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

See Also:

"Cube-Aware OLAP DML Statements"

Chapter 9
ADD_DIMENSION_MEMBER

9-16

Syntax

CALL ADD_DIMENSION_MEMBER(member_id, logical_dim, hier_list, level_name, -

parent-member_id, [auto_compile, [merge]])

Parameters

CALL
Because ADD_DIMENSION_MEMBER is an OLAP DML program with arguments,
you invoke it using the OLAP DML CALL statement.

member_id
A text expression that is the value of the member that you want to add to the cube
dimension.

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

hier_list
A multi-line text expression consisting of the Oracle data dictionary names of all of the
hierarchies that you want the dimension member added to. Specify one hierarchy
name per line.
When you want the member to be added to all of the cube dimension hierarchies,
specify NA.

level_name
For level hierarchies, a text value that specifies the hierarchy level at which the
program will add the member to the cube dimension. For level hierarchies, the value
you specify for level_name must be:

• Compatible with the value you specify for parent_member_id

• At the same hierarchy level as the existing cube dimension member because a
cube dimension member cannot be in two different levels across hierarchies.

When the member participates in a value hierarchy (that is, when there are no levels),
specify NA.

See Also:

"Invalid Level Names in Cube-Aware OLAP DML Statements"

parent_member_id
A text expression that specifies the value of the member which is the parent of the
member that you want to add to the cube dimension. When you want to add the
member as the top member of a hierarchy, specify NA.

Chapter 9
ADD_DIMENSION_MEMBER

9-17

auto_compile
A Boolean expression that specifies whether or not you want related analytic
workspace objects (for example, he parent relation) to be updated immediately. The
default value is TRUE in which case all of the changes to the analytic workspace that
are needed to add the cube dimension member happen now. Specify FALSE only
when, for performance reasons, you want to make a bulk set of changes before
issuing a compile. In this case, you need to explicitly compile the cube dimension
before the values of the analytic workspace objects take effect as described in
"Explicitly Compiling a Cube Dimension".

Note:

Regardless of the value that you specify for this argument, the new member is
always immediately added to the dimension -- even when an error is signaled
during compilation.

merge
A Boolean expression that specifies whether or not the program updates the
dimension member if it exists or creates it if it does not. The default value is FALSE.

Usage Notes

Explicitly Compiling a Cube Dimension

When you specify FALSE for auto_compile, you need to explicitly compile the cube
dimension before the values of the analytic workspace objects take effect. You
perform the compilation with a DBMS_CUBE.BUILD package call. You can make this call
within Analytic Workspace Manager by issuing the following statement where
cube_dimension_name is the fully-qualified name of the cube dimension as defined in
the Oracle data dictionary.

SQL PROCEDURE DBMS_CUBE.BUILD('cube_dimension_name USING (COMPILE)');

By default, issuing the above statement performs an UPDATE and COMMIT to the
database. To prevent an UPDATE and COMMIT from occurring, add NO COMMIT to
the statement as shown below.

SQL PROCEDURE DBMS_CUBE.BUILD'NO COMMIT cube_dimension_name USING (COMPILE)');

Guidelines for Specifying Values for the Names of Logical OLAP Objects

In an OLAP DML statement the text expression that you specify for an OLAP logical
object (that is, a first-class OLAP object that is defined in the Oracle data dictionary
such as a cube or cube dimension) must resolve to a value with the following form
where LOGICAL_OBJECT_NAME is the Oracle data dictionary name of the OLAP
object:

[SCHEMA_NAME.] LOGICAL_OBJECT_NAME

For example, valid expressions for referencing the XADEMO cube dimension in the
XADEMO schema include:

'product'
'xademo.product'
'PRODUCT'
'XADEMO.product'
'\"XADEMO\".\"PRODUCT\"'

Chapter 9
ADD_DIMENSION_MEMBER

9-18

Note:

OLAP DML cube-aware programs interpret a text value that you specify for an
OLAP logical object as upper case text unless you enclose the value in double
quotes.

Transaction Scope of Cube-Aware OLAP DML Statements

Unless otherwise noted, the scope of a cube-aware OLAP DML statement, just like
other OLAP DML statement, is a single session. To persist any changes, you must
have attached the analytic workspace in Read/Write mode before you issue the
statement and issue OLAP DML UPDATE and COMMIT statements after you execute
the statement. If the analytic workspace is attached Read Only or if you do not issue
UPDATE and COMMIT statements, then the changes exist only in the session while
the analytic workspace is attached.

Invalid Level Names in Cube-Aware OLAP DML Statements

If you specify an invalid value for level_name or parent_member_id, a compile-time
error is thrown. Also, an error will occur if you specify a hierarchy level for the member
that is different from the level it participates in another hierarchy. In this case, a call
error is thrown if auto_compile is FALSE.

Examples

Example 9-5 Adding Members to an OLAP Cube Dimension

This example adds members to an OLAP cube dimension named my_time.

1. Execute the following PL/SQL statement to report on the values and hierarchy of
the my_time cube dimension before any changes are made.

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

DIM_KEY||''||LEVEL_NAME||''||PARENT

L1_0 L1
L1_1 L1
L2_1 L2 L1_1
L2_2 L2 L1_1
L3_1 L3 L2_1
L3_2 L3 L2_1
L3_3 L3 L2_2
L3_4 L3 L2_2
L3_5 L3 L2_2

9 rows selected.

2. Execute the following PL/SQL statement to execute the user-written OLAP DML
program named ADD_LQ_2.

exec dbms_aw.execute('call my_util_aw!add_l1_2');

The definition of the user-written OLAP DML program named ADD_LQ_2 is shown
below. Note that it calls the ADD_DIMENSION_MEMBER program provided with the OLAP
DML to add new members to the my_time cube dimension.

Chapter 9
ADD_DIMENSION_MEMBER

9-19

DEFINE ADD_L1_2 PROGRAM
PROGRAM
 VARIABLE _aw_dim text
 VARIABLE _aw_sales text
 VARIABLE _members text
 VARIABLE _member text
 VARIABLE _i integer

 _aw_dim = OBJORG(DIM 'my_time')
 _aw_sales = OBJORG(MEASURE 'my_cube' 'sales')

 " Adds L1_2, L2_3, L3_6 CALL ADD_DIMENSION_MEMBER('L1_2', 'my_time', NA,
'L1', NA, NO)
 CALL ADD_DIMENSION_MEMBER('L2_3', 'my_time', NA, 'L2', 'L1_2', NO)
 CALL ADD_DIMENSION_MEMBER('L3_6', 'my_time', NA, 'L3', 'L2_3', NO)

 " Set my_time attribute (to meaningless values) so dimension can compile
 LIMIT &_aw_dim TO 'L1_2', 'L2_3', 'L3_6'
 _members = VALUES(&_aw_dim)
 _i = 1
 WHILE _i LE NUMLINES(_members)
 DO
 _member = EXTLINES(_members, _i, 1)
 _i = _i + 1
 CALL UPDATE_ATTRIBUTE_VALUE(_member, 'my_time', 'start_date', -
 to_date('01/01/08', 'MM/DD/YY'), NO)
 CALL UPDATE_ATTRIBUTE_VALUE(_member, 'my_time', 'timespan', 1, NO)
 DOEND

 &_aw_sales(&_aw_dim 'L3_6') = 3

 UPDATE
 COMMIT
END

3. Issue the following PL/SQL statement to compile the my_time cube dimension.

 exec dbms_cube.build('MY_TIME USING (COMPILE)');

4. Report the values and hierarchy of the my_time cube dimension after compilation

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

DIM_KEY||''||LEVEL_NAME||''||PARENT

L1_0 L1
L1_1 L1
L1_2 L1
L2_1 L2 L1_1
L2_2 L2 L1_1
L2_3 L2 L1_2
L3_1 L3 L2_1
L3_2 L3 L2_1
L3_3 L3 L2_2
L3_4 L3 L2_2
L3_5 L3 L2_2
L3_6 L3 L2_3

12 rows selected.

5. Execute the following PL/SQL statement to solve my_cube with the new hierarchy.

Chapter 9
ADD_DIMENSION_MEMBER

9-20

exec dbms_cube.build(script => 'MY_CUBE USING (SOLVE)', add_dimensions => false);

6. Issue the following PL/SQL statement to report on the values of the sales and
moving_sales measure in my-cube. Note that the new my_time cube dimension
values are shown.

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
from my_cube_view
order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_0 24 27
L1_1 14 38
L1_2 3 3
L2_1 2 5
L2_2 12 14
L2_3 3 3
L3_1 1 4
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2
L3_6 3 3

12 rows selected.

ADD_MODEL_DIMENSION
The ADD_MODEL_DIMENSION program adds a DIMENSION (in models) statement
to a cube dimension's model. The changes made when this program executes are not
transactional; an automatic COMMIT is executed as part of the program.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL ADD_MODEL_DIMENSION(logical_dim, model_name, explicit_dim)

Parameters

CALL
Because ADD_MODEL_DIMENSION is an OLAP DML program with arguments, you
invoke it using the OLAP DML CALL statement.

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

Chapter 9
ADD_MODEL_DIMENSION

9-21

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

model_name
A text expression that is the name of the logical model that is associated with
logical_dim.

explicit_dim
A text expression that is the name of the dimension that you want to add to the cube
dimension's model.

AGGMAP
The AGGMAP command identifies an aggmap object as a specification for
aggregation and adds an aggregation specification to the definition of the current
aggmap object. To use AGGMAP to assign an aggregation specification to n aggmap
object, the definition must be the one most recently defined or considered during the
current session. When it is not, you must first use a CONSIDER statement to make it
the current definition.

An alternative to the AGGMAP command is the EDIT AGGMAP statement, which is
available only in OLAP Worksheet. The EDIT AGGMAP statement opens an Edit
window in which you can add, delete, or change the aggregation specification for an
aggmap object.

See Also:

"OLAP DML Aggregation Objects"

(Note that there are two other OLAP DML statements that are also sometimes referred
to as "AGGMAP statements": AGGMAP ADD or REMOVE model statement that you
can use to add or remove a model from an aggmap object of type AGGMAP, and
AGGMAP SET that you can use to specify the default aggmap for a variable.)

Syntax

AGGMAP [specification]

Parameters

specification
A multiline text expression that is the aggregation specification for the current aggmap
object. Each statement is a line of the multiline text expression. When coding an
AGGMAP command at the command line level, separate statements with newline
delimiters (\n), or use JOINLINES.
An aggregation specification begins with AGGMAP and ends with an END. Between
these statements, you code one or more the following statements depending on the
calculation that you want to specify. Minimally, you must code one RELATION (for
aggregation) statement.

Chapter 9
AGGMAP

9-22

AGGINDEX
BREAKOUT DIMENSION
CACHE
DIMENSION (for aggregation)
DROP DIMENSION
MEASUREDIM (for aggregation)
MODEL (in an aggregation)
PRECOMPUTE
RELATION (for aggregation)

Note:

You cannot specify a conjoint dimension in the specification for the aggmap;
use composites instead.

Usage Notes

Creating Temporary or Custom Aggregates

Most aggmap objects are defined to calculate variable values that are dimensioned by
permanent dimension members (that is, dimension members that persist from one
session to another). However, users might want to create their own aggregates at run
time for forecasting or what-if analysis, or just because they want to view the data in
an unforeseen way. Adding temporary members to dimensions and aggregating data
for those members is sometimes called creating temporary or custom aggregates. For
example, you can use a MAINTAIN ADD SESSION statement like the one below to
temporarily add a model to an aggmap object.

MAINTAIN dimension ADD SESSION member = model APPLY TO AGGMAP
aggmap

Aggregating Variables Dimensioned by Compressed Composites

Keep the following points in mind when designing an aggregation specification for a
variable dimensioned by a compressed composite:

• RELATION statements in the aggregation specification must be coded following
the guidelines given in "RELATION Statements for Compressed Composites".

• There is no support for parallel aggregation. Instead, use multiple sessions to
compute variables or partitions that have their own compressed composites.

• If possible, Oracle OLAP automatically performs incremental aggregation when
you reaggregate a variable dimensioned by the compressed composite. In other
words, Oracle OLAP determines what changes have occurred since the last
aggregation, determines the smallest region of the variable that needs to be
recomputed, and recomputes only that region.

Consequently, there is no support for explicit incremental aggregation. You cannot
aggregate a variable dimensioned by a compressed composite if the dimension
status of the variable is limited. The status of the variable's dimensions must be
ALLSTAT for the aggregation to succeed. You can, however, partition using a
dense dimension with local compressed composites. In this way you can
aggregate only those partitions that contain new data.

Aggregation Options and System Properties

Chapter 9
AGGMAP

9-23

Several options can impact aggregation as outlined in "Aggregation Options".

See "System Properties by Category " for a list of system properties that relate to
aggregation or allocation.

Checking for Circularity

AGGREGATE automatically checks relations for circularity in and among multiple
hierarchies. When you first define hierarchies, check for circularity by setting
PRECOMPUTE statements to NA and AGGINDEX to NO. A XSHIERCK01 error during
aggregation indicates that a circular hierarchy may have been detected. However,
when the message includes a reference to UNDIRECTED, then multiple paths to an
ancestor from a detail data cell have been detected. Some calculations require that a
detail data cell use multiple paths to the same ancestor cell. When this is the case,
then you must set the MULTIPATHHIER option to YES before you execute the
AGGREGATE command. Otherwise, you must correct the error in the hierarchy
structure. For more details about this error message and how to interpret it, see the
MULTIPATHHIER option.

Examples

Example 9-6 Combining Pre-calculation and Calculation on the Fly

This example describes the steps you can take to pre-calculate some data in your
analytic workspace and specify that the rest should be calculated when users request
it.

Suppose you define an analytic workspace named mydtb that has a units variable with
the following definition.

DEFINE units INTEGER <time, SPARSE <product, geography>>

You now must create and add a specification to the aggmap, which specifies the data
that should be aggregated. This example shows you how to use an input file, which
contains OLAP DML statements that define the aggmap and add a specification to it:

1. Identify the name of each dimension's hierarchy. When you have defined the
hierarchies as self-relations, you use the names of the self-relations.

2. Decide which data to aggregate.

Suppose you want to calculate data for all levels of the time and product
dimensions, but not for geography. The geography dimension's lowest level of data
is at the city level. The second level of the hierarchy has three dimension values
that represent regions: East, Central, and West. The third level of the hierarchy has
one dimension value: Total.

Suppose that you want to pre-calculate the data for East and store it in the analytic
workspace. You want the data for Central, West, and Total to be calculated only
when users request that data — that data is not stored in the analytic workspace.
Therefore, you must specify this information in the specification that you add to
your aggmap object.

3. Create an ASCII text file named units.txt. Add the following OLAP DML
statements to your text file.

DEFINE units.agg AGGMAP <time, SPARSE <product, geography>>
AGGMAP
RELATION myti.parent
RELATION mypr.parent

Chapter 9
AGGMAP

9-24

RELATION myge.parent PRECOMPUTE ('East')
END

The preceding statements define an aggmap named units.agg, then add the three
RELATION statements to the aggregation specification when you read the units.txt
file into your analytic workspace.

4. To read the units.txt file into your analytic workspace, execute the following
statement.

INFILE 'inf/units.txt'

5. The units.agg aggmap should now exist in your analytic workspace. You can
aggregate the units variable with the following statement.

AGGREGATE units USING units.agg

Now the data for East for all times and products has been calculated and stored in
the analytic workspace.

6. Set up the analytic workspace so that when a user requests data for Central, West,
or Total, that data is calculated and displayed. It is generally a good idea to
compile the aggmap object before using it with the AGGREGATE function, as
shown by the following statement.

COMPILE units.agg

This is not an issue when you are just using the AGGREGATE command,
because this statement compiles the aggmap object before it uses it. However,
when you do not use the FUNCDATA keyword with the AGGREGATE command,
the metadata that is needed to perform calculation on the fly has not been
compiled yet. If you have performed all other necessary calculations (such as
calculating models), then it is a good practice to compile the aggmap when you
load data. When you fail to do so, that means that every time a user opens the
analytic workspace, that user has to wait for the aggregation to be compiled
automatically. In other words, when any data is calculated on the fly, you can
improve query performance for all of your users by compiling the aggmap before
making the analytic workspace available to your users.

7. Add a property to the units variable.

CONSIDER units
PROPERTY '$NATRIGGER' 'AGGREGATE(units USING units.agg)'

This property indicates that when a data cell contains an NA value, Oracle OLAP
calls the AGGREGATE function to aggregate the data for that cell. Therefore, any
units data that is requested by a user displayed. However, only the data for the
East dimension value of the geography dimension has actually been aggregated
and stored in the analytic workspace. All other data (for Central, West, and Total) is
calculated only when users request it.

Example 9-7 Performing Non-additive Aggregation

This example shows how to use operators and arguments to combine additive and
non-additive aggregation.

Suppose that you have defined four variables: sales, debt, interest_rate, and
inventory. The variables have been defined with the same dimensionality where cp is a
composite that has been defined with the product and geography dimensions.

<time cp<product geography>>

Chapter 9
AGGMAP

9-25

Suppose you want to use one AGGREGATE command to aggregate all four variables.
The debt variable requires additive aggregation. The sales variable requires a
weighted sum aggregation, and interest_rate requires a hierarchical weighted
average. Therefore, both sales and interest_rate require a weight object, which you
must define and populate with weight values. inventory requires a result that
represents the total inventory, which is the last value in the hierarchy.

You specify the aggregation operation for debt and inventory with the OPERATOR
keyword. However, because sales and interest_rate have aggregation operations that
require weight objects, you must use the ARGS keyword to specify their operations.
You define an operator variable to use the OPERATOR keyword. Typically, the
operator variable is dimensioned by a measure dimension or a line item dimension.

Here are the steps to define the aggregation you want to occur:

1. Because you are also using a measure dimension to define an argument variable
to use with the ARGS keyword, define that measure dimension, as illustrated by the
following statements.

DEFINE measure DIMENSION TEXT
MAINTAIN measure 'sales', 'debt', 'interest_rate', 'inventory'

Note:

Whenever you use a measure dimension in a RELATION statement, you
must include a MEASUREDIM statement in the same aggregation
specification

2. Define an operator variable named opvar and populate it.The statements specify
that the aggregation for debt should use the SUM operator, and the aggregation for
inventory should use the HLAST operator.

DEFINE opvar TEXT <measure>
opvar (measure 'sales') = 'WSUM'
opvar (measure 'debt') = 'SUM'
opvar (measure 'interest_rate') = 'HWAVERAGE'
opvar (measure 'inventory') = 'HLAST'

3. Because sales and interest_rate require weight objects, define and populate
those weight objects. The following statement defines a weight object named
currency (to be used by sales).

DEFINE currency DECIMAL <time geography>

Notice that the currency variable is dimensioned only by time and geography. The
purpose of this variable is to provide weights that act as currency conversion
information for foreign countries; therefore, it is unnecessary to include the product
dimension.

4. Populate currency with the weight values that you want to use.

5. The interest_rate variable's nonaddictive aggregation (hierarchical weighted
average) requires the sum of the variable debt. In other words, interest_rate
cannot be aggregated without the results of the aggregation of debt.

You can now define an argument variable, which you must specify the aggregation
results of debt as a weight object for interest_rate. You use the same argument

Chapter 9
AGGMAP

9-26

variable to specify currency as the weight object for the sales variable. The
following statement defines an argument variable named argvar.

DEFINE argvar TEXT <measure>

6. The next few statements populate the argument variable.

argvar (measure 'sales') = 'weightby currency'
argvar (measure 'debt') = NA
argvar (measure 'interest_rate') = 'weightby debt'
argvar (measure 'inventory') = NA

7. For the aggregation of product and geography, the data for the sales, debt, and
interest_rate variables can simply be added. But the inventory variable requires a
hierarchical weighted average. Consequently, it is necessary to define a second
operator variable and a second argument variable, both of which are used in the
RELATION statement for product and geography.

The following statements define the second operator variable and populate it.

DEFINE opvar2 TEXT <measure>
opvar (measure 'sales') = 'Sum'
opvar (measure 'debt') = 'Sum'
opvar (measure 'interest_rate') = 'Sum'
opvar (measure 'inventory') = 'HWAverage'

The following statements define the second argument variable and populate it.

DEFINE argvar2 TEXT <measure>
argvar (measure 'sales') = NA
argvar (measure 'debt') = NA
argvar (measure 'interest_rate') = NA
argvar (measure 'inventory') = 'weightby debt'

8. Now create the aggmap, by issuing the following statements.

DEFINE sales.agg AGGMAP <time, CP<product geography>>
AGGMAP
RELATION time.r OPERATOR opvar ARGS argvar
RELATION product.r OPERATOR opvar2 ARGS argvar2
RELATION geography.r OPERATOR opvar2 ARGS argvar2
MEASUREDIM measure
END

9. Finally, use the following statement to aggregate all four variables.

AGGREGATE sales debt interest_rate inventory USING sales.agg

Example 9-8 Programmatically Defining an Aggmap

The following program uses the EXISTS function to test whether an AGGMAP exists,
and defines the AGGMAP when it does not. It then uses an AGGMAP statement to
define the specification for the aggmap.

DEFINE MAKEAGGMAP PROGRAM
LD Create dynamic aggmap
PROGRAM
IF NOT EXISTS ('test.agg')
 THEN DEFINE test.agg AGGMAP <geography product channel time>
 ELSE CONSIDER test.agg
AGGMAP JOINLINES(-
 'RELATION geography.parentrel PRECOMPUTE (geography.lvldim 2 4)' -
 'RELATION product.parentrel' -
 'RELATION channel.parentrel' -
 'RELATION time.parentrel' -

Chapter 9
AGGMAP

9-27

 'END')
END

Example 9-9 Creating an Aggmap Using an Input File

Suppose that you have created a disk file called salesagg.txt, which contains the
following aggmap definition and specification.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'ALL')
RELATION geography.r
CACHE STORE
END

To include the sales.agg aggmap in your analytic workspace, execute the following
statement, where inf is the alias for the directory where the file is stored.

INFILE 'inf/salesagg.txt'

The sales.agg aggmap has now been defined and contains the three RELATION
statements and the CACHE statement. In this example, you are specifying that all of
the data for the hierarchy for the time dimension, time.r, should be aggregated, except
for any data that has a time dimension value of Year99. All of the data for the hierarchy
for the product dimension, product.r, should be aggregated, except for any data that
has a product dimension value of All. All geography dimension values are aggregated.
The CACHE STORE statement specifies that any data that are rolled up on the fly
should be calculated just once and stored in the cache for other access requests
during the same session.

You can now use the sales.agg aggmap with an AGGREGATE command, such as.

AGGREGATE sales USING sales.agg

In this example, any data value that dimensioned by a Year99 value of the time
dimension or an All value of the product dimension is calculated on the fly. All other
data is aggregated and stored in the analytic workspace.

Example 9-10 Using Multiple Aggmaps

When you use a forecast, you must ensure that all of the input data that is required by
that forecast has been pre-calculated. Otherwise, the forecast uses incorrect or
nonexistent data. For example, suppose your forecast requires that all line items are
aggregated. Using a budget variable that is dimensioned by time, line, and division,
one approach would be to perform a complete aggregation of the line dimension,
forecast the dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR, and then
aggregate the remaining dimension, division.

You can support this processing by defining three aggmap objects:

1. Define the first aggmap, named forecast.agg1, which aggregates the data needed
by the forecast. It contains the following statement.

RELATION line.parentrel

2. Define the second aggmap, named forecast.agg2, which aggregates the data
generated using the first aggmap and the forecast. It contains the following
statement.

RELATION division.parentrel PRECOMPUTE ('L3')

Chapter 9
AGGMAP

9-28

3. Define the third aggmap, named forecast.agg3, which contains the RELATION
statements in the specifications of the first two aggmaps.

RELATION line.parentrel
RELATION division.parentrel PRECOMPUTE ('L3')

When your forecast is in a program named fore.prg, then you would use the following
statements to aggregate the data.

AGGREGATE budget USING forecast.agg1 "Aggregate over LINE
CALL fore.prg "Forecast over TIME
AGGREGATE budget USING forecast.agg2 "Aggregate over DIVISION
"Compile the limit map for LINE and DIVISION
COMPILE forecast.agg3
"Use the combined aggmap for the AGGREGATE function
CONSIDER budget
PROPERTY 'NATRIGGER' 'AGGREGATE(budget USING forecast.agg3)'

Example 9-11 Using an AGGINDEX Statement in an Aggregation Specification

Suppose you have two variables, sales1 and sales2, with the following definitions.

DEFINE sales1 DECIMAL <time, SPARSE<product, channel, customer>>
DEFINE sales2 DECIMAL <time, SPARSE<product, channel, customer>>

You do not want to precompute and commit all of the sales data to the database,
because disk space is limited and you must improve performance. Therefore, you
must create an aggmap, in which you specify which data should be pre-computed and
which data should be calculated on the fly.

You define the aggmap, named sales.agg, with the following statement.

DEFINE sales.agg AGGMAP <time, SPARSE<product, channel, customer>>

Next, you use an AGGMAP statement to enter the following specification for sales.agg.

RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'All')
RELATION channel.r
RELATION customer.r
AGGINDEX NO

This aggregation specification tells Oracle OLAP that all sales data should be rolled up
and committed to the database except for any data that has a time dimension value of
Year99 or a product dimension value of All—the data for those cells is calculated the
first time a user accesses them. The AGGINDEX value of NO tells Oracle OLAP not to
create the indexes for data that should be calculated on the fly.

Now you execute the following statement.

sales2 = AGGREGATE(sales1 USING sales.agg) ACROSS SPARSE -
 <product, channel, customer>

sales2 now contains all of the data in sales1, plus any data that is aggregated for
Year99—this is because time is not included in a composite.

On the other hand, the data that is aggregated for the product value of All is not
computed and stored in sales2. This data is not computed or stored because the
product dimension is included in a composite—the indexes that are required for
dimensions that are included in composites were not created because the aggregation
specification contains an AGGINDEX NO statement. Because the indexes did not exist,

Chapter 9
AGGMAP

9-29

Oracle OLAP never called the AGGREGATE function to compute the data to be
calculated on the fly.

Example 9-12 Aggregating By Dimension Attributes

Assume that when your business makes a sales it keeps records of the customer's
name, sex, age, and the amount of the sale. To hold this data, your analytic
workspace contains a dimension named customer and three variables (named
customer_sex, customer_age, and sales) that are dimensioned by customer.

 REPORT W 14 <customer_sex customer_age sales>

CUSTOMER CUSTOMER_SEX CUSTOMER_AGE SALES
-------------- -------------- -------------- --------------
Clarke M 26 26,000.00
Smith M 47 15,000.00
Ilsa F 24 33,000.00
Rick M 33 22,000.00

You want to aggregate the detail sales data over sex and age to calculate the amount
of sales you have made to males and females, and the amount of sales for different
age ranges. To hold this data you need an INTEGER variable that is dimensioned by
hierarchical dimensions for sex and age. You also need an aggmap object that
specifies the calculations that Oracle OLAP performs to populate this variable from the
data in the sales variable.

To create and populate the necessary objects, you take the following steps:

1. Create and populate dimensions and self-relations for hierarchical dimensions
named sex and age.

DEFINE sex DIMENSION TEXT
DEFINE sex.parentrel RELATION sex <sex>
DEFINE age DIMENSION TEXT
DEFINE age.parentrel RELATION age <age>

AGE AGE.PARENTREL
-------------- --------------------
0-20 All
21-30 All
31-50 All
51-100 All
No Response All
All NA

SEX SEX.PARENTREL
-------------- --------------------
M All
F All
No Reponse All
All NA

2. Create and populate relations that map the age and sex dimensions to the customer
dimension.

DEFINE customer.age.rel RELATION age <customer>
DEFINE customer.sex.rel RELATION sex <customer>

CUSTOMER CUSTOMER.AGE.REL CUSTOMER.SEX.REL
-------------- -------------------- --------------------
Clarke 21-30 M
Smith 31-50 M

Chapter 9
AGGMAP

9-30

Ilsa 21-30 F
Rick 31-50 M

3. Create a variable named sales_by_sex_age to hold the aggregated data. Like the
sales variable this variable is of type DECIMAL, but it is dimensioned by sex and
age rather than by customer.

DEFINE sales_by_sex_age VARIABLE DECIMAL <sex age>

4. Define an AGGMAP type aggmap object named ssa_aggmap to calculate the values
of the sales_by_sex_age variable.

DEFINE SSA_AGGMAP AGGMAP
AGGMAP
RELATION sex.parentrel OPERATOR SUM
RELATION age.parentrel OPERATOR SUM
BREAKOUT DIMENSION customer -
BY customer.sex.rel, customer.age.rel OPERATOR SUM
END

Notice that the specification for the ssa_aggmap includes the following statements:

• A BREAKOUT DIMENSION statement that specifies how to map the customer
dimension of the sales variable to the lowest-level values of the
sales_by_sex_age variable. This statement specifies the name of the dimension
of the variable that contains the detail values (that is, customer) and the names
of the relations (customer.sex.rel and customer.age.rel) that define the
relations between customer dimension and the sex and age dimensions.

• Two RELATION statements that specify how to aggregate up the sex and age
dimensions of the sales_by_sex_age variable. Each of these statements
includes the name of the child-parent relation (sex.parentrel or age.parentrel)
that define the self-relation for the hierarchal dimension (sex or age).

5. Populate the sales_by_sex_age variable by issuing an AGGREGATE command that
specifies that the detail data for the aggregation comes from the sales variable.

AGGREGATE sales_by_sex_age USING ssa_aggmap FROM sales

After performing the aggregation, a report of sales_by_sex_age shows the
calculated values.

 ---------------------SALES_BY_SEX_AGE----------------------
 ----------------------------SEX----------------------------
AGE M F No Reponse All
-------------- -------------- -------------- -------------- --------------
0-20 NA NA NA NA
21-30 26,000.00 33,000.00 NA 59,000.00
31-50 37,000.00 NA NA 37,000.00
51-100 NA NA NA NA
No Response NA NA NA NA
All 63,000.00 33,000.00 NA 96,000.00

Example 9-13 Using a CACHE Statement in an Aggregation Specification

Suppose you have a sales variable with the following definition.

DEFINE sales DECIMAL <time, SPARSE<product, channel, customer>>

You do not want to pre-compute and commit all of the sales data, because space is
limited and you must improve performance. Therefore, you must create an aggmap, in
which you specify which data should be pre-computed and which data should be
calculated on the fly.

Chapter 9
AGGMAP

9-31

You define the aggmap, named sales.agg, with the following statement.

DEFINE sales.agg AGGMAP <time, SPARSE<product, channel, - customer>>

Next, you use the AGGMAP statement to enter the following aggregation specification
forsales.agg.

AGGMAP
RELATION time.r PRECOMPUTE (time NE 'YEAR99')
RELATION product.r PRECOMPUTE (product NE 'ALL')
RELATION channel.r
RELATION customer.r
CACHE SESSION
END

This aggregation specification tells Oracle OLAP that all sales data should be rolled up
and committed, except for any cells that have a time dimension value of Year99 or a
product dimension value of ALL; the data for those cells is calculated the first time a
user accesses them. Because the CACHE statement uses the SESSION keyword,
that means that when those cells are calculated on the fly, the data is stored in the
cache for the remainder of the Oracle OLAP session. That way, the next time a user
accesses the same cell, the data does not have to be calculated again. Instead, the
data is retrieved from the session cache.

Example 9-14 Populating All Levels of a Hierarchy Except the Detail Level

Assume that your analytic workspace contains the relations and dimensions with the
following definitions.

DEFINE geog.d TEXT DIMENSION
DEFINE geog.r RELATION geog.d <geog.d>
DEFINE sales_by_units INTEGER VARIABLE <geog.d>
DEFINE sales_by_revenue DECIMAL VARIABLE <geog.d>
DEFINE price_per_unit DECIMAL VARIABLE <geog.d>

Assume that you create two aggmap objects. One aggmap object, named
units_aggmap, is the specification to aggregate data in the sales_by_units variable. The
other aggmap object, revenue_aggmap, is the specification to calculate all of the data
except the detail data in the sales_by_revenue variable.

DEFINE units_aggmap AGGMAP
AGGMAP
 RELATION geog.r OPERATOR SUM
END

DEFINE revenue_aggmap AGGMAP
AGGMAP
 RELATION geog.r OPERATOR WSUM ARGS WEIGHTBY price_per_unit
 CACHE NOLEAF
END

The following steps outline the aggregation process:

1. Before either the sales_by_unit or sales_by_revenue variables are aggregated, they
have the following values.

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA

Chapter 9
AGGMAP

9-32

Sunnydale 4 NA
MA NA NA
CA NA NA
USA NA NA

2. After the data for the sales_by_unit variable is aggregated, the sales_by_unit and
sales_by_revenue variables have the following values.

AGGREGATE sales_by_unit USING units_aggmap

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA
Sunnydale 4 NA
MA 3 NA
CA 7 NA
USA 10 NA

3. After the data for the sales_by_revue variable is aggregated, the sales_by_unit and
sales_by_revenue variables have the following values.

AGGREGATE sales_by_revenue USING revenue_aggmap FROM units_aggmap

GEOG.D SALES_BY_UNIT SALES_BY_REVENUE
--------- ------------- ----------------
Boston 1 NA
Medford 2 NA
San Diego 3 NA
Sunnydale 4 NA
MA 3 13.5
CA 7 31.5
USA 10 45.0

Example 9-15 Aggregating into a Different Variable

Assume that there is a variable named sales that is dimensioned by time, a
hierarchical dimension, and district, a non-hierarchical dimension.

DEFINE time DIMENSION TEXT
DEFINE time.parentrel RELATION time <time>
DEFINE district DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <time district>

 -----------------------SALES-----------------------
 ---------------------DISTRICT----------------------
TIME North South West East
------------ ------------ ------------ ------------ ------------
1976Q1 168,776.81 362,367.87 219,667.47 149,815.65
1976Q2 330,062.49 293,392.29 237,128.26 167,808.03
1976Q3 304,953.04 354,240.51 170,892.80 298,737.70
1976Q4 252,757.33 206,189.01 139,954.56 175,063.51
1976 NA NA NA NA

Assume also that you want to calculate the total sales for each quarter and year for all
districts except the North district. To perform this calculation using an aggmap object,
you take the following steps:

1. Create a valueset named not_north that represents the values of district for
which you want to aggregate data.

Chapter 9
AGGMAP

9-33

DEFINE not_north VALUESET district
LIMIT not_north TO ALL
LIMIT not_north REMOVE 'North'

2. Define a variable named total_sales_exclud_north to hold the results of the
calculation.

DEFINE total_sales_exclud_north VARIABLE DECIMAL <time>

Notice that, like sales, the total_sales_exclud_north variable is dimensioned by
time. However, unlike sales, the total_sales_exclud_north variable is not
dimensioned by district because it holds detail data for each district, but only the
total (aggregated) values for the South, West, and East districts (that is, all districts
except North).

3. Define an aggmap object that specifies the calculation that you want performed.

DEFINE agg_sales_exclud_north AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM
DROP DIMENSION district OPERATOR SUM VALUES not_north
END

Notice that the aggregation specification consists of two statements that specify
how to perform the aggregation:

• A RELATION statement that specifies how to aggregate up the hierarchical
time dimension

• A DROP DIMENSION statement that specifies how to aggregate across the
non-hierarchical district dimension. In this case, the DROP DIMENSION also
uses the not_north valueset to specify that values for the North district are
excluded when performing the aggregation

4. Aggregate the data.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales

The report of the total_sales_exclud_north variable shows the aggregated values.

TIME ALL_SALES_EXCEPT_NORTH
------------ ------------------------------
1976Q1 731,850.99
1976Q2 698,328.58
1976Q3 823,871.02
1976Q4 521,207.09
1976 2,775,257.69

Example 9-16 Using a MEASUREDIM Statement in an Aggregation
Specification

Suppose you have defined a measure dimension named measure. You then define an
operation variable named myopvar, which is dimensioned by measure. When you use
myopvar in an aggregation specification, you must also include a MEASUREDIM
statement that identifies measure as the dimension is included in the definition of
myopvar.

The MEASUREDIM statement should follow the last RELATION statement in the
aggregation specification, as shown in the following example.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r OPERATOR myopvar

Chapter 9
AGGMAP

9-34

RELATION product.r
RELATION geography.r
MEASUREDIM measure
END

Example 9-17 Solving a Model in an Aggregation

This example uses the budget variable.

DEFINE budget VARIABLE DECIMAL <line time>
LD Budgeted $ Financial

The time dimension has two hierarchies (Standard and YTD) and a parent relation
named time.parentrel as follows.

 -----TIME.PARENTREL------
 ----TIME.HIERARCHIES-----
TIME Standard YTD
-------------- ------------ ------------
Last.YTD NA NA
Current.YTD NA NA
Jan01 Q1.01 Last.YTD
...
Dec01 Q4.01 Last.YTD
Jan02 Q1.02 Current.YTD
Feb02 Q1.02 Current.YTD
Mar02 Q1.02 Current.YTD
Apr02 Q2.02 Current.YTD
May02 Q2.02 Current.YTD
Q1.01 2001 NA
...
Q4.01 2001 NA
Q1.02 2002 NA
Q2.02 2002 NA
2001 NA NA
2002 NA NA

The relationships among line items are defined in the following model.

DEFINE income.budget MODEL
MODEL
DIMENSION line time
opr.income = gross.margin - marketing
gross.margin = revenue - cogs
revenue = LAG(revenue, 12, time) * 1.02
cogs = LAG(cogs, 1, time) * 1.01
marketing = LAG(opr.income, 1, time) * 0.20
END

The following aggregation specification pre-aggregates all of the data. Notice that all of
the data must be pre-aggregated because the model includes both LAG functions and
a simultaneous equation.

DEFINE budget.aggmap1 AGGMAP
AGGMAP
MODEL income.budget
RELATION time.parentrel
END

Example 9-18 Aggregating Up a Hierarchy

Suppose you define a sales variable with the following statement.

Chapter 9
AGGMAP

9-35

DEFINE sales VARIABLE <time, SPARSE <product, geography>>

The aggregation specification for sales might include RELATION statements like the
following.

AGGMAP
RELATION time.r PRECOMPUTE ('Yr98', 'Yr99')
RELATION product.r
RELATION geography.r PRECOMPUTE (geography NE 'Atlanta')
END

The AGGREGATE command aggregates values for Yr98 and Yr99, over all of products,
and over all geographic areas except for Atlanta. All other aggregates are calculated
on the fly.

Example 9-19 Using Valuesets

Suppose you have a hierarchy dimension named time.type, whose dimension values
are Fiscal and Calendar, in that order. These hierarchies are in conflict, and you want
to precompute some time data but calculate the rest on the fly. Because the Calendar
hierarchy is the last dimension value in the hierarchy dimension, consequently, you
must define a valueset to get the correct results for the Fiscal hierarchy.

First, use the following statements to define and populate a valueset.

DEFINE time.vs VALUESET time
LIMIT time.vs TO 'Calendar' 'Fiscal'

You can then use the valueset in the following RELATION statement. Because the
Fiscal hierarchy is the last hierarchy in the valueset, the data that is aggregated is
accurate for the Fiscal hierarchy.

RELATION time.r(time.vs) PRECOMPUTE ('Yr99', 'Yr00')

Example 9-20 Aggregating with a RELATION Statement That Uses an ARGS
Keyword

You can list the arguments in a RELATION statement directly in the statement or as
the value of a text variable. For example, the following statement specifies WEIGHTBY
wobj as an argument.

RELATION time.r OPERATOR wsum ARGS WEIGHTBY wobj

Alternatively, you can define an variable for the argument whose value is the text of
the WEIGHTBY clause.

DEFINE argvar TEXT
argvar = 'WEIGHTBY wobj'

Then the RELATION statement can specify the text variable that contains the
WEIGHTBY clause.

RELATION time.r OPERATOR WSUM ARGS argvar

Example 9-21 Aggregating Using a Measure Dimension

Suppose you want to use a single AGGREGATE command to aggregate the sales,
units, price, and inventory variables. When you want to use the same operator for
each variable, then you do not have to use a measure dimension. However, when you
want to specify different aggregation operations, then you must use a measure
dimension.

Chapter 9
AGGMAP

9-36

The following statement defines a dimension named measure.

DEFINE measure DIMENSION TEXT

You can then use a MAINTAIN statement to add dimension values to the measure
dimension.

MAINTAIN measure ADD 'sales', 'units', 'quota', 'inventory'

Use the measure dimension to dimension a text variable named meas.opvar that you use
as the operator variable.

DEFINE meas.opvar TEXT WIDTH 2 <measure>

The following statements add values to OPVAR

meas.opvar (measure 'sales') = 'SU'
meas.opvar (measure 'units') = 'SU'
meas.opvar (measure 'price') = 'HA'
meas.opvar (measure 'inventory') = 'HL'

The aggregation specification might look like the following. Note that when you specify
an operator variable in a RELATION statement, you must include a MEASUREDIM
statement that specifies the name of the measure dimension (measure in the following
example) in the aggregation specification.

DEFINE opvar.aggmap AGGMAP
AGGMAP
RELATION geography.parentrel PRECOMPUTE (geography.lvldim 2 4)
RELATION product.parentrel OPERATOR opvar
RELATION channel.parentrel OPERATOR opvar
RELATION time.parentrel OPERATOR opvar
MEASUREDIM measure
END

Example 9-22 Aggregating Using a Line Item Dimension

Suppose you have two variables, actual and budget, that have these dimensions.

<time line division>

You want to use different methods to calculate different line items. You create a text
variable that you use as the operator variable.

DEFINE line.opvar TEXT WIDTH 2 <line>

You then populate line.opvar with the appropriate operator for each line item, for
example.

line.opvar (line 'Net.Income') = 'SU'
line.opvar (line 'Tax.Rate') = 'AV'

 The aggregation specification might look like this.

DEFINE LINE.AGGMAP AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR line.opvar
RELATION division.parentrel
END

Chapter 9
AGGMAP

9-37

Example 9-23 Skip-Level Aggregation

Suppose you want to aggregate sales data. The sales variable is dimensioned by
geography, product, channel, and time.

First, consider the hierarchy for each dimension. How many levels does each
hierarchy have? What levels of data do users typically query? When you are designing
a new workspace, what levels of data do your users plan to query?

Suppose you learn the information described in the following table about how users
tend to query sales data for the time hierarchy.

Time Level
Names

Descriptive
Level Name

Examples of Dimension
Values

Do users query this level
often?

L1 Year Year99, Year00 yes

L2 Quarter Q3.99, Q3.99, Q1.00 yes

L3 Month Jan99, Dec00 yes

While the next table shows how your users tend to query sales data for the geography
hierarchy.

Geography
Level Names

Descriptive
Level Name

Examples of Dimension Values Do users query this
level often?

L1 World World yes

L2 Continent Europe, Americas no

L3 Country Hungary, Spain yes

L4 City Budapest, Madrid yes

Finally, the next table shows how your users tend to query sales data for the product
dimension hierarchy.

Product Level
Names

Descriptive
Level Name

Examples of Dimension
Values

Do users query this
level often?

L1 All Products Totalprod yes

L2 Division Audiodiv, Videodiv yes

L3 Category TV, VCR yes

L4 Product Tuner, CDplayer yes

Using this information about how users query data, use the following strategy for
aggregation:

• Fully aggregate time and product because all levels are queried frequently.

• For the geography dimension, aggregate data for L1 (World) and L3 (Country)
because they are queried frequently. However, L2 is queried less often and so can
be calculated on the fly.

The lowest level of data was loaded into the analytic workspace. The aggregate data
is calculated from this source data.

Chapter 9
AGGMAP

9-38

Therefore, the aggregation specification might look like the following.

RELATION time.parentrel
RELATION geography.parentrel PRECOMPUTE (geog.leveldim 'L3' 'L1')
RELATION product.parentrel

Example 9-24 Aggregation Specification with RELATION Statements That
Include PRECOMPUTE Clauses

This aggregation specification uses PRECOMPUTE clauses in the RELATION
statements to limit the data that is aggregated by the AGGREGATE command.

DEFINE gpct.aggmap AGGMAP
LD Aggmap for sales, units, quota, costs
AGGMAP
RELATION geography.parentrel PRECOMPUTE (geography.levelrel 'L3')
RELATION product.parentrel PRECOMPUTE (LIMIT(product complement 'TotalProd'))
RELATION channel.parentrel
RELATION time.parentrel PRECOMPUTE (time NE '2001')
END

AGGINDEX
Within an aggregation specification used with a non-compressed cube, an AGGINDEX
statement tells Oracle OLAP whether the AGGREGATE command should create
indexes (meaning, composite tuples) for data cells that it calculates on the fly. The
AGGINDEX statement signals the AGGREGATE command to create composite tuples
for any dimension that is included in a composite.

These indexes are used by the MODEL statement in an AGGMAP and by statements
that use the ACROSS phrase to help Oracle OLAP loop over variables that are
dimensioned by composites. These statements expect all data to be calculated. When
you specify calculating some data on the fly, that data appears to be missing. When
you set AGGINDEX to YES, then the statements try to access the missing data whether
or not you are using the AGGREGATE function to perform calculation on the fly
(meaning, you have added to the variable whose data is being aggregated an NA
trigger property that calls the AGGREGATE function).

When the indexes have been created and you use the AGGREGATE function, then
when MODEL (or a statement that uses the ACROSS phrase) requests the missing
data, that data is calculated on the fly. That means that the results of the MODEL (or
other statement) are correct, because the statement has all of the data that it needs.

When these indexes have not been created, the missing data cannot be calculated.
Consequently, the statements that need the indexes interpret the missing data as NA
data, even when you use the AGGREGATE function.

Syntax

AGGINDEX {YES|NO}

Parameters

YES
(Default) Ensures that all possible indexes are created whenever the AGGREGATE
command is used with an aggmap. Indexes are created both for the data that is being
pre-calculated and the data that is calculated on the fly. The creation of all possible

Chapter 9
AGGMAP

9-39

indexes results in the AGGREGATE command taking longer to execute. For a
discussion of when AGGINDEX should be set to YES, see "When To Use an
AGGINDEX Value of YES " in the Usage Notes..

NO
Does not create the indexes for data that is calculated on the fly. Omitting the creation
of these index values accelerates execution of the AGGREGATE command, but
causes Oracle OLAP to treat the uncomputed data as NA data whenever the MODEL
statement in an AGGMAP or an ACROSS phrase is executed. For a discussion of
when AGGINDEX should be set to NO, see "When To Use an AGGINDEX Value of
NO " in the Usage Notes.

Usage Notes

When To Use an AGGINDEX Value of YES

The primary advantage to using an AGGINDEX value of YES is that then Oracle
OLAP always tries to access data that you have specified to be calculated on the fly.
When you have created an $NATRIGGER property for a variable that calls the
AGGREGATE function, the variable appears to have been fully precomputed. That
means that when any NA value is encountered, the NA trigger is called during the
execution of an ACROSS phrase or the MODEL statement in an AGGMAP. When the
NA trigger is called, the AGGREGATE function is executed, and the data is calculated
on the fly.

The primary advantage to using an AGGINDEX value of YES is that then Oracle OLAP
always try to access data that you have specified to be calculated on the fly. When you
have created an $NATRIGGER property for a variable that calls the AGGREGATE
function, the variable appears to have been fully precomputed. That means that when
any NA value is encountered, the NA trigger is called during the execution of an
ACROSS phrase or the MODEL statement in an AGGMAP. When the NA trigger is
called, the AGGREGATE function is executed, and the data is calculated on the fly.

When AGGINDEX has a value of NO, then the NA trigger is called only to aggregate
data for composite tuples that have been materialized and for all of the values of
dimensions not included in the composite. Data for composite dimensions that is not
PRECOMPUTED is interpreted as NA values.

For example, suppose you have two variables called sales1 and sales2, which are
defined with the following definitions.

DEFINE sales1 DECIMAL <time, SPARSE <product, geography>>
DEFINE sales2 DECIMAL <time, SPARSE <product, geography>>

Now suppose you have an aggmap object named sales.agg, which has the following
definition.

DEFINE sales.agg AGGMAP

When you add a specification to the sales.agg aggmap, you enter RELATION
statements for time, product and geography with PRECOMPUTE clauses that specify NA
which specifies that no data is aggregated—instead, all of the data for any variable
that uses this aggmap is calculated on the fly.

RELATION time.r PRECOMPUTE (NA)
RELATION product.r PRECOMPUTE (NA)
RELATION geography.r PRECOMPUTE (NA)
AGGINDEX YES

Chapter 9
AGGMAP

9-40

Now attach the following $NATRIGGER property to the sales1 variable.

CONSIDER sales1
PROPERTY '$NATRIGGER' 'AGGREGATE(sales1 USING sales.agg)'

Now call the AGGREGATE command on sales1 to instantiate the index values.

AGGREGATE sales1 using sales.agg

Consider the effect of AGGINDEX in the following statement, when the aggmap
specifies AGGINDEX YES.

sales2 = sales1 ACROSS SPARSE <product, geography>

This statement loops over the data in sales1 and copies the values into sales2. This
statement causes the NA trigger to call the AGGREGATE function for all of the data
that you have specified to be calculated on the fly in sales1. Consequently, after the
aggregation that sales2 contains a copy of sales1 plus all the aggregate data cells (the
cells that would have been calculated if the sales1 data had been completely
precomputed, meaning, fully rolled up).

However, when you put an AGGINDEX NO statement in the sales.agg aggregation
specification, then sales2 contains a copy of the data in sales1 and the aggregate data
cells for the leaf values of the composite dimensions.

Note that in both cases, $NATRIGGER is called to aggregate time data, because the
time dimension is not included in the composite, so the value of AGGINDEX has no
effect on it.

When To Use an AGGINDEX Value of NO

You can use an AGGINDEX value of NO when you know that either of the following is
true:

• Your application does not contain an ACROSS phrase or a MODEL statement in
an AGGMAP command.

• The MODEL statement in the aggmap appears before the RELATION statements.
The results of your MODEL statements or ACROSS phrases are additive, and
data that needs to be aggregated can be calculated safely on the fly.

Each of the preceding cases ensures that the data that you have specified to be
calculated on the fly is available at the appropriate time.

By setting AGGINDEX to NO, the size of the indexes is reduced, and overall application
performance improves.

When Using an AGGINDEX Value Of NO Causes Problems

When you run a MODEL that assumes all data that should be aggregated has been
aggregated, then you may get NA data where real data should occur. For instance,
suppose you have a variable that has a composite that includes the time dimension.
You perform a calculation that subtracts the fourth quarter from the total for the year.
When the value of Year is to be calculated dynamically, and the AGGINDEX statement
is set to NO, then the result of the calculation is NA. When the value of Year was
precomputed or when AGGINDEX is set to YES, then the MODEL correctly calculates a
result equal to the sum of the first three quarters.

Index Creation Is Based on Existing Data

Chapter 9
AGGMAP

9-41

Only the indexes that are needed to aggregate existing data are created when
AGGINDEX has a value of YES. For example, suppose one dimension in your
composite is a dimension named time. The lowest-level data for the time dimension is
at the monthly level. Therefore, the dimension values that are associated with the
lowest-level data are Jan99, Feb99, and so on. The monthly data aggregates to quarters
and to years. Suppose you have data for the first six months of the year. When
AGGINDEX has a value of YES, indexes are created for the Q1, Q2, and Yr99 dimension
values, but not for Q3 and Q4.

Examples

For an example of using an AGGINDEX statement, see Example 9-11.

BREAKOUT DIMENSION
Within an aggregation specification, a BREAKOUT DIMENSION statement specifies
how a dimension of the target variable maps to one or more dimensions of the source
variable. You use this statement in an aggregation specification when you are
aggregating the detail data from one variable (the source variable) into another
variable (the target variable) that has a different dimension (that is, a "breakout"
dimension) than the variable that contains the detail data.

Syntax

BREAKOUT DIMENSION dimname BY relation [, relation...] - OPERATOR
operation [ARGS argument]

where:

relation has the following syntax:

relationname [IGNORE ignore_dim_value [DEFAULT default_dim_value]]

argument specifies the settings of various options and is one or more of the following
phrases:

 DIVIDEBYZERO {YES|NO}
 DECIMALOVERFLOW {YES|NO}
 NASKIP {YES|NO}
 WEIGHTBY [WNAFILL {number | NA}] wobj

Parameters

dimname
The name of a dimension in the variable that contains the detail data (that is, the
source variable).

relationname
The name of a relation whose values relate a dimension of the target variable to
dimname.

IGNORE ignore_dim_value
Specifies that if the target dimension is QDRd to the value specified by ignore_dim-
value then AGGREGATE does not use the relation specified by relationname to limit
the source dimension.

Chapter 9
AGGMAP

9-42

DEFAULT default_dim_value
Specifies that if all relations have an IGNORE phrase, then AGGREGATE uses the
value specified by default_dim-value value to create a QDR rather than using a
relation. If all relations have an IGNORE phrase and you do not include a DEFAULT
phrase, the AGGREGATE arbitrarily chooses a relationship to limit by.
when dimname is QDRd to the dimension value specified by ignore_dim-value then
AGGREGATE does not use the relation specified by relationname to limit the source
dimension

OPERATOR
Identifies the calculation method used to aggregate the data.

operation
A keyword that describes the type of aggregation to perform. The keywords are listed
in the description of the operation parameter in the RELATION (for aggregation)
statement of the AGGMAP command.

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero.
YES allows division by zero; a statement involving division by zero executes without
error but produces NA results.
NO disallows division by zero; a statement involving division by zero stops executing
and produces an error message.
The default value is the current value of the DIVIDEBYZERO option.

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion of
the numeric representation. Specify YES to allow overflow, which means that a
calculation that generates overflow executes without error and produces NA results.
Specify NO to disallow overflow, which means that; a calculation involving overflow
stops executing and generates an error message. The default value is the current
value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input. Specify YES when you want Oracle OLAP to
ignore NA values when aggregating which means that only actual values are used in
calculations. Specify NO when you want Oracle OLAP to consider NA values are
considered which means that when any of the values being considered are NA, the
calculation returns NA.The default value is the current value of the NASKIP option.
The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and can optionally include the WNAFILL keyword.
For more information about the use of the WEIGHTBY phrase, see RELATION (for
aggregation) statement of the AGGMAP command.

Chapter 9
AGGMAP

9-43

WNAFILL
Indicates handling for NA values. The default values for WNAFILL vary depending on
the value of operation.

number
Substitutes a number for every NA value. That number replaces every NA value in the
weight object, weight formula, or weight relation. The default for HWAVERAGE and
SSUM is The default for HWFIRST, HWLAST, WAVERAGE, WFIRST, WLAST, and
WSUM is 1.0 .

NA
Specifies that NA values are to be specified as NA. NA is the default for OR.
For more information about using the WNAFILL phrase, see RELATION (for
aggregation) statement of the AGGMAP command.

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric or
BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE has a
weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the variable being aggregated. When wobj is a
relation, it should be a one-dimensional self-relation. For more information about
specifying values for wobj, see RELATION (for aggregation) statement of the
AGGMAP command.

Examples

For an example of using the BREAKOUT DIMENSION statement, see Example 9-12.

CACHE
Within an aggregation specification, a CACHE statement tells Oracle OLAP whether to
cache or store the calculated data, whether to populate leaf or detail data when the
variable data is aggregated using detail data from another variable, and whether to
cache NA values when a summary values calculates to NA.

Note:

The CACHE statement is only one factor that determines whether variable data
that has been aggregated on-the-fly using the AGGREGATE function is stored
or cached. See "How Oracle OLAP Determines Whether to Store or Cache
Results of $NATRIGGER".

Syntax

CACHE {NOSTORE|NONE|STORE|SESSION|DEFAULT} [LEAF|NOLEAF] [NA|
NONA]

Chapter 9
AGGMAP

9-44

Parameters

NONE
NOSTORE
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP calculates the data each time the AGGREGATE function executes. When you
specify either of these keywords, Oracle OLAP does not store or cache the data
calculated by the AGGREGATE function.

STORE
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP stores data calculated by the AGGREGATE function in the variable in the
database. When you specify this option, the results of the aggregation are
permanently stored in the variable when the analytic workspace is updated and
committed.

SESSION
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP caches data calculated by the AGGREGATE function in the session cache (see
"What is an Oracle OLAP Session Cache?"). When you specify this option, the results
of the aggregation are ignored during updates and commits and are discarded after
the session.

Note:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data even
when you specify SESSION. In this case, specifying SESSION is the same as
specifying NONE.

DEFAULT
(Default) For data that is calculated using the AGGREGATE function, specifies that
Oracle OLAP uses the value of the VARCACHE option to determine what to do with
data that is calculated by the AGGREGATE function. See "What is an Oracle OLAP
Session Cache?".

LEAF
When the variable data is aggregated using detail data from another variable,
specifies that Oracle OLAP calculates the leaf data for the variable.

NOLEAF
(Default) When the variable data is aggregated using detail data from another
variable, specifies that Oracle OLAP does not calculate the leaf data for the variable.

NA
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP places any NA values that are the results of the execution of the AGGREGATE
function in the Oracle OLAP session cache. In this case, when there is a variable has
an $NATRIGGER property with an AGGREGATE function as its expression, Oracle
OLAP does not recalculate the values for the variable. (For more information on the
caching NA values, see "How Oracle OLAP Determines Whether to Store or Cache
Results of $NATRIGGER".)

Chapter 9
AGGMAP

9-45

NONA
For data that is calculated using the AGGREGATE function, specifies that Oracle
OLAP does not cache any NA values that are the results of the execution of the
AGGREGATE function. In this case, when a variable has an $NATRIGGER property
with an AGGREGATE function as its expression, Oracle OLAP recalculates the
values for the variable.

Usage Notes

When to Use NOSTORE

Use NOSTORE when you know that your users are likely to modify pre-computed
data, and you want any data that calculated by the AGGREGATE function to
consistent with any of those users' changes.

In other words, suppose a user makes a change to detail-level data, such as sales
figures for three stores, which are in a geography dimension. The geography dimension
rolls up data from stores to cities to states to regions to countries. In other words, there
are five levels in the geography dimension's hierarchy. Now suppose that users tend to
access data only at the store level (your detail data), the regions level, and the
countries level. Those are the levels for which you roll up sales data and commit it to
the database. Because users do not access data at the city and state level, you
specify that the data cells in those two levels are calculated on the fly. When users
modify the store-level data and then access city data, the city data are calculated
every time that a user requests it. Therefore, any changes that a user makes to the
store-level details accurately rollup to the city and state level every time that user
accesses a data cell in the city or state level. (However, this is not true of the data in
the region and country levels, because those cells store pre-computed data.)

When to Use STORE or SESSION

The advantage to using STORE or SESSION is that it improves query performance.
For example, suppose your users use a Table tool to look at a variable's data and an
individual user requests the same data cells several times in the same session. When
you use the default of NOSTORE, then any data that is not aggregated using the
AGGREGATE command has to be calculated every time the user requests that data
even if you do not use the FORECALC keyword in the AGGREGATE function. On the
other hand, when you use STORE or SESSION, then any given cell of data is
calculated only once because it is available in either the variable or the cache for the
entire session. Therefore, the next time a user requests that data cell, the data is
returned from the variable or the cache instead of being calculated on the fly, which
results in faster query time for the user.

Frequently you do not want the data that is calculated using the AGGREGATE
function to be stored permanently in the database because that would defeat the
purpose of calculating data on the fly.

• To ensure that the aggregated values cannot be permanently committed to the
database, use SESSION.

• Use STORE when you know either of the following is true which also ensures that
the data that is calculated on the fly using the AGGREGATE function is not
committed to the database:

– The users of the analytic workspace can only open it as read-only

– You know that the users of the analytic workspace will not or cannot issue
UPDATE and COMMIT statements.

Chapter 9
AGGMAP

9-46

Note:

Use STORE with caution when it is likely that your users modify pre-
computed data, and they access data that you have specified to be
calculated on the fly using the AGGREGATE function. The problem is
that any data that is calculated using the AGGREGATE function before
the user's modification does not reflect the user's change unless the
user made the change using an AGGREGATE function with the
FORCECALC keyword or unless there is
an $AGGREGATE_FORCECALC property on the variable being
aggregated

Examples

For examples of using a CACHE statement in an aggregation specification, see
Example 9-13 and Example 9-14.

DIMENSION (for aggregation)
Within an aggregation specification, a DIMENSION statement sets the status to a
single value of a dimension. When an aggregation specification does not specify such
single values with DIMENSION statements, Oracle OLAP uses the current status
values of the dimensions when performing the aggregation.

You use a DIMENSION statement to ensure that the status of a dimension is set to the
value that you want it to have for the aggregation. You must use a separate
DIMENSION statement for each dimension that is not shared by the source, basis,
and target objects.

Syntax

DIMENSION dimension 'dimval '

Parameters

dimension
the name of the dimension to limit.

dimval
A TEXT expression that is the single value of the dimension to which you want the
status of the dimension set for the duration of an aggregation.

DROP DIMENSION
Within an aggregation specification, a DROP DIMENSION statement specifies how
non-hierarchical aggregation across variables is performed. You use this statement in
aggregation specification when you are aggregating the detail data from one variable
(the source variable) into another variable (the target variable) and you want to
aggregate across a non-hierarchical dimension of the source variable. In this case, the
target variable has one less dimension (the "dropped" dimension) than the source
variable because the values of the source variable associated with this dimension are
aggregated to populate the target variable.

Chapter 9
AGGMAP

9-47

Syntax

DROP DIMENSION dimname [VALUES {valsetname|ALL} OPERATOR operation
[ARGS argument]

where argument is one or more of the following phrases:

 DIVIDEBYZERO {YES|NO} DECIMALOVERFLOW {YES|NO} NASKIP {YES|
NO} WEIGHTBY [WNAFILL {number|NA}] wobj

Parameters

dimname
The name of a dimension in the source variable that contains the detail data.

VALUES
Sets the status of dimname during the aggregation.

valueset
The name of a valueset object that determines the status of the dimension specified
by dimname.

ALL
Specifies that all of the values of dimname are in status.

OPERATOR
Identifies the calculation method used to aggregate the data.

operation
A keyword that describes the type of aggregation to perform. The keywords are listed
in the description of the operation parameter in the RELATION (for aggregation)
statement of the AGGMAP command.

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero. Specify YES to allow division by zero
which means that a statement involving division by zero executes without error but
produces NA results. Specify NO to disallow division by zero which means that a
statement involving division by zero stops executing and produces an error message.
The default value is the current value of the DIVIDEBYZERO option.

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion of
the numeric representation. Specify YES to allow overflow, which means that a
calculation that generates overflow executes without error and produces NA results.
Specify NO to disallow overflow which means that a calculation involving overflow
stops executing and generates an error message. The default value is the current
value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input. Specify YES when you want Oracle OLAP to
ignore NA values when aggregating which means that only actual values are used in
calculations. Specify NO when you want Oracle OLAP to consider NA values when

Chapter 9
AGGMAP

9-48

aggregating which means that when any of the values being considered are NA, the
calculation returns NA. The default value is the current value of the NASKIP option.
The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and can optionally include the WNAFILL keyword.
For more information about the use of the WEIGHTBY phrase, see the RELATION
(for aggregation) statement of the AGGMAP command.

WNAFILL
Indicates handling for NA values. The default values for WNAFILL vary depending on
the value of operation. For more information about using the WNAFILL phrase, see
the RELATION (for aggregation) statement of the AGGMAP command.

number
Substitutes a number for every NA value. That number replaces every NA value in the
weight object, weight formula, or weight relation.

• 0.0 is the default for HWAVERAGE and SSUM.

• 1.0 is the default for HWFIRST, HWLAST, WAVERAGE, WFIRST, WLAST, and
WSUM.

NA
Specifies that NA values are to be specified as NA. NA is the default for OR.

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric or
BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE has a
weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the variable being aggregated. When wobj is a
relation, it should be a one-dimensional self-relation. For more information about
specifying values for wobj, see the RELATION (for aggregation) statement of the
AGGMAP command.

Examples

For an example of using a DROP DIMENSION statement in an aggregation
specification, see Example 9-15.

MEASUREDIM (for aggregation)
Within an aggregation specification, a MEASUREDIM statement identifies the name of
a measure dimension that is specified in the definition of an operator variable or an
argument variable.

Syntax

MEASUREDIM name

Chapter 9
AGGMAP

9-49

Parameters

name
The name of the measure dimension. A measure dimension is a dimension that you
define. The dimension values are names of existing variables.

Note:

You cannot specify a measure dimension when it is included in the definition of
the aggmap object.

Usage Notes

Defining a Measure Dimension

The following statement defines a dimension named MEASURE.

DEFINE measure DIMENSION TEXT

Populating a Measure Dimension

Once you have defined a measure dimension, you can then use a MAINTAIN
statement to add dimension values to the MEASURE dimension.

The following statement adds the names of the sales, units, price, and inventory
variables to measure as its dimension values.

MAINTAIN measure ADD 'sales', 'units', 'price', 'inventory'

Using a Measure Dimension with an Operator Variable

The purpose of using measure dimensions is to take advantage of the flexibility of
using non-additive aggregation operators. You can use measure dimensions in the
definition of operation variables or argument variables.

The following statements show how to define an operator variable named opvar and
populate it.

DEFINE opvar TEXT <measure>
opvar (measure 'sales') = 'SUM'
opvar (measure 'inventory') = 'HLAST'

Examples

For an example of an aggregation specification that includes a MEASUREDIM
statement, see Example 9-16.

MODEL (in an aggregation)
Within an aggregation specification, a MODEL statement executes a predefined
model.

Syntax

MODEL modelname [PRECOMPUTE ALL | PRECOMPUTE NA]

Chapter 9
AGGMAP

9-50

Parameters

modelname
A text expression that contains the name of a predefined MODEL object.

PRECOMPUTE ALL
PRECOMPUTE NA
 Specifies whether the model is a static (precomputed) model or a dynamic model.

• PRECOMPUTE ALL is the default and specifies a static model. The following
conditions must be met:

– Any RELATION or MODEL statements that precede it in the aggregation
specification must also be specified as PRECOMPUTE ALL.

– Any RELATION or MODEL statements that follow it in the aggregation
specification can either be specified as PRECOMPUTE ALL or
PRECOMPUTE NA.

• PRECOMPUTE NA specifies a dynamic model. The following conditions must be
met for run-time execution of the model:

– All RELATION statements in the aggregation specification must appear
before the MODEL statements specified as PRECOMPUTE NA.

– Any additional MODEL statements that follow it in the aggregation
specification must also be specified as PRECOMPUTE NA.

Usage Notes

Dynamic Models and Non-Additive Operators

Model statements are executed in the order that they are coded within the aggregation
specification. Typically, when the order of execution matters to the result, MODEL
statements follow the corresponding RELATION statement.

Because the order of RELATION statements that use non-additive operators (for
example, MAX) effects the result of the calculation and because dynamic models (that
is, MODEL statements that include a PRECOMPUTE NA phrase) must follow all
RELATION statements, the use of dynamic models with non-additive operators is
somewhat constrained.

Examples

For an example of using a model in an aggregation specification, see Example 9-17.

PRECOMPUTE
Within an aggregation specification, a PRECOMPUTE statement specifies which of
the variable's aggregate values are calculated only with the AGGREGATE command.

Note:

An aggregation specification that has a PRECOMPUTE statement cannot have
any PRECOMPUTE clauses in its RELATION statements.

Chapter 9
AGGMAP

9-51

Syntax

PRECOMPUTE precompute-phrase

where precompute-phrase is one of the following:

n% | AUTO

ALL

NA | NONE

Parameters

n%
Specifies an explicit percentage of the aggregate variable values that are aggregated
as a database maintenance procedure using an AGGREGATE command. Oracle
OLAP uses special functionality called the Aggregate Advisor to determine exactly
which values are in the percentage.

AUTO
Specifies that Oracle OLAP uses the Aggregate Advisor to determine how many and
which aggregate variable values to aggregate as a database maintenance procedure
using an AGGREGATE command.

ALL
Specifies that all aggregated data is precomputed using an AGGREGATE command.

NA
NONE
Specifies that all values should be calculated on the fly using the AGGREGATE
function (that is, that no data should be precalculated with the AGGREGATE
command).

RELATION (for aggregation)
Within an aggregation specification, a RELATION statement specifies how data is
aggregated across a hierarchical dimension. Frequently, an aggregation specification
contains one RELATION statement for each of the hierarchical dimensions of a
variable.

Note:

Do not confuse this RELATION statement which can only be used as part of an
AGGMAP command with either the RELATION command that defines a default
relation for a dimension or the RELATION statement that is used as part of an
ALLOCMAP command.

Syntax

RELATION rel-name [(valueset...)] -

 [PRECOMPUTE (precompute-phrase)] - [OPERATOR {operation|opvar}] -
 [PARENTALIAS dimension-alias-name] - [ARGS {argument|argsvar}] -
[LOAD_STATUS(status-valueset-name)]

Chapter 9
AGGMAP

9-52

where:

• precompute-phrase is one or more of the following:

n% | AUTO

dimension-values

positions-of-dim-values

level-relation-name level-name...
valueset2

ALL

NA | NONE

• argument is one or more of the following:

DIVIDEBYZERO {YES|NO}

DECIMALOVERFLOW {YES|NO}

NASKIP {YES|NO}

WEIGHTBY [WNAFILL {number | NA}] wobj
COUNT {YES|NO}

• argsvar is a text variable that contains argument phrases for some or all
dimension values.

Parameters

rel-name
A relation that defines a hierarchy by identifying the parent of every dimension value
in a hierarchy.

valueset
Sets the status of one or more dimensions for the duration of the aggregation. It
overrides the current status.

PRECOMPUTE
Indicates that some dimension values are populated only with the AGGREGATE
command. The PRECOMPUTE clause of the RELATION statement limits the data
that is aggregated by the AGGREGATE command. In its simplest form, you can think
of the PRECOMPUTE clause as working like a LIMIT dimension TO statement.
Notice that the default limit is on the dimension, which is not explicitly named in the
RELATION statement.

Note:

An aggregation specification has PRECOMPUTE clauses in any of its
RELATION statements cannot also have a PRECOMPUTE statement.
Additionally, you cannot specify a PRECOMPUTE phrase for a RELATION
statement for a compressed composite.

n%
Specifies an explicit percentage of the aggregate variable values that are aggregated
as a database maintenance procedure using an AGGREGATE command. Oracle

Chapter 9
AGGMAP

9-53

OLAP uses special functionality called the Aggregate Advisor to determine exactly
which values are in the percentage.

AUTO
Specifies that Oracle OLAP uses the Aggregate Advisor to determine how many and
which aggregate variable values to aggregate as a database maintenance procedure
using an AGGREGATE command.

dimension-values
A list of one or more values of dimension.

positions-of-dim-values
For all dimensions except those with INTEGER or NUMBER values, the positions of the
dimension values that you want precomputed. Specify the positions using INTEGER
values, separated by commas.

valueset2
The name of a valueset. When you include this argument, only data that is
dimensioned by the dimension values in the valueset should be precalculated with the
AGGREGATE command. The rest of the values can be calculated on the fly.
Note that the current status of a dimension can also limit the data that is
precalculated. See the AGGREGATE command for details.

ALL
Specifies that data should be precalculated for all dimension values.

NA
NONE
Specifies that all values should be calculated on the fly using the AGGREGATE
function (that is, that no data should be precalculated with the AGGREGATE
command).

level-relation-name level-name ...
Specifies the levels of the dimension to be precomputed. For level-relation-name,
specify, as a TEXT value, the name of the relation object that relates the values of the
dimension to the names of the levels of the dimension. For level-name, specify, as
TEXT values, the name of one or more levels using the same level names used in
level-relation-name.

OPERATOR
Identifies the calculation method used to aggregate the data.

operation
A keyword that describes the type of calculation to perform. The keywords are listed
in the following table and can be retrieved by issuing an AGGROPS statement. You
can specify a fixed-length three-character abbreviation for the keywords by specifying
only the first three characters.

Keyword Description

AND When any child data value is FALSE, then the data value of its
parent is FALSE. A parent is TRUE only when all of its children
are TRUE. (BOOLEAN variables only)

AVERAGE Adds data values, then divides the sum by the number of data
values that were added. When you use AVERAGE, there are
special considerations described in "Average Operators".

Chapter 9
AGGMAP

9-54

Keyword Description

FIRST The first non-NA data value.

HAVERAGE (Hierarchical Average) Adds data values, then divides the sum
by the number of the children in the dimension hierarchy.
Unlike AVERAGE, which counts only non-NA children,
HAVERAGE counts all of the logical children of a parent,
regardless of whether each child does or does not have a
value.
This keyword is not affected by the setting of the NASKIP
option for argument.

HFIRST (Hierarchical First) The first data value that is specified by the
hierarchy, even when that value is NA.
This keyword is not affected by the setting of the NASKIP
option for argument.

HLAST (Hierarchical Last) The last data value that is specified by the
hierarchy, even when that value is NA.
This keyword is not affected by the setting of the NASKIP
option for argument.

HWAVERA
GE

(Hierarchical Weighted Average) Multiplies non-NA child data
values by their corresponding weight values then divides the
result by the sum of the weight values. Unlike WAVERAGE,
HWAVERAGE includes weight values in the denominator sum
even when the corresponding child values are NA.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.
This keyword is not affected by the setting of the NASKIP
option for argument.

HWFIRST (Hierarchical Weighted First) The first data value that is
specified by the hierarchy multiplied by its corresponding
weight value, even when that value is NA.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.
This keyword is not affected by the setting of the NASKIP
option for argument.

HWLAST (Hierarchical Weighted Last) The last data value that is
specified by the hierarchy multiplied by its corresponding
weight value, even when that value is NA.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.
This keyword is not affected by the setting of the NASKIP
option for argument.

LAST The last non-NA data value.

MAX The largest data value among the children of any parent data
value.

MIN The smallest data value among the children of any parent data
value.

NOAGG Do not aggregate any data for this dimension.

Chapter 9
AGGMAP

9-55

Keyword Description

OR When any child data value is TRUE, then the data value of its
parent is TRUE. A parent is FALSE only when all of its children
are FALSE. (BOOLEAN variables only)

SSUM (Scaled Sum) Adds the value of a weight object to each data
value, then adds the data values.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

SUM (Default) Adds data values.

WAVERAG
E

(Weighted Average) Multiplies each data value by a weight
factor, adds the data values, and then divides that result by the
sum of the weight factors.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

WFIRST (Weighted First) The first non-NA data value multiplied by its
corresponding weight value.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

WLAST (Weighted Last) The last non-NA data value multiplied by its
corresponding weight value.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

WMAX (Weighted Maximum) The largest data value among the
children of any parent data value multiplied by its
corresponding weight value.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

WMIN (Weighted Minimum) The smallest data value among the
children of any parent data value multiplied by its
corresponding weight value.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

WSUM (Weighted Sum) Multiplies each data value by a weight factor,
then adds the data values.
When you use this keyword, you must include the WEIGHTBY
argument keyword with a variable, formula, or relation as the
weight object.

opvar
A TEXT variable that you define that specifies a different the operation for each of its
dimension values.

Chapter 9
AGGMAP

9-56

Note:

Not valid for variables dimensioned by compressed composites.

The opvar argument is used in two ways:

• Measure dimension -- Changes the aggregation method depending upon the
variable being aggregated. Changing the aggregation method based on the
variable being aggregated is useful when a single aggmap is used to aggregate
several variables that must be aggregated with different methods. Whether you
pre-aggregate all of the measures in a single AGGREGATE command or in
separate statements, AGGREGATE uses the operation variable to identify the
calculation method. The values of the measure dimension are the names of the
variables to be aggregated. It dimensions a text variable whose values identify the
operation to be used to aggregate each measure. The aggregation specification
must include a MEASUREDIM statement that identifies the measure dimension.
See Example 9-21.

• Line item dimension -- Changes the aggregation method depending upon the line
item being aggregated. The line item dimension is typically non-hierarchical and
identifies financial allocations. The line item dimension is used both to dimension
the data variable and to dimension a text variable that identifies the operation to
be used to aggregate each item. The operation variable is typically used to
aggregate line items over time. You do not use the MEASUREDIM statement in
the aggmap. See Example 9-22.

The opvar argument cannot be dimensioned by the dimension it is used to aggregate.
For example, when you want to specify different operations for the geography
dimension, then opvar cannot be dimensioned by geography.
To minimize the amount of paging for the operator variable, define the operation
variable as type of TEXT with a fixed width of 8.

PARENTALIAS
Specifies that an alias dimension for the dimension being aggregated is QDRd to the
parent value currently being aggregated.

dimension-alias-name
The name of the alias dimension for the dimension of rel-name.

ARGS
Indicates optional handling of the aggregation.

DIVIDEBYZERO
Specifies whether to allow division by zero.

• YES allows division by zero; a statement involving division by zero executes
without error but produces NA results.

• NO disallows division by zero; a statement involving division by zero stops
executing and produces an error message.

The default value is the current value of the DIVIDEBYZERO option.

Chapter 9
AGGMAP

9-57

DECIMALOVERFLOW
Specifies whether to allow decimal overflow, which occurs when the result of a
calculation is very large and can no longer be represented by the exponent portion of
the numeric representation.

• YES allows overflow; a calculation that generates overflow executes without error
and produces NA results.

• NO disallows overflow; a calculation involving overflow stops executing and
generates an error message.

The default value is the current value of the DECIMALOVERFLOW option.

NASKIP
Specifies whether NA values are input.

• YES specifies that NA values are ignored when aggregating. Only actual values
are used in calculations.

• NO specifies that NA values are considered when aggregating. When any of the
values being considered are NA, the calculation returns NA.

The default value is the current value of the NASKIP option.
The value that you specify for the NASKIP phrase does not effect calculation
performed when you specify HAVERAGE, HFIRST, HLAST, HWAVERAGE,
HWFIRST, HWLAST for operation.

WEIGHTBY
Indicates that weighted aggregation is to be performed. You must include a
WEIGHTBY clause when you specify HWAVERAGE, HWFIRST, HWLAST, SSUM,
WAVERAGE, WFIRST, WLAST, or WSUM for operation. The WEIGHTBY phrase
always includes a wobj argument and, optionally, can include the WNAFILL keyword.

WNAFILL {number | NA}
Indicates handling for NA values. The default values for WNAFILL vary depending on
the value of operation. The default value for HWAVERAGE and SSUM is 0.0. The
default value for OR is NA. The default value for the other operators is 1.0. WNAFILL
defaults for each operator in an aggregation specification. In other words, when one
RELATION statement includes a WSUM OPERATOR, then WNAFILL defaults to 1.0.
When the next RELATION statement includes an SSUM OPERATOR, then WNAFILL
defaults to 0.0, and so on. See "Using WNAFILL".

wobj
A variable, formula, or relation that provides the weighted values. It can be numeric or
BOOLEAN. When wobj is BOOLEAN, then TRUE has a weight of 1.0 and FALSE has a
weight of 0.0. A formula is queried only when needed, depending on the
dimensionality of the formula and the variable being aggregated. When wobj is a
relation, it should be a one-dimensional self-relation. See Using Weighted
Aggregation Methods for more information about specifying values for wobj.

COUNT {YES|NO}
YES specifies that when Oracle OLAP aggregates a variable using this relation that it
also populates the Aggcount variable associated with that variable. For more
information on Aggcount variables, see "Aggcount Variables".
NO specifies that when Oracle OLAP aggregates a variable using this relation that it
does not populate the Aggcount variable associated with that variable. For more
information on Aggcount variables, see "Aggcount Variables".

Chapter 9
AGGMAP

9-58

argsvar
A TEXT variable that contains the argument options for some or all dimension values.

LOAD_STATUS
Specifies that, for the aggregation, Oracle OLAP consider the values specified by
status-valueset-name as the detail or lowest level of the hierarchy.

status-valueset-name
A previously-defined valueset that specifies the lowest-level values to have in status
when performing the aggregation. When performing any aggregation using an
aggmap with a RELATION statement with this clause, Oracle OLAP temporarily sets
the status of the dimension to the values specified by status-valueset-name and their
ancestors. The valueset specified by status-valueset-name must be a single
dimensional valueset for the relation dimension (not the hierarchy dimension).
Additionally, the valueset specified by status-valueset-name cannot contain both a
value and an ancestor of that value.

Usage Notes

Ordering RELATION Statements with Non-Additive Operators

The order of RELATION statements that use non-additive operators effects the result
of the calculation. For example the max of sum is not generally equal to the sum of
max. Consequently, the order of RELATION statements within an aggregation
specification must follow the logical requirements of the calculation. This logical
necessity limits the use of dynamic models within an aggregation as discussed in
"Dynamic Models and Non-Additive Operators".

RELATION Statements for Compressed Composites

When designing the aggregation specification, follow these guidelines when coding
RELATION statements for compressed composites:

• The HAVERAGE, HWAVERAGE, HWFIRST, HWLAST, SSUM, WAVERAGE,
WFIRST, WLAST, WMAX, WMIN, and WSUM operators cause data values to
change with each level of aggregation, regardless of sparsity. When possible, to
insure the largest amount of overall compression, place RELATION statements
with these operators at the beginning of your aggregation specification before
RELATION statements that use an AND, AVERAGE, FIRST, HFIRST, HLAST,
LAST, MAX, MIN, NOAGG, OR, or SUM operator.

• To optimize the compression of a compressed composite, list similar operators
contiguously if the calculation logic allows. For example, specifying MAX for the
first dimension and then SUM for all the other dimensions results in better
compression, and thus provides better calculation performance, than specifying
SUM, MAX, and then SUM over the remaining dimensions.

• SUM is the fastest and most compressible operator. Changing the aggregation
operator for one or more dimensions from SUM to some other operator results in
less compression, and therefore a larger variable, and the AGGREGATE
command for that variable takes longer to complete.

• When an AGGMAP contains a RELATION statement that specifies the AVERAGE
operator, any variable using that aggregation specification must be defined using a
DEFINE VARIABLE statement with a WITH AGGCOUNT phrase.

• You can only specify a single aggregation operation. You cannot specify
aggregation operations using an opvar variable.

Two Ways to use Valuesets

Chapter 9
AGGMAP

9-59

You can use valuesets to:

• Limit hierarchy dimensions. You can limit which hierarchies are used by the
AGGREGATE command and AGGREGATE function and the order in which these
hierarchies should be used. The valueset that you use specifies the names of a
dimension's hierarchies. To use a valueset in this way, use the following syntax.

RELATION rel-name (valueset)

In this case, using valuesets provides a way to manage hierarchies that are in
conflict with each other, meaning, when the same dimension value stores data for
different children in different hierarchies (such as, Q1 stores data for Jan, Feb, and
Mar in the Calendar hierarchy, but Q1 stores data for May, Jun, and Jul in the Fiscal
hierarchy).

• Specify which values should be calculated on the fly by the AGGREGATE function
and which values should be pre-calculated by the AGGREGATE command. The
valueset that you use specifies the names of dimension values. To use a valueset
in this way, use the following syntax.

RELATION rel-name PRECOMPUTE (valueset)

In this case, you use the valueset that follows the PRECOMPUTE keyword.

When you use valuesets to limit hierarchy dimensions and when using multiple
aggmaps and the hierarchies are inconsistent, you must also use the
FORCECALC keyword in the AGGREGATE function or have set
an $AGGREGATE_FORCECALC property on the variable to be aggregated.

When You Change a PRECOMPUTE or an OPERATOR Clause

Any time you make changes to a PRECOMPUTE or an OPERATOR clause,
aggregate the variable data again and recompile the aggmap to produce accurate
data.

Aggregating Data Loaded into Different Hierarchy Levels

When data is loaded into dimension values that are at different levels of a hierarchy,
then you must be careful in how you set status in the PRECOMPUTE clause in a
RELATION statement in your aggregation specification.

Suppose that a time dimension has a hierarchy with three levels: months aggregate
into quarters, and quarters aggregate into years. Some data is loaded into month
dimension values, while other data is loaded into quarter dimension values. For
example, Q1 is the parent of January, February, and March. Data for March is loaded into
the March dimension value. But the sum of data for January and February is loaded
directly into the Q1 dimension value. In fact, the January and February dimension values
contain NA values instead of data. Your goal is to add the data in March to the data in
Q1.

When you attempt to aggregate January, February, and March into Q1, the data in March
simply replaces the data in Q1. When this happens, Q1 contains only the March data
instead of the sum of January, February, and March.

To aggregate data that is loaded into different levels of a hierarchy, create a valueset
for only those dimension values that contain data.

DEFINE all_but_q4 VALUESET time
LIMIT all_but_q4 TO ALL
LIMIT all_but_q4 REMOVE 'Q4'

Chapter 9
AGGMAP

9-60

Within the aggregation specification, use that valueset to specify that the detail-level
data should be added to the data that exists in its parent, Q1, as shown in the following
statement.

RELATION time.r PRECOMPUTE (all_but_q4)

Average Operators

There are several issues involved in using the AVERAGE, HAVERAGE, WAVERAGE,
and HWAVERAGE operators:

• Oracle OLAP needs a separate INTEGER variable in which it stores the non-NA
counts of the number of leaf nodes that contributed to aggregate values to
calculate average values. When you want to aggregate a variable using one the
average operators, include the WITH AGGCOUNT phrase in the DEFINE
VARIABLE statement for the variable.

• Accuracy when averaging—All decimal data is converted to floating point format,
both for storing and for calculations, consequently, in some cases, an average
aggregation computed on a DECIMAL or SHORTDECIMAL variable can differ in the least
significant digits from a result you compute by hand. For this reason, you might
want to use the NUMBER data type when accuracy is more important than
computational speed, such as variables that contain currency amounts. See
"Numeric Expressions" for more information.

• Using Average operators when aggregating using an AGGREGATE command—
When you use an average operator with the PRECOMPUTE keyword, the best
practice is to use variables that have a decimal or NUMBER data type to ensure the
accuracy of the results.

• Using Average operators for partial aggregations—When you use an average
operator in a partial aggregation, then you must always aggregate using the same
INTEGER variable (that is, Aggcount or Countvar variable). Do not change the
values that are stored in this INTEGER variable between aggregations. Finally, the
number of INTEGER variables must match the number of variables that are being
aggregated.

HAVERAGE, HFIRST, HLAST, AND HWAVERAGE Operators

The "hierarchical" operators (HAVERAGE, HFIRST, HLAST, AND HWAVERAGE) are
intended to provide an alternative form of NA handling.

FIRST, HFIRST, LAST, AND HLAST Operators

These operators rely on the existing order of the dimension values, which are
assumed to be the default logical order of that dimension. For example, in a month
dimension, it is assumed that February follows January, March follows February, and
so on.

When you must change the default order, use the MAINTAIN statement to do so. For
example, suppose Q1 includes January, February, and March, but you must make
February the last month in the Q1 instead of March. Use the following statement to do
so.

MAINTAIN time MOVE 'Feb01' AFTER 'Mar01'

Now, the LAST operator assumes that FEB01 is the last month in Q1.

Read Permissions and Aggmaps

Chapter 9
AGGMAP

9-61

When you change the read permission to rel-name in a RELATION statement, then
you must recompile the aggmap before using it with the AGGREGATE function.
Compilation is not an issue when you use the AGGREGATE command, because the
aggmap is recompiled automatically. However, when you do not have read access to
every rel-name in the aggmap, then attempting to use that aggmap results in an error
message.

Using Weighted Aggregation Methods

When you use a weighted method of aggregation, you must define and populate an
object that contains the weights. You identify the aggregation method in the
OPERATOR clause and the weight object in the ARGS clause.

The weight object can be a variable, a formula, or a relation. Special considerations
apply depending on the type of object. the data type of the weight object, and whether
or not you are performing a partial aggregation.

Weight Object Considerations Based on Type of Object

The following considerations apply depending on the type of object that you use for the
weight object:

• When the weight object is a variable, you can define it with a numeric or
BOOLEAN data type. Use a variable as your weight object when you want to pre-
calculate weight values and commit them to the database. You can use a variable
weight object with any weight option.

• When the weight object is a relation, define it as a one-dimensional self-relation.
You can use the weight object to specify that the weight for a specific cell is
contained in the current variable at a different location. Use a relation as your
weight object when you use a line item or a measure dimension. In this case, one
line item is used as the weight to calculate the aggregate value of another line
item. Using a relation enables you to specify another set of cells in the variable
being aggregated as the weight values for a weighted operation.

• When the weight object is a formula, that formula is queried only as often as
needed, depending on the dimensionality of the formula and the dimensionality of
the variable whose data is being aggregated. You can define the formula with a
numeric or BOOLEAN data type. Use a formula as your weight object when you
want to calculate weight values on the fly. A formula weight object is similar to a
variable weight object, except that it cannot be aggregated. The value of a formula
weight object is executed dynamically. Therefore, you cannot use a formula weight
object with many of the weight options.

Considerations Based on Data Type of the Weight Object

The following considerations apply when the weight object is numeric or BOOLEAN:

• When the weight object has a numeric data type, It is good practice for the weight
object variable to have the same dimensionality (or a subset thereof) as the
variable to which it corresponds, but it is not required. When you use Oracle
numbers or decimals to define your data variable, then always use the same data
type to define the corresponding weight object. Otherwise, use the same data type
for the weight object and the data variable unless you use WAVERAGE or
HWAVERAGE; in this case, use a decimal or NUMBER data type to define the weight
object.

• When the weight object variable, formula, or relation that you define has a BOOLEAN
data type, then TRUE represents a weight of 1.0 and FALSE represents a weight of
0.0. Furthermore, when an NA value is multiplied by any value, the result is NA.

Chapter 9
AGGMAP

9-62

Weight Object Considerations When Performing Partial Aggregations

When you use any operators that require the WEIGHTBY phrase, and you are
performing a partial aggregation, then do not change the values that are stored in the
weight object between AGGREGATE commands.

Using WNAFILL

For example, suppose you use the WSUM operator to perform currency conversion.
The currency conversation rates are applied at the detail data level. Only the detail
data needs to be converted, because the variable data is aggregated after the
conversion. To get the correct results, all of the non-detail level weight values in the
weight object would have to be 1. Although this strategy produces correct results, it is
inefficient. The best practice is to use the default WNAFILL value of 1 which specifies
that all NA values in the weight object should be treated as if they have a weight of 1. In
this case, because the operator is WSUM, you do not have to include WNAFILL in the
AGGREGATE command, because the default values are correct.

For example, the following statement causes the value 0.7 to be substituted for every
NA value in the salesw weight object.

AGGREGATE sales USING sales.agg WEIGHTBY WNAFILL 0.7 salesw

When you do not want to specify a number to replace NA values, then you can use NA
instead of a number, as shown in the following statement.

AGGREGATE sales USING sales.agg WEIGHTBY WNAFILL NA salesw

Specifying NA after WNAFILL has the following effect:

• When the aggregation specification contains a WAVERAGE or a WSUM
OPERATOR, then any child cell in the weight object that has an NA value is treated
as an NA cell.

• When the aggregation specification contains an SSUM OPERATOR, then the
results depend on how the Oracle OLAP option NASKIP is set. When NASKIP is
set to YES, then any NA value is treated as 0.0. However, when NASKIP is set to NO,
then any NA value is treated as an NA cell.

Effects of Dimension Status on Aggregation

A RELATION statement only aggregates those source data values that are in status—
whether you set the status using LIMI T statements or a LOAD STATUS clause on the
RELATION statement. The parent values are calculated regardless of whether they
are in status or not. For example, when only Jan01, Feb01, and Mar01 are in status for
the time dimension, then Q1.01 is calculated (but no other quarters), and 2001 is
calculated (but no other years) using only Q1.01 as input because the other quarters
are NA. This functionality is useful when you want to aggregate just the new data in
your analytic workspace.

Assume that there is a variable named sales that is dimensioned by time, a
hierarchical dimension, and district, a non-hierarchical dimension.

DEFINE time DIMENSION TEXT
DEFINE time.parentrel RELATION time <time>
DEFINE district DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <time district>

REPORT DOWN time sales

Chapter 9
AGGMAP

9-63

 -----------------------SALES-----------------------
 ---------------------DISTRICT----------------------
TIME North South West East
------------ ------------ ------------ ------------ ------------
1976Q1 168,776.81 362,367.87 219,667.47 149,815.65
1976Q2 330,062.49 293,392.29 237,128.26 167,808.03
1976Q3 304,953.04 354,240.51 170,892.80 298,737.70
1976Q4 252,757.33 206,189.01 139,954.56 175,063.51
1976 NA NA NA NA

Examples

For examples of aggregation specifications that include RELATION statements, see
the examples in the AGGMAP command.

AGGMAP ADD or REMOVE model
The AGGMAP ADD or REMOVE model command adds or removes a previously-
defined model from a previously-defined aggregation specification (that is, aggmap
object of type AGGMAP). Models are used in aggregation specifications to aggregate
data over a non-hierarchical dimension (such as line items), which has no parent
relation and therefore cannot be aggregated by a RELATION statement. See MODEL
(in an aggregation) for details.

Note:

Although you can use the AGGMAP ADD MODEL and AGGMAP REMOVE
MODEL statements to temporarily add a model to an aggmap object, typically
you use a MAINTAIN ADD SESSION statement like the one below to perform
this action.

MAINTAIN dimension ADD SESSION member = model APPLY TO AGGMAP
aggmap

When you use a MAINTAIN ADD SESSION statement neither the calculated
member or its definition persists from session to session; both are deleted after
the session in which they are created

Syntax

AGGMAP {ADD model TO aggmap|REMOVE model FROM aggmap}

Parameters

ADD
Temporarily adds a model to an aggmap object. The model is attached to the aggmap
only for the duration of the session. Even when the analytic workspace has been
updated and committed, the model is discarded from the aggmap when the session is
closed.

REMOVE
Removes a model from an aggmap.

Chapter 9
AGGMAP ADD or REMOVE model

9-64

model
The name of the model object that you want to add to the specified aggmap.

aggmap
The name of a previously defined aggmap object of type AGGMAP.

Examples

Example 9-25 Temporarily Adding a Model to an Aggmap

Assume for example, that you have an aggmap object named letter.aggmap with the
following definition.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE ('AA')
END

Assume also that you want to create summarized variable data for the cells that are
dimensioned by the dimension values AAB and ABA. However, you do not want this data
to be permanently stored in the analytic workspace. You just want to see the data
during your session.

To perform this type of aggregation, you can take the following steps:

1. Create a dimension value for the custom aggregate. This dimension value is the
parent of the dimension values AAB and ABA. The following statement adds 'BB' to
the letter dimension.

MAINTAIN letter ADD 'BB'

2. Create a MODEL object that contains an AGGREGATION function, which associates child
dimension values with the new dimension value. The following model identifies BB
as the parent of AAB and ABA. Note that the parent dimension value (in this case,
BB) cannot already be defined as a parent in the parent relation (letter.letter).

DEFINE LETTER.MODEL MODEL
MODEL
DIMENSION letter
BB=AGGREGATION('AAB' 'ABA')

3. Execute an AGGMAP ADD statement to append the model to the existing AGGMAP
object.

AGGMAP ADD letter.model TO letter.aggmap

The aggmap now looks like this.

DEFINE LETTER.AGGMAP AGGMAP
AGGMAP
RELATION letter.letter PRECOMPUTE ('AA')
END
AGGMAP ADD letter.model

4. The model is executed only by the AGGREGATE function like the one shown here; the
AGGREGATE command ignores it.

REPORT AGGREGATE(units USING letter.aggmap)

5. When you want to remove the model from the aggmap during a session, use the
AGGMAP REMOVE statement.

Chapter 9
AGGMAP ADD or REMOVE model

9-65

6. To ensure that your aggmap does not become a permanent object in the analytic
workspace, before you close your session issue the following statement to delete
the dimension values that you added in Step 1.

MAINTAIN letter DELETE 'BB'

When your session ends, Oracle OLAP automatically removes the model added
using the AGGMAP ADD statement. You do not have to issue an explicit
AGGMAP REMOVE statement.

AGGMAP SET
Specifies the default aggmap for a variable.

Note:

You can also use an $AGGMAP property to specify the default aggregation
specification for a variable or the $ALLOCMAP property to specify the default
allocation specification for a variable.

Syntax

AGGMAP SET aggmap AS DEFAULT FOR variables

Parameters

aggmap
The name of a previously defined aggmap object.

variables
A text expression that is the name of one or more variables for which the specified
aggmap is the default aggmap. When you specify a literal value, separate the names
of the variables with commas.

Examples

Example 9-26 Using AGGMAP SET to Specify a Default Aggmap

$AGGREGATE_FROM illustrates how the AGGREGATE command shown in
Example 9-13 can be simplified to the following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you make revenue_aggmap the
default aggmap for the sales_by_revenue variable. You can do this either by defining
an $AGGMAP property on the sales_by_revenue variable or by issuing the following
statement.

AGGMAP SET revuienue_aggmap AS DEFAULT FOR sales_by_revenue

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a USING clause.

AGGREGATE sales_by_revenue

Chapter 9
AGGMAP SET

9-66

AGGREGATE command
The AGGREGATE command calculates summary data in the variable that is specified
as PRECOMPUTE in the specified aggmap. (For information about specifying
precompute data, see the PRECOMPUTE and RELATION (for aggregation)
statements of the AGGMAP command.) The aggregation is limited to those values that
are currently in status.

Use the $AGGMAP property or the AGGREGATE function to calculate data that is not
specified as precomputed data.

See Also:

AGGREGATE function

Syntax

AGGREGATE|AGGR { var [(PARTITION partition-name)]}... [USING aggmap] -
[FROM fromspec|FROMVAR textvar] [FORCEORDER]
[FUNCDATA] [COUNTVAR countvar...]

Parameters

var
A variable whose data values are to be calculated. Every variable in a single
AGGREGATE command must have the same dimensions in the same order.

PARTITION
Specifies that you want AGGREGATE to recalculate only the values in the specified
partition of the specified variable. Frequently, the reason for aggregating only a single
partition is to parallelize a build using multiwriter.

Note:

Because the AGGREGATE command does not consider partition
dependencies when aggregating individual partitions, aggregate only a set of
non-dependent partitions within a single AGGREGATE command.

partition-name
The name of a previously-defined partition. See DEFINE PARTITION TEMPLATE

USING
This keyword indicates that the aggregation is performed using the specified aggmap.
When you do not include this phrase, the command uses the default aggmap for the
variable as previously specified using an AGGMAP statement or the $AGGMAP
property.

Chapter 9
AGGREGATE command

9-67

aggmap
The name of a previously-defined aggmap that specifies how the data is
aggregated. For information about aggmaps, see the DEFINE AGGMAP command.

FROM
This keyword indicates that the detail data is obtained from a different object.
A FROM clause is only one way in which you can specify the variable from which
detail data should be obtained when performing aggregation. See "Ways of
Specifying Where to Obtain Detail Data for Aggregation".

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

FROMVAR
This keyword indicates that the detail data is obtained from different objects to
perform a capstone aggregation. (For an example of using the FROMVAR clause, see
Example 9-32.)
A FROMVAR clause is only one way in which you can specify the variable from which
detail data should be obtained when performing aggregation. See "Ways of
Specifying Where to Obtain Detail Data for Aggregation".

textvar
An arbitrarily dimensioned variable used to resolve any leaf nodes. Specify NA to
indicate that a node does not need detail data to calculate the value.

FORCEORDER
Specifies that the calculation must be performed in the order in which the RELATION
statements are listed in the aggmap. Use this option when you have changed some
values calculated by the AGGREGATE command. Otherwise, the optimization
methods used by the AGGREGATE command may cause the modified values to be
ignored.

Note:

You can also set an $AGGREGATE_FORCEORDER property on a variable to
specify this behavior as the default aggregation behavior. In this case, you do
not have to include the FORCEORDER keyword with the AGGREGATE
command.

FUNCDATA
Compiles the aggregation specification for future use by the AGGREGATE function.
When you use FUNCDATA, you do not have to recompile the aggmap before using
the AGGREGATE function, unless afterward you make changes to the aggmap, the
relation hierarchies, or a composite.
When the variables have composite dimensions, the indexes (composite tuples) are
created and saved for use by the AGGREGATE function. Otherwise, the indexes are
re-created each time the AGGREGATE function is called. Refer to AGGINDEX for
more information about composite indexes.

COUNTVAR countvar
Indicates that Oracle OLAP should use the user-defined variable specified by
countvar to store the non-NA counts of the number of leaf nodes that contributed to

Chapter 9
AGGREGATE command

9-68

aggregate values calculated for RELATION statements that have an AVERAGE,
HAVERAGE, HWAVERAGE, or WAVERAGE operator.

Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations. Instead, you use an Oracle OLAP-created Aggcount
variable. You must use an Aggcount variable when the aggregation
specification includes a RELATION statement with an average operator is for a
compressed composite.
For more information on Aggcount variables, see "Aggcount Variables".

The countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions of the variable specified by var. When you aggregate
several variables together, you must define an INTEGER variable for each one to record
the results.

Usage Notes

Effect of Status on AGGREGATE

The current status only affects dimension values at the lowest level of the hierarchy,
that is, the leaf nodes. Only leaf-node dimension values that are currently in status are
aggregated. The parent values of leaf nodes in status are calculated, whether the
parent values are in status or not (unless you exclude the dimension values in those
levels with a PRECOMPUTE clause in the AGGMAP command). Thus, when you want
to aggregate all of the data specified in the aggmap, then be sure to set the status of
the dimensions to ALL before performing the aggregation.

AGGREGATE uses the parent relation to distinguish among dimension values at
different levels of the hierarchy. Alternatively, you can perform a partial aggregation of
the data by limiting status. However, this must be done carefully when some data is
aggregated at run time by the AGGREGATE function. See the notes in the
AGGREGATE function topic for more information.

For example, suppose you use the area dimension and the area.area child-parent
relation that supports one hierarchy for a geography dimension as illustrated in the
following table:

Table 9-2 Geography Hierarchy

Level area Dimension area.area Parent Relation

1 TotalUS NA

2 East TotalUS

2 South TotalUS

3 Boston East

3 New York East

3 Atlanta South

Now suppose you change the data value for New York. When you then use
AGGREGATE with only New York, the calculation occurs without including the child

Chapter 9
AGGREGATE command

9-69

value for South (Atlanta), but still includes level 2 as it goes from level 3 to level 1
(TotalUS). When you want all the child values included in rolling up to TotalUS, use a
LIMIT TO ALL statement before you execute the AGGREGATE command.

When the data has changed for some, but not all, of the child values in a hierarchy,
you can set the status to calculate just the values that have changed. For example,
when your embedded-total dimension is called d2, and its parent relation is called
reld2, first limit d2 to the values that have changed.

To calculate the data for every hierarchy in a dimension, limit the dimension's
hierarchy dimension to ALL before you execute the AGGREGATE command.

Controlling the Amount of Data That Is Calculated

You can control how much of the variable data is calculated by using the
PRECOMPUTE keyword with the RELATION statement in the aggmap. Use the limit
clause (after the PRECOMPUTE keyword) to set the status of the dimension.

When Users Modify Data

When users are able to change the data in a variable, then calculate aggregates on
the fly using the AGGREGATE function, so that their changes are reflected in the
aggregate data. See the AGGREGATE function for more information about run-time
changes to the data.

Generation-Skipping Hierarchies

AGGREGATE automatically distinguishes between generations in the parent relation,
even to the extent of allowing generation-skipping hierarchies. For example, you can
have a four-level hierarchy (for example, neighborhoods, cities, states, and totalUS)
that has a three-level branch (for example, Boston, Massachusetts, and totalUS).

Restrictions on Permissions

AGGREGATE does not work on variables that have cell-by-cell permissions; it
immediately return an error. It also ignores the PERMITERROR option. However,
AGGREGATE operates on variables with object level or dimension level permission.
See the PERMIT command and PERMITERROR option.

Ways of Specifying Where to Obtain Detail Data for Aggregation

You can specify where to obtain detail data when aggregating data in the following
ways:

• Assign either an $AGGREGATE_FROM property or
an $AGGREGATE_FROMVAR property to a variable.

Note:

You can only assign one of these properties to a variable. A variable
cannot have both the $AGGREGATE_FROM
and $AGGREGATE_FROMVAR properties assigned to it.

• Include either a FROM or FROMVAR clause in the AGGREGATE command or
AGGREGATE function that aggregates the data.

When performing an aggregation, Oracle OLAP determines where to obtain the detail
data as follows:

Chapter 9
AGGREGATE command

9-70

1. When a location has been specified using a FROM or FROMVAR clause, Oracle
OLAP uses the detail data at that location.

2. When a location has not been specified using a FROM or FROMVAR clause,
Oracle OLAP checks to see if a location has been specified using
an $AGGREGATE_FROM property or an $AGGREGATE_FROMVAR property.
When a location has been specified using one of these properties, Oracle OLAP
uses the detail data at that location.

3. When a location has not been specified using either FROM or FROMVAR clause
or an $AGGREGATE_FROM property or an $AGGREGATE_FROMVAR property,
Oracle OLAP performs the aggregation using the detail data in the variable itself.

Examples

This section contains several examples of using the AGGREGATE command. For
additional aggregation examples, see the examples in the AGGMAP command.

Example 9-27 Precalculating Data in a Batch Job

Frequently, you generate precalculated aggregates in a batch window as part of
maintaining the data in your database. For example, you can use Job Manager to
schedule batch jobs in Oracle Enterprise Manager

To generate precalculated aggregates, you use the AGGREGATE command. The
AGGREGATE command aggregates the data for one or more variables according to
the specifications provided in the aggmap.

Your batch job should include statements like the following.

AGGREGATE sales units USING gpct.aggmap
UPDATE
COMMIT

Example 9-28 Aggregating One Variable

Suppose your analytic workspace contains a variable named actuals, which has the
following definition.

DEFINE actuals DECIMAL <time, SPARSE <product, customer, channel>>

The next step is to define an aggmap object, whose definition has the same
dimensions in the same dimension order. Suppose you define an aggmap object
named act.agg using DEFINE AGGMAP.

DEFINE act.agg AGGMAP <time, SPARSE <product, customer, channel>>

Suppose that the name of the hierarchy for the time dimension is time.r, the name of
the product dimension is product.r, and so on Next, you use an AGGMAP statement to
add the following text in the act.agg aggmap.

AGGMAP
RELATION time.r
RELATION product.r
RELATION customer.r
RELATION channel.r
END

The preceding text specifies the name of each dimension's hierarchy for which data
should be rolled up. Assuming that the current status of every dimension is ALL, data is

Chapter 9
AGGREGATE command

9-71

calculated for every dimension value of every dimension in the definition of actuals. No
data is calculated on the fly.

Use the following statements to calculate the actuals variable. (It is not necessary to
compile the aggmap, because the compilation is included as part of the AGGREGATE
command.)

AGGREGATE actuals USING act.agg

Example 9-29 Aggregating Multiple Variables

Suppose your analytic workspace contains a variable named actuals and a variable
named forecast. As shown in the following variable definitions, these variables have
the same dimensions in the same dimension order.

DEFINE actuals DECIMAL <time, SPARSE <product, customer, channel>>
DEFINE forecast DECIMAL <time, SPARSE <product, customer, channel>>

The next step is to define an aggmap object, whose definition has the same
dimensions in the same dimension order. Suppose you define the same aggmap
object named act.agg, as described in "Example 9-28". When you want the data for
each variable to be rolled up in the same way, you can use the same aggmap to
calculate both variables in a single statement.

Use the following statements to calculate the actuals and the forecast variables.

AGGREGATE actuals forecast USING act.agg

Because the aggmap specifies that all data for every dimension value in each
dimension should be rolled up, this statement rolls up all of the data in actuals and all
of the data in forecast.

Example 9-30 Using COUNTVAR with Multiple Variables

Suppose you plan to use one AGGREGATE command to aggregate the data for three
variables: sales, units, and projected_sales. Each variable has the following
dimensionality.

<month product geography>

To tally the results with COUNTVAR, you must define three INTEGER variables that
have the same dimensionality as sales, units, and projected_sales.

DEFINE intsales INTEGER <month product geography>
DEFINE intunits INTEGER <month product geography>
DEFINE intprojsales INTEGER <month product geography>

You can then specify the INTEGER variables in the following statement.

AGGREGATE sales units projected_sales USING sales.agg -
 COUNTVAR intsales intunits inprojsales

Example 9-31 Performing a Partial Aggregation

This example limits the time dimension to the last two time periods, so that only newly
loaded data is aggregated.

The tp2.agg aggmap specifies preaggregation for all detail data currently in status.

DEFINE TP2.AGG AGGMAP
LD Full preaggregation

Chapter 9
AGGREGATE command

9-72

AGGMAP
RELATION time.parentrel PRECOMPUTE (ALL)
RELATION product.parentrel PRECOMPUTE (ALL)
END

For the aggregation, time is limited to the last two time periods and all product values
are in status.

LIMIT time TO LAST 2
STATUS time product
The current status of TIME is:
Apr02, May02
LIMIT product TO ALL

The following AGGREGATE statement calculates units using the tp2.agg aggmap.

AGGREGATE units USING tp2.agg

The results of this aggregation show that parent values are calculated, regardless of
their own status, when their children are in status.

LIMIT time TO '2002' 'Q1.02' 'Q2.02' 'Jan02' to 'May02'
REPORT DOWN time units

 ---UNITS---
 --PRODUCT--
TIME FOOD SNACKS DRINKS POPCORN COOKIES CAKES SODA JUICE
------- -------- -------- -------- -------- -------- -------- -------- --------
2002 38 24 14 6 9 9 9 5
Q1.02 NA NA NA NA NA NA NA NA
Q2.02 38 24 14 6 9 9 9 5
Jan02 NA NA NA 8 2 4 5 8
Feb02 NA NA NA 5 3 2 2 5
Mar02 NA NA NA 3 4 4 2 4
Apr02 21 13 8 2 7 4 6 2
May02 17 11 6 4 2 5 3 3

Example 9-32 Capstone Aggregation

Assume that your analytic workspace has the two hierarchical TEXT dimensions named
geog.d and time.d with the following values.

GEOG.D

Boston
Medford
San Diego
Sunnydale
Massachusetts
California
United States

TIME.D

Jan76
Feb76
Mar76
76Q1

Assume, also, that there are four variables with the following definitions

Chapter 9
AGGREGATE command

9-73

DEFINE sales_jan76 VARIABLE INTEGER <geog.d>
DEFINE sales_feb76 VARIABLE INTEGER <geog.d>
DEFINE sales_mar76 VARIABLE INTEGER <geog.d>
DEFINE sales_capstone76 VARIABLE INTEGER <geog.d time.d>

Assume that you issue the following REPORT statements for the variables. The output
of the reports show the detail data in the variables.

REPORT sales_jan76 sales_feb76 sales_mar76
REPORT DOWN geog.d sales_capstone76

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- ------------ ------------ ------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts NA NA NA
California NA NA NA
United States NA NA NA

 -----------------SALES_CAPSTONE76------------------
 ----------------------TIME.D-----------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- ------------ ------------ ------------ ------------
Boston NA NA NA NA
Medford NA NA NA NA
San Diego NA NA NA NA
Sunnydale NA NA NA NA
Massachusetts NA NA NA NA
California NA NA NA NA
United States NA NA NA NA

1. Define two aggmap objects with the following definitions.

DEFINE leaf_aggmap AGGMAP
AGGMAP
RELATION geog.parentrel OPERATOR SUM
END

DEFINE capstone_aggmap AGGMAP
AGGMAP
RELATION time.parentrel OPERATOR SUM
END

2. Define a variable named capstone_source with the following definition to use to
aggregate the data.

DEFINE capstone_source VARIABLE TEXT <time.d>

As the following output of a REPORT statement illustrates, for each value of
time.d, you populate capstone_source with the name of the variable that contains
the corresponding sales data.

TIME.D CAPSTONE_SOURCE
-------------- ----------------------
Jan76 sales_jan76
Feb76 sales_feb76
Mar76 sales_mar76
76Q1 NA

3. Issue the following statements to aggregate the variables.

Chapter 9
AGGREGATE command

9-74

AGGREGATE sales_jan76 sales_feb76 sales_mar76 USING leaf_aggmap
AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

After aggregating the variables, when you issue the REPORT statements, the
variables are populated with the calculated data.

REPORT sales_jan76 sales_feb76 sales_mar76
REPORT DOWN geog.d sales_capstone76

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76
-------------- ------------ ------------ ------------
Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts 3,000 6,000 9,000
California 7,000 14,000 21,000
United States 10,000 20,000 30,000

 -----------------SALES_CAPSTONE76------------------
 ----------------------TIME.D-----------------------
GEOG.D Jan76 Feb76 Mar76 76Q1
-------------- ------------ ------------ ------------ ------------
Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000
San Diego 3,000 6,000 9,000 18,000
Sunnydale 4,000 8,000 12,000 24,000
Massachusetts 3,000 6,000 9,000 18,000
California 7,000 14,000 21,000 42,000
United States 10,000 20,000 30,000 60,000

ALLCOMPILE
The ALLCOMPILE program compiles every compilable object in your current analytic
workspace, one at a time. As it works, ALLCOMPILE sends to the current outfile
messages that show the name of the object being compiled.

ALLCOMPILE uses the COMPILE command. Consequently, it checks for syntax
errors as it compiles an object, and it records error messages in the current outfile as
appropriate.

Syntax

ALLCOMPILE [n]

Parameters

n
An INTEGER expression with a value of zero or higher. The expression specifies the
number of objects to be compiled before an UPDATE statement is executed. For
example, when you specify 1, an UPDATE statement is executed after each object is
compiled. When you specify 0 (zero), all the objects are compiled and an UPDATE
statement is executed only at the end. When you omit the argument, no UPDATE
statement is executed by ALLCOMPILE. Frequent updates during an ALLCOMPILE
help ensure the most efficient use of space in the analytic workspace.

Chapter 9
ALLCOMPILE

9-75

Examples

Example 9-33 ALLCOMPILE Output

The following example shows the output of ALLCOMPILE when it is run on an analytic
workspace that contains four programs.

Compiling AUTOGO
Compiling READIT
Compiling REGION.REPORT
Compiling SALES.REPORT

ALLOCATE
The ALLOCATE command calculates lower-level data from upper-level data by
allocating variable data down a hierarchical dimension.

Frequently you allocate data for budgeting, forecasting, and profitability analysis.

Syntax

ALLOCATE source [SOURCE conjoint] [BASIS basisname [ACROSS dimname]] -
[TARGET targetname [TARGETLOG targetlogname]] - [USING aggmap]
[ERRORLOG errorlogfileunit]

Parameters

source
A variable or formula that provides the values to allocate. When the source object is a
formula, you must also specify a variable with the TARGET keyword. When you
specify a variable as source and you do not specify a target variable or a basisname
variable, then ALLOCATE uses source as the basis and the target.

SOURCE conjoint
Specifies a conjoint dimension that contains a list of cells the user has changed. The
ALLOCATE command uses this list to produce the smallest target status needed to
allocate all of the changed source cells.

BASIS basisname
Specifies a variable, relation, or formula that provides the data on which the allocation
is based. That data determines which cells of the target receive allocated values and,
in an even or proportional operation, the amount of the source allocated to a target
cell.
When the OPERATOR specified by a RELATION (for allocation) statement in aggmap
is a COPY operator (COPY, MIN, MAX, FIRST, LAST), the basis tells the ALLOCATE
command which target cells to update. When the OPERATOR specified is EVEN,
then ALLOCATE derives the counts that it uses for allocation from the basis. When
the OPERATOR specified is the PROPORTIONAL, then ALLOCATE uses the basis
data to determine the amount to allocate to each target cell. When the OPERATOR is
HCOPY, HFIRST, HLAST, or HEVEN, then ALLOCATE does not use a BASIS object.
Instead, it allocates the source data to all of the target cells in the dimension hierarchy
that is specified by the relation named in the RELATION statement.
When you specify the same variable as both the basis and the target, the current
values of the target cells determine the allocation. When you do not specify a basis,
then the ALLOCATE command uses the source as the basis.

Chapter 9
ALLOCATE

9-76

ACROSS dimname
Specifies a dimension, which can be a named composite, that the ALLOCATE
command loops over to discover the cells in a basis. Because a basis can be a
formula, you can realize a significant performance advantage by supplying a looping
dimension that eliminates the sparsity from the basis loop.

TARGET targetname
Specifies a variable to hold the allocated values. When the source object is a formula,
then you must specify a target. When the source object is a variable and you do not
specify a target, then ALLOCATE uses the source variable as the target.

TARGETLOG targetlogname
Specifies a variable (identically dimensioned to the targetname variable), or a relation
that specifies such a variable, to which ALLOCATE assigns a copy of the allocation.
For instance, when ALLOCATE assigns the value of 100 to the cell of the costs
variable that is specified by the time and product dimension values Jan01 and TV, and
the targetlog relation specifies the cell of the costacct variable that is specified by the
same dimension values, then ALLOCATE assigns the value of 100 to the specified
costacct cell, also.

USING aggmap
Specifies the name of a previously-defined aggmap to use for the allocation. When
you do not include this phrase, the command uses the default allocation specification
for the variable as previously specified using the $ALLOCMAP property.

ERRORLOG errorlogfileunit
Specifies a file unit that ALLOCATE uses for logging allocation deadlocks, errors, or
other information. When the allocation does not generate any deadlocks or errors,
ALLOCATE sets errorlogname to NA. When the allocation produces one or more
deadlocks or errors, the events are sent to the specified file. ALLOCATE writes one
line in the file for each allocation source that remains unallocated.
When you do not specify a file unit with ERRORLOG, ALLOCATE sends the
information to the standard output device.

Usage Notes

Preserving Original Basis Values

Often the source, basis, and target objects are the same variable and therefore the
original values in the cells of the target variable determine the proportions of the
allocation. The allocation overwrites those original values in the target cells with the
allocated values. To preserve original values in a variable, specify the original variable
as the basis object and save the allocated values to a new variable as the target
object. Using different basis and target objects makes it possible for you to preview the
allocated data. When you then want to store the allocated values in the same variable
as the basis, you can perform the allocation again with the same object as the basis
and the target. Another example of using different basis and target objects is using an
actuals variable as the basis of the allocation and a budget variable as the target.

Using a Formula as a Source or Basis

Source and basis objects can be formulas, which makes it possible for you to make
complex computations and have the results be the source or basis object. For
example, when you want to see the sales of individual products that would be
necessary to produce a thirty percent increase in sales for the next year, you could
express the increase in the following formula.

Chapter 9
ALLOCATE

9-77

DEFINE actualsWanted DECIMAL FORMULA <time, product>
EQ LAG(actuals, 1, time) * 1.3

You would then use ACTUALSWANTED as the source object with the ALLOCATE
command. In this example, you would use the ACTUALS variable as the basis.

Tracking Multiple Allocations

When you specify a variable with the TARGETLOG argument, you can store an
allocated value in that variable and in the target variable. This double entry allocation
makes it possible for you to track multiple allocations to the same target cell. For
example, when you allocate a series of different costs to the same costs centers, then
each allocation increases the values in the target cells. You can keep track of the
individual allocations by specifying a different targetlogname variable for each
allocation.

Logging Allocation Errors

When you specify a file with the ERRORLOG argument, you can record errors that
result from locks and NA basis values. The log can provide feedback to an application
about which source values remain unallocated. You can use the information to modify
the allocation, for example by using a hierarchical operator such as HEVEN in a
RELATION statement in the aggmap. You can use the ALLOCERRLOGHEADER and
ALLOCERRLOGFORMAT options to format the error log. Within an allocation
specification, you can specify other aspects of the error log using the ERRORLOG and
ERRORMASK statements.

Logging the Progress of an Allocation

With the cube operations log, you can record and monitor the progress of an
allocation. You can use the file to get feedback during a lengthy allocation and to gain
information that might be useful for optimizing the allocation in the future.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the cube operations log and the DBMS_CUBE_LOG package

Examples

Example 9-34 Direct Even Allocation

This example allocates a value specified at one level of the time dimension hierarchy
directly to the variable target cells that are specified by lower level values in the
hierarchy without allocating values to an intermediate level. The timemonthyear relation
specifies the hierarchical relationship of the time values. The source, basis, and target
of the allocation are all the same variable, PROJBUDGET, which is dimensioned by
division, time, and line. The time dimension is a nonunique concat dimension that
has as its base dimensions year, quarter, and month. The time dimension is limited to
<year: Yr02>, <quarter: Q1.02>, <quarter: q1.02>, and <month: Jan02> to <month:
Jun02>. The following statements define the projbudget variable, set the value of a cell
in to 6000 and then report the variable.

DEFINE projbudget VARIABLE DECIMAL <division time line>
projbudget(division 'CAMPING' time '<YEAR: YR02>' line 'MARKETING') = 6000
REPORT projbudget

Chapter 9
ALLOCATE

9-78

The preceding statement produces the following results.

LINE: MARKETING
 -PROJBUDGET--
 --DIVISION---
TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> NA
<quarter: Q2.02> NA
<month: Jan02> NA
<month: Feb02> NA
<month: Mar02> NA
<month: Apr02> NA
<month: May02> NA
<month: Jun02> NA

The following statements define a self-relation on the time dimension, relate the month
values directly to the year values, and report the values of the relation.

DEFINE timemonthyear RELATION time <time>
LIMIT month TO 'JAN02' TO 'JUN02'
timemonthyear(time month) = '<YEAR: YR02>'
REPORT timemonthyear

The preceding statement produces the following results.

TIME TIMEMONTHYEAR
---------------- -------------
<year: Yr02> NA
<quarter: Q1.02> NA
<quarter: Q2.02> NA
<month: Jan02> <year: Yr02>
<month: Feb02> <year: Yr02>
<month: Mar02> <year: Yr02>
<month: Apr02> <year: Yr02>
<month: May02> <year: Yr02>
<month: Jun02> <year: Yr02>

The following statements define an aggmap and enter statements into the allocation
specification. They allocate the value that is specified by <year: Yr02> from projbudget
to the cells of the same variable that are specified by the month dimension values, and
then report projbudget. The target cells of the variable have NA values so the
RELATION statement in the allocation specification specifies the HEVEN operator.
The ALLOCATE command specifies only one variable, projbudget, so that variable is
the source and target of the allocation. No basis object is required because the
allocation is an HEVEN operation. The allocation is directly from the year source value
to the month target values because that is the hierarchy specified by the relation in the
allocation specification.

DEFINE projbudgmap AGGMAP
ALLOCMAP
RELATION timemonthyear OPERATOR HEVEN
END
ALLOCATE projbudget USING projbudgmap
REPORT projbudget

The preceding statement produces the following results.

LINE: MARKETING
 -PROJBUDGET--

Chapter 9
ALLOCATE

9-79

 --DIVISION---
TIME CAMPING
---------------- -------------
<YEAR: YR02> 6,000.00
<QUARTER: Q1.02> NA
<QUARTER: Q2.02> NA
<MONTH: JAN02> 1,000.00
...
<MONTH: JUN02> 1,000.00

Example 9-35 Recursive Even Allocation with a Lock

This example allocates a value specified at one level of the time dimension hierarchy
first to the target cells at an intermediate level in a variable and then to the cells that
are specified by the lowest level values in the hierarchy. The timeparent relation
specifies the hierarchical relationship of the time values. The source, basis, and target
of the allocation are projbudget. The status of the division, time, and line dimensions
are the same as the direct allocation example. At the beginning of this example, the
projbudget variable again has just the single value, 6000, in the cell specified by <year:
Yr02>.

DEFINE timeparent RELATION time <time>
LIMIT quarter TO 'Q1.02' 'Q2.02'
timeparent(time quarter) = '<YEAR: YR02>'
LIMIT month TO 'JAN02' TO 'MAR02'
timeparent(time month) = '<QUARTER: Q1.02>'
LIMIT month TO 'APR02' TO 'JUN02'
timeparent(time month) = '<QUARTER: Q1.02>'
REPORT timeparent

The preceding statement produces the following results.

TIME TIMEPARENT
---------------- -------------
<year: Yr02> NA
<quarter: Q1.02> <year: Yr02>
<quarter: Q2.02> <year: Yr02>
<month: Jan02> <quarter: Q1.02>
<month: Feb02> <quarter: Q1.02>
<month: Mar02> <quarter: Q1.02>
<month: Apr02> <quarter: Q2.02>
<month: May02> <quarter: Q2.02>
<month: Jun02> <quarter: Q2.02>

This example demonstrates locking a cell so that it does not participate in the
allocation. Locking a cell requires a valueset, so the following statements define one,
limit the time dimension to the desired value, assign a value to the valueset, and then
reset the status of the time dimension.

DEFINE timeval TO '<QUARTER: Q2.02>'
LIMIT time TO '<Year: YR02>' '<Quarter: Q1.02>' '<Quarter: Q2.02>' -
 '<month: Jan02>' '<month: Feb02>' '<month: Mar02>' -
 '<month: Apr02>' '<month: May02>' '<month: Jun02>

The following statements revise the specification of the aggmap named projbudgmap.
This time the RELATION statement in the allocation specification specifies the
timeparent relation, the HEVEN operator, and the PROTECT argument. The
READWRITE keyword specifies that the children of the locked cell also do not
participate in the allocation. The NONORMALIZE keyword specifies that the value of

Chapter 9
ALLOCATE

9-80

the locked cell is not subtracted from the source value before it is allocated to the
target cells. The statements then allocate the source value and report the results.

CONSIDER projbudgmap
ALLOCMAP
RELATION timeparent OPERATOR HEVEN ARGS PROTECT NONORMALIZE READWRITE timeval
END

ALLOCATE projbudget USING projbudgmap
REPORT projbudget

The preceding statement produces the following results.

LINE: MARKETING
 -PROJBUDGET--
 --DIVISION---
TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> 6,000.00
<quarter: Q2.02> NA
<month: Jan02> 2,000.00
<month: Feb02> 2,000.00
<month: Mar02> 2,000.00
<month: Apr02> NA
<month: May02> NA
<month: Jun02> NA

Example 9-36 Recursive Proportional Allocation

This example uses the same relation as the recursive even allocation but it uses the
PROPORTIONAL operator and it does not lock any cells. Because a proportional
allocation uses the values of the basis object to calculate the values to assign to the
target cells, the projbudget variable has values assigned to each of its cells. The value
of the <year: Yr02> cell is 6000., which was assigned to that cell. It is not the value an
aggregation of the lower levels. A report of projbudget before the allocation produces
the following results.

LINE: MARKETING
 -PROJBUDGET--
 --DIVISION---
TIME CAMPING
---------------- -------------
<year: Yr02> 6,000.00
<quarter: Q1.02> 1,000.00
<quarter: Q2.02> 2,000.00
<month: Jan02> 300.00
<month: Feb02> 100.00
<month: Mar02> 600.00
<month: Apr02> 400.00
<month: May02> 800.00
<month: Jun02> 800.00

The following statements replace the previous specification of the aggmap with the
new RELATION statement, which specifies the PROPORTIONAL operator. The
allocation specification includes a SOURCEVAL ZERO statement, which specifies that the
source value is replace with a zero value after the allocation (see the SOURCEVAL
statement of the ALLOCMAP command for more information). The statements then
allocate the source value and report the result.

Chapter 9
ALLOCATE

9-81

CONSIDER projbudgmap
ALLOCMAP JOINLINES('RELATION timeparent OPERATOR PROPORTIONAL timeval' -
 'SOURCEVAL ZERO' -
 'END')
ALLOCATE projbudget USING projbudgmap
REPORT projbudget

The preceding statement produces the following results.

TIME TIMEPARENT
LINE: MARKETING
 -PROJBUDGET--
 --DIVISION---
TIME CAMPING
---------------- -------------
<year: Yr02> 0
<quarter: Q1.02> 2,000.00
<quarter: Q2.02> 4,000.00
<month: Jan02> 600.00
<month: Feb02> 200.00
<month: Mar02> 1,200.00
<month: Apr02> 800.00
<month: May02> 1,600.00
<month: Jun02> 1,600.00

ALLOCMAP
The ALLOCMAP command identifies an aggmap object as an allocation specification
and enters the contents of the specification. To use AGGMAP to assign an allocation
specification to n aggmap object, the definition must be the one most recently defined
or considered during the current session. When it is not, you must first use a
CONSIDER statement to make it the current definition.

An alternative to the AGGMAP command is the EDIT AGGMAP command, which is
available only in OLAP Worksheet. The EDIT AGGMAP command opens an Edit
window in which you can delete or change an allocation specification for an aggmap
object. To use the OLAP Worksheet, to code an allocation specification follow the
instructions given in "Editing a Newly Defined Aggmap to Code an Allocation
Specification".

See Also:

" OLAP DML Allocation Objects" and "Allocation Options".

Syntax

ALLOCMAP [specification]

Parameters

specification
A multiline text expression that is the allocation specification for the current aggmap
object. An allocation specification begins with an ALLOCMAP statement and ends

Chapter 9
ALLOCMAP

9-82

with an END statement. Between these statements, you code one or more of the
following statements depending on the calculation that you want to specify:

CHILDLOCK
DEADLOCK
DIMENSION (for allocation)
ERRORLOG
ERRORMASK
MEASUREDIM (for allocation)
RELATION (for allocation)
SOURCEVAL
VALUESET

Each statement is a line of the multiline text expression. When coding an ALLOCMAP
statement at the command line level, separate statements with newline delimiters (\n),
or use JOINLINES.
For a discussion of how to determine which statements to include, see "Designing an
Allocation Specification".

Usage Notes

Designing an Allocation Specification

Minimally, an allocation specification consists of a RELATION statement or a
VALUESET statement However, you can create more complex allocation
specifications and change the default settings for error handling by including additional
OLAP DML statements in the specification, as follows:

1. For hierarchical allocations, a RELATION statement that specifies a self-relation
that identifies the child-parent relationships of the hierarchy. List the statements in
the order in which you want to perform the various operations; or if this is not
important, list the RELATION statements in the same order as the dimensions
appear in the variable definition.

2. For non-hierarchical allocations, a VALUESET statement that specifies the values
to be used when allocating.

3. A CHILDLOCK statement that tells the ALLOCATE command whether to
determine if RELATION statements in the aggmap specify lock on both a parent
and a child element of a dimension hierarchy.

4. A DEADLOCK statement that tells the ALLOCATE command whether to continue
an allocation when it encounters a deadlock, which occurs when the allocation
cannot distribute a value because the targeted cell is locked or, for some
operations, has a basis value of NA.

5. When a dimension is not shared by the target variable and the source or the basis
objects, a DIMENSION (for allocation) statement that specifies a single value to
set as the status of that dimension.

6. An ERRORLOG statement that specifies how many errors to allow in the error log
specified by the ALLOCATE command and whether to continue the allocation
when the maximum number of errors has occurred.

7. An ERRORMASK statement that specifies which error conditions to exclude from
the error log.

8. When the source data comes from a variable, a SOURCEVAL statement that
specifies whether ALLOCATE changes the source data value after the allocation.

Chapter 9
ALLOCMAP

9-83

Aggmap Type

You can use the AGGMAPINFO function to learn the type of an aggmap. An aggmap
into which you have entered an allocation specification using the ALLOCMAP has the
type ALLOCMAP and an aggmap into which you have entered an aggregation
specification using an AGGMAP statement has the type AGGMAP. When you have
defined an aggmap but have not yet entered a specification in it, its type is NA.

One RELATION for Each Dimension

An aggmap can have only one RELATION statement for any given dimension.

One Hierarchy For Each Dimension

An allocation operation proceeds down only one hierarchy in a dimension. When a
dimension has multiple hierarchies, then you must limit the dimension to a hierarchy
with a qualified data reference after the rel-name argument.

Examples

Example 9-37 Allocation Specification from an Input File

In this example an aggmap and its specification are defined in an ASCII disk file called
salesalloc.txt. The statements in the file are then executed in the analytic workspace
through the use of the INFILE statement. The statements in salesalloc.txt are the
following.

IF NOT EXISTS ('salesalloc')
 THEN DEFINE salesalloc AGGMAP
 ELSE CONSIDER salesalloc
ALLOCMAP
 RELATION time.parent OPERATOR EVEN
 RELATION product.parent OPERATOR EVEN
 RELATION geography.parent OPERATOR EVEN
 SOURCEVAL ZERO
 DEADLOCK SKIP
END

To include the salesalloc aggmap in your analytic workspace, execute the following
statement.

INFILE 'salesalloc.txt'

The sales.agg aggmap has now been defined and contains three RELATION
statements and the SOURCEVAL and DEADLOCK statements. In this example, the
ALLOCATE statement allocates its source value evenly to all of the aggregate level
cells and the detail level cells of the target variable because the relations time.parent,
product.parent, and geography.parent relate each child dimension value to its parent in
the dimension hierarchy. The DEADLOCK statement tells the ALLOCATE statement to
log an error and continue the allocation when a branch of a target hierarchy is locked
or has a value of NA. The SOURCEVAL statement tells ALLOCATE to assign a zero
value to the source cells after allocating the source data.

You can now use the salesalloc aggmap with an ALLOCATE statement, such as.

ALLOCATE sales USING salesalloc

Chapter 9
ALLOCMAP

9-84

Example 9-38 Allocation Specification from a Text Expression

In this example the salesalloc aggmap has already been defined. The specification is
added to the aggmap as a text expression argument to the ALLOCMAP statement.

CONSIDER salesalloc
ALLOCMAP
RELATION time.parent OPERATOR EVEN
RELATION product.parent OPERATOR EVEN
RELATION geography.parent OPERATOR EVEN
SOURCEVAL ZERO
DEADLOCK SKIP

Example 9-39 Specifying a Single Dimension Value in an Allocation
Specification

This example proportionally allocates a value it calculates from the sales variable to
cells in a projectedsales variable. The sales variable is dimensioned by the time,
product, customer, and channel dimensions.

The example defines the projectedsales variable to use as the target of the allocation
and the increasefactor formula to use as the source. The formula multiplies values
from sales by ten percent. The example limits the time dimension and creates the
ytoq.rel relation, which relates the year 2001 to the quarters of 2002. The next LIMIT
commands limit the dimensions shared by sales and projectedsales.

The example creates an aggmap and uses the ALLOCMAP statement to enter a
RELATION and a DIMENSION statement into the map. The RELATION statement
specifies the ytoq.rel relation as the dimension hierarchy to use for the allocation and
specifies that the allocation is proportional. The DIMENSION statement tells
ALLOCATE to set the status of the channel dimension to totalchannel for the duration
of the allocation.

DEFINE projectedSales DECIMAL VARIABLE <time, SPARSE <product, customer>>
DEFINE increaseFactor DECIMAL FORMULA <product>
EQ sales * 1.1
LIMIT time TO '2001' 'Q1.02' TO 'Q4.02'
DEFINE YtoQ.rel RELATION time <time>
LIMIT time TO 'Q1.02' to 'Q4.02'
YtoQ.rel = '2001'
LIMIT time TO '2001' 'Q1.02' to 'Q4.02'
LIMIT product TO 'TotalProduct' 'Videodiv' 'Audiodiv' 'Accdiv'
LIMIT customers TO 'TotalCustomer'
DEFINE time.alloc AGGMAP
ALLOCMAP
RELATION YtoQ.rel OPERATOR PROPORTIONAL
DIMENSION channel 'TotalChannel'
END
ALLOCATE increaseFactor BASIS sales TARGET projectedSales USING time.alloc

The sales values that are the basis of the allocation are the following.

CHANNEL: TOTALCHANNEL
CUSTOMERS: TOTALCUSTOMER
 ---------------PROJECTEDSALES---------------
 --------------------TIME--------------------
PRODUCT 2001 Q1.02 Q2.02 Q3.02 Q4.02
------------ ------ ------ ------ ------ ------
TotalProduct 7000 1000 2000 3000 1000

Chapter 9
ALLOCMAP

9-85

Videodiv 4100 600 1100 1900 500
Audiodiv 1700 200 600 600 300
Accdiv 1200 200 300 500 200

The following shows a report of projectedsales for totalchannel after the allocation.

CHANNEL: TOTALCHANNEL
CUSTOMERS: TOTALCUSTOMER
 ---------------PROJECTEDSALES---------------
 --------------------TIME--------------------
PRODUCT 2001 Q1.02 Q2.02 Q3.02 Q4.02
------------ ------ ------ ------ ------ ------
TotalProduct NA NA NA NA NA
Videodiv NA 660 1210 2090 550
Audiodiv NA 220 660 660 330
Accdiv NA 220 330 550 220

Example 9-40 Entering RELATION Statements in an Allocation Specification

This example defines a time.type dimension and adds to it the two hierarchies of the
time dimension. It defines the time.time relation that relates the hierarchy types (that
is, time.type) to the time dimension. The example defines the time.alloc aggmap.
With the ALLOCMAP command, it enters a RELATION statement in the aggmap. The
RELATION statement specifies the values of the time dimension hierarchy to use in
the allocation, limits the time dimension to one hierarchy with the QDR, and the
specifies the EVEN operation for the allocation. The ALLOCATE command then
allocates data from the source object to the target variable using the time.alloc
aggmap. In the ALLOCATE command the source, basis, and target objects are the
same sales variable.

DEFINE time.type TEXT DIMENSION
MAINTAIN time.type add 'Fiscal'
MAINTAIN time.type add 'Calendar'
DEFINE time.time RELATION time <time, time.type>
DEFINE time.alloc AGGMAP

ALLOCMAP
RELATION time.time (time.type 'Fiscal') OPERATOR EVEN
END

ALLOCATE sales USING time.alloc

CHILDLOCK
Within an allocation specification, a CHILDLOCK statement tells the ALLOCATE
statement to determine if RELATION statements in the allocation specification have
specified locks on both a parent and on a child of the parent in a dimension hierarchy.
Locking both a parent and one of its children can cause incorrect allocation results.

Syntax

CHILDLOCK [DETECT|NODETECT]

Chapter 9
ALLOCMAP

9-86

Parameters

DETECT
Tells the ALLOCATE statement to detect that an allocation lock exists on a parent and
also on one of its children in a dimension hierarchy. When it detects a locked parent
and child, the ALLOCATE statement creates an entry in the error log for the
allocation.

NODETECT
(Default) Tells the ALLOCATE statement to continue an allocation even when a lock
exists on a parent and also on one of its children in a hierarchy.

Examples

For an example of using a CHILDLOCK statement in an allocation specification, see
Example 9-79.

DEADLOCK
Within an allocation specification, a DEADLOCK statement tells the ALLOCATE
statement what to do when it cannot distribute a source value to a target cell specified
by a value in a dimension hierarchy because the target cell is either locked by a
RELATION statement in the allocation specification or the cell has a basis value of NA.

Syntax

DEADLOCK [SKIP|NOSKIP]

Parameters

SKIP
Tells the ALLOCATE statement to log the error and continue with the allocation even
though it cannot distribute source values to cells specified by a branch of a dimension
hierarchy because a target cell is locked or the basis value of the cell is NA.

NOSKIP
Tells the ALLOCATE statement to stop the allocation and to return an error when it
cannot distribute source values to cells in a branch of a dimension hierarchy because
a target cell is locked or the basis value is NA. NOSKIP is the default action when you
do not include a DEADLOCK statement in the aggmap used by the ALLOCATE
command.

Examples

For examples of using a DEADLOCK statement in an allocation specification, see
Example 9-37 and Example 9-38.

DIMENSION (for allocation)
Within an allocation specification, a DIMENSION statement sets the status to a single
value of a dimension. Within an allocation specification this dimension is a dimension
that the source, basis, and target objects do not have in common. When an allocation
specification does not specify such single values with DIMENSION statements, Oracle
OLAP uses the current status values of the dimensions when performing the
allocation.

Chapter 9
ALLOCMAP

9-87

You use a DIMENSION statement to ensure that the status of a dimension is set to the
value that you want it to have for the allocation. You must use a separate DIMENSION
statement for each dimension that is not shared by the source, basis, and target
objects.

Syntax

DIMENSION dimension 'dimval'

Parameters

dimension
the name of the dimension to limit.

dimval
The single value of the dimension to which you want the status of the dimension set
for the duration of an allocation.

Examples

For an example of using a DIMENSION statement in an allocation specification, see
Example 9-39.

ERRORLOG
Within an allocation specification, an ERRORLOG statement specifies how many
allocation error conditions to log and whether to continue or to stop the allocation when
the specified maximum number of errors have been logged. You specify the error log
with the ERRORLOG keyword to the ALLOCATE command.

Syntax

ERRORLOG [UNLIMITED|MAX <num>] [STOP|NOSTOP]

Parameters

UNLIMITED
Tells the ALLOCATE command to write an unlimited number of errors to the error log.
(Default.)

MAX num
Specifies a maximum number of errors that ALLOCATE can write to the error log.

STOP
NOSTOP
Specifies whether to stop the allocation when ALLOCATE has written the maximum
number of errors to the error log. When you specify STOP, the allocation stops. When
you specify NOSTOP, the allocation continues but ALLOCATE does not write any
more errors to the error log. When you have specified UNLIMITED, then the STOP
and NOSTOP arguments have no effect and the allocation continues no matter how
many errors occur.

Usage Notes

Formatting the Error Log

Chapter 9
ALLOCMAP

9-88

The ALLOCERRLOGFORMAT option determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument to the ALLOCATE
command. You can specify a header for the error log with the
ALLOCERRLOGHEADER option.

ERRORMASK
Within an allocation specification, an ERRORMASK statement specifies the error
conditions that you do not want to appear in the allocation error log. You specify the
error log with the ERRORLOG keyword to the ALLOCATE command.

Syntax

ERRORMASK <num...>

Parameters

num...
The number of the error that you do not want to appear in the error log.

Examples

Example 9-41 Excluding CHILDLOCK Errors

To exclude a CHILDLOCK error, you would enter the following statement in the
allocation specification.

ERRORMASK 10

Example 9-42 Excluding All Allocation Errors

To exclude all errors, you would enter the following statement in the allocation
specification.

ERRORMASK 1 2 3 4 5 6 7 8 9 10

MEASUREDIM (for allocation)
Within an allocation specification, a MEASUREDIM statement identifies the name of a
measure dimension that is specified in the definition of an operator variable or an
argument variable. However, you cannot specify a measure dimension when it is
included in the definition of the aggmap object.

Syntax

MEASUREDIM name

Parameters

name
The name of the measure dimension. A measure dimension is a dimension that you
define. The dimension values are names of existing variables.

Chapter 9
ALLOCMAP

9-89

See Also:

MEASUREDIM (for aggregation) statement for the AGGMAP command

RELATION (for allocation)
Within an allocation specification, a RELATION statement identifies a relation that
specifies the path through a dimension hierarchy and the method of the allocation. To
allocate a source data down a hierarchy of a dimension, you must specify with a
RELATION statement the values of the hierarchy that identify the cells of the variable
that are the targets of the allocation. When the target of the allocation is a
multidimensional variable, then you must include a separate RELATION statement for
each dimension down which you want to allocate the source data. The order of the
RELATION statements in an aggmap determines the order of the allocation. The
allocation proceeds down the dimension hierarchy in the first RELATION statement,
then down the second, and so on.

Note:

Do not confuse this RELATION statement which can only be used as part of an
AGGMAP command with either the RELATION command that defines a default
relation for a dimension or the RELATION statement that is used as part of an
AGGMAP command.

Syntax

RELATION rel-name [(qdr. . .)] OPERATOR {operator|} -

 [NAOPERATOR operator] [REMOPERATOR operator] - [PARENTALIAS
dimension-alias-name] -
 [ARGS {[FLOOR floorval] [CEILING ceilval] [MIN minval] [MAX maxval] -
 [NAHANDLE {IGNORE|CONSIDER|PREFER}] - [ADD|
ASSIGN] [PROTECT [NONORMALIZE] [READWRITE|WRITE] lockvalueset] -
 [WEIGHTBY [ADD|MULTIPLY] [WNAFILL nafillval] weightobj]}]

Parameters

rel-name
An Oracle OLAP self-relation that specifies the values of a dimension hierarchy that
identify the path of allocation. The cells in the target variable identified by the values in
rel-name receive the allocated data.

qdr. . .
One or more qualified data references that specify a single dimension value for each
dimension of the relation that is not part of the self-relation. When the self-relation has
multiple hierarchies, you must provide a qdr for the hierarchy dimension of the self-
relation dimension that limits to single values any hierarchies not involved in the
allocation.

Chapter 9
ALLOCMAP

9-90

OPERATOR operator
Specifies an allocation method described in the following table or returned by
ALLOCOPS. The method determines the cells of the target variable for the rel-name
relation to which ALLOCATE assigns a value. For the FIRST, LAST, HFIRST, and
HLAST operators, ALLOCATE uses the order of the value in the dimension to
determine the cell. The dimension order is the default logical order of the allocation
dimension. There is no default operator for allocation.

Operator Description

COPY Copies the allocation source to all of the target cells that have
a basis data value that is not NA.

HCOPY Copies the allocation source to all of the target cells specified
by the hierarchy even when the data in any of those cells is
NA. When the source data is NA, then that NA value is not
allocated to the target cells of that allocation.

MIN Copies the allocation source to the target that has the
smallest basis data value.

MAX Copies the allocation source to the target that has the largest
basis data value.

FIRST Copies the allocation source to the first target cell that has a
non-NA basis data value.

HFIRST Copies the allocation source to the first target cell specified
by the hierarchy even when the current data value of that cell
is NA

LAST Copies the allocation source to the last target cell that has a
non-NA basis data value.

HLAST Copies the allocation source to the last target cell specified
by the hierarchy even when the current data value of that cell
is NA

EVEN Divides the allocation source by the number of target cells
that have non-NA basis data values and applies the quotient
to each target cell.

HEVEN Divides the allocation source by the number of target cells,
including the ones that have NA values, and applies the
quotient to each target cell.

PROPORTIO
NAL

Divides the allocation source by the sum of the data values of
the target cells that have non-NA basis data values, multiplies
the basis data value of each target cell by the quotient, and
applies the resulting data to the target cell.

NAOPERATOR operator
The operator after the NAOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when it encounters an NA or lock-based deadlock. Valid
operators are HFIRST, HLAST, and HEVEN.

REMOPERATOR operator
The operator after the REMOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when storing a remainder produced by an allocation. For
example, assume you allocate the INTEGER 10 to three cells at the same level in a
hierarchy, there is a remainder of 1. The REMOPERATOR specifies where you want

Chapter 9
ALLOCMAP

9-91

the allocation operation to store this remainder. Valid operators for REMOPERATOR
are MIN, MAX, FIRST, HFIRST, LAST, and HLAST.

ARGS
Indicates additional arguments specify additional parameters for the allocation
operation. All of these arguments apply uniformly to the dimension hierarchy specified
by rel-name.

PARENTALIAS dimension-alias-name
Specifies specialized allocation depending on the parent (for example, weighting by
parent or child). For dimension-alias-name, specify the name of the alias for the
dimension of rel-name.

ARGS argument...
One or more arguments after the ARGS keyword that specify additional parameters
for the allocation operation. All of these arguments apply uniformly to the dimension
hierarchy specified by rel-name.

FLOOR floorval
Specifies that when an allocated target data value is less than floorval, the data
allocated to the target cell is NA. This argument applies to the relation only when the
PROPORTIONAL operator is specified.

CEILING ceilval
Specifies that when an allocated target data value is greater than ceilval, the data
allocated to the target cell is NA. This argument applies to the relation only when the
PROPORTIONAL operator is specified.

MIN minval
Specifies that when an allocated target data value is less than minval, the data
allocated to the target cell is minval.

MAX maxval
Specifies that when an allocated target data value is greater than maxval, the value
allocated to the target cell is maxval.

NAHANDLE
Specifies how ALLOCATE treats NA values. Valid only when the OPERATOR is MIN
or MAX.

• IGNORE specifies that ALLOCATE does not consider NA values in a MIN or MAX
operation. (Default)

• CONSIDER specifies that ALLOCATE treats an NA value as a zero; however, when
the data value of a target cell is actually zero, the zero cell receives the allocated
data value and not the NA cell.

• PREFER specifies that ALLOCATE treats an NA value as a zero and the NA has
priority over a zero value, so the NA cell receives the allocated data value and not
the cell with the actual zero value.

ADD
Specifies that ALLOCATE adds the allocated data to the current data in the target
cell.

Chapter 9
ALLOCMAP

9-92

ASSIGN
Specifies that ALLOCATE replaces the data in the target cell with the allocated data,
which is the default behavior.

PROTECT lockvalueset
Specifies a set of dimension values to lock so that they cannot be targets of the
allocation. Before allocating the source data, the allocation operation normalizes the
sources by subtracting the data values of the specified locked cells from the source
data.

NONORMALIZE
Specifies that the allocation operation does not normalize the source data. Using
NONORMALIZE effectively removes from the allocation the values of the hierarchy at
and below the dimension values specified by lockvalueset.

READWRITE
Specifies that the locked data values cannot be used as source data in a subsequent
allocation, thereby locking the data of the hierarchy below the lockvalueset values.

WRITE
Specifies that the allocation cannot store data values in the cells identified by the
lockvalueset dimension values but the allocation can use the data in those cells as
source data in its subsequent steps. However, when in the aggmap you include a
SOURCEVAL statement that specifies NA or ZERO and the locked cell is the source of
an allocation, then ALLOCATE sets the value of the locked cell to NA or zero after the
allocation.

WEIGHTBY
Specifies that the allocation uses a the value specified by weightobj. Using this clause
allows for processes such as unit or currency conversion.

ADD
Specifies that ALLOCATE adds the value specified by weightobj to the existing data
value of the target and assigns the sum to the target cell.

MULTIPLY
(Default) Specifies that ALLOCATE multiplies the value specified by weightobj by the
data value of the target and assigning the product.

WNAFILL
Specifies that ALLOCATE replaces NA values in a cell before applying the value
specified by weightobj to the nafillval value.

nafillval
The value that the ALLOCATE replaces NA values with. When you specify the ADD
option to the WEIGHTBY clause, the default NA fill value is 0; in all other cases, the
default NA fill value is 1.

weightobj
The name of an variable, formula, or relation whose value or values are the weights
that Oracle OLAP applies to the allocated data just before it is stored in the target cell.
When a relation is used, the target variable is referenced based on the weight relation
and the cell is applied to the allocation target cell.

Usage Notes

Specifying the Path of the Allocation

Chapter 9
ALLOCMAP

9-93

The path of the allocation is the route the allocation system takes to go from the
source data to the target data. Very different results derive from different allocation
paths. You specify the path with the RELATION statements that you enter in the
aggmap. The relation objects in the RELATION statements and the order of those
statements specify the path and the method of allocation.

The allocation path goes from any level in the hierarchy of a dimension to any lower
level of the hierarchy. You use a relation object that relates the members of the
hierarchy to each other (a self-relation) to identify the elements of the hierarchy that
you want to participate in the allocation. The allocation proceeds down the hierarchy of
the dimension in the first RELATION statement in the aggmap, then down the
hierarchy of the second RELATION statement, and so on.

When the dimension has multiple hierarchies, you must use the qdr argument in the
RELATION statement to specify which hierarchy to use for the allocation. The
hierarchy that you specify with a relation must not contain a circular relation (for
example, one in which dimension value A relates to dimension value B which relates to
dimension value C which relates to dimension value A).

Types of Allocation Paths

You can allocate values from a source to a target with any one of the following types of
paths:

• Direct allocation path — You can allocate values directly from a source to the final
target cells with no allocations to intermediate nodes of the hierarchy. For
example, you can allocate source data values specified by dimension values at the
Quarter level of a hierarchical time dimension to those at the Month level or those
specified by dimension values at the Year level to those at the Month level.

• Recursive descent hierarchy path — You can allocate values to intermediate
nodes of the hierarchy and then to final target cells. For example, you can allocate
source data values specified by dimension values at the Category level of a product
dimension to those at the Subcategory level and then to those at the ProductID
level.

• Multidimensional allocation path — You can allocate values first down one
dimension and then down another dimension. The allocations can be direct or
recursive or a combination of both. The results might vary depending on the order
of the allocation.

• Simultaneous multidimensional allocation path — You can do a direct allocation of
values simultaneously to variable cells specified by multiple dimensions by
creating a composite dimension that specifies the non-NA cells of the variable to
which you want to allocate values. You then use that composite as the basis of the
allocation.

Restrictions When Designing a RELATION Statement for Allocation

Keep the following restrictions in mind when designing a RELATION statement:

• Oracle OLAP can perform allocations on only one hierarchy in a dimension in one
execution of the ALLOCATE command. When a dimension has multiple
hierarchies, then you must supply a qdr argument to limit the relation to only one
hierarchy.

• An allocation specification must include either a RELATION statement or a
VALUESET statement.

Chapter 9
ALLOCMAP

9-94

• Only one RELATION statement or VALUESET statement may be used for each
dimension in the allocation specification.

Locking Cells in the Allocation Path

Sometimes you want a cell to retain its existing value and to not be affected by an
allocation. You can lock a value of the hierarchy of the dimension and thereby remove
that value from the allocation path.When you lock a value above the detail level in a
hierarchy, then you remove the branch of the hierarchy below that value from the
allocation. To lock a value, use the PROTECT argument to the RELATION statement.

For example, when you want to allocate a yearly budget that you revise monthly, then
you would set the value of the budget at the Year level of the time dimension hierarchy.
You would allocate data to the elements that are at the Month level. As the year
progresses, you would enter the actual data for a month and then lock that element
and reallocate the remaining yearly budget value to see the new monthly targets that
are required to meet the annual goal.

When you lock an element, you can specify whether the source value is renormalized.
By default, when you lock an element of the hierarchy, the value of the cell of the
target variable specified by that element is subtracted from the source value and the
remainder is allocated to the target cells. When you do not want the source
renormalized during the allocation, specify NONORMALIZE after the PROTECT
argument.

Examples

For an example of using RELATION statements in an allocation statement, see the
examples in the ALLOCMAP command, especially Example 9-40.

SOURCEVAL
Within an allocation specification, a SOURCE VAL statement specifies the value that
the ALLOCATE command assigns to a source cell in an allocation operation after it
successfully allocates the value that the cell contained before the allocation.

The default value of SOURCEVAL is NA, which means that ALLOCATE sets the value
of each of the allocated source cells to NA following the allocation. When you specify
CURRENT as the SOURCEVAL, then the allocated source cells retain the values that
they had before the allocation. When you specify ZERO as the SOURCEVAL, then
ALLOCATE assigns a zero value to each source cell that is allocated.

Syntax

SOURCEVAL [CURRENT|ZERO|NA]

Parameters

CURRENT
Specifies that the value of a source cell after the allocation equals its value before the
allocation.

ZERO
Specifies that the value of a source cell after the allocation is zero.

NA
Specifies that the value of a source cell after the allocation is NA. (Default value.)

Chapter 9
ALLOCMAP

9-95

VALUESET
Within an allocation specification, a VALUESET statement specifies the target
dimension values of an allocation. A dimensioned valueset can be used to specify the
allocation targets for an entire non-hierarchical dimension such as a measure or line
dimension.

Note:

Keep the following restrictions in mind:

• An allocation specification must include at least one RELATION statement
or a VALUESET statement.

• You can only specify one RELATION statement or VALUESET statement
for each dimension specified in the allocation specification.

Syntax

VALUSET vs-name[(nondimvalueset)| qdr...] OPERATOR operator | opvar –
 [NAOPERATOR text -exp] [REMOPERATOR text -exp] - [ARGS [FLOOR
floorval] [CEILING ceilval] – [MIN minval] [MAX maxval] – [ADDT [{TRUE|
FALSE} | ASSIGN] – [{PROTECTRW| PROTECTW} [NONORMALIZE]
lockvalueset] – [WEIGHTBY [ADD] weightobj [WNAFILL nafillval]] | -
 [WEIGHTBY WEIGHTVAR wobjr]]

Parameters

vs-name
Specifies the name of a valueset object that specifies the values of a dimension which
are the path of allocation. The cells in the target variable identified by the values in vs-
name receive the allocated data.

nondimvalueset
When vs-name is a dimensioned valueset, specifies a nondimensioned valueset that
is the status used to loop the valueset dimension. When you do not include
nondimvalueset or qdr, Oracle OLAP uses the default logical order of the dimensions,
not its current status.

qdr
When vs-name is a non-dimensioned valueset, one or more qualified data references
that specify the dimension values to use when allocating data.

OPERATOR operator
The operator argument after the OPERATOR keyword is a text expression that is an
operator type described in RELATION (for allocation). The operator type specifies the
method of the allocation. The method determines the cells of the target variable for
the vs-name relation to which ALLOCATE assigns a value. Unless you have specified
a different status using dimorder valueset, for the FIRST, LAST, HFIRST, and HLAST
operators, ALLOCATE uses the default logical order of the allocation dimension to
determine the cell. There is no default operator for allocation.

Chapter 9
ALLOCMAP

9-96

OPERATOR opvar
The opvar argument after OPERATOR keyword specifies a TEXT variable that
specifies different the operation for each of the values of a dimension. The values of
the variable are the allocation operators described in RELATION (for allocation). An
operator variable is used to change the allocation operator with the values of one
dimension. The opvar argument is used with the following types of dimensions:

• Measure dimension -- Changes the allocation method depending upon the
variable being allocated. The values of the measure dimension are the names of
the variables to be allocated. It dimensions a text variable whose values identify
the operation to be used to allocate each measure. The allocation specification
must include a MEASUREDIM (for allocation) statement that identifies the
measure dimension.

• Line item dimension -- Changes the allocation method depending upon the line
item being allocated. The line item dimension is typically non-hierarchical and
identifies financial allocations. The line item dimension is used both to dimension
the data variable and to dimension a text variable that identifies the operation to
be used to allocate each item. The operation variable is typically used to allocate
line items over time.

The opvar argument cannot be dimensioned by the dimension it is used to allocate.
For example, when you want to specify different operations for the geography
dimension, then opvar cannot be dimensioned by geography.

Tip:

To minimize the amount of paging for the operator variable, define the opvar
variable as type of TEXT with a fixed width of 8.

NAOPERATOR text-exp
The operator after the NAOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when it encounters an NA or lock-based deadlock. Valid
operators are HFIRST, HLAST, and HEVEN which are described in RELATION (for
allocation).

REMOPERATOR text-exp
The operator after the REMOPERATOR keyword specifies the operator that the
ALLOCATE operation uses when storing a remainder produced by an allocation. For
example, assume you allocate the INTEGER 10 to three cells at the same level in a
hierarchy, there is a remainder of 1. The REMOPERATOR specifies where you want
the allocation operation to store this remainder. Valid operators for REMOPERATOR
are MIN, MAX, FIRST, HFIRST, LAST, and HLAST which are described in
RELATION (for allocation).

ARGS
Indicates that additional arguments specify additional parameters for the allocation
operation. All of these arguments apply uniformly to the valueset.

FLOOR floorval
Specifies that when an allocated target value falls below the value specified in
floorval, Oracle OLAP stores the value as NA.

Chapter 9
ALLOCMAP

9-97

CEILING ceilval
Specifies that when an allocated target value exceeds the value specified in ceilval,
then Oracle OLAP stores the value as NA.

MIN minval
Specifies that when an allocated target value falls below the value specified minval,
then Oracle OLAP stores the value of minval in the target.

MAX maxval
Specifies that when an allocated target value exceeds the value specified maxval,
then Oracle OLAP stores the value of maxval in the target

ADDT {TRUE|FALSE}
The ADDT phrase specifies the sign of the addition when Oracle OLAP adds target
cells to the existing contents of the target cell:

• TRUE specifies that the results of the allocation are added to the target. (Default)

• FALSE specifies that the results of the allocation are subtracted from the target cell.

PROTECTRW lockvalueset
Specifies that the dimension members specified by lockvalueset cannot be the targets
or source values of allocation. Using this phrase allows users to specify an allocation
"lock" on a hierarchical subtree. The current contents of the target cell are subtracted
from the source and the source and basis is renormalized.

PROTECTW lockvalueset
Specifies that the dimension members specified by lockvalueset cannot be the targets
of an allocation. However, these target cells are used as the source values for
subsequent steps in the allocation process. When the SOURCEVAL statement is set
to 0 (zero) or NA and these values are reallocated, they are set appropriately.

NONORMALIZE
Specifies that Oracle OLAP should not renormalize the source and basis based on
the protected cells. Specifying this keyword has an effect similar to removing a sub-
branch from a hierarchy. Frequently, when you use this keyword, if, after allocation,
data is aggregated from the allocation level, the source cell probably does not contain
the original allocated amount

WEIGHTBY weightobj
Specifies a weight that should be applied to the target cell just before it is stored.
Using this phrase allows for processes such and unit or currency conversion. Value
weight objects are variables, formulas and relations. When a relation is used, the
target variable is referenced based on the weight relation, and the cell is applied the
allocation target cell.

ADD
Specifies that Oracle OLAP adds the value of the weight to the allocation target rather
than using multiplication.

WNAFILL nafillval
Specifies the default value of the weight variable that should be used. When you do
not include an ADD clause, the default value of nafillval is 1. When you include the
ADD clause, the default value of nafillval is 0 (zero).

Chapter 9
ALLOCMAP

9-98

WEIGHTBY WEIGHTVAR wobj
Specifies that the allocated data should be weighted. The wobj argument is the name
of a variable, relation, or formula whose values are the weights that Oracle OLAP
applies to the allocated data just before it is stored in the target cell. Using this clause
allows for processes such as unit or currency conversion and enables you to use
different weight objects with the different operators specified in the operator variable
you created for the OPERATOR opvar clause.

ALLSTAT
The ALLSTAT program sets the status of all dimensions in the current analytic
workspace to all their values. ALLSTAT does not, however, set the status of the NAME
dimension.

Syntax

ALLSTAT

Usage Notes

Limiting One Dimension

You can set the status of a single dimension to all its values with the LIMIT command.

ALLSTAT and the LOCK_LANGUAGE_DIMS Option

When LOCK_LANGUAGE_DIMS is TRUE, ALLSTAT ignores language dimensions.
When LOCK_LANGUAGE_DIMS is FALSE, ALLSTAT treats language dimensions the
same way it treats other dimensions.

See Also:

$DEFAULT_LANGUAGE property and LOCK_LANGUAGE_DIMS option

Examples

Example 9-43 Limiting to All Values

The following STATUS statement produces the current status of the dimensions of the
variable UNITS.

status units

The current status of MONTH is:
Jul96 TO Dec96
The current status of PRODUCT is:
Tents TO Racquets
The current status of DISTRICT is:
DALLAS

After you execute an ALLSTAT statement the same STATUS statement produces this
output.

The current status of MONTH is:
ALL
The current status of PRODUCT is:

Chapter 9
ALLSTAT

9-99

ALL
The current status of DISTRICT is:
ALL

ARGUMENT
Within an OLAP DML program, the ARGUMENT statement declares an argument that
is expected by the program. Within the program, the argument is stored in a structure
similar to a variable or valueset. The argument is initialized with the value that was
passed when the program was invoked. An argument exists only while the program is
running.

The ARGUMENT statement is used only in programs, and it must precede the first
executable line in the program. Be careful to distinguish the ARG abbreviation of the
ARGUMENT statement from the ARG function.

Syntax

ARGUMENT name {datatype|dimension|VALUESET dim}

Parameters

name
The name by which the argument is referenced in the program. An argument cannot
have the same name as a local variable or valueset. You name an argument
according to the rules for naming analytic workspace objects (see the DEFINE
command).

datatype
The data type of the argument, which indicates the kind of data to be stored. You can
specify any of the data types that are listed and described in the DEFINE VARIABLE
entry. Also, when you want to the program to be able to receive an argument without
converting it to a specific data type, you can also specify WORKSHEET for the data type.

Note:

When you declare an argument to be of type NTEXT, and a TEXT value is
passed into the program, Oracle OLAP converts the TEXT value to NTEXT.
Similarly, when you declare an argument to be of type TEXT, and an NTEXT
value is passed into the program, Oracle OLAP converts the NTEXT value to
TEXT. Data can be lost when NTEXT is converted to TEXT.

dimension
The name of a dimension, whose value is contained in the argument. The argument
holds a single value of the dimension. Assigning a value that does not currently exist
in the dimension causes an error.

VALUESET dim
Indicates that name is a valueset. The keyword dim specifies the dimension for which
the valueset holds values. Argument valuesets can be used within the program in the
same way you would use a valueset in the analytic workspace.

Chapter 9
ARGUMENT

9-100

Usage Notes

The Life Span of an Argument

An argument exists only while the program in which it is declared is running. When the
program terminates, the argument ceases to exist and its value is lost. Therefore, an
argument is not an analytic workspace object.

A program can terminate when a RETURN or SIGNAL statement, or at the last line of
the program executes. When the program calls a subprogram, the original program is
temporarily suspended and the argument still exists when the subprogram ends and
control returns to the original program. A program that calls itself recursively has
separate arguments for each running copy of the program.

Declaring Arguments that Are Passed Into a Program

When declaring arguments that are passed into a program special considerations
apply.

Arguments Passed by Value

Arguments are passed into a program by value. Consequently, the called program is
given only the value of an argument, without access to any analytic workspace object
to which it might be related. Therefore, you can change an argument value within the
called program without affecting any value outside the program. You can think of an
argument variable or valueset as a conveniently initialized local variable or local
valueset.

Argument Processing for a Function

When a program is invoked either with a CALL statement or as a function, the
following two-step process occurs:

1. The specified data types are established. Argument expressions specified by the
calling program are evaluated left to right, and their data types are identified. An
expression representing a dimension value can be a text (TEXT or ID), numeric
(INTEGER, DECIMAL, and so on), or RELATION value. An error in one argument
expression stops the process.

2. Each specified data type is matched with the declared data type. Argument
expressions are matched positionally with the declared arguments. The first
argument expression is matched with the first declared argument, the second
argument expression with the second argument, and so on. Each expression is
converted in turn to the declared data type of the declared argument.

When an argument is declared as a dimension value, the matching value passed from
the calling program can be TEXT or ID (representing a value of the specified
dimension), numeric (representing a logical dimension position), or RELATION
(representing a physical dimension position). The RELATION method is the way
Oracle OLAP passes along dimension values that are the result of evaluating a
dimension name or relation name used as the matching value. When the matching
value is a noninteger numeric value (for example, DECIMAL), it is rounded to the nearest
INTEGER value to represent a logical dimension position.

When an argument is declared as something other than a dimension value, and the
matching value from the calling program is a RELATION value, an error occurs. When
you want to pass a RELATION value and receive it as a TEXT argument, use
CONVERT to convert the value in the program's argument list.

Chapter 9
ARGUMENT

9-101

When an argument is declared as a valueset of a dimension, only the name of a
valueset of that dimension is accepted as an argument.

When an error occurs in either the first or second step, the program is not executed.

Argument Processing for a Command

When a program is invoked as a standalone command with its arguments not
enclosed by parentheses, the arguments are matched positionally with the declared
arguments. The called program can reference the specified arguments either as
declared arguments or through the ARG (n), ARGS, and ARGFR (n) functions. In this
situation, the arguments are passed as text strings, not by value.

Extra Arguments

When the calling program specifies more arguments than there are declarations in the
called program, the extra arguments are ignored. When the calling program specifies
fewer arguments than there are declarations in the called program, the extra
arguments are given NA values.

Argument Name that Duplicate the Names of Analytic Workspace Objects

Ordinarily, when you give an argument the same name as an analytic workspace
object, the argument (not the analytic workspace object) is referenced within the
program. Exceptions to this rule occur only when the statement in which the reference
is made requires an analytic workspace object as an argument.

Examples

In the custom.rpt program, you could use the following statements to produce a report
of this expression.

ARGUMENT rptexp TEXT
REPORT &rptexp

For an example of using ampersand substitution to pass multiple dimension values,
see Example 10-18.

Example 9-44 Passing an Argument to a User-Defined Function

Sometimes verifying user input to the GET function can become complicated. The
usual method involves a line of code such as the following one.

SHOW GET(INT VERIFY VALUE GT 0 AND VALUE LT 100 -
 IFNOT 'The value must be between 1 and 100')

You can create a user-defined function to make the GET expression simpler. For
example, the following program can be used as a function to check for values between
0 and 100.

DEFINE verit PROGRAM BOOLEAN
PROGRAM
 ARGUMENT uservalue INT
 TRAP ON haderror NOPRINT
 IF uservalue GT 100
 THEN SIGNAL toobig 'The value must be 100 or smaller.'
 ELSE IF uservalue LT 0
 THEN SIGNAL toosmall 'The value must be 0 or greater.'
 RETURN TRUE
haderror:

Chapter 9
ARGUMENT

9-102

 RETURN FALSE
END

The following GET expression uses the verit function.

SHOW GET(INT VERIFY VERIT(VALUE) IFNOT ERRORTEXT)

Example 9-45 Passing Multiple Arguments

Suppose, in the product.rpt program, that you want to supply a second argument that
specifies the column width for the data columns in the report. In the product.rpt
program, you would add a second ARGUMENT statement to declare the INTEGER
argument to be used in setting the value of the COLWIDTH option.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
NASPELL = natext
COLWIDTH = widthamt

To specify eight‐character columns, you could run the product.rpt program with the
following statement.

CALL product.rpt ('Missing' 8)

When the product.rpt program also requires the name of a product as a third
argument, then in the product.rpt program you would add a third ARGUMENT
statement to handle the product argument, and you would set the status of the product
dimension using this argument.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod PRODUCT
NASPELL = natext
COLWIDTH = widthamt
LIMIT product TO rptprod

You can run the product.rpt program with the following statement.

CALL product.rpt ('Missing' 8 'TENTS')

In this example, the third argument is specified in uppercase letters with the
assumption that all the dimension values in the analytic workspace are in uppercase
letters.

Example 9-46 Using the ARGUMENT Statement

Suppose you are writing a program, called product.rpt. The product.rpt program
produces a report, and you want to supply an argument to the report program that
specifies the text that should appear for an NA value in the report. In the product.rpt
program, you can use the declared argument natext in an ARGUMENT statement to
set the NASPELL option to the value provided as an argument.

ARGUMENT natext TEXT
NASPELL = natext

To specify Missing as the text for NA values, you can execute the following statement.

CALL product.rpt ('Missing')

Chapter 9
ARGUMENT

9-103

In this example, literal text enclosed in single quotes provides the value of the text
argument. However, any other type of text expression works equally well, as shown in
the next example.

DEFINE natemp VARIABLE TEXT TEMP
natemp = 'Missing'
CALL product.rpt (natemp)

Example 9-47 Passing the Text of an Expression

Suppose you have a program named custom.rpt that includes a REPORT statement,
but you want to be able to use the program to present the values of an expression,
such as sales - expense, and individual variables.

custom.rpt 'sales - expense'

Note that you must enclose the expression in single quotation marks. Because the
expression contains punctuation (the minus sign), the quotation marks are necessary
to indicate that the entire expression is a single argument.

Example 9-48 Passing Workspace Object Names and Keywords

Suppose you design a program called sales.rpt that produces a report on a variable
that is specified as an argument and sorts the product dimension in the order that is
specified in another argument. You would run the sales.rpt program by executing a
statement like the following one.

sales.rpt units d

In the sales.rpt program, you can use the following statements.

ARGUMENT varname TEXT
ARGUMENT sortkey TEXT
SORT product &sortkey &varname
REPORT &varname

After substituting the arguments, these statements are executed in the sales.rpt
program.

SORT product D units
REPORT units

AW command

The syntax of the AW command varies depending on the task that you want to
perform.

AW ALIASLIST
AW ATTACH
AW CREATE
AW DELETE
AW DETACH
AW FREEZE
AW LIST
AW PURGE CACHE
AW ROLLBACK TO FREEZE

Chapter 9
AW command

9-104

AW SEGMENTSIZE
AW THAW
AW TRUNCATE

Usage Notes

Triggering Program Execution When an AW Statement Executes

When a program named TRIGGER_AW exists in an analytic workspace, the execution
of an AW statement for that workspace automatically executes that program. See
"Trigger Programs" and the "TRIGGER_AW" program for more information.

When an AW ATTACH statement executes Oracle OLAP checks for other programs
as well. See "Startup Programs" for more information.

Options Related to the AW Statement

"Analytic Workspace Options" lists the options that you might want to reset before you
either create or attach an analytic workspace.

EXPRESS Workspace

When your database is installed with the OLAP option, the EXPRESS workspace is
always attached in read-only mode in your session. It never automatically becomes
the current workspace, even when it is the first or only workspace in your workspace
list, because it is for internal use by Oracle OLAP. You can make the EXPRESS
workspace the current workspace by explicitly attaching it, but this is not
recommended. You cannot detach the EXPRESS workspace.

AW ALIASLIST
The AW ALIASLIST command assigns or deletes one or more workspace alias for the
specified attached workspace or, when no workspace is specified, for the current
workspace. ALIAS indicates that the alias or aliases should be assigned, and
UNALIAS indicates that the alias or aliases should be deleted. All aliases for a given
workspace are automatically deleted when you detach an analytic workspace.

Syntax

AW ALIASLIST [workspace] {ALIAS|UNALIAS} alias1, alias2, ...

Parameters

workspace
The name of the analytic workspace. You can specify either an analytic workspace
name or an analytic workspace alias, depending on the keywords you are using.

ALIAS
Assigns one or more workspace alias for the specified attached workspace or, when
no workspace is specified, for the current workspace. ALIAS indicates that the alias or
aliases should be assigned, and UNALIAS indicates that the alias or aliases should
be deleted.
All aliases for a given workspace are automatically deleted when you detach an
analytic workspace. Therefore, each time you attach an unattached workspace, you
must reassign its aliases.

Chapter 9
AW command

9-105

UNALIAS
Deletes one or more workspace alias for the specified attached workspace or, when
no workspace is specified, for the current workspace.

alias1
alias2
The alias name for the analytic workspace. Alias names:

• Can be from 1 - 26 characters in length. All characters must come from the
database character set and must be letters, numerals, or underscores.

• Cannot begin with a numeral and cannot be reserved words in the DML. (Use
RESERVED to identify reserved words.)

Examples

Example 9-49 Assigning an Alias

The following statement assigns sdemo as an alias for the demo workspace, which was
created by a user named scott. The full name of the workspace is specified because
the current user is not scott.

AW ALIASLIST scott.demo ALIAS sdemo

In the following statement, the user named scott assigns mydemo as an alias for the
same workspace.

AW ALIASLIST demo ALIAS mydemo

AW ATTACH
The AW ATTACH command attaches an analytic workspace to your session. Oracle
OLAP makes the specified workspace the current one. Previously attached
workspaces move down in the list of attached workspaces to make room for the new
current one at the top of the list. When there is a cached version of the requested
analytic workspace then the cached version is moved back to the list of attached
workspaces unless, of course, the current version of the analytic workspace is more
recent than the cached version.

When you attach multiple workspaces, the code and data in all the attached
workspaces are available during your session. The current workspace is first on the
workspace list, which Oracle OLAP keeps for your session.

Note:

When an AW ATTACH statement executes, it can trigger the execution of
several programs. See "Startup Programs" for more information.

Syntax

AW ATTACH workspace - [ONATTACH [progname]|NOONATTACH] - [RO
[THAW]] | RW | RWX | MULTI [THAW]] [WAIT | NOWAIT]] - [AUTOGO
[progname]|NOAUTOGO] - [AFTER workspace|BEFORE workspace|LAST|
FIRST] - [PASSWORD password]

Chapter 9
AW command

9-106

Parameters

workspace
The name of the analytic workspace. When you use the ATTACH keyword to attach
an analytic workspace that is not already attached, you must specify the workspace
name. Again this is because no alias has been assigned using AW ALIAS LIST.
However, when you use the ATTACH keyword on an already attached workspace (for
example, to change its position in the workspace list), you can assign an alias using
AW ALIAS LIST and then use that assigned alias.

ONATTACH [progname]
(Default) When you do not specify progname, the ONATTACH clause automatically
runs a program named ONATTACH if one exists in the attached workspace. You can
get the same results by not specifying NOONATTACH.

NOONATTACH
Specifying NOONATTACH indicates that when a program named ONATTACH exists in
the workspace, Oracle OLAP should not execute that program.

AUTOGO [progname]
(Default) When you do not specify progname, the AUTOGO clause automatically runs
a program named AUTOGO if one exists in the attached workspace. You can get the
same results by not specifying NOAUTOGO.
When you do specify progname, the AUTOGO clause automatically runs the specified
program in the attached program.

NOAUTOGO
Specifying NOAUTOGO indicates that when a program named AUTOGO exists in the
workspace, Oracle OLAP should not execute that program.

RO
(Default) Specifies that the workspace is attached in read-only access mode. Users
can make private changes to the data in the workspace to perform what-if analysis but
cannot commit any of these changes.
An analytic workspace that is attached read-only can be accessed simultaneously by
several sessions. The read-only attach mode is compatible with the read/write and
multiwriter access mode. A user can attach an analytic workspace in read-only mode
when other users have the workspace attached in either read/write and multiwriter
access mode. Likewise, a user cannot attach an analytic workspace in read/write
exclusive mode when another user has it attached in read-only mode. When you
attach an analytic workspace with read-only access, Oracle OLAP executes a
program called PERMIT_READ, when it finds one in the workspace.

THAW
Specifies that Oracle OLAP attach the current view of an analytic workspace that was
frozen using an AW FREEZE command without the NOTHAW keyword.

RW
Specifies that the workspace is attached in read/write access mode. Only one user
can have an analytic workspace open in read/write at a time. The user has to commit
either all or none of the changes made to the workspace.
An analytic workspace that is attached read/write non-exclusive can be accessed
simultaneously by several sessions. The read/write non-exclusive attach mode is only
compatible with the read-only access mode. A user can attach an analytic workspace

Chapter 9
AW command

9-107

in read/write mode when other users have the workspace attached in read-only mode;
however, a user cannot attach an analytic workspace in read/write mode when
another user has it attached in any other mode. Likewise, a user cannot attach an
analytic workspace in any mode other than read-only when another user has it
attached in read/write non-exclusive mode. When you attach an analytic workspace
with read/write access, Oracle OLAP executes a program called PERMIT_WRITE,
when it finds one in the workspace.

RWX
Specifies that the workspace is attached in read/write exclusive access mode. Only
one user can have an analytic workspace open in read/write exclusive at a time. The
user has to commit either all or none of the changes made to the workspace.
An analytic workspace that is attached read/write exclusive cannot be accessed by
any other sessions. The read/write exclusive attach mode is not compatible with any
other access modes. A user cannot attach an analytic workspace in read/write
exclusive mode when another user has it attached in any mode. Likewise, a user
cannot attach an analytic workspace in any other mode when another user has it
attached in read/write exclusive mode. When you attach an analytic workspace with
read/write access, Oracle OLAP executes a program called PERMIT_WRITE, when it
finds one in the workspace.

MULTI
Specifies that the workspace is attached in multiwriter access mode. An analytic
workspace that is attached in multiwriter mode can be accessed simultaneously by
several sessions. In multiwriter mode, users can simultaneously modify the same
analytic workspace in a controlled manner by specifying the attachment mode (read-
only or read/write) for individual variables, relations, valuesets, and dimensions.

See Also:

"Managing Analytic Workspaces Attached in Multiwriter Mode"

The multiwriter attach mode is only compatible with read-only and multiwriter modes.
A user cannot attach an analytic workspace in multiwriter mode when another user
has it attached in read/write or exclusive modes. Likewise, a user cannot attach an
analytic workspace in read/write or exclusive mode when another user has it attached
in multiwriter mode.

WAIT
NOWAIT
Specifies whether Oracle OLAP waits for an analytic workspace to become available
for access when you request access to an analytic workspace that is being used with
read/write exclusive access or when you request read/write access to an analytic
workspace that is being used with read/write non-exclusive access. NOWAIT (the
default) causes Oracle OLAP to produce an error message indicating that the
workspace is unavailable. When you specify WAIT, Oracle OLAP waits for the
workspace to become available for access. The number of seconds that Oracle OLAP
waits for access depends on the value of the Oracle OLAP AWWAITTIME option.

FIRST
(Default) Makes the workspace you are attaching the current workspace in the
workspace list.

Chapter 9
AW command

9-108

LAST
Puts the workspace after the current workspace in the workspace list and before the
EXPRESS workspace. When there are other workspaces attached before the EXPRESS
workspace, the specified workspace is attached after them. When there are no
workspaces before the EXPRESS workspace, LAST makes the specified workspace the
current one. LAST ignores any workspaces after the EXPRESS workspace.

AFTER workspace
BEFORE workspace
Let you specify the position in the workspace list of the newly attached workspace
relative to an analytic workspace that is attached. Use AFTER, rather than LAST, to
attach an analytic workspace after the EXPRESS workspace. When specifying BEFORE
puts the workspace first, the workspace becomes the current one.
The order of the workspace list determines the order in which workspaces are
searched when Oracle OLAP looks for programs or objects named in programs.

PASSWORD password
Specifies a password to be checked in a startup program to give or deny access to
the workspace being attached. See "Startup Programs".

Usage Notes

Using ATTACH on an Already-Attached Workspace

Reattaching an attached workspace with an AW ATTACH workspace statement does
not cause Oracle OLAP to bring a new copy of the workspace into working memory.
Instead, Oracle OLAP takes the following actions:

1. Makes the workspace the current workspace.

2. Runs an Autogo program, when you specify the AUTOGO keyword

However, when you have made any changes to data during the session, they are not
discarded when you reattach an active workspace. Furthermore, current aliases for the
workspace are not changed.

Managing Analytic Workspaces Attached in Multiwriter Mode

You use the following commands to manage objects in multiwriter mode:

• ACQUIRE -- Acquires and (optionally) resynchronizes the specified objects so that
their changes can be updated and committed.

• RELEASE -- Changes the access mode of the specified variables, relations,
valuesets, or dimensions from read/write (acquired) access to read-only access.

• RESYNC -- Drops private changes for the specified read-only objects and
retrieves the data from the latest visible generations.

• REVERT-- Drops all changes made to the specified objects since they were last
updated, resynchronized (using a RESYNC statement), or acquired using
ACQUIRE with the RESYNC phrase, or since the analytic workspace was
attached.

The following considerations apply:

• Only one user can acquire an object in read/write mode at a time. You can first
acquire an object in read-only mode, and then, assuming another user has not
also acquired it in read-only mode, you can acquire it in read/write mode without
releasing it first. However, once another user has acquired an object in read-only
mode, you cannot acquire the same object in read/write mode until the other user

Chapter 9
AW command

9-109

releases the object. When a specified object has been acquired by another user or
when your read-only generation for a specified object is not the latest generation
for the object, an acquire fails.

• You must resynchronize all variables, valuesets, and relations that share a
composite dimension at the same time.

• When resynchronizing objects, keep in mind the logical relationship of different
objects to avoid losing the logical consistency of the data by promoting some
objects, but not others to a new generation.

• Objects that share a composite dimension can be resynchronized separately when
all such objects that are not being resynchronized are either unchanged or
acquired.

• You cannot update a variable if any of its dimensions have been acquired and
modified.

• You must acquire a dimension before you maintain it.

• If you release a dimension, then an automatic revert occurs.

• Releasing objects that have been updated does not allow others to acquire the
object until you commit or roll back the transaction. It may still be useful to release
an object that has been updated before a commit when one wants to make further
what-if changes and later update all acquired variables

• Reverting a dimension after adding dimension values is not recommended
because it can result in suboptimal space allocation for variables dimensioned by
that dimension

• If an acquired variable is dimension by an acquired dimension that has been
maintained then you cannot update that variable until after you update or release
the dimension.

• You cannot delete dimension values.

Attaching a Frozen Analytic Workspace

Once an analytic workspace is frozen, attaching an analytic workspace in RO and
MULTI attaches the frozen view of the workspace unless you specify the THAW
keyword to request that the current view be attached. (When you attach in RW or RW,
you always get the latest generation.)

When you attach the current view, the state of the analytic workspace may not
necessarily be consistent if there is a multi-step build with intermediate commits. For
example, assume that there is an analytic workspace that has two variables: actual
and budget. Assume also that you have populated actual and then issued UPDATE
and COMMIT commands. At this point in time, there is data only in actual.

When you are attaching a frozen analytic workspace in read multi mode, you can use
the multi-writer commands (RESYNC and ACQUIRE) to retrieve up-to-date versions of
the data whether or not you have specified AW FREEZE with the NOTHAW keyword.

Conflicts between Workspace Names and Aliases

You cannot attach an analytic workspace that is in your schema and whose name is
the same as an assigned alias. Similarly, you cannot assign an alias that duplicates
the name of an attached workspace that is in your schema. Furthermore, you cannot
assign the same alias to two attached workspaces.

Chapter 9
AW command

9-110

In an AW DELETE statement, when you specify an analytic workspace name (for an
analytic workspace that is not attached) and the name is the same as an assigned
alias, Oracle OLAP interprets the name as an alias and reports an error.

Examples

Example 9-50 Startup Programs

Assume that you have created an analytic workspace named awtest that contains five
programs named PERMIT_READ, PERMIT_WRITE, ONATTACH, MYATTACH, and AUTOGO that have
the following definitions.

DEFINE PERMIT_READ PROGRAM BOOLEAN
PROGRAM
SHOW 'permit_read program executing'
AW LIST
RETURN YES
END

DEFINE PERMIT_WRITE PROGRAM BOOLEAN
PROGRAM
SHOW 'permit_write program executing'
AW LIST
RETURN YES
END

DEFINE ONATTACH PROGRAM BOOLEAN
PROGRAM
SHOW 'onattach program executing'
AW LIST
RETURN YES
END

DEFINE MYATTACH PROGRAM BOOLEAN
PROGRAM
SHOW 'myattach program executing'
AW LIST
RETURN YES
END

DEFINE AUTOGO PROGRAM
PROGRAM
SHOW 'autogo program executing'
AW LIST
END

The programs that execute when you attach awtest vary depending on the attachment
mode and keywords in the AW ATTACH statement:

• When you attach awtest in read/write mode using the following statements.

AW DETACH awtest
AW ATTACH awtest RW

First the PERMIT_WRITE program executes, and then the ONATTACH program executes.

• When you attach awtest in read-only mode using the following statements.

AW DETACH axuserwtest
AW ATTACH awtest NOONATTACH RO

Chapter 9
AW command

9-111

Only the PERMIT_READ program executes.

• When you attach awtest in read-only mode using the following statements.

AW DETACH awtest
AW ATTACH awtest RO

First the PERMIT_READ program executes, and then the ONATTACH program executes.

• When you attach awtest in read-only mode using the following statements.

AW DETACH awtest
AW ATTACH awtest ONATTACH myattach RO

First the PERMIT_READ program executes, and then the MYATTACH program executes.

• When you attach awtest in multi mode using the following statements.

AW DETACH awtest
AW ATTACH awtest MULTI

First the PERMIT_WRITE program executes, and then the ONATTACH program executes.

• When you attach awtest in read-only mode using the following statements.

AW DETACH awtest
AW ATTACH awtest AUTOGO

First the PERMIT_WRITE program executes. Secondly, the ONATTACH program
executes. Finally, the AUTOGO program executes.

Example 9-51 Attaching an Analytic Workspace Using an ONATTACH Program

Suppose you have two workspaces of sales data, one for expenses and one for
revenue. You have a third workspace called analysis contains programs to analyze the
data. Your analysis workspace has the following ONATTACH program to attach the other
two.

DEFINE onattach PROGRAM
PROGRAM
AW ATTACH expenses RW AFTER analysis
AW ATTACH revenues RW AFTER analysis
END

To run the ONATTACH program, attach the analysis workspace with the following
statement.

AW ATTACH analysis

When you issue an AW LIST statement, you can see from the following output, that all
three of your analytic workspaces are attached.

ANALYSIS R/W CHANGED XUSER.ANALYSIS
REVENUE R/W UNCHANGED XUSER.REVENUES
EXPENSES R/W UNCHANGED XUSER.EXPENSES
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW CREATE
The AW CREATE command creates a new workspace and make it the current
workspace in your session.

Chapter 9
AW command

9-112

Oracle OLAP automatically executes a COMMIT as part of its procedure for creating
an analytic workspace. Previously attached workspaces move down in the list of
attached workspaces to make room for the new one at the top of the list.

Also, if the current analytic workspace is creating a different analytic workspace and
the current workspace contains a program named TRIGGER_AW, then the
TRIGGER_AW program executes.

Note:

Before you can create an analytic workspace you need the appropriate SQL
GRANT privileges as outlined in "Privileges Needed to Create and Delete
Analytic Workspaces".

Syntax

AW CREATE workspace [position] [UNPARTITIONED|PARTITIONS n] -
[TABLESPACE tblspname [SEGMENTSIZE n [K, M, or G]]]

where position specifies the workspace's position in the workspace list and is one of
the following values. (FIRST is the default.)

AFTER workspace
BEFORE workspace
LAST

FIRST

Parameters

workspace
The name of the analytic workspace. Workspace names:

• Can be from 1 - 26 characters in length. All characters must come from the
database character set and must be letters, numerals, or underscores.

• Cannot begin with a numeral and cannot be reserved words in the DML. (Use
RESERVED to identify reserved words.)

FIRST
(Default) Makes the workspace you are attaching the current workspace.

LAST
Puts the workspace after the current workspace and before the EXPRESS workspace.
When there are other workspaces attached before the EXPRESS workspace, the
specified workspace is attached after them. When there are no workspaces before the
EXPRESS workspace, LAST makes the specified workspace the current one. LAST
ignores any workspaces after the EXPRESS workspace.

AFTER
BEFORE
Specify the position of the newly attached workspace relative to an analytic
workspace that is already attached. Use AFTER, rather than LAST, to attach an
analytic workspace after the EXPRESS workspace. When specifying BEFORE puts the
workspace first, the workspace becomes the current one.

Chapter 9
AW command

9-113

The order of the workspace list determines the order in which workspaces are
searched when Oracle OLAP looks for programs or objects named in programs.

UNPARTITIONED
Specifies that the relational table that is the analytic workspace is not a partitioned
table.

PARTITIONS n
Specifies that the relational table that is the analytic workspace is a hash partitioned
table with n partitions. Specifying a value of 0 (zero) for n is the same as specifying
UNPARTITIONED. The default value of n is 8.

TABLESPACE tblspname
Specifies the name of an Oracle Database tablespace in which the analytic
workspace is created.

Tip:

Oracle suggests that you use the TABLESPACE argument to create your
workspace in a tablespace that has been prepared for this purpose. Ask your
DBA which tablespace use.

SEGMENTSIZE n [K, M, or G]
With the CREATE keyword, this argument sets the maximum size of each segment
for the workspace being created. When you do not specify K, M, or G, the value you
specify for n is interpreted as bytes. When you specify K, M, or G after the value n, the
value is interpreted as kilobytes, megabytes, or gigabytes, respectively.

Usage Notes

Analytic Workspace Permissions

You can add security to analytic workspaces at several levels:

• At the relational table level using SQL GRANT statements

• At the analytic workspace level and workspace object level using different
attachment modes and startup programs. See the AW ATTACH command and
"Startup Programs".

Examples

Example 9-52 Creating and Starting an analytic workspace

You can use the AW command with the CREATE keyword to create and start a new
workspace.

AW CREATE mywork

AW DELETE
The AW DELETE command deletes a detached analytic workspace from the
database. It is important to note that Oracle OLAP automatically executes a COMMIT
as part of its procedure for deleting an analytic workspace. The DELETE keyword
executes successfully only when no user has the workspace attached.

Chapter 9
AW command

9-114

Note:

If the current analytic workspace is deleting a different analytic workspace and
the current workspace contains a program named TRIGGER_AW, then the
TRIGGER_AW program executes.

See Also:

AW DETACH, AW TRUNCATE

Syntax

AW DELETE workspace

Parameters

workspace
The name of the analytic workspace. You must specify the name; you cannot specify
an alias.

Usage Notes

Deleting an Unattached Workspace

When you attempt to delete an unattached workspace and the name is the same as
an assigned alias, Oracle OLAP interprets the name as an alias and reports an error.

Examples

Example 9-53 Deleting an analytic workspace

You can use the AW command with the DELETE keyword to delete an analytic
workspace.

AW DELETE mywork

AW DETACH
The AW DETACH command removes an analytic workspace from the workspace list.
When you remove the first workspace, the second workspace becomes the current
workspace (unless it is the EXPRESS workspace). When you detach an analytic
workspace, changes that were made before an UPDATE was issued remain in the
database and become permanent with the next COMMIT. When changes were made
after the UPDATE was issued, they are discarded.

Note:

When a program named TRIGGER_AW exists in the analytic workspace, the
execution of an AW DETACH statement automatically executes that program.

Chapter 9
AW command

9-115

Syntax

AW DETACH [CACHE|NOCACHE] workspace

Parameters

CACHE
Specifies that the analytic workspace is cached if there have been no changes to it
since it was attached. (Default)

NOCACHE
Specifies that the analytic workspace is not cached even if there have been no
changes to it since it was attached.

Note:

You must specify NOCACHE when you detach an analytic workspace if you
want Oracle OLAP to execute any Permission, OnAttach, or Autogo programs
the next time you attach the workspace in the same session.

workspace
The name of the analytic workspace. You can specify either an analytic workspace
name or an analytic workspace alias, depending on the keywords you are using.

Usage Notes

Determining if an Analytic Workspace Has Changed

The following statements indicate if an analytic workspace has been changed while it
was attached:

• AW function with the CHANGED keyword

• AW LIST shows the analytic workspace as unattached.

Cache Size

By default the list of cached analytic workspaces is two. In other words, by default only
two analytic workspaces can be on the cached at one time and as new workspaces
are added to the cache list, earlier workspaces are removed. For example, assume
that you have detached two analytic workspaces in the following order: 1) mywk1, 2)
mywk2. Now you issue an AW DETACH CACHE command for mywk3. Oracle OLAP
removes mywk1 from the cache and the cache list and caches mywk3 adding it to the
cache list after mywk2.

Note:

Under severe memory contention, Oracle OLAP may release memory by
emptying the cache.

You can change the size of the cache by using the event number 37372 where level is
the number of analytic workspaces to retain. Specify a level of 1024 to disable the
cache entirely. Not determined for beta: Is this information valid to regular developers?

Chapter 9
AW command

9-116

Programs Executed When an Analytic Workspace is Detached

When an analytic workspace is detached, the following programs may execute:

• If that analytic workspace being detached contains a program named
ONDETACH, the ONDETACH program executes.

• If the current analytic workspace is detaching a different analytic workspace and
the current workspace contains a program named TRIGGER_AW, then the
TRIGGER_AW program executes.

Examples

Example 9-54 Detaching an analytic workspace

You can use the AW command with the DETACH keyword to detach an analytic
workspace.

AW DETACH expense

AW FREEZE
The AW FREEZE command commits the current transaction (if any) and sets a flag
that specifies that the analytic workspace is the default attach version of the
workspace. Later, when a request is made to attach the workspace in read only or
read multi mode, Oracle OLAP attaches this flagged generation of the analytic
workspace.

Note:

You must be attached to the analytic workspace in a write mode to execute this
command.

Syntax

AW FREEZE [NOTHAW]

Parameters

NOTHAW
Specifies that you cannot specify the THAW keyword with AW ATTACH when you
attach the workspace at a later time.

Note:

Once an analytic workspace is frozen, attaching an analytic workspace in read
only or read multi mode attaches the analytic workspace as of the frozen view
unless you specify the THAW keyword with the AW ATTACH command.

Usage Notes

Freezing an Analytic Workspace

Chapter 9
AW command

9-117

Keep the following points in mind when freezing an analytic workspace:

• Only one generation of an analytic workspace can be frozen at a time

• You cannot refreeze a currently frozen analytic workspace without first thawing it
using the AW THAW command.

AW LIST
The AW LIST command sends to the current outfile a list of the active workspaces,
along with their update status.

Syntax

AW LIST

Usage Notes

Output Produced by AW LIST

The first workspace in the list is the current workspace, unless you do not have a
current workspace. The meaning of the update status, CHANGED or UNCHANGED,
depends on whether the workspace is attached with read/write or read-only access
and whether or not the workspace is being shared with other users. The update status
displayed by AW LIST is as follows:

• An unshared workspace in read/write mode -- The update status is CHANGED
when you have made changes since attaching the workspace or since your last
update.

• An unshared workspace in read-only mode -- The status is always UNCHANGED
because you cannot update it.

• A shared or unshared workspace in read/write mode -- The status is CHANGED
when you have made changes since attaching the workspace or since your last
update.

• A shared workspace in read-only mode -- The status is CHANGED when another
user has updated it since you accessed it. To access the new objects or data, you
must detach and reattach the workspace after the other user commits his or her
changes. If you keep the workspace attached, then your view of the workspace
remains unchanged.

Current Workspace

The name of the current workspace is first on the workspace list and is the name
returned by the AW(NAME) function. (See the AW function for details.) The NAME
dimension includes only the objects in the current workspace. Programs such as
AWDESCRIBE and LISTBY list only objects in the current workspace. When an
analytic workspace is active but not current, you can change and update its data, edit
and run its programs, and modify its objects.

Examples

Assume that you have just connected to Oracle OLAP using the OLAP Worksheet.
You issue an AW LIST statement that returns a value showing that the only attached
analytic workspace is EXPRESS.

Chapter 9
AW command

9-118

AW LIST
EXPRESS R/O UNCHANGED SYS.EXPRESS

Now you create an analytic workspace and issue another AW LIST statement. You can
see that both the EXPRESS analytic workspace and the newly created analytic
workspace are attached.

AW CREATE myaw
AW LIST
MYAW R/W UNCHANGED MYNAME.MYAW
EXPRESS R/O UNCHANGED SYS.EXPRESS

AW PURGE CACHE
The AW PURGE CACHE command detaches any analytic workspaces that are
currently in the cache.

Syntax

AW PURGE CACHE

AW ROLLBACK TO FREEZE
The AW ROLLBACK TO FREEZE makes current the version of the analytic
workspace that was created by the last AW FREEZE command.

Syntax

AW ROLLBACK TO FREEZE

AW SEGMENTSIZE
The AW SEGMENTSIZE command sets up an analytic workspace for multiple
segments.

Syntax

AW SEGMENTSIZE n [K, M, or G] [workspace]

Parameters

workspace
The name of the analytic workspace. You can specify either an analytic workspace
name or an analytic workspace alias, depending on the keywords you are using.

SEGMENTSIZE n [K, M, or G] [workspace]
Sets the maximum size of each segment for a specified workspace or, when no
workspace is specified, for the current workspace.
When the current workspace already has several segments, setting SEGMENTSIZE
affects only the most recent one and has no effect on previous ones. Previous
segments may have various sizes, determined by the SEGMENTSIZE setting at the
time each one was created. When you do not specify K, M, or G, the value you specify

Chapter 9
AW command

9-119

for n is interpreted as bytes. When you specify K, M, or G after the value n, the value is
interpreted as kilobytes, megabytes, or gigabytes, respectively.

AW THAW
The AW THAW command commits the current transaction (if any) and undoes a
previous AW FREEZE command.

Syntax

AW THAW

AW TRUNCATE
Deletes all of the objects and data from an existing analytic workspace. Oracle also
deallocates all of the table space used by the analytic workspace.Removing data using
AW TRUNCATE can be more efficient and less "destructive" than deleting an analytic
workspace using AW DELETE. For example, when you remove data using AW
TRUNCATE, all of the object privileges that were previously granted remain.

For more information on truncating a table, see TRUNCATE TABLE in Oracle
Database SQL Language Reference.

Note:

Before you can truncate an analytic workspace in a schema that you do not
own, you need the appropriate SQL GRANT privilege as outlined in "Privileges
Needed to Create and Delete Analytic Workspaces".

Syntax

AW TRUNCATE workspace

Parameters

workspace
The name of the analytic workspace. You must specify the name; you cannot specify
an alias.

Examples

Example 9-55 Removing all Data from an analytic workspace

You can use the AW command with the TRUNCATE keyword to delete all of the
objects and data in an analytic workspace.

AW TRUNCATE mywork

AWDESCRIBE
The AWDESCRIBE program sends information about the current analytic workspace
to the current outfile. After a summary page, it provides a report in two parts:

Chapter 9
AWDESCRIBE

9-120

• An alphabetic list of analytic workspace objects showing name, type, and
description.

• A list of object definitions by object type. Each definition includes the information
you would see when you used the DESCRIBE statement. It also includes a
"Referenced By" list, which indicates any programs or other compilable objects
that call or access the object. In addition, compilable objects have a "References
To" list, indicating the analytic workspace objects that they call or access.

Syntax

AWDESCRIBE

Usage Notes

Information in Referenced By List

The AWDESCRIBE command does not provide information in the "Referenced By"
and "References To" list for implicit references. For example: When a program
contains a LIMIT command to limit a dimension by a related dimension,
AWDESCRIBE does not list the relation for those dimensions in the "References To"
list for that program.

Examples

Example 9-56 Describing an analytic workspace

The following example shows a portion of the output of AWDESCRIBE for an analytic
workspace named demo.

 DEMO Workspace Listing
 =====================

Last updated: 25Jun96 Time: 09:46:50
Print date: 27Aug96 Time: 10:30:11
DEMO contains:
 11 DIMENSIONS
 19 VARIABLES
 1 PROGRAM
 4 RELATIONS
 2 VALUESETS

This report is in two parts:
 - Object Listing: An alphabetic list of workspace objects,
 beginning on the next page.
 - Object Descriptions: Detailed descriptions of all workspace
 objects, sorted by object type and alphabetically by name.

Object List Page 2
Workspace: DEMO Updated: 25Jun96 At: 09:46:50 ACTUAL

NAME TYPE DESCRIPTION
____ ____ ___________
ACTUAL VARIABLE Actual $ Financials
ADVERTISING VARIABLE Total Advertising Dollars
BUDGET VARIABLE Budgeted $ Financials
CHOICE DIMENSION List of choices
CHOICEDESC VARIABLE Description line for the choices
DEMOVER VARIABLE DEMO Workspace Version
DISTRICT DIMENSION
DIVISION DIMENSION Division

Chapter 9
AWDESCRIBE

9-121

DIVISION.PRODUCT RELATION DIVISION for each PRODUCT
EXPENSE VARIABLE Total Production & Distribution Cost
FCST VARIABLE Forecasted $ Financials
INDUSTRY.SALES VARIABLE Total Industry Sales Revenue
LINE DIMENSION Lineitem
MARKET DIMENSION Geography Dim with Embedded Totals
MARKET.MARKET RELATION Self-relation for the Market Dim
MARKETLEVEL DIMENSION Geography Level
MLV.MARKET RELATION
MONTH DIMENSION
NAME.LINE VARIABLE Lineitem Names for Reporting
NAME.PRODUCT VARIABLE Product Names for Reporting Purposes
NATIONAL.SALES VARIABLE Projected Total U.S. Dollar Sales
NOT.IMPLEMENTED PROGRAM
PRICE VARIABLE Wholesale Unit Selling Price
PRODUCT DIMENSION Sporting Goods Products
PRODUCT.MEMO VARIABLE Product Analysis Memo
PRODUCTSET VALUESET Valueset for Sporting Goods Products
QUARTER DIMENSION
QUARTERSET VALUESET
REGION DIMENSION Sales Region
REGION.DISTRICT RELATION REGION for each DISTRICT
SALES VARIABLE Sales Revenue
SALES.FORECAST VARIABLE Forecasted Unit Sales
SALES.PLAN VARIABLE Budgeted Sales Revenue
SHARE VARIABLE Market Share (Based on Dollar Sales)
UNITS VARIABLE Actual Unit Shipments
UNITS.M VARIABLE
YEAR DIMENSION

Description of DIMENSIONS Page 3
Workspace: DEMO Updated: 25Jun96 At: 09:46:50 CHOICE

DEFINE CHOICE DIMENSION TEXT
LD List of choices
 Referenced By:
 NONE

DEFINE DISTRICT DIMENSION TEXT
 Referenced By:
 NONE

DEFINE DIVISION DIMENSION TEXT
LD Division
 Referenced By:
 NONE
...

BLANK
The BLANK command sends one or more blank lines to the current outfile. BLANK is
typically used only in OLAP DML programs. For example, in a report program, BLANK
is commonly used to insert blank lines that separate headings from data or that
separate groups of data from one another.

Syntax

BLANK [n]

Chapter 9
BLANK

9-122

Parameters

n
An INTEGER expression with a value of 0 (zero) or higher, that specifies how many
blank lines should be inserted. When you omit n, Oracle OLAP inserts one blank line.
NA produces an error.

Examples

Example 9-57 Inserting Blank Lines

This example inserts two blank lines between the title of a report and the column
headings. The following lines are from a report program.

LSIZE = 50
HEADING WIDTH LSIZE CENTER 'Quarterly Sales Report'
BLANK 2
ROW WIDTH 20 'Unit Sales' ACROSS month -
 'Jan96' TO 'Mar96': month

The program produces the following output.

 Quarterly Sales Report

Unit Sales Jan96 Feb96 Mar96

BREAK
Within SWITCH command, FOR, or WHILE statements in an OLAP DML program, the
BREAK command transfers program control from within a SWITCH, FOR, or WHILE
statement to the statement immediately following the DOEND associated with
SWITCH, FOR, or WHILE.

Syntax

BREAK

Usage Notes

TEMPSTAT Statement and BREAK Statement

Within a FOR loop of a program, when a DO ... DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

Examples

Example 9-58 Using BREAK with SWITCH

The following lines from a program include a SWITCH command with two case labels.
The last statement under each case label is BREAK, which ensures that execution
does not continue from one set of case statements to the next. Each BREAK
statement transfers control to the statement that follows DOEND.

SWITCH userchoice
 DESCRIPTION 'MARKET REPORT\NFINANCE REPORT\NNO REPORT')
 DO
 CASE 'market':
 ...

Chapter 9
BREAK

9-123

 BREAK
 CASE 'finance':
 ...
 BREAK
 DEFAULT:
 ...
 BREAK
 DOEND
cleanup:
 ...

CALL
The CALL command invokes a program. When the program has arguments, which are
always enclosed in parentheses, it passes these arguments to the called program.

Syntax

CALL program-name [(arg ...)]

Parameters

program-name
The name of the program to be called.

arg
One or more optional arguments expected by the called program. These arguments
can be declared in the called program with ARGUMENT, or they can be referenced in
the program with ARG. If the program uses the ARGUMENT statement, when you
use CALL to invoke the program, specify the arguments so that they match the
positions of the arguments declared in the called program.

Usage Notes

Dimension Arguments

When you pass a dimension value or dimension name as an argument, you must
enclose the exact text value in single quotes, for example, 'Jan96'. When the program
arguments are declared with the ARGUMENT statement, you can pass a text
expression that evaluates to a text value.

Program Return Values

When you use CALL to invoke a program that returns a value, the return value is
discarded. A program can use the CALLTYPE function to determine whether it was
invoked as a function, as a command, or by using CALL.

ARGUMENT Command or ARG Function

The called program can process arguments using either the ARGUMENT statement or
the ARG function. In a program that has been invoked with CALL or as a function, the
ARGS and ARGFR functions always return NA.

When CALL invokes a program whose arguments are not declared with the
ARGUMENT statement, the arguments passed can be referenced with the ARG
function. However, the ARG function is a text function and, consequently, interprets all
arguments passed as text values. When you want to pass NTEXT arguments, be sure
to declare them using ARGUMENT instead of using ARG. With ARG, NTEXT

Chapter 9
CALL

9-124

arguments are converted to TEXT, and this can result in data loss when the NTEXT
values cannot be represented in the database character set.

ARGUMENT Statement Processing

When a program is invoked with CALL or as a function, the following two-step process
occurs. When an error occurs in either step, the program is not executed.

1. The specified data types are established. Argument expressions specified by the
calling program are evaluated left to right, and their data types are identified. Any
expression representing a dimension value can be a text (TEXT or ID), numeric
(INTEGER, DECIMAL, and so on), or RELATION value. An error in one argument
expression stops the process.

2. Each specified data type is matched with the declared data type. Argument
expressions are matched by position with the declared arguments in the called
program. The first argument expression is matched with the first declared
argument variable, the second argument expression is matched with the second
declared argument variable, and so on. Each expression is converted in turn to the
declared data type of the argument variable.

When an argument variable is declared as a dimension value, the matching value
passed from the calling program can be TEXT or ID (representing a value of the
specified dimension), numeric (representing a logical dimension position), or
RELATION (representing a physical dimension position).When the matching value is a
non-integer numeric value (for example, DECIMAL), it is rounded to the nearest INTEGER
to represent a logical dimension position.

When an argument variable is declared as something other than a dimension value,
and the matching value from the calling program is a RELATION value, an error
occurs. When you want to pass a RELATION value that is received as a TEXT
argument, use the CONVERT function to convert the value in the program's argument
list.

ARGUMENT Statement with Extra Arguments

When the calling program specifies more arguments than are declared in the called
program, the extra arguments are ignored. When the calling program specifies fewer
arguments than are declared in the called program, the extra argument variables are
given NA values.

ARGUMENT Statement Passing by Value

When arguments are declared with the ARGUMENT statement, they are passed by
value to a program. Consequently, the called program is given only the value of an
argument, without access to any analytic workspace object to which it might be
related. However, when the name of an analytic workspace object is specified as an
argument enclosed in single quotes, the value of the analytic workspace object is not
passed. Instead, the name of the object is passed as a text string. See Example 9-59.

Examples

(Compare the roundup.f program with the roundup.p program. roundup.f returns a
value; it does not produce a report.)

Example 9-59 Calling a Program or Function

This example illustrates how two programs, roundup.p and roundup.f, are used in
different ways to evaluate data and produce output.

Chapter 9
CALL

9-125

The roundup.p program accepts the name of a decimal variable as a text string and
produces a report of that variable's values rounded to the nearest INTEGER. The
roundup.f program also accepts the name of a decimal variable. However, instead of
passing the name of the variable as a text string, the variable's value is passed as an
argument. roundup.f does not produce a report. Instead, it returns each of the values
of the decimal variable, rounded to the nearest INTEGER.

The roundup.p program is invoked using CALL and includes a REPORT statement. In
contrast, roundup.f is invoked as a user-defined function whose return value is then
used as an argument to a REPORT statement.

The roundup.p program uses ARGUMENT to declare a text argument. When invoked,
roundup.p uses the argument as the name of a decimal variable. The calling program
passes the name of the variable to give the called program access to all the values of
the dimensioned variable. When the calling program passed the variable itself, instead
of its name, only a single value would have been accessible to the called program.
This program does not return a value; it produces a report.

DEFINE roundup.p PROGRAM INTEGER
PROGRAM
ARGUMENT varname TEXT
Report Down Line Across Month: Heading 'VARNAME' -
 IF INTPART(&varname) EQ &varname -
 THEN &varname ELSE INTPART(&varname) + 1
END

The following statements

LIMIT division TO 1
LIMIT month TO 1 TO 4
DECIMALS = 0
CALL roundup.p('actual')

produce the following report.

DIVISION: CAMPING
 ----------------- Varname------------------
 -------------------MONTH-------------------
LINE Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
revenue 533,363 572,797 707,198 968,858
cogs 360,811 400,902 478,982 641,716
gross.margin 172,553 171,895 228,217 327,143
marketing 37,370 38,867 51,224 69,439
selling 89,008 86,458 102,233 139,567
r.d 24,308 23,400 39,943 57,186
opr.income 21,868 23,171 34,819 60,952
taxes 15,971 16,320 23,030 27,584
net.income 5,898 6,851 11,789 33,368

Another way to produce the same report is to write a user-defined function that can be
used as an argument to the REPORT statement as illustrated in the following program
named roundup.f.

DEFINE roundup.f PROGRAM INTEGER
PROGRAM
ARGUMENT realval DECIMAL
IF realval EQ INTPART(realval)
THEN RETURN INTPART(realval)

Chapter 9
CALL

9-126

ELSE RETURN INTPART(realval) + 1
END

The following statements

LIMIT division TO 1
LIMIT month TO 1 TO 4
DECIMALS = 0
REPORT DOWN line ACROSS month: roundup.f(actual)

produce the following report.

DIVISION: CAMPING
 ------------ ROUNDUP.F(ACTUAL)-------------
 -------------------MONTH-------------------
LINE Jan95 Feb95 Mar95 Apr95
-------------- ---------- ---------- ---------- ----------
revenue 533,363 572,797 707,198 968,858
cogs 360,811 400,902 478,982 641,716
gross.margin 172,553 171,895 228,217 327,143
marketing 37,370 38,867 51,224 69,439
selling 89,008 86,458 102,233 139,567
r.d 24,308 23,400 39,943 57,186
opr.income 21,868 23,171 34,819 60,952
taxes 15,971 16,320 23,030 27,584
net.income 5,898 6,851 11,789 33,368

CDA
With the CDA command, you can identify or change the current directory object for
your session.

With an established current directory object, you can specify a file identifier in a DML
file access statement without including the name of the directory object. Some
examples of file access statements are FILECOPY, FILEMOVE, FILEDELETE,
EXPORT, and IMPORT.

Syntax

CDA [directory-alias]

Parameters

directory-alias
A text expression that specifies the directory object that you want to be the current
one for your session.
When you do not specify this argument, CDA sends the name of the current directory
object to the current outfile. When there is no current directory object, the statement
reports that fact.

Usage Notes

Specifying a File Identifier with an Established Current Directory Object

The following statement moves the file log.txt from your session's current directory
object to file oldlog.txt in a directory object called backup.

FILECOPY 'log.txt' 'backup/oldlog.txt'

Chapter 9
CDA

9-127

Setting Up a Directory Object

A database administrator must set up a directory object and give you access to it.

Examples

Example 9-60 Specifying the Current Directory Object

The following statement identifies mydir as the current directory object.

CDA 'mydir'

Example 9-61 Obtaining the Current Directory Object

The following statement causes the current directory object to be sent to the current
outfile.

CDA

This statement produces the following output.

The current directory is MYDIR.

CHGDFN
The CHGDFN command enables you to change certain aspects of the definitions of
analytic workspace objects.

Before you can use CHGDFN to change the definition of an object, use CONSIDER to
make that object definition the current definition.

Note:

You cannot use CHGDFN to change definitions of objects that are in an
analytic workspace that is attached in multiwriter mode.

Syntax

CHGDFN desired-change

where desired-change is one of the following:

 varname SEGWIDTH length dim... partitioned-varname {DROP | ADD }
(partition-instance...) partition-template {DEFINE | DELETE [CLEAR] } (partition-
instance...) partition-template RENAME PARTITION old-name new-name
 {conjoint | composite} {HASH | BTREE | NOHASH} concat BASE
ADD dimensionlist conjoint COMPOSITE composite DIMENSION dimension
NTEXT | TEXT | NUMBER [p, s] dwmqy-dimname { {BEGINNING | ENDING} phase
| {EARLIER | LATER} n} concat [NOT] UNIQUE varname {ADD |DROP}
AGGCOUNT varname [DROP] NULLTRACKING

Parameters

varname
The name of the variable whose segment size you want to set.

Chapter 9
CHGDFN

9-128

SEGWIDTH
Indicates explicit sizing of a variable's segments. See "Understanding Variable
Segments" for more information.

partitioned-varname
Specifies the name of a partitioned variable whose partitions you want to modify.

DROP partition-instance
ADD partition-instance
Removes or adds the specified partitions from the partitioned variable. See the
DEFINE VARIABLE command for a complete description of the partition-
instance argument.

DEFINE partition
DELETE [CLEAR] partition-instance
Removes or adds the specified partitions from the partition template object. See the
DEFINE PARTITION TEMPLATE command for a complete description of the
partition-instance argument.
When you include the optional CLEAR keyword, Oracle OLAP also drops any
corresponding partitions in the variables that are partitioned using the partition
template object. In other words, including CLEAR is the same as issuing an additional
CHGDFN statements to DROP the partition from the variables partitioned by it.

RENAME PARTITION old-name new-name
Renames the specified partitions in the partition template object.

BASE ADD dimensionlist
Adds the dimension or dimensions specified by dimensionlist to the base dimensions
of the concat dimension.When you add one or more dimensions as base dimensions
of a concat, then Oracle OLAP appends the dimensions to the existing list of base
dimensions of the concat. Objects that are dimensioned by the concat, or objects that
are dimensioned by a concat that has the altered concat as a base dimension, gain
additional NA values. You cannot add as a base dimension a dimension that is already
a component of the concat dimension.

length-dim...
Segment width is specified as the maximum number of values in each segment for
each dimension or composite in the variable's dimension list. The first length-dim is
the number of values for the dimension or composite in the first position of the
dimension list in the variable's definition (that is, the fastest-varying dimension or
composite), the second length-dim is the number of values for the dimension or
composite in the second position in the dimension list, and so on.

conjoint
composite
For the index syntax, the name of the conjoint dimension or composite whose index
algorithm you want to change. For the conjoint-to-composite syntax, the name of the
conjoint dimension you want to change to a composite. For the composite-to-dim
syntax, the name of the composite you want to change to a conjoint dimension. You
cannot change a conjoint dimension to a composite when the conjoint is a dimension
of a formula.

Chapter 9
CHGDFN

9-129

BTREE
BTREE64
HASH
NOHASH
Indicates the index algorithm used to load and access values of your conjoint
dimension or composite without losing data in objects defined with the conjoint or
composite. A composite cannot be changed to NOHASH. A conjoint can be changed
to NOHASH only when it was originally defined as HASH. See "Changing the Index
Algorithm of a Conjoint from BTREE to NOHASH".
HASH, NOHASH, and BTREE are different index algorithms used to load and access
the values of a conjoint dimension or composite. (BTREE64 can only be used with
composites.) HASH is the default for conjoints. The default for composites is
determined by the SPARSEINDEX option, which has a default value of BTREE. The
index algorithm affects the performance of loading and accessing large conjoints or
composites. Performance varies depending on your system configuration, the
organization of your data, and the design of your application.

• BTREE is a standard indexing method that is recommended for composites and
conjoint dimensions. Use BTREE as the default unless you are an advanced user
and have a special need that requires HASH or NOHASH. BTREE tends to group
similar values, which results in better locality of access.

• BTREE 64 can only be used with composites. It specifies the creation of a highly-
scalable b-tree index to relate composite values to base dimension values. For a
variable that is dimensioned by a BTREE64 composite, like a BTREE composite,
Oracle OLAP creates array elements (that is, variable cells) only for those
dimension values that are stored in the tuples of the composite; it does not create
a cell for every value in the base dimensions. However, unlike a BTREE
composite, a BTREE64 composite supports b-trees greater than 2 gigabytes

• HASH is a standard indexing method that can be used for composites or conjoint
dimensions that have only 2 or 3 base dimensions. One advantage to using
HASH is that it results in a small amount of code. However, HASH is generally not
recommended. Using HASH results in a very large index table, which can be too
large to fit into memory.

• NOHASH can only be used with conjoint dimensions. It can be advantageous to
use NOHASH when there is little memory available and the conjoint dimension
has only 2 or 3 base dimensions.Also, you can use NOHASH when you load a
very large initial amount of data. When you use NOHASH, the data is loaded in a
way that makes it easy to access that data after it has been loaded. Once the
data is loaded, change the definition of the conjoint dimension back to BTREE to
ensure good performance. Otherwise, performance is likely to suffer, especially
when the conjoint dimension has 4 or more base dimensions. See "Changing the
Index Algorithm of a Conjoint from BTREE to NOHASH".

Chapter 9
CHGDFN

9-130

Tip:

You can do performance testing to determine which algorithm provides the
best performance for your situation. For example, suppose a data load
executes well at first, then slows down drastically. Use CHGDFN to change the
index algorithm from BTREE to NOHASH. Try the data load again to
determine whether or not using NOHASH improves performance. You can
then use CHGDFN to change the index algorithm back to BTREE. Note,
however, that changing the index algorithm of a large conjoint dimension or
composite from one algorithm type to another may take a considerable amount
of time and that the CHGDFN command cannot be interrupted.

COMPOSITE
Indicates changing a conjoint dimension into a named composite. There are some
restrictions on changing conjoint dimensions to composites; when a conjoint has the
NOHASH index algorithm or when it has permissions, you cannot change it to a
composite.

DIMENSION
Indicates changing a named composite into a conjoint dimension.

composite_dimension
The name of a composite that has a composite as a base dimension.

Note:

In Oracle Database 11g, you cannot define a nested composite. Consequently,
you only use the UNNEST keyword with nested composites that were defined
in an earlier release and then imported into Oracle Database 11g.

dimension
The name of a TEXT, NTEXT or NUMBER dimension

NTEXT
Specifies that the statement changes the data type of a TEXT dimension to NTEXT

TEXT
Specifies that the statement changes the data type of a NTEXT dimension to TEXT

NUMBER [p, s]
Specifies that the statement changes the data type of a TEXT, NTEXT, or NUMBER
dimension to NUMBER with the precision specified by p and the scale specified by s.

dwmqy-dimname
Specifies or changes the phase of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR.

BEGINNING phase
ENDING phase
Specifies the beginning phase or ending phase of a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR. You must specify the phase as a date, giving the
month, day, and year, enclosed in single quotes, using any of the input styles that are

Chapter 9
CHGDFN

9-131

valid for variable values with a data type of DATE. When you specify a date with an
ambiguous meaning (such as '03 05 97'), the date is interpreted according to the
current setting of the DATEORDER option. For more information about specifying
dates, see the DATEORDER option.

EARLIER n
LATER n
n is an INTEGER expression that increments or decrements the period on which the
DAY, WEEK, MONTH, QUARTER, or YEAR dimension's phase begins or ends. For
example, for a WEEK dimension whose current begin phase is Monday, specify LATER
2 to change the phase to Wednesday.

[NOT] UNIQUE
When you include NOT, changes a unique concat dimension to a nonunique concat.
When you do not include NOT, changes a nonunique concat dimension to a unique
concat dimension. See the DEFINE DIMENSION CONCAT command for more
information on concat dimensions.

ADD AGGOUNT
Adds an Aggcount variable to the specified variable. See the WITH AGGCOUNT
phrase of the DEFINE VARIABLE command for more information about Aggcount
variables.

DROP AGGOUNT
Removes an Aggcount variable from the specified variable. See the WITH
AGGCOUNT phrase of the DEFINE VARIABLE command for more information about
Aggcount variables.

NULLTRACKING
Adds NA2 bits to the specified variable if the variable does not have NA2 bits. For
more information on NA2 bits and null tracking, see "NA2 Bits and Null Tracking" .

DROP NULLTRACKING
Removes NA2 bits to the specified variable if the variable has NA2 bits.

Usage Notes

Understanding Variable Segments

A segment is contiguous disk space reserved for a portion of the total number of
values a variable holds. For example, for a variable dimensioned by month with a
SEGWIDTH of 150 and product with a SEGWIDTH of 90,000, each segment holds up to
150 x 90,000 values of the variable. The number of segments in a variable affects the
performance of data loading and data accessing.

When you do not specify CHGDFN SEGWIDTH, the default behavior is to assign a segwidth
of 0 (zero) on non-composite dimensions and a large value for composites that are not
the slowest-varying in the dimension set. This behavior allows new dimension and
composite values to be added in most situations without greatly increasing the number
of segments and degrading performance.

When you specify SEGWIDTH, you must specify a number, 0 (zero), or nonzero, for
every dimension and composite of the variable.

When you set the value of SEGWIDTH for a dimension to 0, Oracle OLAP grows
segments in that dimension as needed, minimizing the number of segments but not
changing any existing segments. You can always specify 0 (zero for the slowest-

Chapter 9
CHGDFN

9-132

varying dimension, because the data for any values that are later added to that
dimension is appended to the existing data in the variable's last segment.

The segment size that you specify is used not only for the variable you designate as
varname, but also for all other variables and relations that are defined with the same
combination of dimensions and composites in the same order. The DEFINE command
sets the SEGWIDTH at the time it creates a variable or relation. Changing the
SEGWIDTH affects any new variable or relation that you subsequently create. The
changed SEGWIDTH setting does not apply to previously existing variables or
relations.

The time it takes to do data loads on a variable depends on how many pages are
brought into memory and then written back out. This number can be affected by how a
variable is divided into segments. Too many segments (thousands to millions) can
degrade performance. See "Reducing the Number of Segments".

The number of segments also affects data access. The time it takes to report a
variable depends on how many values are brought into memory. You decide how
many segments your variable should have based on your data loading and data
accessing patterns.

DEFINE provides default segments. In most cases, you can use the default segments
so that you do not have to use CHGDFN SEGWIDTH to manually control the size of
segments. However, you may be able to improve performance by specifying the
segment size instead of using the defaults.When you are not sure what your segment
size should be, use the maximum anticipated number of values for each dimension or
composite as the length arguments to SEGWIDTH. Then only one segment is created
for the variable.

Reducing the Number of Segments

You can use OBJ (NUMSEGS) to find out if you have too many segments for objects
that have a particular dimension set. When you find that you do, you can reduce the
number of segments by following these steps:

1. Export the variables and relations that use this dimension set to an EIF file.

2. Execute a MAINTAIN DELETE ALL statement for a dimension in the dimension
set.

3. Optimally, execute a CHGDFN statement for a variable or relation with this
dimension set, and increase the value of the length arguments to the SEGWIDTH
keyword.

4. From the EIF file, import all the values you exported in Step 1.

Changing the Index Algorithm of a Conjoint from BTREE to NOHASH

When you must change a conjoint dimension that was originally defined with the
BTREE algorithm to a NOHASH conjoint, you can use the following method:

1. Export the conjoint dimension and all the objects dimensioned by it to an EIF file.

2. Delete all the objects dimensioned by the conjoint dimension, and then delete the
conjoint itself.

3. Redefine the conjoint as a NOHASH conjoint.

4. Import the conjoint dimension and the objects dimensioned by it from the EIF file.
The NOHASH attribute on the definition at the time of the import causes the
conjoint dimension to be read in as a NOHASH conjoint.

Chapter 9
CHGDFN

9-133

Changing an Unnamed Composite to a Named Conjoint Dimension

When you want to change an unnamed composite into a conjoint dimension, you can
use a RENAME statement to change the unnamed composite into a named
composite, and then use CHGDFN to change the named composite into a conjoint
dimension.

Examples

For an example of removing null tracking from a variable, see Example 9-104.

Example 9-62 Using CHGDFN SEGWIDTH

Suppose you have a variable called d.sales that is dimensioned by month and by a
composite with the base dimensions market and product. The definition of d.sales
looks like the following.

DEFINE d.sales VARIABLE DECIMAL <month SPARSE<market product>>

Suppose you want to have only one segment in the d.sales variable. You estimate that
the month dimension eventually has 150 values and the composite has 100,000. The
following statement creates one segment for the d.sales variable.

CHGDFN d.sales SEGWIDTH 150 100000

However, a better way to specify segment size for d.sales is to specify 0 for the
slowest-varying dimension.

CHGDFN d.sales SEGWIDTH 150 0

Suppose you want one segment for a variable defined with a composite and two
dimensions. For example, suppose you have a variable called f.costs with the
following definition.

DEFINE f.costs VARIABLE DECIMAL <geog SPARSE<product channel> time>

You estimate the geog dimension has 100 values and the composite has 300,000. You
do not have to estimate the number of values for the time dimension, because it is the
slowest-varying dimension. The following statement creates one segment for the
f.costs variable.

CHGDFN f.costs SEGWIDTH 100 300000 0

Example 9-63 Changing the Phase of a YEAR Dimension

The following statements first create a dimension of type YEAR for a fiscal year, then
use CHGDFN to switch to a new time phase for the fiscal year.

DEFINE fiscal DIMENSION year BEGINNING '06 01 96'
CHGDFN fiscal BEGINNING '01 01 97'

Example 9-64 Adding a Base Dimension to a Concat Dimension

The following statements create a nonunique concat dimension named reg.dist.ccdim
that has the region and district dimensions as its base dimensions and report the
values of the concat.

DEFINE reg.dist.ccdim DIMENSION CONCAT(region district)
REPORT W 22 reg.dist.ccdim

Chapter 9
CHGDFN

9-134

The preceding statement produces the following output.

REG.DIST.CCDIM

<region: East>
<region: Central>
<region: West>
<district: Boston>
<district: Atlanta>
<district: Chicago>
<district: Dallas>
<district: Denver>
<district: Seattle>

The following statements add the store_id dimension as a base to the concat
dimension and then report the values of the concat again.

CHGDFN reg.dist.ccd BASE ADD store_id
REPORT W 22 reg.dist.ccd

The preceding statement produces the following output.

REG.DIST.CCD

<region: East>
<region: Central>
<region: West>
<district: Boston>
...
<district: Seattle>
<store_id: 10>
<store_id: 20>
<store_id: 30>
<store_id: 100>
...
<store_id: 500>
<store_id: 510>

CLEAR
The CLEAR command deletes the data that you specify for one or more variables.

Syntax

CLEAR [STATUS | {ALL [CACHE]}] [VALUES | {aggdata [USING aggmapname]}] -
FROM {varname [(PARTITION partition-name)] } [, ...]

where aggdata is one or more of the following keywords that identifies the type of
aggregated data that you want deleted from the variable.

AGGREGATES

LEAVES

PRECOMPUTES

NONPRECOMPUTES

Chapter 9
CLEAR

9-135

Parameters

STATUS
Specifies that only the data that is currently in status is taken into consideration.
(Default)

Tip:

When clearing a compressed composite, do not execute a CLEAR when only
some values are in status.

ALL
Specifies that the command consider all of a variable's data regardless of the current
status. Required when you specify either the CACHE or AGGREGATES keywords.

CACHE
Empties the session cache. When you specify this keyword, you must also specify the
ALL keyword.

VALUES
(Default) Deletes all of a variable's stored data and replaces each deleted data value
with an NA value.

AGGREGATES
Deletes the data in all cells populated by the execution of an AGGREGATE command
or an AGGREGATE function. When you specify this keyword, you must also specify
the ALL keyword.

PRECOMPUTES
For all variables except those dimensioned by a compressed composite, deletes any
data that was calculated when an AGGREGATE command executed and replaces
that data with NA values.

NONPRECOMPUTES
Deletes any data that was calculated on the fly when an AGGREGATE function
executed and replaces that data with NA values.

LEAVES
Deletes the detail-level data, meaning, the "leaf" data.

Note:

You cannot specify this keyword for a variable dimension by a compressed
composite.

varname
The name of a variable from which data is deleted.

aggmapname
The name of the aggmap that should be used.

Chapter 9
CLEAR

9-136

You must include this phrase to clear a variable that is not a compressed composite
or that does not have an $AGGMAP property. You do not have to specify this phrase
to clear:

• A variable that is dimensioned by a compressed composite. By default, CLEAR
uses the structure of the compressed composite to clear the variable.

• A variable that has an $AGGMAP property when you want CLEAR to use the
aggmap specified by that property. If you do not specify a USING phrase for a
variable that has an $AGGMAP property, then CLEAR uses the aggmap specified
by that property.

When you include this phrase for a dimensioned aggmap, the dimensionality of every
variable included in the CLEAR command must be identical to the dimensionality of
the aggmap. In other words, every variable definition must have the same dimensions
in the same order as those in the definition of the aggmap.

PARTITION partition_name
For a partitioned variable, specifies the name of a partition from which you want to
clear data.

Note:

Clearing only a single partition of a compressed composite is resource
intensive and time consuming as the variable is decompressed during the
process.

Examples

Example 9-65 Clearing a Variable's Data

The CLEAR command gives you an easy way to delete all of a variable's stored data.
Suppose you have defined a sales variable and loaded data into it. You then find out
that much of this data has changed. It is more efficient to clear the sales variable and
reload all of the data than it would be to change the existing data. You can do so with
the following statement.

CLEAR ALL FROM sales

In this example, the VALUES keyword is assumed by default. Therefore, all of the
sales data is deleted and replaced with NA values.

Example 9-66 Clearing Aggregated Data

Suppose you have aggregated data for your sales and units variable, and you have
specified that all other data should be calculated on the fly.

The sales and units variables are defined with the same dimensions in the same
order: time, product, and geography. Therefore, they have been aggregated with the
sales.agg aggmap, which has the following definition.

DEFINE sales.agg AGGMAP <time, product, geography>

The sales.agg aggmap has the following contents.

RELATION time.r PRECOMPUTES (time ne 'YEAR99')
RELATION product.r PRECOMPUTES (product ne 'ALL')
RELATION geography.r

Chapter 9
CLEAR

9-137

After aggregating both sales and units, you learn that there are certain geographic
regions that none of your users access. Because geography is the slowest-varying
dimension, you can probably reduce the number of pages needed to store data by
deleting data for the geographic regions that no one needs which can reduce the size
of your analytic workspace and possibly improve performance.

1. Set the status for each dimension. The only geographic regions that users need
are New England, Europe, and Australasia. The following statements put all time
periods and all products for every geographic region in the current status, except
for the geographic regions that users need. In other words, the following
statements put all of the data that users do not have to access in status.

LIMIT time TO ALL
LIMIT product TO ALL
LIMIT geography COMPLEMENT 'NewEngland' 'Europe' 'Australasia'

2. Use the following statement to delete the unneeded data.

CLEAR STATUS PRECOMPUTES FROM sales units USING sales.agg

Example 9-67 Clearing Cached Data

Data is cached when an aggmap specifies calculation on the fly and contains a
CACHE SESSION statement.

For example, suppose the sales.agg aggmap has the following contents.

RELATION time.r PRECOMPUTES (time ne 'YEAR99')
RELATION product.r PRECOMPUTES (product ne 'ALL')
RELATION geography.r
CACHE SESSION

Note that the sales.agg contains a CACHE SESSION command. Consequently, Oracle
OLAP calculates some data at the time a user requests it, and then stores it in the
session cache. To clear this data from the sales variable, use the following statement.

CLEAR ALL CACHE FROM sales

COMMIT
The COMMIT command executes a SQL COMMIT statement. When you want changes
that you have made in an analytic workspace to be committed when you execute the
COMMIT command, then you must first update the workspace using an UPDATE
statement. UPDATE moves changes from a temporary work area to the database
table in which the workspace is stored. Changes that have not been moved to the
table are not committed. When you do not use UPDATE and COMMIT statements,
changes made to an analytic workspace during your session are discarded when you
end your Oracle session.

When you execute a SQL COMMIT statement in your database session, all changes
made in your session (including all updated changes in workspaces that you have
attached with read/write access) are committed. All committed changes are visible to
other users who subsequently attach the workspace. However, another user's
UPDATE and COMMIT statements do not affect your view of an already attached
workspace.

Chapter 9
COMMIT

9-138

Note:

Many users execute DML statements using SQL*Plus® or OLAP Worksheet.
Both of these tools automatically execute a COMMIT statement when you end
your session

Syntax

COMMIT

Examples

Example 9-68 Saving All Changes to an Analytic Workspace

The following statements permanently save all analytic workspace changes made so
far in your session. The COMMIT command also saves database changes made in
your session outside Oracle OLAP.

UPDATE
COMMIT

COMPILE
The COMPILE command generates compiled code for a compilable object, such as a
program, formula, model, or aggmap without running it and saves the compiled code in
the analytic workspace. During compilation, COMPILE checks for format errors, so you
can use COMPILE to help debug your code before running it. COMPILE records the
errors in the current outfile.

However, you are not required to use the COMPILE command before running a
compilable object. When you do not use COMPILE, Oracle OLAP automatically
compiles a compilable object the first time you run it after entering or changing its
contents. This automatic compilation is unnoticeable except for a slight delay while it is
happening. Use the OBJ function with the ISCOMPILED keyword to obtain information
about the compilation status of a compilable object.

Whether you compile an object explicitly with COMPILE or automatically through
running it, the code executes faster whenever you subsequently run the object during
the same session, because the code is already compiled. When you update and
commit your analytic workspace, the compiled code is saved as part of your analytic
workspace and can be used in later sessions. The code thus executes faster the first
time it is run in each later session.

Using COMPILE to compile code without running a compilable object is especially
useful when you are writing code that is part of a read-only analytic workspace (that is,
an analytic workspace that people can use but not update).

Note:

"Compiling Programs", "Compiling Models", and "Compiling Aggregation
Specifications"

Chapter 9
COMPILE

9-139

Syntax

COMPILE object-name

Parameters

object-name
The name of a compilable object that you want to compile.

Usage Notes

Compilation Options

Several options effect compilation. These options are listed in "Compilation Options".
By setting one or more of these options you can suppress error messages that appear
at compilation time or replace occurrences of THIS_AW with a specified value.

Deleted Objects

When you delete or rename an object in your analytic workspace, Oracle OLAP
automatically invalidates the compiled code for every statement in a program and
every formula and model that depends on that object. When you try to execute code
that refers to the deleted or renamed object, Oracle OLAP tries to compile the code
again. Unless you have defined a new object with the same name, you receive an
error message now.

When you run a program that contains invalidated code, it is compiled and executed
one statement at a time. To save compiled code for the entire program, use the
COMPILE command to explicitly compile it.

Multiple Errors in a Line

When a single statement has multiple errors, COMPILE finds only the first error.
However, COMPILE continues checking for format errors in subsequent statements.

Declarative Errors

COMPILE handles declarative errors differently in programs and models:

• When a program has a declarative error (for example, when a VARIABLE or ARG
statement follows executable code), COMPILE signals a trappable error

• When a model has a declarative model (for example, when a model statement has
a DIMENSION statement following an assignment statement) COMPILE does not
signal a trappable error. Instead, the model is not executable.

See the TRAP command for more information on trapping error.s

Advantages of Compiling

Explicit compilation using the COMPILE command offers several advantages over
automatic compilation:

• For any compilable object, COMPILE generates compiled code without executing
the code in the object.

• In a program or model, automatic compilation diagnoses an error only in the first
statement that contains an error. It then displays the error message and halts the
execution of a program or the analysis of a model. So each time a program or
model is automatically compiled, only a single error message is displayed. In

Chapter 9
COMPILE

9-140

contrast, COMPILE checks every statement in a program or model for correct
format, and generates multiple error messages, one for each statement that
contains an error. (In programs, some types of statements cannot be compiled, so
they are exceptions. See "Errors COMPILE Does Not Catch".) Because COMPILE
shows you every statement that contains at least one error, this minimizes the
number of times you must edit the code to correct all errors.

• For a model, you may want to examine the results of the compilation or set options
for handling simultaneous equations before you run the model.

Errors COMPILE Does Not Catch

Because the COMPILE command does not actually execute code, it can compile code
that, for reasons unrelated to format errors, might not be successfully executed when
the object were actually run. In a program, for example, you can compile the following
statement, even though 'joplin' is not a district.

LIMIT district TO 'joplin'

Although the statement compiles successfully, you get an error message at run time.

Statements Not Compiled

In programs, certain statements cannot be compiled at all, and are therefore
interpreted each time they are executed. These include statements that contain
ampersand substitution, statements involving analytic workspace operations, and any
statement that calls a program as a command. (Statements that call a program as a
function or with the CALL command are compiled.)

PRGTRACE Option

You can use the PRGTRACE option to check which statements in a program have
been compiled. When you set PRGTRACE to YES and run a program, each statement
is recorded in the current outfile before it is executed. A compiled statement is
identified with an equal sign.

(PRG= program-name) statement

An uncompiled statement is identified with a colon.

(PRG: program-name) statement

Multiple Analytic Workspaces

When you compile a compilable object that uses objects in another analytic
workspace, the second analytic workspace must be attached to your current Oracle
OLAP session. You can then run the compilable object with that analytic workspace or
another analytic workspace with objects of the same name and type attached. Oracle
OLAP checks that the objects have the same name, type (variable, dimension, and so
on), data type (INTEGER, TEXT, and so on), and dimensions as the objects used to
compile the compilable object.

When you have multiple active analytic workspaces, do not have objects of the same
name in both analytic workspaces. For example, when you have an analytic
workspace of programs and two analytic workspaces with data about the products Tea
and Coffee, both product analytic workspaces can have a MONTH dimension and the
programs can refer to MONTH. However, during your session, attach only one product
analytic workspace at a time so that there is only one MONTH dimension.

Memory Use

Chapter 9
COMPILE

9-141

In order for code to compile, all variables referenced in a program (except for variables
in lines containing ampersand substitution) must be loaded into memory.
Consequently, Oracle OLAP reads the definition of every variable you use and stores
it in a portion of available memory that is dedicated for storing object definitions. When
the compilation tries to bind a large variable, this may use a large amount of memory
and create a large EXPTEMP file. When the compilation tries to bind a large number of
large variables, it may fail and Oracle OLAP records an error message such as
'Insufficient Main Memory'. See the LOAD command for more information about
loading an object's definition into memory.

Examples

Example 9-69 Compiling a Program

The following is an example of a COMPILE command that compiles the myprog program.

COMPILE myprog

Suppose you misspell the dimension month in a LIMIT command in the myprog program.

LIMIT motnh TO LAST 6

When the COMPILE command encounters this statement, it produces the following
message.

ERROR: (MXMSERR00) Analytic workspace object MOTNH does not exist.
In DEMO!MYPROG PROGRAM:
limit month to last 6

You can edit the program to correct the error and then try to compile it again.

Example 9-70 Finding Program Errors

This example shows a program called salesrpt that contains two errors.

DEFINE salesrpt PROGRAM
PROGRAM
ROW WIDTH 80 CENTER Monthly Report
BLANK 2
ROWW 'Total Sales' TOTAL(sales)
END

You can compile the program with the following statement.

COMPILE salesrpt

Oracle OLAP identifies both errors and records the following messages.

ERROR: You provided extra input starting at 'REPORT'.
In SALESRPT PROGRAM:
ROW WIDTH 80 CENTER Monthly Report
ERROR: ROWW is not a command.
In SALESRPT PROGRAM:
roww 'Total Sales' TOTAL(sales)

You can now edit the program to correct these errors, enclosing 'Monthly Report' in
single quotes and correcting the spelling of ROWW. Then you can compile the program
again, and save the compiled code as part of your analytic workspace.

Chapter 9
COMPILE

9-142

CONSIDER
The CONSIDER command identifies a definition as the current definition which
enables you to add a description, value name format, formula, program, model,
permission, or property to the definition with an LD, VNF, EQ, PROGRAM, MODEL,
PERMIT, or PROPERTY statement.

Syntax

CONSIDER name

Parameters

name
The name of a definition in the current workspace or in an attached workspace.

Usage Notes

Replacing a Definition Component

When you use an LD, VNF, EQ, PROGRAM, MODEL, or PERMIT statement to add a
component to the current definition, any existing value for that component is discarded
and replaced by the new value you specify. For the PROPERTY statement, the value
is replaced only when you specify a new value for an existing property name.
Definitions can have multiple properties.

Unsuccessful CONSIDER Statements

When the CONSIDER command you issue is unsuccessful, subsequent LD, VNF, EQ,
PROGRAM, MODEL, PERMIT, or PROPERTY statements produce an error.

Implicit CONSIDER Statements

The DEFINE, COPYDFN, and RENAME commands automatically issue an implicit
CONSIDER command.

Examples

Example 9-71 Adding a Description to an Analytic Workspace Object

This example adds a description (LD) to the definition for district. To add the LD, you
must first use CONSIDER to make district the current definition. The statements

CONSIDER district
LD Sales Districts
DESCRIBE district

produce the following definition.

DEFINE district DIMENSION TEXT
LD Sales Districts

CONTEXT command
The CONTEXT command lets you create and use a context during your Oracle OLAP
session. A context is a means of preserving object values. After you create a context,
you can save the current status of dimensions and the values of options, single-cell

Chapter 9
CONSIDER

9-143

variables, valuesets, and single-cell relations in the context. You can then restore
some or all of the object values from the context. A context exists only for the duration
of an Oracle OLAP session. It is not an analytic workspace object and therefore
cannot be saved as part of any analytic workspace. When a context contains saved
values for objects in a particular analytic workspace, and you detach that analytic
workspace, Oracle OLAP removes those objects from the context. That context retains
any saved values for Oracle OLAP options and objects from other analytic workspaces
that are still attached.

You can use the CONTEXT function to obtain information about a context.

The CONTEXT command and function provide an alternative to the PUSH and POP
statements. With contexts, you can access and update the saved object values,
whereas PUSH and POP simply allow you to save and restore values.

Syntax

CONTEXT context-name [CREATE | APPLY | DISCARD | {SAVE |DROP|RESTORE}
objects]

Parameters

context-name
A text expression that contains the name of the context.

CREATE
Creates a context with the name specified by context-name, which must be unique.

SAVE
Stores the values of the objects specified in objects in the context. You may save the
values of single-cell variables and relations in a context. You cannot use the
CONTEXT command to save the values of dimensioned variables, dimensioned
relations, or the NAME dimension. If you try to save values from these objects, Oracle
OLAP produces an error message.

APPLY
Sets the appropriate objects to the values of all corresponding objects saved in the
context.

DISCARD
Deletes the context.

SAVE
Stores the values of the objects specified in objects in the context.

DROP
Drops the values of the objects specified in objects from the context.

Note:

When you delete an Oracle OLAP object during the session, it is also removed
from the context.

Chapter 9
CONTEXT command

9-144

RESTORE
Sets whatever objects you specify in objects to the values of the corresponding
objects saved in the context.

objects
One or more object names. Each object name must be separated by a space. When
you are listing several name(s) that do not fit on a single line, you may use the
continuation character to continue the CONTEXT command on additional lines.

Usage Notes

Naming Convention

A suggested programming practice is to name the context after the analytic workspace
with which it is associated.

Examples

Example 9-72 Saving Dimension Status

This example shows how you can use the CONTEXT command to save and restore
the status of a dimension. The following statements create a context that includes a
subset of the values in the product dimension.

LIMIT product TO 'Tents' 'Canoes'
CONTEXT 'democontext1' CREATE
CONTEXT 'democontext1' SAVE product

The following statements limit product to all its values and produce a report that lists
them all.

LIMIT product TO ALL
REPORT product

This is the report.

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

The following statements apply the saved context and produce a report that lists only
the values included in the context.

CONTEXT 'democontext1' APPLY
REPORT product

This is the new report.

PRODUCT

Tents
Canoes

Chapter 9
CONTEXT command

9-145

CONTINUE
The CONTINUE command transfers program control to the end of a FOR or WHILE
loop (just before the DO/DOEND statement), allowing the loop to repeat. You can use
CONTINUE only within programs and only with FOR or WHILE.

For more information on controlling program execution, see also "Program Flow-of-
Control".

Syntax

CONTINUE

Examples

Example 9-73 Skipping Over Code in a FOR Loop

In the following lines from a program, an IF statement is used to test whether total
sales for a district exceed 5,000,000. When sales are more this amount, the program
goes on to produce a report for that district. However, when a district's sales are less
than the amount, the CONTINUE statement is used to transfer control to the end of the
FOR loop (just before the DOEND statement). No lines are produced for that district,
and the program goes on to test the next district in the status list.

 ...
FOR district
 DO
 IF TOTAL(sales, district) LT 5000000
 THEN CONTINUE
 ... "(report statements for districts with total sales above 5,000,000)
 DOEND
 ...

COPYDFN
The COPYDFN program defines a new object in the analytical workspace and uses
the same definition as a specified object in the current workspace or in an attached
workspace.

COPYDFN copies the DEFINE, LD, and PROPERTY lines for any type of object, and
it copies the formula (EQ) of a formula object, and the value name format (VNF) of a
dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. COPYDFN also
copies the text of a program or model. COPYDFN does not copy the PERMIT lines for
any object, and it does not copy the compiled code of a formula, program, or model.

Syntax

COPYDFN newobject oldobject

Parameters

newobject
The name of the new object to define.

Chapter 9
CONTINUE

9-146

oldobject
The name of the object whose definition you want to copy.

Examples

Example 9-74 Copying Programs

The following statements use COPYDFN to create a program, called newprog, which is
a copy of an existing one called oldprog. You could then edit newprog to create a
slightly different program. The oldprog program has the following definition.

DEFINE oldprog PROGRAM
LD Shows total sales for the top five months from high to low
PROGRAM
LIMIT district TO 'BOSTON'
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
REPORT TOTAL(sales, month)
END

The statements

COPYDFN newprog oldprog
DESCRIBE newprog

produce the following definition for newprog.

DEFINE newprog PROGRAM
LD Shows total sales for the top five months from high to low
PROGRAM
LIMIT district TO 'BOSTON'
LIMIT month TO TOP 5 BASEDON TOTAL(sales, month)
REPORT TOTAL(sales, month)
END

CREATE_LOGICAL_MODEL
The CREATE_LOGICAL_MODEL program creates a new model for an OLAP cube
dimension, and adds that definition to the Oracle data dictionary. The changes made
when this program executes are not transactional; an automatic COMMIT is executed
as part of the program.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL CREATE_LOGICAL_MODEL (logical_dim, model_name)

Parameters

CALL
Because CREATE_LOGICAL_MODEL is an OLAP DML program with arguments,
you invoke it using the OLAP DML CALL statement.

Chapter 9
CREATE_LOGICAL_MODEL

9-147

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

model_name
A text expression that is the name that the model will have in the Oracle data
dictionary.

DATE_FORMAT
The DATE_FORMAT command assigns a format template to the definition of an object
that has a DATETIME, TIMESTAMP, TIMESTAMP_TZ, TIMESTAMP_LTZ, DSINTERVAL, or YMINTERVAL
data type.

The datetime format template is a template that describes the format of datetime data
stored in a character string. The template does not change the internal representation
of the value in the database. When you convert a character string into a date, the
template determines how Oracle OLAP interprets the string.

Note:

You can only use this statement with objects that have a datetime data type
that corresponds to a SQL datetime data type. You cannot use this statement
for time dimensions that have a DATE-only data type that is unique to the
OLAP DML.

To assign a datetime format template to a definition, the definition must be the one
most recently defined or considered during the current session. When it is not, you
must first use a CONSIDER statement to make it the current definition.

Syntax

DATE_FORMAT [datetime_format_template]

Parameters

datetime_format_template
An expression composed of one or more datetime format elements that specifies the
format for entering and displaying the values of the current object. See Table 9-4 for
the elements that you can specify in the template. Keep the following points in mind
when creating a template:

• The total length of a datetime format template cannot exceed 22 characters

Chapter 9
DATE_FORMAT

9-148

• For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

• Some datetime format elements cannot be used in the TO_* datetime functions, as
noted in Table 2-7.

• The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATETIME format model: FF, TZD, TZH, TZM, and
TZR.

• Many datetime format elements are blank padded to a specific length.

When template is omitted, any existing date format template for the current definition
is deleted and the default datetime format template is used. For a discussion of the
datetime format template, see "Default Datetime Format Template".
The following table describes the datetime format elements.

Element Specify in
TO_* datetime
functions?

Description

-
/
,
.
;
:
"text"

Yes Punctuation and quoted text is reproduced in the result.

AD
A.D.

Yes AD indicator with or without periods.

AM
A.M.

Yes Meridian indicator with or without periods.

BC
B.C.

Yes BC indicator with or without periods.

CC
SCC

No Century.
• If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then

the century is one greater than the first 2 digits of that year.
• If the last 2 digits of a 4-digit year are 00, then the century is the same as the

first 2 digits of that year.
For example, 2002 returns 21; 2000 returns 20.

D Yes Day of week (1-7).

DAY Yes Name of day, padded with blanks to display width of the widest name of day in
the date language used for this element.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

Chapter 9
DATE_FORMAT

9-149

Element Specify in
TO_* datetime
functions?

Description

DL Yes Returns a value in the long date format, which is an extension of the Oracle
Database DATETIME format (the current value of the NLS_DATE_FORMAT parameter).
Makes the appearance of the date components (day name, month number, and
so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE parameters. For
example, in the AMERICAN_AMERICA locale, this is equivalent to specifying the
format 'fmDay, Month dd, yyyy'. In the GERMAN_GERMANY locale, it is equivalent to
specifying the format'fmDay, dd. Month yyyy'.
Restriction: You can specify this format only with the TS element, separated by
white space.

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the
NLS_TERRITORY and NLS_LANGUAGE parameters. For example, in the
AMERICAN_AMERICA locale, this is equivalent to specifying the format 'MM/DD/RRRR'.
In the ENGLISH_UNITED_KINGDOM locale, it is equivalent to specifying the format
'DD/MM/RRRR'.
Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes Abbreviated name of day.

E No Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE No Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9] Yes Fractional seconds; no radix character is printed (use the X format element to add
the radix character). Use the numbers 1 to 9 after FF to specify the number of
digits in the fractional second portion of the datetime value returned. If you do not
specify a digit, then Oracle Database uses the precision specified for the
datetime data type or the data type's default precision.
Examples: 'HH:MI:SS.FF'
SELECT TO_CHAR(SYSTIMESTAMP, 'SS.FF3') from dual;

FM Yes Returns a value with no leading or trailing blanks.
See Also: "Format Model Modifiers" in Oracle Database SQL Language
Reference

FX Yes Requires exact matching between the character data and the format model.
See Also: "Format Model Modifiers" in Oracle Database SQL Language
Reference

HH Yes Hour of day (1-12).

HH12 No Hour of day (1-12).

HH24 Yes Hour of day (0-23).

IW No Week of year (1-52 or 1-53) based on the ISO standard.

Chapter 9
DATE_FORMAT

9-150

Element Specify in
TO_* datetime
functions?

Description

IYY
IY
I

No Last 3, 2, or 1 digit(s) of ISO year.

IYYY No 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with
J must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to display width of the widest name of month
in the date language used for this element.

PM
P.M.

No Meridian indicator with or without periods.

Q No Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.
See Also: "The RR Datetime Format Element" in Oracle Database SQL
Language Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE initialization parameters.
Restriction: You can specify this format only with the DL or DS element,
separated by white space.

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone string
with daylight savings information. It must correspond with the region specified in
TZR.
Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZM format element.)
Example: 'HH:MI:SS.FFTZH:TZM'.

Chapter 9
DATE_FORMAT

9-151

Element Specify in
TO_* datetime
functions?

Description

TZM Yes Time zone minute. (See TZH format element.)
Example: 'HH:MI:SS.FFTZH:TZM'.

TZR Yes Time zone region information. The value must be a time zone region supported in
the database.
Example: US/Pacific

WW No Week of year (1-53) where week 1 starts on the first day of the year and
continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

X Yes Local radix character.
Example: 'HH:MI:SSXFF'.

Y,YYY Yes Year with comma in this position.

YEAR
SYEAR

No Year, spelled out; S prefixes BC dates with a minus sign (-).

YYYY
SYYYY

Yes 4-digit year; S prefixes BC dates with a minus sign.

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year.

Usage Notes

Default Datetime Format Template

The default datetime format template is specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY.
You can change the default datetime formats for your session with the ALTER SESSION
statement.

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY,
I, and IW according to the ISO standard.

For information on the differences between these values and those returned by the
datetime format elements YYYY, YYY, YY, Y, and WW, see Date and Time Formats in
Oracle Database Globalization Support Guide.

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR datetime
format element lets you store 20th century dates in the 21st century by specifying only
the last two digits of the year.

Chapter 9
DATE_FORMAT

9-152

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:

• If the specified two-digit year is 00 to 49, then

– If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

– If the last two digits of the current year are 50 to 99, then the first 2 digits of the
returned year are 1 greater than the first 2 digits of the current year.

• If the specified two-digit year is 50 to 99, then

– If the last two digits of the current year are 00 to 49, then the first 2 digits of the
returned year are 1 less than the first 2 digits of the current year.

– If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

Datetime Format Element Suffixes

The following table lists suffixes that can be added to datetime format elements:

Table 9-5 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Keep the following in mind when using date format element suffixes:

• When you add one of these suffixes to a datetime format element, the return value
is always in English.

• Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime
format elements return spelled values:

• MONTH

• MON

• DAY

• DY

• BC or AD or B.C. or A.D.

• AM or PM or A.M or P.M.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization parameter

Chapter 9
DATE_FORMAT

9-153

NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime format elements are
always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization parameter
NLS_TERRITORY.

See Also:

Datetime Format Parameters for information on globalization support
initialization parameters.

Uppercase Letters in Date Format Elements

Capitalization in a spelled-out word, abbreviation, or Roman numeral follows
capitalization in the corresponding format element. For example, the datetime format
template 'DAY' produces capitalized words like 'MONDAY'; 'Day' produces 'Monday';
and 'day' produces 'monday'.

Punctuation and Character Literals in Datetime Format Templates

You can include these characters in a datetime format template:

• Punctuation such as hyphens, slashes, commas, periods, and colons

• Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Oracle returns an error if an alphanumeric character is found in the date string where a
punctuation character is found in the format string. For example, the following format
string returns an error:

TO_CHAR (TO_DATE('0297','MM/YY'), 'MM/YY')

Examples

Example 9-75 Changing the Datetime Format Template for an Object

Assume that the default datetime format template is DD_MON_RR as shown in the
following statement.

SHOW NLS_DATE_FORMAT
DD-MON-RR

Assume also that you define a variable named mydatetime and assign it the value of
CURRENT_TIMESTAMP.

DEFINE mydatetime VARIABLE DATETIME
mydatetime = CURRENT_TIMESTAMP

When you report on value of mydatetime, the following value is displayed. This value
has the format determined by the setting NLS_DATETIME FORMAT. It shows only
day, month, and year values in the order specified by

Chapter 9
DATE_FORMAT

9-154

REPORT mydatetime

MYDATETIME

02-FEB-07

Now you change the date format map for mydatetime by issuing the following
statements.

CONSIDER mydatetime
DATE_FORMAT MON-RRRR-DD-HH24

A display of the value of mydatetime, now includes hour as a 24-hour value.

REPORT mydatetime

MYDATETIME

FEB-2007-02-10

DBGOUTFILE
The DBGOUTFILE command (abbreviated DOTF) sends debugging information to a
file. When you set PRGTRACE and MODTRACE to YES, the file produced by
DBGOUTFILE interweaves each line of your program, model, or infile with its
corresponding output. When you set ECHOPROMPT to YES, the debugging file also
includes error messages.

Syntax

DBGOUTFILE {EOF | TRACEFILE | [APPEND] file-name [NOCACHE]}

Parameters

EOF
Closes the current debugging file, and debugging output is no longer sent to a file.

TRACEFILE
Specifies that the debugging output should be directed to the Oracle trace file, which
is identified by the TRACEFILEUNIT option.

APPEND
Specifies that the output should be added to the end of an existing file. When you omit
this argument and a file exists with the specified name, the new output replaces the
current contents of the file.

file-name
A text expression that is the name of the file to which debugging output should be
written. Unless the file is in the current directory, you must include the name of the
directory object in the name of the file.

Chapter 9
DBGOUTFILE

9-155

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

NOCACHE
Specifies that Oracle OLAP should write to the debugging file each time a line is
executed. Without this keyword, Oracle OLAP reduces file I/O activity by saving text
and writing it periodically to the file.
The NOCACHE keyword slows performance significantly, but it ensures that the
debugging file records every line as soon as it is executed. When you are debugging
a program that aborts after a certain line, NOCACHE ensures that you see every line
that was executed.

Examples

Example 9-76 Debugging with a Debugging File

The following statements create a useful debugging file called debug.txt in the current
directory object.

PRGTRACE = yes
ECHOPROMPT = yes
DBGOUTFILE 'debug.txt'

After executing these statements, you can run your program as usual. To close the
debugging file, execute this statement.

DBGOUTFILE EOF

In the following sample program, the first LIMIT command has a syntax error.

DEFINE ERROR_TRAP PROGRAM
PROGRAM
TRAP ON traplabel
LIMIT month TO FIRST badarg
LIMIT product TO FIRST 3
LIMIT district TO FIRST 3
REPORT sales
traplabel:
SIGNAL ERRORNAME ERRORTEXT
END

With PRGTRACE and ECHOPROMPT both set to YES and with DBGOUTFILE set to send
debugging output to a file called debug.txt, the following text is sent to the debug.txt
file when you execute the error_trap program.

(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) TRAP ON traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) LIMIT month TO FIRST badarg
ERROR: BADARG does not exist in any attached database.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) SIGNAL ERRORNAME ERRORTEXT
ERROR: BADARG does not exist in any attached database.

Chapter 9
DBGOUTFILE

9-156

Example 9-77 Sending Debugging Information to a File

The following is the text of a program whose first LIMIT command has a syntax error.

DEFINE error_trap PROGRAM
PROGRAM
TRAP ON traplabel
LIMIT month TO FIRST BADARG
LIMIT product TO FIRST 3
LIMIT district TO FIRST 3
REPORT sales
traplabel:
SIGNAL ERRORNAME ERRORTEXT
END

The following statement sends debugging information to a file named debug.txt.

DBGOUTFILE 'debug.txt'

With PRGTRACE and ECHOPROMPT both set to YES, Oracle OLAP sends the
following text to the debug.txt file when you execute the ERROR_TRAP program. The
last line in the file is the command to stop recording the debugging information.

error_trap
(PRG= ERROR_TRAP)
(PRG= ERROR_TRAP) trap on traplabel
(PRG= ERROR_TRAP)
(PRG: ERROR_TRAP) limit month to first badarg
ERROR: BADARG does not exist in any attached workspace.
(PRG= ERROR_TRAP) traplabel:
(PRG= ERROR_TRAP) signal errorname errortext
ERROR: BADARG does not exist in any attached workspace.
dbgoutfile eof

DEFINE
The DEFINE command adds a new object to the analytic workspace. This entry
describes the DEFINE command in general. The following entries discuss the use of
the DEFINE command for creating specific types of object:

• DEFINE AGGMAP

• DEFINE COMPOSITE

• DEFINE DIMENSION

– DEFINE DIMENSION (simple)

– DEFINE DIMENSION (conjoint)

– DEFINE DIMENSION CONCAT

– DEFINE DIMENSION ALIASOF

• DEFINE FORMULA

• DEFINE MODEL

• DEFINE PARTITION TEMPLATE

• DEFINE PROGRAM

• DEFINE RELATION

Chapter 9
DEFINE

9-157

• DEFINE SURROGATE

• DEFINE VALUESET

• DEFINE VARIABLE

• DEFINE WORKSHEET

See Also:

Formulas, Models, Aggregations, and Allocations

Syntax

DEFINE name object-type attributes [AW workspace] [SESSION]

Parameters

name
A TEXT expression that is the name for the new object. Follow these guidelines when
specifying a value for name:

• The name must consist of 1 to 64 characters. When you are using a multibyte
character set, you can still specify 64 characters even when this requires more
than 64 bytes. Each character may be a letter (A-Z), a number (0-9), an underline
(_), or a dot (.). However, the following restrictions apply to the use of these
characters:

– The name cannot consist of a single dot (.) character or a single underscore
(_) character.

– The name cannot duplicate a reserved word. For more information on
identifying reserved words, see the RESERVED function.

– The first character in the name cannot be a number.

– The first character cannot be a dot (.) when the second character is a
number.

• By default Oracle OLAP creates the definition in the current workspace. To create
the definition in a different attached workspace, you can specify a qualified object
name for name or you can use the AW argument to specify the workspace. Do
not use both.

Note:

Oracle OLAP does not warn you when you create an object that has the same
name as an existing object in another attached workspace.

object-type
The type of object being defined. The default is VARIABLE. The object types are
discussed in the subsections for the DEFINE command.

Chapter 9
DEFINE

9-158

attributes
Attributes are different for each type of object. The attributes are listed in the entry for
each object type.

AW workspace
The name of an attached workspace in which you want to define the object. You can
also specify a noncurrent attached workspace using a qualified object name for name.
Do not use this phrase when qualified object name for name.

SESSION
Specifies that the object exists only in the current session. The object is created in the
EXPRESS analytic workspace to which you have read-only access. When you close
the current session, the object no longer exists.

Usage Notes

Triggering Program Execution When DEFINE Executes

Using a TRIGGER_DEFINE program, you can make the DEFINE command an event
that automatically executes an OLAP DML program. See "Trigger Programs" for more
information.

Effect of DEFINE on the Status of the NAME Dimension

When you execute a DEFINE command with the NAME dimension limited to less than
all its values, the status of NAME is automatically limited to ALL.

Viewing Session Objects

Objects created with the SESSION keyword are stored in the analytic workspace
named EXPRESS instead of the current analytic workspace. Therefore, statements that
operate against the current analytic workspace (such as LISTNAMES) do not list
session objects unless you do one of the following:

• Specify the EXPRESS analytic workspace in the statement (such as LISTNAMES AW
EXPRESS)

• Make the EXPRESS analytic workspace the current analytic workspace by issuing an
AW ATTACH EXPRESS statement.

DEFINE AGGMAP
The DEFINE command with the AGGMAP keyword adds a new aggmap object to an
analytic workspace. An aggmap object is a specification for how Oracle OLAP
allocates or aggregates variable data.

Defining an aggmap merely creates an aggmap object in the analytic workspace; it
does not define the calculation specification. The aggmap specification can either
specify how to aggregate or how to allocate data:

• For information on coding an aggregation specification, see the AGGMAP
command.

• For information on coding an allocation specification, see the ALLOCMAP
command.

Syntax

DEFINE aggname AGGMAP [<dims...>][AW workspace][SESSION]

Chapter 9
DEFINE

9-159

Parameters

aggname
The name of the object that you are defining. For general information about this
argument, see the main entry for the DEFINE command.

AGGMAP
The object type when you are defining an aggmap.

dims
(Optional; retained for compatibility with earlier software versions.) When defining an
aggmap object for aggregation (that is, an AGGMAP-type aggmap), the names of the
dimensions. You cannot specify a conjoint dimension as a base dimension in the
definition or specification for the aggmap.

AW workspace
The name of an attached workspace in which you want to define the object. For more
about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. For more information about
this argument, see the main entry for the DEFINE command.

Examples

Example 9-78 Creating an Aggmap for Aggregation

Suppose you define a sales variable with the following statement.

DEFINE sales VARIABLE <time, product, geography>

Assume also that you have defined an aggmap named sales.agg with the following
definition and specification.

DEFINE sales.agg AGGMAP <time, product, geography>
AGGMAP
RELATION time.r PRECOMPUTE (time NE 'Year99')
RELATION product.r PRECOMPUTE (product NE 'All')
RELATION geography.r
CACHE STORE
END

The sales.agg aggregation specification contains the preceding three RELATION
statements and a CACHE statements. In this example, you are specifying that all of
the data for the time.r hierarchy of the time dimension should be aggregated, except
for any data that has a time dimension value of Year99. All of the data for the product.r
hierarchy of the product dimension should be aggregated, except for any data that has
the product dimension value of ALL. (In this example, the product dimension has a
dimension value named ALL that represents all products in the hierarchy.) All geography
dimension values are aggregated. The CACHE STORE statement specifies that any
data that is rolled up on the fly should be calculated just once and stored in the cache
for other access requests during t he same session.

Note that users should not have write access to the analytic workspace when CACHE
STORE is set, because the data calculated during the session may be saved
inadvertently.

Chapter 9
DEFINE

9-160

In this example, any data value that dimensioned by a Year99 time value or an ALL
product dimension value is calculated on the fly.

You can now use the sales.agg aggmap with an AGGREGATE command, such as the
following.

AGGREGATE sales USING sales.agg

Example 9-79 Creating an Aggmap for Allocation

Suppose you have a sales variable that you defined with the following statement.

DEFINE sales VARIABLE <time, product, geography>

To allocate data from a source to cells in the sales variable that are specified by the
time and product dimension hierarchies, you have created an ASCII disk file called
salesalloc.txt, which contains the following aggmap definition and specification.

DEFINE sales.alloc AGGMAP
ALLOCMAP
RELATION time.r OPERATOR EVEN
RELATION product.r operator EVEN NAOPERATOR HEVEN
SOURCEVAL ZERO
CHILDLOCK DETECT
END

To include the sales.alloc aggmap in your workspace, execute the following
statement.

INFILE 'salesalloc.txt'

The sales.alloc aggmap is now defined, and it contains the preceding two RELATION
statements, the SOURCEVAL statement and the CHILDLOCK statement. You end the
entry of statements into the aggmap with the END statement. In this example, you are
specifying that the first allocation of source values occurs down the time dimension
hierarchy and that the source value is divided evenly between the target cells at each
level of the allocation. The second allocation occurs down the product dimension
hierarchy, with the source value again divided evenly between the target cells at each
level of the allocation, and when the allocation encounters a deadlock, the source
values is divided evenly between the target cells of the hierarchy including cells that
have a basis value of NA. With the SOURCEVAL statement you specify that after the
allocation, ALLOCATE sets the value of each source cell to zero. With the
CHILDLOCK statement you specify that ALLOCATE detects the existence of locks on
both a parent and a child element of a dimension hierarchy.

You can now use the sales.alloc aggmap with an ALLOCATE command, such as the
following.

ALLOCATE sales USING sales.alloc

The preceding statement does not specify a basis or a target object so ALLOCATE
uses the sales variable as the source, the basis, and the target of the allocation.

DEFINE COMPOSITE
The DEFINE command with the COMPOSITE keyword adds a new named composite
to an analytic workspace. Conceptually, you can think of a composite consisting of two
structures:

Chapter 9
DEFINE

9-161

• The composite object itself. The composite contains the dimension-value
combinations (that is, a composite tuples) that Oracle OLAP uses to determine the
structure of any variables dimensioned by the composite.

• An index between the composite values and its base dimension values.

For a variable that is dimensioned by composite, Oracle OLAP creates array elements
(that is, variable cells) only for those dimension values that are stored in the tuples of
the composite; it does not create a cell for every value in the base dimensions. Data
for the variable is stored in order, cell by cell, for each tuple in the composite. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. Consequently, when you
define a variable with one regular dimension and one composite, the data for the
variable is stored as though it was a two-dimensional variable. Using composites to
reduce the number of elements created for a variable results in more efficient data
storage.

Note:

Oracle OLAP also supports the use of unnamed composites as described in
"Unnamed Composites".

Syntax

DEFINE name COMPOSITE <dims...> [AW workspace] [index-algorithm] [SESSION]

where index-algorithm specifies the algorithm that Oracle OLAP uses to create an
index that relates the composite values to its base dimension values. When you omit
this optional argument, Oracle OLAP uses the value specified by the SPARSEINDEX
option. Valid values for index-algorithm are:

BTREE

BTREE64

COMPRESSED

HASH

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

COMPOSITE
The object type when you are defining a named composite.

dims
The names of two or more dimensions that you want to be the base dimensions of the
composite. When you specify COMPRESSED as the value of index-algorithm, at least
one dimension must be a hierarchal dimension.
The order of the dimensions in dims varies by the value you specify for index-
algorithm:

Chapter 9
DEFINE

9-162

• For b-tree or hash composites, specify the dimensions in fastest to slowest-
varying order as discussed in "Effect of Dimension Order on Variable Storage and
Statement Looping".

• For compressed composites, it does not matter in which order you specify the
dimensions. Oracle OLAP selects the order in which to store the values unless
you override this optimization by specifying FORCEORDER in an AGGREGATE
command or AGGREGATE function. To see the optimized order chosen by
Oracle OLAP, view the cube operations log.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the cube operations log and the DBMS_CUBE_LOG package

You must define all the dimensions and named composites used in the list before
defining the composite. DEFINE automatically creates any unnamed composites in
the list for you.

AW workspace
The name of an attached workspace in which you want to define the object. For more
information about this argument, see the main entry for the DEFINE command.

BTREE
Specifies the creation of a b-tree index to relate composite values to base dimension
values. BTREE is the standard indexing method for composites. For a variable that is
dimensioned by a BTREE composite, Oracle OLAP creates array elements (that is,
variable cells) only for those dimension values that are stored in the tuples of the
composite; it does not create a cell for every value in the base dimensions.

BTREE64
Specifies the creation of a highly-scalable b-tree index to relate composite values to
base dimension values. For a variable that is dimensioned by a BTREE64 composite,
like a BTREE composite, Oracle OLAP creates array elements (that is, variable cells)
only for those dimension values that are stored in the tuples of the composite; it does
not create a cell for every value in the base dimensions. However, unlike a BTREE
composite, a BTREE64 composite supports b-trees greater than 2 gigabytes.

Note:

Typically, you define a BTREE64 composite when you want to use it to
dimension a variable which you populate from a relational table that is larger
than 2 gigabytes.

COMPRESSED
Specifies the creation of a compressed index to relate composite values to base
dimension values. You specify COMPRESSED only when you want to create a
composite for a variable that has at least one hierarchical dimension that is specified
in dims and that is aggregated.
A compressed composite contains one composite tuple for each set of base
dimension values that identifies non-NA detail data in the variables that use it.

Chapter 9
DEFINE

9-163

Additionally, for variables dimensioned by compressed composite Oracle OLAP
reduces redundancy in the variable, composite, and composite index by creating a
physical position in the composite only for those tuples that represent a parent with
multiple descendants. Oracle OLAP then creates an index between this composite
structure and the base dimensions and uses this composite structure as the
dimension of the variable. Because the actual structure of a compressed composite is
smaller than that of a b-tree or hash composite, a variable dimensioned by a
compressed composite is also smaller than a variable dimensioned by a b-tree or
hash composite. Also, because the index for a compressed composite only has nodes
for parents with multiple descendants, the index of a compressed composite has
fewer levels and is smaller than the index of a b-tree composite. Although
performance varies depending on the depth of the hierarchies and the order of the
dimensions in the composite, aggregating variables defined with compressed
composites is typically much faster than aggregating variables defined with b-tree or
hash composites.

Note:

Oracle OLAP compresses the data in variables dimensioned by compressed
composites using the "intelligence" of the AGGREGATE command or
AGGREGATE function. Consequently, there are special considerations that
apply when aggregating a variable dimensioned by one or more compressed
composites. See "Aggregating Variables Dimensioned by Compressed
Composites" for more information.

HASH
Specifies the creation of a hash index to relate composite values to base dimension
values. HASH is rarely used and, then, typically, only when the composite has two or
three dimensions. For a variable that is dimensioned by a b-tree or hash composite,
Oracle OLAP creates array elements (that is, variable cells) only for those dimension
values that are stored in the tuples of the composite; it does not create a cell for every
value in the base dimensions.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

Shared Composites

You can use the same b-tree or hash composite to dimension several variables.
(Compressed composites cannot be shared in this manner.) The actual sparsity of a
variable dimensioned by a b-tree or hash composite varies depending on whether or
not the composite is an unshared composite or a shared composite:

• An unshared composite is a composite that is used to dimension only one
variable. All types of composites (that is, b-tree, hash, and compressed
composites) can be unshared composites. An unshared composite is populated
only when the variable that uses it is populated. Consequently, an unshared
composite perfectly reflects the sparsity of the variable that it is used to dimension.
It only has the dimension value combinations for each non-NA value in that
variable.

Chapter 9
DEFINE

9-164

• A shared composite is a composite that is used to dimension multiple variables.
A shared composite can be either a b-tree or hash composite; it cannot be a
compressed composite. A shared composite is populated when any of the
variables that use it are populated. A shared composite has all of the dimension
value combinations for non-NA values for all of the variables that it dimensions. A
shared composite reflects the sparsity of all of the variable that it is used to
dimension. Typically, therefore, variables dimensioned by shared composites are
not perfectly sparse variables.

When the size of variables is important, or when you have variables that are sparse
along the same dimensions but with significantly different patterns of sparsity, define
different composites for the different variables.

Examples

This section contains a simple example of creating a named b-tree composite. For
examples of using composites to dimension variables, see Example 9-99 and
Example 9-100.

Example 9-80 Creating a Named b-Tree Composite

Assume that the value of SPARSEINDEX is BTREE. The following statements define
two objects: a named composite that has a b-tree index and base dimensions of
market and a variable called expenses that is dimensioned by the month dimension and
the market.product composite.

DEFINE market.product COMPOSITE <market product>
DEFINE expenses DECIMAL <month market.product <market product>>

DEFINE DIMENSION
The DEFINE command with the DIMENSION keyword adds a new dimension object to
an analytic workspace. A dimension is a list of values that provides an index to the
data.

Because the syntax of the DEFINE DIMENSION command is different depending on
the type of the dimension that you are defining, four separate entries are provided:

• DEFINE DIMENSION (simple) for defining a dimension with unique values of the
same data type.

• DEFINE DIMENSION (DWMQY) for defining a non-hierarchical dimension whose
values represent a time period (day, week, month, quarter, or year).

• DEFINE DIMENSION (conjoint) for defining a dimension over two or more other
base dimensions when the base dimensions do not contain duplicate values or
have different data types and when you want to explicitly specify the dimension
value combinations.

• DEFINE DIMENSION CONCAT for defining a dimension over two or more other
base dimension when the base dimensions contain duplicate values or different
data types or when you want Oracle OLAP to automatically populate the
dimension value combinations.

• DEFINE DIMENSION ALIASOF for defining an alias for a simple dimension.

Chapter 9
DEFINE

9-165

Note:

Defining a dimension in the analytic workspace merely adds the definition of
the dimension to the analytic workspace; it does not populate the dimension.
To populate dimensions using the OLAP DML, you can issue OLAP DML SQL,
FILEREAD, or MAINTAIN statements.

DEFINE DIMENSION (simple)
The DEFINE DIMENSION (simple) command defines a simple dimension. When a
variable is dimensioned by regular dimensions, Oracle OLAP creates an array element
for each set of its dimension values. The values of a simple dimension must be unique
data values with the same data type. A simple dimension can be a flat dimension or a
hierarchical dimension that contains values from different levels of a hierarchy.

Note:

To create a hierarchical dimension using duplicate values or values of different
data types, use a concat dimension as described in DEFINE DIMENSION
CONCAT.

Syntax

DEFINE name DIMENSION type [TEMP] [AW workspace] [SESSION]

where type is the data type of the dimension. The syntax of type varies depending
on the data type:

TEXT [WIDTH n]
NTEXT [WIDTH n]

ID

INTEGER

NUMBER [(precision , scale)]
DATETIME [(truncation-code)]
TIMESTAMP [(truncation-code)]
TIMESTAMP_TZ [(truncation-code)]
TIMESTAMP_LTZ [(truncation-code)]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a dimension.

Chapter 9
DEFINE

9-166

TEXT
Specifies that the values of the dimension have the TEXT data type which is
equivalent to the CHAR and VARCHAR2 data types in Oracle Database. This data
type stores up to 4,000 bytes for each line in the database character set.

NTEXT
Specifies that the values of the dimension have the NTEXT data type which is
equivalent to the NCHAR and NVARCHAR2 data types in Oracle Database. This data
type stores up to 4,000 bytes for each line in UTF-8 character encoding.

ID
Specifies a special text data type that stores up to 8 single-byte characters for each
line in the database character set.

WIDTH n
For TEXT or NTEXT dimensions, the width, in bytes, of the storage area of each
value of an object. Valid width values are 1 through 4000. Specify a fixed width only
when you are certain that the values of a particular dimension are of similar size.
When a value exceeds the specified width, it is truncated.

INTEGER
Specifies that the values of the dimension have the INTEGER data type. The data type
for a dimension with values that are identified by their numeric position (1, 2, and so
on). A data type of INTEGER means that the dimension has no character values. For
ease of use, use a text or time period data type, when possible.

NUMBER
Specifies that the values of the dimension have the NUMBER data type. A NUMBER
dimension differs from other dimensions in that its values cannot be specified by
position, only by value. To specify the values of a NUMBER dimension by position, you
can define an INTEGER type dimension surrogate for the NUMBER dimension.

precision
The total number of digits a value of type NUMBER can have.

scale
The number of digits a value of type NUMBER can have to the right of a decimal point.
For example, when you specify a precision of 7 and a scale of 2, then the highest
value that the dimension can have is 99999.99. When you specify a precision value,
but do not specify a scale value, then the scale is 0.

DATETIME
Specifies that the values of the dimension have the DATETIME data type.

TIMESTAMP
Specifies that the values of the dimension have the TIMESTAMP data type.

TIMESTAMP_TZ
Specifies that the values of the dimension have the TIMESTAMP_TZ data type.

TIMESTAMP_LTZ
Specifies that the values of the dimension have the TIMESTAMP_LTZ data type.

truncation_code
A text expression that specifies a format model shown in Table 8-13. A format model
indicates how the date and time number should be truncated.

Chapter 9
DEFINE

9-167

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you want to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

NA Values in Variables Dimensioned by Simple Dimensions

When a variable is dimensioned by regular dimensions, Oracle OLAP creates an array
element for each set of its dimension values. When an array element is empty, then
the element is said to contain an NA value. In some cases, this can result in a sparse
variable—that is, a variable in which a relatively high percentage of array elements
that are empty. There are two types of sparsity:

• Controlled sparsity occurs when a range of one or more dimensions has no data;
for example, a new variable dimensioned by month for which you do not have data
for past months.

• Random sparsity occurs when some combinations of dimension values never
have any data. For example, a district might only sell certain products and never
have data for other products. Other districts might sell some of those products and
other ones, too.

When a sequence of array elements contain enough NA values to fill up an analytic
workspace page, Oracle OLAP does not actually store any of the NA values and,
instead, keeps tracks of the values internally. However, when an analytic workspace
page contains both regular values and NA values, then Oracle OLAP stores all of the
values. You can reduce the number of array elements with NA values by dimensioning
a variable with one or more composites or conjoint dimensions. See the DEFINE
COMPOSITE and DEFINE DIMENSION (conjoint) commands.

Examples

Example 9-81 Defining a Simple Dimension

This example adds the dimension city to an analytic workspace. You can attach a
description to the object immediately after defining it. (You can also add the
description later when you use CONSIDER and LD statements.) After defining the
dimension city, you can give it values with a MAINTAIN statement.

The statements

DEFINE city DIMENSION ID
LD List of cities

Chapter 9
DEFINE

9-168

MAINTAIN city ADD 'Boston' 'Chicago' 'Dallas' 'Seattle'
DESCRIBE city

produce the following definition.

DEFINE city DIMENSION ID
LD List of cities

DEFINE DIMENSION (DWMQY)
The DEFINE DIMENSION (DWMQY) command defines a DWMQY dimension (that is
a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR) whose values
represent time periods. After defining a DWMQY dimension, you can use a VNF
statement to add a value name format to the dimension's definition. The VNF
command controls the format for entering dimension values and the format for
showing them in output.

Note:

When you want to aggregate over time do not define the time dimension as a
DWMQY dimension because you cannot aggregate over dimensions of this
type. Instead, define the time dimension as a hierarchical dimension of type
TEXT or NTEXT.

Syntax

DEFINE name DIMENSION dwmqy [TEMP] [AW workspace] [SESSION]

where dwmqy is the time period of the dimension. The valid types for dwmqy are DAY,
WEEK, MONTH, QUARTER, and YEAR. Each type indicates the span of the time
period represented by the individual dimension values of the dimension. The syntax of
dwmqy varies depending on the type:

 DAY
 [multiple] WEEK [BEGINNING phase] [ENDING phase]
 [multiple] MONTH [BEGINNING phase] [ENDING phase]
 QUARTER [BEGINNING phase] [ENDING phase]
 YEAR [BEGINNING phase] [ENDING phase]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a dimension.

multiple
For the WEEK and MONTH types, specifies time periods that span a multiple number
of weeks or months. With the WEEK keyword, multiple can be an INTEGER from 2 to
52. With the MONTH keyword, multiple can be 2, 3, 4, or 6.

Chapter 9
DEFINE

9-169

BEGINNING phase
ENDING phase
Specifies the beginning or ending phase of a WEEK, MONTH, QUARTER, or YEAR
dimension:

• For single weeks, phase can be a day of the week (corresponding to a name in
the DAYNAMES option) or a date.

• For multiple weeks, phase must be a date.

• For months, quarters, or years, phase must be a month, expressed as a month
name (corresponding to a name in the MONTHNAMES option) or as a date.

When you specify phase as a date, you give the month, day, and year, enclosed in
single quotes, using any of the input styles that are valid for variable values with a
data type of DATE. When you specify a date with an ambiguous meaning (such as
'03 05 97'), the date is interpreted according to the current setting of the
DATEORDER option.

Note:

When you define a multiple-period dimension of type WEEK but you do not
specify a BEGINNING or an ENDING argument, DEFINE automatically
supplies a phase that begins with the date '31DEC1899'.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you want to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

Implicit Relations Between DWMQY Dimensions

When you define two or more dimensions of type DAY, WEEK, MONTH, QUARTER,
or YEAR, Oracle OLAP automatically defines implicit relations between the values of
the dimensions. For example, when you define a dimension of type MONTH and a
dimension of type YEAR, Oracle OLAP automatically defines a relation that associates
all the MONTH values that fall within a particular year with the corresponding value of
the YEAR dimension.

Using BEGINNING or ENDING Phase to Organize Data by Fiscal Calendar

Chapter 9
DEFINE

9-170

For dimensions of type MONTH, QUARTER, and YEAR, the BEGINNING phase or
ENDING phase argument is especially useful for data organized on a fiscal-year
calendar.

By specifying a phase for a dimension of type MONTH or QUARTER, you identify the
time period that is the first or last period within a year. For example, when you define a
dimension of type MONTH with an ending phase of June, then June is identified as the
twelfth month of the year. When a dimension of type QUARTER has an ending phase
of June, the quarter ending in June is identified as the fourth quarter of the year. When
you give a dimension a VNF that includes a period code, you can enter or report
dimension values according to their period within the year.

By default, the single or multiple weeks in a dimension of type WEEK end on
Saturday. The BEGINNING phase or ENDING phase argument lets you specify the
day of the week on which each period begins or ends. For multiple-week periods, the
phase argument also controls the starting or ending date for grouping the weeks into
periods. By default, the starting point for grouping multiple weeks is December 31,
1899 (a Sunday).

However, the phase argument does not determine the period that is counted as the
first period within a year. For dimensions of type WEEK, Period 1 in a given calendar
year is always the first period that ends in that year. For example, suppose you specify
a dimension of type WEEK with a four-week period ending on June 7, 1997. DEFINE
works backward and forward from this date, forming weeks into four-week periods. For
1997, Period 1 is the period beginning on December 22, 1996 and ending on
January 18, 1997.

Examples

Example 9-82 Defining a YEAR Dimension

The following statement defines a dimension of type YEAR that holds values for fiscal
years that end on June 30.

DEFINE fyear DIMENSION YEAR ENDING june

After defining the dimension, you can give it a description and a VNF (value name
format). You can use a MAINTAIN statement to give values to the dimension.

LD Fiscal years ending June 30
VNF 'FY<ff>'
MAINTAIN fyear ADD 'FY97' 'FY00'

Example 9-83 Using the Default Phrase for Date in an ENDING Phrase

This example illustrates how DEFINE automatically supplies a phase that begins with
the date '31DEC1899' when you define a multiple-period dimension of type WEEK but
you do not specify a BEGINNING phase or an ENDING phase argument. Assume that
you issue the following statements

DEFINE twoweek DIMENSION 2 WEEK
DESCRIBE TWOWEEK

When you issue a DESCRIBE statement for twoweek, the following output is produced.

DEFINE twoweek DIMENSION 2 WEEK ENDING '13Jan1900'

Chapter 9
DEFINE

9-171

DEFINE DIMENSION (conjoint)
The DEFINE DIMENSION (conjoint) command defines a conjoint dimension.

Conceptually, you can think of a conjoint dimension consisting of two structures:

• The dimension object itself. The values of the dimension are combinations of
values of two or more other dimensions (that is, a conjoint tuples) that Oracle
OLAP uses to determine the structure of any variables dimensioned by the
conjoint dimension.

• An index between the conjoint dimension values and its base dimension values.

Composites are another object that you can use to dimension a variable using a list of
dimension value combinations. See "Differences Between Conjoint Dimensions and
Composites" for a discussion of the major differences between composites and
conjoint dimensions.

Syntax

DEFINE name DIMENSION <dims. . .> index-algorithm [AW workspace] [SESSION]

where index-algorithm specifies the algorithm that Oracle OLAP uses to create
the index into the conjoint dimension. Valid values for index-algorithm are:

BTREE

NOHASH

HASH

Parameters

name
The name of the conjoint dimension you are defining. For general information about
this argument, see the main entry for the DEFINE command.

DIMENSION
The object type when you are defining a conjoint dimension.

dims
One or more previously defined dimensions that are the base dimensions of the
conjoint dimension. Specify the dimensions in fastest to slowest-varying order as
discussed in "Effect of Dimension Order on Variable Storage and Statement Looping".
You must enclose the dimension list in angle brackets.
Typically, a base dimension of a conjoint dimension is a simple dimension, but it can
also be another conjoint dimension. However, when you do have a simple dimension
for one value of dims, you cannot also specify for dims a conjoint or concat dimension
that has same simple dimension as one of its bases.

BTREE
Specifies the creation of a b-tree index to relate conjoint values to base dimension
values. Typically, you specify BTREE as the index algorithm for a conjoint dimension.

Chapter 9
DEFINE

9-172

Tip:

When you are unsure whether to specify BTREE or NOHASH, use NOHASH,
because you can always use a CHGDFN statement to change a NOHASH
conjoint into a BTREE conjoint, while you can use a CHGDFN statement to
change a BTREE conjoint into a NOHASH conjoint only when the conjoint was
originally defined as a NOHASH conjoint

NOHASH
Specifies that Oracle OLAP does not create an index for the conjoint dimension, but
instead uses internal structures to relate conjoint values to base dimension values.
Because no index is created for NOHASH, NOHASH decreases the number of
structures associated with the conjoint dimension; and, in many cases, decreases the
time it takes to load and access conjoint dimension values. However, NOHASH is
used infrequently, as it is a complicated algorithm that, on occasion, can result in
unpredictable performance.

HASH
(Default, but not recommended.) Specifies the creation of a has index to relate
conjoint values to base dimension values.

Tip:

Even though HASH is the default, typically, you specify BTREE as the index
algorithm for a conjoint dimension. When your conjoint dimension has more
than 3 base dimensions, for best performance, use BTREE instead of HASH.

AW workspace
The name of an attached analytic workspace in which you want to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

Differences Between Conjoint Dimensions and Composites

You can use either a composite or a conjoint dimension to dimension a variable with a
list of dimension value combinations. Keep the following points in mind when deciding
on which type of object to use:

• Object population maintenance—Conjoint dimensions offer the most control, while
composites provide the greatest ease of use:

– Oracle OLAP determines the dimension value combinations stored in a
composite. Oracle OLAP populates a composite automatically when a variable
dimensioned by composite is populated.

– You determine the dimension value combinations that are stored in a
composite. You must explicitly populate and maintain a conjoint dimension

Chapter 9
DEFINE

9-173

using MAINTAIN statements the same way you populate and maintain other
dimensions.

• Dimension operations —You can perform dimension operations on conjoint
dimensions, but not composites; however, you can only perform dimension
operations on the base dimensions of composites. For example, you can LIMIT
conjoint dimensions, but you must limit the base dimensions of a composite to limit
your view to a subset of composite values; and you can define relations using
conjoint dimensions, but not composites.

For more information on composites, see the DEFINE COMPOSITE command.

Relationship of Conjoint Dimensions to Base Dimensions

The values of the conjoint dimension are related to the base dimensions. You can
specify data in a variable dimensioned by the conjoint dimension using the conjoint
value combinations, the individual values of the base dimensions, or other dimensions
related to either of the base dimensions of the conjoint dimension.

Defining a Subset of a Dimension's Values

You can have a conjoint dimension with only one base dimension, which enables you
to create a subset of that dimension's values. You must still enclose that one base
dimension within angle brackets.

Using Conjoint Dimension Values in Expressions

To refer to the value of a conjoint dimension in an expression, specify the value
following these guidelines:

• Enclose the entire dimension value specification in angle brackets and then
enclose this entire specification in single quotes; do not enclose the individual
values in single quotes.

• Use the exact upper- and lowercase spellings for the base dimension values.

• When the specification includes a text value with an embedded blank, you must
separate the dimension values with commas.

For example, when item.org is a conjoint dimension with base dimensions item and
org, use the following format to refer to values of item.org.

'<Expenses, Direct Sales>'

Examples

Example 9-84 Defining a Conjoint Dimension

Assume that you have defined and populated the simple dimensions city, state, and
region and that they have the following values.

CITY STATE REGION
--------- ---------- ------
Princeton New Jersey East
Newark New Jersey Central
Patterson New York
New York Illinois
Chicago Indiana

To define a conjoint dimension named cityandstate and add values to it use the
following OLAP DML statements.

Chapter 9
DEFINE

9-174

DEFINE cityandstate DIMENSION <city state>
MAINTAIN cityandstate add <'Princeton' 'New Jersey'>
MAINTAIN cityandstate add <'Newark' 'New Jersey'>
MAINTAIN cityandstate add <'Patterson' 'New Jersey'>
MAINTAIN cityandstate add <'New York' 'New York'>
MAINTAIN cityandstate add <'Chicago' 'Illinois'>
MAINTAIN cityandstate add <'Princeton' 'Indiana'>

DEFINE DIMENSION CONCAT
The DEFINE DIMENSION CONCAT commands defines a concat dimension. A concat
dimension is a dimension that groups a set of base dimensions with duplicate values
or different data types into one dimension.

When there are duplicate data values, you create a non-unique concat dimensions.
For example, you would create a nonunique dimension for a geography hierarchy
when "New York" is both the value at the city level and at the state level. When all of
the data values in all of the base dimensions are unique, you can create a unique
concat dimension.

Tip:

The way that you specify the values of concat dimension varies depending on
whether the concat dimension is a unique or nonunique concat dimension. See
"Specifying a Value of a CONCAT Dimension" for more information.

Syntax

DEFINE name DIMENSION CONCAT(basedimlist. . .)[UNIQUE] [TEMP] [AW
workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

DIMENSION CONCAT
The object type when you are defining a concat dimension.

basedimlist
One or more previously-defined dimensions that are the base dimensions of the
concat dimension. Specify the dimensions in fastest to slowest-varying order as
discussed in "Effect of Dimension Order on Variable Storage and Statement Looping".
You must enclose the dimension list in parenthesis.
The types of dimensions that can be base dimensions varies depending on whether
you are defining a unique or nonunique concat dimension:

• When defining a non-unique concat dimension, a base dimension can be a simple
dimension of any data type, a conjoint dimension, or another concat dimension.

• When defining a unique concat dimension, a base dimension can be a simple
dimension of type TEXT or ID, or another unique concat dimension if the data

Chapter 9
DEFINE

9-175

values of all of the base dimensions are unique and not duplicated in any of the
base dimensions.

A composite cannot be the base dimension of a concat dimension.
Simple dimensions and conjoint dimensions are the bottom-level components of a
concat dimension. When you specify a concat dimension as a base dimension when
defining a concat, then the base dimensions of that inner concat are component
dimensions of the outer concat.
The same dimension cannot appear more than once in the component dimensions of
a concat dimension. However, in a concat, a conjoint dimension is an indivisible unit
and Oracle OLAP does not consider the base dimensions of a conjoint in the
definition of the concat. Therefore, a simple dimension can be a base dimension of a
conjoint and that conjoint and the same simple dimension can be base dimensions (or
components) of a concat dimension.
For example, the following definitions are permissible.

DEFINE conjointdim.a DIMENSION <simpledim.b, simpledim.c>
DEFINE conjointdim.b DIMENSION <simpledim.a, simpledim.b>
DEFINE conjointdim.c DIMENSION <simpledim.a, conjointdim.a>
DEFINE concatdim.a DIMENSION CONCAT (simpledim.a, conjointdim.a)
DEFINE concatdim.b DIMENSION CONCAT (simpledim.a, conjointdim.b)
DEFINE concatdim.c DIMENSION CONCAT (simpledim.b, conjointdim.b)
DEFINE concatdim.d DIMENSION CONCAT (simpledim.a, concatdim.c)

In the definition of concatdim.a, the base dimensions are simpledim.a and
conjointdim.a. In the definition of concatdim.d, the base dimensions are simpledim.a
and concatdim.c. The component dimensions of concatdim.d are simpledim.a,
simpledim.b, and conjointdim.b. simpledim.a and simpledim.b appear only once as
component dimensions even though they are the base dimensions of conjointdim.b
because the base dimensions of a conjoint are not component dimensions of a
concat.
However, the following definition is not permitted because the same simple dimension
is a base dimension of concatdim.e and a component of concatdim.e because it is a
base dimension of concatdim.b.

DEFINE concatdim.e DIMENSION CONCAT (simpledim.a, concatdim.b)

Note:

The simple dimensions in the basedimlist argument, and the simple
dimensions that are base dimensions of any conjoint dimensions or concat
dimensions in basedimlist, cannot have an INTEGER data type.

UNIQUE
Specifies that the text values of the base dimensions are unique. When you specify
this keyword, the dimensions listed in basedimlist must be either simple text or ID
dimensions or unique concat dimensions.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to

Chapter 9
DEFINE

9-176

another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you want to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Examples

Example 9-85 Defining a CONCAT Dimension

Assume that you have defined and populated the simple dimensions city, state, and
region and that they have the following values.

CITY STATE REGION
--------- ---------- ------
Princeton New Jersey East
Newark New Jersey Central
Patterson New York
New York Illinois
Chicago Indiana

You define a concat dimension based on these dimensions using the following OLAP
DML statement.

DEFINE geog DIMENSION CONCAT(region cityandstate)

The values of geog are the following.

<REGION: East>
<REGION: Central>
<CITYANDSTATE: <Princeton New Jersey>>
<CITYANDSTATE: <Newark New Jersey>>
<CITYANDSTATE: <Patterson New Jersey>>
<CITYANDSTATE: <New York New York>>
<CITYANDSTATE: <Chicago Illinois>>
<CITYANDSTATE: <Princeton Indiana>>

DEFINE DIMENSION ALIASOF
The DEFINE DIMENSION ALIASOF command defines a dimension alias for a simple
dimension. An alias dimension has the same type and values as its base dimension.
Typically, you define an alias dimension when you want to dimension a variable by the
same dimension twice.

Additionally, You can use a LIMIT statement to limit alias dimensions and define
variables and relations using an alias dimension. However, you cannot maintain an
alias dimension directly; instead you maintain its base dimension using MAINTAIN.

Syntax

DEFINE name DIMENSION ALIASOF dimension [TEMP] [AW workspace] [SESSION]

Chapter 9
DEFINE

9-177

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

DIMENSION ALIASOF
The object type when you are defining a dimension. Indicates that the dimension
being defined is an alias for another dimension.

dimension
The name of a simple dimension for which you want to define an alias. This
dimension cannot be a concat or conjoint dimension, composite, or surrogate.

TEMP
Indicates that the dimension's values are only temporary and only for the current
session. The dimension has a definition in the current workspace and can contain
values during the current session. However, when you update and commit, only the
definition of the dimension is saved. When you leave end your session or switch to
another workspace, the data values are discarded. Each time you start the
workspace, the values of a temporary dimension are NA.

AW workspace
The name of an attached analytic workspace in which you want to define the
dimension. Any objects dimensioned by the dimension must be defined in the same
workspace. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Examples

Example 9-86 Defining an Alias Dimension

Assume that your department has multiple projects that employees participate in and
that an employee may be a leader of one project and a participant in another. Assume
also that you want to track the hours that each employee participates in a project as
either a leader or a participant. To keep track of this information, you can design a
variable that is dimensioned by the time you want to track by (in this example, year),
project, and two dimensions for employee—one dimension named employee for
employee as participant and another dimension named leader for employee as leader.
The following definitions support this structure.

DEFINE year DIMENSION TEXT
DEFINE project DIMENSION TEXT
DEFINE employee DIMENSION TEXT
DEFINE leader DIMENSION ALIASOF employee
DEFINE hours VARIABLE INTEGER <year project employee leader>

The following statements populate all of the dimensions.

MAINTAIN year ADD '2001' '2002' '2003'
MAINTAIN project ADD 'projA' 'projB'
MAINTAIN employee add 'Adams' 'Baker' 'Charles'

Chapter 9
DEFINE

9-178

Note that you do not have to explicitly populate the alias dimension (that is, leader).
When you populate the employee dimension, Oracle OLAP also populates its alias
dimension leader.

EMPLOYEE

Adams
Baker
Charles

LEADER

Adams
Baker
Charles

You can limit a dimension without limiting its alias; or limit an alias without limiting the
dimension for which it is an alias. For example, when you issue the following
statements to limit employee to Adams for project ProjA in year 2001, a report displays
all of the leaders of the projects that Adams participates in.

LIMIT year TO '2001'
LIMIT employee TO 'Adams'
LIMIT project TO 'projA'
REPORT DOWN leader ACROSS employee: hours

PROJECT: projA
YEAR: 2001
 --HOURS---
 -EMPLOYEE-
LEADER Adams
-------------- ----------
Adams 1
Baker 2
Charles 1

On the other hand, when you limit leader to Adams for project ProjA in year 2001, a
report displays all of the employees of the projects that Adams leads.

LIMIT employee TO ALL
LIMIT leader TO 'Adams'
LIMIT project TO 'projA'
REPORT DOWN leader ACROSS employee: hours

PROJECT: projA
YEAR: 2001
 -------------HOURS--------------
 ------------EMPLOYEE------------
LEADER Adams Baker Charles
-------------- ---------- ---------- ----------
Adams 1 3 3

DEFINE FORMULA
The DEFINE command with the FORMULA keyword adds a new formula object to an
analytic workspace. You define a formula to save an expression. A formula can take
the place of an expression you use repeatedly. The name of the formula takes the
place of the text of the expression. Oracle OLAP does not store the data for a formula
in a variable; instead it is calculated at run time each time it is requested.

Chapter 9
DEFINE

9-179

See Also:

"OLAP DML Formulas"

Syntax

DEFINE name FORMULA {expression | [datatype]
[<dimensions...>]} [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

FORMULA
The object type when you are defining a formula.

expression
The calculation to be performed to produce values when you use the formula. It can
be any valid expression, including a constant or the name of a variable as described
in OLAP DML Expressions.
You can specify an expression for a formula when you define it or after you define
using an EQ statement. When you define a formula without specify an expression, a
formula returns NA with the specified data type.

Note:

Oracle OLAP does not automatically convert text in a formula to uppercase.

datatype
The intended data type for the formula when you do not specify a value for
expression. You can use any of the data types that apply to variables. If you do not
specify a value, the data type is determined at run time.
When you include an expression in the formula definition, DEFINE automatically
determines the data type for a formula defined using expression. Later, when you add
the expression using an EQ statement, its data type should match the type you
specify now. When it does not, DEFINE converts the output to the specified type.

dimensions
The dimensions of the formula. Enclose the list in angle brackets. The dimensions
argument is optional. When the formula is a single-cell value, you do not specify any
dimensions. Also, when you include an expression in the definition, you do not specify
a value. DEFINE automatically determines the dimensions.
However, when you do not include an expression in the definition, you must specify
the dimensions. When you add the expression later using an EQ statement, the
expression must have the same dimensions as the formula definition. When it does
not, DEFINE forces the output to have the specified dimensions.

Chapter 9
DEFINE

9-180

Note:

You cannot define a formula that is dimensioned by a composite.

AW workspace
The name of an attached workspace in which you want to define the formula. When
the formula is dimensioned, it must be defined in the same workspace as its
dimensions. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

Effect of Changing the Characteristics of Objects Used by a Formula

When you change the name, data type, or dimensions of any of the objects used by a
formula, the formula is not automatically updated. The formula causes an error when
objects it refers to have been deleted or are now the wrong data type.

Storing Complex Expressions and Calculations

To define a very complex calculation, you can define a program that uses a RETURN
statement to return a value. You can then use the program as a function wherever you
would use an expression or formula.

Examples

Example 9-87 Defining a Formula

This example adds a formula named sales.diff to an analytic workspace. This formula
calculates the percent difference between total sales for the current year and last year.

The statements

DEFINE sales.diff FORMULA LAGPCT(TOTAL(actual year) 1 year)
DESCRIBE sales.diff

produce the following definition.

DEFINE sales.diff FORMULA DECIMAL <year>
EQ lagpct(TOTAL(actual year) 1 year)

DEFINE MODEL
The DEFINE command with the MODEL keyword adds a new model object to an
analytic workspace. A model is a set of interrelated equations. The calculations in an
equation can be based either on variables or on dimension values. You can assign the
results of the calculations directly to a variable or you can specify a dimension value
for which data is being calculated. For example, in a financial application, all the
equations might be based on the values of a line item dimension, and data would be
calculated for line items such as total expenses and net income.

Chapter 9
DEFINE

9-181

Note:

Defining a model merely creates a model object in the analytic workspace. You
must also code a specification for the model, as described in MODEL.

Syntax

DEFINE name MODEL [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

MODEL
The object type when you are defining a model.

AW workspace
The name of an attached workspace in which you want to define the object. For more
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Examples

Example 9-88 Defining a Simple Model

This example shows a simple model named income.calc that calculates the line items
in an income statement. The model equations are based on the line dimension in the
demo workspace. First, define the model and give it an LD.

DEFINE income.calc MODEL
LD Model for calculating Income Statement items

Then use a MODEL statement to enter the specification for the model. For this
example, you can enter model lines such as the ones in the following model
description.

DEFINE income.calc MODEL
LD Model for calculating Income Statement items
MODEL
dimension line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing+selling+r.d)
gross.margin = revenue - cogs
END

To solve the model for the actual variable, enter data in actual for the input line items
(Revenue, Cogs, Marketing, Selling, R.D, and Taxes). Then execute the following
statement.

income.calc actual

Chapter 9
DEFINE

9-182

DEFINE PARTITION TEMPLATE
The DEFINE command with the PARTITION TEMPLATE keywords adds a new
partition template object to an analytic workspace. A partition template is a
specification for the partitions of a partitioned variable. A partitioned variable is stored
as multiple rows in the relational table of LOBs that is the analytic workspace—each
partition is a row in the table. You define both partitioned and unpartitioned variables
using DEFINE VARIABLE statements. Before you can define a partitioned variable
you must first define a partition template object.

Syntax

DEFINE name PARTITION TEMPLATE <dimlist> PARTITION BY {RANGE|LIST}
(dims_partitioned_by) ([partition_definition_statement...]) [AW workspace]

where partition_definition_statement defines a partition. The syntax varies
depending on whether you specify RANGE or LIST:

• For RANGE:

PARTITION partition-name VALUES LESS THAN const-exp <partition-dimlist>

• For LIST:

PARTITION partition-name VALUES ([valuelist)] <partition-dimlist>

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

dimlist
A list of all of the logical dimensions for the variable that you are partitioning. You
must enclose the names of the dimensions in a single set of angle brackets (< >). You
must define a dimension before you can include it in the definition of a partition
template.

dims_partitioned_by
The subset of dimensions specified by dimlist that actually specify the partitions of the
variable. For range and list partitioning (that is, when you specify either the RANGE or
LIST keywords), you can specify only one dimension for dims_partitioned_by. You
cannot partition a variable along an INTEGER dimension.

PARTITION partition-name
The name of the partition.

VALUES LESS THAN
Indicates that you are specifying a RANGE partition by comparing values.

constant-exp
A constant expression that has the same data type as the data type of the dimension
specified for dims_partitioned_by.

Chapter 9
DEFINE

9-183

partition-dimlist
A list of all of the dimensions of the partition template object (although the dimensions
may be members of a composite). You must enclose the names of the dimensions in
a single set of angle brackets (< >). Use this argument to specify the composite (if
any) used to dimension the partitions that correspond to partition-name. When you do
not specify a value then the partition is dimensioned densely by all of the dimensions
of the partition template object.

VALUES
Indicates that you are specify a LIST partition by specifying values.

valuelist
A list of dimension values, separated by commas. You must surround text values with
single quotes (for example, 'mytext'). Specify values of conjoints by specify the
values of the base dimensions, separated by a comma, in a single set of angle
brackets (for example, <'Value1', 'Value2'>). Specify values of nonunique concat
dimensions by specify the values of the base dimensions, separated by a colon, in a
single set of angle brackets (for example, <'Value1': 'Value2'>).

Tip:

I f you want to use a valueset object to specify values, do not specify values for
valuelist. Instead, omit valuelist from the partition template definition and use a
MAINTAIN ADD TO PARTITION statement to specify values for the partition.

Examples

See Example 9-101.

DEFINE PROGRAM
The DEFINE command with the PROGRAM keyword adds a new OLAP DML program
object to an analytic workspace. An OLAP DML program is a collection of OLAP DML
statements that helps you accomplish some workspace management or analysis task.
Defining a program merely creates a program object in the analytic workspace. You
must also code the actual lines of the program.

See Also:

"Creating OLAP DML Programs"

Syntax

DEFINE name PROGRAM [datatype|dimension] [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

Chapter 9
DEFINE

9-184

PROGRAM
The object type when you are defining a program.

datatype
The data type of the value to be returned by the program when it is called as a
function. You can use any of the data types that apply to variables.

dimension
The name of a dimension, whose value the program returns when it is called as a
function. The return value is a single value of the dimension, not a position (INTEGER).
The dimension must be defined in the same workspace as the program.

AW workspace
The name of an attached workspace in which you want to define the program. When
the program returns a dimension, the program must be defined in the same
workspace as the dimension. For general information about this argument, see the
main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists.

Usage Notes

Returning Values

Use a RETURN statement in a program when you want it to return a value. The
argument to the RETURN statement is an expression that specifies the value to return.
When the expression does not match the declared data type or dimension, the value is
converted (if possible) to the declared data type or dimension value.

When you do not specify a data type or dimension in the definition of a program, its
return value is treated as worksheet data and Oracle OLAP converts any return value
to the data type required by the calling context which may lead to unexpected results.

For a program to return a value, you must call the program as a function. That is, you
must use it as an expression in a statement. In the following example, the program
isrecent is being treated as a function. It is an argument to the REPORT command.

REPORT isrecent(actual)

When the program returns values of a dimension, the program is in the output of the
LISTBY function, and OBJ(ISBY) is TRUE for the dimension.

See the entries for the ARGUMENT, CALL, and RETURN commands for more
information about programs as user-defined functions.

Examples

Example 9-89 Basing Program Flow on Test Results

The saleseval program tests whether total sales for a month exceeds total planned
sales for the month. The program executes different statements based on the results
of the test.

DEFINE SALESEVAL PROGRAM
PROGRAM
ARGUMENT onemonth MONTH
VARIABLE excess DECIMAL

Chapter 9
DEFINE

9-185

ALLSTAT
LIMIT month TO onemonth
IF TOTAL(sales, month) GT TOTAL(sales.plan, month)
 THEN DO
 excess = (TOTAL(sales, month) -
 - TOTAL(sales.plan, month)) -
 / TOTAL(sales.plan, month) * 100
 SHOW JOINCHARS('Sales exceeded plan by ' excess '%.')
 DOEND
ELSE SHOW JOINCHARS('We\'re not meeting plan. ' -
 'Let\'s get working!')
REPORT DOWN product W 10 ACROSS district: sales - sales.plan
END

When total sales for the month exceeds total planned sales for the month, the THEN
statement lines are executed. The program calculates the percentage by which actual
sales exceeds planned sales and places the result in a numeric variable called excess.
The program then sends the results to the current outfile. The JOINCHARS function is
used to combine the calculated expression excess with the text expression "Sales
exceeded plan by" in the output.

When total sales does not exceed planned sales, the ELSE statement line is executed
and a different message is produced.

After the THEN or ELSE statement lines are executed, control flows to the next line in
the program, and a report of sales in excess of plan is produced.

DEFINE RELATION
The DEFINE command with the RELATION keyword adds a new relation object to an
analytic workspace. A relation describes a correspondence between the values of two
or more dimensions. It can have dimensions, just like a variable, but the values of the
relation must be values from the related dimension.

Note:

Defining a relation merely adds the definition of the relation to the analytic
workspace; it does not populate the relation. To populate relations using the
OLAP DML, you can issue OLAP DML SQL, FILEREAD, SET, or SET1
statements.

Syntax

DEFINE name RELATION related-
dim [<dimensions...>] [TEMP] [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

RELATION
The object type when you are defining a relation.

Chapter 9
DEFINE

9-186

related-dim
Specifies the dimension to which one or more dimensions are related. A relation is
normally used to store information about the relationship between two dimensions; for
example, the cities that belong in each region.
In the definition, the dimension having fewer values is normally specified as the
related dimension (for example, regions). The dimension having more values is
normally specified as a dimension of the relation (for example, cities).

<dimensions...>
The names of the dimensions of the relation. You must enclose the names of the
dimensions in a single set of angle brackets (< >). You must define a dimension
before including it in the definition of a relation. Do not include composites in the
dimension list.

Note:

Oracle OLAP does not support the use of composites as dimensions for
relations. Do not attempt to define them.

Tip:

When defining two relations between the same dimensions, use the
RELATION command to identify which relation is the default relation.

TEMP
Indicates that the values of the relation are only temporary. The relation is defined in
the current workspace and can contain values during the current session. However,
when you update and commit the workspace, only the definition of the relation is
saved. When you end the session or switch to another workspace, the data values
are discarded. Each time you start the workspace, the values of a temporary relation
are NA.

AW workspace
The name of an attached workspace in which you want to define the relation. The
relation must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. The behavior specified by the SESSION keyword differs
from the behavior specified by the TEMP keyword which is that the values are
temporary, but the object definition remains in the workspace in which you create it.

Examples

Example 9-90 Creating, Populating, and Totaling by a Relation

The following example defines a relation between division and product, stores the
values of the relation, and then totals units by division, even though units is
dimensioned by product. The following statement defines the div.prod relation.

DEFINE div.prod RELATION division <product>

Chapter 9
DEFINE

9-187

The following statements store values of division in div.prod.

LIMIT product TO 'Tents' 'Canoes'
div.prod = 'Camping'
LIMIT product TO 'Racquets'
div.prod = 'Sporting'
LIMIT product TO 'Sportswear' 'Footwear'
div.prod = 'Clothing'

You can use a REPORT statement to see the values stored in div.prod.

report div.prod

This statement produces the following output.

PRODUCT DIV.PROD
------------- ----------
Tents Camping
Canoes Camping
Racquets Sporting
Sportswear Clothing
Footwear Clothing

The div.prod relation lets you look at division totals in a report, even though the data is
dimensioned by product.

REPORT TOTAL(units division)

DEFINE SURROGATE
The DEFINE command with the SURROGATE keyword adds a new dimension
surrogate object to an analytic workspace. A surrogate provides an alternative set of
values for a dimension. You can use a surrogate rather than a dimension in a model,
in a LIMIT command, in a qualified data reference, or in data loading with statements
such as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT.

Note:

Defining a surrogate merely adds the definition of the dimension surrogate to
the analytic workspace; it does not populate the surrogate. To populate
surrogates using the OLAP DML, you can issue OLAP DML SQL, FILEREAD,
SET, or SET1 statements.

Syntax

DEFINE name SURROGATE targetname type [AW workspace] [SESSION]

where type has the following syntax:

 [TEXT|NTEXT] [WIDTH n]|ID|INTEGER|NUMBER (precision[, scale] | datatime-
datatype)

Chapter 9
DEFINE

9-188

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

SURROGATE
The object type when you are defining a dimension surrogate.

targetname
The name of the dimension for which you are creating a surrogate. See "Restrictions
on the Use of Surrogates" for points to keep in mind when determining the target.

TEXT
NTEXT
ID
The data type for a dimension surrogate with text values. When all the values of a
dimension surrogate are eight single-byte characters or less, give it a data type of ID.
When one or more dimension values has more than eight single-byte characters, you
must give it a data type of TEXT or NTEXT. For greater efficiency and ease of use,
give dimensions a data type of ID whenever possible.

WIDTH n
For TEXT or NTEXT dimension surrogate, the width, in bytes, of the storage area of
each value of an object. Valid width values are 1 through 4000. Specify a fixed width
only when you are certain that the values of a particular dimension surrogate are of
similar size. When a value exceeds the specified width, Oracle OLAP truncates it.

INTEGER
The data type for a dimension surrogate with values that are the ordinal positions (1,
2, and so on) of the values in its dimension. You might create an INTEGER type
dimension surrogate for a NUMBER type dimension so that you can specify dimension
values by position instead of by the value of the dimension. When you define an
INTEGER type dimension surrogate, Oracle OLAP automatically assigns an INTEGER
value to the surrogate for each of the positions in the dimension.

NUMBER
Specifies that the dimension surrogate has a data type of NUMBER. See "Numeric Data
Types" for more information.

precision
Specifies the total number of characters in the value of a dimension surrogate of type
NUMBER.

scale
Specifies the number of characters that can be to the right of a decimal point of a
dimension surrogate of type NUMBER.

datetime_datatype
Specifies a datetime data type (that is, DATETIME , TIMESTAMP, TIMESTAMP_TZ, or
TIMESTAMP-LTZ). See "Datetime and Interval Data Types" for more information.

AW workspace
The name of an attached workspace in which you want to define the dimension
surrogate. The dimension for which you define the surrogate must be defined in the

Chapter 9
DEFINE

9-189

same workspace. For general information about this argument, see the main entry for
the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When you close the current
session, the object no longer exists. Use this keyword when the definition of the
targetname dimension includes SESSION.

Usage Notes

Restrictions on the Use of Surrogates

Keep the following restrictions in mind when determining a target for your surrogate:

• You cannot create a surrogate for a dimension that has a type of DAY, WEEK,
MONTH, QUARTER, or YEAR or for a composite.

• When you create a surrogate for a conjoint, you cannot convert the conjoint to a
composite.

You cannot specify a dimension surrogate as the dimension or related dimension
argument when you define a concat dimension, a formula, a program, a relation, a
valueset, or a variable. Additionally, in data loading you cannot create new dimension
values using a dimension surrogate

Examples

Example 9-91 Creating an INTEGER Dimension Surrogate

The following statement creates an INTEGER type dimension surrogate for the
store_id dimension.

DEFINE storepos SURROGATE store_id INTEGER

Example 9-92 Creating a NUMBER Dimension Surrogate

The following statement creates an NUMBER type dimension surrogate for the product
dimension, which is a TEXT dimension that has product names as values. The
precision argument to the NUMBER keyword specifies that a value in prodnum can
have no more than seven characters and the scale argument specifies that no more
than three characters can be to the right of the decimal point.

DEFINE prodnum SURROGATE product NUMBER(7, 3)

The following statement sets the first value of prodnum to 1083.375.

prodnum(product 1) = 1083.375

DEFINE VALUESET
The DEFINE command with the VALUESET keyword adds a new valueset object to
an analytic workspace. A valueset is a list of dimension values for one or more
dimensions. You use a valueset to save dimension status lists across sessions.

Chapter 9
DEFINE

9-190

Note:

Defining a valueset adds the definition of the valueset to the analytic workspace
and sets all of its values to null (NA). To assign values to a valueset use the
LIMIT command. You can also use a STATUS statement and the STATFIRST,
INSTAT, and VALUES functions to work with a valueset.

Syntax

DEFINE name VALUESET dimension [<dims...>] [NOORDER]
[TEMP] [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

VALUESET
The object type when you are defining a valueset.

dimension
The name of the previously-defined dimension whose values you want to store in the
valueset.

dims
When defining a multi-dimensional valueset, the names of the previously-defined
dimensions by which you want the valueset dimensioned.

NOORDER
For a dimensioned valueset (that is, a valueset for which you specify one or more
value for dims), specifies that Oracle OLAP stores the valueset as a compressed
bitmap. When you specify this keyword the order of the original status is lost.

TEMP
Indicates that the values of the valueset are only temporary. The valueset has a
definition in the current workspace and can contain values during the current session.
However, when you update and commit, only the definition of the valueset is saved.
When you end the session or switch to another workspace, the values are discarded.
Each time you start the workspace, the value of a temporary valueset is null.

AW workspace
The name of an attached workspace in which you want to define the valueset. The
valueset must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. The behavior specified by SESSION is different from the
behavior specified by the TEMP keyword which is that the values are temporary but
the object definition remains in the workspace in which you create it.

Chapter 9
DEFINE

9-191

Examples

Example 9-93 Creating and Assigning Values to a Valueset

This example adds the valueset named lineset to the demonstration workspace. The
lineset valueset is dimensioned by line, and therefore it can be limited by the current
values of the line dimension. The LD statement attaches a description to the object.

The following statements 1) limit the line dimension and display the values in status,
2) create a valueset named lineset by defining valueset and limiting the valueset to
those values currently in status for the line dimension, and 3) display the values of the
lineset.

LIMIT line TO FIRST 2
STATUS line

The current status of LINE is:
REVENUE, COGS

" Define the valueset and specify a long description for it

DEFINE lineset VALUESET line
LD Valueset for LINE dimension values
" Assign the values that are currently in status for line
" as the values of valueset
LIMIT lineset TO line
UPDATE

SHOW lineset

Revenue
Cogs

Example 9-94 Creating and Assigning Values to a Multidimensional Valueset

Assume that your analytic workspace has the variables and dimensions with the
following definitions.

DEFINE geography DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <geography product>
DEFINE salestax VARIABLE DECIMAL <geography>

Assume also that the analytic workspace contains the following dimensions whose
values are the names of variables and dimensions within the workspace.

DEFINE all_variables DIMENSION TEXT
MAINTAIN all_variables ADD 'sales' 'salestax'
DEFINE all_dims DIMENSION TEXTMAINTAIN all_dims ADD 'geography' 'product'

The following statements create and populate a valueset for the values of
all_variables and all_dims, and then report the values of that valueset.

DEFINE variables_dims VALUESET all_dims <all_variables>
" Assign all values of all_dims and all_variables to the valueset
LIMIT variables_dims TO ALL
REPORT variables_dims

ALL_VARIABLES VARIABLES_DIMS
---------------- ------------------------------

Chapter 9
DEFINE

9-192

sales geography
 product
salestax geography
 product

To create a multidimensional valueset that has the correct dimensions related to the
variables that use them, you issue the following statement that uses a QDR to limit the
all_dims values for the salestax value of all_variables.

LIMIT variables_dims(all_variables 'salestax') TO 'geography'
REPORT variables_dims

ALL_VARIABLES VARIABLES_DIMS
---------------- ------------------------------
sales geography
 product
salestax geography

DEFINE VARIABLE
The DEFINE command with the VARIABLE keyword adds a new variable object to an
analytic workspace. Variables store one type of data, which can be numeric, text,
Boolean, or dates. Beside the data type of a variable, the definition that you create for
a variable also determines the following characteristics of the variable:

• The number of elements that are actually created in the array that is the variable.

• The logical order of the variable's elements.

• Whether the variable's data is stored permanently or is only available for the
session.

• The number of LOBs that Oracle OLAP creates for the variable's data.

You can also define local program variables using a VARIABLE command. These
variables exist only when the program is running.

Note:

Defining a variable merely adds the definition of the variable to the analytic
workspace; it does not populate the variable. To populate variables using the
OLAP DML, you can issue OLAP DML SQL, FILEREAD, SET, or SET1
statements.

Syntax

DEFINE name [VARIABLE] datatype [<dims...>] [WITH NULLTRACKING] [WITH
AGGCOUNT] - [PERMANENT | TEMP] - [RANSPACE64] [(partition-
instance...)] [WIDTH n] [AW workspace] [SESSION]

where:

• dims are the dimensions of the variable separated by commas. For a dimension
of a variable you can specify a dimension object, a partition template object, a
named uncompressed composite, a compressed composite, or an unnamed
uncompressed composite using one of the following:

Chapter 9
DEFINE

9-193

dimension_name

partition_template_name <dims>

uncompressed_composite_name <[basedims...]>

compressed_composite_name <[basedims...]>

SPARSE <basedims...>

Note:

The order in which you list the dims of a variable is the default order of the
dimensions and behavior of a variety of statements (such as REPORT and
UNRAVEL) and affects how the data for the variable is stored (as
discussed in "Effect of Dimension Order on Variable Storage and
Statement Looping". Also, when you define multiple objects with the same
dimensions, most operations work much more efficiently when you list the
dimensions in the same order in each definition.

• partition-instance are the partitions of the variable separated by commas.
Use the following syntax to specify a partition.

 PARTITION partition-name INTERNAL [TEMP | PERMANENT]

Parameters

name
The name of the variable you are defining. For general information about this
argument, see the main entry for the DEFINE command.

VARIABLE
The object type when you are defining a variable. You do not have to include the word
VARIABLE, because it is the default.

datatype
The data type of the data to be stored in the variable. The data types, their
abbreviations, and the range of acceptable values are shown in Table 2-1.

dimension_name
The name of a simple, concat, conjoint, or alias dimension that you have previously
defined using a DEFINE DIMENSION statement. In this case, you specify the name of
the dimension.

RANSPACE64
When defining a TEXT, NTEXT, or RAW variable, specify this keyword to increase the
maximum number of characters for the values of the variable from nearly 2**32 to
nearly 2**64.

 partition-template-name<dims>
The name of a partition template object that you have previously defined using a
DEFINE PARTITION TEMPLATE statement. For dims, specify the names of the
dimensions of the partition template object. These dimensions must be the same
dimensions as those used to define the partition template object.

Chapter 9
DEFINE

9-194

uncompressed_composite_name <[basedims...]>
The name of an uncompressed composite previously defined using a DEFINE
COMPOSITE statement. For the optional basedims argument, specify the names,
separated by commas, of the dimensions used to define the composite.

compressed_composite_name <basedims...>
The name of a compressed composite previously defined using a DEFINE
COMPOSITE statement. For the optional basedims argument, specify the names,
separated by commas, of the dimensions used to define the composite.
When defining a variable that is dimensioned by a compressed composite, keep the
following points in mind:

• A compressed composite can dimension only one variable or one partition of a
variable. A compressed composite cannot be a shared composite.

• The compressed composite must be the last dimension in the variable's
dimension list of the DEFINE VARIABLE statement that defines the variable.

SPARSE <basedims...>
Indicates that you want Oracle OLAP to create an unnamed composite and use it
when dimensioning the variable. For the basedims argument, specify the names of
the dimensions, separated by commas, for which the unnamed composite is created.

WITH NULLTRACKING
When the variable is dimensioned by a composite, specifies that Oracle OLAP create
NA2 bits for the cells of the variable.

See Also:

"NA2 Bits and Null Tracking"

WITH AGGCOUNT
Specifies that Oracle OLAP automatically creates an INTEGER variable in which it
stores the non-NA counts of the number of leaf nodes that contributed to aggregate
values calculated for RELATION statements that have an AVERAGE, HWAVERAGE,
or WAVERAGE operator. You must include this phrase to calculate average
aggregations for a variable dimensioned by a compressed composite. For more
information on Aggcount variables, see "Aggcount Variables".

PERMANENT
TEMP
Specifies that a variable or a partition of a variable is either permanent or temporary.
After you update and commit, the definition of both permanent and temporary
variables and partitions is always saved between sessions. Specifying permanent or
temporary determines whether, after you update and commit, the values of a variable
or a partition of a variable are saved or discarded when you end your session or
switch to another workspace:

• Permanent variables and partitions—Oracle OLAP saves the data values or a
permanent variable or permanent partitions. When you start the workspace, the
data values or a permanent variable or permanent partitions are the same as they
were at the last commit.

Chapter 9
DEFINE

9-195

• Temporary variables and partitions—Oracle OLAP discards the data values of a
temporary variable or temporary partition. Each time you start the workspace, the
values of a temporary variable or temporary partition are NA.

Keep the following points in mind when specifying the PERMANENT and TEMP
keywords:

• By default, a variable is permanent.

• Temporary variables can be dimensioned by partition template objects or by
temporary dimensions.

• By default, a top-level partition of a variable has the same permanence as the
variable that contains it. Specifically, a partition of a temporary variable is a
temporary partition unless you use the PERMANENT keyword to make it a
permanent partition, and a partition of a permanent variable is a permanent
partition unless you use the TEMPORARY keyword to make it a temporary
partition. To indicate different behavior, use either the PERMANENT or TEMP
keyword.

• By default, a subpartition has the same permanence as its parent partition. To
indicate different behavior, use either the PERMANENT or TEMP keyword.

WIDTH n
(You can abbreviate WIDTH as W.) The width, in bytes, of the storage area for each
value of a variable. When you are using a multibyte character set, be sure to specify
the number of bytes, not characters.
You specify fixed widths to create faster and more compact data storage formats. You
can specify fixed widths for dimensioned TEXT, NTEXT, and INTEGER variables
only, as described in the following list:

• For dimensioned TEXT and NTEXT variables, you can specify a width from 1 byte
through 4,000 bytes. Specify a fixed width for such variables only when you are
certain that the values of a particular variable are of similar size. You cannot
assign a width to a scalar variable.

• For dimensioned INTEGER variables, you can specify a width of 1 byte only.
Define a fixed width INTEGER variable only when you are certain that all the
values for that variable are between -128 and 127.

The default widths for variables are: 2 bytes for SHORTINTEGER, 4 bytes for DATE,
INTEGER, and SHORTDECIMAL, and 8 bytes for DECIMAL and ID. TEXT and
NTEXT variables that do not have fixed widths are stored on two sets of pages. The
first set contains 4-byte cells, each of which points to the actual text value that is
stored in the other set of pages. The default width of 4 bytes for TEXT and NTEXT
variables is for these 4-byte cells.

PARTITION partition-name INTERNAL
Specifies a partition of the variable where partition-name is the name of the partition.
When defining the partitions of a variable dimensioned by a compressed composite,
keep the following points in mind:

• A compressed composite can dimension only one partition.

• The partitions of a variable dimensioned by a compressed composite must
respect the parent-child relationships of the hierarchical dimensions. When an
AGGREGATE command executes, data cannot be aggregated across partitions.
To verify if a variable is partitioned correctly, use the PARTITIONCHECK function.

Chapter 9
DEFINE

9-196

AW workspace
The name of an attached workspace in which you want to define the variable. When
the variable is dimensioned, it must be defined in the same workspace as its
dimensions. For general information about this argument, see the main entry for the
DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. The behavior specified by SESSION is different than the
behavior specified by the TEMP keyword which is that the values are temporary but
the object definition remains in the workspace in which you create it.

Usage Notes

Aggcount Variables

When you include the WITH AGGCOUNT phrase in a DEFINE VARIABLE statement,
Oracle OLAP automatically creates the variable specified in the DEFINE statement
and a secondary variable (often called the Aggcount variable). The Aggcount variable
is an INTEGER variable that Oracle OLAP uses when performing average aggregations
for the defined variable. When resolving RELATION statements that have an
AVERAGE, HAVERAGE, WAVERAGE, or HWAVERAGE operator and that do not
have a COUNT NO phrase, Oracle OLAP stores the non-NA counts of the number of
leaf nodes that contribute to the average aggregate values in the Aggcount variable.

Most statements that maintain a variable also automatically maintain an associated
Aggcount variable. For example, an EXPORT statement exports both a variable and
its associated Aggcount variable, and a CLEAR statement clears both the variable and
the related portions of the associated Aggcount variable. Additionally, some OLAP
DML statements are specific to the use of Aggcount objects. The following table lists
these statements:

Table 9-6 OLAP DML Statements for Aggcount Variables

Statement Keywords Description

DEFINE
VARIABLE

WITH AGGCOUNT Defines a variable and an associated Aggcount
variable.

AGGCOUNT Retrieves the values of the Aggcount variable
associated with the specified variable.

CHGDFN ADD|DROP
AGGCOUNT

Adds or drops an Aggcount variable for the
specified variable.

OBJ HASAGGCOUNT Returns a BOOLEAN value that indicates whether or
not a specified variable has an Aggcount variable
associated with it.

NA2 Bits and Null Tracking

Relational fact tables sometimes have null facts (that is, facts that have a null value).
Typically, when Oracle OLAP creates a variable dimensioned by a composite, it does
not create a composite tuple for an NA (or null) value. Given this typical behavior,
OLAP DML variables would not correspond to their base relational fact table because
the variables would eliminate the null facts.

To support OLAP DML composite-dimensioned variables that correspond to relational
fact tables with null facts, Oracle OLAP has a special NA bit called an NA2 bit. These

Chapter 9
DEFINE

9-197

NA2 bits tracks whether or not each cell of the variable has null value because the
underlying relational table has a null fact. When the corresponding fact table has a null
fact, you want Oracle OLAP to intentionally include an NA value in the composite
tuples for the variable and NA2 bits are used by Oracle OLAP to do just that. NA2 bits
are used by Oracle OLAP when it populates variables using the SQL IMPORT
command, the AGGREGATE command, and variables that were created as
materialized views. They are also used by Oracle OLAP when it populates a relational
table using the OLAP_TABLE SQL function. Additionally, Oracle OLAP recognizes
NA2 values when evaluating expressions using arithmetic and Boolean operators.

The OLAP DML provides the following statements for working with variables that have
NA2 bits:

• To create a variable with NA2 bits, use the DEFINE VARIABLE statement with the
NULLTRACKING phrase.

• To add NA2 bits to a variable that does not have NA2 bits, use the CHGDFN
statement with the NULLTRACKING phrase.

• To remove NA2 bits from a variable that has NA2 bits, use the CHGDFN
statement with the DROP NULLTRACKING phrase.

• For testing and debugging purposes, use the NA2 function to set one or more of
the NA2 bit of a variable to TRUE. Use the NAFLAG function to identify if one or
more values of a variable are NA values and, if so, if the NA value is just the
typical NA values that OLAP should ignore or both the typical NA value and also
an NA2 value.

See Also:

Adding Materialized View Capability to a Cube in Oracle OLAP User’s
Guide

Defining Very Large Variables

Theoretically, a variable can contain up to 2**63 cells and a TEXT or NTEXT variable
can contain up to 2 billion bytes. However, the page size determines if a variable can
be stored entirely on a page or how many variables can be stored on a page. To
calculate the maximum number of values for a variable of a given width that fit on one
page, use the VALSPERPAGE program.

Effect of Dimension Order on Variable Storage and Statement Looping

The order in which you list the dimensions of a variable definition determines the order
in which the elements of the variable are stored and, consequently, how the data is
accessed. The first dimension in the variable definition is the fastest-varying
dimension, and the last dimension is the slowest-varying dimension.

For example, assume your analytic workspace has an opcosts variable that contains
the operating costs, by month, of each city in which you have offices. In the following
definition for the opcosts variable, month is the fastest-varying dimension and city is the
slowest-varying dimension.

DEFINE opcosts VARIABLE DECIMAL <month city>

The data for a multidimensional variable is stored as a linear stream of values, in
which the values of the fastest-varying dimension are clustered. For example, for the

Chapter 9
DEFINE

9-198

opcosts variable, the values for Boston for all the months are stored in a sequence,
and then it stores the values for Chicago for all the months in a sequence, and so on.

When you define variables and other dimensioned objects, and when you write
programs that loop over multidimensional expressions in nested loops, always try to
maximize performance by matching the fastest-varying dimension with the inner loop.

Unnamed Composites

Oracle OLAP automatically defines an unnamed composite when a DEFINE
VARIABLE statement with a SPARSE <dimlist> phrase executes. An unnamed
composite can have either a b-tree or hash index. The type of index is determined by
the value of the SPARSEINDEX option when Oracle OLAP defines an unnamed
composite.

Once Oracle OLAP has created a definition for an unnamed composite for a certain
dimension list, it uses that composite any time you define a variable with the same
SPARSE <dimlist> phrase. Thus all variables that are defined with the same
SPARSE <dimlist> phrase share the same unnamed composite. For more
information on sharing composites, see "Shared Composites".

Variable Segments

Within a partition, variable data is stored in analytic workspace segments. An analytic
workspace segment is a group of logically contiguous analytic workspace pages. By
default, the segment sizes of a variable are automatically determined by Oracle OLAP.
Each segment is the exactly the number of analytic workspace pages needed to store
the values assigned by the one OLAP DML statement. You can explicitly specify a
segment size for a variable using the SEGWIDTH keyword of the CHGDFN command.
In this case, when you assign values to a variable, Oracle OLAP stores the data
assigned by multiple OLAP DML statements into a segment until the segment is full.

Examples

Example 9-95 Defining an INTEGER Variable with One Regular Dimension

This example adds the variable population to an analytic workspace. It is dimensioned
by city, which has already been defined in the workspace. The LD Statement attaches
a description to the object. The statements

DEFINE population INTEGER <city>
LD Population in each city
DESCRIBE population

produce the following description.

DEFINE POPULATION VARIABLE INTEGER <CITY>
LD Population in each city

Example 9-96 Defining a Single-Cell Variable

The following is a definition for a variable named newdata which is a single Boolean
value. It has no dimensions. An application might set it to YES when new data is added
to the workspace and to NO after a user views the data.

DEFINE newdata BOOLEAN
newdata = YES

Chapter 9
DEFINE

9-199

Example 9-97 Defining NUMBER Variables

The following statement defines a NUMBER variable named sales that is dimensioned by
product and geography with a precision of 16 digits and a scale of 4 digits.

DEFINE sales VARIABLE NUMBER (16,4) <product, geography>

The following statements define a NUMBER variable named numvar with 5 significant digits
and 2 decimal places. The number 1234567 is out of its range.

DEFINE numvar VARIABLE NUMBER (5, 2)
numvar = 1234567
SHOW numvar
NA

A negative scale defines a NUMBER variable named numnegvar with 5 significant digits
and 2 rounded digits to the left of the decimal point. The number 1,234,567 is rounded
up.

DEFINE numnegvar VARIABLE NUMBER (5, -2)
numnegvar = 1234567
SHOW numnegvar
1,234,600.00

Example 9-98 Defining a Variable Dimensioned by Two Regular Dimensions

Assume that you have an analytic workspace that contains the following definitions for
dimensions, relations, and aggmaps.

DEFINE GEOG_CITY DIMENSION TEXT
DEFINE GEOG_STATE DIMENSION TEXT
DEFINE GEOG_AREA DIMENSION TEXT
DEFINE GEOG_CONT DIMENSION TEXT
DEFINE GEOG DIMENSION CONCAT (GEOG_CITY GEOG_STATE GEOG_AREA GEOG_CONT)
DEFINE PROD_UPC DIMENSION TEXT
DEFINE PROD_FAMILY DIMENSION TEXT
DEFINE PROD_DIV DIMENSION TEXT
DEFINE PROD_TOP DIMENSION TEXT
DEFINE PROD DIMENSION CONCAT (PROD_UPC PROD_FAMILY PROD_DIV PROD_TOP)
DEFINE GEOGLEVEL DIMENSION TEXT
DEFINE PRODLEVEL DIMENSION TEXT
DEFINE GEOG.PARENT RELATION GEOG <GEOG>
DEFINE PROD.PARENT RELATION PROD <PROD>
DEFINE GEOG.LEVELREL RELATION GEOGLEVEL <GEOG>
DEFINE PROD.LEVELREL RELATION PRODLEVEL <PROD>
DEFINE GEOG.FAMILYREL RELATION GEOG <GEOG GEOGLEVEL>
DEFINE PROD.FAMILYREL RELATION PROD <PROD PRODLEVEL>
DEFINE SALES_DIMS_REG VARIABLE NUMBER (12,0) <PROD GEOG>
DEFINE SALES_AGGMAP AGGMAP
AGGMAP
 RELATION geog.parent
 RELATION prod.parent
END

The two parent relations (prod.parent and geog.parent) have the following values.

PROD PROD.PARENT
------------------------- -------------------------
<PROD_UPC: ColorTV> <PROD_FAMILY: TV>
<PROD_UPC: BWTV> <PROD_FAMILY: TV>
<PROD_UPC: StndVCR> <PROD_FAMILY: VCR>
<PROD_UPC: StrVCR> <PROD_FAMILY: VCR>

Chapter 9
DEFINE

9-200

<PROD_FAMILY: VCR> <PROD_DIV: VideoDiv>
<PROD_FAMILY: TV> <PROD_DIV: VideoDiv>
<PROD_DIV: VideoDiv> <PROD_TOP: Total Prod>
<PROD_TOP: Total Prod> NA
GEOG GEOG.PARENT
------------------------- -------------------------
<GEOG_CITY: Canberra> <GEOG_STATE: ACT>
<GEOG_CITY: Sydney> <GEOG_STATE: NSW>
<GEOG_CITY: Darwin> <GEOG_STATE: NT>
<GEOG_CITY: Brisbane> <GEOG_STATE: QLD>
<GEOG_CITY: Adelaide> <GEOG_STATE: SA>
<GEOG_CITY: Hobart> <GEOG_STATE: TAS>
<GEOG_CITY: Melbourne> <GEOG_STATE: VIC>
<GEOG_CITY: Perth> <GEOG_STATE: WA>
<GEOG_STATE: ACT> <GEOG_AREA: Aust Terr>
<GEOG_STATE: NSW> <GEOG_AREA: Aust State>
<GEOG_STATE: NT> <GEOG_AREA: Aust Terr>
<GEOG_STATE: QLD> <GEOG_AREA: Aust State>
<GEOG_STATE: SA> <GEOG_AREA: Aust State>
<GEOG_STATE: TAS> <GEOG_AREA: Aust State>
<GEOG_STATE: VIC> <GEOG_AREA: Aust State>
<GEOG_STATE: WA> <GEOG_AREA: Aust State>
<GEOG_AREA: Aust State> <GEOG_CONT: Australia>
<GEOG_AREA: Aust Terr> <GEOG_CONT: Australia>
<GEOG_CONT: Australia> NA

Assume that you aggregate sales_dims_reg using sales_aggmap. Now assume that you
issue the following REPORT statement for a report of the sales_dims_reg variable.

REPORT sales_dims_reg->REPORT sales_dims_reg

As you can see from the output of the REPORT statement, the sales_dims_reg variable
is a sparsely populated variable with 152 cells, many of which contain NA values.

 ----------------------------SALES_DIMS_REG-----------------------------
 ---------------------------------PROD----------------------------------
 <PROD_DI
 <PROD_UP <PROD_UP <PROD_UP <PROD_FA <PROD_FA V: <PROD_TO
 C: <PROD_UP C: C: MILY: MILY: VideoDiv P: Total
GEOG ColorTV> C: BWTV> StndVCR> StrVCR> VCR> TV> > Prod>
------------------------- -------- -------- -------- -------- -------- -------- -------- --------
<GEOG_CITY: Canberra> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_CITY: Sydney> NA NA NA NA NA NA NA NA
<GEOG_CITY: Darwin> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_CITY: Brisbane> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_CITY: Adelaide> NA NA NA NA NA NA NA NA
<GEOG_CITY: Hobart> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_CITY: Melbourne> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_CITY: Perth> NA NA NA NA NA NA NA NA
<GEOG_STATE: ACT> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_STATE: NSW> NA NA NA NA NA NA NA NA
<GEOG_STATE: NT> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_STATE: QLD> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_STATE: SA> NA NA NA NA NA NA NA NA
<GEOG_STATE: TAS> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_STATE: VIC> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_STATE: WA> NA NA NA NA NA NA NA NA
<GEOG_AREA: Aust State> 66,779.0 22,000.0 67,111.0 73,065.0 140,176 88,779.0 228,955 228,955
<GEOG_AREA: Aust Terr> 36,460.0 NA 60,460.0 36,111.0 96,571.0 36,460.0 133,031 133,031
<GEOG_CONT: Australia> 103,239 22,000.0 127,571 109,176 236,747 125,239 361,986 361,986

Chapter 9
DEFINE

9-201

Because the sales_dims_reg variable is dimensioned by two regular dimensions (rather
than by composites or concat dimensions), the values of all of its cells (even those
with an NA value) are stored in variable. You can confirm the number of physical values
stored in the workspace by issuing the following statement.

SHOW OBJ(NUMVALS 'sales_dims_reg')
152.00

The result of the statement is that the value 152.00 displays which indicates that every
value in the 152 cells of the sales_dims_reg variable (even the NA values) are stored as
part of the variable.

Example 9-99 Defining a Variable Dimensioned by an Uncompressed Composite

Assume that you have created an analytic workspace with the same dimensions,
relations, and aggmap as those in Example 9-98. Now assume that you define a
composite and a variable dimensioned by that composite by issuing the following
statements.

DEFINE COMP_PROD_GEOG COMPOSITE <PROD GEOG>
DEFINE SALES_DIMS_COMPOSITE VARIABLE NUMBER (12,2) <COMP_PROD_GEOG <PROD GEOG>>

Assume that you populate sales_dims_composite with the same base values as you did
sales_dims_reg in Example 9-98, and that you aggregate sales_dims_composite using
the same aggmap (that is, sales_aggmap) and issue the following. REPORT statement
for the sales_dims_composite variable.

REPORT sales_dims_composite

A report for the sales_dims_composite variable displays the same 152 cells as the
report for the sales_dims_reg variable.

 -------------------------SALES_DIMS_COMPOSITE--------------------------
 ---------------------------------PROD----------------------------------
 <PROD_DI
 <PROD_UP <PROD_UP <PROD_UP <PROD_FA <PROD_FA V: <PROD_TO
 C: <PROD_UP C: C: MILY: MILY: VideoDiv P: Total
GEOG ColorTV> C: BWTV> StndVCR> StrVCR> VCR> TV> > Prod>
------------------------- -------- -------- -------- -------- -------- -------- -------- --------
<GEOG_CITY: Canberra> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_CITY: Sydney> NA NA NA NA NA NA NA NA
<GEOG_CITY: Darwin> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_CITY: Brisbane> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_CITY: Adelaide> NA NA NA NA NA NA NA NA
<GEOG_CITY: Hobart> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_CITY: Melbourne> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_CITY: Perth> NA NA NA NA NA NA NA NA
<GEOG_STATE: ACT> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_STATE: NSW> NA NA NA NA NA NA NA NA
<GEOG_STATE: NT> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_STATE: QLD> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_STATE: SA> NA NA NA NA NA NA NA NA
<GEOG_STATE: TAS> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_STATE: VIC> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_STATE: WA> NA NA NA NA NA NA NA NA
<GEOG_AREA: Aust State> 66,779.0 22,000.0 67,111.0 73,065.0 140,176 88,779.0 228,955 228,955
<GEOG_AREA: Aust Terr> 36,460.0 NA 60,460.0 36,111.0 96,571.0 36,460.0 133,031 133,031
<GEOG_CONT: Australia> 103,239 22,000.0 127,571 109,176 236,747 125,239 361,986 361,986

Chapter 9
DEFINE

9-202

However, because the sales_dims_comp variable is dimensioned by a composite, the 65
cells that display as NA values are not stored in the variable. You can confirm the
number of physical values that are stored in the workspace by issuing the following
statement that calls the OBJ function with the NUMVALS keyword on
sales_dims_composite.

SHOW OBJ(NUMVALS 'sales_dims_composite')
87.00

The result of the statement is that the value 87.00 displays which indicates that only
the 87 non-NA values are stored as part of the sales_dims_composite variable.

Example 9-100 Defining a Variable Dimensioned by a Compressed Composite

Assume that you have created an analytic workspace with the same dimensions,
relations, and aggmap as those in Example 9-98. Now assume that you define a
composite and a variable dimensioned by that composite by issuing the following
statements.

DEFINE CC_COMP_PROD_GEOG COMPOSITE <PROD GEOG> COMPRESSED
DEFINE SALES_DIMS_COMP_COMPOSITE VARIABLE NUMBER (12,0) <CC_COMP_PROD_GEOG <PROD GEOG>>

Assume that you populate sales_dims_composite with the same base values as you did
sales_dims_reg in Example 9-98, and that you aggregate sales_dims_comp_composite
using the same aggmap (that is, sales_aggmap). Now you issue the following statement.

REPORT sales_dims_comp_composite

A report for the sales_dims_comp_comp_composite variable displays the same 152 cells
as the report for the sales_dims_reg variable.

 -----------------------SALES_DIMS_COMP_COMPOSITE-----------------------
 ---------------------------------PROD----------------------------------
 <PROD_DI
 <PROD_UP <PROD_UP <PROD_UP <PROD_FA <PROD_FA V: <PROD_TO
 C: <PROD_UP C: C: MILY: MILY: VideoDiv P: Total
GEOG ColorTV> C: BWTV> StndVCR> StrVCR> VCR> TV> > Prod>
------------------------- -------- -------- -------- -------- -------- -------- -------- --------
<GEOG_CITY: Canberra> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_CITY: Sydney> NA NA NA NA NA NA NA NA
<GEOG_CITY: Darwin> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_CITY: Brisbane> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_CITY: Adelaide> NA NA NA NA NA NA NA NA
<GEOG_CITY: Hobart> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_CITY: Melbourne> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_CITY: Perth> NA NA NA NA NA NA NA NA
<GEOG_STATE: ACT> 11,592.0 NA 38,356.0 3,444.00 41,800.0 11,592.0 53,392.0 53,392.0
<GEOG_STATE: NSW> NA NA NA NA NA NA NA NA
<GEOG_STATE: NT> 24,868.0 NA 22,104.0 32,667.0 54,771.0 24,868.0 79,639.0 79,639.0
<GEOG_STATE: QLD> 49,556.0 NA 48,239.0 24,285.0 72,524.0 49,556.0 122,080 122,080
<GEOG_STATE: SA> NA NA NA NA NA NA NA NA
<GEOG_STATE: TAS> 17,223.0 NA 18,872.0 48,780.0 67,652.0 17,223.0 84,875.0 84,875.0
<GEOG_STATE: VIC> NA 22,000.0 NA NA NA 22,000.0 22,000.0 22,000.0
<GEOG_STATE: WA> NA NA NA NA NA NA NA NA
<GEOG_AREA: Aust State> 66,779.0 22,000.0 67,111.0 73,065.0 140,176 88,779.0 228,955 228,955
<GEOG_AREA: Aust Terr> 36,460.0 NA 60,460.0 36,111.0 96,571.0 36,460.0 133,031 133,031
<GEOG_CONT: Australia> 103,239 22,000.0 127,571 109,176 236,747 125,239 361,986 361,986

Chapter 9
DEFINE

9-203

However, because the sales_dims_comp_comp variable is dimensioned by a compressed
composite not all of values in all of the cells are stored in the variable. The 65 cells that
display as NA values are not stored in variable, Also, the values that are "passed up"
the hierarchy are stored only once — at the lowest level of the hierarchy.

You can confirm the number of physical values stored in the workspace by issuing the
following statement that calls the OBJ function with the NUMVALS keyword on
sales_dims_comp_composite.

SHOW OBJ(NUMVALS 'sales_dims_comp_composite')
38.00

The result of the statement is that the value 38.00 displays which indicates that only 38
values are stored as part of the sales_dims_comp_composite variable. These values are
shown in the following table.

GEOG PROD_UP
C:ColorTV

PROD_UP
C:BWTV

PROD_UP
C:StandVC
R

PROD_UPC
:StrVCR

PROD_FAM
ILY: VCR

PROD_FA
MILY: TV

PROD_DIV
: VideoDiv

GEOG_CITY:
Canberra

11,592.0 38,356.0 3,444.00 41,800.0 53,392.0

GEOG_CITY:
Darwin

24,868.0 22,104.0 32,667.0 54,771.0 79,639.0

GEOG_CITY:
Brisbane

49,556.0 48,239.0 24,285.0 72,524.0 122,080

GEOG_CITY:
Hobart

17,223.0 18,872.0 48,780.0 67,652.0 84,875.0

GEOG_CITY:
Melbourne

22,000.0

GEOG_AREA:
Aust State

66,779.0 67,111.0 73,065.0 140,176 88,779.0 228,955

GEOG_AREA:
Aust Terr

36,460.0 60,460.0 36,111.0 96,571.0 133,031

GEOG_Cont:
Australia

103,239 127,57 109,176 236,747 125,239 361,986

Example 9-101 Defining a Variable with Partitions

Assume that you want to define a sales variable that is dimensioned by product and
time and that is partitioned so that each year's data is in a separate partition.

Assume that the analytic workspace contains a products dimension, a time dimension
that is a simple hierarchical dimension with three levels of data (day, month, and year),
and a time_parentrel relation that represents the child-parent relationships between
the values of time.

DEFINE TIME DIMENSION TEXT
DEFINE PRODUCT DIMENSION TEXT
DEFINE TIME_PARENTREL RELATION TIME <TIME>

For simplicity's sake, in this example the time and product dimensions are only partially
populated and have only the following values.

Chapter 9
DEFINE

9-204

TIME

2003
2002
Dec2003
Jan2003
Dec2002
Jan2002
31Dec2003
01Dec2003
31Jan2003
01Jan2003
31Dec2002
01Dec2002
31Jan2002
01Jan2002

PRODUCT

00001
00002

To create the partitioned variable, take the following steps:

1. Define a partition template that defines one partition for each year's data.

DEFINE partition_sales_by_year PARTITION TEMPLATE <time product> -
PARTITION BY LIST (time)(-
PARTITION time_2003 VALUES ('2003', 'Dec2003', 'Jan2003', '31Dec2003', '01Dec2003', '31Jan2003',
'01Jan2003') <time product>-
PARTITION time_2002 VALUES ('2002', 'Dec2002', 'Jan2002', '31Dec2002', '01Dec2002', '31Jan2002',
'01Jan2002') <time product>)

(note that for simplicity's sake, only some of each year's dimension values are
specified for each partition in this example. Typically, when you want to specify a
large number of values for a partition, you do not do so within the DEFINE
PARTITION STATEMENT statement. Instead, you define the partition without
specifying any values, and then later specify the values using MAINTAIN ADD TO
PARTITION or MAINTAIN MOVE TO PARTITION statements as illustrated in
Example 10-53.)

2. Define a partitioned sales variable with the partitions defined by the partition
template named partition_sales_by_year.

DEFINE sales DECIMAL <partition_sales_by_year<time product>>

3. After you populate sales with day values, you can issue the following REPORT
statement to see which sales values are in which partition.

REPORT DOWN PARTITION(partition_sales_by_year) time product sales

PARTITION(PARTITION_SALES_BY_YEAR) TIME PRODUCT SALES
----------------------------------- ---------- ---------- ----------
TIME_2003 2003 00001 NA
TIME_2003 Dec2003 00001 NA
TIME_2003 Jan2003 00001 NA
TIME_2003 31Dec2003 00001 14.78
TIME_2003 01Dec2003 00001 15.52
TIME_2003 31Jan2003 00001 13.61
TIME_2003 01Jan2003 00001 10.39
TIME_2003 2003 00002 NA
TIME_2003 Dec2003 00002 NA

Chapter 9
DEFINE

9-205

TIME_2003 Jan2003 00002 NA
TIME_2003 31Dec2003 00002 16.05
TIME_2003 01Dec2003 00002 12.27
TIME_2003 31Jan2003 00002 10.83
TIME_2003 01Jan2003 00002 11.07
TIME_2002 2002 00001 NA
TIME_2002 Dec2002 00001 NA
TIME_2002 Jan2002 00001 NA
TIME_2002 31Dec2002 00001 18.80
TIME_2002 01Dec2002 00001 13.64
TIME_2002 31Jan2002 00001 12.41
TIME_2002 01Jan2002 00001 16.97
TIME_2002 2002 00002 NA
TIME_2002 Dec2002 00002 NA
TIME_2002 Jan2002 00002 NA
TIME_2002 31Dec2002 00002 17.47
TIME_2002 01Dec2002 00002 16.58
TIME_2002 31Jan2002 00002 18.94
TIME_2002 01Jan2002 00002 18.36

Example 9-102 Defining a Fixed-Width TEXT Variable

The following statement defines a TEXT variable named lastname dimensioned by
employee. Values in lastname are limited to 20 characters, so that longer values are
truncated.

DEFINE lastname TEXT <employee> WIDTH 20

Example 9-103 Defining a Variable That Uses a Named B-Tree Composite

Assume that you have the following dimensions in your analytic workspace.

DEFINE month DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE region DIMENSION TEXT

When your company does promotional marketing for certain products in some but not
all regions, then your variable data is sparse along the product and region dimensions.
Therefore, suppose you define a composite named proddist, whose base dimensions
are product and region. There are dimension-value combinations in the composite only
for those values that have data. For example, when you run a promotion for tents but
not skis, then the composite includes the tents and region combinations, but not the
skis and region combinations.

The following statement creates a b-tree composite named proddist whose base
dimensions are product and district, and a variable called promo that is dimensioned
by month and proddist.

DEFINE proddist COMPOSITE <product region>
DEFINE promo VARIABLE INTEGER <month proddist <product district>>

For simplicity's sake assume that you have only stored the following dimension data in
your analytic workspace.

PRODUCT

Tents
Skis

REGION

Chapter 9
DEFINE

9-206

Northeast
Southwest

MONTH

Jan2003
Feb2003
Mar2003
Apr2003
May2003
Jun2003
Jul2003
Aug2003
Sep2003
Oct2003
Nov2003
Dec2003

You decide to run a promotional sales for skis in the Northeast region in the month of
September, 2003 at a cost of $5,000. Once you populate promo with this, promo
contains only 12 cells—each cell is dimensioned by a value of month and the composite
tuple value of <'Skis' 'Northeast'> for proddist. The cell for September 2003 contains
the value $5,000, and all of the other cells contain NA. No other NA values are stored in
promo; no cells are created for any other values of product or region.

Example 9-104 Defining a Variable with Null Tracking

Assume that you have the following objects defined in your analytic workspace.

DEFINE GEOG DIMENSION TEXT
LD A dimension with a simple hierarchy for geography

DEFINE geog_levellist DIMENSION TEXT
LD List of Levels in in the hierarchy of the geog dimension

DEFINE GEOG_PARENTREL RELATION GEOG <GEOG>
LD Self-relation for geog showing parents of each value in the hierarchy

DEFINE GEOG_LEVELREL RELATION GEOG_LEVELLIST <GEOG>
LD Level of each dimension member for geog

DEFINE product DIMENSION TEXT
LD A nonhierarchical dimension

DEFINE time DIMENSION TEXT
LD A hierarchical text dimension for time

DEFINE time_levellist DIMENSION TEXT
LD List of Levels in hierarchy of the time dimension

DEFINE time_parentrel RELATION time <time>
LD A self-relation for time show parents of each value in the hierarchy

DEFINE TIME_LEVELREL RELATION TIME_LEVELLIST <TIME>
LD Level of each dimension member for time

DEFINE prod_geog COMPOSITE <product geog> COMPRESSED

Now assume that you define a sales variable that you want to have dimensioned by
time and the prod_geog composite. You want this variable to have null tracking because
you eventually populate it using SQL IMPORT and you know that some facts in the

Chapter 9
DEFINE

9-207

fact table have null values. To do this you issue the following statement that includes
the WITH NULLTRACKING phrase.

DEFINE sales VARIABLE DECIMAL <time prod_geog<product geog>> WITH NULLTRACKING

For testing purposes, you populate the variable using the RANDOM function. After you
populate the variable in this way, you issue a report on it that shows the NA values in
the variable.

REPORT DOWN time ACROSS geog: sales

PRODUCT: TVs
 -----------------------SALES-----------------------
 -----------------------GEOG------------------------
TIME Boston Springfield Hartford All Places
-------------- ------------ ------------ ------------ ------------
2007 NA NA NA NA
2008 NA NA NA NA
All years NA NA NA NA
Jan07 NA NA NA NA
Feb07 NA NA NA NA
Mar07 NA NA NA NA
Apr07 NA NA NA NA
May07 NA NA NA NA
Jun07 NA NA NA NA
Jul07 NA NA NA NA
Aug07 NA NA NA NA
Sep07 NA NA NA NA
Oct07 NA NA NA NA
Nov07 NA NA NA NA
Dec07 NA NA NA NA
Jan08 NA NA NA NA
Feb08 NA NA NA NA
Mar08 NA NA NA NA
Apr08 NA NA NA NA
May08 NA NA NA NA
Jun08 NA NA NA NA
Jul08 NA NA NA NA
Aug08 NA NA NA NA
Sep08 NA NA NA NA
Oct08 NA NA NA NA
Nov08 NA NA NA NA
Dec08 NA NA NA NA

PRODUCT: Radios
 -----------------------SALES-----------------------
 -----------------------GEOG------------------------
TIME Boston Springfield Hartford All Places
-------------- ------------ ------------ ------------ ------------
2007 NA NA NA NA
2008 NA NA NA NA
All years NA NA NA NA
Jan07 24.59 23.70 33.12 28.65
Feb07 22.78 21.42 26.28 37.06
Mar07 25.74 32.08 22.75 24.62
Apr07 22.23 23.21 20.79 28.68
May07 20.51 29.71 30.35 33.05
Jun07 34.43 35.96 33.85 39.34
Jul07 24.86 38.02 36.78 31.22
Aug07 39.05 21.08 35.80 33.81

Chapter 9
DEFINE

9-208

Sep07 34.38 21.69 25.04 33.40
Oct07 33.82 39.27 20.28 24.39
Nov07 25.48 23.03 32.45 39.94
Dec07 25.14 30.66 33.75 23.37
Jan08 NA NA NA NA
Feb08 NA NA NA NA
Mar08 NA NA NA NA
Apr08 NA NA NA NA
May08 NA NA NA NA
Jun08 NA NA NA NA
Jul08 NA NA NA NA
Aug08 NA NA NA NA
Sep08 NA NA NA NA
Oct08 NA NA NA NA
Nov08 NA NA NA NA
Dec08 NA NA NA NA

For testing purposes, you also generate a report using the NAFLAG function to
retrieve the type of NAs that are in the variable. As the following report shows,
because it was populated using RANDOM, all of the NAs are the typical NA values;
they are not NA2 values.

REPORT DOWN time ACROSS geog: NAFLAG(sales)

PRODUCT: TVs
 -------------------NAFLAG(SALES)-------------------
 -----------------------GEOG------------------------
TIME Boston Springfield Hartford All Places
-------------- ------------ ------------ ------------ ------------
2007 1 1 1 1
2008 1 1 1 1
All years 1 1 1 1
Jan07 1 1 1 1
Feb07 1 1 1 1
Mar07 1 1 1 1
Apr07 1 1 1 1
May07 1 1 1 1
Jun07 1 1 1 1
Jul07 1 1 1 1
Aug07 1 1 1 1
Sep07 1 1 1 1
Oct07 1 1 1 1
Nov07 1 1 1 1
Dec07 1 1 1 1
Jan08 1 1 1 1
Feb08 1 1 1 1
Mar08 1 1 1 1
Apr08 1 1 1 1
May08 1 1 1 1
Jun08 1 1 1 1
Jul08 1 1 1 1
Aug08 1 1 1 1
Sep08 1 1 1 1
Oct08 1 1 1 1
Nov08 1 1 1 1
Dec08 1 1 1 1

PRODUCT: Radios
 -------------------NAFLAG(SALES)-------------------
 -----------------------GEOG------------------------
TIME Boston Springfield Hartford All Places

Chapter 9
DEFINE

9-209

-------------- ------------ ------------ ------------ ------------
2007 1 1 1 1
2008 1 1 1 1
All years 1 1 1 1
Jan07 0 0 0 0
Feb07 0 0 0 0
Mar07 0 0 0 0
Apr07 0 0 0 0
May07 0 0 0 0
Jun07 0 0 0 0
Jul07 0 0 0 0
Aug07 0 0 0 0
Sep07 0 0 0 0
Oct07 0 0 0 0
Nov07 0 0 0 0
Dec07 0 0 0 0
Jan08 1 1 1 1
Feb08 1 1 1 1
Mar08 1 1 1 1
Apr08 1 1 1 1
May08 1 1 1 1
Jun08 1 1 1 1
Jul08 1 1 1 1
Aug08 1 1 1 1
Sep08 1 1 1 1
Oct08 1 1 1 1
Nov08 1 1 1 1
Dec08 1 1 1 1

Again, for testing purposes, you use the NA function to set an NA2 bit on the variable
cells dimensioned by the months of 2008. The following code shows the result of
issuing a SHOW of the NA2 function and using that function to set the NA2 bit on the
cells dimensioned by the months in 2008.

SHOW NA2
NA

LIMIT time TO 'Jan08' 'Feb08' 'Mar08' 'Apr08' 'May08' 'Jun08' 'Jul08' 'Aug08' 'Sep08' 'Oct08' 'Nov08' 'Dec08'

saleswithnull= NA2

For brevity's sake assume that your test now issues the following three LIMIT
statements and then reports on the sales variable and the NAFLAG function against
the sales variable. As the NAFLAG report illustrate, the value Jan08 which is a month to
which an NA2 value was assigned returns the value of 2 for NAFLAG, while the
NAFLAG report still returns the value of 1 for the year 2008.

LIMIT product to 'Radios'
LIMIT time TO 'Jan08' '2008'
LIMIT geog TO 'Boston' 'All Places'

REPORT DOWN time ACROSS geog: sales

PRODUCT: Radios
 ----------SALES----------
 ----------GEOG-----------
TIME Boston All Places
-------------- ------------ ------------
Jan08 NA NA
2008 NA NA

Chapter 9
DEFINE

9-210

REPORT DOWN time ACROSS geog: NAFLAG(sales)

PRODUCT: Radios
 ------NAFLAG(SALES)------
 ----------GEOG-----------
TIME Boston All Places
-------------- ------------ ------------
Jan08 2 2
2008 1 1

Now assume that you issue the following code to remove the NA2 bits from the sales
variable.

CHGDFN sales DROP NULLTRACKING

A DESCRIBE of the sales variable shows that it no longer has the WITH
NULLTRACKING phrase in its definition while a report of the results of NAFLAG show
that the NA values are now just the typical NA values without an NA2 bit.

DESCRIBE sales

DEFINE SALES VARIABLE DECIMAL <TIME PROD_GEOG <PRODUCT GEOG>>

REPORT DOWN time ACROSS geog: sales

PRODUCT: Radios
 ----------SALES----------
 ----------GEOG-----------
TIME Boston All Places
-------------- ------------ ------------
Jan08 NA NA
2008 NA NA

"Report on the type of NA values in the sales variable
REPORT DOWN time ACROSS geog: NAFLAG(sales)

PRODUCT: Radios
 ------NAFLAG(SALES)------
 ----------GEOG-----------
TIME Boston All Places
-------------- ------------ ------------
Jan08 1 1
2008 1 1

DEFINE WORKSHEET
The DEFINE command with the WORKSHEET keyword adds a new worksheet object
to an analytic workspace. A worksheet, like a spreadsheet, is a two-dimensional object
that is dimensioned by a worksheet row and a worksheet column. It can temporarily
store data that you want to transfer between spreadsheet packages and workspace
dimensions and variables.

When you first define a worksheet, it does not contain any values. You can populate a
worksheet with values from an existing spreadsheet by using an IMPORT
(spreadsheet) statement or add or delete values from worksheet row and a worksheet
column dimensions with a MAINTAIN statement.

Chapter 9
DEFINE

9-211

Syntax

DEFINE name WORKSHEET [<column-dim row-
dim>] [TEMP] [AW workspace] [SESSION]

Parameters

name
The name of the object you are defining. For general information about this argument,
see the main entry for the DEFINE command.

WORKSHEET
The object type when you are defining a worksheet.

<column-dim row-dim>
The names of the dimensions of the worksheet. When you supply this argument, you
must give the names of two INTEGER dimensions for column-dim and row-dim. When
you omit this argument, the worksheet is dimensioned automatically by WKSCOL and
WKSROW. See "Worksheet Dimensions" for more information.

TEMP
Indicates that the worksheet is only temporary. The worksheet is defined in the
specified workspace and can contain values during the current session. However,
when you update and commit, only the definition of the worksheet is saved. When you
end your session or switch to another workspace, the data values are discarded.

AW workspace
The name of an attached workspace in which you want to define the worksheet. The
worksheet must be defined in the same workspace as its dimensions. For general
information about this argument, see the main entry for the DEFINE command.

SESSION
Specifies that the object exists only in the current session. When the session ends,
the object no longer exists. The behavior specified by SESSION is different than the
behavior specified by the TEMP keyword which is that the values are temporary but
the object definition remains in the workspace in which you create it.

Usage Notes

Worksheet Dimensions

A worksheet must always be dimensioned by two dimensions that represent a
worksheet row and a worksheet column. The worksheet row and worksheet column
dimensions can either be automatically created by Oracle OLAP or explicitly created
by you:

• If you have not created worksheet row and worksheet column dimensions and
specified their names in the column-dim and row-dim arguments of DEFINE
WORKSHEET, then Oracle OLAP automatically creates the following dimensions:

– For the worksheet row, an INTEGER dimension named WKSROW with values
from 1 to 63.

– For the worksheet column, an INTEGER dimension named WKSROW with values
from 1 to 63.

Chapter 9
DEFINE

9-212

Note:

When WKSCOL and WKSROW already exist in any attached workspace, Oracle
OLAP cannot create them in the current worksheet. In this case, the
DEFINE WORKSHEET command fails to create a worksheet with these
default dimensions. (Note, also, that WKSCOL and WKSROW do not appear in a
worksheet description generated using DESCRIBE.)

• You create worksheet row and a worksheet column dimensions the same way you
create any other simple dimension by issuing the following statements:

1. Create two simple INTEGER dimensions using a DEFINE DIMENSION
(simple) statement. One dimension is for row numbers and the other is for
column numbers.

2. Using MAINTAIN statements, populate one dimension with integers that
represent row numbers and populate the other with integers that represent
column numbers.

Examples

Example 9-105 Defining a Worksheet

These statements define a temporary worksheet named travelexp, which is
dimensioned by columns and rows.

DEFINE itemsheet WORKSHEET
DEFINE columns INT DIMENSION
MAINTAIN columns ADD 5
DEFINE rows INT DIMENSION
MAINTAIN rows ADD 10
DEFINE travelexp WORKSHEET <columns rows> TEMPORARY

Example 9-106 Importing Spreadsheet Data

You can import data from a spreadsheet to a worksheet. When all the cells contain the
same type of data, you can use UNRAVEL to transfer the data to a variable with one
statement. You can also limit the worksheet dimensions to a smaller group of cells and
use UNRAVEL to transfer each group to a separate variable. To transfer imported data
from a worksheet named itemsheet to a variable named items, you might use the
following statements.

DEFINE itemsheet WORKSHEET
IMPORT itemsheet FROM dif FILE 'file name'
LIMIT WKSCOL TO FIRST 3
LIMIT WKSROW TO FIRST 10
items = UNRAVEL(itemsheet)

DELETE
The DELETE command deletes one or more objects from an analytic workspace. The
deletion becomes permanent when you execute UPDATE and COMMIT statements.

Before you delete an object, you must first delete all of its associated objects. For
example, before you can delete a dimension, you must first delete any variables
dimensioned by it. Also, you cannot delete an object when a PERMIT statement
denies you the right to change its permission.

Chapter 9
DELETE

9-213

Tip:

When you see an error message when you try to delete an object, then the
name of that object might be a reserved word. (Use RESERVED to identify
reserved words.) When this is the case, use a RENAME statement to give the
object a new name, and then delete it.

Syntax

DELETE name... [AW workspace]

Parameters

name...
The names of one or more objects, separated by spaces or commas. DELETE
removes the definitions of these objects from the appropriate workspace.
You can specify a qualified object name or use the AW argument to indicate the
attached workspace in which each object can be found. Do not use both qualified
object names and the AW argument in the same DELETE command.

Note:

Oracle OLAP does not warn you when you delete an object that has the same
name as an existing object in another attached workspace. Also, when the
NAME dimension is limited to less than all its values, DELETE automatically
sets the status of NAME to ALL

AW workspace
The name of an attached workspace in which you want to delete all the specified
objects. When you do not use a qualified object name or the AW argument to specify
an analytic workspace, objects are deleted in the current workspace.

Examples

Example 9-107 Deleting a Dimension

Suppose you have a dimension named city and a variable named population that you
want to delete. The variable population is the only object that is dimensioned by or
makes use of city, so you can delete them both in a single DELETE command when
you place the variable before the dimension.

DELETE population city

Placing city before population in the preceding statement would produce an error.

DESCRIBE
The DESCRIBE command produces a report that shows the definition of one or more
workspace objects. An object definition that you see in the output from a DESCRIBE
command might include a description (LD), a value name format (VNF) for a time
dimension, an expression associated with a FORMULA, permission specified a
PERMIT statements, or the contents of a calculation specification (for example, the

Chapter 9
DESCRIBE

9-214

contents of a program). You can use DESCRIBE to show the definition of an object
even when you do not have permission to access the object or to change its
permission. Some parts of some object definitions are not reported on as described in
"What's Not in the Report Output by DESCRIBE".

Syntax

DESCRIBE [names]

Parameters

names
The names of one or more workspace objects, separated by spaces or commas.
When you omit this argument, DESCRIBE shows the definition of all objects in the
current status of the NAME dimension. Consequently, when you omit this argument
you can use a LIMIT command in combination with DESCRIBE to report the
definitions of a particular group of objects in your workspace, as illustrated in
Example 9-109.

Usage Notes

What's Not in the Report Output by DESCRIBE

Some parts of the object definitions do not appear in the output of DESCRIBE:

• When a PERMIT statement denies you the right to change the permission of an
object, DESCRIBE does not include the permission associated with the definition
of the object.

• For a worksheet definition, the DESCRIBE report does not include the default
dimensions, WKSCOL and WKSROW. However, it does include user-defined dimensions
when they have been used to define a worksheet. See Example 9-110.

• Properties and triggers associated with objects are not displayed. To see the
properties and triggers associated with an object, you must use the FULLDSC
program.

• When you define a composite or conjoint has the default index type, that
information is not displayed.

• Dimensioned BOOLEAN variables that are in older 1 or 2 byte formats are listed
as WIDTH 1 and WIDTH 2. The width of BOOLEAN variables created in single-bit
format is not listed.

Creating Objects with DESCRIBE Output

You can use the output from the DESCRIBE command to create objects in other
workspaces, because each line of the output is a valid statement. For example, you
can execute an OUTFILE statement to send subsequent output to a file, and then
execute a DESCRIBE command. You can then access another workspace and use an
INFILE statement to read the DESCRIBE output. The same object is created in that
workspace.

Examples

Example 9-108 Describing Variables

This example produces a report of the definitions of the two variables, sales and price.
The statement

DESCRIBE sales price

Chapter 9
DESCRIBE

9-215

produces the following output.

DEFINE SALES VARIABLE DECIMAL <MONTH PRODUCT DISTRICT>
LD Sales Revenue
DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price

Example 9-109 Describing All Relations

Suppose you want to look at the definitions of all the relations in your workspace. First
limit the NAME dimension, using the OBJ function. After limiting NAME, use
DESCRIBE with no arguments to produce a report of the definitions. The following
statements produce a description of the relations in the analytic workspace.

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT
DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT
DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>
DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Because the values returned by OBJ(TYPE) are always in uppercase, you have to use
'RELATION' rather than 'relation' in your LIMIT command to obtain a match.

Example 9-110 Describing a Worksheet

The dimensions of a worksheet appear in the description only when they are user-
defined dimensions. The default dimensions WKSCOL and WKSROW are not included in the
description. The statements

DEFINE work1 WORKSHEET
DEFINE columns DIMENSION INTEGER
DEFINE rows DIMENSION INTEGER
DEFINE work2 WORKSHEET <columns rows>
DESCRIBE work1 work2

produce the following output.

DEFINE WORK1 WORKSHEET
DEFINE WORK2 WORKSHEET <COLUMNS ROWS>

DO ... DOEND
Within an OLAP DML program, the DO and DOEND commands bracket a group of
one or more statements in a program. DO and DOEND are normally used to bracket
one of the following:

• A group of statements that are to be executed under a condition specified by an IF
command

• A group of statements in a repeating loop introduced by FOR or WHILE

• The CASE labels for a SWITCH command.

You can put one DO statement inside another to nest groups of statements. You can
nest as many groups as you want, if each DO statement has a corresponding DOEND
to indicate the end of its statement group.

Chapter 9
DO ... DOEND

9-216

Syntax

DO statement1 ... statementN DOEND

Parameters

statement
One or more OLAP DML statements, user-defined programs, or both.

Usage Notes

TEMPSTAT Statement and DOEND Statement

Within a FOR loop of a program, when a DO/DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

Examples

Example 9-111 DO and DOEND with the FOR Statement

Suppose you want to use the ROW command to produce a report that shows the unit
sales of tents for each of 2 months. Use DO ... DOEND to bracket the ROW and
BLANK statements you want to execute repeatedly for each value of the month
dimension. You might write the following program.

LIMIT month TO 'Jan96' to 'Feb96'
ROW district
ROW UNDER '-' VALONLY name.product
FOR month
 DO
 ROW INDENT 5 month WIDTH 6 UNITS
 BLANK
 DOEND

The program produces the following output.

BOSTON
3-Person Tents

 Jan96 307
 Feb96 209

EDIT
The EDIT command displays an OLAP Worksheet Edit window. The command is
available only when you are using OLAP Worksheet to access Oracle OLAP.

For information about using an OLAP Worksheet Edit window, see the OLAP
Worksheet Help.

Syntax

EDIT {PROGRAM|MODEL|AGGMAP|FORMULA} object-name

Chapter 9
EDIT

9-217

Parameters

PROGRAM
MODEL
AGGMAP
FORMULA
Indicates whether the object to be edited is a program, a model, an aggmap, or a
formula.

object-name
A text expression that specifies the name of an existing program, model, aggmap, or
formula. Before editing one of these objects, use a DEFINE statement to create it in
an analytic workspace.

Usage Notes

Editing a Newly Defined Aggmap to Code an Allocation Specification

When an aggmap is first defined it does not have any contents and its type is NA. When
you use the EDIT command for an aggmap whose type has not yet been specified,
OLAP Worksheet automatically makes the aggmap an aggregation specification by
inserting an AGGMAP statement into the contents of the aggmap.

Consequently, when you plan to use an aggmap as an allocation specification, use the
following statements to identify it as an allocation specification before the first time you
open an OLAP Worksheet Edit window for it.

 CONSIDER aggmap-name
 ALLOCMAP 'END'

Examples

Example 9-112 Editing a Program

The following statement, executed in the OLAP Worksheet, places the myprog program
in an OLAP Worksheet EDIT window.

EDIT myprog

Example 9-113 Editing a Model

The following statement, executed in the OLAP Worksheet, places a model called
myModel in an OLAP Worksheet Edit window.

EDIT MODEL myModel

EQ
The EQ command specifies a new expression for an already defined formula. To use
EQ to assign an expression to a formula definition, the definition must be the one most
recently defined or considered during the current session. When it is not, you must first
use a CONSIDER command to make it the current definition.

An alternative to the EQ command is the EDIT FORMULA command, which is
available only in OLAP Worksheet. The EDIT FORMULA command opens an Edit
window in which you can add, delete, or change the expression to be calculated for a
formula.

Chapter 9
EQ

9-218

Be sure to distinguish between the EQ command described here and the EQ operator
used to compare values of the same type.

Syntax

EQ [expression]

Parameters

expression
The calculation that is performed to produce values when you use the formula. When
you do not specify an expression, the EQ command sets the expression to NA. The
formula text is not converted to uppercase.

Usage Notes

Data Type and Dimensions

Typically, the data type and dimensions of the new expression match the specified
data type and dimensions in the definition of the formula. When they do not, the
resulting values are converted to the formula's data type and the results are forced into
the formula's dimensionality. The DESCRIBE command shows the formula's data type
and dimensions. You can find out the data type and dimensions of the new expression
by parsing it. See Example 9-115.

You cannot use the EQ command to change the data type or dimensions of a formula.
To make changes in these, you must delete the formula and redefine it.

Examples

Example 9-114 Adding an EQ

This example specifies a new expression for the f1 formula with the following
definition.

DEFINE f1 FORMULA INTEGER <month line division>
EQ actual * 2

The statements

CONSIDER f1
EQ actual * 3
DESCRIBE f1

produce the following definition of the formula with a new EQ.

DEFINE F1 FORMULA INTEGER <MONTH LINE DIVISION>
EQ actual * 3

Example 9-115 Using PARSE with EQ

The following example supposes that your workspace already has a formula named
line.totals. The PARSE and SHOW INFO statements check the dimensionality and
data type of an expression. The CONSIDER and EQ statements assign the expression
to the line.totals formula. The line.totals formulas has the following definition.

DEFINE line.totals FORMULA DECIMAL <year line>

The statements

Chapter 9
EQ

9-219

PARSE 'total(actual line year)'
SHOW INFO(PARSE DIMENSION)

produce the following output.

YEAR
LINE

The statement

SHOW INFO(PARSE DATA)

produces the following output.

DECIMAL

The output from INFO(PARSE) shows that the expression has the same
dimensionality and data type as the line.totals formula. The statements

CONSIDER line.totals
EQ TOTAL(actual line year)
DESCRIBE line.totals

show the definition of line.totals with its new EQ.

DEFINE LINE.TOTALS FORMULA DECIMAL <YEAR LINE>
EQ total(actual line year)

EXPORT
The EXPORT command copies workspace objects from your analytic workspace to an
external file. You can use EXPORT to copy both data and object definitions from your
workspace to an EIF file, or you can use it to copy an OLAP DML worksheet object to
a spreadsheet file.

Because the syntax of the EXPORT command is different depending on whether it is
being used to produce an EIF file or a spreadsheet file, two separate entries are
provided:

• EXPORT (EIF))

• EXPORT (spreadsheet)

EXPORT (EIF)
The EXPORT (to EIF) command copies data and definitions from your Oracle OLAP
analytic workspace to an EIF file. EXPORT also copies all dimensions of the exported
data, even when you do not specify them in the command. The status of the data's
dimensions in Oracle OLAP determines which values are exported.

Tip:

There are several options that determine how EIF files are imported and
exported. These options are listed in "EIF Options".

Chapter 9
EXPORT

9-220

EXPORT (to EIF) is commonly used with IMPORT (EIF) to copy one Oracle OLAP
workspace to another. You export objects from the source workspace to an EIF file
and then import the objects from the EIF file into the target workspace. The source and
target workspaces can reside on the same platform or on different platforms.

Syntax

EXPORT export_item TO EIF FILE file-name [LIST] [NOPROP] - [NOREWRITE|
REWRITE] [FILESIZE n [K, M, or G]] - [NOTEMPDATA] [NLS_CHARSET charset-
exp] [AGGREGATE | NOAGGR] - [API | NOAPI]

where export_item is one of the following:

 ALL

 name [AS newname]

 exp [SCATTER AS scattername [TYPE scattertype]
[EXCLUDING (concatbasedim . . .)]

 exp AS name [EXCLUDING (concatbasedim . . .)]

Parameters

ALL
Specifies that Oracle OLAP exports all the objects currently in the status of NAME
(and, therefore, not necessarily all objects in the workspace).

Note:

When you want to export cube metadata (that is, when the default API
keyword is in effect), you must export all of the objects in the workspace (that
is, you must specify the ALL keyword for export_item). You cannot export cube
metadata when you export only some workspace objects.

name
The name of an analytic workspace object or option to be exported. You can list
multiple names for export.

AS newname
Specifies a new name for the analytic workspace object or option. When you specify
an expression, or a local variable, or a local valueset, then you must use AS name to
provide a name for the object that IMPORT (EIF) uses to receive the data

Note:

You cannot rename dimensions.

exp
An expression to be computed and exported. You can list multiple names for export.

SCATTER AS scattername [TYPE scattertype]
When you want to export a large multidimensional object that may require multiple
passes to write into memory, then you can use SCATTER AS scattername to improve

Chapter 9
EXPORT

9-221

file I/O performance. You must first define one or two new single-dimension text
variables (scattername and scattertype) and assign text values and their
corresponding data types to scattername. When you use SCATTER AS scattername,
this tells Oracle OLAP to export the multidimensional expression as separate
variables in the slices you have specified in scattername. When each of the slice
variables is to have the same data type, you can simply make exp have that data
type, in which case you do not have to use TYPE scattertype.

EXCLUDING (concatbasedim . . .)
The EXCLUDING phrase applies only to a concat dimension that you specify with the
name argument. The value you specify for concatbasedim, specifies the base
dimensions of the concat that Oracle OLAP does not export.

ALL
Specifies that Oracle OLAP exports all the objects currently in the status of NAME
(and, therefore, not necessarily all objects in the workspace).

TO EIF FILE
Indicates that you want to create an EIF file.

file-name
A text expression that is the name of the file to which output should be written. Unless
the file is in the current directory, you must include the name of the directory object in
the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use the CDA command to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

LIST
Sends to the current outfile the definition of each object as it begins to export it. For
dimensions, EXPORT indicates the number of values being exported, and for
composites, it lists the number of dimension value combinations. EXPORT also
produces a message that shows the total number of bytes read every two minutes
and after the export procedure.

NOPROP
Prevents any properties that you have assigned to each object using a PROPERTY
from being written to the EIF file.

NOREWRITE
REWRITE
Specifies whether EXPORT overwrites the target file when it already exists.
NOREWRITE (the default) leaves an existing target file intact and sends an error
message to the current outfile. REWRITE causes EXPORT to replace the existing file
with the new EIF file.

Chapter 9
EXPORT

9-222

FILESIZE n [K|M|G]
Sets the maximum size of each component file (main file and extension files) for EIF
files. When a file's size grows beyond the value of FILESIZE or the current disk or
location becomes full, Oracle OLAP creates an EIF extension file. See"EIF Extension
Files".
FILESIZE affects component files created after it is set. Previous component files may
have various sizes, determined by the FILESIZE setting at the time each one was
created or by the size it reached when its disk was full.
When you do not specify K, M, or G, the value you specify for n is interpreted as bytes.
When you specify K, M, or G after the value n, the value is interpreted as kilobytes,
megabytes, or gigabytes, respectively.
You can set FILESIZE to any value between 81,920 bytes (80K) and 2,147,479,552
bytes (2G).

NOTEMPDATA
Prevents data in TEMP variables from being written to the EIF file.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when exporting text data to the file
specified by file-name which allows Oracle OLAP to convert the data accurately into
that character set. This argument must be the last one specified. When this argument
is omitted, then Oracle OLAP exports the data in the database character set, which is
recorded in the NLS_LANG option.

AGGREGATE
Export aggregated data. (Default behavior.)

NOAGGR
Do not export aggregated data.

API
(Default) Export any cube metadata defined for the specified items.

NOAPI
Do not export any cube metadata defined for the specified items.

Usage Notes

Exporting and Importing Between Different Platforms

When you transfer an EIF file between computers, use a binary transfer to overcome
file-format incompatibilities between platforms. The EIF file must have been created
with the EIFVERSION set to a version that is less than or equal to the version number
of the target workspace. See the EIFVERSION option for information about verifying
the target version number.

Exporting Relations

When you export a relation, EXPORT exports the definition and the values in status for
the related dimension and the dimensions of the relation.

Exporting Conjoint Dimensions

When you export a conjoint dimension, ensure that the status of the base dimensions
and the status of the conjoint dimension match. Because there is an implicit relation
between conjoint and base dimensions, Oracle OLAP exports the base dimensions
with the conjoint dimension, but it cannot export all the conjoint dimension values in
the current status when the related base values are not also in status.

Chapter 9
EXPORT

9-223

Exporting Dimension Surrogates

When you export a dimension surrogate, Oracle OLAP also exports the dimension of
the surrogate. For more information, see "Importing and Exporting Dimension
Surrogates".

Reducing Workspace Size

When you have added and then deleted many objects or dimension values, you might
want to use EXPORT (from EIF) with the IMPORT (EIF) command to remove extra
space from your analytic workspace. You can make your workspace smaller, perhaps
substantially so. To do this, use the EXPORT command with the ALL keyword to put
all the data in an EIF file, create another workspace with a different name, and then
import the EIF file into the new workspace. You can then delete the old workspace and
refer to the new one with the same workspace alias that you used for the original one.

Preserving the Type of a Conjoint Dimension

When you export a HASH, BTREE, or NOHASH conjoint dimension to an EIF file, the
conjoint type is exported along with its definition in the EIF file. When you then import
the conjoint dimension into an analytic workspace, Oracle OLAP preserves the
conjoint type when you import into a new dimension or a dimension already using that
conjoint type. When you import the dimension into an existing dimension that does not
use the same conjoint type, Oracle OLAP does not preserve the original conjoint type
that was saved in the EIF file.

Exporting Unnamed Composites

When you export or import an object with an unnamed composite in its definition, the
composite is automatically exported or imported with the object. You cannot import or
export an unnamed composite independently.

EIF Extension Files

EIF extension file names have the structure filename.ennn, where nnn is a three-digit
number beginning with 001. For example, assume you have an EIF file named
export.eif, the extension files are named export.e001, export.e002, and so on. You
can set the extension to three characters by using the EIFSHORTNAMES option.
Extension files are created in the same directory object as the original EIF file, unless
you specify a different one with the EIFEXTENSIONPATH option.

Saving SEGWIDTH Setting Information

When you use the SEGWIDTH keyword of the CHGDFN command to specify the
length of variable segments, segment information cannot be exported and imported
automatically. You can save your SEGWIDTH settings by exporting the entire
workspace, creating a new workspace, importing only the workspace objects into the
new workspace, specifying segmentation, and then importing the variable data into the
new workspace.

Exporting Objects with the Same Name From Two Different Workspaces

When you want to export two objects that have the same name from two different
workspaces, you must rename one of them in the EIF file by exporting it with the AS
keyword. Objects in an EIF file cannot have duplicate names.

Exporting a PERMIT_READ or PERMIT_WRITE Program

The contents of a PERMIT_READ or a PERMIT_WRITE program is emptied when
exported. To successfully copy the contents of these programs to and from analytic

Chapter 9
EXPORT

9-224

workspaces, rename them before using EXPORT (to EIF); and then, after using
IMPORT (from EIF) to copy them into an analytic workspace, name them back to
PERMIT_READ or PERMIT_WRITE.

Exporting TEXT and NTEXT Values

You can export and import TEXT and NTEXT values. Both data types can be exported
to a single EIF file.

• Exported TEXT values are stored in the EIF file using the character set specified
for the file in the EXPORT command.

• Exported NTEXT values are stored in the EIF file as NTEXT (UTF8 Unicode).

• NTEXT values imported into TEXT objects are converted into the database
character set which can result in data loss when the NTEXT values cannot be
represented in the database character set.

• TEXT values imported into NTEXT objects are converted into the NTEXT (UTF8
Unicode) character set.

Examples

Example 9-116 Exporting Variables

Suppose you want to export the values in status and the dimensions of two variables
called actual and budget from your current Oracle OLAP workspace to a disk file called
finance.eif in your current directory object. Use the following statement.

EXPORT actual budget TO EIF FILE 'finance.eif'

Example 9-117 Exporting a Large Object

Suppose you want to export a large, multidimensional object that is likely to require
multiple passes to write into memory. To improve file I/O performance, you can create
a single-dimension variable to tell Oracle OLAP how to slice the multidimensional
variable into smaller pieces. Suppose, also, that the large object is the sales variable,
which is dimensioned by month, product, and district. To specify how sales should be
sliced, create a single-dimension variable, as shown in the following statement.

DEFINE salescatter VARIABLE TEXT <district>

Because salescatter is dimensioned by district, this tells Oracle OLAP to divide
sales into district slices. Because district has six values, sales is divided into six
slices. Each slice must be named. To do so, assign values to each district in
salescatter. You can then assign the appropriate data type to each slice, for example,
by using a QDR (qualified data reference), when desired.

To export SALES, execute the following statement.

EXPORT sales SCATTER AS salescatter TYPE TYPEVAR TO EIF FILE 'slice.eif'

To import the variables, specify which of the named slices you want, as in the following
statement.

IMPORT dist1 dist2 dist3 dist4 dist5 dist6 FROM EIF FILE 'slice.eif'

Alternatively, you can import all of the variables.

IMPORT ALL FROM EIF FILE 'slice.eif'

Chapter 9
EXPORT

9-225

EXPORT (spreadsheet)
The EXPORT (to spreadsheet) command copies an Oracle OLAP worksheet object
that you have created to a spreadsheet file and automatically translate it into the
appropriate format. An analytic worksheet's dimensions form the columns and rows of
the spreadsheet file. The current status of these dimensions determines which part of
a worksheet is exported.

You can also export an analytic worksheet to an EIF file as described in EXPORT
(EIF). EXPORT (to spreadsheet) is commonly used to copy part of your Oracle OLAP
workspace into a file that can be read by other software, such as Lotus 1-2-3, or
Symphony.

Syntax

EXPORT worksheetname TO {WKS|WK1|WRK|WR1|DIF} FILE file-name -
 [STATRANK] [NOREWRITE|REWRITE] [NLS_CHARSET charset-exp]

Parameters

worksheetname
An Oracle OLAP worksheet object that you have created. In any one EXPORT (to
spreadsheet) command, you can export only one worksheetname to one spreadsheet
file.

WKS
Indicates that you want to export an Oracle OLAP worksheet to a 1-2-3 file, version 1.

WK1
Indicates that you want to export an Oracle OLAP worksheet to a 1-2-3 file, version 2.

WRK
Indicates that you want to export an Oracle OLAP worksheet to a Symphony file,
version 1.0.

WR1
Indicates that you want to export an Oracle OLAP worksheet to a Symphony file,
version 1.1.

DIF
Indicates that you want to export an Oracle OLAP worksheet to a data interchange
format file.

FILE file-name
FILE specifies the file that you are creating. For file-name, specify a text expression
that is the name of the file. Unless the file is in the current directory, you must include
the name of the directory object in the name of the file.

Chapter 9
EXPORT

9-226

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use the CDA command to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

STATRANK
Specifies that the row and column numbers exported with worksheet data should be
the current status rankings of the WKSROW and WKSCOL dimensions.

NOREWRITE
(Default) Specifies that Oracle OLAP does not overwrite the target file when it already
exists, but instead displays an error.

REWRITE
Specifies that Oracle OLAP overwrites the target file when it already exists.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when exporting text data to the
worksheet file specified by file-name which allows Oracle OLAP to convert the data
accurately into that character set.
For information about the character sets that you can specify, see Oracle Database
Globalization Support Guide.
This argument must be the last one specified. When this argument is omitted, then
Oracle OLAP exports the data in the database character set, which is recorded in the
NLS_LANG option.

Examples

Example 9-118 Limiting Before Exporting

This example exports part of a pricing worksheet by limiting its dimensions, WKSCOL and
WKSROW, before the EXPORT command.

LIMIT WKSCOL TO 2 TO 4
LIMIT WKSROW TO 3 TO 4
EXPORT pricing TO WRK FILE 'price1.wrk'

FCCLOSE
The FCCLOSE command closes a forecasting context. When Oracle OLAP closes a
forecasting context, only data in the variables specified in the FCEXEC command
remain available to applications. Oracle OLAP purges all other data, including
temporary pages, associated with the forecast.

You must use the FCCLOSE command in combination with other OLAP DML
statements as outlined in "Forecasting Programs".

Syntax

FCCLOSE handle-expression

Chapter 9
FCCLOSE

9-227

Parameters

handle-expression
An INTEGER expression that is the handle to forecast context previously opened using
the FCOPEN function.

Examples

For an example of a forecasting program, see Example 9-119.

FCEXEC
The FCEXEC command executes a forecast based on the parameters options
specified by the FCSET command for the forecast. The FCEXEC command implicitly
loops over all the dimensions of the expression other than the time dimension.

You must use the FCEXEC command in combination with other OLAP DML
statements as outlined in "Forecasting Programs".

Syntax

FCEXEC handle-expression [choice] time-series-expression

where choice is one or more of the following:

 TIME time-dimension
 TRADINGDAYS expression
 INTO name
 SEASONAL name
 SMSEASONAL name
 BACKCAST

Parameters

handle-expression
An INTEGER expression that specifies the handle to a forecasting context previously
opened using the FCOPEN function.

TIME time-dimension
The name of the time dimension. You do not have to specify this parameter when one
dimension of the time-series-expression is of type DAY, WEEK, MONTH, QUARTER,
or YEAR.

TRADINGDAYS expression
An INTEGER expression that specifies the number of business days in the unit of time of
the time data type (that is, DAY, WEEK, MONTH, or YEAR) of the time-series-
expression. By default the value is the total number of days in the unit of time.

INTO name
The name of the Oracle OLAP variable in which the forecasting engine stores the
forecast data. This variable must be dimensioned by the time dimension and any
other dimensions of the time-series-expression that have multiple values in status.
(This variable can have additional dimensions. However, in this case, when Oracle

Chapter 9
FCEXEC

9-228

OLAP executes the forecast, it limits each of these additional dimensions to the first
value in the dimension's status list.).

Note:

When you do not specify INTO and the time-series-expression names an
Oracle OLAP variable, the forecasting engine populates the input variable with
the output data of the forecast, thus overwriting the original data.

SEASONAL name
The name of the variable that the forecasting engine populates with the data that
represents seasonal factors.The forecasting engine produces only one cycle of
factors and stores these values into this variable beginning with the first time period in
status. This variable must be dimensioned by the time dimension and any other
dimensions of the time-series-expression that have multiple values in status. (This
variable can have additional dimensions. However, in this case, when the forecasting
engine executes the forecast, Oracle OLAP limits each of these additional dimensions
to the first value in the dimension's status list.)

SMSEASONAL name
The name of the variable that the forecasting engine populates with the data that
represents smoothed seasonal factors. The forecasting engine produces only one
cycle of factors and stores these values into this variable beginning with the first time
period in status; all other values are set to NA. This variable must be dimensioned by
the time dimension and any other dimensions of the time-series-expression that have
multiple values in status. (This variable can have additional dimensions. However, in
this case, when the forecasting engine executes the forecast, Oracle OLAP limits
each of these additional dimensions to the first value in the dimension's status list.)

BACKCAST
The BACKCAST keyword specifies that the forecasting engine returns fitted historical
data. Typically this data is available only for a subset of the historical periods
(sometimes called the "fit window"). The forecasting engine sets the value of the data
that corresponds to the historical time periods that are outside of the fit window to NA.

Note:

When you specify a value for BACKCAST and do not specify a value for INTO
variable, the forecasting engine populates the source variable with the
backcasted data, thus overwriting the original data.

time-series-expression
An expression that specifies the data from which FCEXEC calculates values. The
time-series-expression must be a numeric expression that is dimensioned by time-
dimension. The time-series-expression may also be dimensioned by other
dimensions. In this case, FCEXEC implicitly loops over all the dimensions of the
expression other than the time dimension. The maximum status length of the time-
series-expression is 5000.

Usage Notes

Forecasting a Single Value

Chapter 9
FCEXEC

9-229

The FCEXEC command implicitly loops over all the dimensions of the time-series
expression other than the time dimension. When you want to forecast only one value
of a multidimensional time-series expression, then you must limit the status of all non-
time dimensions to a single value before you execute the FCEXEC command.

Examples

Example 9-119 A Forecasting Program

Suppose you define a program named autofcst to perform a forecast from the data
that is in an input variable named fcin1. The fcin1 variable is dimensioned by a time
dimension named timedim. Assume that you have defined a program named autofcst
with the following definition and specification.

DEFINE autofcst PROGRAM
PROGRAM
" Using the Automatic forecasting method
" Suppose you want to create a forecast from the data in
" an input variable named fcin1 that is dimensionsed by
" a time dimension named timedim.
"
" Open a forecasting context
hndl = FCOPEN('MyForecast')
" Initialize the target variables
fcout1 = NA
fcseas1 = NA
fcsmseas1 = NA
" Specify that the forecast be of the AUTOMATIC type
fcset hndl method 'automatic'
" Execute the forecast
FCEXEC hndl time timedim INTO fcout1 -
 seasonal fcseas1 smseasonal fcsmseas1 backcast fcin1
" Create a report showing the input and output of the forecast
REPORT DOWN timedim fcin1 fcout1 fcseas1 fcsmseas1
" Run a program named queryall to retrieve the characteristics
" of the forecasting trials
QUERYALL
" Close the forecasting context
FCCLOSE hndl
END

The autofcst program opens a forecasting context, sets the option of the forecast to
AUTOMATIC, reports on the forecasted data, and queries and reports the
characteristics of the various trials that Oracle OLAP performed to determine the
method to use, and closes the forecasting context.

The autofcst program contains the following report command that displays a report of
the input to and the output from the forecast.

REPORT DOWN timedim fcin1 fcout1 fcseas1 fcsmseas1

The sample report created by this statement follows.

TIMEDIM FCIN1 FCOUT1 FCSEAS1 FCSMSEAS1
-------------- ---------- ---------- ---------- ----------
Jan97 NA NA 1.06725482 1.02926773
Feb97 NA NA .978607917 .945762221
Mar97 NA NA 1.12699278 .860505188
Apr97 NA NA .576219022 .905284834
May97 NA NA .920601317 .907019312
Jun97 NA NA 0.91118344 1.0580697

Chapter 9
FCEXEC

9-230

Jul97 NA NA 1.07886483 1.05597234
Aug97 NA NA 1.08101034 1.054612
Sep97 NA NA 1.08077427 1.05361672
Oct97 2,914 NA 1.08351799 1.05380407
Nov97 2,500 NA 1.01126778 1.04504316
Dec97 2,504 NA 1.08370549 1.03104272
Jan98 3,333 NA NA NA
Feb98 2,512 NA NA NA
Mar98 2,888 NA NA NA
...
Jan01 NA 3,371.7631 NA NA
Feb01 NA 2,736.4811 NA NA
Mar01 NA 3,408.3656 NA NA
Apr01 NA 714.277175 NA NA
May01 NA 2,502.9315 NA NA
Jun01 NA 3,195.3626 NA NA
Jul01 NA 3,911.6058 NA NA
Aug01 NA 4,000.651 NA NA
Sep01 NA 4,220.2658 NA NA
Oct01 NA 3,416.0208 NA NA
Nov01 NA 2,827.3943 NA NA
Dec01 NA 2,990.8629 NA NA

The queryall program and a sample report created from its output is shown in
Example 7-87.

FCSET
The FCSET command specifies the characteristics that you want the Geneva
Forecasting engine to use when executing a forecasting context created using a
FCOPEN statement.

You must use a FCSET statement in combination with other OLAP DML statements as
outlined in "Forecasting Programs".

Syntax

FCSET handle-expression forecast-characteristic

where forecast-characteristic has the following syntax:

 [ALLOCLAST {YES|NO}]
 [ALPHA {MAX|MIN|STEP} decimal]...
 [APPROACH {'APPAUTO'|'APPMANUAL']
 [BETA {MAX|MIN|STEP} decimal]...
 [COMPSMOOTH {YES|NO}]
 [CYCDECAY {MAX|MIN} decimal]...
 [GAMMA {MAX|MIN|STEP} decimal]...
 [HISTPERIODS integer]
 [MAXFACTOR decimal]
 [METHOD 'method']
 [MINFCFACTOR decimal]
 [MPTDECAY {MAX|MIN} decimal]...
 [NTRIALS integer]
 [PERIODICITY cycle-spec]
 [RATIO decimal]

Chapter 9
FCSET

9-231

 [SMOOTHING {YES|NO}]
 [TRANSFORM {'TRNOSEA'|'TRSEA'|'TRMPT'}]
 [TRENDHOLD {MAX|MIN|STEP} decimal]...
 [WINDOWLEN integer]

Parameters

handle-expression
An INTEGER expression that is the handle to forecast context that you want to query
and that was previously opened using the FCOPEN function.

ALLOCLAST {NO|YES}
Indicates whether the forecast engine reduces the risk of over-adjustment by
allocating or forecasting the last cycle.

• NO specifies that the forecast engine forecasts the last cycle. (Default)

• YES specifies that the forecast engine forecasts only the average value for one
period of the cycle. That average value is then multiplied by factors to give the
remaining points in that period. For example, when the last cycle has 24-hour
periods, only an average hourly value is forecast, which is then multiplied by 24
hourly factors to give the value for each hour.

ALPHA {MAX|MIN|STEP} decimal
For the single exponential smoothing, double exponential smoothing, and Holt-
Winters forecasting methods, specifies the value for Alpha which is the baseline
parameter that is used for those methods.

• ALPHA MAX decimal, specifies the maximum value of Alpha. For decimal, you
can specify any decimal value from 0.0 through 1.0. The default value of decimal
is 0.3.

• ALPHA MIN decimal specifies the minimum value of Alpha. For decimal, you
can specify any decimal value from 0.0 through 1.0. The default value of decimal
is 0.1.

• ALPHA STEP decimal specifies the value of the interval that the forecasting
engine uses when it determines the value of Alpha. For decimal, you can specify
any decimal value from 0.05 through 0.2 if the value evenly divides the difference
between the values of ALPHA MAX and ALPHA MIN. The default value of
decimal is 0.1.

APPROACH {'APPAUTO'|'APPMANUAL'}
Specifies the approach that the forecasting engine takes when it executes the
forecast.

• 'APPAUTO' is the default approach which invokes the Geneva forecasting expert
system which tests all of possible forecasting methods and options for these
methods and chooses and uses the method that best fits the data. When you
specify this value, the expert system ignores any value that you specify for the
METHOD keyword.

Once the method is chosen, the expert system chooses alpha, beta, gamma,
trend hold, cyclical decay and MPT transformation settings from the maximum
and minimum settings you code. To set these values for the APPAUTO approach,
you specify the same value for both minimum and maximum. For example, to

Chapter 9
FCSET

9-232

specify a value of .2 for alpha, set ALPHA MIN to .2 and ALPHA MAX to .2. The
expert system uses any other global parameters that you have set. (Default)

• 'APPMANUAL' indicates that the Geneva Forecasting engine uses the method
and options you specify in this FCSET statement when executing the forecast.

BETA {MAX|MIN|STEP} decimal
For the double exponential smoothing and Holt-Winters forecasting methods,
specifies the value of Beta. Beta is the trend parameter that controls the estimate of
the trend.

• BETA MAX decimal specifies the maximum value of Beta. For decimal, you can
specify any decimal value from 0.0 through 1.0. The default value is 0.3.

• BETA MIN decimal specifies the minimum value of Beta. For decimal, you can
specify any decimal value from 0.0 through 1.0. The default value is 0.1.

• BETA STEP decimal specifies the value of the interval that the forecasting
engine uses when it determines the value of Beta. For decimal, you can specify
any decimal value from 0.05 through 0.2 if the value evenly divides the difference
between the values of BETA MAX and BETA MIN. The default value of decimal is
0.1.

COMPSMOOTH {YES|NO}
Indicates whether optimization should be done on the median smoothed data series.

• NO specifies that the methods are done using the original historical time series
data. (Default)

• YES specifies that optimization is done on the median smoothed data series,
which results in more smoothed or "baseline" forecasts.

CYCDECAY {MAX|MIN} decimal
For linear and nonlinear regression methods, specifies the value of the cyclical decay.
Cyclical decay pertains to how seriously the forecasting engine considers deviations
from baseline activity when it performs linear and nonlinear regressions.

• CYCDECAY MAX decimal, specifies the maximum value of the cyclical decay
parameter. For decimal, you can specify any decimal value from 0.2 through 1.0
when the difference between the values of CYCDECAY MIN and CYCDECAY
MAX is evenly divided by 0.4. The default value of decimal is 1.0.

• CYCDECAY MIN decimal, specifies the minimum value of the cyclical decay
parameter. For decimal, you can specify any decimal value from 0.2 through 1.0
when the difference between the values of CYCDECAY MIN and CYCDECAY
MAX is evenly divided by 0.4. The default value of decimal is 0.2.

GAMMA {MAX|MIN|STEP} decimal
For the Holt-Winters forecasting method, specifies the value of Gamma which is the
seasonal parameter used by that method.

• GAMMA MAX decimal specifies the maximum value of Gamma. For decimal, you
can specify any decimal value from 0.0 through 1.0. The default value of decimal
is 0.3.

• GAMMA MIN decimal specifies the minimum value of Gamma. For decimal, you
can specify any decimal value from 0.0 through 1.0. The default value of decimal
is 0.1.

Chapter 9
FCSET

9-233

• GAMMA STEP decimal specifies the value of the interval that the forecasting
engine uses when it determines the value of Gamma. For decimal, you can
specify any decimal value from 0.05 through 0.2 when the value evenly divides
the difference between the values of GAMMA MAX and GAMMA MIN. The default
value of decimal is 0.1.

HISTPERIODS integer
The number of historical periods. For integer, you can specify any INTEGER value from
1 through 50000, which is the maximum number of time dimension values that can be
present in the time-series expression specified in the FCEXEC command. (Note that
the number of forecast periods is derived by subtracting the value of HISTPERIODS
from the STATLEN of the dimension of the time-series expression.)

MAXFCFACTOR decimal
Specifies the upper bound on the forecast data. The number you specify for decimal
indicates a multiple of the largest value in the historical series. For example, when you
specify 10.0, the upper bound is 10 times the largest value in the historical series. The
default value is 100.0.

METHOD 'method''
Specifies the forecasting method that you want the forecasting engine to use. Values
that you specify for method are ignored unless the value of APPROACH is set to
'APPMANUAL'.
You can specify one of the following keywords for method:

• AUTOMATIC specifies that the forecasting engine determines and uses the
method that is the best fit for the data. (Default)

• LINREG specifies the linear regression method in which a linear relationship
(y=a*x+b) is fitted to the data.

• NLREG1 specifies a nonlinear regression method in which a linear relationship
(y'=a*x'+b) is fitted to a transformation of the original data; in this case, x'=log(x)
and y'=log(y) which results in the development of a polynomial model between x
and y(y=c*x^a).

• NLREG2 specifies a nonlinear regression method in which a linear relationship
(y'=a*x'+b) is fitted to a transformation of the original data; in this case, x'=x and
y'=ln(y) which results in the development of an exponential model between x and
y(y=c*êax).

• NLREG3 specifies a nonlinear regression method in which a linear relationship
(y'=a*x'+b) is fitted to a transformation of the original data; in this case, x'=log(x)
and y'=y which results in the development of a logarithmic model between x and
y(y=a*log(x)+b).

• NLREG4 specifies a nonlinear regression method in which a linear relationship
(y'=a*x'+b) is fitted to a transformation of the original data; in this case, x'=1/x
and y'=1/y which results in the development of an asymptotic curve (y=x/(a+bx)).

• NLREG5 specifies a nonlinear regression method in which a linear relationship
(y'=a'*x+b) is fitted to a transformation of the original data; in this case, x'=x and
y'=ln(y/(K-y)) which results in the development of an exponential asymptotic
curve (y=cKêax/(1+cêax)).

Chapter 9
FCSET

9-234

• SESMOOTH specifies the single exponential smoothing method in which the
current estimate is taken as a geometrically weighted average of past values, and
all future values are given this same value. This method is intended for short term
forecasts of non-seasonal data.

• DESMOOTH specifies the double exponential smoothing method in which the
current estimate is taken as a geometrically weighted average of past values, and
this is added to a trend term calculated by the same method. Single exponential
smoothing is therefore applied to both the series and the trend term.

• CROSTON specifies the Croston's Intermittent Demand method. The Croston's
Intermittent Demand method is a forecasting method which is a variant of
exponential smoothing that can be used for intermittent data (that is data where
more than half of the observations are zero). This method first estimates the
interval between positive demands, and then estimates the magnitude of the
demand when positive.

• HOLT/WINTERS specifies the Holt-Winters method that is used on seasonal data,
in which double exponential smoothing methods with trend damping are
combined with multiplicative seasonal factors, which are estimated using single
exponential smoothing.

MINFCFACTOR decimal
Specifies the lower bound on the forecast data. The number you specify indicates a
multiple of the smallest value in the historical series. For decimal, you can specify any
decimal value from 0.0 through 1.0. For example, when you specify 0.5 the lower
bound is half the smallest value in the historical series. The default value of decimal is
0.0.

MPTDECAY {MAX|MIN} decimal
Specifies the value of the parameter that the forecasting engine uses when it adjusts
the decay of estimates of base values that it uses when it unravels the predictions on
a moving periodic total (MPT) series.

• MPTDECAY MAX decimal specifies the maximum value of the parameter that the
forecasting engine uses when it adjusts the decay of estimates of base values
that it uses when it unravels the predictions on a moving periodic total (MPT)
series. For decimal, you can specify any decimal value from 0.2 through 1.0 when
the difference between the values of MPTDECAY MIN and MPTDECAY MAX is
evenly divided by 0.4. The default value of decimal is 1.0.

• MPTDECAY MIN decimal specifies the minimum value of the parameter that the
forecasting engine uses when it adjusts the decay of estimates of base values
that it uses when it unravels the predictions on a moving periodic total (MPT)
series. For decimal, you can specify any decimal value from 0.2 through 1.0 when
the difference between the values of MPTDECAY MIN and MPTDECAY MAX is
evenly divided by 0.4. The default value of decimal is 0.2.

NTRIALS integer
Specifies the number of trials that the forecasting engine runs to determine the
forecast. For integer, you can specify any INTEGER value from 1 through 3. The default
value of decimal is 3.

PERIODICITY cycle-spec
Specifies either the number of periods for a single cycle or the number of periods in
each of a set of nested cycles.

Chapter 9
FCSET

9-235

You do not have to specify this parameter when you are using a dimension of type
DAY, WEEK, MONTH, QUARTER, or YEAR. In this case, the forecasting engine
derives the periodicity from the number of time dimension periods that constitute a
year (for example, there are 52 WEEK periods in a year).
When you are not using a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR, the default value for cycle-spec is 1, which specifies that the data is not
grouped at all (that is, each period is logically independent).
Cycles are groupings of time periods that repeat through the time span of the data.
For example, daily periods can be grouped into a weekly cycle and weekly periods
can be grouped into a yearly cycle. In this case, the cycles are said to be nested, with
the yearly cycle more aggregate than the weekly cycle, and the weekly cycle more
detailed than the yearly cycle. By specifying cycles at a more detailed level, you allow
OLAP to conduct a finer-grained search for factors that affect the data.

• To specify a single cycle, set cycle-spec to an INTEGER from 1 through 25000. The
INTEGER indicates the number of periods into which the cycle should be divided.
For example, the INTEGER 12 specifies that the cycle should be divided into 12
periods.

• To specify a series of nested cycles, set cycle-spec to a series of up to six INTEGER
values enclosed in parentheses and separated by commas. Each value in the
series is the number of periods in a nested cycle. The cycles are ordered from
most aggregate to least aggregate. For example, when cycle-spec is (52,7), this
indicates two cycles in which the most aggregate cycle is divided into 52 periods
and each of those periods is divided into seven periods. In this example, the year
is divided into 52 weeks, and each of those weeks is divided into seven days.

RATIO decimal
Specifies the ratio of the size of the window that the forecasting engine uses for
smoothing and the total number of historical periods. The forecasting engine uses this
value to determine the number of backcast periods. You can specify any decimal
value from 1/26 through 1/2. The default value of decimal is 1/3.

SMOOTHING {YES|NO}
Indicates whether the forecasting engine should smooth the data for the forecast. The
default value is NO. Specify YES when you want the forecasting engine to smooth the
data.

TRANSFORM {'TRNOSEA'|'TRSEA'|'TRMPT'}
The data filter that the forecasting engine uses when executing the forecast.

• 'TRNOSEA' indicates that the forecasting engine does not seasonally adjust the
data. (Default)

• 'TRSEA' indicates that the forecasting engine transforms using a filter that
seasonally adjusts the data.

• 'TRMPT' indicates that the forecasting engine transforms using a moving
periodic total (MPT) filter.

TRENDHOLD {MAX|MIN|STEP} decimal
For the double exponential smoothing and Holt-Winters forecasting methods,
specifies the value of the trend hold parameter that indicates trend reliability for those
methods.

Chapter 9
FCSET

9-236

• TRENDHOLD MAX decimal specifies the maximum value of the trend hold
parameter. For decimal, you can specify any decimal value from 0.0 through 1.0.
The default value of decimal is 0.8.

• TRENDHOLD MIN decimal specifies the minimum value of the trend hold
parameter. For decimal, you can specify any decimal value from 0.0 through 1. 0.
The default value of decimal is 0.4.

• TRENDHOLD STEP decimal specifies the value of the interval that the
forecasting engine uses when it determines the value of the trend hold parameter.
For decimal, you can specify any decimal value from 0.1 through 0.2. The value
of decimal must evenly divide the difference between the values of TRENDHOLD
MAX and TRENDHOLD MIN. The default value of decimal is 0.2.

WINDOWLEN integer
Specifies the number of points that the forecasting engine uses when it determines
median values when it performs median smoothing. Median smoothing eliminates
extreme variations in the data by replacing each data point in a series by the median
value of itself and its neighbors. For integer, you can specify any INTEGER value from 1
through 13. The default value of integer is 3.

Examples

For an example of a forecasting program, see Example 9-119.

FETCH
The FETCH command specifies how analytic workspace data is retrieved for use in
the relational table created by the OLAP_TABLE function which you use to access analytic
workspace data using SQL.

You can only use the FETCH command in the OLAP_command parameter of the
OLAP_TABLE function; you cannot use it in any other context.

Within the OLAP_TABLE function, the FETCH keyword specifies explicitly how analytic
workspace data is mapped to a table object. The FETCH keyword is provided for
Express applications that are migrating to Oracle Database.

Note:

Use the FETCH keyword in OLAP_TABLE only when you are upgrading an
Express application that used the FETCH command for SNAPI. When you are
upgrading an Express application, note that the syntax is the same here as in
Express 6.3. You can use the same FETCH commands that you used
previously.

When using FETCH as an argument in OLAP_TABLE, you must enter the entire statement
on one line, without line breaks or continuation marks of any type.

To fetch or import data from an relational table into analytic workspace objects using
SQL commands embedded in the OLAP DML, use the OLAP DML SQL command.

Chapter 9
FETCH

9-237

See Also:

For more information on the OLAP_TABLE function, see the Oracle OLAP DML
Reference manual

Syntax

FETCH expression... [TAG tag-exp] [LABELED] [data-order]

where data-order is one of the following:

 USING <order-dim...>
 ACROSS across-dim...
 DOWN down-dim...
 ACROSS across-dim... DOWN down-dim...

Parameters

expression...
One expression for each target column, in the same order they appear in the row
definition. Separate expressions with spaces or commas.

TAG tag-exp
This keyword is ignored; it is retained in the syntax only for backward compatibility.

LABELED
This keyword is ignored; it is retained in the syntax only for backward compatibility. All
fetches are labeled.

USING <order-dim...>
Orders the data block according to the dimension list specified in <order-dim...>.
Specify dimensions or composites or a combination of the two within angle brackets.
Dimensions are ordered from fastest to slowest varying, with the first dimension being
the fastest varying. When you specify a USING clause, then you cannot specify
ACROSS or DOWN.

ACROSS across-dim...
Orders the data block in columns and rows and specifies the column dimensions. For
across-dim, specify a list of one or more dimensions, composites, the NONE keyword,
or a combination of these. When you specify two or more ACROSS dimensions, then
they vary from slowest to fastest, with the first dimension being the slowest.
When you specify ACROSS but not DOWN, then all unspecified dimensions default to
DOWN dimensions, which vary from fastest to slowest in the order that the
dimensions appear in the object definitions. However, adding the NONE keyword to
the ACROSS dimension list fetches only the first value in status for the unspecified
DOWN dimensions.
When you specify an ACROSS clause, then you cannot specify a USING clause.

DOWN down-dim...
Orders the data block in columns and rows and specifies the row dimensions. For
down-dim, specify a list of one or more dimensions, composites, the NONE keyword, or
a combination of these. When you specify two or more DOWN dimensions, then they
vary from slowest to fastest, with the first dimension being the slowest.

Chapter 9
FETCH

9-238

When you specify DOWN but not ACROSS, then all unspecified dimensions default to
ACROSS dimensions, which vary from fastest to slowest in the order that the
dimensions appear in the object definitions. However, adding the NONE keyword to
the DOWN dimension list fetches only the first value in status for the unspecified
ACROSS dimensions.
When you specify a DOWN clause, you cannot specify a USING clause.

Usage Notes

Default Data Order

When you do not specify a USING or DOWN/ACROSS clause, the dimensions of the
data vary from fastest to slowest in the order they are listed in the workspace object
definitions.

Using Expressions with Different Dimensionality

When you specify multiple expressions with different dimensionality in one FETCH
command, the ordering of the dimensions from fastest to slowest varying is not
predictable.

Maximum Size of Data Block

You can use MAXFETCH to set an upper limit on the size of a data block generated by
FETCH.

Variables Defined with Composites

For variables defined with composites, you can specify the composites instead of the
base dimensions in the ACROSS, DOWN, and USING clauses of FETCH which
minimizes the number of NA fields in the resulting data block. When a variable has
been defined with a named composite, you can specify the name of the composite
after the USING, DOWN or ACROSS keyword. You specify unnamed composites with
the syntax used to define them. For example, a variable d.sales with the following
definition

DEFINE d.sales VARIABLE DECIMAL <month SPARSE<product district>>

could be fetched with the expression SPARSE<product district> immediately following a
USING, DOWN, or ACROSS keyword.

Examples

For an example of using FETCH in OLAP_TABLE, see the examples for OLAP_TABLE in
the Oracle OLAP DML Reference manual.

FILECLOSE
The FILECLOSE command closes an open file. When the file has not been opened,
an error occurs.

Syntax

FILECLOSE fileunit

Chapter 9
FILECLOSE

9-239

Parameters

fileunit
An INTEGER fileunit number assigned to an open file by a previous call to the
FILEOPEN function or by an OUTFILE command.

Usage Notes

LOG Command

You must use the LOG command with the EOF keyword, rather than FILECLOSE, to
close a file that was opened with the LOG command.

Examples

Example 9-120 Program That Opens and Closes a File

Suppose you have a program called READFILE that takes a file name as its first
argument. The following lines from the program open the file and then close it.

fil.unit = FILEOPEN(arg(1), read)
 ... (Commands to read and process data)
FILECLOSE fil.unit

FILECOPY
The FILECOPY command copies the contents of one file (the source file) to another
file (the target file). When the target file already exists, the file is overwritten with the
copy.

Syntax

FILECOPY source-file-name target-file-name

Parameters

source-file-name
A text expression specifying the name of the file you want to copy from. Unless the file
is in the current directory, you must include the name of the directory object in the
name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use the CDA command to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

target-file-name
A text expression specifying the name of the file you want to copy to. Unless the file is
in the current directory, you must include the name of the directory object in the name
of the file.

Chapter 9
FILECOPY

9-240

Examples

Example 9-121 Copying a File

The following statement copies the file log.txt from your session's current directory
object to file oldlog.txt in the same directory.

FILECOPY 'log.txt' 'oldlog.txt'

FILEDELETE
The FILEDELETE command deletes a file from the operating system disk space.

Syntax

FILEDELETE file-name

Parameters

file-name
A text expression specifying the name of the file you want to delete. Unless the file is
in the current directory, you must include the name of the directory object in the name
of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use the CDA command to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

Examples

Example 9-122 Specifying the File Using a Variable

The following statement deletes the file whose name is stored in a text variable called
filevar.

FILEDELETE filevar

FILEMOVE
The FILEMOVE command changes the name or location of a file that you specify. The
new file name may be the same or different from the original name.

Syntax

FILEMOVE old-file-name new-file-name

Chapter 9
FILEDELETE

9-241

Parameters

old-file-name
A text expression specifying the name of the file you want to move or rename. Unless
the file is in the current directory, you must include the name of the directory object in
the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use the CDA command to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

new-file-name
A text expression specifying the new name or location for the file. Unless the file is in
the current directory, you must include the name of the directory object in the name of
the file.

Examples

Moving a File

The following statement moves the file log.txt from your session's current directory
object to file oldlog.txt in a directory object called backup.

FILECOPY 'log.txt' 'backup/oldlog.txt'

FILEPAGE
The FILEPAGE command forces a page break in your output when PAGING is on.
FILEPAGE can send the page break conditionally, depending on how many lines are
left on the current page

Syntax

FILEPAGE fileunit [n]

Parameters

fileunit
A fileunit number assigned to a file that is opened in WRITE or APPEND mode by a
previous call to the FILEOPEN function or by the OUTFILE command.

n
A positive INTEGER expression that indicates a page break should occur when there
are fewer than n lines left on the page. When the number of lines left equals or
exceeds n, or n equals zero, no page break occurs. When n is greater than
PAGESIZE, a page break occurs when LINENUM is not zero. When n is negative or
omitted, a page break always occurs.

Chapter 9
FILEPAGE

9-242

Oracle OLAP calculates the number of available lines left on the page using the
values of the options that specify the page size, the current line number, and the
bottom margin. The number, which is stored in LINELEFT, is calculated according to
the following formula.

LINESLEFT = PAGESIZE - LINENUM - BMARGIN

Usage Notes

Using PAGE Instead of FILEPAGE

The PAGE command has the same effect as specifying the FILEPAGE command for
the fileunit number OUTFILEUNIT, which is the number of the current outfile
destination. The following two statements are equivalent.

FILEPAGE OUTFILEUNIT
PAGE

Examples

Example 9-123 Using the FILEPAGE Command

In the following program fragment, you might send a FILEPAGE statement when you
know the next group of products does not fit on the page. The program takes as
arguments the name of the output file, and three month dimension values.

fil.unit = FILEOPEN(ARG(1) WRITE)
LIMIT month TO &ARG(2) &ARG(3) &ARG(4)
COMMAS = NO
DECIMALS = 0
FOR district
 DO
 FILEPAGE fil.unit STATLEN(product)
 FOR product
 DO
 FIL.TEXT = product
 FOR month
 JOINCHARS(fil.text ' ' CONVERT(sales TEXT))
 FILEPUT fil.unit fil.text
 DOEND
 FILEPUT fil.unit ''
 DOEND
FILECLOSE fil.unit

FILEPUT
The FILEPUT command writes data that is specified in a text expression to a file that
is opened in WRITE or APPEND mode.

Syntax

FILEPUT fileunit {text-exp|FROM infileunit} [EOL|NOEOL]

Parameters

fileunit
A fileunit number assigned to a file that is opened for writing (WRITE or APPEND
mode) by a previous call to the FILEOPEN function or by the OUTFILE command.

Chapter 9
FILEPUT

9-243

text-exp
A text expression that contains data for output.

Note:

When you specify NTEXT data to be written to a file, FILEPUT translates the
text to the character set of the file. When that character set cannot represent
all of the NTEXT characters, then data is lost.

FROM infileunit
Transfers a record read from infileunit by the FILENEXT function directly to the file
specified by fileunit. When you specify this clause, you can write selected records to
an output file while continuing to process data with the FILEVIEW command.

Note:

When you use the keyword phrase FROM infileunit, you cannot mix binary and
non-binary files. When either file was opened with the BINARY keyword, the
other must be binary too.

EOL
(Default) Specifies that a newline character is appended to the output string and
written to the file.

NOEOL
Specifies that no newline character is added to the text written to the file.

Examples

Example 9-124 Writing Data to a File Using FILEPUT

Following is an example of a program that writes a file of sales data for three months.
The name of the file is the first argument. The following program excerpt opens the
file, writes the lines of data to the file, then closes it. This program takes four
arguments on the statement line after the program name: the file name of the input
data and three month names.

DEFINE salesdata PROGRAM
LD Write Sales Data To File. Args: File Name, 3 Month Names
PROGRAM
VARIABLE fil.unit INTEGER
VARIABLE fil.text TEXT
fil.unit = FILEOPEN(ARG(1) WRITE)
LIMIT month TO &ARG(2) &ARG(3) &ARG(4)
LIMIT product TO ALL
LIMIT district TO ALL
COMMAS = NO
DECIMALS = 0
FOR district
 DO
 FOR product
 DO
 fil.text = product
 FOR month

Chapter 9
FILEPUT

9-244

 fil.text = JOINCHARS(fil.text ' ' -
 CONVERT(sales TEXT))
 FILEPUT fil.unit fil.text
 DOEND
 FILEPUT fil.unit ''
 DOEND

FILECLOSE fil.unit
END

Example 9-125 Preprocessing Data

The following example uses a data file with the 1996 sales figures for the products
sold in each district. Only the records that begin with "A" are important right now, but
you want to save the rest of the records in a separate file for later processing. The
following program excerpt uses FILENEXT to retrieve each record and FILEVIEW to
find out what kind of record it is. A second FILEVIEW statement processes the record
when it is type "A." When not, a FILEPUT statement writes it to the output file.

DEFINE rectype VARIABLE ID
LD One Letter Code Identifying The Record Type
VARIABLE in.unit INTEGER
VARIABLE out.unit INTEGER
. . .
in.unit = FILEOPEN(GET(TEXT PROMPT 'Input Filename: ') READ)
out.unit = FILEOPEN(GET(TEXT PROMPT 'Output Filename: ') -
 WRITE)

WHILE FILENEXT(in.unit)
 DO
 FILEVIEW in.unit WIDTH 1 rectype
 IF rectype EQ 'A'
 THEN FILEVIEW COLUMN 2 WIDTH 8 district SPACE 2 -
 WIDTH 8 product ACROSS month year Yr96: saleS
 ELSE FILEPUT out.unit FROM in.unit
 DOEND
FILECLOSE in.unit
FILECLOSE out.unit
. . .
END

FILEREAD
The FILEREAD command reads records from an input file and processes data
according to action statements that you specify. FILEREAD handles binary data,
packed decimal data, and text. It can handle decimal data written in E-notation (such
as .1E+9) or M-notation (such as 10M). It can convert the data to any appropriate data
type before storing it in an Oracle OLAP variable, dimension, composite, or relation.

Syntax

FILEREAD fileunit [STOPAFTER n] [file-format] {[attribute...] action-statement1}
 [[attribute...] action-statementN...]

where:

• file-format specifies the format of the records in the input file. Use one of the
following:

Chapter 9
FILEREAD

9-245

RULED

CSV [DELIMITER dchar]

STRUCTURED [TEXTSTART schar] [TEXTEND echar] [DELIMITER
dchar]

• attribute provide information that is used by action statements.

{COLUMN|COL} n
{SPACE|SP} n
{FIELD|FLD} n
{WIDTH|W} n
data-type
dimension-value-handling
BINARY | PACKED | SYMBOLIC
TRANSLATE | NOTRANSLATE
SCALE n
ZPUNCH | ZPUNCHL
LSET 'text'
RSET 'text'
stripping
NAVALUE val
NASPELL 'text'
ZSPELL 'text'
YESSPELL 'text'
NOSPELL 'text'
ZEROFILL

For information on the placement of attributes in action statements, see
"Placement of Field Attributes in FILEREAD".

• action-statements perform processing, such as assignment statements and
IF statements. An action-statement can be one of the following:

assignment-statement

IF-statement
 SELECT-statement
ACROSS-statement: action-statement
<action-statement-group>

Parameters

fileunit
A fileunit number assigned to a file that is opened for reading (READ mode) by a
previous call to the FILEOPEN function.

STOPAFTER n
The number of records to read from the input file. When STOPAFTER is left out, or
specified with a negative number or an NA, FILEREAD processes the whole file. See
"STOPAFTER Keyword".

RULED
Specifies that the record is organized in fixed-width columns, that is, character-by-
character or byte-by-byte. All lines must have the same format. RULED is the default

Chapter 9
FILEREAD

9-246

file format. Use the COLUMN, SPACE, and WIDTH attributes to specify the location
of the data in the records.

CSV [DELIMITER dchar]
CSV specifies that the data is in CSV (comma-delimited values) format. You must use
the FIELD and SPACE attributes to specify the location of the data in the record.
dchar is a text expression that specifies a single character that you want Oracle OLAP
to interpret as the general field delimiter in a structured file. Oracle OLAP uses the
general field delimiter to identify both numeric and text fields. The default character is
a comma (,).
CSV files are a common output format that is generated by spreadsheet programs.
Each line of characters in a source file is treated as a single record. Each field in the
record is separated by a comma by default. You can use the DELIMITER keyword to
specify some other character as field delimiter.
When a group of characters in the input record is enclosed by double quotation
marks, all of the following rules apply:

• When the group includes the delimiter character, it is treated as a literal instead of
as a delimiter.

• When a double quotation mark (") is included in the group of characters, then it
must be followed by another double quotation mark.

• When a linefeed character (\n) is included in the group of characters, then it is
ignored.

• Any spaces or tabs that occur before or after the double quotation marks that
enclose the group of characters is ignored.

STRUCTURED
Specifies that the record is in "structured prn" format. You must use the FIELD and
SPACE attributes to specify the location of the data in the record.
Structured files are a common output format for PC software. They are text files in
which the fields are composed of groups of characters. A group of characters is
defined by two conditions: text enclosed in double quotes, or a sequence of numbers
that is uninterrupted except by a decimal point. Consequently, an unquoted sequence
of numbers containing a decimal point is stored as a single value; however, an
unquoted sequence of numbers containing commas or other delimiters to mark off
thousands is split into several values rather than stored as a single value. Any
unquoted, non-numeric characters are ignored, except a minus sign that immediately
precedes a number is considered to be part of the number. A space cannot separate
the minus sign from the number.
When your file format does not conform to the pattern described here, you can use
the TEXTSTART, TEXTEND, and DELIMITER keywords that let you customize the
delimiters FILEREAD uses to identify the start and end of each field.

TEXTSTART schar
Specifies a single character that you want Oracle OLAP to interpret as the start of a
text field in a structured file. schar is the value of the character. The default character
is a double quote (").

TEXTEND echar
Specifies a single character that you want Oracle OLAP to interpret as the end of a
text field in a structured file. echarr is the value of the character. The default character
is a double quote (").

Chapter 9
FILEREAD

9-247

DELIMITER dchar
Specifies a single character that you want Oracle OLAP to interpret as the general
field delimiter in a structured file. Oracle OLAP uses the general field delimiter to
identify both numeric and text fields. dchar is the value of the character. The default
character is a comma (,).

{COLUMN|COL} n
The column in which the field starts in the input record. By default, field 1 begins in
column 1 and subsequent fields begin in the column following the previous field. The
current field's default column is the sum of the previous field's first column plus its
width plus any spaces specified for the current field.

Syntax Description

{COLUMN|COL} n The column in which the field starts in the input record. By default, field 1 begins in
column 1 and subsequent fields begin in the column following the previous field. The
current field's default column is the sum of the previous field's first column plus its
width plus any spaces specified for the current field.

{SPACE|SP} n The number of spaces between a field and the preceding field. In a structured PRN
file, the number of fields between the preceding and current field. The default is 0.

{FIELD|FLD} n In a structured PRN file only, the field from which to extract the data.

{WIDTH|W} n For unstructured records, the number of columns the field occupies in the input
record. When there is no default, WIDTH must be included for ruled records or
FILEREAD generates an error. The default is derived from the data type according to
the following list:
• BINARY input format with INTEGER, SHORTINTEGER, or SHORTDECIMAL target data

type has a default of 4 columns.
• BINARY input format with DECIMAL or NUMBER target data type has a default of 8

columns.
• BINARY input format with BOOLEAN target data type has a default of 2 columns.

• PACKED input format with any type of target data type has no default.
• SYMBOLIC input format with ID target data type has a default of 8 columns.

• SYMBOLIC input format with a target data type that is not ID has no default.

The maximum width is 4,000 characters for text input.

data-type One of the following keywords: INTEGER, SHORTINTEGER, DECIMAL,
SHORTDECIMAL, NUMBER, TEXT, ID, DATE, VNF, RAW DATE, BOOLEAN.
• For text data, the data type to which the input is converted before it is stored in

your analytic workspace.
• For binary data, the data type of the data in the input record.
• Except for dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR,

the default is the data type of the target object.
• For dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, the

default is VNF.
• For DATE variables and dimensions of type DAY, WEEK, MONTH, QUARTER,

and YEAR, RAW DATE indicates the input values are positive INTEGER values
that represent the number of days since December 31, 1899, or negative
INTEGER values that represent the number of days before December 31, 1899.

See "Specifying a Target Object that has NTEXT Values".

Chapter 9
FILEREAD

9-248

Syntax Description

dimension-value-handling When the target object is a dimension or dimension surrogate, one of the following
keyword clauses that specifies whether or not to add new values to the target object:
• MATCH

Do not add new values to the dimension or dimension surrogate. Instead, when
the target object is a dimension and then values in the input field must match
current dimension values. For each record processed, the dimension is
temporarily limited to the value in the record. When the value does not exist,
FILEREAD generates an error. This attribute also applies when the target object
is a dimension surrogate.

• APPEND [LAST |FIRST | BEFORE pos | AFTER pos]
Add new values to the dimension by appending the values. The field contains
new dimension values and may contain existing values as well. New values are
added to the dimension list and the status is limited to the current value. The
status is set to ALL after FILEREAD finishes. For time dimensions, Oracle OLAP
automatically fills in any "missing" periods between the existing ones and the
new ones. When the target object is a non-time dimension, you can specify how
Oracle OLAP appends the value using one of the following keywords: LAST
which adds the value to the end of the dimension list; FIRST which adds the
value to the beginning of the list; BEFORE pos which adds the value before the
specified value or INTEGER position; and AFTER pos which adds the value after
the specified value or INTEGER position.

• ASSIGN
Add new values to the dimension surrogate by assigning the values. This
attribute applies only to a dimension surrogate. It assigns the new value to the
surrogate.

input-field-format One of the following keywords that specifies the format of the input field:
• SYMBOLIC which specifies that the format of the input field is ASCII or EBCDIC

text.
• BINARY which specifies that the format of the input field is binary.
• PACKED which specifies that the format of the input field is packed decimal.

TRANSLATE|
NOTRANSLATE

Whether or not Oracle OLAP translates the data from the format of the original
operating system, as identified by a FILESET ORIGIN statement. Specify
TRANSLATE when you want Oracle OLAP to translate the data; or specify
NOTRANSLATE when you do not want Oracle OLAP to translate the data.

SCALE n The number of digits to the right of the assumed decimal or binary point. The default
is 0. When the input data is text, a decimal point in the input overrides the number
specified by SCALE.

ZPUNCH|ZPUNCHL Provides information about how the input zone is overpunched. Specify ZPUNCH
when the input is zone overpunched. Specify ZPUNCHL when the input is zone
overpunched on the left.

LSET 'text' For text input and TEXT or ID target objects, adds text to the left of the value before
storing. When text is a multiline value, only the first line is used.

RSET 'text' For text input and TEXT or ID target objects, adds text to the right of the value before
storing. When text is a multiline value, only the first line is used.

Chapter 9
FILEREAD

9-249

Syntax Description

stripping For text input, one of the following keywords that indicates if spaces or nulls are
stripped from input value before storing in the target object:
• NOSTRIP

No spaces or nulls are stripped from the input.
• STRIP

Spaces and nulls are stripped from both left and right of the input.
• LSTRIP

Spaces and nulls are stripped from the left of the input.
• RSTRIP

Spaces and nulls are stripped from the right of the input.

NAVALUE val
For binary or packed input, specifies that when the input is the specified numeric
value, NA is assigned to the target object.

NASPELL 'text'
For text input, specifies that Oracle OLAP stores text as NA. When the input is the
specified text, NA is assigned to the target object. Text can be a multiline string listing
several possible NA values. In addition to the values specified for text, when the input
is NA, then NA is assigned to the target object.

ZSPELL 'text'
For textual numeric input, specifies that Oracle OLAP stores text as 0. When the input
is the specified text, zero is assigned to the target object. Text can be a multiline
string that lists several possible zero values. In addition to the values specified for
text, when the input is 0, then 0 is assigned to the target object.

YESSPELL 'text'
For text input that is BOOLEAN, specifies that Oracle OLAP stores text as YES.
When the input is text then YES is assigned to the target object. Text can be a
multiline string that lists several possible YES values. In addition to the values
specified in text, when the input is YES, ON, or TRUE, YES is assigned to the target
object.

NOSPELL 'text'
For text input that is BOOLEAN, specifies that Oracle OLAP stores text as NO. When
the input is text then NO is assigned to the target object. Text can be a multiline string
that lists several possible NO values. In addition to the values specified in 'text,' when
the input is NO, OFF, or FALSE, NO is assigned to the target object.

ZEROFILL
For text numeric input, specifies that Oracle OLAP fills any spaces in the resulting text
with zeros. Any spaces in the input are replaced with zeros. The default is no filling
with zeros.

action-statement
You may specify one or more action statements to be performed each time a record is
retrieved from the input file. Typically, you use action statements to set dimension
status and assign data retrieved from the input record to a target object in Oracle
OLAP. However, you may specify action statements that do not reference the data in
the input record. For example, one of your action statements might be an assignment
statement that simply increments a counter. Alternatively, an action statement might

Chapter 9
FILEREAD

9-250

use the input data in some kind of processing, but not actually assign it to a target
object in Oracle OLAP.
In your list of action statements, be sure to process dimensions before variables.
FILEREAD processes each action statement from left to right for each input record.
When an action statement performs dimension processing, the resulting status
remains in effect for subsequent action statements. When you do not first specify
action statements that limit a variable's dimensions, FILEREAD uses the first value in
status to target a cell in the variable. Unless you specify an ACROSS phrase,
FILEREAD assigns a single value from a field in an input record to a single cell in an
Oracle OLAP variable. By default, FILEREAD does not loop over a variable's
dimensions when assigning data to the variable. See "Field Order".
Use the VALUE keyword in FILEREAD action statements to represent the value in a
particular field of the input record. VALUE represents this data, formatted according to
the FILEREAD attributes you have specified. When the field in the record is blank,
FILEREAD considers its value to be NA. By default, the data type of VALUE is the data
type of the target object. However, you can specify a different data type with an
attribute keyword.

Note:

When you have already specified action statements for use with FILEREAD,
you can reuse the code with SQL FETCH and SQL IMPORT by simply
adjusting the assignment statements and eliminating the VALUE keyword (if
necessary). Most of the FILEREAD attributes (except for the attributes that
control dimension processing) are not meaningful for SQL loading and are
ignored when executing within SQL FETCH and SQL IMPORT.

assignment-statement
An assignment statement lets you assign a value to an Oracle OLAP object. An
assignment statement has the following form.

 object [= expression]

object is the target where the data is assigned and stored. The object can be an
Oracle OLAP variable, dimension, dimension surrogate, composite, or relation.
expression is the source of the data value to be assigned to the target.

Note:

In a SQL FETCH or a SQL IMPORT assignment statement, the expression
component is not optional. However, a FILEREAD assignment statement may
consist only of an object name. In this case, the input data is assigned directly
to object. An expression in a FILEREAD assignment statement may include
the VALUE keyword.

IF-statement
An IF statement lets you perform some action depending on whether a Boolean
expression is TRUE or FALSE. An IF statement has the following form.

 IF bool-exp THEN action [ELSE action]

Chapter 9
FILEREAD

9-251

IF evaluates the Boolean expression. When it is TRUE, the THEN action occurs.
When it is FALSE, the ELSE action (if specified) occurs. When the Boolean
expression is NA, no action occurs.
An action can be one of the following:

• NULL (no action occurs)

• An assignment statement

• A SELECT statement

• An IF statement

• A DO … DOEND statement containing action-statements

A FILEREAD IF statement may contain invocations of the VALUE keyword. You can
use a FILEREAD IF statement to process varying record types (such as records with
different structures or different target objects) with one FILEREAD statement.
In FILEREAD, the VALUE keyword can be used more than once to represent different
values from the same record. For each instance, specify the column from which to
read each value.

SELECT statement
A SELECT statement lets you perform some action based on the value of an
expression. A SELECT statement has the following form.

 SELECT select-expression [WHEN expression1 action [WHEN
expression2 action . . .] [ELSE action]

SELECT evaluates the SELECT expression and then sequentially compares the
result with the WHEN expressions. When the first match is found, the associated
action occurs. When no match is found, the ELSE action (if specified) occurs.
An action for a SELECT statement is the same as an action for an IF statement.
A FILEREAD SELECT statement may contain invocations of the VALUE keyword.
You can use a FILEREAD SELECT statement to process varying record types (such
as records with different structures or different target objects) with one FILEREAD
statement.

ACROSS-statement: action-statement
An ACROSS statement causes the following action statement to execute once for
every value in status of the ACROSS dimension. When you want the looping to apply
to multiple action statements, enclose the action statements in angle brackets.
An ACROSS statement has the following syntax.

 ACROSS dimension [limit-clause]:

 action-statement

The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
The following example limits month to the last six values, no matter what the current
status of month is.

ACROSS month last 6: units

Chapter 9
FILEREAD

9-252

In a FILEREAD ACROSS statement, you can specify attributes to indicate the position
in the record where Oracle OLAP begins reading the fields specified by the ACROSS
phrase. To specify the position, use the attributes FIELD, SPACE, and COLUMN. A
position attribute is optional when the series of fields specified in the ACROSS phrase
begins in the next field for structured records, or the next byte for ruled records.

<action-statement-group>
You can group several action statements by enclosing them in angle brackets. An
action-statement-group has the following form.

 <action-statement1 - [action-statement2 . . .]>

A typical use for action statement groups is after an ACROSS statement. With the
angle bracket syntax, you can cause multiple action statements to execute for every
value in status of the ACROSS dimension.

Usage Notes

Reading One Record at a Time

As an alternative to FILEREAD, you can use the FILENEXT function to read one
record at a time with one or more FILEVIEW statements to process the fields in the
record.

Field Order

When an input record contains both dimension values and variable data, the
dimension values must be the first fields that are read in the record, and the variable
data values must be read after those dimension values. To do this, you can either
order the fields in the input record itself or you can use FILEREAD attributes to specify
the field positions explicitly. (See the description for the attribute argument.)

To organize the input records so that you do not have to use position attributes with
FILEREAD, put all of the dimension values in the first fields of the record and put the
variable data values in the last fields of the record. For example, suppose that you
have data for two variables (units and sales) that share the same dimensions in the
same order (time, product, and geography). In this case, the first three fields in the input
record should contain dimension values, while the fourth and fifth fields should contain
variable data, such as in the following sample input record.

Sep99 Snowshoes Boston 35 5565.95

STOPAFTER Keyword

By default, FILEREAD automatically reads all the records in a file in sequential order.
When you want to process only the first part of a file, use the STOPAFTER keyword.
FILEREAD processes the number of records you specify, then stops. You can then
close the file.

When you want to skip the first part of the file and process the remaining records, you
can use the STOPAFTER keyword and omit the field descriptions. FILEREAD reads
the number of records you specify without processing the data. Then you issue a
second FILEREAD statement with field descriptions for processing the input. The
following program lines illustrate this method.

LIMIT district TO 'Boston'
unit = FILEOPEN('bostdata' READ)
FILEREAD unit STOPAFTER 25
FILEREAD unit WIDTH 8 product SPACE 2 ACROSS month 13 TO 24:-
 WIDTH 4 PACKED sales

Chapter 9
FILEREAD

9-253

Dimension Maintenance

When the target object of a field description is a dimension, you can specify whether or
not to use the data in the file to add values to the dimension. The dimension attributes
are MATCH and APPEND. When you are adding values to a dimension with APPEND,
you can specify a dimension position attribute (LAST, FIRST, BEFORE pos, AFTER pos)
immediately after APPEND.

In an assignment statement of the form object=expression, dimension attributes cannot
appear on the right side of the equal sign, but must be specified before the target
object. The only exception is when dimensions as target objects also appear on the
right side, such as when you are maintaining a conjoint dimension. See
Example 9-130.

Dimension Position Numbers

When your input data consists of dimension position numbers, rather than dimension
values, specify the conversion type as INTEGER in the field description, even though
the dimension has a type of TEXT, ID, DAY, WEEK, MONTH, QUARTER, or YEAR.

FILEREAD unit COLUMN 1 WIDTH 8 INTEGER month

When the input contains position numbers, you cannot use the APPEND keyword to
add new values to a dimension of type TEXT, ID, DAY, WEEK, MONTH, QUARTER,
or YEAR, because the new position numbers have no associated value to be added.

Conjoint Dimension Maintenance

When a conjoint dimension is the target object, you can read its values using one of
two methods:

• Method One—When the input contains values or position numbers of the base
dimensions, you must specify a dimension list surrounded by angle brackets after
the equal sign, as shown in the following two sample lines.

FILEREAD unit proddist = <COL 1 W 10 product COL 20 -
 W 8 district>
FILEREAD unit proddist = <COL 1 W 10 INTEGER product COL 20 -
 W 8 INTEGER district>

The preceding examples show values of the product and district dimensions
being used to designate a value of the proddist concat dimension You could also
use the APPEND attribute when you needed to maintain any of the dimensions.
However, when you needed to process the values of product or district first, so
that the syntax would require an equal sign inside the angle brackets, you would
have to use an alternative method. (Nested equal signs are not allowed.) For this
method you would read and process the base dimension values first, and then use
the dimensions, without any field attributes, in the dimension list for the conjoint
dimension. For example, to convert the base dimension values of a conjoint
dimension to uppercase, use a statement similar to the following.

FILEREAD unit COL 14 W 8 product = UPCASE(VALUE) -
 COL 5 W 8 district = UPCASE(VALUE) -
 proddist = <product, district>

• Method Two—When the input contains position numbers of the conjoint
dimension itself, you must specify the INTEGER keyword.

FILEREAD unit INTEGER proddist

FILEREAD with Variables Dimensioned by Composites

Chapter 9
FILEREAD

9-254

When reading data into a variable dimensioned by a composite, FILEREAD
automatically creates any missing target cells that are being assigned non-NA values.
This process also adds to the composite all the dimension value combinations that
correspond to those new cells. Thus, both the target object and the composite might
be larger after an assignment.

Variables Dimensioned by Composites and Efficiency

When you use the automatic composite maintenance feature of FILEREAD to load
data into variables dimensioned by composites, be aware of potential performance
problems that might later occur when you attempt to access the variables' data. The
position of a composite in the dimension list of a variable indicates whether or not
performance might later become an issue.

When the composite appears at the end of the dimension list in the variable's definition
(the slowest-varying position), you can use FILEREAD just as you would for a variable
whose dimension list does not include composites. For example, you could use the
same FILEREAD statements to read data into the variables newsales and newsales.cp
(with the following definitions) without sacrificing efficiency.

DEFINE newsales VARIABLE DECIMAL <product district month>
DEFINE newsales.cp VARIABLE DECIMAL <product SPARSE<district month>>

newsales.cp is dimensioned by three dimensions, the last two of which are in a
composite. When, however, you have a variable like newsales2.cp (with the following
definition) there can be performance implications for accessing data loaded with
FILEREAD.

DEFINE newsales.cp VARIABLE DECIMAL <SPARSE<district month> product >

In this case, you can use one of two methods to avoid performance problems:

• You can use CHGDFN with the SEGWIDTH keyword to change the segment size
for the variable before using FILEREAD. CHGDFN SEGWIDTH lets you specify
the size of a variable's segments. A segment is a portion of the total number of
values a variable holds. The number of segments in a variable affects the
performance of data loading and data accessing. The segment size that you
specify with a CHGDFN SEGWIDTH statement is used not only for the variable
you designate as varname, but also for all other variables and relations that are
defined with the same combination of dimensions and composites in the same
order.

• You can explicitly add composite values just as you would for a conjoint
dimension. You can use this method both for named and unnamed composites.
See "Composite Maintenance".

Composite Maintenance

When you want to explicitly maintain composites with FILEREAD, use the same
syntax that you use to maintain conjoint dimensions. When the composite is unnamed,
refer to it with the form SPARSE<dim1 dim2 ...>. See "FILEREAD with Variables
Dimensioned by Composites" and "Variables Dimensioned by Composites and
Efficiency" to evaluate the advantages of explicit versus automatic composite
maintenance with FILEREAD.

Using DWMQY Dimensions with FILEREAD

When the target object of a field is a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, the default conversion type is VNF. Therefore, you do not have

Chapter 9
FILEREAD

9-255

to specify a conversion type when the input values are formatted according to the VNF
of the target dimension (or the default VNF when the dimension does not have a VNF
of its own).

When the target object of a field is a DATE variable or a dimension of type DAY,
WEEK, MONTH, QUARTER, and YEAR, FILEREAD interprets the values correctly
when they are in a valid input style for dates as described in DATEORDER. For
dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR, you must specify
DATE as the conversion type. For values of a DATE variable, DATE is the default
conversion type, so the DATE keyword is optional.

FILEREAD also interprets values of a time dimension or a DATE variable correctly
when they are INTEGER values that represent dates (1 = January 1, 1900). In this case,
you must specify RAW DATE as the conversion type.

Blank Fields

When a field is blank, its value is NA and NA is assigned to the target variable.
Examples of blank fields are a text field filled with spaces, a field that begins beyond
the end of the record, or a field in a structured file that has nothing, not even a space,
between the field delimiters.

Placement of Field Attributes in FILEREAD

Normally, the field attributes immediately precede the target object or the expression
on the right of the equal sign.

 attributes object

However, when you want an attribute to apply to several fields, specify the attribute
followed by the list of target objects surrounded by angle brackets. You can also
include attributes that apply to one object by typing them inside the brackets before the
object to which they apply.

 attributes0 <attributes1 object1=expression object2 attributes3 object3>

Angle brackets are also used to surround the base values of a conjoint dimension
value.

Handling Errors When FILEREAD Encounters an Error

When FILEREAD encounters an error, you can control what happens with an error
trap and appropriate processing. Errors can be caused by attempts to convert data to
an incompatible data type or by encountering invalid dimension values. You can use
the FILEERROR function to get more information about what caused the error. After
processing the error, you can use a TRAP statement to turn error trapping back on
and GOTO to branch back to the FILEREAD statement. Processing continues with the
next record. See Example 9-128.

Specifying a Target Object that has NTEXT Values

When you specify a target object of type NTEXT for data from a structured or CSV file,
FILEREAD translates the data from the file into the database character set before
storing the values (even though they are assigned to an NTEXT object) which can
result in data loss when the data from the file cannot be represented in the database
character set. For data from a ruled file, which has fixed-width columns, FILEREAD
does not translate into the database characters set, so there is no data loss.

Chapter 9
FILEREAD

9-256

Examples

Example 9-126 Dimension Values and Data

Suppose your analytic workspace contains six-character product identification
numbers. You must import both product names and a value for the number of units
sold each month. The data file for the last quarter has the following format.

Jan951234aa00Chocolate Chip Cookies 123
Jan951099bb00Oatmeal Cookies 145
Jan952355cc00Sugar Cookies 223
Jan955553ee00Ginger Snap Cookies 233
Feb951234aa00Chocolate Chip Cookies 123
Feb951099bb00Oatmeal Cookies O145
Feb952355cc00Sugar Cookies SS223
Feb955553ee00Ginger Snap Cookies G233
Mar952355cc00Sugar oCookies 223
Mar955553ee00Ginger Snap Cookies 233
Mar953222dd00Brownies 432

The dimension and variables have the following definitions.

DEFINE month DIMENSION MONTH
DEFINE productid DIMENSION ID
DEFINE productname VARIABLE TEXT <productid>
DEFINE units.sold VARIABLE INTEGER <month productid>

The following program uses FILEREAD to add any new values for month and productid
to the analytic workspace and to put the data in the correct variables. Maintain
dimensions in one FILEREAD statement, close the file, and process it again to get the
associated data.

DEFINE read.product PROGRAM
PROGRAM
VARIABLE fi INT
fi = FILEOPEN('Dr.Dat' READ)
FILEREAD fi COLUMN 1 APPEND WIDTH 5 month -
 COLUMN 6 APPEND WIDTH 6 productid
FILECLOSE fi

fi = FILEOPEN('Dr.Dat' READ)
FILEREAD fi COLUMN 1 WIDTH 5 month -
 COLUMN 6 WIDTH 6 productid -
 COLUMN 12 WIDTH 30 productname -
 COLUMN 44 WIDTH 22 units.sold
FILECLOSE fi
END

Example 9-127 Dimension Surrogate Values

This example uses one FILEREAD operation to add a value to the product dimension
and assign a value to prodnum, which is a NUMBER dimension surrogate for the product
dimension. It uses a second FILEREAD to assign a value to the units variable, which
is dimensioned by month, product, and district. The data file for the dimension and
surrogate values has the following format.

Kiyaks400

Chapter 9
FILEREAD

9-257

The following statements define a fileunit, open the file, read its contents and append a
value to the product dimension and assign a value to the prodnum surrogate, and close
the file.

DEFINE funit INT
funit = FILEOPEN('Ds.Dat' READ)
FILEREAD funit COL 1 APPEND W 6 product COL 7 ASSIGN W 3 prodnum
FILECLOSE funit

The data file for the variable value has the following format.

Jan02400Boston416

The following statements open the file, read its contents, match the value of the
prodnum surrogate and assign a value to the units variable, and close the file.

funit = FILEOPEN('Var.Dat' READ)
FILEREAD funit COL 1 W 5 month COL 6 MATCH W 3 prodnum -
 COL 9 W 6 district COL 15 W 3 INTEGER units
FILECLOSE funit

Example 9-128 Error Handling

When your input file has data that does not match the format specifications, or when it
has a dimension value that is not part of the analytic workspace when you are using
the default MATCH attribute, you get an error. You can use error processing at the
trap label to check for that kind of error, skip the bad record, and continue processing
the file. You can also use a FILEPUT statement to store the bad records in a separate
file (see the FILEPUT command).

In the following example, the statements at the trap label check whether the file was
successfully opened (fil.unit has an INTEGER value) and whether the user interrupted
the program. When these are not the reason for the error, the program assumes it
encountered a bad record, resets the trap, and branches back to the FILEREAD
statement to continue processing with the next record.

DEFINE read.price PROGRAM
PROGRAM
VARIABLE fil.unit INTEGER
TRAP ON ERROR
fil.unit = FILEOPEN(ARG(1) READ)
LIMIT month TO &ARG(2)
NEXT:
FILEREAD fil.unit -
 WIDTH 8 product -
 WIDTH 4 BINARY price
FILECLOSE fil.unit
RETURN
error:
IF fil.unit EQ NA
 THEN RETURN
IF ERRORNAME NE 'attn' AND ERRORNAME NE 'quit'
 THEN DO
 SHOW JOINCHARS('Record ' RECNO(fil.unit) ' is Invalid.')
 TRAP ON ERROR
 GOTO NEXT
 DOEND
FILECLOSE fil.unit
END

Chapter 9
FILEREAD

9-258

Example 9-129 Preprocessing File Data Before Assigning to an analytic
workspace Object

You can also process the data in each field before assigning it to a variable or
dimension in the analytic workspace. Suppose your data file has product identifiers
that are six-digit numbers, and your analytic workspace has a product dimension
whose values are these same product numbers, preceded by a "P." You can process
the identifiers in the file by adding a "P" at the beginning of each value.

FILEREAD unit COLUMN 1 WIDTH 6 APPEND LSET 'p' product

Example 9-130 Maintaining Conjoint Dimensions with File Data

To maintain a conjoint dimension with FILEREAD, you first maintain its base
dimensions by appending any new values from the input file. Then you assign the
resulting combination of base dimension values to the conjoint dimension. The
following example gets base dimension values from two separate fields, appends the
values to the base dimensions, then appends the combination to the conjoint
dimension.

FILEREAD unit APPEND proddist = <W 8 product, W 8 district>

In the preceding statement, the angle brackets automatically cause APPEND to apply
to all three dimensions. When you do not want to add new values to the base
dimensions, but want only to add new conjoint dimension values, you must explicitly
state the keyword MATCH or change the order of the target objects, as shown in the
two following statements.

fileread unit APPEND proddist = <W 8 MATCH product,W 8 MATCH district>

or

FILEREAD unit W 8 product W 8 district APPEND proddist = <product, district>

Example 9-131 Reading Data From a Structured PRN File

Suppose you want to read data from a structured PRN file with values of the product
dimension in field two, values of the district dimension in field three, and several
months of sales values beginning in field six. You could read the first 10 records in the
file with the following statement.

FILEREAD unit STOPAFTER 10 STRUCTURED FIELD 2 product -
 district FIELD 6 ACROSS month: sales

FILESET
The FILESET command sets the paging attributes of a specified fileunit.

Syntax

FILESET fileunit attrib-arg1 exp1 [attrib-argN expN ...]

where attrib-arg is one of the following:

BMARGIN

LINENUM

LSIZE

ORIGIN

Chapter 9
FILESET

9-259

PAGENUM

PAGEPRG

PAGESIZE

PAGING

PAUSEATPAGEEND

TABEXPAND

TMARGIN

Parameters

fileunit
A fileunit number that is assigned to a file opened previously using a FILEOPEN
statement or by an OUTFILE statement. You can set attributes only for an open file.
An attribute argument specifies the file characteristic to change. The attribute must be
appropriate for the fileunit specified; otherwise, Oracle OLAP returns an error. You
can set several attributes in one FILESET statement by listing the attribute name and
its new value in pairs.

BMARGIN
Specifies the number of blank lines that constitute the bottom margin.

LINENUM
Specifies the current line number. Resets after each page break when PAGING is on;
otherwise, keeps incrementing.

LSIZE
Specifies the maximum line length for text output files, or the record length for binary
input files.

ORIGIN
Specifies the type of system on which the file was created. The default value of the
ORIGIN attribute reflects the system you are currently working on, so you must set
ORIGIN when the file originated on a different system. The setting of ORIGIN affects
how data reading statements interpret the files. For example, data reading statements
use this information to decide whether bytes of binary data have to be reversed, and
so forth. The following table helps you make the right choice. When your system is not
listed, try using PC or HP as the value of ORIGIN. When one value does not work, the
other one should.

Value Hardware or Operating System

ALPHA Any DEC workstation using an Alpha processor

AVMS A DEC Alpha processor running on VM

HP HP MPE XL

HPS700 HP Series 700 Workstation

HPS800 HP Series 800 Workstation

IBMPC An Intel processor running DOS, Windows, or
Windows N

INTEL5 Any Intel5 processor running UNIX

MIPS Any MIPS system

MVS IBM MVS/TSO

NTALPHA A DEC Alpha processor running Windows NT

Chapter 9
FILESET

9-260

Value Hardware or Operating System

PC An Intel processor running DOS, Windows, or
Windows NT

RS6000 Any IBM RS6000 processor running IBM AIX

SOLARIS2 Any workstation running Solaris2

SUNOS4 Any workstation running SunOS4

VAX VAX VMS (floating point in G format only)

VM VM/CMS

PAGENUM
Specifies the current page number.

PAGEPRG
Specifies the OLAP DML program that produces page titles and headings when
output is paged.

PAGESIZE
Specifies the number of lines on each page.

PAGING
Specifies if the output is formatted in pages which is equivalent to setting the PAGING
option to YES.

PAUSEATPAGEEND
Specifies if Oracle OLAP should pause after each page.

TABEXPAND
Specifies if tab characters should be expanded. When TABEXPAND is zero, tab
characters are not expanded. A value greater than 0 indicates the distance, in bytes,
between tab stops. The default value of TABEXPAND is 8.

TMARGIN
Specifies the number of blank lines that constitute the top margin.

exp
An expression that contains the new value for the attribute being set. The data type of
the expression must be the same as the data type of the attribute.

Examples

Example 9-132 Setting Paging for a Report

When you are sending output to a report in a disk file, you might set the following
attributes to indicate that the report is organized in pages and that the first page is 1.

DEFINE fil.unit INTEGER
fil.unit = FILEOPEN('REPORT' WRITE)
FILESET fil.unit PAGING YES PAGENUM 1

FILEVIEW
The FILEVIEW command works with the FILENEXT function to read one record at a
time of an input file, process the data, and store the data in Oracle OLAP dimensions
and variables according to the descriptions of the fields. Use FILENEXT to read the
record, then use one or more FILEVIEW statements to process the fields as needed.

Chapter 9
FILEVIEW

9-261

FILEVIEW has the same attributes as FILEREAD for specifying the format of the input
and the processing of the output.

Syntax

FILEVIEW fileunit [field-desc...]

Parameters

fileunit
A fileunit number that is assigned to a file opened for reading (READ mode) in a
previous call to the FILEOPEN function.

field-desc
A field description describes how to process one or more fields in each input record.
Attributes in the field description specify how to format the input data. FILEVIEW
reads each field according to the format specification and assigns the input data to the
specified object. You can assign the data to the object directly or you can specify an
expression to manipulate the data before you assign it. One field description can
assign data from one input field to one Oracle OLAP object. Alternately you can use
the ACROSS keyword to assign several values in the input record to a variable that is
dimensioned by the fastest varying dimension. Because field attributes include the
column number in the input record, you can process input fields in any order.
The format for the field description is as follows.

 [[pos] ACROSS dim [limit-clause]:] [attribs] object [= exp]

pos
One or more attributes that specify the position in the record where Oracle OLAP
begins reading the fields specified by the ACROSS description. To specify the
position, use the attributes FIELD, SPACE, and COLUMN (see the FILEREAD
command). The pos argument is optional when the series of fields specified in the
ACROSS phrase begins in the next field for structured records, or the next byte for
ruled records.

ACROSS-statement: action-statement
Specifies the dimension of one or more data fields in the input record. FILEVIEW
assigns the data in the fields to a variable according to the values in the current status
of dim. Typically, each field description processes one value. However, using the
ACROSS keyword, you can process one input value for each dimension value
currently in the status. When you want the looping to apply to multiple action
statements, enclose the action statements in angle brackets.
An ACROSS statement has the following syntax.

 ACROSS dimension [limit-clause]:

 action-statement

The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
The following example limits month to the last six values, no matter what the current
status of month is.

Chapter 9
FILEVIEW

9-262

ACROSS month last 6: units

attribs
One or more attributes that tell Oracle OLAP the position in the record and the format
of the input data. (See the FILEREAD command for an explanation of the available
attributes.)

object [= exp]
An Oracle OLAP variable, dimension, or relation to which the input data is assigned.
When = exp is missing, the data is assigned implicitly to the object. When = exp is
present, the data is processed according to the expression and then assigned to
object.
You can use the keyword VALUE to represent the value in a particular field of a
record. VALUE represents the data from the file, formatted according to the
FILEREAD attributes you use. When the field in the record is blank, FILEREAD
considers its value to be NA. By default, the data type of VALUE is the data type of the
target object. However, you can specify a different data type with an attribute
keyword. VALUE can be used more than once to represent different values from the
same record. For each instance, specify the column from which to read each value,
as shown in the following example code.

sales = if col 1 w 1 text value eq 'A' then col 2 w 8 value -
 else col 10 w 8 value

In this example, the default data type of VALUE is decimal, which is the data type of
the target object sales. However, the first instance of VALUE is compared to a text
expression, so you must use the attribute TEXT to specify its data type.

SELECT exp
The SELECT field-description keyword processes varying record types (such as
records with different structures or different target objects) with one FILEVIEW
statement. Within a field description, you can use the following syntax:

 SELECT exp - [WHEN exp action [WHEN exp action ...]] - [ELSE action]
 IF bool-exp THEN action [ELSE action] DO field-desc [field-desc]
 ... DOEND

The action argument is one of the following:

• NULL (no action occurs)

• field-description, including nested IF and SELECT statements.

SELECT evaluates the first expression, which may contain invocations of the VALUE
keyword, and which has a default data type of TEXT. SELECT then sequentially
compares the result with the WHEN expressions. When the first match is found, the
associated action occurs. When no match is found, the ELSE action (if specified)
occurs.

IF bool-exp
The IF field-description keyword processes varying record types (such as records with
different structures or different target objects) with one FILEVIEW statement. Within a
field description, you can use the following syntax.

 IF bool-exp THEN action [ELSE action]

action is the same as described for SELECT.

Chapter 9
FILEVIEW

9-263

IF evaluates the Boolean expression, which may contain invocations of the VALUE
keyword. IF performs the THEN action when the expression is TRUE or the ELSE
action, if specified, when the expression is FALSE. No action occurs when the
expression is NA.

Usage Notes

Record Order

FILEVIEW can process the fields in a record in any order. List the field descriptions in
the order you want to process them, identifying the fields with explicit column numbers.
You can also use several FILEVIEW statements on the same record to do different
processing depending on the data you find in the record.

Alternative OLAP DML Statement

When you want to process all the records in a file in the same way, without
complicated optional processing, a FILEREAD statement is easier to use.

Dimension Values

When the target object of a field description is a dimension, you can specify whether
the data in the file is used to add values to the dimension or not. The dimension
attributes are MATCH and APPEND:

• MATCH -- Any value encountered in a field must already be a value of the
dimension. FILEVIEW temporarily limits status to that value. When it is not already
a dimension value, FILEVIEW generates an error. After executing a FILEVIEW
statement, the dimension status is the same as before the execution of the
statement.

• APPEND -- The values in the field can already exist or they can be new. When the
value exists, FILEVIEW limits status to that value; when it does not, FILEVIEW
adds the value and then limits status. The dimension is limited to ALL when
FILEVIEW is finished.

For more information about handling dimensions, see the FILEREAD command.

Handling Errors When FILEVIEW Encounters an Error

When FILEVIEW encounters an error, you can control what happens with an error trap
and appropriate processing. Errors can be caused by attempts to convert data to an
incompatible data type or by encountering invalid dimension values. You can use the
FILEERROR function to find out what type of error occurred. After processing the
error, you can use GOTO to branch back to the FILEVIEW statement.

Attribute List

For a complete list of the attributes for FILEVIEW and FILEREAD and for more
information about processing NA values, reading date values, reading multidimensional
data, storing NTEXT values, and specifying attributes, see the FILEREAD command.

FILEVIEW with Composites

The discussions of composites and variables dimensioned by composites in
FILEREAD also apply to FILEVIEW.

Chapter 9
FILEVIEW

9-264

Examples

Example 9-133 Varying Months

The following program processes an input file that contains sales data for a variable
number of months. The file has the following records:

• Record 1 -- Title (to be ignored).

• Record 2 -- Column labels. Month names are used to set the status of month. The
number of months is unknown before processing the file.

• Record 3 -- Dashes underlining column labels (to be ignored).

• Record 4 -- Blank.

• Record 5 to end -- There are three record types for Record 5—one for each type
of line to be read.

One record type for Record 5 represents a detail line with the contents shown in the
following table.

Column Width Format Data

1 8 Symbolic District name or blank (When the district name is
blank on a detail line, the most recent line
containing a district determines the current
district.)

10 10 Symbolic Product name

21 10 Symbolic Sales for first month

33 10 Symbolic Sales for second month

45 To end of record Symbolic Sales for additional months

Another record type in Record 5 represents a totals line with the contents shown in the
following table.

Column Width Data

1 18 Blank

21 To end of record Totals

A third record type of Record 5 contains dashes or equal signs as row separators as
illustrated in the following table.

Column Width Data

1 18 Blank

21 To end of record Dashes (--) or equal signs (==)

This is a report of the sample file.

 This is the Title
 Jan95 Feb95 Mar95 Apr95
 ---------- ---------- ---------- ----------

Chapter 9
FILEVIEW

9-265

Boston Tents 32,153.52 32,536.30 43,062.75 57,608.39
 Canoes 66,013.92 76,083.84 91,748.16 125,594.28
 Racquets 52,420.86 56,837.88 58,838.04 69,338.88
 Sportswear 53,194.70 58,913.40 62,797.80 67,869.10
 Footwear 91,406.82 86,827.32 100,199.46 107,526.66
 ---------- ---------- ---------- ----------
 295,189.82 311,198.74 356,646.21 427,937.31
 ---------- ---------- ---------- ----------
Atlanta Tents 40,674.20 44,236.55 51,227.06 78,469.37
 .
 .
 .
 Footwear 53,284.54 57,331.30 59,144.76 70,516.98
 ---------- ---------- ---------- ----------
 231,780.46 245,812.33 275,622.68 355,784.92
 ---------- ---------- ---------- ----------
 1,813,326 1,985,731 2,185,174 2,638,409
 ========== ========== ========== ==========

The program figures out which months are covered in the file, then reads the detail
lines and assigns the sales data to the appropriate district and month. The program
ignores total lines and underlines when FILEVIEW finds columns 1 through 19 blank.
The program takes the name of the data file as an argument.

DEFINE salesdata PROGRAM
LD Store Several Months of Sales Data in an Analytic Workspace
PROGRAM
VARIABLE fil.unit INTEGER
VARIABLE flag BOOLEAN
VARIABLE mname TEXT
VARIABLE label TEXT
VARIABLE savedist TEXT

TRAP ON error NOPRINT
PUSH month district
fil.unit = FILEOPEN(ARG(1) READ)

IF FILENEXT(fil.unit) NE YES "Skip Record 1
 THEN SIGNAL noread
IF FILENEXT(fil.unit) NE YES "Process Record 2
 THEN SIGNAL noread
FILEVIEW fil.unit COLUMN 21 ACROSS month: -
 WIDTH 10 mname = JOINLINES(mname VALUE)
LIMIT month TO mname
IF FILENEXT(fil.unit) NE YES "Skip Record 3
 THEN SIGNAL noread
IF FILENEXT(fil.unit) NE YES "Skip Record 4
 THEN SIGNAL noread

WHILE FILENEXT(fil.unit) "Process Record 5 To End Of File
 DO
 "Store Value In Local Label Variable
 FILEVIEW fil.unit COLUMN 1 WIDTH 18 label
 IF label NE NA "Check For NA (Blank Field)
 THEN DO "Get District Value If Present
 IF EXTCHARS(label, 1, 8) NE ' '
 "Set District Status
 THEN savedist = BLANKSTRIP(EXTCHARS(label, 1, 8))
 FILEVIEW fil.unit -
 COLUMN 1 WIDTH 8 district = IF VALUE NE NA THEN -

Chapter 9
FILEVIEW

9-266

 VALUE ELSE savedist -
 COLUMN 10 WIDTH 10 product -
 COLUMN 19 ACROSS month: WIDTH 10 SPACE 2 -
 SCALE 2 newsales
 DOEND
NEXT:
 DOEND

FILECLOSE fil.unit
POP month district
RETURN
error:
IF fil.unit EQ NA
 THEN SHOW JOINCHARS('Can\'t Open Data File ' ARG(1) '.')
ELSE IF ERRORNAME NE 'attn' AND ERRORNAME NE 'QUIT'
 THEN DO
 SHOW JOINCHARS('RECORD ' RECNO(fil.unit) ' is invalid.')
 GOTO NEXT
 DOEND
ELSE IF ERRORNAME EQ 'noread'
 THEN DO
 SHOW 'File Too Short.'
 FILECLOSE fil.unit
 DOEND
ELSE DO
 SHOW 'Data Import Interrupted.'
 FILECLOSE fil.unit
DOEND
POP month district
RETURN

Example 9-134 Additional Processing

When you want to save the dimension value that FILEVIEW read for display or further
processing, you can read the field again and save the value in a variable. These lines
in a program display the name of the month that FILEVIEW read. The FILEVIEW
command saves the month value in column 1 in a variable called mname.

WHILE FILENEXT(fil.unit)
DO
 FILEVIEW fil.unit WIDTH 8 month WIDTH 5 INTEGER units -
 COLUMN 1 WIDTH 8 mname
 SHOW mname PROMPT
DOEND

Example 9-135 Using the VALUE Keyword as a Function

Suppose you want to read and report data from a disk file similar to the following,
named numbers.dat, which has columns 15 characters wide.

 1.0 2.0 3.0 4.0 5.0
 -1.0 -2.0 -3.0 -4.0 -5.0
 0.0 0.0 1.43900000E+03 1.39900000E+03

You can read this data using the VALUE keyword as a function with FILEVIEW in a
program similar to the following one (named try). However, this first example does not
work. The FILEVIEW command skips fields. The reason for the data skipping is that
each time FILEREAD fetches a field from the current record, it updates the column
pointer to point past the field. When the next fetch does not specify a position (using
the COLUMN, SPACE, or FIELD attribute), data is read from the default position

Chapter 9
FILEVIEW

9-267

established by the previous fetch. This behavior is typically desirable; however it does
not work when multiple fetches are needed to perform a single assignment (for
example, when the VALUE function is coded twice in the same IF...THEN...ELSE
command block, as shown here). The NAMELIST and DIRLIST attributes return one
value for multiple versions of a particular file name in the directory. The NAMELIST
attribute also returns only one value for multiple files in the directory with the same root
file name but different file types.

DEFINE try PROGRAM
PROGRAM
VARIABLE funit INTEGER
DEFINE dvar VARIABLE DECIMAL <year>
PUSH year
LIMIT year TO LAST 5
TRAP ON ERROR
funit=FILEOPEN('numbers.dat' R)

WHILE FILENEXT(funit)
 DO
 FILEVIEW funit ACROSS year: W 15 TEXT dvar = -
 IF FINDCHARS(VALUE, 'e') EQ 0 - "Incorrect Use of Value
 THEN CONVERT(VALUE, dec) - "Results in Skipped
 ELSE -9999.99 "Fields
 REPORT DOWN year dvar
 DOEND
error:
FILECLOSE funit
DELETE dvar
POP year
END

When you execute the try program,

try

the output skips numbers, as in the following.

YEAR DVAR
------------- ----------
Yr93 2.00
Yr94 4.00
Yr95 NA
Yr96 -9,999.99
Yr97 -9,999.99

YEAR DVAR
------------- ----------
Yr93 -2.00
Yr94 -4.00
Yr95 NA
Yr96 -9,999.99
Yr97 -9,999.99

YEAR DVAR
------------- ----------
Yr93 0.00
Yr94 -9,999.99
Yr95 -9,999.99
Yr96 -9,999.99
Yr97 -9,999.99

Chapter 9
FILEVIEW

9-268

However, when the SPACE attribute is used to make the second VALUE back up
some distance so it reads the same field that the first VALUE read, everything works
fine. SPACE can be used in the preceding sample program by changing the THEN
clause to the following clause.

THEN CONVERT(SPACE -15 VALUE, dec) -

Now when you execute the program,

try

the output looks like this.

YEAR DVAR
------------- ----------
Yr93 1.00
Yr94 2.00
Yr95 3.00
Yr96 4.00
Yr97 5.00

YEAR DVAR
------------- ----------
Yr93 -1.00
Yr94 -2.00
Yr95 -3.00
Yr96 -4.00
Yr97 -5.00

YEAR DVAR
------------- ----------
Yr93 0.00
Yr94 0.00
Yr95 -9,999.99
Yr96 -9,999.99
Yr97 -9,999.99

FOR
Within an OLAP DML program, the FOR command specifies one or more dimensions
whose status controls the repetition of one or more statements. These statements,
along with the FOR statement itself, are often called a FOR loop.

Syntax

FOR dimension... statement

Parameters

dimension
One or more dimensions whose current status controls the repetition of one or more
statements. The statements are repeated for each combination of the values of the
specified dimensions in the current status. When two or more dimensions are
specified, the first one varies the slowest. You can specify a composite instead of a
dimension.

Chapter 9
FOR

9-269

statement
The statement to be repeated. To repeat two or more statements, enclose them
between DO and DOEND.

 DO
 statement1
 ...
 statementN
 DOEND

When you are repeating only one statement after FOR, you can omit DO and
DOEND.

Usage Notes

FOR Dimension

A FOR statement loops over the values in status of the specified dimension. After the
last dimension value, dimension status is restored to what it was before the loop, and
execution of the program resumes with the next statement.

Status Inside a Loop

The TEMPSTAT command limits the dimension you are looping over inside a FOR
loop or inside a loop that is automatically generated by a REPORT statement.

No Sorting

Because current status defines and controls a FOR loop, you cannot sort the FOR
dimension within the loop.

Assignment Statements and Other Looping Statements

An OLAP DML assignment statement (SET), and some other OLAP DML statements
automatically loop over dimension status and do so more efficiently than a FOR loop.
Be careful not to cause extra looping by putting an assignment statement or one of
these statements in a FOR loop.

Branching

You can use BREAK, CONTINUE, and GOTO statements to branch within, or out of, a
FOR loop, thereby altering the sequence of statement execution.

Nested FOR Statements

FOR statements can be nested within a FOR loop to any depth when matching DO
and DOEND statements are supplied where appropriate.

Examples

Example 9-136 Using FOR in a DO Loop to Repeat ROW Commands

In a report program, you want to show the unit sales of tents for each of three months.
Use the following FOR statement with a DO/DOEND sequence to repeat ROW
commands and BLANK commands for each value of the month dimension.

LIMIT product TO tents
LIMIT month TO 'Jan96' TO 'Mar96'
ROW district
ROW UNDER '-' VALONLY name.product
BLANK
FOR month

Chapter 9
FOR

9-270

 DO
 ROW INDENT 5 month WIDTH 6 UNITS
 BLANK
 DOEND

The program lines produce the following report.

BOSTON
3-Person Tents

 Jan96 307
 Feb96 209
 Mar96 277

Example 9-137 Using a FOR Statement for Looping Over Values

The FOR command executes the commands in the loop for each value in the current
status of the dimension. You must limit the dimension to the desired values before
executing a FOR statement. For example, you can produce a series of output lines
that show the price for each product.

LIMIT month TO FIRST 1
LIMIT product TO ALL
FOR product
SHOW JOINCHARS('Price for ' product ': $' price)

Each output line has the following format.

Price for TENTS: $165.50

When your data is multidimensional, you can specify multiple dimensions in a FOR
statement to control the order of processing. For example, you can use the following
statement to control the order in which dimension values of the units data are
processed.

FOR month district product
 units = ...

When this assignment statement is executed, the month dimension varies the slowest,
the district dimension varies the next slowest, and the product dimension varies the
fastest. Thus, a loop is performed over all products for the first district before doing the
next district, and over all districts for the first month before doing the next month.

Within the FOR loop, each specified dimension is temporarily limited to a single value
while it executes the statements in the loop. You can therefore work with specific
combinations of dimension values within the loop.

Example 9-138 Using DO/DOEND in a FOR Loop

When actual figures for unit sales are stored in a variable called units and projected
figures for unit sales are stored in a variable called units.plan, then the code in your
loop can compare these figures for the same combination of dimension values.

LIMIT month TO FIRST 1
LIMIT product TO ALL
LIMIT district TO ALL
FOR district product
 DO
 IF (units.plan - units)/units.plan GT .1
 THEN SHOW JOINCHARS(-

Chapter 9
FOR

9-271

 'Unit sales for ' product ' in ' -
 district ' are not within 10% of plan.')
 DOEND

These lines of code are processed in the following manner.

1. The data is limited to a specific month.

2. All the districts and products are placed in status, and the FOR loop is entered.

3. In the FOR loop, the actual figure is tested against the planned figure. When the
unit sales figure for Tents in Boston is more than 10 percent below the planned
figure, then the following message is sent to the current outfile.

Unit sales for TENTS in BOSTON are not within 10% of plan.

4. After processing all the products, the FOR loop is complete for the first district.

5. The loop is executed for the second district, and so on.

Note that while the FOR loop executes, each dimension that is specified in a FOR
statement is limited temporarily to a single value. When you specify district in the
FOR loop, but not product, then all the values of product are in status while the
FOR loop executes. The IF...THEN...ELSE command then tests data for only the
first value of the product dimension.

FORECAST
Use the FORECAST command to forecast data by one of three methods: straight-line
trend, exponential growth, or Holt-Winters extrapolation. FORECAST performs the
calculation according to the method you specify and optionally stores the result in a
variable in your analytic workspace.

You can then execute FORECAST.REPORT to produce a standard report of the
forecast. You can also use the INFO function to obtain portions of the results for use in
your own customized reports or for further analysis.

Tip:

Most applications forecast data using a forecasting context rather than using a
FORECAST statement. See "Forecasting Programs" for more information.

Syntax

FORECAST [LENGTH n] - [METHOD {TREND|EXPONENTIAL|
WINTERS PERIODICITY p [argument...]}] -
 [TIME dimension] [FCNAME name] time-series

where argument is one or more of the following clauses that specify the
characteristics of the forecast:

 ALPHA n

 BETA n

 GAMMA n

 STSMOOTHED n STSEASONAL n-series STTREND n

 FCSMOOTHED name

Chapter 9
FORECAST

9-272

 FCSEASONAL name

 FCTREND name

Parameters

LENGTH n
Specifies the number of periods to forecast. The default is zero. When you supply a
LENGTH, you must also supply the FCNAME option.

METHOD TREND
(Default) Specifies that the forecasting technique is a straight-line extrapolation of
historical data.

METHOD EXPONENTIAL
Specifies that the forecasting technique is an extrapolation of historical data using a
constant period-to-period percentage growth.

METHOD WINTERS
Specifies that the forecasting technique is the Holt-Winters method, an extrapolation
method that allows for both a linear trend and seasonal fluctuations in the data.
Oracle OLAP first constructs three statistically related series for each time period of
the historical data. (See "Holt-Winters Constructed Series".) Then, Oracle OLAP
produces a forecast from the three series for the specified number of periods into the
future.
You can supply several arguments that affect the results of the Holt-Winters forecast.
The only required one is PERIODICITY. For the others, Oracle OLAP chooses a
reasonable value based on the data available.

PERIODICITY p
The length of the seasonal cycle, where p is an expression that specifies an INTEGER
greater than or equal to 2. For example, when the data you are analyzing has monthly
values, then p is 12.
PERIODICITY is required when you use the METHOD WINTERS keyword.

ALPHA n
BETA n
GAMMA n
Smoothing constants for the first three series calculated for the Holt-Winters forecast
(See "Holt-Winters Constructed Series"). ALPHA is for the smoothed data series;
BETA is for the seasonal index series; and GAMMA is for the trend series. The value
n is a decimal expression greater than 0 and less than or equal to 1. Each value is
optional. When you omit one, Oracle OLAP calculates an optimal smoothing constant
for that series that minimizes the Mean Absolute Percent Error of the one-period-
ahead forecasts in the historical time periods.

STSMOOTHED n STSEASONAL n-series STTREND n
STSMOOTHED specifies the starting value of the smoothed data series (See "Holt-
Winters Constructed Series"). The value n is a decimal expression greater than 0.
When you specify STSMOOTHED, you must also specify STSEASONAL and
STTREND. When you omit it, Oracle OLAP calculates a starting value.
STSEASONAL specifies the starting values for the seasonal index series (See "Holt-
Winters Constructed Series"). N-series is an array of decimal values, one for each
period in a seasonal cycle. The number of values needed equals the number
specified for PERIODICITY (See "Holt-Winters Starting Values"). When you specify

Chapter 9
FORECAST

9-273

STSEASONAL, you must also specify STSMOOTHED and STTREND. When you
omit it, Oracle OLAP calculates the starting values.
STTREND specifies the starting value of the trend series (See "Holt-Winters
Constructed Series"). N is a decimal value. When you specify STTREND, you must
also specify STSMOOTHED and STSEASONAL. When you omit it, Oracle OLAP
calculates a starting value.

FCSMOOTHED name
FCSEASONAL name
FCTREND name
Numeric variables in which Oracle OLAP can store the data calculated for the
smoothed data series, the seasonal index series, and the trend series (See "Holt-
Winters Constructed Series"). The variable specified by name must have the TIME
dimension as one of its dimensions. The series calculations produce DECIMAL
results, but Oracle OLAP converts the values to the data type of name before storing
them. You can save any or all of the preliminary series. When you do not save a
series, Oracle OLAP discards the values after completing the forecast.

TIME dimension
The name of the dimension considered to be the time dimension. The current status
of dimension determines the number of periods of historical data used to calculate the
forecast. The status of the time dimension must be an increasing, consecutive range
of values. LENGTH specifies how many values immediately beyond this range is
forecast.
When time-series has only one dimension, the time dimension defaults to that. When
time-series has multiple dimensions and one dimension has a type of DAY, WEEK,
MONTH, QUARTER, or YEAR, then the time dimension defaults to that type.
Otherwise, you must specify the time dimension, even when the additional
dimensions are limited to a single value. FORECAST only uses the first value in the
status for dimensions other than the time dimension.

FCNAME name
The name of a numeric variable in which to store the values calculated by
FORECAST. Name must be dimensioned by the time dimension; it can have other
dimensions as well. When the data type of name is not decimal, FORECAST converts
the values to the appropriate data type.
Fitted values, which correspond to the historical data, are stored in name for the
current status of the time dimension. Forecasted values are stored in name for the
number of periods specified by LENGTH. These forecasted periods immediately
follow the current status of the time dimension.
For the Holt-Winters method, the fitted values are one-period-ahead forecasts
calculated at the previous period. The final forecasted values are extrapolated from
the fitted data.
For the TREND and EXPONENTIAL methods, FORECAST obtains the fitted values
by evaluating the regression equation over the current status of the time dimension.

time-series
An expression that specifies the time series to be forecast. Time-series must be a
numeric expression that is dimensioned by the time dimension. When time-series has
other dimensions, FORECAST uses the first value only in their current status. The
time-series is the historical data from which FORECAST calculates fitted and
forecasted values. (See the explanation for FCNAME.)

Usage Notes

Forecasting Multidimensional Expressions

Chapter 9
FORECAST

9-274

When you want to forecast all the values of a multidimensional expression, you can
use a program that puts a FORECAST statement inside one or more FOR loops to
loop over all the remaining dimensions of the expression.

Obtaining Portions of Results

YOu can obtain portions of the results of FORECAST for your own reports or further
analysis, using an INFO statement.

Order of Arguments

You can specify the arguments for FORECAST in any order, except that time-series,
the expression specifying the data to be forecast, must be last.

Time-series Data Handling

Each method has its own criteria for handling the input data specified in time-series.

• TREND -- Requires at least two values that are not NA; accepts zero and negative
values; ignores NA values

• EXPONENTIAL -- Requires at least two positive values; ignores zero, negative,
and NA values

• WINTERS -- Accepts zero and negative values; fills in NA values by calculating a
weighted moving average

Zero Values

All methods allow zero values in the historical data, specified by time-series, but those
time periods are excluded from the Mean Absolute Percent Error (MAPE) calculation.

Holt-Winters Constructed Series

The Holt-Winters forecasting method constructs three statistically related series, which
are used to make the actual forecast. These series are:

1. The smoothed data series, which is the original data with seasonal effects and
random error removed.

2. The seasonal index series, which is the seasonal effect for each period. A value
greater than one represents a seasonal increase in the data for that period, and a
value less than one is a seasonal decrease in the data. The Holt-Winters method
allows seasonal effects to vary over time, so there is a seasonal index value for
every historical period.

3. The trend series, which is the change in the data for each period with the seasonal
effects and random error removed. The Holt-Winters method allows the trend
effect to vary over time, so there is a trend value for every historical period.

Holt-Winters Omitted Arguments

For the Holt-Winters method, when you omit the STSMOOTHED, STTREND, and
STSEASONAL phrases, Oracle OLAP calculates the necessary starting values using
an algorithm from Statistical Methods for Forecasting by Abraham and Ledolter. Let
Oracle OLAP calculate the starting values when you have little experience with Holt-
Winters forecasting.

Holt-Winters Starting Values

When you specify starting values, Oracle OLAP obtains the STSEASONAL starting
values by unraveling the values to make a list. The list must have at least the number
of values as specified by PERIODICITY. Any more values are ignored; fewer values

Chapter 9
FORECAST

9-275

cause an error. The STSEASONAL expression can be multidimensional and does not
have to have the same dimensions as the historical data. (For information about the
order of the list when a dimensioned expression is unraveled, see the UNRAVEL
function.)

Getting Calculated Values

You can find out the values that Oracle OLAP calculates for ALPHA, BETA, and
GAMMA and for STSMOOTHED, STSEASONAL, and STTREND by using the INFO
function.

Getting a Report of the Forecast

The FORECAST.REPORT program produces a standard report of a forecast created
using the FORECAST command.

The report shows the parameters of the forecast, including the forecast formula and
Mean Absolute Percent Error, followed by a display of the forecasted values. To
produce this report, type the following.

FORECAST.REPORT

Examples

Example 9-139 Using the EXPONENTIAL Method

The following statements create a variable called fcst.sales, limit the dimensions of
the sales variable, use the EXPONENTIAL method to forecast sportswear sales for the
Chicago district for 1997, and store the results of the calculation in fcst.sales.

DEFINE fcst.sales DECIMAL <month>
LIMIT product TO 'Sportswear'
LIMIT district TO 'Chicago'
LIMIT month TO 'Jan95' TO 'Dec96'
FORECAST LENGTH 12 METHOD EXPONENTIAL FCNAME fcst.sales -
time month sales

You can now execute FORECAST.REPORT to see the values that have been
generated. Running the FORECAST.REPORT program for that forecast produces the
following report.

 Forecasting Analysis
 ====================

 Variable to Forecast: SALES
 Forecast dimension: MONTH
 Forecast method: EXPONENTIAL
 Mean absolute percent error: 16.64%

 Forecast Equation: SALES = 87718.0009541883 *
 (1.00553383457899 ** MONTH)

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 88,203.42
Feb95 80,071.75 88,691.52
Mar95 78,812.69 89,182.33
Apr95 97,413.26 89,675.85
May95 94,406.65 90,172.10

Chapter 9
FORECAST

9-276

Dec96 72,095.02 100,140.38

Example 9-140 Using the WINTERS Method

The following statements limit the month dimension, then calculate a forecast that takes
into account seasonal influences, using the WINTERS method.

DEFINE fcst.sales DECIMAL <montH>
LIMIT month TO year 'Yr95' 'Yr96'
FORECAST LENGTH 12 METHOD WINTERS -
PERIODICITY 12, ALPHA .5, BETA .5, GAMMA .5 -
time month, FCNAME fcst.sales, sales

You can now execute FORECAST.REPORT to see the values that have been
generated. Running the FORECAST.REPORT program for that forecast produces the
following report.

 Forecasting Analysis
 ====================

 Variable to Forecast: SALES
 Forecast dimension: MONTH
 Forecast method: WINTERS
 Alpha: 0.50
 Beta: 0.50
 Gamma: 0.50
 Periodicity: 12
 Mean absolute percent error: 0.20%

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 72,154.67
Feb95 80,071.75 80,027.51
Mar95 78,812.69 79,171.08
Apr95 97,413.26 97,200.81
May95 94,406.65 94,464.71

Dec97 77,867.23

FORECAST.REPORT
The FORECAST.REPORT program produces a standard report of a forecast created
using the FORECAST command.

The report shows the parameters of the forecast, including the forecast formula and
Mean Absolute Percent Error, followed by a display of the forecasted values.

Syntax

FORECAST.REPORT

Examples

Example 9-141 Report of Forecast Using the EXPONENTIAL Method

Assume that you have performed the forecast illustrated in Example 9-139. Running
the FORECAST.REPORT program for that forecast produces the following report.

Chapter 9
FORECAST.REPORT

9-277

 Forecasting Analysis
 ====================

 Variable to Forecast: SALES
 Forecast dimension: MONTH
 Forecast method: EXPONENTIAL
 Mean absolute percent error: 16.64%

 Forecast Equation: SALES = 87718.0009541883 *
 (1.00553383457899 ** MONTH)

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 88,203.42
Feb95 80,071.75 88,691.52
Mar95 78,812.69 89,182.33
Apr95 97,413.26 89,675.85
May95 94,406.65 90,172.10

Dec96 72,095.02 100,140.38

Example 9-142 Report of Forecast Using the WINTERS Method

Assume that you have performed the forecast illustrated in Example 9-140. Running
the FORECAST.REPORT program for that forecast produces the following report.

 Forecasting Analysis
 ====================

 Variable to Forecast: SALES
 Forecast dimension: MONTH
 Forecast method: WINTERS
 Alpha: 0.50
 Beta: 0.50
 Gamma: 0.50
 Periodicity: 12
 Mean absolute percent error: 0.20%

MONTH Actual Value Fitted Value
-------------------- ------------ ------------
Jan95 72,123.47 72,154.67
Feb95 80,071.75 80,027.51
Mar95 78,812.69 79,171.08
Apr95 97,413.26 97,200.81
May95 94,406.65 94,464.71

Dec97 77,867.23

FULLDSC
The FULLDSC program produces a report that lists the definition of one or more
workspace objects, including the properties and triggers of the object(s).

Syntax

FULLDSC [names]

Chapter 9
FULLDSC

9-278

Parameters

names
The names of one or more workspace objects, separated by spaces or commas.
FULLDSC shows the full definition of each object specified. When you omit this
argument, FULLDSC shows the definition of all objects in the current status of the
NAME dimension.

Usage Notes

Output of FULLDSC

The FULLDSC program is an extension to the DESCRIBE command. That is, the
object definition that you list with FULLDSC includes the definition components that
are listed by the DESCRIBE command, followed by any properties that are assigned to
the object. Each property is listed on its own line with the word PROPERTY, the name
of the property, and its value.

Limiting the Objects Described

Normally, the status of NAME is ALL, so FULLDSC with no argument produces a
report that includes the definitions of all objects in your current workspace. However,
you can use the LIMIT command in combination with FULLDSC to report the
definitions of a particular group of objects in your workspace. Use LIMIT first to limit
the status of the NAME dimension to the names of the objects whose definitions you
want to see. Then execute a FULLDSC statement with no arguments to list the
definitions.

Paginated Output

You can produce paginated output with a FULLDSC statement by setting PAGING to
YES before using FULLDSC.

Creating Objects with FULLDSC Output

You can use the output from a FULLDSC statement to create objects in other
workspaces, because each line of the output is a valid statement. For example, you
can execute an OUTFILE statement to send subsequent output to a file, and then
execute a FULLDSC statement. You can then access another workspace, and use an
INFILE statement to read the FULLDSC output. The same object is created in that
workspace.

The output produced by FULLDSC might not exactly reproduce the original
PROPERTY statements that created the properties of the object because the original
name and value expressions are not saved. In addition, FULLDSC sets the
DECIMALS option to 255, which drops trailing zeros. See "Example 9-143".

Examples

Note:

Example 10-160

Chapter 9
FULLDSC

9-279

Example 9-143 Listing the Properties of a Variable

This example produces a report of the full definition of the actual variable, to which the
properties DECPLACE and REPPRG have been added. The statement

FULLDSC actual

produces the following output.

DEFINE ACTUAL VARIABLE DECIMAL <LINE DIVISION MONTH>
LD Actual $ Financials
PROPERTY 'DECPLACE' 4
PROPERTY 'REPPRG' 'qtrrep'

Suppose the DECPLACE property had been specified with the following statement,
where PRPNAME is a variable whose value is DECPLACE.

PROPERTY prpname 4.00

The output from FULLDSC would be the same as that shown in the preceding
example; the value 4.00 would be shown as 4. Therefore, when you created an object
using the INFILE technique with the FULLDSC output, the newly created property
value would have a type of INTEGER (based on the value 4) even though the original
property value had a type of DECIMAL (based on the value 4.00). In most cases, this
difference is immaterial, because the appropriate conversions are performed when the
property values are used.

GOTO
Within an OLAP DML program, the GOTO command alters the sequence of statement
execution within a program.

Syntax

GOTO label

Parameters

label
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label". Execution of the program branches to the line directly
following the specified label.
Note that label, as specified in GOTO, must not be followed by a colon. However, the
actual label elsewhere in the program must end with a colon.

Usage Notes

Guidelines for Constructing a Label

When you use control structures to branch to a particular location, you must provide a
label for the location to identify it clearly. When creating a label, follow these
guidelines:

• The first character in the label must be a letter, period (.), or underscore (_).

• The remaining characters in a label can be any combination of letters, numbers,
periods, or underscores.

• A label must be followed immediately by a colon (:).

Chapter 9
GOTO

9-280

• Ensure that the first eight bytes in the label are unique. (Remember that, in your
character set, a byte might or might not be equivalent to one character.) A label
can contain up to 3999 bytes (the maximum length of a text line minus 1 byte for
the colon that identifies a label). However, because only the first eight bytes of a
label name are used, you can experience problems with label names greater than
eight bytes when the first eight bytes are not unique.

Missing GOTO Label

When an actual label that corresponds to label does not exist elsewhere in the same
program, execution stops with an error.

GOTO with IF and WHILE

A GOTO statement can be used with IF...THEN...ELSE or WHILE to set up conditional
branching, using the following syntax.

IF boolean-expression THEN GOTO label1 ELSE GOTO label2

However, to preserve the clarity of your programming logic, minimize your use of
GOTO. You can often replace GOTO with one or more statements executed
conditionally using FOR, IF...THEN...ELSE, or WHILE. You can also use a SWITCH
command to handle different cases within the same program.

GOTO with FOR

You can use a GOTO statement in a FOR loop to branch within, or out of, the loop
which changes the sequence of statement execution, depending on where the GOTO
statement and the label are positioned.

• A GOTO in a FOR loop that branches to a label within the same loop makes
execution continue at the label without affecting the current dimension status.
Subsequent repetitions of the loop continue normally. To branch to the end of the
loop, just before the DOEND statement, consider using a CONTINUE statement
instead.

• A GOTO in a FOR loop that branches to a label outside the loop terminates the
effect of the FOR statement. Execution continues at the specified label and
dimension status is restored to what it was before the loop. To branch to the
statement immediately following the DOEND of a loop, consider using a BREAK
statement instead.

When you use a GOTO statement outside a FOR loop to branch into the loop (that is,
to a label inside the loop), an error occurs after execution passes through the rest of
the loop once.

TEMPSTAT and GOTO Statements

Within a FOR loop of a program, when a DO ... DOEND phrase follows TEMPSTAT,
status is restored when the DOEND, BREAK, or GOTO is encountered.

Alternatives to GOTO Statement

While GOTO makes it easy to branch within a program, frequent use of it can obscure
the logic of your program, making it difficult to follow its flow, particularly when you
have a complex program with several labels and GOTO statements that skip over
large portions of code.

To keep the logic of your programs clear, minimize your use of GOTO.

Chapter 9
GOTO

9-281

Sometimes a GOTO statement is the best programming technique, but often there are
better alternatives. For example:

• Instead of using GOTO statements in a FOR statement, you can often place your
alternative sets of statements between DO ... DOEND statements within an
IF...THEN...ELSE command itself.

• When each set of statements is long or you want to use them in multiple places in
your program, then you might consider placing them in subprograms. Then, you
can use an IF...THEN...ELSE command to choose between two different
programs, or use a SWITCH command to choose among many different
programs.

Example 9-137 illustrates how the FOR command loops over values. Example 9-138
illustrates using DO ... DOEND within a FOR loop.

Examples

Example 9-144 Using GOTO with IF

This example shows a program that produces a report for one of three areas,
depending on what argument the user supplies when running the program. When the
user specifies EAST, WEST, or CENTRAL, execution branches to a corresponding label, and
the statements following it (statement group 1, 2, or 3) are executed. When the user
specifies anything else, execution branches to the argerror label, after which
statements handle the error.

DEFINE flexrpt PROGRAM
PROGRAM
IF NOT INLIST('East\nWest\nCentral', UPCASE(ARG(1)))
 THEN GOTO argerror

SWITCH &UPCASE(ARG(1))
DO
CASE 'EAST':
 ..." (statement group 1)
 BREAK
CASE 'WEST':
 ... "(statement group 2)
 BREAK
CASE 'CENTRAL':
 ..." (statement group 3)
 BREAK
DOEND

argerror:
 ..." statements to handle error)

END

GROUPINGID command
The GROUPINGID command populates a previously-defined object with the grouping
ids for the values of a hierarchical dimension, and creates and populates
the $GID_DEPTH system property.

A grouping id is a numeric value that corresponds to a level of a hierarchical
dimension. The grouping id for the lowest-level of the hierarchy is 0 (zero). Grouping
ids are especially useful for identifying values of different levels of a hierarchical

Chapter 9
GROUPINGID command

9-282

dimension. Dimension values in the same level of the hierarchy have the same value
for their grouping id. Selecting dimension values for a specific level is easier with
grouping ids because the desired values can be identified with a single condition of
groupingid = n.

Typically, you use a GROUPINGID statement when you are planning on accessing
analytic workspace data in SQL using the OLAP_TABLE function.

See Also:

"Gidrel Relation"in Objects that Support the Use of Hierarchies for more
information and the GROUPING_ID function in Oracle Database SQL
Language Reference for more information on grouping ids

Syntax

GROUPINGID [parent-relation] INTO destination-object - {USING level-relation}
[INHIERARCHY {inh-variable | inh-valueset}] [LEVELORDER lo-valueset] - [ROLLUP |
GROUPSET]

where destination-object is one of the following:

grouping-relation

grouping-variable

grouping-surrogate

Parameters

parent-relation
A self-relation for a hierarchical dimension. This self-relation is dimensioned by a
hierarchical dimension. The values of the self-relation are the parents of each value in
the hierarchical dimension. The parent-relation argument is optional only when you
use the GROUPINGID command to populate a surrogate and the GROUPINGID
command includes a LEVELORDER clause.

grouping-relation
The name of a previously-defined relation. One dimension of grouping-relation must
be the hierarchical dimension. The values of grouping-relation are calculated and
populated when the GROUPINGID command executes. When you specify a relation
as the destination object, Oracle OLAP automatically creates and sets
the $GID_DEPTH property on the relation when it populates it.

grouping-variable
The name of a previously-defined numeric variable. One dimension of grouping-
variable must be the hierarchical dimension. The data type of grouping-variable can
be any numeric type including NUMBER. The values of grouping-variable are calculated
and populated when the GROUPINGID command executes.See the DEFINE
VARIABLE command for information on defining variables.

grouping-surrogate
The name of a previously-defined surrogate for the hierarchical dimension. The
values of grouping-surrogate are calculated and populated when the GROUPINGID

Chapter 9
GROUPINGID command

9-283

command executes. See the DEFINE SURROGATE command for information on
defining surrogates.

USING
Specifies that the level of the values of the hierarchical dimension are to be
considered when creating grouping ids.

level-relation
A relation that is dimensioned by the hierarchical dimension. For each value of the
hierarchical dimension, the relation has its value the name of the level for the
dimension's value.

INHIERARCHY
Specifies that only some values of the hierarchical dimension are to be considered
when creating grouping ids.

Note:

You cannot specify an INHIERARCHY clause when you specify ROLLUP or
GROUPSET.

inh-variable
A BOOLEAN variable that is dimensioned by the hierarchical dimension and, when
the hierarchical dimension is a multi-hierarchical dimension, by a dimension that is the
names of the hierarchies. The values of the variable are TRUE when the dimension
value is in a hierarchy and FALSE when it is not.

inh-valueset
The name of a valueset object whose values identify the hierarchical dimension
values to be considered when creating grouping ids. Values not included in the
valueset are ignored.

LEVELORDER
Specifies the top-down order of the levels when creating grouping ids.

lo-valueset
The name of a valueset object whose values are the names of the levels to be used
when creating grouping ids. The order of the values in the valueset object determine
the grouping id assigned.

ROLLUP
Specifies that Oracle OLAP creates the grouping ids in the same manner as SQL
does when you specify ROLLUP in a SQL SELECT statement.

See Also:

Rollup cube clause in Oracle Database SQL Language Reference

The ROLLUP keyword is valid only when the destination object is a relation. When
you specify this keyword, $GID_TYPE and $GID_LIST properties.

Chapter 9
GROUPINGID command

9-284

GROUPSET
Specifies that Oracle OLAP creates the grouping ids in the same manner as SQL
does when you specify GROUPING SET in a SQL SELECT statement.

See Also:

Grouping sets clause in Oracle Database SQL Language Reference for more
information

The GROUPSET keyword is valid only when the destination object is a relation. When
you specify this keyword, Oracle OLAP also creates and populates two properties on
the grouping id relation: the $GID_TYPE and $GID_LIST properties.

Examples

Example 9-145 Using GROUPINGID Command to Populate a Relation with
Grouping Ids

Assume your analytic workspace contains the following objects.

DEFINE GEOG DIMENSION TEXT
LD A dimension with two hierarchies for geography

DEFINE geog_hierlist DIMENSION TEXT
LD List of Hierarchies for geog dimension

DEFINE GEOG_INHIER VALUESET GEOG <GEOG_HIERLIST>
LD A valueset of geog that are just the values in each hierarchy

DEFINE GEOG_PARENTREL RELATION GEOG <GEOG GEOG_HIERLIST>
LD Self-relation for geog showing parents of each value

DEFINE GEOG_INHIER VALUESET GEOG <GEOG_HIERLIST>
LD A valueset of geog that are just the values in each hierarchy

DEFINE GEOG_LEVELREL RELATION GEOG_LEVELLIST <GEOG GEOG_HIERLIST>
LD Level of each dimension member for geog

Assume that those objects have the values shown in the following reports.

REPORT geog_hierlist

GEOG_HIERLIST

Political_Geog
Sales_Geog

REPORT DOWN geog W 20 geog_parentrel

 -------------GEOG_PARENTREL--------------
 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------
Boston MA MA
Springfield MA MA
Hartford CT CT
Mansfield CT CT
Montreal Quebec Quebec

Chapter 9
GROUPINGID command

9-285

Walla Walla WA WA
Portland WA WA
Oakland CA CA
San Diego CA CA
MA USA East
CT USA East
WA USA West
CA USA West
Quebec Canada East
East NA All Regions
West NA All Regions
All Regions NA NA
USA All Countries NA
Canada All Countries NA
All Countries NA NA

->REPORT W 20 geog_inhier

GEOG_HIERLIST GEOG_INHIER
-------------- --------------------
Political_Geog Boston
 Springfield
 Hartford
 Mansfield
 Montreal
 Walla Walla
 Portland
 Oakland
 San Diego
 MA
 CT
 WA
 CA
 Quebec
 USA
 Canada
 All Countries
Sales_Geog Boston
 Springfield
 Hartford
 Mansfield
 Montreal
 Walla Walla
 Portland
 Oakland
 San Diego
 MA
 CT
 WA
 CA
 Quebec
 East
 West
 All Regions

->REPORT DOWN geog W 20 geog_levelrel

 --------------GEOG_LEVELREL--------------
 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------

Chapter 9
GROUPINGID command

9-286

Boston City City
Springfield City City
Hartford City City
Mansfield City City
Montreal City City
Walla Walla City City
Portland City City
Oakland City City
San Diego City City
MA State-Prov State-Prov
CT State-Prov State-Prov
WA State-Prov State-Prov
CA State-Prov State-Prov
Quebec State-Prov State-Prov
East NA Region
West NA Region
All Regions NA All Regions
USA Country NA
Canada Country NA
All Countries All Countries NA

To create grouping ids for the values of geog, you first define a GID dimension with the
following definition and you populate it with more values than you expect to have for
grouping ids.

DEFINE GID_DIMENSION DIMENSION NUMBER (16,0)

Next you define a relation to hold the grouping ids.

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>

Now you execute the GROUPINGID command to populate the geog_gidrel relation.

GROUPINGID geog_parentrel INTO geog_gidrel USING geog_levelrel -
 INHIERARCHY geog_inhier

A report of geog_gidrel shows that the relation is now populated.

REPORT down geog w 20 geog_gidrel

 ---------------GEOG_GIDREL---------------
 --------------GEOG_HIERLIST--------------
GEOG Political_Geog Sales_Geog
-------------- -------------------- --------------------
Boston 0 0
Springfield 0 0
Hartford 0 0
Mansfield 0 0
Montreal 0 0
Walla Walla 0 0
Portland 0 0
Oakland 0 0
San Diego 0 0
MA 1 1
CT 1 1
WA 1 1
CA 1 1
Quebec 1 1
East NA 3
West NA 3
All Regions NA 7

Chapter 9
GROUPINGID command

9-287

USA 3 NA
Canada 3 NA
All Countries 7 NA

When you execute a FULLDSC of geog_gidrel, you can see that the $GID_DEPTH
property has been created and populated for geog_gidrel.

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
PROPERTY '$GID_DEPTH' 4

Example 9-146 Using GROUPINGID to Populate a Variable with Grouping Ids

Assume that you have the following objects in your analytic workspace.

DEFINE geography DIMENSION TEXT WIDTH 12
LD Geography Dimension Values
DEFINE geography.parent RELATION geography <geography>
LD Child-parent relation for geography
DEFINE geography.hierarchyid DIMENSION INTEGER
LD Dimension whose values are ids for hierarchies in geography

To create a grouping id variable for the Standard hierarchy of geography, define a
child-parent relation of only those values that are in the hierarchy whose grouping ids
you want to generate, and define a variable to hold the grouping ids. Examples of
these definitions follow.

DEFINE geog.gid INTEGER VARIABLE <geography>
DEFINE geography.newparent RELATION geography <geography>

Then populate these variables using statements similar to these.

" Populate the child-parent relation for hierarchy 1
geography.newparent = geography.parent(geography.hierarchyid 1)
" Populate the grouping id variables
GROUPINGID geography.newparent INTO geog.gid

Reports for the new objects created by this code (geography.newparent and geog.gid)
follow.

REPORT geography.newparent

GEOGRAPHY GEOGRAPHY.NEWPARENT
---------------- ----------------
World NA
Americas World
Canada Americas
Toronto Canada
Montreal Canada
Ottawa Canada
Vancouver Canada
Edmonton Canada
Calgary Canada
Usa Americas
Boston Usa
Losangeles Usa
Dallas Usa
Denver Usa
Newyork Usa
Chicago Usa
Seattle Usa

Chapter 9
GROUPINGID command

9-288

Mexico Americas
... ...
Japan Asia
Tokyo Japan
Osaka Japan
Kyoto Japan
China Asia
Beijing China
Shanghai China
... ...
India Asia
Ireland Europe
Taiwan Asia
Thailand Asia

REPORT geog.gid
GEOGRAPHY GEOG.GID
---------------- ----------------
World 7
Americas 3
Canada 1
Toronto 0
Montreal 0
Ottawa 0
Vancouver 0
Edmonton 0
Calgary 0
Usa 1
Boston 0
Losangeles 0
Dallas 0
Denver 0
Newyork 0
Chicago 0
Seattle 0
Mexico 1
... ...
Japan 1
Tokyo 0
Osaka 0
Kyoto 0
China 1
Beijing 0
Shanghai 0
... ...
India 1
Ireland 1
Taiwan 1
Thailand 1

Chapter 9
GROUPINGID command

9-289

10
OLAP DML Commands: H-Z

This chapter provides reference topics for the second set (in alphabetical order) of the
OLAP DML commands. There is one topic for each of the OLAP DML commands that
begins with the letters H-Z, beginning with HEADING.

Alphabetical and categorical listings of the OLAP DML commands and reference
topics for the remaining OLAP DML commands appear in OLAP DML Commands: A-
G.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Options , OLAP DML Functions: A - K, and OLAP DML Functions: L - Z .

Tip:

Many OLAP DML statements can be coded as a 3-character abbreviation that
consists of the first letter of the statement plus the next two consonants.

HEADING
The HEADING command produces titles and column headings for a report. The
heading output is sent to the current outfile. The form of the HEADING command is
the same as that of the ROW command. When you use HEADING, however, Oracle
OLAP does not add any numeric values from the heading to column subtotals or grand
totals.

Frequently, HEADING statements are used in a PAGEPRG program to produce titles
or column headings on each page of a report.

Tip:

When you know ahead of time that you do not need the subtotaling capability of
the ROW command, use the HEADING command instead of ROW to produce
the lines of your report can provide a time savings, because, in this case,
Oracle OLAP does not keep track of subtotals.

Syntax

HEADING [attribs] {expression1|SKIP}, [attribs] {expressionN|SKIP}

Parameters

attribs
The attributes that specify the format for each column. (See the ROW command for a
list and detailed explanation of the available attributes.)

10-1

expression
The text to be used as a column heading. To use literal text for a column heading,
enclose the text in single quotes. (See the ROW command for more information on
using expressions, attributes, and ACROSS groups to produce columns.)

SKIP
Used instead of an expression to indicate that the column is to be left blank.

Usage Notes

The notes for the ROW command also apply to the HEADING command (except for
the note on row and column arithmetic in ROW).

Creating Titles Using Heading

To create a title or subtitle in a report, use HEADING to produce a single "column" with
a width equal to the setting of the LSIZE option. You can then center your text within
this "column" to produce a centered title.

Maximum Heading Width

The maximum width of any line in a report, including a heading line, is 4,000
characters.

Examples

Example 10-1 Producing Column Headings

In a report, you want to have headings for your columns. You can use a HEADING
statement such as the following in your program.

HEADING UNDER '-' CENTER <WIDTH 15 'Product' -
 ACROSS district FIRST 3: district>

This statement produces the following result.

 Product Atlanta Boston Chicago
--------------- ---------- ---------- ----------

HIDE
The HIDE command hides the text of a program, so that you cannot display it using a
DESCRIBE, EDIT, or OBJ statement. You can perform all other actions on the
program, including executing, compiling, renaming, or exporting.

When you hide a program, you supply a seed expression, which Oracle OLAP uses to
encode the program text. You can use this seed expression later using an UNHIDE
statement to make the text visible.

Note:

This command performs simple encoding. For information on using secure
encryption and other security features in Oracle, see About Oracle Database
Security in Oracle Database Security Guide.

Chapter 10
HIDE

10-2

Syntax

HIDE prog-name seed-exp

Parameters

prog-name
The name of the program whose text you want to hide. Do not enclose the program
name in quotes.

seed-exp
A single-line text expression to be used as a seed value when encoding of the
program text. Do not specify NA for this value.
Keep a record of this seed expression, so that you can use it later with an UNHIDE
statement. The seed expression you specify in the UNHIDE statement must be byte-
for-byte the same value as you used in this HIDE statement. Also, the seed
expression is case-sensitive, so record uppercase and lowercase characters carefully.

Usage Notes

Exporting and Importing with the Seed

When you export and import a hidden program, the text remains hidden in the analytic
workspace in which it is imported. It retains the same seed expression for use with the
UNHIDE command.

Examples

Example 10-2 Hiding Program Text

The following example hides the text of a program called sales_rpt.

HIDE sales_rpt 'Crystal'

HIERDEPTH
For each hierarchy of relation, the HIERDEPTH command calculates the depth of that
hierarchy from the top of all of the hierarchies and stores that value in a previously-
defined relation sometimes called the depth relation.

Syntax

HIERDEPTH parent-rel [(qdr-list)] INTO depth-rel [INHIERARCHY inh-valueset]

Parameters

parent-rel
A child-parent self-relation for the hierarchical dimension. See "Parentrel Relation" for
more information.

qdr-list
A list of QDRs that limits the values of parentrel. Specify the QDRs as described in
"Syntax of a Qualified Data Reference". When you do not specify a value for qdrlist,
HIERHEIGHT uses the values of parentrel that are in current status.

Chapter 10
HIERDEPTH

10-3

depth-rel
A previously -defined relation that the HIERDEPTH command populates when it
executes. This relation can have multiple dimensions; however, it must be
dimensioned by the dimensions of parentrel and one other NUMBER dimension that
represents the depth of the hierarchical dimension.
For example, assuming that parent-rel has two dimensions, dim1 and dim2, the
following lines of code define a NUMBER dimension named numdim with 3 values and,
then, define a depth relation named depthrel which is dimensioned by dim1 and dim2
that has as its values the values of numdim.

DEFINE numdim dimension NUMBER(3)
DEFINE depthrel RELATION numdim <dim1 dim2>

inh-valueset
The name of a valueset object whose values are the hierarchical dimension values to
be considered when creating grouping ids. Values not included in the valueset are
ignored. See "Inhier Valueset or Variable" for more information.

Examples

Example 10-3 Creating and Populating a Depth Relation for Hierarchies

Assume that your analytic workspace contains the geog, geog_hierlist, and
geog_parentrel objects described in Example 9-145. You can create a depth relation
for the hierarchies represented by these objects by issuing the following DML code.

" Define the number dimension for the depthrel
DEFINE numdepth DIMENSION NUMBER (3)
" Define the depth relation
" Populate the depth relation
HIERDEPTH geog_parentrel INTO depthrel
REPORT DOWN geog depthrel

 ------------------DEPTHREL-------------------
 ----------------GEOG_HIERLIST----------------
GEOG Political_Geog Sales_Geog
-------------- ---------------------- ----------------------
Boston 3 3
Springfield 3 3
Hartford 3 3
Mansfield 3 3
Montreal 3 3
Walla Walla 3 3
Portland 3 3
Oakland 3 3
San Diego 3 3
MA 2 2
CT 2 2
WA 2 2
CA 2 2
Quebec 2 2
East 0 1
West 0 1
All Regions 0 0
USA 1 0
Canada 1 0
All Countries 0 0

Chapter 10
HIERDEPTH

10-4

HIERHEIGHT command
The HIERHEIGHT command populates a previously-defined relation with the values of
a specified hierarchical dimension by level. Typically, you use the HIERHEIGHT
command when you are preparing an analytic workspace for access using the
OLAP_TABLE function.

To retrieve the value of a node (by level) for the value of a hierarchical dimension, use
the HIERHEIGHT.

See Also:

See "Familyrel Relation"

Syntax

HIERHEIGHT parentrelation [(qdrlist)] INTO{familyrel- [USING level-relation | A | D]
[INHIERARCHY { inh-variable | inh-valueset}]

Parameters

parentrel
A child-parent self-relation for the hierarchical dimension. See "Parentrel Relation" for
more information.

qdrlist
A list of QDRs that limits the values of parentrel. Specify the QDRs as described in
"Syntax of a Qualified Data Reference". When you do not specify a value for qdrlist,
HIERHEIGHT uses the values of parentrel that are in current status.

familyrel
A previously -defined relation that the HIERHEIGHT command populates when it
executes. This relation can have multiple dimensions; however, it must be
dimensioned by the dimensions of parentrel and one other dimension that represents
the levels of the hierarchical dimension. The actual construct of the dimension that
represents the levels of the hierarchical dimension varies depending on whether or
not the HIERHEIGHT statement includes the USING phrase:

• When the statement includes the USING phrase, the dimension that represents
the levels of the hierarchical dimension is a dimension that contains the names of
the levels.

• When the statement does not include the USING phrase, the dimension that
represents the levels of the hierarchical dimension is an INTEGER dimension that
has as values the depth of the level.

When familyrel is populated before a HIERHEIGHT statement executes, the
HIERHEIGHT statement depopulates it before computing new values.

USING levelrel
Specifies that the relation is populated using the specified levelrel. See "Levelrel
Relation" for more information.

Chapter 10
HIERHEIGHT command

10-5

A
Specifies that the relation is populated in ascending order.

D
(Default) Specifies that the relation is populated in descending order.

inh-variable
A BOOLEAN variable that is dimensioned by the hierarchical dimension and, when
the hierarchical dimension is a multi-hierarchical dimension, by a dimension that is the
names of the hierarchies. The values of the variable are TRUE when the dimension
value is in a hierarchy and FALSE when it is not.

inh-valueset
The name of a valueset object whose values are the hierarchical dimension values to
be considered when creating grouping ids. Values not included in the valueset are
ignored. See "Inhier Valueset or Variable" for more information.

Usage Notes

HIERHEIGHT with the OLAP_TABLE Function

Typically, you use a HIERHEIGHT statement when you are preparing an analytic
workspace for access using the OLAP_TABLE function.

Examples

Example 10-4 Creating a Relational Representation of a Geography Hierarchy

Assume that there is an analytic workspace named myaw that has a Geography
hierarchy defined with analytic objects with the following definitions.

DEFINE geog.hierdim DIMENSION TEXT
LD Hierarchy names for Geography hierarchies

DEFINE geog.leveldim DIMENSION TEXT
LD List of levels for GEOGRAPHY hierarchies

DEFINE geography DIMENSION TEXT WIDTH 12
LD Values for the Geography hierarchies

DEFINE geog.levelrel RELATION geog.leveldim <geography geog.hierdim>
LD Level of each value in the Geography hierarchies

DEFINE geog.parent RELATION geography <geography geog.hierdim>
LD Child-parent relation for the Geography hierarchies

DEFINE geog.familyrel RELATION geography <geography geog.leveldim geog.hierdim>
LD Geography values by level and hierarchy

These objects have the following structures.

GEOGRAPHY

World
Americas
Canada
USA
Toronto
Montreal
Boston
LosAngeles

Chapter 10
HIERHEIGHT command

10-6

GEOG.HIERDIM

Standard
Consolidated

GEOG.LEVELDIM

World
Continent
Country
City
Consolidated
Continent
Consolidated
Country

 ------------GEOG.LEVELREL------------
 ------------GEOG.HIERDIM-------------
GEOGRAPHY Standard Consolidated
------------------ ------------------ ------------------
World World NA
Americas Continent Consolidated
 Continent
Canada Country Consolidated
 Country
USA Country Consolidated
 Country
Toronto City NA
Montreal City NA
Boston City NA
LosAngeles City NA

 -------------GEOG.PARENT-------------
 ------------GEOG.HIERDIM-------------
GEOGRAPHY Standard Consolidated
------------------ ------------------ ------------------
World NA NA
Americas World NA
Canada Americas Americas
USA Americas Americas
Toronto Canada NA
Montreal Canada NA
Boston USA NA
LosAngeles USA NA

To create a family relation of the Geography hierarchy you define an analytic
workspace object with the following definition.

DEFINE geog.familyrel RELATION geography <geography geog.leveldim geog.hierdim>
LD Geography values by level and hierarchy

Then you use a HIERHEIGHT statement as illustrated in the following statement to
populate the object.

HIERHEIGHT geog.parent INTO geog.familyrel USING geog.levelrel

By issuing a REPORT statement, you can display the relational representations of
both the Standard and Consolidated hierarchies of the geography dimension.

REPORT DOWN geography geog.familyrel

GEOG.HIERDIM: Standard
 -------------------------------GEOG.FAMILYREL--------------------------------
 --------------------------------GEOG.LEVELDIM--------------------------------
 Consolidated Consolidated
GEOGRAPHY World Continent Country City Continent Country
------------ ------------ ------------ ------------ ------------ ------------ ------------

Chapter 10
HIERHEIGHT command

10-7

World World NA NA NA NA NA
Americas World Americas NA NA NA NA
Canada World Americas Canada NA NA NA
USA World Americas USA NA NA NA
Toronto World Americas Canada Toronto NA NA
Montreal World Americas Canada Montreal NA NA
Boston World Americas USA Boston NA NA
LosAngeles World Americas USA LosAngeles NA NA

GEOG.HIERDIM: Consolidated
 -------------------------------GEOG.FAMILYREL--------------------------------
 --------------------------------GEOG.LEVELDIM--------------------------------
 Consolidated Consolidated
GEOGRAPHY World Continent Country City Continent Country
------------ ------------ ------------ ------------ ------------ ------------ ------------
World NA NA NA NA NA NA
Americas NA NA NA NA Americas NA
Canada NA NA NA NA Americas Canada
USA NA NA NA NA Americas USA
Toronto NA NA NA NA NA NA
Montreal NA NA NA NA NA NA
Boston NA NA NA NA NA NA
LosAngeles NA NA NA NA NA NA

IF...THEN...ELSE command
Within an OLAP DML program, the IF...THEN...ELSE command executes one or more
statements in a program when a specified condition is met. Optionally, it also executes
an alternative statement or group of statements when the condition is not met.

Note:

You can also use IF as a conditional operator in an expression. See
"IF...THEN...ELSE expression"

Syntax

IF boolean-expression THEN statement1 [ELSE statement2]

Parameters

boolean-expression
Any valid Boolean expression that returns either TRUE or FALSE.

THEN statement1
Oracle OLAP executes the statement1 argument when the Boolean expression is
TRUE. The statement1 must be on the same line as THEN.

ELSE statement2
Oracle OLAP executes the statement2 argument when the Boolean expression is
FALSE. The statement2 must be on the same line as ELSE. When you omit the
ELSE phrase, execution continues with the statement after the whole IF...THEN...
statement in the program.

Usage Notes

IF with DO

Chapter 10
IF...THEN...ELSE command

10-8

You can use an IF statement for conditional execution of two or more statements by
following the THEN or ELSE (or both) keywords with a DO ... DOEND sequence. See
Using IF...THEN...ELSE.

Single or Multiple Lines

When IF is used as an expression, the THEN and ELSE keywords must be on the
same line as IF. When IF is used as a command, THEN and ELSE must be on
separate lines.

Examples

Example 10-5 Using IF...THEN...ELSE

The following lines from a program illustrate the use of IF...THEN...ELSE.... When the
Boolean expression ANY(DOLLARS LT 200000) is TRUE, the statements following THEN
(statement group 1) are executed. When the expression is FALSE, the statements
following ELSE (statement group 2) are executed instead.

IF ANY(DOLLARS LT 200000)
THEN DO
 ... " (statement group 1)
 DOEND
ELSE DO
 ... "(statement group 2)
 DOEND

Example 10-6 Using IF as a Conditional Operator

In a program that produces a report, you would like to report a previous year's actual
expenses or the current year's budget, depending on the year passed to the program
as an argument. A conditional expression in a JOINCHARS function produces a
heading with the word Actual or Budget. Another conditional expression selects the
variable to report. The program would include the following lines.

ARGUMENT cur.year year

LIMIT month TO year cur.year
REPORT -
 HEADING JOINCHARS('Expenses: ' -
 IF cur.year LT 'Yr95' -
 THEN 'Actual FOR ' -
 ELSE 'Budget FOR ', -
 cur.year) -
 IF cur.year LT 'Yr95' THEN actual ELSE budget

IMPORT
The IMPORT command transfers data to an analytic workspace from a text file, a
spreadsheet, or another analytic workspace from an EIF file.

Because the syntax of the IMPORT command is different depending on where the
data to be imported is located, separate topics are provided for different types of
source files:

• IMPORT (EIF)

• IMPORT (text)

• IMPORT (spreadsheet)

Chapter 10
IMPORT

10-9

IMPORT (EIF)
You can use the IMPORT (from EIF) command to copy data and definitions into your
Oracle OLAP analytic workspace from an EIF file. IMPORT also copies any
dimensions of the imported data that do not already exist in your workspace, even
when you do not specify them in the command.

Tip:

Several options that determine how EIF files are imported and exported. These
options are listed in "EIF Options".

IMPORT (from EIF) is commonly used with EXPORT (EIF) to copy parts of one Oracle
OLAP analytic workspace to another; you export objects from the source workspace to
an EIF file and then import the objects from the EIF file into the target workspace. The
source and target workspaces can reside on the same platform or on different
platforms. When you transfer an EIF file between computers, you use a binary transfer
to overcome file-format incompatibilities between platforms. The EIF file must have
been created with the EIFVERSION set to a version that is less than or equal to the
version number of the target workspace. Use EVERSION to verify the target version
number.

You can also use IMPORT to store information in the EIFNAMES and EIFTYPES
options.

Syntax

IMPORT import_item FROM EIF FILE file-id [INTO workspace] - [MATCH [STATUS]|
APPEND|REPLACE [DELETE]] [LIST [ONLY]] [DATA] -
 [DFNS] [UPDATE] [NOPROP] [NASKIP] [NLS_CHARSET charset-exp] - [API |
NOAPI]

where import_item is one of the following:

name [AS newname]

ALL

Parameters

name [AS newname]
The name of an analytic workspace object to be imported from an EIF file to an
attached workspace. You cannot specify a qualified object name for the object,
because the object is not yet in any workspace. You can list multiple names at a time.
See the INTO workspace argument for information about where the object is
imported.
AS newname can be used to rename any type of object being imported except
dimensions.
When you have exported a multidimensional object as separate variables, list all the
variable names. (See the SCATTER AS keyword in the EXPORT (EIF).)

Chapter 10
IMPORT

10-10

ALL
(Default) Indicates that you want to import all the objects contained in the EIF file. See
the INTO workspace argument for information about where the objects is imported.

INTO workspace
an analytic workspace name that identifies the attached workspace into which objects
is imported. When the objects exist in the specified workspace, then their data is
overwritten by the imported data. When the objects do not already exist, IMPORT
creates them it in the specified workspace. IMPORT ignores identically named objects
when they exist in other attached workspaces.
When you do not specify this argument, then Oracle OLAP does the following:

• When you have not previously defined the objects being imported in an attached
workspace, then IMPORT defines them automatically in the current workspace.

• When the objects already exist in any attached workspace, then IMPORT
overwrites the data they contain with the imported data.

FROM EIF FILE file-id
Identifies the file you want to import. File-id is a text expression that represents the
name of the file. The name must be in a standard format for a file identifier.

MATCH [STATUS]
Indicates that the IMPORT command should bring in only the data associated with
dimension values that match those already in the target workspace. For dimensions
other than time dimensions, ensure that corresponding dimension values are spelled
and capitalized identically in the EIF file and your target workspace when you want
them to match; for example, Tents does not match TENTS. For time dimensions, Oracle
OLAP identifies dimension values by the dates they represent rather than by the way
they are displayed. Therefore, time dimension values in the EIF file automatically
matches time dimension values in your workspace when they represent the same
time periods. When you specify MATCH STATUS, IMPORT only imports data
associated with the values included in the current status of that dimension. When the
dimension is limited in the target workspace, Oracle OLAP ignores any data in the EIF
file associated with the values excluded from the status.

APPEND
(Default) Indicates that the IMPORT command should bring in all the dimension
values, along with associated data, regardless of whether or not the dimension values
match those already present in the target workspace. APPEND adds those that do not
match to those already present; it adds new values to the end of the list of dimension
values. For time dimensions, APPEND also adds dimension values to fill in any gaps
between the dimension values in your target workspace and the new ones.

REPLACE [DELETE]
Indicates that, for objects already defined in the workspace, IMPORT should keep the
existing dimension values that match the dimension values in the EIF file. IMPORT
deletes dimension values (and their data) that do not match dimension values in the
EIF file. IMPORT replaces the associated data for the dimension values kept as part
of the new dimension when the associated data variables are included in the EIF file.
For text dimensions, the order of the dimension values in the EIF file is also adapted.
When you specify REPLACE DELETE, no matching takes place. Before importing a
dimension, Oracle OLAP performs a MAINTAIN DELETE ALL, which discards all data
associated with the existing dimension and the dimension values.

Chapter 10
IMPORT

10-11

Note:

Be careful when using the REPLACE keyword. When you replace the values
of a dimension, all variables and relations in the target workspace dimensioned
by it are affected. When a variable or relation is not being imported at the
same time, replacing the values of one of its dimensions could result in the
loss of its data.

LIST
LIST ONLY
Produces a list of the definitions. For dimensions, the output lists the number of
values in each dimension, as they are imported into the target workspace. For
composites, the output lists the number of dimension value combinations. IMPORT
also indicates the number of bytes read and the elapsed time every two minutes or, in
any case, after the import procedure.
When you define a conjoint or composite that uses an index type other than the
default, the IMPORT LIST command displays the index type. When you use the
default index type (HASH for conjoints, BTREE for composites), that information is not
displayed.
EXPORT (EIF) sends the list to the current outfile. When you specify LIST ONLY, you
get only the listing without actually importing anything.

ONLY
Causes Oracle OLAP to place the correct values in the EIFNAMES and EIFTYPES
options without actually importing them. However, Oracle OLAP does not produce a
full listing of the object definitions. To produce the list, specify the LIST keyword
before the ONLY keyword.

DATA
Indicates that, for objects that already exist in the target workspace, IMPORT should
update only the data associated with those objects. For formulas that already exist,
IMPORT updates their EQ expressions. Objects that IMPORT creates in the target
workspace are created with their full definitions and any associated data. You can
specify both DATA and DFNS, but when neither is specified, the default is DATA.

DFNS
Indicates that, for objects that already exist in the target workspace, IMPORT should
just update definitions and leave data unchanged. The components of the definition
affected by IMPORT DFNS are: LD Command, VNF, and PROPERTY. Objects that
IMPORT creates in the target workspace still get their data. You can specify both
DATA and DFNS, but when neither is specified, the default is DATA.

UPDATE
Indicates that IMPORT should execute an UPDATE statement after importing each
object which can be useful when importing large EIF files that would otherwise cause
Oracle OLAP to run out of memory. To control the frequency of updates, use the
EIFUPDBYTES option.

NOPROP
Prevents any properties that you have assigned to each object from being read from
the EIF file.

Chapter 10
IMPORT

10-12

NASKIP
Specifies that composite tuples (indexes) that contain only NA data should not be
imported into the target workspace. This argument has no effect on tuples that
already exist in the workspace.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when importing text data from the
file specified by file-id. Normally, an EIF file contains its own specification of its
character set, so that this argument is not needed. However, when the EIF file
specifies the character set incorrectly or is missing the character set specification,
then you must use this argument to specify the character set correctly.
For information about the character sets that you can specify, see Choosing a
Character Set in Oracle Database Globalization Support Guide.
This argument must be the last one specified. When this argument is omitted, and
Oracle OLAP cannot determine the character set from the EIF file itself, then Oracle
OLAP imports the data using the database character set, which is recorded in the
NLS_LANG option.

API
(Default) When the EIF file was created using an EXPORT (EIF) command with the
API keyword, import any cube metadata defined for the specified items.

Note:

Oracle OLAP automatically executes an UPDATE and a COMMIT after
executing this type of import.

NOAPI
Even if the EIF file was created using an EXPORT (EIF) command with the API
keyword, do not import any cube metadata defined for the specified items. When you
specify this keyword, Oracle OLAP does not automatically execute an UPDATE and a
COMMIT after executing the IMPORT command.

Usage Notes

Separate IMPORT Statements

The MATCH, APPEND, REPLACE, DATA, and DFNS arguments you specify affect all
the objects you name to be imported. When you want to treat different objects in
different ways, use separate IMPORT statements.

Importing and Exporting Hidden Programs

Importing Relations

When you are importing a relation, IMPORT also brings in the definition and values for
the related dimension as well.

Importing Concat Dimensions

When you import a concat dimension into an analytic workspace and the concat
dimension and none of its component dimensions already exist in the analytic
workspace, then Oracle OLAP imports the concat dimension, its component
dimensions, and the definitions of all of the dimensions.

Chapter 10
IMPORT

10-13

When you import a concat dimension that does not already exist but one or more of its
component dimensions already exist in the analytic workspace, then Oracle OLAP
imports the concat dimension and any new component dimensions and their
definitions. For the component dimensions that already exist in the analytic workspace,
Oracle OLAP imports the component dimensions as it does other dimensions, obeying
any MATCH, APPEND, REPLACE specifications in the IMPORT statement.

When you import a concat dimension with a name and a definition of a concat
dimension that already exists in the analytic workspace, then Oracle OLAP imports the
concat dimension as it does other dimension.

When you import a concat dimension with the same name as one that already exists in
the analytic workspace but the definition of the imported concat dimension is different
than the definition of the existing concat dimension, then the definition of the existing
concat dimension does not change and the definitions of the component dimensions of
the existing concat dimension do not change. Only the component dimensions of the
imported concat dimension that are also component dimensions of the existing concat
dimension are imported. When the imported concat dimension does not share any
component dimensions with the existing concat dimension, an error condition occurs.
When you are importing any objects that are dimensioned by the concat dimension,
then Oracle OLAP imports only the values of the object that correspond to the values
of the imported dimensions.

Importing and Exporting Dimension Surrogates

You can import or export a dimension surrogate to or from an Express Interchange
File (EIF). In those operations, a dimension surrogate behaves like a variable that is
dimensioned by the dimension of the surrogate. In an EXPORT operation, the
dimension for which the surrogate is defined is also exported. In an IMPORT
operation, the dimension for which the surrogate is defined is imported but you can
use the MATCH, STATUS, DATA, DFNS, APPEND, and REPLACE keywords to affect
which values are imported.

Importing a dimension surrogates also imports the definition and values for the
dimension for which it is a surrogate. When a dimension with the same definition
already exists in the current analytic workspace, then the effects of the IMPORT
keywords such as MATCH, APPEND, REPLACE, DATA, and DFNS are the same for
the surrogate as they would be for a variable dimensioned by the dimension. When the
name and definition of the imported surrogate is the same as a dimension surrogate
that already exists in the current analytic workspace and when the imported surrogate
has a value that is identical to a value in the existing surrogate, an error condition
occurs.

You can import an INTEGER dimension surrogate when no object of the same name
exists in the current analytic workspace or when you use the DFNS keyword.
Importing an INTEGER dimension surrogate affects existing INTEGER dimension
surrogates when the implicit importing of the dimension of the imported surrogate
changes the values of the existing dimension.

APPEND Versus REPLACE

When you are importing an INTEGER dimension that already exists in your target
workspace, the following considerations apply.

• When the imported INTEGER dimension is larger than the existing one, APPEND
and REPLACE have the same effect. The dimension ends up with the number of
values in the larger, imported dimension.

Chapter 10
IMPORT

10-14

• When the imported INTEGER dimension is smaller, REPLACE drops the
appropriate dimension values from the end of the dimension, along with any
associated data, while APPEND leaves the existing dimension values alone.

INTEGER and SHORTINTEGER Data Types

The IMPORT command translates between the INTEGER and SHORTINTEGER data
types. When you are importing a variable with one of these data types from an EIF file
and it already exists in your workspace as the other type, Oracle OLAP converts the
data automatically. The maximum SHORTINTEGER value is 32,767 and the minimum
is -32,767. When you import an INTEGER value that exceeds these limits into a
SHORTINTEGER variable, the result is NA.

TEXT and ID Data Types

When the EIF file you are importing contains ID data that you want to import into TEXT
dimensions, variables, relations, or valuesets, Oracle OLAP automatically converts the
ID data to text during the import process.

Existing Programs and Models

When you are importing a program or model that already exists in your workspace,
you must specify DFNS. A program or a model is a definition only; it does not have
any data. The default option DATA does not import the source code when it already
exists.

When you define a program, you may specify a data type or a dimension name, which
is used when the program is called as a function. When you specify a data type, it
determines the data type of the return value. When you specify a dimension name, the
return value is a single value of that dimension. When you import an existing program,
the data type or the dimension in the imported program definition and the existing
program definition must match. Otherwise, Oracle OLAP produces an error message.

PERMIT Statements

The PERMIT statements associated with an object are imported with the object
definition. You can see them when you describe the object. However, permission
conditions are not evaluated when the object is imported.

When an object with the same name already exists in the target workspace and you
specify the DFNS keyword, the PERMIT statements for the object are updated.
However, you must execute a PERMITRESET to put the new permission into effect.
When an object with the same name already exists in the target workspace and you
do not specify the DFNS keyword, the PERMIT statements for the object are not
updated. When there is no pre-existing object in the target workspace, and you import
with or without the DFNS keyword, the PERMIT statements for the object are updated,
but you must execute a PERMITRESET to put the new permission into effect. (See the
PERMIT command.)

When you export and import an entire workspace, then update, detach, and reattach
the workspace, Oracle OLAP ensures that all the permissions that were in effect
before exporting are in place in the target workspace.

Reducing Workspace Size

You can use IMPORT with an EXPORT statement to compact an entire workspace at
once. To do this, first export the workspace and then import it under a different name.
You can then delete the old workspace and rename the new one with the original
name.

Chapter 10
IMPORT

10-15

Preserving Conjoint Type

When you export a HASH, BTREE, or NOHASH conjoint dimension to an EIF file, the
conjoint type is exported along with the definition in the EIF file. When you then import
the conjoint dimension into an analytic workspace, Oracle OLAP preserves the
conjoint type when you import into a new dimension or a dimension already using that
conjoint type. When you import the dimension into an existing dimension that does not
use the same conjoint type, Oracle OLAP does not preserve the original conjoint type
that was saved in the EIF file.

EIFBYTES, EIFNAMES, and EIFTYPES

You can use the EIFBYTES option to learn the number of bytes read or written by the
most recent IMPORT (EIF File) statement. You can use the EIFNAMES option to get a
list of the names of all the objects imported by the most recent IMPORT statement and
use the EIFTYPES option to learn the types of objects in that list.

The following format causes IMPORT to store information about the specified objects
into the EIFNAMES and EIFTYPES options without actually importing the objects.
IMPORT places a list of the object names specified by the IMPORT command in the
EIFNAMES option. IMPORT also places a list of the type of each object listed in
EIFNAMES into the EIFTYPES option. You may use the LIST keyword to send to the
current outfile a full listing of the object definitions.

IMPORT name FROM EIF FILE file-id [LIST] ONLY

For more information, see the entries for EIFBYTES, EIFNAMES, and EIFTYPES
options.

Importing Unnamed Composites

When you define variables or other objects with the SPARSE keyword in the
dimension list, Oracle OLAP creates an unnamed composite that corresponds to the
SPARSE dimension list. When you export or import an object with the unnamed
composite in its definition, the composite is automatically exported or imported with the
object. Because the unnamed composite is not a regular workspace object, you
cannot import or export it independently.

Variable Segments Specified with SEGWIDTH

When you use a CHGDFN statement with the SEGWIDTH keyword to specify the
length of variable segments, segment information cannot be exported and imported
automatically. You can save your SEGWIDTH settings by exporting the entire
workspace, creating a new workspace, importing only the workspace objects into the
new workspace, specifying segmentation, and then importing the variable data into the
new workspace.

Importing TEXT and NTEXT Values

You can export and import TEXT and NTEXT values. Both data types can be exported
to a single EIF file.

• Exported TEXT values are stored in the EIF file using the character set specified
for the file in the EXPORT (EIF).

• Exported NTEXT values are stored in the EIF file as NTEXT (UTF8 Unicode).

• NTEXT values imported into TEXT objects are converted into the database
character set which can result in data loss when the NTEXT values cannot be
represented in the database character set.

Chapter 10
IMPORT

10-16

• TEXT values imported into NTEXT objects are converted into the NTEXT (UTF8
Unicode) character set.

Examples

Example 10-7 Importing Dimensions from an EIF File

This example shows how to import the contents and dimensions of two variables into
the current Oracle OLAP workspace from a disk file called finance.eif in the current
directory object.

IMPORT actual budget FROM EIF FILE 'finance.eif'

Example 10-8 IIMPORTING a Concat Dimension

This example shows the result of importing a concat dimension that has a definition
that is different than a concat dimension that already exists in the current analytic
workspace. Suppose that a DESCRIBE statement returns the following definitions for
dimensions and variables in the current analytic workspace.

DEFINE city TEXT DIMENSION
DEFINE state TEXT DIMENSION
DEFINE country TEXT DIMENSION
DEFINE locality DIMENSION CONCAT (city, state)
DEFINE geog DIMENSION CONCAT (locality, country)
DEFINE sales INTEGER VARIABLE <geog>

The following statement reports the sales data.

REPORT sales

The preceding statement produces the following results.

GEOG SALES
------------------- -----
<city: Boston> 1000
<city: Springfield> 2000
<state: Ma> 3000
<country: Usa> 4000

A DESCRIBE statement returns the following definitions for dimensions and variables
in the diffconcat.eif file.

DEFINE CITY TEXT DIMENSION
DEFINE REGION TEXT DIMENSION
DEFINE COUNTRY TEXT DIMENSION
DEFINE GEOG DIMENSION CONCAT (CITY, REGION, COUNTRY)
DEFINE SALES INTEGER VARIABLE <GEOG>

The following statement reports the sales data for the dimension values in the analytic
workspace from which you exported the concat dimension that is in the diffconcat.eif
file.

REPORT sales

The preceding statement produces the following results.

GEOG SALES
------------------ -----
<city: Boston> 1111
<city: Worcester> 2222

Chapter 10
IMPORT

10-17

<region: East> 3333
<country: Usa> 4444

The following statement imports the sales variable from the diffconcat.eif file and
implicitly imports the concat dimension geog. The APPEND keyword causes Oracle
OLAP to add the value Worcester to the city dimension. After that, it imports new
values for sales that correspond to <city: Boston>, <city: Worcester>, and <country:
Usa>.

IMPORT sales FROM EIF FILE diffconcat.eif APPEND

After the import operation, reporting the SALES values produces the following results.

GEOG SALES
------------------- -----
<city: Boston> 1111
<city: Springfield> 2000
<city: Worcester> 2222
<state: Ma> 3000
<country: Usa> 4444

IMPORT (text)
You can use the IMPORT (from text) command to copy data from a text file into an
Oracle OLAP worksheet object. A worksheet's rows are similar to the lines of a text
file.

IMPORT is commonly used to copy text files into an analytic workspace from other
software products.

Typically, you use a FILEREAD statement for text files instead of IMPORT. FILEREAD
is more efficient and does not require a worksheet object or separate handling of each
column of data.

Syntax

IMPORT worksheetname FROM [TEXT|STRUCTURED|RULED [RULER ruler-exp] -
 PRN FILE file-id [STOPAFTER n] [TEXTSTART schar] [TEXTEND echar] -
 [DELIMITER dchar] [NLS_CHARSET charset-exp]

Parameters

worksheetname
A text expression that specifies the name of an Oracle OLAP worksheet object. When
you have not previously defined worksheetname in your workspace, IMPORT defines
it for you automatically, using the default dimensions WKSCOL and WKSROW. Any previous
contents of worksheetname are overwritten. In any one IMPORT statement, you can
import only one worksheetname from one text file.

FROM . . . PRN
Indicates that you want to import your Oracle OLAP worksheet from a text file.

TEXT
Imports a whole source file as-is into an Oracle OLAP worksheet on a line-by-line
basis. The source file is copied into a single wide worksheet column with a data type
of TEXT. The column is always column 1 of the worksheet. Each line in the source file
is imported into a separate cell on a separate row in the first column, using as many

Chapter 10
IMPORT

10-18

rows as there are lines in the source file. A blank line in the source file produces a
TEXT value with zero characters (a null) in the corresponding row of the worksheet's
first column. (TEXT is the default.)

STRUCTURED
Imports a source file into a target worksheet on a cell-by-cell basis, automatically
performing three functions:

1. Each line of characters in the source file is copied into a single row of the target
worksheet.

2. Each group of characters on a line in the source file is copied into a separate
TEXT cell on the target worksheet row. A group of characters is defined by two
conditions: an uninterrupted (except by a decimal point) sequence of numbers, or
enclosure in double quotes. Consequently, numbers containing commas to mark
off thousands are split up into different cells unless the commas are first removed.

3. Any non-numeric characters not enclosed in double quotes are ignored, except
minus signs that immediately precede numbers and so are copied into the same
TEXT cell along with the numbers. (Be sure there are no spaces between a minus
sign and its number in the source file.)

A blank line in the source file results in an NA in the first cell of the corresponding
worksheet row.
When your file format does not conform to the pattern described here, you can use
the TEXTSTART, TEXTEND, and DELIMITER keywords. These arguments let you
customize the delimiters IMPORT uses to identify the start and end of each field.

RULED
Indicates import of a file on a column-by-column basis into worksheet cells of various
data types. Every line in the source file must follow the same pattern of data along its
length as every other line in the file. You describe this data pattern to Oracle OLAP in
the one-line ruler-exp using the RULER keyword. IMPORT loops over each line in the
source file and copies its contents into a corresponding pattern of cells on a row of the
target worksheet, one row for each line. As ruler-exp loops over successive lines in
the source file, it adds row after row to the target worksheet, building vertical columns
of similar cells as it goes along. Status messages are sent to the current outfile every
20 rows, starting with the message 20 rows processed.
When the source file contains records that follow several different patterns of
character groups, use the less exacting options, STRUCTURED or TEXT, to import
the data.

RULER ruler-exp
Used only with the RULED keyword to specify the data type, length, and repeat count
of each character group in the record pattern of the source file. Ruler-exp consists of
a list of character-group specifications. Each character-group specification must be
separated by a comma (,), by backslash N (\n), or by a space(). You do not have to
include enough specifications to account for all the characters in the basic record
pattern (or line pattern) of the source file; RULER steps to the next record as soon as
it runs out of specifications on each line, regardless of how far it is from the end of the
current record. Remember to enclose literal text in single quotes.
The specifications for groups of characters are of three types: T for TEXT, A for
numeric (INTEGER or DECIMAL), and S for skip or ignore. The formats for these
types are shown in the following table:

Chapter 10
IMPORT

10-19

Format Description

[mm]Tn
n

Specifies that Oracle OLAP should copy mm groups (default = 1) of
nn characters (bytes) apiece as TEXT. Specifying a group (or
groups) of 0 characters leaves an empty cell(s) in the
corresponding position in the worksheet. Each group may consist of
up to 498 characters. Trailing blanks are stripped.

[mm]An
n

Specifies that Oracle OLAP should copy mm groups (default = 1) of
nn characters (bytes) apiece and try to convert each group to a
number. When a character group cannot be converted to a number,
it is copied into a TEXT cell and any trailing blanks are stripped. A
valid number includes anything you can type for a GET(DECIMAL)
function except NA.
Commas embedded in a number before a period (decimal point)
are ignored. Consequently, multiple numbers separated only by
commas or two numbers separated only by a single period are
treated as parts of a single number (when you want the numbers
treated separately, insert spaces between them in the source file).
Leading dollar signs ($) and trailing percent signs (%) are ignored,
and leading and trailing spaces are stripped. Multiple periods are
treated as excess decimal points and ignored (to undo the effects of
dotfill). For example,...17... is treated as though the field is 17.
Numbers preceded by a hyphen, or a hyphen and spaces, and
numbers enclosed in parentheses, are treated as negative.
Specifying a group (or groups) of 0 (zero) characters leaves an
empty cell (or cells) in the corresponding position in the worksheet.
Each group may consist of up to 4,000 characters.

[mm]Snn Specifies that Oracle OLAP should skip or ignore mm groups of nn
characters (bytes). The limit for nn is 32,767. (You would probably
only use mm to expand this limit to handle a very long record.)

FILE file-id
Identifies the file you want to import. File-id is a text expression that represents the
name of the file. The name must be in a standard format for a file identifier.

STOPAFTER n
Specifies that no more than n records should be read from the file. When
STOPAFTER is omitted, Oracle OLAP reads the whole file.

TEXTSTART schar
The schar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the start of a text field in a structured file. The
default character is a double quote (").

TEXTEND echar
The echar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the end of a text field in a structured file. The default
character is a double quote (").

DELIMITER dchar
The dchar argument is a text expression that specifies a single character that you
want Oracle OLAP to interpret as the general field delimiter in a structured file. Oracle
OLAP uses the general field delimiter to identify both numeric and text fields. The
default character is a comma (,).

Chapter 10
IMPORT

10-20

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when importing text data from the
file specified by file-id which allows Oracle OLAP to convert the data accurately from
that character set. This argument must be the last one specified. When this argument
is omitted, and Oracle OLAP cannot determine the character set from the file itself,
then Oracle OLAP imports the data in the database character set, which is recorded
in the NLS_LANG option.

Usage Notes

WKSROW and WKSCOL Dimensions

The WKSROW (the default worksheet row) dimension of an Oracle OLAP worksheet
object corresponds to the lines of a text file. The WKSCOL (the default worksheet column)
dimension of a worksheet divides each row into cells that can be used to separate
data types when there are potentially several types on each line of the source file.
WKSROW and WKSCOL are INTEGER dimensions with values of 1, 2, 3, and so on.

Minimum Worksheet Size

Oracle OLAP sets up a minimum-size worksheet that is 63 cells square, regardless of
whether or not all the cells are used. When the source text file requires an Oracle
OLAP worksheet larger than the minimum, IMPORT automatically increases the
dimension values of WKSCOL and WKSROW as needed.

Importing Numbers

When importing a number from a text file, IMPORT gives it an INTEGER data type.

File Transfer to Another Computer

When the file you are importing originated on another computer, ensure that its
character set is appropriate. When you transfer a text file to another computer, the
communications program handling the transfer makes any necessary character
translations; for example, from ASCII to EBCDIC. Set the parameters of the transfer
program so that the resulting file is in the correct character set for the receiving
computer.

Examples

Example 10-9 Importing Columns Without the RULER Keyword

Suppose you have a file named abctxt in your current directory. It has 10 five-digit
groups of INTEGER values, followed by a group of 20 characters of text. To import this
file into an Oracle OLAP worksheet called sheet1, use the following statement.

IMPORT sheet1 FROM RULED PRN FILE 'abctxt' ruler '10a5, t20'

The actual format for the file name must follow the conventions for your operating
system.

Example 10-10 Importing Columns with the RULER Keyword

Suppose a file called mix has no line delimiters, with records containing 100 characters
apiece. Each record has the character distribution illustrated in the following table.

Character Content

1 - 10 To be ignored

Chapter 10
IMPORT

10-21

Character Content

11 - 17 Decimal number

18 - 28 To be ignored

29 - 30 Two single-character code

31 - 35 Integer

36 - 100 To be ignored

To import this file into an Oracle OLAP worksheet called sheet2, use the following
statement.

DEFINE sheet2 WORKSHEET temp
IMPORT sheet2 FROM RULED PRN FILE 'mix' RULER -
 's10, a7, s11, 2t1, a5'

IMPORT (spreadsheet)
You can use the IMPORT (from spreadsheet) command to copy data (not formulas)
from a spreadsheet file into an Oracle OLAP worksheet object. A worksheet's
dimensions are similar to the columns and rows of a spreadsheet. IMPORT always
copies an entire spreadsheet file at a time.

IMPORT is commonly used to copy data from other software products (for example, a
Lotus spreadsheet) into an Oracle OLAP workspace.

Syntax

IMPORT worksheetname FROM source [INTO workspace]

where source is one of the following:

WKS FILE file-id [NLS_CHARSET charset-exp]

WK1 FILE file-id [NLS_CHARSET charset-exp]

WRK FILE file-id [NLS_CHARSET charset-exp]

WR1 FILE file-id [NLS_CHARSET charset-exp]

DIF FILE file-id [NLS_CHARSET charset-exp]

CSV FILE file-id [STOPAFTER n|DELIMITER dchar|
NLS_CHARSET charset-exp]

Parameters

worksheetname
An Oracle OLAP worksheet object. In any one IMPORT statement, you can import
only one worksheetname from one spreadsheet file. You can specify a qualified object
name for the worksheet; however, when you specify the INTO worksheet argument,
the target workspace specified must be identical. See the INTO workspace argument
for information about where the worksheet object is imported.

Chapter 10
IMPORT

10-22

FROM WKS
FROM WK1
FROM WRK
FROM WR1
FROM DIF
Indicates that you want to import your Oracle OLAP worksheet from a 1-2-3 file,
Version 1 (WKS) or Version 2 (WK1); a Symphony file, Version 1.0 (WRK) or Version 1.1
(WR1); or a data interchange format file (DIF).
Oracle OLAP does not recognize numbers in E format (exponential notation) in DIF
files.

INTO workspace
An analytic workspace name that identifies the attached workspace into which data is
imported. When worksheetname exists in the specified workspace, then its data is
overwritten by the imported data. When worksheetname does not already exist,
IMPORT creates it in the specified workspace. IMPORT ignores an identically named
worksheet when it exists in another attached workspace.
When you do not specify this argument, then Oracle OLAP does the following:

• When you have not previously defined worksheetname in an attached workspace,
IMPORT defines it automatically in the current workspace using the default
dimensions WKSCOL and WKSROW.

• When worksheetname already exists in any attached workspace, IMPORT
overwrites the data it contains with the imported data.

FILE file-id
Identifies the file you want to import. The file-id argument is a text expression that
represents the name of the file. The name must be in a standard format for a file
identifier.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when importing text data from the
file specified by file-id which allows Oracle OLAP to convert the data accurately from
that character set. This argument must be the last one specified. When this argument
is omitted, and Oracle OLAP cannot determine the character set from the worksheet
itself, then Oracle OLAP imports the data in the database character set, which is
recorded in the NLS_LANG option.

Note:

The NTEXT data type is not supported in worksheets.

FROM CSV FILE file-id [STOPAFTER n] [DELIMITER dchar]
Indicates that you want to import from a source file on a cell-by-cell basis. See "CSV
Import".
STOPAFTER n specifies that no more than n records should be read from the file.
When STOPAFTER is omitted, Oracle OLAP reads the whole file.
DELIMITER dchar identifies the single character (dchar) that you want Oracle OLAP
to interpret as the general field delimiter. The default value is comma.

Usage Notes

Default Dimensions of an Oracle OLAP worksheet object

Chapter 10
IMPORT

10-23

The default dimensions of an Oracle OLAP worksheet are WKSCOL and WKSROW,
which correspond to the columns and rows of a spreadsheet. WKSCOL and WKSROW
are INTEGER dimensions with values of 1, 2, 3, and so on. When these dimensions
already exist in an attached workspace but not in the current workspace, the IMPORT
statement fails when it tries to create these dimensions. You can prevent this problem
by first defining the worksheet with different dimensions. (See "Worksheet
Dimensions" for more information.)

Addition of Cells when Needed

When the source spreadsheet contains more cells than are defined by the dimensions
of the worksheet, IMPORT automatically adds dimension values to provide the
required number of cells.

Empty and NA Cells

IMPORT merges the source file with the worksheet on a cell-by-cell basis. Cells from
the source file that are not empty, even when they just contain NA, overwrite the
contents of the corresponding cells in the worksheet; empty cells in the source file do
not overwrite the worksheet; source-file cells beyond the end of the current worksheet
are appended to it so that no data is discarded.

Numbers in DIF Files

When importing any number from DIF files, IMPORT gives it a DECIMAL data type.

CSV Import

The CSV import option automatically performs the following functions when importing
from a source file into the cells of a worksheet:

• Each line of characters in the source file is copied into a single row in the target
worksheet.

• Each group of characters on a line in the source file is copied into a separate
TEXT cell in the target worksheet row, and groups are separated by the delimiter
character.

When a group of characters is inside double quotation marks:

• A delimiter character found in this group is treated as a literal.

• When a double quotation mark occurs within this group, it must be followed by
another double quotation mark.

• A linefeed (\n) found within the group is ignored.

• Spaces or tabs found before a starting quotation mark and after an end quotation
mark are ignored.

Examples

Example 10-11 Importing a DIF File

This example shows how to import a spreadsheet in DIF format in a file called
mortgage.dif. We define the worksheet first as a temporary object, which saves
memory and storage space. IMPORT would define the worksheet sheet1 automatically
when it did not already exist. When it had already been used in a previous IMPORT
statement, any data in it would be overwritten with new data.

DEFINE sheet1 WORKSHEET TEMP
IMPORT sheet1 FROM DIF FILE 'mortgage.dif'

Chapter 10
IMPORT

10-24

INFILE
The INFILE command causes Oracle OLAP to read statement input from a specified
file.

See Also:

"File Reading and Writing Options"

Syntax

INFILE {file-id|EOF} [NOW] [NLS_CHARSET charset-exp]

Parameters

file-id
The name of a file from which to read input. File-id is a text expression that represents
the name of the file. The name must be in a standard format for a file identifier.
The input file must contain only OLAP DML statements, along with appropriate
responses to any prompts generated by the statements. Each statement or response
must appear on a separate line in the file.

EOF
Terminates the reading of input from the current file and causes Oracle OLAP to
resume reading input from the location from which the INFILE statement was
executed. Use of INFILE EOF is optional. See "About the Input File" and "INFILE with
Both NOW and EOF".

NOW
Indicates that Oracle OLAP should open the input file specified in the INFILE and read
its statements immediately upon encountering the INFILE instead of waiting until the
program containing the INFILE is finished which has the effect of nesting the input
file's statements within the program. See "INFILE with Both NOW and EOF". This
argument must be specified after file-id.

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when reading data from the file
specified by file-id which allows Oracle OLAP to convert the data accurately into the
current character set, as identified by the NLS_LANG option. This argument must be
specified after file-id. When this argument is omitted, then Oracle OLAP handles the
data in the file as having the database character set, which is recorded in the
NLS_LANG option.

Usage Notes

About the Input File

When the end of the input file is reached, Oracle OLAP resumes reading input from
the location from which the INFILE statement was executed (which could be another
input file). You do not have to end the input file with the statement INFILE EOF.

INFILE ignores trailing blanks at the end of a line, or between the last text on a line
and a continuation mark. INFILE also ignores blank lines.

Chapter 10
INFILE

10-25

When you use the NOW keyword and the input file ends with a continued statement,
the statement is ignored. For example, if the file ends with "show - ," Oracle OLAP
ignores a SHOW statement.

Using INFILE in a Program

When you include an INFILE statement without the NOW keyword in a program, the
INFILE statement is not executed until the program has finished executing. In a nested
program, it is not executed until all the programs involved have finished executing.
Also, when several INFILE commands have been executed by a program, the input
files are read in the opposite order from which they were specified.

For example, assume that program.a calls program.b which calls program.c, and each
program contains two INFILE commands, one before and one after the call to the next
program (as illustrated in the following code). In this case, the order of execution is: a2,
b2, c2, c1, b1, a1.

program.a
 INFILE a1
 "
 program.b
 INFILE b1
 "
 program.c
 INFILE c1
 INFILE c2
 "
 INFILE b2
 "
 INFILE a2

When you include an INFILE statement in a program with the NOW keyword, the
INFILE statement executes immediately. However, INFILE with the NOW keyword
requires more space than usual on the program stack. To conserve stack space, use
the NOW keyword only when it is necessary.

INFILE with NOW Outside of Programs

The NOW keyword is intended for use within programs, but you can use it at any time.
When you use it when the input file would not ordinarily be deferred, the NOW
keyword has no visible effect. However, because NOW requires extra stack space, do
not use it in these situations.

INFILE with Both NOW and EOF

When you use both the NOW and EOF keywords, the NOW keyword is ignored.

Displaying Infiled Statements and Responses

When you want the statements from a disk file to be copied to a debugging file as they
are executed, see the DBGOUTFILE command.

Examples

Example 10-12 Reading the Input File Immediately

The following line of code in a program causes the file called newdefs to be read in
immediately.

INFILE 'newdefs' NOW

Chapter 10
INFILE

10-26

LD
The LD command adds the description to the current object definition. The description
consists of text that you specify to describe the object. You can assign a description to
any type of definition.

Tip:

The current object definition is the definition of the object that has been most
recently defined or considered during the current session. To make an object
definition the current definition, use a CONSIDER statement.

Syntax

LD [text]

Parameters

text
The text of the description you want to assign to the definition. When text is omitted,
any existing description for the current definition is deleted.
You can create a multiline description by using a hyphen as a continuation character.
However, you cannot create a description with an initial blank line with an LD
statement.

Examples

Example 10-13 Adding a Description to the Definition of a Variable

This example changes the description associated with the variable units. First,
execute the CONSIDER statement to make units the current definition. Then use a LD
statement to assign a new description. The units variable has the following definition.

DEFINE units VARIABLE INTEGER <month product district>
LD Actual Unit Shipments

The statements

CONSIDER units
ld Actual Unit Shipments for Each Division
DESCRIBE units

produce the following definition for units.

DEFINE units VARIABLE INTEGER <month product district>
LD Actual Unit Shipments for Each Division

LIMIT command
The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valuesets the current status list of a dimension and
its dimension surrogates, or assigns values to a valueset. You use LIMIT to restrict the
data values you are working on by temporarily limiting the range of the dimensions of

Chapter 10
LD

10-27

the data. Using LIMIT, you create a current status list for a dimension. The current
status list of a dimension is an ordered list of currently accessible values for the
dimension. Values that are in the current status list of a dimension are said to be "in
status." For more information on dimension status and its importance when working
with analytic workspace data, see "How to Specify the Set of Data that OLAP DML
Operations Work Against".

Tip:

You set the current status list of one or more base dimensions of a composite,
conjoint dimension, concat dimension, or a partition template based on the
selected values of that object, see the LIMIT BASEDIMS command.

See Also:

LIMIT function, DEFINE VALUESET

Syntax

LIMIT {dimension | valueset } [concat-component] limit-type [limit-clause]
[IFNONE label]

where limit-type is one of the following keywords that specify how Oracle OLAP
should modify the current status list:

TO

ADD

INSERT [FIRST|LAST|BEFORE position|AFTER position]
KEE

REMOVE

KEEP REORDER

COMPLEMENT

SORT [NAFIRST]

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
Specifies the name of the component of the concat dimension whose values are used
to determine the limit. When you specify a value for concat-component, the limit sets
the status of the specified concat dimension using the values of dimension which is a
component of the concat dimension. This limit-clause applies only when dimension is
a concat dimension. The status of a concat dimension and of its component
dimensions are not shared. Changing the status of a component dimension after you

Chapter 10
LIMIT command

10-28

have used that dimension as the limit-clause in setting the status of a concat
dimension does not change the status of the concat dimension.

TO
Replaces the status of a dimension or valueset with the values specified by the limit-
clause arguments. The TO keyword selects values from the default status of a
dimension in the same order as they appear in the LIMIT statement or in the order
implied by the valuelist argument. When you use arguments that imply ordering, the
ordering of the values is based on their positions in the default status.

ADD
Expands the status of a dimension or valueset by adding the values specified by the
limit-clause arguments that are not already in status. The ADD keywords selects
values from the default status of a dimension in the same order as they appear in the
LIMIT statement or in the order implied by the valuelist argument. When you use
arguments that imply ordering, the ordering of the values is based on their positions in
the default status. ADD adds unique dimension values in the specified order after the
current status list or valueset list.

INSERT
Expands the status of a dimension or valueset by inserting the values specified by the
limit-clause arguments in a specified position in the current status. The INSERT
keyword selects values from the default status of a dimension in the same order as
they appear in the LIMIT statement or in the order implied by the valuelist argument.
When you use arguments that imply ordering (for example,value1 TO value2), the
ordering of the values is based on their positions in the default status. INSERT adds
values to a specified position in the current status. When an added value is already in
status, it is removed from its position in the current status and added in the order in
which it appears in the valuelist, preserving the order of the added values.

FIRST
Inserts the new values before the first value in status.

LAST
Inserts new values after the last value in status.

BEFORE
AFTER
Specifies whether new values Oracle OLAP inserts new values before or after
position in the current status.

position
A dimension value in the current status, a character expression whose value is a
dimension value in the current status, or an INTEGER expression whose value
represents the position of a dimension value in the default status.

KEEP
Reduces the status of a dimension or valueset by keeping only the values specified
by the limit-clause arguments. Oracle OLAP performs the selection based on the
current dimension status. KEEP preserves the current order of values among the
values that remain in the status.

KEEP REORDER
Like a simple KEEP, KEEP REORDER reduces the status of a dimension or valueset
by keeping only the values specified by the limit-clause arguments. Oracle OLAP
performs the selection based on the current dimension status. However, KEEP

Chapter 10
LIMIT command

10-29

REORDER orders the result in the order of the selection arguments (that is, the limit-
clause arguments) rather than by the current status order.

REMOVE
Reduces the status of a dimension or a valueset by removing the values specified by
the limit-clause arguments. Oracle OLAP performs the selection based on the current
dimension status. KEEP preserves the current order of values among the values that
remain in the status.

COMPLEMENT
Replaces the status of a dimension or valueset with the values that are not specified
by the limit-clause arguments. When you do not specify any arguments after
COMPLEMENT, status is replaced by all values not now in status. Oracle OLAP
performs the selection based on the current dimension status. COMPLEMENT leaves
dimension values that remain in their default order. (Abbreviated COMP)

SORT
Sorts the values of a dimension or valueset according to the limit-clause arguments.
LIMIT creates a temporary list of values based on the limit-clause arguments, and
uses this list to sort the current status list. Any values not present in the temporary list
are moved to the end of the current status list.

NAFIRST
Specifies that NA values are placed first in the sort list rather than last.

limit-clause
Specifies the values to use for the limit. The syntax is quite complex and,
consequently, has been divided into the following topics:

LIMIT (using values) command
LIMIT using LEVELREL command
LIMIT (using related dimension) command
LIMIT (using parent relation)
LIMIT NOCONVERT command
LIMIT command (using POSLIST)

IFNONE
(For use only within an OLAP DML program) Specifies that program execution should
branch to label when the requested status has null status or is based on a related
dimension that turns out to have null status (that is, to have no values). In either case,
the null status is not put into effect when program execution branches. Instead, the
original status, before the LIMIT statement was executed, is retained even when
OKNULLSTATUS is YES. Within an OLAP DML program, you cannot use both
IFNONE and NULL in the same statement.

label
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label". Execution of the program branches to the line directly
following the specified label.
Note that label, as specified in IFNONE, must not be followed by a colon. However,
the actual label elsewhere in the program must end with a colon.

Usage Notes

Specifying a Value of a Concat Dimension

To specify a value of a nonunique concat dimension, use the following syntax.

Chapter 10
LIMIT command

10-30

<base-dimension: value>.

Default Status List

When you first attach an analytic workspace, the current status list of each dimension
consists of all of the values of the dimension that have read permission, in the order in
which the values are stored. This list of values is called the default status list for the
dimension.

Unique Values

LIMIT selects only unique values of a dimension. When a value appears more than
once in a LIMIT statement, it is placed in status in the order of its first appearance. For
example, the following lines.

LIMIT time TO 'Jan97', 'Feb97', 'Jan97'
STATUS time

produce this output.

The current status of TIME is:
JAN97, FEB97

Nonexistent Values

Oracle OLAP does not signal an error when you try to set the status of a dimension or
valueset that has no values, unless you explicitly list values that do not exist. For
example, assume that you have not added any values to a newly defined dimension
WEEK. In this case, the statement LIMIT week TO FIRST 10 does not cause an error.
However, LIMIT week TO 'Pete' causes an error because Pete is not a value. Similarly,
LIMIT week TO 20 causes an error because week does not have a value at position 20.

Setting the Status of a Dimension or Valueset to Null

Oracle OLAP allows the status of a dimension or valueset to be set to null (empty
status) only when you have explicitly specified that you want null status to be
permitted. You can give this permission in either of two ways:

• Set the OKNULLSTATUS option to YES. This specification indicates that null status
should be allowed whenever it occurs (unless the IFNONE argument is present in
a LIMIT statement).

• Use the NULL keyword in a LIMIT statement to set the status of a particular
dimension or valueset to null. You can do this by specifying TO NULL or KEEP
NULL. This specification indicates that null status should be allowed for this LIMIT
statement only.

When you have not used either of these two methods to give permission for null status
and you execute a LIMIT statement that would result in null status, Oracle OLAP does
not change the status to null when it executes the statement. Instead, Oracle OLAP
leaves the status as it was before the statement was issued and either signals an error
(when IFNONE is not present) or branches to the IFNONE label (when IFNONE is
present).

An IFNONE argument indicates that you do not want program execution to take its
normal course when a dimension's status were to be set to null. Therefore, when
IFNONE is present, Oracle OLAP branches to the IFNONE label and does not set the
status to null, even when OKNULLSTATUS is YES. When the NULL keyword is present
with IFNONE, Oracle OLAP signals the inconsistency with an error.

Chapter 10
LIMIT command

10-31

IFNONE requires the use of unstructured programming techniques. Oracle OLAP now
provides alternative structured techniques, so the use of IFNONE is discouraged.
IFNONE has been retained for compatibility with previous versions of Oracle OLAP.

Limiting a Conjoint

To limit a conjoint dimension to a value list, you can use the following constructions:

• Specify the actual values, surrounding each combination with angle brackets

LIMIT proddist TO '<Tents, Boston>' -
 '<Footwear, Denver>'

• Use a variable name for the values, surrounding the combination with angle
brackets.

prodname = 'Canoes'
distname = 'Seattle'
LIMIT proddist To <prodname, distname>

• Create a multiline list, where each line is a combination surrounded by angle
brackets.

namelist = '<Tents Boston>\n<Footwear, -
 Denver>\n <Canoes, Seattle>'
LIMIT proddist TO namelist

• Use the implicit relation between a conjoint dimension and its base dimension to
limit the conjoint dimension. For example, use the following statement to limit
PRODDIST to all conjoint values having "Canoes" as one of its base values.

LIMIT proddist TO product 'Canoes'

Note:

You can use logical position numbers for base dimension values in a
conjoint dimension. "Example 7-125" illustrates using logical position
numbers

For an example of how you can limit a conjoint dimension that has a concat base
dimension, see Limiting a Conjoint Dimension with a Concat Base Dimension.

Limiting a Concat

You can define a concat dimension using simple dimensions, conjoint dimensions, and
other concat dimensions as the base dimensions of the concat. The syntax for limiting
a concat dimension to one of its values is the following.

LIMIT concatdim TO <base-dim: value>

For example, the concat dimension reg.dist.ccdim has the simple dimensions region
and district as its base dimensions. The following statement sets the status of
reg.dist.ccdim to two of its values, region: East and district: Atlanta.

LIMIT reg.dist.ccdim TO <region: 'East'> <district: 'Atlanta'>

For other methods of setting the status of a concat dimension, see Limiting a Concat
Dimension.

Chapter 10
LIMIT command

10-32

Alternative to Branching Using an IFNONE Label

As an alternative to branching to an IFNONE label, you can also handle null status for a
dimension with the OKNULLSTATUS option. When you set OKNULLSTATUS to YES,
then you are allowed to set the status of a dimension to null. You can then check for
null status and execute appropriate commands with an IF...THEN...ELSE command,
or you can handle null status as a case in a SWITCH command.

OKNULLSTATUS = YES
LIMIT month TO sales GT salesnum
IF STATLEN(month) LT 1
 THEN GOTO showerr

Examples

Example 10-14 Adding and Removing Values

These lines add values to the status for the month dimension.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT month ADD 'Jul96' 'Sep96'

Issuing a STATUS month statement produces this output.

The current status of MONTH is:
Jan96 TO Jul96, Sep96

This line removes values from the status for the month dimension.

LIMIT month REMOVE 'Jan96' TO 'Mar96'

Now, issuing a STATUS month statement produces this output

The current status of MONTH is:
Apr96 TO Jul96, Sep96

Example 10-15 Limiting with a Dimension Surrogate

A dimension and any dimension surrogates for it share the same status.

For example, assume that there is a NUMBER dimension named store_id that has the
values 25, 410, 150, 205, 310, and 10. It also uses storepos, an INTEGER dimension
surrogate for store_id. The dimension surrogate storepos has the values 1, 2, 3, 4, 5,
and 6. A TEXT dimension surrogate for store_id is storename. It has the text values
Raoul's - Boston, Poldy's Potpourri, Molly's Emporium, Raoul's - Atlanta, Kinch's
Kitchen Supplies, and Raoul's - Chicago. The following statements are equivalent.

LIMIT store_id TO 25 410 150
LIMIT store_id TO storepos 1 2 3
LIMIT storepos TO 1 TO 3
LIMIT storepos TO first 3
LIMIT storename TO first 3
LIMIT storename TO 'Raoul\'s - Boston' TO 'Molly\'s Emporium'
LIMIT store_id TO storename storepos 1 2 3
LIMIT storename TO store_id 25 TO 150

The following statements set the status of the store_id dimension by limiting storename,
which is a TEXT dimension surrogate for store_id, and report the values of store_id.

LIMIT storename TO 'Raoul\'s Sweets' TO 'Henry\'s Flowers'
REPORT store_id

Chapter 10
LIMIT command

10-33

The preceding statement produces the following output.

STORE_ID

10
20
30

Example 10-16 Limiting a Concat Dimension

In the following examples, the concat dimension reg.dist.ccdim has the simple
dimensions region and district as its base dimensions. A concat dimension has an
implicit relation to each of its component dimensions.

• The following statement sets the status of the concat dimension using the related
dimension syntax and specifying the positions of the component (related)
dimension.

LIMIT reg.dist.ccdim TO district 1, 4, 5

Issuing a STATUS reg.dist.ccdim statement produces the following output.

The current status of REG.DIST.CCDIM is:
<DISTRICT: BOSTON>, <DISTRICT: DALLAS>, <DISTRICT: DENVER>

• The following statement limits the concat dimension directly to the values specified
by positions of the concat dimension.

LIMIT reg.dist.ccdim TO 1, 4, 5

Issuing a STATUS reg.dist.ccdim statement produces the following output.

The current status of REG.DIST.CCDIM is:
<REGION: EAST>, <DISTRICT: BOSTON>, <DISTRICT: ATLANTA>

• The following statements set the status of district and then limit reg.dist.ccdim to
the status of district.

LIMIT district TO LAST 3
LIMIT reg.dist.ccdim TO district

Issuing a REPORT reg.dist.ccdim statement produces the following output.

REG.DIST.CCDIM

<district: Dallas>
<district: Denver>
<district: Seattle>

• In the following statement, the limit-clause argument is a list of values of the
concat dimension.

LIMIT reg.dist.ccdim TO <region: 'East'> <district:
'Boston'> <district: 'Atlanta'>

• The following statements define a valueset for reg.dist.ccdim, store the current
status of the concat dimension in the valueset, reset the status of the concat to
ALL, and then limit the concat to the valueset and report the values of the concat in
status.

DEFINE regdist.vset VALUESET reg.dist.ccdim
LIMIT regdist.vset TO reg.dist.ccdim
LIMIT reg.dist.ccdim TO ALL

Chapter 10
LIMIT command

10-34

LIMIT reg.dist.ccdim TO regdist.vset
RPR W 22 reg.dist.ccdim

The preceding statements produce the following result.

REG.DIST.CCDIM

<region: East>
<district: Boston>
<district: Atlanta>

You can also limit a concat dimension using a valueset of one of its component
dimensions:

• When the component dimensions contain identical values, you can limit the concat
dimension to those values by using a Boolean expression. When the district and
region dimensions both have New York as a value, then the following statement
limits the reg.dist.ccdim to those values.

LIMIT reg.dist.ccdim TO BASEVAL(reg.dist.ccdim) EQ 'New York'

• In the following example, the concat dimension geog has the simple dimension
region and the conjoint dimension cityandstate as its base dimensions. The
following statement sets the status of the concat dimension by limiting the conjoint
base dimension.

LIMIT geog TO cityandstate <'Princeton' 'New Jersey'> -
 <'Patterson' 'New Jersey'>

Issuing a STATUS geog statement produces the following output.

The current status of GEOG is:
<CITYANDSTATE: <PRINCETON, NEW JERSEY>, <CITYANDSTATE: <PATTERSON, NEW JERSEY>>

• The following statements sets the status of the concat dimension by limiting the
conjoint base dimension by specifying a value of a base dimension of the conjoint
dimension.

LIMIT geog TO cityandstate city 'Princeton'
RPR W 30 geog

The preceding statement produces the following output.

GEOG

<cityandstate: <Princeton, New Jersey>>
<cityandstate: <Princeton, Indiana>>

Example 10-17 Limiting with a Worksheet

This example shows how to limit a dimension to the values that are contained in a
column of a worksheet. Here the dimension month is limited to the values that are
contained in the first column of the worksheet workitem. The following statements
produce a workitem report, which is shown following the statements.

LIMIT month TO ALL
LIMIT wkscol TO 1
LIMIT wksrow TO workitem NE NA
REPORT workitem
 -WORKITEM-
 --WKSCOL--
WKSROW 1
-------------- ----------

Chapter 10
LIMIT command

10-35

 1 Jan96
 2 Feb96
 3 Mar96
 4 Apr96
 5 May96
 6 Jun96
 7 Jul96
 8 Aug96
 9 Sep96
 10 Oct96
 11 Nov96
 12 Dec96

The following statement limits the month dimension to the values that are listed in the
first column of workitem.

LIMIT month TO CHARLIST(workitem)

Issuing a STATUS month statement produces the following output.

The current status of MONTH is:
Jan96 TO Dec96

Example 10-18 Using Ampersand Substitution with LIMIT

Assume that you want to specify exactly two products for a program named
product.rpt. In this case, you could declare two dimension-value arguments to handle
them. But when you want to be able to specify any number of products using LIMIT
commands, then you can use a single argument with ampersand substitution.

Suppose you use the following commands in your program.

ARGUMENT natext TEXT
ARGUMENT widthamt INTEGER
ARGUMENT rptprod TEXT
 ...
LIMIT product TO &rptprod

You can run the program and specify that you want the first three products in the
report.

CALL product.rpt ('Missing' 8 'first 3')

The single quotation marks are necessary to indicate that "first 3" should be taken as a
single argument, rather than two separate arguments separated by a space. The
ampersand causes the LIMIT command to interpret 'first 3' as a keyword
expression rather than as a dimension value.

Example 10-19 Branching on Null Status

Your program might try to set or refine the status of the product dimension to include
only the products for which unit sales are greater than 500. When no products have
unit sales of more than 500, then you can use the IFNONE keyword to specify that
execution branch to the novals label.

LIMIT product KEEP units GT 500 IFNONE novals

In the commands following the novals label, you can handle the special situation in
which no products have units sales greater than 500.

Chapter 10
LIMIT command

10-36

LIMIT (using values) command
A LIMIT command with a using values limit clause assigns values to a valueset or sets
the current status list of a dimension or dimension surrogates to:

• Specified value or values. The values can be any of the following:

– Dimension values, expressed as literal values separated by commas, or as a
multiline text expression, each line of which is a value of the dimension.

– Ranges of dimension values, expressed as value1 TO value2.

– Integer values that represent the logical positions of dimension values,
expressed as comma-delimited INTEGER values.

– Ranges of INTEGER values that represent the logical positions of dimension
values, expressed as value1 TO value2.

– Valuesets.

• Values for which a Boolean expression is TRUE.

• The top or bottom performers of a dimension based on a criterion

• The top or bottom performers of a dimension, by percentage, based on a criterion
represented as an expression

Syntax

LIMIT {dimension | valueset} [concat-component] limit-type -

 {inclusive-val-args....| exclusive-val-args} [IFNONE label]

where:

• inclusive-val-args is one or more of the following constructs:

 intvaluelist
 text-expression
 value1 TO value2
 valuelist
 valueset

• exclusive-val-args is one of the following constructs:

 ALL

 boolean-expression
 {BOTTOM|TOP} n BASEDON expression

 {BOTTOM|TOP} n-percent PERCENTOF expression

 {FIRST|LAST} n

 NTH {n |n TO n}...
 LONGLIST

 LONGLIST

SESSION

STATUS

 NULL

Chapter 10
LIMIT command

10-37

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list. (See
the main entry for LIMIT command for a list and descriptions of these keywords.)

intvaluelist
A list of one or more INTEGER values, or the name of a single-cell variable that holds a
numeric value. Separate the values with commas (,). Numeric values with decimal
places (SHORTDECIMAL or DECIMAL values) are automatically truncated to INTEGER
values before being used as dimension values. An INTEGER specifies a dimension
value by its logical position in the full set of dimension values. You cannot specify a
NUMBER dimension value by an INTEGER position. When the values of the NUMBER
dimension are INTEGER values, then you can set the status of the dimension by
specifying dimension values, as in intvalue1, intvalue2 and so on.

text-expression
A multiline text expression, each line of which is a value of dimension.

value1 TO value2
Specifies a range of dimension values where value1 and value2 can be either INTEGER
values or dimension values. Such a range can be increasing (for example, 1 to 10) or
decreasing (for example, 10 to 1). When you specify an INTEGER value, that value is
the logical position of a value in the default status list for the dimension. When you
specify a dimension value, the command convertsthe value to the logical position of
the value in the default status list for the dimensioon. The current status of the
dimension or valueset is assigned accordingly.

Tip:

You cannot specify the values of a NUMBER dimension using INTEGER
positions. Instead, define an INTEGER dimension surrogate for the NUMBER
dimension and limit the dimension by the positions of the surrogate.

valuelist
A list of one or more values of dimension. A dimension value can be specified as a
text expression whose value is a valid dimension value. For a NUMBER dimension,
dimension values are numbers. For dimensions with a type of DAY, WEEK, MONTH,
QUARTER, or YEAR, dimension values can also be specified as DATE expressions.

Chapter 10
LIMIT command

10-38

valueset
An analytic workspace valueset object that is a saved list that holds the values for the
dimension whose status is being set. You cannot define a valueset for a dimension
surrogate, therefore you cannot specify a valueset when setting the status of a
dimension surrogate. However, when you limit a dimension with a valueset, then you
automatically limit to the same set any dimension surrogates of that dimension. You
can also specify a LIMIT function.

ALL
Specifies that all dimension values in the default status are to be included in the
status. The default status is made up of all dimension values for which read
permission is granted, in the same order as when the dimension was last maintained.
When you start up an analytic workspace, the status for each dimension in your
analytic workspace is the default status. Changing the read permission for a
dimension with PERMIT or PERMITRESET statement changes the default status for
the dimension.

boolean-expression
An expression whose TRUE values are used by Oracle OLAP when limiting the
dimension or status. The boolean-expression must be dimensioned by the dimension
whose status is being set. For a dimension surrogate, the Boolean expression is
evaluated over the dimension for which it is a surrogate. The data types of the
expressions you are comparing in the Boolean expression must be similar. See the
CONVERT function for information on converting data types. To correctly use LIMIT
with a Boolean expression you must understand how it works with a Boolean
expression that has with multiple dimensions, see "How LIMIT Handles Boolean
Expressions With More Than One Dimension" for details.

BOTTOM n BASEDON expression
TOP n BASEDON expression
Specifies that the status of a dimension or valueset is set based on a criterion, where
n is the number of values to select and expression is the criterion on which to base
the selection. All dimensions of expression other than the one whose status is being
set must be limited to a single value. TOP results in the status sorted in descending
order, BOTTOM results in the status sorted in ascending order. You cannot use a
composite after the BASEDON keyword. When you attempt to do so, an error
message is displayed.

BOTTOM n-percent PERCENTOF expression
TOP n-percent PERCENTOF expression
Specifies that the status of a dimension or valueset is set by finding the top or bottom
performers based on a criterion represented as an expression. This construction sorts
values and adds them to the status that is based on their contribution, by percentage,
to an expression.
For example, the following statement sorts products in descending order by each
product's contribution to TOTAL(sales) and then add values to the status, starting from
the top, until the cumulative total of sales by product reaches or exceeds 30 percent of
all sales.

LIMIT product TO TOP 30 PERCENTOF TOTAL(sales, product)

Chapter 10
LIMIT command

10-39

Note:

Do not use a criterion expression that causes a side effect or changes its own
value.

FIRST n
LAST n
Specifies the first n, last n values in the dimension's full set of values when used with
TO, ADD, COMPLEMENT, or INSERT. When used with KEEP or REMOVE, specifies
the first n, last n or nth values in the current status.

Note:

It can happen that the last item in status, based on a PERCENTOF criterion, is
one of several dimension values having the same associated criterion value. In
this case, LIMIT includes all dimension values with that criterion value in the
resulting status, even when that causes the total of the criterion value to far
exceed the specified percentage.

NTH {n |n TO n}
Specifies the n values in the dimension's full set of values when used with TO, ADD,
COMPLEMENT, or INSERT. When used with KEEP or REMOVE, specifies the n
values in the current status. You can specify any number of values or range of values.

LONGLIST
Indicates that there can be up to 2,000 arguments in the LIMIT statement. When there
are less than 300 arguments, LONGLIST is not needed.

SESSION
Specifies that Oracle OLAP use only those dimension members that were created
using a MAINTAIN ADD SESSION statement when performing the limit.

STATUS
Specifies that Oracle OLAP use the values that are presently in status when
performing the limit. Specifying this keyword is equivalent to (but more efficient than)
using a VALUES (dimname) statement.

NULL
Indicates an empty dimension or valueset list. Using this keyword with the TO or
KEEP arguments removes all values from the current status, leaving an empty
dimension or valueset list, even when OKNULLSTATUS is NO. You cannot use
IFNONE and NULL in the same LIMIT statement. ADD, INSERT, and REMOVE NULL
leave status unchanged. COMPLEMENT NULL places all values in status.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Usage Notes

Considerations When Specifying Values

Chapter 10
LIMIT command

10-40

Keep the following points in mind when specifying values in limit-clause:

• The setting of the LIMITSTRICT option determines how Oracle OLAP behaves
when a list of values in a LIMIT command, a LIMIT function, or a QDR contains a
nonexistent value. By default, when you specify a nonexistent value, Oracle OLAP
treats the nonexistent value as an invalid value and stops executing the limit and
issues an error. If, instead, you want Oracle OLAP to treat a nonexistent value as
an NA value, set the value of LIMITSTRICT to NO.

• You can embed a quoted string within a quoted string, which is necessary when
there are special characters in a base dimension value of a composite or conjoint
dimension, such as Joe's Deli. See the "Text Literals".

• When the dimension has the NTEXT data type and an argument that represents a
dimension value has the TEXT data type, LIMIT converts the argument value to
NTEXT. Similarly, when the dimension has the TEXT data type and an argument
that represents a dimension value has the NTEXT data type, LIMIT converts the
argument value to TEXT; however, in this case, the conversion can result in data
loss when the NTEXT value cannot be represented in the database character set.

• When you specify a value of a dimension with a type of DAY, WEEK, MONTH,
QUARTER, or YEAR, the value can be in the format specified by the VNF (value
name format) for the dimension (or in the default VNF for the type of dimension
you are limiting when the dimension does not have a VNF) or in a valid input style
for DATE values.

You must only provide the date components that are relevant for the type of
dimension you are limiting. For a DAY or WEEK dimension, you must supply the
day, month, and year components. For a MONTH or QUARTER dimension, you
must only supply the month and year (for example, Jun95 or 0695 for June 1995).
For a YEAR dimension, you must only specify the year (for example, 95 for 1995).
The valid input styles for dates are discussed in DATEORDER.

When you specify a DATE expression or a text value that represents a complete
date, you can specify any date that falls within the time period that is represented
by the desired dimension value. Oracle OLAP uses the DATEORDER option to
resolve any ambiguities.

How LIMIT Handles Boolean Expressions With More Than One Dimension

When you have used this type of LIMIT command (or LIMIT function) to limit only one
dimension of a multi-dimensional Boolean expression, you effectively limit that
expression to the values of limited dimension and only the current values of the
unlimited dimensions.

For example, assume that you you have a sales variable is dimensioned by three
dimensions: product, district, and month.

Let's look first at what happens when you explicitly limit district and month dimensions
to single values and then limit product using a Boolean expression.

LIMIT month TO 'Jan95'
LIMIT district TO 'Boston'
LIMIT product TO sales GT 90000
STATUS product

The STATUS statement produces the following output.

The current status of PRODUCT is:
Footwear

Chapter 10
LIMIT command

10-41

In this case, the resulting status is all of the products whose sales exceed $90,000 for
the month of January 1995 in the Boston district, which is only Footwear.

Now consider the following example in which the MONTH dimension is not limited to a
single value.

LIMIT product TO ALL
LIMIT month TO 'Jan95' 'Feb95' 'Mar95'
LIMIT district TO 'Boston'

When you execute a REPORT sales statement, you can see the BOSTON sales
figures for three months.

DISTRICT: BOSTON
 -------------SALES--------------
 -------------MONTH--------------
PRODUCT Jan95 Feb95 Mar95
-------------- ---------- ---------- ----------
Tents 32,153.52 32,536.30 43,062.75
Canoes 66,013.92 76,083.84 91,748.16
Racquets 52,420.86 56,837.88 58,838.04
Sportswear 53,194.70 58,913.40 62,797.80
Footwear 91,406.82 86,827.32 100,199.46

However, the following LIMIT and STATUS commands produce the output shown
following them. Again, only Footwear is in the status for month.

LIMIT product TO sales GT 90000
STATUS product

The current status of PRODUCT is:
Footwear

In this case, each product has three sales figures, one for each month. For each
product, LIMIT evaluates the sales data for only the first month in status. A product is
added to the status when its sales data exceeds $90,000 in that month.

When you would like all months evaluated for each product, you can use the EVERY,
ANY, or NONE functions. For example, the following LIMIT statement adds a product
to the status when any of its months has a sales figure that exceeds $90,000.

LIMIT product TO ANY(sales GT 90000, product)

In this case a STATUS product statement produces the following output.

The current status of product is:
Canoes, Footwear

Limiting Using Implicit Relations

Every dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR is related
to all other dimensions of this type through an implicit relation. When you limit the
values of one DAY, WEEK, MONTH, QUARTER, or YEAR dimension by specifying
another DAY, WEEK, MONTH, QUARTER, or YEAR dimension as the related-
dimension, Oracle OLAP uses the implicit relation by default. However, when an
explicit relation is defined between the two of these types of dimensions, you can

Chapter 10
LIMIT command

10-42

override the default by specifying the name of the explicit relation as the related-
dimension. For example, you can issue the following statement.

LIMIT month TO quarter year

This statement temporarily limits quarter to year, then limits month to quarter, and
finally, restores quarter to its original status.

Examples

Example 10-20 Using LIMIT to Partially Populate Variables

DEFINE GEOG DIMENSION TEXT
DEFINE PRODUCTS DIMENSION TEXT
DEFINE SALES VARIABLE DECIMAL <PRODUCTS GEOG>
DEFINE COSTS VARIABLE DECIMAL <PRODUCTS GEOG>

Assume also as shown by the following reports that you have populated the
dimensions but not the variables. All of the elements of the costs and sales variables
appear in the report and all have the value of NA.

PRODUCTS

TVs
Radios
Skis
Bikes

GEOG

Boston
Springfield
New Orleans
Baton Rouge
Quebec City
Montreal
Toronto
Norfolk

 -------------------SALES-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston NA NA NA NA
Springfield NA NA NA NA
New Orleans NA NA NA NA
Baton Rouge NA NA NA NA
Quebec City NA NA NA NA
Montreal NA NA NA NA
Toronto NA NA NA NA
Norfolk NA NA NA NA

 -------------------COSTS-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston NA NA NA NA
Springfield NA NA NA NA
New Orleans NA NA NA NA
Baton Rouge NA NA NA NA

Chapter 10
LIMIT command

10-43

Quebec City NA NA NA NA
Montreal NA NA NA NA
Toronto NA NA NA NA
Norfolk NA NA NA NA

Now you issue the following LIMIT command so that only values indexed by Boston
and Springfield values of the geog dimension are accessible to Oracle OLAP.

LIMIT geog TO 'Boston' 'Springfield'

Now you issue new reports for geog, costs, and sales. For the geog dimension only the
Boston and Springfield elements values appear. Also, only the elements of the costs
and sales variables that are indexed by Boston and Springfield appear in the report.

GEOG

Boston
Springfield

 -------------------SALES-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston NA NA NA NA
Springfield NA NA NA NA

 -------------------COSTS-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston NA NA NA NA
Springfield NA NA NA NA

Now you issue two assignment statements that use the RANDOM function to populate
the costs and sales variables, followed by the LIMIT command that sets the status of
the geog dimension to its default status of ALL.

sales = RANDOM (200)
costs = RANDOM (100)
LIMIT geog to ALL

Now you issue new reports for geog, costs, and sales. All of the values of the geog
dimension and all of the elements of the costs and sales variables appear. However,
only the elements of the costs and sales variables that are indexed by Boston and
Springfield have non-NA values.

GEOG

Boston
Springfield
New Orleans
Baton Rouge
Quebec City
Montreal
Toronto

Chapter 10
LIMIT command

10-44

Norfolk

 -------------------SALES-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston 199.97 133.82 10.07 148.17
Springfield 173.94 27.56 32.21 47.40
New Orleans NA NA NA NA
Baton Rouge NA NA NA NA
Quebec City NA NA NA NA
Montreal NA NA NA NA
Toronto NA NA NA NA
Norfolk NA NA NA NA

 -------------------COSTS-------------------
 -----------------PRODUCTS------------------
GEOG TVs Radios Skis Bikes
------------ ---------- ---------- ---------- ----------
Boston 43.52 25.32 68.68 10.38
Springfield 9.49 27.96 61.76 16.12
New Orleans NA NA NA NA
Baton Rouge NA NA NA NA
Quebec City NA NA NA NA
Montreal NA NA NA NA
Toronto NA NA NA NA
Norfolk NA NA NA NA

Example 10-21 Limiting with a Boolean Expression

You can limit a dimension or valueset according to the values of a Boolean
expression. In this example, the values of the TOTALL function are broken out by
product and compared to a constant. The LIMIT statement sets the status to all the
products whose sales, totaled for all months and districts, are greater than 12 million.

LIMIT product TO TOTAL(sales product) GT 12000000

Example 10-22 Limiting with a Formula

When you use the same criterion frequently to limit a dimension, you can save the
expression as a formula and use the name of the formula as the limit expression.

DEFINE criterion FORMULA TOTAL(sales product) GT 12000000
LIMIT product TO criterion

Example 10-23 Limiting with a Valueset

You can save a status list in a valueset and use those values later to limit the status.
When it takes several LIMIT commands to produce the status list you want, the
valueset keeps you from having to repeat those LIMIT commands each time you need
the same list. The following statements limit district to the districts in which
sportswear sales exceeded $1,000,000 in 1996. The status is saved in the valueset
sports.district, and you can limit district to the same list with one LIMIT statement.

DEFINE sports.district VALUESET district
LIMIT product TO 'Sportswear'
LIMIT month TO year 'Yr96'
LIMIT sports.district TO TOTAL(sales district) GT 1000000
LIMIT district TO sports.district

Issuing a STATUS district statement produces this output.

Chapter 10
LIMIT command

10-45

The current status of DISTRICT is:
ATLANTA TO DENVER

Example 10-24 Limiting with a Variable

Here the TOP and BASEDON keywords are used to limit the status of a dimension,
using the values of a variable as a criterion. The status list is sorted in descending
order according to the values of sales.

LIMIT product TO 'Sportswear'
LIMIT month TO 'Jul96'
LIMIT district TO TOP 2 BASEDON sales

The following REPORT statement

REPORT DOWN district sales

produces this output, which shows the results of the LIMIT commands.

PRODUCT: SPORTSWEAR
 --SALES---
 --MONTH---
DISTRICT Jul96
-------------- ----------
Dallas 220,416.81
Atlanta 211,666.14

Example 10-25 Limiting a Conjoint Dimension with a Concat Base Dimension

Assume that your analytic workspace contains a conjoint dimension named
prod.regdist that has the product simple dimension and the reg.dist.ccdim concat
dimension as its base dimensions. The conjoint dimension prod.regdist has the
following values.

Tents <region: East>
Tents <region: West>
Canoes <region: East>
Canoes <region: West>
Tents <district: Boston>
Tents <district: Atlanta>
Tents <district: Denver>
Canoes <district: Atlanta>
Canoes <district: Seattle>

There are two different ways that you can set the status of a conjoint dimension that
has a concat dimension as a base dimension:

• By specifying the concat dimension, one of its component dimensions, and a value
of the component dimension. The following LIMIT statement sets the status of
prod.regdist in this manner.

LIMIT prod.regdist TO reg.proddist.ccdim district 'Atlanta'
RPR W 20 prod.regdist

The preceding statement produces the following output.

--------------PROD.REGDIST---------------
 PRODUCT REG.DIST.CCDIM
-------------------- --------------------
Tents <district: Atlanta>
Canoes <district: Atlanta>

Chapter 10
LIMIT command

10-46

• You can also set the status of the conjoint by specifying its values. The following
LIMIT statement sets the status of prod.regdist in this manner.

LIMIT prod.regdist TO <'Tents' '<region: East>'> <'Tents' '<district: Boston>'>
RPR W 20 prod.regdist

The preceding statement produces the following output.

--------------PROD.REGDIST---------------
 PRODUCT REG.DIST.CCDIM
-------------------- --------------------
Tents <region: East>
Tents <district: Boston>

LIMIT using LEVELREL command
A LIMIT command that uses only dimension values that are at the same level as the
current level of the hierarchical dimension or dimension surrogate when setting status
or assigning values to a valueset.

Syntax

LIMIT {dimension | valueset} [concat-component] limit-type-

 LEVELREL level-relation-clause [IFNONE label]

where the syntax of level-relation-clause varies depending on the
dimensionality of the object you want to specify:

• To specify a level relation which is multidimensional you use the following syntax:

RELATION level-relation-name [QUALIFY relation-dimension-name [inclusive-val-
args...]...]

(You can also use this syntax when the level relation is one-dimensional.)

• To specify a level relation which is one-dimensional, you can use the following
simplified syntax:

 level-relation-name [valueset2]

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values; or a LIMIT function.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list. (See
the main entry for LIMIT command for a list and descriptions of these keywords.)

Chapter 10
LIMIT command

10-47

LEVELREL
Sets the status of a hierarchical dimension to all of the values of the hierarchical
dimension that are at the same level as the current value of the dimension; or, that
limits a hierarchical dimension to those values of the hierarchical dimension that are
at the same level as the current value of the dimension and that are also in a specified
valueset.

RELATION
Specifies that Oracle OLAP performs the limit based on the values of the relation
specified by level-relation-name. Specify this keyword if level-relation-name is a
multidimensional relation.

level-relation-name
Specifies the name of a level relation for the hierarchical dimension you want to limit.
See "Levelrel Relation" for more information.

QUALIFY relation-dimension-name [inclusive-val-args]
Identifies the values by which Oracle OLAP performs the limit.

• relation-dimension-name is the name of a dimension of the relation
specified by level-relation-name.

• inclusive-val-args specifies the values of relation-dimension-name to use
when determining the values of level-relation-name by which to perform the limit.
You can specify any inclusive valuelist argument as described in the syntax of the
inclusive-val-args argument for the valuelist clause for LIMIT command. (See
LIMIT (using values) command for detailed syntax.) When you omit this argument,
Oracle OLAP uses the current status of the dimension when performing the limit.

valueset2
Specifies the name of a valueset object is dimensioned by the level dimension for the
hierarchical dimension that you want to limit. The result of using this argument is the
individual valueset that corresponds to the level value of the current position of the
dimensions.
You can also specify aLIMIT function.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Examples

Example 10-26 Limiting to a Single Time Period of a Hierarchical Time
Dimension

Assume that you have defined a hierarchical text dimension named time, a level
dimension named timelevels that has Month and Year as values, and a relation named
timelevelsrel that is dimensioned by time and that has timelevels as a related
dimension (that is, for each value of the time dimension, timelevelsre contains a value
of either Month or Year) When you want to limit the values of time that are already in
status to only those values that are at the same level as Jan99, you can issue the
following statement.

LIMIT time TO LEVELREL timelevelsrel

This is equivalent to issuing the following statement

Chapter 10
LIMIT command

10-48

LIMIT time TO RELATION timelevelsrel QUALIFY time CURRENT

LIMIT (using related dimension) command
A LIMIT command with a related-dimension limit clause that uses the values of a
different related dimension to assign values to a valueset or to set the status of a
dimension or a dimension surrogate.

Syntax

LIMIT {dimension | valueset} limit-type related-dim-clause [IFNONE label]

where the syntax of related-dim-clause varies depending on the type of object
being specified:

• When you want to specify a relation, the syntax is:

RELATION relation-name [QUALIFY relation-dimension-name [inclusive-val-
args...]...]

• When you want to specify a dimension that is related to the dimension being
limited, the syntax is:

 related-dimension-name [related-dimension-valuelist]

(You can also use this simplified syntax when the object is a one-dimensional
relation.)

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values; or a LIMIT function.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list. (See
the main entry for LIMIT command for a list and descriptions of these keywords.)

RELATION relation-name
Specifies that Oracle OLAP performs the limit based on the values of the relation
specified by relation-name. Specify this keyword if relation-name is a multidimensional
relation. Also, when there are multiple relations between the dimension being limited
and the dimension specified by related-dimension-name, you can use this phrase to
identify which relation Oracle OLAP uses to perform the limit.

QUALIFY relation-dimension-name [inclusive-val-args]
Identifies the values by which Oracle OLAP performs the limit, where:

• relation-dimension-name is the name of a dimension of the relation
specified by relation-name.

Chapter 10
LIMIT command

10-49

• inclusive-val-args specifies the values of relation-dimension-name to use
when determining the parent values. You can specify any inclusive valuelist
argument as described in the syntax of the inclusive-val-args argument for the
valuelist clause for LIMIT command. See LIMIT (using values) command for
detailed syntax. When you omit this argument, Oracle OLAP uses the current
status list of the related dimensions when performing the limit.

related-dimension-name
Specifies the name of a one-dimensional relation or a dimension that is related to the
dimension being limited. For related-dimension-name, you can also specify a
dimension surrogate for the dimension you are limiting, or a dimension surrogate of
the related dimension. For example, dimsurr is a dimension surrogate of dim2 and dim2
is related to dim1. The dimension surrogate dimsurr has the values Dsv1, Dsv2, Dsv3 and
Dsv4. The following statement limits dim1 by specifying values of dimsurr.

LIMIT dim1 TO dimsurr dsv1 dsv3

related-dimension-valuelist
The values of the related dimension or a dimension surrogate for the related
dimension or the dimension specified using the syntax shown in LIMIT command. See
LIMIT (using values) command for detailed syntax. When this argument is present in
a LIMIT statement, status is obtained by selecting the values of the dimension being
limited, which are related to the related-dimension values. When valuelist is omitted,
the current status value of related-dimension is used.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Usage Notes

Limiting to a Related Dimension Is a Two-Step Process

When you limit a dimension or valueset to a related dimension, the resulting status is
determined in a two-step process:

1. The dimension values are arranged in the order of the values of the related
dimension.

2. When there are multiple values of the dimension for any value of the related
dimension, those values are arranged in the order of their default status.

Suppressing the Sort When Limiting to a Related Dimension

You can suppress the sort that occurs when you limit a dimension or valueset to a
related dimension by setting LIMITSORTREL to NO which can significantly improve
performance when the dimension you are limiting is large.

Note:

When LIMIT.SORTREL is NO, printed output of a dimension may not appear in
logical order.

Chapter 10
LIMIT command

10-50

Examples

Example 10-27 Limiting with a Related Dimension

Here the status of a dimension is limited using a related dimension. This statement
limits district to Boston and Atlanta, which are in the East region.

LIMIT district TO region 'East'

This statement limits product to Sportswear and Footwear, which are in the division that
appears last in the list of division values.

LIMIT product TO division LAST 1

LIMIT (using parent relation)
A LIMIT command that uses a parent relation in its limit clause to set the status of a
hierarchical dimension or its dimension surrogate, or assigns values to a valueset,
based on family relationships within the hierarchy.

See:

"Looping Behavior of LIMIT (using parent relation)"

Syntax

LIMIT {dimension | valueset} [concat-component] limit-type-

 [family-keyword] USING parent-relation-clause [IFNONE label]

where:

• family-keyword has one of the following constructs:

 PARENTS
 CHILDREN
 ANCESTORS [DISTANCE generation]
 DESCENDANTS [DISTANCE generation]
 SIBLINGS
TOPANCESTORS

BOTTOMDESCENDANTS

 HIERARCHY
[INVERTED] [NOORIGIN] [SKIP n] [DEPTH n] [RUN textexp]]

• The syntax for parent-relation-clause varies depending on its
dimensionality of the object you want to specify:

– When the parent relation is multidimensional, use the following syntax:

RELATION parentrel [QUALIFY relation-dimension-name [inclusive-val-args...
| CURRENT]...]

(You can also use this syntax when the parent relation is one-dimensional.)

Chapter 10
LIMIT command

10-51

– When the parent relation is one-dimensional, you can use the following
simplified syntax:

 parentrel [inclusive-val-args | CURRENT]

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values; or a LIMIT function.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list. (See
the main entry for LIMIT command for a list and descriptions of these keywords.)

PARENTS
Finds the parent of each value in valuelist. For a dimension, when there is no
valuelist, finds the parent for each value in status. For a valueset, when there is no
valuelist, it finds the parent of each value in the valueset. It uses the parent-relation to
look up the parent.

CHILDREN
Finds the children of each value in valuelist. For a dimension, when there is no
valuelist, finds the children for each value in status. For a valueset, when there is no
valuelist, it finds the children of each value in the valueset. It uses the parent-relation
to look up the children.

ANCESTORS [DISTANCE generation]
When you do not include the DISTANCE phrase:

• Finds the ancestors (that is, parents, grandparents, and so on) of each value in
valuelist. For a dimension, when there is no valuelist, it finds the ancestors of
each value in status.

• For a valueset, when there is no valuelist, it finds the ancestors of each value in
the valueset. In other words it finds "parents" for the values and the "parents of
the parents" until there are no new parents.

When you include the DISTANCE phrase, limits to the ancestors who are members of
the generation specified by generation:

• For generation, specify 0 for the current generation, 1 for parents, 2 for
grandparents, 3 for great grandparents, and so on.

• For negative values, the command returns descendant generations (that is -1
returns children, -2 returns grandchildren, and so on).

DESCENDANTS [DISTANCE generation]
When you do not include the DISTANCE phrase:

Chapter 10
LIMIT command

10-52

• Finds the descendants (that is, children, grandchildren, and so on) of each value
in valuelist. For a dimension, when there is no valuelist, it finds descendants for
each value in status.

• For a valueset, when there is no valuelist, it finds the descendants of each value
in the valueset. In other words, it finds the children of the values and the children
of the children until there are no new children.

When you include the DISTANCE phrase, limits to the descendants who are
members of the generation specified by generation:

• For generation, specify 0 for the current generation, 1 for children, 2 for
grandchildren, 3 for great grandchildren, and so on.

• For negative, the command returns ancestor generations (that is -1 returns
parents, -2 returns grandparents, and so on).

SIBLINGS
Finds all siblings of each value in valuelist, including the valuelist values, themselves.
Issuing one LIMIT statement with the SIBLIGS keyword is the same as issuing two
consecutive LIMIT statements: 1) LIMIT with PARENTS, 2) LIMIT with CHILDREN.
For a dimension, when there is no valuelist, it finds siblings for each value in status.
For a valueset, when there is no valuelist, it finds the siblings of each value in the
valueset.

TOPANCESTORS
(Abbreviated TOPANC) Finds those members that are at the top of the hierarchy; that
is, those members that do not have any ancestors which is equivalent to issuing the
following two LIMIT commands.

 LIMIT dimension to ANCESTORS
 LIMIT dimension REMOVE DESCENDANTS....

BOTTOMDESCENDANTS
(Abbreviated BOTTOMDESC) Finds those members that are at the bottom of the
hierarchy; that is, those members that do not have any descendants.

HIERARCHY
Finds the descendants (that is, children, grandchildren, and so on) based on a
particular parent-relation. The difference is the order of the values. DESCENDANTS
groups the values by level (all children, then all grandchildren, and so on);
HIERARCHY places each group of children next to its parent. HIERARCHY includes
the original values (that is, those in status before the LIMIT statement was executed)
in status.

INVERTED
Indicates that children should be listed before their parents. By default, children are
listed after their parents.

NOORIGIN
Excludes the original values from the status. The default is to include original values.

SKIP
Skips n generations for each value in valuelist. For dimensions, when there is no
valuelist, it skips n generations for each value in status. For a valueset, when there is
no valuelist, it skips n generations for each value in the valueset. This keyword, in
combination with DEPTH, is helpful when drilling down; see Drilling Down Using SKIP
and DEPT.

Chapter 10
LIMIT command

10-53

DEPTH
Includes n generations down from each value of valuelist. For dimensions, when there
is no valuelist, it includes n generations for each value in status. For a valueset, when
there is no valuelist, it includes n generations of each value in the valueset. The
default depth value is 99. This keyword, in combination with SKIP, is helpful when
drilling down on values.

RUN
Executes a statement, represented as a text expression, every time a group of
children is constructed. For example, you can sort each group of children based on
information stored in an Oracle OLAP variable. In the following statement, markets
are sorted in increasing order based on unit sales every time a group of children is
constructed.

LIMIT market TO HIERARCHY RUN 'SORT market a unit.m' USING -

 market.market

Note:

In this example, when you use KEEP or REMOVE instead of TO in your LIMIT
statement, the SORT statement would have no effect.

USING
Specifies the values to use when determining parent values.

parentrel
Specifies the name of the parent relation for the dimension.

See Also:

"Parentrel Relation" and "Looping Behavior of LIMIT (using parent relation)"

To limit a dimension surrogate, use the parent relation for the dimension for which it is
a surrogate.

RELATION
Identifies the beginning of the parent-relation-clause. You use this keyword when
parentrel is a multidimensional relation.

QUALIFY relation-dimension-name
Specifies the name of a dimension of parentrel. The use of this clause varies
depending on whether you are coding a LIMIT command or a LIMIT function as
described in "Looping Behavior of LIMIT (using parent relation)".

inclusive-val-args
Specifies the values to use when determining the parent values. You can specify any
inclusive valuelist argument as described in the syntax of the inclusive-val-args
argument for the valuelist clause for LIMIT command. See LIMIT (using values)
command for detailed syntax.

Chapter 10
LIMIT command

10-54

CURENT
Specifies that you want to limit to the values of the children of the current value of the
dimension. (This is the same as specifying dimension_name +0.)

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

Usage Notes

Looping Behavior of LIMIT (using parent relation)

When you do not include a QUALIFY clause, the set of values that this LIMIT puts into
status when parentrel is multi-dimensional varies depending on whether or not you are
issuing a LIMIT command or a LIMIT function:

• LIMIT command. All of the in-status values of the related dimensions of parentrel
are included in the set of in-status values. If you only want the current values of
the related dimensions of parentrel to be included in the set of in-status values,
specify a QUALIFY related-dimension CURRENT clause for each of the related
dimensions of parentrel.

• LIMIT function. Only the current values of the related dimensions of parentrel are
included in the set of in-status values. If you want all of the in-status values of the
related dimensions of parentrel to be included in the set of in-status values, specify
a QUALIFY related-dimension related-dimension clause for each of the related
dimensions of parentrel.

Examples

Example 10-28 A Simple Drill Down

This example drills down on districts from the region level of the market dimension.
First, the market dimension, which has embedded totals at the district, region, and
total U.S. level, is limited to the region level data. This LIMIT is done using the relation
mlv.market, which is a relation between market and market.level.

Issuing a REPORT mlv.market statement produces the following output, which shows the
values of mlv.market.

MARKET MLV.MARKET
-------------- ----------
Totus Totus
East Region
Boston District
Atlanta District
Central Region
Chicago District
Dallas District
West Region
Denver District
Seattle District

The following LIMIT statement limits the values of MARKET, and the STATUS statement
produces the values currently in status. The output of STATUS is shown following the
statements.

Chapter 10
LIMIT command

10-55

LIMIT market TO mlv.market 'Region'
STATUS market

The current status of MARKET is:
EAST, CENTRAL, WEST

To drill down on the district level data from the region level, you can use LIMIT with the
CHILDREN keyword. The following example uses a parent-relation called
market.market to perform the drill down. For each value of the market dimension, this
relation contains the name of its parent.

DEFINE market.market RELATION market <market>
LD Self-relation for the Market Dimension

A report of market.market produces the following output.

MARKET MARKET.MARKET
-------------- -------------
Totus NA
East Totus
Boston Central
Atlanta East
Central Totus
Chicago Central
Dallas Central
West Totus
Denver West
Seattle West

You can limit market to the children of the East, Central, and West regions by using the
CHILDREN keyword with LIMIT.

LIMIT market TO mlv.market 'Region'
Limit market TO CHILDREN USING market.market

A report of market produces the following output.

MARKET

Boston
Atlanta
Chicago
Dallas
Denver
Seattle

Example 10-29 Drilling Down Using SKIP and DEPT

Consider the following statement.

LIMIT market TO HIERARCHY DEPTH 2 SKIP 1 USING market.market 'Totus'

Oracle OLAP looks in the child-parent relation (market.market) to find the children and
the grandchildren (DEPTH 2) of Totus and it discards the first generation (SKIP 1). The
resulting status follows.

Totus
Boston
Atlanta
Chicago
Dallas

Chapter 10
LIMIT command

10-56

Denver
Seattle

Note that Totus is included in status. With HIERARCHY, the original values are
included in status.

LIMIT NOCONVERT command
The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valueset.

A LIMIT command with the NOCONVERT keyword sets the status of one dimension
based on the numeric position of values in a different dimension.

Syntax

LIMIT{dimension | valueset} [concat-component] limit-type -

 NOCONVERT [{unrelated-dimension|numeric-valueset}] - [IFNONE label]

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values; or a LIMIT function.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A keyword that specifies how Oracle OLAP should modify the current status list. (See
the main entry for LIMIT command for a list and descriptions of these keywords.)

NOCONVERT
Sets the status of a dimension based on the numeric position of the specified values
in the status list of an another dimension.

unrelated-dimension
Specifies the name of a dimension not related to the dimension being limited. Using
this argument specifies that the status of a dimension or valueset is set based on the
numeric position of each value in status of the unrelated-dimension. Setting status
based on in status values in unrelated dimensions is particularly useful when the two
dimensions are in different analytic workspaces (for example, when a one-to-one
correspondence exists between the product dimension in two analytic workspaces).

numeric-valueset
Specifies a numeric valueset. When you use this argument, NOCONVERT sets the
status based on the numeric values in the valueset. The numeric values represent the
positions of the values in the default status of the dimension.

Chapter 10
LIMIT command

10-57

IFNONE label
(For use only within an OLAP DML program) Specifies that program execution should
branch to label when the requested status has null status or is based on a related
dimension that turns out to have null status (that is, to have no values). (See the main
entry for LIMIT command for complete description of this phrase.)

LIMIT command (using POSLIST)
The LIMIT command sets the current status list of a dimension and its dimension
surrogates, or assigns values to a valueset.

A LIMIT command with the POSLIST keyword sets the status of a dimension based on
the position of the values within that dimension.

Syntax

LIMIT {dimension | valueset} [concat-component] limit-type -

 POSLIST poslist-exp [IFNONE label]

Parameters

dimension
The name of the dimension or dimension surrogate for which you are setting status.

valueset
The name of the valueset for which you are assigning values; or a LIMIT function.

concat-component
The name of the component of the concat dimension whose values are used to
determine the limit. (See the main entry for LIMIT command for complete description
of this argument.)

limit-type
A standard keyword (documented in the main entry for LIMIT command) that specifies
how Oracle OLAP should modify the current status list.

POSLIST poslist-textexp
Sets the status of a dimension based on the position of a value within a dimension.
poslist-textexp is a text expression, each line of which is a numeric value that
evaluates to a numeric position of the dimension being limited.

IFNONE label
Specifies that program execution should branch to label when the requested status
has null status or is based on a related dimension that turns out to have null status
(that is, to have no values). (See the main entry for LIMIT command for complete
description of this phrase.)

LIMIT BASEDIMS
The LIMIT BASEDIMS command sets the current status list of one or more base
dimensions of a composite, conjoint dimension, concat dimension, or a partition
template based on the selected values of that object.

You use LIMIT BASEDIMS to produce a status of dimension values for each
dimension that exists in the sparse object's tuples, possibly filtered by some arbitrary

Chapter 10
LIMIT BASEDIMS

10-58

input status. You can also use the this command to assign a value to one or more
valuesets for the base dimensions.

Values that are in the current status list of a dimension are said to be "in status." The
status of the base dimensions of a composite, conjoint dimension, concat dimension,
or a partition template is determined by the current status of its base dimensions.

See Also:

For more information on working with dimension status, see "OLAP DML
Statements Apply to All of the Values of a Data Object" and LIMIT command

Syntax

LIMIT BASEDIMS {<dimlist>}TO object [[KEEP] limit-clause]

Parameters

dimlist
A space-delimited list of objects that identifies the base dimensions for which you
want Oracle OLAP to change status and the valuesets for which you want Oracle
OLAP to add values. Within dimlist, you can specify the following values:

base-dimension-name

The name of a base dimension of object.
relation-name

The name of a relation. When you specify a relation, Oracle OLAP sets the status
of the related dimension.
valueset-name

The name of a valueset for a base dimension; or a LIMIT function. When you
specify the name of a valueset, Oracle OLAP assigns a single value to the
specified valueset.

The default value of dimlist is the completely expanded list of the base dimensions of
object.

object
The name of a composite, a conjoint dimension, a concat dimension, or a partition
template object.

KEEP
Specifies that Oracle OLAP performs the selection based on the current dimension
status of the base dimensions of the object. KEEP preserves the current order of
values among the values that remain in the status.

limit-clause
Specifies how Oracle OLAP should select values from object to modify the current
status lists of the base dimensions.
The syntax of limit-clause is the same syntax as any of the non-positional limit-clause
arguments in the various forms of the LIMIT command (that is, the syntax of the LIMIT
command after the limit-type argument such as "TO"). For the syntax of these
arguments, see LIMIT (using values) command, LIMIT using LEVELREL command,

Chapter 10
LIMIT BASEDIMS

10-59

LIMIT (using parent relation), LIMIT (using related dimension) command, LIMIT
NOCONVERT command, and LIMIT command (using POSLIST).
When this optional argument is not specified, Oracle OLAP sets the status of the base
dimensions to the current status of the dimensions.

LISTBY
The LISTBY program produces a report of the names of all objects in an analytic
workspace that are dimensioned by or related to one or more specified dimensions or
composites. You can use LISTBY with a dimension or composite in any attached
workspace.

Syntax

LISTBY dimensions

Parameters

dimensions
A list of one or more dimensions or composites, separated by spaces. When you list
multiple dimensions, all the dimensions must be in the same workspace. LISTBY
returns a list of objects that are dimensioned by all the dimensions you specify. When
you specify an unnamed composite, use the following format:

LISTBY SPARSE dim1 dim2 ...

Usage Notes

Composites and Conjoint Dimensions

The report produced by LISTBY includes any named or unnamed composite, or
conjoint dimension, whose base dimension list includes the dimensions you specify.

The report also includes any object whose dimension list includes a named or
unnamed composite that in turn has the specified dimensions as base dimensions.

Examples

Example 10-30 Using LISTBY

LISTBY is used here to list the name of every object that is dimensioned by or related
to product. The statement LISTBY product produces the following output.

15 objects dimensioned by or related to PRODUCT
--
ADVERTISING DIVISION.PRODUCT EXPENSE
INDUSTRY.SALES NAME.PRODUCT NATIONAL.SALES
PRICE PRODUCT.MEMO PRODUCTSET
SALES SALES.FORECAST SALES.PLAN
SHARE UNITS UNITS.M

Example 10-31 Specifying More Than One Dimension

In this example LISTBY is used to list the name of every object that is dimensioned by
or related to both product and market.

LISTBY product market

Chapter 10
LISTBY

10-60

1 objects dimensioned by or related to PRODUCT, MARKET
--
UNITS.M

LISTFILES
The LISTFILES command lists all the open files that can be referenced by the
FILEQUERY function which includes all files opened by FILEOPEN, OUTFILE, and
LOG command.

Syntax

LISTFILES

Examples

Example 10-32 Listing Open Files

The following example shows how to use LISTFILES to see which open files can be
referenced by the FILEQUERY function.

DEFINE fil.unit VARIABLE INTEGER
fil.unit = FILEOPEN('report' WRITE)
LISTFILES

These statements produce the following output.

10 w D:\WINNT35\SYSTEM32\report

LISTNAMES
The LISTNAMES program produces a report that lists the names of the objects in an
analytic workspace. You can limit the list to particular types of objects, and you can
have the names for each type of object listed in alphabetical order.

Syntax

LISTNAMES [AW workspace|'*'] [objtype-list|ALL] - [SORTED|
UNSORTED] [LIKE 'pattern']

Parameters

AW workspace
AW '*'
Specifies the name of an attached workspace whose objects you want to list. When
you omit the workspace name, LISTNAMES lists the objects in the current workspace.
When you use the '*' (asterisk) argument instead of an analytic workspace name,
LISTNAMES produces a separate report for each attached workspace.

objtype-list
ALL
Specifies one or more of the following types of objects whose names you want to list:
AGGMAP, COMPOSITE, DIMENSION, FORMULA, MODEL, OPTION, PROGRAM,
RELATION, VALUESET, VARIABLE, and WORKSHEET. You can include a trailing
"S" on any object type, for example, DIMENSIONS. You can list these object types in any

Chapter 10
LISTFILES

10-61

order. ALL (the default) specifies that the names of objects of all these types should
be listed.

SORTED
UNSORTED
SORTED (the default, abbreviated SORT) specifies that the object names should be
sorted alphabetically. UNSORTED (abbreviated UNSORT) specifies that the object
names should not be sorted alphabetically.

LIKE 'pattern'
Compares the names of the definitions in an analytic workspace to the text pattern
you specify and lists the names that match. A definition name is like a text pattern
when corresponding characters match. Besides literal matching, LIKE lets you use
wildcard characters to match multiple characters in a string. An underscore (_)
character in a pattern matches any single character. A percent (%) character in a
pattern matches zero or more characters.

Usage Notes

NAME Dimension

NAME is a special dimension that is used by Oracle OLAP to organize the list of
objects in an analytic workspace. Its values are the names of the objects defined in the
current workspace. (

You cannot explicitly change the values of the NAME dimension. Instead the values
are changed as DEFINE, DELETE, MOVE, or RENAME statements execute. Also,
you cannot use a qualified object name to specify the NAME dimension of an analytic
workspace that is not the current workspace.

See Also:

LISTNAMES program

Example 10-33 Listing Dimensions

Suppose you want a list of all the dimensions in an analytic workspace. First, use a
LIMIT command and the OBJ function to limit the status of the NAME dimension. Then
use a STATUS statement to produce a list of dimensions. Because the values
returned by OBJ(TYPE) are always in uppercase, you must use 'DIMENSION' (not
'dimension') in the LIMIT statement to get a match. The statements

LIMIT NAME TO OBJ(TYPE) EQ 'DIMENSION'
STATUS NAME

produce the following output.

The current status of NAME is:
PRODUCT, DISTRICT, DIVISION, LINE, REGION, MARKETLEVEL, MARKET,
MONTH, YEAR, QUARTER

Example 10-34 Listing Relations

Suppose you want to see the definitions of all the relations in an analytic workspace.
Use the LIMIT command and the OBJ function to select these names. Then use
DESCRIBE to produce a list of their definitions. The statements

Chapter 10
LISTNAMES

10-62

LIMIT NAME TO OBJ(TYPE) EQ 'RELATION'
DESCRIBE

produce the following output.

DEFINE REGION.DISTRICT RELATION REGION <DISTRICT>
LD REGION for each DISTRICT

DEFINE DIVISION.PRODUCT RELATION DIVISION <PRODUCT>
LD DIVISION for each PRODUCT

DEFINE MLV.MARKET RELATION MARKETLEVEL <MARKET>

DEFINE MARKET.MARKET RELATION MARKET <MARKET>
LD Self-relation for the Market Dimension

Examples

Example 10-35 Listing of DEMO Workspace Objects

This example lists the dimensions, variables, and relations in the current workspace.
The statement

LISTNAMES dimension variable relation

produces the following output for the DEMO workspace.

10 DIMENSIONs 18 VARIABLEs 4 RELATIONs
---------------- ---------------- ----------------
DISTRICT ACTUAL DIVISION.PRODUCT
DIVISION ADVERTISING MARKET.MARKET
LINE BUDGET MLV.MARKET
MARKET DEMOVER REGION.DISTRICT
MARKETLEVEL EXPENSE
MONTH FCST
PRODUCT INDUSTRY.SALES
QUARTER NAME.LINE
REGION NAME.PRODUCT
YEAR NATIONAL.SALES
 PRICE
 PRODUCT.MEMO
 SALES
 SALES.FORECAST
 SALES.PLAN
 SHARE
 UNITS
 UNITS.M

LOAD
The LOAD command loads the definition of a program, formula, or model into memory.
It is usually used in startup programs, to save time when a program is first used in a
session.

Syntax

LOAD object. . .

Chapter 10
LOAD

10-63

Parameters

object. . .
The name of a program, formula, or model.

Usage Notes

Definitions Loaded on First Use

All of the objects in an analytic workspace (except for programs, formulas, and
models) are loaded into memory when the analytic workspace is attached. Programs,
models, and formulas are loaded into memory when first used or when requested
using the LOAD command. The time required for loading is small but perceptible, and
an application builder fine-tuning a system might want to preload objects in a startup
program so that the application runs up to speed from the beginning of a session.

Effect of Loading Many Objects

Loading too many objects into memory can cause Oracle OLAP to run out of memory
when it processes a long statement. It is best to use LOAD sparingly, choosing the
objects for maximum effect.

LOAD Does Not Compile Programs

When a program is not compiled, LOAD does not automatically compile it. For best
performance, always compile the program and save the compiled code by updating
your workspace. Then when you load the program in another session (for example,
with an AUTOGO program), the program is ready to run. See the COMPILE command
for more information about compilation.

Examples

Example 10-36 Loading Two Programs

The following statement loads the two programs choose.months and sales.rpt.

LOAD choose.months sales.rpt

Example 10-37 Loading All the Programs in an analytic workspace

The following statements load all the programs in the analytic workspace.

LIMIT NAME TO OBJ(TYPE) EQ 'program'
LOAD &VALUES(NAME)

LOG command
The LOG command starts or stops the recording of a session to a disk file. All lines of
input and output are recorded.

Note:

Do not confuse the LOG command with the function of the same name which is
a mathematical function.

Chapter 10
LOG command

10-64

Syntax

LOG EOF | TRACEFILE | SAVE | {[APPEND] file-name}

Parameters

EOF
Stops recording of the session and closes any opened log record file.

TRACEFILE
Specifies that the session information should be directed to the Oracle trace file,
which is identified by the TRACEFILEUNIT option.

SAVE
Forces Oracle OLAP to update the log file. Lines of input and output are not always
written to disk as they are generated. Instead, the lines are stored temporarily then
written to disk periodically. LOG SAVE effectively issues the LOG EOF and LOG APPEND file-
name commands which ensures that all appropriate lines are written to disk by closing
the log file and reopening it. Additional lines of input and output are appended to the
file.

APPEND
Specifies that the record of your session should be added to the end of an existing
disk file. When you omit this argument, the new output replaces the current contents
of the file.

file-name
A text expression that is the name of the file to which session information should be
written. Unless the file is in the current directory, you must include the name of the
directory object in the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

Usage Notes

Automatic Closing of a Log File

When you use LOG file-name to start recording in a disk file, LOG closes any log record
file that is currently open. LOG issues this close even when the new file is not actually
opened (as when you specify an invalid file name in the LOG statement).

Examples

Example 10-38 Keeping a Log File

To record your session in a file called session.log, use a statement like the following.

LOG 'session.log'

Chapter 10
LOG command

10-65

MAINTAIN
The MAINTAIN command enters and maintains the values of dimensions, composites,
and partition template objects.

Note:

You can also issue a MAINTAIN statement for a surrogate dimension that has
a Maintain trigger. In this case, Oracle OLAP only executes the Maintain trigger
program; no other action occurs. See "Trigger Programs" for more information
for more information. Issuing a MAINTAIN statement for a surrogate dimension
that does not have a Maintain trigger, returns an error.

Syntax

MAINTAIN object {ADD|DELETE|RENAME|MOVE|MERGE} args

The keywords that you can use with the MAINTAIN command varies by object:

• MAINTAIN dimension {ADD|DELETE|RENAME|MOVE|MERGE} args

The keyword that you can use varies by the type of dimension that you want to
maintain:

– With a non-concat dimension, you can use the ADD, DELETE, RENAME,
MOVE, or MERGE keywords to add, delete, rename, move, or merge non-
concat dimension values. You can also use the ADD keyword to add
temporary calculated members to a dimension.

– With a concat dimension, you can only use the MOVE keyword to move
concat dimension values.

• MAINTAIN composite {ADD|DELETE|MERGE} args

• MAINTAIN partition-template {ADD|DELETE|MOVE} args

The specific syntax varies by keyword. Consequently, there are separate topics for
each keyword of the MAINTAIN command:

MAINTAIN ADD
MAINTAIN DELETE
MAINTAIN MERGE
MAINTAIN MOVE
MAINTAIN RENAME

For information that applies to the MAINTAIN command in general, see the Usage
Notes in this topic.

Usage Notes

Triggering Program Execution When MAINTAIN Executes

Using the TRIGGER command, you can make the execution of a MAINTAIN
statement an event that automatically executes an OLAP DML program. See "Trigger
Programs" for more information.

Chapter 10
MAINTAIN

10-66

Automatic Status Reset

When you use the ADD, DELETE, MERGE, or MOVE keyword to maintain a
dimension or composite whose status is not currently ALL, the MAINTAIN command
automatically resets status to ALL before performing the maintenance function.
However, when you use the RENAME keyword to maintain a dimension whose status
is not currently ALL, the MAINTAIN command does not change the status of the
dimension.

Maintain Permission

You cannot perform maintenance on a dimension when a PERMIT MAINTAIN
statement denies maintain permission for the dimension. Maintain permission is
implicitly denied whenever read permission is restricted for a dimension, even when
you specify maintain permission for the dimension. (See the PERMIT command.)

Maintaining Dimensions in Multiwriter Analytic Workspaces

Keep the following points in mind when maintaining dimensions in an analytic
workspace that is attached in multiwriter mode:

• You cannot update a variable when any of its dimensions have been acquired and
modified.

• Reverting a dimension after adding dimension values is not recommended
because it can result in suboptimal space allocation for variables dimensioned by
the dimension.

• When an acquired variable is dimensioned by an acquired dimension that has
been maintained, you cannot update the variable until the dimension is updated or
released.

• You do not have to acquire composites in order for them to be maintained, Oracle
OLAP automatically performs concurrent dimension maintenance for the
composite dimensions.

Also, before you can maintain dimensions in an analytic workspace that is attached in
multiwriter mode, you must first acquire the dimension using an ACQUIRE statement.

For example, assume that user A and user B both have to perform what-if
computations on both actuals and budget. After performing the what-if computations,
user A needs to modify actuals and B needs to modify budget. Finally, both user A and
user B have to add a new time dimension value and add data corresponding to that
new dimension value to actuals or budget.

User A issues the following OLAP DML statements.

AW ATTACH myworkspace MULTI
...make modifications
ACQUIRE actuals
...make more modifications
ACQUIRE time
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = ...
UPDATE MULTI actuals, time
COMMIT
RELEASE actuals, time
AW DETACH myworkspace

User B issues the following OLAP DML statements.

Chapter 10
MAINTAIN

10-67

AW ATTACH myworkspace MULTI
...make modifications
ACQUIRE budget
...make more modifications
ACQUIRE time--> failed
ACQUIRE RESYNC time WAIT
MAINTAIN time ADD 'Y2003'
budget (time 'Y2003', ...) = ...
UPDATE MULTI budget, time
COMMIT
RELEASE budget, time
AW DETACH myworkspace

MAINTAIN and Dimension Surrogates

You cannot use a MAINTAIN statement on a dimension surrogate. You can only use
MAINTAIN to add values to or delete them from a dimension. However, when you add
or delete a dimension value, then Oracle OLAP adds or removes a position from
surrogates of that dimension. When you add a position to a dimension, the
corresponding position in a surrogate for that dimension receives an NA value.

Maintaining a Concat Dimension

A concat dimension contains the values of its component dimensions. You do not
directly add, merge, or delete the values of a concat dimension using MAINTAIN
statements. Instead, when you add, merge, or delete values from a component
dimension of the concat, Oracle OLAP automatically adds or deletes the values from
the concat dimension. You can use the MOVE keyword of the MAINTAIN command to
change the order of the values of a concat dimension.

MAINTAIN ADD
The MAINTAIN command with the ADD keyword adds new TEXT, ID, and INTEGER
values to a non-concat dimension, composite, or partition; or adds a new temporary
calculated member to a dimension.

Note:

You can also issue a MAINTAIN ADD for TEXT, ID, and INTEGER Values
statement for a surrogate dimension that has a Maintain trigger. In this case,
Oracle OLAP only executes the Maintain trigger program one time for each
value; no other action occurs. See "Trigger Programs" for more information for
more information. Issuing a MAINTAIN statement for a surrogate dimension
that does not have a Maintain trigger, returns an error.

Syntax

The syntax for using the MAINTAIN command with the ADD keyword depends on the
type of the object being maintained and whether you are adding a permanent or
temporary member.

For this reason, the following separate entries are provided for MAINTAIN ADD:

• MAINTAIN ADD for TEXT, ID, and INTEGER Values

• MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values

Chapter 10
MAINTAIN

10-68

• MAINTAIN ADD SESSION

• MAINTAIN ADD TO PARTITION

MAINTAIN ADD for TEXT, ID, and INTEGER Values
The MAINTAIN command with the ADD keyword adds new TEXT, ID, or INTEGER
values to a non-concat dimension or composite.

Note:

You can also issue this MAINTAIN ADD statement for a surrogate dimension
that has a Maintain trigger. In this case, Oracle OLAP only executes the
Maintain trigger program one time for each value in valuelist; no other action
occurs. See "Trigger Programs" for more information for more information.
Issuing a MAINTAIN statement for a surrogate dimension that does not have a
Maintain trigger, returns an error.

Syntax

MAINTAIN composite|dimension ADD valuelist [FIRST|LAST|BEFORE position|
AFTER position]

Parameters

dimension
A non-concat dimension, already defined in an attached analytic workspace.

composite
A composite. When the composite is a named composite, it must be defined in an
attached analytic workspace. When the composite is unnamed, it must have been
used in defining an object in an attached analytic workspace. Use the SPARSE
keyword to refer to an unnamed composite (for example, SPARSE <market product>).

ADD valuelist
Specifies that the values in valuelist are to be added to the dimension or composite:

• When you use this argument to add values to a composite or a dimension of type
TEXT or ID, the valuelist can be text literals or a TEXT or ID expression. When it
is a multiline text expression, each element (line) is treated as a separate
value.Do not add null dimension values (empty single quotes) or values that
consists of spaces only, because there is no way you can refer to such values in
the future.

• When dimension is INTEGER, valuelist can be an INTEGER quantity, such as 5 or
100.

FIRST
LAST
Specify the logical position at which dimension values are added. FIRST indicates
that the new values are inserted before any existing values. LAST indicates that new
values are added after the current values. LAST is the default. When you are adding a
certain quantity of INTEGER values to an INTEGER dimension, that quantity of INTEGER
values are added before or after any existing INTEGER values (depending on your

Chapter 10
MAINTAIN

10-69

specification), and all the INTEGER values in the resulting series are automatically
adjusted into simple numeric order.
All values specified before the keyword FIRST or LAST are placed in that position, not
just the one value immediately preceding the keyword in your statement.

BEFORE position
AFTER position
Specify a position before or after which the dimension values are to be added. For
position you can specify an existing dimension value, a character expression whose
value is an existing dimension value, or an INTEGER expression whose value
represents the position of a dimension value. When you are adding a certain quantity
of INTEGER values to an INTEGER dimension, that quantity of INTEGER values are
added before or after the INTEGER position you specify, and the INTEGER values in the
whole of the resulting series are automatically adjusted into simple numeric order.
All values specified before the keywords BEFORE or AFTER are placed in that
position, not just the one value immediately preceding the keyword in your statement.

Usage Notes

Performance When Using MAINTAIN ADD BEFORE or AFTER position

The cost performance of using MAINTAIN ADD BEFORE or MAINTAIN MOVE AFTER
statements depends on the number of values in the dimension rather than the number
of values being added. Consequently, instead of issuing many of these statements
one after another:

1. Add the values using simple MAINTAIN ADD statements

2. Set the status of the dimension status to the values you are concerned with.

3. Order the added values, by issuing a single MAINTAIN MOVE dimension value
statement

Adding Values to an INTEGER Dimension

When you use MAINTAIN to add values in an INTEGER dimension, the values are
renumbered to keep the normal sequence of INTEGER values (1, 2, 3, ...).

Conjoint Dimensions and Composites

Each value of a conjoint dimension or composite is a combination of values from each
of the dimensions (and composites, if any) in its dimension list. To add values to a
conjoint dimension or composite, specify each value combination enclosed in angle
brackets. The values in a given combination must be in the same order as the
dimensions and composites in the definition of the conjoint dimension or composite.
Each dimension value in the combination must already exist as a value in the
corresponding base dimension. However, when a composite value in the combination
does not exist, Oracle OLAP automatically adds the value to the appropriate
composite.

Examples

Example 10-39 Adding Values to a TEXT Dimension

This statement adds Omaha and Seattle to the end of the dimension values for the city
dimension.

MAINTAIN city ADD 'Omaha' 'Seattle'

Chapter 10
MAINTAIN

10-70

This statement adds Atlanta at the beginning of the list of cities and inserts Peoria after
Omaha.

MAINTAIN city ADD 'Atlanta' FIRST, 'Peoria' AFTER 'Omaha'

Here the value of the TEXT variable textvar is inserted before the fifth dimension
value of city. When you assign the value Columbus to textvar, you must make sure it is
in mixed case, because you want the dimension value to be in mixed case.

textvar = 'Columbus'
MAINTAIN city ADD textvar BEFORE 5

Example 10-40 Adding Values to a Conjoint Dimension

The following is an example of adding values to a conjoint dimension.

DEFINE proddist DIMENSION <product, district>
MAINTAIN proddist ADD <'Tents' 'Boston'> <'Footwear' 'Denver'>

You can also assign a value of a base dimension to a text variable and use the name
of the variable inside the angle brackets.

prodname = 'Canoes'
distname = 'Seattle'
MAINTAIN proddist ADD <prodname, distname>

MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values
The MAINTAIN command with the ADD keyword adds new values to a dimension of
type DAY, WEEK, MONTH, QUARTER, and YEAR.

Syntax

MAINTAIN dimension ADD {valuelist|{n PERIODS FIRST}|{n PERIODS LAST}}

Parameters

dimension
A non-concat dimension, already defined in an attached analytic workspace.

ADD valuelist
Specifies that the values in valuelist are to be added to the dimension. When
dimension is of type DAY, WEEK, MONTH, QUARTER, or YEAR, then valuelist can
be text constants or a TEXT, ID, or DATE expression. When the values are TEXT,
they can be in the format specified by the VNF (value name format) for the dimension
(or in the default format for the type of dimension you are maintaining when the
dimension does not have a VNF) or in a valid input style for date values. When the
values are specified as a TEXT expression, each element or line is treated as a
separate value.
When the values are in the format specified by the VNF or in the default format for this
type of dimension, each value explicitly indicates the time period you want to add. For
example, assume that the VNF for a month dimension is '<MTXT><YY>'. In this case, the
value JAN99 represents the month January 1999.
When you specify a value for a DAY, WEEK, MONTH, QUARTER, or YEAR
dimension as a date, you must provide only the date components that are relevant for
the type of dimension you are maintaining. For a DAY or WEEK dimension, you must
supply the day, month, and year components. For a MONTH or QUARTER

Chapter 10
MAINTAIN

10-71

dimension, you must supply only the month and year (for example, 'JUN98' or '0698'
for June 1998). For a YEAR dimension, you must specify only the year (for example,
'98' for 1998). For information about the valid input styles for dates, see the
DATEORDER option.
When you add a dimension value by specifying a DATE expression or a TEXT value
that represents a complete date, you can specify any date that falls within the time
period you want to add. For example, to add the month January 1999, you can specify
any date from '01JAN99' through '31JAN99'. Oracle OLAP uses the DATEORDER
option to resolve any ambiguities.
When adding values to a DAY, WEEK, MONTH, QUARTER, or YEAR dimension that
does not yet have values, you must specify only the first and last values you want to
add for the dimension. Oracle OLAP automatically fills in the gaps with appropriate
values for the intervening time periods.
When a DAY, WEEK, MONTH, QUARTER, or YEAR dimension already has values,
you can add values only at the beginning or the end of the existing list. To add values,
you must specify only the first or last value you want to add. Oracle OLAP
automatically fills in the gap between the existing list and the value you specify.

n PERIODS FIRST
n PERIODS LAST
Specifies the number of periods to add at the beginning or end of an existing list of
dimension values.

Examples

Example 10-41 Adding Values to Dimension of Type QUARTER

In this example you define a new QUARTER dimension, called qtr, and you add
dimension values for the quarters in 1998 and 1999. You must only add the first and
last dimension values you want. Oracle OLAP fills in the intervening values. To add
the first and last quarters, you can specify any dates that fall within those quarters.

DEFINE qtr DIMENSION QUARTER
MAINTAIN qtr ADD '01jan98' '31dec99'

MAINTAIN ADD SESSION
The MAINTAIN command with the ADD SESSION keywords adds a temporary
calculated member to a dimension and applies it to the specified objects; or applies a
previously-defined calculated member to the specified objects. The calculated member
and its definition do not persist from session to session; both are deleted after the
session in which they are created.

Syntax

MAINTAIN dimension ADD SESSION member_name [= calculation] - [STEP
DIMENSION (stepdim...)][apply-to]

where:

• calculation is one of the following:

model-equation

AGGREGATION (dimension-members....)

• apply-to specifies the basis on which the custom aggregation is added using
one of the following phrases:

Chapter 10
MAINTAIN

10-72

APPLY TO AGGMAP aggmaps

APPLY FOR VARIABLE variables

APPLY WITH RELATION relations

Parameters

dimension
A dimension that is already defined in an attached analytic workspace. You can
specify any type of dimension for dimension except a non-unique concat dimension or
a base dimension of either a unique or non-unique concat dimension.

ADD SESSION
ADD SESSION indicates maintenance of a temporary calculated member.

member-name
Specifies the name of the temporary calculated member.

=
Indicates that you are defining a new calculated member.

model-equation
A text expression that specifies the calculation used as a dynamic model to calculate
custom member values. (See the SET command for more information about model
equations.)

AGGREGATION
Indicates that the temporary calculated member is added as a custom aggregation
using the specified dimension members. This clause effectively modifies the
RELATION statement of aggmap objects that are the aggregation specification for
variables dimensioned by dimension. Consequently, a MAINTAIN ADD SESSION
statement that contains an AGGREGATION clause must also contain an APPLY
WITH RELATION clause.

dimension-members
A text expression that specifies one or more dimension values to be used by the
custom aggregation. When using a literal to specify multiple dimension members,
separate the values with commas

STEP DIMENSIONS
Indicates that the calculation is a time-series function.

stepdim
A text expression that specifies the dimension along which the time-series function is
calculated. When using a literal to specify multiple dimension names, separate the
names with commas.

APPLY TO AGGMAP
Indicates that the calculated temporary member is added only to dimensions used by
the specified aggmap objects.

aggmaps
A text expression that specifies the name of one or more aggmap objects to which the
temporary calculated member is added. When using a literal to specify multiple
aggmap objects, separate the names with commas. The temporary calculated
member is added to each of the specified aggmap objects.

Chapter 10
MAINTAIN

10-73

APPLY FOR VARIABLE
Indicates that the temporary calculated member is added only to dimensions used by
the default aggmap objects for the specified variables.

variables
A text expression that specifies the one or more variable names for which the
temporary calculated member is added to. When using a literal to specify multiple
variable names, separate the names with commas. The temporary calculated member
is added to the default aggmap object of each specified variable.

Note:

When a specified variable does not have a default aggmap, using this clause
generates an error. Use AGGMAP SET or $AGGMAP to specify a default
aggmap for the variable.

APPLY WITH RELATION
Indicates that the temporary calculated member is added dimensions used by the
aggregation specifications that contain a RELATION statement for the specified
relation.

relation
A text expression that specifies the name of the relation for which there must be a
RELATION statement in the AGGMAP statement.

Usage Notes

Finding Out Information About Temporary Calculated Members

Once you have added a temporary calculated member using a MAINTAIN statement,
you can use AGGMAPINFO to discover the temporary calculated members you have
added, the equations used to calculate members, and the dimension members used in
the right-hand side of equations used to calculate custom members.

Examples

Example 10-42 Creating Calculated Dimension Members with Aggregated
Values

Assume that an analytic workspace has a dimension named letter and a variable
named my_quantity with the following definitions and permanent values.

DEFINE letter DIMENSION TEXT
DEFINE my_quantity VARIABLE DECIMAL <letter>

LETTER MY_QUANTITY
-------------- ------------------------------
A 10.00
B 100.00

You can define temporary dimension members for the letter dimension and
aggregate data in my_quantity for those members following these steps:

1. Determine the aggregation that you want to perform and define and populate the
necessary supporting objects.

a. Create an empty child-parent relation for the letter dimension

Chapter 10
MAINTAIN

10-74

DEFINE letter.parentrel RELATION letter <letter>

LETTER LETTER.PARENTREL
-------------- ------------------------------
A NA
B NA

b. Define a simple model to be used to calculate values associated with the
letter dimension

DEFINE my_model MODEL
MODEL
 DIMENSION letter
 END

c. Define and compile a simple aggmap to be used to calculate my_quantity
values associated with the letter dimension

DEFINE my_aggmap AGGMAP
AGGMAP
 RELATION letter.parentrel PRECOMPUTE(NA)
 MODEL my_model PRECOMPUTE(NA)
 END

COMPILE my_aggmap

d. Define a variable to contain the definition for the custom aggregation, This new
variable is the same as my_quantity except that has my_aggmap as its default
aggmap.

DEFINE my_quantity_definition VARIABLE DECIMAL <letter>

CONSIDER my_quantity_definition
PROPERTY '$AGGMAP' 'my_aggmap'

REPORT my_quantity_definition

LETTER MY_QUANTITY_DEFINITION
-------------- ------------------------------
A NA
B NA

2. Add temporary members to the letter dimension and specify how variable values
for those members are to be calculated.

MAINTAIN letter ADD SESSION 'C' = 'A' * 'B'
MAINTAIN letter ADD SESSION 'D' = AGGREGATION('A', 'B') -
 APPLY TO AGGMAP my_aggmap
MAINTAIN letter ADD SESSION 'E' = 'C' + 'D' -
 APPLY WITH RELATION letter.parentrel
MAINTAIN letter ADD SESSION 'F' = 10 * 'E' -
 APPLY FOR VARIABLE my_quantity_definition

A report of the letter dimension shows the new dimension members.

LETTER

A
B
C
D
E
F

Chapter 10
MAINTAIN

10-75

3. Aggregate my_quantity using the aggmap object named my_aggmap.

REPORT AGGREGATE(my_quantity USING my_aggmap)

 AGGREGATE(MY_QUANTITY USING
LETTER MY_AGGMAP)
-------------- ------------------------------
A 10.00
B 100.00
C 1,000.00
D 110.00
E 1,110.00
F 11,100.00

Assume now that you issue the UPDATE and COMMIT statements to update and
commit your analytic workspace. Then you detach the analytic workspace and end
your session.

Later you start a new session and attach the same analytic workspace. When you ask
for a description of the analytic workspace you can see that all of the objects that were
in the analytic workspace when the UPDATE was issued still exist.

DEFINE LETTER DIMENSION TEXT

DEFINE LETTER.PARENTREL RELATION LETTER <LETTER>

DEFINE MY_QUANTITY VARIABLE DECIMAL <LETTER>

DEFINE MY_MODEL MODEL
MODEL
DIMENSION letter
END

DEFINE MY_AGGMAP AGGMAP
AGGMAP
RELATION letter.parentrel PRECOMPUTE(NA)
MODEL my_model PRECOMPUTE(NA)
END

DEFINE MY_QUANTITY_DEFINITION VARIABLE DECIMAL <LETTER>

However, when you report on the letter dimension and the my_quantity variable, the
temporary dimension members that you added in the previous session and their
related values in the my_quantity variable do not exist.

LETTER

A
B

REPORT letter.parentrel

LETTER LETTER.PARENTREL
-------------- ------------------------------
A NA
B NA

REPORT my_quantity

LETTER MY_QUANTITY
-------------- ------------------------------
A 10.00

Chapter 10
MAINTAIN

10-76

B 100.00

LETTER MY_QUANTITY_DEFINITION
-------------- ------------------------------
A NA
B NA

REPORT AGGREGATE(my_quantity USING my_aggmap)

 AGGREGATE(MY_QUANTITY USING
LETTER MY_AGGMAP)
-------------- ------------------------------
A 10.00
B 100.00

MAINTAIN ADD TO PARTITION
The MAINTAIN ADD TO PARTITION statement adds previously-populated dimension
or composite values to a partition of a previously-defined partition template object.

Tip:

Use MAINTAIN MOVE TO PARTITION to maintain partition values when you
have already populated a partitioned variable.

Syntax

MAINTAIN partition-template ADD TO PARTITION partition valuelist

Parameters

partition-template
A text expression that is the name of a previously-defined partition template object.

ADD TO PARTITION
Specifies that values are to be added to the partition.

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

valuelist
Text literals or a TEXT or ID expression specifying the values to be added. When it is
a TEXT expression, each element (line) is treated as a separate value. The values in
the expression are added exactly as they are typed.
For a concat dimension, you can specify a value of the concat dimension, or the name
of a component dimension and a value or position of that dimension. You can use the
values of a dimension surrogate as the values of value.
Note that you cannot partition along an INTEGER dimension.

TO
Indicates a range of values.

Chapter 10
MAINTAIN

10-77

Examples

For an example of adding values to a partition, see Example 10-48.

MAINTAIN DELETE
The MAINTAIN command with the DELETE keyword deletes members from non-
concat dimensions and composites; or deletes the data of previously-partitioned
variables from one partition to another as it changes the dimension or composite
values defined for a partition in the partition template which the variables are
dimensioned.

Note:

You can also issue a MAINTAIN DELETE statement for a surrogate dimension
that has a Maintain trigger. In this case, Oracle OLAP only executes the
Maintain trigger program; no other action occurs. See "Trigger Programs" for
more information for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns an error.

Syntax

The syntax for using the DELETE keyword of the MAINTAIN command to delete
members varies depending on the type of object from which you are deleting the
members. For this reason, the following separate entries are provided for MAINTAIN
DELETE:

• MAINTAIN DELETE dimension

• MAINTAIN DELETE composite

• MAINTAIN DELETE FROM PARTITION

MAINTAIN DELETE dimension
The MAINTAIN command with the DELETE keyword deletes dimension members
from non-concat dimensions.

Note:

You can also issue a MAINTAIN DELETE statement for a surrogate dimension
that has a Maintain trigger. In this case, Oracle OLAP only executes the
Maintain trigger program; no other action occurs. See "Trigger Programs" for
more information for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns an error.

Chapter 10
MAINTAIN

10-78

See Also:

MAINTAIN DELETE composite

Syntax

MAINTAIN dimension DELETE limit-clause

Parameters

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be deleted.

Note:

You cannot use a dimension surrogate as the dimension argument of a
MAINTAIN DELETE command. However, you can use a dimension surrogate
as a value within the limit-clause parameter.

limit-clause
Specifies the values to delete from the dimension.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).

Usage Notes

Deleting Temporary Calculated Members From Dimensions

When you use a MAINTAIN DELETE statement to delete a temporary calculated
member, Oracle OLAP:

1. Deletes the member from the dimension.

2. Removes the calculation from all aggmap objects that currently contain the
corresponding calculation.

Deleting Values in an Integer Dimension

When you use MAINTAIN to delete values in an INTEGER dimension, the values are
renumbered to keep the normal sequence of INTEGER values (1, 2, 3, ...).

Examples

Example 10-43 Deleting Dimension Values by Value

This statement deletes Omaha and Newark from the values for city.

MAINTAIN city DELETE 'Omaha' 'Newark'

Chapter 10
MAINTAIN

10-79

Example 10-44 Deleting the First Five Values of a Dimension

In this example, you use the INTEGER variable intvar to remove the first five cities
from the dimension city.

intvar = 5
MAINTAIN city DELETE FIRST intvar

Example 10-45 Deleting Dimension Values Based on a Boolean Expression

Here you remove from city all those cities with a population of less than 75,000
people. You use the variable population.c, which contains the population for each city.

MAINTAIN city DELETE population.c LT 75000

Example 10-46 Deleting Dimension Values Using Surrogate to Specify Values

Assume that prodid is a NUMBER dimension and prodtype is a TEXT dimension surrogate
for prodid. Assume also that the values of prodid are 17, 40, and 56. The values of
prodtype are Two-Person Tent, Three-person Tent, and Four-person Tent. The following
statement deletes a value from prodid and from its surrogate.

MAINTAIN prodid DELETE prodid(prodtype 'Three-Person Tent')

Example 10-47 Deleting Related MONTH Values

In this example, you use the related dimension quarter to remove values of the
dimension month. All months related to the values of quarter currently in the status are
deleted.

LIMIT quarter TO FIRST 1

MAINTAIN month DELETE quarter

MAINTAIN DELETE composite
The MAINTAIN command with the DELETE keyword deletes dimension members
from composites.

See Also:

MAINTAIN DELETE dimension

Syntax

MAINTAIN composite DELETE comp-arg

where comp-arg is one of the following constructs:

valuelist

ALL

base-dim [valuelist]

boolean-expression

{TOP | BOTTOM} n BASEDON exp

{TOP | BOTTOM} n-percent PERCENTOF expression

LONGLIST

Chapter 10
MAINTAIN

10-80

Parameters

composite
A composite whose values are to be deleted. When the composite is a named
composite, it must be defined in an attached analytic workspace. When the composite
is unnamed, it must have been used in defining an object in an attached analytic
workspace.
Use the SPARSE keyword to refer to an unnamed composite (for example, SPARSE
<market product>).

valuelist
Specifies one or more values to be deleted from the composite. The valuelist can be
text constants or a text expression.

ALL
Deletes all composite values, but does not delete the definition of the composite itself.

base-dim [valuelist]
Deletes the values that include the listed values of a base dimension of the
composite. The argument valuelist can be one value, a list of values, or a range of
values (using TO to specify an inclusive range). You cannot use position numbers to
specify a range of values. When you omit valuelist, Oracle OLAP deletes all values
that include base-dim values currently in status.

boolean-expression
Deletes all composite values for which the Boolean expression is TRUE. The boolean-
expression must be dimensioned by the dimension or the composite from which you
the values deleted. When it has additional dimensions, their status must each be
limited to one value.

TOP n BASEDON exp
BOTTOM n BASEDON exp
Deletes the top or bottom n values based on the highest (TOP) or lowest (BOTTOM)
values in exp. The expression must be dimensioned by the composite from which you
the values deleted. When it has additional dimensions, their status must each be
limited to one value.

BOTTOM n-percent PERCENTOF expression
TOP n-percent PERCENTOF expression
Deletes values by finding the top or bottom performers based on a criterion. This
construction sorts values and deletes them based on their contribution, by
percentage, to an expression.

LONGLIST
Indicates a long list (up to 2,000 values) of individual values to delete. When there are
fewer than 300 values, LONGLIST is not needed.

MAINTAIN DELETE FROM PARTITION
The MAINTAIN DELETE FROM PARTITION command deletes the data of previously-
partitioned variables from one partition to another as it changes the dimension or
composite values defined for a partition in the partition template which the variables
are dimensioned.

Chapter 10
MAINTAIN

10-81

Tip:

Use MAINTAIN MOVE TO PARTITION to maintain partition values when you
have already populated a partitioned variable.

Syntax

MAINTAIN partition-template DELETE FROM PARTITION partition { dim-arg| comp-
arg}

Parameters

partition-template
A text expression that is the name of a previously-defined partition template object.

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

DELETE FROM PARTITION
Specifies that values are to be deleted from the partition and from partitioned
variables dimensioned using a partition template that includes the partition.

dim-args
Specifies the values of a dimension that to use when deleting partitioned variable
values and when redefining the values that are in the partition You can use any of the
constructs specified for the dim-arg argument in MAINTAIN DELETE dimension.

comp--args
Specifies the values of a composite to use when deleting partitioned variable values
and when redefining the values that are in the partition You can use any of the
constructs specified for the comp-arg argument in MAINTAIN DELETE composite.

Examples

Example 10-48 Adding and Deleting Partition Values

Assume that you have defined the following objects in your analytic workspace. on

DEFINE time DIMENSION TEXT
DEFINE time_parentrel RELATION time <time>
DEFINE product DIMENSION TEXT
DEFINE partition_sales_by_year PARTITION TEMPLATE <time product> -
 PARTITION BY LIST (time) -
 (PARTITION time_2004 VALUES ('2004', 'Dec2004', 'Jan2004', '31Dec2004', -
 '01Dec2004', '31Jan2004', '01Jan2004') <TIME PRODUCT> -
 PARTITION time_2003 VALUES ('2003', 'Dec2003', 'Jan2003', '31Dec2003', -
 '01Dec2003', '31Jan2003', '01Jan2003') <TIME PRODUCT> -
 PARTITION time_2002 VALUES ('2002', 'Dec2002', 'Jan2002', '31Dec2002', -
 '01Dec2002', '31Jan2002', '01Jan2002') <TIME PRODUCT>)

Assume that instead of having all sales values dimensioned levels by all time values of
a year in a partition, you want to have partitions by days and by summary time values
(month and year). To change partition_sales_by_year to reflect this new partitioning
scheme, you issue the following statements.

Chapter 10
MAINTAIN

10-82

"Create the new partition
CHGDFN partition_sales_by_year DEFINE -
 (PARTITION partition_month_years VALUES () <time product>)
"Delete the values for months and years from the partitions for years
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2004 '2004'-
 'Dec2004' 'Jan2004'
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2003 '2003'-
 'Dec2003''Jan2003'
MAINTAIN partition_sales_by_year DELETE FROM PARTITION time_2002 '2002'-
 'Dec2002' 'Jan2002'
"Add the month and year values to the new partition for summary values
MAINTAIN partition_sales_by_year ADD TO PARTITION partition_month_years '2004'-
 'Dec2004' 'Jan2004' '2003' 'Dec2003''Jan2003' '2002' 'Dec2002' 'Jan2002'

The partition_sales_by_year partition template object now has the following definition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2004 VALUES ('31Dec2004', '01Dec2004', '31Jan2004', -
 '01Jan2004') <TIME PRODUCT> -
 PARTITION TIME_2003 VALUES ('31Dec2003', '01Dec2003', '31Jan2003', -
 '01Jan2003') <TIME PRODUCT> -
 PARTITION TIME_2002 VALUES ('31Dec2002', '01Dec2002', '31Jan2002', -
 '01Jan2002') <TIME PRODUCT> -
 PARTITION PARTITION_MONTH_YEARS VALUES ('2004', 'Dec2004', 'Jan2004', -
 '2003', 'Dec2003', 'Jan2003', '2002', 'Dec2002', 'Jan2002')-
 <TIME PRODUCT>)

MAINTAIN MERGE
The MAINTAIN command with the MERGE keyword provides a quick way to make
sure all dimension or composite values on a separate list are included in a non-concat
dimension or composite. Using the MERGE keyword with the MAINTAIN command
automatically adds the new values from the list and ignores the duplicates. This
method of entering dimension values can save a significant amount of time when you
have a large number of values to enter.

You can use MERGE with dimensions of any data type, including DAY, WEEK,
MONTH, QUARTER, and YEAR dimensions. However, because Oracle OLAP
provides a quick way of adding values of DAY, WEEK, MONTH, QUARTER, and
YEAR dimensions through the ADD keyword, the MERGE keyword may not be as
useful with DAY, WEEK, MONTH, QUARTER, and YEAR dimensions as it is with
TEXT or ID dimensions.

At the same time as you are merging values into a dimension, you can also update a
relation that involves that dimension.

Note:

You can also issue this MAINTAIN MERGE statement for a surrogate
dimension that has a Maintain trigger. In this case, Oracle OLAP only executes
the Maintain trigger program one time for each value in exp; no other action
occurs. See "Trigger Programs" for more information for more information.
Issuing a MAINTAIN statement for a surrogate dimension that does not have a
Maintain trigger, returns an error.

Chapter 10
MAINTAIN

10-83

Syntax

MAINTAIN dimension|composite MERGE exp [RELATE relation]

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be entered or changed.

composite
A composite whose values are to be added, deleted, or merged. When the composite
is a named composite, it must be defined in an attached analytic workspace. When
the composite is unnamed, it must have been used in defining an object in an
attached analytic workspace. Use the SPARSE keyword to refer to an unnamed
composite (for example, SPARSE <market product>).

exp
Specifies an expression whose values are to be merged with dimension; for example,
the name of a dimensioned text variable that contains dimension values, or a single-
cell text variable whose value is a multiline list of dimension values. MAINTAIN
MERGE ignores any NAs in exp. When dimension is an INTEGER dimension, then
exp specifies the number of values that you want in the dimension. When the actual
total is less, MAINTAIN MERGE adds enough values to reach the specified total. For
example, when an INTEGER dimension has 10 positions, MERGE 5 has no effect; but
MERGE 15 would add 5 values.

RELATE relation
Specifies a relation to be updated as new values from exp are merged into dimension.
At least one dimension of exp must also appear in the definition of relation. When exp
is a single-cell value, you cannot use the RELATE phrase.

Examples

Example 10-49 Using the MERGE Keyword with Composites

Suppose you want to define a composite that is made up of all combinations of the first
three values of the product dimension and the first five values of the district
dimension. You can efficiently include all 15 values with the following statements.

DEFINE comp_proddist COMPOSITE <product district>
LIMIT product TO FIRST 3
LIMIT district TO FIRST 5
MAINTAIN comp_proddist MERGE <product district>

This method works with conjoint dimensions as well.

MAINTAIN MOVE
A MAINTAIN command with the MOVE keyword has different effects depending on the
object on which it operates:

• When maintaining a dimension, MAINTAIN MOVE changes the position of one or
more values in a non-concat dimension or a dimension of type TEXT, ID, or
INTEGER or adds previously-populated dimension or composite values to a
partition

Chapter 10
MAINTAIN

10-84

Note:

You can also issue a MAINTAIN MOVE dimension value statement for a
surrogate dimension that has a Maintain trigger. In this case, Oracle OLAP
only executes the Maintain trigger program; no other action occurs. See
"Trigger Programs" for more information for more information. Issuing a
MAINTAIN statement for a surrogate dimension that does not have a
Maintain trigger, returns an error.

• When maintaining a partition, MAINTAIN MOVE moves the data of a previously-
partitioned variables from one partition to another as it changes the dimension or
composite values defined for a partition in the partition template which the
variables are dimensioned.

Syntax

The syntax for using the MAINTAIN command with the MOVE keyword depends on
the type of the object being maintained.

For this reason, the following separate entries are provided for MAINTAIN MOVE:

• MAINTAIN MOVE dimension value

• MAINTAIN MOVE TO PARTITION

MAINTAIN MOVE dimension value
A simple MAINTAIN MOVE statement changes the position of one or more values in a
non-concat dimension or a dimension of type TEXT, ID, or INTEGER. You cannot use
the MOVE keyword of the MAINTAIN command with composites or with dimensions of
type DAY, WEEK, MONTH, QUARTER, or YEAR.

Note:

You can also issue a MAINTAIN MOVE statement for a surrogate dimension
that has a Maintain trigger. In this case, Oracle OLAP only executes the
Maintain trigger program; no other action occurs. See "Trigger Programs" for
more information for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns an error.

Syntax

MAINTAIN dimension MOVE limit-clause

Parameters

dimension
A non-concat dimension, already defined in an attached analytic workspace, whose
values are to be entered or changed. The dimension must be of type TEXT, ID, or
INTEGER. You cannot specify a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR.

Chapter 10
MAINTAIN

10-85

limit-clause
Specifies the values you want to move.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).

Usage Notes

What Effects Performance of MAINTAIN MOVE

The performance cost of issuing a MAINTAIN MOVE command is dependent on the
length of the dimension, not on the number of values being moved. Consequently,
when moving values in a large dimension, do not issue several MAINTAIN MOVE
statements one after another; instead, set up the dimension status to what you want
and then issue a single MAINTAIN MOVE command.

Reordering or Sorting Values within a Dimension

When you want to reorder or sort dimension values using a MAINTAIN MOVE
statement, to specify that you want to use all of the dimension values that are in
status, use the STATUS keyword of the limit-clause argument of LIMIT (using values)
command rather than a VALUES command.

Examples

Example 10-50 Moving a Dimension Value to a Specific Position

This statement moves the position of the city Houston to the position following the fifth
dimension value.

MAINTAIN city MOVE 'Houston' AFTER 5

Example 10-51 Moving a Dimension Value to the End of the Status List

In this example, you use the TEXT variable textvar to move Seattle to the end of the
list of cities.

textvar = 'Seattle'
MAINTAIN city MOVE textvar LAST

Example 10-52 Moving Values of Concat Dimensions

The following statement moves the reg.dist.ccdim concat dimension value <district:
'Denver'> after the concat dimension value <region: 'West'>.

MAINTAIN reg.dist.ccdim MOVE <district: 'Denver'> AFTER <region: 'West'>

The following statement moves the concat dimension value <district: 'Denver'> after
the position that corresponds to the first value of the component district dimension. If
the first value in the status of district is Atlanta, then <district: 'Denver'> moves
after the value <district: 'Atlanta'> in the concat dimension.

MAINTAIN reg.dist.ccdim MOVE <district: 'Denver'> AFTER <district: 1>

The following statement moves the concat dimension value <district: 'Dallas'> after
the third value of the concat dimension.

Chapter 10
MAINTAIN

10-86

MAINTAIN reg.dist.ccdim MOVE <district: 'Dallas'> AFTER 3

MAINTAIN MOVE TO PARTITION
A MAINTAIN MOVE TO PARTITION statement combines both add and move
capabilities. You can use a MAINTAIN MOVE TO PARTITION statement to:

• Add previously-populated dimension or composite values to a partition in the same
manner as MAINTAIN ADD TO PARTITION

• Change the dimension or composite values defined for a partition in the partition
template by which the variables are dimensioned and, at the same time, move the
data of a previously-partitioned variables dimensioned by those dimensions and
composites from one partition to another.

Syntax

MAINTAIN partition-template MOVE TO PARTITION partition value [TO value]

Parameters

partition-template
A text expression that is the name of a previously-defined partition template object.

MOVE TO PARTITION
Specifies that values are to be added to the partition or moved from one partition to
another.

partition
A text expression that is the name of a previously-defined partition in the partition
template specified by partition-template.

value
Specifies one or more values of a previously-populated dimension or composite. You
can specify these values as:

• A literal value.

• An expression whose value is a dimension value.

• For all dimensions except NUMBER dimensions, an INTEGER expression whose value
represents the position of a dimension value.

• A valueset; or a LIMIT function.

For a concat dimension, you can specify a value of the concat dimension, or the name
of a component dimension and a value or position of that dimension. You can use the
values of a dimension surrogate as the values of value.

TO
Indicates a range of values.

Examples

Example 10-53 Specifying the Values of a Partition Using Valuesets

Assume that you have defined a partition template object with the following definition
that does not specify the actual dimension values for each partition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -
 PARTITION BY LIST (TIME) -

Chapter 10
MAINTAIN

10-87

 (PARTITION TIME_2004 VALUES () <TIME PRODUCT> -
 PARTITION TIME_2003 VALUES () <TIME PRODUCT> -
 PARTITION TIME_2002 VALUES () <TIME PRODUCT>)

To specify the values of each partition using valuesets, you take the following steps:

1. Define a valueset for each year's values.

DEFINE vs_2004 VALUESET time
LIMIT vs_2004 to '01Dec2004' '31Dec2004' '01Jan2004''31Jan2004' -
 'Jan2004' 'Dec2004' '2004'
DEFINE vs_2003 VALUESET time
LIMIT vs_2003 to '01Dec2003' '31Dec2003' '01Jan2003''31Jan2003' -
 'Jan2003' 'Dec2003' '2003'
DEFINE vs_2002 VALUESET time
LIMIT vs_2002 to '01Dec2002' '31Dec2002' '01Jan2002''31Jan2002' -
 'Jan2002' 'Dec2002' '2002'

2. Using MAINTAIN MOVE statements, specify values for the partitions of the
partition template.

MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2004 vs_2004
MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2003 vs_2003
MAINTAIN partition_sales_by_year MOVE TO PARTITION time_2002 vs_2002

When you issue a DESCRIBE statement, you can see that the description of the
partition_sales_by_year partition template now includes the appropriate values of time
in each partition definition.

DEFINE PARTITION_SALES_BY_YEAR PARTITION TEMPLATE <TIME PRODUCT> -

 PARTITION BY LIST (TIME) -
 (PARTITION TIME_2004 VALUES -
('2004','Dec2004','Jan2004', 31Dec2004',01Dec2004','31Jan2004','01Jan2004')-
 PARTITION TIME_2003 VALUES -
('2003','Dec2003','Jan2003', 31Dec2003',01Dec2003','31Jan2003','01Jan2003')-
 PARTITION TIME_2002 VALUES -
 ('2002','Dec2002','Jan2002', 31Dec2002',01Dec2002','31Jan2002','01Jan2002'))

MAINTAIN RENAME
The MAINTAIN command with the RENAME keyword changes the spelling of one or
more dimension values. You cannot use RENAME keyword with a composite or with
dimensions of type INTEGER, DAY, WEEK, MONTH, QUARTER, or YEAR.

Note:

You can also issue a MAINTAIN RENAME statement for a surrogate dimension
that has a Maintain trigger. In this case, Oracle OLAP only executes the
Maintain trigger program; no other action occurs. See "Trigger Programs" for
more information for more information. Issuing a MAINTAIN statement for a
surrogate dimension that does not have a Maintain trigger, returns an error.

Syntax

MAINTAIN dimension RENAME {value new-value}...

Chapter 10
MAINTAIN

10-88

Parameters

dimension
A non-concat dimension of type TEXT or ID that is already defined in an attached
analytic workspace and whose values are to be renamed. You cannot specify a
dimension of type INTEGER, DAY, WEEK, MONTH, QUARTER, or YEAR.

value
Specifies an existing dimension value to be renamed. You can specify a dimension
value, a character expression whose value is a dimension value, or an INTEGER
expression whose value represents the position of a dimension value.

new-value
A text constant or a TEXT or ID expression that is the new spelling for the dimension
value.

Examples

Example 10-54 Renaming Values of a TEXT Dimension

This statement changes the spelling of the cities Chic and Bost to Chicago and Boston.

MAINTAIN city RENAME 'Chic' 'Chicago' 'Bost' 'Boston'

In this example you use the TEXT variable textvar to change the second city to
Atlanta.

textvar = 'Atlanta'
MAINTAIN city RENAME 2 textvar

MODEL
The MODEL command enters a completely new specification into a new or existing
model object. When the model already has a specification, Oracle OLAP overwrites it.
To use MODEL to assign an model specification to a model object, the definition must
be the one most recently defined or considered during the current session. When it is
not, you must first use a CONSIDER statement to make it the current definition.

An alternative to a MODEL statement is an EDIT MODEL statement, which is available
only in OLAP Worksheet. An EDIT MODEL statement opens an Edit window in which
you can add, delete, or change the specification for a model object.

Adding a specification to a model object is just one step in modeling data. For more
information on models, see "OLAP DML Model Objects".

Syntax

MODEL specification

Parameters

specification
A multiline text expression that contains one or more of the following OLAP DML
statements:

SET (=) command

Chapter 10
MODEL

10-89

DIMENSION (in models) statement
INCLUDE statement

The maximum number of lines you can have in a model is 4,000. Each statement is a
line of the multiline text expression. When coding an ALLOCMAP statement at the
command line level, separate statements with newline delimiters (\n), or use
JOINLINES.
For a discussion of designing a model specification, see "Model Specification".

Usage Notes

Model Specification

The model specification consists of the following OLAP DML statements:

1. One of the following:

• Exactly one INCLUDE statement that specifies the name of another model to
include. See "Nesting Models" for more information.

• One or more DIMENSION (in models) statements coded following the
"Guidelines for Writing DIMENSION Statements in a Model".

Note:

When a model contains an INCLUDE statement, then it cannot contain
any DIMENSION statements. However, the model referenced in the
INCLUDE statement or the root model in a hierarchy must contain the
DIMENSION statements needed by the parent model(s).

2. One or more SET commands or equations written following the "Rules for
Equations in Models".

See Also:

"Dimension Status and Model Equations" for information on how Oracle
OLAP processes equations in a model

3. A final END statement that indicates the end of the model specification. (Omit
when coding the specification in an Edit window of the OLAP Worksheet.)

The maximum number of lines you can have in a model is 32,000.

MODEL Statement in an Aggregation Specification

Within an aggmap, you can use a special MODEL statement to execute a predefined
model. (See the MODEL (in an aggregation) statement under the AGGMAP command
for more information.

Methods of Calculating Data Within a Variable

Both models and aggmap objects calculate data values within a variable based on
relationships among dimension members. When a parent-child relationship exists
among dimension members (that is, the dimension has a hierarchical structure) and all
aggregate values can be calculated using the same method, then you can use a
RELATION statement within an aggregation specification to calculate the values.

Chapter 10
MODEL

10-90

However, when the dimension is not hierarchical and different equations are needed to
calculate the values, then you must define a model. You can use a MODEL (in an
aggregation) to execute the MODEL within an aggregation specification or you can run
a model at the command line using the syntax shown in "Running a Model".

Deleting a Model Specification

You can remove the specification of a model without deleting the model definition.
Consider the model with a CONSIDER statement. Then issue a MODEL statement
and enter the word END as the model specification.

Examples

Example 10-55 Model Specified in a Program

In the following example, a simple model is created (or overwritten) in a program
called myprog. The first line in the program defines or considers the model. The second
line contains the MODEL statement, which provides the lines of the model.

This model calculates the line items in a budget. The model equations are based on a
line dimension.

DEFINE myprog PROGRAM
PROGRAM
IF NOT EXISTS('myModel')
 THEN DEFINE myModel
 ELSE CONSIDER myModel
MODEL JOINLINES(-
 'DIMENSION line month' -
 'Opr.Income = Gross.Margin - Marketing' -
 'Gross.Margin = Revenue - Cogs' -
 'Revenue = LAG(Revenue, 1, month) * 1.02' -
 'Cogs = LAG(Cogs, 1, MONTH) * 1.01' -
 'Marketing = LAG(Opr.Income, 1, month) * 0.20' -
 'END')
END

Example 10-56 Model from an Input File

This example presents the text of the same simple model, but it is stored in an ASCII
disk file called budget.txt.

DEFINE income.budget MODEL
MODEL
DIMENSION line month
Opr.Income = Gross.Margin - Marketing
Gross.Margin = Revenue - Cogs
Revenue = LAG(Revenue, 1, month) * 1.02
Cogs = LAG(Cogs, 1, month) * 1.01
Marketing = LAG(Opr.Income, 1, month) * 0.20
END

To include the income.budget model in your analytic workspace, execute the following
statement in which myinpfiles is a directory object.

INFILE 'myinpfiles/budget.txt'

Example 10-57 Creating a Model

Suppose that you define a model, called income.calc, that calculates line items in the
income statement.

Chapter 10
MODEL

10-91

define income.calc model
ld Calculate line items in income statement

After defining the model, you can use a MODEL statement or the OLAP Worksheet editor
to enter the specification for the model. A model specification can contain DIMENSION
commands, assignment statements and comments. All the DIMENSION commands must
come before the first equation. For the current example, you can specify the lines
shown in the following model.

DEFINE INCOME.CALC MODEL
LD Calculate line items in income statement
MODEL
DIMENSION line
net.income = opr.income - taxes
opr.income = gross.margin - (marketing + selling + r.d)
gross.margin = revenue - cogs
END

When you write the equations in a model, you can place them in any order. When you
compile the model, either by issuing a COMPILE statement or by running the model,
Oracle OLAP identifies the logical order in which the model equations are solved.
When the calculated results of one equation are used as input to another equation,
then the equations are solved in the order in which they are needed.

To run the income.calc model and use actual as the solution variable, you execute the
following statement.

income.calc actual

When the solution variable has dimensions other than the dimensions on which model
equations are based, then a loop is performed automatically over the current status list
of each of those dimensions. For example, actual is dimensioned by month , division,
and line. When division is limited to ALL, and month is limited to OCT96 to DEC96, then
the income.calc model is solved for the three months in the status for each of the
divisions.

Example 10-58 Building a Scenario Model

Suppose, for example, you want to calculate profit figures based on optimistic,
pessimistic, and best-guess revenue figures for each division. The steps for building
this scenario model are explained in the following example.

You can call the scenario dimension scenario and give it values that represent the
scenarios you want to calculate.

These commands give scenario the values optimistic, pessimistic and bestguess.

DEFINE scenario DIMENSION TEXT
LD Names of scenarios
MAINTAIN scenario ADD optimistic pessimistic bestguess

These commands create a variable named plan dimensioned by three other
dimensions (month, line, and division) in addition to the scenario dimension.

DEFINE plan DECIMAL <month line division scenario>
LD Scenarios for financials

For this example, you must enter input data, such as revenue and cost of goods sold,
into the plan variable.

Chapter 10
MODEL

10-92

For the best-guess data, you can use the data in the budget variable. Limit the line
dimension to the input line items, and then copy the budget data into the plan variable.

LIMIT scenario TO 'BESTGUESS'
LIMIT line TO 'REVENUE' 'COGS' 'MARKETING' 'SELLING' 'R.D'
plan = budget

You might want to base the optimistic and pessimistic data on the best-guess data.
For example, optimistic data might be fifteen percent higher than best-guess data, and
pessimistic data might be twelve percent less than best-guess data. With line still
limited to the input line items, execute the following commands.

plan(scenario 'OPTIMISTIC') = 1.15 * plan(scenario 'BESTGUESS')
plan(scenario 'PESSIMISTIC') = .88 * plan(scenario 'BESTGUESS')

The final step in building a scenario model is to write a model that calculates results
based on input data. The model might contain calculations very similar to those in the
budget.calc model shown earlier in this chapter.

You can use the same equations for each scenario or you can use different equations.
For example, you might want to calculate the cost of goods sold and use a different
constant factor in the calculation for each scenario. To use a different constant factor
for each scenario, you can define a variable dimensioned by scenario and place the
appropriate values in the variable. When the name of your variable is cogsval, then
your model might include the following equation for calculating the cogs line item.

cogs = cogsval * revenue

By using variables dimensioned by scenario, you can introduce a great deal of
flexibility into your scenario model.

Similarly, you might want to use a different constant factor for each division. You can
define a variable dimensioned by division to hold the values for each division. For
example, when labor costs vary from division to division, then you might dimension
cogsval by division and by scenario.

When you run your model, you specify plan as the solution variable. For example,
when your model is called scenario.calc, then you solve the model with this statement.

scenario.calc plan

A loop is performed automatically over the current status list of each of the dimensions
of plan. Therefore, when the scenario dimension is limited to ALL when you run the
scenario.calc model, then the model is solved for all three scenarios: optimistic,
pessimistic, and bestguess.

DIMENSION (in models)
The DIMENSION statement at the beginning of a model tells Oracle OLAP the names
of one or more dimensions to which the model assigns data or to which it refers in
dimension-based equations. A dimension-based equation assigns the results of a
calculation to a target that is represented by one or more values of a dimension.

Syntax

DIMENSION dimension1 [, dimensionN]

Chapter 10
MODEL

10-93

Parameters

dimension
One or more dimensions, including base dimensions of composites, on which model
equations are based. You can specify the name of a dimension surrogate instead of
the dimension for which is a surrogate. You can then use the values of the surrogate
instead of the values of the dimension.

Usage Notes

Dimension-Based Equations in Models

When an equation (SET) assigns data to a dimension value or refers to dimension
values in its calculations, it is called a dimension-based equation. Note that a
dimension-based equation does not have to refer to the dimension itself, but only to
the values of the dimension. Therefore, when the model contains any dimension-
based equations, you must specify the name of each of these dimensions in a
DIMENSION statement at the beginning of the model s that Oracle OLAP can
determine the dimension to which each dimension value belongs. You can specify the
name of a dimension surrogate instead of the dimension for which it is a surrogate.
You can then use the values of the surrogate instead of the values of the dimension.

In addition, when a model contains any dimension-based equations, you must supply
the name of a solution variable when you run the model. The solution variable is both
the source and the target of data for the model. It holds the input data used in
dimension-based calculations, and Oracle OLAP stores the calculation results in
designated values of the solution variable. The solution variable is generally
dimensioned by all the dimensions on which the model equations are based. For
example, in a financial application, the model might be based on the line dimension,
and the solution variable might be actual, which has line as one of its dimensions.

Dimension-based equations provide flexibility in modeling. Because you do not have to
specify the modeling variable until you solve a model, you can run the same model
with different solution variables. For example, you might run the same model with the
actual variable, with a "best case" budget variable, and with a "worst case" budget
variable.

A dimension must be specified in a DIMENSION statement when a dimension-based
equation refers to a value of the dimension either as a source of the data used in the
calculation or as the target to which the results are assigned. In the following example,
Gross.Margin, Revenue, and Cogs are values of the line dimension, so line is specified
in a DIMENSION statement.

DIMENSION line
Gross.Margin = Revenue - Cogs

Dimension is a Function Argument

A dimension must be specified in a DIMENSION statement when the dimension is an
argument to a function that uses a dimension value as its data source. In the following
example, month must be specified in a DIMENSION statement.

DIMENSION line, month
Revenue = lag(Revenue, 1, month) * 1.05

The writer of the preceding model expects to use a solution variable that is
dimensioned by line and month. Therefore, when the model is run, the LAG function

Chapter 10
MODEL

10-94

operates on a solution variable that has the specified time dimension (month) as one of
its dimensions. However, because the model compiler cannot anticipate the time
dimension of the solution variable, you must specify it in a DIMENSION statement.
When you fail to include month in a DIMENSION statement, an error occurs when you
attempt to compile the model.

In a function that operates on time-series data (such as MOVINGTOTAL or LAG), the
dimension argument is optional when the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR. For example, you can omit month from the LAG function in the
preceding example. However, you must still specify the appropriate time dimension in
a DIMENSION statement.

Solution Variable

When you run a model that contains dimension-based equations, you specify a
solution variable, which is both the source and the target of data for the model. The
solution variable is generally dimensioned by all the dimensions that are listed in the
DIMENSION commands used in the model. Or, when a solution variable is
dimensioned by a composite, the DIMENSION commands can list base dimensions of
the composite. The DIMENSION commands can be explicit in the model or inherited
through an included model. See "Incompatibility with INCLUDE".

Working with Composites

When you expect to run a model with a solution variable that has a composite in its
dimension list, you can specify a base dimension of the composite in a DIMENSION
statement. Your model equations assign results to values of the base dimension.
Oracle OLAP automatically creates any new values that are needed in the composite.

Multiple DIMENSION Commands

You can include a separate DIMENSION statement for every dimension referred to or
used in dimension-based equations, or you can specify all the dimensions in a single
DIMENSION statement.

Location of Commands

You must place all the DIMENSION commands at the beginning of the model, before
any equations.

Incompatibility with INCLUDE

When a model contains an INCLUDE statement, it cannot contain any DIMENSION
commands. The INCLUDE statement specifies another model to include in the current
model. In this case, the current model inherits its DIMENSION commands, if any, from
the included model. For more information in including models, see the INCLUDE
statement under the MODEL command.

Inherited DIMENSION commands must satisfy all the requirements specified for
explicit DIMENSION commands. See "Guidelines for Writing DIMENSION Statements
in a Model".

Dimension Order

When multiple dimensions are specified by the DIMENSION commands in a model,
the order in which the dimensions are listed is important:

• When a model equation contains a name that might be a dimension value, Oracle
OLAP searches through the dimensions that appear in the model's explicit or
inherited DIMENSION commands, in the order you list the dimensions, to

Chapter 10
MODEL

10-95

determine whether the name matches a dimension value of a listed dimension.
The search concludes as soon as a match is found. Therefore, when two or more
listed dimensions have a dimension value with the same name, Oracle OLAP
assumes that the value belongs to the dimension specified earliest in a
DIMENSION statement. When the name does not match a value of a listed
dimension, Oracle OLAP then searches through the variables in the attached
workspaces to find a match.

• When model equations assign results to values of a target dimension, Oracle
OLAP constructs code that loops over the values of the other, non-target,
dimensions listed in the DIMENSION commands. The non-target dimension listed
first in the DIMENSION commands is treated as the slowest-varying dimension.
For example, when MONTH is the first non-target dimension listed in a
DIMENSION statement and DIVISION is the second, Oracle OLAP loops through
all the divisions for the first month, then all the divisions for the second month, and
so on.

Guidelines for Writing DIMENSION Statements in a Model

When you write DIMENSION statements, keep these points in mind:

• In the DIMENSION statements, you must list the names of all the dimensions on
which model equations are based. In the following example, gross.margin, revenue,
and cogs are values of the line dimension, so line is specified in a DIMENSION
statement.

DIMENSION line
gross.margin = revenue - cogs

• DIMENSION statements must also list any dimension that is an argument to a
function that refers to a dimension value. In the following example, month must be
specified in a DIMENSION statement.

DIMENSION line, month
revenue = LAG(revenue, 1, month) * 1.05

• When a model equation assigns results to a dimension value, then code is
constructed that loops over the values of any of the other nontarget dimensions
listed in the DIMENSION statements. The nontarget dimension listed first in the
DIMENSION statements is treated as the slowest-varying dimension.

• A model executes most efficiently when you observe the following guidelines for
coordinating the dimensions in DIMENSION statements and the dimensions of the
solution variable:

– List the target dimension of the model as the first dimension in the DIMENSION
statements and as the last dimension in the definition of the solution variable.

– In DIMENSION statements, list the nontarget dimensions in the reverse order of
their appearance in the definition of the solution variable. Consequently, the
fastest-varying and slowest-varying nontarget dimensions are in the same
order in the model and in the solution variable.

• When the solution variable has dimensions that are not used or referred to in
model equations, then do not include them in DIMENSION statements.

• When your analytic workspace contains a variable whose name is the same as a
dimension value, or when the same dimension value exists in two different
dimensions, then there could be ambiguities in your model equations. Because
you can use a variable and a dimension value in the same way in a model

Chapter 10
MODEL

10-96

equation, a name might be the name of a variable, or it might be a value of any
dimension in your analytic workspace.

• Your DIMENSION statements are used to determine whether each name reference in
an assignment statement is a variable or a dimension value. "Compiling Models"
explains how the name references are resolved.

See Also:

"OLAP DML Model Objects", SET, and MODEL for information on:

– Entering statements in a model

– How to refer to values of dimensions

– Explanation of how Oracle OLAP constructs code from the statements

– Explanation of how Oracle OLAP handles the situation in which the
solution variable has more dimensions or fewer dimensions than are
listed in DIMENSION commands

Examples

Example 10-59 Simplified Model for Budget Estimates

The following statements define a simplified model that estimates budget values for
the items on an income statement.

DEFINE income.budget MODEL
LD Model for estimating budget line items
MODEL
dimension line, month
Revenue = 1.05 * LAG(Revenue 1 month)
Gross.Margin = Revenue - Cogs
Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Net.Income = Opr.Income - Taxes
END

The model equations are based on the line dimension, so line is specified in the
DIMENSION statement. The dimension month is the time dimension in the LAG
function that operates on REVENUE values, so month is also specified in the
DIMENSION statement.

When you run the model, Oracle OLAP loops over the values in the current status of
the month dimension.

INCLUDE
The INCLUDE statement includes one model within another model. You can use the
INCLUDE statement only within models.

Use INCLUDE to create modular models by placing equations that are common to
several models, in a separate model for inclusion on other models as needed. The
INCLUDE statement also facilitates what-if analyses. An experimental model can draw
equations from a base model and selectively replace them with new equations

Chapter 10
MODEL

10-97

Syntax

INCLUDE model

Parameters

model
The name of a model to include in the current model. The current model is referred to
as the parent model. The model that you include is referred to as the base model.

Usage Notes

Guidelines for Coding INCLUDE Statements in a Model

Follow these guidelines for using INCLUDE statements in models:

• A model can contain only one INCLUDE statement.

• The INCLUDE statement must be before any equations in the model.

• A model that contains an INCLUDE statement cannot contain any DIMENSION
statements.

How to Nest Models

You can nest models by placing an INCLUDE statement in a base model. For
example, model myModel1 can include model myModel2, and model myModel2 can include
model myModel3. The nested models form a hierarchy. In this example, myModel1 is at
the top of the hierarchy, and myModel3 is at the root. A base model cannot include a
model at a higher level in the hierarchy. In the preceding example, myModel2 cannot
include myModel1, and myModel3 cannot include myModel1 or myModel2.

Dependencies Among Equations

When compiling a model that contains an INCLUDE statement, the compiler considers
the dependencies among the equations from all the included models when it orders
and blocks the equations. Therefore, when you run the MODEL.COMPRPT program to
examine the results of the compilation or when you set the MODTRACE option to YES
before running the parent model, you might find that equations from different levels in
the hierarchy of included models are interspersed. See Producing a Compilation
Report.

When the compiler finds no dependencies among the equations from the included
models, it executes the equations in the root model first and the equations in the
parent model last.

Compiling a Parent Model

When you compile a parent model, the compiler compiles all the base models under it
in the included hierarchy when compiled code does not already exist. When the
compiler detects an error in an included model, neither it nor any model above it in the
hierarchy is compiled. When the root model of the included hierarchy contains an
error, the higher-level models are unable to inherit any DIMENSION statements from
the root model. In this case, the compiler might report an error in a parent model when
the source of the error is actually in the root model. For example, the compiler might
report that a target dimension value does not exist in any attached analytic workspace.
On the other hand, when the compiler detects an error in a parent model but finds no
errors in the included models, the included models are compiled even though the
parent model is not.

Chapter 10
MODEL

10-98

Masking Equations

To support what-if analyses, Oracle OLAP allows equations in a model to mask
previous equations. The previous equations can come from the same model or from
included models. A masked equation is not executed. When you run the MODEL.COMPRPT
program after compiling the model, the masked equation is not shown in the report on
the compiled model.

Masking can take place when an equation assigns a value to a variable or dimension
value that is also the target of a previous equation. The masking rules are as follows:

• When the target in the earlier equation is qualified the same as the target in the
later equation, the earlier equation is masked and the later equation is executed.
The following example illustrates two equations with targets that are identically
qualified.

Equation from a base model: BUDGET(LINE REVENUE) = 5000
Equation from the parent model: BUDGET(LINE REVENUE) = 3500

In this example, the equation from the base model is masked and the equation
from the parent model is executed.

• When the target in the earlier equation is more qualified than the target in the later
equation, the earlier equation is masked. The later equation is executed.

The target that is more qualified is the one that affects the fewest dimension
values. Consider the following equations from a base model and a parent model.

Equation from a base model: BUDGET(LINE REVENUE) = 2500
Equation from the parent model: BUDGET = 4000

The equation from the base model is more qualified because it assigns data only
for the REVENUE value of the LINE dimension. The equation from the parent
model assigns data to all the values of the LINE dimension. In this example, the
equation from the base model is masked and the equation from the parent model
is executed.

• When the target in the earlier equation is less qualified than the target in the later
equation, no masking takes place. Both equations are executed.

Consider the following equations from a base model and a parent model.

Equation from a base model: BUDGET = LAG(ACTUAL, 1, MONTH)
Equation from the parent model: BUDGET(LINE REVENUE) = 6500
Equation from the parent model: BUDGET(LINE COGS) = 4000

The equation from the base model assigns data to all the values of the LINE
dimension. The equations from the parent model are more qualified because each
assigns data only for a single value of the LINE dimension. In this example, the
equation from the base model is executed first, and then the equations from the
parent model are executed.

This functionality enables you to assign a large number of values with one
equation and use subsequent equations to replace or test individual values.

• When the target in the earlier equation is qualified differently from the target in the
later equation, no masking takes place. Both equations are executed. In the
following example, both equations are executed.

Chapter 10
MODEL

10-99

Equation from a base model: BUDGET(LINE REVENUE) = 5000
Equation from the parent model: BUDGET(LINE COGS) = 4500

Examples

Example 10-60 Including a Model

This example shows a parent model named income.plan that includes a base model
named base.lines.

DEFINE income.plan MODEL
MODEL
INCLUDE base.lines
revenue = LAG(revenue, 1, month) * 1.02
cogs = LAG(cogs, 1, month) * 1.01
taxes = 0.3 * opr.income
END

DEFINE BASE.LINES MODEL
MODEL
DIMENSION line month
net.income = opr.income - taxes
opr.income = gross.margin - marketing
gross.margin = revenue - cogs
END

Example 10-61 Producing a Compilation Report

The following statements compile the parent model and produce a compilation report.

COMPILE income.plan
MODEL.COMPRPT income.plan

These statements produce the following output.

MODEL INCOME.PLAN <LINE MONTH>
 BLOCK 1 (SIMPLE)
INCOME.PLAN 2: revenue = lag(revenue, 1, month) * 1.02
INCOME.PLAN 3: cogs = lag(cogs, 1, month) * 1.01
BASE.LINES 4: gross.margin = revenue - cogs
BASE.LINES 3: opr.income = gross.margin - marketing
INCOME.PLAN 4: taxes = 0.3 * opr.income
BASE.LINES 2: net.income = opr.income - taxes
 END BLOCK 1

MODEL.COMPRPT
The MODEL.COMPRPT program produces a report that shows how model equations
are grouped into blocks. For step blocks and for simultaneous blocks with a cross-
dimensional dependence, the report lists the dimensions involved in the dependence.

Syntax

MODEL.COMPRPT

Chapter 10
MODEL.COMPRPT

10-100

Examples

Example 10-62 A Compilation Report for the income.budget Model

The MODEL.COMPRPT program produces a compilation report that shows the block
structure of the model that you specify as the program argument and the order of
equations within each block. Each equation is identified with the name of the model
and its statement number within that model.

The following statements compile the model and invoke MODEL.COMPRPT.

COMPILE income.budget
MODEL.COMPRPT income.budget

The MODEL.COMPRPT statement produces the following compilation report.

MODEL INCOME.BUDGET <LINE MONTH>
 BLOCK 1 (SIMPLE)
INCOME.BUDGET 4: revenue = lag(revenue, 1, month) * 1.02
INCOME.BUDGET 5: cogs = lag(cogs, 1, month) * 1.01
INCOME.BUDGET 3: gross.margin = revenue - cogs
 BLOCK 2 (STEP-FORWARD <MONTH>)
INCOME.BUDGET 6: marketing = lag(opr.income, 1, month) * 0.20
INCOME.BUDGET 2: opr.income = gross.margin - marketing
 END BLOCK 2
 END BLOCK 1

Example 10-63 A Compilation Report for the income.est Model

The following statement runs the MODEL.COMPRPT program, which produces a
compilation report for a model named income.est.

MODEL.COMPRPT income.est

The compilation report contains the following output.

MODEL INCOME.EST <LINE MONTH>
 BLOCK 1 (STEP-FORWARD <MONTH>)
INCOME.EST 5: revenue = lag(revenue,1,month)+2*lag(marketing,1,month)
INCOME.EST 4: gross.margin = revenue - cogs
 BLOCK 2 (SIMULTANEOUS)
INCOME.EST 2: net.income = opr.income - taxes
INCOME.EST 3: opr.income = gross.margin - marketing - selling - r.d
INCOME.EST 6: marketing = .15 * net.income
INCOME.EST 7: taxes = .3 * opr.income
 END BLOCK 2
 END BLOCK 1

MODEL.DEPRT
The MODEL.DEPRPT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

Syntax

MODEL.DEPRT

Chapter 10
MODEL.DEPRT

10-101

Examples

Example 10-64 Producing a Dependency Report

The MODEL.DEPRPT program produces a dependency report that lists the variables
and dimension values that are the assignment target and data sources for each model
equation. For each equation, the assignment target and each data source is listed on a
separate line. When a target or data source is a dimension value, its line is marked by
an asterisk enclosed in square brackets ([*]).

When a target or data source depends on a qualifier, the report specifies the
dimension of the qualifier and indicates the type of dependence. The type of
dependence can be any of the following:

• LAG -- One-way dependence on previous dimension values

• LEAD -- One-way dependence on later dimension values

• BOTH -- Two-way dependence on both previous and later values

• VARIABLE -- Dependence on either previous or later values, depending on the
value of a variable when the model is run

• QDR -- Qualified data reference

Assume that you want to produce a dependency report for the income.budget model.
The following statement and report illustrate this process.

MODEL.DEPRPT income.budget

MODEL INCOME.BUDGET <LINE MONTH>
2 [*](LINE OPR.INCOME):
 [*](LINE GROSS.MARGIN)
 [*](LINE MARKETING)
3 [*](LINE GROSS.MARGIN):
 [*](LINE REVENUE)
 [*](LINE COGS)
4 [*](LINE REVENUE):
 [*](LINE REVENUE)(LAG <MONTH>)
5 [*](LINE COGS):
 [*](LINE COGS)(LAG <MONTH>)
6 [*](LINE MARKETING):
 [*](LINE OPR.INCOME)(LAG <MONTH>)

The data sources in statements 4, 5, and 6 have a LAG dependence on the month
dimension.

MODEL.XEQRPT
The MODEL.XEQRPT program produces a report about the execution of the model.
The report specifies the block where the solution failed and shows the values of the
model options that were used in solving simultaneous blocks.

Syntax

MODEL.XEQRPT

Usage Notes

Running MODEL.XEQRPT

Chapter 10
MODEL.XEQRPT

10-102

Before you can run the MODEL.XEQRPT program, you must

1. Set the MODERROR option to STOP or CONTINUE.

2. Execute the model.

When the model halts because of an error, run the MODEL.XEQRPT program.

Effect of MODERROR on MODEL.XEQRPT

The results returned by MODEL.XEQRPT vary depending on the setting of the
MODERROR option:

• When MODERROR is set to STOP and execution of the model halts because of an
error, you can run the MODEL.XEQRPT program to produce a report about the
execution of the model. The report specifies the block where the solution failed
and shows the values of the model options that were used in solving simultaneous
blocks.

• When MODERROR is set to CONTINUE and one block in the model is a
simultaneous block that either diverges or fails to converge, Oracle OLAP
executes any remaining blocks in the model.

Moreover, Oracle OLAP executes the model for the remaining values in the status
of any additional dimensions of the solution variable that are not dimensions of the
model. In this case, when you run the MODEL.XEQRPT program when Oracle
OLAP finishes executing the model, a report on the solution for the final values of
the additional dimensions is produced.

When the simultaneous blocks in the model converged when the model was
executed for the final values of the additional dimensions, then MODEL.XEQRPT
reports that the blocks were solved, even though an earlier execution of the model
for another dimension value might have failed. When you want to see the
MODEL.XEQRPT for the dimension values where the failure occurred, you can set
MODERROR to STOP and rerun the model.

Examples

Example 10-65 Producing an Execution Report for the income.est Model

After running the income.est model, you can use the MODEL.XEQRPT program to
produce a report on the execution of the model.

The following statement runs the MODEL.XEQRPT program, which produces an
execution report for the model.

MODEL.XEQRPT income.est

The execution report contains the following output.

MODEL INCOME.EST <LINE MONTH>
Solution status: SOLVED
Model options in use:
 MODSIMULTYPE: AITKENS
 MODMAXITERS: 50
 MODTOLERANCE: 3
 MODOVERFLOW: 3
 MODGAMMA: 1
BLOCK 1 (STEP-FORWARD <MONTH>)
 Solution status: SOLVED
BLOCK 2 (SIMULTANEOUS)

Chapter 10
MODEL.XEQRPT

10-103

 Solution status: SOLVED
 Iterations: 15

The report shows the values of the model options that were used in solving the
simultaneous blocks and indicates whether each block was solved.

MONITOR
The MONITOR command records data on the performance cost of each line in a
specified program. To get meaningful information from MONITOR, your session must
be the only one running in Oracle OLAP. Furthermore, the accuracy of the results of
MONITOR decreases as more processes are started on the host computer.

You first use a MONITOR statement to specify a program for monitoring; then you run
the program and use MONITOR again to obtain the results. When the program
executes a given line repeatedly, MONITOR records the cumulative cost of all the
executions on the single line of its monitor list that is devoted to that program line.

A line of code is considered to have a high performance cost when it takes a long time
to execute. Use a TRACKPRG statement to identify programs that have relatively high
costs and then use MONITOR to identify the time-consuming lines within those
programs. When you want, you can use both TRACKPRG and MONITOR
simultaneously.

Syntax

MONITOR ON [programs] | OFF | INIT | FILE [[APPEND] file-name] | RESET

where programs is one of the following:

ALL [awlist]

program-name

Parameters

ON
Starts looking for the specified programs to be run so that Oracle OLAP can gather
line-by-line timing data in a monitor list. (It continues the current monitoring process
without interruption when monitoring is already on, or resumes with a gap when
monitoring was off.)
When you do not specify a value for programs, the default is the program or programs
specified in the last executed MONITOR ON statement. When there was no such
statement in your current session, no data is collected and no error is produced.

ALL
Specifies that all of the programs in one or more analytic workspaces are monitored.

awlist
The name of one or more analytic workspaces (optionally separated by commas)
whose programs you want monitored. When you omit this argument, Oracle OLAP
monitors all of the programs in all of the attached analytic workspaces

program-name
The name of a specific program that you want monitored.

Chapter 10
MONITOR

10-104

OFF
Stops monitoring programs and freezes any timing data currently in the monitor list
which allows you send the list to the current outfile or to a text file either immediately,
or later in your session.

RESET
(Useful only when monitoring is on.) Retains information about the programs that ares
currently specified for monitoring and the Oracle OLAP memory that is allocated for
the current monitor list, but discards any timing data currently in the list. In addition,
RESET causes MONITOR to again begin waiting for you to run the same programs.
When you do, MONITOR automatically gathers new timing data into a new monitor
list for the same programs in the same memory allocation as before.

INIT
(Useful only when monitoring is on.) Initializes the monitoring environment.
Initialization consists of discarding the program names and the timing data associated
with the current monitor list, and releasing the Oracle OLAP memory previously used
for that list so it can be used for other purposes or for collecting new data in a new
monitor list.

FILE
Specifies that the timing data that is currently in the monitor list is sent to a file.

APPEND
Specifies that the timing data is appended to an existing file. When you omit this
argument, the new output replaces the current contents of the file.

file-name
A text expression that is the name of the file to receive the output. Unless the file is in
the current directory, you must include the name of the directory object in the name of
the file. When file-name is specified, the data is sent to the named text file. FILE has
no effect on the monitor list, so you can send the same list repeatedly to different
destinations. When file-name is omitted, Oracle OLAP sends the timing data that is
currently in the monitor list to the current outfile.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

Usage Notes

Monitor List

Each entry (that is, line) in the monitor list focuses on the execution of a single
program line, regardless of how many times it is executed. Each entry is divided into
the following four sections:

• Cumulative total time of all executions in milliseconds rounded to the nearest 10
millisecond, in columns 1 through 11

• Number of times executed, in columns 12 through 18

Chapter 10
MONITOR

10-105

• Line number, in columns 19 through 23

• Text of the line, in column 24 and subsequent columns

Here is a sample of MONITOR output with column numbers included for reference.

12345678901234567890123456789012345678901234567890

60 1 1 push name
30 1 2 trap on GETOUT noprint
51 1 3 limit name to obj(type) eq 'DIMENSION'
0 1 4 for name
0 0 5 do
450 6 6 limit &name to ALL ifnone BYPASS
0 0 7 BYPASS:
0 0 8 doend
0 0 9 GETOUT:
0 1 10 pop name

The following is the full description of the program used for the preceding output. Note
that in the output, the line with the LIMIT command is truncated because it is too long
to fit.

DEFINE allstat PROGRAM
LD Program to set the status of all dimensions in the analytic workspace to ALL
PROGRAM
PUSH NAME
TRAP ON getout NOPRINT
LIMIT NAME TO OBJ(TYPE) EQ 'Dimension' IFNONE getout
FOR NAME
 DO
 LIMIT &NAME TO ALL IFNONE bypass
bypass:
 DOEND
getout:
POP NAME
END

Attaching, Detaching, and Reattaching Analytic Workspaces

When Oracle OLAP executes a program in an analytic workspace that has been
attached, detached, a new block of data is collected.

Truncated Statement Lines

When a program line is too long, the MONITOR output truncates it. Continuation lines
do not appear in the output.

Producing a Report

When you want to produce an Oracle OLAP report from the timing data in the
MONITOR file, you can write a program that uses a FILEREAD statement to read the
data into an Oracle OLAP variable, and then use Oracle OLAP reporting capabilities to
produce a report. You can use the TRACKREPORT program as a model. However, keep in
mind that the TRACKREPORT program was written to produce a report on TRACKPRG
output, not MONITOR output.

Bracketing Lines

When you just want to time a particular line or group of lines in a program, you can
insert MONITOR ON and MONITOR OFF statements in the program to bracket just the line or
lines in which you are interested.

Chapter 10
MONITOR

10-106

Using MONITOR for a Nested Programs

When you do not want to run a nested program by itself, you can specify its name in a
MONITOR ON statement and then run the program that calls it. MONITOR gathers timing
data only for the specified (nested) program. When the specified program is called
more than once, for each program line, MONITOR accumulates the total seconds
taken by all the times the line was run and provide the number of times it was run.

When you just want to time a particular execution of a nested program that is called
more than once, you can insert MONITOR ON and MONITOR OFF statements in the calling
program to bracket the single call in which you are interested.

Using MONITOR with Very Small Programs

You might not be able to reproduce the results exactly for very small programs. When
the CPU interrupts processing to do other tasks, that time is a greater percentage of
the total execution time.

Unit of Measure for MONITOR

The MONITOR and TRACKPRG commands use milliseconds as the unit for recording
execution time. The execution time does not include time spent on I/O and time spent
waiting for the next statement.

Examples

Example 10-66 Collecting Timing Data Using MONITOR

In this example, MONITOR is used to collect timing data on the execution of the
individual lines of code in prog1 and then to send the data to a text file. The MONITOR ON
statement is then used to discard the prog1 timing data and start collecting data on
prog2. After the data for prog2 is sent to a second file, MONITOR INIT is used to discard
the current monitor list and release the memory used for it.

MONITOR ON prog1
prog1
MONITOR FILE prog1.mon
MONITOR ON prog2
prog2
MONITOR OFF
MONITOR FILE prog2.mon
MONITOR INIT

MOVE
The MOVE command moves an object name to a new position in the NAME
dimension of an analytic workspace. The reorganizing effect of the MOVE command
on the workspace is cosmetic. That is, no physical changes take place in workspace
storage. Users often reorganize workspace objects so the output from DESCRIBE is
easier to read.

Syntax

MOVE name... {FIRST|LAST|{BEFORE|AFTER} name2} [AW workspace]

Chapter 10
MOVE

10-107

Parameters

name...
The names of one or more objects to move. You can specify the names individually,
or use one of the following forms to specify a group of names:

name TO name
FIRST n
LAST n
boolean-expression (dimensioned by NAME)

You can specify a qualified object name to indicate the attached workspace in which
the object resides. As an alternative, you can use the AW argument to specify the
workspace. Do not use both.
When you do not use a qualified object name or the AW argument to specify an
analytic workspace, Oracle OLAP looks for the object in the current workspace.

FIRST
LAST
The logical position in the NAME dimension to which Oracle OLAP moves the objects
specified by the name argument. Specifying FIRST moves the objects to the
beginning of the NAME dimension. Specifying LAST (the default) moves the names to
the end of the NAME dimension.

BEFORE name2
AFTER name2
The position before or after a particular object (name2) to which Oracle OLAP moves
the objects specified by the name argument.

AW workspace
The name of an attached workspace in which you want to move the object. When you
do not use a qualified object name or the AW argument to specify an analytic
workspace, objects are moved in the current workspace.

Usage Notes

Alphabetizing Your Objects

You can arrange your workspace objects alphabetically with the following statements,
which work on the NAME dimension.

SORT NAME A NAME
MOVE CHARLIST(NAME) FIRST

Examples

Example 10-67 Moving a Relation

This example shows how to move the relation desc.product after product. The OLAP
DML statement

SHOW CHARLIST(NAME)

produces the following list (annotation has been added).

product <--- Position of product
district
division
line

Chapter 10
MOVE

10-108

region
marketlevel
market
month
year
quarter
desc.product <--- Old position of desc.product
region.district
division.product
...

The following statements

MOVE desc.product AFTER product
SHOW CHARLIST(NAME)

change the workspace order and produce the following list (annotation has been
added).

product <--- Position of product
desc.product <--- New position of desc.product
district
division
line
region
marketlevel
market
month
year
quarter
region.district
division.product
...

OUTFILE
The OUTFILE command lets you redirect the text output of statements to a file.

See Also:

"File Reading and Writing Options"

Syntax

OUTFILE {EOF | TRACEFILE | [APPEND] file-name [NOCACHE] [NLS_CHARSET
charset-exp]}

Parameters

EOF
The current outfile is closed and output is redirected to the default outfile.

TRACEFILE
Specifies that the output should be directed to the Oracle trace file, which is identified
by the TRACEFILEUNIT option.

Chapter 10
OUTFILE

10-109

APPEND
Specifies that the output should be added to the end of an existing disk file. When you
omit this argument, the new output replaces the current contents of the file.

file-name
A text expression that is the name of the file to which output should be written. Unless
the file is in the current directory, you must include the name of the directory object in
the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

NOCACHE
Specifies that Oracle OLAP should write lines to the outfile as they are generated.
Without this keyword, Oracle OLAP reduces file I/O activity by saving text and writing
it periodically to the file. The NOCACHE keyword slows performance significantly, but
it ensures that every line is immediately recorded in the outfile. This argument must
be specified after file-name

NLS_CHARSET charset-exp
Specifies the character set that Oracle OLAP uses when writing data to the file
specified by file-name which allows Oracle OLAP to convert the data accurately into
that character set. This argument must be specified after file-name. When this
argument is omitted, then Oracle OLAP writes the data to the file in the database
character set, which is recorded in the NLS_LANG option.

Usage Notes

Outfiling a PERMIT_READ or PERMIT_WRITE Program

The contents of a PERMIT_READ or a PERMIT_WRITE program is emptied when
outfiled. To successfully copy the contents of these programs to and from analytic
workspaces, rename them before using OUTFILE; and then, after using INFILE to
copy them into an analytic workspace, name them back to PERMIT_READ or
PERMIT_WRITE.

Current Outfile Identifier

As a first step, every OUTFILE statement closes the current outfile. When OUTFILE
opens a new outfile on disk, it automatically assigns to it an arbitrary INTEGER as its file
unit number. The current file unit number is held in the OUTFILEUNIT option.

Appending to an Outfile

When you send output to a file and then send output to a second file, the first file does
not remain open. To resume sending output to the first file, you must execute another
OUTFILE statement and include the APPEND file-name phrase.

Automatic Closing of Outfile

Chapter 10
OUTFILE

10-110

When you use OUTFILE file-name to direct output to a disk file, OUTFILE closes any
outfile currently open. OUTFILE issues a close even when the new file is not actually
opened (as when you specify an invalid file-name in an OUTFILE statement).

Paging Options and Redirected Output

The paging options control the organization of text output in pages. Examples are:
BMARGIN, LINENUM, LINELEFT, PAGESIZE, PAGENUM, PAGEPRG, PAGING,
TMARGIN, and LSIZE. The paging options have a separate value for each separate
outfile. When you set a paging option to control output to a disk file, the new value
remains in effect until you use an OUTFILE statement again to redirect output. At this
point, the paging option returns to its default value. Therefore, when you want a paging
option to have a particular value for a disk file, you generally have set it after you
execute an OUTFILE statement.

Current and Default Outfiles

The current outfile is the destination for the output of statements, such as REPORT
and DESCRIBE, that produce text. When you have not used an OUTFILE statement to
send output to a file, Oracle OLAP uses your default outfile.

Examples

Example 10-68 Sending a Report to an Output File

In this example, you want to send the output of a REPORT statement to an output file.

OUTFILE 'budget.rpt'
REPORT budget
OUTFILE EOF

Example 10-69 Directing Output to a File

Suppose you have a program called year.end.sales, and you want to save the report it
creates in a file. Type the following commands to write a file of the report. In this
example, userfiles is a directory object and yearend.txt is the name of the file.

OUTFILE 'userfiles/yearend.txt'
year.end.sales
OUTFILE EOF

Now the file contains the year.end.sales report. You can add more reports to the same
file with the APPEND keyword for OUTFILE. Suppose you have another program called
year.end.expenses. Add its report to the file with the following commands. Remember
that without APPEND, an OUTFILE statement overwrites the expense report.

OUTFILE APPEND 'userfiles/yearend.txt'
year.end.expenses
OUTFILE EOF

PAGE
The PAGE program forces a page break in output when PAGING is set to YES. An
optional argument to PAGE specifies a conditional page break based on how many
lines are left on the page.

The PAGE program is commonly used in report programs. It is meaningful only when
PAGING is set to YES and only for output from statements such as REPORT and
LISTNAMES.

Chapter 10
PAGE

10-111

Syntax

PAGE [n]

Parameters

n
A positive INTEGER expression that indicates that a page break should occur only when
there are fewer than n lines left on the current page. When the number of lines left
equals or exceeds n, no page break occurs. See Keeping Lines Together.

Usage Notes

Top of Page

No page break occurs when you are already at the top of a page when a PAGE
statement is executed.

Producing the Header

The PAGE program signals that further output should be produced on a new page, but
it does not produce a header on the new page unless there is further output. When
there is further output, Oracle OLAP produces the heading that is defined by the
current PAGEPRG program and then starts producing the output.

Examples

Example 10-70 Keeping Lines Together

Suppose you have 12 lines of data that would be hard to read when interrupted by a
page break, so you want to prevent such an interruption. Use the PAGE 12 statement
immediately before the statements that produce the 12 lines of data. A page break
occurs before the 12 lines of data only when there are less than 12 lines left on the
page. When there are 12 lines or more left at that point, output continues on the same
page.

Example 10-71 Forcing a Page Break

The following lines from a report program force a page break at the start of each loop
for district which makes the report for each district start at the top of a page. (The
report program uses a heading program called report.head to create a customized
heading. See the PAGEPRG option for information on customized heading programs.)

PUSH PAGING PAGEPRG
PAGING = YES
PAGEPRG = 'report.head'
FOR district
 DO
 PAGE
 ROW district
 BLANK
 FOR month
 ROW WIDTH 8 month sales sales.plan
 DOEND
PAGE
POP PAGING PAGEPRG

Chapter 10
PAGE

10-112

PARSE
Use the PARSE command to parse a specified group of expressions. When the
argument can be parsed, PARSE determines the number of expressions in it and their
text, object type, data type, and the number and names of their dimensions. This
information is stored internally by Oracle OLAP, but can be obtained with the INFO
function.

A PARSE statement is especially useful when you want to accept expressions as
arguments to a program.

Syntax

PARSE text-expression

Parameters

text-expression
A text expression that contains one or more smaller expressions to be parsed. When
you are processing program arguments, you can specify an ARGS function as the text
expression that contains all the arguments for the program.

Usage Notes

Obtaining Information Produced by a PARSE Statement

See the INFO (PARSE) function for an explanation of how to obtain the information
produced by a PARSE statement.

Examples

Example 10-72 Parsing the Arguments to a Program

In a simple report program, you want to specify the data to be reported as an
argument to the program. You want to be able to specify an expression and the name
of a data variable.

Suppose you want to display each of the arguments with a different column width,
which means you must process the arguments individually. The ARGS function can
only process them together. So you use PARSE and INFO to parse the arguments
and produce individual columns for each of them. Here is a sample program.

DEFINE report1 PROGRAM
PROGRAM
PUSH month product district DECIMALS
DECIMALS = 0
LIMIT month TO FIRST 2
LIMIT product TO ALL
LIMIT district TO 'Chicago'
PARSE ARGS
REPORT ACROSS month WIDTH 8 <&INFO(PARSE FORMULA 1) -
 WIDTH 13 &INFO(PARSE FORMULA 2)>
POP month product district DECIMALS
END

Chapter 10
PARSE

10-113

When you run the program, you can supply either the names of variables (such as
sales) or expressions (such as sales-expense) or one of each as arguments. The
following REPORT statement produces the illustrated report.

report1 sales sales-expense

DISTRICT: CHICAGO
 --------------------MONTH--------------------
 --------JAN95--------- --------FEB95---------
PRODUCT SALES SALES-EXPENSE SALES SALES-EXPENSE
------------ -------- ------------- -------- -------------
Tents 29,099 1,595 29,010 1,505
Canoes 45,278 292 50,596 477
Racquets 54,270 1,400 58,158 1,863
Sportswear 72,123 7,719 80,072 9,333
Footwear 90,288 8,117 96,539 13,847

PERMIT
The PERMIT command lets you grant or deny read-only and read/write access
permission for workspace objects and for specific values of dimensions and
dimensioned objects. You can also use PERMIT to grant or deny permission to
maintain dimensions and to change permission for workspace objects.

In general, access permissions that you set for a dimension are meaningful not only
for that dimension, but also for the objects dimensioned by that dimension as
explained more fully in "How Dimension Permission Interacts with Permissions for
Other Objects". Access permissions that you set for other objects are limited in scope
to that particular object. Various conditions determine when permission changes take
effect as discussed in "When Permission Changes Take Effect"

See Also:

"Important Considerations Before You Change the Permissions of an Object",
"Startup Programs", "Permission Programs", PERMITERROR option, and
PERMITRESET command

Tip:

The PERMIT command assigns permission to the object most recently defined
or considered. When the definition of the object is not the current one, first use
a CONSIDER statement before issuing PERMIT commands for the object

Syntax

PERMIT {READ|WRITE|MNT|PERMIT} [WHEN permission-condition...]

Chapter 10
PERMIT

10-114

Parameters

READ
Depending on the permission conditions, grants or restricts permission to read all of
the values of an object or only certain values in a dimension or dimensioned object.
Note that restricting read permission for a dimension also restricts maintain
permission for that dimension. Also, when you grant read permission for an object,
write permission is also allowed for the values you can read, unless you deny it with
an explicit PERMIT WRITE statement.

WRITE
Depending on the permission conditions, grants or restricts permission to modify any
of the values of an object or only certain values of a dimensioned object.
Restricting write permission for an object does not necessarily mean that the object is
totally unavailable. For example, when you have restricted write access to a
calculation specification (that is, an aggmap object, program, model, or formula, you
can still execute the object— you just cannot edit the contents of the calculation
specification.
Oracle OLAP does not prevent you from granting write permission for values that you
cannot read within a dimensioned object. When you have both a PERMIT READ and
a PERMIT WRITE statement for a dimensioned object, and some values which satisfy
the permission conditions for write do not fall within the subset of values which satisfy
the permission conditions for read, then those values may be modified but not seen.

Tip:

Write permission is not meaningful for dimensions— except to provide write
access to objects dimensioned by the dimension. To grant or restrict the ability
to add values to a dimension, issue PERMIT MNT statements for the
dimension instead.

See Also:

"When the only PERMIT Statement for an Object is a PERMIT WRITE
Statement"

MNT
Depending on the permission conditions, grants or restricts permission to maintain a
dimension.
Note that you cannot grant maintain permission to a dimension for which you have
restricted read permission. Oracle OLAP automatically denies maintain permission for
a dimension when there is restricted read permission for that dimension.

PERMIT
Depending on the permission conditions, grants or restricts permission to use the
PERMIT command to change the read, write, maintain, or permit permission for the
object.
Note that unless explicitly you explicitly deny permit permission for an object, permit
permission is allowed for an object no matter what other permissions are set for that
object.

Chapter 10
PERMIT

10-115

WHEN permission-condition...
When you omit the WHEN clause and execute a PERMIT READ, PERMIT WRITE, or
PERMIT MNT statement, Oracle OLAP restores full read, write, or maintain
permission to the object.
When you include the WHEN clause, the conditions for granting read, write, maintain,
or permit permission consist of one or more Boolean expressions depending on
whether or not the object has dimensionality, the type of permission you are setting
and, for read and write permissions, whether or not the object has dimensionality:

• When you are specifying permit permission, maintain permission, or read or write
permission that applies to an object without dimensionality or when you want the
read or write permissions to apply to all the values of a dimensioned object,
specify the permission condition as a Boolean expression that evaluates to a
single value. (Not that if you do specify a dimensioned Boolean expression to
specify permissions for an object without dimensionality or when you are
specifying permit or maintain permission, then PERMIT uses the first value in
status.)

Tip:

Avoid specifying a Boolean value as a permission condition (for example,
YES or NO) for a PERMIT PERMIT statement. Instead specify the
permission condition as a Boolean variable, a function that returns a
Boolean result, or a Boolean value calculated by comparison operators. In
this way, when permit permission has been denied, you can restore it by
setting the value of the Boolean and executing a PERMITRESET
statement. If you ever do lock up an object and are unable to modify its
permission, you can specify permit permission for it in the workspace
permission program for that workspace, then detach and reattach the
workspace.

• If you are specifying read or write permission that applies to individual dimension
values or to slices of a dimensioned object, specify one permission condition for
each dimension of interest. In this case, the WHEN clause has the following
syntax and each dimensioned permission condition consists of a Boolean
expression dimensioned by a dimension of the object.

WHEN dimensioned_permission_condition1
 [BY dimensioned_permission_condition2

[UNION dimensioned_permission_condition2A]...

Use the UNION phrase to efficiently access the union of several symmetric
subcubes of a multidimensional variable.

Note that if a Boolean expression for a dimensioned permission condition has any
extra dimensions in addition to an object dimension, PERMIT takes the first value
in status to determine which column of Boolean values to use. The intersection of
the YES values for each dimension (a logical AND of the conditions) is the subset of
values within the object to which the permission applies. When any of the object
dimensions are not represented by a dimensioned permission condition, then
Oracle OLAP assumes YES for all those dimension values.

Usage Notes

Important Considerations Before You Change the Permissions of an Object

Chapter 10
PERMIT

10-116

Keep the following important considerations in mind before you change the
permissions of an object:

• You must have permit permission for an object to issue PERMIT commands
against it.

• Do not lock out the DBA user, who must always have access to everything in the
workspace.

• Issuing PERMIT statements against an INTEGER dimension may result in
undesired behavior. Dimensions with an INTEGER data type have values
identified by their numeric position. PERMIT renumbers INTEGER dimensions to
keep the normal sequence of INTEGER values (1, 2, 3, ...). When you must use
PERMIT to change the default access rights for an INTEGER dimension and this
behavior is not desirable, redefine the dimension with a different, non-integer data
type.

When Permission Changes Take Effect

Within PERMIT_READ and PERMIT_WRITE programs, permissions ares only
evaluated when you issue an explicit PERMIT or PERMITRESET statement and then
reference the targeted object.

Note:

AW ATTACH automatically executes a PERMITRESET immediately after
executing an analytic workspace permission program. Executing
PERMITRESET causes the workspace to be attached with all permission
implemented

Once an analytic workspace is attached and any PERMIT_READ and
PERMIT_WRITE programs have executed, permission changes specified by a
PERMIT statement take effect:

• When a PERMITRESET statement executes.

• When you are targeting any object (except a dimension), and the permission
condition consists of a single Boolean variable, any changes to that Boolean
variable affect the permission immediately. (You never have to execute a
PERMITRESET in this case.)

• In other situations, if you do not issue a PERMITRESET statement, permission are
evaluated upon next reference to the object.

Note:

The OBJ function is an exception to this rule. Because OBJ does not load
the object into memory, it does not reflect any changes to the object's
permission since the last time it was loaded. When you want OBJ to
provide information based on new permission criteria, execute a LOAD
statement before the OBJ statement.

When the only PERMIT Statement for an Object is a PERMIT WRITE Statement

Chapter 10
PERMIT

10-117

When the only PERMIT statement for an object is a PERMIT WRITE, then read
permission is provided by default for the object. The default read permission is
provided independent of the value of the permission condition(s) for the PERMIT
WRITE statement. Consequently, a PERMIT WRITE with a single-cell permission
condition which evaluates to NO provides read-only access to an nondimensional object
or to all the values of a dimensioned object.

When the only PERMIT statement for an object is a PERMIT WRITE with dimensioned
permission conditions, it designates some values for read/write access and the
remaining values for read-only access. See Variable Permission.

How Dimension Permission Interacts with Permissions for Other Objects

All dimensioned data is affected by the read permission on its dimensions. The
dimension values that satisfy the read permission condition determine the default
status for the dimension. The values of dimensioned objects that correspond to
dimension values without read permission are inaccessible.

However, in order for write permission associated with a dimension to apply to other
objects dimensioned by it, there must be at least one PERMIT statement associated
with the dimensioned object.

• When you want a dimensioned object to inherit write permission from its
dimensions, but you do not want it to have permission of its own, which could
interact with the dimension permission, you can simply use a PERMIT READ with
a single-cell permission condition that evaluates to YES.

• When you want a dimensioned object to inherit write permission from its
dimensions, and you also want it to have permissions of its own, understand how
dimension permission interacts with individual object permissions before setting
them.

Dimension permission interacts with permission for most of the objects dimensioned
by it in the following ways:

• The access permissions of a dimension apply to all dimension surrogates defined
for that dimension. You cannot use a PERMIT statement on a dimension
surrogate.

• When there is read or write permission associated with a dimension, but no
permission restriction associated with an object dimensioned by that dimension,
then the permission for the dimensioned object is the same as the dimension
permission.

• When there is read permission associated with both the dimension and the
dimensioned object, Oracle OLAP determines the values with read permission in
the object by taking the intersection of the values with read permission in the
dimension and the values with read permission in the object.

• When there is write permission associated with both the dimension and the
dimensioned object, Oracle OLAP determines the values with write permission in
the object by taking the intersection of the values with read permission in the
dimension, the values with write permission in the dimension, and the values with
write permission in the object.

However, this is not the case for relations and valuesets. When there is restricted write
permission for a dimension of a relation or a valueset, it does not affect relations and
valuesets dimensioned by that dimension.

Determining Permission

Chapter 10
PERMIT

10-118

The permission associated with an object is provided, like an LD, when you describe it
using a DESCRIBE statement. The only exception is when you are denied permit
permission for the object. In this case, no permission is provided when you describe it.

Advantages of PERMIT Over LIMIT as a Tool for Scoping

As a tool for scoping within application programs, PERMIT has several advantages
over the LIMIT command. To restrict the scope of a dimensioned object according to a
Boolean expression, you have to use two LIMIT statements, a LIMIT and a
LIMITKEEP. You only need one PERMIT statement to do the same thing. Moreover,
application users cannot change the restricted scope set by PERMIT commands in
application programs. Application users can easily change the scope set by LIMIT
commands in application programs simply by executing more LIMIT commands.

Handling Permission Violations

You can use the PERMITERROR option to control the way Oracle OLAP handles
attempted violations of the permission established by PERMIT commands for
variables. The default value of PERMITERROR is YES, meaning that Oracle OLAP
signals an error when a user attempts to access a value for which permission is
denied. When you set PERMITERROR to NO, Oracle OLAP simply denies access
without signaling an error condition which is useful when you want to do a report of a
dimensioned variable for which you have partial permission without limiting the
dimensions to the permitted values up front. With PERMITERROR set to NO, values for
which you do not have read permission appear as NA values in the report.

Examples

Example 10-73 Variable Permission

For a variable sales dimensioned by month, product, and district, you might have
three dimensioned permission conditions in the form of three variables as illustrated in
the following report.

MONTH.BOOL<MONTH> PROD.BOOL<PRODUCT> DISTRICT.BOOL<DISTRICT>
----------------- ------------------ -----------------------
Jan95 NO Tents YES Boston NO
Feb95 YES Canoes YES Atlanta NO
Mar95 NO Racquets NO Chicago YES
...

When the YES values shown in the preceding example are the only YES values in the
permission conditions, the following PERMIT statement provides read/write access to
sales data for tents and canoes sold in Chicago in Feb95. In the absence of a PERMIT
READ statement for sales, Oracle OLAP provides read-only permission for all the other
values of sales.

PERMIT WRITE WHEN district.bool BY prod.bool BY month.bool

You can restore full write permission with the following PERMIT statement.

PERMIT WRITE

When there is no restricted write permission for sales, the following PERMIT
statement provides read/write access to sales data for tents and canoes sold in
Chicago in Feb95, and it causes all other values of sales to be invisible.

PERMIT READ WHEN district.bool BY prod.bool BY month.bool

Chapter 10
PERMIT

10-119

Example 10-74 Dimensioned Permission Condition

To restrict access to the product dimension you need a permission condition
dimensioned by product. However, when the permission condition has a second
dimension, say authority, PERMIT selects the BOOLEAN values that pertain to
product based on the first value in status of authority. When you restrict read
permission on the authority dimension to one value, PERMIT uses that value to
determine the BOOLEAN values of the permission condition for product. The REPORT
commands produce the output that follows them.

DEFINE authority DIMENSION TEXT
MAINTAIN authority ADD OTHER DBA
DEFINE prod_authority VARIABLE BOOLEAN <product authority>
...
" Assign values to the variable
...
REPORT prod_authority

 -----------------PROD_AUTHORITY------------------
 --------------------PRODUCT----------------------
AUTHORITY Tents Canoes Racquets Sportswear Footwear
--------- ----- ------ -------- ---------- --------
Other NO NO YES YES YES
Dba YES YES YES YES YES

CONSIDER product
PERMIT READ WHEN prod_authority
PERMITERROR = NO
RPEPORT product

PRODUCT

Racquets
Sportswear
Footwear

CONSIDER authority
PERMIT READ WHEN AUTHORITY EQ 'dba'
PERMITRESET
Report product

PRODUCT

Tents
Canoes
Racquets
Sportswear
Footwear

Example 10-75 User-Defined Boolean Function

In the following example, usercheck is a user-defined Boolean function that checks the
current value of the variable thisuser against a list of user IDs. usercheck returns NO
when the current value of thisuser is not in the list. The following PERMIT statement
applied to the sales variable provides read-only access to all values of sales when
usercheck returns NO. It provides read/write access to all values of sales when usercheck
returns YES.

PERMIT WRITE WHEN usercheck(thisuser)

Chapter 10
PERMIT

10-120

The following PERMIT statement, applied to the variable price, provides full access to
all values of price when usercheck returns YES. When it returns NO, it denies all access
to the price variable.

PERMIT READ WHEN usercheck(thisuser)

Example 10-76 Individual Cells

When you want to prevent access to one particular sales figure, say for racquets in
Boston in March of 1997, you can create a Boolean variable and use it in a PERMIT
statement as illustrated in the following statements.

DEFINE sales.bool VARIABLE BOOLEAN <month product district>
sales.bool = yes
LIMIT month TO 'Mar97'
LIMIT product TO 'Racquets'
LIMIT district TO 'Boston'
sales.bool = no
CONSIDER sales
PERMIT READ WHEN sales.bool

Example 10-77 Individual Dimension Values

The following PERMIT commands applied to the district dimension prevent access to
all dimension values except Boston and Atlanta. They provide read/write access for all
data related to Boston and read-only access for all data related to Atlanta. They also
prevent anyone with a user ID not allowed by the function usercheck (see User-Defined
Boolean Function) from modifying the permission for district.

PERMIT READ WHEN district EQ 'Boston' OR district EQ 'Atlanta'
PERMIT WRITE WHEN district EQ 'Boston'
PERMIT PERMIT WHEN usercheck(thisuser)

PERMITRESET
The PERMITRESET command causes the values of permission conditions to be
reevaluated. Permission conditions consist of one or more Boolean expressions that
designate the criteria used by PERMIT commands associated with an object.

When permission conditions are dimensioned, they indicate which values of a
dimensioned object PERMIT targets for permission. A single-cell permission condition
can indicate any Boolean criterion, such as whether or not a particular user may
access the object.

When you want to keep the existing PERMIT commands for an object, but you want
the permission conditions associated with them to be recalculated, issue a
PERMITRESET statement. The permission for that object is based on the new values
of the permission conditions the next time you use the object in an OLAP DML
statement.

See Also:

"Startup Programs", PERMIT command, and PERMITERROR option

Chapter 10
PERMITRESET

10-121

Syntax

PERMITRESET [object_name] [READ|WRITE]

Parameters

object_name
Specifies the name of an object for which permission conditions should be
reevaluated. When you do not specify an object name, the permission conditions for
all objects are reevaluated.

READ
Causes reevaluation of the permission conditions for PERMIT READ commands only, or
for a PERMIT READ statement for the specified object.

WRITE
Causes reevaluation of the permission conditions for PERMIT WRITE commands only, or
for a PERMIT WRITE statement for the specified object.

Examples

Example 10-78 Resetting Permission

In the following example, the user-defined Boolean function usercheck checks the
current value of the variable thisuser and returns YES only when it is greater than 100.
Access to the variable uservar is only allowed when thisuser is greater than 100.
However, when you change the value of thisuser to a value less than or equal to 100
without resetting the permission for uservar, access is still permitted.

The statement

DESCRIBE uservar

produces the following output.

DEFINE USERVAR VARIABLE INTEGER
PERMIT READ WHEN usercheck(thisuser)

The statement

SHOW uservar

produces the following output.

5

The statement

DESCRIBE usercheck

produces the following output.

DEFINE USERCHECK PROGRAM BOOLEAN
PROGRAM
 ARG thisuser INT
 TRAP ON errorexit NOPRINT
 IF thisuser GT 100
 THEN RETURN YES
 ELSE RETURN NO
 errorexit:

Chapter 10
PERMITRESET

10-122

 RETURN NO
END

The statement

DESCRIBE thisuser

produces the following output.

DEFINE THISUSER VARIABLE INTEGER

The statement

SHOW thisuser

produces the following output.

101

The statements

thisuser = 100
SHOW uservar

produces the following output.

5

The statements

PERMITRESET luservar READ
SHOW uservar

produce the following error.

ERROR: You do not have permission to read this value of USERVAR

POP
The POP command restores the status of a dimension (including the NAME
dimension), the status of a valueset, or the value of an option or single-cell variable
that was saved with a previous PUSH statement.

PUSH and POP are commonly used within a program to make changes to options and
dimension status that apply only during the program's execution. Afterward, the
options and status are the same as they were before the execution of the program.

See Also:

POPLEVEL, PUSH, PUSHLEVEL, and CONTEXT commands

Syntax

POP name1 [nameN]

Chapter 10
POP

10-123

Parameters

name
The name of a dimension, valueset, variable, or option that was specified in a
previous PUSH statement, whose saved value you want to restore.

Examples

For an example of using POP, see Example 10-84.

POPLEVEL
The POPLEVEL command (abbreviated PPL) restores all values saved with PUSH
commands that were executed since the last POPLEVEL statement specifying the
same marker.

You must use PUSHLEVEL to mark a starting point for a series of PUSH commands
before you can use POPLEVEL to restore the saved values. POPLEVEL itself marks
the end of the series. You can use POPLEVEL only within programs.

See Also:

"Considerations When Designing PUSHLEVEL and POPLEVEL Statements",
POP, PUSH, PUSHLEVEL, and CONTEXT commands

Syntax

POPLEVEL marker-expression [DISCARD]

Parameters

marker-expression
A text value used as a marker. This value must be the same as the value used in the
corresponding PUSHLEVEL statement to mark the start of a series of saved values
being popped.

DISCARD
Specifies that the pushed values for that level are discarded when you issue a
POPLEVEL statement. When you do not specify DISCARD, the values that were
pushed are used to reset the pushed objects.

Usage Notes

Possible Uses for POP LEVEL Statement

Two possible uses for POPLEVEL statements are:

• After a series of increasingly broadening or narrowing LIMIT commands, each with
a corresponding PUSH.

• After a single extremely long and complicated PUSH statement, or a series of
short ones given throughout a program, that may need a lot of editing.
PUSHLEVEL and POPLEVEL allow you to edit the arguments for a long and

Chapter 10
POPLEVEL

10-124

complicated PUSH statement without also having to edit a corresponding long and
complicated POP statement.

Examples

To see a sample program using POPLEVEL, see the example for the PUSHLEVEL
command.

PROGRAM
The PROGRAM command enters completely new contents into a new or existing
program. When the program already has lines of code, Oracle OLAP overwrites them.

To use PROGRAM to enter the contents of a program object, the program object
definition must be the one most recently defined or considered during the current
session. When it is not, you must first use a CONSIDER statement to make it the
current definition.

An alternative to a PROGRAM statement is an EDIT PROGRAM statement, which is
available only in OLAP Worksheet. An EDIT PROGRAM statement opens an Edit
window in which you can add, delete, or change the specification for a program object.

See Also:

For a discussion of writing, compiling, and debugging OLAP DML programs,
see OLAP DML Programs

Syntax

PROGRAM [contents]

Parameters

contents
A text expression that is the OLAP DML statements that are the lines of the program.
You can use most OLAP DML statements within a program. For a discussion of
writing, compiling, and debugging OLAP DML programs, see OLAP DML Programs.
The maximum number of lines you can have in a program is 32,000.When coding a
PROGRAM statement at the command line level, separate program lines with newline
delimiters (\n), or use the JOINLINES function as shown in "Program On the Fly".

Examples

Example 10-79 User-Defined Function with Arguments

Suppose your analytic workspace contains a variable called units.plan, which is
dimensioned by the product, district, and month dimensions. The variable holds
INTEGER data that indicates the number of product units that are expected to be sold.

Suppose also that you define a program namedunits_goals_met. This program is a
user-defined function. It accepts three dimension-value arguments that specify a given
cell of the units.plan variable, and it accepts a fourth argument that specifies the
number of units that were actually sold for that cell. The program returns a Boolean

Chapter 10
PROGRAM

10-125

value to the calling program. It returns YES when the actual figure comes up to within
10 percent of the planned figure; it returns NO when the actual figure does not.

The definition of the units_goals_met program is follows.

DEFINE units_goal_met PROGRAM BOOLEAN
LD Tests whether actual units met the planned estimate
"Program Initialization
ARGUMENT userprod TEXT
ARGUMENT userdist TEXT
ARGUMENT usermonth TEXT
ARGUMENT userunits INTEGER
VARIABLE answer boolean
TRAP ON errorlabel
PUSH product district month
"Program Body
LIMIT product TO userprod
LIMIT district TO userdist
LIMIT month TO usermonth
IF (units.plan - userunits) / units.plan GT .10
 THEN answer = NO
 ELSE answer = YES
"Normal Exit
POP product district month
RETURN answer
"Abnormal Exit
errorlabel:
POP product district month
SIGNAL ERRORNAME ERRORTEXT
END

To execute the units_goal_met program and store the return value in a variable called
success, you can use an assignment statement (SET).

success = units_goal_met('TENTS' 'BOSTON' 'JUN96' 2000)

Example 10-80 Program On the Fly

This example creates a flexible report program "on the fly" to avoid the inefficiencies of
a more conventional program using ampersand substitution. The conventional
program would contain the following loop.

FOR &dimname
 ROW &dimname &varname

To avoid ampersand substitution, define a program, for example, STANDARDREP,
and leave it without any code in it, or with code that can be discarded. Then in your
report program, insert lines such as the following.

DEFINE myreport PROGRAM
LD Program to produce my report
PROGRAM
ARGUMENT dimname TEXT
ARGUMENT varname TEXT
...
CONSIDER standardrep
PROGRAM JOINLINES(JOINCHARS('FOR ', dimname) -
 JOINCHARS(' ROW ', dimname, ' ', varname))
COMPILE standardrep
standardrep
...

Chapter 10
PROGRAM

10-126

Example 10-81 Program from an Input File

This example presents the text of a simple program that is in an ASCII disk file called
salesrep.inf. The first line in the file defines the program, the second line contains a
PROGRAM statement, and the subsequent lines provide the lines of the program.

DEFINE salesrep PROGRAM
PROGRAM
PUSH month product district
TRAP ON haderror
LIMIT month TO FIRST 3
LIMIT product TO FIRST 3
LIMIT district TO ALL
REPORT grandtotals sales
haderror:
POP month product district
END

To include the salesrep program in your analytic workspace, you can execute the
following statement.

INFILE 'salesrep.inf'

You can create an input file from an existing program using an OUTFILE statement

Example 10-82 Using OLAP Worksheet Instead of a PROGRAM Statement

When you use OLAP Worksheet to create a program, you can use an EDIT statement
to display an Edit window where you can enter the contents. For example, use the
following statements to define a new program named salesrep and display it in an Edit
window.

DEFINE salesrep PROGRAM
EDIT salesrep

PROPERTY
The PROPERTY command adds or deletes properties to the most recently defined or
considered object (see the DEFINE PROGRAM and CONSIDER commands). A
property is a named value that is associated with a given definition. You can assign
one or more properties to any type of definition. For example, you can assign a
property to an object so you know how many decimal places to use when preparing a
report on the object.

Syntax

PROPERTY { name value | DELETE {ALL | name} }

Parameters

name
A text expression that contains the name of the property. The property name can be
from 1 to 256 bytes long.

Chapter 10
PROPERTY

10-127

Note:

Do not create your own properties with names that begin with a $ (dollar sign).
Properties with names beginning with a $ (dollar sign) are reserved for Oracle
OLAP to use as "system" properties that Oracle OLAP interprets in
predetermined ways.

Property names have the TEXT data type, unless you include a Unicode escape
sequence in the value you specify for the name, or unless you explicitly convert the
value you specify to NTEXT (using the CONVERT or TO_NCHAR functions).

value
An expression that contains the value of the property. The property value can have
one of the following data types: NUMBER, INTEGER, LONGINTEGER, DECIMAL, SHORTDECIMAL,
TEXT, NTEXT, ID, BOOLEAN, DATE, or DATETIME. Oracle OLAP determines the data type
based on the value that you specify. For example, when you specify YES, then Oracle
OLAP assumes a type of BOOLEAN. When you specify a date value that is stored in a
variable of type DATE, then Oracle OLAP assumes a type of DATE for the property.

DELETE ALL
DELETE name
Deletes either all of the properties of the object or only the property you specify for
name. You can specify only one name at a time.

Usage Notes

Triggering Program Execution When PROPERTY Executes

Using the TRIGGER command, you can make a PROPERTY statement an event that
automatically executes an OLAP DML program. See "Trigger Programs" for more
information

Changing a Property Value

When you execute a PROPERTY statement that assigns a new value to an existing
property name, then the new value overwrites the previous one.

Determining Property Values with OBJ

To use properties with OLAP DML statements, you must obtain the values by using
the property-related keywords of the OBJ function. For example, suppose a property
called decplace stores the number of decimal places to use when reporting an object.
When you execute a REPORT statement, you can use the OBJ function with the
PROPERTY keyword to obtain the value of the decplace property and use that value
with the REPORT statement's DECIMAL attribute.

Listing Property Values with FULLDSC

You can list the properties of an object by using a FULLDSC statement. You can use
the output from FULLDSC to create new objects. See the FULLDSC program for more
information.

Chapter 10
PROPERTY

10-128

Examples

Example 10-83 Adding Properties to a Variable

The following statements add the properties decplace and prgname to the actual
variable and assign the decimal 4 as the value for the decplace property and the text
repprg as the value for the prgname property.

CONSIDER actual
PROPERTY 'decplace' 4
PROPERTY 'prgname' 'repprg'

PUSH
The PUSH command saves the current status of a dimension (including the NAME
dimension), the status of a valueset, or the value of an option or single-cell variable.
You can then restore these saved values and status at a later time with a POP
statement.

PUSH and POP are commonly used within a program to make changes to options and
dimension status that apply only during the program's execution. Afterward, the
options and status are the same as they were before the execution of the program.

See Also:

PPOP, POPLEVEL, PUSHLEVEL, and CONTEXT commands

Syntax

PUSH name1 [name]

Parameters

name
The name of a dimension, valueset, option, or variable whose status or value you
want to save.

Usage Notes

Effect of a MAINTAIN Statement on a Dimension's Pushed Status

Using a MAINTAIN statement with a dimension clears that dimension's pushed status
lists. For example, suppose you have pushed the dimension month several times, with
different limits each time. When you then use a MAINTAIN statement to perform any
maintenance activity on the month dimension, Oracle OLAP resets the status of month
to ALL (the default), and popping that dimension has no effect.

Examples

Example 10-84 Saving and Restoring Values

The following program uses PUSH and POP to produce sales figures without decimal
places for a specific selection of products, districts, and months, and then restores the

Chapter 10
PUSH

10-129

status settings and the value of DECIMALS to what they were before the program was
run.

DEFINE report1 PROGRAM
PROGRAM
TRAP ON cleanup
PUSH DECIMALS product district month

DECIMALS = 0
LIMIT product TO 'Sportswear' 'Footwear'
LIMIT district TO 'Atlanta' 'Dallas'
LIMIT month TO 'Jan96' TO 'Jun96'
REPORT sales

cleanup:
POP DECIMALS product district month
END

PUSHLEVEL
The PUSHLEVEL command marks the start of a series of PUSH commands. You can
then use a corresponding POPLEVEL statement to restore all the values saved by
PUSH commands that are executed after PUSHLEVEL. POPLEVEL must specify the
same marker as the PUSHLEVEL statement that starts the series. You can use
PUSHLEVEL only within programs.

See Also:

"Considerations When Designing PUSHLEVEL and POPLEVEL Statements",
POP, PUSH, POPLEVEL, and CONTEXT commands

Syntax

PUSHLEVEL marker-expression

Parameters

marker-expression
A text value to mark the start of a series of PUSH commands all of whose saved
values are to be popped at once. A POPLEVEL statement that specifies the exact
same marker-expression restores the whole series of saved values.

Usage Notes

Considerations When Designing PUSHLEVEL and POPLEVEL Statements

Keep the following points in mind when coding pushlevel statements:

• You can nest PUSHLEVEL/POPLEVEL pairs, if you specify a different marker for
each pair, as illustrated in the following code.

PUSHLEVEL 'firstlevel'
PUSH PAGESIZE DECIMALS < saves values in FIRSTLEVEL
...
PUSHLEVEL 'secondlevel'
PUSH month product < Saves values in SECONDLEVEL

Chapter 10
PUSHLEVEL

10-130

...
POPLEVEL 'secondlevel' < Restores values in SECONDLEVEL
...
POPLEVEL 'firstlevel' < Restores values in FIRSTLEVEL

You do not normally need multiple levels in a single program. However, Oracle
OLAP automatically creates nested levels when one program calls another
program and each program contains a set of PUSHLEVEL and POPLEVEL
commands.

• When you specify the same marker for two or more PUSHLEVEL commands, a
POPLEVEL statement specifying that same marker restores values that were
saved only since the most recent PUSHLEVEL statement.

• When you specify a different marker for two or more PUSHLEVEL commands, a
POPLEVEL statement that specifies the marker of any PUSHLEVEL statement
restores all the values that were saved since that statement, including values that
were saved after later PUSHLEVEL commands.

Examples

Example 10-85 Creating Level Markers

You can use a PUSHLEVEL statement to establish a level marker called firstlevel,
and then use PUSH to save the current values.

PUSHLEVEL 'firstlevel'
PUSH month DECIMALS ZSPELL

The level marker can be any text that is enclosed in single quotation marks. It can also
be the name of a single-cell ID or TEXT variable, whose value becomes the name of the
level marker. In the exit sections of the program, you can then use a POPLEVEL
statement to restore all the values you saved since establishing the firstlevel marker.

POPLEVEL 'firstlevel'

Example 10-86 Nesting PUSHLEVEL and POPLEVEL Commands

You can nest PUSHLEVEL and POP LEVEL commands to save certain groups of
values in one place in a program and other groups of values in another place in a
program. The next example shows two sets of nested PUSHLEVEL and POPLEVEL
commands.

PUSHLEVEL 'firstlevel'
PUSH PAGESIZE DECIMALS "Saves values in FIRSTLEVEL
 ...
PUSHLEVEL 'secondlevel'
PUSH month product "Saves values in SECONDLEVEL
 ...
POPLEVEL 'secondlevel' "Restores values in SECONDLEVEL
 ...
POPLEVEL 'firstlevel' "Restores values in FIRSTLEVEL

Normally, you do not use multiple sets of PUSHLEVEL and POPLEVEL commands in
a single program. However, the nesting feature comes into play automatically when
one program calls another program, and each program contains a set of PUSHLEVEL
and POPLEVEL commands.

Chapter 10
PUSHLEVEL

10-131

Example 10-87 One-Step Restoration and Nested Levels

The following program uses PUSHLEVEL 'rpt1' to mark for one-step restoration the
original value of DECIMALS and the original status of month, product, and district,
even though these are pushed separately in the program.

To demonstrate nesting, the program includes a nested PUSHLEVEL-POPLEVEL pair
with 'rpt2' as its marker and some STATUS commands at various points. You can
compare the program's output with the program to see how the status is affected.

DEFINE sales.RPT PROGRAM
PROGRAM
STATUS month product district

PUSHLEVEL 'rpt1'
PUSH DECIMALS month
DECIMALS = 0
LIMIT month TO 'Jan96'
REPORT WIDTH 8 DOWN district WIDTH 9 ACROSS product: expense
PUSH product
LIMIT product TO 'Racquets' 'Sportswear'
REPORT DOWN district ACROSS product: advertising

PUSHLEVEL 'rpt2'
PUSH district
LIMIT district TO 'Atlanta' 'Dallas' 'Chicago'
REPORT DOWN district ACROSS product: sales
BLANK
STATUS month product district
BLANK

POPLEVEL 'rpt2'
STATUS month product district
BLANK
POPLEVEL 'rpt1'

STATUS month product district
END

The sales.rpt program produces the following output.

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
ALL
MONTH: JAN96
 ---------------------EXPENSE---------------------
 ---------------------PRODUCT---------------------
DISTRICT Tents Canoes Racquets Sportswear Footwear
-------- --------- --------- --------- ---------- ----------
Boston 31,299 67,527 52,942 49,668 80,565
Atlanta 41,139 53,186 57,159 108,047 99,758
Chicago 27,768 45,621 53,756 65,055 81,639
Dallas 47,063 34,072 118,807 113,629 19,785
Denver 33,177 42,975 89,144 63,380 36,960
Seattle 41,043 64,009 26,719 38,970 46,900
Month: JAN96
 -----ADVERTISING-----
 -------PRODUCT-------

Chapter 10
PUSHLEVEL

10-132

DISTRICT RAcquets Sportswear
-------------- ---------- ----------
Boston 3,784 3,352
Atlanta 4,384 9,509
Chicago 3,351 5,283
Dallas 8,700 8,340
Denver 6,215 4,654
Seattle 2,344 3,726
MONTH: Jan96
 --------SALES--------
 -------PRODUCT-------
DISTRICT Racquets Sportswear
-------------- ---------- ----------
Atlanta 61,895 129,616
Dallas 125,880 128,115
Chicago 58,649 77,490
The current status of MONTH is:
JAN96
The current status of PRODUCT is:
RACQUETS, SPORTSWEAR
The current status of DISTRICT is:
ATLANTA, DALLAS, CHICAGO

The current status of MONTH is:
JAN96
The current status of PRODUCT is:
RACQUETS, SPORTSWEAR
The current status of DISTRICT is:
ALL

The current status of MONTH is:
ALL
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
ALL

RECAP
The RECAP command sends statements that were previously entered during the
current session to the current outfile or to a file that you specify. The statements are
copied from the command log, which is a list of up to 256 statements that you have
entered most recently during the current session.

Note:

RECAP statements are not included in the command log.

Syntax

RECAP [number|ALL] ['search-text'] [FILE file-name]

Chapter 10
RECAP

10-133

Parameters

number
A positive INTEGER that indicates the number of statements to be provided. When you
specify search-text, RECAP provides this number of statements from the subset that
contains the search-text string. When you do not specify search-text, RECAP
provides this number of statements from the most recently executed portion of the
command log. The default number is 10.

ALL
When you specify search-text, ALL requests every statement that meets the search
requirements. When you do not specify search-text, ALL requests every statement in
the command log.

search-text
A quoted text literal. When you specify this argument, RECAP searches the
statements in the command log for the ones that contain search-text. The search is
not case-sensitive. These statements then compose the subset from which RECAP
provides number or ALL statements.

FILE file-name
Writes the output of a RECAP statement to the specified file For file-name specify a
text expression that is the name of the file to which output should be written. Unless
the file is in the current directory, you must include the name of the directory object in
the name of the file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

Usage Notes

Order of search-text Parameter

When you use both the search-text and the ALL or number arguments, you must
specify search-text second.

RECAP with No Parameter

When you specify RECAP without an argument, the ten most recent statements are
provided.

Re-Executing Statements

You can use the output of RECAP to edit a previously executed statement with
REEDIT, or reexecute a previously executed statement with REDO.

Identifying Files and Directories

When specifying files and directories in OLAP DML statements, it is good practice to
always enclose them in single quotes.

Chapter 10
RECAP

10-134

Examples

Example 10-88 Obtaining the Last Three Statements Containing "actual"

The following RECAP statement requests the three most recent statements that
included the text literal "actual."

RECAP 3 'actual'

This statement could produce the following output.

 COMMAND LOG
 3: dsc actual
 5: report total(actual)
 8: report average(actual)

REDO
The REDO command re-executes a statement that you entered earlier in your session.
The statement is retrieved from the command log, which is a list of up to 256
statements that you have entered most recently during the current session. REDO
enables you to changes in the statement before it is re-executed.

Note:

REDO statements themselves are not included in the command log; however,
the statements re-executed by REDO are included.

Syntax

REDO [number|index] 'original' 'replacement' [specifier]

Parameters

number
A positive INTEGER that indicates the number of the statement to be re-executed. You
can display the statements, with their numbers, using a RECAP statement.

index
A negative INTEGER or 0 (zero) that indicates the position of the statement to be re-
executed relative to the end of the command log. The most recent statement is 0, the
one before that is -1, and so on. The default is 0.

original
A text literal that is part of the statement to be re-executed.

replacement
A text literal that should replace original when the statement is re-executed.

specifier
A specifier listed in the following table. Each specifier indicates where text
replacement should occur in the re-executed statement.

Chapter 10
REDO

10-135

Specifie
r

Meaning

FIRST Indicates that only the first occurrence of original should be changed
to replacement.

LAST Indicates that only the last occurrence of original should be changed
to replacement.

n A number indicating which occurrence of original should be changed
to replacement. For example, 3 indicates the third occurrence.

ALL Indicates that all occurrences of original should be changed to
replacement

* Indicates that all occurrences of original should be changed to
replacement.

The default is ALL. When you do not provide a specifier, all occurrences of original
are changed to replacement.

Usage Notes

REDO with No Argument

When you type REDO without an argument, the most recent statement are re-
executed.

Case-Sensitivity

When matching original with the text of the statement to be re-executed, REDO
ignores case differences. For example, assume you specify AT as original, REDO
matches it with at, At, aT, or AT in the statement.

When replacing original with replacement, REDO retains the case of all characters in
replacement. For example, assume you specify ShOw as replacement, that is exactly
how it appears in the re-executed statement.

Examples

Example 10-89 Redoing a Report

The following output is the result of recap 2 statement.

 COMMAND LOG
6: fetch w 20 down division total(actual)
7: listnames

The following REDO statement re-executes the FETCH statement with a different
variable.

REDO 6 'actual' 'budget'

REEDIT
The REEDIT command edits a statement that you entered earlier in your session. The
statement is retrieved from the command log, which is a list of up to 256 statements
that you have entered most recently during the current session. REEDIT enables you
to change the statement without executing it, so you can edit it sequentially.

Chapter 10
REEDIT

10-136

The REDO command is similar to REEDIT, except that the statement is executed after
you edit it.

Note:

REEDIT statements themselves are not included in the command log; however
the statements re-executed by REEDIT are included.

Syntax

REEDIT [number|index] 'original' 'replacement' [specifier]

Parameters

number
A positive INTEGER that indicates the number of the statement to be edited. You can
display the statements, with their numbers, using a RECAP statement.

index
A negative INTEGER or 0 (zero) that indicates the position of the statement to be edited
relative to the end of the command log. The most recent statement is 0, the one
before that is -1, and so on. The default is 0.

original
A text literal that is part of the statement to be edited.

replacement
A text literal that should replace original when the statement is edited.

specifier
A specifier listed in the following table. Each specifier indicates where text
replacement should occur in the edited statement.

Specifie
r

Meaning

FIRST Indicates that only the first occurrence of original should be
changed to replacement.

LAST Indicates that only the last occurrence of original should be
changed to replacement.

n A number indicating which occurrence of original should be
changed to replacement. For example, 3 indicates the third
occurrence.

ALL Indicates that all occurrences of original should be changed to
replacement

* Indicates that all occurrences of original should be changed to
replacement.

The default is ALL. When you do not provide a specifier, all occurrences of original
are changed to replacement.

Usage Notes

REEDIT with No number or index Argument

Chapter 10
REEDIT

10-137

When you type REEDIT without number or index, the most recent statement is edited.

Case-Sensitivity

When matching original with the text of the statement to be edited, REEDIT ignores
case differences. For example, assume you specify AT as original, REEDIT matches it
with at, At, aT, or AT in the statement.

When replacing original with replacement, REEDIT retains the case of all characters in
replacement. For example, assume you specify ShOw as replacement, that is exactly
how it appears in the edited statement.

Examples

Example 10-90 Editing Multiple Values in a LIMIT Command

The following example illustrates why it could be helpful to use a REEDIT statement to
edit a statement several times before executing it. With REEDIT commands, you can
edit multiple values in a LIMIT command before executing it. When you enter a REDO
statement, the LIMIT command is executed.

The following output is the result of a recap 1 statement.

 COMMAND LOG
6: limit mydim to 1 to 10, 15 to 20, 24 to 28, 33 to 40

The statement

REEDIT 6 '1' '2' FIRST

produces the following output.

7: limit mydim to 2 to 10 , 15 to 20, 24 to 28, 33 to 40

The statement

REEDIT 7 '15' '18'

produces the following output.

8: limit mydim to 2 to 10 , 18 to 20, 24 to 28, 33 to 40

The statement

REDO 8 '40' '41'

makes one more change and re-executes the LIMIT command with the new values. It
also produces the following output.

9: limit mydim to 2 to 10 , 18 to 20, 24 to 28, 33 to 41

REGRESS
The REGRESS command calculates a simple multiple linear regression. The optional
WEIGHTBY keyword lets you calculate a weighted regression when some data points
are more reliable than others.

Chapter 10
REGRESS

10-138

You can then execute REGRESS.REPORT to produce a standard report of the
regression. You can also use the INFO function to obtain portions of the results for use
in your own customized reports or for further analysis.

Tip:

To performing more complex regression analysis use a forecasting context as
discussed in "Forecasting Programs".

Syntax

REGRESS [NOINTERCEPT] dependent independent... [WEIGHTBY weight]

Parameters

NOINTERCEPT
Directs Oracle OLAP to suppress the constant term (intercept) in the regression
equation. The default is to calculate a constant term.

dependent
An expression to be used as the dependent variable in the regression.
In calculating the results, REGRESS loops over all the dimensions of the dependent
and independent variables.

independent
One or more expressions to be used as the independent variables (regressors) in the
regression.

WEIGHTBY weight
Specifies a weighted regression. The numeric expression weight supplies the weights
for each data point (observation). Giving higher weights to more reliable observations
results in a higher quality regression. WEIGHTBY must come last in the REGRESS
command.
When weight is less than zero for any observation, an error occurs. When weight is
equal to zero for any observation, that observation is ignored in the calculation. When
WEIGHTBY is omitted, an unweighted regression is calculated.

Usage Notes

Ignoring NA Values

In performing its calculations, the REGRESS command ignores any observation that
has an NA value.

Producing a Standard Report

The standard report for a regression shows the coefficient, standard error, and T-ratio
for each independent variable; and the R-square, F-Statistic, number of observations,
and standard error of estimate for the regression. To produce this report, type the
following.

REGRESS.REPORT

Obtaining Results

Chapter 10
REGRESS

10-139

For information on how to obtain portions of the results of REGRESS for your own
reports or further analysis, use an INFO statement.

Examples

Example 10-91 Simple Regression

The following statements limit the product dimension to Canoes, then use regression to
investigate the influence of advertising, price, and expense on the sales of canoes.

LIMIT product TO 'Canoes'
REGRESS NOINTERCEPT sales advertising price expense

You can now execute REGRESS.REPORT as illustrated in Example 10-93 to see the
results of the regression.

Example 10-92 Weighted Regression

The following statements use a weighted regression, in which districts are weighted
using a variable called reliability that has the following definition and values.

DEFINE reliability VARIABLE DECIMAL <district>

DISTRICT RELIABILITY
-------------- -----------
Boston 1.00
Atlanta 0.90
Chicago 1.00
Dallas 0.80
Denver 0.90
Seattle 0.60

The following statements perform the regression.

REGRESS NOINTERCEPT sales advertising price expense -
WEIGHTBY reliability

You can now execute REGRESS.REPORT as illustrated in Example 10-93 to see the
results of the regression.

REGRESS.REPORT
The REGRESS.REPORT program produces a standard report of a regression performed
using the REGRESS command.

Syntax

REGRESS.REPORT

Examples

Example 10-93 Report for a Simple Regression

Assume that you have performed the simple regression illustrated in Example 10-91 .
You can now execute REGRESS.REPORT to see the results of the regression.

 Regression Analysis
 ===================

 Dependent Variable: SALES

Chapter 10
REGRESS.REPORT

10-140

 WEIGHTBY Variable: NONE

Regressor Coefficient Std. Error T-ratio
-------------------- ------------ ------------ --------
ADVERTISING 0.36 0.16 2.24
PRICE -8.66 1.80 -4.82
EXPENSE 1.05 0.01 79.69

 Corrected R-square 1.00
 F-Statistic (2, 141) NA
 Number of observations 144
 Standard error of estimate 1,477.16

Example 10-94 Report for a Weighted Regression

Assume that you have performed the simple regression illustrated in Example 10-92 .
You can now execute REGRESS.REPORT to see the results of the regression.

 Regression Analysis
 ===================

 Dependent Variable: SALES
 WEIGHTBY Variable: RELIABILITY

Regressor Coefficient Std. Error T-ratio
-------------------- ------------ ------------ --------
ADVERTISING 0.44 0.17 2.64
PRICE -8.03 1.92 -4.19
EXPENSE 1.04 0.01 76.45

 Corrected R-square 1.00
 F-Statistic (2, 141) NA
 Number of observations 144
 Standard error of estimate 1,373.15

RELATION command
The RELATION command identifies a relation as the default relation for a specified
dimension of the current object; or removes the default relation information from the
current object. For more information on default relations, see "Using Related
Dimensions in Expressions".

Note:

Do not confuse the RELATION command with the RELATION statements in
AGGMAP or ALLOCMAP.

Syntax

RELATION {dimension-name relation-name }| DELETE { ALL | dimension-name}

Chapter 10
RELATION command

10-141

Parameters

dimension-name
The name of a previously-defined dimension. The dimension specified by the
dimension-name argument must be a dimension of the currently considered object for
which you want to specify or delete a default relation.

Note:

The dimension specified by the dimension-name argument must be a
dimension of the currently considered object. The current object is the object
that has been most recently defined or considered during the current session.
To make an object definition the current definition, use a CONSIDER
statement.

relation-name
The name of a previously-defined relation that Oracle OLAP uses as the default
relation for the dimension specified by dimension-name.

DELETE
Specifies removal of previously-specified default relation information.

ALL
Removes all previously-defined default relation information.

Usage Notes

How Oracle OLAP Chooses Between Multiple Relations

When there are multiple relations between the two dimensions and you attempt to
perform calculation on one of those dimension based on related dimensions, Oracle
OLAP chooses the relation to use when executing the statement as follows:

1. Uses the relation specified in the statement, if any.

2. Uses the default relation for the dimension. Oracle OLAP determines the default
relation as follows:

a. When you have specified a default relation using the RELATION command,
Oracle OLAP recognizes that relation as the default relation.

b. When you have not specified a default relation using the RELATION
command, Oracle OLAP recognizes the first relation that you defined as the
default relation.

Identifying Default Relations

Use the OBJ function with the RELATION keyword to identify the default relation
information for an object.

Multiple RELATION Commands Against the Same Object

Unlike other statements that operate against the most recently considered object (for
example, an LD statement), a new RELATION command does not replace previously-
issued RELATION commands. Instead, issuing multiple RELATION commands
against the same object has a cumulative effect.

Chapter 10
RELATION command

10-142

Examples

Example 10-95 Specifying a Default Relation Using the Relation Command

Assume that you defined the following analytic workspace objects (in the following
order).

DEFINE CITY DIMENSION TEXT
DEFINE DISTRICT DIMENSION TEXT
DEFINE CITY_DISTRICT RELATION DISTRICT <CITY>
DEFINE CITY_REDISTRICT_1 RELATION DISTRICT <CITY>

REPORT city_district
CITY CITY_DISTRICT
-------------------- --------------------
Annapolis Southern
Bethesda Southern
Charlotte Southern
Gettysburg Southern
Greensboro Southern
Raleigh Southern
Reston Southern
Rochester Southern
Virginia Beach Southern
Washington Capital

REPORT city_redistrict_1
CITY CITY_REDISTRICT_1
-------------------- --------------------
Annapolis Capital
Bethesda Capital
Charlotte Southern
Gettysburg Southern
Greensboro Southern
Raleigh Southern
Reston Southern
Rochester Southern
Virginia Beach Capital
Washington Capital

As the following OBJ statements illustrate, the city_district relation is the default
relation between city and district because the city_district relation was the first
relation defined between city and districtt and a default relation has not been
specified using a RELATION statement.

SHOW OBJ (RELATION ACTUAL 'city' 'district')
CITY_DISTRICT

SHOW OBJ (RELATION SPECIFIED 'city' 'district')
NA

Assume that you now issue the following statements to limit district to Washington and
make the city_redistrict_1 relation the default relation.

LIMIT city TO district
CONSIDER city

Chapter 10
RELATION command

10-143

RELATION city city_redistrict_1

As the following OBJ statements illustrate, now the city_redistrict_1 relation that you
specified with the RELATION statement is the default relation between city and
district.

SHOW OBJ (RELATION ACTUAL 'city' 'district')
CITY_REDISTRICT_1
SHOW OBJ (RELATION SPECIFIED 'city' 'district')
CITY_REDISTRICT_1

Also, as the following statements illustrate, when you limit city to district, you get the
same results as limiting city to the city_redistrict_1 relation

LIMIT city TO district

REPORT city
CITY

Annapolis
Bethesda
Virginia Beach
Washington

LIMIT city to ALL
LIMIT city to city_redistrict_1

REPORT city
CITY

Annapolis
Bethesda
Virginia Beach
Washington

RELEASE
When an analytic workspace is attached in multiwriter mode, the RELEASE command
changes the access mode of the specified variables, relations, valuesets, dimensions,
or one or more partitions in a variable from read/write (acquired) access to read-only
access.

Tip:

"Managing Analytic Workspaces Attached in Multiwriter Mode"

Syntax

RELEASE objects

Chapter 10
RELEASE

10-144

Parameters

objects
One or more variables, relations, valuesets, dimension names, or analytic workspace
names, separated by commas, that you want to release. To specify individual
partitions of a partitioned variable, use the following syntax.

variable_name (PARTITION partition_name [, PARTITION partition_name]...)

Precede each analytic workspace name with AW using the following syntax:
AW analytic workspace name
When you specify an analytic workspace in this list, all acquired objects in that
analytic workspace are released after all pending changes are made to them. All
changes made to the variables, relations, valuesets, or dimensions before a
RELEASE statement executes are preserved as private changes after the release
statement.

Usage Notes

Releasing Non-Updated or Uncommitted Objects

Similarly to using an AW DETACH statement for analytic workspaces that has been
updated. Using RELEASE for objects that have been updated does not allow others to
acquire the object until you commit or roll back the transaction. It may still be useful to
release an object that has been updated before a commit when one wants to make
further what-if changes and later needs to use UPDATE to update all acquired
variables.

Releasing a Dimension Causes the Dimension to Revert

When you release an acquired dimension, the dimension is automatically reverted
(see the REVERT command for an explanation of what it means to revert a
dimension).

As the following code illustrates, releasing an acquired dimension causes an automatic
revert.

User A issues the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC time WAIT
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = 37
REPORT time --> ..., 'Y2002'
... report
SHOW actuals (time 'Y2002', ...) --> 37
RELEASE time
REPORT time --> ... (no 'Y2002')
AW ATTACH myworkspace MULTI
... report
ACQUIRE RESYNC actuals, time WAIT
MAINTAIN time ADD 'Y2002'
actuals (time 'Y2002', ...) = 37
REPORT time --> ..., 'Y2002'
SHOW actuals (time 'Y2002', ...) --> 37
... report
REVERT time
REPORT time --> ... (no 'Y2002')
MAINTAIN time ADD 'Y2002'

Chapter 10
RELEASE

10-145

... report
REPORT time --> ..., 'Y2002'
SHOW actuals (time 'Y2002', ...) --> NA
... report

Examples

Example 10-96 Two Users Modifying Different Objects in the Same Analytic
Workspace

A classic use of multiwriter attachment mode is to allow two users to modify two
different objects in the same analytic workspace. For example, assume that an
analytic workspace has two variables: actuals and budget. Assume also that one user
(user A) wants to modify actuals, while another user (user B) wants to modify budget.
In this case, after attaching the analytic workspace in the multiwriter mode, each user
acquires the desired variable, performs the desired modification, updates, commits the
changes, and then, either detaches the workspace or releases the acquired variable.

User A executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
... make modifications
UPDATE MULTI actuals
COMMIT
RELEASE actuals
AW DETACH myworkspace

While, at the same time, User B executes the following statements.

AW ATTACH myworkspace MULTI
ACQUIRE budget
... make modifications
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Example 10-97 Using RELEASE After UPDATE But Before COMMIT

Using a RELEASE statement does not always allow other users to acquire the
released variable. For example, when you have updated a variable but have not
committed the changes, the execution of a RELEASE statement has no effect on other
users until a commit occurs. However, when you use a simple UPDATE to update all
acquired variables, it can be useful to release a variable after updating it but before
committing it. When a variable is released after the first update, it is not be included in
the list of updated variables for the second update. The following code illustrates
situations where user B1 releases budget at different times.

Assume that User B1 issues the following statements

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
RELEASE budget
UPDATE
make changes C2
UPDATE
COMMIT

User B2 could issue the following statements

Chapter 10
RELEASE

10-146

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

User B2 gets budget and sees no changes and issues the following statements.

...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
RELEASE budget
make changes C2
UPDATE
COMMIT
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

Alternatively, User B2 gets budget and sees changes C1 and issues the following
statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
make changes C2
RELEASE budget
UPDATE
COMMIT
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

Or, as another alternative, User B2 gets budget and sees changes C1 and issues the
following statements.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT
make changes C1
UPDATE
make changes C2
UPDATE
COMMIT
RELEASE budget
...
AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget WAIT

At this point, User B2 gets budget and sees changes C2

REMOVE_CUBE_MODEL
Removes a MODEL (in an aggregation) statement for a specified model that is a sub-
object of the cube dimension from the aggregation map of that cube dimension. The
changes made when this program executes are not transactional; an automatic
COMMIT is executed as part of the program.

Chapter 10
REMOVE_CUBE_MODEL

10-147

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL REMOVE_CUBE_MODEL(logical_cube, logical_dim, model_name,
is_static_model)

Parameters

CALL
Because REMOVE_CUBE_MODEL is an OLAP DML program with arguments, you
invoke it using the OLAP DML CALL statement.

logical_cube
A text expression that is the name of the cube as defined in the Oracle data
dictionary.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

model_name
A text expression that is the name of the logical model that is associated with
logical_dim.

is_static_model
A Boolean expression that specifies whether the MODEL statement to be removed is
before or after the RELATION (for aggregation) statements in the aggmap for
logical_cube.
The default value is TRUE which means that MODEL statement to be removed is
before the RELATION statements (that is, model_name is a static model).
Specify FALSE if the MODEL statement you want to remove is after the RELATION
statements (that is, model_name is a dynamic model).

Chapter 10
REMOVE_CUBE_MODEL

10-148

REMOVE_DIMENSION_MEMBER
The REMOVE_DIMENSION_MEMBER program removes an OLAP cube dimension
member from one or more hierarchies, or entirely removes an OLAP cube dimension
member from a cube dimension.

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL REMOVE_DIMENSION_MEMBER(member_id, logical_dim, hier_list,
[auto_compile])

Parameters

CALL
Because REMOVE_DIMENSION_MEMBER is an OLAP DML program with
arguments, you invoke it using the OLAP DML CALL statement.

member_id
A text expression that is the member that you want to remove from the cube
dimension hierarchies.

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

hier_list
A multi-line text expression consisting of the Oracle data dictionary names of all of the
hierarchies from which you want to remove the cube dimension member. Specify one
hierarchy name per line.
To entirely remove a member from the dimension, specify NA.

Chapter 10
REMOVE_DIMENSION_MEMBER

10-149

auto_compile
A Boolean expression that specifies whether or not you want related analytic
workspace objects (for example, changes to the parent relation) to be updated
immediately.
The default value is TRUE in which case all of the changes to the analytic workspace
that are needed to remove the cube dimension member happen now.
Specify FALSE only when, for performance reasons, you want to make a bulk set of
changes before issuing a compile. In this case, you need to explicitly compile the
cube dimension before the values of the analytic workspace objects take effect as
described in "Explicitly Compiling a Cube Dimension".

Note:

Regardless of the value that you specify for this argument, the new member is
always immediately removed from the dimension -- even when an error is
signaled during compilation.

Examples

Example 10-98 Removing OLAP Cube Dimension Members From a Hierarchy

1. Execute the following SQL statement that reports on the values of the my_time
cube dimension.

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

The values this statement returns are shown below.

DIM_KEY||''||LEVEL_NAME||''||PARENT

L1_0 L1
L1_1 L1
L1_2 L1
L2_1 L2 L1_1
L2_2 L2 L1_1
L2_3 L2 L1_2
L3_1 L3 L2_1
L3_2 L3 L2_1
L3_3 L3 L2_2
L3_4 L3 L2_2
L3_5 L3 L2_2
L3_6 L3 L2_3

12 rows selected.

2. Execute the following SQL statement that calls a user-written program named
remove_12_1 OLAP DML program.

exec dbms_aw.execute('call my_util_aw!remove_l2_1');

The contents of the user-written remove_12_1 program are shown below.

Chapter 10
REMOVE_DIMENSION_MEMBER

10-150

Note:

The program uses:

• The OBJORG function to specify the OLAP DML objects that physically
implement the my_time cube dimension.

• The REMOVE_DIMENSION_MEMBER program provided with the
OLAP DML to remove L2_1 and its descendants from the my_time cube
dimension.

DEFINE REMOVE_L2_1 PROGRAM
PROGRAM

 VARIABLE _aw_dim text
 VARIABLE _parentrel text
 VARIABLE _members text
 VARIABLE _member text
 VARIABLE _i integer

 " Removes L2_1 and descendants
 _aw_dim = OBJORG(DIM 'my_time')
 _parentrel = OBJORG(PARENTREL 'my_time')

 LIMIT &_aw_dim TO 'L2_1'
 LIMIT &_aw_dim ADD DESCENDANTS USING &_parentrel
 _members = VALUES(&_aw_dim)
 _i = 1
 WHILE _i LE NUMLINES(_members)
 DO
 _member = EXTLINES(_members, _i, 1)
 _i = _i + 1
 CALL REMOVE_DIMENSION_MEMBER(_member, 'my_time', NA, NO)
 DOEND

 UPDATE
 COMMIT
END

3. Execute the following SQL statement (the same statement as in Step 1) that
shows the values of the my_time cube dimension after removal.

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

The values after removal are shown below.

DIM_KEY||''||LEVEL_NAME||''||PARENT
--
L1_0 L1
L1_1 L1
L1_2 L1
L2_2 L2 L1_1
L2_3 L2 L1_2
L3_3 L3 L2_2
L3_4 L3 L2_2
L3_5 L3 L2_2

Chapter 10
REMOVE_DIMENSION_MEMBER

10-151

L3_6 L3 L2_3

9 rows selected.

REMOVE_MODEL_DIMENSION
The REMOVE_MODEL_DIMENSION program removes aDIMENSION (in models)
statement from a cube dimension's model. The changes made when this program
executes are not transactional; an automatic COMMIT is executed as part of the
program.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL REMOVE_MODEL_DIMENSION(logical_dim, model_name, explicit_dim)

Parameters

CALL
Because REMOVE_MODEL_DIMENSION is an OLAP DML program with arguments,
you invoke it using the OLAP DML CALL statement.

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

model_name
A text expression that is the name of the logical model that is associated with
logical_dim.

explicit_dim
A text expression that is the identifier of the dimension that you want to remove from
the cube dimension's model.

RENAME
The RENAME command changes the name of an object in an analytical workspace.

Syntax

RENAME oldname newname [AW workspace]

Chapter 10
REMOVE_MODEL_DIMENSION

10-152

Parameters

oldname
The name of an existing object in an analytic workspace. You can specify a qualified
object name to indicate the attached workspace in which the object resides. As an
alternative, you can use the AW keyword to specify the workspace. Do not use both.
When you do not use a qualified object name or the AW keyword to specify an
analytic workspace, the object is renamed in the current workspace.
For an unnamed composite, use the same syntax that was used to create it. See
"Naming an Unnamed Composite".

newname
The new name. The new name of an analytic workspace object cannot duplicate any
other name in the workspace in which the object exists. Choose a name according to
the rules for naming analytic workspace objects (see the main entry for the DEFINE
command. To change a named composite to an unnamed composite, use the
SPARSE keyword as the newname argument. See "Unnaming a Named Composite".

AW workspace
The name of an attached workspace in which you want to rename the object. When
you do not use a qualified object name or the AW keyword to specify an analytic
workspace, the object is renamed in the current workspace.

Usage Notes

Updating Associated Objects

When you change the name of a variable, objects that use that variable, such as
formulas, are not automatically updated.

When you change the name of a dimension, the definitions of any objects that are
dimensioned by that dimension are automatically updated. Additionally, any valuesets
for the renamed dimension are automatically updated for the new name.

RENAME and PERMIT

You may not rename an object when a PERMIT statement denies you the right to
change its permission. Renaming an object does not affect permission associated with
it.

Naming an Unnamed Composite

You can name an unnamed composite with a RENAME statement. The following
example assigns the name m.prod to an unnamed composite that is dimensioned by
market and product.

RENAME SPARSE <market product> m.prod

Unnaming a Named Composite

You can change a named composite to an unnamed composite when the composite
has no properties or permission restrictions and when there is at least one object
dimensioned by it. In addition, there cannot be an unnamed composite with the same
dimensions in the same order as the named composite, and the named composite
cannot be used in the dimension list of any unnamed composite. To change a named
composite to an unnamed composite, use the SPARSE keyword as the newname
argument. The following example changes the named composite m.prod to an
unnamed composite.

Chapter 10
RENAME

10-153

RENAME m.prod SPARSE

Restrictions on Renaming Composites

You cannot rename a composite when it is a base dimension of an unnamed
composite, or when one of its base dimensions is an unnamed composite.

Examples

Example 10-99 Renaming a Program

This statement changes the name of the program testreport to sales.report.

RENAME testreport sales.report

REPORT
The REPORT command produces a formatted report for one or more data
expressions. REPORT automatically loops over the dimensions of the expression.
REPORT sends the output to the current outfile.

Syntax

REPORT [NOHEAD] [GRANDTOTALS] [[SUBTOTALS] {GROUP group-
dimension}...] - [[SUBTOTALS] [attributes] DOWN down-dimension] -
 [[ROWTOTALS] { ACROSS across-dimension [limit-clause]: }...] -
 [SUBTOTALS] [attributes] expression(s)

Parameters

When you specify only the expression argument, REPORT produces a report with the
layout described in "Default Layout". When you specify some but not all of the
dimensions of an expression in GROUP, DOWN, or ACROSS phrases, REPORT
follows the default layout as closely as possible with the unspecified dimensions.

NOHEAD
Specifies that the report should contain no initial blank line and no headings.
NOHEAD overrides any HEADING arguments you specify for the attributes argument
and suppresses all headings that the REPORT command normally generates
automatically.

GRANDTOTALS
Includes a grand total for each numeric column at the end of your report.

SUBTOTALS
Includes subtotals for numeric columns. A row of dashes precedes each row of
subtotals. When you specify SUBTOTALS for an expression or DOWN phrase, you
get subtotals for each GROUP dimension (or composite). When you specify
SUBTOTALS for a GROUP phrase, you get subtotals for the specified dimension and
for any slower-varying GROUP dimensions. The subtotals for a group appear at the
bottom of the last slice in the group.

GROUP
Produces a separate group, or two-dimensional slice, of the data for each value of
group-dimension. You can use the GROUP phrase more than once to specify multiple

Chapter 10
REPORT

10-154

GROUP dimensions (or composites). In this case, you produce a separate slice for
each combination of the values of the GROUP dimensions.

group-dimension
The name of a dimension or composite from which to retrieve the values to use as
group labels, or one or more TEXT expressions that are the actual values you want to
use as group labels:

• When group-dimension is the name of a composite or a conjoint dimension,
Oracle OLAP creates a separate group for each base dimension.

• When group-dimension is a TEXT expression, the expression must be dimensioned
only by the desired GROUP dimension, and each value of the expression should
be descriptive text that corresponds to its associated dimension value.

The dimensions that you specify in a GROUP phrase are not required to be relevant
to the data they loop over. See "Default Layout".

DOWN
Specifies that the report includes row labels (that is, one or more columns on the left
side of your report that label the other values). You can have only one DOWN phrase.

down-dimension
The name of a dimension or composite from which to retrieve the values to use as
row labels, or one or more TEXT expressions that are the actual values you want to use
as row labels.

• When down-dimension is the name of a non-conjoint dimension, REPORT
produces only one column of row labels.

• When down-dimension is the name of a composite or a conjoint dimension,
Oracle OLAP creates a separate column for each base dimension.

• When down-dimension is a TEXT expression, the expression must be dimensioned
only by the desired DOWN dimension, and each value of the expression must be
descriptive text that corresponds to its associated dimension value.

The dimensions that you specify in a DOWN phrase are not required to be relevant to
the data they loop over. See "Specifying Extra Dimensions".

ROWTOTALS
Includes a column headed "TOTAL" at the right side of the report with a total for each
numeric row. Including a row total in your report does not imply either column
subtotals or a grand total.

ACROSS
Produces a row of column headings across the top of your report, one for each value
in dimension. Under each heading, REPORT produces a column of data for the data
expression you specify. You can have multiple ACROSS phrases (or composites) in
the report.

across-dimension
The name of a dimension or composite from which to retrieve the values to use as
column headings, or one or more TEXT expressions that are the actual values you
want to use as column headings.

• When across-dimension is the name of a composite or a conjoint dimension,
Oracle OLAP creates a separate heading column for each base dimension.

Chapter 10
REPORT

10-155

• When across-dimension is a TEXT expression, the expression must be
dimensioned only by the desired across-dimension, and each value of the
expression should be descriptive text that corresponds to its associated
dimension value. For information on providing formatted labels for a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR, see "Formatting DAY, WEEK,
MONTH, QUARTER, and YEAR Dimension Values".

The dimensions that you specify in an ACROSS phrase are not required to be
relevant to the data they loop over. See "Specifying Extra Dimensions".

limit-clause
When you specify a dimension in the ACROSS phrase, the temporary status of that
dimension during the execution of the execution of the REPORT statement. (You
cannot include a limit-clause argument when you specify a composite in the ACROSS
phrase.)
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
When the limits you specify result in an empty status for the dimension, an error
occurs (regardless of the setting of the OKNULLSTATUS option). However, when you
include the phrase IFNONE label, the error is suppressed and execution of your
program branches to the specified label, where you can handle the error.

attributes
One or more format attributes from Table 10-4 that specify how to format the data. For
information on providing formatted labels for a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, see "Formatting DAY, WEEK, MONTH, QUARTER,
and YEAR Dimension Values".

Tip:

When a variable has a formatting property attached to its definition, you can
use the OBJ function to obtain the value of that property and use it as the
value of an attribute in a REPORT statement.

When you do not specify any attributes, Oracle OLAP formats the data values using
the default format described in "Default Layout". In this case, Oracle OLAP
automatically determines the width of the columns, the number of decimal places,
whether commas are used to mark thousands in numeric values, and so on.

Attribute Meaning

HEADING 'text' Specifies text to use instead of default column headings. When you use the HEADING
attribute, the position of the heading you specify varies depending on how many
expressions it must span in your report. Consequently, your heading may or may not
replace a default heading. Also, when you use the HEADING attribute to specify a column
title that is wider than the column width, the text of the title wraps within the width of its
column.

WIDTH n (Abbreviated: W.) Makes the column n spaces wide. The maximum width is 4,000
characters. Columns with a width of 0 (zero) are suppressed.(See also "Default Values for
the Width Attribute".)

Chapter 10
REPORT

10-156

Attribute Meaning

TRUNCATE (Abbreviated: TRUNC.) Truncates a character value to the column width when it does not fit
in the column.

NOTRUNCATE (Abbreviated: NOTRUNC) Creates additional lines when the character value does not fit in
the column. (Default.)

CENTER (Abbreviated: C.) Centers the value within its column.

LEFT (Abbreviated: L.) Left-justifies the value within its column. (Default for text data.)

RIGHT (Abbreviated: R.) Right-justifies the value within its column. (Default for numeric and
Boolean data.)

SPACE n (Abbreviated: SP.) Precedes the column with the specified number of spaces.
(By default, REPORT precedes the first column by 0 spaces, and other columns by 1
space.)

FILL 'char' Puts char into unused positions in the column. (The default fill character is a space.)

COMMA Marks thousands and millions with commas or the character currently recorded in the
THOUSANDSCHAR option. Overrides the setting of the COMMAS option.

NOCOMMA Does not marks thousands and millions. Overrides the setting of the COMMAS option.

PAREN Uses parentheses to indicate negative numbers. Overrides the setting of the PARENS
option

NOPAREN Uses the minus sign to indicate negative numbers. Overrides the setting of the PARENS
option.

DECIMAL n (Abbreviated: D.) Shows n decimal places. Decimal places are separated using the
character currently recorded in the DECIMALCHAR option. Overrides the value of the
DECIMALS option.
Note: REPORT suppresses decimal places in row and column totals of integer data unless
you specify the DECIMAL attribute for the totaled expression. Additionally, when you set the
DECIMAL attribute to 0 and you use the NOLEADINGZERO keyword, any decimal values
between -1 and 1 that are rounded to 0 are not shown.

MDECIMAL n Shows n decimal places in numbers formatted with M-notation; n can be any number from 0
to 16, or 255.

NODECIMAL Shows the number of decimal places specified by the setting of the DECIMALS option.
(Default.)

EDECIMAL n Shows n decimal places in numbers formatted with E-notation; n can be any number from 0
to 16, or 255.

ENOTATION Always uses scientific notation, also called exponential notation or E-notation (appends "E",
and includes a sign before the exponent, for example, .230E+2 or .230E-2).

NOENOTATION Does not use E-notation; instead, uses to conditional M-notation.

CENOTATION Conditionally uses E-notation, when needed to make a value fit in a column.

MNOTATION Always uses M-notation (divides values by one million and appends "M").

NOMNOTATION Does not use M-notation; instead, uses asterisks for oversize values.

CMNOTATION Conditionally uses M-notation, when needed to make a value fit in a column. (Default.)

FOLDDOWN For a multiline character value, places the first line on the row with the other values, and
places additional lines below the rest of the row; also strips any leading or trailing spaces.
(Default.)

FOLDUP For a multiline character value, places all but the last line above the rest of the row, and the
last line on the row with the other values; also strips any leading or trailing spaces.

INDENT n Indents the value n spaces within its column. The default is 0.

LEADINGZERO Puts a leading zero before decimal numbers between -1 and 1.

Chapter 10
REPORT

10-157

Attribute Meaning

NOLEADINGZERO Suppresses leading zeros before decimal numbers between -1 and 1.

CNLEADINGZERO Puts a leading zero before decimal numbers between -1 and 1 when it does not cut off any
significant digits. (Default.)

LSET 'text' Adds text to the left of the value. When you use LSET with an expression that contains NA
values, the text you specify with LSET is not included to left of any NA value

NOLSET Does not add anything to the left of the value. (Default.)

RSET 'text' Adds text to the right of the value. When you use RSET with an expression that contains NA
values, the text you specify with RSET is not included to right of any NA value.

NORSET Does not add anything to the right of the value. (Default.)

NASPELL 'text' Uses text instead of NA values. Overrides the setting of the NASPELL option.

NONASPELL Spells NA values as indicated by the NASPELL option. (Default.)

YESSPELL 'text' Uses text for TRUE Boolean values. The default is recorded in the YESSPELL option.

NOSPELL 'text' Uses text for FALSE Boolean values. Overrides the setting of the NOSPELL option.

ZSPELL 'text' Uses text instead of zero numeric values. Overrides the setting of the ZSPELL option.

NOZSPELL Spells zero numeric values as specified by the ZSPELL option. (Default.)

OVER textexp Overlines the value with the value of a character expression (textexp). When textexp is a
literal value, it must be enclosed in single quotes. Useful literal values include: '-' to
overline value or column, '=' to double overline value or column, and '' to indicate that a
value or column is does not have an overline.
To overline only when a condition is met, for textexp use:
IF boolean-expression THEN '-' ELSE ''

UNDER textexp Underlines the value with the value of a character expression (textexp). When textexp is a
literal value, it must be enclosed in single quotes. Useful literal values include: '-' to
underline value or column, '=' to double underline value or column, and '' to indicate that
a value or column is not underlined.
To underline only when a condition is met, for textexp use: IF boolean-expression THEN
'-' ELSE ''

VALONLY Used with the UNDER and OVER attributes, underline or overline the value only.

NOVALONLY Used with the UNDER and OVER attributes, underlines or overlines the entire width of the
column. (Default.)

expression . . .
The data to be shown in the report. The way the data looks depends on its data type
and the attributes you specify.

Note:

The REPORT command is not equipped to deal with NTEXT values. Do not
include them in any part of a report.

You can specify multiple expressions and these expressions do not have to have the
same dimensions:

Chapter 10
REPORT

10-158

• When you have several data expressions in your REPORT statement, you can
specify different format attributes before each. When you want attributes to apply
to two or more data expressions, enclose the expressions in angle brackets (< >).

attributes <expression1, expression2>

• Attributes outside the brackets apply to all the expressions within the brackets.
However, you can also specify attributes for only one expression (even an
attribute that contradicts one that applies to the group) within the brackets by
including them immediately before the expression.

attributes0 <attributes1 expression1, expression2>

In this case, attributes0 applies to both expression1 and expression2; while
attributes1 only applies to expression1.

Tip:

To create running totals, use the RUNTOTAL function.

Usage Notes

Report Options

Several options effect reports created using the OLAP DML. These options are listed
in "Report Options".

Default Layout

When you do not specify any of the layout phrases (GROUP, DOWN, or ACROSS),
REPORT tries to format its output compactly (typically, a two-dimensional report of the
data with one dimension down the side and the others across the top, much like a
spreadsheet). Any additional dimensions of the data form "slices" or separate two-
dimensional segments, like a series of spreadsheets. By default, REPORT uses the
following rules to determine the layout:

• The fastest-varying dimension in an expression (the one that appears first in the
definition of that expression) goes across, the next fastest goes down, and any
remaining dimensions become GROUP slices.

• The order of dimensions in a list of two or more expressions is a simple
combination of the dimensions that appear in the definitions of the component
expressions. The original order is preserved as far as possible, subject to the rule
that repeated mentions of the same dimension are dropped. For example, the
dimensions of the combined variables price and industry.sales, where price has
the dimensions <month product> and industry.sales has the dimensions <quarter
product region>, are <month product quarter region>.

When you produce a report of data for a variable dimensioned by a composite,
REPORT automatically breaks out the data by the base dimensions of the composite
that is used in the definition of the variable. When a particular combination of base
dimension values does not exist in the composite, the report shows NA for the
corresponding data cell. See Example 10-104.

Default Values for the Width Attribute

When you omit the WIDTH attribute for an ACROSS phrase, the default width is the
value of the COLWIDTH option (default is 10).

Chapter 10
REPORT

10-159

When you omit the WIDTH attribute for a DOWN phrase or when you specify a simple
dimension in the DOWN phrase, the default width is the value of the LCOLWIDTH
option (default is 14).

When you omit the WIDTH attribute for a DOWN phrase that specifies a conjoint
dimension or a composite, the default label width is the width of the COLWIDTH option
and there is a separate column for each base dimension. You can provide a different
width for each base dimension column by using the KEY function. You can produce a
label column for each base dimension with the KEY function and use a separate
WIDTH attribute for each column. For example, assume that proddist is a composite
with the base dimensions product and district. In this case, you can use a statement
similar to the following one.

REPORT DOWN < W 8 KEY(proddist, product) -
 W 12 KEY(proddist, district) > . . .

When you use the default line width of 80 characters (determined by the LSIZE option)
and the default column width settings (with a single label column of 14 characters) a
line of output can accommodate the labels column and six data columns.

The combined width of all the columns of a report cannot be greater than 4,000
characters.

When a numeric value is too large to fit into a data column, REPORT rounds it off to
the nearest million with the symbol M at the right side of the cell. When a value is still
too large, REPORT replaces the value with a series of asterisks.

Formatting DAY, WEEK, MONTH, QUARTER, and YEAR Dimension Values

When you use a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR as the
dimension in an ACROSS, DOWN, or GROUP phrase, you can use the CONVERT
function to override the dimension's VNF (or the default VNF) and provide your own
format for the dimension value names. To override the VNF, use the CONVERT
function with a vnf argument instead of the dimension argument to the ACROSS,
DOWN, or GROUP keyword. For example, in a report of units data, you can format
the labels for the month dimension by using the following statement.

REPORT HEADING 'Month' DOWN -
 CONVERT(month TEXT '<mtextl> <yyyy>') units

Specifying Extra Dimensions

The REPORT command uses whatever dimensions you specify in laying out the
report, regardless of whether the expressions to be shown are dimensioned by these
dimensions. When an expression is not dimensioned by one or more of the
dimensions specified, the values of that expression are repeated for each value of the
extra dimension. This fact is sometimes useful for comparisons. See Repeating Price
Data.

Examples

Example 10-100 Creating a Default Report

This example shows how to look at product prices for the first three months of 1996.
You can use REPORT in its simplest form, without changing the default layout

LIMIT month TO 'Jan96' TO 'Mar96'
REPORT price

These statements produce the following output.

Chapter 10
REPORT

10-160

 --------------PRICE-------------
 --------------MONTH-------------
PRODUCT Jan96 Feb96 Mar96
--------------- ---------- ---------- ----------
Tents 165.50 165.75 165.13
Canoes 200.25 200.09 200.05
Racquets 55.02 55.03 55.00
Sportswear 50.03 50.02 50.00
Footwear 38.01 38.01 38.01

Example 10-101 Including Column Totals

This example looks at unit sales for three districts for the first half of 1996, with
district across the report and a subtotal for each column. (By default, months would
be arranged across the report, because month is the fastest-varying dimension of
units.) To make the report more compact, specify a smaller column width of 8
characters.

LIMIT month TO 'Jan96' TO 'Jun96'
LIMIT district TO 'Boston' 'Chicago' 'Dallas'
REPORT SUBTOTALS W 8 DOWN month -
 ACROSS district: W 8 units

These statements produce the following output.

PRODUCT: TENTS
 ----------UNITS-----------
 ---------DISTRICT---------
MONTH Boston Chicago Dallas
-------- -------- -------- --------
Jan96 307 189 308
Feb96 209 190 324
Mar96 277 257 436
Apr96 372 318 560
May96 525 433 744
Jun96 576 466 838
-------- -------- -------- --------
TOTAL 2,266 1,853 3,210
 ...

REPORT produces a similar slice for each product.

Example 10-102 Comparing Two Variables

This example compares actual sportswear sales with the projected sales plan, looking
only at whole-dollar figures. It reports the actual and planned values side-by-side for
May and June, 1996, and provides a grand total of sales and planned sales for all
districts.

LIMIT product TO 'Sportswear'
LIMIT month TO 'May96' 'Jun96'
LIMIT district TO ALL
REPORT GRANDTOTALS W 12 DOWN district ACROSS month: -
 DECIMAL 0 <sales sales.plan>

These statements produce the following output.

PRODUCT: SPORTSWEAR
 -------------------MONTH-------------------
 --------May96-------- --------Jun96--------
DISTRICT SALES SALES.PLAN SALES SALES.PLAN

Chapter 10
REPORT

10-161

------------ ---------- ---------- ---------- ----------
Boston 72,617 69,623 79,630 73,569
Atlanta 161,537 148,823 177,967 157,939
Chicago 101,873 94,545 112,793 97,427
Dallas 170,939 165,449 175,066 164,192
Denver 89,971 91,880 97,237 94,729
Seattle 57,713 55,905 60,323 56,808
 ---------- ---------- ---------- ----------
 654,651 626,224 703,017 644,664
 ========== ========== ========== ==========

Example 10-103 Repeating Price Data

This example compares sales across three districts, and it includes the unit price
beside each sales figure for close comparison within each district. The REPORT
statement specifies two expressions, sales and price. Because sales has three
dimensions, month, product, and district, the report shows these three dimensions.
However, price is not dimensioned by district. Therefore, the report repeats the
values of price for each district. The report for January 1995 shown.

LIMIT district TO FIRST 3
LIMIT product TO ALL
LIMIT month TO 'Jan95'
REPORT GROUP month W 10 DOWN product ACROSS district: -
 <W 9 sales W 6 price>

These statements produce the following output.

MONTH: Jan95
 -------------------DISTRICT------------------------
 -----Boston----- ----Atlanta----- -----Chicago----
PRODUCT SALES PRICE SALES PRICE SALES PRICE
---------- --------- ------ --------- ------ --------- ------
Tents 32,153.52 160.77 40,674.20 160.77 29,098.94 160.77
Canoes 66,013.92 190.24 49,462.88 190.24 45,277.56 190.24
Racquets 52,420.86 52.84 54,798.82 52.84 54,270.39 52.84
Sportswear 53,194.70 48.54 114,446.26 48.54 72,123.47 48.54
Footwear 91,406.82 36.10 100,540.28 36.10 90,287.70 36.10

Example 10-104 Reporting Data Dimensioned by Composites

In this example, d.sales is a variable whose dimension list includes the dimension
month and the unnamed composite SPARSE <product district>. The unnamed
composite contains no values for the base dimension combinations for the Boston and
Chicago districts and the Tents, Racquets, And Footwear products. When you use the
default form of the REPORT command to produce a report of d.sales data, REPORT
breaks out the report by month and by the base dimensions of the unnamed composite
(product and district). For the combinations of base dimension values that do not
exist in the composite, the report shows NA for the corresponding data cells.

LIMIT month TO 'Jan96' TO 'Mar96'
LIMIT district TO 'Boston' 'Chicago'
REPORT d.sales

These statements produce the following output.

DISTRICT: Boston
 ------------D.SALES-------------
 -------------MONTH--------------
PRODUCT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------

Chapter 10
REPORT

10-162

Tents NA NA NA
Canoes 70,489 82,238 97,622
Racquets NA NA NA
Sportswear 57,079 63,122 67,006
Footwear NA NA NA

DISTRICT: Chicago
 ------------D.SALES-------------
 -------------MONTH--------------
PRODUCT Jan96 Feb96 Mar96
-------------- ---------- ---------- ----------
Tents NA NA NA
Canoes 48,662 54,425 68,816
Racquets NA NA NA
Sportswear 77,490 85,879 85,308
Footwear NA NA NA

By specifying the composite in an ACROSS, DOWN, or GROUP phrase, you can
override the default format of REPORT and break out the d.sales data by its
composite. In this case, the report only includes the data cells for which the composite
contains values.

REPORT DOWN SPARSE <product district> d.sales

This statement produces the following report.

 ------------D.SALES-------------
 -------------MONTH--------------
 PRODUCT DISTRICT Jan96 Feb96 Mar96
---------- ---------- ---------- ---------- ----------
Canoes Boston 70,489 82,238 97,622
Sportswear Boston 57,079 63,122 67,006
Canoes Chicago 48,662 54,425 68,816
Sportswear Chicago 77,490 85,879 85,308

RESYNC
When an analytic workspace is attached in multiwriter mode, the RESYNC command
drops private changes for the specified read-only objects and retrieves the data from
the latest visible generations.

RESYNC resynthesized read-only objects. Use ACQUIRE to resynchronize acquired
objects

Tip:

"Managing Analytic Workspaces Attached in Multiwriter Mode"

Syntax

RESYNC objects

Chapter 10
RESYNC

10-163

Parameters

objects
A list of one or more variables, relations, valuesets, or dimension names, separated
by commas, that you want to resynchronize. Oracle OLAP ignores any acquired
objects in this list.
Use Name as a value in objects to specify that you want to resynchronize the newest
objects defined by other users.

Usage Notes

Keeping Logical Relationship of Objects

When using RESYNC keep in mind the logical relationship of different objects to avoid
losing the logical consistency of the data by promoting some objects, but not others to
a new generation.

Resynchronizing Objects that Share a Composite Dimension

Objects that share a composite dimension can be resynchronized separately when all
such objects that are not being resynchronized are either unchanged or acquired.

Examples

Example 10-105 Resynchronizing Objects

In this example, user A is periodically updating actuals, while user R needs to
periodically check the latest view of the data. They could execute the following OLAP
DML statements.

User A could execute the following OLAP DML statements.

AW ATTACH myworkspace MULTI
ACQUIRE actuals
...make modifications
UPDATE MULTI actuals
COMMIT
...make modification
UPDATE MULTI actuals
COMMIT

At the same time, user R could execute the following OLAP DML statements.

AW ATTACH myworkspace MULTI
...
RESYNC actuals
...
RESYNC actuals
...
RESYNC actuals
...

RETURN
Within an OLAP DML program, the RETURN command terminates execution of a
program before its last line. You can optionally specify a value that the program
returns when the program is called as a function. The value should have the same
data type or dimension that you specified when you defined the program.

Chapter 10
RETURN

10-164

See Also:

"Creating User-Defined Functions" and the ARGUMENT, CALL, DEFINE
PROGRAM commands

Syntax

RETURN [expression]

Parameters

expression
The expression to be returned to the calling program when the called program
terminates.

Usage Notes

Return Value Dimensionality

The value returned by a program is a single value, without any dimensions. However,
within the context of the statement that calls a user-defined function, the function
expression has the dimensions of its arguments. In this case, the program is called
once for every combination of the dimension values of the function expression.

Return Value Data Type

When you specify a data type when you define a program, the return value has that
data type. When you specify a dimension when you define a program, the return value
is a single value in that dimension. When the expression in a RETURN statement does
not match the declared data type or dimension, Oracle OLAP converts it to the
declared data type.

When you do not specify a data type or dimension in the definition of a program, its
return value is treated as worksheet data and Oracle OLAP converts any return value
to the data type that is required by the calling context which may lead to unexpected
results.

Dimension Location

When the program returns values of a dimension, the dimension must be declared in
the same analytic workspace as the program. The program is in the output of the
LISTBY program, and OBJ(ISBY) is TRUE for the dimension.

No Return Value

When a program has been invoked as a function, but it does not provide a return
value, the value that is returned to the calling program is NA.

Examples

Example 10-106 Terminating a Program Early

In this example, suppose you want a report program that produces a report only when
a variable called newfigures is present in the current analytic workspace. In your
program, you can use an IF statement to check whether newfigures exists and a
RETURN to stop execution when it does not.

Chapter 10
RETURN

10-165

DEFINE sales.report PROGRAM
PROGRAM
IF NOT EXISTS('newfigures')
 THEN DO
 SHOW 'The new data is not yet available.'
 RETURN
 DOEND
PUSH month
TRAP ON cleanup
LIMIT month TO LAST 3
REPORT ACROSS month: newfigures

cleanup:
POP month
END

Now when you run the program without newfigures in the analytic workspace, the
program produces a message and the RETURN statement terminates execution of the
program at that point.

Example 10-107 Returning a Value

The following program derives next year's budget figures from the actual variable. It is
a temporary calculation. You could call this program in a REPORT statement, thus
calculating and reporting the budget figures without storing them in an analytic
workspace.

DEFINE budget.growth PROGRAM DECIMAL
PROGRAM
VARIABLE growth DECIMAL
VARIABLE factor DECIMAL
growth = TOTAL(actual(year 'Yr97') year) - TOTAL(actual(year -
 'Yr96') year)
factor = (1 + growth) / TOTAL(actual(year 'Yr96') year)
RETURN TOTAL(actual(year 'Yr97') year) * (factor * factor/2)
END

REVERT
The REVERT command drops all changes made to the specified objects since they
were last updated, resynchronized (using a RESYNC statement), acquired using
ACQUIRE with the RESYNC phrase, or since the analytic workspace was attached.

Tip:

"Managing Analytic Workspaces Attached in Multiwriter Mode"

Syntax

REVERT objects

Chapter 10
REVERT

10-166

Parameters

objects
A list of the names, separated by commas, of acquired variables, valuesets, relations,
or dimensions in an analytic workspace attached in multiwriter mode or a list of
variables, valuesets, relations, or dimensions in an analytic workspace attached in
read-only mode.

Usage Notes

Reverting a Dimension After Adding Dimension Values

Reverting a dimension after adding dimension values is not recommended because it
can result in suboptimal space allocation for variables dimensioned by that dimension.

Examples

Example 10-108 Using REVERT to Undo Modifications

Assume that you have a variable named budget in an analytic workspace named
myworkspace. Assume, also, that you must modify budget in several steps but do not
want to update the analytic workspace data until all steps are completed. For each
step, you want to run several models to find the one that produces desired results. To
perform this task, take the following steps:

1. Attach the analytic workspace in multiwriter mode.

2. Acquire budget.

3. For each step:

a. Run the appropriate models, performing revert operations between them until
you finds the desired model

b. Update budget.

4. Commit and release budget.

The following code accomplishes these tasks.

AW ATTACH myworkspace MULTI
ACQUIRE RESYNC budget
...try model 1a --> not acceptable
REVERT budget
...try model 1b --> ok. Done with Step 1
UPDATE MULTI budget
...try model 2a --> not acceptable
REVERT budget
...try model 2b --> not acceptable
REVERT budget
...try model 2c --> ok. Done with Step 2
UPDATE MULTI budget
...try model 3a --> ok. Done with Step 3. Done with all steps.
UPDATE MULTI budget
COMMIT
RELEASE budget
AW DETACH myworkspace

Chapter 10
REVERT

10-167

ROW command
The ROW command produces a single line of data in cells, one after another in a
single row. A series of ROW commands that produce corresponding cells are often
used to build up columns of data. For this reason, we normally speak of the ROW
command as producing a line of columns. Output from the ROW command is sent to
the current outfile.

The ROW command is typically used with other commands, functions, and options
that you can think of collectively as report-writing statements

The ROW command itself consists of a series of column descriptions that specify the
data to be produced and, optionally, the output format of the data.

In addition, ROW has a versatile capability for doing row and column arithmetic. It can
perform calculations and include the calculation results in the output. It can use any
kind of calculated expression in the column descriptions; and it can take advantage of
row and column totaling functions (see Row and Column Arithmetic).

ROW is primarily used in report programs to produce the lines of the report. The
maximum width of any row in a report is 4,000 characters.

Tip:

When you know ahead of time that you do not need the subtotaling capability of
the ROW command, using a HEADING statement instead of ROW to produce
the lines of your report can provide a time savings, because, in this case,
Oracle OLAP does not keep track of subtotals.

See Also:

ROW function

Syntax

ROW [attributes] [ACROSS dimension [limit-clause]:] {exp1|SKIP } -
 [[attributes] [ACROSS dimension [limit-clause]:] {expn|SKIP }]

Parameters

ROW with no arguments produces a blank line.

attributes
One or more attributes for a column. Attributes are format specifications that
determine how the data value is formatted within the column. There is no limit to the
number of attributes that you can use to describe a column format. (See the SKIP
parameter for an explanation of each of the available attributes.) The default for some
format attributes is determined by the current setting of Oracle OLAP options (see
Report-Related Options for a list of these options).

Chapter 10
ROW command

10-168

ACROSS
An ACROSS phrase lets you include multiple values of a dimensioned expression in a
single row by looping over one dimension (or composite) of the expression. Typically,
ROW shows only the value that corresponds to the first dimension value within the
current limits. With an ACROSS phrase, ROW produces one data column for each
dimension value currently in the status.
You can apply a single ACROSS phrase to multiple data expressions, or you can use
separate ACROSS phrases for different data expressions. See "Multiple Expressions"
and "Separate ACROSS Phrases".

dimension
The name of a dimension or composite over which the statement loops.
When you show data for a variable dimensioned by a composite and you do not
include an ACROSS phrase, ROW shows output for all data cells that correspond to
the base dimension values of the composite. When a particular combination of base
dimension values does not exist in the composite, ROW shows NA for the
corresponding data cell. Likewise, when you specify one composite's base dimension
in an ACROSS phrase, ROW shows NA for a data cell for which the composite
contains no value. However, when you specify a composite in the ACROSS phrase,
ROW shows output only for data cells for which combinations of base dimension
values exist in the composite which provides a more concise report that better reflects
your data.
When the dimension specified in an ACROSS phrase has null status, ROW does not
produce any data columns for that ACROSS phrase.

limit-clause
When you specify a dimension in the ACROSS phrase, a clause that enables you to
temporarily change the status of that dimension during the execution of the ROW
statement.
The syntax of limit-clause is the same syntax as any of the limit-clause arguments in
the various forms of the LIMIT command (that is, the syntax of the LIMIT command
after the limit-type argument such as "TO"). For the syntax of these arguments, see
LIMIT (using values) command, LIMIT using LEVELREL command, LIMIT (using
parent relation), LIMIT (using related dimension) command, LIMIT NOCONVERT
command, and LIMIT command (using POSLIST).
The following example temporarily limits month to the last six values, no matter what
the current status of month is.

 ACROSS month LAST 6: units

When the limits you specify result in empty status for the dimension, an error occurs.
However, when you include the phrase IFNONE label, the error is suppressed and
execution of your program branches to the specified label where you can handle the
error.

Note:

When you specify a composite in the ACROSS phrase, you cannot include a
limit-clause argument. You must limit the base dimensions of a composite to
the desired values using a LIMIT command before you execute a ROW
statement

Chapter 10
ROW command

10-169

SKIP
Used instead of an expression to indicate that the column is to be left blank.

Attribute Meaning

WIDTH n
(W n)

Makes the column n spaces wide. The default width for
the first column is the value of the LCOLWIDTH option.
For other columns, it is the value of the COLWIDTH
option. The maximum width is 4,000 characters. Columns
with a width of 0 are suppressed.

SPACE n
(SP n)

Precedes the column with n spaces. The default for the
first column is 0; for other columns, 1.

INDENT n Indents the value n spaces within its column. The default
is 0.

LEFT
(L)

Left-justifies the value within its column. (The default for
TEXT data.)

RIGHT
(R)

Right-justifies the value within its column. (The default for
numeric and Boolean data.)

CENTER
(C)

Centers the value within its column.

LSET 'text' Adds text to the left of the value. When used with an
expression that contains NA values, Oracle OLAP does
not include the text you specify at the left of any NA
values.

NOLSET Does not add anything to the left of the value.

RSET 'text' Adds text to the right of the value. When used with an
expression that contains NA values, Oracle OLAP does
not include the text you specify at the right of any NA
values

NORSET Does not add anything to the right of the value.

FILL 'char' Puts char into unused positions in the column. The default
fill character is a space.

DECIMAL n
(D n)

Shows n decimal places. Decimal places are separated
by the character currently specified by the
DECIMALCHAR option. The default number of decimal
places is controlled by the DECIMALS option.

NODECIMAL Shows the number of decimal places indicated by the
DECIMALS option.

COMMA Marks thousands and millions with commas or the
character currently recorded in the THOUSANDSCHAR
option. The default is controlled by the COMMAS option.

NOCOMMA Does not mark thousands and millions.

PAREN Uses parentheses to indicate negative numbers. The
default is controlled by the PARENS option.

NOPAREN Uses the minus sign to indicate negative numbers. The
default is controlled by the PARENS option.

LEADINGZERO Puts a leading zero before decimal numbers between -1
and 1.

Chapter 10
ROW command

10-170

Attribute Meaning

NOLEADINGZE
RO

Suppresses leading zeros before decimal numbers
between -1 and 1. (Note that when you set the DECIMAL
attribute to 0 and you use the NOLEADINGZERO
keyword, Oracle OLAP does not show any decimal values
between -1 and 1 that are rounded to 0.)

CNLEADINGZER
O

Puts a leading zero before decimal numbers between -1
and 1 when it does not cut off any significant digits.

MNOTATION Always uses M-notation (divides values by one million
and appends M).

CMNOTATION Conditionally uses M-notation, when needed to make a
value fit in a column.

NOMNOTATION Does not use M-notation (uses asterisks for oversize
values).

MDECIMAL n Shows n decimal places in numbers formatted with M-
notation; n can be any number from 0 to 16, or 255.

ENOTATION Always uses scientific notation, also called exponential
notation or E-notation (appends E, and includes a sign
before the exponent, for example, .230E+2 or .230E-2).

CENOTATION Conditionally uses E-notation, when needed to make a
value fit in a column.

NOENOTATION Does not use E-notation (defaults to conditional M-
notation).

EDECIMAL n Shows n decimal places in numbers formatted with E-
notation; n can be any number from 0 to 16, or 255.

NASPELL 'text' Uses text instead of NA values. The default is controlled by
the NASPELL option.

NONASPELL Spells NA values as indicated by the NASPELL option.

ZSPELL 'text' Uses text instead of zero numeric values. The default is
controlled by the ZSPELL option.

NOZSPELL Spells zero values as indicated by the ZSPELL option.

YESSPELL 'text' Text used for TRUE Boolean values. The default is
recorded in the YESSPELL option.

NOSPELL 'text' Text used for FALSE Boolean values. The default is
recorded in the NOSPELL option.

TRUNCATE
(TRUNC)

Truncates a character value to the column width when it
does not fit in the column.

NOTRUNCATE
(NOTRUNC)

Creates additional lines when the character value does
not fit in the column.

FOLDUP For a multiline character value, places all but the last line
above the rest of the row, and the last line on the row with
the other values; also strips any leading or trailing spaces.

FOLDDOWN For a multiline character value, places the first line on the
row with the other values, and places additional lines
below the rest of the row; also strips any leading or trailing
spaces.

Chapter 10
ROW command

10-171

Attribute Meaning

VALONLY Underlines or overlines the value only. (Used with
UNDER and OVER.)

NOVALONLY Underlines or overlines the entire width of the column.
(Used with UNDER and OVER.)

UNDER textexp Underlines the value or column with the value of a
character expression (textexp). When textexp is a literal
value, it must be enclosed in single quotes. Useful literal
values include: '-' to underline value or column, '=' to
double underline value or column, and '' to indicate that
a value or column is not underlined.
To underline only when a condition is met, for textexp use
IF boolean-expression THEN '-' ELSE ''

OVER textexp Overlines the value or column with the value of a
character expression (textexp). When textexp is a literal
value, it must be enclosed in single quotes. Useful literal
values include: '-' to overline value or column, '=' to
double overline value or column, and '' to indicate that a
value or column is does not have an overline
To overline only when a condition is met, for textexp use
IF boolean-expression THEN '-' ELSE ''

Use the functions that are listed in the following table to perform calculations on the
values generated so far in a report.

Function Data Type Value Returned

COLVAL(n) DECIMAL Value in the nth column of the current row.
When n > 0, an absolute column number (from
the left margin, moving to the right). When n < 0,
a relative column number (from the current
column, moving left).

RUNTOTAL(n
)
where:
n = 1,2, ...32

DECIMAL Total of all numbers generated in the current
column since the last SUBTOTAL or
ZEROTOTAL for n. Does not reset total for n to
0.

SUBTOTAL(n
)
where:
n = 1,2, ...32

DECIMAL Total of all numbers generated in the current
column since the last SUBTOTAL or
ZEROTOTAL for n. Resets total for n to 0.

The options that are listed in the following table affect the default format for a ROW
command.

Option Meaning

COLWIDTH Column width for all but the first column when the WIDTH
attribute is not used. The default is 10.

COMMAS Specifies whether a thousands group separator is used
when neither the COMMA attribute nor the NOCOMMA
attribute is used. The default is YES (uses a separator).

Chapter 10
ROW command

10-172

Option Meaning

DECIMALS Number of decimal places when the DECIMAL attribute is
not used. The default is 2.

LCOLWIDTH Column width for the first column when the WIDTH attribute
is not used. The default is 14.

LSIZE Defines the line size within which the STDHDR program
centers the standard header. The default is 80 characters.

NASPELL Text used for NA values when the NASPELL attribute is not
used. The default text is NA.

NLS_LANGUA
GE

Specifies the text used for TRUE and FALSE Boolean values.
These values are reflected in the YESSPELL and
NOSPELL options.

NLS_TERRITO
RY

Specifies the character used for the decimal marker and the
thousands group separator. These values are reflected in
the DECIMALCHAR and THOUSANDSCHAR options.

PARENS Parentheses usage for negative numbers when neither the
PAREN attribute nor the NOPAREN attribute is used. The
default is NO (does not use parentheses; uses a minus
sign).

ZEROROW Controls generation or suppression of rows in which all
numeric values are zero. The default is NO (generates zero
rows).

ZSPELL Text used for zero values when the ZSPELL attribute is not
used. The default text is OFF, which shows a zero (0).

Use the statements that are listed in the following table with the ROW command.

Command Action

BLANK n Produces n blank lines. The default is one line.

HEADING column-
description(s)

Produces titles and column headings for a report.
Numeric values in headings are not added to column
totals.

PAGE Forces a page break in output when PAGING is set to
YES.

ZEROTOTAL Resets all 32 totals to 0 for all columns.

ZEROTOTAL ALL
col(s)

Resets all 32 totals to 0 for the specified columns, or
for all columns when there are no column arguments.

ZEROTOTAL n col(s) Resets the indicated total (n) to 0 for the specified
columns, or for all columns when there are no column
arguments.

Usage Notes

Report-Writing Commands

The ROW command and its associated options and commands are referred to
collectively as report-writing statements. Row and Column Arithmetic lists functions
you can use for performing row and column arithmetic in reports. Report-Related
Options lists report-related options that determine the default format for ROW output.
OLAP DML Statements That Are Compatible with the ROW Command lists additional
statements that are used in combination with ROW to create reports.You can use the

Chapter 10
ROW command

10-173

PAGING option and associated paging-related options to produce your report program
in a page-oriented format.

Labels for Composites and Conjoint Dimensions

When you produce a report of data that has a composite or a conjoint dimension in its
dimension list, you can produce a label column for each base dimension by using the
KEY function. You can also provide a separate WIDTH attribute for each label column.
For example, when proddist is a composite with the base dimensions product and
district, you can use statements similar to the following ones.

FOR proddist
 ROW W 12 KEY(proddist district) W 8 KEY(proddist product) ...

Multiple Expressions

When you want the same format attribute or ACROSS phrase to apply to multiple data
expressions, you can enclose the expressions in angle brackets (< >) and place the
common attributes or ACROSS phrase immediately before the bracketed expressions.

attributes <expression1, expression2, ...>

or

ACROSS dimension: <expression1, expression2, ...>

When you have attributes that apply to only one expression within the brackets, place
the specific attributes immediately before the expression.

attributes1 <expression1, attributes2 expression2>

When an attribute inside angle brackets (specific to a column) conflicts with an
attribute outside the brackets (common to several columns), the specific attribute
overrides the common attribute.

You can nest brackets to any depth, if you have an equal number of right and left
brackets.

Separate ACROSS Phrases

For data generated with an ACROSS phrase, you can produce all the columns for one
expression and then all the columns for additional expressions by using separate
ACROSS phrases.

ACROSS dim: expression1, ACROSS dim: expression2

You also can nest ACROSS phrases to show data columns for two or more
dimensions of an expression across a row.

ACROSS dim1: ACROSS dim2: expression

Row and Column Arithmetic

See Row and Column Arithmetic for a list of the functions available for row and column
arithmetic. You can use these functions to perform calculations on the values already
generated in a report. Oracle OLAP maintains 32 running totals for each column, so
you can include up to 32 levels of subtotals in a report. Note that when a numeric
value is too large to fit into a data cell, ROW rounds it off to the nearest million with the
symbol M at the right side of the cell. When a value is still too large, ROW replaces the
value with asterisks.

Chapter 10
ROW command

10-174

Examples

Example 10-109 Labeling Data Values

In this example, ROW produces a line of output that contains a value of sales, along
with the corresponding dimension values for district, month, and product that identify
it.

ROW W 8 district month product sales

The preceding statement produces the following row of output.

Boston Jan95 Tents 32,153.52

Example 10-110 Reporting Two Variables

The line of output produced by this ROW statement contains the current dimension
value of district, followed by the values of sales and sales.plan for Sportswear for
each of the first two months of 1996.

LIMIT month TO 'Jan96' 'Feb96'
LIMIT product TO 'Sportswear'
ROW W 8 district ACROSS month: <sales sales.plan>

These statements produce the following row of output.

Boston 57,079.10 61,434.20 63,121.50 64,006.91

Example 10-111 Formatting and Labeling the Output

In this ROW statement, you want to see the actual and planned sales of tents for June
1996. You want to limit the status of month only for this one ROW statement, so you
include the value Jun96 in the ACROSS phrase. You format the values as whole dollar
amounts, and you also add a dollar sign to the values, along with individual labels that
identify the actual and planned figures.

LIMIT product TO 'Tents'
ROW WIDTH 15 name.product ACROSS month 'Jun96': -
 DECIMAL 0 LSET '$' W 18 -
 <RSET ' (actual)' sales -
 RSET ' (plan)' sales.plan>

These statements produce the following row of output.

3-Person Tents $95,121 (actual) $80,138 (plan)

Example 10-112 Reporting on a Variable Dimensioned by a Composite

In this example, D.SALES is a variable whose dimension list includes the dimension
month and the unnamed composite SPARSE <product district>. By specifying the
composite in an ACROSS phrase of a ROW statement, you can produce a report that
includes only the data cells for which the composite contains values.

LIMIT product TO ALL
LIMIT district TO 'Atlanta'
LIMIT month TO 'Jan96'
ROW ACROSS SPARSE <product district>: d.sales

Chapter 10
ROW command

10-175

SET
The SET command, also called an assignment statement or the = command, assigns
one or more values to a variable, option, relation, or dimension surrogate. When an
object has one or more dimensions, the SET command loops over the values in status
for each dimension of the target object and assigns a data value to the corresponding
cell of the target object.

When the target is an object defined with a composite in its dimension list, Oracle
OLAP automatically creates any missing target cells that are being assigned non-NA
values. This step also adds to the composite all the dimension value combinations that
correspond to those new cells. Thus, both the target object and the composite might
be larger after an assignment. When you want to assign values only to cells that
already exist in the target, use the ACROSS keyword.

Note:

You can use UNRAVEL with SET to assign values of an expression into the
cells of a variable when the dimensions of the expression are different from the
dimensions of the variable

Syntax

[SET] target-name [=] expression [ACROSS composite]

Parameters

SET
SET is optional. It is an older command form of this functionality, and is included for
compatibility.

target-name
The name of the target object where the data is assigned and stored. For a list of
analytic workspace objects that can be a target object, see Using Objects in
Assignment Statements.

=
The = (assignment or equal) operator assigns one or more values to a variable,
option, or relation. See also "Assignment Operator".

expression
The source of the data values to be assigned to the object, see Using Objects in
Assignment Statements

ACROSS composite
When you are assigning data to a variable dimensioned by a composite the default
behavior is to loop over all the values in status for each of the base dimensions of the
object. Oracle OLAP automatically creates any missing target cells that are being
assigned non-NA values, and it automatically adds the required dimension value
combinations to the composite.

Chapter 10
SET

10-176

When you want to assign values only to existing cells of a variable defined with a
composite, use the ACROSS keyword, which causes = to change the way it loops for
those dimensions of the target that are part of the composite. Instead of looping over
all possible combinations of the values in the status of those dimensions, = loops only
over those combinations of the values in the status that already exist in the
composite.
The ACROSS keyword is intended for specifying a composite. However, when you
specify a base dimension of the composite instead, be aware that the assignment
statement could add many values to your composite.

Usage Notes

Triggering Program Execution When an Assignment Statement Executes

Using the TRIGGER command, you can make a SET statement an event that
automatically executes an OLAP DML program. See "Trigger Programs" for more
information

Dimensionality and Performance

When the target has multiple dimensions, the = statement loops over the dimension
values in the order in which they were added, regardless of their logical order as
reflected by the default status. In a multidimensional case, the looping is over the
compound dimension. The first dimension listed in the definition varies the fastest.
When you are setting the target to the values of an expression, Oracle OLAP performs
much more efficiently when the source expression has the same dimensions, in the
same order, as the target.

Differently Dimensioned Variables in an Expression

When an assignment statement involves several differently-dimensioned objects, the
calculation can appear complicated. The following list outlines the process followed by
a complicated assignment statement. When the statement is A = B, where A is the
object being set to the expression B, Oracle OLAP first determines the dimensions of
A. Then it determines the status of those dimensions. For each combination of
dimension values in the status of those dimensions:

1. Oracle OLAP determines which single value of A (sometimes called a cell) is going
to be set.

2. For each component of the expression B (each variable, formula, function,
qualified data reference, or literal), Oracle OLAP determines the single value that
corresponds to the cell of A that is being set. When a component of the expression
is not dimensioned or is a literal, Oracle OLAP simply uses its value. When a
component of the expression has dimensions different from A, Oracle OLAP uses
the first value in the status of these dimensions.

3. Oracle OLAP performs the specified calculation on the single values obtained in
Step 2 and stores the result in the cell of A chosen in Step 1.

Using Objects in Assignment Statements

The following table outlines the objects that you can use in assignment statements and
indicates whether you can use them as a target or source expression:

Chapter 10
SET

10-177

Table 10-9 Using Objects in Assignment Statements

Object Target Source

Composite No Yes

Dimension Only in models Yes

Formula Yes Yes

Function (including OLAP DML program as function) No Yes

Relation Yes Yes

Surrogate Yes Yes

Valueset No Yes

Variable Yes Yes

Worksheet Yes Yes

See Also:

"Assigning Values to Variables", "Assigning Values to Relations", "Rules for
Equations in Models", "Expressions Dimensioned Conjoint Dimensions", and
"Assigning Values to Dimension Surrogates"

Assigning Values to Variables

When you use an = (SET) statement to assign the value of a single-cell expression to
a single cell, a single value is stored. However, when you use an = statement to assign
the value of a single-cell expression to a target variable that has one or more
dimensions, then the assignment loops over the values in status for each dimension of
the target variable and assigns a data value to the corresponding cells of the variable.

When you assign a multiline value to a fixed-width text variable, then the variable is set
to the first line only. To assign a multiline value to a fixed-width text variable, you use
the JOINCHARS function to make the multiline value one line long. For example,
suppose you have a non-fixed-width text variable called textvar. The statement

SHOW textvar

produces the following output, in which each line of the value in textvar is shown as a
separate line.

This is a variable
that has a multiline
text value.

To assign this value to a variable called fixedtext with a fixed width of 60 bytes and
show the value, you would use the following statements.

fixedtext = JOINCHARS(textvar)
SHOW fixedtext

These statements produce the following output, in which the value of textvar is shown
as a single line.

Chapter 10
SET

10-178

This is a variable that has a multiline text value.

When the actual number of bytes in the textvar variable's value exceeds the width of
the fixedtext variable, then the value of textvar is truncated when it is stored in
fixedtext.

Assigning Values to Relations

You can assign values to a relation using a SET statement as illustrated in
Example 10-114. When executing the assignment statement, a loop is performed over
the values in status for each dimension of the target relation and assigns a data value
to the corresponding cell of the target relation.

You can assign values to a relation with a text dimension by assigning one of the
following:

• A text value of the dimension.

• An INTEGER that represents the position of the dimension value in the default
status list of the dimension.

Assigning Values to Dimensions

The only time you use an = statement to assign a value to a dimension is when the
result of a calculation in a model equation is numeric. In this situation, you can use the
= operator to assign the results to a dimension value. However, equations (that is,
expressions) in models differ in several ways from expressions used in other contexts.
See "Rules for Equations in Models" for information on using the assignment
statement within models. See the MAINTAIN command for information on how to add
values to dimensions in all other cases.

Assigning Values to Dimension Surrogates

You assign values to a dimension surrogate with an = (SET) statement. For example,
the following statements define the dimension surrogate storename, which is a TEXT
type surrogate for the NUMBER type dimension store_id, assign a value to the fourth
position of storename, and then report the value of the surrogate for the fourth value of
store_id, which is 100.

DEFINE storename SURROGATE store_id TEXT
storename(storename 4) = 'Molly\'s Emporium'
REPORT W 25 storename(store_id 100)

STORENAME(STORE_ID 100)

Molly's Emporium

For example, when you define the INTEGER dimension surrogate intsurr for a NUMBER
dimension numdim that has five values, then a report of intsurr produces the following.

INTSURR

 1
 2
 3
 4
 5

Like a dimension, the values of a dimension surrogate must be unique. However,
unlike a dimension, a dimension surrogate can have NA values, unless it is an

Chapter 10
SET

10-179

INTEGER type. The same value can be a value of the dimension and of any of its
surrogates.

Using QDRs with the Target of an Assignment Statement

You can use a QDR with the target of an = (SET) statement which lets you assign a
value to specific cells in a variable or relation.

The following example assigns the value 10200 to the data cell of the sales variable
that is specified in the qualified data reference. When the variable named sales does
not already have a value in the cell associated with Boston, Tents, and Jan99, then the
value is assigned to the cell and thus it is added to the variable. When a value already
exists in the cell, the value 10200 overwrites the previous value.

sales(market 'Boston' product 'Tents' month 'Jan99')= 1020

Expressions Dimensioned Conjoint Dimensions

When an expression is dimensioned by a conjoint dimension, Oracle OLAP uses the
dimension's relationship to its base dimension values to assign data to the correct
cells. You can set the values of a variable dimensioned by a conjoint dimension to an
expression dimensioned by one of its base dimensions. The converse is also true. See
"Compacting Your Data".

Rules for Equations in Models

The equations in a model use an OLAP DML assignment statement to assign values
to variables or dimension values. Equations in models differ in several ways from
equations used in other contexts in Oracle OLAP:

• In a model equation, you can use the name of a dimension value anywhere you
would normally use the name of a variable. You can base calculations on a
dimension value, and you can assign the results of a calculation to a dimension
value. When an equation refers directly to one or more dimension values, it is
called a dimension-based equation.

• You cannot use ampersand substitution in model equations.

• You can include a program as a component in a calculation only when it is used as
a function.

• Within a single dimension-based equation, all the dimension values must belong to
the same dimension.

• When you assign the results of a calculation to a dimension value, the results must
be numeric.

• Each dimension on which the model equations are based must be listed in a
DIMENSION statement. When the model contains an INCLUDE statement, the
appropriate DIMENSION statements must be inherited from the included model.
When the model does not contain an INCLUDE statement, it must contain the
appropriate DIMENSION statements. When you compile or run the model, Oracle
OLAP searches through the dimensions listed in explicit or inherited DIMENSION
statement to identify the dimension to which each dimension value belongs.

Dimension Status and Model Equations

When a model contains an assignment statement to assigns data to a dimension
value, then the dimension is limited temporarily to that value, performs the calculation,
and then restores the initial status of the dimension.

Formatting Conjoint Dimension Values

Chapter 10
SET

10-180

A special format is required when dimension-based equations refer to values of a
conjoint dimension:

• Enclose the entire dimension value specification in angle brackets and then
enclose this entire specification in single quotes; do not enclose the individual
values in single quotes.

• Use the exact upper- and lowercase spellings for the base dimension values.

• When the specification includes a text value with an embedded blank, you must
separate the dimension values with commas.

For example, assume that item.org is a conjoint dimension with base dimensions item
and org. In this case, you use the following format to refer to values of item.org.

'<Expenses, Direct Sales>'

Formatting Text Dimension Values

When dimension-based equations refer to text dimension values with embedded
blanks or mixed upper- and lowercase letters, enclose the dimension value in single
quotes. Use the exact upper- and lowercase spelling for the value.

For example, assume that a text dimension named lineitem contains a value with an
embedded blank. In this case, you use the following format.

'Software Revenue'

Specifying DAY, WEEK, MONTH, QUARTER, YEAR Values for a Model Equation

When a model equation is based on a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you must use the dimension's VNF (value name format), rather
than a date format, to specify the dimension's values. In addition, the VNF must format
dimension values as follows:

• The value must start with a letter.

• The value can only contain letters, digits, underscores, and periods.

When the WEEK, MONTH, QUARTER, YEAR dimension of type does not have a VNF
assigned to it, you can use the default VNF for the dimension. The entry for the VNF
command lists the default VNF for each of these dimension types, and it explains how
to assign a VNF to a dimension.

The default VNF for DAY dimensions is not acceptable because it specifies a digit as
the first character of each dimension value. For a DAY dimension, specify the
dimension name and enclose the value in parentheses and single quotes.

For example, for a DAY dimension named daydim, you can use the following format.

daydim('01jul97')

Formatting INTEGER Dimension Values

When dimension-based equations refer to values of an INTEGER dimension, enclose
the dimension value in single quotes.

For example, for an INTEGER dimension named intdim, use the following format to
refer to the first dimension value.

'1'

Chapter 10
SET

10-181

When the model is based on multiple dimensions, the model compiler might not be
able to correctly identify the dimension to which a literal INTEGER value belongs. In this
case, specify the name of the dimension and enclose the value in parentheses and
single quotes as described in "Formatting Ambiguous Dimension Values".

Formatting Ambiguous Dimension Values

In some cases the model compiler might be unable to correctly identify the dimension
to which a dimension value belongs. For instance, this can happen under the following
circumstances:

• Two or more dimensions have a dimension value with the same name.

• A DAY dimension uses the default VNF (which starts with a digit).

• An INTEGER value could be interpreted either as a position within a dimension or as
a literal INTEGER value of a dimension.

In cases such as these, you can avoid ambiguity in model-based equations by
following these rules:

• Enclose the dimension value in single quotes.

• Enclose the quoted value in parentheses.

• Precede the parentheses with the name of the dimension.

For example, for an INTEGER dimension named intdim, use the following format to
refer to the first dimension value.

intdim('1')

Examples

Example 10-113 Assigning Values to a Variable

For the first example, suppose you have defined two variables, units and price, that
are both dimensioned by product. The following example calculates dollar sales (units
times price) for each value in the product dimension. Using an assignment statement,
it stores the result in the variable sales, which is also dimensioned by product.

sales = units*price

For another example, assume the choicedesc variable is dimensioned by choice.
Before you enter data for the variable, the cells of the variable contain only NA values.

CHOICE CHOICEDESC
-------------- --------------------
Report NA
Graph NA
Analyze NA
Data NA
Quit NA

Suppose you initialize the choicedesc variable using the following statement.

choicedesc = JOINCHARS ('Description for ' choice)

Now all of the choicedesc cells of the variable contain the appropriate values.

CHOICE CHOICEDESC
-------------- -------------------------
Report Description for Report

Chapter 10
SET

10-182

Graph Description for Graph
Analyze Description for Analyze
Data Description for Data
Quit Description for Quit

The next example shows an expression that is dimensioned by time, product, and
district and is assigned to a new variable. The expression calculates a 2002 sales
plan based on unit sales in 2001.

DEFINE units.plan INTEGER <month product district>
LIMIT month TO 'DEC02'
units.plan = LAG(units 12 month) * 1.15

Example 10-114 Assigning Values to a Relation

Assume that your analytic workspace contains the following definitions for a
hierarchical dimension for Geography named geog and a relation named
geog_parentrel that contains values that represent the child-parent relationships in the
Geography hierarchy.

DEFINE geog DIMENSION TEXT
DEFINE geog_parentrel RELATION geog <geog>

You can use the following MAINTAIN ADD statements to populate the hierarchical
dimension.

" Populate the geog dimension with values for all levels
MAINTAIN geog ADD 'North America' 'Europe' 'United States' 'Canada' 'France'
'Germany'
MAINTAIN geog ADD 'Massachusetts' 'California' 'Quebec' 'Ontario'
MAINTAIN geog ADD 'Boston''Springfield' 'San Francisco''Los Angeles' 'Toronto'
'Ottawa'
MAINTAIN geog ADD 'Montreal''Quebec City' 'Paris' 'Marseilles' 'Bonn' 'Berlin'

You can use the following assignments statements to populate geog_parentrel. Note
that you must limit geog to the appropriate values before you assign values to
geog_parentrel.

" Limit geog (and therefore geog_parentrel) to countries and assign
" parent value (continent name) to those countries in geog_parentrel
LIMIT geog to 'United States' 'Canada'
geog_parentrel = 'North America'
LIMIT geog to ALL
LIMIT geog to 'France' 'Germany'
geog_parentrel = 'Europe'

" Limit geog (and therefore geog_parentrel) to states or provinces and assign
" parent value (country name) to those states or provinces in geog_parentrel
LIMIT geog to ALL
LIMIT geog to 'Massachusetts' 'California'
geog_parentrel = 'United States'
LIMIT geog to ALL
LIMIT geog to 'Quebec' 'Ontario'
geog_ OLAP DML Commands: A-G = 'Canada'

" Limit geog (and therefore geog_parentrel) to cities and assign
" parent value (state, province, or country) to those cities in geog_parentrel
LIMIT geog to ALL
LIMIT geog to 'Boston' 'Springfield'

Chapter 10
SET

10-183

geog_parentrel = 'Massachusetts'
LIMIT geog to ALL
LIMIT geog to 'San Francisco' 'Los Angeles'
geog_parentrel = 'California'
LIMIT geog to ALL
LIMIT geog to 'Montreal' 'Quebec City'
geog_parentrel = 'Quebec'
LIMIT geog to ALL
LIMIT geog to 'Toronto' 'Ottawa'
geog_parentrel = 'Ontario'
LIMIT geog to ALL
LIMIT geog to 'Paris' 'Marseilles'
geog_parentrel = 'France'
LIMIT geog to ALL
LIMIT geog to 'Bonn' 'Berlin'
geog_parentrel = 'Germany'
LIMIT geog to ALL

A report of geog_parentrel shows the values have been assigned.

COLWIDTH = 20
REPORT geog_parentrel
REPORT geog_parentrel

GEOG GEOG_PARENTREL
---------------- --------------------
North America NA
Europe NA
United States North America
Canada North America
France Europe
Germany Europe
Massachusetts United States
California United States
Quebec Canada
Ontario Canada
Boston Massachusetts
Springfield Massachusetts
San Francisco California
Los Angeles California
Toronto Ontario
Ottawa Ontario
Montreal Quebec
Quebec City Quebec
Paris France
Marseilles France
Bonn Germany
Berlin Germany

Example 10-115 Using a Qualified Data Reference

This example uses an assignment statement with a qualified data reference to assign
values to the variable budget. The values assigned to one budget line item (Net.Income)
are calculated as the difference between two other line items (Opr.Income and Taxes),
so you have to use a qualified data reference to obtain the correct data values.

budget(line Net.Income)= budget(line Opr.Income) - budget(line Taxes)

Chapter 10
SET

10-184

Example 10-116 Assigning Values to Variables with Composites

To have data assigned from sales only into existing data cells of sparse_sales, whose
associated dimension values are in status, use the following statement.

sparse_sales = sales ACROSS SPARSE<product market>

The ACROSS keyword is particularly helpful when the source expression is a single
value. When there are no limits on the dimensions of sparse_sales, then an
assignment statement like the following creates cells for every combination of
dimension values because there are no cases where the source expression is NA.

sparse_sales = 0

This defeats the purpose of a dimensioning a variable with a composite.

In contrast, the following statement sets only existing cells of sparse_sales to 0 (zero).

sparse_sales = 0 ACROSS SPARSE<product market>

Example 10-117 Compacting Your Data

Suppose you only sell some of your products in each district. You currently have a
variable sales that has data for certain combinations of districts and products and NA
values for the rest. You can create a dense array of sales data by defining a composite
or a conjoint dimension and using it as a dimension of a new variable. Use an
assignment statement to assign the data directly to the new variable. When the values
of the composite or conjoint dimension include all the combinations with data, you can
then delete the original variable and save space in the analytic workspace.

DEFINE proddist DIMENSION <product district>
MAINTAIN proddist ADD <'Tents' 'Boston'> <'Canoes' 'Seattle'> -
 <'Sportswear' 'Atlanta'>
DEFINE sales.dense DECIMAL <month proddist>
sales.dense = sales
LIMIT month TO FIRST 4

Issuing a REPORT sales.dense statement produces the following output.

 ----------------SALES.DENSE----------------
-----PRODDIST------ -------------------MONTH-------------------
PRODUCT DISTRICT Jan95 Feb95 Mar95 Apr95
-------- ---------- ---------- ---------- ---------- ----------
Tents Boston 32,153.52 32,536.30 43,062.75 57,608.39
Canoes Seattle 64,111.50 71,899.23 83,943.86 14,383.90
Sportswear Atlanta 114,446.26 123,164.92 138,601.64 141,365.66

An alternative method would be to use a composite instead of a conjoint dimension. In
this case, you could use the following statements.

DEFINE sales.compact DECIMAL <month SPARSE <product district>>
sales.compact = sales

Oracle OLAP automatically creates the unnamed composite when you define
sales.compact, and it automatically adds dimension value combinations to the
composite when you use an assignment statement. Oracle OLAP creates dimension
value combinations only for the non-NA values of sales.

Chapter 10
SET

10-185

SET1
The SET1 command assigns a single value to a variable, option, relation, or dimension
surrogate. When an object has one or more dimensions, the SET1 command assigns
the value to the object cell that is in current status.

Because the SET1 command does not loop through a dimensioned object, you can
use it in Assign trigger programs to assign a value to an object.

Syntax

SET1 target-name = expression

Parameters

target-name
The name of the target object where the data is assigned and stored. For a list of
analytic workspace objects that can be a target object, see Using Objects in
Assignment Statements.

expression
The source of the data values to be assigned to the object, see Using Objects in
Assignment Statements

Examples

For an example of using SET1, see Example 10-164.

SET_INCLUDED_MODEL
The SET_INCLUDED_MODEL program adds an INCLUDE model statement to a
previously-defined cube dimension's model, or deletes an INCLUDE model statement
from a previously-defined cube dimension's model. The changes made when this
program executes are not transactional; an automatic COMMIT is executed as part of
the program.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL SET_INCLUDED_MODEL(logical_dim, model_name, custom_model)

Parameters

CALL
Because SET_INCLUDED_MODEL is an OLAP DML program with arguments, you
invoke it using the OLAP DML CALL statement.

Chapter 10
SET1

10-186

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

model_name
A text expression that is the name of the logical model that is associated with the
cube dimension.

custom_model
A text expression that is the OLAP DML-created model for which you want to add an
INCLUDE statement.

See:

CREATE_LOGICAL_MODEL

To remove an INCLUDE statement, specify NA.

Examples

Example 10-118 Creating Static and Dynamic Models for an OLAP Cube

Assume that you have created an OLAP cube dimension named my_time that
dimensions an OLAP cube named my_cube. Within my_cube there are two measures:
sales and moving_sales. Now you want to create static and dynamic models for
my_cube.

1. To create a static model, execute the following PL/SQL statement that executes a
user-written OLAP DML program named setup_pre_model.

exec dbms_aw.execute('call my_util_aw!setup_pre_model');

As you can see from the following definition of the setup_pre_model program, the
model is actually defined using the SET_INCLUDED_MODEL program and added
using the ADD_CUBE_MODEL program, both of which are provided with the
OLAP DML.

DEFINE SETUP_PRE_MODEL PROGRAM
PROGRAM

 VARIABLE _pre_model text
 VARIABLE _aw_dim text

 _pre_model = 'my_aw!my_pre_model'
 _aw_dim = OBJORG(DIM 'my_time')

 DEFINE &_pre_model model
 CONSIDER &_pre_model
 MODEL JOINLINES(JOINCHARS('dimension ' _aw_dim) -
 JOINCHARS(_aw_dim '(\'L3_3\')=10') -
 'end')

Chapter 10
SET_INCLUDED_MODEL

10-187

 CALL SET_INCLUDED_MODEL('my_time', 'pre_model', _pre_model)
 CALL ADD_CUBE_MODEL('my_cube', 'my_time', 'pre_model', YES)
END

2. Load the my_time dimension and load and solve my_cube by executing the following
the PL/SQL statement.

exec dbms_cube.build('MY_CUBE');

3. You can now report on the initial values of sales and moving sales with the static
model by issuing the following statement.

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
from my_cube_view
order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_1 14 14
L2_1 12 12
L2_2 2 14
L3_1 1 1
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2

8 rows selected.

4. To create a dynamic model where L1_2 = (L2_2' * 2) execute the following
PL/SQL statement that calls a user-written OLAP DML program named
SETUP_POST_MODEL.

exec dbms_aw.execute('call my_util_aw!setup_post_model');

As you can see from the definition of the user-written setup_post_model program
shown below, the model is actually defined using the SET_INCLUDED_MODEL
program and added using the ADD_CUBE_MODEL program, both of which are
provided with the OLAP DML.

DEFINE SETUP_POST_MODEL PROGRAM
PROGRAM

 VARIABLE _post_model text
 VARIABLE _aw_dim text
 VARIABLE _start_date text
 VARIABLE _timespan text
 VARIABLE _member text

 _post_model = 'my_aw!my_post_model'
 _aw_dim = OBJORG(DIM 'my_time')
 _start_date = OBJORG(ATTRIBUTE 'my_time' 'start_date')
 _timespan = OBJORG(ATTRIBUTE 'my_time' 'timespan')
 _member = 'L1_0'

 DEFINE &_post_model model
 CONSIDER &_post_model
 MODEL JOINLINES(-
 JOINCHARS('dimension ' _aw_dim) -
 JOINCHARS(_aw_dim '(\'' _member '\')=' _aw_dim '(\'L2_2\')*2') -

Chapter 10
SET_INCLUDED_MODEL

10-188

 'end')

 CALL SET_INCLUDED_MODEL('my_time', 'post_model', _post_model)
 CALL ADD_CUBE_MODEL('my_cube', 'my_time', 'post_model', NO)

 " Add _member to the dimension
 CALL ADD_DIMENSION_MEMBER(_member, 'my_time', NA, 'L1', NA, NO)
 CALL UPDATE_ATTRIBUTE_VALEU(_member, 'my_time', 'start_date', -
 &_start_date(&_aw_dim 'L1_1')-365, NO)
 CALL UPDATE_ATTRIBUTE_VALUE(_member, 'my_time', 'timespan', -
 &_timespan(&_aw_dim 'L1_1'))
 UPDATE
 COMMIT
END

5. Execute the following statement to report on the new values of my_time, sales and
moving_sales.

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
 from my_cube_view
 order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_0 4 4
L1_1 14 18
L2_1 12 12
L2_2 2 14
L3_1 1 1
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2

9 rows selected.

SET_PROPERTY
The SET_PROPERTY program modifies the values of the $LOOP_DENSE
or $LOOP_VAR properties of a derived measure of a cube as defined in the Oracle
data dictionary. The changes made when this program executes are not transactional;
an automatic COMMIT is executed as part of the program.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL SET_PROPERTY(property_name, logical_cube, meas_name, property_value)

Chapter 10
SET_PROPERTY

10-189

Parameters

CALL
Because SET_PROPERTY is an OLAP DML program with arguments, you invoke it
using the OLAP DML CALL statement.

property_name
A text expression that is either $LOOP_VAR or $LOOP_DENSE.

logical_cube
A text expression that is the Oracle data dictionary name of the cube that contains
meas_name.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

meas_name
A text expression that is the Oracle data dictionary name of the derived measure for
which you want to modify the value of either the $LOOP_VAR or $LOOP_DENSE
property.

property_value
A text expression that is a valid value for the property you specified in property_name.
For valid values, see $LOOP_DENSE or $LOOP_VAR.

SHOW
The SHOW command shows a single value of an expression. Normally, you would use
SHOW to show the value of a single-cell variable or to show a message. SHOW is
useful in programs when you want to generate an error-like message without creating
an error condition. The output from SHOW is sent to the current outfile.

Syntax

SHOW expression [NONL]

Parameters

expression
The value you want to show. When expression is dimensioned, only the first value of
the expression is shown, based on the current status of its dimensions. When you are
showing a text literal, you must enclose the value in single quotes.

NONL
Indicates that a new line sequence should not be appended to the end of the value.
By default, SHOW appends a new line sequence.

Usage Notes

Concatenating Output Lines

Chapter 10
SHOW

10-190

The NONL argument to SHOW is useful in programs. Using this argument you can
concatenate several values into a single line of output. To accomplish this, include one
or more SHOW commands with the NONL argument, followed by a single SHOW
statement without the NONL argument. The values from all the SHOW commands are
concatenated into a single output value, in the order specified. Depending on the
length of the line, this value might actually produce multiple lines of output.

Generating Error Messages

SHOW can be used as an alternative to SIGNAL when you want to generate an error
message from a program. Unlike SIGNAL, SHOW produces a message without
signaling an error condition and thus halting execution of the program. Your error
message may be most useful when you send it to a debugging file. When you use a
DBGOUTFILE statement to direct messages to a debugging file, the output from
SHOW is sent to the debugging file and to your current outfile.

Showing Values of Composites

When SHOW is used with a named or unnamed composite, an NA value is shown
when the composite does not have a value that corresponds to the first values in the
status for its base dimensions. For example, the statement

SHOW SPARSE <market product>

produces an NA value when the combination of the current values of market and product
does not exist in the composite.

Breaking Lines of Text

To break a text expression into two or more lines of output text, insert newline
delimiters (\n) at the appropriate places in the text.

Using SHOW With NTEXT Values

The SHOW command converts NTEXT values to the character set of the outfile. When
an NTEXT value cannot be represented in the outfile character set, the character is
not displayed correctly.

Examples

Example 10-119 Showing the Value of an Option

This example uses SHOW to report the current value of the DECIMALS option. The
OLAP DML statement

SHOW DECIMALS

produces the following output.

2

Example 10-120 Showing a Data Value

When you use SHOW to report the value of a dimensioned variable, only the first
value of the variable, based on the current status of its dimensions, is shown. The
OLAP DML statement

SHOW JOINCHARS('Actual = ' actual)

produces the following output.

Chapter 10
SHOW

10-191

Actual = 533,362,88

Example 10-121 Creating Error Messages Using SHOW

When you want to produce a warning message without branching to an error label,
then you can use a SHOW statement.

select:
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN DO
 SHOW 'You can select no more than 9 months.'
 GOTO finish
 DOEND
REPORT DOWN district W 6 units
finish:
POP month
RETURN

Example 10-122 Showing the Values of a Valueset

Suppose an analytic workspace contains a valueset called monthset that has the
values Jan95, May95, and Dec95. You can use SHOW to list the values in that valueset.

SHOW monthset
Jan95
May95
Dec95

SIGNAL
The SIGNAL command produces a user-defined error message from within a program.
When Oracle OLAP executes a SIGNAL statement when TRAP is ON, execution
branches to the trap label. Any statements following the trap label in the program are
then executed.When the program contains an active trap label, execution branches to
the label. Without a trap label, execution of the program terminates and, when the
program was called by another program, execution control returns to the calling
program.

Syntax

SIGNAL {errname [message]|STOP}

Parameters

errname
A TEXT expression that indicates the name of the error message to be produced.
When Oracle OLAP executes a SIGNAL statement, it stores the errname in the
ERRORNAME option. Normally, the name of the error does not appear in the error
message. However, when you omit message, the error name (errname) appears
along with a stock message as described in the message argument.
You can use the special name PRGERR to communicate to a calling program that an
error has occurred. The statement SIGNAL PRGERR sets ERRORNAME to a blank value
and passes an error condition to the calling program without causing another error
message to be displayed. For a complete explanation of how to use SIGNAL to pass
an error up a chain of nested programs, see the TRAP command.

Chapter 10
SIGNAL

10-192

message
A TEXT expression that specifies the error message to be produced. When you
supply a long line as your error message, you must add your own line breaks to
format the text. Type the newline escape sequence (\n) where you want each line to
end. You can type up to a limit of 6 lines or 4,000 characters, whichever you reach
first. An error occurs when you try to supply a single line longer than 4,000 characters.
When you omit this argument, SIGNAL produces the following message.

ERROR: (errname) Please contact the administrator of your
 Oracle Oracle OLAP application.

When Oracle OLAP executes a SIGNAL statement, it stores message in the
ERRORTEXT option.

STOP
Immediately stops execution of all currently running programs. No error message is
produced. The error condition is not trapped by an active TRAP label.

Examples

Example 10-123 Signaling an Error

Suppose you have written a program that requires one argument. When no argument
is supplied, there is no purpose in running the program. Therefore, the first thing the
program does is check if an argument has been passed. When it has not, the program
terminates after sending an error message to the current outfile.

The following program lines check for the argument and signal an error when it is not
found.

IF ARGS EQ ''
THEN SIGNAL msg1 'You must supply an argument.'

SIGNAL sends the following message to the current outfile.

ERROR: You must supply an argument.

Example 10-124 Signaling an Error When an Argument Value is Invalid

Suppose your program produces a report that can present from one to nine months of
data. You can signal an error when the program is called with an argument value
greater than nine. In this example, nummonths is the name of the argument that must be
no greater than nine.

select:
TRAP ON error
PUSH month
LIMIT month TO nummonths
IF STATLEN(month) GT 9
 THEN SIGNAL toomany -
 'You can specify no more than 9 months.'
REPORT DOWN district W 6 units
finish:
POP month
RETURN
error:
POP month
IF ERRORNAME EQ 'TOOMANY'
 THEN SHOW 'No report produced'

Chapter 10
SIGNAL

10-193

SLEEP
Within an OLAP DML program, the SLEEP command suspends the program
execution for at least the specified number of seconds.

Note:

SLEEP is rarely used in Oracle OLAP programs, because there is seldom a
need to suspend program execution.

Syntax

SLEEP n

Parameters

n
A numeric expression that specifies the number of seconds for Oracle OLAP to
"sleep." Program execution is suspended for at least this number of seconds.

Examples

Example 10-125 Suspending Program Execution

In a program, suppose you execute a statement that might take 10 seconds to
complete. You can follow that statement with this SLEEP statement, which suspends
program execution for 10 seconds.

SLEEP 10

SORT command
The SORT command arranges the order of values in the current status list of a
dimension or a dimension surrogate, or in a valueset.

See Also:

SORT function

Syntax

SORT dimension [byhierarchy] [bycriterion...]

where:

• byhierarchy is an optional phrase that uses a parent relation to arrange the
order of values in the current status list of a hierarchical dimension or its
dimension surrogate, or to assign values to a valueset, based on family
relationships within the hierarchy. You can include only one byhierarchy phrase
in a SORT statement. It must be the first phrase in a SORT statement.

Chapter 10
SLEEP

10-194

HIERARCHY parent-relation [INVERT] [DEPTH n] [SORTORPHANS]

• bycriterion uses an explicit criterion to arrange the order of values in the
current status list of a dimension or its dimension surrogate, or to assign values to
a valueset. You can include as many bycriterion phrases as you want in a
SORT statement.

{A|D} [NAFIRST] criterion

Parameters

dimension
A text expression whose value is the name of a dimension, a dimension surrogate, or
a valueset.

HIERARCHY
Specifies that Oracle OLAP is to sort dimension values based on the values position
in parentrel.

parent-relation
Specifies the name of a child-parent self-relation for dimension. For each dimension
value, the relation holds another value of the dimension which is its parent dimension
value (the one immediately above it in a given hierarchy). This parent relation can
have multiple dimensions.

Tip:

You can specify a QDR of parent-relation to specify a single value.

INVERT
Indicates that Oracle OLAP places the children in the hierarchy before their parents.
(By default, children are placed after their parents.)

DEPTH n
Specifies the number of generations down from the top of the hierarchy that Oracle
OLAP should place into status and. there, for the values that are included in the
result. The default value of n is 99. When you do not want any values in the result
(that is, when you want a NULL status), specify -1 for n. When you only want the top of
the hierarchy in status (that is, those dimension values that do not have parents),
specify 0 (zero).

SORTORPHANS
Specifies that all first cousins whose parents are not in status are sorted together. By
default, Oracle OLAP preserves the hierarchical structure when sorting children even
when their parents are not in status.

A
D
The order in which the values are to be sorted. A means ascending order (alphabetical
when the sorting criterion is TEXT, ID, or a relation), and D means descending order
(reverse alphabetical when the sorting criterion is TEXT, ID or a relation).

NAFIRST
Specifies that NA values are to placed first in the sort rather than last.

Chapter 10
SORT command

10-195

criterion
The expression to be used as a sorting criterion. Each criterion must be dimensioned
by dimension. The first expression is the major sorting criterion. When the expression
is multidimensional, SORT uses the first value in status for all dimensions other than
the dimension being sorted. You cannot use a valueset as the sorting criterion.

Usage Notes

Sorting a Dimension and a Valueset

When Oracle OLAP sorts a dimension, it sorts the temporary status list of a dimension,
not the data dimensioned by it. Because many OLAP DML statements operate on data
according to the current status of its dimensions, sorting a dimension appears to have
the effect of sorting data. A dimension and any dimension surrogates for it share the
same status. Therefore, a SORT statement on a dimension or any of its surrogates
sorts them all.

When Oracle OLAP sorts a valueset, it sorts the actual values within the valueset.
When you execute UPDATE and COMMIT commands after sorting a valueset, the
values in the valueset are stored in that sorted order.

Sorting Alphabetically

To sort a TEXT or ID dimension or its valueset in alphabetical order, use the
dimension itself as the sorting criterion.

SORT district A district

Sort Order for Textual Data

The sort order for textual data in an alphabetical sort is controlled by the NLS_SORT
option.

Sorting a Time Dimension

The values of dimensions of type DAY, WEEK, MONTH, QUARTER, and YEAR are
stored internally as numbers. Therefore, when you sort a dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR dimension or its valueset in ascending order,
with the dimension itself as the sorting criterion, then the values in the status list or
valueset are placed in chronological order. When you sort a dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR dimension or its valueset in descending
order, then the values are placed in reverse chronological order.

Sorting Using a Relation as a Criterion

When you use a relation as your sorting criterion, then the sorting is done
alphabetically; that is, the dimension or valueset is sorted according to an alphabetical
list of the related dimension values. To use a relation as the sorting criterion and keep
the related dimension values in their original order, you must use the following
expression as your sorting criterion.

CONVERT(relation, INTEGER)

See Sorting Using a Relation as the Criterion.

Sorting Conjoint Dimensions

You can sort a conjoint dimension or its valueset by criteria dimensioned by either the
conjoint dimension itself or by one of its base dimensions.

Chapter 10
SORT command

10-196

Sorting Concat Dimensions

You can sort a concat dimension or its valueset by criteria dimensioned by either the
concat dimension itself or by one of its component dimensions. See Sorting Based on
a Concat and Sorting Based on a Component.

Sorting a Worksheet

You cannot use a worksheet as a sort criterion. You must first use CONVERT to
specify the data type to which values of the worksheet should be converted.

Examples

Example 10-126 Sorting Using a Relation as the Criterion

This example sorts districts according to their unit sales of tents for July 1996. They
are sorted first by the region to which they belong and then in descending order of
dollar sales. Notice that in the following SORT statement, a relation is used as the
primary sorting criterion. Consequently, the districts are sorted by regions listed
alphabetically.

LIMIT month TO 'Jul96'
LIMIT product TO 'Tents'
SORT district A Region.District D sales

Assume you issue the following REPORT statement.

REPORT DOWN district HEADING 'Region' region.district sales

The preceding statement produces the following report that reflects the work of the
SORT statement.

PRODUCT: Tents
 --------MONTH--------
 --------JUL96--------
DISTRICT Region SALES
-------------- ---------- ----------
Dallas Central 154,914.23
Chicago Central 79,934.42
Atlanta East 140,711.00
Boston East 93,972.49
Seattle West 123,700.17
Denver West 100,413.49

In the following SORT statement, CONVERT is used to keep the regions in their
original order.

SORT district A CONVERT(region.district INTEGER) D sales

Assume that you issue the following REPORT statement.

REPORT DOWN district HEADING 'Region' region.district sales

The preceding statement produces the following report that reflects the work of the last
SORT statement.

PRODUCT: Tents
 --------MONTH--------
 --------JUL96--------
DISTRICT Region SALES
-------------- ---------- ----------

Chapter 10
SORT command

10-197

Atlanta East 140,711.00
Boston East 93,972.49
Dallas Central 154,914.23
Chicago Central 79,934.42
Seattle West 123,700.17
Denver West 100,413.49

When you want the dimension to keep the sorted order of its values permanently, use
a MAINTAIN statement after you sort the dimension.

SORT district A district
MAINTAIN district MOVE STATUS FIRST

Example 10-127 Sorting Based on a Concat

The following statements sort the concat dimension reg.dist.ccdim in ascending order
based on all of its values and report the result.

sort reg.dist.ccdim d reg.dist.ccdim
report reg.dist.ccdim

The preceding statement produces the following results.

REG.DIST.CCDIM

<Region: West>
<Region: East>
<Region: Central>
<District: Seattle>
<District: Denver>
<District: Dallas>
<District: Chicago>
<District: Boston>
<District: Atlanta>

The following statements sort the concat dimension reg.dist.ccdim in ascending order
based on all of its values and report the result.

SORT reg.dist.ccdim A reg.dist.ccdim
REPORT reg.dist.ccdim

The preceding statement produces the following results.

REG.DIST.CCDIM

<District: Atlanta>
<District: Boston>
<District: Chicago>
<District: Dallas>
<District: Denver>
<District: Seattle>
<Region: Central>
<Region: East>
<Region: West>

Example 10-128 Sorting Based on a Component

The following statements sort the concat dimension reg.dist.ccdim in ascending order
based on the values of one of its base dimensions and in descending order based on
the values of its other base dimension, and report the result.

Chapter 10
SORT command

10-198

SORT reg.dist.ccdim A region D district
REPORT reg.dist.ccdim

The preceding statement produces the following results.

REG.DIST.CCDIM

<REGION: CENTRAL>
<REGION: EAST>
<REGION: WEST>
<DISTRICT: SEATTLE>
<DISTRICT: DENVER>
<DISTRICT: DALLAS>
<DISTRICT: CHICAGO>
<DISTRICT: BOSTON>
<DISTRICT: ATLANTA>

Example 10-129 Sorting by Hierarchy

Assume that your analytic workspace has two dimensions (geog and time), one relation
(geogparent) and one variable (sales) with the following definitions.

DEFINE GEOG DIMENSION TEXT
DEFINE TIME DIMENSION TEXT
DEFINE GEOGPARENT RELATION GEOG <GEOG>
DEFINE SALES VARIABLE INTEGER <TIME GEOG>

If you issue a REPORT statement for sales when all of the values of geog are in status,
Oracle OLAP produces the following report. This report displays the values for geog in
the order in which they were added to the analytic workspace.

REPORT sales
 --------SALES--------
 --------TIME---------
GEOG 2004 2005
-------------- ---------- ----------
USA 1,300 NA
Massachusetts 3,881 NA
Florida 3,479 NA
Boston 2,644 NA
Orlando 4,398 NA
Miami 3,294 NA
Pembroke 4,268 NA
California 1,899 NA
Texas 2,115 NA
Los Angeles 2,394 NA
San Francisco 1,334 NA
Dallas 839 NA
Houston 997 NA

However, assume that you issue a SORT statement to sort the values of geog by (1)
geogparent and (2) descending by sales. After this sort if you issue a REPORT
statement for sales, Oracle OLAP produces the following report. This report displays
the values for geog with the states in descending order by sales, but with the cities of
each state under the appropriate state.

SORT geog HIERARCHY geogparent D sales
REPORT SALES

Chapter 10
SORT command

10-199

 --------SALES--------
 --------TIME---------
GEOG 2004 2005
-------------- ---------- ----------
USA 1,300 NA
Massachusetts 3,881 NA
Pembroke 4,268 NA
Boston 2,644 NA
Florida 3,479 NA
Orlando 4,398 NA
Miami 3,294 NA
Texas 2,115 NA
Houston 997 NA
Dallas 839 NA
California 1,899 NA
Los Angeles 2,394 NA
San Francisco 1,334 NA

Example 10-130 Sorting Orphans of a Hierarchy

Assume that you have the same objects described in Example 10-129. Assume also
that the states of Florida and Massachusetts are not in status.

When you include the SORTORPHANS keyword in your SORT statement, the cities in
Massachusetts and Florida are sorted together.

SORT geog HIERARCHY geogparent SORTORPHANS D sales
REPORT sales
 ------------------SALES------------------
 ------------------TIME-------------------
GEOG 2004 2005
-------------- -------------------- --------------------
USA 1,300 NA
Orlando 4,398 NA
Pembroke 4,268 NA
Miami 3,294 NA
Boston 2,644 NA
Texas 2,115 NA
Houston 997 NA
Dallas 839 NA
California 1,899 NA
Los Angeles 2,394 NA
San Francisco 1,334 NA

However, if you exclude the SORTORPHANS keyword, Massachusetts cities and
Florida cities are sorted separately.

LIMIT geog COMPLEMENT 'Florida' 'Massachusetts'
SORT geog HIERARCHY geogparent D sales
REPORT SALES

 --------SALES--------
 --------TIME---------
GEOG 2004 2005
-------------- ---------- ----------
USA 1,300 NA
Pembroke 4,268 NA
Boston 2,644 NA
Orlando 4,398 NA

Chapter 10
SORT command

10-200

Miami 3,294 NA
Texas 2,115 NA
Houston 997 NA
Dallas 839 NA
California 1,899 NA
Los Angeles 2,394 NA
San Francisco 1,334 NA

SQL
The SQL command passes instructions written in Structured Query Language (SQL)
to the relational manager from Oracle OLAP. Using the SQL command, you can insert
and update data in relational tables, retrieve data from relational tables into analytic
workspace objects, and execute stored procedures.

To use the SQL command, you must be familiar with SQL syntax and with the data
structures in your relational database, and have the appropriate access rights to the
relational tables that you want to use.

This entry describes the OLAP DML SQL command in general, and subsequent
entries discuss the use of the OLAP DML SQL command for specific SQL statements:

• SQL CLEANUP

• SQL CLOSE

• SQL DECLARE CURSOR

• SQL EXECUTE

• SQL FETCH

• SQL IMPORT

• SQL OPEN

• SQL PREPARE

• SQL PROCEDURE

• SQL SELECT

Syntax

SQL sql-statement

Parameters

sql-statement
For sql-statement you can specify most SQL statements that can be executed
dynamically and also several associated non-dynamic statements. You can also
specify PROCEDURE for a stored procedure as described in SQL PROCEDURE. A
SQL statement cannot exceed 128K bytes including the values of all non-textual
OLAP DML input expressions.
You cannot specify the following SQL statements for sql-statement:

• COMMIT -- To commit your changes, issue the OLAP DML COMMIT statement.

Chapter 10
SQL

10-201

• ROLLBACK -- You cannot rollback using the OLAP DML. When you specify SQL
ROLLBACK, you receive an error message stating that ROLLBACK is not supported as
an argument to an OLAP DML SQL statement.

Note:

When you use an OLAP DML SQL statement to request a rollback in
some other fashion (for example, using SQL EXECUTE), Oracle OLAP
issues a system error message, abnormally terminates the OLAP DML
program that issued the statement. Oracle OLAP also detaches, in an
indeterminate state, the analytic workspace that contains the OLAP DML
program that made the rollback request and any other attached analytic
workspaces with uncommitted updates.

Oracle OLAP evaluates some SQL statements before sending them to the relational
manager. For example, Oracle OLAP evaluates SQL PREPARE and SQL EXECUTE,
and SQL statements that copy data from relational tables into analytic workspace
objects (See "Copying Relational Data into Analytic Workspace Objects" for a list of
these statements).

Usage Notes

Copying Relational Data into Analytic Workspace Objects

You can copy relational data into analytic workspace objects using either an implicit
cursor or an explicit cursor:

• To copy data from relational tables into analytic workspace objects using an
implicit cursor, use a SQL SELECT statement. You can use this OLAP DML
statement interactively in the OLAP Worksheet or within an OLAP DML program.

• To copy data from relational tables into analytic workspace objects using an
explicit cursor, use the following commands within an OLAP DML program in the
order indicated:

1. SQL DECLARE CURSOR to define a SQL cursor by associating it with a
SELECT statement or procedure.

2. SQL OPEN to activate a SQL cursor.

3. SQL FETCH or SQL IMPORT to retrieve and process data specified by a
cursor.

Tip:

SQL FETCH offers the most functionality; while SQL IMPORT offers
improved performance when copying large amounts of data from
relational tables into analytic workspace object.

4. SQL CLOSE to close a SQL cursor.

5. SQL CLEANUP to cancel all SQL cursor declarations and free the memory
resources of an SQL cursor.

Oracle OLAP evaluates all of these statements before sending them to the relational
manager.

Chapter 10
SQL

10-202

For the syntax of these statements, see the individual topics. For the syntax of other
SQL statements, refer to Oracle Database SQL Language Reference.

Inserting Data into a Relational Table

You can insert analytic workspace data into a relational table using SQL PREPARE
statement for a SQL INSERT statement (typically with DIRECT= YES), and then
executing the statement using SQL EXECUTE.

Options Related to the OLAP DML SQL Statements

Several options are available to you when embedding SQL into the OLAP DML. These
options are listed in "SQL Embed Options".

Using OLAP DML Expressions in OLAP DML SQL Statements

You can use OLAP DML expressions (for example, OLAP DML variables) as
arguments in many OLAP DML SQL statements. OLAP DML input expressions are
values supplied by Oracle OLAP as parameters to a SQL statement. They specify the
data to be selected or provide values for data that is being modified. You can use
OLAP DML input expressions in SQL WHERE clauses, parameter list for procedures,
UPDATE statements, and the value clause of INSERT.

Keep the following points in mind when using an OLAP DML expression in an OLAP
DML SQL statement:

• OLAP DML expressions must be preceded by a colon (for example, :myvar).

• When you specify a dimension or a dimensioned variable as an OLAP DML input
expression, the first value in status is used; no implicit looping occurs, although
you can use a FOR or an ACROSS statement to loop through all of the values. An
OLAP DML input expression can be any expression with an appropriate data type.
The value of an OLAP DML input expression is taken when a cursor is opened,
not when it is declared. See Inserting Data in a Table.

• To update or insert data in a relational table that has either the CLOB and NCLOB
data type, you use WIDE in the OLAP DML input expression as described in
"Inserting Large Text Values into a CLOB or NCLOB Column" .

Error Checking

Oracle OLAP can detect some syntax errors in the arguments to the SQL statement,
but most errors are detected by the Oracle RDBMS. Error codes and messages are
returned to Oracle OLAP. Check the value of SQLCODE after each SQL statement to
determine when it resulted in an error. When it does cause an error (that is when
SQLCODE EQ -1), check the value of SQLERRM for information about the cause of the
error.

Converting Oracle RDBMS Data Types into Oracle OLAP DML Data Types

The following table shows which Oracle RDBMS data types can be automatically
converted into Oracle OLAP DML data types. You must explicitly convert or cast other
data types in the SELECT statement within a SQL DECLARE CURSOR statement.

Chapter 10
SQL

10-203

Table 10-10 RDBMS Data Type Conversion to OLAP DML Data Types

Oracle RDBMS Data Type OLAP DML Dimension Type OLAP DML Variable Data
Type

CHAR, NCHAR, NVARCHAR2,
VARCHAR2

TEXT [WIDTH n], ID, NTEXT TEXT, NTEXT

NUMBER NUMBER, INTEGER,
SHORTINTEGER, LONGINTEGER

NUMBER, INTEGER, BOOLEAN,
SHORTINTEGER, LONGINTEGER,
DECIMAL, SHORTDECIMAL

CLOB (only within SQL
FETCH and SQL SELECT
statements)

TEXT TEXT

NCLOB (only within SQL
FETCH and SQL SELECT
statements)

NTEXT NTEXT

DATE - DATE, DATETIME

SQL UPDATE Statements

SQL UPDATE statements can contain a WHERE clause, which specifies a particular search
condition. In addition to the search conditions typically used in SQL, the phrase WHERE
CURRENT OF cursor is supported for single tables and views that include columns from
only one table. The cursor must have been defined with the FOR UPDATE clause as
described in SQL DECLARE CURSOR.

Examples

Example 10-131 Inserting Data in a Table

You can use SQL statements such as the following to create a table and add rows to
that table. The SQL INSERT statement adds a row to the sales table using values from
the dimension salesperson and the variable dollars. It adds one row using the first
value of salesperson that is in status.

SQL CREATE TABLE sales (name CHAR(12), dollars INTEGER)
SQL INSERT INTO sales VALUES (:salesperson, :dollars)

SQL CLEANUP
The SQL CLEANUP command cancels all SQL cursor declarations and frees the
memory resources for all SQL cursors. You use the SQL CLEANUP command in
combination with other SQL commands to copy data from relational tables into analytic
workspace objects as outlined in "Copying Relational Data into Analytic Workspace
Objects"

Syntax

SQL CLEANUP

Examples

For an example of the use of SQL CLEANUP, see Example 10-141.

Chapter 10
SQL

10-204

SQL CLOSE
The SQL CLOSE command closes a SQL cursor. You use the SQL OPEN command
in combination with other SQL commands to copy data from relational tables into
analytic workspace objects as outlined in "Copying Relational Data into Analytic
Workspace Objects".

Syntax

SQL CLOSE cursor

Parameters

cursor
The name of a cursor previously opened with a SQL OPEN statement.

Usage Notes

Redefining the Result Set

You can change the result set associated with a cursor by closing the cursor, setting
the value of an OLAP DML input expression, and issuing a new SQL OPEN statement.
You do not have to free the cursor and redeclare it.

SQL DECLARE CURSOR
The SQL DECLARE CURSOR command defines an explicit SQL cursor by
associating it with a SELECT statement or procedure. The SELECT statement specifies the
scope of the data (the rows and columns) selected by the cursor. You use the SQL
DECLARE CURSOR command in combination with other SQL commands to use an
explicit cursor to copy data from relational tables into analytic workspace objects as
outlined in "Copying Relational Data into Analytic Workspace Objects".

Two pseudo procedures, SQLTABLES and SQLCOLUMNS, allow you to obtain information
about tables and columns.

Syntax

SQL DECLARE cursor CURSOR FOR {select-statement [FOR UPDATE]|table-info}

where table-info is one of the following:

PROCEDURE SQLTABLES [owner, table]

PROCEDURE SQLCOLUMNS [owner, table, column]

Note:

You specify table-info only to declare a cursor when select-statement is a
SQL FETCH statement.

Chapter 10
SQL

10-205

Parameters

cursor
The name of the cursor you are defining. Cursor names can consist of 1 to 18
alphanumeric characters or the symbols @, _, $, or #. A name that contains symbols
@, $, or # must be enclosed in single quotes. The first character cannot be a number or
an underscore. Cursor names are internal to Oracle OLAP. Unless you have issued a
SQL CLEANUP statement, when you try to declare a cursor with the same name as a
previously declared cursor, but with a different SQL SELECT statement, an error is
signaled.

select-statement
A SQL SELECT statement that identifies the data you want to associate with the
cursor. For the syntax of an SQL SELECT statement, refer to Oracle Database SQL
Language Reference.

Tip:

Because both OLAP DML syntax and SQL syntax allow you to use AND and
OR, construct the clause clearly so that Oracle OLAP can identify the end of
an OLAP DML input expression. Use parenthesis to clarify the syntax in these
situations and when using a SQL operator that is unknown in Oracle OLAP.

FOR UPDATE
Indicates that SQL FETCH is used to write data to the table. This clause is required
when the cursor is used in an UPDATE statement with a WHERE CURRENT OF cursor clause.
The names of the columns to be updated can be listed in an OF clause (for example,
FOR UPDATE OF COL1, COL2, COL3).

Note:

The FOR UPDATE clause is ignored by SQL IMPORT and SQL SELECT.

PROCEDURE SQLTABLES
When declaring a cursor for use by SQL FETCH, calls the pseudo procedure
SQLTABLES, which returns the following values for each table that matches the search
criterion as illustrated in Discovering Information About Relational Tables:

• tableowner -- A text value identifying the owner of the table.

• tablename -- A text value identifying the name of the table.

• tabletype -- A text value identifying the type of table using one of the following:
TABLE, VIEW, SYSTEM TABLE, ALIAS, SYNONYM, LOCAL TEMPORARY,
GLOBAL TEMPORARY, or NA (indicating an unrecognized type).

When declaring a cursor for use by SQL IMPORT, you cannot use this clause.

PROCEDURE SQLCOLUMNS
When declaring a cursor for use by SQL FETCH, calls the pseudo procedure
SQLCOLUMNS, which returns the following values for each column that matches the

Chapter 10
SQL

10-206

search criterion as illustrated in Discovering Information About the Columns of a
Relational Table:

• tableowner -- A text value identifying the owner of the table.

• tablename -- A text value identifying the name of the table.

• colname -- A text value identifying the name of the column.

• coltype -- A text value identifying the data type of the column.

• olaptype -- A text value identifying the data type that most closely matches
coltype.

• length -- An INTEGER value identifying the length of column values.

• precision -- An INTEGER value identifying the precision of numeric column values.

• scale -- An INTEGER value identifying the scale of column values.

• nullable -- A text value of Y or N indicating whether the column can contain null
values.

When declaring a cursor for use by SQL IMPORT, you cannot use the PROCEDURE
SQLCOLUMNS clause.

owner
Literal text or the name of an OLAP DML variable whose value specifies one or more
owners. This expression acts as a filter to limit the results to only tables belonging to
the specified owners. The keyword NULL or an OLAP DML variable with an NA value
causes all table owners to be included in the results.
The expression can be specific, such as 'SCOTT', or it can contain wildcard characters
such as 'S%T' (all owners whose name begins with S and ends with T). The value
retains its case when it is passed to the database, so be sure to enter the value with
the appropriate use of upper- and lowercase letters. For example, Oracle relational
databases by default store all values in uppercase and do not match 'scott' or
'Scott' with 'SCOTT'.

table
Literal text or the name of an OLAP DML variable whose value specifies one or more
tables. This expression acts as a filter to limit the results to only tables with the
specified names. The keyword NULL or an OLAP DML variable with an NA value
causes all tables to be included in the results.
The expression can be specific, such as 'PAYROLL', or it can contain wildcard
characters such as '%ROLL' (all tables whose name ends with ROLL). The value retains
its case when it is passed to the database, so be sure to enter the value with the
appropriate use of upper- and lowercase letters. For example, Oracle relational
databases by default store all values in uppercase and do not match 'payroll' or
'Payroll' with 'PAYROLL'.

column
Literal text or the name of an OLAP DML variable whose value specifies one or more
columns. This expression acts as a filter to limit the results to only columns with the
specified names. The keyword NULL or an OLAP DML variable with an NA value
causes all tables to be included in the results.
The expression can be specific, such as 'SALARY', or it can contain wildcard
characters such as 'SAL%' (all columns whose name begins with SAL). The value
retains its case when it is passed to the database, so be sure to enter the value with
the appropriate use of upper- and lowercase letters. For example, Oracle relational

Chapter 10
SQL

10-207

databases by default store all values in uppercase and do not match 'salary' or
'Salary' with 'SALARY'.

Usage Notes

General Restrictions that Apply to SQL DECLARE CURSOR

The following restrictions apply to the SQL DECLARE CURSOR command:

• You can use it only in a program.

• It cannot contain ampersand substitution.

Restrictions when Declaring a Cursor for Use by SQL IMPORT

When declaring a cursor to be used by a SQL IMPORT statement, you can only use
the following simplified syntax.

SQL DECLARE cursor CURSOR FOR select-statement

where select-statement is a SQL SELECT statement that identifies the data you want to
associate with the cursor. You cannot use the FOR UPDATE clause or the table-info
clause.

Cursor's Result Set

A cursor's result set is determined at the time it is opened, and it is not updated later.
Therefore, when you change the value of an OLAP DML input expression after you
open its cursor, the change does not affect the cursor's result set. A cursor remains
open until a SQL CLOSE statement is executed for that cursor or until a SQL
CLEANUP statement closes all cursors. A cursor is not automatically closed at the
termination of the program in which it was opened.

Optimizing Fetches

When fetching values into a multidimensional input variable, list the columns that
correspond to the dimensions in an ORDER BY clause in the select-statement
argument of a SQL DECLARE CURSOR statement, with the slowest-varying
dimension first which optimizes performance.

Examples

Example 10-132 Testing for the Value of SQLCODE

Cursor c1 is declared for three columns in the table mkt, which is owned by user
sqldba. Values from the three columns are fetched into three analytic workspace
objects. The first OLAP DML object is the market dimension, which is temporarily
limited to the retrieved value. Because of the temporary status of market, the other
column values are assigned to the appropriate cells of the other OLAP DML objects.

This example tests the value of SQLCODE in two places. A more complete program
would do more error checking.

DEFINE market DIMENSION TEXT
DEFINE mkt.desc TEXT <market>
DEFINE mkt.abbrev ID <market>
DEFINE sql.market PROGRAM
PROGRAM
TRAP ON ERROR
SQL DECLARE c1 cursor FOR -
 SELECT mktcode, mktabbrev, mktdesc FROM sqldba.mkt
SQL OPEN c1

Chapter 10
SQL

10-208

IF SQLCODE NE 0
 THEN SIGNAL SQLERR 'open cursor failed.'
WHILE SQLCODE EQ 0
 SQL FETCH c1 INTO :APPEND market, :mkt.abbrev, :mkt.desc
SQL CLOSE c1
 ...
RETURN
error:
 ...
END

Example 10-133 Discovering Information About Relational Tables

The following program fetches information about all tables owned by Scott. Notice that
the value of the ownername variable is set after the SQL DECLARE cursor statement;
it can be set any time before the SQL OPEN statement. The tablename variable is not
set, but is initialized automatically to NA, which is passed as a null value.

DEFINE ownername TEXT "Search criteria
DEFINE tablename TEXT "Search criteria
DEFINE tblowner TEXT "Search results
DEFINE tblname TEXT "Search results
DEFINE tbltype TEXT "Search results

SQL DECLARE c1 CURSOR FOR PROCEDURE sqltables(:ownername, :tablename)
ownername = 'Scott'
SQL OPEN c1
WHILE SQLCODE EQ 0
 DO
 SQL FETCH c1 INTO :tblowner, :tblname, :tbltype
 ... "Process fetched values
 DOEND

Example 10-134 Discovering Information About the Columns of a Relational
Table

The following program fetches information about all columns in the employee table
owned by Scott. Notice that NULL (and not NA) is used for the value of the third
argument to SQLCOLUMNS because it is processed by the relational manager, not Oracle
OLAP.

DEFINE tblname TEXT "Search results
DEFINE tblowner TEXT "Search results
DEFINE colname TEXT "Search results
DEFINE coltype TEXT "Search results
DEFINE olaptype TEXT "Search results
DEFINE length INTEGER "Search results
DEFINE precision INTEGER "Search results
DEFINE scale INTEGER "Search results
DEFINE nullable TEXT "Search results

SQL DECLARE c1 CURSOR FOR PROCEDURE sqlcolumns('Scott', -
 'Employee', NULL)
SQL OPEN c1
WHILE SQLCODE EQ 0
 DO
 SQL FETCH c1 INTO :tblowner, :tblname, :colname, :coltype, -
 :olaptype, :length, :precision, :scale, :nullable
 ... "Process fetched values
 DOEND

Chapter 10
SQL

10-209

SQL EXECUTE
The SQL EXECUTE command executes SQL statements that have been compiled
using SQL PREPARE. Typically, the SQL statements that you precompile are
statements that are executed repeatedly, particularly those involving OLAP DML input
expressions, such as INSERT, UPDATE, and DELETE.

Note:

The SQL PREPARE and SQL EXECUTE commands can only be used within
the same DML program.

Syntax

SQL EXECUTE statement-name

Parameters

statement-name
The name that you assigned to the executable code when you prepared it using SQL
PREPARE.

Examples

Example 10-135 Updating a Relational Table Using Analytic Workspace Data

The next example shows a simple update of a table using data stored in Oracle OLAP.
The market dimension is limited to one value at a time in the FOR loop. The SQL
phrase WHERE s.market=:market specifies that the sales value in the row for that market
is the value that is changed.

FOR market
 SQL UPDATE mkt SET sales=:mkt.sales WHERE s.market=:market

An UPDATE statement should be used in a SQL PREPARE statement and executed
in a FOR loop.

SQL PREPARE s2 FROM UPDATE mkt -
 SET sales=:mkt.sales WHERE s.market=:market
FOR market
 DO
 SQL EXECUTE s2
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

SQL FETCH
The SQL FETCH command retrieves and processes data specified by a named SQL
cursor. SQL FETCH assigns the retrieved data to OLAP objects. You use the SQL
FETCH command in combination with other SQL commands to copy data from
relational tables into analytic workspace objects as outlined in "Copying Relational
Data into Analytic Workspace Objects".

Chapter 10
SQL

10-210

Syntax

SQL FETCH cursor [LOOP [loopcount]] - INTO :targets... [THEN action-
statements...]

where:

• targets is one or more of the following:

[MATCH] dimension|surrogate
APPEND [position] dimension

ASSIGN surrogate

variable | qualified data reference | relation | composite

• position is one of the following:

AFTER dimension-value

BEFORE dimension-value

FIRST

LAST

Parameters

cursor
The name of a declared and opened cursor.

LOOP
Specifies that Oracle OLAP should implicitly loop over the rows obtained from a
relational table. For each row, Oracle OLAP copies the data in individual fields to
objects specified as target analytic workspace objects. When you include a LOOP
clause, SQL FETCH continues processing rows until it reaches the end of the active
set specified by the cursor, or an error occurs, or loopcount is satisfied. In most cases,
use the LOOP clause to improve the performance of SQL FETCH.
When you do not specify a LOOP clause and the cursor contains multiple rows in its
active set, you must code the SQL FETCH statement within a WHILE loop. This loop
must be based on the value of the SQLCODE option, which returns a nonzero value
to indicate the end of the data or an error.

loopcount
Optional INTEGER argument to the LOOP keyword. Loopcount controls how
SQL FETCH loops over the rows from a relational table. Loopcount can be a literal
value, an OLAP DML variable, or NA. When loopcount is less than or equal to zero, no
looping occurs and no data is fetched.
When you specify a LOOP clause without a value for loopcount, SQL FETCH
continues reading rows and copying their contents to target analytic workspace
objects until there are no more rows or an error occurs. Internally, each row is
processed until SQLCODE is nonzero.
When you specify a literal value for loopcount, SQL FETCH processes the number of
rows specified by loopcount or until SQLCODE is nonzero.
When you specify a variable for loopcount, it must be in the form of an OLAP DML
variable (preceded by a colon). This variable acts as both an input and an output
variable. The initial value of loopcount specifies the number of rows that SQL FETCH
attempts to process. Upon completion of the SQL FETCH, loopcount contains the
number of rows actually processed.

Chapter 10
SQL

10-211

When you specify NA for loopcount, SQL FETCH processes rows until SQLCODE is
nonzero. However, upon completion of the SQL FETCH, loopcount contains the
number of rows actually processed.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the
select-statement argument of the SQL DECLARE CURSOR command that declared
cursor. A target can be a variable, a qualified data reference, a relation, a dimension,
a composite, or a conjoint.

Note:

The order in which you specify the target analytic workspace objects affects
dimension status. For each dimension value, Oracle OLAP temporarily limits
the status of the dimension to the fetched value. Values are assigned to
subsequent analytic workspace objects according to this temporary status.
See "Conjoints as Target Analytic Workspace Objects" and "Composites as
Target Analytic Workspace Objects".

A target must be preceded by a colon. When the target is a dimension, it can include
the MATCH and APPEND keywords to specify dimension handling; in this case, the
colon precedes the keywords.

[MATCH] {dimension|surrogate}
(Default) Oracle OLAP does not perform dimension maintenance on the target
dimension or surrogate. It uses the incoming values to align data that is being fetched
into dimensioned objects. When a value from the relational database does not match
any value in the dimension or surrogate, an error is signaled.

APPEND [position] dimension
Oracle OLAP performs dimension maintenance on the target dimension, adding new
values to the dimension. It uses both old and new dimension values to align data
being fetched into dimensioned objects. By default, new values are added to the end
of a dimension or surrogate.
position is one of the following:

• AFTER dimension-value

Any new values are added after dimension-value in the status list.

• BEFORE dimension-value

Any new values are added immediately before dimension-value in the status list.

• FIRST

Any new values are added to the beginning of the status list.

• LAST

Any new values are added to the end of the status list.

The position can also be used to control how dimension values are processed in
action statements.

Chapter 10
SQL

10-212

ASSIGN surrogate
Assigns the values to the specified surrogate.

THEN action-statements...
Specifies any number of action-statements to be performed each time a row of data is
fetched and assigned to target analytic workspace objects. An action-statement can
be one of the following:

assignment-statement IF statement SELECT-statement ACROSS statement:
action-statement <action-statement-group>

Refer to the SQL IMPORT command for a complete description of the syntax of
action-statements.

Usage Notes

Effect of Order SQL FETCH Targets on Dimension Status

For each dimension value, Oracle OLAP temporarily limits the status of the dimension
to the fetched value. Values are assigned to subsequent analytic workspace objects
according to this temporary status.

Conjoints as Target Analytic Workspace Objects

You can use a conjoint dimension as a target analytic workspace object, but you must
ensure that you select the same number of columns from the relational table as there
are simple base dimensions. When Oracle OLAP executes a SQL FETCH statement
for a target that is a conjoint dimension, it uses the dimension order that was specified
when the conjoint was defined.

Composites as Target Analytic Workspace Objects

You can specify analytic workspace objects for composites just as you would for
dimensioned variables. For example, to fetch data into a variable var1 dimensioned by
dim1 and dim2, you would specify the following list of target analytic workspace objects.

:dim1 :dim2 :var1

To fetch data into a variable var2 dimensioned by a composite whose dimensions are
dim1 and dim2, you would specify the following list of target analytic workspace objects.

:dim1 :dim2 :var2

Null Values

A null value in SQL is equivalent to an NA value in Oracle OLAP, so null values fetched
into target analytic workspace objects are given NA values. Because Oracle OLAP
handles null values in this way, the SQL command does not support INDICATOR
variables in the INTO clause of a SQL FETCH statement. When fetching null values
into a dimension, however, Oracle OLAP discards the values for the entire row.

Working with Boolean Variables as Input and Target Objects

You can use Boolean variables as input and target analytic workspace objects for
OLAP SQL commands. In OLAP DML input expressions, Oracle OLAP treats Boolean
values as INTEGER values with a value of 1 (TRUE) or 0 (FALSE).

As target analytic workspace objects, Boolean variables can receive values from any
numeric (or bit) column in a relational table.

Chapter 10
SQL

10-213

Fetching Text Data into DATE Variables

When fetching text data into a DATE variable, the current setting of the DATEORDER
option is used to interpret the value. For example, a text value of 12-08-96 could be
interpreted as December 8, 1996, or August 12, 1996, depending on the setting of
DATEORDER.

Untransferable Data Types

You cannot transfer data with the following data types: LONG RAW, ROWID,
UROWID, BLOB, and BFILE.

Examples

The get_products_hier program copies the data from the dimension tables into the
base dimensions of the aw_products concat dimension using SQL FETCH commands with
the APPEND keyword. As the base dimensions of aw_products are populated, Oracle
OLAP automatically populates aw_products, itself. As the THEN clause of the SQL FETCH
statement executes, Oracle OLAP fetches data into the child-parent self-relation for
aw_products. This program also populates the aw_supplier_id dimension and its
relation.

Example 10-136 Fetching Data From Relational Tables -- A Simple SQL FETCH

he following program fragment shows the basic steps of declaring and opening a
cursor, and fetching the data. Relational data from the Prod_ID and Prod_Name columns
of the Products table are fetched into the prod dimension and prod_label variable. The
variable prod_label is dimensioned by prod. Notice that the SQL FETCH statement in
this example does not include a LOOP clause; it therefore retrieves a single row of
data each time it is called.

VARIABLE set_price SHORT
set_price = 20
 ...
SQL DECLARE highprice CURSOR FOR SELECT Prod_ID, Prod_Name -
 FROM Products WHERE suggested_price > :set_price
SQL OPEN highprice
WHILE SQLCODE EQ 0
 SQL FETCH highprice INTO :prod, :prod_label

Example 10-137 Fetching Data From Relational Tables with a THEN Clause

The following program fragment shows the SQL FETCH statement from the previous
example with the addition of the LOOP keyword and a THEN clause. Because of the
LOOP keyword, this SQL FETCH statement does not have to run within a WHILE
loop. The action statement following the THEN keyword copies any product names
stored in prod_label that start with the letter A into a multiline text variable called
a_product.

SQL FETCH highprice LOOP INTO :prod, :prod_label -
 THEN IF UPCASE(EXTCHARS(prod_label, 1, 1)) EQ 'a' -
 THEN a_product = JOINLINES(a_product prod_label)

Example 10-138 Populating with Relational Data While Maintaining a Conjoint
Dimension

In this example, a conjoint dimension (named mpt) is used as a target analytic
workspace object. To populate a conjoint dimension, you must select values from the
relational database for each of its base dimensions. Here, the three base dimensions
are market, product, and time. Therefore, the SELECT statement specifies the three

Chapter 10
SQL

10-214

corresponding columns (Mktcode, Prdcode, and Percode). The program assumes that the
market, product, and time dimensions are already populated with up-to-date values;
Oracle OLAP does not update the base dimensions unless you explicitly specify them
as target analytic workspace objects.

DEFINE mpt DIMENSION <market product time>
DEFINE sql.mpt PROGRAM
PROGRAM
 ...
SQL DECLARE c1 CURSOR FOR -
 SELECT Mktcode, Prdcode, Percode FROM Sqldba.Data
IF SQLCODE NE 0
 THEN SIGNAL sqlerrm
SQL OPEN c1
SQL FETCH c1 LOOP INTO :append mpt
SQL CLOSE c1
 ...
END

Example 10-139 Populating Data While Maintaining Base and Conjoint
Dimensions

To retrieve current values for the base and conjoint dimensions, or to retrieve the
values for the first time, you can fetch the values for the base dimensions immediately
before you fetch the values for the conjoint dimension. In the following example, the
SQL DECLARE CURSOR and SQL FETCH commands have been edited to fetch both
base and conjoint dimension values. Notice that the number of columns selected from
the relational table must match the number of base dimensions fetched. There are six
column specifications in the SELECT statement. The first three match the three base
dimensions, and the last three match the conjoint dimension itself.

SQL DECLARE c1 CURSOR FOR -
 SELECT Mktcode, Prdcode, Percode, Mktcode, -
 Prdcode, Percode FROM Sqldba.Data
 ...
 SQL FETCH c1 LOOP INTO :APPEND market, :APPEND product, -
 :APPEND time, :APPEND mpt

Example 10-140 Populating Variables with Relational Table Data while
Maintaining Dimensions

In the next example, variable dollars.mpt is dimensioned by the conjoint mpt, and its
values are populated in the same SQL FETCH statement with the dimension values.
The SQL DECLARE CURSOR and SQL FETCH commands have been edited again
with the new column and target analytic workspace object added.

DEFINE dollars.mpt DECIMAL <mpt>
SQL DECLARE c1 CURSOR FOR -
 SELECT Mktcode, Prdcode, Percode, Mktcode, Prdcode, -
 Percode, Dollars FROM Sqldba.Data
 ...
SQL FETCH c1 LOOP INTO :APPEND market, :APPEND product, -
 :APPEND time, :APPEND mpt, :DOLLARS.mpt

Example 10-141 Fetching Data into a Concat Dimension

Assume that a relational table has four columns of product data and that you decide to
create a Product hierarchy with four levels in your analytic workspace to hold this data.
The levels in the hierarchy (prod_id, prod_subcategory, prod_category, and
products_all) map to columns in the products tables. The lowest level of the hierarchy

Chapter 10
SQL

10-215

is prod_id and the highest level is products_all. There is also a column with supplier
information in the table.

To hold the data in the analytic workspace you define a dimension was defined for
each level of the Product hierarchy, a concat dimension for the hierarchy itself, and a
child-parent relation between the values in the hierarchy. You also define a dimension
for the supplier data and a relation that holds the relationship between suppliers and
products with the following definitions.

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_prod_subcategory DIMENSION TEXT
DEFINE aw_prod_category DIMENSION TEXT
DEFINE aw_products_all DIMENSION TEXT
DEFINE aw_products DIMENSION CONCAT (aw_products_all -
 aw_prod_category -
 aw_prod_subcategory -
 aw_prod_id)
DEFINE aw_products.parents RELATION aw_products <aw_products>
DEFINE aw_supplier_id DIMENSION NUMBER (6)
DEFINE aw_prod_id.aw_supplier_id RELATION aw_supplier_id <aw_prod_id>

Assume that you write a program named get_products_hier that consists of the
following code.

' get_products_hier Program
ALLSTAT
" Fetch values into the products hierarchy
SQL DECLARE grabprods CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id -
 FROM sh.products
SQL OPEN grabprods
SQL IMPORT grabprods INTO :APPEND aw_products_all -
 :APPEND aw_prod_category -
 :APPEND aw_prod_subcategory -
 :APPEND aw_prod_id

SQL CLOSE grabprods
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT
" Fetch values into supplier_id
SQL DECLARE grabsupid CURSOR FOR SELECT supplier_id -
 FROM sh.products
SQL OPEN grabsupid
SQL IMPORT grabsupid INTO :APPEND aw_supplier_id
SQL CLOSE grabsupid
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

" Populate self-relation for concat dimension
" and relation between aw_prod_id and aw_supplier_id
SQL DECLARE makerels CURSOR FOR SELECT prod_total, -
 prod_category, -
 prod_subcategory, -
 prod_id, -
 supplier_id -

Chapter 10
SQL

10-216

 FROM sh.products
SQL OPEN makerels
SQL FETCH makerels LOOP INTO :MATCH aw_products_all -
 :MATCH aw_prod_category -
 :MATCH aw_prod_subcategory -
 :MATCH aw_prod_id -
 :MATCH aw_supplier_id -
 THEN aw_products.parents(aw_products aw_prod_id) -
 = aw_products(aw_prod_subcategory aw_prod_subcategory) -
 aw_products.parents(aw_products aw_prod_subcategory) -
 = aw_products(aw_prod_category aw_prod_category) -
 aw_products.parents(aw_products aw_prod_category) -
 = aw_products(aw_products_all aw_products_all) -
 aw_prod_id.aw_supplier_id = aw_supplier_id
SQL CLOSE makerels
SQL CLEANUP
" Update the analytic workspace and make the updates permanent
UPDATE
COMMIT

SQL IMPORT
The SQL IMPORT command retrieves and processes data specified by an explicit
SQL cursor. SQL IMPORT assigns the retrieved data to OLAP objects. You use the
SQL IMPORT command in combination with other SQL commands to copy data from
relational tables into analytic workspace objects as outlined in "Copying Relational
Data into Analytic Workspace Objects". SQL IMPORT is particularly effective in
copying fact data from relational tables into analytic workspace variables.

Note:

You cannot transfer data with the following data types: LONG, BLOB, and
BFILE.

Syntax

SQL IMPORT cursor [:var-num-of-rows |num-of-rows[:var-num-of-processed-rows]]-
INTO :targets... [THEN action-statements...]

where:

• targets is one or more of the following:

MATCH | MATCHSKIPERR [position] {dimension | surrogate |
valueset | relation}

APPEND dimension
ASSIGN surrogate
variable | relation | qualified data reference

• action-statements is one of the following:

assignment-statement

IF-statement

SELECT-statement

Chapter 10
SQL

10-217

ACROSS-statement: action-statement

<action-statement-group>

Parameters

cursor
The name of a declared cursor.

var-num-of-rows
The name of a variable that specifies the number of rows that you want SQL IMPORT
to attempt to import.

num-of-rows
A numeric constant that specifies the number of rows that you want SQL IMPORT to
attempt to import.

var-num-of-processed-rows
When you include the MATCHSKIPERR keyword in the targets parameter, the name
of a variable that specifies the actual number of rows that you want SQL IMPORT to
import into analytic workspace objects.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the
select-statement argument of the SQL DECLARE CURSOR command that declared
cursor. A target can be a variable, a qualified data reference, a relation, a dimension,
or a composite.

Note:

The order in which you specify the analytic workspace objects affects
dimension status. For each dimension value, Oracle OLAP temporarily limits
the status of the dimension to the fetched value. Values are assigned to
subsequent analytic workspace objects according to this temporary status.

MATCH
(Default) Oracle OLAP does not copy values from the corresponding relational table
column into the target dimension or surrogate. It only uses the values to align data
that is being fetched into dimensioned objects. When a value from the relational
database does not match any value in the dimension, an error is signaled.

MATCHSKIPERR
Oracle OLAP does not copy values from the corresponding relational table column
into the target dimension or surrogate. It only uses the values to align data that is
being fetched into dimensioned objects. When a value from the relational database
does not match any value in the dimension, the value is ignored and processing
continues without signaling an error.

position
The one-based logical position of the value.

Chapter 10
SQL

10-218

APPEND
Oracle OLAP performs dimension maintenance on the target dimension, adding new
values from the corresponding relational table column to the dimension. It uses both
old and new dimension values to align data being fetched into dimensioned objects.
New values are added to the end of a dimension.

ASSIGN
Oracle OLAP assigns the corresponding relational value to the specified surrogate.

dimension
The name of the analytic workspace dimension.

surrogate
The name of an analytic workspace surrogate.

valueset
The name of the analytic valueset.

relation
The name of the analytic workspace relation.

variable
The name of a variable.

qualified_data_reference
A QDR is a qualifier that limits one or more of the dimensions of a variable or a
relation to a single value. Oracle OLAP evaluates QDRs in a SQL IMPORT statement,
as follows:

• When the QDR includes an expression, the expression is evaluated only once
before the data is retrieved. In other words, the expression is, in essence, a
constant.

• When the QDR is specified as a relation name, the values of the QDR vary
depending on the status of the dimensions of that relation.

THEN action-statements...
Specifies any number of action-statements to be performed each time a row of data is
imported and assigned to analytic workspace objects. Action statements may contain
simple assignment statements, conditional assignment statements, and assignments
across dimensions.
Action statements allow you to examine and manipulate the fetched data on a row-by-
row basis. For example, you may want to specify temporary objects as analytic
workspace objects and only update your permanent objects once you have performed
certain actions on the row of fetched data. However, action statements do not have to
reference the imported data. For example, one of your action statements might be an
assignment statement that executes a user-defined function (that is, a program) that
performs complex processing and then simply increments a counter.
A THEN clause can improve SQL loading performance by eliminating the need for
postprocessing upon completion of a SQL IMPORT.

Chapter 10
SQL

10-219

Note:

The syntax of an action statement within SQL IMPORT is essentially the same
as the syntax of an action statement within FILEREAD. Exceptions are in the
syntax of an assignment statement and the use of the VALUE keyword. In
SQL IMPORT action statements, assignments must be explicit; they must
include a source, target, and equal sign. In FILEREAD action statements,
assignments may be implicit and specify only the target. The VALUE keyword
is supported in FILEREAD action statements, but not in SQL IMPORT action
statements. When you have already specified action statements for use with
FILEREAD, you can reuse the code with SQL IMPORT by simply adjusting the
assignment statements and eliminating the VALUE keyword (if necessary).
Most of the attributes listed in FILEREAD (except for the attributes that control
dimension processing) are not meaningful for SQL loading and are ignored
when executing within SQL IMPORT.
For best performance, within a THEN clause reference only the data within the
imported row.

In your list of action statements, be sure to process dimensions before variables.
Oracle OLAP processes each action statement from left to right for each row in the
relational table. When an action statement performs dimension processing, the
resulting status remains in effect for subsequent action statements. When you do not
first specify action statements that limit a variable's dimensions, Oracle OLAP uses
the first value in status to target a cell in the variable. Unless you specify an ACROSS
phrase, Oracle OLAP assigns a single value from a row to a single cell in an Oracle
OLAP variable. By default, Oracle OLAP does not loop over a variable's dimensions
when assigning data to the variable.

assignment-statement
An assignment statement (SET) that assigns a value that is the result of an
expression to an Oracle OLAP object.

IF-statement
An IF...THEN...ELSE command that performs some action depending on whether a
Boolean expression is TRUE or FALSE.

SELECT-statement
A SQL SELECT statement lets you perform some action based on the value of an
expression. A SELECT statement has the following form.

SELECT select-expression
[WHEN expression1 action]
[WHEN expression2 action . . .]
[ELSE action]

SELECT evaluates the SELECT expression and then sequentially compares the
result with the WHEN expressions. When the first match is found, the associated
action occurs. When no match is found, the ELSE action (if specified) occurs.

ACROSS-statement: action-statement
An ACROSS statement causes the following action statement to execute once for
every value in status of the ACROSS dimension. When you want the looping to apply

Chapter 10
SQL

10-220

to multiple action statements, enclose the action statements in angle brackets. An
ACROSS statement has the following form.

ACROSS dimension [limit]:

action-statement

In an ACROSS statement, limit temporarily change the status of dimension, if it is not
in a FOR loop over dimension. The new status is in effect only for the duration of the
SQL FETCH statement. The format of limit is as follows.

[ADD|COMPLEMENT|KEEP|REMOVE|TO] limit-clause

To specify the temporary status, insert any of the LIMIT command keywords (the
default is TO) along with an appropriate list of dimension values or related
dimensions. You can use any valid limit clause (see the LIMIT command for further
information). The following example limits month to the last six values, no matter what
the current status of month is.

 ACROSS month last 6: units

<action-statement-group>
You can group several action statements by enclosing them in angle brackets. An
action-statement-group has the following form.

<action-statement1 -

[action-statement2 . . .]>

A typical use for action statement groups is after an ACROSS statement. With the
angle bracket syntax, you can cause multiple action statements to execute for every
value in status of the ACROSS dimension.

Usage Notes

Effect of Order of SQL SELECT Targets on Dimension Status

For each dimension value, Oracle OLAP temporarily limits the status of the dimension
to the fetched value. Values are assigned to subsequent analytic workspace objects
according to this temporary status.

Working with Boolean Data Variables

You can use Boolean variables as input and target analytic workspace objects for
OLAP SQL commands. In OLAP DML input expressions, Oracle OLAP treats Boolean
values as INTEGER values with a value of 1 (TRUE) or 0 (FALSE).

As target analytic workspace objects, Boolean variables can receive values from any
numeric (or bit) column in a relational table.

Importing Text Data into a DATE Variable

When importing text data into a DATE variable, the current setting of the
DATEORDER option is used to interpret the value. For example, a text value of
12-08-96 could be interpreted as December 8, 1996, or August 12, 1996, depending
on the setting of DATEORDER.

Chapter 10
SQL

10-221

Examples

Example 10-142 Simple Import

The following program fragment shows the basic steps of declaring a cursor and
importing the data. Values from the Prod_ID and Prod_Name columns of the Products
relational table in the Sales -History (sh) database are fetched into the prod_id
dimension and prod_label analytic workspace variable. The prod_label variable is
dimensioned by prod_id.

SQL DECLARE productcur CURSOR FOR SELECT Prod_ID, Prod_Name FROM sh.Products
SQL OPEN productdur
SQL IMPORT productcur INTO :prod_id, :prod_label
SQL CLOSE productcur
SQL CLEANUP

SQL OPEN
The SQL OPEN command activates an explicitly-declared SQL cursor. When the
cursor is opened, SQL examines any OLAP DML input expressions used in the
definition of the specified cursor, determines the cursor's result set, and leaves the
cursor in the open state for use by SQL FETCH or SQL IMPORT. The cursor is
positioned before the first row of the result set.

You use the SQL OPEN command in combination with other SQL commands to copy
data from relational tables into analytic workspace objects as outlined in "Copying
Relational Data into Analytic Workspace Objects".

Syntax

SQL OPEN cursor

Parameters

cursor
The name of a cursor previously declared in the same program. You cannot use
ampersand substitution.

Examples

Example 10-143 Opening a Cursor Using SQL OPEN

The following program fragment declares and opens a cursor named geolabels.

SQL DECLARE geolabels CURSOR FOR -
 SELECT Store_ID, Store_Name, City FROM Stores
IF SQLCODE NE 0
 THEN SIGNAL dclerror 'SQLERRM'
SQL OPEN geolabels
IF SQLCODE NE 0
 THEN SIGNAL operror 'SQLERRM'

SQL PREPARE
Within a program, the SQL PREPARE command precompiles a SQL statement for
later execution, in the same program using SQL EXECUTE. Typically, you use SQL
PREPARE in programs to optimize the processing of SQL statements that are

Chapter 10
SQL

10-222

executed repeatedly, particularly those involving OLAP DML input expressions, such
as INSERT, UPDATE, and DELETE.

Syntax

SQL PREPARE statement-name FROM sql-statement [insert-options]

Parameters

statement-name
A name that you assign to the executable code produced from sql-statement. You can
redefine statement-name just by issuing another SQL PREPARE statement.

sql-statement
The SQL statement that you want to precompile for more efficient execution. It cannot
contain ampersand substitution or variables that are undefined when the program is
compiled.

insert-options
The following options are optional when sql-statement is an INSERT statement:
DIRECT=YES|NO specifies if the insert is a direct-path INSERT. This option must be the
first option specified right aver the values phrase of the INSERT statement.
Setting this option to YES specifies that the insert is a direct-path INSERT. Direct-path
INSERT enhances performance during INSERT operations and is similar to the
functionality of Oracle's direct-path loader utility, SQL*Loader.
The default value is NO which specifies a normal INSERT.
NOLOG=YES|NO specifies if logging occurs. Setting this option to YES specifies that the
redo information is not recorded in the redo log files which makes load-time faster.
The default value is NO which specifies logging mode.
PARTITION=(sub)partition-name specifies that only the segments related to the
named partition or subpartition are locked. When you specify this option, another
session can insert data to unrelated segments in the same table. When you do not
specify this option (the default), other sessions cannot insert data into the same table.

Usage Notes

Using Direct-Path INSERT

When performing a direct-path INSERT, data is written directly into data files, bypassing
the buffer cache, free space in the existing data is not reused, and the inserted data is
appended after existing data in the table.

Restrictions When Using Direct-Path INSERT

Direct-path INSERT is subject to several restrictions. When executing a direct-path
INSERT using the OLAP DML, transactions in the session issuing the direct-path INSERT
must be committed for the INSERT to execute successfully. (You can use the SQL or
OLAP DML COMMIT to commit transactions.)

Additionally, the general restrictions that apply to using direct-path INSERT in SQL apply
to preparing a direct-pathINSERT using OLAP DML PREPARE statements:

• The target table cannot be index organized or clustered.

• The target table cannot contain object type or LOB columns.

• The target table cannot have any triggers or referential integrity constraints defined
on it.

Chapter 10
SQL

10-223

For more information on restrictions when using a direct-path INSERT, see the
discussion of the INSERT statement in Oracle Database SQL Language Reference.

Data Type Conversions During Direct-Path Insertion

The following table shows the automatic data type conversion performed during direct-
path insertion:

Table 10-11 Automatic Data Type Conversion During Direct-Path Insertion

Oracle RDBMS Oracle OLAP DML

CHAR(n), VARCHAR(n) TEXT

LONG TEXT with WIDE option

CHAR(8), VARCHAR(8) ID

DATE DATE

NUMBER(x,x) DECIMAL (SHORTDECIMAL)

INTEGER (or NUMBER(38) INTEGER (SHORTINTEGER)

NUMBER(1) BOOLEAN

Inserting OLAP Text Data into a Column with a DATE Data Type

When inserting text data from Oracle OLAP into a column with a DATE data type, you
must use the default date format of DD MMM YY. You can use slashes (/), hyphens (-), or
spaces as separators. When the data is in a different format, you can use the Oracle
TO_DATE function in a SQL INSERT statement.

Inserting Large Text Values into a CLOB or NCLOB Column

To insert more than 2K bytes of text data from an analytic workspace into a CLOB or
NCLOB column, use the WIDE keyword before the name of the OLAP DML input
expression. When the data type of the OLAP DML input expression is TEXT, then the
target data type is CLOB. When the data type of the input expression is NTEXT, then
the target data type is NCLOB.

The following is the syntax of an OLAP DML input expression with the WIDE keyword.
See Example 10-146 for an example.

:WIDE input-expression

See Example 10-146 for an example.

Note that the target table must conform to these guidelines:

• Any number and combination of CLOB and NCLOB columns

• No LONG columns

The RDBMS imposes some restrictions on large data types. Oracle OLAP does not
signal an error when you violate these restrictions. However, you might get
unexpected results. Refer to the Oracle Application Developer's Guide for restrictions
on large data types.

Calculating the Number of Characters

You can calculate the number of characters that are sent to a database table from an
Oracle OLAP variable by using the following formula.

Chapter 10
SQL

10-224

NUMCHARS(variable) + 2 * (NUMLINES(variable) - 1)

This formula counts the extra carriage return and line feed characters that Oracle
OLAP inserts between lines when passing the text to the database.

Examples

Example 10-144 Preparing a FOR Loop

To automatically add all the sales people from the salesperson dimension to the
relational table, you could write a program and put the SQL INSERT statement in a FOR
loop.

FOR salesperson
 SQL INSERT INTO Sales VALUES (:Salesperson, :Dollars) DIRECT=YES

When a statement includes OLAP DML input expressions and are executed
repeatedly, such as in a FOR loop, you can make the statements more efficient by
"preparing" the SQL statement first. The INSERT statement becomes part of a
PREPARE statement.

SQL PREPARE s1 FROM INSERT INTO Sales VALUES -
 (:Salesperson, :Dollars) DIRECT=YES
FOR Salesperson
 DO
 SQL EXECUTE s1
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

Example 10-145 Updating a Table

The next example shows a simple update of a table using data stored in an analytic
workspace. The market dimension is limited to one value at a time in the FOR loop.
The SQL phrase WHERE S.Market=:market specifies that the sales value in the row for
that market is the value that is changed.

FOR market
 SQL UPDATE Mkt SET Sales=:Mkt.Sales WHERE S.Market=:market

Like the INSERT statement in the previous example, an UPDATE statement should be
used in a PREPARE statement and executed in an ACROSS statement or FOR loop.

SQL PREPARE s2 FROM UPDATE mkt -
 SET Sales=:mkt.sales WHERE s.market=:market
ACROSS market DO 'SQL EXECUTE s1'

Example 10-146 Using the WIDE Keyword

In both of the following statements, WIDE indicates that the target value is CLOB when
var1 is TEXT, or NCLOB when var1 is NTEXT.

SQL INSERT INTO CLOB_TEST values (:dim1 :WIDE var1)
SQL UPDATE CLOB_TEXT SET clob_col = :WIDE var1 WHERE key = 1

SQL PROCEDURE
The SQL PROCEDURE command executes procedures stored in the RDBMS.

Chapter 10
SQL

10-225

Note:

You can also create SQL stored procedures using the OLAP DML. See:

• "Creating SQL Procedures using the OLAP DML"

• Example 10-147

Syntax

SQL PROCEDURE procedure-name (parameters)

where parameters is one or more of the following, separated by commas:

sql-parameter

:dml-parameter

Parameters

procedure-name
The name of the SQL stored procedure.

sql-parameter
The name of a variable in the RDBMS.

:dml-parameter
An OLAP DML expressions such as an OLAP DML variable. See "Using OLAP DML
Expressions in OLAP DML SQL Statements" for more information on using OLAP
DML expressions in OLAP DML SQL statements.

Usage Notes

Creating SQL Procedures using the OLAP DML

To create a stored procedure using the OLAP DML, issue an OLAP DML SQL
statement with a SQL CREATE PROCEDURE statement as its argument. The syntax for
coding CREATE PROCEDURE as an argument within an OLAP DML SQL statement is
slightly different than the syntax for coding CREATE PROCEDURE in SQL proper. When
coded as an arguments to an OLAP DML statements, use a tilde (~) instead of a
semicolon as a terminator, and two colons instead of one in an assignment statement.
See Example 10-147.

Restrictions When Calling SQL Procedures using the OLAP DML

A stored procedure called using an OLAP DML SQL PROCEDURE statement cannot
contain output variables or transactions.

Examples

Example 10-147 Creating a Stored Procedure

The following example shows the syntax for creating a procedure named new_products.

SQL CREATE OR REPLACE PROCEDURE new_products -
 (id CHAR, name CHAR, cost NUMBER) AS -
 price NUMBER~ -
 BEGIN -
 price ::= cost * 2.5~ -

Chapter 10
SQL

10-226

 INSERT INTO products -
 VALUES(id, name, price)~ -
 END~

Example 10-148 Executing a Stored Procedure

The following FOR loop executes a SQL stored procedure named new_products and
inserts data stored in dimensions and variables into a relational table. In this example,
prod is an Oracle OLAP dimension, and labels.p and cost.p are variables
dimensioned by prod.

FOR prod
 DO
 SQL PROCEDURE new_products(:prod, :labels.p, :cost.p)
 IF SQLCODE NE 0
 THEN BREAK
 DOEND

SQL SELECT
The SQL SELECT command uses an implicit cursor to copy data from relational tables
into analytic workspace objects. You use the SQL SELECT command to copy data
from relational tables into analytic workspace objects using an implicit cursor. You can
also use copy the data using an explicit cursor using the OLAP DML commands
outlined in "Copying Relational Data into Analytic Workspace Objects".

Syntax

SQL SELECT expressions FROM tables -

[WHERE predicates] [GROUP BY expressions] - [ORDER BY expressions] [HAVING
predicates] - INTO :targets... [THEN action-statements...]

where targets is one or more of the following:

[MATCH] dimension|surrogate

APPEND [position] dimension

ASSIGN surrogate

variable|qualified data reference|relation|composite

Parameters

SELECT expressions FROM tables-
 [WHERE predicates] [GROUP BY expressions] -
[ORDER BY expressions] [HAVING predicates]
A SQL SELECT statement that identifies the data you want to associate with the
cursor. For the syntax of an SQL SELECT statement, refer to Oracle Database SQL
Language Reference.

targets
Identifies the analytic workspace objects in which you want to store data that is
retrieved from a relational table. This list of target analytic workspace objects must
correspond in number and data type with the list of table columns specified in the
SELECT statement. A target can be a variable, a qualified data reference, a relation,
a dimension, or a composite.

Chapter 10
SQL

10-227

Note:

The order in which you specify the analytic workspace objects affects
dimension status. For each dimension value, Oracle OLAP temporarily limits
the status of the dimension to the fetched value. Values are assigned to
subsequent analytic workspace objects according to this temporary status.
See "Conjoints as Target Analytic Workspace Objects" and "Composites as
Target Analytic Workspace Objects".

A target must be preceded by a colon. When the target is a dimension, it can include
the MATCH and APPEND keywords to specify dimension handling; in this case, the
colon precedes the keywords.

Tip:

Because both OLAP DML syntax and SQL WHERE clauses allow you to use
AND and OR, construct the targets clause clearly so that Oracle OLAP can
identify the end of an OLAP DML input expression.

[MATCH] {dimension|surrogate}
(Default) Oracle OLAP does not perform dimension maintenance on the target
dimension or surrogate. It uses the incoming values to align data that is being fetched
into dimensioned objects. When a value from the relational database does not match
any value in the dimension or surrogate, an error is signaled.

APPEND [position] dimension
Oracle OLAP performs dimension maintenance on the target dimension, adding new
values to the dimension. It uses both old and new dimension values to align data
being fetched into dimensioned objects. By default, new values are added to the end
of a dimension or surrogate. The position can also be used to control how dimension
values are processed in action statements.

ASSIGN surrogate
Assigns the values to the specified surrogate.

THEN action-statements
You may optionally include a THEN clause to specify any number of action-
statements to be performed each time a row of data is fetched and assigned to
analytic workspace objects. An action-statement can be one of the following:

assignment-statement

IF-statement

SELECT-statement

ACROSS-statementaction-statement

<action-statement-group>

Refer to the SQL IMPORT command for a complete description of the syntax of
action-statement.

Usage Notes

General Restrictions that APPLY to SQL SELECT

Chapter 10
SQL

10-228

An SQL SELECT statement cannot contain ampersand substitution.

Optimizing Copies

When copying values from relational tables into a multidimensional input variable, list
the columns that correspond to the dimensions in an ORDER BY clause in the select-
statement argument of the SQL SELECT statement, with the slowest-varying
dimension first which optimizes performance.

Examples

Example 10-149 Simple select

For example, assume that there is a relational table named sales with the following
description.

PROD_ID NOT NULL NUMBER(6)
CUST_ID NOT NULL NUMBER
TIME_ID NOT NULL DATE
CHANNEL_ID NOT NULL CHAR(1)
PROMO_ID NOT NULL NUMBER(6)
QUANTITY_SOLD NOT NULL NUMBER(3)
AMOUNT_SOLD NOT NULL NUMBER(10,2)

Assume also that your analytic workspace contains the following definitions for
corresponding analytic workspace objects.

DEFINE aw_prod_id DIMENSION NUMBER (6)
DEFINE aw_cust_id DIMENSION NUMBER (6)
DEFINE aw_date DIMENSION TEXT
DEFINE aw_channel_id DIMENSION TEXT
DEFINE aw_promo_id DIMENSION NUMBER (6)
DEFINE aw_sales_dims COMPOSITE <aw_prod_id aw_cust_id -
 aw_channel_id aw_promo_id>
DEFINE aw_sales_quantity_sold VARIABLE NUMBER (3) <aw_date aw_sales_dims -
 <aw_prod_id aw_cust_id aw_date aw_channel_id aw_promo_id>>
DEFINE aw_sales_amount_sold VARIABLE NUMBER (10,2) <aw_date aw_sales_dims -
 <aw_prod_id aw_cust_id aw_date aw_channel_id aw_promo_id>>

To copy the data for product 415 from the sales table into the analytic workspace
objects, you execute the following statement in the OLAP worksheet.

SQL SELECT prod_id cust_id time_id channel_id promo_id quantity_sold -

amount_sold WHERE prod_id = 415 -
INTO :aw_prod_id, :aw_cust_id, :aw_date, -
:aw_channel_id, :aw_promo_id, :aw_sales_quantity_sold, :aw_sales_amount_sold

STATUS
The STATUS program sends to the current outfile the status of one or more
dimensions, dimension surrogates, or valuesets, or the status of all dimensions in an
analytic workspace.

When you specify one or more dimension, dimension surrogate, or valueset names,
Oracle OLAP produces the status of only those objects. When you use the AW
keyword and specify the name of an attached analytic workspace, Oracle OLAP
produces the status of every dimension in that analytic workspace. When you do not
specify any argument, STATUS produces the current status of all the dimensions (not

Chapter 10
STATUS

10-229

dimension surrogates or valuesets) in the current analytic workspace. However,
STATUS does not display the status of the NAME dimension unless you specify STATUS
NAME.

Tip:

Use STATLIST rather than STATUS when you want to control the width or
placement of the display.

Return Value

TEXT

Syntax

STATUS name... | AW [workspace-name]

Parameters

name
The name of a dimension or valueset in the analytic workspace. You can also specify
the name of a dimensioned analytic workspace object, such as a variable, formula,
relation, or named composite. In this case, the status of each dimension of name is
produced, unless the dimension is included in an unnamed composite.

AW [workspace-name]
Specifies that STATUS should produce the status of every dimension in workspace-
name; workspace-name is the name of an analytic workspace.

Usage Notes

STATUS Output

When all values of a dimension are in the current status or in a valueset, in the original
order, STATUS displays ALL. STATUS shortens any series of three or more values in
their original order to value-1 TO value-n. In the case of the dimension NAME,
however, STATUS does not shorten a series of three or more values.

Status When an Object Has No Values

When a dimension, dimension surrogate, or valueset has no values (for example, a
recently defined object for which you have not yet supplied values), STATUS produces
NULL for that dimension, dimension surrogate, or valueset. When you are in an analytic
workspace in which no objects have been defined, STATUS produces the message,
There are no dimensions in your current analytic workspace.

Examples

Example 10-150 Discovering the Current Status of Certain Dimensions

Use STATUS to produce the current status of the dimensions month and district.

The following statement

STATUS month district

produces this output.

Chapter 10
STATUS

10-230

The current status of MONTH is:
Jan95 TO Dec96
The current status of DISTRICT is:
Boston, Chicago, Denver

Example 10-151 Discovering the Status of the Dimensions of a Variable

Use STATUS to produce the current status of all the dimensions of the variable sales.

The following statement

STATUS sales

produces this output.

The current status of MONTH is:
Jan95 TO Dec96
The current status of PRODUCT is:
ALL
The current status of DISTRICT is:
Boston, Chicago, Denver

STDHDR
The STDHDR program generates the standard Oracle OLAP heading at the top of
every page of report output.

The standard running page heading consists of two lines. The first line includes the
date and time on the left and the page number on the right. The second line is blank.

The heading output is sent to the current outfile.

Syntax

STDHDR

Usage Notes

Setting LSIZE

LSIZE must be set to a value of at least 29 before you use STDHDR. Otherwise the
heading does not look right. A value less than 26 produces an error. The default for
LSIZE is 80.

Creating a Custom Heading

When PAGING is set to YES, Oracle OLAP automatically inserts the standard heading
at the top of each page of output. To get a different heading you must write a program
that produces the heading and set the PAGEPRG option to the name of that program.
To return to the standard heading, set PAGEPRG to 'STDHDR'. (See the PAGEPRG
option for more information.)

Using STDHDR in a Heading Program

When you use PAGEPRG to specify a heading program, you can still use the standard
heading in your custom heading by executing STDHDR as part of your program.
Generally, you place STDHDR before the statements that produce your customized
heading. See Creating a Custom Heading for a Report.

The STDHDR Program

Chapter 10
STDHDR

10-231

The STDHDR program uses the HEADING and CONVERT commands, as follows.

HEADING L W 8 <CONVERT(TODAY, TEXT,'<DD><MTXTL><YY>') TOD> -
 R W LSIZE-25 'Page ' L W 6 D 0 PAGENUM
BLANK

Examples

Example 10-152 Creating a Custom Heading for a Report

Suppose you would like each page of your report to include the standard header and
also the customized title "Annual Sales Report." To accomplish this, define a small
PAGEPRG program called report.head.

DEFINE report.head PROGRAM
PROGRAM
CALL STDHDR
HEADING WIDTH LSIZE CENTER 'Annual Sales Report'
BLANK
END

In your report program, set PAGING to YES, and specify the preceding program to
execute after every page break by setting the PAGEPRG option to 'REPORT.HEAD' (see
the PAGEPRG option for further information). When you run the report, each page
contains the following combination of the standard heading and your custom heading.

18Jan97 15:05:16 PAGE 1

 Annual Sales Report

SWITCH command
The SWITCH command provides a multipath branch in a program. The specific path
taken during program execution depends on the value of the control expression that is
specified with SWITCH. You can use a SWITCH statement only within programs.

Note:

Do not confuse the use of a single SWITCH command with the use of SWTICH
as a conditional operator in an expression. See "SWITCH Expressions".

Syntax

SWITCH control-expression DO CASE case-expression1: statement 1.1
 ... statement 1.n BREAK CASE case-expression2:
 statement 2.1 ... statement 2.n BREAK [DEFAULT:
 statement n.1 ... statement n.n BREAK] DOEND

Parameters

control-expression
The control-expression argument determines the case label to which program control
is transferred by the SWITCH statement. When the SWITCH statement is executed,
control-expression is evaluated and compared with each of the CASE label

Chapter 10
SWITCH command

10-232

expressions in the program. When a match is found, control is transferred to that case
label. When no match is found, control transfers to the DEFAULT label (if present) or
to the statement following the DOEND for SWITCH.

CASE case-expression1, CASE case-expression2, ...
The CASE labels whose expressions (case-expression1, case-expression2, ...)
specify the different cases you want to handle. When control-expression matches
case-expression, program control is transferred to that CASE label. The CASE label
expressions are evaluated at the time the program is run, in the order they appear,
until a match is found.
The DEFAULT label is optional. It identifies a special case to which control should be
transferred when none of the case-expressions matches the control-expression.
When you omit DEFAULT, and no match is found, control is transferred to the
statement that follows the DOEND for SWITCH.
All the CASE labels (including DEFAULT) for a SWITCH statement must be included
within a DO/DOEND bracket immediately following the SWITCH statement. Because
case-expression is a label, it must be followed by a colon (:). The statements to be
executed in a given case must follow the label. Normally, the last statement in a case
should be BREAK, which transfers control from SWITCH to the statement that follows
the DOEND for SWITCH.
When you omit BREAK (or RETURN, SIGNAL, and so on) at the end of a case, the
program goes on to execute the statements for the next case as well. Normally, you
do not want this to happen. However, when you plan to execute the same statements
for two cases, you can use this to your advantage by placing both CASE labels before
the statements.

Usage Notes

Control and Case Expressions

The SWITCH control-expression can have any data type, as can the case-
expressions. The various case-expressions can have different data types. When you
specify the name of a dimension (as a literal, non-quoted text expression) as the
control-expression or case-expression, Oracle OLAP uses the first value in the
dimension's current status list, not the dimension name, as it searches for a match.
When the dimension has no values in the status list, Oracle OLAP uses the value NA.
An NA control-expression matches the first NA case-expression.

Do Not Use Ampersand Substitution with SWITCH

Avoid using ampersand substitution in a SWITCH control-expression or in a CASE
label case-expression. Ampersands produce unpredictable, and usually undesirable,
results.

Multiple SWITCH Commands

You can include multiple SWITCH statements in a program. You can also nest
SWITCH commands. When a program contains multiple SWITCH commands, each
can have its own DEFAULT label, even when the SWITCH commands are nested.

Transferring Control

While BREAK is commonly used to transfer program control within a SWITCH
statement, it is not the only such statement you can use. You can also use statements
such as CONTINUE, GOTO, RETURN, and SIGNAL. Keep in mind that you can use
CONTINUE only when the SWITCH statement is within a FOR or WHILE loop. See
also the entries for these statements and for DO ... DOEND.

Chapter 10
SWITCH command

10-233

Examples

Example 10-153 Multipath Branching Using SWITCH in a Program

The following program lines produce one of several types of reports. Before the
SWITCH statement, the program determines which type of report the user wants and
places the value Market or Finance in the variable userchoice. The program switches to
the case label that matches that name and produces the report. When the report
finishes, the BREAK statement transfers control to the cleanup section after the
DOEND.

SWITCH userchoice
 DO
 CASE 'Market':
 ...
 BREAK
 CASE 'Finance':
 ...
 BREAK
 DEFAULT:
 ...
 BREAK
 DOEND
cleanup:
...

TEMPSTAT
The TEMPSTAT command limits the dimension you are looping over, inside a FOR
loop or inside a loop that is generated by a REPORT statement. Status is restored
after the statement following TEMPSTAT. When a DO ... DOEND phrase follows
TEMPSTAT, status is restored when the matched DOEND or a BREAK or GOTO
statement is encountered. You can use TEMPSTAT only within programs.

Syntax

TEMPSTAT dimension... statement block

Parameters

dimension(s)
One or more dimensions whose status you would like to temporarily change inside a
FOR loop or an automatic loop that is generated by the REPORT statement.

statement block
One or more statements that change the status of the dimension. To execute multiple
statements under the temporary status, enclose them between DO ... DOEND
brackets.

Usage Notes

Nesting TEMPSTATE Statements

You can nest TEMPSTAT commands, one within another, and you can repeat the
same dimension within the nested TEMPSTAT commands.

Placement of TEMPSTAT

Chapter 10
TEMPSTAT

10-234

When you want to be able to change the status of a dimension while REPORT is
looping over it, you must place a TEMPSTAT statement inside that REPORT loop
rather than before the REPORT statement. For example, suppose you have written a
user-defined function called monthly_sales, which changes the status of month, and
monthly_sales is part of a REPORT statement that is looping over month. In this case a
TEMPSTAT statement must be inside the monthly_sales function in order for a status
change to take place. (TEMPSTATE must be inside of monthly_sales even when the
REPORT statement is given within TEMPSTAT DO/DOEND brackets within a FOR
loop over MONTH.)

POP and POPLEVEL Commands

Within the DO/DOEND brackets of a TEMPSTAT statement block, you cannot use a
POP statement to pop a dimension that is protected by TEMPSTAT on the block --
unless the matching PUSH statement is also within the block.

Similarly, within the DO/DOEND brackets of a TEMPSTAT statement block, you
cannot use a POPLEVEL statement to pop a dimension that is protected by
TEMPSTAT on the block -- unless one of two conditions is met: the matching
PUSHLEVEL statement is also within the block, or the only pushes on the dimension
since the PUSHLEVEL statement was given are also within the block.

Use Only LIMIT and CONTEXT Commands

Within the DO/DOEND brackets of a TEMPSTAT statement, the only way to change
the status of a dimension within a loop over that dimension is with the LIMIT or
CONTEXT APPLY commands. (See the LIMIT command and the CONTEXT
command for details.) You cannot change the status of the dimension using POP or
POPLEVEL. You also cannot perform any operations that would add values to the
dimension, because adding values also changes the status of the dimension to ALL.
For example, MAINTAIN ADD, FILEREAD APPEND, and IMPORT (with new values in
the EIF file) add values to a dimension.

Examples

TEMPSTAT in a FOR Loop

The following program excerpt uses a TEMPSTAT statement to limit the market
dimension within the FOR market loop.

FOR market
DO
 TEMPSTAT market
 DO
 LIMIT market TO CHILDREN USING market.market
 REPORT market
 DOEND
DOEND

TRACE
The TRACE command specifies whether or not information about the entry, exit, and
execution of individual programs, models, and formulas is recorded in the current
outfile during execution:

• For programs and models, it traces the entry, exit, and execution of individual lines
of code and produces output similar to the output produced when the PRGTRACE
or MODTRACE option is set to YES.

Chapter 10
TRACE

10-235

• For formulas, it outputs the name and dimension value on entry and the return
value on exit.

Syntax

TRACE [?|{object-name|*} [OFF] [begin-arguments] [end-arguments] [TRACELINES |
NOTRACELINES]] where: begin-arguments requires the following syntax: IN [ARGS |
NOARGS] end-arguments requires the following syntax: OUT [VALUE | NOVALUE]

Parameters

?
A ? (question mark) displays the current TRACE list, which includes the name of each
program, model, and formula that will be traced when executed. In addition, if there is
a global trace, TRACE ALL is listed. For each program, model, and formula, and for
TRACE ALL, the list displays the current TRACE settings (the values of begin-
arguments and end-arguments).

object_name
The unqualified name of the program, model, or formula that you want to trace. You
can specify the name of a program, model, or formula even if it does not exist in an
attached database. Without the OFF keyword, this argument turns on an object-
specific trace, in which TRACE traces the execution of the named program, model, or
formula whenever you run it. In order to change the TRACE settings of a program,
model, or formula, you can turn on its object-specific trace several times. With the
OFF keyword, this argument turns off the object-specific trace.

*[OFF]
An* (asterisk) is only used with programs and models:

• Without the OFF keyword, an * (asterisk) adds TRACE ALL to the TRACE list and
turns on a global trace. This means that TRACe traces the execution of every
program and model that you run, including programs such as LISTNAMES that
are part of express.db. If you have both an object-specific trace and a global trace
specified, the settings for the object-specific trace take precedence when you run
the given program or model.

• With the OFF keyword, an * (asterisk), turns off the global trace by deleting all
program names, model names, and TRACE ALL from the TRACE list, leaving the
list empty.

ARGS
NOARGS
ARGS and NOARGS are used only with programs and formulas. These keywords
indicate whether TRACE should display the values of arguments when entering a
program or the dimension values of formulas. The default is ARGS.

VALUE
NOVALUE
VALUE and NOVALUE are used only with programs. These keywords indicate
whether the return value of the program is displayed after executing its last line. If the
program does not have a return value, no value is displayed. The default is VALUE.

Chapter 10
TRACE

10-236

TRACELINES
NOTRACELINES
TRACELINES and NOTRACELINES are used only with programs and models. These
keywords indicate whether the program or model lines are printed. The default is
TRACELINES.

Usage Notes

Nested Programs and Models

If you execute nested programs (in which one program calls another), and if you trace
all the nested programs, TRACE will keep track of the nested levels. If one of the
programs calls a model, you can also trace the model, and TRACE will keep track of
the model within the stack of nested programs.

Changing TRACE Settings

You can change a TRACE setting for a program or model by executing a new TRACE
command. If you only change one of the settings, the others remain set to the values
they had before.

Tracing a Model

If a block of simultaneous equations in a model cannot be solved within a specified
number of iterations, an error occurs. The value of the MODERROR option determines
the action that TRACE takes in this event.

TRACKPRG
The TRACKPRG command tracks the performance cost of every program that runs
while you have tracking turned on. To get meaningful information from TRACKPRG,
your session must be the only one running in Oracle OLAP. Furthermore, the accuracy
of the results of TRACKPRG decreases as more processes are started on the host
computer.

You turn TRACKPRG on, run the programs you want to track, and use TRACKPRG
again to obtain the results. Each time each program is executed, TRACKPRG stores
its cost data as one entry in its tracking list. When you execute another program, a
new entry is added to the list, which is maintained in Oracle OLAP memory (free
storage).

A program or line of code is considered to have a high performance cost when it takes
a long time to execute. Use TRACKPRG to identify programs that have relatively high
costs and then use a MONITOR statement to identify the time-consuming lines within
those programs. When you want, you can use both commands simultaneously.

Syntax

TRACKPRG {ON|OFF|file|INIT}

where file has the following syntax:

FILE [APPEND] [file-name]

Chapter 10
TRACKPRG

10-237

Parameters

ON
Starts looking for programs to be run so it can gather their timing data in a tracking
list. (Continues the current tracking process without interruption when tracking is
already on, or resumes with a gap when tracking is off.)

OFF
Stops tracking programs and freezes any timing data currently in the tracking list
which allows you to send the list to the current outfile or to a text file either
immediately, or later in your session.

FILE
Specifies where to send the tracking list. TRACKPRG FILE has no effect on the
tracking list, so you can send the same list repeatedly to different destinations.

APPEND
Specifies that Oracle OLAP adds the tracking list to the contents of the file indicated
by file-name instead of replacing it.

file-name
A text expression to which Oracle OLAP sends the data. Unless the file is in the
current directory, you must include the name of the directory object in the name of the
file.

Note:

Directory objects are defined in the database, and they control access to
directories and file in those directories. You can use a CDA statement to
identify and specify a current directory object. Contact your Oracle DBA for
access rights to a directory object where your database user name can read
and write files.

When you omit file-name, Oracle OLAP sends the timing data currently in the tracking
list to the current outfile

INIT
Discards the timing data in the current tracking list and releases the Oracle OLAP
memory that was used for that list (useful when you want the memory for other
purposes). Also, when tracking is on, resumes waiting for you to run programs so it
can gather their data into a completely new tracking list.

Usage Notes

Single Execution

Each entry (that is, line) in the tracking list focuses on a single execution of a single
program.

Depth of the Call

Each entry records the depth of the call, if any, to the current program; that is, how
many program calls it has taken to get to the program reported on the current line. In
TRACKPRG output, the depth of the call is indicated by the indentation of the program

Chapter 10
TRACKPRG

10-238

name. For each indented program, TRACKPRG also records the name of the program
that called it at the end of the entry.

Types of Timing Data

In each entry, TRACKPRG records two types of timing data:

• Exclusive cost -- The time spent in this program, excluding the time spent on any
programs that are called by this one.

• Inclusive cost -- The time spent in this program, including the time spent on any
programs that are called by this one.

This gives you the option of generating a report on both types of cost.

Entry Sections

In TRACKPRG output, each entry (line) is divided into the following four sections:

• Program name, in character columns 1 through 38

• Exclusive time, in columns 39 through 49

• Inclusive time, in columns 50 through 60

• Name of calling program, in columns 61 through 77

Here is a sample of TRACKPRG output (for the MAIN program) with column numbers
included for reference.

1234567890123456789012345678901234567890123456789012345678901234567890

MAIN 39.6198425 225.551453
 COMM 43.793808 185.93161 MAIN
 _C.SYS.INFO .112533569 .112533569 COMM
 _C.SYS.INFO .087173462 .087173462 COMM
 _C.MAIN 61.414505 141.938095 COMM
 _C.CON 66.7147064 80.5235901 _C.MAIN
 _C.SYS.DORETURN .032287598 .032287598 _C.CON

TRACKREPORT Program

When you want to use Oracle OLAP reporting capabilities to produce a report from the
timing data in the text file that is created by TRACKPRG, you can use the
TRACKREPORT program. It has the following syntax.

TRACKREPORT textfile-name

The textfile-name argument is the file name of the text file created by TRACKPRG
from which you want to generate a report. TRACKREPORT uses a FILEREAD
statement to read the data into an Oracle OLAP variable, and then it uses Oracle
OLAP reporting capabilities to produce a report like the following sample.

 Exclusive Inclusive Number of
 Program name cost cost calls
____________________ __________ __________ __________

COMM 43.793808 185.93161 1
MAIN 39.6198425 225.551453 1
_C.CON 66.7147064 80.5235901 1
_C.ENV.PUTOPTS 1.15296936 1.15296936 1
_C.ENV.XLATEIN 6.32765198 6.32765198 1
_C.MAIN 61.414505 141.938095 1
_C.SYS.DORETURN .032287598 .032287598 1

Chapter 10
TRACKPRG

10-239

_C.SYS.INFO .289932251 .289932251 3
_C.SYS.NOF10 .038269043 .038269043 1
_CONNECT 5.3609314 6.16748047 1
_CONNNONE .806549072 .806549072 1

When you want to further process the data from a TRACKPRG file, you can write your
own program using the TRACKREPORT program as a model.

Excluded Subprograms

When you do not want separate performance data on all the subprograms called by
the program you are timing, you can, within the overall program, turn tracking off
before calling any subprograms you want to exclude and then turn it back on before
calling any you want to include. You can do this repeatedly. Remember, however, that
the time taken by any excluded subprograms is assigned to the total "exclusive" time
for the overall program and to its "inclusive" time, because TRACKPRG has not
individually tracked the excluded subprograms.

Using TRACKPRG with Very Small Programs

You might not be able to reproduce the results exactly for very small programs. When
the CPU interrupts processing to do other tasks, that time is a greater percentage of
the total execution time.

Unit of Measure for TRACKPRG

The MONITOR and TRACKPRG commands use milliseconds as the unit for recording
execution time. The execution time does not include time spent on I/O and time spent
waiting for the next statement.

Examples

Example 10-154 Collecting Timing Data USING TRCKPRG

In this example, timing data on the mybjt program and all the programs it calls is
collected in a file called mybjttim.dat.

TRACKPRG ON
mybjt
TRACKPRG OFF
TRACKPRG FILE mybjttim.dat
TRACKPRG INIT
TRACKREPORT mybjttim.dat

Example 10-155 Using the INIT Keyword and TRACKREPORT

In this example, tracking is turned on to collect timing data about the execution of prog1
and the data is sent to a file named prog1.trk. Then, the INIT keyword is used to
discard the existing tracking list so the data for a second program can be collected and
sent to a file. Throughout the procedure, tracking remains on. Finally, after tracking is
turned off and the INIT keyword is used to release the memory that was used for the
tracking list, the TRACKREPORT program is called to produce two reports generated from
the data stored in the two files.

TRACKPRG ON
prog1
TRACKPRG FILE prog1.trk
TRACKPRG INIT
prog2
TRACKPRG FILE prog2.trk
TRACKPRG OFF

Chapter 10
TRACKPRG

10-240

TRACKPRG INIT
TRACKREPORT prog1.trk
TRACKREPORT prog2.trk

TRAP
Within an OLAP DML program, the TRAP command causes program execution to
branch to a label when an error occurs in a program or when the user interrupts the
program. When execution branches to the trap label, that label is deactivated.

See Also:

"Declarative Error" for a discussion of how Oracle OLAP handles declarative
errors in programs and models

Syntax

TRAP {OFF|ON errorlabel [NOPRINT|PRINT]}

Parameters

OFF
Deactivates the trap label. Because only one trap label can be active at a time, you do
not supply errorlabel when setting TRAP OFF. When you try to include a label with OFF,
an error occurs.

Note:

When an error occurs in a program that contains a trap label, execution
branches to the label and the trap is deactivated. You do not have to execute
an explicit TRAP OFF statement. Thus, an error occurring after execution has
branched to the label does not cause execution to branch to the same label
again.

ON errorlabel
Activates the trap label (errorlabel). When TRAP is active, any error in the program
causes execution to branch to errorlabel.

errorlabel
The name of a label elsewhere in the program constructed following the "Guidelines
for Constructing a Label". Execution of the program branches to the line directly
following the specified label.

Chapter 10
TRAP

10-241

Note:

Note that errorlabel, as specified in ON, must not be followed by a colon.
However, the actual label elsewhere in the program must end with a colon.
When an actual trap label that corresponds to errorlabel does not exist
elsewhere in the same program, execution stops with an error

NOPRINT
PRINT
Indicates whether to suppress output of the error message. NOPRINT suppresses the
message. PRINT (default) means that the error message is sent to the current outfile
before execution branches to the trap label. With the OFF keyword, NOPRINT and
PRINT are meaningless and produce an error.

Examples

Example 10-156 Trapping a Program Error

The following program fragment uses a TRAP statement to direct control to a label
where options and dimension status are set back to the values they had before the
program was executed and an error is signaled.

PUSH month DECIMALS LSIZE PAGESIZE
TRAP ON haderror NOPRINT
LIMIT month TO LAST 1
 ...
POP month DECIMALS LSIZE PAGESIZE
RETURN

haderror:
POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

Example 10-157 Producing a Program Error Message Immediately

To produce the error message immediately, use a TRAP statement in each nested
program, but do not use the NOPRINT keyword. When an error occurs, an error
message is produced immediately, and execution branches to the trap label.

At the trap label, perform whatever error-handling commands you want and restore the
environment. Then execute a SIGNAL statement that includes the PRGERR keyword.

SIGNAL PRGERR

When you use the PRGERR keyword in the SIGNAL statement, no error message is
produced, and the name PRGERR is not stored in ERRORNAME. The SIGNAL
statement signals an error condition that is passed up to the program from which the
current program was run. When the calling program contains a trap label, then
execution branches to that label.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, you can pass the error condition up through the entire chain.
Each program has commands like these.

TRAP ON error
 ... "Body of program and normal exit commands
RETURN
error:

Chapter 10
TRAP

10-242

 ... "Error-handling and exit commands
SIGNAL PRGERR

Example 10-158 Producing a Program Error Message at the End of the Chain

To produce the error message at the end of a chain of nested programs, use a TRAP
statement that includes the NOPRINT keyword. When an error occurs in a nested
program, execution branches to the trap label, but the error message is suppressed.

At the trap label, perform whatever error-handling commands you want and restore the
environment. Then execute the following SIGNAL statement.

SIGNAL ERRORNAME ERRORTEXT

The preceding SIGNAL statement contains includes ERRORNAME and ERRORTEXT
within it. The ERRORNAME option contains the name of the original error, and the
ERRORTEXT option contains the error message for the original error. When the
calling program contains a trap label, then execution branches to that
label.Consequently, the SIGNAL statement passes the original error name and error
text to the calling program.

When each program in a chain of nested programs uses the TRAP and SIGNAL
commands in this way, the original error message is produced at the end of the chain.
Each program has commands like the following.

TRAP ON error NOPRINT
 ... "Body of program and normal exit commands
RETURN
error:
 ... "Error-handling and exit commands
SIGNAL ERRORNAME ERRORTEXT

TRIGGER command
The TRIGGER command associates a previously-created program to an object and
identifies the object event that automatically executes the program; or disassociates a
trigger program from the object.

To assign a trigger program to an object, the object must be the one most recently
defined or considered during the current session. When it is not, you must first use a
CONSIDER statement to make it the current definition.

See Also:

"Trigger Programs" and the TRIGGER function

Syntax

TRIGGER {event-name [program-name] }... | {DELETE event-name}... | DELETE ALL

where event-name is one of the following:

MAINTAIN

DELETE

PROPERTY

Chapter 10
TRIGGER command

10-243

ASSIGN

BEFORE_UPDATE

AFTER_UPDATE

You can use the same keyword many times in a single TRIGGER statement; however,
in this case, Oracle OLAP ignores all but the last occurrence of the keyword. See
"Multiple Occurrences of the Same Keyword", for details.

Parameters

MAINTAIN
Specifies that the trigger for the program is a Maintain event. A Maintain event is the
execution of the MAINTAIN statement. As outlined in Table 8-19, the Maintain event
has several subevents that correspond to the major keywords of the MAINTAIN
command. Exactly when a program triggered by a Maintain event is executed is
dependent on the Maintain subevent that triggered the program and the object type
for which the Maintain event is defined:.

• Programs triggered by Maintain Add and Maintain Merge events on dimensions
and composites are executed after the entire MAINTAIN statement executes.

• Programs triggered by Maintain Add and Maintain Merge events on dimension
surrogates are executed multiple times—once after each value is added or
merged.

• Programs triggered by other Maintain subevents are executed before the
MAINTAIN statement is executed.

DELETE
Specifies that the trigger for the program is a Delete event. A Delete event is a
DELETE statement for the object. Oracle OLAP executes the specified program
immediately before a DELETE statement deletes the object.

PROPERTY
Specifies that Oracle OLAP executes the specified program in response to a Property
event. A Property event is the execution of a PROPERTY statement to create, modify,
or delete an object property. A program that is triggered by a Property event is
executed before the statement that triggered it.

ASSIGN
Specifies that Oracle OLAP executes the specified program in response to an Assign
event. An Assign event is executed when SET assigns values to variable, relation,
worksheet object, or a formula. A program that is triggered by SET is executed each
time Oracle OLAP assigns a value to the object for which the event was defined.
Thus, a program triggered by an Assign event is often executed over and over again
as the assignment statements loops through an object assigning values.

UPDATE
When the object has been acquired using ACQUIRE in an analytic workspace that is
attached in multiwriter mode, specifies that Oracle OLAP executes the specified
program immediately after the object is updated.

Chapter 10
TRIGGER command

10-244

Note:

To specify processing when the entire analytic workspace is updated, create a
TRIGGER_AFTER_UPDATE or TRIGGER_BEFORE_UPDATE program.

program-name
The name of the trigger program. When omitted for an event, the event does not
trigger an action.

DELETE event-name
Deletes the triggers for the specified object events. Oracle OLAP disassociates the
trigger program from the specified object event.

DELETE ALL
Deletes all of the triggers for the specified object. Oracle OLAP disassociates the
trigger program from all events for object.

Usage Notes

Multiple Occurrences of the Same Keyword

You can use all of the keywords in a single TRIGGER statement. However, if you use
the same keyword twice in a TRIGGER statement, then Oracle OLAP recognized the
last occurrence of the keyword; other occurrences are ignored.

For example, assume that you code the following TRIGGER statement.

TRIGGER PROPERTY progname1 PROPERTY progname2 PROPERTY progname3

When executing this TRIGGER statement, Oracle OLAP executes progname3
immediately before a property of the object is created, modified, or deleted; Oracle
OLAP does not execute progname1 or progname2.

Examples

Example 10-159 Creating Triggers

Assume that your analytic workspace contains a TEXT dimension named city and that
you want to create programs that automatically execute when a MAINTAIN statement
executes against city or when a property is created or deleted for city. To create these
triggers, you issue the following statements.

"Define the trigger programs
DEFINE trigger_maintain_move_city PROGRAM BOOLEAN
DEFINE trigger_property_city PROGRAM BOOLEAN
"Associate the trigger programs to events for the city dimension
CONSIDER city
TRIGGER PROPERTY trigger_property_city
TRIGGER MAINTAIN trigger_maintain_move_city

Example 10-160 Describing Triggers

Assume that you have created the triggers for city as described in Example 10-159 .
Later you want to see the description of the triggers, to do so you cannot issue a
DESCRIBE statement for your analytic workspace. Instead, you must issue a
FULLDSC statement.

Chapter 10
TRIGGER command

10-245

DEFINE CITY DIMENSION TEXT
TRIGGER MAINTAIN TRIGGER_MAINTAIN_MOVE_CITY -
 PROPERTY TRIGGER_PROPERTY_CITY

DEFINE TRIGGER_MAINTAIN_MOVE_CITY PROGRAM BOOLEAN

DEFINE TRIGGER_PROPERTY_CITY PROGRAM BOOLEAN

Example 10-161 Deleting Triggers

Assume that you have created the triggers described in Example 10-159 . Now you
want to delete the MAINTAIN trigger for city. To delete this trigger you issue the
following statements.

CONSIDER city
TRIGGER DELETE MAINTAIN

When you issue a FULLDSC statement, you confirm that the MAINTAIN trigger for
city has been deleted although the trigger_maintain_move_city program remains.

DEFINE CITY DIMENSION TEXT
TRIGGER PROPERTY TRIGGER_PROPERTY_CITY

DEFINE TRIGGER_MAINTAIN_MOVE_CITY PROGRAM BOOLEAN

DEFINE TRIGGER_PROPERTY_CITY PROGRAM BOOLEAN

To actually delete the trigger_maintain_move_city program you must issue the
following statement.

DELETE TRIGGER_MAINTAIN_MOVE_CITY

Example 10-162 A MAINTAIN Trigger Program

Assume that you have a dimension with the following definition in your analytic
workspace.

DEFINE CITY DIMENSION TEXT

To create a Maintain trigger for city, you take the following steps:

1. Define the trigger program as a user-defined function. It can have any name that
you want. The following statement defines a program named
trigger_maintain_city.

DEFINE trigger_maintain_city PROGRAM BOOLEAN

2. Specify the content of the program.

PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

3. Issue a TRIGGER statement to associate the trigger program with the city
dimension as a program to be executed when a Maintain event occurs. Remember

Chapter 10
TRIGGER command

10-246

to use a CONSIDER statement to make the definition for city the current
definition.

CONSIDER city
TRIGGER MAINTAIN TRIGGER_MAINTAIN_CITY

When you issue a FULLDSC statement to see a full description of your analytic
workspace, you can see the definition of city (including its Maintain trigger) and the
trigger_maintain_city program.

DEFINE CITY DIMENSION TEXT
TRIGGER MAINTAIN TRIGGER_MAINTAIN_CITY

DEFINE TRIGGER_MAINTAIN_CITY PROGRAM BOOLEAN
PROGRAM
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
RETURN TRUE
END

As illustrated in the following statements and output, when you issue MAINTAIN
statements for city, the trigger_maintain_city program executes.

MAINTAIN city ADD 'Boston' 'Houston' 'Dallas'

calltype = TRIGGER
triggering event = MAINTAIN
triggering subevent = ADD

REPORT city

CITY

Boston
Houston
Dallas

MAINTAIN city MOVE 'Dallas' to 2

calltype = TRIGGER
triggering event = MAINTAIN
triggering subevent = MOVE

REPORT city

CITY

Boston
Dallas
Houston

Example 10-163 An ASSIGN Trigger on a Variable

Assume that your analytic workspace contains objects with the following definitions.

DEFINE geog DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <geog>
DEFINE percent_sales VARIABLE INTEGER <geog>

Chapter 10
TRIGGER command

10-247

The sales variable contains the following values.

GEOG SALES
-------------- ----------
North America 0.59
Europe 9.35
Asia NA

The percent_sales variable is empty.

Assume that you want specialized processing of values when you assign values to
percent_sales. To handle this processing automatically, you can create an Assign
trigger program for percent_sales by taking the following steps:

1. Create a trigger program that executes each time you assign values to
percent_sales.

DEFINE TRIGGER_EQ PROGRAM BOOLEAN
PROGRAM
ARGUMENT datavalue WORKSHEET
show 'description of triggering object = '
FULLDESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
SHOW JOINCHARS ('value being assigned = ' datavalue)
SHOW ' '
END

2. Add an assign trigger to percent_sales using a TRIGGER statement. Remember to
first issue a CONSIDER statement to make the definition for the percent_sales
variable the current definition.

CONSIDER percent_sales
TRIGGER ASSIGN TRIGGER_EQ

3. Assign values to percent_sales.

percent_sales = (sales/TOTAL(sales))*100

Assigning values to percent_sales triggers the execution of the trigger_eq program
and produces the following output lines.

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned = 6

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned = 94

description of triggering object =
DEFINE PERCENT_SALES VARIABLE INTEGER <GEOG>
TRIGGER ASSIGN TRIGGER_EQ

Chapter 10
TRIGGER command

10-248

calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value being assigned =

Note:

From the output you can see that Oracle OLAP called the trigger_eq
program three times—each time it assigned a value to percent_sales.

4. When you issue REPORT commands for sales and percent_sales you can see the
result of the calculations. The percent_sales variable contains values that are the
percent of sales for each continent.

GEOG SALES
-------------- --------------------
North America 0.59
Europe 9.35
Asia NA

GEOG PERCENT_SALES
-------------- --------------------
North America 6
Europe 94
Asia NA

Example 10-164 Setting Values in an ASSIGN Trigger Program

Assume that you have the following objects in your analytic workspace.

DEFINE GEOGRAPHY DIMENSION TEXT WIDTH 12
LD Geography Dimension Values

DEFINE PRODUCT DIMENSION TEXT WIDTH 12
LD Product Dimension Values

DEFINE TIME DIMENSION TEXT WIDTH 12
LD Time Dimension Values

DEFINE CHANNEL DIMENSION TEXT WIDTH 12
LD Channel Dimension Values

DEFINE F.MARGIN FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
LD Margin
EQ f.sales-f.costs

DEFINE F.COSTS VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>
LD Costs

DEFINE F.SALES VARIABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TIME>
LD Sales

Note that f.costs, f.sales, and f.margin all have the same dimensions.

Now you add an Assign trigger to f.margin that executes a program named t.margin.
The definition of f.margin is modified to the following definition.

Chapter 10
TRIGGER command

10-249

DEFINE F.MARGIN FORMULA DECIMAL <CHANNEL GEOGRAPHY PRODUCT TIME>
LD Margin
TRIGGER ASSIGN T.MARGIN
EQ f.sales-f.costs

Now you actually write the t.margin program. When an expression is assigned to the
f.margin formula, the program uses this value to compute new values for f.costs and
f.sales.

DEFINE T.MARGIN PROGRAM
PROGRAM
ARG newVal DECIMAL " The value passed to the program by the Assign trigger
VARIABLE t.valDiff DECIMAL " Difference between newVal and old value
VARIABLE t.costInc DECIMAL " Amount the difference makes to costs
"show the value of newVal
SHOW 'newVal = ' NONL
SHOW newVal
" Compute the difference between the current value and the new one
t.valDiff = newVal - f.margin
" Now increase costs proportional to their existing amounts
t.costInc = (newVal - f.margin) * (f.costs/f.sales)
" Adjust the values of sales and costs to get the new value
SET1 f.costs = f.costs + t.costInc

SET1 f.sales = f.sales + t.valDiff + t.costInc

SHOW geography NONL
SHOW ' ' NONL
SHOW product NONL
SHOW ' ' NONL
SHOW channel NONL
SHOW ' ' NONL
SHOW time NONL
SHOW ' f.costs = 'NONL
SHOW f.costs NONL
SHOW ' f.sales = 'NONL
SHOW f.sales
END

Now assume that you issue the following LIMIT statements to identify a subset of data
and issue a REPORT statement to report on the values of f.margin.

LIMIT t0.hierdim TO 'STANDARD'
LIMIT time TO t0.levelrel EQ 'L2'
LIMIT geography TO FIRST 1
LIMIT channel TO FIRST 1
LIMIT product TO FIRST 5
REPORT DOWN time ACROSS product: f.margin

GEOGRAPHY: WORLD
CHANNEL: TOTALCHANNEL
 -----------------------F.MARGIN-----------------------
 -----------------------PRODUCT------------------------
TIME TOTALPROD AUDIODIV PORTAUDIO PORTCD PORTST
-------------- ---------- ---------- ---------- ---------- ----------
Q1.96 54,713,974 29,603,546 5,379,661 2,480,914 1,615,708
Q2.96 63,919,784 34,594,087 6,331,848 2,869,265 1,931,785
Q3.96 58,303,490 31,543,152 5,792,725 2,616,515 1,795,701
Q4.96 71,197,892 38,383,878 7,059,581 3,163,804 2,232,880
Q1.97 55,489,723 29,989,262 5,368,237 2,491,475 1,607,344

Chapter 10
TRIGGER command

10-250

Q2.97 41,687,908 22,532,979 4,070,725 1,855,992 1,245,161

Now you issue the following assignment statement that increase the value of f.margin
by 10% and report it

f.margin = f.margin * 1.1

The execution of this assignment statement triggers the execution of the Assign trigger
program named t.margin. The output of that program follows.

newVal = 60,185,371.40
WORLD TOTALPROD TOTALCHANNEL Q1.96 f.costs = 1,298,474.00 f.sales = 61,483,840.00
newVal = 32,563,900.67
WORLD AUDIODIV TOTALCHANNEL Q1.96 f.costs = 664,226.90 f.sales = 33,228,130.00
newVal = 5,917,626.67
WORLD PORTAUDIO TOTALCHANNEL Q1.96 f.costs = 97,976.04 f.sales = 6,015,603.00
newVal = 2,729,005.43
WORLD PORTCD TOTALCHANNEL Q1.96 f.costs = 34,301.53 f.sales = 2,763,307.00
newVal = 1,777,278.95
WORLD PORTST TOTALCHANNEL Q1.96 f.costs = 25,160.72 f.sales = 1,802,440.00
newVal = 70,311,762.13
WORLD TOTALPROD TOTALCHANNEL Q2.96 f.costs = 1,504,051.00 f.sales = 71,815,820.00
newVal = 38,053,495.70
WORLD AUDIODIV TOTALCHANNEL Q2.96 f.costs = 768,788.10 f.sales = 38,822,280.00
newVal = 6,965,032.86
WORLD PORTAUDIO TOTALCHANNEL Q2.96 f.costs = 114,558.20 f.sales = 7,079,591.00
newVal = 3,156,191.20
WORLD PORTCD TOTALCHANNEL Q2.96 f.costs = 39,256.88 f.sales = 3,195,448.00
newVal = 2,124,963.02
WORLD PORTST TOTALCHANNEL Q2.96 f.costs = 29,780.54 f.sales = 2,154,744.00
newVal = 64,133,838.86
WORLD TOTALPROD TOTALCHANNEL Q3.96 f.costs = 1,350,733.00 f.sales = 65,484,570.00
newVal = 34,697,467.06
WORLD AUDIODIV TOTALCHANNEL Q3.96 f.costs = 691,887.10 f.sales = 35,389,360.00
newVal = 6,371,997.63
WORLD PORTAUDIO TOTALCHANNEL Q3.96 f.costs = 103,203.70 f.sales = 6,475,202.00
newVal = 2,878,166.40
WORLD PORTCD TOTALCHANNEL Q3.96 f.costs = 35,358.18 f.sales = 2,913,525.00
newVal = 1,975,270.68
WORLD PORTST TOTALCHANNEL Q3.96 f.costs = 27,339.77 f.sales = 2,002,611.00
newVal = 78,317,681.06
WORLD TOTALPROD TOTALCHANNEL Q4.96 f.costs = 1,618,915.00 f.sales = 79,936,590.00
newVal = 42,222,265.94
WORLD AUDIODIV TOTALCHANNEL Q4.96 f.costs = 826,923.40 f.sales = 43,049,190.00
newVal = 7,765,539.34
WORLD PORTAUDIO TOTALCHANNEL Q4.96 f.costs = 123,269.50 f.sales = 7,888,809.00
newVal = 3,480,184.35
WORLD PORTCD TOTALCHANNEL Q4.96 f.costs = 41,998.90 f.sales = 3,522,183.00
newVal = 2,456,168.00
WORLD PORTST TOTALCHANNEL Q4.96 f.costs = 33,357.19 f.sales = 2,489,525.00
newVal = 61,038,695.03
WORLD TOTALPROD TOTALCHANNEL Q1.97 f.costs = 1,423,963.00 f.sales = 62,462,660.00
newVal = 32,988,187.65
WORLD AUDIODIV TOTALCHANNEL Q1.97 f.costs = 679,477.80 f.sales = 33,667,660.00
newVal = 5,905,060.56
WORLD PORTAUDIO TOTALCHANNEL Q1.97 f.costs = 158,854.40 f.sales = 6,063,915.00
newVal = 2,740,622.56
WORLD PORTCD TOTALCHANNEL Q1.97 f.costs = 53,144.41 f.sales = 2,793,767.00
newVal = 1,768,078.14
WORLD PORTST TOTALCHANNEL Q1.97 f.costs = 40,784.62 f.sales = 1,808,863.00

Chapter 10
TRIGGER command

10-251

newVal = 45,856,698.46
WORLD TOTALPROD TOTALCHANNEL Q2.97 f.costs = 1,070,465.00 f.sales = 46,927,160.00
newVal = 24,786,276.35
WORLD AUDIODIV TOTALCHANNEL Q2.97 f.costs = 512,435.60 f.sales = 25,298,710.00
newVal = 4,477,797.64
WORLD PORTAUDIO TOTALCHANNEL Q2.97 f.costs = 118,791.70 f.sales = 4,596,590.00
newVal = 2,041,591.56
WORLD PORTCD TOTALCHANNEL Q2.97 f.costs = 39,287.77 f.sales = 2,080,879.00
newVal = 1,369,677.57
WORLD PORTST TOTALCHANNEL Q2.97 f.costs = 30,038.08 f.sales = 1,399,716.00

Example 10-165 An ASSIGN Trigger on a Formula

The way Oracle OLAP handles assigning values to a formula varies depending on
whether or not the formula has an Assign trigger as part of its definition.

Assume your analytic workspace contains objects with the following definitions and
values.

DEFINE geog.d DIMENSION TEXT
DEFINE time.d DIMENSION TEXT
DEFINE sales VARIABLE DECIMAL <time.d geog.d>
DEFINE f_modified_sales FORMULA DECIMAL <time.d geog.d>
 EQ sales+20

A report of sales, shows the base values.

 -------------------SALES-------------------
 ------------------TIME.D-------------------
GEOG.D Jan2004 Feb2004 Mar2004 2004
-------------- ---------- ---------- ---------- ----------
Boston 4.00 4.66 5.91 NA
Medford 4.37 5.80 4.45 NA
San Diego 4.97 5.95 4.75 NA
Sunnydale 5.85 5.26 4.08 NA

A report of f_modified_sales formula displays the following report that contains the
values computed by the formula.

 -------------F_MODIFIED_SALES--------------
 ------------------TIME.D-------------------
GEOG.D Jan2004 Feb2004 Mar2004 2004
-------------- ---------- ---------- ---------- ----------
Boston 24.00 24.66 25.91 NA
Medford 24.37 25.80 24.45 NA
San Diego 24.97 25.95 24.75 NA
Sunnydale 25.85 25.26 24.08 NA

The f_modified_sales formula does not presently have an Assign trigger on it.
Consequently, as illustrated in the following code, any attempt to assign values to
f_modified_sales results in an error.

f_modified_sales = 3
ORA-34142: You cannot assign values to a FORMULA.

To create an Assign trigger on f_modified_sales take the following steps:

1. Define the trigger program

DEFINE TRIGGER_ASSIGN_MODIFIED_SALES PROGRAM
PROGRAM

Chapter 10
TRIGGER command

10-252

ARGUMENT datavalue NUMBER
SHOW 'description of triggering object = '
DESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('value being assigned = ' datavalue)
SHOW ' '
END

2. Add the Assign trigger to the definition of the formula using the following
statements.

CONSIDER f_modified_sales
TRIGGER ASSIGN trigger_assign_modified_sales

Issuing a FULLDSC f_modified_sales statement displays the new complete definition
for f_modified_sales.

DEFINE F_MODIFIED_SALES FORMULA DECIMAL <TIME.D GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales+20

3. Now when you issue the following statement to assign a value to f_modified_sales,
an error does not occur. Instead, the trigger_assign_modified_sales trigger
program executes 16 times, once for each dimension value of sales.

f_modified_sales = 3

description of triggering object =
DEFINE F_MODIFIED_SALES FORMULA DECIMAL <TIME.D GEOG.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
EQ sales+20
calltype = TRIGGER
triggering event = ASSIGN
value being assigned = 3.00
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =
...
description of triggering object =

Chapter 10
TRIGGER command

10-253

...
description of triggering object =
...
description of triggering object =
...

4. However, as issuing a REPORT statement for f_modified_sales illustrates, the
values calculated by a simple execution of the formula have not changed.

report f_modified_sales

 -------------F_MODIFIED_SALES--------------
 ------------------TIME.D-------------------
GEOG.D Jan2004 Feb2004 Mar2004 2004
-------------- ---------- ---------- ---------- ----------
Boston 24.00 24.66 25.91 NA
Medford 24.37 25.80 24.45 NA
San Diego 24.97 25.95 24.75 NA
Sunnydale 25.85 25.26 24.08 NA

TRIGGERASSIGN
Within a program triggered by an Assign event for an object, assigns a value to the
triggering object.

Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGERASSIGN to execute

Note:

"Trigger Programs"

Data Type

The data type of the object to which Oracle OLAP assigns the value.

Syntax

TRIGGERASSIGN value

Parameters

value
The value that you want assigned.

Chapter 10
TRIGGERASSIGN

10-254

Examples

Example 10-166 Assigning an Alternative Value using an Assign Trigger

Assume that you have objects with the following descriptions in your analytic
workspace.

DEFINE GEOG.D DIMENSION TEXT
DEFINE TIME.D DIMENSION TEXT
DEFINE TIME.PARENTREL RELATION TIME.D <TIME.D>
DEFINE SALES VARIABLE DECIMAL <GEOG.D TIME.D>
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>

Assume also that you have populated the sales variable with the values shown in the
following report, but that you have not yet populated the modified_sales variable.

 -----------------------SALES-----------------------
 ----------------------GEOG.D-----------------------
TIME.D Boston Medford San Diego Sunnydale
------------ ------------ ------------ ------------ ------------
Jan76 1,000.00 2,000.00 3,000.00 4,000.00
Feb76 2,000.00 4,000.00 6,000.00 8,000.00
Mar76 3,000.00 6,000.00 9,000.00 12,000.00
76Q1 NA NA NA NA

Now you want to assign values to the modified_sales variable using various
expressions, however, you want to ensure that the values never are less than or equal
to 1,000. You can assure this processing by taking the following steps:

1. Create the following program that checks for values less than or equal to 1000
condition.

DEFINE TRIGGER_ASSIGN_MODIFIED_SALES PROGRAM
PROGRAM
ARGUMENT datavalue DECIMAL
IF datavalue LE 1000
 THEN TRIGGERASSIGN 1000
show 'description of triggering object = '
DESCRIBE &TRIGGER(NAME)
SHOW JOINCHARS ('calltype = ' CALLTYPE)
SHOW JOINCHARS ('triggering event = ' TRIGGER(EVENT))
SHOW JOINCHARS ('triggering subevent = ' TRIGGER(SUBEVENT))
SHOW JOINCHARS ('value passed to program = ' datavalue)
SHOW ' '
END

2. Issue the following statements to add an Assign trigger to the modified_sales
variable. The trigger_assign_modified_sales program is the trigger program.

CONSIDER modified_sales
TRIGGER ASSIGN trigger_assign_modified_sales

3. Assign values to modified_sales.

modified_sales = sales - 1000

4. This statement triggers the execution of the trigger_assign_modified_sales
program for each value that Oracle OLAP assigns.

Chapter 10
TRIGGERASSIGN

10-255

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 0.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 1,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 2,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 3,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 1,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 3,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 5,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN

Chapter 10
TRIGGERASSIGN

10-256

triggering subevent =
value passed to program = 7,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 2,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 5,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 8,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program = 11,000.00

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>
TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

description of triggering object =
DEFINE MODIFIED_SALES VARIABLE DECIMAL <GEOG.D TIME.D>

Chapter 10
TRIGGERASSIGN

10-257

TRIGGER ASSIGN TRIGGER_ASSIGN_MODIFIED_SALES
calltype = TRIGGER
triggering event = ASSIGN
triggering subevent =
value passed to program =

5. The following report of modified_sales shows that all values are at least 1,000.

 ------------------MODIFIED_SALES-------------------
 ----------------------GEOG.D-----------------------
TIME.D Boston Medford San Diego Sunnydale
------------ ------------ ------------ ------------ ------------
Jan76 1,000.00 1,000.00 2,000.00 3,000.00
Feb76 1,000.00 3,000.00 5,000.00 7,000.00
Mar76 2,000.00 5,000.00 8,000.00 11,000.00
76Q1 NA NA NA NA

UNHIDE
The UNHIDE command makes visible the text of a program that has been made
invisible by a HIDE statement. To use UNHIDE, you must know the seed expression
that was used with the HIDE statement when the program was hidden.

Note:

The HIDE command performs simple encoding. For information on using
secure encryption and other security features in Oracle, see About Oracle
Database Security in Oracle Database Security Guide.

Syntax

UNHIDE prog-name seed-exp

Parameters

prog-name
The name of a program whose text has been made invisible by using the HIDE
statement. Do not enclose the program name in quotes.

seed-exp
The single-line text expression that was used in the HIDE statement when "prog-
name" was hidden. The seed expression must be byte-for-byte the same value as you
used in the HIDE statement. Also, because the seed expression is case-sensitive,
specify uppercase and lowercase characters carefully.

Usage Notes

Forgetting the Seed Expression

When you want to use an UNHIDE statement on a program but you have forgotten the
seed expression, you can call Oracle OLAP Products Technical Support for help in
solving your problem. Before calling, make a connection to Oracle OLAP from OLAP
Worksheet, and in Oracle OLAP, attach the analytic workspace that contains the
hidden program.

Chapter 10
UNHIDE

10-258

Examples

Example 10-167 Unhiding Program Text

The following example makes visible the text of a program called sales_rpt. The seed
expression crystal was used when the program was hidden using HIDE.

UNHIDE sales_rpt 'crystal'

UPDATE
The UPDATE command moves analytic workspace changes from a temporary area to
the database table in which the workspace is stored. Typically, you use an UPDATE
statement when you are finished making changes in an analytic workspace; however,
you can also specify UPDATE commands periodically as you go along.

Your changes are not saved until you execute a COMMIT statement, either from
Oracle OLAP or from SQL. When you do not use the UPDATE and COMMIT
commands, changes made to an analytic workspace during your session are
discarded when you end your Oracle session.

Note:

You can detach and reattach an analytic workspace without losing updated
changes, even though they are not committed because the detaching and
reattaching occur within a single database session

Syntax

UPDATE [MULTI [acquired_objects]] [analytic_workspaces]

Parameters

When you do not specify any parameters, the command updates all analytic
workspaces that are attached in read/write non-exclusive and read/write exclusive
modes and all acquired objects (that is, all acquired variables, relations, valuesets, and
dimensions) in all analytic workspaces that are attached in multiwriter mode.

acquired_objects
A list of the names of acquired objects, separated by commas, in analytic workspaces
attached in multiwriter mode. These objects can be any object that you have acquired
using an ACQUIRE statement.
To specify individual partitions of a partitioned variable, use the following syntax.

variable_name (PARTITION partition_name [, PARTITION partition_name]...)

Chapter 10
UPDATE

10-259

Note:

you cannot update an object when it is dimensioned by an acquired and
maintained dimension unless you update that dimension first.

workspaces
A list of names, separated by commas. of one or more workspaces attached in read/
write or multiwriter mode.

Usage Notes

Automatic COMMIT

Many users execute DML statements using SQL*Plus or OLAP Worksheet. Both of
these tools automatically execute a COMMIT statement when you end your session.

Triggering Program Execution When UPDATE Executes

Using the TRIGGER command, you can make an UPDATE statement an event that
automatically executes an OLAP DML program. See "Trigger Programs" for more
information

Shared Workspaces

When you have attached a shared workspace and another user has read/write access,
that user's UPDATE and COMMIT commands do not affect your view of the
workspace. Your view of the data remains the same as when you attached the
workspace. When you want access to the changes, you can detach the workspace
and reattach it.

Effect of a ROLLBACK Statement

The OLAP DML does not provide a way to issue a SQL ROLLBACK statement; however,
you could execute one in your session from outside Oracle OLAP (for example,
through PL/SQL). When a ROLLBACK statement is executed in your session, Oracle
OLAP checks to see whether there are uncommitted updates in an attached
workspace.

• When there are uncommitted updates (that is, you have made changes and
executed an UPDATE statement, but you have not subsequently executed a
COMMIT statement), then Oracle OLAP discards your changes and detaches the
workspace.

• When you have no uncommitted updates, then Oracle OLAP takes no action in
response to a ROLLBACK statement. Consequently, when you have not issued an
UPDATE statement since your last COMMIT statement, Oracle OLAP takes no
action and all your changes remain in the workspace during your session.

When you rollback to a savepoint and there are uncommitted updates that occurred
after the savepoint, Oracle OLAP discards those updates and detaches the
workspace. Uncommitted updates that occurred before the savepoint remain in the
workspace, and you can see them when you reattach the workspace in the same
session.

Chapter 10
UPDATE

10-260

Examples

Example 10-168 Saving Analytic Workspace Changes

The following statement moves changes in the current workspace session to the
database table in which the workspace is stored.

UPDATE

To save the changes in the database, the UPDATE statement must be followed by a
COMMIT statement.

UPDATE_ATTRIBUTE_VALUE
The UPDATE_ATTRIBUTE_VALUE program modifies the attributes of an OLAP cube
dimension member.

This program is especially useful when updating the following kinds of attributes:

• For attributes with an underlying relation or indexed dimension, you need only to
provide the dimension member and value. The indexed dimension is maintained
along with setting the value in the relation.

• For spread attributes, if you set an attribute value on an attribute spanning all
levels, then the values are spread down to lower levels on compile.

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL UPDATE_ATTRIBUTE_MEMBER(dim_member_id, attribute_name,
attribute_value -

[, auto_compile])

Parameters

CALL
Because UPDATE_ATTRIBUTE_VALUE is an OLAP DML program with arguments,
you invoke it using the OLAP DML CALL statement.

dim_member_id
A text expression that is the value of the cube dimension member that you want to
modify the attributes of.

Chapter 10
UPDATE_ATTRIBUTE_VALUE

10-261

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension of
which dim_member_id is a member.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

attribute_name
A text expression that is the Oracle data dictionary name of the attribute.

attribute_value
A text expression that specifies the value of attribute_name.

auto_compile
A Boolean expression that specifies whether or not you want related analytic
workspace objects to be updated immediately.
The default value is TRUE in which case all of the changes to the analytic workspace
that are needed to update the attribute of the cube dimension member happen now.
Specify FALSE only when, for performance reasons, you want to make a bulk set of
changes before issuing a compile. In this case, you need to explicitly compile the
cube dimension before the values of the analytic workspace objects take effect as
described in "Explicitly Compiling a Cube Dimension".

Note:

Regardless of the value that you specify for this argument, the attribute of the
dimension member is always immediately updated -- even when an error is
signaled during compilation.

Examples

Example 10-169 Updating the Attributes of an OLAP Cube Dimension

This example uses the UPDATE_ATTRIBUTE_VALUE program provided with the
OLAP DML to update attributes of the my_time cube dimension for the L1-2 and the
descendants of L1-2. The calls to the UPDATE_ATTRIBUTE_VALUE program
provided with the OLAP DML are within a user-written OLAP DML program named
ADD_L1_2_DATE.

1. Issue the following PL/SQL statement to execute the user-written OLAP DML
program named ADD_L1_2_DATE to set time attribute values for L1_2 and its
descendants

exec dbms_aw.execute('call my_util_aw!add_l1_2_dates');

The definition of the user-written ADD_L1_2_DATE OLAP DML program is shown
below. Notice the calls to the UPDATE_ATTRIBUTE_VALUE program provided
with the OLAP DML.

DEFINE ADD_L1_2_DATES PROGRAM
PROGRAM
 VARIABLE _aw_dim text
 VARIABLE _start_date text

Chapter 10
UPDATE_ATTRIBUTE_VALUE

10-262

 VARIABLE _timespan text

 _aw_dim = OBJORG(DIM 'my_time')
 _start_date = OBJORG(ATTRIBUTE 'my_time' 'start_date')
 _timespan = OBJORG(ATTRIBUTE 'MY_TIME' 'timespan')

 " Updates the time attribute of L1_2, L2_3, L3_6, but does not compile
 CALL UPDATE_ATTRIBUTE_VALUE('L1_2', 'my_time', 'start_date', -
 &_start_date(&_aw_dim 'L1_1')+365, NO)
 CALL UPDATE_ATTRIBUTE_VALUE('L1_2', 'my_time', 'timespan', -
 &_timespan(&_aw_dim 'L1_1'), NO)

 CALL UPDATE_ATTRIBUTE_VALUE('L2_3', 'my_time', 'start_date', -
 &_start_date(&_aw_dim 'L1_2'), NO)
 CALL UPDATE_ATTRIBUTE_VALUE('L2_3', 'my_time', 'timespan', -
 &_timespan(&_aw_dim 'L2_1'), NO)

 CALL UPDATE_ATTRIBUTE_VALUE('L3_6', 'my_time', 'start_date', -
 &_start_date(&_aw_dim 'L1_2'), NO)
 CALL UPDATE_ATTRIBUTE_VALUE('L3_6', 'my_time', 'timespan', -
 &_timespan(&_aw_dim 'L3_1'), NO)
 UPDATE
 COMMIT
END

2. Issue the following SQL statement to see what the attributes of the my_time cube
dimension are.

select dim_key||' '||start_date||' '||lpad(timespan, 3)
 from my_time_view
 order by dim_key asc;

DIM_KEY||''||START_DATE||''||LPAD(TIMESPAN,3)
--
L1_0 01-JAN-09 365
L1_1 01-JAN-10 365
L1_2 01-JAN-11 365
L2_1 01-JAN-10 90
L2_2 01-APR-10 61
L2_3 01-JAN-11 90
L3_1 01-JAN-10 31
L3_2 01-FEB-10 28
L3_3 01-MAR-10 31
L3_4 01-APR-10 30
L3_5 01-MAY-10 31
L3_6 01-JAN-11 31

12 rows selected.

3. Issue the following SQL statement to report the values of the sales and
moving_sales measures before the my_time cube dimension is compiled. Note that
the calculation for the measures does not consider the new attributes of the
my_time cube dimension.

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
from my_cube_view
order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_0 24 27

Chapter 10
UPDATE_ATTRIBUTE_VALUE

10-263

L1_1 14 38
L1_2 3 3
L2_1 2 5
L2_2 12 14
L2_3 3 3
L3_1 1 4
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2
L3_6 3 3

12 rows selected.

4. Issue the following SQL statement to compile the my_time cube dimension.

exec dbms_cube.build('MY_TIME USING (COMPILE)');

5. Issue the following SQL statement to report the values of the sales and
moving_sales measures after the my_time cube dimension is compiled. Note that
now the calculation for the measures considers the new attributes of the my_time
cube dimension

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
 from my_cube_view
 order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_0 24 24
L1_1 14 38
L1_2 3 17
L2_1 2 2
L2_2 12 14
L2_3 3 15
L3_1 1 1
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2
L3_6 3 4

12 rows selected.

UPDATE_DIMENSION_MEMBER
The UPDATE_DIMENSION_MEMBER program sets the level and the parent of an
OLAP cube dimension member in one or more hierarchies.

Note:

You cannot use this program to modify a cube dimension if a materialized view
exists for that cube dimension or any cube in which it participates.

Chapter 10
UPDATE_DIMENSION_MEMBER

10-264

See Also:

"Cube-Aware OLAP DML Statements"

Syntax

CALL UPDATE_DIMENSION_MEMBER(member_id, logical_dim, hier_list,
level_name, -

parent-member_id [, auto_compile])

Parameters

CALL
Because UPDATE_DIMENSION_MEMBER is an OLAP DML program with
arguments, you invoke it using the OLAP DML CALL statement.

member_id
A text expression that is the member for which you want to set the level and parent
information.

logical_dim
A text expression that is the Oracle data dictionary name of the cube dimension being
modified.

See Also:

"Guidelines for Specifying Values for the Names of Logical OLAP Objects"

hier_list
A multi-line text expression consisting of the Oracle data dictionary names of all of the
hierarchies that you want to set the level and parent for the dimension member.
Specify one hierarchy name per line.
When you want to specify information for the member in all hierarchies of the cube
dimension, specify NA.

level_name
For level hierarchies, a text value that specifies the hierarchy level at which the
program will set the member of the cube dimension. For level hierarchies, the value
you specify for level_name must be:

• Compatible with the value you specify for parent_member_id

• At the same hierarchy level as the existing cube dimension member because a
cube dimension member cannot be in two different levels across hierarchies.

When the member participates in a value hierarchy (that is, when there are no levels),
specify NA.

Chapter 10
UPDATE_DIMENSION_MEMBER

10-265

See Also:

"Invalid Level Names in Cube-Aware OLAP DML Statements"

parent_member_id
A text expression that specifies the value of the member which is the parent of the
dimension member that you want to add to the hierarchy of the cube dimension.
Specify NA when you want to add the dimension member as the top member.

auto_compile
A Boolean expression that specifies whether or not you want your changes to take
effect immediately. The default value is TRUE in which case all of the changes to the
analytic workspace that are needed to add the cube dimension member happen now.
Specify FALSE only when, for performance reasons, you want to make a bulk set of
changes before issuing a compile. In this case, you need to explicitly compile the
cube dimension before the values of the analytic workspace objects take effect (for
example, before attribute values are spread down or for time dimension valuesets to
be updated), as described in "Explicitly Compiling a Cube Dimension".

Examples

Example 10-170 Changing the Hierarchy of an OLAP Cube Dimension

Assume that you have a hierarchical cube dimension named my_time and you want to
change its hierarchy by moving the value L3_2 from the top-level to being a child of
L2_2.

1. Execute the following SQL statement to report on the values of the my_time cube
dimension before the move.

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

DIM_KEY||''||LEVEL_NAME||''||PARENT
--
L1_0 L1
L1_1 L1
L2_1 L2 L1_1
L2_2 L2 L1_1
L3_1 L3 L2_1
L3_2 L3 L2_1
L3_3 L3 L2_1
L3_4 L3 L2_2
L3_5 L3 L2_2

9 rows selected.

2. Issue the following PL/SQL statement that calls the user-written MOVE_L3_3
program to make the move.

exec dbms_aw.execute('call my_util_aw!move_l3_3');

As you can see from the following definition of the MOVE_L3_3 program, the
actual move is performed by a CALL to the PDATE_DIMENSION_MEMBER
program provided with the OLAP DML.

Chapter 10
UPDATE_DIMENSION_MEMBER

10-266

DEFINE MOVE_L3_3 PROGRAM
PROGRAM

 " Change the parent of L3_2 to L2_2
 CALL UPDATE_DIMENSION_MEMBER('L3_3', 'my_time', NA, 'L3', 'L2_2')
 UPDATE
 C0MMIT
END

3. Issue the following statement to report the values of the my_time dimension after
the move

select dim_key||' '||level_name||' '||parent
 from my_time_lvl_hier_view
 order by dim_key asc;

DIM_KEY||''||LEVEL_NAME||''||PARENT
--
L1_0 L1
L1_1 L1
L2_1 L2 L1_1
L2_2 L2 L1_1
L3_1 L3 L2_1
L3_2 L3 L2_1
L3_3 L3 L2_2
L3_4 L3 L2_2
L3_5 L3 L2_2

9 rows selected.

4. Issue the following statement to solve my_cube with new hierarchy of my_time.

exec dbms_cube.build(script => 'MY_CUBE USING (SOLVE)', add_dimensions => false);

5. Issue the following statement to report on the values of sales and moving_sales
(the measures in my_cube) now that my_time has a new hierarchy.

select my_time||' '||lpad(sales, 2)||' '||lpad(moving_sales, 2)
 from my_cube_view
 order by my_time asc;

MY_TIME||''||LPAD(SALES,2)||''||LPAD(MOVING_SALES,2)
--
L1_0 24 24
L1_1 14 38
L2_1 2 2
L2_2 12 14
L3_1 1 1
L3_2 1 2
L3_3 10 11
L3_4 1 11
L3_5 1 2

9 rows selected.

Chapter 10
UPDATE_DIMENSION_MEMBER

10-267

VARIABLE
Within an OLAP DML program, the VARIABLE command declares a local variable or
valueset for use within that program. A local variable cannot have any dimensions and
exists only while the program is running.

See Also:

DEFINE VARIABLE command

Syntax

VARIABLE name {datatype|dimension|VALUESET dim}

Parameters

name
The name for the local variable or valueset. When you use the same name as an
existing analytic workspace object, the local variable or valueset takes precedence
over the analytic workspace object. After you assign a value to the variable or
valueset, its value is available within the program where the VARIABLE statement
occurs. You name a variable or valueset according to the rules for naming analytic
workspace objects (see the main entry for the DEFINE command).

datatype
The data type of the variable, which indicates the kind of data to be stored. You can
specify any of the data types that are listed and described in the DEFINE VARIABLE
entry. Also, when you want to the program to be able to receive an argument without
converting it to a specific data type, you can also specify WORKSHEET for the data type.

dimension
Indicates that name is a relation variable, which holds a single value of the specified
dimension. The variable can hold a value of the dimension or a position (INTEGER) of
the specified dimension. Assigning a value that does not currently exist in the
dimension causes an error.

VALUESET dim
Indicates that name is a valueset. The dim argument is the name of the dimension for
which the valueset holds values.

Usage Notes

Persistence of a Local Variable

A local variable or valueset exists only while the program that specified it is running.
When the program terminates, the variable or valueset ceases to exist and its value is
lost. A program can terminate when a RETURN statement, SIGNAL statement, or the
last line of the program executes. When the program calls another program, the
original program is temporarily suspended and the variable or valueset does exist
when the called program ends and control returns to the original program. A program
that calls itself recursively has separate local variable or valuesets for each running
copy of the program.

Chapter 10
VARIABLE

10-268

Declarations at the Start Of A Program

You must specify all your local variables or valuesets at the beginning of a program,
before any executable statements.

Initial Value of a Local Variable or Valueset

The value of a local variable or valueset is initially NA.

Duplicating the Name of an Analytic Workspace Object

When you give a local variable or valueset the same name as an analytic workspace
object, Oracle OLAP assumes you are referring to the local variable or valueset within
the program. The analytic workspace object has priority only when the statement
requires an analytic workspace object as an argument.

Although the OBJ and EXISTS functions expect an analytic workspace object as an
argument, you can use a local text variable or valueset to specify the name of an
object.

Formulas and Models

You cannot use local variables or valuesets in a formula or model.

EXPORT and IMPORT Commands

In a program, you can use an EXPORT (EIF) statement to store the value of a local
variable or valueset in an EIF file. You must use the AS keyword to give the variable or
valueset an analytic workspace object name. The name can be the same as the name
of the local variable or valueset. When you use IMPORT (EIF) to retrieve the value, it
is stored as an analytic workspace object. You cannot import the value into a local
variable or valueset.

Examples

Example 10-171 Saving a File Unit Number

Suppose you want to write a program to read data from an input file with Data Reader
statements. First you must open the file and save the value of the file unit number
assigned to it. At the beginning of the program you can specify a local variable called
unit to hold the file unit number.

DEFINE read.file PROGRAM
LD Read monthly sales data into the analytic workspace
PROGRAM
VARIABLE unit INTEGER
TRAP ON error
unit = FILEOPEN('sales.data' READ)
...

Example 10-172 Returning a Dimension Value from a Program

Suppose you want to write a program that analyzes sales for various districts and
returns the name of the district in which sales were highest. For the purpose of
analysis, the program defines a local variable to hold the district name. When the
program ends, it returns the value of the local variable.

DEFINE highsales PROGRAM
PROGRAM
VARIABLE districtname district
... "(statements that find the highest district)

Chapter 10
VARIABLE

10-269

RETURN districtname
END

VNF
The VNF command assigns a value name format (VNF) to the definition of an object
with DATE -only data type, including dimensions of type DAY, WEEK, MONTH,
QUARTER, or YEAR. A VNF is a template that controls the input and display format
for DATE -only values. The template can include format specifications for any of the
components that identify a time period (day, month, calendar year, fiscal year, and
period within a fiscal year).

Note:

You can only use this statement with dimensions that have a data type of DATE
(that is, dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR).You
cannot use this statement for time dimensions that have a datetime data type
that corresponds to a SQL datetime data type or dimensions that are
implemented as hierarchical dimensions of type TEXT.

To assign a VNF to a definition, the definition must be the one most recently defined or
considered during the current session. When it is not, you must first use a CONSIDER
statement to make it the current definition.

Syntax

VNF [template]

Parameters

template
A text expression that specifies the format for entering and displaying the values of
the current dimension. When template is omitted, any existing VNF for the current
definition is deleted and the default VNF is used (see the Default VNFs for DWMQY
Dimensions table in Date-only Dimension Values).

Note:

When you enter a dimension value that does not conform to the VNF, Oracle
OLAP attempts to interpret the value as a date. See "Entering Dimension
Values as Dates"

A template contains a code for each component that you use to describe a time
period in the current dimension. The code for each component must be preceded by a
left angle bracket and followed by a right angle bracket. Basic information about
coding a template is provided in Basic Codes for Components in VNF Templates,
Component Combinations Allowed in VNF Templates, and Format Styles for Day
Available in VNF Templates.

Chapter 10
VNF

10-270

The following table lists the basic codes for the components of time periods. It uses a
sample dimension called MYQTR, which is a QUARTER dimension that ends in June.
The examples are from the quarter July 1, 1995 through September 30, 1995. The
period code (P) specifies the numeric position of a time period within a fiscal year. You
can use the P code with any dimension, but only when you use it along with the FF or
FFB code. The B code specifies the beginning period.

Code Meaning Sample
Values

<D> Day of the month on which the period ends 30

<M> Month in which the period end 9

<YY> Calendar year in which the period ends 95

<FF> Fiscal year that contains the period; the fiscal year
is identified by the calendar year in which the fiscal
year ends

96

<DB> Day of the month on which the period begins 1

<MB> Month in which the period begins 7

<YYB> Calendar year in which the period begins 95

<FFB> Fiscal year that contains the period; the fiscal year
is identified by the calendar year in which the fiscal
year begins

95

<P> The period's numeric position within the fiscal year 1

<NAME> Name of the dimension MYQTR

The following table lists the component combinations you can combine in a VNF for
each type of dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR. Notice
that you can use the fiscal year codes (FF or FFB) in a template for any dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR. However, the fiscal year codes
have a special meaning for WEEK dimensions and for phased MONTH, QUARTER,
and YEAR dimensions. For other dimensions, the fiscal year is identical to the
calendar year. See "Fiscal Years for a Dimension of Type WEEK", "Fiscal Years for
Dimensions of Type MONTH, QUARTER, or YEAR", and "Fiscal Years for
Dimensions of Type DAY".

Type of Dimension Component
Combinations

Sample
Values

DAY, WEEK, MONTH, QUARTER,
YEAR

<D> <M> <YY>

<DB> <MB> <YYB>

<P> <FF>

<P> <FFB>

31 3 96

1 4 95

1 96

1 95

MONTH, QUARTER, YEAR <M> <YY>

<MB> <YYB>

<M> <FF>

<M> <FFB>

<MB> <FF>

<MB <FFB>

3 96

4 95

3 96

3 95

4 96

4 95

YEAR <YY>

<FF>

<FFB>

96

96

95

Chapter 10
VNF

10-271

Notice that instead of the basic codes listed in Component Combinations Allowed in
VNF Templates, you can substitute any of the format styles listed in Format Styles for
Day Available in VNF Templates. You can also include the <NAME> component with any
of the component combinations listed in Component Combinations Allowed in VNF
Templates.
You cannot specify a template that includes too few or too many components. The
VNF must allow you to input dimension values without ambiguity. See "Coding VNFs
to Prevent Ambiguity".
However, if you include only the component combinations that are allowed for a
particular type of dimension, and if the VNF permits unambiguous interpretation of
input, you have considerable flexibility in specifying a VNF template:

• You can specify the components in any order.

• You can include text before, after, and between the components.

Instead of the basic codes for the day, month, calendar year, fiscal year, and period
that were listed in Component Combinations Allowed in VNF Templates, you can
substitute the format styles listed in Format Styles for Day Available in VNF,
Table 10-15, Table 10-16, and Table 10-17.

Format Meaning Jan 3,
1995

Nov 12,
2051

<D> One digit or two digits 3 12

<DD> Two digits 03 12

<DS> Space-padded, two digits 3 12

Format Meaning Jan 3,
1995

Nov 12,
2051

<M> One digit or two digits 1 11

<MM> Two digits 01 11

<MS> Space-padded, two digits 1 11

<MTXT> First three letters, uppercase JAN NOV

<MTXTL> First three letters, lowercase jan nov

<MTEXT> Full name, uppercase JANUARY NOVEMBER

<MTEXTL> Full name, lowercase january november

Note that for MTXT, MTXTL, MTEXT, and MTEXTL, the actual value displayed depends on the
value specified for the MONTHNAMES option:

• For MTXT and MTEXT, when the name in the MONTHNAMES option is all
lowercase, the entire name is converted to uppercase. Otherwise, the first letter is
converted to uppercase and the second and subsequent letters remain in their
original case.

• For MTXTL and MTEXTL, when the name in the MONTHNAMES option is all
uppercase, the entire name is converted to lowercase. Otherwise the first letter is
converted to lowercase and the second and subsequent letters remain in their
original case.

Format Meaning Jan 3,
1995

Nov 12,
2051

<YY> Two digits or four digits 95 2051

Chapter 10
VNF

10-272

Format Meaning Jan 3,
1995

Nov 12,
2051

<YYYY> Four digits 1995 2051

<FF> Two digits or four digits 95 2051

<FFFF> Four digits 1995 2051

Format Meaning Jan 3,
1995

Nov 12,
2051

<P> One, two, or three digits 3 316

<PP> Two or three digits 03 316

<PS> Space-padded, two or three digits 3 316

<PPP> Three digits 003 316

<PPS> Space-padded, three digits 3 316

Usage Notes

Discarding a VNF

When you want to discard a VNF for a dimension and return to using the default VNF,
use a CONSIDER statement to make the dimension's definition the current one, and
then use a VNF statement with no argument.

Specifying Angle Brackets as Text in a VNF Template

To include an angle bracket as additional text in a template, specify two additional
angle brackets for each angle bracket to be included as text (for example, to display
the entire value in angle brackets, specify <<<D> <M> <YY>>>).

Month Names

The names used in the month component for the MTXT, MTXTL, MTEXT, and MTEXTL formats
are drawn from the current setting of the MONTHNAMES option.

Fiscal Year Codes

You can use a fiscal year code (FF or FFB) in a template for any dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR.

Fiscal Years for a Dimension of Type WEEK

For a dimension of type WEEK, a fiscal year starts on the beginning date of the first
period (single-week or multiple-week) that ends in a new calendar year. The fiscal year
ends on the final date of the final period that is wholly contained in the calendar year.

This definition holds true, regardless of any beginning or ending date you specify for a
WEEK dimension when you define it. However, the fiscal year does take into account
the beginning or ending day of the week that you specify (either as a day of the week
or as a date).

For example, suppose you define a dimension of type WEEK, named myweek, with
single-week periods ending on June 2, 1995 (a Friday). The fiscal year that contains
June 2, 1995 begins on December 31, 1994 (a Saturday) and ends on December 29,
1995 (a Friday). When the VNF for myweek has the FF code, this fiscal year is identified
as 1995. When the VNF has the FFB code, the fiscal year is identified as 1994.

Chapter 10
VNF

10-273

Fiscal Years for Dimensions of Type MONTH, QUARTER, or YEAR

For a dimension of type MONTH, QUERTER, or YEAR with no beginning or ending
phase, the fiscal year is identical to the calendar year.

For a MONTH, QUARTER, or YEAR dimension with a beginning or ending phase,
each fiscal year for that dimension begins with the beginning month of the phase and
ends with the ending month of the phase.

For example, assume you define a dimension of type MONTH, mymonth, with four-
month periods ending in March, each fiscal year begins on April 1 and ends on
March 31. When you use the FF code in a VNF for MYMONTH, the fiscal year that
starts on April 1, 1995 and ends on March 31, 1996 is identified as 1996. When you
use the FFB code, this fiscal year is identified as 1995.

Fiscal Years for Dimensions of Type DAY

For a dimension of type DAY, the fiscal year is identical to the calendar year.

Out-of-Range Years in a VNF

When a VNF specifies a YY, YYB, FF, or FFB format, and a year outside the range of
1950 to 2049 is to be displayed, the year is displayed in four digits. You must also
supply all four digits when you enter the year as input.

Coding VNFs to Prevent Ambiguity

A VNF template must allow you to input dimension values unambiguously. To prevent
ambiguity, you must observe the following restrictions when you code a VNF template:

• You cannot place a letter (either in a component code or in literal text) immediately
after a text component of unspecified length (for example, <MTEXT>, which specifies
a full month name of any length).

• You cannot place a digit (either in a component code or in literal text) immediately
after a numeric component of unspecified length (for example, <M>, which can be
one digit or two digits, or <YY>, which can be two digits or four digits).

Coding VNFs for Model Dimensions

When you define a model that contains equations based on a dimension of type DAY,
WEEK, MONTH, QUARTER, or YEAR, the VNF for the that dimension must specify
dimension values with these format characteristics: the value must start with a letter,
and it can contain only letters, digits, underscores, and periods.

Entering Dimension Values

Once you have assigned a VNF to a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you cannot use the default VNF for entering values for that
dimension. You must enter values in the format of your VNF or as dates.

Entering Dimension Values in VNF Format

When you enter dimension values in a VNF format, you have the following flexibility:

• Letters (either in a component or in literal text) can be either uppercase or
lowercase, rather than matching the exact capitalization indicated by the VNF.

• When the template specifies <MTXT> or <MTXTL>, which indicate the first three letters
of the month name, you can include as much of the month name as you want,
from the first three letters to the full month name. When the template specifies
<MTEXT> or <MTEXTL>, which indicate a month name of indeterminate length, you can

Chapter 10
VNF

10-274

include as much of the name as you want, from the first letter to the full month
name. In all cases, however, you must provide enough letters to uniquely match a
name in the MONTHNAMES option. For example, to distinguish April from August,
you must type at least the first two letters of these names.

• You can include as many or as few spaces as you want between components or
between text elements in a dimension value.

• When the template contains date components that are not essential for identifying
a time period for a particular dimension, you can specify any date that falls within
the desired time period. For example, the <DD> component of the template
<DD><MTXT><YY> is not essential for identifying a period in a MONTH dimension.
Therefore, for June 1995 you can specify any date from 01JUN95 through 30JUN95.

Entering Dimension Values as Dates

When you enter a value of a dimension of type DAY, WEEK, MONTH, QUARTER, or
YEAR as a date, you can use any of the input styles listed in the DATEORDER entry.
When you specify a full date, Oracle OLAP uses the DATEORDER option to resolve
any ambiguities. However, you must specify only the date components that are
relevant for the type of dimension you are using:

• For a DAY or WEEK dimension, you must enter all the components (day, month,
and year).

• For a MONTH or QUARTER dimension, you must only enter the month and year
components. When you enter an ambiguous value, such as '0106', Oracle OLAP
uses the first two characters of the DATEORDER option to resolve the ambiguity.
Therefore, the DATEORDER option must be MYD or YMD in this situation.

• For a YEAR dimension, you must only enter the year.

Overriding a VNF

For additional flexibility in displaying the values of a dimension of type DAY, WEEK,
MONTH, QUARTER, or YEAR, you can override the dimension's VNF (and the default
VNF when the dimension has no VNF of its own) by using the CONVERT function with
a VNF argument.

The VNF argument to CONVERT enables you to include all the template codes that
are permitted in the template for a VNF statement, but it does not prevent you from
specifying too few components or more components than are necessary for identifying
a value. In addition, the VNF argument enables you to use additional codes that are
not allowed in the VNF template.

Examples

Example 10-173 Assigning a VNF for a Dimension of Type MONTH

The following statements provide a VNF for the existing dimension of type MONTH
named month.

CONSIDER month
VNF <mtextl>, <yyyy>

Example 10-174 Adding Values to a Dimension of Type Month

The following statements add dimension values in the style of the new VNF, using just
enough letters to distinguish the month names rather than the full names that the
<MTEXTL> code in the VNF specifies.

Chapter 10
VNF

10-275

MAINTAIN month ADD 'JA, 1995' 'MAR, 1995'
Limit month TO LAST 3
REPORT month

These statements produce the following output.

MONTH

January, 1995
February, 1995
March, 1995

Note that Oracle OLAP automatically adds the time periods between the ones you
specify in the MAINTAIN statement.

Example 10-175 Assigning a VNF for WEEK

The following statements define a dimension of type WEEK named week, add a VNF to
the week definition, and add values to the week dimension.

DEFINE week DIMENSION WEEK
VNF Week <p>.<ff>
MAINTAIN week ADD '01JAN95' '30JAN95'
REPORT week

These statements produce the following output.

WEEK

Week 1.95
Week 2.95
Week 3.95
Week 4.95
Week 5.95

When you use a MAINTAIN statement to add values to the week dimension, you can
specify the new values as dates rather than as values that conform to the VNF.
However, the VNF is used for displaying output in the desired format.

WHILE
The WHILE command repeatedly executes a statement while the value of a Boolean
expression remains TRUE. You can only use WHILE within a program.

Syntax

WHILE boolean-expression statement block

Parameters

boolean-expression
Serves as the criterion for statement execution. While the expression remains TRUE,
statement is repeatedly executed. When the expression becomes FALSE, the execution
of statement ceases, and the program continues with the next line. Ensure that
something in the statement (or statements) eventually causes the Boolean expression
to become FALSE; otherwise, the code becomes an endless loop.

Chapter 10
WHILE

10-276

statement block
One or more statements to be executed while the Boolean expression is TRUE. You
can execute two or more statements by enclosing them within DO ... DOEND
brackets. The DO statement should follow immediately after the WHILE statement.

Usage Notes

WHILE Compared to IF

The WHILE statement's main use is as an alternative to the IF...THEN...ELSE
comand.When you want one or more statements in your program to execute
repeatedly while a Boolean expression remains TRUE, you use WHILE. When you want
them to execute only once when a Boolean expression is TRUE, you use IF.

Boolean Constant

You can specify a constant for the Boolean expression. When your statement is
WHILE TRUE, make sure to include a BREAK, RETURN, or EXIT statement between
DO ... DOEND so the program can finish the loop.

Branching in a Loop

You can use the BREAK, CONTINUE, and GOTO commands to branch within, or out
of, a WHILE loop, thereby altering the sequence of statement execution.

Examples

Example 10-176 Using a WHILE Loop in a Program

In the following program lines, the statements following DO are executed when the
Boolean expression count LT 10 is TRUE. Within the loop, the code searches for an
instance of some condition and, when it finds one, it adds 1 to count. When count
reaches 10, the loop ends. The code in the loop must ensure that count will, at some
time, reach 10. Otherwise, the loop never ends.

WHILE count LT 10
 DO
 ..." (statements)
 IF
 count = count + 1
 DOEND

ZEROTOTAL
The ZEROTOTAL command resets one or all subtotals of specified report columns to
zero. You use the ZEROTOTAL command when you produce reports with the ROW
command.

Note:

ZEROTOTAL affects the results returned by the RUNTOTAL and SUBSTR
functions.

Syntax

ZEROTOTAL [{n|ALL} [column1 columnN]]

Chapter 10
ZEROTOTAL

10-277

Parameters

ZEROTOTAL with no arguments resets all subtotals in all columns to zero.

n
An INTEGER expression that specifies one of the 32 subtotals (1 to 32) Oracle OLAP
accumulates for each numeric column in a report. For the specified columns, this
subtotal is set to zero.

ALL
Sets all 32 subtotals to zero for the specified columns. ALL is the default when there
are no arguments. To reset all the subtotals to zero for specific columns, you must
include ALL in the statement.

ZEROTOTAL ALL 1 4 7

column
The column number of a report column. Column number 1 refers to the left-most
column in a report, regardless of the type of data it contains. When you do not supply
any column number arguments, Oracle OLAP sets the specified subtotal (or all
subtotals) to zero for all the columns in the report.

Usage Notes

Initializing Column Subtotals

When you use the ROW command to produce a report, use a ZEROTOTAL statement
at the beginning of the report program to initialize all 32 subtotals for all columns to
zero. The REPORT statement automatically resets all subtotals to zero before
producing output.

Resetting Column Subtotals

You can also use ZEROTOTAL in a report program when you only want to reset some
subtotals or when you want to start accumulating new subtotals without inserting the
subtotals accumulated so far. A subtotal is automatically reset to zero after it is
accessed with the SUBSTR function in its own column. However, a subtotal is not
reset to zero after it is accessed with the RUNTOTALRUNTOTAL function.

Examples

Example 10-177 Resetting All Report Column Subtotals

In a report, you want to show a dollar sales total, followed by a detailed summary of
unit sales for each district. You also want to show a total for unit sales at the end of the
report, but you do not want the dollar sales figures included in that total. After
generating the total dollar sales, use ZEROTOTAL to reset all your subtotals to zero.
Then when you use SUBTOTAL(1) later in the report, it only totals the unit sales for each
district.

Suppose you have these statement lines in your program.

LIMIT product TO 'Footwear'
LIMIT month TO 'Jul96' TO 'Sep96'
ROW 'Total Dollar Sales' ACROSS month: -
 DECIMAL 0 TOTAL(sales month)
BLANK
ROW 'Unit Sales'
ZEROTOTAL ALL

Chapter 10
ZEROTOTAL

10-278

FOR district
 ROW INDENT 5 district ACROSS month: units
ROW 'Total Unit Sales' ACROSS month: -
 OVER '-' SUBTOTAL(1)

These statements produce the following output.

Total Dollar Sales 607,552 581,229 658,850

Unit Sales
 Boston 3,538 3,369 3,875
 Atlanta 4,058 3,866 4,251
 Chicago 3,943 3,509 4,058
 Dallas 814 824 867
 Denver 1,581 1,532 1,667
 Seattle 2,053 2,193 2,617
 ---------- ---------- ----------
Total Unit Sales 15,987.00 15,293.00 17,335.00

Chapter 10
ZEROTOTAL

10-279

A
OLAP_TABLE SQL Functions

This appendix contains reference documentation for the following SQL functions that
you can use to extract multidimensional data from an analytic workspace and present
it in the two-dimensional format of a relational table:

• Creating Relational Views Using OLAP_TABLE

• Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements

• OLAP_TABLE

• OLAP_CONDITION

• OLAP_EXPRESSION

• OLAP_EXPRESSION_BOOL

• OLAP_EXPRESSION_DATE

• OLAP_EXPRESSION_TEXT

Creating Relational Views Using OLAP_TABLE
OLAP_TABLE is a SQL function that returns a table of objects that can be joined to
relational tables and views, and to other tables of objects populated by OLAP_TABLE.
Within a SQL statement, you can specify an OLAP_TABLE function call wherever you
would provide the name of a table or view.

OLAP_TABLE uses a limit map to map dimensions and measures defined in an analytic
workspace to columns in a logical table. The limit map combines with the WHERE clause
of a SQL SELECT statement to generate a series of OLAP DML LIMIT commands that
are executed in the analytic workspace.

OLAP_TABLE can use a limit map with a predefined logical table, or it can use the
information in a limit map to dynamically generate a logical table at run time.

See Also:

• LIMIT command

• The discussion of the limit_map parameter of OLAP_TABLE

• "Creating Logical Tables for Use by OLAP_TABLE"

• "Required OLAP DML Objects"

• "Creating Logical Tables for Use by OLAP_TABLE"

• "Creating Logical Tables for Use by OLAP_TABLE"

• "Creating Logical Tables for Use by OLAP_TABLE"

A-1

Required OLAP DML Objects
Several objects must be predefined within the analytic workspace to support the
mapping of dimension hierarchies in the limit map:

• a parent relation, which identifies the parent of each dimension member within a
hierarchy. See "Parentrel Relation" for more information.

• a hierarchy dimension, which lists the hierarchies of a dimension. See "Hierlist
Dimension" for more information.

• an inhierarchy variable or valueset, which specifies which dimension members
belong to each level of a hierarchy. See "Inhier Valueset or Variable" for more
information.

• a grouping ID variable, which identifies the depth within a hierarchy of each
dimension member. See "Gidrel Relation" for more information.

• a family relation, which provides the full parentage of each dimension member in
a hierarchy. See "Familyrel Relation" for more information.

• a level dimension, which lists the levels of a dimension. See "Levellist
Dimension" for more information.

Creating Logical Tables for Use by OLAP_TABLE
The logical table populated by OLAP_TABLE is actually a table type whose rows are user-
defined object types, also known as Abstract Data Types or ADTs.

A user-defined object type is composed of attributes, which are equivalent to the
columns of a table. The basic syntax for defining a row is as follows.

CREATE TYPE object_name AS OBJECT (
 attribute1 datatype,
 attribute2 datatype,
 attributen datatype);

A table type is a collection of object types; this collection is equivalent to the rows of a
table. The basic syntax for creating a table type is as follows.

CREATE TYPE table_name AS TABLE OF object_name;

OLAP_TABLE can use a limit map with a predefined logical table, or it can use the
information in a limit map to dynamically generate a logical table at run time.

See Also:

• "Using OLAP_TABLE With Predefined ADTs"

• "Using OLAP_TABLE With Automatic ADTs"

• About Object Types in Oracle Database Object-Relational Developer's
Guide for information about object types

• CREATE TYPE in Oracle Database SQL Language Reference

Appendix A
Creating Relational Views Using OLAP_TABLE

A-2

Using OLAP_TABLE With Predefined ADTs
You can predefine the table of objects or generate it dynamically. When you create the
table type in advance, it is available in the database for use by any invocation of
OLAP_TABLE. Queries that use predefined objects typically perform better than queries
that dynamically generate the objects.

Examples

Example A-1 Template for Creating a View Using Predefined ADTs

This example shows how to create a view of an analytic workspace using predefined
ADTs.

SET ECHO ON
SET SERVEROUT ON

DROP TYPE table_obj;
DROP TYPE row_obj;

CREATE TYPE row_obj AS OBJECT (
 column_first datatype,
 column_next datatype,
 column_n datatype);
/
CREATE TYPE table_obj AS TABLE OF row_obj;
/
CREATE OR REPLACE VIEW view_name AS
 SELECT column_first, column_next, column_n
 FROM TABLE(OLAP_TABLE(
 'analytic_workspace',
 'table_obj',
 'olap_command',
 'limit_map'));
/
COMMIT;
/
GRANT SELECT ON view_name TO PUBLIC;

Example A-2 Sample View of the TIME Dimension Using Predefined ADTs

This example uses OLAP_TABLE with a predefined table type to create a relational view
of the TIME dimension in an analytic workspace named MYAW in the MYAW_AW schema.

The first parameter in the OLAP_TABLE call is the name of the analytic workspace. The
second is the name of the predefined table type. The fourth is the limit map that
specifies how to map the workspace dimension to the columns of the predefined table
type. The third parameter is not specified.

CREATE TYPE time_cal_row AS OBJECT (
 time_id varchar2(32),
 cal_short_label varchar2(32),
 cal_end_date date,
 cal_timespan number(6));

CREATE TYPE time_cal_table AS TABLE OF time_cal_row;

CREATE OR REPLACE VIEW time_cal_view AS
 SELECT time_id, cal_short_label, cal_end_date, cal_timespan

Appendix A
Creating Relational Views Using OLAP_TABLE

A-3

 FROM TABLE(OLAP_TABLE(
 'myaw_aw.myaw duration session',
 'time_cal_table',
 '',
 'DIMENSION time_id from time with
 HIERARCHY time_parentrel
 INHIERARCHY time_inhier
 ATTRIBUTE cal_short_label from time_short_description
 ATTRIBUTE cal_end_date from time_end_date
 ATTRIBUTE cal_timespan from time_time_span'));

Using OLAP_TABLE With Automatic ADTs
If you do not supply the name of a table type as an argument, OLAP_TABLE uses
information in the limit map to generate the logical table automatically. In this case, the
table type is only available at run time within the context of the calling SQL SELECT
statement.

Examples

Example A-3 Template for Creating a View Using Automatic ADTs

This example shows how to create a view of an analytic workspace using automatic
ADTs.

SET ECHO ON
SET SERVEROUT ON

CREATE OR REPLACE VIEW view_name AS
 SELECT column_first, column_next, column_n
 FROM TABLE(OLAP_TABLE(
 'analytic_workspace',
 '',
 'olap_command',
 'limit_map'));
/
COMMIT;
/
GRANT SELECT ON view_name TO PUBLIC;

Example A-4 View of the TIME Dimension Using Automatic ADTs

This example creates the same view produced by the previous example, but it
automatically generates the ADTs instead of using a predefined table type. It uses AS
clauses in the limit map to specify the data types of the target columns.

CREATE OR REPLACE VIEW time_cal_view AS
 SELECT time_id, cal_short_label, cal_end_date, cal_timespan
 FROM TABLE(OLAP_TABLE(
 'myaw_aw.myaw duration session',
 null,
 null,
 'DIMENSION time_id AS varchar2(32) FROM time WITH
 HIERARCHY time_parentrel
 INHIERARCHY time_inhier
 ATTRIBUTE cal_short_label AS VARCHAR2(32) from time_short_description
 ATTRIBUTE cal_end_date AS DATE from time_end_date
 ATTRIBUTE cal_timespan AS NUMBER(6) from time_time_span'));

Appendix A
Creating Relational Views Using OLAP_TABLE

A-4

When automatically generating ADTs, OLAP_TABLE uses default relational data types for
the target columns unless you override them with AS clauses in the limit map. The
default data type conversions used by OLAP_TABLE are described in Table A-2.

Adding Calculated Columns to the Relational View
OLAP_TABLE uses a limit map to present the multidimensional data from an analytic
workspace in tabular form. The limit map specifies the columns of the logical table.
You can add a calculated column to your relational view by specifying the
OLAP_EXPRESSION function or a related Boolean, text, or date function in the select list of
the query. When you specify one of these functions in the select list, OLAP_TABLE
generates additional columns for the results of the function.

Before you use one of these expressions, you must specify a ROW2CELL clause in the
limit map used by OLAP_TABLE to identifies the RAW column that OLAP_TABLE populates
with information used by the OLAP single-row functions.

See Also:

"Using OLAP DML Expressions as Single-Row Functions" and "ROW2CELL
Clause"

Using OLAP DML Expressions in SELECT FROM
OLAP_TABLE Statements

You can use OLAP DML commands within your SELECT FROM OLAP_TABLE
statements as described in:

• "Using OLAP DML Expressions as Single-Row Functions"

• "Modifying an Analytic Workspace From Within a SELECT FROM OLAP_TABLE
Statement"

Using OLAP DML Expressions as Single-Row Functions
SQL functions are typically single-row functions that return a single result row for every
row of a queried table or view. Oracle supports several predefined SQL single-row
functions, for example COS, LOG, and ROUND, which return numeric data, and UPPER and
LOWER, which return character data.

Within the context of a SELECT FROM OLAP_TABLE statement, there are four SQL functions
that you can use to wrap OLAP DML functions so that the OLAP DML function acts as
a single-row function. There are four functions that return the results of expressions of
different OLAP DML data types: OLAP_EXPRESSION for Oracle OLAP numeric
expressions, OLAP_EXPRESSION_BOOL for Oracle OLAP Boolean expressions,
OLAP_EXPRESSION_DATE for Oracle OLAP datetime expressions, and
OLAP_EXPRESSION_TEXT for Oracle OLAP text expressions. One argument of
each of these SQL functions is an OLAP DML function.

Appendix A
Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements

A-5

You can specify the OLAP_EXPRESSION function and its variants in the same way
you specify other Oracle single-row functions, notably in the select list, WHERE, and
ORDER BY clauses.

Modifying an Analytic Workspace From Within a SELECT FROM
OLAP_TABLE Statement

There are several mechanisms for modifying an analytic workspace on the fly during
the execution of OLAP_TABLE.

You can use the OLAP_CONDITION SQL function modifies an analytic workspace within
the context of a SELECT FROM OLAP_TABLE statement. You can specify OLAP_CONDITION like
other Oracle functions, typically in the WHERE clause. Using the OLAP_CONDITION, you can
set an option, execute a LIMIT command, execute an OLAP model or forecast, or run a
program. The changes made to the workspace can be transitory or they can persist in
your session upon completion of the query.

In addition to OLAP_CONDITION, you can use syntax supported by the OLAP_TABLE function
itself: The PREDMLCMD and POSTDMLCMD clauses in the limit map, and the olap_command
parameter. OLAP_CONDITION has the advantage of portability, because it is not
embedded within OLAP_TABLE, and versatility, because it can be applied at different
entry points.

OLAP_TABLE saves the status of dimensions in the limit map before executing the LIMIT
commands that generate the result set for the query. After the data is fetched,
OLAP_TABLE restores the status of the dimensions. You can specify a PREDMLCMD clause in
the limit map to cause an OLAP DML command to execute before the dimension
status is saved. Modifications resulting from the PREDMLCMD clause remain in the
workspace after execution of OLAP_TABLE, unless reversed with a POSTDMLCMD clause. For
more information, see limit_map.

The olap_command parameter of OLAP_TABLE specifies an OLAP DML command that
executes immediately before the result set is fetched. In some circumstances, the
olap_command parameter may contain an OLAP DML FETCH command, which itself
manages the fetch. Limits set by the olap_command parameter are only in effect
during the execution of OLAP_TABLE. For more information, see olap_command.

OLAP_TABLE
OLAP_TABLE is a SQL function that extracts multidimensional data from an analytic
workspace and presents it in the two-dimensional format of a relational table.

See Also:

"Creating Relational Views Using OLAP_TABLE" and "Using OLAP DML
Expressions in SELECT FROM OLAP_TABLE Statements"

The OLAP_TABLE function returns multidimensional data in an analytic workspace as a
logical table.

The order in which OLAP_TABLE processes information specified in its input parameters
is described in "Order of Processing in OLAP_TABLE".

Appendix A
OLAP_TABLE

A-6

OLAP_TABLE is the fundamental mechanism in the database for querying an analytic
workspace. Within a SQL statement, you can specify an OLAP_TABLE function call
wherever you would provide the name of a table or view.

OLAP_TABLE returns a table of objects that can be joined to relational tables and views,
and to other tables of objects populated by OLAP_TABLE.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Returns

A table type whose rows are objects (ADTs) that identify the selected workspace data.
See "Creating Relational Views Using OLAP_TABLE".

Syntax

OLAP_TABLE(
 analytic_workspace IN VARCHAR2,
 table_object IN VARCHAR2,
 olap_command IN VARCHAR2,
 limit_map1 IN VARCHAR2,
 limit_map2 IN VARCHAR2,
 .
 .
 .
 limit_map8 IN VARCHAR2)
 RETURN TYPE;

Parameters

analytic_workspace
Provides the name of the analytic workspace where the source data is stored. It also
specifies how long the analytic workspace is attached to your OLAP session, which
opens on your first call to OLAP_TABLE.
This parameter is always required by OLAP_TABLE.
The syntax of this parameter is:

'[owner.]aw_name DURATION QUERY | SESSION'

For example:

'olapuser.xademo DURATION SESSION'

• owner

Specify owner whenever you are creating views to be accessed by other users.
Otherwise, you can omit the owner if you own the analytic workspace. It is
required only when you are logged in under a different user name than the owner.

• QUERY

Attaches an analytic workspace for the duration of a single query. Use QUERY only
when you must see updates to the analytic workspace made in other sessions.

Appendix A
OLAP_TABLE

A-7

• SESSION

Attaches an analytic workspace and keeps it attached after the query. It provides
better performance than QUERY because it keeps the OLAP session open. This
performance difference is significant when the function is called without either a
table_object parameter or AS clauses in the limit map; in this case, the OLAP_TABLE
function must determine the appropriate table definition. See "Using
OLAP_TABLE With Automatic ADTs".

table_object
The name of a predefined table of objects, as described in "Using OLAP_TABLE With
Predefined ADTs".
This parameter is optional. Omit this parameter when you are using automatic ADTs.
The syntax of this parameter is:

'table_name'

For example:

'product_dim_tbl'

When you specify the table_name parameter, the column data types for the returned
data are predefined. In this case you cannot use AS clauses in the limit map.
When you omit the table_name parameter, the column data types for the returned
data are generated at run time. You can either provide the target data types with AS
clauses in the limit map, or you can use the default data types described in Table A-2.
See "Using OLAP_TABLE With Automatic ADTs".

olap_command
A single OLAP DML command. To execute multiple commands, create a program in
your analytic workspace and call the program in this parameter. The power and
flexibility of this parameter comes from its ability to process virtually any data
manipulation commands available in the OLAP DML.
The order in which OLAP_TABLE processes the olap_command parameter is specified in
"Order of Processing in OLAP_TABLE".
The syntax of this parameter is:

'olap_command'

There are two distinct ways of using the olap_command parameter:

• To make changes in the workspace session immediately before the data is
fetched (after all the limits have been applied) as described in "Using FETCH in
the olap_command Parameter".

• To specify the source data directly instead of using a limit map as described in
"Using olap_command with a Limit Map".

limit_map
Maps workspace objects to relational columns and identifies the role of each one. See
"Creating Relational Views Using OLAP_TABLE".
The limit map can also specify special instructions to be executed by OLAP_TABLE. For
example: It can cause an OLAP DML command to execute before or after the limit
map is processed; it can specify a ROW2CELL column for the OLAP_CONDITION and
OLAP_EXPRESSION functions. (See "OLAP_CONDITION" and "OLAP_EXPRESSION".)
The order in which OLAP_TABLE processes information in the limit map is specified in
"Order of Processing in OLAP_TABLE".

Appendix A
OLAP_TABLE

A-8

The limit map parameter is generally a required parameter. It can only be omitted
when you specify a FETCH command in the olap_command parameter. See the
discussion of olap_command.
You can supply the entire text of the limit map as a parameter to OLAP_TABLE, or you
can store all or part of the limit map in a text variable in the analytic workspace and
reference it using ampersand substitution. For example, the following OLAP_TABLE
query uses a limit map stored in a variable called limitmapvar in the MYAW analytic
workspace of the MYAW_AW schema.

SELECT * FROM TABLE(OLAP_TABLE(
 'myaw_aw.myaw DURATION SESSION',
 '',
 '',
 '&(myaw_aw.myaw!limitmapvar)');

If you supply the limit map as text within the call to OLAP_TABLE, then it has a maximum
length of 4,000 characters, which is imposed by PL/SQL. If you store the limit map in
the analytic workspace, then the limit map has no maximum length.

Note:

Several analytic workspace objects must be predefined within the workspace
to support the mapping of dimension hierarchies in the limit map. For more
information, see "Required OLAP DML Objects".

The syntax of the limit map has numerous clauses, primarily for defining dimension
hierarchies. Pay close attention to the presence or absence of commas, because
syntax errors prevents your limit map from being parsed.

'[MEASURE column [AS datatype] FROM {measure | AW_EXPR expression}]
 .
 .
 DIMENSION [column [AS datatype] FROM] dimension
 [WITH
 [HIERARCHY [column [AS datatype] FROM] parent_relation
 [(hierarchy_dimension ''hierarchy_name'')]
 [INHIERARCHY inhierarchy_obj]
 [GID column [AS datatype] FROM gid_relation]
 [PARENTGID column [AS datatype] FROM gid_relation]
 [FAMILYREL column1 [AS datatype],
 column2 [AS datatype],
 ... columnn [AS datatype]
 FROM {expression1, expression2, ... expressionn |
 family_relation USING level_dimension }
 [LABEL label_variable]]
 [HATTRIBUTE column [AS datatype] FROM hier_attribute_variable]
 .
 .
]
 [ATTRIBUTE column [AS datatype] FROM attribute_variable]
 .
 .
]
 [ROW2CELL column]
 [LOOP loop-clause]
 [PREDMLCMD olap_command]
 [POSTDMLCMD olap_command]'

Where:

Appendix A
OLAP_TABLE

A-9

column is the name of a column in the target table.
datatype is the data type of column.
measure is a variable, formula, or relation in the analytic workspace.
expression is a formula or qualified data reference for objects in the analytic
workspace.
dimension is a dimension in the analytic workspace.
parent_relation is a self-relation in the analytic workspace that defines the hierarchies
for dimension. See "Parentrel Relation" for more information.
hierarchy_dimension is a dimension in the analytic workspace that contains the
names of the hierarchies for dimension. See "Hierlist Dimension" for more information
hierarchy_name is a member of hierarchy_dimension.
inhierarchy_obj is a variable or valueset in the analytic workspace that identifies which
dimension members are in each level of the hierarchy. See "Inhier Valueset or
Variable" for more information
gid_relation is a relation in the analytic workspace that contains the grouping ID of
each dimension member in the hierarchy. See "Gidrel Relation" for more information
family_relation is a self-relation that provides the full parentage of each dimension
member in the hierarchy. See "Familyrel Relation" for more information
level_dimension is a dimension in the analytic workspace that contains the names of
the levels for the hierarchy. See "Levellist Dimension" for more information
label_variable is a variable in the analytic workspace that contains descriptive text
values for dimension.
hier_attribute_variable is a variable in the analytic workspace that contains attribute
values for hierarchy_name.
attribute_variable is a variable in the analytic workspace that contains attribute values
for dimension.
loop_clause specifies how Oracle OLAP determines how it loops through data values
and what rows to create in the relational table. When you exclude a LOOP clause,
Oracle OLAP loops through all of the data values that are identified by the dimensions
in the DIMENSION clauses in the limit map.
For the complete syntax of the LOOP clause see "LOOP Clause".
olap_command is an OLAP DML command.
Detailed syntax for each of the clauses of the limit-map parameter follows.

• MEASURE Clause

The MEASURE clause maps a variable, formula, or relation in the analytic workspace
to a column in the target table. You can list any number of MEASURE clauses. This
clause is optional when, for example, you want to create a dimension view.

The AS subclause specifies the data type of the target column. You can specify an
AS subclause when the table of objects has not been predefined. See "Using
OLAP_TABLE With Automatic ADTs".

In the FROM subclause, you can either specify the name of a variable, formula, or
relation or an OLAP expression that evaluates to one of these objects. For
example:

AW_EXPR analytic_cube_sales - analytic_cube_cost
or
AW_EXPR LOGDIF(analytic_cube_sales, 1, time, LEVELREL time.lvlrel)

• DIMENSION Clause

Appendix A
OLAP_TABLE

A-10

The DIMENSION clause identifies a dimension or conjoint in the analytic workspace
that dimensions one or more measures or attributes, or provides the dimension
members for one or more hierarchies in the limit map.

The column subclause is optional when you do not want the dimension members
themselves to be represented in the table. In this case, include a dimension
attribute that can be used for data selection.

For a description of the AS subclause, see "MEASURE Clause".

Every limit map should have at least one DIMENSION clause. If the limit map
contains MEASURE clauses, then it should also contain a single DIMENSION clause for
each dimension of the measures, unless a dimension is being limited to a single
value. If the measures are dimensioned by a composite, then you must identify
each dimension in the composite with a DIMENSION clause. For the best
performance when fetching a large result set, identify the composite in a LOOP
clause. See "LOOP Clause".

A dimension can be named in only one DIMENSION clause. Subclauses of the
DIMENSION clause identify the dimension hierarchies and attributes.

– WITH Subclause for Dimension Hierarchies and Attributes

The WITH subclause introduces a HIERARCHY or ATTRIBUTE subclause. If you do
not specify hierarchies or attributes, then omit the WITH keyword. If you specify
both hierarchies and attributes, then precede them with a single WITH
keyword.

– WITH HIERARCHY Subclause

The HIERARCHY subclause identifies the parent self-relation in the analytic
workspace that defines the hierarchies for the dimension. See "Parentrel
Relation" for more information,

The HIERARCHY subclause is optional when the dimension does not have a
hierarchy, or when the status of the dimension has been limited to a single
level of the hierarchy. When a dimension has multiple hierarchies, specify a
HIERARCHY subclause for each one and specify a hierarchy_dimension phrase.
The hierarchy_dimension identifies a dimension in the analytic workspace
which holds the names of the hierarchies for this dimension. See "Hierlist
Dimension" for more information.

hierarchy_name is a member of hierarchy_dimension. The hierarchy
dimension is limited to hierarchy_name for all workspace objects that are
referenced in subsequent subclauses for this hierarchy (that is, INHIERARCHY,
GID, PARENTGID, FAMILYREL, and HATTRIBUTE).

For a description of the column subclause, see "DIMENSION Clause".

The following table lists the keywords in the HIERARCHY subclause:

Appendix A
OLAP_TABLE

A-11

Keyword Description

INHIERARCHY The INHIERARCHY subclause identifies a
boolean variable or a valueset in the analytic
workspace that identifies the dimension
members in each level of the hierarchy. See
"Inhier Valueset or Variable" for more
information.
It is good practice to include an INHIERARCHY
subclause, because OLAP_TABLE saves the
status of all dimensions with INHIERARCHY
subclauses during the processing of the limit
map. It is required when there are members of
the dimension that are omitted from the
hierarchy.

GID The GID subclause maps an integer variable in
the analytic workspace, which contains the
grouping ID for each dimension member, to a
column in the target table. The grouping ID
variable is populated by the OLAP DML
GROUPINGID command. See "Gidrel
Relation" for more information.
The GID subclause is required for Java
applications that use the OLAP API.
For a description of the AS subclause, see
"MEASURE Clause".

PARENTGID The PARENTGID subclause calculates the
grouping IDs for the parent relation using the
GID variable in the analytic workspace. The
parent GIDs are not stored in an analytic
workspace object. Instead, you specify the
same GID variable for the PARENTGID clause
that you used in the GID clause. The
PARENTGID clause is recommended for Java
applications that use the OLAP API.
For a description of the AS subclause, see
"MEASURE Clause".

Appendix A
OLAP_TABLE

A-12

Keyword Description

FAMILYREL The FAMILYREL subclause is used primarily to
map a family relation in the analytic workspace
to multiple columns in the target table. See
"Familyrel Relation" for more information. You
can use multiple FAMILYREL clauses for each
hierarchy.
List the columns in the order of
level_dimension which is a dimension in the
analytic workspace that holds the names of all
the levels for the dimension. See "Levellist
Dimension" for more information.
If you do not want a particular level included,
then specify null for the target column. For a
description of the AS subclause, see
"MEASURE Clause".
The LABEL keyword identifies a text attribute
that provides more meaningful names for the
dimension members.
The tabular data resulting from a FAMILYREL
clause is in rollup form, in which each level of
the hierarchy is represented in a separate
column, and the full parentage of each
dimension member is identified within the row.
See Example A-7.

HATTRIBUTE The HATTRIBUTE subclause maps a hierarchy-
specific attribute variable, dimensioned by
hierarchy_dimension in the analytic
workspace, to a column in the target table.

– WITH ATTRIBUTE Subclause

The ATTRIBUTE subclause maps an attribute variable in the analytic workspace
to a column in the target table.

If attribute_variable has multiple dimensions, then values are mapped for all
members of dimension, but only for the first member in the current status of
additional dimensions. For example, if your attributes have a language
dimension, then you must set the status of that dimension to a particular
language. You can set the status of dimensions in a PREDMLCMD clause.

• ROW2CELL Clause

The ROW2CELL clause creates a RAW column, between 16 and 32 characters wide, in
the target table and populates it with information that is used by the OLAP
expression functions. The OLAP_CONDITION function also uses the ROW2CELL column.
Specify a ROW2CELL column when creating a view to be used by these functions.
See "Using OLAP DML Expressions in SELECT FROM OLAP_TABLE
Statements" and "Adding Calculated Columns to the Relational View".

• LOOP Clause

The LOOP clause specifies how Oracle OLAP loops through the data when
retrieving values. When you omit a LOOP clause in a limit map, Oracle OLAP
uses the DIMENSION clauses in that limit map to determine the values to loop

Appendix A
OLAP_TABLE

A-13

over. Oracle OLAP loops over only those tuples that identify measure cells that do
not contain NA or null. When you include a LOOP clause, you specify one of the
following types of subclauses: the optimized_subclause or the union_subclause.

The optimized_subclause specifies that Oracle OLAP automatically create the
union_subclause by which it loops through the data. The union_subclause
created never includes any DENSE phrases. Consequently, when you specify the
optimized_subclause, Oracle OLAP loops over only those tuples that identify
measure cells that do not contain NA or null. The optimized_subclause has the
following syntax.

OPTIMIZED [MEASURES]

where the optional MEASURES keyword specifies that after identifying the tuples
to loop through, Oracle OLAP remove any values that are dimension values that
are not dimensions of the objects identified in the MEASURES clauses of the limit
map.

Tip:

You can use the $LOOP_AGGMAP, $LOOP_DENSE, and $LOOP_VAR
properties, to specify more information as to how OLAP_TABLE loops
over a formula.

The union_subclause specifies exactly how Oracle OLAP determines which
base dimensions it uses to identify what data values to loop through. For a
successful union to occur, the objects that are referenced in this subclause must
have the same base dimensions. The union_subclause has the following syntax.

[ignore_phrase] [dense_phrase] UNION ({aggmap_phrase | list_phrase }...)]

where:

aggmap_phrase specifies how Oracle OLAP loops through the values of an
aggregated variable. It has the following syntax.

AGGMAP (ignore_phrase] [dense_phrase] aggmap {variable | dimension_list})

list_phrase specifies how Oracle OLAP loops through the values of a composite,
partition template, or dimension. It has the following syntax.

LIST ([ignore_phrase] [dense_phrase] dimension_list)

– ignore_phrase specifies the dimension values that you do not want Oracle
OLAP to loop over. It has the following syntax.

IGNORE (ignore_list)

For ignore_list you can specify one or more of the following separated by
commas.

Appendix A
OLAP_TABLE

A-14

 dimension_name
 valueset_name
 COMPLEMENT (valueset_name)

Within a single ignore_list you cannot specify a dimension in multiple ways. In
other words, you cannot specify both a dimension and a valueset for that
same dimension; you cannot specify two valuesets for the same dimension.

Note:

The result of specifying IGNORE valueset-name is similar to
specifying LIMIT REMOVE valueset-name (see LIMIT command).

– dense_phrase specifies values that Oracle OLAP loops over even when the
measure cells identified by those values contain NA or null. Specifying a
dimension in a DENSE phrase is similar to requesting a relational outer join.
Typically, you include dimension values in a DENSE phrase to perform time-
series processing (for example, to lag over time). A DENSE phrase has the
following syntax.

DENSE (dense_list)

For dense_list you can specify one or more of the following separated by
commas.

 dimension_name
 valueset_name
 COMPLEMENT (valueset_name)

Within a single dense_list you cannot specify a dimension in multiple ways. In
other words, you cannot specify both a dimension and a valueset for that
same dimension; you cannot specify two valuesets for the same dimension.

However, you can have one valueset for a dimension in the outer DENSE
phrase and another valueset for the same dimension in an inner DENSE
phrase. If a dimension or a valueset of a dimension is specified in both an
inner and outer DENSE phrase, Oracle OLAP loops densely over the union of
the dense regions. If the dimension, itself, appears in either place, Oracle
OLAP loops densely over the whole dimension.

– aggmap is the name of an aggmap object. When you specify only the name
of an aggmap object, Oracle OLAP uses the values in the PRECOMPUTE
phrases of the aggmap to identify the values to loop

– variable is the name of the variable aggregated by aggmap_name.

– dimension_list is a list of one or more composites, partition templates, or
dimensions.

• PREDMLCMD Clause

The PREDMLCMD clause specifies an OLAP DML command that is executed before
the data is fetched from the analytic workspace into the target table. It can be
used, for example, to execute an OLAP model or forecast whose results will be
fetched into the table. The results of the command are in effect during execution

Appendix A
OLAP_TABLE

A-15

of the limit map, and continue into your session after execution of OLAP_TABLE is
complete. See "Order of Processing in OLAP_TABLE".

• POSTDMLCMD Clause

The POSTDMLCMD clauses specifies an OLAP DML command that is executed after
the data is fetched from the analytic workspace into the target table. It can be
used, for example, to delete objects or data that were created by commands in
the PREDMLCMD clause, or to restore the dimension status that was changed in a
PREDMLCMD clause. See "Order of Processing in OLAP_TABLE" .

Usage Notes

Limit Maps

OLAP_TABLE uses a limit map to map dimensions and measures defined in an analytic
workspace to columns in a logical table. The limit map combines with the WHERE clause
of a SQL SELECT statement to generate a series of OLAP DML LIMIT commands that
are executed in the analytic workspace.

OLAP_TABLE can use a limit map with a predefined logical table, or it can use the
information in a limit map to dynamically generate a logical table at run time.

See Also:

The discussion of the limit_map parameter.

Logical Tables

The logical table populated by OLAP_TABLE is actually a table type whose rows are user-
defined object types, also known as Abstract Data Types or ADTs.

A user-defined object type is composed of attributes, which are equivalent to the
columns of a table. The basic syntax for defining a row is as follows.

CREATE TYPE object_name AS OBJECT (
 attribute1 datatype,
 attribute2 datatype,
 attributen datatype);

A table type is a collection of object types; this collection is equivalent to the rows of a
table. The basic syntax for creating a table type is as follows.

CREATE TYPE table_name AS TABLE OF object_name;

See Also:

• About Object Types in Oracle Database Object-Relational Developer's
Guide for information about object types

• CREATE TYPE in Oracle Database SQL Language Reference

Using OLAP_TABLE With Predefined ADTs

Appendix A
OLAP_TABLE

A-16

You can predefine the table of objects or generate it dynamically. When you create the
table type in advance, it is available in the database for use by any invocation of
OLAP_TABLE. Queries that use predefined objects typically perform better than queries
that dynamically generate the objects. See "Using OLAP_TABLE With Predefined
ADTs".

Using OLAP_TABLE With Automatic ADTs

If you do not supply the name of a table type as an argument, OLAP_TABLE uses
information in the limit map to generate the logical table automatically. In this case, the
table type is only available at run time within the context of the calling SQL SELECT
statement. See "Using OLAP_TABLE With Automatic ADTs".

When automatically generating ADTs, OLAP_TABLE uses default relational data types for
the target columns unless you override them with AS clauses in the limit map. The
default data type conversions used by OLAP_TABLE are described in the following table:

Table A-2 Default Data Type Conversions

Analytic Workspace Data Type SQL Data Type

ID CHAR(8)

TEXT VARCHAR2(4000)

TEXT(n) VARCHAR2(n)

NTEXT NVARCHAR2(4000)

NTEXT(n) NVARCHAR2(n)

NUMBER NUMBER

NUMBER(p,s) NUMBER(p,s)

LONGINTEGER NUMBER(19)

INTEGER NUMBER(10)

SHORTINTEGER NUMBER(5)

INTEGER WIDTH 1 NUMBER(3)

BOOLEAN NUMBER(1)

DECIMAL BINARY_DOUBLE

SHORTDECIMAL BINARY_FLOAT

DATE DATE

DAY, WEEK, MONTH, QUARTER, YEAR DATE

DATETIME TIMESTAMP

COMPOSITE VARCHAR2(4000)

Other VARCHAR2(4000)

Using olap_command with a Limit Map

You may want your application to modify the analytic workspace on the fly during the
execution of OLAP_TABLE.

A common use of the olap_command parameter is to limit one or more dimensions. If
you limit any of the dimensions that have INHIERARCHY clauses in the limit map, then the
status of those dimensions is changed only during execution of this call to OLAP_TABLE;
the limits do not affect the rest of your OLAP session. However, other commands (for

Appendix A
OLAP_TABLE

A-17

example, commands that limit dimensions not referenced with INHIERARCHY clauses)
can affect your session.

If you want a limit on a dimension in the limit map to stay in effect for the rest of your
session, and not just during the command, specify it in the PREDMLCMD clause of the limit
map or specify an OLAP_CONDITION function in the SQL SELECT statement.

The following is an example of a LIMIT command in the olap_command parameter.

'LIMIT product TO product_member_levelrel ''L2'''

See Also:

"OLAP_CONDITION"

Using FETCH in the olap_command Parameter

If you specify an OLAP DML FETCH command in the olap_command parameter,
OLAP_TABLE uses it, instead of the instructions in the limit map, to fetch the source data
for the table object. Because of this usage, the olap_command parameter is
sometimes referred to as the data map. In general, do not specify a limit map if you
specify a FETCH command.

Note:

Normally, use the FETCH command with OLAP_TABLE only if you are upgrading an
Express application that used the FETCH command for SNAPI. If you are
upgrading, note that the full syntax is the same in Oracle as in Express 6.3.
You can use the same FETCH commands in OLAP_TABLE that you used previously
in SNAPI. For the syntax of the FETCH command, see "FETCH".

FETCH specifies explicitly how analytic workspace data is mapped to a table object. The
basic syntax is:

FETCH expression...

Enter one expression for each target column, listing the expressions in the same order
they appear in the row definition. Separate expressions with spaces or commas.You
must enter the entire statement on one line, without line breaks or continuation marks
of any type.

See Also:

"Using FETCH in the olap_command Parameter"

Order of Processing in OLAP_TABLE

Appendix A
OLAP_TABLE

A-18

The following list identifies the order in which the OLAP_TABLE function processes
instructions in the limit map that can change the status of dimensions in the analytic
workspace.

1. Execute any OLAP DML command specified in the PREDMLCMD parameter of the limit
map.

2. Save the current status of all dimensions in the limit map so that it can be restored
later (PUSH status).

3. Keep in status only those dimension members specified by INHIERARCHY
subclauses in the limit map (LIMIT KEEP).

4. Within the status set during step 3, keep only those dimension members that
satisfy the WHERE clause of the SQL SELECT statement containing the OLAP_TABLE
function (LIMIT KEEP).

5. Execute any OLAP DML command specified in the olap_command parameter of
the OLAP_TABLE function. (If olap_command includes a FETCH, fetch the data.)

6. Fetch the data (unless an OLAP DML FETCH command was specified in the
olap_command parameter).

7. Restore the status of all dimensions in the limit map (POP status).

8. Execute any OLAP DML command specified in the POSTDMLCMD parameter of the
limit map.

Examples

Because different applications have different requirements, several different formats
are commonly used for fetching data into SQL from an analytic workspace. The
examples in this section show how to create views using a variety of different formats.

Although these examples are shown as views, the SELECT statements can be extracted
from them and used directly to fetch data from an analytic workspace into an
application.

Note:

The examples in this section use predefined ADTs. You could modify them to
use automatic ADTs. See "Using OLAP_TABLE With Automatic ADTs".

Example A-5 Script for an Embedded Total Dimension View Using
OLAP_TABLE

This example shows the PL/SQL script used to create an embedded total view of the
TIME dimension in an analytic workspace named MYAW. This view is similar to the
view in Example A-2, but it specifies both a Calendar and a Fiscal hierarchy, and it
includes HATTRIBUTE subclauses for hierarchy-specific End Date attributes.

The INHIERARCHY subclause identifies a valueset in the analytic workspace that lists all
the dimension members in each hierarchy of a dimension. OLAP_TABLE saves the status
of all dimensions in the limit map that have INHIERARCHY subclauses during the
processing of the limit map. See "Order of Processing in OLAP_TABLE".

CREATE TYPE awtime_row AS OBJECT (
 awtime_id VARCHAR2(12),

Appendix A
OLAP_TABLE

A-19

 awtime_short_label VARCHAR2(12),
 awtime_cal_end_date DATE,
 awtime_fis_end_date DATE);
/
CREATE TYPE awtime_table AS TABLE OF awtime_row;
/
CREATE OR REPLACE VIEW awtime_view AS
 SELECT awtime_id, awtime_short_label,
 awtime_cal_end_date, awtime_fis_end_date
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION SESSION',
 'awtime_table',
 '',
 'DIMENSION awtime_id FROM time WITH
 HIERARCHY time_parentrel
 (time_hierlist ''CALENDAR'')
 INHIERARCHY time_inhier
 HATTRIBUTE awtime_cal_end_date FROM time_cal_end_date
 HIERARCHY time_parentrel
 (time_hierlist ''FISCAL'')
 INHIERARCHY time_inhier
 HATTRIBUTE awtime_fis_end_date FROM time_fis_end_date
 ATTRIBUTE awtime_short_label FROM time_short_description'));
/
SQL>SELECT * FROM awtime_view;

AWTIME_ID AWTIME_SHORT_LABEL AWTIME_CAL_END_DATE AWTIME_FIS_END_DATE
--------- ------------------ ------------------- -------------------
19 Jan-98 31-JAN-98 31-JAN-98
20 Feb-98 28-FEB-98 28-FEB-98
21 Mar-98 31-MAR-98 31-MAR-98
22 Apr-98 30-APR-98 30-APR-98
23 May-98 31-MAY-98 31-MAY-98
24 Jun-98 30-JUN-98 30-JUN-98
.
.
.
.
98 Q1-03 31-MAR-03 30-SEP-03
99 Q2-03 30-JUN-03 31-DEC-03
1 1998 31-DEC-98 30-JUN-99
102 2003 31-DEC-03 30-JUN-04
119 2004 31-DEC-04 30-JUN-05
2 1999 31-DEC-99 30-JUN-00
3 2000 31-DEC-00 30-JUN-01
4 2001 31-DEC-01 30-JUN-02
85 2002 31-DEC-02 30-JUN-03

Note that you must be sure to verify that you have created the views correctly by
issuing SELECT statements against them. Only at that time do any errors in the call to
OLAP_TABLE appear.

Example A-6 Creating a View of an Embedded Total Measure Using
OLAP_TABLE

In a star schema, a separate measure view is needed with columns that can be joined
to each of the dimension views. This example shows the PL/SQL script used to create
a measure view with a column populated by a ROW2CELL clause to support custom
measures. For information on ROW2CELL, "ROW2CELL Clause".

Appendix A
OLAP_TABLE

A-20

CREATE TYPE awunits_row AS OBJECT (
 awtime VARCHAR2(12),
 awcustomer VARCHAR2(30),
 awproduct VARCHAR2(30),
 awchannel VARCHAR2(30),
 awunits NUMBER(16),
 r2c RAW(32));
/
CREATE TYPE awunits_table AS TABLE OF awunits_row;
/
CREATE OR REPLACE VIEW awunits_view AS
 SELECT awunits,
 awtime, awcustomer, awproduct, awchannel, r2c
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION SESSION',
 'awunits_table',
 '',
 'MEASURE awunits FROM units_cube_units
 DIMENSION awtime FROM time WITH
 HIERARCHY time_parentrel
 DIMENSION awcustomer FROM customer WITH
 HIERARCHY customer_parentrel
 (customer_hierlist ''MARKET_ROLLUP'')
 INHIERARCHY customer_inhier
 DIMENSION awproduct FROM product WITH
 HIERARCHY product_parentrel
 DIMENSION channel WITH
 HIERARCHY channel_parentrel
 ATTRIBUTE awchannel FROM channel_short_description
 ROW2CELL r2c'))
 WHERE awunits IS NOT NULL;

SQL>SELECT awchannel, awunits FROM awunits_view
 WHERE awproduct = '1'
 AND awcustomer = '7'
 AND awtime = '4';

AWCHANNEL AWUNITS
--------- -------
All Channels 415392
Direct Sales 43783
Catalog 315737
Internet 55872

Example A-7 Script for a Rollup View of Products Using OLAP_TABLE

Rollup form uses a column for each hierarchy level to show the full parentage of each
dimension member. The only difference between the syntax for rollup form and the
syntax for embedded total form is the addition of a FAMILYREL clause in the definition of
each dimension in the limit map. For information on FAMILYREL, see "WITH
HIERARCHY Subclause".

This example shows the PL/SQL script used to create a rollup view of the PRODUCT
dimension. It shows a dimension view to highlight the differences in the syntax of the
limit map from the one used for the embedded total form, as shown in Example A-5.
Note that the target columns for these levels are listed in the FAMILYREL clause from
most aggregate (CLASS) to least aggregate (ITEM), which is the order they are listed in
the level list dimension. The family relation returns four columns. The most aggregate
level (all products) is omitted from the view by mapping it to null.

Example A-8 shows the alternate syntax for the FAMILYREL clause, which uses QDRs to
identify exactly which columns are mapped from the family relation.

The limit maps in Example A-7 and Example A-8 generate identical views.

Appendix A
OLAP_TABLE

A-21

CREATE TYPE awproduct_row AS OBJECT (
 class VARCHAR2(50),
 family VARCHAR2(50),
 item VARCHAR2(50));
/
CREATE TYPE awproduct_table AS TABLE OF awproduct_row;
/
CREATE OR REPLACE VIEW awproduct_view AS
 SELECT class, family, item
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION QUERY',
 'awproduct_table',
 '',
 'DIMENSION product WITH
 HIERARCHY product_parentrel
 FAMILYREL null, class, family, item
 FROM product_familyrel USING product_levellist
 LABEL product_short_description'));

SQL> SELECT * FROM awproduct_view
 ORDER BY class, family, item;

CLASS FAMILY ITEM
-------------- ---------------- ------------------------
Hardware CD-ROM Envoy External 6X CD-ROM
Hardware CD-ROM Envoy External 8X CD-ROM
Hardware CD-ROM External 6X CD-ROM
Hardware CD-ROM External 8X CD-ROM
Hardware CD-ROM Internal 6X CD-ROM
Hardware CD-ROM Internal 8X CD-ROM
Hardware CD-ROM
Hardware Desktop PCs Sentinel Financial
Hardware Desktop PCs Sentinel Multimedia
.
.
.
Software/Other Operating Systems UNIX/Windows 1-user pack
Software/Other Operating Systems UNIX/Windows 5-user pack
Software/Other Operating Systems
Software/Other

Example A-8 Script Using QDRs in the FAMILYREL Clause of OLAP_TABLE

CREATE OR REPLACE TYPE awproduct_row AS OBJECT (
 class VARCHAR2(50),
 family VARCHAR2(50),
 item VARCHAR2(50));
/
CREATE TYPE awproduct_table AS TABLE OF awproduct_row;
/
CREATE OR REPLACE VIEW awproduct_view AS
 SELECT class, family, item
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION QUERY',
 'awproduct_table',
 '',
 'DIMENSION product WITH
 HIERARCHY product_parentrel
 FAMILYREL class, family, item FROM
 product_familyrel(product_levellist ''CLASS''),
 product_familyrel(product_levellist ''FAMILY''),

Appendix A
OLAP_TABLE

A-22

 product_familyrel(product_levellist ''ITEM'')
 LABEL product_short_description'));

SQL> SELECT * FROM awproduct_view
 ORDER BY by class, family, item;

CLASS FAMILY ITEM
-------------- ---------------- ------------------------
Hardware CD-ROM Envoy External 6X CD-ROM
Hardware CD-ROM Envoy External 8X CD-ROM
Hardware CD-ROM External 6X CD-ROM
Hardware CD-ROM External 8X CD-ROM
Hardware CD-ROM Internal 6X CD-ROM
Hardware CD-ROM Internal 8X CD-ROM
Hardware CD-ROM
Hardware Desktop PCs Sentinel Financial
Hardware Desktop PCs Sentinel Multimedia
.
.
.
Software/Other Operating Systems UNIX/Windows 1-user pack
Software/Other Operating Systems UNIX/Windows 5-user pack
Software/Other Operating Systems
Software/Other

Example A-9 Script Using FETCH with OLAP_TABLE

Oracle Express Server applications that are being revised for use with Oracle
Database can use an OLAP DML FETCH command instead of a limit map to map
workspace objects to relational columns.

The FETCH command is supplied in the third parameter of OLAP_TABLE, which specifies a
single OLAP DML command. See olap_command.

The script that follows fetches data from two variables (SALES and COST) in an analytic
workspace named MYAW, and calculates two custom measures (COST_PRIOR_PERIOD and
PROFIT). This example also shows the use of OLAP_TABLE directly by an application,
without creating a view.

Note that the FETCH statement in the following example is formatted with indentation for
readability. In reality, the entire FETCH statement must be entered on one line, without
line breaks or continuation characters

CREATE TYPE measure_row AS OBJECT (
 time VARCHAR2(20),
 geography VARCHAR2(30),
 product VARCHAR2(30),
 channel VARCHAR2(30),
 sales NUMBER(16),
 cost NUMBER(16),
 cost_prior_period NUMBER(16),
 profit NUMBER(16));
/
CREATE TYPE measure_table AS TABLE OF measure_row;
/
SELECT time, geography, product, channel,
 sales, cost, cost_prior_period, profit
 FROM TABLE(OLAP_TABLE(
 'xademo DURATION SESSION',
 'measure_table',
 'FETCH time, geography, product, channel, analytic_cube_f.sales,
 analytic_cube_f.costs,
 LAG(analytic_cube_f.costs, 1, time, LEVELREL time_member_levelrel),

Appendix A
OLAP_TABLE

A-23

 analytic_cube_f.sales - analytic_cube_f.costs',
 ''))
 WHERE channel = 'STANDARD_2.TOTALCHANNEL' AND
 product = 'L1.TOTALPROD' AND
 geography = 'L1.WORLD'
 ORDER BY time;

This SQL SELECT statement returns the following result set:

TIME GEOGRAPHY PRODUCT CHANNEL SALES COST COST_PRIOR_PERIOD PROFIT
--------- --------- ------------ ----------------------- --------- --------- ------------------ --------
L1.1996 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 118247112 2490243 115756869
L1.1997 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 46412113 1078031 2490243 45334082
L2.Q1.96 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 26084848 560379 25524469
L2.Q1.97 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 26501765 615399 560379 25886367
L2.Q2.96 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 30468054 649004 615399 29819049
L2.Q2.97 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 19910347 462632 649004 19447715
L2.Q3.96 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 27781702 582693 462632 27199009
L2.Q4.96 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 33912508 698166 582693 33214342
L3.APR96 L1.WORLD L1.TOTALPROD STANDARD_2.TOTALCHANNEL 8859808 188851 8670957
 .
 .
 .
27 rows selected.

OLAP_CONDITION
OLAP_CONDITION is a SQL function that dynamically executes an OLAP DML command
during a query of an analytic workspace.

See Also:

OLAP_TABLE and "Modifying an Analytic Workspace From Within a SELECT
FROM OLAP_TABLE Statement"

The OLAP_CONDITION function executes an OLAP DML command at one of three entry
points in the limit map used in a call to OLAP_TABLE as described in "Entry Points for
OLAP_CONDITION in the OLAP_TABLE Limit Map".

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Returns

The number 1 to indicate a successful invocation of OLAP_CONDITION.

Syntax

OLAP_CONDITION(
 r2c IN RAW(32),
 expression IN VARCHAR2,
 event IN NUMBER DEFAULT 1);
 RETURN NUMBER;

Appendix A
OLAP_CONDITION

A-24

Parameters

r2c
The name of a column specified by a ROW2CELL clause in the limit map. This parameter
is used by OLAP_CONDITION to identify a particular invocation of OLAP_TABLE.
The ROW2CELL column is used in the processing of the single-row functions. (See
"OLAP_EXPRESSION") OLAP_CONDITION simply uses it as an identifier.
For information on creating a ROW2CELL column, see "ROW2CELL Clause".

expression
A single OLAP DML command to be executed within the context of the OLAP_TABLE
function identified by the r2c parameter

event
The event during OLAP_TABLE processing that triggers the execution of the OLAP DML
command specified by the expression parameter. This parameter can have the value
0, 1, or 2, as described in Table A-3

Usage Notes

Entry Points for OLAP_CONDITION in the OLAP_TABLE Limit Map

Parameters of OLAP_CONDITION identify an invocation of OLAP_TABLE, specify an entry
point in the limit map, and provide the OLAP DML command to be executed at that
entry point.

The target limit map must include a ROW2CELL column. OLAP_CONDITION uses this column
to identify an instance of OLAP_TABLE. Within that instance OLAP_CONDITION executes the
OLAP DML command at one of three possible entry points. The entry point that you
specify determines whether the condition affects the data returned by the query and
whether the condition remains in effect upon completion of the query.

OLAP_CONDITION can be triggered at any of the following points:

• Before the status of the dimensions in the limit map is saved (which occurs before
the result set is calculated).

• After the result set has been calculated and before it is fetched. (Default)

• After the result set has been fetched and the status of the dimensions in the limit
map has been restored.

The entry points for OLAP_CONDITION are described in the following table. Refer to "Order
of Processing in OLAP_TABLE" to determine where each entry point occurs.

Table A-3 Entry Points for OLAP_CONDITION in the OLAP_TABLE Limit Map

Entry Point Description

0 Execute the OLAP DML command after the PREDMLCMD clause of the limit map is
processed and before the status of the dimensions in the limit map is saved.

The entry point is between steps 1 and 2 in "Order of Processing in
OLAP_TABLE".

If OLAP_CONDITION limits any of the dimensions in the limit map, the limits remain
in the workspace after the execution of OLAP_TABLE (unless a command in the
POSTDMLCMD clause of the limit map changes the status).

Appendix A
OLAP_CONDITION

A-25

Table A-3 (Cont.) Entry Points for OLAP_CONDITION in the OLAP_TABLE Limit
Map

Entry Point Description

1 Execute the OLAP DML command after the conditions of the WHERE clause are
satisfied and before the data is fetched. (Default.)

The entry point is between steps 4 and 5 in "Order of Processing in
OLAP_TABLE".

If an OLAP DML command (other than FETCH) is specified in the olap_command
parameter of OLAP_TABLE, it is executed after OLAP_CONDITION and before the
data is fetched. (The use of a FETCH command in the olap_command parameter,
or in OLAP_CONDITION itself, is not generally recommended. See "Using FETCH in
the olap_command Parameter".)

If OLAP_CONDITION limits any of the dimensions in the limit map, the limits remain
in effect for the duration of the query only.

2 Execute the OLAP DML command after the data is fetched and the status of
dimensions in the limit map has been restored.

The entry point is after step 8 in "Order of Processing in OLAP_TABLE".

If OLAP_CONDITION limits any dimensions, the limits remain in the analytic
workspace after the query completes.

Examples

Several sample queries using OLAP_CONDITION are shown in Example A-11. These
examples use the PRICE_CUBE in an analytic workspace namedMYAW. The cube has a
time dimension, a product dimension, and measures for unit cost and unit price.

The examples are based on a view called unit_cost_price_view. The SQL for creating
this view is shown in Example A-10. For information about creating views of analytic
workspaces, see "Creating Relational Views Using OLAP_TABLE".

Example A-10 View of PRICE_CUBE

-- Create the logical row
SQL>CREATE TYPE unit_cost_price_row AS OBJECT (
 aw_unit_cost NUMBER,
 aw_unit_price NUMBER,
 aw_product VARCHAR2(50),
 aw_product_gid NUMBER(10),
 aw_time VARCHAR2(20),
 aw_time_gid NUMBER(10),
 r2c RAW(32));

-- Create the logical table
SQL>CREATE TYPE unit_cost_price_table AS TABLE OF unit_cost_price_row;

-- Create the view
SQL>CREATE OR REPLACE VIEW unit_cost_price_view AS
 SELECT aw_unit_cost, aw_unit_price, aw_product, aw_product_gid,
 aw_time, aw_time_gid, r2c
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION SESSION',
 'unit_cost_price_table',
 '',
 'MEASURE aw_unit_cost FROM price_cube_unit_cost
 MEASURE aw_unit_price FROM price_cube_unit_price

Appendix A
OLAP_CONDITION

A-26

 DIMENSION product WITH
 HIERARCHY product_parentrel
 INHIERARCHY product_inhier
 GID aw_product_gid FROM product_gid
 ATTRIBUTE aw_product FROM product_short_description
 DIMENSION time WITH
 HIERARCHY time_parentrel
 INHIERARCHY time_inhier
 GID aw_time_gid FROM time_gid
 ATTRIBUTE aw_time FROM time_short_description
 ROW2CELL r2c'));

-- query the view
SQL>SELECT * FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('2000', '2001', '2002', '2003')
 ORDER BY aw_time;

AW_UNIT_COST AW_UNIT_PRICE AW_PRODUCT AW_PRODUCT_GID AW_TIME AW_TIME_GID R2C
------------ ------------- ---------- -------------- ------- ----------- -----
 211680.12 224713.71 Hardware 3 2000 3 00...
 195591.60 207513.16 Hardware 3 2001 3 00...
 184413.05 194773.78 Hardware 3 2002 3 00...
 73457.31 77275.06 Hardware 3 2003 3 00...

Example A-11 Queries of UNIT_COST_PRICE_VIEW Using OLAP_CONDITION

The queries in this example use OLAP_CONDITION to modify the query of
UNIT_COST_PRICE_VIEW in Example A-10. In each query, OLAP_CONDITION uses a different
entry point to limit the TIME dimension to the year 2000.

In the first query, OLAP_CONDIITON uses entry point 0. The limited data is returned by
OLAP_TABLE, and the limit remains in effect in the analytic workspace.

SQL>SELECT * FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('2000', '2001', '2002', '2003')
 AND OLAP_CONDITION(r2c,
 'limit time to time_short_description eq ''2000''', 0)=1
 ORDER BY aw_time;

AW_UNIT_COST AW_UNIT_PRICE AW_PRODUCT AW_PRODUCT_GID AW_TIME AW_TIME_GID R2C
------------ ------------- ---------- -------------- ------- ----------- -----
 211680.12 224713.71 Hardware 3 2000 3 00...

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time_short_description');

TIME TIME_SHORT_DESCRIPTION
---- ----------------------
 3 2000

-- Reset status
SQL>exec dbms_aw.execute('allstat');

In the next query, OLAP_CONDIITON uses entry point 1. The limited data is returned by
OLAP_TABLE, but the limit does not remain in effect in the analytic workspace.

Note that the third parameter is not required in this case, because entry point 1 is the
default.

Appendix A
OLAP_CONDITION

A-27

SQL>SELECT * FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('2000', '2001', '2002', '2003')
 AND OLAP_CONDITION(r2c,
 'limit time to time_short_description eq ''2000''', 1)=1
 ORDER BY aw_time;

AW_UNIT_COST AW_UNIT_PRICE AW_PRODUCT AW_PRODUCT_GID AW_TIME AW_TIME_GID R2C
------------ ------------- ---------- -------------- ------- ----------- -----
 211680.12 224713.71 Hardware 3 2000 3 00...

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time_short_description');

TIME TIME_SHORT_DESCRIPTION
---- ----------------------
 19 Jan-98
 20 Feb-98
 21 Mar-98
 22 Apr-98
.
.
.
 1 1998
 2 1999
 3 2000
 4 2001
 85 2002
102 2003
119 2004

-- Reset status
SQL>exec dbms_aw.execute('allstat');

In the final query, OLAP_CONDIITON uses entry point 2. The limit does not affect the data
returned by OLAP_TABLE, but the limit remains in effect in the analytic workspace.

SQL>SELECT * FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('2000', '2001', '2002', '2003')
 AND OLAP_CONDITION(r2c,
 'limit time to time_short_description eq ''2000''', 2)=1
 ORDER BY aw_time;

AW_UNIT_COST AW_UNIT_PRICE AW_PRODUCT AW_PRODUCT_GID AW_TIME AW_TIME_GID R2C
------------ ------------- ---------- -------------- ------- ----------- -----
 211680.12 224713.71 Hardware 3 2000 3 00...
 195591.60 207513.16 Hardware 3 2001 3 00...
 184413.05 194773.78 Hardware 3 2002 3 00...
 73457.31 77275.06 Hardware 3 2003 3 00...

--Check status in the analytic workspace
SQL>exec dbms_aw.execute('rpr time_short_description');

TIME TIME_SHORT_DESCRIPTION
---- ----------------------
 3 2000

Appendix A
OLAP_CONDITION

A-28

OLAP_EXPRESSION
OLAP_EXPRESSION is a SQL function that dynamically executes an OLAP DML boolean
expression within the context of an OLAP_TABLE function. In addition to returning a
custom measure, you can use this function in the WHERE and ORDER BY clauses to modify
the result set of the query of the analytic workspace.

See Also:

"Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements"
and "Adding Calculated Columns to the Relational View"

OLAP_EXPRESSION_TEXT returns character data. To return text, boolean, or date data, use
OLAP_EXPRESSION_TEXT, OLAP_EXPRESSION_BOOL, or
OLAP_EXPRESSION_DATE SQL functions.

Before you use this function, you must specify a ROW2CELL clause in the limit map used
by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE populates with
information used by the OLAP single-row functions.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Returns

An evaluation of numeric_expression for each row of the table object returned by the
OLAP_TABLE function.

OLAP_EXPRESSION returns numeric data. To return text, boolean, or date data, use the
OLAP_EXPRESSION_TEXT, OLAP_EXPRESSION_BOOL, or OLAP_EXPRESSION_DATE functions.

Syntax

OLAP_EXPRESSION(
 r2c IN RAW(32),
 numeric_expression IN VARCHAR2)
 RETURN NUMBER;

Parameters

r2c
The name of a column specified by a ROW2CELL clause in the limit map. See
"ROW2CELL Clause" of OLAP_TABLE.

numeric_expression
An OLAP DML expression that returns a numeric result.

Appendix A
OLAP_EXPRESSION

A-29

See Also:

"Numeric Expressions", OLAP DML Functions: A - K, OLAP DML Functions: L
- Z , and "Guidelines for Using Quotation Marks in OLAP DML Commands"

Examples

The following script was used to create the view unit_cost_price_view, which is used in
Example A-12 and Example A-13 to illustrate the use of OLAP_EXPRESSION. For
information about creating views of analytic workspaces, see "Creating Relational
Views Using OLAP_TABLE".

Sample View: MYAW.UNIT_COST_PRICE_VIEW

-- Create the logical row
CREATE TYPE unit_cost_price_row AS OBJECT (
 aw_unit_cost NUMBER,
 aw_unit_price NUMBER,
 aw_product VARCHAR2(50),
 aw_time VARCHAR2(20),
 r2c RAW(32));
/
-- Create the logical table
CREATE TYPE unit_cost_price_table AS TABLE OF unit_cost_price_row;
/
-- Create the view
CREATE OR REPLACE VIEW unit_cost_price_view AS
 SELECT aw_unit_cost, aw_unit_price, aw_product, aw_time, r2c
 FROM TABLE(OLAP_TABLE(
 'myaw DURATION SESSION',
 'unit_cost_price_table',
 '',
 'MEASURE aw_unit_cost FROM price_cube_unit_cost
 MEASURE aw_unit_price FROM price_cube_unit_price
 DIMENSION product WITH
 HIERARCHY product_parentrel
 INHIERARCHY product_inhier
 ATTRIBUTE aw_product FROM product_short_description
 DIMENSION time WITH
 HIERARCHY time_parentrel
 INHIERARCHY time_inhier
 ATTRIBUTE aw_time FROM time_short_description
 ROW2CELL r2c'));
/

The following query shows some aggregate data in the view.

SQL>SELECT * FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('2000', '2001', '2002', '2003')
 ORDER BY aw_time;

AW_UNIT_COST AW_UNIT_PRICE AW_PRODUCT AW_TIME R2C
------------ ------------- ---------- ------- -----
 211680.12 224713.71 Hardware 2000 00...
 195591.60 207513.16 Hardware 2001 00...
 184413.05 194773.78 Hardware 2002 00...
 73457.31 77275.06 Hardware 2003 00...

Appendix A
OLAP_EXPRESSION

A-30

Example A-12 OLAP_EXPRESSION: Time Series Function in a WHERE Clause

This example uses the view described in "Sample View:
MYAW.UNIT_COST_PRICE_VIEW".

The following SELECT statement calculates an expression with an alias of PERIODAGO,
and limits the result set to calculated values greater than 50,000. The calculation uses
the LAG function to return the value of the previous time period.

SQL>SELECT aw_time time, aw_unit_cost unit_cost,
 OLAP_EXPRESSION(r2c,
 'LAG(price_cube_unit_cost, 1, time,
 LEVELREL time_levelrel)') periodago
 FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND OLAP_EXPRESSION(r2c,
 'LAG(price_cube_unit_cost, 1, time,
 LEVELREL time_levelrel)') > 50000;

This SELECT statement produces these results.

TIME UNIT_COST PERIODAGO
-------------------- ---------- ----------
2003 73457.31 184413.05
2004 73457.31
1999 231095.4 162526.92
2000 211680.12 231095.4
2001 195591.6 211680.12
2002 184413.05 195591.6
Q2-99 57587.34 57856.76
Q3-99 59464.25 57587.34
Q4-99 56187.05 59464.25
Q1-00 53982.32 56187.05
Q2-00 53629.74 53982.32
Q3-00 53010.65 53629.74
Q4-00 51057.41 53010.65
Q1-01 49691.22 51057.41

Example A-13 OLAP_EXPRESSION: Numeric Calculation in an ORDER BY
CLause

This example uses the view described in "Sample View:
MYAW.UNIT_COST_PRICE_VIEW".

This example subtracts costs from price, and gives this expression an alias of MARKUP.
The rows are ordered by markup from highest to lowest.

SQL>SELECT aw_time time, aw_unit_cost unit_cost, aw_unit_price unit_price,
 OLAP_EXPRESSION(r2c,
 'PRICE_CUBE_UNIT_PRICE - PRICE_CUBE_UNIT_COST') markup
 FROM unit_cost_price_view
 WHERE aw_product = 'Hardware'
 AND aw_time in ('1998', '1999', '2000', '2001')
 ORDER BY OLAP_EXPRESSION(r2c,
 'PRICE_CUBE_UNIT_PRICE - PRICE_CUBE_UNIT_COST') DESC;

This SELECT statement produces these results.

TIME UNIT_COST UNIT_PRICE MARKUP
-------------------- ---------- ---------- ---------
1999 231095.40 245412.91 14317.51
2000 211680.12 224713.71 13033.59

Appendix A
OLAP_EXPRESSION

A-31

2001 195591.60 207513.16 11921.56
1998 162526.92 173094.41 10567.49

OLAP_EXPRESSION_BOOL
OLAP_EXPRESSION_BOOL is a SQL function that dynamically executes an OLAP DML
boolean expression within the context of an OLAP_TABLE function. In addition to returning
a custom measure, you can use this function in the WHERE and ORDER BY clauses to
modify the result set of the query of the analytic workspace.

See Also:

"Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements"
and "Adding Calculated Columns to the Relational View"

OLAP_EXPRESSION_TEXT returns character data. To return numeric, text, or date data, use
OLAP_EXPRESSION, OLAP_EXPRESSION_TEXT, or OLAP_EXPRESSION_DATE
SQL functions.

Before you use this function, you must specify a ROW2CELL clause in the limit map used
by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE populates with
information used by the OLAP single-row functions.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Returns

An evaluation of boolean_expression for each row of the table object returned by the
OLAP_TABLE function.

OLAP_EXPRESSION_BOOL returns boolean data in the form 0 for false and 1 for true. To
return numeric, date, or text data, use the OLAP_EXPRESSION, OLAP_EXPRESSION_DATE, or
OLAP_EXPRESSION_TEXT functions.

Syntax

OLAP_EXPRESSION_BOOL(
 r2c IN RAW(32),
 boolean_expression IN VARCHAR2)
 RETURN NUMBER;

Parameters

r2c
The name of a column specified by a ROW2CELL clause in the limit map. See
"ROW2CELL Clause" of OLAP_TABLE

Appendix A
OLAP_EXPRESSION_BOOL

A-32

boolean_expression
An OLAP DML expression that returns a Boolean result.

See Also:

"Boolean Expressions", OLAP DML Functions: A - K, OLAP DML Functions: L
- Z , and "Guidelines for Using Quotation Marks in OLAP DML Commands"

Examples

The following script was used to create the view awunits_view, which is used in
Example A-14 to illustrate the use of OLAP_EXPRESSION_BOOL.

Sample View: MYAW_AW.AWUNITS_VIEW

-- Create the logical row
CREATE TYPE awunits_row AS OBJECT (
 awtime VARCHAR2(12),
 awcustomer VARCHAR2(30),
 awproduct VARCHAR2(30),
 awchannel VARCHAR2(30),
 awunits NUMBER(16),
 r2c RAW(32));
/
-- Create the logical table
CREATE TYPE awunits_table AS TABLE OF awunits_row;
/
-- Create the view
CREATE OR REPLACE VIEW awunits_view AS
 SELECT awunits,
 awtime, awcustomer, awproduct, awchannel, r2c
 FROM TABLE(OLAP_TABLE(
 'myaw_aw.myawaw DURATION SESSION',
 'awunits_table',
 '',
 'MEASURE awunits FROM units_cube_aw_units_aw
 DIMENSION awtime FROM time_aw WITH
 HIERARCHY time_aw_parentrel
 DIMENSION awcustomer FROM customer_aw WITH
 HIERARCHY customer_aw_parentrel
 (customer_aw_hierlist ''MARKET_ROLLUP_AW'')
 INHIERARCHY customer_aw_inhier
 DIMENSION awproduct FROM product_aw WITH
 HIERARCHY product_aw_parentrel
 DIMENSION channel_aw WITH
 HIERARCHY channel_aw_parentrel
 ATTRIBUTE awchannel FROM channel_aw_short_description
 ROW2CELL r2c'))
 WHERE awunits IS NOT NULL;
/

The following query shows some aggregate data in the view. For all products in all
markets during the year 2001, it shows the number of units sold through each channel.

SQL> SELECT awchannel, awunits FROM awunits_view
 WHERE awproduct = '1'
 AND awcustomer = '7'
 AND awtime = '4';

Appendix A
OLAP_EXPRESSION_BOOL

A-33

AWCHANNEL AWUNITS
--------- -------
All Channels 415392
Direct Sales 43783
Catalog 315737
Internet 55872

The following statements show the descriptions of the Product, Customer, and Time
dimension members used in the query.

SQL>execute dbms_aw.execute('limit product_aw to ''1''');
SQL>execute dbms_aw.execute('rpr product_aw_short_description');

PRODUCT_AW PRODUCT_AW_SHORT_DESCRIPTION
--------------- --
1 Total Product

SQL>execute dbms_aw.execute('limit customer_aw to ''7''');
SQL>execute dbms_aw.execute('rpr customer_aw_short_description');

CUSTOMER_AW CUSTOMER_AW_SHORT_DESCRIPTION
--------------- --
7 Total Market

SQL>execute dbms_aw.execute('limit time_aw to ''4''');
SQL>execute dbms_aw.execute('rpr time_aw_short_description');

TIME_AW TIME_AW_SHORT_DESCRIPTION
--------------- --
4 2001

Example A-14 OLAP_EXPRESSION_BOOL Function in a SELECT List

This example uses the view described in "Sample View:
MYAW_AW.AWUNITS_VIEW". The following SELECT statement calculates an
expression with an alias of lowest_units, which indicates whether or not the number of
units of each product was less than 500.

SQL>SELECT awproduct products,
 olap_expression_bool(r2c, 'units_cube_aw_units_aw le 500') lowest_units
 FROM awunits_view
 WHERE awproduct > 39
 AND awproduct < 46
 AND awcustomer = '7'
 AND awchannel = 'Internet'
 AND awtime = '4';

PRODUCTS LOWEST_UNITS
--------------- ------------
40 0
41 1
42 1
43 1
44 1
45 0

This query shows that products 41-44 all had less than 500 units. These products are
the documentation sets in German, French, Spanish, and Italian. The selected
products are shown as follows.

Appendix A
OLAP_EXPRESSION_BOOL

A-34

SQL>execute dbms_aw.execute
 ('limit product_aw to product_aw gt 39 and product_aw lt 46');
SQL>execute dbms_aw.execute('rpr product_aw_short_description');

PRODUCT_AW PRODUCT_AW_SHORT_DESCRIPTION
--------------- --
40 O/S Documentation Set - English
41 O/S Documentation Set - German
42 O/S Documentation Set - French
43 O/S Documentation Set - Spanish
44 O/S Documentation Set - Italian
45 O/S Documentation Set - Kanji

OLAP_EXPRESSION_DATE
OLAP_EXPRESSION_DATE is a SQL function that dynamically executes an OLAP DML
datetime expression within the context of an OLAP_TABLE function. In addition to
returning a custom measure, you can use this function in the WHERE and ORDER BY
clauses to modify the result set of the query of the analytic workspace.

See Also:

"Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements"
and "Adding Calculated Columns to the Relational View"

OLAP_EXPRESSION_TEXT returns character data. To return numeric, boolean, or text data,
use OLAP_EXPRESSION, OLAP_EXPRESSION_BOOL, or
OLAP_EXPRESSION_TEXT SQL functions.

Before you use this function, you must specify a ROW2CELL clause in the limit map used
by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE populates with
information used by the OLAP single-row functions.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Returns

An evaluation of date_expression for each row of the table object returned by the
OLAP_TABLE function.

OLAP_EXPRESSION_DATE returns date data. To return numeric, boolean, or text data, use
the OLAP_EXPRESSION, OLAP_EXPRESSION_BOOL, or OLAP_EXPRESSION_TEXT functions.

Syntax

OLAP_EXPRESSION_DATE(
 r2c IN RAW(32),
 date_expression IN VARCHAR2)
 RETURN NUMBER;

Appendix A
OLAP_EXPRESSION_DATE

A-35

Parameters

r2c
The name of a column specified by a ROW2CELL clause in the limit map. See
"ROW2CELL Clause" of OLAP_TABLE

date_expression
An OLAP DML expression that returns an OLAP DML datetime result.

See Also:

"Datetime and Interval Expressions", OLAP DML Functions: A - K, OLAP DML
Functions: L - Z , and "Guidelines for Using Quotation Marks in OLAP DML
Commands"

Examples

Refer to the examples in OLAP_EXPRESSION and OLAP_EXPRESSION_BOOL for
examples of OLAP single-row functions.

OLAP_EXPRESSION_TEXT
OLAP_EXPRESSION_TEXT is a SQL function that dynamically executes an OLAP DML text
expression within the context of an OLAP_TABLE function. In addition to returning a
custom measure, you can use this function in the WHERE and ORDER BY clauses to modify
the result set of the query of the analytic workspace.

See Also:

"Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements"
and "Adding Calculated Columns to the Relational View"

OLAP_EXPRESSION_TEXT returns character data. To return numeric, boolean, or date data,
use OLAP_EXPRESSION, OLAP_EXPRESSION_BOOL, or
OLAP_EXPRESSION_DATE SQL functions.

Before you use this function, you must specify a ROW2CELL clause in the limit map used
by OLAP_TABLE. ROW2CELL identifies a RAW column that OLAP_TABLE populates with
information used by the OLAP single-row functions.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL Worksheet.

Appendix A
OLAP_EXPRESSION_TEXT

A-36

Returns

An evaluation of text_expression for each row of the table object returned by the
OLAP_TABLE function.

Syntax

OLAP_EXPRESSION_TEXT(
 r2c IN RAW(32),
 text_expression IN VARCHAR2)
 RETURN NUMBER;

Parameters

r2c
The name of a column specified by a ROW2CELL clause in the limit map. See
"ROW2CELL Clause" of OLAP_TABLE

text_expression
An OLAP DML expression that returns a text result.

See Also:

"Text Expressions", OLAP DML Functions: A - K, OLAP DML Functions: L - Z ,
and "Guidelines for Using Quotation Marks in OLAP DML Commands"

Example

Refer to the examples in OLAP_EXPRESSION and OLAP_EXPRESSION_BOOL for
examples of OLAP single-row functions.

Appendix A
OLAP_EXPRESSION_TEXT

A-37

B
DBMS_AW PL/SQL Package

The DBMS_AW PL/SQL package provides procedures and functions for interacting
with analytic workspaces.

This appendix contains the following topics:

• Managing Analytic Workspaces

• Embedding OLAP DML in SQL Statements

• Using the Sparsity Advisor

• Using the Aggregate Advisor

• Summary of DBMS_AW Subprograms

• One reference topic for each DBMS_AW subprogram

Managing Analytic Workspaces
To interact with Oracle OLAP, you must attach an analytic workspace to your session.
When you have DBMS_AW PL/SQL package installed you can perform this task from
within SQL*Plus. For example, you can use the following command to attach an
analytic workspace with read-only access.

EXECUTE dbms_aw.aw_attach ('awname');

Each analytic workspace is associated with a list of analytic workspaces. The read-
only workspace EXPRESS.AW, which contains the OLAP engine code, is always attached
last in the list. When you create a workspace, it is attached first in the list by default.

You can reposition an analytic workspace within the list by using keywords such as
FIRST and LAST. For example, the following commands show how to move an analytic
workspace called MYAW.TEST2 from the second position to the first position on the list.

EXECUTE dbms_aw.execute ('AW LIST');

TEST1 R/O UNCHANGED GLOBAL.TEST1
TEST2 R/O UNCHANGED GLOBAL.TEST2
EXPRESS R/O UNCHANGED SYS.EXPRESS

EXECUTE dbms_aw.aw_attach ('test2', FALSE, FALSE, 'FIRST');
EXECUTE dbms_aw.execute ('AW LIST');

TEST2 R/O UNCHANGED GLOBAL.TEST2
TEST1 R/O UNCHANGED GLOBAL.TEST1
EXPRESS R/O UNCHANGED SYS.EXPRESS

From within SQL*Plus, you can rename workspaces and make copies of workspaces.
If you have an analytic workspace attached with read/write access, you can update the
workspace and save your changes in the permanent database table where the
workspace is stored. You must do a SQL COMMIT to save the workspace changes within
the database.

B-1

The following commands make a copy of the objects and data in workspace test2 in a
new workspace called test3, update test3, and commit the changes to the database.

EXECUTE dbms_aw.aw_copy('test2', 'test3');
EXECUTE dbms_aw.aw_update('test3');
COMMIT;

Embedding OLAP DML in SQL Statements
With the DBMS_AW package you can perform the full range of OLAP processing within
analytic workspaces. You can import data from legacy workspaces, relational tables,
or flat files. You can define OLAP objects and perform complex calculations.

Note:

If you use the DBMS_AW package to create analytic workspaces from scratch, you
may not be able to use OLAP utilities, such as Analytic Workspace Manager
and the DBMS_AW Aggregate Advisor, which require analytic workspaces of a
particular structure.

Methods for Executing OLAP DML Commands
The DBMS_AW package provides several procedures for executing ad hoc OLAP DML
commands. Using the EXECUTE or INTERP_SILENT procedures or the INTERP or INTERCLOB
functions, you can execute a single OLAP DML command or a series of commands
separated by semicolons.

Which procedures you use depends on how you want to direct output and on the size
of the input and output buffers. For example, the EXECUTE procedure directs output to a
printer buffer, the INTERP_SILENT procedure suppresses output, and the INTERP function
returns the session log.

The DBMS_AW package also provides functions for evaluating OLAP expressions. The
EVAL_TEXT function returns the result of a text expression, and EVAL_NUMBER returns the
result of a numeric expression.

Note:

Do not confuse the DBMS_AW functions EVAL_NUMBER and EVAL_TEXT with the SQL
function OLAP_EXPRESSION. See "OLAP_EXPRESSION" for more information.

Guidelines for Using Quotation Marks in OLAP DML Commands
The SQL processor evaluates the embedded OLAP DML commands, either in whole
or in part, before sending them to Oracle OLAP for processing. Follow these
guidelines when formatting the OLAP DML commands in the olap-commands parameter
of DBMS_AW procedures:

Appendix B
Embedding OLAP DML in SQL Statements

B-2

• Wherever you would normally use a single quote (') in an OLAP DML command,
use two single quotes (''). The SQL processor strips one of the single quotes
before it sends the OLAP DML command to Oracle OLAP.

• In the OLAP DML, a double quote (") indicates the beginning of a comment.

Using the Sparsity Advisor
Data can be stored in several different forms in an analytic workspace, depending on
whether it is dense, sparse, or very sparse. The Sparsity Advisor is a group of
subprograms in DBMS_AW that you can use to analyze the relational source data and get
recommendations for storing it in an analytic workspace.

Data Storage Options in Analytic Workspaces
Analytic workspaces analyze and manipulate data in a multidimensional format that
allocates one cell for each combination of dimension members. The cell can contain a
data value, or it can contain an NA (null). Regardless of its content, the cell size is
defined by the data type, for example, every cell in a DECIMAL variable is 8 bytes.

Variables can be either dense (they contain 30% or more cells with data values) or
sparse (less than 30% data values). Most variables are sparse and many are
extremely sparse.

Although data can also be stored in the multidimensional format used for analysis,
other methods are available for storing sparse variables that make more efficient use
of disk space and improve performance. Sparse data can be stored in a variable
defined with a composite dimension. A composite has as its members the dimension-
value combinations (called tuples) for which there is data. When a data value is added
to a variable dimensioned by a composite, that action triggers the creation of a
composite tuple. A composite is an index into one or more sparse data variables, and
is used to store sparse data in a compact form. Very sparse data can be stored in a
variable defined with a compressed composite, which uses a different algorithm for
data storage from regular composites.

Selecting the Best Data Storage Method
In contrast to dimensional data, relational data is stored in tables in a very compact
format, with rows only for actual data values. When designing an analytic workspace,
you may have difficulty manually identifying sparsity in the source data and
determining the best storage method. The Sparsity Advisor analyzes the source data
in relational tables and recommends a storage method. The recommendations may
include the definition of a composite and partitioning of the data variable.

The Sparsity Advisor consists of these procedures and functions:

SPARSITY_ADVICE_TABLE Procedure
ADD_DIMENSION_SOURCE Procedure
ADVISE_SPARSITY Procedure
ADVISE_DIMENSIONALITY Function
ADVISE_DIMENSIONALITY Procedure

The Sparsity Advisor also provides a public table type for storing information about the
dimensions of the facts being analyzed. Three objects are used to define the table
type:

Appendix B
Using the Sparsity Advisor

B-3

DBMS_AW$_COLUMNLIST_T

DBMS_AW$_DIMENSION_SOURCE_T

DBMS_AW$_DIMENSION_SOURCES_T

The following SQL DESCRIBE statements show the object definitions.

DESCRIBE dbms_aw$_columnlist_t
dbms_aw$_columnlist_t TABLE OF VARCHAR2(100)

DESCRIBE dbms_aw$_dimension_source_t
 Name Null? Type
 --- -------- ----------------------------
 DIMNAME VARCHAR2(100)
 COLUMNNAME VARCHAR2(100)
 SOURCEVALUE VARCHAR2(32767)
 DIMTYPE NUMBER(3)
 HIERCOLS DBMS_AW$_COLUMNLIST_T
 PARTBY NUMBER(9)

DESCRIBE dbms_aw$_dimension_sources_t
dbms_aw$_dimension_sources_t TABLE OF DBMS_AW$_DIMENSION_SOURCE_T

Using the Sparsity Advisor
Take these steps to use the Sparsity Advisor:

1. Call SPARSITY_ADVICE_TABLE to create a table for storing the evaluation of the
Sparsity Advisor.

2. Call ADD_DIMENSION_SOURCE for each dimension related by one or more columns to
the fact table being evaluated.

The information that you provide about these dimensions is stored in a
DBMS_AW$_DIMENSION_SOURCES_T variable.

3. Call ADVISE_SPARSITY to evaluate the fact table.

Its recommendations are stored in the table created by SPARSITY_ADVICE_TABLE. You
can use these recommendations to make your own judgements about defining
variables in your analytic workspace, or you can continue with the following step.

4. Call the ADVISE_DIMENSIONALITY procedure to get the OLAP DML object definitions
for the recommended composite, partitioning, and variable definitions.

or

Use the ADVISE_DIMENSIONALITY function to get the OLAP DML object definition for
the recommended composite and the dimension order for the variable definitions
for a specific partition.

Example: Evaluating Sparsity in the GLOBAL Schema
The following example provides a SQL script for evaluating the sparsity of the
UNITS_HISTORY_FACT table in the GLOBAL schema. In the GLOBAL analytic workspace,
UNITS_HISTORY_FACT defines the Units Cube and is the source for the UNITS variable.
UNITS_HISTORY_FACT is a fact table with a primary key composed of foreign keys from
four dimension tables. A fifth column contains the facts for Unit Sales.

The CHANNEL_DIM and CUSTOMER_DIM tables contain all of the information for the Channel
and Customer dimensions in a basic star configuration. Three tables in a snowflake

Appendix B
Using the Sparsity Advisor

B-4

configuration provide data for the Time dimension: MONTH_DIM, QUARTER_DIM, and
YEAR_DIM. The PRODUCT_CHILD_PARENT table is a parent-child table and defines the
Product dimension.

Example B-1 Sparsity Advisor Script for GLOBAL

CONNECT global/global
SET ECHO ON
SET LINESIZE 300
SET PAGESIZE 300
SET SERVEROUT ON FORMAT WRAPPED

-- Define and initialize an advice table named AW_SPARSITY_ADVICE
BEGIN
 dbms_aw.sparsity_advice_table();
EXCEPTION
 WHEN OTHERS THEN NULL;
END;
/

TRUNCATE TABLE aw_sparsity_advice;

DECLARE
 dimsources dbms_aw$_dimension_sources_t;
 dimlist VARCHAR2(500);
 sparsedim VARCHAR2(500);
 defs CLOB;
BEGIN
-- Provide information about all dimensions in the cube
 dbms_aw.add_dimension_source('channel', 'channel_id', dimsources,
 'channel_dim', dbms_aw.hier_levels,
 dbms_aw$_columnlist_t('channel_id', 'total_channel_id'));
 dbms_aw.add_dimension_source('product', 'item_id', dimsources,
 'product_child_parent', dbms_aw.hier_parentchild,
 dbms_aw$_columnlist_t('product_id', 'parent_id'));
 dbms_aw.add_dimension_source('customer', 'ship_to_id', dimsources,
 'customer_dim', dbms_aw.hier_levels,
 dbms_aw$_columnlist_t('ship_to_id', 'warehouse_id', 'region_id',
 'total_customer_id'));
 dbms_aw.add_dimension_source('time', 'month_id', dimsources,
 'SELECT m.month_id, q.quarter_id, y.year_id
 FROM time_month_dim m, time_quarter_dim q, time_year_dim y
 WHERE m.parent=q.quarter_id AND q.parent=y.year_id',
 dbms_aw.hier_levels,
 dbms_aw$_columnlist_t('month_id', 'quarter_id', 'year_id'));

-- Analyze fact table and provide advice without partitioning
 dbms_aw.advise_sparsity('units_history_fact', 'units_cube',
 dimsources, dbms_aw.advice_default, dbms_aw.partby_none);

COMMIT;

-- Generate OLAP DML for composite and variable definitions
dimlist := dbms_aw.advise_dimensionality('units_cube', sparsedim,
 'units_cube_composite');
dbms_output.put_line('Dimension list: ' || dimlist);
dbms_output.put_line('Sparse dimension: ' || sparsedim);
dbms_aw.advise_dimensionality(defs, 'units_cube');
dbms_output.put_line('Definitions: ');
dbms_aw.printlog(defs);

Appendix B
Using the Sparsity Advisor

B-5

END;
/

Advice from Sample Program
The script in Example B-1 generates the following information.

Dimension list: <channel units_cube_composite<product customer time>>
Sparse dimension: DEFINE units_cube_composite COMPOSITE <product customer time>
Definitions:
DEFINE units_cube.cp COMPOSITE <product customer time>
DEFINE units_cube NUMBER VARIABLE <channel units_cube.cp<product customer time>>
PL/SQL procedure successfully completed.

Information Stored in AW_SPARSITY_ADVICE Table
This SQL SELECT statement shows some columns from the AW_SPARSITY_ADVICE table,
which is the basis for the recommended OLAP DML object definitions.

SELECT fact, dimension, dimcolumn, membercount nmem, leafcount nleaf,
 advice, density
 FROM aw_sparsity_advice
 WHERE cubename='units_cube';

This query returns the following result set:

FACT DIMENSION DIMCOLUMN NMEM NLEAF ADVICE DENSITY
-------------------- ------------ ------------ ----- ------ ------------ --------
units_history_fact channel channel_id 3 3 DENSE .46182
units_history_fact product item_id 48 36 SPARSE .94827
units_history_fact customer ship_to_id 61 61 SPARSE .97031
units_history_fact time month_id 96 79 SPARSE .97664

Using the Aggregate Advisor
The management of aggregate data within analytic workspaces can have significant
performance implications. To determine an optimal set of dimension member
combinations to preaggregate, you can use the ADVISE_REL and ADVISE_CUBE procedures
in the DBMS_AW package. These procedures are known together as the Aggregate
Advisor.

Based on a percentage that you specify, ADVISE_REL suggests a set of dimension
members to preaggregate. The ADVISE_CUBE procedure suggests a set of members for
each dimension of a cube.

Aggregation Facilities within the Workspace
Instructions for storing aggregate data are specified in an analytic workspace object
called an aggmap. The OLAP DML AGGREGATE command uses the aggmap to
preaggregate the data. Any data that is not preaggregated is aggregated dynamically
by the AGGREGATE function when the data is queried.

Choosing a balance between static and dynamic aggregation depends on many
factors including disk space, available memory, and the nature and frequency of the
queries that run against the data. After weighing these factors, you may arrive at a
percentage of the data to preaggregate.

Appendix B
Using the Aggregate Advisor

B-6

Once you have determined the percentage of the data to preaggregate, you can use
the Aggregate Advisor. These procedures analyze the distribution of dimension
members within hierarchies and identify an optimal set of dimension members to
preaggregate.

Example: Using the ADVISE_REL Procedure
Based on a precompute percentage that you specify, the ADVISE_REL procedure
analyzes a family relation, which represents a dimension with all its hierarchical
relationships, and returns a list of dimension members.

ADVISE_CUBE applies similar heuristics to each dimension in an aggmap for a cube.

See Also:

• "ADVISE_REL Procedure"

• ADVISE_CUBE Procedure

Example B-2 uses the following sample Customer dimension to illustrate the
ADVISE_REL procedure.

Sample Dimension: Customer in the Global Analytic Workspace

The Customer dimension in GLOBAL_AW.GLOBAL has two hierarchies: SHIPMENTS_ROLLUP
with four levels, and MARKET_ROLLUP with three levels. The dimension has 106 members.
This number includes all members at each level and all level names.

The members of the Customer dimension are integer keys whose text values are
defined in long and short descriptions.

The following OLAP DML commands show information about the representation of the
Customer dimension, which is in database standard form.

SET serveroutput ON
---- Number of members of Customer dimension
EXECUTE dbms_aw.execute('SHOW STATLEN(customer)')
106

---- Hierarchies in Customer dimension;
EXECUTE dbms_aw.execute('REPORT W 40 customer_hierlist');
CUSTOMER_HIERLIST
--
MARKET_ROLLUP
SHIPMENTS_ROLLUP

---- Levels in Customer dimension
EXECUTE dbms_aw.execute('REPORT W 40 customer_levellist');

CUSTOMER_LEVELLIST
--
TOTAL_CUSTOMER
REGION
WAREHOUSE
TOTAL_MARKET
MARKET_SEGMENT

Appendix B
Using the Aggregate Advisor

B-7

ACCOUNT
SHIP_TO
---- Levels in each hierarchy from leaf to highest
EXECUTE dbms_aw.execute('REPORT W 20 customer_hier_levels');

CUSTOMER_HIERL
IST CUSTOMER_HIER_LEVELS
-------------- --------------------
SHIPMENTS SHIP_TO
 WAREHOUSE
 REGION
 TOTAL_CUSTOMER
MARKET_SEGMENT SHIP_TO
 ACCOUNT
 MARKET_SEGMENT
 TOTAL_MARKET

---- Parent relation showing parent-child relationships in the Customer dimension
---- Only show the last 20 members
EXECUTE dbms_aw.execute('LIMIT customer TO LAST 20');
EXECUTE dbms_aw.execute('REPORT W 10 DOWN customer W 20 customer_parentrel');

 -----------CUSTOMER_PARENTREL------------
 ------------CUSTOMER_HIERLIST------------
CUSTOMER MARKET_ROLLUP SHIPMENTS_ROLLUP
---------- -------------------- --------------------
103 44 21
104 45 21
105 45 21
106 45 21
7 NA NA
1 NA NA
8 NA 1
9 NA 1
10 NA 1
11 NA 8
12 NA 10
13 NA 9
14 NA 9
15 NA 8
16 NA 9
17 NA 8
18 NA 8
19 NA 9
20 NA 9
21 NA 10

---- Show text descriptions for the same twenty dimension members
EXECUTE dbms_aw.execute('REPORT W 15 DOWN customer W 35 ACROSS customer_hierlist:
<customer_short_description>');

ALL_LANGUAGES: AMERICAN_AMERICA
 ---------------------------CUSTOMER_HIERLIST---------------------------
 -----------MARKET_ROLLUP----------- ---------SHIPMENTS_ROLLUP----------
CUSTOMER CUSTOMER_SHORT_DESCRIPTION CUSTOMER_SHORT_DESCRIPTION
--------------- ----------------------------------- -----------------------------------
103 US Marine Svcs Washington US Marine Svcs Washington
104 Warren Systems New York Warren Systems New York
105 Warren Systems Philladelphia Warren Systems Philladelphia
106 Warren Systems Boston Warren Systems Boston
7 Total Market NA
1 NA All Customers
8 NA Asia Pacific

Appendix B
Using the Aggregate Advisor

B-8

9 NA Europe
10 NA North America
11 NA Australia
12 NA Canada
13 NA France
14 NA Germany
15 NA Hong Kong
16 NA Italy
17 NA Japan
18 NA Singapore
19 NA Spain
20 NA United Kingdom
21 NA United States

The returned Customer members with their text descriptions, related levels, and
related hierarchies, are shown as follows.

Customer
Member

Description Hierarchy Level

31 Kosh Enterprises MARKET_ROLLUP ACCOUNT

2 Consulting MARKET_ROLLUP MARKET_SEGMENT

4 Government MARKET_ROLLUP MARKET_SEGMENT

5 Manufacturing MARKET_ROLLUP MARKET_SEGMENT

6 Reseller MARKET_ROLLUP MARKET_SEGMENT

7 TOTAL_MARKET MARKET_ROLLUP TOTAL_MARKET

1 TOTAL_CUSTOMER SHIPMENTS_ROLLUP TOTAL_CUSTOMER

8 Asia Pacific SHIPMENTS_ROLLUP REGION

9 Europe SHIPMENTS_ROLLUP REGION

20 United Kingdom SHIPMENTS_ROLLUP WAREHOUSE

21 United States SHIPMENTS_ROLLUP WAREHOUSE

Example B-2 ADVISE_REL: Suggested Preaggregation of the Customer
Dimension

This example uses the GLOBAL Customer dimension described in Sample Dimension:
Customer in the Global Analytic Workspace.

The following PL/SQL statements assume that you want to preaggregate 25% of the
Customer dimension. ADVISE_REL returns the suggested set of members in a valueset.

SET serveroutput ON
EXECUTE dbms_aw.execute('AW ATTACH global_aw.global');
EXECUTE dbms_aw.execute('DEFINE customer_preagg VALUESET customer');
EXECUTE dbms_aw.advise_rel('customer_parentrel', 'customer_preagg', 25);
EXECUTE dbms_aw.execute('SHOW VALUES(customer_preagg)');
31
2
4
5
6
7
1
8
9
20
21

Appendix B
Using the Aggregate Advisor

B-9

Summary of DBMS_AW Subprograms
The following table describes the subprograms provided in DBMS_AW.

Table B-1 DBMS_AW Subprograms

Subprogram Description

ADD_DIMENSION_SOURCE
Procedure

Populates a table type named DBMS_AW$_DIMENSION_SOURCES_T
with information provided in its parameters about the
dimensions of the cube.

ADVISE_CUBE Procedure Suggests how to preaggregate a cube, based on a specified
percentage of the cube's data.

ADVISE_DIMENSIONALITY
Function

Returns a recommended composite definition for the cube and
a recommended dimension order.

ADVISE_DIMENSIONALITY
Procedure

Generates the OLAP DML commands for defining the
recommended composite and measures in a cube.

ADVISE_PARTITIONING_DI
MENSION Function

Identifies the dimension that the Sparsity Advisor partitioned
over.

ADVISE_PARTITIONING_LE
VEL Function

Returns the level used by the Sparsity Advisor for partitioning
over a dimension.

ADVISE_REL Procedure Suggests how to preaggregate a dimension, based on a
specified percentage of the dimension's members.

ADVISE_SPARSITY
Procedure

Analyzes a fact table for sparsity and populates a table with the
results of its analysis.

AW_ATTACH Procedure Attaches an analytic workspace to a session.

AW_COPY Procedure Creates a new analytic workspace and populates it with the
object definitions and data from another analytic workspace.

AW_CREATE Procedure Creates a new, empty analytic workspace.

AW_DELETE Procedure Deletes an analytic workspace

AW_DETACH Procedure Detaches an analytic workspace from a session.

AW_RENAME Procedure Changes the name of an analytic workspace.

AW_TABLESPACE Function Returns the name of the tablespace in which a particular
analytic workspace is stored.

AW_UPDATE Procedure Saves changes made to an analytic workspace.

CONVERT Procedure Converts an analytic workspace from 9i to 10g storage format.

EVAL_NUMBER Function Returns the result of a numeric expression in an analytic
workspace.

EVAL_TEXT Function Returns the result of a text expression in an analytic
workspace.

EXECUTE Procedure Executes one or more OLAP DML commands. Input and output
is limited to 4K. Typically used in an interactive session using
an analytic workspace.

GETLOG Function Returns the session log from the last execution of the INTERP
or INTERPCLOB functions.

INFILE Procedure Executes the OLAP DML commands specified in a file.

Appendix B
Summary of DBMS_AW Subprograms

B-10

Table B-1 (Cont.) DBMS_AW Subprograms

Subprogram Description

INTERP Function Executes one or more OLAP DML commands. Input is limited
to 4K and output to 4G. Typically used in applications when the
4K limit on output for the EXECUTE procedure is too restrictive.

INTERPCLOB Function Executes one or more OLAP DML commands. Input and output
are limited to 4G. Typically used in applications when the 4K
input limit of the INTERP function is too restrictive.

INTERP_SILENT Procedure Executes one or more OLAP DML commands and suppresses
the output. Input is limited to 4K and output to 4G.

OLAP_ON Function Returns a boolean indicating whether or not the OLAP option is
installed in the database.

OLAP_RUNNING Function Returns a boolean indicating whether or not the OLAP option
has been initialized in the current session.

PRINTLOG Procedure Prints a session log returned by the INTERP, INTERCLOB, or
GETLOG functions.

RUN Procedure Executes one or more OLAP DML commands.

SHUTDOWN Procedure Shuts down the current OLAP session.

SPARSITY_ADVICE_TABLE
Procedure

Creates a table which the ADVISE_SPARSITY procedure uses to
store the results of its analysis.

STARTUP Procedure Starts an OLAP session without attaching a user-defined
analytic workspace.

ADD_DIMENSION_SOURCE Procedure
The ADD_DIMENSION_SOURCE procedure populates a table type named
DBMS_AW$_DIMENSION_SOURCES_T with information about the dimensions of a cube. This
information is analyzed by the ADVISE_SPARSITY procedure.

See Also:

"Using the Sparsity Advisor"

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

ADD_DIMENSION_SOURCE (
 dimname IN VARCHAR2,
 colname IN VARCHAR2,
 sources IN OUT dbms_aw$_dimension_sources_t,
 srcval IN VARCHAR2 DEFAULT NULL,

Appendix B
ADD_DIMENSION_SOURCE Procedure

B-11

 dimtype IN NUMBER DEFAULT NO_HIER,
 hiercols IN columnlist_t DEFAULT NULL,
 partby IN NUMBER DEFAULT PARTBY_DEFAULT);

Parameters

Table B-2 ADD_DIMENSION_SOURCE Procedure Parameters

Parameter Description

dimname A name for the dimension. For clarity, use the logical name of
the dimension in the analytic workspace.

colname The name of the column in the fact table that maps to the
dimension members for dimname.

sources The name of an object (such as a PL/SQL variable) defined with
a data type of DBMS_AW$_DIMENSION_SOURCES_T, which are used
to store the information provided by the other parameters.

srcval The name of a dimension table, or a SQL statement that returns
the columns that define the dimension. If this parameter is
omitted, then colname is used.

dimtype One of the following hierarchy types:

DBMS_AW.HIER_LEVELS Level-based hierarchy
DBMS_AW.HIER_PARENTCHILD Parent-child hierarchy
DBMS_AW.MEASURE Measure dimension
DBMS_AW.NO_HIER No hierarchy

hiercols The names of the columns that define a hierarchy.

For level-based hierarchies, list the base-level column first and
the topmost-level column last. If the dimension has multiple
hierarchies, choose the one you predict will be used the most
frequently; only list the columns that define the levels of this one
hierarchy.

For parent-child hierarchies, list the child column first, then the
parent column.

For measure dimensions, list the columns in the fact table that
becomes dimension members.

partby A keyword that controls partitioning. Use one of the following
values:

• DBMS_AW.PARTBY_DEFAULT Allow the Sparsity Advisor to
determine whether or not partitioning is appropriate for this
dimension.

• DBMS_AW.PARTBY_NONE Do not allow partitioning on this
dimension.

• DBMS_AW.PARTBY_FORCE Force partitioning on this dimension.

Important: Do not force partitioning on multiple dimensions.
• An integer value for the number of partitions you want

created for this dimension.

Example

The following PL/SQL program fragment provides information about the TIME
dimension for use by the Sparsity Advisor. The source data for the dimension is stored
in a dimension table named TIME_DIM. Its primary key is named MONTH_ID, and the
foreign key column in the fact table is also named MONTH_ID. The dimension hierarchy is
level based as defined by the columns MONTH_ID, QUARTER_ID, and YEAR_ID.

Appendix B
ADD_DIMENSION_SOURCE Procedure

B-12

The program declares a PL/SQL variable named DIMSOURCES with a table type of
DBMS_AW$_DIMENSION_SOURCES_T to store the information.

DECLARE
 dimsources dbms_aw$_dimension_sources_t;
BEGIN
 dbms_aw.add_dimension_source('time', 'month_id', dimsources,
 'time_dim', dbms_aw.hier_levels,
 dbms_aw$_columnlist_t('month_id', 'quarter_id', 'year_id'));
 .
 .
 .
END;
/

ADVISE_CUBE Procedure
The ADVISE_CUBE procedure helps you determine how to preaggregate a cube in an
analytic workspace. When you specify a percentage of the cube's data to
preaggregate, ADVISE_CUBE recommends a set of members to preaggregate from each
of the cube's dimensions.

The ADVISE_CUBE procedure takes an aggmap and a precompute percentage as input.
The aggmap must have a precompute clause in each of its RELATION statements. The
precompute clause must consist of a valueset. Based on the precompute percentage
that you specify, ADVISE_CUBE returns a set of dimension members in each valueset.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Aggregate Advisor"

Syntax

ADVISE_CUBE (
 aggmap_name IN VARCHAR2,
 precompute_percentage IN INTEGER DEFAULT 20,
 compressed IN BOOLEAN DEFAULT FALSE);

Appendix B
ADVISE_CUBE Procedure

B-13

Parameters

Table B-3 ADVISE_CUBE Procedure Parameters

Parameter Description

aggmap_name The name of an aggmap associated with the cube.

Each RELATION statement in the aggmap must have a
precompute clause containing a valueset. ADVISE_CUBE returns
a list of dimension members in each valueset. If the valueset is
not empty, ADVISE_CUBE deletes its contents before adding new
values.

precompute_percentage A percentage of the cube's data to preaggregate. The default
is 20%.

compressed Controls whether the advice is for a regular composite (FALSE)
or a compressed composite (TRUE).

Example

This example illustrates the ADVISE_CUBE procedure with a cube called UNITS
dimensioned by PRODUCT and TIME. ADVISE_CUBE returns the dimension combinations to
include if you want to preaggregate 40% of the cube's data.

SET SERVEROUTPUT ON
--- View valuesets
EXECUTE dbms_aw.execute('describe prodvals');
 DEFINE PRODVALS VALUESET PRODUCT
EXECUTE dbms_aw.execute('describe timevals');
 DEFINE TIMEVALS VALUESET TIME
--- View aggmap
EXECUTE dbms_aw.execute ('describe units_agg');
 DEFINE UNITS_AGG AGGMAP
 RELATION product_parentrel PRECOMPUTE (prodvals)
 RELATION time_parentrel PRECOMPUTE (timevals)
EXECUTE dbms_aw.advise_cube ('units_agg', 40);

---- The results are returned in the prodvals and timevals valuesets

ADVISE_DIMENSIONALITY Function
The ADVISE_DIMENSIONALITY function returns an OLAP DML definition of a composite
dimension and the dimension order for variables in the cube, based on the sparsity
recommendations generated by the ADVISE_SPARSITY procedure for a particular
partition.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Appendix B
ADVISE_DIMENSIONALITY Function

B-14

See Also:

"Using the Sparsity Advisor"

Syntax

ADVISE_DIMENSIONALITY (
 cubename IN VARCHAR2,
 sparsedfn OUT VARCHAR2
 sparsename IN VARCHAR2 DEFAULT NULL,
 partnum IN NUMBER DEFAULT 1,
 advtable IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table B-4 ADVISE_DIMENSIONALITY Function Parameters

Parameter Description

cubename The same cubename value provided in the call to
ADVISE_SPARSITY.

sparsedfn The name of an object (such as a PL/SQL variable) in which the
definition of the composite dimension is stored.

sparsename An object name for the composite. The default value is
cubename.cp.

partnum The number of a partition. By default, you see only the definition
of the first partition.

advtable The name of a table created by the SPARSITY_ADVICE_TABLE
procedure for storing the results of analysis.

Example

The following PL/SQL program fragment defines two variables to store the
recommendations returned by the ADVISE_DIMENSIONALITY function. SPARSEDIM stores the
definition of the recommended composite, and DIMLIST stores the recommended
dimension order of the cube.

DECLARE
 sparsedim VARCHAR2(500);
 dimlist VARCHAR2(500);
BEGIN
-- Calls to ADD_DIMENSION_SOURCE and ADVISE_SPARSITY omitted here
 .
 .
 .
dimlist := dbms_aw.advise_dimensionality('units_cube', sparsedim);
dbms_output.put_line('Sparse dimension: ' || sparsedim);
dbms_output.put_line('Dimension list: ' || dimlist);
END;
/

The program uses DBMS_OUTPUT.PUT_LINE to display the results of the analysis. The
Sparsity Advisor recommends a composite dimension for the sparse dimensions,

Appendix B
ADVISE_DIMENSIONALITY Function

B-15

which are PRODUCT, CUSTOMER, and TIME. The recommended dimension order for
UNITS_CUBE is CHANNEL followed by this composite.

Sparse dimension: DEFINE units_cube.cp COMPOSITE <product customer time>
Dimension list: channel units_cube.cp<product customer time>

The next example uses the Sparsity Advisor to evaluate the SALES table in the Sales
History sample schema. A WHILE loop displays the recommendations for all partitions.

DECLARE
 dimlist VARCHAR2(500);
 sparsedim VARCHAR2(500);
 counter NUMBER(2) := 1;
 maxpart NUMBER(2);
BEGIN
-- Calls to ADD_DIMENSION_SOURCE and ADVISE_SPARSITY omitted here
 .
 .
 .

SELECT MAX(partnum) INTO maxpart FROM sh_sparsity_advice;
WHILE counter <= maxpart LOOP
dimlist := dbms_aw.advise_dimensionality('sales_cube', sparsedim,
 'sales_cube_composite', counter, 'sh_sparsity_advice');
dbms_output.put_line('Dimension list: ' || dimlist);
dbms_output.put_line('Sparse dimension: ' || sparsedim);
counter := counter+1;
END LOOP;
dbms_aw.advise_dimensionality(defs,'sales_cube', 'sales_cube_composite',
 'DECIMAL', 'sh_sparsity_advice');
dbms_output.put_line('Definitions: ');
dbms_aw.printlog(defs);
END;
/

The Sparsity Advisor recommends 11 partitions; the first ten use the same composite.
The last partition uses a different composite. (The SH_SPARSITY_ADVICE table shows that
TIME_ID is dense in the last partition, whereas it is very sparse in the other partitions.)

Dimension list: sales_cube_composite<time channel product promotion customer>
Sparse dimension: DEFINE sales_cube_composite COMPOSITE COMPRESSED <time channel product promotion customer>
Dimension list: sales_cube_composite<time channel product promotion customer>
Sparse dimension: DEFINE sales_cube_composite COMPOSITE COMPRESSED <time channel product promotion customer>
 .
 .
 .
Dimension list: time sales_cube_composite<channel product promotion customer>
Sparse dimension: DEFINE sales_cube_composite COMPOSITE COMPRESSED <channel product promotion customer>

ADVISE_DIMENSIONALITY Procedure
The ADVISE_DIMENSIONALITY procedure evaluates the information provided by the
ADVISE_SPARSITY procedure and generates the OLAP DML commands for defining a
composite and a variable in the analytic workspace.

Appendix B
ADVISE_DIMENSIONALITY Procedure

B-16

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Sparsity Advisor"

Syntax

ADVISE_DIMENSIONALITY (
 output OUT CLOB,
 cubename IN VARCHAR2,
 sparsename IN VARCHAR2 DEFAULT NULL,
 dtype IN VARCHAR2 DEFAULT 'NUMBER',
 advtable IN VARCHAR2 DEFAULT NULL);

Parameters

Table B-5 ADVISE_DIMENSIONALITY Procedure Parameters

Parameter Description

output The name of an object (such as a PL/SQL variable) in which the
recommendations of the procedure is stored.

cubename The same cubename value provided in the call to
ADVISE_SPARSITY.

sparsename An object name for the sample composite. The default value is
cubename.cp.

dtype The OLAP DML data type of the sample variable.

advtable The name of the table created by the SPARSITY_ADVICE_TABLE
procedure in which the results of the analysis are stored.

Example

The following PL/SQL program fragment defines a variable named DEFS to store the
recommended definitions.

DECLARE
 defs CLOB;
BEGIN
-- Calls to ADD_DIMENSION_SOURCE and ADVISE_SPARSITY omitted here
 .
 .
 .
dbms_aw.advise_dimensionality(defs, 'units_cube_measure_stored',
 'units_cube_composite', 'DECIMAL');
dbms_output.put_line('Definitions: ');
dbms_aw.printlog(defs);
END;
/

Appendix B
ADVISE_DIMENSIONALITY Procedure

B-17

The program uses the DBMS_OUTPUT.PUT_LINE and DBMS_AW.PRINTLOG procedures to
display the recommended object definitions.

Definitions:
DEFINE units_cube.cp COMPOSITE <product customer time>
DEFINE units_cube NUMBER VARIABLE <channel units_cube.cp<product customer time>>

In contrast to the Global schema, which is small and dense, the Sales cube in the
Sales History sample schema is large and very sparse, and the Sparsity Advisor
recommends 11 partitions. The following excerpt shows some additional OLAP DML
definitions for defining a partition template and moving the TIME dimension members to
the various partitions.

Definitions:
DEFINE sales_cube_composite_p1 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p2 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p3 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p4 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p5 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p6 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p7 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p8 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p9 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p10 COMPOSITE COMPRESSED <time channel product promotion customer>
DEFINE sales_cube_composite_p11 COMPOSITE <channel product promotion customer>
DEFINE sales_cube_pt PARTITION TEMPLATE <time channel product promotion customer> -
 PARTITION BY LIST (time) -
 (PARTITION p1 VALUES () <sales_cube_composite_p1<>> -
 PARTITION p2 VALUES () <sales_cube_composite_p2<>> -
 PARTITION p3 VALUES () <sales_cube_composite_p3<>> -
 PARTITION p4 VALUES () <sales_cube_composite_p4<>> -
 PARTITION p5 VALUES () <sales_cube_composite_p5<>> -
 PARTITION p6 VALUES () <sales_cube_composite_p6<>> -
 PARTITION p7 VALUES () <sales_cube_composite_p7<>> -
 PARTITION p8 VALUES () <sales_cube_composite_p8<>> -
 PARTITION p9 VALUES () <sales_cube_composite_p9<>> -
 PARTITION p10 VALUES () <sales_cube_composite_p10<>> -
 PARTITION p11 VALUES () <time sales_cube_composite_p11<>>)
MAINTAIN sales_cube_pt MOVE TO PARTITION p1 -
 '06-JAN-98', '07-JAN-98', '14-JAN-98', '21-JAN-98', -
 '24-JAN-98', '28-JAN-98', '06-FEB-98', '07-FEB-98', -
 '08-FEB-98', '16-FEB-98', '21-FEB-98', '08-MAR-98', -
 '20-MAR-98', '03-JAN-98', '26-JAN-98', '27-JAN-98'
MAINTAIN sales_cube_pt MOVE TO PARTITION p1 -
 '31-JAN-98', '11-FEB-98', '12-FEB-98', '13-FEB-98', -
 '15-FEB-98', '17-FEB-98', '14-MAR-98', '18-MAR-98', -
 '26-MAR-98', '30-MAR-98', '05-JAN-98', '08-JAN-98', -
 '10-JAN-98', '16-JAN-98', '23-JAN-98', '01-FEB-98'
MAINTAIN sales_cube_pt MOVE TO PARTITION p1 -
 '14-FEB-98', '28-FEB-98', '05-MAR-98', '07-MAR-98', -
 '15-MAR-98', '19-MAR-98', '17-JAN-98', '18-JAN-98', -
 '22-JAN-98', '25-JAN-98', '03-FEB-98', '10-FEB-98', -
 '19-FEB-98', '22-FEB-98', '23-FEB-98', '26-FEB-98'
 .
 .
 .

Appendix B
ADVISE_DIMENSIONALITY Procedure

B-18

ADVISE_PARTITIONING_DIMENSION Function
The ADVISE_PARTITIONING_DIMENSION function identifies the dimension that the Sparsity
Advisor partitioned over, if any. It returns NULL when the Sparsity Advisor did not
partition the cube.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Sparsity Advisor"

Syntax

ADVISE_PARTITIONING_DIMENSION (
 cubename IN VARCHAR2,
 sources IN dbms_aw$_dimension_sources_t,
 advtable IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table B-6 ADVISE_PARTITIONING_DIMENSION Function Parameters

Parameter Description

cubename The same cubename value provided in the call to ADVISE_SPARSITY.

sources The name of an object (such as a PL/SQL variable) defined with a data
type of DBMS_AW$_DIMENSION_SOURCES_T, which was populated by
ADD_DIMENSION_SOURCE for use by ADVISE_SPARSITY.

advtable The name of a table created by the SPARSITY_ADVICE_TABLE procedure
for storing the results of analysis.

Example

The following program fragment shows the ADVISE_PARTITIONING_DIMENSION function
being used to query the results after using the Sparsity Advisor.

DECLARE
 dimsources dbms_aw$_dimension_sources_t;
BEGIN
-- Calls to ADD_DIMENSION_SOURCE and ADVISE_SPARSITY omitted here
 .
 .
 .
dbms_output.put_line('Partitioning Dimension: ' ||
 dbms_aw.advise_partitioning_dimension('units_cube', dimsources,

Appendix B
ADVISE_PARTITIONING_DIMENSION Function

B-19

 'aw_sparsity_advice'));
END;
/

The program uses DBMS_OUTPUT to display the partitioning dimension, which in this case
is the TIME dimension.

Partitioning Dimension: time

ADVISE_PARTITIONING_LEVEL Function
The ADVISE_PARTITIONING_LEVEL function returns the level used by the Sparsity Advisor
for partitioning over a dimension. It returns NULL if the Sparsity Advisor did not partition
the cube, and raises an exception if the dimension hierarchy is not level-based.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Sparsity Advisor"

Syntax

ADVISE_PARTITIONING_LEVEL (
 cubename IN VARCHAR2,
 sources IN dbms_aw$_dimension_sources_t,
 advtable IN VARCHAR2 DEFAULT NULL)
 RETURN VARCHAR2;

Parameters

Table B-7 ADVISE_PARTITIONING_LEVEL Function Parameters

Parameter Description

cubename The same cubename value provided in the call to ADVISE_SPARSITY.

sources The name of an object (such as a PL/SQL variable) defined with a data type
of DBMS_AW$_DIMENSION_SOURCES_T, which was populated by
ADD_DIMENSION_SOURCE for use by ADVISE_SPARSITY.

advtable The name of a table created by the SPARSITY_ADVICE_TABLE procedure for
storing the results of analysis.

Example

The following program fragment shows the ADVISE_PARTITIONING_LEVEL function being
used to query the results after using the Sparsity Advisor.

Appendix B
ADVISE_PARTITIONING_LEVEL Function

B-20

DECLARE
 dimsources dbms_aw$_dimension_sources_t;
BEGIN
-- Calls to ADD_DIMENSION_SOURCE and ADVISE_SPARSITY omitted here
 .
 .
 .
dbms_output.put_line('Partitioning Level: ' ||
 dbms_aw.advise_partitioning_level('units_cube', dimsources,
 'aw_sparsity_advice'));
END;
/

The program uses DBMS_OUTPUT to display the partitioning level, which in this case is
YEAR.

Partitioning Level: year

ADVISE_REL Procedure
The ADVISE_REL procedure helps you determine how to preaggregate a dimension in an
analytic workspace. When you specify a percentage of the dimension to preaggregate,
ADVISE_REL recommends a set of dimension members.

The ADVISE_REL procedure takes a family relation, a valueset, and a precompute
percentage as input. The family relation is an object that specifies the hierarchical
relationships between the members of a dimension. The valueset must be defined
from the dimension to be analyzed. Based on the precompute percentage that you
specify, ADVISE_REL returns a set of dimension members in the valueset.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Aggregate Advisor"

Syntax

ADVISE_REL (
 family_relation_name IN VARCHAR2,
 valueset_name IN VARCHAR2,
 precompute_percentage IN INTEGER DEFAULT 20,
 compressed IN BOOLEAN DEFAULT FALSE);

Appendix B
ADVISE_REL Procedure

B-21

Parameters

Table B-8 ADVISE_REL Procedure Parameters

Parameter Description

family_relation_name The name of a family relation, which specifies a dimension and
the hierarchical relationships between the dimension members.

valueset_name The name of a valueset to contain the results of the procedure.
The valueset must be defined from the dimension in the family
relation. If the valueset is not empty, ADVISE_REL deletes its
contents before adding new values.

precompute_percentage A percentage of the dimension to preaggregate. The default is
20%.

compressed Controls whether the advice is for a regular composite (FALSE)
or a compressed composite (TRUE).

ADVISE_SPARSITY Procedure
The ADVISE_SPARSITY procedure analyzes a fact table for sparsity using information
about its dimensions provided by the ADD_DIMENSION_SOURCE procedure. It populates a
table created by the SPARSITY_ADVICE_TABLE procedure with the results of its analysis.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Sparsity Advisor"

Output Description

The following table describes the information generated by ADVISE_SPARSITY:

Table B-9 Output Column Descriptions

Column Data Type NULL Description

CUBENAME VARCHAR2(100) NOT NULL The values of cubename in calls to ADVISE_SPARSITY,
typically the name of the logical cube.

FACT VARCHAR2(4000) NOT NULL The values of fact in calls to ADVISE_SPARSITY; the name of
the fact table that provides the source data for one or more
analytic workspace variables.

DIMENSION VARCHAR2(100) NOT NULL The logical names of the cube's dimensions; the
dimensions described in calls to ADVISE_DIMENSIONALITY.

Appendix B
ADVISE_SPARSITY Procedure

B-22

Table B-9 (Cont.) Output Column Descriptions

Column Data Type NULL Description

DIMCOLUMN VARCHAR2(100) The names of dimension columns in fact (the source fact
table), which relate to a dimension table.

DIMSOURCE VARCHAR2(4000) The names of the dimension tables.

MEMBERCOUNT NUMBER(12,0) The total number of dimension members at all levels.

LEAFCOUNT NUMBER(12,0) The number of dimension members at the leaf (or least
aggregate) level.

ADVICE VARCHAR2(10) NOT NULL The sparsity evaluation of the dimension: DENSE, SPARSE, or
COMPRESSED.

POSITION NUMBER(4,0) NOT NULL The recommended order of the dimensions.

DENSITY NUMBER(11,8) A number that provides an indication of sparsity relative to
the other dimensions. The larger the number, the more
sparse the dimension.

PARTNUM NUMBER(6,0) NOT NULL The number of the partition described in the PARTBY and
PARTTOPS columns. If partitioning is not recommended, then
1 is the maximum number of partitions.

PARTBY CLOB A list of all dimension members that should be stored in this
partition. This list is truncated in SQL*Plus unless you
significantly increase the size of the LONG setting.

PARTTOPS CLOB A list of top-level dimension members for this partition.

Syntax

ADVISE_SPARSITY (
 fact IN VARCHAR2,
 cubename IN VARCHAR2,
 dimsources IN dbms_aw$_dimension_sources_t,
 advmode IN BINARY_INTEGER DEFAULT ADVICE_DEFAULT,
 partby IN BINARY_INTEGER DEFAULT PARTBY_DEFAULT,
 advtable IN VARCHAR2 DEFAULT NULL);

Parameters

Table B-10 ADVISE_SPARSITY Procedure Parameters

Parameter Description

fact The name of the source fact table.

cubename A name for the facts being analyzed, such as the name of the
logical cube in the analytic workspace.

dimsources The name of the object type where the ADD_DIMENSION_SOURCE
procedure has stored information about the cube's dimensions.

advmode The level of advise you want to see. Select one of the following
values:

DBMS_AW.ADVICE_DEFAULT

DBMS_AW.ADVICE_FAST

DBMS_AW.ADVICE_FULL

Appendix B
ADVISE_SPARSITY Procedure

B-23

Table B-10 (Cont.) ADVISE_SPARSITY Procedure Parameters

Parameter Description

partby A keyword that controls partitioning. Use one of the following
values:

• DBMS_AW.PARTBY_DEFAULT Allow the Sparsity Advisor to
determine whether or not partitioning is appropriate.

• DBMS_AW.PARTBY_NONE Do not allow partitioning.
• DBMS_AW.PARTBY_FORCE Force partitioning.

advtable The name of a table created by the procedure for storing the
results of analysis.

Example

The following PL/SQL program fragment analyzes the sparsity characteristics of the
UNITS_HISTORY_FACT table.

DECLARE
 dimsources dbms_aw$_dimension_sources_t;
BEGIN
-- Calls to ADD_DIMENSION_SOURCE for each dimension in the cube
 .
 .
 .
 dbms_aw.advise_sparsity('units_history_fact', 'units_cube', dimsources,
 dbms_aw.advice_default);

END;
/

The following SELECT command displays the results of the analysis, which indicate that
there is one denser dimension (CHANNEL) and three comparatively sparse dimensions
(PRODUCT, CUSTOMER, and TIME).

SELECT fact, dimension, dimcolumn, membercount nmem, leafcount nleaf, advice, density
 FROM aw_sparsity_advice
 WHERE cubename='units_cube';

FACT DIMENSION DIMCOLUMN NMEM NLEAF ADVICE DENSITY
-------------------- ------------ ------------ ----- ------ ------------ ----------
units_history_fact channel channel_id 3 3 DENSE .86545382
units_history_fact product item_id 36 36 SPARSE .98706809
units_history_fact customer ship_to_id 61 62 SPARSE .99257713
units_history_fact time month_id 96 80 SPARSE .99415964

AW_ATTACH Procedure
The AW_ATTACH procedure attaches an analytic workspace to your SQL session so that
you can access its contents. The analytic workspace remains attached until you
explicitly detach it, or you end your session.

AW_ATTACH can also be used to create an analytic workspace, but the AW_CREATE
procedure is provided specifically for that purpose.

Appendix B
AW_ATTACH Procedure

B-24

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Managing Analytic Workspaces"

Syntax

AW_ATTACH (
 awname IN VARCHAR2,
 forwrite IN BOOLEAN DEFAULT FALSE,
 createaw IN BOOLEAN DEFAULT FALSE,
 attargs IN VARCHAR2 DEFAULT NULL,
 tablespace IN VARCHAR2 DEFAULT NULL);

AW_ATTACH (
 schema IN VARCHAR2,
 awname IN VARCHAR2,
 forwrite IN BOOLEAN DEFAULT FALSE,
 createaw IN BOOLEAN DEFAULT FALSE,
 attargs IN VARCHAR2 DEFAULT NULL,
 tablespace IN VARCHAR2 DEFAULT NULL);

Parameters

Table B-11 AW_ATTACH Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname The name of an existing analytic workspace, unless createaw is specified as
TRUE. See the description of createaw.

forwrite TRUE attaches the analytic workspace in read/write mode, giving you exclusive
access and full administrative rights to the analytic workspace. FALSE attaches
the analytic workspace in read-only mode.

createaw TRUE creates an analytic workspace named awname. If awname already
exists, then an error is generated. FALSE attaches an existing analytic
workspace named awname.

attargs Keywords for attaching an analytic workspace, such as FIRST or LAST, as
described in AW command.

Example

The following commands create an analytic workspace named GLOBAL_TRACKING and
copies the contents of GLOBAL into it. The workspace is stored in a table named
AW$GLOBAL_TRACKING, which has three partitions and is stored in the user's default
tablespace.

Appendix B
AW_ATTACH Procedure

B-25

EXECUTE dbms_aw.aw_attach('global');
EXECUTE dbms_aw.aw_copy('global', 'global_tracking', NULL, 3);

AW_COPY Procedure
The AW_COPY procedure copies the object definitions and data from one analytic
workspace into a new analytic workspace.

AW_COPY detaches the original workspace and attaches the new workspace first with
read/write access.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Managing Analytic Workspaces"

Syntax

AW_COPY (
 oldname IN VARCHAR2,
 newname IN VARCHAR2,
 tablespace IN VARCHAR2 DEFAULT NULL,
 partnum IN NUMBER DEFAULT 8);

Parameters

Table B-12 AW_COPY Procedure Parameters

Parameter Description

oldname The name of an existing analytic workspace that contains object definitions.
The workspace cannot be empty.

newname A name for the new analytic workspace that is a copy of oldname.

tablespace The name of a tablespace in which newname is stored. If this parameter is
omitted, then the analytic workspace is created in the user's default
tablespace.

partnum The number of partitions that are created for the AW$newname table.

Example

The following commands create an analytic workspace named GLOBAL_TRACKING and
copies the contents of GLOBAL into it. The workspace is stored in a table named
AW$GLOBAL_TRACKING, which has three partitions and is stored in the user's default
tablespace.

Appendix B
AW_COPY Procedure

B-26

EXECUTE dbms_aw.aw_attach('global');
EXECUTE dbms_aw.aw_copy('global', 'global_tracking', NULL, 3);

AW_CREATE Procedure
The AW_CREATE procedure creates a new, empty analytic workspace and makes it the
current workspace in your session.

The current workspace is first in the list of attached workspaces.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

AW_CREATE (
 awname IN VARCHAR2 ,
 tablespace IN VARCHAR2 DEFAULT NULL ,
 partnum IN NUMBER DEFAULT 8);

AW_CREATE (
 schema IN VARCHAR2 ,
 awname IN VARCHAR2 ,
 tablespace IN VARCHAR2 DEFAULT NULL);

Parameters

Table B-13 AW_CREATE Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname The name of a new analytic workspace. The name must comply with the
naming requirements for a table in Oracle Database. This procedure
creates a table named AW$awname, in which the analytic workspace is
stored.

tablespace The tablespace in which the analytic workspace is created. If you omit
this parameter, the analytic workspace is created in your default
tablespace.

partnum The number of partitions that are created for the AW$awname table.

Example

The following command creates a new, empty analytic workspace named
GLOBAL_FINANCE. The new analytic workspace is stored in a table named
AW$GLOBAL_FINANCE with eight partitions in the user's default tablespace.

EXECUTE dbms_aw.aw_create('global_finance');

The next command creates an analytic workspace named DEMO in the GLOBAL schema.
AW$DEMO has two partitions and is stored in the GLOBAL tablespace.

Appendix B
AW_CREATE Procedure

B-27

EXECUTE dbms_aw.aw_create('global.demo', 'global', 2);

AW_DELETE Procedure
The AW_DELETE procedure deletes an existing analytic workspace.

Syntax

AW_DELETE (
 awname IN VARCHAR2);

AW_DELETE (
 schema IN VARCHAR2,
 awname IN VARCHAR2);

Parameters

Table B-14 AW_DELETE Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname The name of an existing analytic workspace that you want to delete along
with all of its contents. You must be the owner of awname or have DBA rights
to delete it, and it cannot currently be attached to your session. The
AW$awname file is deleted from the database.

Example

The following command deletes the SALES_DEMO analytic workspace in the user's default
schema.

EXECUTE dbms_aw.aw_delete('sales_demo');

AW_DETACH Procedure
The AW_DETACH procedure detaches an analytic workspace from your session so that its
contents are no longer accessible. All changes that you have made since the last
update are discarded. Refer to "AW_UPDATE Procedure" for information about saving
changes to an analytic workspace.

Syntax

AW_DETACH (
 awname IN VARCHAR2);

AW_DETACH (
 schema IN VARCHAR2,
 awname IN VARCHAR2);

Appendix B
AW_DELETE Procedure

B-28

Parameters

Table B-15 AW_DETACH Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname The name of an attached analytic workspace that you want to detach from
your session.

Example

The following command detaches the GLOBAL_FINANCE analytic workspace.

EXECUTE dbms_aw.aw_detach('global_finance');

The next command detaches the SALES_HISTORY analytic workspace in the SH_AW
schema.

EXECUTE dbms_aw.aw_detach('sh_aw', 'sales_history');

AW_RENAME Procedure
The AW_RENAME procedure changes the name of an analytic workspace.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

AW_RENAME (
 oldname IN VARCHAR2,
 newname IN VARCHAR2);

Parameters

Table B-16 AW_RENAME Procedure Parameters

Parameter Description

oldname The current name of the analytic workspace. The analytic workspace
cannot be attached to any session.

newname The new name of the analytic workspace.

Example

The following commands detach the DEMO analytic workspace and change its name to
SALES_DEMO.

Appendix B
AW_RENAME Procedure

B-29

EXECUTE dbms_aw.aw_detach('demo');
EXECUTE dbms_aw.aw_rename('demo', 'sales_demo');

AW_TABLESPACE Function
The AW_TABLESPACE function returns the name of the tablespace in which a particular
analytic workspace is stored.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

AW_TABLESPACE (
 awname IN VARCHAR2)
 RETURN VARCHAR2;

AW_TABLESPACE (
 schema IN VARCHAR2,
 awname IN VARCHAR2)
 RETURN VARCHAR2;

Returns

Name of a tablespace.

Parameters

Table B-17 AW_TABLESPACE Function Parameters

Parameter Description

schema The schema that owns awname.

awname The name of an analytic workspace.

Example

The following example shows the tablespace in which the GLOBAL analytic workspace is
stored.

SET serveroutput ON

EXECUTE dbms_output.put_line('Sales History is stored in tablespace ' ||
 dbms_aw.aw_tablespace('sh_aw', 'sales_history'));

This command generates the following statement:

Sales History is stored in tablespace SH_AW

Appendix B
AW_TABLESPACE Function

B-30

AW_UPDATE Procedure
The AW_UPDATE procedure saves the changes made to an analytic workspace in its
permanent database table. For the updated version of this table to be saved in the
database, you must issue a SQL COMMIT statement before ending your session.

If you do not specify an analytic workspace to update, AW_UPDATE updates all the user-
defined workspaces that are currently attached with read/write access.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Managing Analytic Workspaces"

Syntax

AW_UPDATE (
 awname IN VARCHAR2 DEFAULT NULL);

AW_UPDATE (
 schema IN VARCHAR2 DEFAULT NULL,
 awname IN VARCHAR2 DEFAULT NULL);

Parameters

Table B-18 AW_UPDATE Procedure Parameters

Parameter Description

schema The schema that owns awname.

awname Saves changes to awname by copying them to a table named AW$awname. If
this parameter is omitted, then changes are saved for all analytic workspaces
attached in read/write mode.

Example

The following commands save changes to the GLOBAL analytic workspace from the
temporary to the permanent tablespace, then commit the change to the database.

EXECUTE dbms_aw.aw_update('global');
COMMIT;

Appendix B
AW_UPDATE Procedure

B-31

CONVERT Procedure
The CONVERT procedure converts an analytic workspace in 9i storage format to to 10g
storage format. Note that you cannot execute this procedure from within the OLAP
Worksheet; you must execute it in a SQL tool such as SQL*Plus.

Note:

Issuing the dbms_aw.convert procedure is only one small step in upgrading
Oracle 9i analytic workspaces to Oracle 10g workspaces. For the complete
procedure for upgrading Oracle 9i analytic workspaces, see Oracle OLAP
Application Developer's Guide, 10g Release 2 (10.2).

See Also:

Upgrading Metadata from Oracle OLAP 10g in Oracle OLAP User’s Guide for
information on converting an analytic workspace to Oracle 11g storage format

Syntax

CONVERT (
 original_aw IN VARCHAR2);

CONVERT (
 original_aw IN VARCHAR2,
 converted_aw IN VARCHAR2,
 tablespace IN NUMBER DEFAULT);

Parameters

Table B-19 CONVERT Procedure Parameters

Parameter Description

original_aw The analytic workspace you want to convert.

converted_aw The converted analytic workspace.

tablespace The name of a tablespace in which the converted workspace is stored.
If this parameter is omitted, then the analytic workspace is created in
the user's default tablespace.

Example

This example performs the conversion in a single step, using the analytic workspace
as both the source and the target of the conversion.

EXECUTE dbms_aw.convert('global');

Appendix B
CONVERT Procedure

B-32

The next example performs the conversion in several steps. The converted workspace
must have the same name as the original workspace, because the fully qualified
names of objects in the workspace include the workspace name.

EXECUTE dbms_aw.rename('global', 'global_temp');
EXECUTE dbms_aw.convert('global_temp', 'global');
EXECUTE dbms_aw.delete('global_temp');

EVAL_NUMBER Function
The EVAL_NUMBER function evaluates a numeric expression in an analytic workspace and
returns the resulting number.

You can specify the EVAL_NUMBER function in a SELECT from DUAL statement to return a
numeric constant defined in an analytic workspace. For more information, see
"Selecting from the DUAL Table" in Oracle Database SQL Language Reference.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

EVAL_NUMBER (
 olap_numeric_expression IN VARCHAR2)
 RETURN NUMBER;

Parameters

Table B-20 EVAL_NUMBER Function Parameters

Parameter Description

olap_numeric_expression An OLAP DML expression that evaluates to a number. Refer to
OLAP DML Expressions.

Example

The following example returns the value of the DECIMALS option in the current analytic
workspace. The DECIMALS option controls the number of decimal places that are shown
in numeric output. In this example, the value of DECIMALS is 2, which is the default.

SET serveroutput ON
SELECT dbms_aw.eval_number('decimals') "Decimals" FROM dual;

 Decimals

 2

EVAL_TEXT Function
The EVAL_TEXT function evaluates a text expression in an analytic workspace and
returns the resulting character string.

Appendix B
EVAL_NUMBER Function

B-33

You can specify the EVAL_TEXT function in a SELECT from DUAL statement to return a
character constant defined in an analytic workspace. For more information, see
"Selecting from the DUAL Table" in Oracle Database SQL Language Reference.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

EVAL_TEXT (
 olap_text_expression IN VARCHAR2)
 RETURN VARCHAR2;

Parameters

Table B-21 EVAL_TEXT Function Parameters

Parameter Description

olap_text_expression An OLAP DML expression that evaluates to a character string.
Refer to OLAP DML Expressions.

Example

The following example returns the value of the NLS_LANGUAGE option, which specifies the
current language of the session.

SET serveroutput ON
SELECT dbms_aw.eval_text('nls_language') "NLS Language" FROM dual;

The value of NLS_LANGUAGE in this example is AMERICAN.

NLS Language

AMERICAN

EXECUTE Procedure
The EXECUTE procedure executes one or more OLAP DML commands and directs the
output to a printer buffer. It is typically used to manipulate analytic workspace data
within an interactive SQL session. In contrast to the RUN Procedure, EXECUTE
continues to process commands after it gets an error.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON

If you are using a different program, refer to its documentation for the equivalent
setting.

Appendix B
EXECUTE Procedure

B-34

Input and output is limited to 4K. For larger values, refer to the INTERP and INTERPCLOB
functions in this package.

This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

EXECUTE (
 olap_commands IN VARCHAR2
 text OUT VARCHAR2);

Parameters

Table B-22 EXECUTE Procedure Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semicolons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands".

text Output from the OLAP engine in response to the OLAP
commands.

Example

The following example attaches the GLOBAL analytic workspace and shows the object
definition of TIME.

EXECUTE dbms_aw.aw_attach('global');
EXECUTE dbms_aw.execute('DESCRIBE time');

DEFINE TIME DIMENSION TEXT

The next example shows how EXECUTE continues to process commands after
encountering an error:

EXECUTE dbms_aw.execute('SHOW DECIMALS');
2

EXECUTE dbms_aw.execute('CALL nothing; DECIMALS=0');
BEGIN dbms_aw.execute('CALL nothing; DECIMALS=0'); END;

*
ERROR at line 1:
ORA-34492: Analytic workspace object NOTHING does not exist.
ORA-06512: at "SYS.DBMS_AW", line 93
ORA-06512: at "SYS.DBMS_AW", line 122
ORA-06512: at line 1

Appendix B
EXECUTE Procedure

B-35

EXECUTE dbms_aw.execute('SHOW DECIMALS');
0

The next example show how EXECUTE continues to process commands after
encountering an error:

SQL> execute dbms_aw.execute('call nothing; colwidth=20');
BEGIN dbms_aw.execute('call nothing; colwidth=20'); END;

*
ERROR at line 1:
ORA-34492: Analytic workspace object NOTHING does not exist.
ORA-06512: at "SYS.DBMS_AW", line 90
ORA-06512: at "SYS.DBMS_AW", line 119
ORA-06512: at line 1

SQL> execute dbms_aw.execute('show colwidth');
20

PL/SQL procedure successfully completed.

GETLOG Function
This function returns the session log from the last execution of the INTERP or INTERPCLOB
functions in this package.

To print the session log returned by this function, use the DBMS_AW.PRINTLOG procedure.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

GETLOG()
 RETURN CLOB;

Returns

The session log from the latest call to INTERP or INTERPCLOB.

Example

The following example shows the session log returned by a call to INTERP, then shows
the identical session log returned by GETLOG.

EXECUTE dbms_aw.printlog(dbms_aw.interp('AW ATTACH global; REPORT units_cube'));

UNITS_CUBE

TIME
CUSTOMER
PRODUCT
CHANNEL

Appendix B
GETLOG Function

B-36

EXECUTE dbms_aw.printlog(dbms_aw.getlog());

UNITS_CUBE

TIME
CUSTOMER
PRODUCT
CHANNEL

INFILE Procedure
The INFILE procedure evaluates the OLAP DML commands in the specified file and
executes them in the current analytic workspace.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

INFILE (
 filename IN VARCHAR2);

Parameters

Table B-23 INFILE Procedure Parameters

Parameter Description

filename The name of a file containing OLAP DML commands.

The file path must be specified in a current directory object for your OLAP
session. Use the OLAP DML CDA command to identify or change the
current directory object.

Example

The following example executes the OLAP DML commands in the finances.inf file.
The location of the file is identified by the WORK_DIR database directory.

EXECUTE dbms_aw.infile('work_dir/finances.inf');

INTERP Function
The INTERP function executes one or more OLAP DML commands and returns the
session log in which the commands are executed. It is typically used in applications
when the 4K limit on output for the EXECUTE procedure may be too restrictive.

Input to the INTERP function is limited to 4K. For larger input values, refer to the
INTERPCLOB function of this package.

This function does not return the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

Appendix B
INFILE Procedure

B-37

You can use the INTERP function as an argument to the PRINTLOG procedure in this
package to view the session log. See the example.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

INTERP (
 olap-commands IN VARCHAR2)
 RETURN CLOB;

Parameters

Table B-24 INTERP Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands".

Returns

The log file for the Oracle OLAP session in which the OLAP DML commands were
executed.

Example

The following sample SQL*Plus session attaches the GLOBAL analytic workspace and
lists the members of UNITS_CUBE.

SET serverout ON
EXECUTE dbms_aw.printlog(dbms_aw.interp('AW ATTACH global; REPORT units_cube'));

UNITS_CUBE

TIME
CUSTOMER
PRODUCT
CHANNEL

INTERPCLOB Function
The INTERPCLOB function executes one or more OLAP DML commands and returns the
session log in which the commands are executed. It is typically used in applications
when the 4K limit on input for the INTERP function may be too restrictive.

This function does not return the output of the OLAP DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

You can use the INTERPCLOB function as an argument to the PRINTLOG procedure in this
package to view the session log. See the example.

Appendix B
INTERPCLOB Function

B-38

Syntax

INTERPCLOB (
 olap-commands IN CLOB)
 RETURN CLOB;

Parameters

Table B-25 INTERPCLOB Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands".

Returns

The log for the Oracle OLAP session in which the OLAP DML commands were
executed.

Example

The following sample SQL*Plus session creates an analytic workspace named
ELECTRONICS, imports its contents from an EIF file stored in the dbs directory object, and
displays the contents of the analytic workspace.

SET serverout ON size 1000000
EXECUTE dbms_aw.printlog(dbms_aw.interpclob('AW ATTACH global; DESCRIBE'));

DEFINE GEN_OBJ_ROLES DIMENSION TEXT

DEFINE GEN_AW_OBJS VARIABLE TEXT <GEN_OBJ_ROLES>

DEFINE ALL_DIMENSIONS DIMENSION TEXT

DEFINE DIM_OBJ_LIST DIMENSION TEXT

DEFINE DIM_AW_OBJS VARIABLE TEXT <ALL_DIMENSIONS DIM_OBJ_LIST>
 .
 .
 .

INTERP_SILENT Procedure
The INTERP_SILENT procedure executes one or more OLAP DML commands and
suppresses all output from them. It does not suppress error messages from the OLAP
command interpreter.

Input to the INTERP_SILENT function is limited to 4K. To display the output of the OLAP
DML commands, use the EXECUTE procedure, or the INTERP or INTERPCLOB functions.

Appendix B
INTERP_SILENT Procedure

B-39

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

INTERP_SILENT (
 olap-commands IN VARCHAR2);

Parameters

Table B-26 INTERP_SILENT Function Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semi-colons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands".

Example

The following commands show the difference in message handling between EXECUTE
and INTERP_SILENT. Both commands attach the GLOBAL analytic workspace in read-only
mode. However, EXECUTE displays a warning message, while INTERP_SILENT does not.

EXECUTE dbms_aw.execute('AW ATTACH global');
IMPORTANT: Analytic workspace GLOBAL is read-only. Therefore, you will not be able
to use the UPDATE command to save changes to it.

EXECUTE dbms_aw.interp_silent('AW ATTACH global');

OLAP_ON Function
The OLAP_ON function returns a boolean indicating whether or not the OLAP option is
installed in the database.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

OLAP_ON ()
 RETURN BOOLEAN;

Returns

The value of the OLAP parameter in the V$OPTION table.

Appendix B
OLAP_ON Function

B-40

Example

The following PL/SQL code tests the value returned by OLAP_ON and returns a status
message.

BEGIN
 IF dbms_aw.olap_on() = true
 THEN dbms_output.put_line('The OLAP option is installed');
 ELSE dbms_output.put_line('The OLAP option is not installed');
 END IF;
END;
/

The OLAP option is installed

OLAP_RUNNING Function
The OLAP_RUNNING function returns a boolean indicating whether or not the OLAP option
has been initialized in the current session. Initialization occurs when you execute an
OLAP DML command (either directly or by using an OLAP PL/SQL or Java package),
query an analytic workspace, or execute the STARTUP Procedure.

Note:

You cannot execute this function from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

OLAP_RUNNING()
 RETURN BOOLEAN;

Returns

TRUE if OLAP has been initialized in the current session, or FALSE if it has not.

Example

The following PL/SQL script tests whether the OLAP environment has been initialized,
and starts it if not.

BEGIN
 IF dbms_aw.olap_running() THEN
 dbms_output.put_line('OLAP is already running');
 ELSE
 dbms_aw.startup;
 IF dbms_aw.olap_running() THEN
 dbms_output.put_line('OLAP started successfully');
 ELSE
 dbms_output.put_line('OLAP did not start. Is it installed?');
 END IF;
 END IF;
END;
/

Appendix B
OLAP_RUNNING Function

B-41

OLAP started successfully

PRINTLOG Procedure
This procedure sends a session log returned by the INTERP, INTERPCLOB, or GETLOG
functions of this package to the print buffer, using the DBMS_OUTPUT package in PL/SQL.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON SIZE 1000000

The SIZE clause increases the buffer from its default size of 4K.

If you are using a different program, refer to its documentation for the equivalent
setting.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

PRINTLOG (
 session-log IN CLOB);

Parameters

Table B-27 PRINTLOG Procedure Parameters

Parameter Description

session-log The log of a session.

Example

The following example shows the session log returned by the INTERP function.

SET serverout ON size 1000000

EXECUTE dbms_aw.printlog(dbms_aw.interp('REPORT W 30 all_dimensions'));

ALL_DIMENSIONS

TIME.DIMENSION
CUSTOMER.DIMENSION
PRODUCT.DIMENSION
CHANNEL.DIMENSION

Appendix B
PRINTLOG Procedure

B-42

RUN Procedure
The RUN procedure executes one or more OLAP DML commands and directs the
output to a printer buffer. It is typically used to manipulate analytic workspace data
within an interactive SQL session. In contrast to the EXECUTE Procedure, RUN stops
processing commands when it gets an error.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVEROUT ON

If you are using a different program, refer to its documentation for the equivalent
setting.

This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML OUTFILE command.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

RUN (
 olap_commands IN STRING,
 silent IN BOOLEAN DEFAULT FALSE);
RUN (
 olap_commands IN CLOB,
 silent IN BOOLEAN DEFAULT FALSE);
RUN (
 olap_commands IN STRING,
 output OUT STRING);
RUN (
 olap_commands IN STRING,
 output IN OUT CLOB);
RUN (
 olap_commands IN CLOB,
 output OUT STRING);
RUN (
 olap_commands IN CLOB,
 output IN OUT CLOB);

Parameters

Table B-28 EXECUTE Procedure Parameters

Parameter Description

olap-commands One or more OLAP DML commands separated by semicolons.
See "Guidelines for Using Quotation Marks in OLAP DML
Commands".

Appendix B
RUN Procedure

B-43

Table B-28 (Cont.) EXECUTE Procedure Parameters

Parameter Description

silent A boolean value that signals whether the output from the OLAP
DML commands should be suppressed. (Error messages from the
OLAP engine are never suppressed, regardless of this setting.)

output Output from the OLAP engine in response to the OLAP
commands.

Example

The following sample SQL*Plus session attaches an analytic workspace named
XADEMO, creates a formula named COST_PP in XADEMO, and displays the new formula
definition.

EXECUTE dbms_aw.run('DESCRIBE time');

DEFINE TIME DIMENSION
TEXT

The next example shows how RUN stops executing commands after encountering an
error.

EXECUTE dbms_aw.run('SHOW DECIMALS');
0

EXECUTE dbms_aw.run('CALL nothing; DECIMALS=4');
BEGIN dbms_aw.run('CALL nothing; DECIMALS=4'); END;

*
ERROR at line 1:
ORA-34492: Analytic workspace object NOTHING does not exist.
ORA-06512: at "SYS.DBMS_AW", line 58
ORA-06512: at "SYS.DBMS_AW", line 134
ORA-06512: at line 1

EXECUTE dbms_aw.run('SHOW DECIMALS');
0

SHUTDOWN Procedure
The SHUTDOWN procedure terminates the current OLAP session.

By default, the SHUTDOWN procedure terminates the session only if there are no
outstanding changes to any of the attached read/write workspaces. To terminate the
session without updating the workspaces, specify the force parameter.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Appendix B
SHUTDOWN Procedure

B-44

Syntax

SHUTDOWN (
 force IN BOOLEAN DEFAULT NO);

Parameters

Table B-29 SHUTDOWN Procedure Parameters

Parameter Description

force When YES, this parameter forces the OLAP session to shutdown
even though one or more attached workspaces has not been
updated. Default is NO.

Example

The following commands save all changes to the GLOBAL analytic workspace and close
the user's OLAP session.

EXECUTE dbms_aw.aw_update('global_finance');
COMMIT;
EXECUTE dbms_aw.shutdown();

SPARSITY_ADVICE_TABLE Procedure
The SPARSITY_ADVICE_TABLE procedure creates a table for storing the advice generated
by the ADVISE_SPARSITY procedure.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

See Also:

"Using the Sparsity Advisor"

Syntax

SPARSITY_ADVICE_TABLE (
 tblname IN VARCHAR2 DEFAULT);

Appendix B
SPARSITY_ADVICE_TABLE Procedure

B-45

Parameters

Table B-30 SPARSITY_ADVICE_TABLE Procedure Parameters

Parameter Description

tblname The name of the table. The default name is
AW_SPARSITY_ADVICE, which is created in your own schema. See
ADVISE_SPARSITY Procedure for a description of the columns
in tblname.

Example

The following example creates a table named GLOBAL_SPARSITY_ADVICE.

EXECUTE dbms_aw.sparsity_advice_table('global_sparsity_advice');

STARTUP Procedure
The STARTUP procedure starts an OLAP session without attaching any user-defined
workspaces.

STARTUP initializes the OLAP processing environment and attaches the read-only
EXPRESS workspace, which contains the program code for the OLAP engine.

Note:

You cannot execute this procedure from within the OLAP Worksheet. You must
execute it in a SQL tool such as SQL*Plus.

Syntax

STARTUP ();

Example

The following example starts an OLAP session.

EXECUTE dbms_aw.startup();

Appendix B
STARTUP Procedure

B-46

C
OLAP_API_SESSION_INIT PL/SQL
Package

The OLAP_API_SESSION_INIT PL/SQL package provides procedures for maintaining a
table of initialization parameters for the OLAP API.

This chapter contains the following topics:

• Initialization Parameters for the OLAP API

• Viewing the Configuration Table

• Summary of OLAP_API_SESSION_INIT Subprograms

Initialization Parameters for the OLAP API
The OLAP_API_SESSION_INIT package contains procedures for maintaining a
configuration table of initialization parameters. When the OLAP API opens a session, it
executes the ALTER SESSION commands listed in the table for any user who has the
specified roles. Only the OLAP API uses this table; no other type of application
executes the commands stored in it.

This functionality provides an alternative to setting these parameters in the database
initialization file or the init.ora file, which would alter the environment for all users.

During installation, the table is populated with ALTER SESSION commands that have
been shown to enhance the performance of the OLAP API. Unless new settings prove
to be more beneficial, you do not have to make changes to the table.

The information in the table can be queried through the ALL_OLAP_ALTER_SESSION view
alias, which is also described in this chapter.

Note:

This package is owned by the SYS user. You must explicitly be granted
execution rights before you can use it.

Viewing the Configuration Table
ALL_OLAP_ALTER_SESSION is the public synonym for V$OLAP_ALTER_SESSION, which is a view
for the OLAP$ALTER_SESSION table. The view and table are owned by the SYS user.

C-1

ALL_OLAP_ALTER_SESSION View
Each row of ALL_OLAP_ALTER_SESSION identifies a role and a session initialization
parameter. When a user opens a session using the OLAP API, the session is
initialized using the parameters for roles granted to that user.

Table C-1 ALL_OLAP_ALTER_SESSION Column Descriptions

Column Datatype NULL Description

ROLE VARCHAR2(30) NOT NULL A database role

CLAUSE_TEXT VARCHAR2(3000) An ALTER SESSION command

Summary of OLAP_API_SESSION_INIT Subprograms
The following table describes the subprograms provided in OLAP_API_SESSION_INIT.

Table C-2 OLAP_API_SESSION_INIT Subprograms

Subprogram Description

ADD_ALTER_SESSION
Procedure

Specifies an ALTER SESSION parameter for OLAP API users with
a particular database role.

CLEAN_ALTER_SESSION
Procedure

Removes orphaned data, that is, any ALTER SESSION parameters
for roles that are no longer defined in the database.

DELETE_ALTER_SESSIO
N Procedure

Removes a previously defined ALTER SESSION parameter for
OLAP API users with a particular database role.

ADD_ALTER_SESSION Procedure
This procedure specifies an ALTER SESSION parameter for OLAP API users with a
particular database role. It adds a row to the OLAP$ALTER_SESSION table.

Syntax

ADD_ALTER_SESSION (
 role_name IN VARCHAR2,
 session_parameter IN VARCHAR2);

Parameters

The role_name and session_parameter are added as a row in OLAP$ALTER_SESSION.

Table C-3 ADD_ALTER_SESSION Procedure Parameters

Parameter Description

role_name The name of a valid role in the database. Required.

session_parameter A parameter that can be set with a SQL ALTER SESSION
command. Required.

Appendix C
Summary of OLAP_API_SESSION_INIT Subprograms

C-2

Example

The following example inserts a row in OLAP$ALTER_SESSION that turns on query rewrite
for users with the OLAP_DBA role.

EXECUTE olap_api_session_init.add_alter_session('OLAP_DBA',
 'SET QUERY_REWRITE_ENABLED=TRUE');
Row inserted

SELECT * FROM all_olap_alter_session WHERE role='OLAP_DBA';

ROLE CLAUSE_TEXT
------------ --
OLAP_DBA ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE

CLEAN_ALTER_SESSION Procedure
This procedure removes all ALTER SESSION parameters for any role that is not currently
defined in the database. It removes all orphaned rows in the OLAP$ALTER_SESSION table
for those roles.

Syntax

CLEAN_ALTER_SESSION ();

Example

The following example deletes all orphaned rows.

EXECUTE olap_api_session_init.clean_alter_session();

DELETE_ALTER_SESSION Procedure
This procedure removes a previously defined ALTER SESSION parameter for OLAP API
users with a particular database role. It deletes a row from the OLAP$ALTER_SESSION
table.

Syntax

DELETE_ALTER_SESSION (
 role_name IN VARCHAR2,
 session_parameter IN VARCHAR2);

Parameters

The role_name and session_parameter together uniquely identify a row in
OLAP$ALTER_SESSION.

Table C-4 DELETE_ALTER_SESSION Procedure Parameters

Parameter Description

role_name The name of a valid role in the database. Required.

session_parameter A parameter that can be set with a SQL ALTER SESSION command.
Required.

Appendix C
Summary of OLAP_API_SESSION_INIT Subprograms

C-3

Examples

The following call deletes a row in OLAP$ALTER_SESSION that contains a value of OLAP_DBA
in the first column and QUERY_REWRITE_ENABLED=TRUE in the second column.

EXECUTE olap_api_session_init.delete_alter_session('OLAP_DBA',
 'SET QUERY_REWRITE_ENABLED=TRUE');

SELECT * FROM all_olap_alter_session WHERE role='OLAP_DBA';

no rows selected

Appendix C
Summary of OLAP_API_SESSION_INIT Subprograms

C-4

D
Changes in Previous Releases

This appendix describes the changes that have occurred in the OLAP DML in previous
releases. It contains the following topics:

• OLAP DML Statement Changes for Oracle Database 11g

• OLAP DML Statement Changes for Oracle Database 10g

• OLAP DML Statement Changes for Oracle Database 9i

OLAP DML Statement Changes for Oracle Database 11g
This section contains listings of the OLAP DML statements that were added, changed,
renamed, or deleted in Oracle Database 11g:

• Statements Added in Oracle Database 11g

• Statements Deleted in Oracle Database 11g

• Statements Changed in Oracle Database 11g

• Statements Changed in Oracle Database 11g

Statements Added in Oracle Database 11g
The following statements have been added to the OLAP DML in Oracle Database 11g.
The number in parentheses indicates the specific release in which the statement was
added.

$GID_DEPTH system property (11.0.0.0)
$GID_LIST system property (11.0.0.0)
$GID_TYPE system property (11.0.0.0)
$LOOP_AGGMAP system property (11.0.0.0)
$LOOP_DENSE system property (11.0.0.0)
$LOOP_VAR system property (11.0.0.0)
ADD_CUBE_MODEL program (11.2)
ADD_DIMENSION_MEMBER program (11.2)
ADD_MODEL_DIMENSION program (11.2)
AW FREEZE command (11.0.0.0)
AW PURGE CACHE command (11.0.0.0)
AW THAW command (11.0.0.0)
ASCIISTR function (11.2)
BIN_TO_NUM function (11.0.0.0)
CHANGEDRELATIONS function (11.0.0.0)
CHANGEDVALUES function (11.0.0.0)
CHARTOROWID function (11.0.0.0)
CREATE_LOGICAL_MODEL program (11.2)
CURRENT_DATE function (11.0.0.0)

D-1

CURRENT_TIMESTAMP function (11.0.0.0)
DATE_FORMAT command (11.0.0.0)
DBTIMEZONE function (11.0.0.0)
EXTRACT function (11.0.0.0)
FROM_TZ function (11.0.0.0)
GROUPINGID function (11.0.0.0)
HEXTORAW function (11.2)
HIERDEPTH command (11.0.0.0)
HIERSHAPE function (11.2)
INSTR functions (11.0.0.0)
ISEMPTY function (11.0.0.0)
ISINFINITE function (11.2)
ISNAN function (11.2)
LENGTH functions (11.0.0.0)
LNNVL function (11.0.0.0)
LOCALTIMESTAMP function (11.0.0.0)
LOWER function (11.2)
MODULO function (11.0.0.0)
NA2 function (11.0.0.0)
NAFLAG function (11.0.0.0)
NLS_CHARSET_ID function (11.2)
NLS_CHARSET_NAME function (11.2)
NLSSORT function (11.0.0.0)
NUMTODSINTERVAL function (11.1.0.0)
NUMTOYMINTERVAL function (11.1.0.0)
OBJORG function (11.2)
ORA_HASH function (11.2)
PARTITION function (11.0.0.0)
PERMITREADERROR option (11.2)
RAWTOHEX function (11.2)
REGEXP_COUNTfunction (11.2)
REGEXP_INSTR function (11.2)
REGEXP_REPLACE function (11.2)
REGEXP_SUBSTR function (11.2)
REMAINDER function (11.0.0.0)
REMOVE_CUBE_MODEL program (11.2)
REMOVE_DIMENSION_MEMBER program (11.2)
REMOVE_MODEL_DIMENSION program (11.2)
REPLACE function (11.0.0.0)
ROWIDTOCHAR function (11.0.0.0)
ROWIDTONCHAR function (11.0.0.0)
SESSIONTIMEZONE function (11.0.0.0)
SET_INCLUDED_MODEL program (11.2)
SET_PROPERTY program (11.2)
SOUNDEX function (11.2)
STATCURR function (11.2)
SYS_CONTEXT function (11.0.0.0)
SYSTIMESTAMP function (11.0.0.0)
TO_BINARY_DOUBLE function (11.2)

Appendix D
OLAP DML Statement Changes for Oracle Database 11g

D-2

TO_BINARY_FLOAT function (11.2)
TO_DSINTERVAL function (11.0.0.0)
TO_TIMESTAMP function (11.0.0.0)
TO_TIMESTAMP_TZ function (11.0.0.0)
TO_YMINTERVAL function (11.0.0.0)
TRACE command (11.2)
TZ_OFFSET function (11.0.0.0)
UPDATE_ATTRIBUTE_VALUE program (11.2)
UPDATE_DIMENSION_MEMBER program (11.2)
UPPER function (11.2)
VSIZE function (11.2)

Statements Deleted in Oracle Database 11g
The following statements were deleted from the OLAP DML in Oracle Database 11g.
The number in parentheses indicates the specific release in which the statement was
deleted.

POUTFILEUNIT option (11.2)
SORTCOMPOSITE option

Statements Changed in Oracle Database 11g
The following statements have been changed in the OLAP DML in Oracle Database
11g. The number in parentheses indicates the most recent release in which the
statement was changed.

ACROSS command (11.2)
AGGREGATE command (11.0.0.0)
AW function (11.0.0.0)
AW ATTACH command (11.0.0.0)
AW DETACH command (11.0.0.0)
AW LIST command (11.0.0.0)
AW TRUNCATE command (11.0.0.0)
CHGDFN command (11.2)
CLEAR command (11.0.0.0)
CONVERT function (11.0.0.0)
DEFINE COMPOSITE (11.0.0.0)
DEFINE DIMENSION command (11.0.0.0)
DEFINE PARTITION TEMPLATE (11.0.0.0)
DEFINE VARIABLE command (11.0.0.0)
EXPORT (EIF) command (11.2)
GROUPINGID command (11.0.0.0)
IMPORT (EIF) command (11.2)
LOG function (11.0.0.0)
OBJ function (11.2)

Statements Renamed in Oracle Database 11g
No statements have been renamed in the OLAP DML in Oracle Database 11g.

Appendix D
OLAP DML Statement Changes for Oracle Database 11g

D-3

OLAP DML Statement Changes for Oracle Database 10g
This section contains listings of the OLAP DML statements that were added, changed,
renamed, or deleted in Oracle Database 10g:

• Statements Added in Oracle Database 10g

• Statements Deleted in Oracle Database 10g

• Statements Changed in Oracle Database 10g

• Statements Renamed in Oracle Database 10g

Statements Added in Oracle Database 10g
The following statements were added to the OLAP DML in Oracle Database 10g. The
number in parentheses indicates the specific release in which the statement was
added.

$AGGMAP property (10.1.0.0)
$AGGREGATE_FORCECALC property (10.2.0.0)
$AGGREGATE_FORCEORDER property (10.2.0.0)
$AGGREGATE_FROM property (10.1.0.0)
$AGGREGATE_FROMVAR property (10.1.0.0)
$ALLOCMAP property (10.1.0.0)
$COUNTVAR property (10.1.0.0)
$DEFAULT_LANGUAGE property (10.2.0.0)
ACQUIRE command (10.1.0.0)
AGGCOUNT function (10.2.0.0)
AGGMAP command, DROP DIMENSION statement (10.1.0.0)
AGGMAP command, PRECOMPUTE statement (10.2.0.0)
AGGROPS function (10.2.0.0)
ALLOCMAP command, VALUESET statement (10.1.0.0)
ALLOCOPS function (10.2.0.0)
ARCTAN function (10.1.0.0)
ASCII function (10.1.0.0)
AW TRUNCATE command (10.1.0.3)
BITAND function (10.1.0.0)
CHR function (10.1.0.0)
COALESCE function (10.1.0.0)
DECODE function (10.1.0.0)
DEFINE PARTITION TEMPLATE command (10.1.0.0)
DROP DIMENSION statement of the AGGMAP command (10.1.0.0)
EXP function (10.1.0.0)
GREATEST function (10.1.0.0)
INF_STOP_ON_ERROR option (10.1.0.0)
INITCAP function (10.1.0.0)
INSTR functions (INSTR and INSTRB) (10.1.0.0)
LEAST function (10.1.0.0)
LPAD function (10.1.0.0)
LIMIT BASEDIMS command (10.2.0.0)

Appendix D
OLAP DML Statement Changes for Oracle Database 10g

D-4

LOCK_LANGUAGE_DIMS option (10.2.0.0)
LTRIM function (10.1.0.0)
MAXFETCH option (10.1.0.0)
NULLIF function (10.1.0.0)
NVL function (10.1.0.0)
NVL2 function (10.1.0.0)
ONATTACH program (10.1.0.0)
PARTITIONCHECK function (10.1.0.0)
PRECOMPUTE statement in AGGMAP command (10.2.0.0)
RANK_CALLS option (10.2.0.0)
RANK_CELLS option (10.2.0.0)
RANK_SORTS option (10.2.0.0)
RELATION command (10.2.0.0)
RELEASE command (10.1.0.0)
RESYNC command (10.1.0.0)
REVERT command (10.1.0.0)
RPAD function (10.1.0.0)
RTRIM function (10.1.0.0)
SESSION_NLS_LANGUAGE option (10.2.0.0)
SET1 command (10.1.0.0)
SIGN function (10.1.0.0)
SORT function (10.2.0.0)
SQLFETCH function (10.2.0.0)
STATDEPTH function (10.2.0.0)
STATEQUAL function (10.2.0.2)
STATIC_SESSION_LANGUAGE option (10.2.0.0)
SUBSTR functions, SUBSTR and SUBTRB (10.1.0.0)
SUBSTR functions, SUBSTRC, SUBSTR2, and SUBSTR4 (10.2.0.4)
TRANSLATE function (10.2.0.4)
TRIGGER command (10.1.0.0)
TRIGGER function (10.1.0.0)
TRIGGER_DEFINE program (10.1.0.0)
TRIGGER_AFTER_UPDATE program (10.1.0.0)
TRIGGER_BEFORE_UPDATE program (10.1.0.0)
TRIGGERASSIGN command (10.1.0.0)
TRIM function (10.1.0.0)
USETRIGGERS option(10.1.0.0)
VALUESET statement in ALLOCMAP command (10.1.0.0)
WIDTH_BUCKET function (10.1.0.0)
WRAPERRORS option (10.2.0.0)
WRITABLE function (10.2.0.0)

Statements Deleted in Oracle Database 10g
The following statements were deleted from the OLAP DML in Oracle Database 10g.
The number in parentheses indicates the specific release in which the statement was
deleted.

AW ALLOCATE (10.1.0.0)
ROLLUP (10.2.0.0)

Appendix D
OLAP DML Statement Changes for Oracle Database 10g

D-5

Statements Changed in Oracle Database 10g
The following OLAP DML statements were significantly changed in Oracle Database
10g. Examples of significant changes are the addition of a new keyword or a change in
a default value. The number in parentheses indicates the last release in which the
statement was significantly changed.

AGGMAPINFO (10.1.0.0)
AGGREGATE command (10.2.0.0)
AGGREGATE function (10.2.0.0)
ARGUMENT (10.1.0.0)
ANY (10.2.0.0)
AVERAGE (10.2.0.0)
AW function (10.2.0.0)
AW ATTACH (10.1.0.0)
CACHE (10.2.0.0)
CHGDFN (10.2.0.0)
CHGDIMS (10.1.0.3)
COUNT (10.2.0.0)
DEFINE COMPOSITE (10.1.0.0)
DEFINE VARIABLE (10.2.0.0)
DEPRDECL (10.2.0.0)
DEPRDECLSW (10.2.0.0)
DEPRSL (10.2.0.0)
DEPRSOYD (10.2.0.0)
EVERY (10.2.0.0)
FINTSCHED (10.2.0.0)
FPMTSCHED (10.2.0.0)
HIERCHECK (10.2.0.2)
LARGEST (10.2.0.0)
LIMIT command (10.2.0.0)
LIMIT function (10.2.0.0)
MAINTAIN ADD SESSION (10.1.0.0)
MAINTAIN ADD TO PARTITION (10.1.0.0)
NONE (10.2.0.0)
OBJ (10.2.0.3)
RANK (10.2.0.0)
RELATION (for aggregation) (10.2.0.0)
SMALLEST (10.2.0.0)
SORT command (10.1.0.3)
SQL (10.1.0.0)
STDDEV (10.2.0.0)
TALLY (10.2.0.0)
TOTAL (10.2.0.0)
UPDATE (10.1.0.0)
VARIABLE (10.1.0.0)
VALSPERPAGE (10.1.0.0)
VINTSCHED (10.2.0.0)
VPMTSCHED (10.2.0.0)

Appendix D
OLAP DML Statement Changes for Oracle Database 10g

D-6

Statements Renamed in Oracle Database 10g
No OLAP DML statements have been renamed in Oracle Database 10g.

OLAP DML Statement Changes for Oracle Database 9i
This section contains listings of the OLAP DML statement changes in Oracle Database
9i.

• Statements Added in Oracle Database 9i

• Statements Deleted in Oracle Database 9i

• Statements Changed in Oracle Database 9i

• Statements Renamed in Oracle Database 9i

Statements Added in Oracle Database 9i
The following statements were added to the OLAP DML in Oracle Database 9i. The
number in parentheses indicates the specific release in which the statement was
added.

ADD_MONTHS (9.0.0.0)
ALLOCATE (9.2.0.0)
ALLOCERRLOGFORMAT (9.2.0.0)
ALLOCERRLOCHEADER (9.2.0.0)
ALLOCMAP (9.2.0.0)
BASEDIM (9.2.0.0)
BASEVAL (9.2.0.0)
CDA (9.2.0.0)
CEIL (9.0.0.0)
CHANGEBYTES (9.0.0.0)
CHGDIMS (9.2.0.0)
CHILDLOCK (9.2.0.0)
COMMIT (9.2.0.0)
DEADLOCK (9.2.0.0)
ERRORLOG (9.2.0.0)
ERRORMASK (9.2.0.0)
EXTBYTES (9.0.0.0)
FETCH (9.2.0.0)
FINDBYTES (9.0.0.0)
FLOOR (9.0.0.0)
GROUPINGID (9.2.0.0)
HIERHEIGHT command (9.2.0.0)
HIERHEIGHT function (9.2.0.0)
INSBYTES (9.0.0.0)
JOINBYTES (9.0.0.0)
LAST_DAY (9.0.0.0)
LIMITMAPINFO (9.2.0.2)
LIMITSTRICT (9.2.0.2)

Appendix D
OLAP DML Statement Changes for Oracle Database 9i

D-7

MAXBYTES (9.0.0.0)
MAXFETCH (9.0.0.0)
MONTHS_BETWEEN (9.0.0.0)
MULTIPATHHIER (9.0.0.0)
NEW_TIME (9.0.0.0)
NEXT_DAY (9.0.0.0)
NLS Options, specifically:

NLS_CALENDAR (9.0.0.0)
NLS_CURRENCY (9.0.0.0)
NLS_DATE_FORMAT (9.0.0.0)
NLS_DATE_LANGUAGE (9.0.0.0)
NLS_DUAL_CURRENCY (9.0.0.0)
NLS_ISO_CURRENCY (9.0.0.0)
NLS_LANG (9.0.0.0)
NLS_LANGUAGE (9.0.0.0)
NLS_NUMERIC_CHARACTERS (9.0.0.0)
NLS_SORT (9.0.0.0)
NLS_TERRITORY (9.0.0.0)

NULLIF (9.0.0.0)
POUTFILEUNIT (9.2.0.0)
REMBYTES (9.0.0.0)
REPLBYTES (9.0.0.0)
ROLE (9.0.0.0)
SOURCEVAL (9.2.0.0)
SYSDATE (9.0.0.0)
TO_CHAR (9.0.0.0)
TO_DATE (9.0.0.0)
TO_NCHAR (9.2.0.0)
TO_NUMBER (9.0.0.0)
TRACEFILEUNIT (9.2.0.0)
TRIM (9.0.0.0)
USERID (9.0.0.0)

Statements Deleted in Oracle Database 9i
The following statements were deleted from the OLAP DML in Oracle Database 9i.
The number in parentheses indicates the specific release in which the statement was
deleted.

_UPDATEOLDVERS (9.2.0.0)
_XCALONGTIME (9.0.0.0)
_XCARETRIES (9.0.0.0)
_XCASHORTIME (9.0.0.0)
ALLOWQONS (9.2.0.0)
AW ALLOCATE (10.1.0.0)
CACHEHITS (9.2.0.0)
CACHEMISSES (9.2.0.0)
CACHETRIES (9.2.0.0)
CHARSET (9.0.0.0)

Appendix D
OLAP DML Statement Changes for Oracle Database 9i

D-8

CHDIR (9.2.0.0)
CHDRIVE (9.2.0.0)
COMQUERY (9.0.0.0)
COMSET (9.0.0.0)
COMUNIT (9.0.0.0)
CONNECT (9.0.0.0)
DBEXTENDPATH (9.2.0.0)
DBGSESSION (9.2.0.0)
DBREPORT (9.2.0.0)
DBSEARCHPATH (9.2.0.0)
DBTEMPPATH (9.2.0.0)
DEFINE EXTCALL (9.0.0.0)
DGCART (9.2.0.0)
DIR (9.2.0.0)
DISCONNECT (9.0.0.0)
EPRODUCT (9.2.0.0)
ERELEASE (9.2.0.0)
EXECBREAK (9.0.0.0)
EXECSTART (9.0.0.0)
EXECSTATUS (9.0.0.0)
EXECUTE (9.0.0.0)
EXECWAIT (9.0.0.0)
EXTARGS (9.0.0.0)
FETCH (9.0.0.0) -- SNAPI
FILEMODEMASK (9.2.0.0)
IFCOPY (9.2.0.0)
LONGOBJNAMES (9.0.0.0)
MAXFETCH (9.0.0.0)
MKDIR (9.0.0.0)
NAPAGEFREE (9.2.0.0)
ODBC.CONNECTION (9.0.0.0)
ODBC.CONNLIST (9.0.0.0)
ODBC.DISCONN (9.0.0.0)
ODBC.SOURCE (9.0.0.0)
ODBC.SOURCELIST (9.0.0.0)
PGCACHEHITS (9.2.0.0)
PGCACHEMISSES (9.2.0.0)
PAGEPAUSE (9.2.0.0)
PAGEPROMPT (9.2.0.0)
PAUSE (9.2.0.0)
RETRIEVE (9.0.0.0)
RMDIR (9.0.0.0)
SESSIONQUERY (9.0.0.0)
SHARESESSION (9.0.0.0)
SHELL (9.0.0.0)
SQL CONNECT (9.0.0.0)
SQL DISCONNECT (9.0.0.0)
SQL.DMBS (9.0.0.0)
SQL.DMBSLIST (9.0.0.0)

Appendix D
OLAP DML Statement Changes for Oracle Database 9i

D-9

STRIP (9.2.0.0)
THREADEXTCALL (9.0.0.0)
TRACE (9.2.0.0)
TRANSLATE (9.0.0.0)
TRANSPORT (9.0.0.0)
WATCH (9.2.0.0)
XABORT (9.0.0.0)
XCAPORTNUMBER (9.0.0.0)
XCLOSE (9.0.0.0)
XOPEN (9.0.0.0)

Statements Changed in Oracle Database 9i
The following OLAP DML statements were significantly changed in Oracle Database 9i
and have not changed since then. Examples of significant changes are the addition of
a new keyword or a change in a default value. The number in parentheses indicates
the last release in which the statement was significantly changed. See also
"Statements Renamed in Oracle Database 9i" for a list of renamed statements.

CONVERT (9.2.0.0)
DECIMALCHAR (9.2.0.0)
EXPORT (9.2.0.0)
FCQUERY (9.2.0.0)
FCSET (9.2.0.0)
FILEOPEN (9.0.0.0)
FILEQUERY (9.0.0.0)
FILEREAD (9.2.0.0)
HIERHEIGHT command (9.2.0.0)
IMPORT (9.0.0.0)
INFILE (9.0.0.0)
LAG (9.2.0.2)
LAGABSPCT (9.2.0.2)
LAGDIF (9.2.0.2)
LAGPCT (9.2.0.2)
LEAD (9.2.0.2)
MODEL (9.2.0.2)
MOVINGAVERAGE (9.2.0.2)
MOVINGMAX (9.2.0.2)
MOVINGMIN (9.2.0.2)
MOVINGTOTAL (9.2.0.2)
NOSPELL (9.2.0.0)
OUTFILE (9.0.0.0)
PROGRAM (9.2.0.0)
PROPERTY (9.0.0.0)
RECURSIVE (9.0.0.0)
RELATION (for aggregation) (9.2.0.2)
RELATION (for allocation) (9.2.0.2)
ROUND (9.0.0.0)
SYSDATE (9.2.0.0)
SYSINFO (9.2.0.2)

Appendix D
OLAP DML Statement Changes for Oracle Database 9i

D-10

SYSTEM (9.2.0.0)
TALLY (10.2.0.0)
THOUSANDSCHAR (9.2.0.0)
YESSPELL (9.2.0.0)

Statements Renamed in Oracle Database 9i
The following OLAP DML statements were renamed in Oracle Database 9i. The
number in parentheses indicates the specific release in which the statement was
renamed.

DATABASE command to AW command (9.2.0.0)
DATABASE function to AW function (9.2.0.0)
DBDESCRIBE to AWDESCRIBE (9.2.0.0)
DBWAITTIME to AWWAITTIME (9.2.0.0)
DEFAULTDBFSIZE t o DEFAULTAWSEGSIZE (9.2.0.0)
OESEIFVERSION to EIFVERSION (9.2.0.0)

HCE

Appendix D
OLAP DML Statement Changes for Oracle Database 9i

D-11

Index

Symbols
_ wildcard, 2-47
((amp)) operator, 2-50
% wildcard, 2-47
= command, 10-176

event, 10-244, 10-254
trigger, 10-244, 10-254

$AGGMAP property, 4-2
$AGGREGATE_FORCECALC property, 4-5
$AGGREGATE_FORCEORDER property, 4-6
$AGGREGATE_FROM property, 4-6, 9-54
$AGGREGATE_FROMVAR property, 4-7
$ALLOCMAP property, 4-8
$COUNTVAR property, 4-9
$DEFAULT_LANGUAGE property, 4-10
$GID_DEPTH property, 4-15
$GID_LIST property, 4-16
$GID_TYPE property, 4-16
$LOOP_AGGMAP property, 4-17
$LOOP_DENSE property, 4-17

for derived measures in cubes, 10-189
$LOOP_TYPE property, 4-18
$LOOP_VAR property, 4-19

for derived measures in cubes, 10-189
$NATRIGGER property

calling recursively, 5-113
executing simultaneously, 5-125

$STORETRIGGERVAL property, 4-22
$VARCACHE property, 4-23

Numerics
20th century, 9-152
21st century, 9-152

A
A.D. datetime format element, 9-153
A.M. datetime format element, 9-153
ABS function, 7-15
abstract data types, A-2, A-6

automatic, A-4, A-17
predefining, A-3, A-17

ACQUIRE command, 9-10

ACROSS command, 9-14
AD datetime format element, 9-153
ADD_ALTER_SESSION procedure (PL/SQL),

C-2
ADD_CUBE_MODEL program, 9-15
ADD_DIMENSION_MEMBER program, 9-16
ADD_DIMENSION_SOURCE procedure (PL/

SQL), B-11
ADD_MODEL_DIMENSION program, 9-21
ADD_MONTHS command, 7-16
ADT

See abstract data types, A-3, A-17
ADVISE_CUBE procedure (PL/SQL), B-13
ADVISE_DIMENSIONALITY function (PL/SQL),

B-14
ADVISE_DIMENSIONALITY procedure (PL/

SQL), B-16
ADVISE_REL procedure, B-7
ADVISE_REL procedure (PL/SQL), B-21
ADVISE_SPARSITY procedure (PL/SQL), B-22
Aggcount variables, 7-17, 8-61, 9-132, 9-195,

9-197
AGGINDEX statement, 9-39
AGGMAP ADD model command, 9-64
AGGMAP command, 9-22
aggmap objects

identifying changes, 7-63
AGGMAP REMOVE model command, 9-64
AGGMAP SET command, 9-66
AGGMAPINFO command, 7-20
aggmaps, 9-159

compiling, 3-15, 9-139
defining, 9-159
deleting, 9-213
in formulas, 8-58
list of, 7-48
removing models from in cube dimensions,

10-147
See also aggregation specifications, allocation
specifications

Aggregate Advisor, 3-15, 9-52, 9-54, B-6
AGGREGATE command, 9-67
AGGREGATE function, 7-24
aggregating data, 3-13

caching, 5-130

Index-1

aggregating data (continued)
formulas for, 7-28
on-the-fly, 3-15
partitioned variables, 8-84
precomputing, 3-15
specifying a relation for, 9-52
using an Aggcount variable, 7-17
using an aggmap object, 3-13
using TCONVERT, 8-162

See also aggregation specifications
aggregation

in analytic workspaces, B-6
AGGREGATION function, 7-32
aggregation specifications, 3-15

compiling, 3-15
defining, 9-159
deleting, 9-213
models in, 9-64, 10-72, 10-73
writing, 9-22

See also aggregating data
aggregations

identifying changes, 7-63, 7-64, 7-187
algorithm for composite values, 5-118
alias dimensions

base dimensions (list of), 8-58
defining, 9-177
deleting, 9-213
limiting, 9-179
maintaining, 9-178
populating, 9-178
retrieving list of, 8-58

aliases
for analytic workspaces, 2-27
for analytic workspaces. See analytic

workspace aliases, 2-27
for dimensions. See alias dimensions, 9-177

ALLCOMPILE program, 9-75
ALLOCATE command, 9-76
allocating data, 3-16

using an aggmap object, 3-16
using TCONVERT, 8-162

See also allocation specifications
allocation specifications, 9-82

defining, 9-159
deleting, 9-213
writing, 9-82

See also allocating data
ALLOCERRLOGFORMAT option, 5-8
ALLOCERRLOGHEADER option, 5-9
ALLOCMAP command, 9-82
ALLSTAT command, 9-99
AM datetime format element, 9-153
ampersand (((amp))) operator, 2-50
ampersand substitution

example of, 2-50

ampersand substitution (continued)
program arguments and, 6-4
QDR with, 2-34, 2-50
using to pass arguments, 6-4, 10-36

analytic workspace aliases
creating, 9-105
definition of, 2-27
deleting, 9-105

analytic workspace objects
underlying cubes and cube dimensions, 8-74

analytic workspaces
accessing from SQL, B-1
aggregation, B-6
aliases. See analytic workspace aliases, 2-27
attached (list of), 8-58
attaching, 5-10, 9-106
content summary, displaying, 9-120
creating, 9-112
current, 2-26
deleting, 9-114, 9-120
deleting objects from, 9-213
detaching, 6-26, 9-115
exporting, 6-23
identifying active, 9-118
importing, 6-23
naming, 2-27
obtaining information about, 7-48
partitioning, 9-114
segmenting, 9-119
sharing, 5-10
updating, 10-259

ANTILOG function, 7-34
ANTILOG10 function, 7-35
ANY function, 7-35
arc tangent calculation, 7-39
ARCCOS function, 7-37
ARCSIN function, 7-38
ARCTAN function, 7-38
ARCTAN2 function, 7-39
ARG command

See ARGUMENT command
ARG function, 7-40
ARGCOUNT function, 7-41
ARGFR function, 7-42
ARGS function, 7-44
ARGUMENT command, 9-100
arguments, 7-40

in user-defined functions, 6-4
passing as text, 6-4, 10-36
passing to a program, 7-40–7-42, 7-44,

9-124
using ampersand substitution with, 6-4

arithmetic
with DATE values, 2-39

ASCII function, 7-45

Index

Index-2

ASCIISTR function, 7-46
Assign event, 10-244
assignment statements

event, 10-244, 10-254
trigger, 10-244, 10-254
with different dimensionality, 8-194
with QDR, 2-33

authentication, 8-80
encoding text expressions, 8-80
within Oracle OLAP, 10-114

AUTOGO program, 6-24
AVERAGE function, 7-46
AW command, 9-104

AW ALIASLIST, 9-105
AW ATTACH, 9-106
AW CREATE, 9-112
AW DELETE, 9-114
AW DETACH, 9-115
AW FREEZE, 9-117
AW LIST, 9-118
AW PURGE, 9-119
AW ROLLBACK, 9-119
AW SEGMENTSIZE, 9-119
AW THAW, 9-120
events, 6-30
triggers, 6-30

AW function, 7-48
AW PURGE, 9-119
AW_ATTACH procedure (PL/SQL), B-24
AW_COPY procedure (PL/SQL), B-26
AW_CREATE procedure (PL/SQL), B-27
AW_DELETE procedure (PL/SQL), B-28
AW_DETACH procedure (PL/SQL), B-28
AW_RENAME procedure (PL/SQL), B-29
AW_TABLESPACE function (PL/SQL), B-30
AW_UPDATE procedure (PL/SQL), B-31
AWDESCRIBE program, 9-120
AWWAITTIME option, 5-10

B
B.C. datetime format element, 9-153
BACK function, 7-33, 7-34, 7-51
BADLINE option, 5-11, 6-13
base dimensions

finding values of, 7-54, 7-194
identifying, 7-52
setting status list of, 10-58

BASEDIM function, 7-52
BASEVAL function, 7-54
BC datetime format element, 9-153
BEGINDATE, 7-55
BIN_TO_NUM function, 7-56
binary data, 2-17
BITAND function, 7-57

bits, adding, 7-57
BLANK command, 9-122
blank lines in reports, 9-122
BLANKSTRIP function, 7-57
BMARGIN option, 5-12
Boolean

data type, 2-17
expressions, 2-42
operators, 2-21
values, 5-96, 5-133

branching in programs, 9-123, 9-146, 9-280,
10-8, 10-36, 10-232

BREAK command, 9-123
bucket numbers, retrieving, 8-207
build number of Oracle OLAP, 7-112
bytes

used by expression, 8-206
bytes strings, 2-17

C
CACHE statement, 9-44–9-46
caches

See OLAP session cache
caching, 9-119
calculated members

adding to dimension, 10-72
identifying, 7-188

calculating a linear regression, 10-138
CALENDARWEEK option, 5-13
CALL command, 9-124
CALLTYPE function, 7-58
case statement in programs, 10-232
CATEGORIZE function, 7-59
CDA command, 9-127
CEIL function, 7-61
CHANGEBYTES function, 7-62
CHANGECHARS function, 7-62
CHANGEDRELATIONS function, 7-63
CHANGEDVALIES function, 7-64
character sets, 8-46, 8-47
characters

converting, 7-46
replacing, 8-108
representing as decimals, 2-5
representing as hexadecimals, 2-5
representing as Unicode, 2-5
special, 2-5

CHARLIST function, 7-65
CHGDFN command, 9-128
CHGDIMS function, 7-66
CHILDLOCK statement, 9-86
CHR function, 7-68
CLEAN_ALTER_SESSION procedure (PL/SQL),

C-3

Index

3

CLEANUP command
See SQL command in OLAP DML

CLEAR command, 9-135
CLOSE command

See SQL command in OLAP DML
COALESCE function, 7-69
code comments, 2-5
columns

default width in reports, 5-14, 5-41
getting value from a report column, 7-69
headings in a report, 10-1
in reports, 5-14
multiline text, 7-115

COLVAL function, 7-69
COLWIDTH function, 5-14
COMMAS option, 5-16
comments

code, 2-5
comments in programs, 6-3
COMMIT command, 9-138
comparing

dates, 2-46
values, 2-43, 2-46

comparison operators, 2-21
compilable objects, 5-17
COMPILE command, 9-139
COMPILEMESSAGE option, 5-17
COMPILEWARN option, 5-17
compiling, 5-17

aggmaps, 3-15
aggregation specifications, 3-15
models, 3-6
programs, 6-12
SQL statements, 10-222
suppressing error messages, 5-17

composites, 2-31, 9-206
base dimension values, 7-194
changing to conjoint dimensions, 9-128
defining, 1-10, 9-161
deleting, 9-213
deleting values of, 10-80
index algorithm, 5-118
index type (determining), 8-61
listing associated objects, 10-60
maintaining, 10-66
reporting, 10-154, 10-168
showing a value, 10-190
specifying values for, 2-29
specifying values of, 2-29, 2-30
testing for a value, 7-188
unnamed, 9-206

See also unnamed composites
composites (regular and compressed)

defined, B-3
concat dimensions, 9-175

concat dimensions (continued)
defining, 9-175
deleting, 9-213
specifying values for, 2-30

See also dimensions
conditional execution of commands, 9-216
conditional expressions, 2-47

Boolean, 2-48
IF, 2-48
SWITCH, 2-49

conditional operators, 2-47
conjoint dimensions, 9-172

base dimension values, 7-194
changing to composites, 9-128
defining, 9-172
deleting, 9-213
index type (determining), 8-61

See also dimensions
CONSIDER command, 9-143
CONTEXT command, 6-8, 9-143
CONTEXT function, 6-8, 7-70
CONTINUE command, 9-146
controlled sparsity, 9-166
conversion

rules, string to date, 2-11, 7-78
CONVERT function, 7-71
CONVERT procedure (PL/SQL), B-32
converting

characters, 7-46
hexidecimal digits to raw, 7-151
numerics, 8-170, 8-171
raw values, 8-95
ROWID data type, 8-122, 8-123
to ASCII, 7-46
to DSINTERVAL, 8-176
to YMINTERVAL, 8-182

converting data types
decimals to integers, 7-183
introduction to, 2-19

COPYDFN command, 9-146
copying definitions, 9-146
CORRELATION function, 7-79
COS function, 7-82
COSH function, 7-82
cosine calculation, 7-82
COUNT function, 7-83
CREATE_LOGICAL_MODEL program, 9-147
cube dimension members

adding to a hierarchy, 10-264
removing, 10-149
removing from a hierarchy, 10-149

cube dimensions
adding dimensions to models, 9-21
adding model to, 10-186
adding models to, 9-15

Index

Index-4

cube dimensions (continued)
creating models for, 9-147
deleting model from, 10-186
identifying physical characteristics of, 8-74
removing dimensions from models, 10-152
removing models fromaggmaps, 10-147

cubes
identifying physical characteristics of, 8-74

CUMSUM function, 7-84
cumulative totals, 7-84, 8-125
current

analytic workspace, 2-27
current directory, 9-127

changing, 9-127
identifying, 9-127

current outfile, 5-31, 10-109
current status list

setting, 10-28
CURRENT_DATE function, 7-87
CURRENT_TIMESTAMP function, 7-87
cursors, 10-205

closing (SQL), 10-205
importing (SQL), 10-217

custom measures, A-5
examples with OLAP_EXPRESSION, A-30

D
data

binary, 2-17
data export programs, 6-17
data fetches (SQL), 10-210
data import programs, 6-17
data type conversions, A-6
data types

Boolean, 2-17
converting, 2-19
creating a report, 10-154, 10-168
date, 2-8, 2-9, 2-12
DATE, 2-6
DATETIME, 2-8
determining data type of an object, 8-58
DSINTERVAL, 2-16
for variables, 9-193
numeric, 2-4
of expressions, 2-23
of numeric expressions, 2-36
of user-defined function, 6-3
qualifying data for expressions, 8-87
RAW, 2-17
restricting access, 10-114
ROWID, 2-18
showing a single value, 10-190
text, 2-5
TIMESTAMP, 2-13

data types (continued)
TIMESTAMP_LTZ, 2-14
TIMESTAMP_TZ, 2-13
transferring from one format to another,

8-194
UROWID, 2-19
YMINTERVAL, 2-15

DATABASE command, D-11
name change, D-11

See also AW command
DATABASE function, D-11

name change, D-11
See also AW function

database initialization, C-1
date data types, 2-8, 2-9, 2-12
DATE data types, 2-6
date format models, 9-150

long, 9-150
punctuation in, 9-154
short, 9-150
text in, 9-154

DATE_FORMAT, 9-148
DATEFORMAT option, 5-18
DATEORDER option, 5-22
dates, 8-157, 8-183

arithmetic, 2-39
comparing, 2-46
current, 8-157, 8-183
in arithmetic expressions, 2-41
in text expressions, 2-38

datetime arithmetic, 2-39
datetime data

format of, 9-148
DATETIME data type, 2-38
DATETIME data types, 2-8
datetime expressions, 2-38
datetime format elements

and Globalization Support, 9-153
capitalization, 9-154
ISO standard, 9-152
RR, 9-152
suffixes, 9-153

datetime values
truncating, 8-190

DAY datetime format element, 9-153
DAYABBRLEN option, 5-23
DAYNAMES option, 5-25
DAYOF function, 7-88
DBDESCRIBE program, D-11

name change, D-11
See also AWDESCRIBE program

DBGOUTFILE command, 6-13, 9-155
and ECHOPROMPT, 5-31

DBMS_AW package, B-1
DBMS_AW PL/SQL package

Index

5

DBMS_AW PL/SQL package (continued)
ADD_DIMENSION_SOURCE procedure,

B-11
ADVISE_CUBE procedure, B-13
ADVISE_DIMENSIONALITY function, B-14
ADVISE_DIMENSIONALITY procedure, B-16
ADVISE_REL procedure, B-21
ADVISE_SPARSITY procedure, B-22
AW_ATTACH procedure, B-24
AW_COPY procedure, B-26
AW_CREATE procedure, B-27
AW_DELETE procedure, B-28
AW_DETACH procedure, B-28
AW_RENAME procedure, B-29
AW_TABLESPACE function, B-30
AW_UPDATE procedure, B-31
CONVERT procedure, B-32
EVAL_NUMBER function, B-33
EVAL_TEXT function, B-33
EXECUTE procedure, B-34
GETLOG function, B-36
INFILE procedure, B-37
INTERP function, B-37
INTERP_SILENT function, B-39
INTERPCLOB function, B-38
OLAP_ON function, B-40, B-41
PRINTLOG procedure, B-42
RUN procedure, B-43
SHUTDOWN procedure, B-44
SPARSITY_ADVICE_TABLE procedure,

B-45
STARTUP procedure, B-46

DBTIMEZONE function, 7-89
DBWAITTIME option, D-11

name change, D-11
See also AWWAITTIME option

DDOF function, 7-89
DEADLOCK statement, 9-87
debugging, 5-39

formulas, 10-235
models, 3-13, 10-235
programs, 6-12, 10-235

decimal data types, comparing, 2-45
decimal marker (displayed), 5-26
decimal places (displayed), 5-27
decimal values, 5-26

decimal marker for output, 5-26
truncating to an integer, 7-183

DECIMALCHAR option, 5-26
DECIMALOVERFLOW option, 5-26
DECIMALS option, 5-27
DECLARE CURSOR command

See SQL command in OLAP DML
DECODE function, 7-90
default

default (continued)
outfile, 10-109
relations, 2-30, 10-141

default status list
determining if in effect, 8-138

DEFAULTAWSEGSIZE option, 5-28
DEFAULTDBFSIZE option, D-11

name change, D-11
See also DEFAULTAWSEGSIZE option

DEFINE AGGMAP command, 9-159
DEFINE command, 9-157

events, 6-32
triggers, 6-32

DEFINE COMPOSITE command, 9-161
DEFINE DIMENSION ALIASOF command, 9-177
DEFINE DIMENSION command, 9-165
DEFINE FORMULA command, 9-179
DEFINE MODEL command, 9-181
DEFINE PARTITION TEMPLATE command,

9-183
DEFINE PROGRAM command, 9-184
DEFINE RELATION command, 9-186
DEFINE SURROGATE command, 9-188
DEFINE VALUESET command, 9-190
DEFINE VARIABLE command, 9-193
DEFINE WORKSHEET command, 9-211
defining

aggmap objects, 9-159
alias dimensions, 9-177
analytic workspace objects, 9-157
dimension alias, 9-177
dimensions, 9-165
formulas, 9-179
partitions, 9-183
programs, 9-184
relations, 9-186
surrogates, 9-188
valuesets, 9-190
variables, 9-193
worksheet objects, 9-211

definitions
copying, 9-146
creating, 9-157
creating object properties, 10-127
deleting, 9-213
moving within NAME dimension, 10-107
report of, 9-214, 9-278
testing for, 7-111

DELETE command, 9-213
event, 10-244
trigger, 10-244

Delete event, 10-244
DELETE_ALTER_SESSION procedure (PL/

SQL), C-3
deleting

Index

Index-6

deleting (continued)
alias dimensions, 9-213
composite values, 10-80
composites, 9-213
definitions, 9-213
dimension alias, 9-213
dimension values, 10-78
dimensions, 9-213
formulas, 9-213
models, 9-213
objects, 9-213
partition templates, 9-213
partitions, 9-213
programs, 9-213
surrogates, 9-213
triggers, 10-245
valuesets, 9-213

DEPRDECL function, 7-93
DEPRDECLSW function, 7-97
depreciation of assets, 7-93, 7-97, 7-102, 7-105
DEPRSL function, 7-102
DEPRSOYD function, 7-105
DESCRIBE command, 9-214
descriptions

adding to a definition, 10-27
deleting from a definition, 10-27

detaching
analytic workspaces, 6-26

dimension alias
See alias dimensions, 9-177

DIMENSION command, in a model, 10-93
DIMENSION statement

for aggregation, 9-47
for allocation, 9-87

dimension status
effect on expressions, 2-25
null, 5-97
restoring, 6-7
saving current, 6-7

dimension surrogates
assigning values to, 10-179
defining, 9-188

dimension values
comparing, 2-45
counting related values, 8-159
deleting values of, 10-78
latest value, 8-144
null, 5-97
number of (determining), 8-60
number of values in status, 8-142
place in status list, 8-147
retrieving current status list

retrieving, 8-143
returning first value in status, 8-140
returning last value in status, 8-141

dimension values (continued)
setting the status of, 10-27
sorting, 8-133, 10-194
testing for, 7-188
using qualified data reference, 8-87
using result of LIMIT command, 8-15

dimension-based equations, 3-3
dimensionality, changing, 7-66
dimensions, 9-165

adding to cube dimension models, 9-21
checking status of, 8-138
comparing values, 2-45
defining, 9-165
defining surrogates for, 9-188
deleting, 9-213
determining status of, 8-138
limiting, 10-27
limiting to single value, 2-31
listing associated objects, 10-60
looping over values of, 9-271
maintaining, 10-66
numeric value of text dimension, 2-36
of expression, 2-24
order in models, 10-96
QDR with, 2-31, 2-34
related, 2-30, 10-141
removing from cube dimension models,

10-152
restoring previous values, 6-7
saving current values, 6-7
status lists, 8-138, 8-139
type of (determining), 8-60
worksheet, 9-212

See also alias dimensions, base dimensions,
concat dimensions, conjoint dimensions,
simple dimensions

directory
changing, 9-127
identifying current, 9-127

displaying error messages, 5-132
DIVIDEBYZERO option, 5-29
division, 8-102

by zero, 5-29
calculating the remainder, 8-102

DO command, 9-216, 9-269
used with FOR, 9-269
used with SWITCH, 10-232
used with WHILE, 10-276

DOEND command, 9-216
double quotes, 2-5
DSECONDS option, 5-30
DSINTERVAL data type, 2-16
DSINTERVAL function, 8-176
DY datetime format element, 9-153

Index

7

E
ECHOPROMPT option, 5-31, 6-13
EDIT command, 9-217
editing previously executed commands, 10-136
EIF file, 6-23, 9-220

exporting data from, 9-220
importing data from, 10-9

EIFBYTES option, 5-32
EIFEXTENSIONPATH option, 5-32
EIFNAMES option, 5-33
EIFSHORTNAMES option, 5-34
EIFTYPES option, 5-34
EIFUPDBYTES option, 5-35
EIFVERSION option, 5-36
embedded-total dimension views, A-19
embedded-total fact view, A-20
encoding, 8-80
ENDDATE function, 7-108
ENDOF function, 7-109
EQ command, 9-218
equations, dimension-based, 3-3
ERRNAMES option, 5-37
error messages, 10-190

creating your own, 6-11
deferring, 6-9
displaying, 5-132
option holding text of, 5-38
producing without error condition, 10-190
signaling error condition, 10-192
suppressing, 5-17, 6-10
suppressing during compilation, 5-17
wrapping, 5-132

ERRORLOG statement, 9-88
ERRORMASK statement, 9-89
ERRORNAME option, 5-37, 6-8
errors

controlling during calculations, 2-37
handling, 6-8
handling in nested programs, 10-242, 10-243
handling in programs, 10-241
name of first-occurring error, 5-37
signaling, 6-11, 10-242, 10-243
SQL error codes, 5-120
when comparing numeric data, 2-44, 2-45

ERRORTEXT option, 5-38, 6-8
escape character for LIKE, 5-44
escape sequences, 2-5
ESCAPEBASE option, 5-39
EVAL_NUMBER function (PL/SQL), B-33
EVAL_TEXT function (PL/SQL), B-33
events

Assign, 10-244, 10-254
assignment statements, 10-244
Define, 6-32

events (continued)
Delete, 10-244
deleting, 10-245
identifying, 8-187
Maintain, 10-244
Property, 10-244
Update, 6-29, 6-31, 10-244

EVERSION function, 7-112
EVERY function, 7-109
EXECUTE procedure (PL/SQL), B-34
EXISTS function, 7-111
EXP function, 7-112
exponential forecasting, 9-272
exponents, retrieving, 7-112
EXPORT command, 6-23, 9-220
EXPORT to EIF command, 9-220
EXPORT to spreadsheet command, 9-226
exporting

metadata, 9-223
exporting data, 5-32, 9-220
expressions

ampersand substitution, 2-50
Boolean, 2-42, 2-47
changing dimensionality of, 7-66
comparing, 8-52
conditional, 2-47
data type of, 2-23
dates in, 2-41
datetime, 2-38
defined, 2-22
determining dimensions of, 2-24
dimensions of, 2-24
dimensions status, 2-25
empty cells, 2-35
internal representation of, 8-206
interval, 2-39
NA values in, 2-35
numeric, 2-35
objects in, 2-25
padding, 8-23, 8-123
parsing, 10-113
retrieving largest, 7-148
retrieving smallest, 8-14
saving, 9-179
size in bytes, 8-206
substitution, 2-50
text, 2-37
trimming, 8-24, 8-124
using objects in, 2-31
using qualified data references in, 8-87

EXPTRACE option, 5-39
EXTBYTES function, 7-113
EXTCHARS function, 7-114
EXTCOLS function, 7-115
EXTLINES function, 7-116

Index

Index-8

EXTRACT function, 7-117

F
fastest-varying dimension, 9-198
FCCLOSE command, 9-227
FCEXEC command, 9-228
FCOPEN command, 7-118
FCQUERY command, 7-119
FCSET command, 9-231
FETCH command

See SQL command in OLAP DML
FETCH command (OLAP DML), A-18, A-23
fetching data (SQL), 10-210
file I/O, 7-126, 7-128, 9-239, 9-242, 9-243, 9-245,

9-259
closing, 7-126, 9-239
current directory, 9-127
diagnosing errors when processing, 7-123
forcing a page break, 9-242
gathering information about, 7-130
list of open files, 10-61
opening, 7-128
processing data from, 9-261
reading a record, 7-127
reading data from, 9-245
reading Oracle OLAP commands from a file,

7-144, 10-25
records read, 8-96
setting attributes, 9-259
writing, 9-243

FILECLOSE command, 9-239
FILECOPY command, 9-240
FILEDELETE command, 9-241
FILEERROR function, 7-123
FILEGET function, 7-126
FILEMOVE command, 9-241
FILENEXT function, 7-127
FILEOPEN function, 7-128
FILEPAGE command, 9-242
FILEPUT command, 9-243
FILEQUERY function, 7-130
FILEREAD command, 9-245
files

appending output, 10-111
importing data from, 10-18
saving output in, 10-111

FILESET command, 9-259
fileunits, 7-128, 7-130

attributes, 7-130
number of outfile destination, 5-98
opening, 7-128, 10-109
reading data from, 9-245
setting attributes, 9-259

FILEVIEW command, 9-261

FILTERLINES function, 7-133
financial analysis, scenario modeling, 3-6
FINDBYTES function, 7-134
FINDCHARS function, 7-135
FINDLINES function, 7-137
FINTSCHED function, 7-138
floating point numbers, comparing, 2-44
floating-point format

limitations when calculating, 2-36
use of, 2-36

FLOOR function, 7-140
FOR command, 9-216, 9-269

breaking out of, 9-123
example of, 9-271
looping over dimension values, 9-271
used with BREAK, 9-123
used with CONTINUE, 9-146
used with OKFORLIMIT, 5-96
used with TEMPSTAT, 10-234

FORECAST command, 9-272
FORECAST function, 7-160
FORECAST.REPORT program, 9-276, 9-277
forecasting context, 9-227

closing, 9-227
executing, 9-228
opening, 7-118
querying, 7-119
setting characteristics of, 7-118

format model, 9-148
format models, 2-10

date
changing, 2-11, 9-149
default format, 2-11, 9-149

formats
for dates and numbers. See format models,

2-10
of return values from the database, 2-10
of values stored in the database, 2-10

formatting
datetime data, 9-148

formulas
aggmap objects in, 8-58
aggregating data with, 7-28
compiling, 5-17, 9-139
debugging, 10-235
defining, 9-179
deleting, 9-213
expression for (retrieving), 8-60
recursive, 5-113
specifying new expression, 9-218

FPMTSCHED function, 7-141
FROM_TZ function, 7-144
FULLDSC program, 9-278
functions

calling, 9-124

Index

9

functions (continued)
user-defined, 6-3, 6-4, 9-124, 10-164

G
GET function, 7-144
GETLOG function (PL/SQL), B-36
GOTO command, 9-280
GREATEST function, 7-148
group marker, 5-123
grouping ids, 4-15, 4-16
GROUPINGID command, 9-282
GROUPINGID function, 7-149
GROWRATE function, 7-150
growth rate, 7-150

H
handling errors in programs, 10-241
hash partitions, 9-114
hash values, 8-82
heading, 10-1

for a report, 10-1
for output pages, 5-100
including a page number, 5-99
producing standard report heading, 10-231

HEADING command, 10-1
hexadecimal digits

converting to raw, 7-151
HEXTORAW function, 7-151
HIDE command, 10-2
hierarchies

shape of, 7-158
hierarchy shape, 7-158
HIERHEIGHT command, 10-5
HIERHEIGHT function, 7-154
HIERSHAPE function, 7-158
Holt-Winters forecasting, 9-272
hyperbolic

cosine calculation, 7-82
sine calculation, 8-128
tangent calculation, 8-161

I
IDs

character sets, 8-46, 8-47
IF command, 9-216, 10-8
IF conditional expression, 2-48
IMPORT command, 6-23, 10-9, 10-217

See also SQL command in OLAP DML
importing

metadata, 10-13
importing data, 5-32, 5-35

controlling update frequency, 5-35

importing data (continued)
from an analytic workspace, 10-10
from spreadsheets, 10-22
from text files, 10-18
tracking names of objects, 5-33
tracking types of objects, 5-34

INCLUDE command, 10-97
INF values

in OLAP DML, 7-186
INF_STOP_ON_ERROR option, 5-40
INFILE command, 10-25
INFILE procedure (PL/SQL), B-37
infinity

numbers, 7-186, 7-187
INFO function, 7-160

FORECAST, 7-160
MODEL, 7-162
PARSE, 7-169
REGRESS, 7-171

INITCAP function, 7-174
initialization parameters, C-1
INLIST function, 7-174
input file

reading from a file, 7-144, 10-25
with SNAPI connection, 7-144
with XCA dialog, 7-144

INSBYTES function, 7-175
INSCHARS function, 7-176
INSCOLS function, 7-177
INSLINES function, 7-178
INSTAT function, 7-179
INSTR function, 7-182
INSTRB function, 7-182
INSTRC function, 7-182
integer part of decimal number, 7-183
interest on loans, 7-138, 8-201
internal rate of return, 7-184
INTERP function (PL/SQL), B-37
INTERP_SILENT procedure (PL/SQL), B-39
INTERPCLOB function (PL/SQL), B-38
interval

arithmetic, 2-39
INTERVAL expressions, 2-39
INTPART function, 7-183
IRR function, 7-184
ISDATE program, 7-185
ISEMPTY function, 7-187
ISINFINITE, 7-186
ISNAN, 7-187
ISSESSION function, 7-188
ISVALUE function, 7-188

J
JOINBYTES function, 7-189

Index

Index-10

JOINCHARS function, 7-190
JOINCOLS function, 7-191
JOINLINES function, 7-193

K
KEY function, 7-194

L
label column width, 5-41

branching in a program, 9-280
for error handling in programs, 10-241

labels, 9-280
in programs, 6-11
with IFNONE, 10-36

LAG function, 3-5, 8-1
LAGABSPCT function, 8-4
LAGDIF function, 8-6
LAGPCT function, 8-7
larger value of two expressions, 8-26
LARGEST function, 8-9
largest value of an expression, 8-9
LAST_DAY function, 8-11
LCOLWIDTH option, 5-41
LD command, 10-27
LEAD function, 3-5, 8-12
LEAST function, 8-14
LENGTH function, 8-14
LENGTH2 function, 8-14
LENGTH4 function, 8-14
LENGTHB function, 8-14
LENGTHC function, 8-14
LIKE operator, 5-44, 5-46
LIKECASE option, 5-43
LIKEESCAPE option, 5-44
LIKENL option, 5-46
LIMIT BASEDIMS command, 10-58
LIMIT command, 10-27

using LEVELREL, 10-47
using NOCONVERT, 10-57
using parent relation, 10-51
using POSLIST, 10-58
using related dimension, 10-49
using values, 10-37

LIMIT function, 8-15
limit maps, A-1, A-16, A-17

order of processing, A-19
syntax, A-9

LIMIT.SORTREL option, 5-47
limiting

alias dimensions, 9-179
dimensions, 10-27
multidimensional valuesets, 9-192

LIMITMAPINFO function, 8-19

LIMITSTRICT option, 5-48, 10-41
line size for report heading, 5-55
LINENUM option, 5-50
lines on a page of report output, 5-102
LINESLEFT option, 5-52
LISTBY program, 10-60
LISTFILES command, 10-61
LISTNAMES program, 10-61
literals

numeric, 2-4
text, 2-37

LOAD command, 10-63
loans, 7-138

interest payment on, 7-138
interest payments on, 8-201
payment on, 7-141
payments on, 8-203

local variables, 10-268
locale independent, 9-150
LOCALTIMESTAMP function, 8-20
LOG command, 10-64
LOG function, 8-21
LOG10 function, 8-22
logical operators, 2-21
logs

calculating base 10 logarithm, 8-22
calculating natural logarithm, 8-21

LOOP clause in SQL FETCH, 10-211
looping, 9-269

over dimension status, 9-269
looping, explicit, 4-17–4-19
LOWCASE function, 8-22
LOWER function, 8-23
lowercase, converting to, 8-22
LPAD function, 8-23
LSIZE option, 5-55
LTRIM function, 8-24

M
MAINTAIN command

event, 10-244
MAINTAIN ADD, 10-68
MAINTAIN ADD for DAY, WEEK, MONTH,

QUARTER and YEAR values, 10-71
MAINTAIN ADD for TEXT, ID, and INTEGER

values, 10-69
MAINTAIN ADD SESSION, 10-72
MAINTAIN DELETE, 10-78, 10-80
MAINTAIN MERGE, 10-83
MAINTAIN MOVE, 10-85
MAINTAIN RENAME, 10-88
trigger, 10-244

Maintain event, 10-244
maintaining

Index

11

maintaining (continued)
alias dimensions, 9-178
composites, 10-66
dimensions, 10-66
partition templates, 10-66
partitions, 10-66

MAKEDATE function, 8-25
margins, 5-12

setting bottom margin, 5-12
setting top margin, 5-124

MAX function, 8-26
MAXBYTES function, 8-27
MAXCHARS function, 8-28
MAXFETCH option, 5-56
maximum values, 8-37

for each time period in the status, 8-37
larger of two expressions, 8-26

MEASUREDIM statement
for aggregation, 9-49
for allocation, 9-89

MEDIAN function, 8-29
median value, 8-29
messages, suppressing, 5-17
metadata

exporting, 9-223
importing, 10-13

MIN function, 8-30
minimum value, 8-38

for each time period in the status, 8-38
smaller of two expressions, 8-30

MMOF function, 8-31
MOD function, 8-33
MODDAMP option, 5-57
MODE function, 8-31
MODEL command, 10-89
model dimensions

adding to cube dimensions, 9-21
removing from cube dimensions, 10-152

MODEL.XEQRPT program
compiling, 5-17
defining, 9-181, 9-183
including, 10-97
nesting, 10-97
options, 5-57, 5-61, 5-64, 5-66, 5-67, 5-69,

5-71
models

adding a specification, 10-89
adding to aggmap, 9-64
adding to cube dimensions, 10-186
adding to cubes, 9-15
compiling, 3-6, 9-139, 10-92
creating, 10-91
creating for cube dimensions, 9-147
debugging, 3-13, 10-235
defining, 9-181

models (continued)
deleting, 9-213
deleting from cube dimensions, 10-186
editing, 10-92
in aggregation specifications, 9-64, 10-72,

10-73
obtaining information about, 7-162
removing from aggmap, 9-64
removing from aggmaps of cube dimensions,

10-147
running, 3-11, 10-92
scenario, 3-6
solution variables, 3-3

MODERROR option, 5-60
MODGAMMA option, 5-61
MODINPUTORDER option, 5-64
MODMAXITERS option, 5-66
MODOVERFLOW option, 5-67
MODSIMULTYPE option, 5-69
MODTOLERANCE option, 5-71
MODTRACE option, 5-74
module version numbers, 7-112
MODULO function, 8-33
MON datetime format element, 9-153
MONITOR command, 10-104
monitoring, 10-104

cost of program lines, 10-104
cost of programs, 10-237

MONTH datetime format element, 9-153
MONTHABBRLEN option, 5-77
MONTHNAMES option, 5-78
MONTHS_BETWEEN function, 8-34
MOVE command, 10-107
MOVINGAVERAGE function, 8-34
MOVINGMAX function, 8-37
MOVINGMIN function, 8-38
MOVINGTOTAL function, 8-40
multidimensional valuesets, 9-192
multiline text

columns, 7-115
MULTIPATHHIER option, 5-80
multiwriter mode, 7-48, 9-10, 9-108

N
NA values,

about, 2-35
accepted as numeric input, 5-82, 5-85
caching, 5-130
comparing, 2-43
controlling how treated, 2-35
in Boolean expression, 2-43
in expressions, 2-35
NA2 bits, 2-35, 9-197
permanently replacing, 5-127

Index

Index-12

NA values (continued)
replacing, 8-57
replacing with strings, 8-56
retrieving, 7-69
spelling of, 5-88
substituting another value, 8-42
triggers, 5-125, 5-127

NA2 bits, 2-35, 9-197
NA2 function, 8-42
NA2 values, 8-42, 8-43
NAFILL function, 8-42
NAFLAG function, 8-43
name, 10-62

changing object name, 10-152
dimension, 10-62
listing names of dictionary entries, 10-62

NAME dimension, 10-62
names

listing for objects, 10-61
listing objects by, 10-60
qualified object, 2-27

NaN values
in OLAP DML, 7-187

NASKIP option, 5-82
NASKIP2 option, 5-85
NASPELL option, 5-88, 9-103
NATRIGGER

See $NATRIGGER
natural logarithm, 8-21
negative value, 5-105

in output, 5-105
obtaining the root, 5-114

net present value, 8-51
NEW_TIME function, 8-44
NEXT_DAY function, 8-45
NLS_CALENDAR option, 5-89
NLS_CHARSET_ID function, 8-46
NLS_CHARSET_NAME function, 8-47
NLS_CURRENCY option, 5-90
NLS_DATE_FORMAT option, 5-90
NLS_DATE_LANGAUGE option, 5-91
NLS_DATE_LANGUAGE initialization parameter,

9-153
NLS_DUAL_CURRENCY option, 5-91
NLS_ISO_CURRENCY option, 5-92
NLS_LANG option, 5-92
NLS_LANGUAGE initialization parameter, 9-153
NLS_LANGUAGE option, 5-93
NLS_NUMERIC_CHARACTERS option, 5-93
NLS_SORT option, 5-94
NLS_TERRITORY initialization parameter, 9-153
NLS_TERRITORY option, 5-95
NLSSORT function, 8-47
NONE function, 8-48
NORMAL function, 8-50

NOSPELL option, 5-96
NPV function, 8-51
null values

See NA values
NULLIF function, 8-52
numbers

assigning random numbers, 8-89
commas in output, 5-16
decimal marker for output, 5-26
decimal places in output, 5-27
determining sign of, 8-127
negative values in output, 5-105
rounding, 8-115
spelling out, 9-148
thousands marker for output, 5-123

NUMBYTES function, 8-53
NUMCHARS function, 8-54
numeric conversion, 8-170, 8-171
numeric data types, 2-4

comparing, 2-44, 2-45
mixing, 2-36

numeric expressions, 2-35
data type of the result, 2-36
dates in, 2-41
mixing data types, 2-36
text dimensions in, 2-36

numeric values
rounding, 8-115

NUMLINES function, 8-55
NUMTODSINTERVAL function, 8-55
NUMTOYMNTERVAL function, 8-56
NVL function, 8-56
NVL2 function, 8-57

O
OBJ function, 8-58
object definitions

adding descriptions to, 10-27
deleting descriptions from, 10-27

object types
automatic, A-3, A-17
predefining, A-3, A-17
syntax for creating, A-2, A-16

objects, 9-146
checking for changes, 8-59
compiling, 5-17
creating by copying, 9-146
creating properties, 10-127
data type of (determining), 8-59
defining, 9-157
definition (retrieving), 8-59
deleting, 9-213
describing its definition, 9-214
describing its properties, 9-278

Index

13

objects (continued)
dimensions of (retrieving), 8-60
dropping changes, 10-166
exporting from analytic workspace, 9-220
identifying triggers, 8-187
importing into analytic workspace, 10-9
in expressions, 2-25
listing, 8-73
listing names of, 10-60–10-62
loading, 10-63
making current, 9-143
obtaining information, 8-58
pages used to store (determining), 8-60
qualified name, 2-27
recalculating permissions, 10-121
renaming, 10-152
restrictions on name, 9-157
storage class (determining), 8-59
testing for existence, 7-111

OBJLIST function, 8-73
OBJORG function, 8-74
OBSCURE function, 8-80
OESEIFVERSION option, D-11

name change, D-11
See also EIFVERSION option

OKFORLIMIT option, 5-96
OKNULLSTATUS option, 5-97, 10-33
OLAP API

optimization, C-1
OLAP DML

executing in SQL, A-24, A-29, A-37, B-2,
B-42

quotation marks in, B-2
OLAP session cache,

blocking creation of, 5-116
checking if empty, 8-59
defined, 5-116
for variable, 8-61
non-NA values, 8-59
populating with aggregated values, 5-130,

9-45
populating with NA values, 5-130

OLAP_API_SESSION_INIT PL/SQL package
ADD_ALTER_SESSION procedure, C-2
CLEAN_ALTER_SESSION procedure, C-3
DELETE_ALTER_SESSION procedure, C-3

OLAP_CONDITION function (SQL), A-18, A-24
OLAP_EXPRESSION function (SQL), A-29, B-2
OLAP_EXPRESSION_BOOL function (SQL),

A-32
OLAP_EXPRESSION_DATE function (SQL),

A-35
OLAP_EXPRESSION_TEXT function (SQL),

A-36
OLAP_ON function (PL/SQL), B-40, B-41

OLAP_TABLE
optimizing looping, 4-17–4-19

OLAP_TABLE function (SQL), A-6
custom measures, A-29, A-32, A-36, A-37
data map parameter, A-6
data type conversions, A-6
examples, A-19
FETCH command, A-18, A-23
limit map, A-1, A-16, A-17
retrieving session log, B-36
specifying a ROW2CELL column, A-13
specifying an OLAP DML command, A-15
specifying the analytic workspace, A-7
specifying the logical table, A-8

ONATTACH program, 6-25
ONDETACH program, 6-26
OPEN command See SQL command in OLAP

DML, 10-222
operating system, identifying, 8-158
operators, 5-46

Boolean, 2-21
comparisons, 2-21
conditional, 2-47
LIKE, 5-43, 5-44, 5-46
logical, 2-21
overview, 2-20
substitution, 2-50

optimization
OLAP API, C-1

options
displaying value of, 5-1
restoring previous values, 6-7
retrieving, 5-1
saving current values, 6-7
specifying, 5-1

ORA_HASH function, 8-82
Oracle OLAP

internal build number, 7-112
ordinal numbers

specifying, 9-148
spelling out, 9-148

out-of-range decimal values, 5-26
outfile

current, 5-31
OUTFILE command, 10-109, 10-111

affect on DBMS_AW.EXECUTE, B-35
affect on DBMS_AW.RUN, B-43

OUTFILEUNIT option, 5-98
output, 10-109

redirecting, 10-109
saving in a file, 10-111

overflow condition, 5-26

Index

Index-14

P
P.M. datetime format element, 9-153
padding expressions, 8-23, 8-123
PAGE command, 10-111
PAGENUM option, 5-99
PAGEPRG option, 5-100
PAGESIZE, 5-102
paging in reports, 10-111

forcing a page break, 10-111
line number on current page, 5-50
lines for bottom margin, 5-12
lines for top margin, 5-124
lines left on page, 5-52
lines on a page, 5-102
page number, 5-99
producing a custom heading, 5-100
producing a standard heading, 10-231
turning on, 5-103

PAGING option, 5-103
PARENS option, 5-105
PARSE command, 7-169, 10-113
parsing expressions, 10-113
PARTITION function, 8-83
partition templates, 9-183

defining, 9-183
deleting, 9-213
maintaining, 10-66
retrieving partition names, 8-64
retrieving partitioning method, 8-64

PARTITIONCHECK function, 8-84
partitioned variables, 9-183, 9-193

aggregating, 8-84
defining, 9-193
deleting data from, 10-81
maintaining, 10-87
retrieving dimensions of, 8-63
retrieving partitioning method, 8-64

partitioning methods, 8-64
partitions, 9-183, 9-193

adding values to, 10-77, 10-87
defining, 9-183

list partitions, 9-183
deleting, 9-213
deleting data, 10-81
identifying for value, 8-83
list, 9-183
locking segments of, 10-223
moving values, 10-87
range, 8-64, 9-183
retrieving dimensions of, 8-63
retrieving names of, 8-64
specifying values of, 10-87

pattern matching, 2-47
payment schedules, 7-138

payment schedules (continued)
for loan interest, 7-138, 8-201
for loans, 7-141, 8-203

PERCENTAGE function, 8-85
permission programs, 6-15, 6-24, 6-25, 6-27,

6-28
permissions, 10-114

assigning to an object definition, 10-114
recalculating permission, 10-121
specifying conditions for accessing, 10-121
violations of, 5-106

PERMIT command, 10-114
PERMIT_READ program, 6-15, 6-27
PERMIT_WRITE program, 6-15, 6-28
PERMITERROR option, 5-106
PERMITREADERROR option, 5-108
PERMITRESET command, 10-121
phonetic representation, of text expression,

8-135
platform, determining, 8-158
PM datetime format element, 9-153
POP command, 6-7, 6-8, 10-123, 10-124

popping a whole series at once, 10-124
POPLEVEL command, 10-124

nesting, 10-131
using, 6-8

populating
alias dimensions, 9-178

PRECOMPUTE statement, 9-51
PREPARE command

See SQL command in OLAP DML
PRGTRACE option, 5-109
print buffer, B-34, B-43
PRINTLOG procedure (PL/SQL), B-42
PROCEDURE statement

See SQL command in OLAP DML
profiles, 8-157
PROGRAM command, 10-125
programs

adding program contents to a definition,
10-125

branching, 9-123, 9-146, 10-232
branching in, 10-36
branching labels, 9-280
calling, 9-124
case statement, 10-232
comment lines in, 6-3
compiling, 5-17, 6-12, 9-139, 9-142
conditional execution of commands, 10-8,

10-276
data export, 6-17
data import, 6-17
debugging, 5-39, 6-12, 10-235
declaring arguments in, 6-4
defining, 9-184

Index

15

programs (continued)
deleting, 9-213
determining how invoked, 7-58
error handling, 5-37, 5-38, 10-241
errors in, 6-8
executing, 6-14
halting execution with an error, 10-192
hiding, 10-2
local variable, 10-268
OnAttach, 6-16, 6-17
passing arguments to, 7-40–7-42, 7-44
performance cost, 10-237
permission, 6-15, 6-24, 6-25, 6-27, 6-28
preserving environment, 6-6, 6-7
preserving status, 7-70, 9-143
repeating commands, 9-269
restoring previous values, 6-7
restoring status, 10-123, 10-124
returning a value, 10-164
saving compiled code, 6-12
saving current values, 6-7
saving status, 10-129, 10-130
startup, 6-14
suspending execution, 10-194
terminating execution of, 10-164
timing execution, 10-104, 10-237
trigger, 6-20, 6-29–6-32, 10-254
unhiding, 10-258

properties, 10-127
copying with an object definition, 9-146
creating for objects, 10-127
listing for objects, 9-278

PROPERTY command, 10-127
event, 10-244
trigger, 10-244

Property event, 10-244
PUSH command, 6-8, 10-129, 10-130

marking start of series, 10-130
placement, 6-11
using, 6-7

PUSHLEVEL command, 10-130
nesting, 10-131
placement, 6-11

Q
QUAL function, 2-31, 8-87
qualified data references

ampersand substitution, 2-34, 2-50
creating, 2-31
definition of, 2-31
for dimensions, 2-34
qualifying a relation, 2-34
replacing dimension of variable, 2-32, 2-33
specifying explicitly, 8-87

qualified data references (continued)
using with relation, 2-34
with assignment statement, 2-33
with dimensions, 2-31
with relations, 2-34
with variables, 2-32, 2-33

qualified object name, 2-27
quotation marks

double, 2-5
in OLAP DML, B-2

R
RANDOM function, 8-89
random numbers, 8-50, 8-82, 8-89
random sparsity, 9-168
RANDOM.SEED.1 option, 5-110
RANDOM.SEED.2 option, 5-110
range partitions

defining, 9-183
retrieving calculation for, 8-64

RANK function, 8-90
number of calls to, 8-93
number of computed values, 8-93
number of triggered sorts, 8-93

RANK_CALLS option, 8-93
RANK_CELLS option, 8-93
RANK_SORTS option, 8-93
ranking performance monitoring, 8-93
RAW data type, 2-17
raw values

converting, 8-95
reading files, 8-96

current record number, 8-96
error diagnosis, 7-123
FILEREAD command, 9-245
processing a record, 9-261
reading a record, 7-127

RECAP command, 10-133
RECNO function, 8-96
RECURSIVE option, 5-113
REDO command, 10-135
REEDIT command, 10-136
REGEXP_COUNT function, 8-97
REGEXP_INSTR function, 8-98
REGEXP_REPLACE function, 8-100
REGEXP_SUBSTR function, 8-101
REGRESS command, 7-171, 10-138
regressions

linear, 10-138
related dimensions, 2-30, 8-159, 10-141

limiting to, 5-47
RELATION command, 10-141
RELATION statement

for aggregation, 9-52

Index

Index-16

RELATION statement (continued)
for allocation, 9-90

relational tables See tables, 10-201
relations

assigning values to, 10-176, 10-179, 10-183
comparing to text literals, 2-47
default, 2-30, 10-141
defining, 9-186
limiting to single value, 2-34
QDR with, 2-34
replacing dimension of, 2-34

relations, in aggmaps
identifying changes, 7-63

RELEASE command, 10-144
REM function, 8-102
remainder after division, 8-102
REMAINDER function, 8-103
REMBYTES function, 8-103
REMCHARS function, 8-104
REMCOLS function, 8-106
REMLINES function, 8-107
REMOVE_CUBE_MODEL program, 10-147
REMOVE_DIMENSION_MEMBER program,

10-149
REMOVE_MODEL_DIMENSION program,

10-152
RENAME command, 10-152
REPLACE function, 8-108
replacing

characters, 8-108
REPLBYTES function, 8-108
REPLCHARS function, 8-110
REPLCOLS function, 8-112
REPLLINES function, 8-113
REPORT command, 10-154
reporting, 10-154
reports

processing ROW command output, 8-121
producing, 8-121, 10-154
producing with ROW commands, 10-168

RESERVED function, 8-114
reserved words, 8-114
RESYNC command, 10-163
RETURN command, 10-164
return value of a program, 10-164
REVERT command, 10-166
ROLE option, 5-113
roles, 8-157
root of negative number, 5-114
ROOTOFNEGATIVE option, 5-114
ROUND function

described, 8-115
for datetimes, 8-116
for numbers, 8-118

ROW command, 10-168

ROW command (continued)
processing output, 8-121

ROW function, 8-121
ROW2CELL column, A-13, A-25
ROWID data type, 2-18

converting, 8-122, 8-123
ROWIDTOCHAR function, 8-122
ROWIDTONCHAR function, 8-123
ROWTOHEX function, 8-95
RPAD function, 8-123
RR datetime format element, 9-152
RTRIM function, 8-124
RUN procedure (PL/SQL), B-43
run-time aggregation, 3-15
running totals, 8-125, 10-277
RUNTOTAL function, 8-125

S
scenario models, 3-6
seasonal data, 9-272
SECONDS option, 5-115
segment width, 9-128
segments

analytic workspace, 9-114
locking, 10-223
retrieving maximum size of, 7-50

SELECT statements (in OLAP DML), 10-205,
10-227
See also SQL command in OLAP DML

selecting
alias dimension values, 9-179
data, 10-27

SERVEROUTPUT option, B-34, B-42, B-43
SESSCACHE option, 5-116
session

shutting down, B-44
starting up, B-46

session cache
See OLAP session cache

session logs
printing, B-42
retrieving, B-36

sessions, 10-64
preserving environment, 6-6, 6-7
recording in disk file, 10-64
restoring environment, 6-7
user ID, 8-157

SESSIONTIMEZONE function, 8-127
SET command, 10-176
SET_INCLUDED_MODEL program, 10-186
SET_PROPERTY program, 10-189
SET1 command, 10-186
SHOW command, 10-190
SHUTDOWN procedure (PL/SQL), B-44

Index

17

SIGN function, 8-127
SIGNAL command, 6-11, 10-192
simultaneous equations in models, 3-6
SIN function, 8-127
sine calculation, 8-127, 8-128
single-row functions, A-5
SINH function, 8-128
SLEEP command, 10-194
slowest-varying dimension, 9-198
smaller value of two expressions, 8-30
SMALLEST function, 8-129
smallest value of an expression, 8-129
SMOOTH function, 8-130
solution variables

defined, 3-3
example of, 10-92

SORT
command, 10-194
function, 8-133

sorting
status list of a dimension, 5-47, 8-133,

10-194
valuesets, 8-133, 10-194

SORTLINES function, 8-134
SOUNDEX function, 8-135
SOURCEVAL statement, 9-95
SP datetime format element suffix, 9-148
sparse data, 7-194

base dimension value, 7-194
changing definitions, 9-128
eliminating, 9-206
exporting, 9-220
importing, 10-10
index algorithm, 5-118
obtaining information, 8-58
reading from files, 9-245
renaming composites, 10-152
reporting, 10-154, 10-168
specifying composites, 9-193

SPARSEINDEX option, 5-118
sparsity, 9-168

controlled, 9-166
random, 9-168

See also sparse data
Sparsity Advisor, B-3
SPARSITY_ADVICE_TABLE column

descriptions, B-22
SPARSITY_ADVICE_TABLE procedure (PL/

SQL), B-45
special characters, 2-5
spelled numbers

specifying, 9-148
spreadsheets, 9-211

defining, 9-211
exporting to, 9-226

spreadsheets (continued)
importing data from, 10-9, 10-22

See also worksheet objects
SPTH datetime format element suffix, 9-148
SQL

embedding OLAP commands, A-24, A-29,
A-32, A-35, A-36

managing analytic workspaces, B-1
SQL (in OLAP DML)

defining cursors, 10-205
embedding statements, 6-18, 10-201
precompiling statements, 10-222
retrieving errors, 5-120
stored procedures, 10-226

SQL command in OLAP DML, 10-201
CLEANUP, 10-204
CLOSE, 10-205
DECLARE CURSOR, 10-205
EXECUTE, 10-210
FETCH, 10-210
IMPORT, 10-217
PREPARE, 10-222
PROCEDURE, 10-225
SELECT, 10-227

SQLBLOCKMAX option, 5-119
SQLCODE option, 5-120
SQLCOLUMNS procedure, 10-205, 10-227
SQLERRM option, 5-120
SQLFETCH function, 8-135
SQLMESSAGES option, 5-121
SQLTABLES procedure, 10-205, 10-227
SQRT command, 8-136
square root, 8-136

calculating, 8-136
result for negative number, 5-114

standard deviation calculation, 8-151
STARTOF function, 8-136
STARTUP procedure (PL/SQL), B-46
STATALL function, 8-138
STATCURR function, 8-138
STATDEPTH function, 8-139
statements

altering order of execution, 9-280
editing previously executed, 10-136
reading from a file, 10-25
reexecuting, 10-135
sending to file, 10-133

STATEQUAL, 8-140
STATFIRST function, 8-140
STATIC_SESSION_LANGUAGE option, 5-122
STATLAST function, 8-141
STATLEN function, 8-142
STATLIST function, 8-143
STATMAX function, 8-144
STATMIN function, 8-145

Index

Index-18

STATRANK function, 8-147
status

determining, 8-138
setting, 10-27
setting inside a statement, 10-234
setting to null, 5-97

status lists
base dimensions, 10-58
comparing, 8-140
current, 1-23
default, 1-22
defined, 1-22
empty, 5-97
first value in, 8-140
last value in, 8-141
looping over, 5-96, 9-269, 10-234
most recent value, 8-144
null values, 5-97
number of values in, 8-142
position in, 8-147
restoring, 10-123, 10-124
result of LIMIT command, 8-15
retrieving, 8-143
retrieving depth of, 8-139
retrieving value by position, 8-149
retrieving values from, 8-145, 8-198
returning values, 8-138
saving, 7-70, 9-143, 10-129, 10-130
saving in a context, 9-143
sending to outfile, 10-229
setting to null, 5-97
sorting, 5-47, 8-133, 10-194

STATUS program, 10-229
STATVAL function, 8-149
STDDEV function, 8-151
STDHDR program, 10-231

line size for centering, 5-55
storage

changing, 9-128
of variables, 9-198

stored procedures
creating, 10-226

stored procedures (SQL)
executing, 10-227

STORETRIGGERVAL property, 10-127
strings

byte, 2-17
length of, 8-14

subevents, identifying, 8-187
substitution expressions, 2-50
substitution operator, 2-50
SUBSTR function, 8-153
SUBSTR2 function, 8-153
SUBSTR4 function, 8-153
SUBSTRB function, 8-153

SUBSTRC function, 8-153
substrings

counting, 8-97
replacing, 8-100
retrieving, 8-98, 8-101, 8-153
retrieving position of, 7-182

SUBTOTAL function, 8-154
subtotals, 8-154

in a report, 8-154
resetting to zero, 10-277

surrogate dimension, 9-188
defining, 9-188

surrogates
defining, 9-188
deleting, 9-213

SWITCH
conditional expression, 2-49

SWITCH command, 9-123, 9-216, 10-232
SYS_CONTEXT function, 8-155
SYSDATE function, 8-157
SYSINFO function, 8-157
SYSTEM function, 8-158
SYSTIMESTAMP function, 8-159

T
table type, A-8

automatic, A-3, A-17
predefining, A-3, A-17
syntax for creating, A-2, A-16

tables
exporting from analytic workspaces, 10-203
importing into analytic workspaces, 10-202

TALLY function, 8-159
TAN function, 8-161
tangent calculation, 8-161

angle value, 7-38
arc, 7-38, 7-39
hyperbolic, 8-161

TANH function, 8-161
TCONVERT function, 8-162
temporary members

adding to dimension, 10-72
identifying, 7-188

TEMPSTAT command, 10-234
text

comparing values, 2-46
converting to raw, 7-151
data types, 2-5
date and number formats, 2-10
literals, 2-37, 2-47
passing arguments as, 6-4, 10-36
special characters, 2-5

text expressions, 2-36, 2-37
phonetic representation of, 8-135

Index

19

text formatting
importing worksheet data, 10-9

TEXTFILL function, 8-168
TH datetime format element suffix, 9-148
thousands marker, 5-123
THOUSANDSCHAR option, 5-123
THSP datetime format element suffix, 9-148
time format models

short, 9-151
time of day, 8-157, 8-183
time series, 8-1

cumulative totals over, 7-84
data from previous time period, 8-1
data from subsequent time period, 8-12
difference between time periods, 8-6
maximum value in period, 8-37
minimum value in period, 8-38
moving totals over, 8-40
percent difference between time periods, 8-4,

8-7
time zone

formatting, 9-151
time zones

converting data to particular, 2-38
timestamp

converting to local time zone, 2-38
TIMESTAMP data type, 2-13
TIMESTAMP_LTZ data type, 2-14
TIMESTAMP_TZ data type, 2-13
timezone offsets, 8-192
timing, 10-104

execution of program lines, 10-104
execution of programs, 10-237

title for a report, 10-1
TMARGIN option, 5-124
TO_BINARY_DOUBLE function, 8-170
TO_BINARY_FLOAT function, 8-171
TO_CHAR function, 8-172
TO_DATE function, 8-175, 9-152
TO_NCHAR function, 8-176
TO_NUMBER function, 8-179
TO_TIMESTAMP_TZ function, 8-182
TOD function, 8-183
TODAY function, 8-183
TOTAL function, 8-184
totals

calculating, 8-184
cumulative, 7-84
in a report, 8-125, 8-154, 10-154, 10-168
moving, 8-40
over time, 8-40
running, 8-125

TRACE command, 10-235
TRACEFILEUNIT option, 5-125
tracking, 10-104

tracking (continued)
cost of program lines, 10-104
cost of programs, 10-237

TRACKPRG command, 10-237
TRACKREPORT program, 10-239
TRANSLATE function, 8-186
TRAP command, 6-9, 10-241–10-243
TRIGGER command, 10-243
TRIGGER function, 8-187
trigger objects, 8-187
trigger programs

Assign, 10-244
Delete, 10-244
designing, 6-20
Maintain, 10-244
Property, 10-244
Update, 6-29, 10-244

TRIGGER_AFTER_UPDATE program, 6-29
TRIGGER_AW program, 6-29, 6-30
TRIGGER_BEFORE_UPDATE program, 6-31
TRIGGER_DEFINE program, 6-32
TRIGGERASSIGN command, 10-254
TRIGGERMAXDEPTH option, 5-125
triggers

Assign, 10-244, 10-254
creating, 10-243
Define, 6-32
Delete, 10-244
deleting, 10-245
events, 8-187
Maintain, 10-244
NA, 4-20, 5-125, 5-127
objects, 8-187
Property, 10-244
subevents, 8-187
Update, 6-29, 6-31, 10-244

TRIGGERSTOREOK option, 5-127
TRIM function, 8-189
trimming expressions, 8-24, 8-124
trimming strings, 8-189
TRUNC function

See TRUNCATE function
TRUNCATE function,

described, 8-190
for datetimes, 8-190
for numbers, 8-191

tuples, B-3
TZ_OFFSET function, 8-192

U
UNHIDE command, 10-258
UNIQUELINES function, 8-193
unnamed composites, 9-206

defining, 9-206

Index

Index-20

unnamed composites (continued)
example of, 9-206

UNRAVEL function, 8-194
UPCASE function, 8-196
UPDATE command, 10-259

event, 10-244
events, 6-29, 6-31
trigger, 10-244
triggers, 6-29, 6-31

UPDATE_ATTRIBUTE_VALUE program, 10-261
UPDATE_DIMENSION_MEMBER program,

10-264
UPPER function, 8-196
UROWID data type, 2-19
user ID, retrieving, 8-157
user-defined functions

arguments in, 6-4
data type of, 6-3

USERID option, 5-129
USETRIGGERS option, 5-129
UTC offset

replacing with time zone region, 2-13

V
VALSPERPAGE program, 8-197
value name format, 10-270
values, 2-42

restoring previous, 6-7
saving current, 6-7

See also Boolean values
VALUES function, 8-198
VALUESET statement, 9-96
valuesets

assigning values to, 9-192
checking status of, 10-229
defining, 9-190
deleting, 9-213
limiting, 9-192
multidimensional, 9-192
null, 5-97
number of values in, 8-142
retrieving values, 8-140, 8-141, 8-144, 8-198
retrieving values from, 8-145
setting the status of, 10-27
sorting values, 8-133, 10-194

VARCACHE option, 5-130
VARIABLE command, 10-268
variables

Aggcount, 7-17, 8-61, 9-132, 9-195, 9-197
assigning values to, 10-176
defining, 9-193
defining with composite, 9-206
deleting, 9-213
how data is stored, 9-198

variables (continued)
identifying changes, 7-64, 7-187
limiting to single value, 2-32, 2-33
local to a program, 10-268
partitioned, 9-183, 9-193
populating, 8-194
QDR with, 2-32, 2-33
replacing dimension of, 2-32, 2-33
reshaping dimensionality of, 8-87
session cache, 8-61
storage of, 9-198

version of Oracle OLAP, 7-112
views

creating embedded total dimensions, A-19
creating embedded total measures, A-20
creating rollup form, A-21
template for creating with OLAP_TABLE, A-3

VINTSCHED function, 8-201
VNF

See value name format
VNF command, 2-8, 10-270
VPMTSCHED function, 8-203
VSIZE function, 8-206

W
WEEKDAYSNEWYEAR option, 5-131
WEEKOF function, 8-206
WHILE command, 9-123, 10-276

used with BREAK, 9-123
used with CONTINUE, 9-146

WIDTH_BUCKET function, 8-207
wildcards, 2-47
WKSDATA function, 8-209
worksheet objects, 9-211

cells, 8-209
data type of cells, 8-209
defining, 9-211
deleting, 9-213
dimensions, 9-212

See also spreadsheets
workspaces See analytic workspaces, 9-112
WRAPERRORS option, 5-132

Y
YESSPELL option, 5-133
YMINTERVAL data type, 2-15
YMINTERVAL function, 8-182
YRABSTART option, 5-133
YYOF function, 8-211

Z
zero, 5-29

Index

21

zero (continued)
dividing by, 2-37, 5-29
spelling of, 5-136
suppressing all-zero report rows, 5-134

ZEROROW option, 5-134
ZEROTOTAL command, 10-277
ZSPELL option, 5-136

Index

Index-22

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle OLAP DML Reference
	Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.2)
	Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.1)
	New Features
	Other Changes

	1 OLAP DML Basic Concepts
	What is the OLAP DML?
	Cube-Aware OLAP DML Statements
	OLAP DML Statements that Work Directly on Analytic Workspace Objects

	Basic Syntactic Units of the OLAP DML
	How to Execute OLAP DML Statements
	Introduction to Analytic Workspaces
	Privileges Needed to Create and Delete Analytic Workspaces
	Defining a New Analytic Workspace
	Working with Previously-Defined Analytic Workspaces
	Viewing Information About an Analytic Workspace

	Introduction to Analytic Workspace Data Objects
	Types of Analytic Workspace Data Objects
	Variables
	Objects that Can Dimension Variables
	Relations
	Valueset and Surrogate Objects

	Objects that Support the Use of Hierarchies
	Hierlist Dimension
	Parentrel Relation
	Levellist Dimension
	Hierlevels Valueset
	Inhier Valueset or Variable
	Levelrel Relation
	Familyrel Relation
	Gidrel Relation

	OLAP DML Statements Apply to All of the Values of a Data Object
	Changing the Default Looping Behavior of Statements

	How to Specify the Set of Data that OLAP DML Operations Work Against
	About Status Lists
	Default Status Lists
	Current Status Lists

	Changing the Current Status of a Dimension to Work with a Subset of Data
	Saving and Restoring Current Dimension Status
	Using a Subset of Data Without Changing Status

	Populating Multidimensional Hierarchical Data Objects

	2 Data Types, Operators, and Expressions
	OLAP DML Data Types
	Numeric Data Types
	Using LONGINTEGER Values
	Using NUMBER Values

	Text Data Types
	Text Literals
	Escape Sequences

	Date-only Data Type
	Date-only Input Values
	Date-only Dimension Values
	DATE-only Variable Display Styles

	Datetime and Interval Data Types
	Datetime and Interval Fields
	Datetime Format Templates
	String-to-Date Conversion Rules
	DATETIME Data Type
	TIMESTAMP Data Type
	TIMESTAMP_TZ Data Type
	TIMESTAMP_LTZ Data Type
	YMINTERVAL Data Type
	DSINTERVAL Data Type

	Boolean Data Type
	RAW Data Type
	Row Identifier Data Types
	ROWID Data Type
	UROWID Data Type

	Converting from One Data Type to Another
	Automatic Conversion of Textual Data Types
	Automatic Conversion of Numeric Data Types

	OLAP DML Operators
	Arithmetic Operators
	Comparison and Logical Operators
	Assignment Operator

	OLAP DML Expressions
	About OLAP DML Expressions
	How the Data Type of an Expression is Determined
	How the Dimensionality of an Expression is Determined
	Determining the Dimensions of an Expression
	How Dimension Status Affects the Number of Values in the Results of Expressions

	Using Workspace Objects in Expressions
	How OLAP DML Data Objects Behave in Expressions
	Syntax for Specifying an Object in an Expression
	Considerations When Creating and Using Qualified Object Names

	Specifying Values of Dimensions and Composites in Expressions
	Specifying a Value of a Composite
	Specifying a Value of a CONCAT Dimension
	Using Related Dimensions in Expressions

	Using Variables and Relations in Expressions
	Limiting a Dimension to a Single Value Without Changing Status
	Syntax of a Qualified Data Reference
	Qualifying a Variable
	Replacing a Dimension in a Variable
	Qualifying a Relation
	Qualifying a Dimension
	Using Ampersand Substitution with QDRs

	Working with Empty Cells in Expressions
	Specifying a Value of NA
	Controlling how NA values are treated

	Numeric Expressions
	Mixing Numeric Data Types
	Using Text Dimensions in Arithmetic Expressions
	Limitations of Floating Point Calculations
	Controlling Errors During Calculations

	Text Expressions
	Language of Text Expressions
	Working with DATETIME Values in Text Expressions
	Working with NTEXT Data

	Datetime and Interval Expressions
	Datetime Expressions
	Interval Expressions
	Datetime/Interval Arithmetic

	Date-only Expressions
	Boolean Expressions
	Creating Boolean Expressions
	Comparing NA Values in Boolean Expressions
	Controlling Errors When Comparing Numeric Data
	Controlling Errors Due to Numerical Precision
	Controlling Errors When Comparing Floating Point Numbers
	Controlling Errors When Comparing Different Numeric Data Types

	Comparing Dimension Values
	Comparing Dates
	Comparing Text Data
	Comparing a Text Value to a Text Pattern
	Comparing Text Literals to Relations

	Conditional Expressions
	IF...THEN...ELSE expression
	SWITCH Expressions

	Substitution Expressions

	3 Formulas, Models, Aggregations, and Allocations
	Creating Calculation Objects
	OLAP DML Formulas
	OLAP DML Model Objects
	What is an OLAP DML Model?
	Creating Models
	Nesting Models
	Dimension Status and Model Equations
	Using Data from Past and Future Time Periods
	Handling NA Values in Models
	Solving Simultaneous Equations
	Modeling for Multiple Scenarios

	Compiling Models
	Resolving Names in Equations
	Code for Looping Over Dimensions
	Evaluating Program Arguments
	Dependencies Between Equations
	Obtaining Analysis Results
	Checking for Additional Problems

	Running a Model
	Syntax for Running a Model
	Dimensions of Solution Variables

	Debugging a Model

	OLAP DML Aggregation Objects
	What is an OLAP DML Aggregation?
	Aggregating Data Using the OLAP DML
	Compiling Aggregation Specifications
	Executing the Aggregation
	Creating Custom Aggregates

	OLAP DML Allocation Objects
	Introduction to Allocating Data Using the OLAP DML
	Features of Allocation in Oracle OLAP
	Allocating Data
	Handling NA Values When Allocating Data

	4 OLAP DML Properties
	About OLAP DML Properties
	System Properties: Alphabetical Listing
	System Properties by Category
	$AGGMAP
	$AGGREGATE_FORCECALC
	$AGGREGATE_FORCEORDER
	$AGGREGATE_FROM
	$AGGREGATE_FROMVAR
	$ALLOCMAP
	$COUNTVAR
	$DEFAULT_LANGUAGE
	$GID_DEPTH
	$GID_LIST
	$GID_TYPE
	$LOOP_AGGMAP
	$LOOP_DENSE
	$LOOP_TYPE
	$LOOP_VAR
	$NATRIGGER
	$STORETRIGGERVAL
	$VARCACHE

	5 OLAP DML Options
	About Options
	Options: Alphabetical Listing
	Options by Category
	ALLOCERRLOGFORMAT
	ALLOCERRLOGHEADER
	AWWAITTIME
	BADLINE
	BMARGIN
	CALENDARWEEK
	COLWIDTH
	COMMAS
	COMPILEMESSAGE
	COMPILEWARN
	DATEFORMAT
	DATEORDER
	DAYABBRLEN
	DAYNAMES
	DECIMALCHAR
	DECIMALOVERFLOW
	DECIMALS
	DEFAULTAWSEGSIZE
	DIVIDEBYZERO
	DSECONDS
	ECHOPROMPT
	EIFBYTES
	EIFEXTENSIONPATH
	EIFNAMES
	EIFSHORTNAMES
	EIFTYPES
	EIFUPDBYTES
	EIFVERSION
	ERRNAMES
	ERRORNAME
	ERRORTEXT
	ESCAPEBASE
	EXPTRACE
	INF_STOP_ON_ERROR
	LCOLWIDTH
	LIKECASE
	LIKEESCAPE
	LIKENL
	LIMIT.SORTREL
	LIMITSTRICT
	LINENUM
	LINESLEFT
	LOCK_LANGUAGE_DIMS
	LSIZE
	MAXFETCH
	MODDAMP
	MODERROR
	MODGAMMA
	MODINPUTORDER
	MODMAXITERS
	MODOVERFLOW
	MODSIMULTYPE
	MODTOLERANCE
	MODTRACE
	MONTHABBRLEN
	MONTHNAMES
	MULTIPATHHIER
	NASKIP
	NASKIP2
	NASPELL
	NLS_CALENDAR
	NLS_CURRENCY
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE
	NLS_DUAL_CURRENCY
	NLS_ISO_CURRENCY
	NLS_LANG
	NLS_LANGUAGE
	NLS_NUMERIC_CHARACTERS
	NLS_SORT
	NLS_TERRITORY
	NOSPELL
	OKFORLIMIT
	OKNULLSTATUS
	OUTFILEUNIT
	PAGENUM
	PAGEPRG
	PAGESIZE
	PAGING
	PARENS
	PERMITERROR
	PERMITREADERROR
	PRGTRACE
	RANDOM.SEED.1 and RANDOM.SEED.2
	RECURSIVE
	ROLE
	ROOTOFNEGATIVE
	SECONDS
	SESSCACHE
	SESSION_NLS_LANGUAGE
	SPARSEINDEX
	SQLBLOCKMAX
	SQLCODE
	SQLERRM
	SQLMESSAGES
	STATIC_SESSION_LANGUAGE
	THIS_AW
	THOUSANDSCHAR
	TMARGIN
	TRACEFILEUNIT
	TRIGGERMAXDEPTH
	TRIGGERSTOREOK
	USERID
	USETRIGGERS
	VARCACHE
	WEEKDAYSNEWYEAR
	WRAPERRORS
	YESSPELL
	YRABSTART
	ZEROROW
	ZSPELL

	6 OLAP DML Programs
	Programs Provided With the OLAP DML
	Creating OLAP DML Programs
	Specifying Program Contents
	Creating User-Defined Functions
	Passing Arguments
	Using Multiple Arguments
	Handling Arguments Without Converting Values to a Specific Data Type
	Passing Arguments as Text with Ampersand Substitution

	Program Flow-of-Control
	Preserving the Environment Settings
	Changing the Program Environment
	Ways to Save and Restore Environments
	Saving the Status of a Dimension or the Value of an Option
	Saving Several Values at Once
	Using Level Markers
	Using CONTEXT to Save Several Values at Once

	Handling Errors
	Trapping an Error
	Passing an Error to a Calling Program
	Passing an Error: Method One
	Passing an Error: Method Two

	Suppressing Error Messages
	Creating Your Own Error Messages
	Handling Errors in Nested Programs
	Handling Errors While Saving the Session Environment

	Compiling Programs
	Finding Out If a Program Has Been Compiled
	Programming Methods That Prevent Compilation

	Testing and Debugging Programs
	Generating Diagnostic Messages
	Identifying Bad Lines of Code
	Sending Output to a Debugging File

	Executing Programs
	Common Types of OLAP DML Programs
	Startup Programs
	Permission Programs
	OnAttach Programs
	Autogo Programs

	Data Import and Export Programs
	Importing Data to and Exporting Data from Relational Tables
	Importing Data From Relational Tables to Workspace Objects
	Exporting Data from OLAP DML Objects to Relational Tables

	Importing Data to and Exporting Data from Flat Files
	Importing Data to and Exporting Data from Spreadsheets

	Trigger Programs
	Creating an Object Trigger Program
	Characteristics of Object Trigger Programs

	Aggregation, Allocation, and Modeling Programs
	Forecasting Programs
	Programs to Export and Import Workspace Objects

	User-Written Programs Looked For by Oracle OLAP
	AUTOGO
	ONATTACH
	ONDETACH
	PERMIT_READ
	PERMIT_WRITE
	TRIGGER_AFTER_UPDATE
	TRIGGER_AW
	TRIGGER_BEFORE_UPDATE
	TRIGGER_DEFINE

	7 OLAP DML Functions: A - K
	About OLAP DML Functions
	Functions: Alphabetical Listing
	Functions by Category
	ABS
	ADD_MONTHS
	AGGCOUNT
	AGGMAPINFO
	AGGREGATE function
	AGGREGATION
	AGGROPS
	ALLOCOPS
	ANTILOG
	ANTILOG10
	ANY
	ARCCOS
	ARCSIN
	ARCTAN
	ARCTAN2
	ARG
	ARGCOUNT
	ARGFR
	ARGS
	ASCII
	ASCIISTR
	AVERAGE
	AW function
	BACK
	BASEDIM
	BASEVAL
	BEGINDATE
	BIN_TO_NUM
	BITAND
	BLANKSTRIP
	CALLTYPE
	CATEGORIZE
	CEIL
	CHANGEBYTES
	CHANGECHARS
	CHANGEDRELATIONS
	CHANGEDVALUES
	CHARLIST
	CHARTOROWID
	CHGDIMS
	CHR
	COALESCE
	COLVAL
	CONTEXT function
	CONVERT
	CORRELATION
	COS
	COSH
	COUNT
	CUMSUM
	CURRENT_DATE
	CURRENT_TIMESTAMP
	DAYOF
	DBTIMEZONE
	DDOF
	DECODE
	DEPRDECL
	DEPRDECLSW
	DEPRSL
	DEPRSOYD
	ENDDATE
	ENDOF
	EVERY
	EXISTS
	EXP
	EVERSION
	EXTBYTES
	EXTCHARS
	EXTCOLS
	EXTLINES
	EXTRACT
	FCOPEN
	FCQUERY
	FILEERROR
	FILEGET
	FILENEXT
	FILEOPEN
	FILEQUERY
	FILTERLINES
	FINDBYTES
	FINDCHARS
	FINDLINES
	FINTSCHED
	FLOOR
	FPMTSCHED
	FROM_TZ
	GET
	GREATEST
	GROUPINGID function
	GROWRATE
	HEXTORAW
	HIERCHECK
	HIERHEIGHT
	HIERSHAPE
	INFO
	INFO (FORECAST)
	INFO (MODEL)
	INFO (PARSE)
	INFO (REGRESS)

	INITCAP
	INLIST
	INSBYTES
	INSCHARS
	INSCOLS
	INSLINES
	INSTAT
	INSTR functions
	INTPART
	IRR
	ISDATE
	ISINFINITE
	ISEMPTY
	ISNAN
	ISSESSION
	ISVALUE
	JOINBYTES
	JOINCHARS
	JOINCOLS
	JOINLINES
	KEY

	8 OLAP DML Functions: L - Z
	LAG
	LAGABSPCT
	LAGDIF
	LAGPCT
	LARGEST
	LAST_DAY
	LEAD
	LEAST
	LENGTH functions
	LIMIT function
	LIMITMAPINFO
	LNNVL
	LOCALTIMESTAMP
	LOG function
	LOG10
	LOWCASE
	LOWER
	LPAD
	LTRIM
	MAKEDATE
	MAX
	MAXBYTES
	MAXCHARS
	MEDIAN
	MIN
	MMOF
	MODE
	MODULO
	MONTHS_BETWEEN
	MOVINGAVERAGE
	MOVINGMAX
	MOVINGMIN
	MOVINGTOTAL
	NA2
	NAFILL
	NAFLAG
	NEW_TIME
	NEXT_DAY
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NLSSORT
	NONE
	NORMAL
	NPV
	NULLIF
	NUMBYTES
	NUMCHARS
	NUMLINES
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	NVL2
	OBJ
	OBJLIST
	OBJORG
	OBSCURE
	ORA_HASH
	PARTITION
	PARTITIONCHECK
	PERCENTAGE
	QUAL
	RANDOM
	RANK
	RAWTOHEX
	RECNO
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REM
	REMAINDER
	REMBYTES
	REMCHARS
	REMCOLS
	REMLINES
	REPLACE
	REPLBYTES
	REPLCHARS
	REPLCOLS
	REPLLINES
	RESERVED
	ROUND
	ROUND (datetime)
	ROUND (number)

	ROW function
	ROWIDTOCHAR
	ROWIDTONCHAR
	RPAD
	RTRIM
	RUNTOTAL
	SESSIONTIMEZONE
	SIGN
	SIN
	SINH
	SMALLEST
	SMOOTH
	SORT function
	SORTLINES
	SOUNDEX
	SQLFETCH
	SQRT
	STARTOF
	STATALL
	STATCURR
	STATDEPTH
	STATEQUAL
	STATFIRST
	STATLAST
	STATLEN
	STATLIST
	STATMAX
	STATMIN
	STATRANK
	STATVAL
	STDDEV
	SUBSTR functions
	SUBTOTAL
	SYS_CONTEXT
	SYSDATE
	SYSINFO
	SYSTEM
	SYSTIMESTAMP
	TALLY
	TAN
	TANH
	TCONVERT
	TEXTFILL
	TO_BINARY_DOUBLE
	TO_BINARY_FLOAT
	TO_CHAR
	TO_DATE
	TO_DSINTERVAL
	TO_NCHAR
	TO_NUMBER
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_YMINTERVAL
	TOD
	TODAY
	TOTAL
	TRANSLATE
	TRIGGER function
	TRIM
	TRUNCATE
	TRUNCATE (datetime)
	TRUNCATE (number)

	TZ_OFFSET
	UNIQUELINES
	UNRAVEL
	UPPER
	UPPER
	VALSPERPAGE
	VALUES
	VINTSCHED
	VPMTSCHED
	VSIZE
	WEEKOF
	WIDTH_BUCKET
	WKSDATA
	WRITABLE
	YYOF

	9 OLAP DML Commands: A-G
	About OLAP DML Commands
	Commands: Alphabetical Listing
	Commands by Category
	ACQUIRE
	ACROSS
	ADD_CUBE_MODEL
	ADD_DIMENSION_MEMBER
	ADD_MODEL_DIMENSION
	AGGMAP
	AGGINDEX
	BREAKOUT DIMENSION
	CACHE
	DIMENSION (for aggregation)
	DROP DIMENSION
	MEASUREDIM (for aggregation)
	MODEL (in an aggregation)
	PRECOMPUTE
	RELATION (for aggregation)

	AGGMAP ADD or REMOVE model
	AGGMAP SET
	AGGREGATE command
	ALLCOMPILE
	ALLOCATE
	ALLOCMAP
	CHILDLOCK
	DEADLOCK
	DIMENSION (for allocation)
	ERRORLOG
	ERRORMASK
	MEASUREDIM (for allocation)
	RELATION (for allocation)
	SOURCEVAL
	VALUESET

	ALLSTAT
	ARGUMENT
	AW command
	AW ALIASLIST
	AW ATTACH
	AW CREATE
	AW DELETE
	AW DETACH
	AW FREEZE
	AW LIST
	AW PURGE CACHE
	AW ROLLBACK TO FREEZE
	AW SEGMENTSIZE
	AW THAW
	AW TRUNCATE

	AWDESCRIBE
	BLANK
	BREAK
	CALL
	CDA
	CHGDFN
	CLEAR
	COMMIT
	COMPILE
	CONSIDER
	CONTEXT command
	CONTINUE
	COPYDFN
	CREATE_LOGICAL_MODEL
	DATE_FORMAT
	DBGOUTFILE
	DEFINE
	DEFINE AGGMAP
	DEFINE COMPOSITE
	DEFINE DIMENSION
	DEFINE DIMENSION (simple)
	DEFINE DIMENSION (DWMQY)
	DEFINE DIMENSION (conjoint)
	DEFINE DIMENSION CONCAT
	DEFINE DIMENSION ALIASOF

	DEFINE FORMULA
	DEFINE MODEL
	DEFINE PARTITION TEMPLATE
	DEFINE PROGRAM
	DEFINE RELATION
	DEFINE SURROGATE
	DEFINE VALUESET
	DEFINE VARIABLE
	DEFINE WORKSHEET

	DELETE
	DESCRIBE
	DO ... DOEND
	EDIT
	EQ
	EXPORT
	EXPORT (EIF)
	EXPORT (spreadsheet)

	FCCLOSE
	FCEXEC
	FCSET
	FETCH
	FILECLOSE
	FILECOPY
	FILEDELETE
	FILEMOVE
	FILEPAGE
	FILEPUT
	FILEREAD
	FILESET
	FILEVIEW
	FOR
	FORECAST
	FORECAST.REPORT
	FULLDSC
	GOTO
	GROUPINGID command

	10 OLAP DML Commands: H-Z
	HEADING
	HIDE
	HIERDEPTH
	HIERHEIGHT command
	IF...THEN...ELSE command
	IMPORT
	IMPORT (EIF)
	IMPORT (text)
	IMPORT (spreadsheet)

	INFILE
	LD
	LIMIT command
	LIMIT (using values) command
	LIMIT using LEVELREL command
	LIMIT (using related dimension) command
	LIMIT (using parent relation)
	LIMIT NOCONVERT command
	LIMIT command (using POSLIST)

	LIMIT BASEDIMS
	LISTBY
	LISTFILES
	LISTNAMES
	LOAD
	LOG command
	MAINTAIN
	MAINTAIN ADD
	MAINTAIN ADD for TEXT, ID, and INTEGER Values
	MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values
	MAINTAIN ADD SESSION
	MAINTAIN ADD TO PARTITION

	MAINTAIN DELETE
	MAINTAIN DELETE dimension
	MAINTAIN DELETE composite
	MAINTAIN DELETE FROM PARTITION

	MAINTAIN MERGE
	MAINTAIN MOVE
	MAINTAIN MOVE dimension value
	MAINTAIN MOVE TO PARTITION

	MAINTAIN RENAME

	MODEL
	DIMENSION (in models)
	INCLUDE

	MODEL.COMPRPT
	MODEL.DEPRT
	MODEL.XEQRPT
	MONITOR
	MOVE
	OUTFILE
	PAGE
	PARSE
	PERMIT
	PERMITRESET
	POP
	POPLEVEL
	PROGRAM
	PROPERTY
	PUSH
	PUSHLEVEL
	RECAP
	REDO
	REEDIT
	REGRESS
	REGRESS.REPORT
	RELATION command
	RELEASE
	REMOVE_CUBE_MODEL
	REMOVE_DIMENSION_MEMBER
	REMOVE_MODEL_DIMENSION
	RENAME
	REPORT
	RESYNC
	RETURN
	REVERT
	ROW command
	SET
	SET1
	SET_INCLUDED_MODEL
	SET_PROPERTY
	SHOW
	SIGNAL
	SLEEP
	SORT command
	SQL
	SQL CLEANUP
	SQL CLOSE
	SQL DECLARE CURSOR
	SQL EXECUTE
	SQL FETCH
	SQL IMPORT
	SQL OPEN
	SQL PREPARE
	SQL PROCEDURE
	SQL SELECT

	STATUS
	STDHDR
	SWITCH command
	TEMPSTAT
	TRACE
	TRACKPRG
	TRAP
	TRIGGER command
	TRIGGERASSIGN
	UNHIDE
	UPDATE
	UPDATE_ATTRIBUTE_VALUE
	UPDATE_DIMENSION_MEMBER
	VARIABLE
	VNF
	WHILE
	ZEROTOTAL

	A OLAP_TABLE SQL Functions
	Creating Relational Views Using OLAP_TABLE
	Required OLAP DML Objects
	Creating Logical Tables for Use by OLAP_TABLE
	Using OLAP_TABLE With Predefined ADTs
	Using OLAP_TABLE With Automatic ADTs

	Adding Calculated Columns to the Relational View

	Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements
	Using OLAP DML Expressions as Single-Row Functions
	Modifying an Analytic Workspace From Within a SELECT FROM OLAP_TABLE Statement

	OLAP_TABLE
	OLAP_CONDITION
	OLAP_EXPRESSION
	OLAP_EXPRESSION_BOOL
	OLAP_EXPRESSION_DATE
	OLAP_EXPRESSION_TEXT

	B DBMS_AW PL/SQL Package
	Managing Analytic Workspaces
	Embedding OLAP DML in SQL Statements
	Methods for Executing OLAP DML Commands
	Guidelines for Using Quotation Marks in OLAP DML Commands

	Using the Sparsity Advisor
	Data Storage Options in Analytic Workspaces
	Selecting the Best Data Storage Method
	Using the Sparsity Advisor
	Example: Evaluating Sparsity in the GLOBAL Schema
	Advice from Sample Program
	Information Stored in AW_SPARSITY_ADVICE Table

	Using the Aggregate Advisor
	Aggregation Facilities within the Workspace
	Example: Using the ADVISE_REL Procedure

	Summary of DBMS_AW Subprograms
	ADD_DIMENSION_SOURCE Procedure
	ADVISE_CUBE Procedure
	ADVISE_DIMENSIONALITY Function
	ADVISE_DIMENSIONALITY Procedure
	ADVISE_PARTITIONING_DIMENSION Function
	ADVISE_PARTITIONING_LEVEL Function
	ADVISE_REL Procedure
	ADVISE_SPARSITY Procedure
	AW_ATTACH Procedure
	AW_COPY Procedure
	AW_CREATE Procedure
	AW_DELETE Procedure
	AW_DETACH Procedure
	AW_RENAME Procedure
	AW_TABLESPACE Function
	AW_UPDATE Procedure
	CONVERT Procedure
	EVAL_NUMBER Function
	EVAL_TEXT Function
	EXECUTE Procedure
	GETLOG Function
	INFILE Procedure
	INTERP Function
	INTERPCLOB Function
	INTERP_SILENT Procedure
	OLAP_ON Function
	OLAP_RUNNING Function
	PRINTLOG Procedure
	RUN Procedure
	SHUTDOWN Procedure
	SPARSITY_ADVICE_TABLE Procedure
	STARTUP Procedure

	C OLAP_API_SESSION_INIT PL/SQL Package
	Initialization Parameters for the OLAP API
	Viewing the Configuration Table
	ALL_OLAP_ALTER_SESSION View

	Summary of OLAP_API_SESSION_INIT Subprograms
	ADD_ALTER_SESSION Procedure
	CLEAN_ALTER_SESSION Procedure
	DELETE_ALTER_SESSION Procedure

	D Changes in Previous Releases
	OLAP DML Statement Changes for Oracle Database 11g
	Statements Added in Oracle Database 11g
	Statements Deleted in Oracle Database 11g
	Statements Changed in Oracle Database 11g
	Statements Renamed in Oracle Database 11g

	OLAP DML Statement Changes for Oracle Database 10g
	Statements Added in Oracle Database 10g
	Statements Deleted in Oracle Database 10g
	Statements Changed in Oracle Database 10g
	Statements Renamed in Oracle Database 10g

	OLAP DML Statement Changes for Oracle Database 9i
	Statements Added in Oracle Database 9i
	Statements Deleted in Oracle Database 9i
	Statements Changed in Oracle Database 9i
	Statements Renamed in Oracle Database 9i

	Index

