Oracle® OLAP
DML Reference

18c
E91570-01
February 2018

ORACLE"

Oracle OLAP DML Reference, 18c

E91570-01

Copyright © 1994, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: David McDermid

Contributors: Sarika Surampudi, Donna Carver, Chris Chiappa, Roger Johnson, A.A. Hopeman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XXViii
Documentation Accessibility XXViii
Related Documents XXViii
Conventions XXViii
Changes in This Release for Oracle OLAP DML Reference
Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.2) XXX
Changes in Oracle OLAP in Oracle Database 12c Release 2 (12.1) XXX
1 OLAP DML Basic Concepts
What is the OLAP DML? 1-1
Cube-Aware OLAP DML Statements 1-1
OLAP DML Statements that Work Directly on Analytic Workspace Objects 1-2
Basic Syntactic Units of the OLAP DML 1-3
How to Execute OLAP DML Statements 1-4
Introduction to Analytic Workspaces 1-4
Privileges Needed to Create and Delete Analytic Workspaces 1-5
Defining a New Analytic Workspace 1-5
Working with Previously-Defined Analytic Workspaces 1-6
Viewing Information About an Analytic Workspace 1-6
Introduction to Analytic Workspace Data Objects 1-7
Types of Analytic Workspace Data Objects 1-7
Variables 1-8
Objects that Can Dimension Variables 1-9
Relations 1-11
Valueset and Surrogate Objects 1-11
Objects that Support the Use of Hierarchies 1-12
Hierlist Dimension 1-13
Parentrel Relation 1-14
Levellist Dimension 1-15

ORACLE

Hierlevels Valueset

1-15

Inhier Valueset or Variable 1-16
Levelrel Relation 1-18
Familyrel Relation 1-19
Gidrel Relation 1-20
OLAP DML Statements Apply to All of the Values of a Data Object 1-21
Changing the Default Looping Behavior of Statements 1-22
How to Specify the Set of Data that OLAP DML Operations Work Against 1-22
About Status Lists 1-22
Default Status Lists 1-22
Current Status Lists 1-23
Changing the Current Status of a Dimension to Work with a Subset of Data 1-23
Saving and Restoring Current Dimension Status 1-23
Using a Subset of Data Without Changing Status 1-24
Populating Multidimensional Hierarchical Data Objects 1-24
2 Data Types, Operators, and Expressions
OLAP DML Data Types 2-1
Numeric Data Types 2-4
Using LONGINTEGER Values 2-4
Using NUMBER Values 2-4
Text Data Types 2-5
Text Literals 2-5
Escape Sequences 2-5
Date-only Data Type 2-6
Date-only Input Values 2-6
Date-only Dimension Values 2-8
DATE-only Variable Display Styles 2-8
Datetime and Interval Data Types 2-8
Datetime and Interval Fields 2-9
Datetime Format Templates 2-10
String-to-Date Conversion Rules 2-11
DATETIME Data Type 2-11
TIMESTAMP Data Type 2-13
TIMESTAMP_TZ Data Type 2-13
TIMESTAMP_LTZ Data Type 2-14
YMINTERVAL Data Type 2-15
DSINTERVAL Data Type 2-16
Boolean Data Type 2-17
RAW Data Type 2-17
v

ORACLE

Row Identifier Data Types
ROWID Data Type
UROWID Data Type
Converting from One Data Type to Another
Automatic Conversion of Textual Data Types
Automatic Conversion of Numeric Data Types
OLAP DML Operators
Arithmetic Operators
Comparison and Logical Operators
Assignment Operator
OLAP DML Expressions
About OLAP DML Expressions
How the Data Type of an Expression is Determined
How the Dimensionality of an Expression is Determined
Using Workspace Objects in Expressions
How OLAP DML Data Objects Behave in Expressions
Syntax for Specifying an Object in an Expression

Specifying Values of Dimensions and Composites in Expressions

Using Variables and Relations in Expressions

Limiting a Dimension to a Single Value Without Changing Status

Working with Empty Cells in Expressions
Specifying a Value of NA
Controlling how NA values are treated
Numeric Expressions
Mixing Numeric Data Types
Using Text Dimensions in Arithmetic Expressions
Limitations of Floating Point Calculations
Controlling Errors During Calculations
Text Expressions
Language of Text Expressions
Working with DATETIME Values in Text Expressions
Working with NTEXT Data
Datetime and Interval Expressions
Datetime Expressions
Interval Expressions
Datetime/Interval Arithmetic
Date-only Expressions
Boolean Expressions
Creating Boolean Expressions
Comparing NA Values in Boolean Expressions
Controlling Errors When Comparing Numeric Data

ORACLE

2-18
2-18
2-19
2-19
2-19
2-19
2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-24
2-25
2-25
2-26
2-29
2-30
2-31
2-35
2-35
2-35
2-35
2-36
2-36
2-36
2-37
2-37
2-37
2-38
2-38
2-38
2-38
2-39
2-39
2-41
2-42
2-43
2-43
2-44

Comparing Dimension Values 2-45

Comparing Dates 2-46
Comparing Text Data 2-46
Conditional Expressions 2-47
IF..THEN...ELSE expression 2-48
SWITCH Expressions 2-49
Substitution Expressions 2-50
3 Formulas, Models, Aggregations, and Allocations

Creating Calculation Objects 3-1
OLAP DML Formulas 3-2
OLAP DML Model Objects 3-3
What is an OLAP DML Model? 3-3
Creating Models 3-3
Nesting Models 3-4
Dimension Status and Model Equations 3-4

Using Data from Past and Future Time Periods 3-5
Handling NA Values in Models 3-5

Solving Simultaneous Equations 3-6
Modeling for Multiple Scenarios 3-6
Compiling Models 3-6
Resolving Names in Equations 3-7

Code for Looping Over Dimensions 3-8
Evaluating Program Arguments 3-8
Dependencies Between Equations 3-8
Obtaining Analysis Results 3-10
Checking for Additional Problems 3-10
Running a Model 3-11
Syntax for Running a Model 3-11
Dimensions of Solution Variables 3-12
Debugging a Model 3-13
OLAP DML Aggregation Objects 3-13
What is an OLAP DML Aggregation? 3-13
Aggregating Data Using the OLAP DML 3-14
Compiling Aggregation Specifications 3-15
Executing the Aggregation 3-15
Creating Custom Aggregates 3-16
OLAP DML Allocation Objects 3-16
Introduction to Allocating Data Using the OLAP DML 3-16
Features of Allocation in Oracle OLAP 3-17

ORACLE vi

Allocating Data 3-17
Handling NA Values When Allocating Data 3-18

4 OLAP DML Properties

About OLAP DML Properties 4-1
System Properties: Alphabetical Listing 4-1
System Properties by Category 4-2
$AGGMAP 4-2
$AGGREGATE_FORCECALC 4-5
$AGGREGATE_FORCEORDER 4-6
$AGGREGATE_FROM 4-6
$AGGREGATE_FROMVAR 4-7
$ALLOCMAP 4-8
$COUNTVAR 4-9
$DEFAULT_LANGUAGE 4-10
$GID_DEPTH 4-15
$GID_LIST 4-16
$GID_TYPE 4-16
$LOOP_AGGMAP 4-17
$LOOP_DENSE 4-17
$LOOP_TYPE 4-18
$LOOP_VAR 4-19
SNATRIGGER 4-20
$STORETRIGGERVAL 4-22
$VARCACHE 4-23

5 OLAP DML Options

About Options 5-1
Options: Alphabetical Listing 5-1
Options by Category 5-4
ALLOCERRLOGFORMAT 5-8
ALLOCERRLOGHEADER 5-9
AWWAITTIME 5-10
BADLINE 5-11
BMARGIN 5-12
CALENDARWEEK 5-13
COLWIDTH 5-14
COMMAS 5-16
COMPILEMESSAGE 5-17

ORACLE vii

COMPILEWARN 5-17

DATEFORMAT 5-18
DATEORDER 5-22
DAYABBRLEN 5-23
DAYNAMES 5-25
DECIMALCHAR 5-26
DECIMALOVERFLOW 5-26
DECIMALS 5-27
DEFAULTAWSEGSIZE 5-28
DIVIDEBYZERO 5-29
DSECONDS 5-30
ECHOPROMPT 5-31
EIFBYTES 5-32
EIFEXTENSIONPATH 5-32
EIFNAMES 5-33
EIFSHORTNAMES 5-34
EIFTYPES 5-34
EIFUPDBYTES 5-35
EIFVERSION 5-36
ERRNAMES 5-37
ERRORNAME 5-37
ERRORTEXT 5-38
ESCAPEBASE 5-39
EXPTRACE 5-39
INF_STOP_ON_ERROR 5-40
LCOLWIDTH 5-41
LIKECASE 5-43
LIKEESCAPE 5-44
LIKENL 5-46
LIMIT.SORTREL 5-47
LIMITSTRICT 5-48
LINENUM 5-50
LINESLEFT 5-52
LOCK_LANGUAGE_DIMS 5-53
LSIZE 5-55
MAXFETCH 5-56
MODDAMP 5-57
MODERROR 5-60
MODGAMMA 5-61
MODINPUTORDER 5-64
MODMAXITERS 5-66

ORACLE viii

MODOVERFLOW 5-67

MODSIMULTYPE 5-69
MODTOLERANCE 5-71
MODTRACE 5-74
MONTHABBRLEN 5-77
MONTHNAMES 5-78
MULTIPATHHIER 5-80
NASKIP 5-82
NASKIP2 5-85
NASPELL 5-88
NLS_CALENDAR 5-89
NLS_CURRENCY 5-90
NLS_DATE_FORMAT 5-90
NLS_DATE_LANGUAGE 5-91
NLS_DUAL_CURRENCY 5-91
NLS_ISO_CURRENCY 5-92
NLS_LANG 5-92
NLS_LANGUAGE 5-93
NLS_NUMERIC_CHARACTERS 5-93
NLS_SORT 5-94
NLS_TERRITORY 5-95
NOSPELL 5-96
OKFORLIMIT 5-96
OKNULLSTATUS 5-97
OUTFILEUNIT 5-98
PAGENUM 5-99
PAGEPRG 5-100
PAGESIZE 5-102
PAGING 5-103
PARENS 5-105
PERMITERROR 5-106
PERMITREADERROR 5-108
PRGTRACE 5-109
RANDOM.SEED.1 and RANDOM.SEED.2 5-110
RECURSIVE 5-113
ROLE 5-113
ROOTOFNEGATIVE 5-114
SECONDS 5-115
SESSCACHE 5-116
SESSION_NLS_LANGUAGE 5-117
SPARSEINDEX 5-118

ORACLE iX

SQLBLOCKMAX 5-119
SQLCODE 5-120
SQLERRM 5-120
SQLMESSAGES 5-121
STATIC_SESSION_LANGUAGE 5-122
THIS_AW 5-123
THOUSANDSCHAR 5-123
TMARGIN 5-124
TRACEFILEUNIT 5-125
TRIGGERMAXDEPTH 5-125
TRIGGERSTOREOK 5-127
USERID 5-129
USETRIGGERS 5-129
VARCACHE 5-130
WEEKDAYSNEWYEAR 5-131
WRAPERRORS 5-132
YESSPELL 5-133
YRABSTART 5-133
ZEROROW 5-134
ZSPELL 5-136
%) OLAP DML Programs

Programs Provided With the OLAP DML 6-1
Creating OLAP DML Programs 6-2
Specifying Program Contents 6-3
Creating User-Defined Functions 6-3
Passing Arguments 6-4
Using Multiple Arguments 6-4
Handling Arguments Without Converting Values to a Specific Data Type 6-4
Passing Arguments as Text with Ampersand Substitution 6-4
Program Flow-of-Control 6-5
Preserving the Environment Settings 6-6
Changing the Program Environment 6-7

Ways to Save and Restore Environments 6-7

Saving the Status of a Dimension or the Value of an Option 6-7

Saving Several Values at Once 6-8

Using Level Markers 6-8

Using CONTEXT to Save Several Values at Once 6-8
Handling Errors 6-8
Trapping an Error 6-9

ORACLE

Passing an Error to a Calling Program
Suppressing Error Messages
Creating Your Own Error Messages
Handling Errors in Nested Programs
Handling Errors While Saving the Session Environment
Compiling Programs
Finding Out If a Program Has Been Compiled
Programming Methods That Prevent Compilation
Testing and Debugging Programs
Generating Diagnostic Messages
Identifying Bad Lines of Code
Sending Output to a Debugging File
Executing Programs
Common Types of OLAP DML Programs
Startup Programs
Permission Programs
OnAttach Programs
Autogo Programs
Data Import and Export Programs
Importing Data to and Exporting Data from Relational Tables
Importing Data to and Exporting Data from Flat Files
Importing Data to and Exporting Data from Spreadsheets
Trigger Programs
Creating an Object Trigger Program
Characteristics of Object Trigger Programs
Aggregation, Allocation, and Modeling Programs
Forecasting Programs
Programs to Export and Import Workspace Objects
User-Written Programs Looked For by Oracle OLAP
AUTOGO
ONATTACH
ONDETACH
PERMIT_READ
PERMIT_WRITE
TRIGGER_AFTER_UPDATE
TRIGGER_AW
TRIGGER_BEFORE_UPDATE
TRIGGER_DEFINE

ORACLE

6-9
6-10
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-13
6-13
6-13
6-14
6-14
6-14
6-15
6-16
6-17
6-17
6-18
6-18
6-19
6-19
6-19
6-20
6-23
6-23
6-23
6-24
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32

Xi

7 OLAP DML Functions: A - K

About OLAP DML Functions 7-1
Functions: Alphabetical Listing 7-1
Functions by Category 7-8
ABS 7-15
ADD_MONTHS 7-16
AGGCOUNT 7-17
AGGMAPINFO 7-20
AGGREGATE function 7-24
AGGREGATION 7-32
AGGROPS 7-33
ALLOCOPS 7-34
ANTILOG 7-34
ANTILOG10 7-35
ANY 7-35
ARCCOS 7-37
ARCSIN 7-38
ARCTAN 7-38
ARCTANZ2 7-39
ARG 7-40
ARGCOUNT 7-41
ARGFR 7-42
ARGS 7-44
ASCII 7-45
ASCIISTR 7-46
AVERAGE 7-46
AW function 7-48
BACK 7-51
BASEDIM 7-52
BASEVAL 7-54
BEGINDATE 7-55
BIN_TO_NUM 7-56
BITAND 7-57
BLANKSTRIP 7-57
CALLTYPE 7-58
CATEGORIZE 7-59
CEIL 7-61
CHANGEBYTES 7-62
CHANGECHARS 7-62
CHANGEDRELATIONS 7-63

ORACLE Xii

CHANGEDVALUES 7-64

CHARLIST 7-65
CHARTOROWID 7-65
CHGDIMS 7-66
CHR 7-68
COALESCE 7-69
COLVAL 7-69
CONTEXT function 7-70
CONVERT 7-71
CORRELATION 7-79
COSs 7-82
COSH 7-82
COUNT 7-83
CUMSUM 7-84
CURRENT_DATE 7-87
CURRENT_TIMESTAMP 7-87
DAYOF 7-88
DBTIMEZONE 7-89
DDOF 7-89
DECODE 7-90
DEPRDECL 7-93
DEPRDECLSW 7-97
DEPRSL 7-102
DEPRSOYD 7-105
ENDDATE 7-108
ENDOF 7-109
EVERY 7-109
EXISTS 7-111
EXP 7-112
EVERSION 7-112
EXTBYTES 7-113
EXTCHARS 7-114
EXTCOLS 7-115
EXTLINES 7-116
EXTRACT 7-117
FCOPEN 7-118
FCQUERY 7-119
FILEERROR 7-123
FILEGET 7-126
FILENEXT 7-127
FILEOPEN 7-128

ORACLE Xiii

FILEQUERY
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
FINTSCHED
FLOOR
FPMTSCHED
FROM_TZ
GET
GREATEST
GROUPINGID function
GROWRATE
HEXTORAW
HIERCHECK
HIERHEIGHT
HIERSHAPE
INFO
INFO (FORECAST)
INFO (MODEL)
INFO (PARSE)
INFO (REGRESS)
INITCAP
INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTAT
INSTR functions
INTPART
IRR
ISDATE
ISINFINITE
ISEMPTY
ISNAN
ISSESSION
ISVALUE
JOINBYTES
JOINCHARS
JOINCOLS

ORACLE

7-130
7-133
7-134
7-135
7-137
7-138
7-140
7-141
7-144
7-144
7-148
7-149
7-150
7-151
7-151
7-154
7-158
7-160
7-160
7-162
7-169
7-171
7-174
7-174
7-175
7-176
7-177
7-178
7-179
7-182
7-183
7-184
7-185
7-186
7-187
7-187
7-188
7-188
7-189
7-190
7-191

Xiv

JOINLINES 7-193
KEY 7-194

8 OLAP DML Functions: L -Z

LAG 8-1
LAGABSPCT 8-4
LAGDIF 8-6
LAGPCT 8-7
LARGEST 8-9
LAST_DAY 8-11
LEAD 8-12
LEAST 8-14
LENGTH functions 8-14
LIMIT function 8-15
LIMITMAPINFO 8-19
LNNVL 8-20
LOCALTIMESTAMP 8-20
LOG function 8-21
LOG10 8-22
LOWCASE 8-22
LOWER 8-23
LPAD 8-23
LTRIM 8-24
MAKEDATE 8-25
MAX 8-26
MAXBYTES 8-27
MAXCHARS 8-28
MEDIAN 8-29
MIN 8-30
MMOF 8-31
MODE 8-31
MODULO 8-33
MONTHS_BETWEEN 8-34
MOVINGAVERAGE 8-34
MOVINGMAX 8-37
MOVINGMIN 8-38
MOVINGTOTAL 8-40
NA2 8-42
NAFILL 8-42
NAFLAG 8-43

ORACLE “

NEW_TIME 8-44

NEXT_DAY 8-45
NLS_CHARSET_ID 8-46
NLS_CHARSET_NAME 8-47
NLSSORT 8-47
NONE 8-48
NORMAL 8-50
NPV 8-51
NULLIF 8-52
NUMBYTES 8-53
NUMCHARS 8-54
NUMLINES 8-55
NUMTODSINTERVAL 8-55
NUMTOYMINTERVAL 8-56
NVL 8-56
NVL2 8-57
OBJ 8-58
OBJLIST 8-73
OBJORG 8-74
OBSCURE 8-80
ORA_HASH 8-82
PARTITION 8-83
PARTITIONCHECK 8-84
PERCENTAGE 8-85
QUAL 8-87
RANDOM 8-89
RANK 8-90
RAWTOHEX 8-95
RECNO 8-96
REGEXP_COUNT 8-97
REGEXP_INSTR 8-98
REGEXP_REPLACE 8-100
REGEXP_SUBSTR 8-101
REM 8-102
REMAINDER 8-103
REMBYTES 8-103
REMCHARS 8-104
REMCOLS 8-106
REMLINES 8-107
REPLACE 8-108
REPLBYTES 8-108

ORACLE XVi

REPLCHARS 8-110

REPLCOLS 8-112
REPLLINES 8-113
RESERVED 8-114
ROUND 8-115

ROUND (datetime) 8-116

ROUND (number) 8-118
ROW function 8-121
ROWIDTOCHAR 8-122
ROWIDTONCHAR 8-123
RPAD 8-123
RTRIM 8-124
RUNTOTAL 8-125
SESSIONTIMEZONE 8-127
SIGN 8-127
SIN 8-127
SINH 8-128
SMALLEST 8-129
SMOOTH 8-130
SORT function 8-133
SORTLINES 8-134
SOUNDEX 8-135
SQLFETCH 8-135
SQRT 8-136
STARTOF 8-136
STATALL 8-138
STATCURR 8-138
STATDEPTH 8-139
STATEQUAL 8-140
STATFIRST 8-140
STATLAST 8-141
STATLEN 8-142
STATLIST 8-143
STATMAX 8-144
STATMIN 8-145
STATRANK 8-147
STATVAL 8-149
STDDEV 8-151
SUBSTR functions 8-153
SUBTOTAL 8-154
SYS_CONTEXT 8-155

ORACLE XVii

SYSDATE 8-157

SYSINFO 8-157
SYSTEM 8-158
SYSTIMESTAMP 8-159
TALLY 8-159
TAN 8-161
TANH 8-161
TCONVERT 8-162
TEXTFILL 8-168
TO_BINARY_DOUBLE 8-170
TO_BINARY_FLOAT 8-171
TO_CHAR 8-172
TO_DATE 8-175
TO_DSINTERVAL 8-176
TO_NCHAR 8-176
TO_NUMBER 8-179
TO_TIMESTAMP 8-180
TO_TIMESTAMP_TZ 8-182
TO_YMINTERVAL 8-182
TOD 8-183
TODAY 8-183
TOTAL 8-184
TRANSLATE 8-186
TRIGGER function 8-187
TRIM 8-189
TRUNCATE 8-190

TRUNCATE (datetime) 8-190

TRUNCATE (number) 8-191
TZ_OFFSET 8-192
UNIQUELINES 8-193
UNRAVEL 8-194
UPPER 8-196
UPPER 8-196
VALSPERPAGE 8-197
VALUES 8-198
VINTSCHED 8-201
VPMTSCHED 8-203
VSIZE 8-206
WEEKOF 8-206
WIDTH_BUCKET 8-207
WKSDATA 8-209

ORACLE Xviii

WRITABLE 8-210
YYOF 8-211
O OLAP DML Commands: A-G
About OLAP DML Commands 9-1
Commands: Alphabetical Listing 9-2
Commands by Category 9-5
ACQUIRE 9-10
ACROSS 9-14
ADD_CUBE_MODEL 9-15
ADD_DIMENSION_MEMBER 9-16
ADD_MODEL_DIMENSION 9-21
AGGMAP 9-22
AGGINDEX 9-39
BREAKOUT DIMENSION 9-42
CACHE 9-44
DIMENSION (for aggregation) 9-47
DROP DIMENSION 9-47
MEASUREDIM (for aggregation) 9-49
MODEL (in an aggregation) 9-50
PRECOMPUTE 9-51
RELATION (for aggregation) 9-52
AGGMAP ADD or REMOVE model 9-64
AGGMAP SET 9-66
AGGREGATE command 9-67
ALLCOMPILE 9-75
ALLOCATE 9-76
ALLOCMAP 9-82
CHILDLOCK 9-86
DEADLOCK 9-87
DIMENSION (for allocation) 9-87
ERRORLOG 9-88
ERRORMASK 9-89
MEASUREDIM (for allocation) 9-89
RELATION (for allocation) 9-90
SOURCEVAL 9-95
VALUESET 9-96
ALLSTAT 9-99
ARGUMENT 9-100
AW command 9-104

ORACLE

XiX

AW ALIASLIST 9-105

AW ATTACH 9-106
AW CREATE 9-112
AW DELETE 9-114
AW DETACH 9-115
AW FREEZE 9-117
AW LIST 9-118
AW PURGE CACHE 9-119
AW ROLLBACK TO FREEZE 9-119
AW SEGMENTSIZE 9-119
AW THAW 9-120
AW TRUNCATE 9-120
AWDESCRIBE 9-120
BLANK 9-122
BREAK 9-123
CALL 9-124
CDA 9-127
CHGDFN 9-128
CLEAR 9-135
COMMIT 9-138
COMPILE 9-139
CONSIDER 9-143
CONTEXT command 9-143
CONTINUE 9-146
COPYDFN 9-146
CREATE_LOGICAL_MODEL 9-147
DATE_FORMAT 9-148
DBGOUTFILE 9-155
DEFINE 9-157
DEFINE AGGMAP 9-159
DEFINE COMPOSITE 9-161
DEFINE DIMENSION 9-165
DEFINE DIMENSION (simple) 9-166
DEFINE DIMENSION (DWMQY) 9-169
DEFINE DIMENSION (conjoint) 9-172
DEFINE DIMENSION CONCAT 9-175
DEFINE DIMENSION ALIASOF 9-177
DEFINE FORMULA 9-179
DEFINE MODEL 9-181
DEFINE PARTITION TEMPLATE 9-183
DEFINE PROGRAM 9-184

ORACLE XX

DEFINE RELATION 9-186

DEFINE SURROGATE 9-188

DEFINE VALUESET 9-190

DEFINE VARIABLE 9-193

DEFINE WORKSHEET 9-211
DELETE 9-213
DESCRIBE 9-214
DO ... DOEND 9-216
EDIT 9-217
EQ 9-218
EXPORT 9-220

EXPORT (EIF) 9-220

EXPORT (spreadsheet) 9-226
FCCLOSE 9-227
FCEXEC 9-228
FCSET 9-231
FETCH 9-237
FILECLOSE 9-239
FILECOPY 9-240
FILEDELETE 9-241
FILEMOVE 9-241
FILEPAGE 9-242
FILEPUT 9-243
FILEREAD 9-245
FILESET 9-259
FILEVIEW 9-261
FOR 9-269
FORECAST 9-272
FORECAST.REPORT 9-277
FULLDSC 9-278
GOTO 9-280
GROUPINGID command 9-282

10 OLAP DML Commands: H-Z

HEADING 10-1
HIDE 10-2
HIERDEPTH 10-3
HIERHEIGHT command 10-5
IF...THEN...ELSE command 10-8
IMPORT 10-9

ORACLE XXi

IMPORT (EIF)
IMPORT (text)
IMPORT (spreadsheet)
INFILE
LD
LIMIT command
LIMIT (using values) command
LIMIT using LEVELREL command
LIMIT (using related dimension) command
LIMIT (using parent relation)
LIMIT NOCONVERT command
LIMIT command (using POSLIST)
LIMIT BASEDIMS
LISTBY
LISTFILES
LISTNAMES
LOAD
LOG command
MAINTAIN
MAINTAIN ADD
MAINTAIN ADD for TEXT, ID, and INTEGER Values
MAINTAIN ADD for DAY, WEEK, MONTH, QUARTER, and YEAR Values
MAINTAIN ADD SESSION
MAINTAIN ADD TO PARTITION
MAINTAIN DELETE
MAINTAIN DELETE dimension
MAINTAIN DELETE composite
MAINTAIN DELETE FROM PARTITION
MAINTAIN MERGE
MAINTAIN MOVE
MAINTAIN MOVE dimension value
MAINTAIN MOVE TO PARTITION
MAINTAIN RENAME
MODEL
DIMENSION (in models)
INCLUDE
MODEL.COMPRPT
MODEL.DEPRT
MODEL.XEQRPT
MONITOR
MOVE

ORACLE

10-10
10-18
10-22
10-25
10-27
10-27
10-37
10-47
10-49
10-51
10-57
10-58
10-58
10-60
10-61
10-61
10-63
10-64
10-66
10-68
10-69
10-71
10-72
10-77
10-78
10-78
10-80
10-81
10-83
10-84
10-85
10-87
10-88
10-89
10-93
10-97
10-100
10-101
10-102
10-104
10-107

XXii

OUTFILE 10-109

PAGE 10-111
PARSE 10-113
PERMIT 10-114
PERMITRESET 10-121
POP 10-123
POPLEVEL 10-124
PROGRAM 10-125
PROPERTY 10-127
PUSH 10-129
PUSHLEVEL 10-130
RECAP 10-133
REDO 10-135
REEDIT 10-136
REGRESS 10-138
REGRESS.REPORT 10-140
RELATION command 10-141
RELEASE 10-144
REMOVE_CUBE_MODEL 10-147
REMOVE_DIMENSION_MEMBER 10-149
REMOVE_MODEL_DIMENSION 10-152
RENAME 10-152
REPORT 10-154
RESYNC 10-163
RETURN 10-164
REVERT 10-166
ROW command 10-168
SET 10-176
SET1 10-186
SET_INCLUDED_MODEL 10-186
SET_PROPERTY 10-189
SHOW 10-190
SIGNAL 10-192
SLEEP 10-194
SORT command 10-194
SQL 10-201

SQL CLEANUP 10-204

SQL CLOSE 10-205

SQL DECLARE CURSOR 10-205

SQL EXECUTE 10-210

SQL FETCH 10-210

ORACLE XXiii

SQL IMPORT 10-217
SQL OPEN 10-222
SQL PREPARE 10-222
SQL PROCEDURE 10-225
SQL SELECT 10-227
STATUS 10-229
STDHDR 10-231
SWITCH command 10-232
TEMPSTAT 10-234
TRACE 10-235
TRACKPRG 10-237
TRAP 10-241
TRIGGER command 10-243
TRIGGERASSIGN 10-254
UNHIDE 10-258
UPDATE 10-259
UPDATE_ATTRIBUTE_VALUE 10-261
UPDATE_DIMENSION_MEMBER 10-264
VARIABLE 10-268
VNF 10-270
WHILE 10-276
ZEROTOTAL 10-277
A OLAP_TABLE SQL Functions
Creating Relational Views Using OLAP_TABLE A-1
Required OLAP DML Objects A-2
Creating Logical Tables for Use by OLAP_TABLE A-2
Using OLAP_TABLE With Predefined ADTs A-3
Using OLAP_TABLE With Automatic ADTs A-4
Adding Calculated Columns to the Relational View A-5
Using OLAP DML Expressions in SELECT FROM OLAP_TABLE Statements A-5
Using OLAP DML Expressions as Single-Row Functions A-5
Modifying an Analytic Workspace From Within a SELECT FROM OLAP_TABLE
Statement A-6
OLAP_TABLE A-6
OLAP_CONDITION A-24
OLAP_EXPRESSION A-29
OLAP_EXPRESSION_BOOL A-32
OLAP_EXPRESSION_DATE A-35

ORACLE

XXIV

OLAP_EXPRESSION_TEXT A-36

B DBMS_AW PL/SQL Package

Managing Analytic Workspaces B-1
Embedding OLAP DML in SQL Statements B-2
Methods for Executing OLAP DML Commands B-2
Guidelines for Using Quotation Marks in OLAP DML Commands B-2
Using the Sparsity Advisor B-3
Data Storage Options in Analytic Workspaces B-3
Selecting the Best Data Storage Method B-3
Using the Sparsity Advisor B-4
Example: Evaluating Sparsity in the GLOBAL Schema B-4
Advice from Sample Program B-6
Information Stored in AW_SPARSITY_ADVICE Table B-6

Using the Aggregate Advisor B-6
Aggregation Facilities within the Workspace B-6
Example: Using the ADVISE_REL Procedure B-7
Summary of DBMS_AW Subprograms B-10
ADD_DIMENSION_SOURCE Procedure B-11
ADVISE_CUBE Procedure B-13
ADVISE_DIMENSIONALITY Function B-14
ADVISE_DIMENSIONALITY Procedure B-16
ADVISE_PARTITIONING_DIMENSION Function B-19
ADVISE_PARTITIONING_LEVEL Function B-20
ADVISE_REL Procedure B-21
ADVISE_SPARSITY Procedure B-22
AW_ATTACH Procedure B-24
AW_COPY Procedure B-26
AW_CREATE Procedure B-27
AW_DELETE Procedure B-28
AW_DETACH Procedure B-28
AW_RENAME Procedure B-29
AW_TABLESPACE Function B-30
AW_UPDATE Procedure B-31
CONVERT Procedure B-32
EVAL_NUMBER Function B-33
EVAL_TEXT Function B-33
EXECUTE Procedure B-34
GETLOG Function B-36
INFILE Procedure B-37

ORACLE' v

INTERP Function B-37

INTERPCLOB Function B-38
INTERP_SILENT Procedure B-39
OLAP_ON Function B-40
OLAP_RUNNING Function B-41
PRINTLOG Procedure B-42
RUN Procedure B-43
SHUTDOWN Procedure B-44
SPARSITY_ADVICE_TABLE Procedure B-45
STARTUP Procedure B-46

C OLAP_API_SESSION_INIT PL/SQL Package

Initialization Parameters for the OLAP API C-1
Viewing the Configuration Table C-1
ALL_OLAP_ALTER_SESSION View C-2
Summary of OLAP_API_SESSION_INIT Subprograms C-2
ADD_ALTER_SESSION Procedure C-2
CLEAN_ALTER_SESSION Procedure C-3
DELETE_ALTER_SESSION Procedure C-3

D Changes in Previous Releases

OLAP DML Statement Changes for Oracle Database 119 D-1
Statements Added in Oracle Database 11g D-1
Statements Deleted in Oracle Database 11g D-3
Statements Changed in Oracle Database 11g D-3
Statements Renamed in Oracle Database 11g D-3

OLAP DML Statement Changes for Oracle Database 10g D-4
Statements Added in Oracle Database 10g D-4
Statements Deleted in Oracle Database 10g D-5
Statements Changed in Oracle Database 10g D-6
Statements Renamed in Oracle Database 10g D-7

OLAP DML Statement Changes for Oracle Database 9i D-7
Statements Added in Oracle Database 9i D-7
Statements Deleted in Oracle Database 9i D-8
Statements Changed in Oracle Database 9i D-10
Statements Renamed in Oracle Database 9i D-11

ORACLE XXVi

Index

ORACLE XXVii

Preface

Preface

Oracle OLAP DML Reference provides a complete description of the OLAP Data
Manipulation Language (OLAP DML) used to create analytic workspace definitions
that are stored within an analytic workspace and to manipulate these object.

This preface contains these topics:

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

Oracle OLAP DML Reference is intended for programmers and database
administrators who write OLAP DML programs and who create analytic workspaces
and analytic workspace objects using the OLAP DML.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information about working with Oracle OLAP, see these Oracle resources:

e Oracle OLAP User's Guide
* QOracle OLAP Java API Reference
e Oracle OLAP Java API Developer's Guide

Conventions

The following text conventions are used in this document:

ORACLE XXViii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

This reference presents OLAP DML syntax in a simple variant of Backus-Naur Form
(BNF) that includes the following symbols and conventions.

Symbol or Convention Meaning

(]
{}
I

delimiters

italics

Brackets enclose optional items.
Braces enclose items only one of which is required.
A vertical bar separates alternatives.

Ellipsis points show that the preceding syntactic element can be
repeated.

Delimiters other than brackets, braces, vertical bars, and ellipses
must be entered as shown.

Words appearing in italics are placeholders for which you must
substitute a name or a value. Words that are not in italics are
keywords. They must be typed as shown.

XXiX

Changes in This Release for Oracle OLAP DML Reference

Changes in This Release for Oracle OLAP
DML Reference

This preface describes changes in Oracle OLAP DML Reference in this release. For
information on changes in earlier releases, see the Oracle OLAP DML Reference
manual.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.2)

The following change is in Oracle OLAP DML Reference for Oracle Database 12¢
Release 2 (12.2):

e The OBJ function has the new keyword CHANGEDPAGES, which returns the
number of pages in the analytic workspace that have changed since the last
update.

Also, Active Data Guard (ADG) read-only active standby instances now support read-
only OLAP applications. An active standby instance must have real-time apply
operating.

You can now offload to ADG active standby instances applications that query
CUBE_TABLE and OLAP_TABLE functions that use dynamic abstract data types
(ADTSs). The initial ADT creation triggers a request to create it on the ADG primary.
Real-time apply propagates the new ADT to the active standby instance, which allows
the query to run after a short delay. If the ADT fails to appear on the standby in a
reasonable time, then an error condition occurs.

Changes in Oracle OLAP in Oracle Database 12c Release 2
(12.1)

The following are changes in Oracle OLAP DML Reference for Oracle Database 12c
Release 1 (12.1).

* New Features

e Other Changes

New Features

The following features are new in this release:

e Increased maximum line length

The maximum line length of text has changed from 4,000 to 32,767.

ORACLE XXX

Changes in This Release for Oracle OLAP DML Reference

See the descriptions of TEXT and NTEXT in Text Data Types, and the EXTCOLS,
INSCOLS, JOINBYTES, JOINCOLS, REMCOLS, and REPLCOLS functions.

Other Changes

The following are additional changes in the release:

* Performance enhancement
A new highly compact storage format for valuesets.
See the NOORDER keyword of DEFINE VALUESET.
* Changes in statements

The following statements have been changed in the OLAP DML in Oracle
Database 12c:

DEFINE VALUESET
EXTCOLS

INSCOLS
JOINBYTES
JOINCOLS
REMCOLS
REPLCOLS

ORACLE XXXi

OLAP DML Basic Concepts

This chapter contains the following topics:

* What is the OLAP DML?

e Basic Syntactic Units of the OLAP DML

* How to Execute OLAP DML Statements

e Introduction to Analytic Workspaces

e Introduction to Analytic Workspace Data Objects

OLAP DML Statements Apply to All of the Values of a Data Object

What is the OLAP DML?

The OLAP DML is the original language for defining Oracle OLAP objects and
manipulating Oracle OLAP data.

There are two major types of OLAP DML statements:

* OLAP DML statements that work against Oracle OLAP cubes and cube
dimensions that have been previously defined in the Oracle data dictionary using
the OLAP API. For an introduction to these statements, see "Cube-Aware OLAP
DML Statements".

 OLAP DML statements that create and manipulate lower-level OLAP objects that
are defined and stored in an analytic workspace. For an introduction to these
statements, see "OLAP DML Statements that Work Directly on Analytic
Workspace Objects".

Cube-Aware OLAP DML Statements

ORACLE

OLAP cubes are first-class Oracle OLAP objects and are defined in the Oracle data
dictionary. Some OLAP DML statements work against cubes and other first-class
OLAP objects.

¢ See Also:

Oracle OLAP User's Guide for information on OLAP cubes and other first-level
OLAP objects.

The following OLAP DML programs work with previously-defined OLAP cubes and
cube dimensions.

ADD_CUBE_MODEL
ADD_DIMENSION_MEMBER
ADD_MODEL_DIMENSION

1-1

Chapter 1
What is the OLAP DML?

CREATE_LOGICAL_MODEL
REMOVE_CUBE_MODEL
REMOVE_DIMENSION_MEMBER
REMOVE_MODEL_DIMENSION
SET_INCLUDED_MODEL
SET_PROPERTY
UPDATE_ATTRIBUTE_VALUE
UPDATE_DIMENSION_MEMBER

Typically, these programs take, as input, the Oracle data dictionary name of an OLAP
cube or cube dimension. When the programs execute they not only make the
necessary changes to the cube or cube dimension, they also make changes to all of
the analytic workspace objects that underlie these cubes and cube dimensions.

Also, you can use the OBJORG function in OLAP DML statements that are not cube-
aware to specify the analytic workspace objects that underlie OLAP cubes and cube
dimensions.

OLAP DML Statements that Work Directly on Analytic Workspace

Objects

ORACLE

Historically, OLAP DML statements did not work against first-level OLAP objects as
defined in the OLAP data dictionary. Instead, OLAP DML statements create and
manipulate lower-level OLAP objects that are defined and stored in an analytic
workspace. This remains the case for most OLAP DML statements today.

Note:

Unless otherwise stated, statements and information provided in this manual
applies to OLAP DML statements that are not cube-aware (that is, OLAP DML
statements work directly on analytic workspace objects).

For OLAP DML statements that work directly on analytic workspace objects, if an
object name is needed as input to the statement, the object hame is the name of an
object as defined in the analytic workspace, not as defined in the Oracle data
dictionary.

You can use these OLAP DML statements to create programs that analyze analytic
workspace data without using SQL, Java, the OLAP API, or the Oracle OLAP tools.
You can use the OLAP DML to define the analytic workspaces and the objects that are
stored in analytic workspaces. For example, you can:

» Create an analytic workspace as described in "Defining a New Analytic
Workspace".

» Define the multidimensional data objects in an analytic workspace using the
DEFINE command.

» Define calculation objects and programs that analyze the data as described in
Formulas, Models, Aggregations, and Allocations.

* Populate and analyze the data in the multidimensional data objects.

1-2

Chapter 1
Basic Syntactic Units of the OLAP DML

Basic Syntactic Units of the OLAP DML

ORACLE

The basic syntactic units of the OLAP DML are options, properties, commands,
functions, and programs. All of these are sometimes collectively referred to as OLAP
DML statements.

OLAP DML Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You cannot define your own options as part of an analytic workspace. However, you
can use any of the options that are defined as part of the Oracle OLAP DML. The
options are documented as reference topics in OLAP DML Options .

OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. These system properties are documented as
reference topics in OLAP DML Properties.

OLAP DML Functions

OLAP functions work in much the same way as commands in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All of
the Values of a Data Object".

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information.Additionally, you can augment
the functionality of the OLAP DML by writing an OLAP DML program for use as a
function.

The built-in OLAP DML functions are documented as reference topics in OLAP DML
Functions: A - K and OLAP DML Functions: L - Z .

OLAP DML Commands

OLAP DML commands work in much the same way as commands in other
programming languages—the one exception is the looping nature of OLAP DML
commands as discussed in "OLAP DML Statements Apply to All of the Values of a
Data Object".

Many OLAP DML commands perform complex actions. Some of these commands are
data definition commands like the AW command which you use to create an analytic
workspace and the DEFINE command which you use to define objects within an
analytic workspace. Other OLAP DML commands are data manipulation commands.
Some commands are recognized by Oracle OLAP as events that can trigger the

1-3

Chapter 1
How to Execute OLAP DML Statements

execution of OLAP DML programs. (See "Trigger Programs" for more information.)
Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a command.

The built-in OLAP DML commands are documented as reference topics in Chapter 8,
OLAP DML Commands: A-G and OLAP DML Commands: H-Z.

OLAP DML Programs

Several OLAP DML programs are provided as part of the OLAP DML. Some of these
programs produce reports that you can print or see online. Other programs provided
as part of the OLAP DML perform standard calculations of use to programmers and
database administrators. For more information on the programs delivered with the
OLAP DML, see "Programs Provided With the OLAP DML".

You can also write your own OLAP DML programs to augment the functionality of the
OLAP DML as described in OLAP DML Programs.

How to Execute OLAP DML Statements

The simplest way to execute OLAP DML statement is by using the OLAP Worksheet.
The OLAP Worksheet is delivered as part of the Analytic Workspace Manager. To
open the OLAP worksheet from within the Analytic Workspace Manager:

1. Connect to an Oracle Database instance.
2. Select a Schema.
3. Select Tools, then OLAP Worksheet.

You can also execute OLAP DML statements in SQL and Java:

» Using the PL/SQL DBMS_AW package you can execute OLAP DML statements as
described in the Oracle OLAP DML Reference manual.

» Using SPL_Executor delivered as part of Oracle OLAP Java API you can embed
OLAP DML statements within a Java program.

¢ See Also:
Oracle OLAP Java API Reference

Introduction to Analytic Workspaces

ORACLE

Conceptually, an analytic workspace is that portion of Oracle Database that is used by
Oracle OLAP to perform OLAP analysis. Physically, an analytic workspace is stored in
the database as LOBs in a table named AW$wor kspacenane.

An analytic workspace also contains the following types of objects and the OLAP DML
definitions for these objects:

* Multidimensional data objects that contain the data to analyze and the results of
the analysis.

» Calculation objects (that is, formulas, models, aggregations, and allocations) that
contain OLAP DML statements that specify the analysis.

1-4

Chapter 1
Introduction to Analytic Workspaces

* OLAP DML programs that perform complex analysis.

¢ See Also:

"Introduction to Analytic Workspace Data Objects", Formulas, Models,
Aggregations, and Allocations and OLAP DML Programs

Privileges Needed to Create and Delete Analytic Workspaces

Because an analytic workspace is physically stored as a table in an Oracle Database
instance, you need SQL GRANT privileges to work with an analytic workspace. The
privileges you need vary depending on whether the analytic workspace is in a schema
that you own or in a schema that you do not own:

e When you are the owner of the schema, you only need SQL GRANT privileges
when you want to create an analytic workspace or attach an analytic workspace.
The privileges you must be granted to perform these tasks and the OLAP DML
commands that relate to these tasks are outlined in the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic AW CREATE CREATE TABLE

workspace

Attach an analytic AW ATTACH with ASOF FLASHBACK TABLE

workspace AS OF keyword

* When you are not the owner of the schema, you need SQL GRANT privileges to
create an analytic workspace, to attach an analytic workspace in ASOF mode, to
drop an analytic workspace, and to truncate an analytic workspace as shown in
the following table.

Task OLAP DML Command SQL GRANT Privileges
Needed

Create an analytic AW CREATE CREATE ANY TABLE, SELECT

workspace ANY TABLE, UPDATE ANY
TABLE

Attach an analytic workspace AW ATTACH with ASOF FLASHBACK ANY TABLE

AS OF keyword

Delete an analytic workspace AW DELETE DROP ANY TABLE

Truncate an analytic AW TRUNCATE TRUNCATE ANY TABLE

workspace

Note that Oracle Database does not turn on roles when you run a named PL/SQL
procedure. In this case, the you must have the CREATE TABLE privilege directly.

Defining a New Analytic Workspace

You can use the OLAP DML to create analytic workspaces. To create an analytic
workspace, issue an AW command with the CREATE keyword, followed by an
UPDATE statement and a COMMIT statement.

ORACLE 1-5

Chapter 1
Introduction to Analytic Workspaces

Working with Previously-Defined Analytic Workspaces

Before you can work with a previously-defined analytic workspace, you must first
attach the analytic workspace by issuing an AW ATTACH statement. You can attach
an analytic workspace in any of the following attachment modes:

Read-only: Users can make private changes to the data in the workspace to
perform what-if analysis but cannot commit any of these changes. Any number of
users can be attached in Read Only mode.

Read/write access mode: Only one user can have an analytic workspace open in
read/write at a time. The user has to commit either all or none of the changes
made to the workspace.

Read/write exclusive access mode: The read/write exclusive attach mode is not
compatible with any other access modes. A user cannot attach an analytic
workspace in read/write exclusive mode when another user has it attached in any
mode. Only one user can have an analytic workspace open in read/write exclusive
at a time. The user has to commit either all or none of the changes made to the
workspace.

Multiwriter access mode: An analytic workspace that is attached in multiwriter
mode can be accessed simultaneously by several sessions. In multiwriter mode,
users can simultaneously modify the same analytic workspace in a controlled
manner by specifying the attachment mode (read-only or read/write) for individual
variables, relations, valuesets, and dimensions.

For more information on the various attachment modes, see the syntax and notes for
the AW ATTACH statement.

Viewing Information About an Analytic Workspace

The following table lists the OLAP DML statements that you can use to view
information about an analytic workspace

ORACLE

Table 1-1 Statements for Viewing Information About an Analytic Workspace

Statement Description

AW function Returns information about currently attached workspaces.

AWDESCRIBE program Sends information about the current analytic workspace to the

current outfile.

EXISTS function Returns a value that indicates whether an object is defined in any
attached workspace.

LISTBY program Lists all objects in an analytic workspace that are dimensioned by
or related to one or more specified dimensions or composites.

LISTNAMES program Lists the names of the objects in an analytic workspace.

OBJ function Returns information about an analytic workspace object.

OBJLIST function Lists the objects that are in one or more workspaces that you
specify.

DESCRIBE command Lists the simple definition of one or more workspace objects.

FULLDSC program Lists the complete definition of one or more workspace objects,

including the properties and triggers of the object(s).

1-6

Chapter 1
Introduction to Analytic Workspace Data Objects

Introduction to Analytic Workspace Data Objects

A relational database typically stores data values in tables that represent third normal
form data. In this type of implementation, the values of key columns of a relational
database table are unique values of a single level of data. For example, at one level in
the relational database you might have a table with a key column named City that
contains the names of cities and at the next highest level in the database a table with a
key column named state that contains the names of states, and so on and so on.

In an analytic workspace the objects that hold the data to analyze are arrays called
variables. The keys into variables are stored in other objects which act as the
dimensions of the variables. To support performant OLAP analysis, values from
multiple levels are stored within a single dimension called a hierarchical dimension.
For example, an analytic workspace might have a hierarchical dimension named geog
that had as values the names of both cities and states.

The objects that store values that relate values of two or more dimensions are called
relations. Thus the one-to-many relationship between values of different levels in a
hierarchical dimension are stored in an analytic workspace. For example, the
relationship between the city and state values in a hierarchical geog dimension would
be stored in an analytic workspace relation typically called a parentrel relation. (See
"Parentrel Relation" for more information.)

Additional analytic workspace objects are typically defined to keep additional
information about the hierarchical dimension. Several important OLAP DML
commands and functions (such as the LIMIT command) presume the existences of
these objects in your analytic workspace as the name of these objects is one
argument in the syntax of the statement.

The data objects that you define using the OLAP DML are multidimensional objects
that are stored in an analytic workspace. When you use OLAP DML statements to
perform operations against these multidimensional data objects, those operations
apply all at once to entire set of values contained by these objects.

¢ See Also:

"Types of Analytic Workspace Data Objects" and"Objects that Support the Use
of Hierarchies".

Types of Analytic Workspace Data Objects

ORACLE

The OLAP DML supports the use of the following types of analytic workspace data
objects:

Variables

Simple Dimensions
Concat Dimensions
Composites
Partition Templates
Alias Dimensions
Relations

1-7

Variables

ORACLE

Chapter 1
Introduction to Analytic Workspace Data Objects

Valueset and Surrogate Objects

Tip:

You can use the OBJORG function to specify analytic workspace objects that
underlie cubes and cube dimensions.

The most important data object in an analytic workspace is the variable. A variable is
an object that stores data. All of the data in a variable must have the same data type.
Typically, you use variables to contain data values that quantify a particular aspect of
your business For example, your business might have several categories of
transactions (measured in dollars, units, percentages, and so on) and each category is
stored in its own variable. For example, you might record sales data in dollars (a sales
variable) and units (a units variable).

Because the OLAP DML is a multidimensional programming language, variables are
multidimensional and correspond to what other OLAP languages sometimes call
measures. Conceptually, you can think of a variable with two dimensions as a table, a
variable with three dimensions as a cube, and so on. Physically, variables are stored
as multidimensional arrays with the actual structure of the arrays determined by the
object by which the variable is dimensioned.

The scope and permanence of a variable can vary. A permanent variable is a variable
for which both the variable values and definitions are stored in an analytic workspace.
Temporary variables have values only during the current session. When you update
and commit the analytic workspace, only the definitions of temporary variables are
saved. When you exit from the analytic workspace, the data values are discarded. You
can also define variables in programs.

You can define scalar variables in programs, but most variables that you define using
the OLAP DML are dimensioned variables. Dimensioned variables are arrays that hold
multiple values. The indexes or dimensions of the variable provide the organization for
the variable. The values of the dimension are similar to keys in a relational table, in
that they uniquely identify a data value. For example, if you have a sales variable that
is dimensioned by time, geography, and product dimensions, then each combination of
the values of time, geography, and product identifies a value in sales. (Note that the
indexes of variables are not actually the values of the dimension, but, instead, are the
INTEGER positions of the values in the dimension.)

Variables can be dimensioned by either flat or hierarchical dimensions. A flat
dimension exists when the values within a dimension are all at the same level; no
value is the child or parent of another value. A hierarchical dimension exists when the
values with a single dimension are in a one-to-many (parent-to-child) relationship with
each other.

A hierarchical dimension is a means of organizing and structuring this type of data
within a single dimension. You can then use it to dimension a variable that contains
data for all the levels. Some dimensions have multiple hierarchies. You specify the
parent-to-child relationships of the dimension values by creating a self-relation.You
use a hierarchical dimension to define a variable that contains data of varying levels of
aggregation within a single variable. Storing all of these values in a single variable

1-8

Chapter 1
Introduction to Analytic Workspace Data Objects

affords a quicker response time for users who want to view the data, particularly when
the variable is large.

Frequently, the cells in the variable that correspond to upper level values in the
hierarchical dimension contain the sum or total of the values in the cells of the variable
that correspond to the lower level dimension values. For example, in a sales variable
that is defined with a hierarchical dimension representing time, the cells of the variable
for each quarter might represent the total sales for the months in the quarter.

After you have defined a variable with hierarchical dimensions, you can add variable
data to the lowest level of the hierarchy, and then calculate or aggregate the values for
the higher levels of the hierarchy. Conversely, you can distribute or allocate data from
higher levels to lower levels of the hierarchy.

¢ See:
DEFINE VARIABLE

Objects that Can Dimension Variables

ORACLE

How variable and relation data is actually structured and stored is dependent on what
type of object you use to dimension the variable or relation and the order in which
those objects appear in the definition of the variable or relation. Variables can be
dimensioned by simple dimensions, concat dimensions, composites, partition
templates, and alias dimensions. The object by which you choose to dimension a
variable determines how the data of the variable is stored.

" See Also:

"Objects that Support the Use of Hierarchies"

Simple Dimensions

The members of a simple dimension are data values that all have the same data type.
When a variable is dimensioned by a simple dimension, there is one cell in the
variable for every member of the dimension. When there is a dimension member for
which the variable has no data, Oracle OLAP stores an NA value in the variable for
that empty value. If storing such NA values would result in a full page of NA values,
then Oracle OLAP does not actually store the NA values.

¢ See:
DEFINE DIMENSION (simple)

Concat Dimensions

You define concat dimensions over previously-defined simple dimensions or conjoint
dimensions. Consequently, the base dimensions of a concat dimension can be of

1-9

ORACLE

Chapter 1
Introduction to Analytic Workspace Data Objects

different data types. You can represent a hierarchy with a concat dimension that has
two or more simple flat dimensions among its base dimensions. You can use concat
dimensions to easily map dimensions in an analytic workspace to columns in relational
tables and thereby promote more efficient loading of data from the relational structures
into the analytic workspace structures.

¢ See:
DEFINE DIMENSION CONCAT

Composites

You define composites over previously-defined dimensions. Conceptually, you can
think of a composite consisting of two structures:

e The composite object itself. The composite contains the dimension-value
combinations (that is, the composite tuples) that Oracle OLAP uses to determine
the structure of any variables that are dimensioned by the composite.

e Anindex between the composite values and its base dimension values.

For a variable that is dimensioned by a composite, Oracle OLAP does not create a cell
for every value in the base dimensions as it would if the variable was dimensioned by
a simple dimension. Instead, it creates array elements (that is, variable cells) only for
those dimension values that are stored in the tuples of the composite. Data for the
variable is stored in order, cell by cell, for each tuple in the composite. From the
perspective of data storage, each combination of base dimension values in a
composite is treated like the value of a regular dimension. Consequently, when you
define a variable with one regular dimension and one composite, the data for the
variable is stored as though it was a two-dimensional variable. Using composites to
reduce the number of elements created for a variable results in more efficient data
storage.

¢ See:
DEFINE COMPOSITE

Partition Templates

You define a partition template over previously-defined dimensions or composites. A
partition template is a specification for the partitions of a partitioned variable. A
partitioned variable is stored as multiple rows in the relational table of LOBs that is the
analytic workspace—each partition is a row in the table.

¢ See:
DEFINE PARTITION TEMPLATE

1-10

Relations

Chapter 1
Introduction to Analytic Workspace Data Objects

Alias Dimensions

An alias dimension is an alias for a simple dimension. An alias dimension has the
same type and values as its base dimension. Typically, you define an alias dimension
when you want to dimension a variable by the same dimension twice.

¢ See:
DEFINE DIMENSION ALIASOF

A relation is an object that establishes a correspondence between the values of a
given dimension and the values of that same dimension or other dimensions in the
analytic workspace. Relations are dimensioned arrays. Each cell in a relation holds the
index of the value of a dimension. You can define relations between two or more
dimensions, multiple relations between a set of dimensions, or a dimension with itself
(a self-relation).

Most frequently, a relation is a self-relation for a hierarchical dimension. By creating a
relation between values in a dimension that participate in a one-to-many (parent-to-
child) relationship, you can organize your data by the child values and view
aggregates of data by the parent values. For example, you can create a geog.parent
relation for a geography dimension to define the relationships between the city and
state values in geography. In this way you can organize the data by city and view the
aggregates of data by state.

¢ See Also:
DEFINE RELATION

Valueset and Surrogate Objects

ORACLE

The OLAP DML provides the following special data objects that you use not when you
are defining your variables, but instead, when you are querying them,

Valueset Objects

A valueset is a list of dimension values for one or more previously-defined dimensions.
You use a valueset to save dimension status lists across sessions.

¢ See:
DEFINE VALUESET

1-11

Chapter 1
Introduction to Analytic Workspace Data Objects

Surrogates

A dimension surrogate is an alternative set of values for a previously-defined
dimension. You cannot dimension a variable by a surrogate, but you can use a
surrogate rather than a dimension in a model, in a LIMIT command, in a qualified data
reference, or in data loading with statements such as FILEREAD, FILEVIEW, SQL
FETCH, and SQL IMPORT.

¢ See:
DEFINE SURROGATE

Objects that Support the Use of Hierarchies

ORACLE

Typically, variables are dimensioned by hierarchical objects. For example, you might
have a sales variable that is dimensioned by geog, time, and product. The geog
dimension might have two hierarchies (one for political divisions and another for sales
regions) and each of these hierarchies could have several levels with the top level of
the political geography hierarchy being All Country and the top level of the sales
geography hierarchy being All Regions. Example 1-1 illustrates defining and
populating this type of hierarchical geography dimension.

Typically, after you define a hierarchical dimension, you define the following objects for
that dimension:

* hierlist dimension that lists the names of the hierarchies for the dimension. See
"Hierlist Dimension" for more information and an example.

» parentrel relation that defines the hierarchies. A dimension is only a hierarchical
dimension when it has a parentrel defined for it. See "Parentrel Relation" for more
information and an example.

* |evellist relation that lists the names of all of the levels of all of the hierarchies. See
"Levellist Dimension" for more information and an example.

» hierlevels valueset that is the values of the levels of each hierarchy. See
"Hierlevels Valueset" for more information and an example.

» inhier valueset or variable that identifies the values of each hierarchy. See "Inhier
Valueset or Variable" for more information and examples.

» |evelrel relation that relates each value of the hierarchical dimension to its level in
the hierarchy. See "Levelrel Relation" for more information and an example.

- familyrel relation that is each hierarchical dimension value and its related values.
See "Familyrel Relation" for more information and an example.

» gidrel relation that is the grouping ids of each value within each hierarchy. See
"Gidrel Relation" for more information and an example.

Example 1-1 Defining and Populating a Hierarchical Dimension Named geog

DEFINE geog DIMENSION TEXT

LD A dimension with two hierarchies for geography

"Populate the dimension with City, State, Region, and Country values

MAINTAIN geog ADD "Boston® "Springfield” "Hartford" "Mansfield"™ “"Montreal® "Walla
Walla®™ "Portland® "Oakland® "San Diego® "MA®" "CT" "WA"™ "CA" "Quebec® "East" "West"

1-12

Chapter 1
Introduction to Analytic Workspace Data Objects

"All Regions" "USA" "Canada" "All Country"
"Display the values in geog

REPORT geog

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

Hierlist Dimension

ORACLE

A hierlist dimension is a TEXT dimension in the analytic workspace that has as values
the names of the hierarchies of a hierarchical dimension. For example, if the company
has a different calendar and fiscal year, the time dimension for that company would
have two hierarchies: one for calendar and another for year. The hierlist dimension
that supported that time hierarchy would have two values: Calendar and Fiscal.

For consistency's sake, analytic workspaces include a hierlist dimension for every
hierarchical dimension -- even when that hierarchical dimension has only one
hierarchy.

Example 1-2 Defining and Populating a hierlist Dimension Named geog_ hierlist

This example illustrates defining and populating this type of dimension.

DEFINE geog_hierlist DIMENSION TEXT

LD List of Hierarchies for geog dimension

"Populate the geog_hierlist dimension

MAINTAIN geog_hierlist ADD "Political_Geog" "Sales_Geog"
"Display the values of the geog_hierlist dimension
REPORT geog_hierlist

GEOG_HIERLIST

Political_Geog
Sales_Geog

1-13

Parentrel Relation

ORACLE

Chapter 1

Introduction to Analytic Workspace Data Objects

A parentrel relation is a relation between the hierarchical dimension and itself (a self-
relation) and the hierlist dimension. It identifies the parent of each dimension member
within a hierarchy.

Example 1-3 Defining and Populating a parentrel Relation nhamed
geog_parentrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_parentrel RELATION geog <geog geog_hierlist>

LD Self-relation for geog showing parents of each value

"Populate each cell in the relation "with the parent of the geog value
"This example using assignment statement with QDRs to do that

geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel
geog_parentrel

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Sales_Geog"
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G
"Political_G

geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
geog
eog”
eog”
eog”
eog”
eog”
eog”
eog"
eog”
eog”
eog”
eog”
eog”
eog”
eog"
eog”
eog"

"Boston™) = "MA"
"Hartford") = *CT"
"Springfield™) = "MA*®
"Mansfield®) = "CT"
"Montreal®) = "Quebec”
"Walla Walla™) = "WA*"
"Portland™) = "WA"

"Oakland™) = "CA"
"San Diego") = "CA"
"CT") = "East”
"MA") = "East"”
"WA") = "West"
"CA") = "West"

"Quebec™) = "East”
"East") = "All Regions®
"West™) = "All Regions®

geog "Boston®") = "MA"

geog "Hartford") = "CT"
geog "Springfield™) = "MA"
geog “"Mansfield") = "CT"
geog ‘“Montreal®) = "Quebec”
geog "Walla Walla™) = "WA"
geog "Portland") = "WA®
geog "Oakland") = "CA"
geog "San Diego") = "CA*"
geog "CT") = "USA"

geog "MA") = "USA"

geog "WA") = "USA"

geog "CA") = "USA"

geog "Quebec®) = "Canada”
geog "USA®") = "All Country"
geog "Canada") = "All Country”

"Display the values of geog_parentrel
REPORT DOWN geog W 20 geog_parentrel

GEOG Political_Geog Sales_Geog
Boston MA MA

Springfield MA MA

Hartford CT CT

Mansfield CT CT

Montreal Quebec Quebec

1-14

Chapter 1
Introduction to Analytic Workspace Data Objects

Walla Walla WA WA

Portland WA WA

Oakland CA CA

San Diego CA CA

MA USA East

CT USA East

WA USA West

CA USA West
Quebec Canada East

East NA All Regions
West NA All Regions
All Regions NA NA

USA All Country NA

Canada All Country NA

All Country NA NA

Levellist Dimension

A levellist dimension is a TEXT dimension that has as values the names all of the
levels of the hierarchies of a hierarchical dimension.

Example 1-4 Defining and Populating a levellist Dimension Named
geog_levellist

This example illustrates defining and populating this type of dimension.

DEFINE geog_levellist DIMENSION TEXT

LD List of levels used by hierarchies of the geog dimension

"Populate the geog_levellist dimension with the names of the levels of both the
"Political_Geog and Sales_Geog hierarchies

MAINTAIN geog_levellist ADD "All Country® "Country® "All Regions®™ "Region® MAINTAIN
geog_levellist ADD "State-Prov" "City"

"Display the values of the geog_levellist dimension

REPORT geog_levellist

GEOG_LEVELLIST

All Country
Country

All Regions
Region
State-Prov
City

Hierlevels Valueset

A hierlevels valueset is those values of the hierlevels dimension (typically ordered from
bottom to top) that are included in each hierarchy of the hierarchical dimension.

Example 1-5 Defining and Populating a hierlevels Valueset named geog_hierlevels
This example illustrates defining and populating this type of valueset.

DEFINE geog_hierlevels VALUESET geog_levellist <geog_hierlist>
"Using LIMIT populate the valueset with the appropriate values for each hierarchy
LIMIT geog_hierlevels TO ALL

LIMIT geog_hierlevels (geog_hierlist "Political_Geog") TO "City" "State-Prov" "Country® "All Country"

ORACLE 1-15

Chapter 1
Introduction to Analytic Workspace Data Objects

LIMIT geog_hierlevels (geog_hierlist "Sales_Geog") TO "City" "State-Prov" "Region® "All Regions”

"Display the values in the valueset
REPORT W 22 geog_hierlevels

GEOG_HIERLIST

GEOG_HIERLEVELS

Political_Geog City

Sales_Geog

Inhier Valueset or Variable

State-Prov
Country

All Country
City
State-Prov
Region

All Regions

An inhier valueset is those values of the inhier dimension that are in each hierarchy.

An inhier variable is a BOOLEAN variable that is dimensioned by the hierarchical
dimension and the hierlist dimension. For each hierarchy, it has a TRUE value for

each dimension value that is in that hierarchy.

Example 1-6 Defining and Populating an inhier Valueset Named geog_inhier

This example illustrates defining and populating inhier valueset.

"Define the valueset

DEFINE geog_inhier VALUESET geog <geog_hierlist>
"Using LIMIT commands, populate the valueset

LIMIT geog_inhier (geog_hierlist "Political_Geog") REMOVE "East"™ "West®™ "All Regions”
LIMIT geog_inhier (geog_hierlist "Sales_Geog") REMOVE "Canada®™ "USA®" "All Country”

"Display the values in the valueset

REPORT W 20 geog_inhier

GEOG_HIERLIST

GEOG_INHIER

Political_Geog Boston

Sales_Geog

ORACLE

Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

USA

Canada

All Country
Boston
Springfield
Hartford
Mansfield

1-16

ORACLE

Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions

Chapter 1
Introduction to Analytic Workspace Data Objects

Example 1-7 Defining and Populating an inhier Variable Named geog_inhiervar

This example illustrates defining and populating an inhier variable valueset.

DEFINE geog_inhiervar VARIABLE BOOLEAN <geog geog_hierlist>

"Using LIMIT commands and assignment statements, populate

" the variable

LIMIT geog_hierlist TO ALL

LIMIT geog_hierlist TO "Political_Geog"
LIMIT geog TO "East® “West® “All Regions”

geog_inhiervar = FALSE
LIMIT geog COMPLEMENT
geog_inhiervar = TRUE

LIMIT geog_hierlist TO ALL

LIMIT geog_hierlist TO "Sales_Geog"
LIMIT geog TO ALL

LIMIT geog TO "Canada® "USA® "All Country®

geog_inhiervar = FALSE
LIMIT geog COMPLEMENT
geog_inhiervar = TRUE
LIMIT geog TO ALL

LIMIT geog_hierlist TO ALL

"Display the values of the variable
REPORT DOWN geog geog_inhiervar

---GEOG_INHIERVAR----
----GEOG_HIERLIST----

Political_

Geog

Sales_Geog

Boston

Springfield

Hartford
Mansfield
Montreal

Walla Walla

Portland
Oakland
San Diego
MA

CT

WA

CA
Quebec

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

1-17

Chapter 1
Introduction to Analytic Workspace Data Objects

East no yes
West no yes
All Regions no yes
USA yes no
Canada yes no
All Country yes no

Levelrel Relation

Example 1-8

A levelrel relation is a relation between the levellist and hierlist dimensions that records
the level for each member of the hierarchical dimension

Defining and Populating a levelrel Relation named geog_levelrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_levelrel RELATION geog_levellist <geog geog_hierlist>
LD Level of each dimension member for geog

"Populate the
"This example
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel
geog_levelrel

relation

uses assignment statements with QDRs to populate
(geog_hierlist "Sales_Geog" geog "Boston®) = "City"
(geog_hierlist "Sales_Geog" geog "Hartford") = "City"
(geog_hierlist "Sales_Geog" geog "Springfield®) = "City"
(geog_hierlist "Sales_Geog" geog "Mansfield") = "City"
(geog_hierlist "Sales_Geog" geog “Montreal®™) = "City"
(geog_hierlist "Sales_Geog" geog "Walla Walla®) = "City"
(geog_hierlist "Sales_Geog" geog "Portland®) = "City"
(geog_hierlist "Sales_Geog" geog "Oakland®) = "City"
(geog_hierlist "Sales_Geog" geog "San Diego") = "City"
(geog_hierlist "Sales_Geog" geog "CT") = "State-Prov"
(geog_hierlist "Sales_Geog" geog "MA") = "State-Prov"
(geog_hierlist "Sales_Geog" geog "WA") = "State-Prov"
(geog_hierlist "Sales_Geog" geog "CA") = "State-Prov"
(geog_hierlist "Sales_Geog" geog "Quebec”) = "State-Prov"
(geog_hierlist "Sales_Geog" geog "East") = "Region®
(geog_hierlist "Sales_Geog" geog "West") = "Region®
(geog_hierlist "Sales_Geog" geog “"All Regions®) = "All Regions”

(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist
(geog_hierlist

"Display the values
REPORT DOWN geog W 20 geog_levelrel

ORACLE

"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"
"Political_Geog"

"Boston®) = "City"
"Hartford") = "City"
"Springfield") = "City"
"Mansfield®) = "City"
"Montreal®) = "City"
"Walla Walla®) = "City"
"Portland®) = "City"
"Oakland®) = "City"
"San Diego") = "City"
"CT") = "State-Prov"
geog "MA") = "State-Prov"
geog "WA") = "State-Prov"

geog "CA") = "State-Prov"
geog "Quebec®) = "State-Prov"
geog "USA") = "Country"
geog "Canada") = "Country”
geog "All Country™) = "All Country®

geog
geog
geog
geog
geog
geog
geog
geog
geog
geog

1-18

GEOG Political_Geog Sales_Geog
Boston City City
Springfield City City
Hartford City City
Mansfield City City
Montreal City City
Walla Walla City City
Portland City City
Oakland City City

San Diego City City

MA State-Prov State-Prov
CT State-Prov State-Prov
WA State-Prov State-Prov
CA State-Prov State-Prov
Quebec State-Prov State-Prov
East NA Region
West NA Region

All Regions NA All Regions
USA Country NA

Canada Country NA

All Country All Country NA

Familyrel Relation

Chapter 1

Introduction to Analytic Workspace Data Objects

The familyrel relation is a relation between the hierarchical dimension and the levellist
and hierlist dimensions that provides the full parentage of each dimension member in

the hierarchy.

Example 1-9 Defining and Populating a familyrel Relation named geog_familyrel

This example illustrates defining and populating this type of relation.

"Define the relation
DEFINE geog_familyrel RELATION geog <geog geog_levellist geog_hierlist>
LD FEATURES Family/Ancestry structure for the geog dimension

"Populate the relation using the HIERHEIGHT command
HIERHEIGHT geog_parentrel INTO geog_familyrel USING geog_levelrel

"Display the values of the familyrel relation

"First the values for the Political_Geog hierarchy are displayed
"Then the values for the Sales_Geog hierarchy

REPORT DOWN geog W 12 geog_familyrel

GEOG_HIERLIST: Political_Geog

GEOG All Country Country All Regions Region State-Prov
Boston All Country USA NA NA MA
Springfield All Country USA NA NA MA
Hartford All Country USA NA NA CcT
Mansfield All Country USA NA NA CT
Montreal All Country Canada NA NA Quebec
Walla Walla All Country USA NA NA WA
Portland All Country USA NA NA WA
Oakland All Country USA NA NA CA

San Diego All Country USA NA NA CA

MA A1l Country USA NA NA MA
ORACLE

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
NA

1-19

CT
WA
CA
Quebec

East

West

All Regions
USA

Canada

All Country

GEOG_HIERLIST:

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
MA

CT

WA

CA

Quebec

East

West

All Regions
USA

Canada

All Country

All Country
All Country
All Country
All
Countries
NA

NA

NA

All Country
All Country
All Country

Sales_Geog

Gidrel Relation

A gidrel relation is a relation between a NUMBER dimension, the hierarchical

USA
USA
USA
Canada

NA

NA

NA

USA
Canada
NA

NA
NA
NA
NA

NA
NA
NA
NA
NA
NA

Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions
Regions

NA
NA
NA
NA

NA
NA
NA
NA
NA
NA

Chapter 1

Introduction to Analytic Workspace Data Objects

CT
WA
CA
Quebec

NA
NA
NA
NA
NA
NA

Quebec
WA
WA
CA
CA
MA
CT
WA
CA
Quebec
NA
NA
NA
NA
NA
NA

NA
NA
NA

NA
NA
NA
NA
NA
NA

Boston
Springfield
Hartford
Mansfield
Montreal
Walla Walla
Portland
Oakland

San Diego
NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

dimension, and the hierlist dimension that contains the grouping ID of each dimension
member in each hierarchy of the hierarchical dimension. It also has a $GID_DEPTH

property that identifies the depth within a hierarchy of each dimension member.

Example 1-10 Defining and Populating a gidrel Relation named geog_gidrel

This example illustrates defining and populating this type of relation.

"Create a dimension that has values that are numbers
DEFINE gid_dimension DIMENSION NUMBER (38,0)"Add values to that dimension
"This example uses MAINTAIN ADD to add a few numbers

MAINTAIN gid_dimension ADD 1 2 34567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

"Define the gidrel relation
DEFINE geog_gidrel RELATION gid_dimension <geog geog_hierlist>
"Display the complete definition of the geog_gidrel relation

"Note that it has no properties

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>

"Populate the gidrel relation using the GROUPINGID command

ORACLE

1-20

Chapter 1
OLAP DML Statements Apply to All of the Values of a Data Object

GROUPINGID geog_parentrel INTO geog_gidrel USING geog_levelrel INHIERARCHY geog_inhier
"Display the values of the geog_gidrel relation

REPORT down geog w 20 geog_gidrel

Boston 0
Springfield 0
Hartford 0
Mansfield 0
Montreal 0
Walla Walla 0
Portland 0
Oakland 0
San Diego 0
MA 1
CT 1
WA 1
CA 1
Quebec 1
East NA
West NA
All Regions
USA

Canada

All Country

~NLWWRPRFRPPRPPRPPOOOODOOOOO

===
> > >

"Display the complete definition of the geog_gidrel relation
"Note that it now has a $GID_DEPTH property

DEFINE GEOG_GIDREL RELATION GID_DIMENSION <GEOG GEOG_HIERLIST>
PROPERTY "$GID_DEPTH" 4

OLAP DML Statements Apply to All of the Values of a Data
Object

The OLAP DML is a multidimensional language. Consequently, operations in the
OLAP DML apply all at once to an entire set of values. Again, conceptually, you can
think of these operations as applying to the values in all of the cells in a variable; or,
physically, you can think of these operations as applying to all of the elements in the
array that is the variable. Consequently, if you use the OLAP DML assignment
statement (that is, SET or =), then you do not need to code explicit loops to assign
values to all of the elements in a variable. Instead, when you issue a statement against
an object that has one or more dimensions, the statement loops over the values in
status for each dimension of the object and performs the requested operation.

Assume, for example, that there is a dimension named prodid that has three values,
Prod01, Prod02, and Prod03, and you have a variable named quantity that is
dimensioned by prodid. As the following code snippet illustrates, if Prod01, Prod02, and
Prodo3 are all in status, when you assign the value 3 to quantity, Oracle OLAP assigns
the value 3 to all of the elements in quantity.

quantity = 3
REPORT quantity

PRODID QUANTITY

ORACLE 1-21

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

PRODO1 3.00
PRODO2 3.00
PRODO3 3.00

Other OLAP DML statements (for example, REPORT, ROW, and FOR) also loop
through all of the in status elements of a dimensioned object when they execute.

Changing the Default Looping Behavior of Statements

By default, statements loop through the values of a dimensioned object using the order
in which the dimensions of the object are listed in the definition of the object. Also,
when a variable is dimensioned by a composite, most looping statements loop through
the variable as though it was not dimensioned by a composite, but was, instead,
dimensioned by the base dimensions of the composite.

The OLAP DML provides ways for you to change the default looping behavior or to
explicitly request looping:

¢ ACROSS phrase—Some looping command (such as assignment statements that
you use to assign values) have an ACROSS phrase that you can use to specify
non-default looping behavior. For detailed documentation of the ACROSS phrase,
see the SET (=) command.

¢ ACROSS command—When an OLAP DML statement is not a looping statement
or does not include an ACROSS phrase, you can request looping behavior by
coding the DML statement as an argument of the ACROSS command.

How to Specify the Set of Data that OLAP DML Operations
Work Against

For each defined dimension, Oracle OLAP uses lists called status lists to keep track
of the dimension values that are accessible to the user.

About Status Lists

Oracle OLAP uses two kinds of status lists: default status lists and current status lists.
The values in the current status lists of the dimensions in an analytic workspace
determine the set of data that is available to the OLAP DML at any given moment in
time.

Default Status Lists

ORACLE

The default status list of a dimension is the list of all of the values of the dimension
that have read permission, in the order in which the values are stored, when you first
attach an analytic workspace. You can change the default status list of a dimension in
the following ways:

* You can add, delete, move, merge, and rename values in a dimension by using
the MAINTAIN command or adding dimension values in other ways (for example,
using a SQL FETCH statement).

* You can change the read permission of values that are associated with a
dimension by using a PERMIT or PERMITRESET statement.

1-22

Chapter 1
How to Specify the Set of Data that OLAP DML Operations Work Against

Current Status Lists

The current status list of a dimension is an ordered list of currently accessible values
for the dimension. Values that are in the current status list of a dimension are said to
be "in status.” When you first attach an analytic workspace, the default and current
status lists of each dimension are the same.

The current status list of a dimension determines the accessibility of the data in the
analytic workspace:

e For dimensions, only those dimension values that are in the current status list are
visible and accessible to OLAP DML expressions.

e For dimensioned objects like variables, only those data values that are indexed by
dimension values in the current status list are visible and accessible to OLAP DML
expressions. As a loop is performed through a dimensioned object, the order of
the dimension values in the current status list is used to determine the order in
which the values of the object are accessed.

Note that a dimension and any surrogate for that dimension share the same status.
Setting the status of a dimension surrogate sets the status of its dimension and setting
the status of a dimension sets the status of any dimension surrogates for it.
Throughout this documentation, references to dimensions apply equally to dimension
surrogates, except where noted. Additionally, composites are not dimensions, and
therefore they do not have any independent status. The values of a composite that are
in status are determined by the status of the base dimensions of the composite.

Note:

Whether or not a dimension value is in status merely restricts the OLAP DML's
view of the value during a given session; it does not permanently affect the
values that are stored in the analytic workspace.

Changing the Current Status of a Dimension to Work with a Subset of

Data

Because the current status list of a dimension determines the accessibility of the data
in the analytic workspace, the way to work with a subset of analytic workspace data is
to change the current status lists of one or more dimensions.

You change the values and the order of the values in the current status list of a
dimension using the LIMIT command. The LIMIT command is a very complex OLAP
DML command that lets you specify what values you want in the current status list by
specifying the values explicitly or implicitly using relations. At it simplest level,
Example 10-20 illustrates how you can use the LIMIT command to change the current
status list of a dimension so you can work with a subset of data.

Saving and Restoring Current Dimension Status

ORACLE

There are several different ways that you can save the current status of a dimension.
The scope of each way is different:

1-23

Chapter 1
Populating Multidimensional Hierarchical Data Objects

* Any session—To save the current status for use in any session, create a named
valueset with that status. Use a DEFINE VALUESET command to define the
valueset. Use a LIMIT command to assign the values to the valueset.

* Current session—To0 save, access, or update the current status for use in the
current session, use a named context. Use the CONTEXT command to define the
context.

* Current program—To save the current status for use in the current program, then
use the PUSHLEVEL and PUSH commands. You can restore the current status
values using the POPLEVEL and POP commands.

Using a Subset of Data Without Changing Status

Sometimes you want to have an individual OLAP DML statement or expression work
against a subset of data without actually changing the current status list of a
dimension. To support this need, some OLAP DML statements allow you to specify the
name of a previously-defined valueset object instead of the name of a dimension.
Additionally, on-the-fly, you can specify a data subset without changing the current
status list of dimensions using one of the following:

* The CHGDIMS function which, during the evaluation of expression, changes the
dimensionality of an expression or changes the dimension status.

e The LIMIT function which, during the evaluation of expression, returns the
dimension or dimension surrogate values that result from a specified LIMIT
command or a specified dimension status stack.

» Use a qualified data reference (QDR) which is a way of limiting one or more
dimensions of an expression to a single value when you want to specify a single
value of a data object without changing the current status.

Populating Multidimensional Hierarchical Data Objects

Frequently you first populate the base values of your variables from relational tables or
from flat files. You then calculate other values from these base values using OLAP
DML calculation objects. For example, you might define aggregation objects to
aggregate the values that are higher up the hierarchy.

You can also assign values to variables, relations, and dimension surrogates using
assignment statements (see SET and SET1) and add values to dimensions using
MAINTAIN statements.

Tip:

Formulas, Models, Aggregations, and Allocations

ORACLE 1-24

Data Types, Operators, and Expressions

ORACLE

This chapter contains information about the following:

* OLAP DML Data Types
* OLAP DML Operators

* OLAP DML Expressions

OLAP DML Data Types

In the OLAP DML, as in other languages, a data type is a collection of values and the
definition of one or more operations on those values.

The Oracle OLAP DML supports the data types outlined in the following table.

Table 2-1 Summary of OLAP DML Data Types

|
Abbreviation Description

Data Type

BOOLEAN
DATE

DATETIME

TIMESTAMP

BOOL

None

None

None

Represents the logical TRUE and FALSE values.

Does not correspond to the SQL data type of the same
name; but, instead, is an older data type that is unique
to the OLAP DML.

Day, month, and year data (but not hour and minute
data) between January 1, 1000 A.D. and December
31,9999 A.D.

Corresponds to the SQL DATE data type.

Valid date range from January 1, 4712 BC to
December 31, 9999 AD. The default format is
determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This data type
contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It does not have fractional
seconds or a time zone.

Corresponds to the SQL TIMESTAMP data type.

Year, month, and day values of date, and hour,
minute, and second values of time up to a precision of
9 places for the fractional part of the SECOND datetime
field. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 11 bytes. This
data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND. It contains fractional
seconds but does not have a time zone.

2-1

Chapter 2
OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

__|
Abbreviation Description

Data Type

TIMESTAMP_TZ

TIMESTAMP_LTZ

DSINTERVAL

YMINTERVAL

INTEGER
SHORTINTEGER
LONGINTEGER
DECIMAL

SHORTDECIMAL

NUMBER [(p,[s1)]

TEXT

ORACLE

None

None

None

INT
SHORTINT
LONGINT
DEC

SHORT

None

None

Corresponds to the SQL TIMESTAMP WITH TIME ZONE
data type.

All values of TIMESTAMP as well as time zone
displacement value, with a precision of 9 places for the
fractional part of the SECOND datetime field. The default
format is determined explicitly by the NLS_DATE_FORMAT
parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 13 bytes. This data
type contains the datetime fields YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and
TIMEZONE_MINUTE. It has fractional seconds and an
explicit time zone.

Corresponds to the SQL TIMESTAMP WITH LOCAL TIME

ZONE data type.

All values of TIMESTAMP_TZ, with the following

exceptions:

. Data is normalized to the database time zone
when it is stored in the database.

« When the data is retrieved, users see the data in
the session time zone.

The default format is determined explicitly by the

NLS_DATE_FORMAT parameter or implicitly by the

NLS_TERRITORY parameter. The size is 11 bytes.

Corresponds to the SQL INTERVAL DAY TO SECOND
data type.

Stores a period of time in days, hours, minutes, and
seconds.

Corresponds to the SQL INTERVAL YEAR TO MONTH
data type.

Stores a period of time in years and months.

A whole number in the range of (-2**31) to (2**31)-1.
A whole number in the range of (-2**15) to (2**15)-1.
A whole number in the range of (-2**63) to (2**63)-1.

A decimal number with up to 15 significant digits in the
range of -(10**308) to +(10**308).

A decimal number with up to 7 significant digits in the
range of -(10**38) to +(10**38).

A decimal number with up to 38 significant digits in the
range of -(10**125) to +(10**125).

Up to 32,767 bytes for each line in the database
character set. This data type is equivalent to the CHAR
and VARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACE®64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

2-2

ORACLE

Chapter 2
OLAP DML Data Types

Table 2-1 (Cont.) Summary of OLAP DML Data Types

__|
Abbreviation Description

Data Type

NTEXT

RAW (size)

ROWID

UROWID

WORKSHEET

None

None

None

None.

None

Up to 32,767 bytes for each line in UTF-8 character
encoding. This data type is equivalent to the NCHAR
and NVARCHAR2 data types in the database. (Note that
when defining a variable of this data type you specify
the RANSPACEG64 keyword in the DEFINE VARIABLE
statement to increase the maximum number of
characters for the values of the variable from nearly
2**32 to nearly 2**64.)

Up to 8 single-byte characters for each line in the
database character set. (1D is valid only for values of
simple dimensions, see DEFINE DIMENSION
(simple).)

Raw binary data of length size bytes. Maximum size is
2000 bytes. You must specify size for a RAW value.
(Note that when defining a variable of this data type
you specify the RANSPACE64 keyword in the DEFINE
VARIABLE statement to increase the maximum
number of characters for the values of the variable
from nearly 2**32 to nearly 2**64.)

Base 64 string representing the unique address of a
row in its table. This data type is primarily for values
returned by the ROWID pseudocolumn.

Base 64 string representing the logical address of a
row of an index-organized table. The optional size is
the size of a column of type UROWID. The maximum
size and default is 4,000 bytes.

Specified for arguments and temporary variables in an
OLAP DML program when you want to handle
arguments without converting values to a specific data
type. Use the WKSDATA function to retrieve the data
type of an argument with a WORKSHEET data type.

Categories of Data Types

Frequently, these data types are thought of as belonging to the following categories:

* Numeric Data Types which are INTEGER, SHORTINTEGER, LONGINTEGER, DECIMAL,

SHORTDECIMAL, and NUMBER

e Text Data Types which are TEXT, NTEXT and ID.

e Datetime and Interval Data Types which include the datetime data types of
DATETIME, TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP-LTZ and the interval data types of

DSINTERVAL and YMINTERVAL.

» Date-only Data Type which is the DATE data type that is unique to the OLAP DML.
* Boolean Data Type which is BOOLEAN.
* Row Identifier Data Types which are ROWID and UROWID.

Which OLAP DML Data Objects Can Have Which Data Type?

Different objects support the use of different data types for their values:

2-3

Chapter 2
OLAP DML Data Types

» For variables, all of the data types are supported.

* For dimensions and surrogates, the INTEGER, NUMBER, TEXT, 1D (simple dimensions
only), NTEXT, DATETIME, TIMESTAMP, TIMESTAMP_TZ, TIMESTAMP-LTZ, DSINTERVAL, and
YMINTERVAL data types are supported. Additionally, when you define a dimension of
type DAY, WEEK, MONTH, QUARTER, or YEAR using a DEFINE DIMENSION
(DWMQY) statement, the data type of the values of that dimension are DATE-only.

Numeric Data Types

The numeric data types described in the following table are supported.

Table 2-2 OLAP DML Numeric Data Types

___|
Data Type Data Value

INTEGER A whole number in the range of (-2**31) to (2**31)-1.
SHORTINTEGER A whole number in the range of (-2**15) to (2**15)-1.
LONGINTEGER A whole number in the range of (-2**63) to (2**63)-1.

DECIMAL A decimal number with up to 15 significant digits in the range of -(10**308)
to +(10**308).

SHORTDECIMAL A decimal number with up to 7 significant digits in the range of -(10**38) to
+(10**38).

NUMBER A decimal number with up to 38 significant digits in the range of -(10**125)
to +(10**125).

For data entry, a value for any of these data types can begin with a plus (+) or minus
(-) sign; it cannot contain commas. Note, however, that a comma is required before a
negative number that follows another numeric expression, or the minus sign is
interpreted as a subtraction operator. Additionally, a decimal value can contain a
decimal point. For data display, thousands and decimal markers are controlled by the
NLS NUMERIC_CHARACTERS option.

Using LONGINTEGER Values

Most of the numeric data types return NA when a value is outside its range. However,
the LONGINTEGER data type does not have overflow protection and returns an incorrect
value when, for example, a calculation produces a humber that exceeds its range. Use
the NUMBER data type instead of LONGINTEGER when this is likely to be a problem.

Using NUMBER Values

ORACLE

When you define a NUMBER variable, you can specify its precision (p) and scale (s) so
that it is sufficiently, but not unnecessarily, large. Precision is the number of significant
digits. Scale can be positive or negative. Positive scale identifies the number of digits
to the right of the decimal point; negative scale identifies the number of digits to the left
of the decimal point that can be rounded up or down.

The NUMBER data type is supported by Oracle Database standard libraries and operates
the same way as it does in SQL. It is used for dimensions and surrogates when a text
or INTEGER data type is not appropriate. It is typically assigned to variables that are not
used for calculations (like forecasts and aggregations), and it is used for variables that
must match the rounding behavior of the database or require a high degree of

2-4

Chapter 2
OLAP DML Data Types

precision. When deciding whether to assign the NUMBER data type to a variable, keep
the following facts in mind to maximize performance:

* Analytic workspace calculations on NUMBER variables is slower than other numeric
data types because NUMBER values are calculated in software (for accuracy) rather
than in hardware (for speed).

* When data is fetched from an analytic workspace to a relational column that has
the NUMBER data type, performance is best when the data has the NUMBER data type
in the analytic workspace because a conversion step is not required.

Text Data Types
The text data types described in the following table are supported by Oracle OLAP.

Table 2-3 OLAP DML Text Data Types

__|
Data Type Data Value

TEXT Up to 32,767 bytes for each line in the database character set.
This data type is equivalent to the CHAR and VARCHAR2 data types
in the database.

NTEXT Up to 32,767 bytes for each line in UTF-8 character encoding.
This data type is equivalent to the NCHAR and NVARCHAR2 data
types in the database.

ID Up to 8 single-byte characters for each line in the database
character set. (1D is valid only for values of simple dimensions,
see DEFINE DIMENSION (simple).)

Text Literals

Enclose text literals in single quotes. Oracle OLAP recognizes unquoted alpha-
numeric values as object names and double quotes as the beginning of a comment.

You can embed quoted strings within a quoted string, which is necessary when you
want to specify the base dimension value of a composite or conjoint dimension or
when a value includes an apostrophe. Because a single quotation mark is used in
Oracle OLAP to indicate a text string, it is considered a special character when used
within such a string. Consequently, to specify the literal value of a single quotation
mark within a text string, precede the quotation mark with a backslash.

For example, suppose you want to find out if New York and Apple Sauce are a valid
combination of base dimension values in the markprod conjoint dimension. The
following statement produces the answer YES or NO.

SHOW ISVALUE(markprod, "<\"New York\" \"Apple Sauce\">")
When embedded quoted strings have a further level of embedding, you must use

backslashes before each special character, such as the apostrophe and the backslash
that must precede it in "Joe's Deli," as shown in the following statement.

SHOW ISVALUE(markprod, "<\"Joe\\\"s Deli\" \"Apple Sauce\">")

Escape Sequences

The following table shows escape sequences that are recognized by Oracle OLAP.

ORACLE 2-5

Chapter 2
OLAP DML Data Types

Table 2-4 Recognized Escape Sequences

__|
Sequence Meaning

\b Backspace

\f Form feed

\n Line feed

\r Carriage return

\t Horizontal tab

\" Double quote

\" Single quote

\\ Backslash

\dnnn Character with ASCII code nnn decimal, where \d indicates a decimal escape

and nnn is the decimal value for the character

\xnn Character with ASCII code nn hexadecimal, where \x indicates a hexadecimal
escape and nn is the hexadecimal value for the character

\Unnnn Character with Unicode nnnn, where \U indicates a Unicode escape and nnnn is
a four-digit hexadecimal INTEGER that represents the Unicode codepoint with the
value U+nnnn. The U must be a capital letter.

Date-only Data Type

The Oracle OLAP DML DATE data type does not correspond to the SQL data type of
the same name. It is, instead, is an older data type that is unique to the OLAP DML.
The OLAP DML DATE data type is a valid data type for variables and for dimensions of
type DAY, WEEK, MONTH, QUARTER, and YEAR as discussed in the DEFINE
DIMENSION (DWMQY) command topic. It is used to store day, month, and year data
(but not hour and minute data) between January 1, 1000 A.D. and December 31, 9999
A.D. Because the OLAP DML DATE data type does not include hour and minute data, it
is often referred to as the DATE-only data type.

Tip:

The Oracle OLAP DML data type that corresponds to the SQL DATE data type
is named DATETIME. See DATETIME Data Type for more information.

¢ See Also:

"Date-only Data Type Options".

Date-only Input Values

A valid input literal value of type DATE must conform to one of three styles: numeric,
packed numeric, or month name. You can mix these styles throughout a session.

ORACLE 2-6

ORACLE

Chapter 2
OLAP DML Data Types

Tip:

To determine whether a text expression (such as an expression with a data
type of TEXT or ID) represents a valid DATE-only value, use the ISDATE
program

Numeric style

Specify the day, month, and year as three INTEGER values with one or more separators
between them, using these rules:

* The day and month components can have one digit or two digits.

» For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

* To separate the components, you can use a space, dash (-), slash (/), colon (z),
or comma (,).

Examples: "24/4/97" or "24-04-1997"

Packed numeric style

Specify the day, month, and year as three INTEGER values with no separators between
them, using these rules:

* The day and month components must have two digits. When the day or month is
less than 10, it must be preceded by a zero.

e For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

e You cannot use any separators between the date components.

Examples: "240497" or "04241997"

Month name style
Specify the day and year as INTEGER values and the month as text, using these rules:

e The month component must match one name listed in the MONTHNAMES option.
You can abbreviate the month name to one letter or more, when you supply
enough letters to uniquely match the beginning of a name in MONTHNAMES. The
case of the letters in the month component (uppercase or lowercase) does not
need to match the case in MONTHNAMES.

* The day component can have one digit or two digits.

» For any year, the year component can have four digits (for example, 1997). For
years in the range 1950 to 2049, the year component can, alternatively, have two
digits (50 represents 1950, and so on).

* When the day and year components are adjacent, they must have at least one
separator between them. As separators, you can use a space, dash (-), slash (/),
colon (:), or comma (,). When you want, you can place one or more separators
between the day and month or between the year and month.

2-7

Chapter 2
OLAP DML Data Types

Examples: "24APRI7" or "24 ap 97" or "April 24, 1997"

Date-only Dimension Values

The format of a DATE -only value of a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is determined by the value name format (VNF) associated with
the object. A VNF is a template that controls the input and display format for DATE -only
values. The template can include format specifications for any of the components that
identify a time period (day, month, calendar year, fiscal year, and period within a fiscal
year). You associate a VNF with an object by adding a VNF statement to its definition.
When you do not add a VNF to the definition of an object, the object uses the default
VNF shown in the following table.

Table 2-5 Default VNFs for DWMQY Dimensions
|

Type of Dimension Default VNF Example

DAY <DD><MTXT><YY> 01JAN95
WEEK W<P>.<FF> W1.95

Multiple WEEK <NAME><P>.<FF> MYWEEK1.95
MONTH <MTXT><YY> JAN95S

Multiple MONTH <NAME><P>.<FF> MYMONTH1.95
QUARTER Q<P>.<FF> Q1.95

YEAR YR<YY> YR95

DATE-only values have independent input and output formats. You can enter DATE-only
values in one style and report them in a different style.

DATE-only Variable Display Styles

When you show a DATE-only variable value in output, the format depends on the
DATEFORMAT option. The default format is a 2-digit day, a 3-letter month, and a 2-
digit year; for example, 03MAR97. The text for the month names depends on the
MONTHNAMES option. To change the order of the month, day, and year components,
see the DATEORDER option.

Datetime and Interval Data Types

ORACLE

The OLAP DML has data types that correspond to SQL datetime and interval data
types. As outlined in the following table, the names of the data types are different in
OLAP DML than they are in SQL.

Table 2-6 OLAP DML Datetime and Interval Data Types and the Corresponding
SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type
DATETIME DATE

TIMESTAMP TIMESTAMP

TIMESTAMP_TZ TIMESTAMP WITH TIMEZONE

2-8

Chapter 2
OLAP DML Data Types

Table 2-6 (Cont.) OLAP DML Datetime and Interval Data Types and the
Corresponding SQL Data Types

OLAP DML Data Type Corresponding SQL Data Type
TIMESTAMP_LTZ TIMESTAMP WITH LOCAL TIME ZONE
DSINTERVAL INTERVAL DAY TO SECOND
YMINTERVAL INTERVAL YEAR TO MONTH

In the OLAP DML, the datetime data types are DATETIME, TIMESTAMP, TIMESTAMP_TZ, and
TIMESTAMP_LTZ. The interval data types are YMINTERVAL and DSINTERVAL. Both datetimes
and intervals are made up of fields as discussed in "Datetime and Interval Fields".

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. (The OLAP DML DATE data
type was implement before the SQL datetime and interval data types were
implemented in the OLAP DML.) The OLAP DML DATE data type stores only
date values (no time values) and is therefore sometimes referred to as the
DATE-only data type.

Datetime and Interval Fields

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. The following table lists the datetime fields and
their possible values for datetimes and intervals.

Tip:

To avoid unexpected results in your operations on datetime data, you can verify
the database and session time zones using DBTIMEZONE and
SESSIONTIMEZONE If the time zones have not been set manually, Oracle
Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the
default value.

Table 2-7 Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer
MONTH 01to 12 Oto 11
ORACLE 2-9

Chapter 2
OLAP DML Data Types

Table 2-7 (Cont.) Datetime Fields and Values

Datetime Field Valid Values for Datetime Data Types Valid Values for Interval
Data Types

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval fractional
for DATETIME. seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATETIME or
TIMESTAMP.

TIMEZONE_MINUTE

00 to 59. Not applicable for DATETIME or TIMESTAMP. Not applicable

(See note at end of table)

TIMEZONE_REGION

Query the TZNAME column of the VSTIMEZONE_NAMES Not applicable
data dictionary view. Not applicable for DATETIME or
TIMESTAMP.

For a complete listing of all time zone regions, refer
to Oracle Database Globalization Support Guide.

TIMEZONE_ABBR

Query the TZABBREV column of the Not applicable
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATETIME or TIMESTAMP.

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted as an
entity in the format +|- hh:mm, with values ranging from -12:59 to +14:00.

¢ See Also:

"Datetime and Interval Expressions"

Datetime Format Templates

ORACLE

A datetime format template is a template that describes the format of datetime data
stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date, a format model determines how Oracle Database interprets the string. In OLAP
DML statements, you can use a format model as an argument of the TO_CHAR and
TO_DATE functions to specify:

* The format for Oracle to use to return a value from the database
* The format for a value you have specified for Oracle to store in the database

You can use datetime format templates in the following functions:

* Inthe TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The T0_* datetime functions

2-10

Chapter 2
OLAP DML Data Types

are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_YMINTERVAL, and
TO_DSINTERVAL.)

* Inthe TO_CHAR function to translate a datetime value that is in a format other than
the default format into a string (for example, to print the date from an application)

The default datetime formats are specified either explicitly with the initialization
parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY.
You can change the default datetime formats for your session with the ALTER SESSION
statement. You can override this default and specify a datetime format for use with a
particular OLAP DML object by using the DATE_FORMAT command to add a
datetime format to the definition of the object.

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to
datetime values (unless you have used the FX or FXFM modifiers in the format model to
control exact format checking):

e You can omit punctuation included in the format string from the date string if all the
digits of the numeric format elements, including leading zeros, are specified. In
other words, specify 02 and not 2 for two-digit format elements such as MM, DD,
and YY.

e You can omit time fields found at the end of a format string from the date string.

e If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in the following table.

Table 2-8 Oracle Format Matching

|
Original Format Element Additional Format Elements to Try instead Of the Original

"MON® and "MONTH"

"
“MON “MONTH*
“*MONTH* “MON*
"Yy® "YYYY*
"RR*" "RRRR*
DATETIME Data Type

The OLAP DML DATETIME data type corresponds to the SQL DATE data type. As
such, the format and language of DATETIME values are controlled by the settings of the
NLS_DATE_FORMAT and NLS_DATE_LANGUAGE options. The DATETIME data type
is supported by Oracle Database standard libraries and operates the same way in the
OLAP DML as it does the DATE data type in SQL.

ORACLE 2-11

ORACLE

Chapter 2
OLAP DML Data Types

Note:

The Oracle OLAP DML has a date data type named DATE that does not
correspond to the SQL data type of that name. The OLAP DML DATE data
type stores only date values (no time values) and is therefore sometimes
referred to as the DATE-only data type. The DATEORDER, DATEFORMAT,
and MONTHNAMES options, which control the formatting of DATE values, have
no effect on DATETIME values. However, DATETIME and DATE values can be used
interchangeably in most DML statements.

You can specify a DATETIME value as a string literal, or you can convert a character or
numeric value to a date value with the TO_DATE function.

To specify a DATETIME value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATETIME "1998-12-25"

The ANSI date literal contains no time portion, and must be specified in exactly this
format ('YYYY-MM-DD").

Alternatively you can specify a DATETIME value us the TO_DATE function and
include, as in the following example:

TO_DATE("98-DEC-25 17:30","YY-MON-DD HH24:MI1")

The default date format template for an Oracle DATETIME value is specified by the
initialization parameter NLS_DATE_FORMAT. This example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default datetime format
into datetime values when they are used in datetime expressions.

If you specify a datetime value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a datetime value without a date, then the default date is the first day of the
current month.

Values of DATETIME always contain both the date and time fields. Therefore, if you use
DATETIME values in an expression, you must either specify the time field in your query or
ensure that the time fields in the DATETIME values are set to midnight. Otherwise, Oracle
may not return the results you expect. You can use the TRUNC (date) function to set the
time field to midnight, or you can include a greater-than or less-than condition in the
guery instead of an equality or inequality condition. However, if the expression
contains DATETIME values other than midnight, then you must filter out the time fields
in the query to get the correct result.

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see "Datetime functions" and the
DATE_FORMAT command.

2-12

Chapter 2
OLAP DML Data Types

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATETIME data type. It stores the year,
month, and day of the DATETIME data type, plus hour, minute, and second values. This
data type is useful for storing precise time values.

SHOW SYSDATE
26-JUL-06

DEFINE mytimestamp VARIABLE TIMESTAMP
mytimestamp = SYSDATE

COLWIDTH = 30

REPORT mytimestamp

MYT IMESTAMP

26-JUL-06 10.44.42 AM

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the fractional
seconds precision value can be any number of digits up to 9, as follows:

TIMESTAMP "1997-01-31 09:26:50.124°

TIMESTAMP_TZ Data Type

ORACLE

TIMESTAMP_TZ corresponds to the SQL TIMESTAMP WITH TIMEZONE data type. It is a variant
of TIMESTAMP that includes a time zone offset in its value. The time zone offset is the
difference (in hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This data type is useful for collecting and
evaluating date information across geographic regions.

Oracle from the public domain information available at http://ww.iana.org/time-zones.
Oracle time zone data may not reflect the most recent data available at this site.

The TIMESTAMP_TZ data type is a variant of TIMESTAMP that includes a time zone offset.
When you specify TIMESTAMP_TZ as a literal, the fractional seconds precision value can
be any number of digits up to 9. For example:

TIMESTAMP "1997-01-31 09:26:56.66 +02:00"

Two TIMESTAMP_TZ values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP "1999-04-15 8:00:00 -8:00"

equals

TIMESTAMP ®1999-04-15 11:00:00 -5:00°

That is, 8:00 a.m. Pacific Standard Time equals 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP "1999-04-15 8:00:00 US/Pacific"

2-13

http://www.iana.org/time-zones

Chapter 2
OLAP DML Data Types

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TzD format element. The following example
ensures that the preceding example returns a daylight saving time value:

TIMESTAMP "1999-10-29 01:30:00 US/Pacific PDT"

You can also express the time zone offset using a datetime expression.

" See Also:

"Datetime and Interval Expressions"

If you do not add the TzD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to
TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous datetime
as standard time in the specified region.

TIMESTAMP_LTZ Data Type

TIMESTAMP_LTZ corresponds to the SQL TIMESTAMP WITH LOCAL TIMEZONE data type. It is
another variant of TIMESTAMP that includes a time zone offset in its value. It differs from
TIMESTAMP_LTZ in that data stored in the database is normalized to the database time
zone, and the time zone offset is not stored as part of the column data. When a user
retrieves the data, Oracle returns it in the user's local session time zone. The time
zone offset is the difference (in hours and minutes) between local time and UTC
(Coordinated Universal Time—formerly Greenwich Mean Time). This data type is
useful for displaying date information in the time zone of the client system in a two-tier
application.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones. Oracle time zone data may not reflect the most recent
data available at this site.

The TIMESTAMP_LTZ data type differs from TIMESTAMP_TZ in that data stored in the
database is normalized to the database time zone. The time zone offset is not stored
as part of the column data. There is no literal for TIMESTAMP_LTZ. Rather, you represent
values of this data type using any of the other valid datetime literals. The table that
follows shows some formats you can use to add a TIMESTAMP_LTZ value into object,
along with the corresponding value returned by an OLAP DML statement such as a
SHOW command.

Value Specified When Adding Value Value Returned

"19-FEB-2004" 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP("19-FEB-2004", "DD-MON-YYYY")); 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

ORACLE 2-14

http://www.iana.org/time-zones

Chapter 2
OLAP DML Data Types

Value Specified When Adding Value Value Returned

TO_DATE("19-FEB-2004", "DD-MON-YYYY")); 19-FEB-04 12.00.00.000000
AM

TIMESTAMP*2004-02-19 8:00:00 US/Pacific"); 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

YMINTERVAL Data Type

YMINTERVAL corresponds to the SQL INTERVAL YEAR TO MONTH data type. It stores a period
of time using the YEAR and MONTH datetime fields. This data type is useful for
representing the difference between two datetime values when only the year and
month values are significant.

Specify YMINTERVAL interval literals using the following syntax.
INTERVAL 'integer [- integer ' YEAR|MONTH [(precision)] [TO YEAR | MONTH]

where

e ‘'integer [-integer]' specifies integer values for the leading and optional trailing
field of the literal. If the leading field is YEAR and the trailing field is MONTH, then the
range of integer values for the month field is 0 to 11.

e precision is the maximum number of digits in the leading field. The valid range of
the leading field precision is 0 to 9 and its default value is 2.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following YMINTERVAL literal indicates an interval of 123 years, 2 months:

INTERVAL "123-2" YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL "123-2" YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL "123" YEAR(3) An interval of 123 years 0 months.

INTERVAL "300" MONTH(3) An interval of 300 months.

INTERVAL "4 YEAR Maps to INTERVAL "4-0" YEAR TO MONTH and
indicates 4 years.

INTERVAL "50" MONTH Maps to INTERVAL "4-2" YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL "123" YEAR Returns an error, because the default

precision is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

ORACLE 2-15

Chapter 2
OLAP DML Data Types

INTERVAL "5-3" YEAR TO MONTH + INTERVAL"20" MONTH =
INTERVAL "6-11" YEAR TO MONTH

DSINTERVAL Data Type

ORACLE

DSINTERVAL corresponds to the SQL INTERVAL DAY TO SECOND data type. It stores a
period of time in terms of days, hours, minutes, and seconds. This data type is useful
for representing the precise difference between two datetime values.

Specify DSINTERVAL interval literals using the following syntax.
INTERVAL ‘integer|integer time_expr|time_expr

DAY|HOUR|MINUTE [(leading_precision)] | SECOND [leading_precision|,
fractional_seconds_precision])]

[TO DAY|HOUR|MINUTE|SECOND |[(fractional _seconds_precision)]]
where

* integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

e tinme_expr specifies a time in the format HH[:MI[-SS[.n]]1] or MI[:SS[.n]] or SS[.n],
where n specifies the fractional part of a second. If n contains more digits than the
number specified by fracti onal _seconds_preci si on, then n is rounded to the
number of digits specified by the fracti onal _seconds_pr eci si on value. You can
specify ti me_expr following an integer and a space only if the leading field is DAY.

» |eading_precision is the number of digits in the leading field. Accepted values are
0 to 9. The default is 2.

e fractional _seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

If you specify a trailing field, it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. Because of this restriction, if SECOND is the
leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:
e HOUR: Oto 23

e MINUTE: O to 59

e SECOND: O to 59.999999999

Examples of the various forms of DSINTERVAL literals follow, including some abbreviated
versions:

Form of Interval Literal Interpretation

INTERVAL "4 5:12:10.222° DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.

INTERVAL "4 5:12" DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL "400 5" DAY(3) TO HOUR 400 days 5 hours.

INTERVAL "400" DAY(3) 400 days.

INTERVAL "11:12:10.2222222" HOUR TO 11 hours, 12 minutes, and 10.2222222
SECOND(7) seconds.

2-16

Chapter 2
OLAP DML Data Types

Form of Interval Literal Interpretation

INTERVAL "11:20" HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL "10" HOUR 10 hours

INTERVAL "10:22" MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL "10" MINUTE 10 minutes.

INTERVAL "4% DAY 4 days.

INTERVAL "25" HOUR 25 hours

INTERVAL "40" MINUTE 40 minutes.

INTERVAL "120" HOUR(3) 120 hours

INTERVAL "30.12345" SECOND(2,4) 30.1235 seconds. The fractional second
'12345' is rounded to '1235' because the
precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal. For example.

INTERVAL"20" DAY - INTERVAL"240" HOUR = INTERVAL"10-0" DAY TO SECOND

Boolean Data Type

A BOOLEAN data type enables you to represent logical values. In code, BOOLEAN values
are represented by values for "no" and "yes" (in any combination of uppercase and
lowercase characters). The actual values that are recognized in your version of Oracle
OLAP are determined by the language identified by the NLS_LANGUAGE option. You
can use the read-only NOSPELL and YESSPELL options to obtain the values
represent BOOLEAN values. In English language code, you can represent BOOLEAN values,
using:

* YES, TRUE, ON
* NO, FALSE, OFF

Working with BOOLEAN expressions is discussed in "Boolean Expressions".

RAW Data Type

ORACLE

The RAW data type stores data that is not to be interpreted (that is, not explicitly
converted when moving data between different systems) by Oracle Database. The RAW
data type is intended for binary data or byte strings.

The syntax for specifying RAW data is as follows:
RAW (size)
where you must specify a size up to the maximum of 2000 bytes

RAW is a variable-length data type, however Oracle Net (which connects user sessions
to the instance) and Oracle Database utilities do not perform character conversion
when transmitting RAW data.

When Oracle automatically converts RAW data to and from text data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every

2-17

Chapter 2
OLAP DML Data Types

four bits of RAW data. For example, one byte of RAW data with bits 11001011 is
displayed and entered as CB.

¢ See Also:
HEXTORAW and RAWTOHEX functions

Row Identifier Data Types

The row identifier data types are used to store an address of a row in a relational table.
The OLAP DML supports two different data types that you can use to copy this data
from a relational table into objects in an analytic workspace:

* ROWID Data Type
« UROWID Data Type

ROWID Data Type

ORACLE

You can examine a row address of a relational table by querying the pseudocolumn
ROWID. Values of this pseudocolumn are strings representing the address of each
row. These strings have the data type ROWID.

¢ Note:

Although you can create relational tables and clusters that contain actual
columns having the ROWID data type. Oracle Database does not guarantee
that the values of such columns are valid rowids

The extended ROWID data type stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an identification
number assigned to every database segment. You can retrieve the data object number
from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and
ALL_OBJECTS. Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z, a-
z, 0-9, and the plus sign (+) and forward slash (/). Extended rowids are not available
directly. You can use a supplied package, DBMS_ROWID, to interpret extended rowid
contents. The package functions extract and provide information that would be
available directly from a restricted rowid as well as information specific to extended
rowids.

¢ See Also:

"ROWID Pseudocolumn” in Oracle Database SQL Language Reference.

2-18

Chapter 2
OLAP DML Data Types

UROWID Data Type

The rows of some relational tables have addresses that are not physical or permanent
or were not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change if the primary key does not change. The ROWID pseudocolumn of an
index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(that is, using a SELECT ... ROWID statement). To store the rowids of an index-
organized table, then define a column of type UROWID for the table and retrieve the
value of the ROWID pseudocolumn into that column.

¢ See Also:

UROWID in Oracle Database SQL Language Reference.

Converting from One Data Type to Another

In many cases, Oracle OLAP performs automatic data type conversion for you as
discussed in "Automatic Conversion of Textual Data Types" and "Automatic
Conversion of Numeric Data Types". Additionally there are a number of OLAP DML
functions that you can use to convert values from one data type to another.

Automatic Conversion of Textual Data Types

Oracle OLAP automatically converts NTEXT values to TEXT when they are specified as
arguments to OLAP DML statements. This can result in data loss when the NTEXT
values cannot be represented in the database character set

Automatic Conversion of Numeric Data Types

ORACLE

Oracle OLAP automatically converts SHORTINTEGER variables and INTEGER variables (with
a fixed width of 1 byte to INTEGER (with a width of 4 bytes) for calculations. When you
calculate a total of SHORTINTEGER variables, then you can obtain and report a result
greater than 32,767 or less than -32,768. When you calculate a total of 1-byte INTEGER
variables, then you can obtain and report a result greater than 127 or less than -128.
However, when you try to assign the result to a SHORTINTEGER variable or a 1-byte
INTEGER variable respectively, then the variable is set to NA.

Oracle OLAP automatically converts numeric data types according to the following
rules:

2-19

Chapter 2
OLAP DML Operators

* When you use a value with the SHORTINTEGER or SHORTDECIMAL data type in an
expression, then the value is converted to its long counterpart before using it. See
"Boolean Expressions" for information about problems that can occur when you
mix SHORTDECIMAL and DECIMAL data types in a comparison expression.

* When you save the results of a calculation as a value with the SHORTINTEGER data
type, then NA is stored when the result is outside the range of a SHORTINTEGER (-
32768 to 32767).

* When you assign the value of a DECIMAL expression to an object with the INTEGER
data type, then the value is rounded before storing or using it.

¢ Note:

When a DECIMAL value is outside the range of an INTEGER, then an NA is
stored.

e When you use a decimal value where a value with the INTEGER data type is
required, then the value is rounded before storing or using it.

" Note:

When the DECIMAL value is outside the range of an INTEGER, then an
NA is stored.

e When you assign the value of a decimal expression to a variable with the
SHORTDECIMAL data type, then only the first 7 significant digits are stored.

* When you combine NUMBER values with other numeric data types, then all values
are converted to NUMBER.

When these conversion are not what you want, then you can use the CONVERT,
TO_CHAR, TO_NCHAR, TO_NUMBER, or TO_DATE functions to get different
results.

OLAP DML Operators

ORACLE

An operator is a symbol that transforms a value or combines it in some way with
another value. The following table describes the categories of OLAP DML operators.

Table 2-9 OLAP DML Operators

Category Description

Arithmetic Operators that you can use in numeric expressions with numeric data to produce
a numeric result. You can also use some arithmetic operators in date
expressions with a mix of date and numeric data, which returns either a date or
numeric result. For a list of arithmetic operators, see "Arithmetic Operators". For
more information on numeric expressions, see "Numeric Expressions"

Comparison Operators that you can use to compare two values of the same basic type
(numeric, text, date, or, in rare cases, Boolean), which returns a BOOLEAN result.
For a list of comparison operators, see "Comparison and Logical Operators". For
more information on BOOLEAN expressions, see "Boolean Expressions”.

2-20

Chapter 2
OLAP DML Operators

Table 2-9 (Cont.) OLAP DML Operators

___|
Category Description

Logical The AND, OR, and NOT operators that you can use to transform BOOLEAN values
using logical operations, which returns a BOOLEAN result. For a list of logical
operators, see "Comparison and Logical Operators". For more information on
BOOLEAN expressions, see "Boolean Expressions".

Assignment An operator that you use to assign the results of an expression into an object or
to assign a value to an OLAP DML option. For more information on using
assignment statements, see the SET, and SET1 commands, and "Assignment
Operator".

Conditional The IF...THEN...ELSE, SWITCH, and CASE operators that you can use to use to
select between values based on a condition. For more information, see
"Conditional Expressions".

Substitution The & (ampersand) operator that you can use to evaluate an expression and
substitute the resulting value. For more information, see "Substitution
Expressions".

Arithmetic Operators

The following table shows the OLAP DML arithmetic operators, their operations, and
priority where priority is the order in which that operator is evaluated. Operators of the
same priority are evaluated from left to right. When you use two or more operators in a
numeric expression, the expression is evaluated according to standard rules of
arithmetic. You must code a comma before a negative number that follows another
numeric expression, or the minus sign is interpreted as a subtraction operator. For
example, intvar,-4

Table 2-10 Arithmetic Operators
|

Operator Operation Priority
- Sign reversal 1
** Exponentiation 2
* Multiplication 3
/ Division 3
* Addition 4
- Subtraction 4

Comparison and Logical Operators

ORACLE

You use comparison and logical operators to make expressions in much the same way
as arithmetic operators. Each operator has a priority that determines its order of
evaluation. Operators of equal priority are evaluated left to right, unless parentheses
change the order of evaluation. However, the evaluation is halted when the truth value
is decided.

The following table shows the OLAP DML comparison operators and logical operators
(AND, OR, and NOT). It lists the operator, the operations, example, and priority where

2-21

Chapter 2
OLAP DML Expressions

priority is the order in which that operator is evaluated. Operators of the same priority
are evaluated from left to right.

Table 2-11 Comparison and Logical Operators
|

Operator Operation Example Priority
NOT Returns opposite of NOT(YES) = NO 1
BOOLEAN expression
EQ Equal to 4 EQ 4 = YES 2
NE Not equal to 5 NE 2 = YES 2
GT Greater than 56T 7 =NO 2
LT Less than 5LT 7 = YES 2
GE Greater than or equal to 8 GE 8 = YES 2
LE Less than or equal to 8 LE 9 = YES 2
IN Is a date in a time period? "1Jan02" IN myDimension = YES 2
LIKE Does a text value match a “Finance® LIKE “%nan%® = YES 2
specified text pattern?
AND Both expressions aretrue 8 GE 8 AND 5 LT 7 = YES 3
OR Either expression is true 8 GE 8 OR 5 GT 7 = YES
Assignment Operator

In the OLAP DML, as in many other programming languages, the = (equal) sign is
used as an assignment operator.

An expression creates temporary data; you can display the resulting values, but these
values are not automatically stored in your analytic workspace for future reference
during a session. You use an assignment statement to store the result of an
expression in an object that has the same data type and dimensions as the
expression. If you update and commit the object, then the values are available to you
in future sessions.

Like other programming languages, an assignment statement in the OLAP DML sets
the value of the target expression equal to the results of the source expression.
However, an OLAP DML assignment statement does not work exactly as it does in
other programming languages. Like many other OLAP DML statements it does not
assign a value to a single cell, instead, when the target-expression is a
multidimensional object, Oracle OLAP loops through the cells of the target object
setting each one to the results of the source-expression. Additionally, you can use
UNRAVEL to copy the values of an expression into the cells of a target object when
the dimensions of the expression are different from the dimensions of the target object.

For more information on using assignment statements in the OLAP DML, see SET and
SET1.

OLAP DML Expressions

Expressions represent data values in the syntax of the OLAP DML. This section
provides the following information about OLAP DML expressions:

e "About OLAP DML Expressions"

ORACLE 2-22

Chapter 2
OLAP DML Expressions

* "Using Workspace Objects in Expressions".
* "Working with Empty Cells in Expressions"
» Detailed information about the various types of OLAP DML expressions:

Numeric Expressions

Text Expressions

Datetime and Interval Expressions
Date-only Expressions

Boolean Expressions

Conditional Expressions
Substitution Expressions

About OLAP DML Expressions

An OLAP DML expression has a data type and can also have dimensions. You can
use expressions as arguments in statements. An expression often performs a
mathematical or logical operation. It always evaluates to a result in a workspace data

type.
An expression can be:
» Aliteral value. For example, 10 or "East"

e An analytic workspace object that contains multiple values. For example, the
variable sales

» A function that returns one or more values. For example, TOTAL or JOINLINES

* Another expression that combines literal values, dimensions, variables, formulas,
and functions with operators. For example, inflation*1.02

You can save an expression as a formula as described in "OLAP DML Formulas”

How the Data Type of an Expression is Determined

The data type of an expression is the data type of the resulting value. It might not be
the same as the data type of the data objects that constitute the expression; it
depends on the data and on the operators and functions that are involved.

In addition, a conditional expression that is indicated by an IF... THEN...ELSE operator is
supported. A conditional expression returns a value whose data type depends on the
expressions in the THEN and ELSE clauses, not on the expression in the IF clause, which
must be BOOLEAN.

Note:

Do not confuse a conditional expression with the IF...THEN...ELSE command
in a program, which has similar syntax but a different purpose. The IF
statement does not have a data type and is not evaluated like an expression.

ORACLE 2-23

Chapter 2
OLAP DML Expressions

How the Dimensionality of an Expression is Determined

An expression is dimensioned by a union of the dimensions of all of the variables,
dimensions, relations, formulas, qualified data references, and functions in the
expression:

* Variables, relations, and formulas are dimensioned by the dimensions listed in the
definition of the object.

Example 1: When the price variable is dimensioned by month and product, then
the expression price * 1.2 is also dimensioned by month and product.

Example 2: When the units variable is dimensioned by month, product, and
district, then the expression units * price is dimensioned by month, product, and
district (even though the dimensions of the price variable are month and product
only).

* Qualified data references (QDRs) are dimensioned by all of the dimensions of the
associated object, except for the dimensions being qualified. (For more information
about qualified data references, see "Limiting a Dimension to a Single Value
Without Changing Status".)

e The return values of most OLAP DML functions are, in most cases, dimensioned
by the union of the dimensions of the input arguments. However, some functions
(such as aggregation functions) have fewer dimensions than the input arguments.
In these cases, the dimensionality of the return value is documented in the topic
for the function in OLAP DML Functions: A - K.

Note:

Unless otherwise noted, when you specify breakout dimensions or relations
in an aggregation function, you change the dimensionality of the
expression. The first dimension that you specify as a breakout dimension is
the slowest varying and the last dimension that you specify is the fastest
varying.

Note:

You can change the dimensionality of an expression or subexpression using
the CHGDIMS function

Determining the Dimensions of an Expression

ORACLE

You can find out the dimensions of an expression by issuing a PARSE statement,
followed by the INFO function. PARSE evaluates the text of an expression; the INFO
indicates how the expression is interpreted.

This example illustrates the use of the DIMENSION keyword with the INFO function to
retrieve the dimensions of the expression just analyzed by PARSE. Assume that you
issue the following statement.

PARSE "TOTAL(sales region)*®

2-24

Chapter 2
OLAP DML Expressions

The statement produces the following output.

SHOW INFO(PARSE DIMENSION)
REGION

How Dimension Status Affects the Number of Values in the Results of Expressions

The number of values an expression yields depends on the dimensions of the
expression and the status of those dimensions. An expression yields one data value
for each combination of dimension values in the current status. For example, when
three dimension values are in status for month, and two for product, then the expression
price GT 100 results in six values (3 times 2).

Thus, to get the desired results, you must ensure that the dimensions of an expression
are limited to the range of data you want to consider. In addition, you must consider
any PERMIT statements that might limit access to the dimensions of the data.

When you want to specify a single value without changing the current status you can
use a qualified data reference (QDR). Using a QDR, you can qualify a dimension
(which enables you to specify one dimension value in an expression) or one or more
dimensions of a variable or relation. For more information on dimension status, see
"How to Specify the Set of Data that OLAP DML Operations Work Against"; for more
information on QDRs, see "Limiting a Dimension to a Single Value Without Changing
Status".

Using Workspace Objects in Expressions

You can use an analytic workspace data object in an expression by specifying its
name as described in "Syntax for Specifying an Object in an Expression”. When

calculating the expression, Oracle OLAP uses the data in the specified object as
described in "How OLAP DML Data Objects Behave in Expressions”.

How OLAP DML Data Objects Behave in Expressions

ORACLE

The following table summarizes how Oracle OLAP uses the data in an object used as
an argument in an expression.

Table 2-12 Objects in Expressions

___|
Object Use in Expressions

Variables As a one-dimensional or multi-dimensional array of data, depending on its
definition. For example, as the target or source expression in an assignment
statement.

See also "Using Variables and Relations in Expressions" and " OLAP DML
Commands: H-Z".

2-25

Chapter 2
OLAP DML Expressions

Table 2-12 (Cont.) Objects in Expressions

___|
Object Use in Expressions

Relations As a one-dimensional or multi-dimensional of data, depending on its definition.
For example, as the target or source expression in an assignment statement as
outlined in " OLAP DML Commands: H-Z".

* When you use a relation in a text expression, the relation value is referenced
as a text value. The values of the related dimension that is contained in the
relation are converted into text, and you can use these values in an
expression. You can also compare a text literal to a relation.

* When you use a relation in a numeric expression, the relation value is
referenced by its position (an INTEGER) in its related dimension array. You
can use this numeric value in an expression. The position number is based
on the default status list of the dimension, not the current status list of the
dimension.

See also "Using Variables and Relations in Expressions" , "Using Related

Dimensions in Expressions".

Dimensions As a one-dimensional array of data. When you use a TEXT dimension value in a
numeric expression or compare values in a non-numeric dimension, Oracle
OLAP uses the INTEGER position number of the value in the array (as based on
the default status list) rather than the value itself.

See also "Specifying a Value of a CONCAT Dimension" and "Using Related
Dimensions in Expressions".

Composites You can use a composite wherever you can use a dimension.
See also "Specifying a Value of a Composite” .

Valuesets As a list of dimension values.

See also "Using Variables and Relations in Expressions" and the DEFINE
VALUESET command.

Dimension As a one-dimensional array. A surrogate provides an alternative set of values for

surrogates a dimension. When you use a TEXT surrogate value in a numeric expression or
compare values in a non-numeric surrogate, Oracle OLAP uses the INTEGER
position number of the value in the array (as based on the default status list)
rather than the value itself.

Note: You can use a surrogate rather than a dimension in a model, in a LIMIT
command, in a qualified data reference, or in data loading with statements such
as FILEREAD, FILEVIEW, SQL FETCH, and SQL IMPORT. A surrogate cannot
be a participant object in any argument in a DEFINE statement that defines
another object.

Formulas As a sub-expression or as an expression in a statement.

Programs For a program that does not return a value, use the program name as you would
an OLAP DML command. For a program that returns a value, invoke the program
the same way that you invoke an OLAP DML function: use the program name in
the expression and enclose the program arguments, if any, in parentheses.

Syntax for Specifying an Object in an Expression

You can specify an analytic workspace object in an expression using the following
syntax.

[[schema-name.]analytic-workspace-name!lobject-name

ORACLE 2-26

ORACLE

Chapter 2
OLAP DML Expressions

schema-name

The name of the schema in which the analytic workspace was defined when it was
created. By default, an analytic workspace is created in the schema for the database
user ID of the user issuing the AW CREATE statement. In almost any DML statement,
you can specify the full name of an analytic workspace (for example, Scott.demo).

analytic-workspace-name

The name of the workspace that contains the desired object. By specify the analytic
workspace name along with the object name you create a qualified object name
(QON) for the object. Using a qualified object name for an object is recommended
except in those situations described in "When Not to Use Qualified Object Names".
You can specify the value for analytic-workspace-name in any of the following ways:

* The name of an analytic workspace. A workspace name is assigned when an
analytic workspace is created with an AW CREATE statement.

* The alias name of an analytic workspace. An analytic workspace alias is an
alternative name for an attached analytic workspace. You can assign or delete an
alias with an AW ALIAS LIST statement. An alias is in effect from the time it is
assigned to the time that the workspace is detached (or until the alias is deleted).
Therefore, each time you attach an unattached workspace, you must reassign its
aliases.

One reason for assigning an alias is to have a short way to reference an analytic
workspace that belongs to a schema that is not yours. For example, you can use
the alias in qualified object names and statements that reference such an analytic
workspace. Another reason for assigning an alias is to write generic code that
includes a reference to an analytic workspace but does not hard-code its name.
With the alias providing a generic reference, you can assign the alias and run the
code on different workspaces at different times.

* Within an aggregation specification, model, or program, you can use THIS_AW to
qualify an object name. When Oracle OLAP compiles an object, it interprets any
occurrence of THIS_AW as the name of the workspace in which the object is being
compiled. Thus if you have an analytic workspace named myworkspace that
contains a program named myprog and a variable named myvar, Oracle OLAP
interprets a statement myvar=1 as though it was written myworkspace!myvar=1.
Within a program, you can retrieve the value of THIS_AW using the THIS_AW
option.

When you do not specify a value for analytic-workspace-name, Oracle OLAP
assumes that the specified object is in the current analytic workspace. The current
analytic workspace is the first analytic workspace in the list of the active analytic
workspaces that you view with an AW LIST statement. You can retrieve the name of
the current analytic workspace by using the AW function with the NAME keyword.

Note:

Your session does not have to have a current analytic workspace. When you
start Oracle OLAP without specifying an analytic workspace name, then the
EXPRESS analytic workspace is first on the list. However, in this case, the
EXPRESS analytic workspace is not current; there is no current analytic
workspace until you specify one with the AW command.

2-27

Chapter 2
OLAP DML Expressions

object-name
The name of the object unless the object is an unnamed composite. When the object
is an unnamed composite, use the following syntax.

SPARSE <basedims....>

For the basedims argument, specify the names of the dimensions, separated by
spaces, for which the unnamed composite was created. For an example of using an
unnamed composite in an OLAP DML statement, see Example 10-104.

Objects with the same name in different workspaces are treated as completely
separate objects, and no similarity or relationship is assumed to exist between them.
Any OLAP DML language restrictions that apply between objects in different
workspaces apply even when the objects have the same name. For example, you
cannot dimension an object in one workspace by a dimension that resides in another
workspace, even when both workspaces have dimensions with the same name.

Considerations When Creating and Using Qualified Object Names

ORACLE

Although the use of qualified object names for objects is typical, there are several
considerations to keep in mind:

* There are some situations where you cannot use a qualified object name or do not
need to use a qualified object name. See "When Not to Use Qualified Object
Names" for more information

» Before you use ampersand substitution when creating a qualified object name you
must understand how and when the substitution occurs. See "Using Ampersand
Substitution for Workspace and Object Names" for more information.

» Special considerations apply when passing a qualified object name as an
argument to a program. See "Passing Qualified Object Names to Programs" for
more information.

When Not to Use Qualified Object Names

Generally it is good practice to use a qualified object name in an expression. However,
there are some situations where you cannot use a qualified object name or when a
qualified object name is not necessary:

* The following objects cannot have qualified object names:

— An object that is local to a particular program because it was created by an
ARGUMENT or VARIABLE statement.

— The NAME dimension of any given workspace. When you reference the
NAME dimension, Oracle OLAP always uses the NAME dimension of the
current workspace.

* You do not need to use a qualified object name in the following circumstances:

— In the qualifiers of a qualified data reference (QDR). Only the object being
gualified needs to be named with a qualified object name. Any unqualified
names are assumed to apply to objects in the same workspace as the object
being qualified.

— Inan unnamed composite, when you specify one base dimension as a
qualified object name, then all the others are assumed to come from the same
workspace.

— Inanamed composite, when the name is a qualified object name then its base
dimensions are assumed to come from the same workspace.

2-28

Chapter 2
OLAP DML Expressions

— In a model, when you specify the solution variable as a qualified object name,
then all the dimensions named in DIMENSION statements are assumed to
come from the same workspace.

Using Ampersand Substitution for Workspace and Object Names

The workspace name, or the object name, or both can be supplied using ampersand
substitution. However, take care when using a qualified object name with ampersand
substitution because Oracle OLAP parses the qualified object name (with its
exclamation point) before it resolves the ampersand reference. For example, in the
expression &awname!objname, the ampersand (&) applies to the entire qualified object
name, not just to the workspace name.

Passing Qualified Object Names to Programs

When you pass a qualified object name as an argument to a program and you use an
ARGUMENT statement and the ARG, ARGFR, and ARGS functions, the entire
gualified object name is considered to be a single argument. Its component parts are
not passed separately.

Specifying Values of Dimensions and Composites in Expressions

In most cases, you refer to the value of a dimension by specifying the value following
the conventions for the data type of the value. For example, assume that you have a
TEXT dimension named geog. You can add the value "World" to the dimension by
issuing the following statement.

MAINTAIN geog ADD "World*®

Note, however, that when you use a TEXT dimension value in a numeric expression or
compare values in a non-numeric dimension, Oracle OLAP uses the INTEGER position
number of the value in the array (as based on the default status list) rather than the
value itself.

Special considerations apply to specifying the values of composites and concat
dimensions.

Specifying a Value of a Composite

ORACLE

You can specify a value of a composite in the following ways:

e By specifying a set of values of the base dimensions of the composite using the
following syntax.

{composite_name | SPARSE]} {<base_dimension_name
base_dimension_value }, ...>

* (Named composites only) By specifying just the values of the composite using the
following syntax.

composite_name <base_dimension_value ...>

where base_dimension_value is a set of values of the base dimensions, in the
order in which they were defined in the composite, separated by spaces.

2-29

Chapter 2
OLAP DML Expressions

Specifying a Value of a CONCAT Dimension

Once you have defined a unique CONCAT dimension, you can refer to its values
simply by specifying the values of the base dimensions.

However, you must specify a value of a nonunique CONCAT dimension as a
concatenation of the name of the base dimension and the base dimension value
separated by a colon () and a space and enclosed in angle brackets(<>). In an
expression, use the following format.

<BASE_DIMENSION_NAME: base_dimension value>

For example, assume that you have defined the base dimensions named city and
state and, a CONCAT dimension for them named geog. When you report on the geog
dimension, the values of geog include the names of the base dimensions along with the
values.

DEFINE city DIMENSION TEXT

DEFINE state DIMENSION TEXT

DEFINE geog DIMENSION CONCAT(city state)
MAINTAIN city ADD "New York®

MAINTAIN state ADD "New York"

REPORT geog

<CITY: New York>
<STATE: New York>

Using Related Dimensions in Expressions

The syntax of some OLAP DML statements (for example, some variations of the LIMIT
command) include two dimension arguments referred to as a dimension, and a related
dimension. Other OLAP DML statements (for example, AVERAGE, ANY, COUNT,
CUMSUM, NONE, LARGEST, SMALLEST, and TOTAL) allow you to specify the
dimensionality of the result in terms of a related dimension. In these contexts, the
related dimension is any dimension that shares a relation with another dimension.

Even though the value that you specify for the arguments in these statements is the
name of a dimension, in actuality Oracle OLAP uses a relation between the
dimensions to perform its calculations. When the two dimensions share only one
relation, the behavior is clear. Oracle OLAP performs the calculation based on the
values in that relation.

However, when two dimensions share multiple relations, then the behavior is less
clear. In some cases, as with a LIMIT using LEVELREL command, you can specify the
shared relation you want Oracle OLAP to use. In other cases, the statement syntax
does not allow you to specify the name of a relation. In this case, Oracle OLAP
chooses among the multiple relations as described in " OLAP DML Commands: H-Z".

Using Variables and Relations in Expressions

ORACLE

In expressions, a variable is referenced as an array containing values of the specified
data type. A relation is referenced as an array containing values of the specified
dimension. In most other respects, variables and relations (both typically
multidimensional objects) share the same characteristics.

2-30

Chapter 2
OLAP DML Expressions

In most cases, when you use OLAP DML statements with variables that are defined
with composites, the statements treat those variables as if they were defined with base
dimensions:

* You can access a variable that is dimensioned by a composite by requesting any
of the base dimension values.

* The values of a composite that are in status are determined by the status of the
base dimensions of the composite. Composites are not dimensions, and therefore,
they do not have any independent status.

When you use a REPORT statement or any other statement that loops over a variable
that uses a composite, the default behavior is to evaluate all the combinations of the
values of the base dimensions of the composite that are in status. Any combinations
that do not exist in the composite display NA for their associated data.

For example, the following statements create a report for the East region that shows
the number of coupons issued for sportswear from January through March 2002.
Because no coupons were issued in March 2002, the report displays NA in that
column.

LIMIT month TO "Jan02" "Feb02" "Mar02*
LIMIT market TO "East"

LIMIT product TO "Sportswear”

REPORT coupons

MARKET: EAST

———————————— COUPONS------=------

————————————— MONTH--=-=====-=---
PRODUCT Jan02 Feb02 Mar02
Sportswear 1,000 1,000 NA

However, for performance reasons, you can change the default looping behavior for
statements such as REPORT, ROW, and the assignment statement (SET) so that they
loop over the values in the composite rather than all of the base dimension values.

Limiting @ Dimension to a Single Value Without Changing Status

A qualified data reference (QDR) is a way of limiting one or more dimensions of a data
object to a single value. QDRs are useful when you want to specify a single value of a
data object without changing the current status. Using a QDR, you can qualify a
dimension (which enables you to specify one dimension value in an expression) or one
or more dimensions of a variable or relation.

Sometimes the syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error. In this case, you can use the QUAL function to explicitly specify
a qualified data reference (QDR).

Syntax of a Qualified Data Reference

ORACLE

You specify a qualified data reference using the following syntax
expression(dimnamel dimexpl [, dimname2 dimexp2. . .])

The di mane argument is the name of a dimension or a dimension surrogate of the
dimension, of the expression and the dimexp argument is one of the following:

e Avalue of dimname.

2-31

Chapter 2
OLAP DML Expressions

Note:

The setting of the LIMITSTRICT option determines how Oracle OLAP
behaves when a QDR specifies a nonexistent value. By default, when you
specify a nonexistent value, Oracle OLAP treats the nonexistent value as
an invalid value and issues an error. If, instead, you want Oracle OLAP to
treat a nonexistent value as an NA value, set the value of LIMITSTRICT to
NO.

* Atext expression whose result is a value of dimname.
* A numeric expression whose result is the logical position of a value of dimname.

* Arelation of di mane.

¢ Note:

When syntax of a QDR is ambiguous and could either be misinterpreted or
cause a syntax error, use the QUAL function to explicitly specify a qualified
data reference (QDR).

Qualifying a Variable

ORACLE

You can qualify any or all of the dimensions of a variable using either of the following
techniques:

e The QDR can temporarily limit a dimension of the variable by selecting one
specified value of the dimension. This value can be outside the current status.

e The QDR can replace a dimension of the variable with a less aggregate related
dimension when you supply the name of an appropriate relation as the qualifier.
The dimension is temporarily replaced by the dimension(s) of the relation.

For example, the variable sales has three dimensions, month, product, and district.
You might want to compare total sales in Boston to the total sales in all cities. In a
single statement, you want district to be limited to two different values:

* For the numerator of the expression, you want the status of district to be Boston.
* For the denominator of the expression, you want the status of district to be ALL.
The following statement lets you calculate this result by using a QDR.

SHOW sales(district "Boston")/TOTAL(sales)

You can qualify multiple dimensions of a variable. For example, when you qualify all
the dimensions of the sales variable by specifying one dimension value of each
dimension, then you narrow sales down to a single—cell value.

To fetch sales for Jun02, Tents, and Seattle, use the following QDR.

SHOW sales(month *Jun02®, product "Tents®, district "Seattle")

This statement fetches a single value.

2-32

Chapter 2
OLAP DML Expressions

You can use a qualified data reference with the target expression of an assignment
(SET) statement. This lets you assign a value to a specific cell in a data object.

The following example assigns the value 10200 to the data cell of the sales composite
that is specified in the qualified data reference. When the composite named sales does
not have a value for the combination Boston and Tents, then this value combination is
added to the composite, thus adding the data cell.

sales(market "Boston® product "Tents® month "Jan99")= 10200

Replacing a Dimension in a Variable

ORACLE

When you use a relation as the qualifier in the QDR, you replace a dimension of the
variable with the dimension or dimensions of the relation. The relation must be related
to the dimension that you are qualifying, and it must be dimensioned by the
replacement dimension.

Example 2-1 Replacing a Dimension in a Variable

Suppose you have two variables, sales and quota, which are dimensioned by month,
product, and district. A third variable, division.mgr, is dimensioned by month and
division. You also have a relation between division and product, called
division.product. These objects have the following definitions.

DEFINE sales VARIABLE DECIMAL <month product district>
LD Sales Revenue

DEFINE quota VARIABLE DECIMAL <month product district>
DEFINE division.mgr VARIABLE TEXT <month division>
DEFINE division.product RELATION division <product>

LD Division for each product

The following statement produces the report following it.

REPORT division.mgr

Camping Hawley Hawley Jones Jones Jones Jones
Sporting Carey Carey Carey Carey Carey Musgrave
Clothing Musgrave Musgrave Musgrave Musgrave Musgrave Wong

Suppose you want to obtain a report that shows the fraction by which sales have
exceeded quota and you want to include the appropriate division manager for each
product. You can show the division manager for each product by using the relation
division.product, which is related to division and dimensioned by product, as the
qualifier. The QDR replaces the division dimension with product, so that it has the
same dimensions as the other expression in the report sales / quota. The following
statement produces the report following it.

REPORT DOWN month sales W 6 sales/quota W 8 HEADING -
"MANAGER™ division.mgr(division division.product)

DISTRICT: BOSTON

————————————————————————————— PRODUCT == === == m e e e e
-—--TEnts---- --—- canoes---- -- racquets--- --sportswear-- --- footwear---
Sales/ Sales/ Sales/ Sales/ Sales/

Month Quota Manager Quota Manager Quota Manager Quota Manager Quota Manager

2-33

Chapter 2
OLAP DML Expressions

Jan02 1.00 Hawley 0.82 Hawley 1.02 Carey 0.91 Musgrave 0.92 Musgrave
Feb02 0.84 Hawley 0.96 Hawley 1.00 Carey 0.80 Musgrave 1.07 Musgrave
Mar02 0.87 Jones 0.95 Jones 0.87 Carey 0.88 Musgrave 0.91 Musgrave
Apr02 0.91 Jones 0.93 Jones 0.99 Carey 0.94 Musgrave 0.95 Musgrave

Qualifying a Relation

You can also use a QDR to qualify a relation (which is really a special kind of variable).

Suppose the region.district relation is dimensioned by district. When you qualify
district with the value Seattle, then the value of the expression is the value of the
relation for Seattle. Because the QDR specifies one value of district, the expression
has a single—cell result.

The definition of region.district is as follows.

DEFINE region.district RELATION region <district>
LD The region for each district

The following statement displays the value WEST.

SHOW region.district(district "Seattle")

Qualifying a Dimension

You can use a QDR to qualify the dimension itself, which enables you to specify one
dimension value in an expression. The following expression specifies one value of
district, the one contained in the single-cell variable mydistrict.

district(district mydistrict)

For a concat dimension, you can use a QDR to qualify the dimension by specifying a
value from a base dimension of the concat dimension. The following expression
specifies one value of reg.dist.ccdim, a concat dimension that has region and

district as its base dimensions. The costs variable is dimensioned by the division
and reg.dist.ccdim dimensions.

SHOW reg.dist.ccdim(district "Boston®)

The preceding expression produces the following result.

<DISTRICT: Boston>

Using Ampersand Substitution with QDRS

ORACLE

An ampersand character (&) at the beginning of an expression substitutes the value of
the expression for the expression itself in a statement. When you use an ampersand
with a QDR, you must enclose the whole expression in parentheses when you want
the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype “actual))

2-34

Chapter 2
OLAP DML Expressions

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptype.

Working with Empty Cells in Expressions

At any given time, some cells of an analytic workspace data object may be empty. An
empty cell occurs when a specific data value has not been assigned to it or when a
data value cannot be calculated for the cell. The value of any empty cell in an object is
NA. An NA value has no specific data type. Certain functions (for example, the
aggregation functions) return NA when the requested information is not available or
cannot be calculated. Similarly, an expression whose value cannot be calculated has
NA as its value.

" Note:

To support OLAP DML composite-dimensioned variables that correspond to
relational fact tables with null facts, OLAP has a special NA value which is
controlled by an NA2 bit. For more information on how Oracle OLAP manages
NA values controlled by NA2 bits, see "NA2 Bits and Null Tracking".

Specifying a Value of NA

There are cases in which you might specify an operation for which no data is available.
For example, there might be no appropriate value for a given cell in a variable, for the
return value of a function, or for the value of an expression that includes an arithmetic
operator. In these cases, an NA (Not Available) value is automatically supplied.

To set the values of a variable or relation to NA, you can use an assignment statement
(SET), as shown in the following example.

sales = NA

Controlling how NA values are treated

Several options and functions control how NA values are treated. For example:

» The NA options listed in "Options by Category".

* The NAFILL function returns the values of the source expression with any NA
values appearing as the specified fill expression. You can include this function in
an expression to control the format of its value.

e System properties listed in OLAP DML Properties.

Numeric Expressions

A numeric expression evaluates to any of the numeric data types. The data in a
numeric expression can be any combination of the following:

* Numeric literals as discussed in "Numeric Data Types".
* Numeric variables or formulas

 Dimensions

ORACLE 2-35

Chapter 2
OLAP DML Expressions

* Functions that yield numeric results
« Date literals, variables, formulas, or functions

In addition, you can join any of these expressions with the arithmetic operators for a
more complex numeric expression. You use arithmetic operators in numeric
expressions with numeric data, which returns a numeric result. You can also use some
arithmetic operators in date expressions with a mix of date and numeric data, to
retrieve either a date or numeric result.

Several options determine how Oracle OLAP handles numeric expressions.

Mixing Numeric Data Types

You can include any type of numeric data in the same numeric expression.
The data type of the result is determined according to the following rules:

* When all the data in the expression is INTEGER or SHORTINTEGER, and the only
operations are addition, subtraction, and multiplication, then the result is INTEGER.

* When any of the data is NUMBER, then the result is NUMBER.

e When any of the data is DECIMAL or SHORTDECIMAL, and no data is NUMBER, then the
result is DECIMAL.

* When you perform any division or exponentiation operations, then the result is
DECIMAL.

Using Text Dimensions in Arithmetic Expressions

When you use a dimension with a data type of TEXT in a numeric expression, the
dimension value is treated as a position (an INTEGER) and is used as a numeric. The
position number is based on the default status list, not on current status.

Limitations of Floating Point Calculations

ORACLE

All decimal data is converted to floating point format, both for storing and for
calculations. In floating point format, a number is represented by means of a mantissa
and an exponent. The mantissa and the exponent are stored as binary numbers. The
mantissa is a binary fraction which, when multiplied by a number equal to 2 raised to
the exponent, produces a number that equals or closely approximates the original
decimal number.

Because there is not always an exact binary representation for a fractional decimal
number, just as there is not an exact representation for the decimal value of 1/3,
fractional parts of decimal numbers cannot always be represented exactly as binary
fractions. Arithmetic operations on floating point numbers can result in further
approximations, and the inaccuracy gradually increases with the number of operations.
In addition to the approximation factor, the available number of significant digits affects
the exactness of the result.

For all of these reasons, a result computed by the TOTAL, AVERAGE, or other
aggregation functions on a DECIMAL or SHORTDECIMAL variable can differ in the least
significant digits from a result you compute by hand. Because the SHORTDECIMAL data
type provides a maximum of only seven significant digits, you see more of these
differences with SHORTDECIMAL data. Therefore, you might want to use the NUMBER data

2-36

Chapter 2
OLAP DML Expressions

type when accuracy is more important than computational speed, such as variables
that contain currency amounts.

Another result of the fact that some fractional decimal numbers cannot be exactly
represented by binary fractions is that for such numbers, the DECIMAL data type offers a
different and closer approximation than the SHORTDECIMAL data type, because it has
more significant digits. This can lead to problems when SHORTDECIMAL and DECIMAL data
types are mixed in a comparison expression. For information on how to handle such
comparisons, see "Boolean Expressions" .

Controlling Errors During Calculations

You can control the following types of errors:

» Division by zero. When you divide an NA value by zero, then the result is NA; no
error occurs. Dividing a non-NA value by zero normally produces an error. When a
divide-by-zero error occurs when you are making a calculation on dimensioned
data, then you can end up with partial results. When you use REPORT or an
assignment statement (SET), values are reported or stored as they are calculated,
so the division by zero halts the loop before it has gone through all the values.

When you want to suppress the divide-by-zero error, then you can change the
value of the DIVIDEBYZERO option to YES. Consequently, the result of any
division by zero is NA and no error occurs. This allows the calculation of the other
values of a dimensioned expression to continue.

* Root of negative numbers. It is normally an error to try to take the root of a
negative number (which includes raising a number to a non-integer power). When
you want to suppress the error message and allow the calculation of roots for non-
negative values of the expression to continue, then set the ROOTOFNEGATIVE
option to YES.

* Overflow errors. The DECIMALOVERFLOW option works in a similar manner to
DIVIDEBYZERO. It lets you control whether an error is generated when a
calculation produces a decimal result larger than it can handle.

Text Expressions

A text expression evaluates to data with the TEXT, NTEXT, or ID data type. Text
expressions can be any combination of the following:

e Text literals. For example, "Boston® or "Current Sales Report”
* Text dimensions. For example, district or month
e Text variables or formulas. For example, product.name

* Functions that yield text results. For example, JOINLINES("Product: ' product.name)

Language of Text Expressions
Oracle OLAP supports text expressions in all languages that you can identify using the

NLS_LANGUAGE option. It also supports multi-language programs and applications
using a language dimension.

ORACLE 2-37

Chapter 2
OLAP DML Expressions

¢ See Also:

"Language of Text Expressions"in $DEFAULT_LANGUAGE

Working with DATETIME Values in Text Expressions

When you use a DATETIME value where a text value (TEXT, NTEXT, or ID) is expected, or
when you store a DATETIME value in a text variable, then the DATETIME value is
automatically converted to a text value.

The format of a DATETIME value is controlled by the NLS_DATE_FORMAT option. Once
a DATETIME value is stored in a text variable, the NLS_DATE_FORMAT setting has no
impact.

Working with NTEXT Data

TEXT and NTEXT data are interchangeable in most cases. However, implicit conversion
can occur, such as when an NTEXT value is assigned to a TEXT variable. When TEXT is
converted to NTEXT, no data loss occurs because the UTF-8 character encoding of the
NTEXT data type encompasses most other data types. However, when NTEXT is
converted to TEXT, data loss occurs when NTEXT characters are not represented in the
workspace character set.

When TEXT and NTEXT values are used together, for example in a call to the JOINCHARS
function, the TEXT value is converted to NTEXT and an NTEXT value is returned.

Datetime and Interval Expressions

As discussed in "Datetime and Interval Data Types", the OLAP DML supports the
same datetime and interval data types that are supported by SQL. This section
discusses:

* "Datetime Expressions "
* "Interval Expressions "

e "Datetime/Interval Arithmetic "

Datetime Expressions

ORACLE

A datetime expression yields a value of a datetime data type. A datetime expression
has the following syntax.

datetime_value_expr AT LOCAL |
TIME ZONE {' [+ | -] hh:mm' | DBTIMEZONE | 'time_zone_name' | expr }

A datetime_val ue_expr can be a datetime value or a compound expression that yields a
datetime value. Datetimes and intervals can be combined according to the rules
defined in Table 2-7. The three combinations that yield datetime values are valid in a
datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.

The settings for AT TIME ZONE are interpreted as follows:

2-38

Chapter 2
OLAP DML Expressions

e The string " (+]-)HH:MM" specifies a time zone as an offset from UTC.

e DBTIMEZONE: Oracle uses the database time zone established (explicitly or by
default) during database creation.

* SESSIONTIMEZONE: Oracle uses the session time zone established by default or in
the most recent ALTER SESSION statement.

e time_zone_nane: Oracle returns the dat eti me_val ue_expr in the time zone indicated
by tine_zone_nane. For a listing of valid time zone names, query the
V$TIMEZONE_NAMES dynamic performance view.

Note:

Timezone region hames are needed by the daylight savings feature. The
region names are stored in the time zone files under oracore/zoneinfo. The
server always uses the large time zone file corresponding to the version
number recorded in sys.props$.

« expr: If expr returns a character string with a valid time zone format, Oracle returns
the input in that time zone. Otherwise, Oracle returns an error.

Interval Expressions

An interval expression yields a value of DSNTERVAL or MY INTERVAL where the expression
has the following syntax.

interval_value_expr DAY [(leading_field_precision)] TO

SECOND |[(fractional_second_precision)]| YEAR [(leading_field_precision)] TO
MONTH

The interval _val ue_expr can be a DSNTERVAL or MYINTERVAL value or a compound
expression that yields a DSNTERVAL or MY INTERVAL value. Datetimes and intervals can be
combined according to the rules defined in Table 2-7 . The six combinations that yield
interval values are valid in an interval expression.

Both | eadi ng_fi el d_precisi on and fracti onal _second_preci si on can be any integer
from 0 to 9. If you omit the | eadi ng_fi el d_pr eci si on for either DAY or YEAR, then Oracle
Database uses the default value of 2. If you omit the fracti onal _second_pr eci si on for
second, then the database uses the default value of 6. If the value returned by a query
contains more digits that the default precision, then Oracle Database returns an error.
Therefore, it is good practice to specify a precision that you know is at least as large
as any value returned by the query.

Datetime/Interval Arithmetic

ORACLE

You can perform several arithmetic operations on date (DATETIME), timestamp
(TIMESTAMP, TIMESTAMP_TZ, and TIMESTAMP_LTZ) and interval (DSINTERVAL and YMINTERVAL)
data. Oracle calculates the results based on the following rules:

* You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the

2-39

ORACLE

Chapter 2
OLAP DML Expressions

hire_date column of the sample table employees from SYSDATE returns the number of
days since each employee was hired. You cannot multiply or divide date or
timestamp values.

Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

Each DATETIME value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATETIME data. For example, the
MONTHS_BETWEEN function returns the number of months between two dates. The
fractional portion of the result represents that portion of a 31-day month.

If one operand is a DATETIME value or a numeric value (neither of which contains
time zone or fractional seconds components), then:

— Oracle implicitly converts the other operand to DATETIME data. (The exception is
multiplication of a numeric value times an interval, which returns an interval.)

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATETIME data type, Oracle implicitly converts the non-
DATETIME value to a DATETIME value.

When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error.

Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP_LTZ, Oracle
converts the datetime value from the database time zone to UTC and converts
back to the database time zone after performing the arithmetic. For TIMESTAMP_TZ,
the datetime value is always in UTC, so no conversion is necessary.

The following table is a matrix of datetime arithmetic operations. Dashes represent
operations that are not supported.

Table 2-13 Matrix of Datetime Arithmetic

__|
Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric

DATETIME — — — —
+ - - DATET INE DATETIME
- DATETIME DATETIME DATET INE DATETIME
* — — — —

/ - - - -
TIMESTAMP — — — —

+ - - TIMESTAMP -

- INTERVAL INTERVAL TIMESTAMP TIMESTAMP
* - - - -

/ - - - -
INTERVAL — — — —

2-40

Chapter 2
OLAP DML Expressions

Table 2-13 (Cont.) Matrix of Datetime Arithmetic

__|
Operand & Operator DATETIME TIMESTAMP INTERVAL Numeric

+ DATETIME TIMESTAMP INTERVAL -

- - - INTERVAL -

* - - - INTERVAL
/ - - - INTERVAL
Numeric — — — —

+ DATETIME DATETIME - NA

- _ _ - NA

* - - INTERVAL NA

/ - - - NA
Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order_date.

Date-only Expressions

A date-only expression is an expression that evaluates to the OLAP DML DATE data
type as discussed in "Date-only Data Type". The expression might be a function that
returns a date-only value, a date-only literal, or a more complex expression.

¢ See Also:

"Date-only Input Values", "Date-only Dimension Values", and "DATE-only
Variable Display Styles".

Calculating DATE-only Values

You can add numbers to a DATE value, or subtract numbers from them. Whole numbers
are calculated as days, and decimal values are calculated as fractions of a day. For
example, SYSDATE+1.5 adds 1 day and 12 hours to the current date and time. You
cannot divide or multiply DATE values, and you cannot subtract them from numbers. For
example, 1-SYSDATE and 1*SYSDATE return errors.

Using DATE-only Values in Arithmetic Expressions

When you use DATE values in arithmetic expressions, the result can be numeric or it
can be a date. The legal operations for dates and the data type of the result are
outlined in the following table:

ORACLE 241

Chapter 2
OLAP DML Expressions

Table 2-14 Legal Operations for DATE Values
|

Operation Result

Add or subtract a number from a Future or prior date

date

Subtract a date from a date The number of days between the dates.

Add or subtract a number from a The time period at the appropriate interval in the future or

time period. the past, similar to the return values of the LEAD or LAG
function. The result is NA when there is no dimension
value that corresponds to the result. The calculation is
made based on the positions of the values in the default
status list of the dimension.

Boolean Expressions

A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean
expressions can compare data of any type if both parts of the expression have the
same basic data type. You can test data to see if it is equal to, greater than, or less
than other data.

A Boolean expression can consist of Boolean data, such as the following:

* BOOLEAN values (YES and NO, and their synonyms, ON and OFF, and TRUE and FALSE)
* BOOLEAN variables or formulas

* Functions that yield BOOLEAN results

e BOOLEAN values calculated by comparison operators

For example, assume that your code contains the following Boolean expression.

actual GT 20000

When processing this expression, Oracle OLAP compares each value of the variable
actual to the constant 20,000. When the value is greater than 20,000, then the
statement is TRUE; when the value is less than or equal to 20,000, then the statement is
FALSE.

When you are supplying a Boolean value, you can type either YES, ON, or TRUE for a true
value, and NO, OFF, or FALSE for a false value. When the result of a Boolean calculation
is produced, the defaults are YES and NO in the language specified by the
NLS_LANGUAGE option. The read-only YESSPELL and NOSPELL options record the
YES and NO values.

Table 2-11 shows the comparison and logical operators. Each operator has a priority
that determines its order of evaluation. Operators of equal priority are evaluated left to
right, unless parentheses change the order of evaluation. However, the evaluation is
halted when the truth value is decided. For example, in the following expression, the
TOTAL function is never executed because the first phrase determines that the whole
expression is true.

yes EQ yes OR TOTAL(sales) GT 20000

ORACLE 2-42

Chapter 2
OLAP DML Expressions

Creating Boolean Expressions

A Boolean expression is a three-part clause that consists of two items to be compared,
separated by a comparison operator. You can create a more complex Boolean
expression by joining any of these three-part expressions with the AND and OR logical
operators. Each expression that is connected by AND or OR must be a complete Boolean
expression in itself, even when it means specifying the same variable several times.

For example, the following expression is not valid because the second part is
incomplete.

sales GT 50000 AND LE 20000

In the next expression, both parts are complete so the expression is valid.

sales GT 50000 AND sales LE 20000

When you combine several Boolean expressions, the whole expression must be valid
even when the truth value can be determined by the first part of the expression. The
whole expression is compiled before it is evaluated, so when there are undefined
variables in the second part of a Boolean expression, you get an error.

Use the NOT operator, with parentheses around the expression, to reverse the sense of
a Boolean expression.

The following two expressions are equivalent.

district NE "BOSTON®
NOT(district EQ *BOSTON®)

Example 2-2 Using Boolean Comparisons

The following example shows a report that displays whether sales in Boston for each
product were greater than a literal amount.

LIMIT time TO FIRST 2
LIMIT geography TO "BOSTON®
REPORT DOWN product ACROSS time: f.sales GT 7500

This REPORT statement returns the following data.

CHANNEL: TOTALCHANNEL
GEOGRAPHY - BOSTON
---F.SALES GT 7500---

———————— TIME----=--—-
PRODUCT Jan02 Feb02
Portaudio NO NO
Audiocomp YES YES
TV NO NO
VCR NO NO
Camcorder YES YES
Audiotape NO NO
Videotape YES YES

Comparing NA Values in Boolean Expressions

When the data you are comparing in a Boolean expression involves an NA value, a
YES or NO result is returned when that makes sense. For example, when you test

ORACLE 2-43

Chapter 2
OLAP DML Expressions

whether an NA value equals a non-NA value, then the result is NO. However, when the
result would be misleading, then NA is returned. For example, testing whether an NA
value is less than or greater than a non—NA value gives a result of NA.

The following table shows the results of Boolean expressions involving NA values,
which yield non-NA values:

Table 2-15 Boolean Expressions with NA Values that Result in non-NA Values

Expressions Result
NA EQ NA YES
NA NE NA NO
NA EQ non-NA NO
NA NE non-NA YES
NA AND NO NO
NA OR YES YES

Controlling Errors When Comparing Numeric Data

When you get unexpected results when comparing numeric data, then there are
several possible causes to consider:

* A number you are comparing might have a small decimal part that does not show
in output because of the setting of the DECIMALS option.

* You are comparing two floating point numbers and at least one number is the
result of an arithmetic operation.

* You have mixed SHORTDECIMAL and DECIMAL data types in a comparison.

Oracle recommends that you use the ABS and ROUND functions to do approximate
tests for equality and avoid all three causes of unexpected comparison failure. When
using ABS or ROUND, you can adjust the absolute difference or the rounding factor to
values you feel are appropriate for your application. When speed of calculation is
important, then you probably want to use the ABS rather than the ROUND function.

Controlling Errors Due to Numerical Precision

Suppose expense is a decimal variable whose value is set by a calculation. When the
result of the calculation is 100.000001 and the number of decimal places is two, then
the value appears in output as 100.00. However, the output of the following statement
returns NO.

SHOW expense EQ 100.00

You can use the ABS or the ROUND function to ignore these slight differences when
making comparisons.

Controlling Errors When Comparing Floating Point Numbers

A standard restriction on the use of floating point numbers in a computer language is
that you cannot expect exact equality in a comparison of two floating point numbers
when either number is the result of an arithmetic operation. For example, on some
systems, the following statement returns a NO instead of the expected YES.

ORACLE 244

Chapter 2
OLAP DML Expressions

SHOW .1 + .2 EQ .3

When you deal with decimal data, do not code direct comparisons. Instead, use the
ABS or the ROUND function to allow a tolerance for approximate equality. For
example, either of the following two statements produce the desired YES.

SHOW ABS((.1 + .2) - .3) LT .00001
SHOW ROUND(.1 + .2) EQ ROUND(.3, .00001)

Controlling Errors When Comparing Different Numeric Data Types

You cannot expect exact equality between SHORTDECIMAL and DECIMAL or NUMBER
representations of a decimal number with a fractional component, because the DECIMAL
and NUMBER data types have more significant digits to approximate fractional
components that cannot be represented exactly.

Suppose you define a variable with a SHORTDECIMAL data type and set it to a fractional
decimal number, then compare the SHORTDECIMAL humber to the fractional decimal
number, as shown here.

DEFINE sdvar SHORTDECIMAL
sdvar = 1.3
SHOW sdvar EQ 1.3

The comparison is likely to return NO. What happens in this situation is that the literal is
automatically typed as DECIMAL and converts the SHORTDECIMAL variable sdvar to DECIMAL,
which extends the decimal places with zeros. A bit-by-bit comparison is then
performed, which fails. The same comparison using a variable with a DECIMAL or a
NUMBER data type is likely to return YES.

There are several ways to avoid this type of comparison failure:

e Do not mix the SHORTDECIMAL with DECIMAL or NUMBER types in comparisons. To avoid
mixing these two data types, generally avoid defining variables with decimal
components as SHORTDECIMAL.

* Use the ABS or ROUND function to allow for approximate equality. The following
statements both produce YES.

SHOW ABS(sdvar - 1.3) LT .00001
SHOW ROUND(sdvar, .00001) EQ ROUND(.3, .00001)

Comparing Dimension Values

ORACLE

Values are not compared in the same dimension based on their textual values.
Instead, Oracle OLAP compares the positions of the values in the default status of the
dimension. This enables you to specify statements like the following statement.

REPORT district LT "Seattle”

Statements are interpreted such as these using the following process:

1. The text literal "Seattle” is converted to its position in the district default status
list of the dimension.

2. That position is compared to the position of all other values in the district
dimension.

2-45

Chapter 2
OLAP DML Expressions

3. As shown by the following report, the value YES is returned for districts that are
positioned before Seattle in the district default status list of the dimension, and
NO for Seattle itself.

REPORT 22 WIDTH district LT "Seattle"

District DISTRICT LT "Seattle”

Boston YES
Atlanta YES
Chicago YES
Dallas YES
Denver YES
Seattle NO

A more complex example assigns increasing values to the variable quota based on
initial values assigned to the first six months. The comparison depends on the position
of the values in the month dimension. Because it is a time dimension, the values are in
chronological order.

quota = IF month LE "Jun02" THEN 100 ELSE LAG(quota, 1, month)* 1.15

However, when you compare values from different dimensions, such as in the
expression region It district, then the only common denominator is TEXT, and text
values are compared, not dimension positions.

Comparing Dates

You can compare two dates with any of the Boolean comparison operators. For dates,
"less" means before and "greater" means after. The expressions being compared can
include any of the date calculations discussed in Table 2-11. For example, in a billing

application, you can determine whether today is 60 or more days after the billing date

to send out a more strongly worded bill.

bill.date + 60 LE SYSDATE
Dates also have a numeric value. You can use the TO_NUMBER and TO_DATE

functions to change a value from a DATE to an INTEGER or an INTEGER to a DATE for
comparison.

Comparing Text Data

ORACLE

When you compare text data, you must specify the text exactly as it appears, with
punctuation, spaces, and uppercase or lowercase letters. A text literal must be
enclosed in single quotes. For example, this expression tests whether the first letter of
each employee's name is greater than the letter "M."

EXTCHARS(employee.name, 1, 1) GT *M*

You can compare TEXT and ID values, but they can only be equal when they are the
same length. When you test whether a text value is greater or less than another, the
ordering is based on the setting of the NLS_SORT option.

You can compare numbers with text by first converting the number to text. Ordering is
based on the values of the characters. This can produce unexpected results because
the text is evaluated from left to right. For example, the text literal 1234 is greater than
100,999.00 because 2, the second character in the first text literal, is greater than 0, the
second character in the second text literal.

2-46

Chapter 2
OLAP DML Expressions

Suppose name. label is an ID variable whose value is 3-Person and name.desc is a TEXT
variable whose value is 3-Person Tents.

The result of the following SHOW statement is NO.

SHOW name.desc EQ name.label

The result of the following statements is YES.

name.desc = "3-Person”
SHOW name.desc EQ name.label

Comparing a Text Value to a Text Pattern

The Boolean operator LIKE is designed for comparing a text value to a text pattern. A
text value is like another text value or pattern when corresponding characters match.

Besides literal matching, LIKE lets you use wildcard characters to match multiple
characters in a string:

* Anunderscore (_) character in a pattern matches any single character.

* A percent (%) character in a pattern matches zero or more characters in the first
string.

For example, a pattern of %AT_ matches any text that contains zero or more characters,
followed by the characters AT, followed by any other single character. Both DATA and
ERRATA return YES when LIKE is used to compare them with the pattern %AT_.

The results of expressions using the LIKE operator are affected by the settings of the
LIKECASE and LIKENL options.

No negation operator exists for LIKE. To accomplish negation, you must negate the
entire expression. For example, the result of the following statement is NO.

SHOW NOT ("Boston® LIKE "Bo%")

Comparing Text Literals to Relations

You can also compare a text literal to a relation. A relation contains values of the
related dimension and the text literal is compared to a value of that dimension. For
example, region.district holds values of region, so you can do the following
comparison.

region.district EQ "West"

Conditional Expressions

ORACLE

A conditional expression is an expression you can use to select between values based
on a condition. You can use conditional expression as part of any other expression if
the data type is appropriate. Oracle OLAP supports the use of the following conditional
expressions:

* |IF...THEN...ELSE expression
* SWITCH Expressions

2-47

Chapter 2
OLAP DML Expressions

IF...THEN...ELSE expression

ORACLE

An |IF expression is an expression you can use to select one of two values based on a
Boolean condition.

" Note:

Do not confuse the IF expression with the IF... THEN...ELSE command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The IF...THEN...ELSE command does not have a data
type and is not evaluated like an expression.

An IF expression has the following syntax.
IF Boolean-expression THEN expressionl ELSE expression2

In most cases, expressionl and expression2 must be of the same basic data type
(numeric, text, or Boolean) and the data type of the whole expression is determined
using the same rules as those for the binary operators. However, when the data type
of either expressionl or expression2 is DATE, it is possible for the other expression to
have a numeric or text data type. Because Oracle OLAP expects both data types to be
DATE, it converts the numeric or text value to a DATE. Also, when the value of one
expression is a dimension value then the value of the other expression is converted to
a dimension value as it is for QDRs.

You can nest IF expressions; however, in this case, you might want to use a SWITCH
expression instead as discussed in "SWITCH Expressions".

An IF expression is processed by first evaluating the Boolean expression; then:

e When the result of the Boolean expression is TRUE, then expressionl1 is evaluated
and returns that value.

* When the result of the Boolean expression is FALSE, then expressionZ2 is evaluated
and returns that value.

The expressi onl and expr essi on2 arguments are any valid OLAP DML expressions that
evaluate to the same basic data type. However, when the data type of either value is
DATE, it is possible for the other value to have a numeric or text data type. Because
both data types are expected to be DATE, Oracle OLAP converts the numeric or text
value to a DATE. The data type of the whole expression is the same as the two
expressions. When the result of the Boolean expression is NA, then NA is returned.

Example 2-3 Using an IF Expression

This example shows a sales bonus report. The bonus is 5 percent of the amount that
sales exceeded budget, but when sales in the district are below budget, then the
bonus is zero.

LIMIT month TO "Jan02" TO "Jun02"

LIMIT product TO *Tents"

REPORT DOWN district IF sales-sales.plan LT O THEN O
ELSE .05*(sales-sales.plan)

PRODUCT: TENTS

2-48

Chapter 2
OLAP DML Expressions

--—IF SALES-SALES.PLAN LT O THEN O ELSE .05*(SALES-SALES.PLAN)---

DISTRICT Jan02 Feb02 Mar02 Apr02 May02 Jun02

Boston 229.53 0.00 0.00 0.00 584.51 749.13
Atlanta 0.00 0.00 0.00 190.34 837.62 1,154.87

Chicago 0.00 0.00 0.00 84.06 504.95 786.81

SWITCH Expressions

A SWITCH expression consists of a series of CASE expressions. You can use a
SWITCH expression as an alternative to a complicated, nested IF ... THEN ... ELSE
expression when all the conditions are equality comparisons with a single value.

" Note:

Do not confuse the SWTICH expression with the SWITCH command, which
has similar syntax but a different purpose, and which must be used in an
Oracle OLAP program. The SWITCH command is not evaluated like an
expression.

A SWITCH expression has the following syntax.

SWITCH expression DO { case-label ... exp [,] } ... DOEND
where case- | abel has the following syntax:

CASE exp: | DEFAULT:

When processing a SWITCH expression, Oracle OLAP compares each CASE
expression in succession until it finds a match. When a match is found, it returns the
value specified after the last label of the current case group. When no match is found
and a DEFAULT label is specified, it returns the value specified for the DEFAULT
case; otherwise it returns NA.

Example 2-4 Using a SWITCH Expression Instead of an IF Expression

Assume that you have coded the following OLAP DML statement which includes
nested IF...THEN...ELSE statements.

testprogram = IF testtype EQ O -
THEN “program0® -
ELSE IF testtype EQ 1 -
THEN “programl® -
ELSE IF testtype EQ 2 OR testtype EQ 3 -
THEN “program2*®
ELSE NA

You could, instead, code the same behavior using a SWITCH expression as shown
below.

testprogram = SWITCH testtype DO -
CASE 0: “"program0®, -
CASE 1: "programl®, -
CASE 2: -

ORACLE 2-49

Chapter 2
OLAP DML Expressions

CASE 3: T"program2®, -
DEFAULT: NA -
DOEND

You could also code the same behavior using a SWITCH statement that spans fewer
lines, omits commas, and omits the DEFAULT case because NA is the default return
value when a match is not found.

testprogram = SWITCH testtype DO CASE 0: "program0® CASE 1: “"programl® -
CASE 2: CASE 3: "program2® DOEND

Substitution Expressions

ORACLE

To construct a substitution expression, use an ampersand character (&) at the
beginning of an expression. Using an ampersand (that is, the substitution operator)
this way is also called ampersand substitution. The ampersand specifies that Oracle
OLAP evaluates an expression containing a substitution expression as follows:

1. Evaluate the expression following the ampersand (the substitution expression).

2. Evaluate the rest of the expression using the result of step 1 (that is, the result of
the substitution expression).

Ampersand substitution gives you a level of indirection when you are specifying an
expression. For example, when you specify an ampersand followed by a variable that
holds the name of another variable, the value of the expression becomes the data in
the second variable. Ampersand substitution lets you write more general programs
that can operate on data that is chosen when the program is run. Note, however, that,
Oracle OLAP does not compile program lines with ampersand substitution; instead
these lines are interpreted when the program runs. To avoid ampersand substitution in
a program, you can often use an IF or SWITCH command instead.

You cannot use ampersand substitution in model equations.

Using Ampersand Substitution with QDRs

When you use an ampersand with a QDR, you must enclose the whole expression in
parentheses if you want the variable to be qualified before the substitution is made.

Suppose you have a text variable named myvar that is dimensioned by reptype and that
contains the names of variables. Remember that it is myvar that is dimensioned by
reptype, not the variables named by myvar. Therefore, you must use parentheses so
that myvar is qualified and the resulting value is used in a REPORT statement.

REPORT &(myvar(reptype "actual®))

When you do not use parentheses and the variable that is specified in myvar is sales,
then you get an error message that sales is not dimensioned by reptyp

Example 2-5 Using Ampersand Substitution

Suppose you have a variable called curname that holds the name of a dimension in the
analytic workspace (product). When you execute the following statement, then
REPORT produces the single value, product, which is the actual value stored in the
curname variable.

REPORT curname

CURNAME

2-50

Chapter 2
OLAP DML Expressions

PRODUCT

However, when you execute the following statement, then REPORT produces the
values of the dimension product.

REPORT &curname

PRODUCT
Tents
Canoes
Racquets
Sportswear
Footwear

ORACLE' 251

Formulas, Models, Aggregations, and
Allocations

Calculation objects are OLAP DML objects that contain OLAP DML statements that
specify analysis to be performed. Calculation objects include: formulas, models,
aggregation specifications, allocation specifications, and programs.

This chapter contains information on the following

Creating Calculation Objects
OLAP DML Formulas

OLAP DML Model Objects
OLAP DML Aggregation Objects
OLAP DML Allocation Objects

For information on creating OLAP DML programs, see OLAP DML Programs.

Creating Calculation Objects

The general process of creating a calculation specification object is the following two
step process:

1.
2.

Define the calculation object using the appropriate DEFINE statement.

Add the calculation specification to the object definition. You can add the
calculation specification to the definition of a calculation object in the following
ways:

At the command line level of the OLAP Worksheet, in an input file, or as an
argument to a PL/SQL function. In this case, ensure that the object is the
current object (issue a CONSIDER statement, if necessary), and, then, issue
the appropriate statement that includes the specification as a multiline text
argument. To code the specification as a multiline text, you can use a
JOINLINES function where each of the text arguments of JOINLINES is a
statement that specifies the desired processing, and where the final statement
IS END.

In an Edit Window of the OLAP Worksheet. In this case, at the command line
level of the OLAP Worksheet, issue an EDIT statement with the appropriate
keyword. An EDIT statement opens an Edit Window for the specified object.
You can then type each statement as an individual line in the Edit Window.
Saving the specification and closing the Edit Window when you are finished.

The following table outlines the OLAP DML statements that you use to create each
type of calculation specification.

ORACLE

3-1

Chapter 3
OLAP DML Formulas

Table 3-1 Commands for Defining calculation objects

___|
Calculations Definition Statement Specification Statement For More Information

Formula DEFINE FORMULA EQ "OLAP DML Formulas"

Model DEFINE MODEL MODEL "OLAP DML Model
Objects"

Aggregation DEFINE AGGMAP AGGMAP "OLAP DML Aggregation
Objects"

Allocation DEFINE AGGMAP ALLOCMAP " OLAP DML Allocation
Objects"

Program DEFINE PROGRAM PROGRAM OLAP DML Programs

OLAP DML Formulas

You can
use and
you can

save an expression in a formula. Frequently, you define a formula for ease of
to save storage space. Once you have defined a formula for an expression,
use the name of the formula to represent the expression. Oracle OLAP does

not store the data for a formula in a variable; instead it calculates the data at run time
each time the data is requested.

Before you create a formula, decide whether you want to specify the expression when

you first

define the formula object or whether you want to specify the expression for

the formula after you define the formula object:

* To specify the expression when you first define the formula object:

1.

Issue a DEFINE FORMULA statement to define the formula object. Include the
expression in the definition. Do not specify values for the datatype or
dimensions arguments.

(Optional) Issue a COMPILE statement to compile the formula.

When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

* To specify the expression for the formula after you define the formula object:

1.

Issue a DEFINE FORMULA statement to define the formula object. Specify
values for the datatype or dimensions arguments, but do not specify a value for
the expression itself.

Issue a CONSIDER statement to make the formula the current definition and
then issue an EQ statement to specify the expression for the formula.

(Optional) Issue a COMPILE statement to compile the formula.

When you want the formula to be a permanent part of the analytic workspace,
save the formula using an UPDATE statement followed by COMMIT.

For example, you can define a formula to calculate dollar sales, as follows.

DEFINE d

ollar.sales FORMULA units * price

You can use TRACE to help you debug a forumula.

ORACLE

3-2

Chapter 3
OLAP DML Model Objects

OLAP DML Model Objects

This topic provides information about creating and executing OLAP DML models. It
includes the following subtopics:

* What is an OLAP DML Model?
e Creating Models

e Compiling Models

* Running a Model

* Debugging a Model

What is an OLAP DML Model?

An OLAP DML model is a set of interrelated equations that can assign results either to
a variable or to a dimension value. For example, in a financial model, you can assign
values to specific line items, such as gross.margin or net. income.

gross.margin = revenue - cogs

When an assignment statement assigns data to a dimension value or refers to a
dimension value in its calculations, then it is called a dimension-based equation. A
dimension-based equation does not refer to the dimension itself, but only to the values
of the dimension. Therefore, when the model contains any dimension-based
equations, then you must specify the name of each of these dimensions in a DIMENSION
statement at the beginning of the model.

When a model contains any dimension-based equations, then you must supply the
name of a solution variable when you run the model. The solution variable is both a
source of data and the assignment target of model equations. It holds the input data
used in dimension-based equations, and the calculated results are stored in
designated values of the solution variable. For example, when you run a financial
model based on the line dimension, you might specify actual as the solution variable.

Dimension-based equations provide flexibility in financial modeling. Because you do
not need to specify the modeling variable until you solve a model, you can run the
same model with the actual variable, the budget variable, or any other variable that is
dimensioned by line.

Models can be quite complex. You can:

e Include one model within another model as discussed in "Nesting Models"

e Use data from different time periods as discussed in "Using Data from Past and
Future Time Periods"

e Solve simultaneous equations as discussed in "Solving Simultaneous Equations”

e Create models for different scenarios as described in "Modeling for Multiple
Scenarios"

Creating Models

To create an OLAP DML model, take the following steps:

ORACLE 3-3

Chapter 3
OLAP DML Model Objects

1. Issue a DEFINE MODEL command to define the program object.

2. Issue a MODEL command which adds a specification to the model to specify the
processing that you want performed.

3. Compile the model as described in "Compiling Models".

4. (Optional) If necessary, change the settings of model options listed in "Model
Options".

5. Execute the model as described in "Running a Model".
6. Debug the model as described in "Debugging a Model".

7. When you want the model to be a permanent part of the analytic workspace, save
the model using an UPDATE command followed by COMMIT.

For an example of creating a model, see Example 10-57.

Nesting Models

You can include one model within another model by using an INCLUDE statement
within a MODEL command. The MODEL command that contains the INCLUDE
statement is referred to as the parent model. The included model is referred to as the
base model. You can nest models by placing an INCLUDE statement in a base
model. For example, model myModel1 can include model myModel2, and model myModel?2
can include model myModel3. The nested models form a hierarchy. In this example,
myModel1 is at the top of the hierarchy, and myModel3 is at the root.

When a model contains an INCLUDE statement, then it cannot contain any
DIMENSION statements. A parent model inherits its dimensions, if any, from the
DIMENSION statements in the root model of the included hierarchy. In the example
just given, models myModel1 and myModel2 both inherit their dimensions from the
DIMENSION statements in model myModel 3.

The INCLUDE statement enables you to create modular models. When certain
equations are common to several models, then you can place these equations in a
separate model and include that model in other models as needed.

The INCLUDE statement also facilitates what-if analyses. An experimental model can
draw equations from a base model and selectively replace them with new equations.
To support what-if analysis, you can use equations in a model to mask previous
equations. The previous equations can come from the same model or from included
models. A masked equation is not executed or shown in the MODEL.COMPRPT
report for a model.

Dimension Status and Model Equations

ORACLE

When a model contains an assignment statement to assign data to a dimension value,
then the dimension is limited temporarily to that value, performs the calculation, and
restores the initial status of the dimension.

For example, a model might have the following statements.

DIMENSION line
gross.margin = revenue - c0gs

If you specify actual as the solution variable when you run the model, then the
following code is constructed and executed.

3-4

Chapter 3
OLAP DML Model Objects

PUSH line

LIMIT line TO gross.margin

actual = actual(line revenue) - actual(line cogs)
POP line

The fact that using a solution variable in a model causes this behind-the-scenes code
construction allows you perform complex calculations with simple model equations.
For example, line item data might be stored in the actual variable, which is
dimensioned by line. However, detail line item data might be stored in a variable
named detail .data, with a dimension named detail.line.

When your analytic workspace contains a relation between line and detail . line,
which specifies the line item to which each detail item pertains, then you might write
model equations such as the following ones.

revenue = total(detail.data line)
expenses = total(detail.data line)

The relation between detail.line and line is used automatically to aggregate the
detail data into the appropriate line items. The code that is constructed when the
model is run ensures that the appropriate total is assigned to each value of the line
dimension. For example, while the equation for the revenue item is calculated, line is
temporarily limited to revenue, and the TOTAL function returns the total of detail items for
the revenue value of line.

Using Data from Past and Future Time Periods

Several OLAP DML functions make it easy for you to use data from past or future time
periods. For example, the LAG function returns data from a specified previous time
period, and the LEAD function returns data from a specified future period.

When you run a model that uses past or future data in its calculations, you must
ensure that your solution variable contains the necessary past or future data. For
example, a model might contain an assignment statement that bases an estimate of
the revenue line item for the current month on the revenue line item for the previous
month.

DIMENSION line month

revenue = LAG(revenue, 1, month) * 1.05

When the month dimension is limited to Apr2004 to Jun2004 when you run the model,
then you must ensure that the solution variable contains revenue data for Mar96.

When your model contains a LEAD function, then your solution variable must contain
the necessary future data. For example, when you want to calculate data for the
months of April through June of 2004, and when the model retrieves data from one
month in the future, then the solution variable must contain data for July 2004 when
you run the model.

Handling NA Values in Models

Oracle OLAP observes the NASKIP2 option when it evaluates equations in a model.
NASKIP2 controls how NA values are handled when + (plus) and - (minus) operations

ORACLE 3-5

Chapter 3
OLAP DML Model Objects

are performed. The setting of NASKIP2 is important when the solution variable
contains NA values.

The results of a calculation may be NA not only when the solution variable contains an
NA value that is used as input, but also when the target of a simultaneous equation is
NA. Values in the solution variable are used as the initial values of the targets in the first
iteration over a simultaneous block. Therefore, when the solution variable contains NA
as the initial value of a target, an NA result may be produced in the first iteration, and
the NA result may be perpetuated through subsequent iterations.

To avoid obtaining NA for the results, you can ensure that the solution variable does not
contain NA values or you can set NASKIP2 to YES before running the model.

Solving Simultaneous Equations

An iterative method is used to solve the equations in a simultaneous block. In each
iteration, a value is calculated for each equation. The new value is compared to the
value from the previous iteration. When the comparison falls within a specified
tolerance, then the equation is considered to have converged to a solution. When the
comparison exceeds a specified limit, then the equation is considered to have
diverged.

When all the equations in the block converge, then the block is considered solved.
When any equation diverges or fails to converge within a specified number of
iterations, then the solution of the block (and the model) fails and an error occurs.

You can exercise control over the solution of simultaneous equations with the OLAP
DML options described in "Model Options". For example, using these options, you can
specify the solution method to use, the factors to use in testing for convergence and
divergence, the maximum number of iterations to perform, and the action to take when
the assignment statement diverges or fails to converge.

Modeling for Multiple Scenarios

Instead of calculating a single set of figures for a month and division, you might want
to calculate several sets of figures, each based on different assumptions.

You can define a scenario model that calculates and stores forecast or budget figures
based on different sets of input figures. For example, you might want to calculate profit
based on optimistic, pessimistic, and best-guess figures.

To build a scenario model:

1. Define a scenario dimension.

2. Define a solution variable dimensioned by the scenario dimension.
3. Enter input data into the solution variable.

4. Write a model to calculate results based on the input data.

For an example of building a scenario model see, Example 10-58.

Compiling Models

ORACLE

When you finish writing the statements in a model, you can use the COMPILE
command to compile the model. During compilation, COMPILE checks for format
errors, so you can use COMPILE to help debug your code before running a model.

3-6

Chapter 3
OLAP DML Model Objects

When you do not use COMPILE before you run the model, then the model is compiled
automatically before it is solved.You can use the OBJ function with the ISCOMPILED
choice to test whether a model is compiled.

SHOW OBJ(ISCOMPILED *myModel*)

When you compile a model, either by using a COMPILE statement or by running the
model, the model compiler checks for problems that are unique to models. You receive
an error message when any of the following occurs:

e The model contains any statements other than DIMENSION, INCLUDE, and
assignment (SET) statements.

* The model contains both a DIMENSION statement and an INCLUDE statement.

A DIMENSION or INCLUDE statement is placed after the first equation in the
model.

e The dimension values in a single dimension-based equation refer to two or more
different dimensions.

e An equation refers to a name that the compiler cannot identify as an object in any
attached analytic workspace. When this error occurs, it may be because an
equation refers to the value of a dimension, but you have neglected to include the
dimension in a DIMENSION statement. In addition, a DIMENSION statement may
appear to be missing when you are compiling a model that includes another model
and the other model fails to compile. When a root model (the innermost model in a
hierarchy of included models) fails to compile, the parent model cannot inherit any
DIMENSION commands from the root model. In this case the compiler may report
an error in the parent model when the source of the error is actually in the root
model. See INCLUDE for additional information.

Resolving Names in Equations

ORACLE

The model compiler examines each name in an equation to determine the analytic
workspace object to which the name refers. Because you can use a variable and a
dimension value in the same way in a model equation (basing calculations on it or
assigning results to it), a name might be the name of a variable or it might be a value
of any dimension listed in a DIMENSION statement.

To resolve each name reference, the compiler searches through the dimensions listed
in explicit or inherited DIMENSION statements, in the order they are listed, to
determine whether the name matches a dimension value of a listed dimension. The
search concludes as soon as a match is found.

Therefore, when two or more listed dimensions have a dimension value with the same
name, the compiler assumes that the value belongs to the dimension named earliest in
a DIMENSION statement.

Similarly, the model compiler might misinterpret the dimension to which a literal
INTEGER value belongs. For example, the model compiler assumes that the literal value
200" belongs to the first dimension that contains either a value at position 200 or the
literal dimension value 200.

To avoid an incorrect identification, you can specify the desired dimension and enclose
the value in parentheses and single quotes. See "SET".

When the compiler finds that a name is not a value of any dimension specified in a
DIMENSION statement, it assumes that the name is the name of an analytic

3-7

Chapter 3
OLAP DML Model Objects

workspace variable. When a variable with that name is not defined in any attached
analytic workspace, an error occurs.

Code for Looping Over Dimensions

The model compiler determines the dimensions over which the statements loop. When
an equation assigns results to a variable, the compiler constructs code that loops over
the dimensions (or bases of a composite) of the variable.

When you run a model that contains dimension-based equations, the solution variable
that you specify can be dimensioned by more dimensions than are listed in
DIMENSION statements.

Evaluating Program Arguments

When you specify the value of a model dimension as an argument to a user-defined
program, the compiler recognizes a dependence introduced by this argument.

For example, an equation might use a program named weight that tests for certain
conditions and then weights and returns the Taxes line item based on those conditions.
In this example, a model equation might look like the following one.

Net.Income = Opr.lIncome - weight(Taxes)

The compiler correctly recognizes that Net. Income depends on Opr. Income and Taxes.
However, when the weight program refers to any dimension values or variables that
are not specified as program arguments, the compiler does not detect any hidden
dependencies introduced by these calculations.

Dependencies Between Equations

ORACLE

The model compiler analyzes dependencies between the equations in the model. A
dependence exists when the expression on the right-hand side of the equal sign in one
equation refers to the assignment target of another equation. When an equation
indirectly depends on itself as the result of the dependencies among equations, a
cyclic dependence exists between the equations.

The model compiler structures the model into blocks and orders the equations within
blocks and the blocks themselves to reflect dependencies. When you run the model, it
is solved one block at a time. The model compiler can produce three types of solution
blocks:

* Simple Solution Blocks—Simple blocks include equations that are independent
of each other and equations that have dependencies on each other that are non-
cyclic.

For example, when a block contains equations that solve for values A, B, and C, a
non-cyclic dependence can be illustrated as A>B>C. The arrows indicate that A
depends on B, and B depends on C.

e Step Solution Blocks—Step blocks include equations that have a cyclic
dependence that is a one-way dimensional dependence. A dimensional
dependence occurs when the data for the current dimension value depends on
data from previous or later dimension values. The dimensional dependence is
one-way when the data depends on previous values only or later values only, but

3-8

ORACLE

Chapter 3
OLAP DML Model Objects

not both. For more information on one-way dimensional dependence, see
"Ensuring One-Way Dimensional Dependence”.

Dimensional dependence typically occurs over a time dimension. For example, it is
common for a line item value to depend on the value of the same line item or a
different line item in a previous time period. When a block contains equations that
solve for values A and B, a one-way dimensional dependence can be illustrated as
A>B>LAG(A). The arrows indicate that A depends on B, and B depends on the value
of A from a previous time period.

e Simultaneous Solution Blocks—Simultaneous blocks include equations that
have a cyclic dependence that is other than one-way dimensional. The cyclic
dependence may involve no dimensional qualifiers at all, or it may be a two-way
dimensional dependence. For more information on two-way dimensional
dependence, see "Structures for Which the Model Compiler Assumes Two-Way
Dimensional Dependence”.

When a model contains a block of simultaneous equations, COMPILE gives you a
warning message. In this case, you may want to check the settings of the options
that control simultaneous solutions before you run the model. "Model Options" lists
these options.

An example of a cyclic dependence that does not depend on any dimensional
qualifiers can be illustrated as A>B>C>A. The arrows indicate that A depends on B, B
depends on C, and C depends on A.

An example of a cyclic dependence that is a two-way dimensional dependence
can be illustrated as A>LEAD(B)>LAG(A). The arrows indicate that A depends on the
value of B from a future period, while B depends on the value of A from a previous
period.

Order of Simultaneous Equations

The solution of a simultaneous block of equations is sensitive to the order of the
equations. In general, rely on the model compiler to determine the optimal order for the
equations. In some cases, however, you may be able to encourage convergence by
placing the equations in a particular order.

To force the compiler to leave the simultaneous equations in each block in the order in
which you place them, set the MODINPUTORDER option to YES before compiling the
model. (MODINPUTORDER has no effect on the order of equations in simple blocks
or step blocks.)

Structures for Which the Model Compiler Assumes Two-Way Dimensional
Dependence

When dependence is introduced through any of the following structures, the model
compiler assumes that two-way dimensional dependence occurs:

* Atwo-way dimensional dependence can occur when you use an aggregation
function, such as AVERAGE, TOTAL, ANY, or COUNT.

Opr.Income = Gross.Margin -
(TOTAL(Marketing + Selling + R.D))
Marketing = LAG(Opr.Income, 1, month)

* Atwo-way dimensional dependence can occur when you use a time-series
function that requires a time-period argument, such as CUMSUM, LAG, or LEAD

3-9

Chapter 3
OLAP DML Model Objects

(except for the specific functions and conditions described in "Ensuring One-Way
Dimensional Dependence").

A two-way dimensional dependence also can occur when you use a financial
function, such as DEPRSL or NPV.

A cyclic dependence across a time dimension that you introduce through a loan or
depreciation function may cause unexpected results. The loan functions include
FINTSCHED, FPMTSCHED, VINTSCHED, and VPMTSCHED. The depreciation
functions include DEPRDECL, DEPRDECLSW, DEPRSL, and DEPRSOYD.

Ensuring One-Way Dimensional Dependence

When dependence between equations is introduced through any of the following
structures, a one-way dimensional dependence occurs:

A one-way dimensional dependence occurs when you use a LAG or LEAD
function and when the argument for the number of time periods is coded as an
explicit number (either as a value or a constant) or as the result of ABS.
(Otherwise, there may be a two-way dependence, involving both previous and
future dimension values, and the compiler assumes that a simultaneous solution is
required.) The following example illustrates this use of LAG.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

A one-way dimensional dependence occurs when you use a MOVINGAVERAGE,
MOVINGMAX, MOVINGMIN, or MOVINGTOTAL function, when the start and stop
arguments are non-zero numbers, and when both the start and top arguments are
positive or both are negative. Otherwise, two-way dimensional dependence is
assumed.

Opr.Income = Gross.Margin - (Marketing + Selling + R.D)
Marketing = MOVINGAVERAGE(Opr.Income, -4, -1, 1, month)

Obtaining Analysis Results

After compiling a model, you can use the following tools to obtain information about
the results of the analysis performed by the compiler:

The MODEL.COMPRPT program produces a report that shows how model
equations are grouped into blocks. For step blocks and for simultaneous blocks
with a cross-dimensional dependence, the report lists the dimensions involved in
the dependence.

The MODEL.DEPRT program produces a report that lists the variables and
dimension values on which each model equation depends. When a dependence is
dimensional, the report gives the name of the dimension.

The INFO function lets you obtain specific items of information about the structure
of the model.

Checking for Additional Problems

ORACLE

The compiler does not analyze the contents of any programs or formulas that are used
in model equations. Therefore, you must check the programs and formulas yourself to
make sure they do not do any of the following:

Refer to the value of any variable used in the model.

3-10

Chapter 3
OLAP DML Model Objects

Refer to the solution variable.
Limit any of the dimensions used in the model.

Invoke other models.

When a model or program violates any of these restrictions, the results of the model
may be incorrect.

" See Also:
MODTRACE, TRACE

Running a Model

When you run a model, keep these points in mind:

Before you run a model, the input data must be available in the solution variable.

Before running a model that contains a block of simultaneous equations, you might
want to check or modify the values of some OLAP DML options that control the
solution of simultaneous blocks. These options are described briefly in "Model
Options".

When your model contains any dimension-based equations, then you must
provide a numeric solution variable that serves both as a source of data and as the
assignment target for equation results. The solution variable is usually
dimensioned by all of the dimensions on which model equations are based and
also by the other dimensions of the solution variable on which you are not basing
equations.

When you run a model, a loop is performed automatically over the values in the
current status list of each of the dimensions of the solution variable on which you
have not based equations.

When a model equation bases its calculations on data from previous time periods,
then the solution variable must contain data for these previous periods. When it
does not, or when the first value of the dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR is in status, then the results of the calculation are NA.

Syntax for Running a Model

ORACLE

To run or solve a model, use the following syntax.

model-name [solution-variable] [NOWARN]

where:

nodel - nane is the name of the model.

sol uti on-vari abl e is the name of a numeric variable that serves as both the
source and the target of data in a model that contains dimension-based equations.
The solution variable is usually dimensioned by all the dimensions on which model
equations are based (as specified in explicit or included DIMENSION commands).
The solution-variable argument is required when the model contains any
dimension-based equations. When all the model equations are based only on
variables, a solution variable is not needed and an error occurs when you supply

3-11

Chapter 3
OLAP DML Model Objects

this argument. See "Dimensions of Solution Variables" for more information on
dimensions of solution variables.

» NOWARN is an optional argument that specifies that you do not want to be warned
when the model contains a block of simultaneous equations.

Dimensions of Solution Variables

ORACLE

In a model with dimension-based equations, the solution variable is usually
dimensioned by the dimensions on which model equations are based. Or, when a
solution variable is dimensioned by a composite, the model equations can be based
on base dimensions of the composite. The dimensions on which model equations are
based are listed in explicit or inherited DIMENSION statements.

Special Cases of Solution Variables

The following special cases regarding the dimensions of the solution variable can
occur:

* The solution variable can have dimensions that are not listed in DIMENSION
commands. Oracle OLAP automatically loops over the values in the status of the
extra dimensions. For example, the model might contain a DIMENSION statement
that lists the line and month dimensions, but you might specify a solution variable
dimensioned by line, month, and division. Oracle OLAP automatically loops over
the division dimension when you run the model. The solution variable can also be
dimensioned by a composite that has one or more base dimensions that are not
listed in DIMENSION commands. See "Solution Variables Dimensioned by a
Composite"

* When the solution variable has dimensions that are not listed in DIMENSION
commands and when any of these other dimensions are the dimension of a step
or simultaneous block, an error occurs.

e Oracle OLAP loops over the values in the status of all the dimensions listed in
DIMENSION commands, regardless of whether the solution variable is
dimensioned by them. Therefore, Oracle OLAP does extra, unnecessary work
when the solution variable is not dimensioned by all the listed dimensions. Oracle
OLAP warns you of this situation before it starts solving the model.

e The inclusion of an unneeded dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR in a DIMENSION statement causes incorrect results when
you use a loan, depreciation, or aggregation function in a model equation. The
incorrect results occur because any component of a model equation that refers to
the values of a model dimension behaves as if that component has all the
dimensions of the model.

Solution Variables Dimensioned by a Composite

When a solution variable contains a composite in its dimension list, Oracle OLAP
observes the sparsity of the composite whenever possible. As it solves the model,
Oracle OLAP confines its loop over the composite to the values that exist in the
composite. It observes the current status of the composite's base dimensions as it
loops.

However, for proper solution of the model, Oracle OLAP must treat the following base
dimensions of the composite as regular dimensions:

A base dimension that is listed in a DIMENSION statement.

3-12

Chapter 3
OLAP DML Aggregation Objects

* A base dimension that is implicated in a model equation created using SET (for
example, an equation that assigns data to a variable dimensioned by the base
dimension).

* A base dimension that is also a base dimension of a different composite that is
specified in the ACROSS phrase of an equation. (See SET for more information
on assignment statements and the use of ACROSS phrase.)

When a base dimension of a solution variable's composite falls in any of the preceding
three categories, Oracle OLAP treats that dimension as a regular dimension and loops
over all the values that are in the current status.

When the solution variable's composite has other base dimensions that do not fall in
the special three categories, Oracle OLAP creates a temporary composite of these
extra base dimensions. The values of the temporary composite are the combinations
that existed in the original composite. Oracle OLAP loops over the temporary
composite as it solves the model.

Debugging a Model

The following tools are available for debugging models:

e To see the order in which the equations in a model are solved, you can set the
MODTRACE option to YES before you run the model.When you set MODTRACE to
YES, you can use a DBGOUTFILE statement to send debugging information to a
file. The file produced by DBGOUTFILE interweaves each line of your model with
its corresponding output.

¢ You can use the MODEL.COMPRPT, MODEL.DEPRT, and MODEL.XEQRPT
programs and the INFO function to obtain information about the structure of a
compiled model and the solution status of a model you have run.

OLAP DML Aggregation Objects

This topic provides information about aggregating data using the OLAP DML.It
includes the following subtopics:

* What is an OLAP DML Aggregation?

* Aggregating Data Using the OLAP DML
» Compiling Aggregation Specifications

* Executing the Aggregation

» Creating Custom Aggregates

What is an OLAP DML Aggregation?

ORACLE

Historically, aggregating data was summing detail data to provide subtotals and totals.
However, using OLAP DML aggmap objects you can specify more complex
aggregation calculations:

* The summary data dimensioned by a hierarchical dimension can be calculated
using many different types of methods (for example, first, last, average, or
weighted average). For an example of this type of aggregation, see Example 9-18.

e The summary data dimensioned by a nonhierarchical dimension can be calculated
using a model. Using a model to calculate summary data is useful for calculating

3-13

Chapter 3
OLAP DML Aggregation Objects

values for dimensions, such as line items, that do not have a hierarchical structure.
Instead, you create a model to calculate the values of individual line items from
one or more other line items or workspace objects. For an example of this type of
aggregation, see Example 9-17.

The detail data used to calculate the summary data can be in the variable that
contains the summary data or in one or more other variables. The variable that
contains the summary data does not have to have the same dimensions as the
variables that contain the detail data. For an examples of this type of aggregation,
see Example 9-15 and Example 9-32.

The data can be aggregated as a database maintenance procedure, in response
to user requests for summarized data, or you can combine these approaches. See
"Executing the Aggregation” for more information.

Data that is aggregated in response to user requests can be calculated each time
it is requested or stored or cached in the analytic workspace for future queries.

The specification for the aggregation can be permanent or temporary as described
in "Creating Custom Aggregates".

Aggregating Data Using the OLAP DML

To aggregate data using the OLAP DML, take the following steps:

ORACLE

1.

Decide if you want to aggregate all of the data as a database maintenance
procedure using the AGGREGATE command or on-the-fly at run time using the
AGGREGATE function or the SAGGMAP property, or if you want to combine these
approaches and precalculate some values and calculate others at run time. For a
discussion of the various approaches, see "Executing the Aggregation”.

Issue a DEFINE AGGMAP statement to define the aggmap object as type
AGGMAP.

Write the aggregation specification as described in AGGMAP.

When aggregating a partitioned variable, run PARTITIONCHECK to check that the
aggregation specification created in the previous step is compatible with the
variable's partitioning. If it is not, either rewrite the aggregation specification or
repartition the variable using CHGDFN.

When some or all of the data is to be aggregated using the AGGREGATE
function:

a. Compile the aggmap object as described in "Compiling Aggregation
Specifications".

b. Add the triggering property, object, or event. For example, add a formula that
has the AGGREGATE function as its expression and add SNATRIGGER
property to the variable to trigger the execution of that formula in response to a
run-time request for data.

When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

For data that is to be calculated using the AGGREGATE command:

a. (Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the
aggregation operation.

3-14

Chapter 3
OLAP DML Aggregation Objects

b. Use the AGGREGATE command, followed by UPDATE and COMMIT to
precalculate the data and store it in the analytic workspace.

Compiling Aggregation Specifications

Compiling the aggmap object is important for aggregation performed at run-time using
the AGGREGATE function. Unless the compiled version of the aggmap has been
saved, the aggmap is recompiled by each session that uses it.

There are two ways you can compile an aggmap objects:

e |ssue a COMPILE statement.

A COMPILE statement is the only way to compile an aggmap object that is used
by an AGGREGATE function. Explicitly compiling an aggmap is also useful for
finding syntax errors in the aggmap before attempting to use it to generate data.
The following statement compiles the sales.agg aggmap.

COMPILE gpct.aggmap

* When you aggregate the data using an AGGREGATE command, include the
FUNCDATA phrase in the statement.

When you use the FUNCDATA phrase in an AGGREGATE command, Oracle
OLAP compiles the aggmap before it aggregates the data. For example, this
statement compiles and precalculates the aggregate data.

AGGREGATE sales USING gpct.aggmap FUNCDATA

" Note:

When some data is calculated on the fly, then you must compile and save
the aggmap after executing the AGGREGATE command.

Executing the Aggregation

ORACLE

The OLAP DML provides two ways to aggregate data:

* As adata maintenance procedure using the AGGREGATE command. To use this
method of aggregating data within an aggregation specification, identify data that
you want to aggregate in this manner using the PRECOMPUTE statement or
PRECOMPUTE clause of the RELATION statement.

e At run-time when needed using the AGGREGATE function or adding
an $AGGMAP property to the variable.

You can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria. You can also combine
these approaches and precalculate some values and calculate others at run time. In
this case, frequently, you use the same aggmap with the AGGREGATE command and
the AGGREGATE function. However, in some cases you might use different aggmaps.

One step that you can take to achieve overall good performance is to balance the
amount of the data that you aggregate and store in an analytic workspace with the
amount of data that you specify for calculation on the fly. You can use a
PRECOMPUTE statement or clause within your aggregation specification to ask
Oracle OLAP to use special functionality called the Aggregate Advisor to automatically

3-15

Chapter 3
OLAP DML Allocation Objects

determine what values to aggregate as a data maintenance procedure using the
AGGREGATE command, or to explicitly identify the values yourself.

Creating Custom Aggregates

The definitions for most aggregations persist from one session to another. However,
you might need to create session-only aggregates at run time for forecasting or what-if
analysis, or just because you want to view the data in an unforeseen way. Adding
session-only aggregates is sometimes called creating custom aggregates. You can
create non-persistent aggregated data without permanently changing the specification
for the aggregation in the following ways:

* Using a MAINTAIN ADD SESSION statement, define temporary dimension
members and include an aggregation specification as part of the definition of these
members. The aggregation specification can either be a model or an aggmap. For
an example of using this method to create a temporary aggregation, see
Example 10-42 .

» Create a model that specifies the aggregation. Use an AGGMAP ADD statement
to add the model to an aggmap at run time. After a session, Oracle OLAP
automatically removes any models that you have added to an aggmap in this
manner. See AGGMAP ADD or REMOVE model for more information.

OLAP DML Allocation Objects

Allocating data involves creating lower-level data from summary data. This topic
provides an overview of how to allocate data using OLAP DML statements. It includes
the following subtopics:

e Introduction to Allocating Data Using the OLAP DML
* Features of Allocation in Oracle OLAP
e Allocating Data

¢ Handling NA Values When Allocating Data

Introduction to Allocating Data Using the OLAP DML

ORACLE

You can specify data allocation in an ALLOCMAP type aggmap object. To implement
the allocation, execute an ALLOCATE command for the ALLOCMAP aggmap. The
target is a variable that is dimensioned by one or more hierarchical dimensions. The
source data is specified by dimension values at a higher level in a hierarchical
dimension than the values that specify the target cells.

ALLOCATE uses an aggmap to specify the dimensions and the values of the
hierarchies to use in the allocation, the method of operation to use for a dimension,
and other aspects of the allocation.

Some allocation operations are based on existing data. The object containing that data
is the basis object for the allocation. In those operations, ALLOCATE distributes the
data from the source based on the values of the basis object.

ALLOCATE has operations that are the inverse of the operations of the AGGREGATE
command. The allocation operation methods range from simple allocations, such as
copying the source data to the cells of the target variable, to very complex allocations,
such as a proportional distribution of data from a source that is a formula, with the

3-16

Chapter 3
OLAP DML Allocation Objects

amount distributed being based on another formula, with multiple variables as targets,
and with an aggmap that specifies different methods of allocation for different
dimensions.

Features of Allocation in Oracle OLAP

The Oracle OLAP allocation system is very flexible and has many features, including
the following:

* The source, basis, and target objects can be the same variable or they can be
different objects.

* The source and basis objects can be formulas, so you can perform computations
on existing data and use the result as the source or basis of the allocation.

* You can specify the method of operation of the allocation for a dimension. The
operations range from simple to very complex.

* You can specify whether the allocated value is added to or replaces the existing
value of the target cell.

* You can specify an amount to add to or multiply by the allocated value before the
result is assigned to the target cell.

* You can lock individual values in a dimension hierarchy so that the data of the
target cells for those dimension values is not changed by the allocation. When you
lock a dimension value, then the allocation system normalizes the source data,
which subtracts the locked data from the source before the allocation. You can
choose to not normalize the source data.

* You can specify minimum, maximum, floor, or ceiling values for certain operations.

* You can copy the allocated data to a second variable so that you can have a
record of individual allocations to a cell that is the target of multiple allocations.

* You can specify ways of handling allocations when the basis has a null value.

* You can use the same aggmap in different ALLOCATE commands to use the
same set of dimension hierarchy values, operations, and arguments with different
source, basis, or target objects.

Allocating Data

ORACLE

To allocate data using an aggmap object, use the following OLAP DML statements in
the order indicated:

1. Issue a DEFINE AGGMAP statement to define the aggmap object.

< Note:

When using the OLAP Worksheet, at the command line level, immediately
after the DEFINE AGGMAP statement, enter an "empty" allocation
specification by coding an ALLOCMAP statement. For example:

DEFINE myaggmap AGGMAP
ALLOCMAP “END"

3-17

8.

Chapter 3
OLAP DML Allocation Objects

Add a specification to the aggmap object that specifies the allocation that you want
performed. See ALLOCMAP for more information.

When you want the aggmap object to be a permanent part of the analytic
workspace, save the aggmap object using an UPDATE statement followed by
COMMIT.

(Optional) Use the DBMS_CUBE_LOG.ENABLE procedure to log the allocation
operation.

(Optional) Redesign the allocation error log by setting the
ALLOCERRLOGFORMAT and ALLOCERRLOGHEADER options to nondefault
values.

(Optional) Set the $ALLOCMAP property on one or more variables to specify that
the aggmap is the default allocation specification for the variables.

(Recommended, but optional) Limit the variable to the target cells (that is, the cells
into which you want to allocate data).

Issue an ALLOCATE statement to allocate the data.

Handling NA Values When Allocating Data

Sometimes you want to overwrite existing data when allocating values to a target
variable and at other times you want to write allocated values to target cells that have
an NA basis before the allocation. For example, when you create a product in your
product dimension, then no basis exists for the new product in your budget variable.
You want to allocate advertising costs for the entire product line, including the new
product.

ORACLE

You can handle NA values using formulas and hierarchical operators in a RELATION
statement in the following ways:

Handling NA data with formulas—The preferred method for handling the NA values
is to construct a basis that only describes the desired target cells. You can refine
your choice of basis values by deriving the basis from a formula. The following
statements define a formula that equates the values of the new product to twice
the value of an existing product. You could use such a formula as the basis for
allocating advertising costs to the new product.

DEFINE formula_basis FORMULA DECIMAL <product>

EQ IF product EQ "NEWPRODUCT® -
THEN 2 * product.budget(product "EXISTINGPRODUCT") -
ELSE product.budget

Handling NA data with hierarchical operators—To allocate data to target cells that
currently have NA values, use a hierarchical operator in a RELATION statement in
the allocation specification. The hierarchical operators use the hierarchy of the
dimension rather than existing data as the allocation basis. A danger in using
hierarchical operators is the possibility of densely populating your detail level data,
which can result in a much larger analytic workspace and require much more time
to aggregate the data.

To continue the example of allocating the advertising cost for the new product, you
could use the hierarchical last operator HLAST to specify allocating the cost to the
new (and presumably the last) product in the product dimension hierarchy.

3-18

OLAP DML Properties

This chapter contains the following topics:

e About OLAP DML Properties

e System Properties: Alphabetical Listing
e System Properties by Category

e One topic for each of the OLAP DML system properties, arranged alphabetically
beginning with SAGGMAP.

For other reference topics for the OLAP DML, see OLAP DML Options , OLAP DML
Functions: A - K, OLAP DML Functions: A - K, OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

About OLAP DML Properties

A property is a named value that is associated with a definition of an analytic
workspace object. You can name, create, and assign properties to an object using an
OLAP DML PROPERTY command.

Properties that begin with a $ (dollar sign) are recognized by Oracle OLAP as system
properties. You cannot create system properties; however, in some cases you can
assign system properties to objects. In particular, you can assign system properties
that interact with the OLAP DML.

System Properties: Alphabetical Listing

ORACLE

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$ALLOCMAP

$COUNTVAR
$DEFAULT_LANGUAGE
$GID_DEPTH

$GID_LIST

$GID_TYPE
$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE

$LOOP_VAR

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

4-1

Chapter 4
System Properties by Category

System Properties by Category

The OLAP DML provides system properties that set or retrieve values that influence
how the OLAP DML performs the following:

Aggregation Properties
Allocation Property
Grouping Id Properties
Formula Properties
Language Property
NA Value Properties

Aggregation Properties

$AGGMAP
$AGGREGATE_FORCECALC
$AGGREGATE_FORCEORDER
$AGGREGATE_FROM
$AGGREGATE_FROMVAR
$COUNTVAR

$VARCACHE

Allocation Property

$ALLOCMAP

Grouping Id Properties

$GID_DEPTH

$GID_LIST

$GID_TYPE
Formula Properties

$LOOP_AGGMAP
$LOOP_DENSE
$LOOP_TYPE
$LOOP_VAR

Language Property
$DEFAULT_LANGUAGE

NA Value Properties

$NATRIGGER
$STORETRIGGERVAL
$VARCACHE

$AGGMAP

The SAGGMAP property specifies that Oracle OLAP use the identified aggmap to
automatically aggregate non-precomputed data to substitute for NA values that are in

ORACLE 4-2

ORACLE

Chapter 4
$AGGMAP

the dimensioned variable, but not in the session cache for the variable (if any).
Consequently, you do not need to explicitly use the AGGREGATE function to
aggregate non-precomputed data in a variable that has an SAGGMAP property.

Additionally, the aggmap specified in the $AGGMAP property of a variable is the
aggmap that Oracle OLAP uses when the variable is the target of an AGGREGATE
command that does not include a USING phrase.

Syntax

You add or delete an $AGGMAP property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$AGGMAP' agggmap-name

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGMAP'
Parameters

aggmap-name
A TEXT expression that is the name of a previously defined aggmap object.

Examples
Example 4-1 Using SAGGMAP To Dynamically Aggregate Data

Assume that you have a hierarchical dimension named geog,a simple dimension
named year, and the following variable named sales which is dimensioned by both and
which has data only at the detail level.

Assume that you want to explicitly specify the value of 8000 for the sales cell for
Connecticut in 2005. To do this you issue the following assignment statement and a
report of sales shows the value.

sales (geog "Connecticut” year "2005") = 8000
REPORT sales;

——————————— SALES------———--

——————————— YEAR--—————————-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA
Connecticut NA 8,000 NA NA
Massachusetts NA NA NA NA
Canada NA NA NA NA
USA NA NA NA NA
All Geog NA NA NA NA

4-3

ORACLE

Chapter 4
$AGGMAP

Now assume that you define an aggmap for sales. The aggmap has the following
definition which specifies that only the upper-level data for Canada and the top level
(A1l Geog) be aggregated by the AGGREGATE command.

DEFINE MYAGGMAP AGGMAP

AGGMAP

RELATION geogParentrel PRECOMPUTE ("Quebec® "Ontario” “"Canada® *All Geog®)
END

Now assume you issue the following statements:

CONSIDER sales
PROPERTY "$AGGMAP*™ "Myaggmap”

As a result of using the SAGGMAP property to make myaggmap as the default aggmap
for sales, a simple REPORT statement for sales causes Oracle OLAP to aggregate all
of the data for the USA. (Note that only those values that were not specified as
PRECOMPUTE and that previously had NA values are calculated. The 8,000 value for
Connecticut in 2005 that was specifically assigned is not recalculated.)

REPORT sales

——————————— SALES---—--————-

——————————— YEAR-—=-—-—————-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581
Ontario NA NA NA NA
Quebec NA NA NA NA

Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271

Canada NA NA NA NA
USA 6,964 5,699 5,808 6,008
All Geog NA NA NA NA

Once you aggregate sales using the AGGREGATE command, Oracle OLAP
aggregates values for all of the PRECOMPUTE cells in sales.

REPORT sales

----------- SALES--—-——————-

——————————— YEAR--—=====———-
GEOG 2004 2005 2006 2007
Toronto 1,000 1,333 1,954 1,260
Norfolk 1,131 1,867 1,843 1,767
Montreal 1,571 1,754 1,316 1,905
Quebec City 1,914 1,728 1,386 1,847
Hartford 1,870 1,943 1,085 1,335
New Haven 1,684 1,330 1,458 1,402
Springfield 1,630 1,116 1,897 1,690
Boston 1,780 1,310 1,368 1,581

4-4

Chapter 4
$AGGREGATE_FORCECALC

Ontario 2,131 3,200 3,797 3,027
Quebec 3,485 3,482 2,702 3,752
Connecticut 3,554 8,000 2,543 2,737
Massachusetts 3,410 2,426 3,265 3,271

Canada 5,616 6,682 6,499 6,779
USA 6,964 5,699 5,808 6,008
All Geog 12,580 12,381 12,307 12,787

Example 4-2 The $AGGMAP Property Effect on an AGGREGATE Command

$AGGREGATE_FROM illustrates how the AGGREGATE command shown in
Example 9-13 can be simplified to the following statement.

AGGREGATE sales_by_revenue USING revenue_aggmap

You can further simplify the AGGREGATE command if you place an $AGGMAP
property on the sales_by revenue variable. To define an SAGGMAP property on the
sales_by_revenue variable, issue the following statements.

CONSIDER sales_by revenue
PROPERTY "$AGGMAP* “"revenue_aggmap”

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a USING clause.

AGGREGATE sales_by_revenue

$AGGREGATE_FORCECALC

ORACLE

The SAGGREGATE_FORCECALC property specifies the same behavior as that
specified by the FORCECALC keyword in an AGGREGATE function. By adding

an $AGGREGATE_FORCECALC property to a variable you can ensure this behavior
when the variable is aggregated using an AGGREGATE function, even when that
function does not include the FORCECALC keyword.

The behavior specified by both the $AGGREGATE_FORCECALC property and the
FORCECALC keyword is that when an AGGREGATE function aggregates the
variable, Oracle OLAP recalculates any value that is not specified in a PRECOMPUTE
clause of a RELATION (for aggregation) statement in the aggmap of a variable, even
when there is a value stored in the desired cell. Recalculating values that are not
specified in a PRECOMPUTE clause is the desired behavior when you want users to
be able to change detail data cells and see the changed values reflected in
dynamically-computed aggregate cells.

Syntax

You add or delete an $AGGREGATE_FORCECALC property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

* To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCECALC'

* To delete the property, issue the following statement.

PROPERTY DELETE '$SAGGREGATE_FORCECALC'

4-5

Chapter 4
$AGGREGATE_FORCEORDER

$AGGREGATE_FORCEORDER

The $AGGREGATE_FORCEORDER property specifies the same behavior as that
specified by the FORCEORDER keyword in an AGGREGATE command or an
AGGREGATE function. By adding an $AGGREGATE_FORCEORDER property to a
variable you can ensure this behavior when the variable is aggregated, even when it is
aggregated by an AGGREGATE statement does not include the FORCEORDER
keyword.

The behavior specified by both the SAGGREGATE_ORDER property and the
FORCEORDER keyword is that the calculations must be performed in the order in
which the RELATION (for aggregation) statements are listed in the aggmap used for
the aggregation. Typically, you want this behavior when some values calculated
through aggregation have changed because, otherwise, the optimization methods
used by AGGREGATE may cause the modified values to be ignored. (Note, however,
that forcing the order of execution can slow performance.)

Syntax

You add or delete an $AGGREGATE_FORCEORDER property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$AGGREGATE_FORCEORDER'

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FORCEORDER'

$AGGREGATE_FROM

ORACLE

The SAGGREGATE_FROM property specifies the same behavior as that specified by
a FROM clause in an AGGREGATE command or an AGGREGATE function. By
adding an $AGGREGATE_FROM property to a variable you can ensure this behavior
when the variable is aggregated, even when it is aggregated by an AGGREGATE
statement does not include the FROM clause.

Both the $AGGREGATE_FROM property and the FROM clause specify an object from
which Oracle OLAP obtains the detail data for the aggregation.

¢ Note:
OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROM property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) by issuing a PROPERTY
statement:

e To add the property, issue the following statement.

4-6

Chapter 4
$AGGREGATE_FROMVAR

PROPERTY '$AGGREGATE_FROM' fromspec

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROM'

Parameters

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

Examples
Example 4-3 Using the SAGGREGATE_FROM Property

Example 9-15 uses the following AGGREGATE command to populate the
total_sales_exclud_north variable with aggregate values computed from the sales
variable.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north FROM sales

You can place a $AGGREGATE_FROM property on the total_sales_exclud_north
variable by issuing the following statements.

CONSIDER total_sales_exclud_north
PROPERTY "$AGGREGATE_FROM®" “"sales”

Now you can aggregate the data by issuing the following AGGREGATE command that
does not include a FROM clause.

AGGREGATE total_sales_exclud_north USING agg_sales_exclud_north

$AGGREGATE_FROMVAR

ORACLE

The SAGGREGATE_FROMVAR property specifies the same behavior as that
specified by a FROMVAR clause in an AGGREGATE command or an AGGREGATE
function. By adding an SAGGREGATE_FROMVAR property to a variable you can
ensure this behavior when the variable is aggregated, even when it is aggregated by
an AGGREGATE statement that does not include the FROMVAR clause.

Both the $AGGREGATE_FROMVAR property and the FROMVAR clause specify two
or more objects from which Oracle OLAP obtains the detail data for the aggregation.

Note:
OLAP DML Commands: A-G

Syntax

You add or delete an $AGGREGATE_FROMVAR property to the most recently
defined or considered object (see DEFINE and CONSIDER commands) by issuing a
PROPERTY statement:

e To add the property, issue the following statement.

4-7

Chapter 4
$ALLOCMAP

PROPERTY '$AGGREGATE_FROMVAR' textvar ACROSS dimname

* To delete the property, issue the following statement.

PROPERTY DELETE '$AGGREGATE_FROMVAR'

Parameters

textvar

A TEXT expression that specifies an arbitrarily dimensioned variable or formula that
specifies the names of the objects from which to obtain detail data when performing a
capstone aggregation. Specify NA to indicate that a node does not need detail data to
calculate the value.

ACROSS dimname

Specifies the dimension or a named composite that the aggregation loops over to
discover the cells in the objects specified by textvar. Because the objects specified by
textvar can be formulas, you can realize a significant performance advantage by
supplying a looping dimension that eliminates the sparsity.

Examples

Example 4-4 Capstone Aggregation Using the $SAGGREGATE_FROMVAR
Property

Example 9-32 uses the following AGGREGATE command to perform the final
capstone aggregation.

AGGREGATE sales_capstone76 USING capstone_aggmap FROMVAR capstone_source

As the following statements illustrate, you can omit the FROMVAR clause if you create
the appropriate FROMVAR property on sales-capstone76.

CONSIDER sales_capstone76
PROPERTY "$AGGREGATE_FROMVAR®" “"capstone_source”
AGGREGATE sales_capstone76 USING capstone_aggmap

$ALLOCMAP

The $ALLOCMAP property specifies the default aggmap for allocation for a variable
which is the aggmap that Oracle OLAP uses when the variable is the target variable of
an ALLOCATE statement that does not include a USING phrase.

Syntax

You add or delete an $ALLOCMAP property to the most recently defined or
considered object (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

e To add the property, issue the following statement.

PROPERTY '$ALLOCMAP' aggmap-name

e To delete the property, issue the following statement.

PROPERTY DELETE '$SAALLOCMAP!

ORACLE 4-8

Chapter 4
$COUNTVAR

Parameters

aggmap-name

A TEXT expression that specifies the name of a previously defined ALLOCMAP type
aggmap object.

Examples

Example 4-5 Using $ALLOCMAP to Specify a Default Allocation Specification

The following statement allocates data in the projbudget variable using the projbudgmap
allocation specification.

ALLOCATE projbudget USING projbudgmap

You can specify that projbudgmap is the default allocation specification for the
projbudget variable by issuing the following statements.

CONSIDER projbudget
PROPERTY "$ALLOCMAP® "projbugmap”

Now, by issuing the following statement, you can allocate data in the projbudget
variable using the projbudgmap allocation specification.

ALLOCATE projbudget

For other examples of using the SALLOCMAP property, see the ALLOCATE
command.

$COUNTVAR

ORACLE

The $COUNTVAR property specifies the same behavior as that specified by a
COUNTVAR clause in an AGGREGATE command or an AGGREGATE function. By
adding an $COUNTVAR property to a variable you can ensure this behavior when the
variable is aggregated, even when it is aggregated by an AGGREGATE statement
does not include the COUNTVAR clause.

The behavior specified by both the SCOUNTVAR property and the COUNTVAR clause
is that Oracle OLAP uses a variable that you have previously-defined (sometimes
called a Countvar variable) to store the non-NA counts of the number of leaf nodes
that contributed to aggregate values calculated for RELATION (for aggregation)
statements that have an AVERAGE, HAVERAGE, HWAVERAGE, or WAVERAGE
operator.

" Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations; instead, you use an Oracle OLAP-created Aggcount
variable. You cannot use a Countvar variable when the aggregation
specification includes a RELATION (for aggregation) statement with an
average operator is for a compressed composite. See "Aggcount Variables" in
DEFINE VARIABLE for more information.

4-9

Chapter 4
$DEFAULT _LANGUAGE

Syntax

You add or delete a SCOUNTVAR property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.
PROPERTY '$COUNTVAR' countvar
e To delete the property, issue the following statement.

PROPERTY DELETE '$COUNTVAR'

Parameters

countvar

A TEXT expression that specifies the name of a previously defined Countvar variable.
The Countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions as the variable on which you add the SCOUNTVAR

property.
Examples
Example 4-6 Using $SCOUNTVAR

For a variable named v1, the following statements cause Oracle OLAP to count the
number of leaf nodes that contributed to an aggregate value that is the result of the
execution of the myaggmap aggmap object by an AGGREGATE function.

CONSIDER v1
PROPERTY *$COUNTVAR™ *mycountvar”

$DEFAULT_LANGUAGE

ORACLE

$DEFAULT_LANGUAGE property identifies a dimension as the language dimension
for the analytic workspace in which it is defined and specifies the default language for
that language dimension.

" Note:

There can be only one language dimension in an analytic workspace and only
that dimension can have a $DEFAULT_LANGUAGE property.

¢ See Also:

LOCK_LANGUAGE_DIMS, SESSION_NLS_LANGUAGE, and
STATIC_SESSION_LANGUAGE options.

Syntax

Before you add or delete a $SDEFAULT_LANGUAGE property to your language
dimension, you must make that dimension the most recently defined or considered

4-10

ORACLE

Chapter 4
$DEFAULT LANGUAGE

object (see DEFINE and CONSIDER commands). You add $DEFAULT_LANGUAGE
property using a PROPERTY statement:

* To add the property, issue the following statement.

PROPERTY '$DEFAULT_LANGUAGE' language

e To delete the property, issue the following statement.

PROPERTY DELETE '$DEFAULT_LANGUAGE'

Parameters

language
A TEXT expression that is a value in your language dimension, or an empty string.

Usage Notes
Working with Language Dimensions

A language dimension is a dimension that has a $SDEFAULT_LANGUAGE property
defined for it. There can only be one language dimension in an analytic workspace.
Working with language dimensions involves:

e Creating a Language Dimension

e Defining Multi-language Variables that are Dimensioned by the Language
Dimension

e Working with Language Dimension Status

Creating a Language Dimension
To create a language dimension, take the following steps:

1. Define a TEXT dimension using DEFINE DIMENSION.

2. Populate the language dimension with the names of the languages you want to
support. As language names, use valid values for NLS _LANGUAGE.

3. Add the $DEFAULT _LANGUAGE property to the dimension thereby identifying the
dimension to Oracle OLAP as the language dimension in the analytic workspace.

Defining Multi-language Variables that are Dimensioned by the Language
Dimension

To create multi-language variables, you include the language dimension as a
dimension of the variable as illustrated in Example 4-8.

Working with Language Dimension Status

When an analytic workspace with a language dimension is attached, Oracle OLAP
initializes the status of the language dimension, as follows:

1. Oracle OLAP limits the language dimension to the value of the
SESSION_NLS_LANGUAGE option when the language dimension contains that
value.

2. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set, then Oracle OLAP limits the language
dimension to the language specified in the dimension's SDEFAULT _LANGUAGE
property when the SDEFAULT_LANGUAGE property contains a value and when
that value is a value of the language dimension.

4-11

ORACLE

Chapter 4
$DEFAULT _LANGUAGE

3. If the language dimension does not contain value to which the
SESSION_NLS_LANGUAGE option is set and if the language
dimension's $SDEFAULT_LANGUAGE property is empty or names a nonexistent
value, Oracle OLAP limits the language dimension to the value of the language
dimension to the first value in the dimension's default order.

By default, after initialization, the status of a language dimension cannot be changed.
However, you can change this behavior by changing the value of the
LOCK_LANGUAGE_DIMS option from TRUE to FALSE which changes the status of
the language dimension to ALL and enables issuing LIMIT statements against the
dimension.

Exporting Language Dimensions

When exporting an analytic workspace using EXPORT (EIF), Oracle OLAP takes the
following steps to determine what values of the language dimension to export:

e If the value of the LOCK_LANGUAGE_DIMS option is FALSE when an EXPORT
statement executes, Oracle OLAP honors the current status of the language
dimension and performs the export accordingly.

e If the value of the LOCK_LANGUAGE_DIMS option is TRUE when an EXPORT
statement executes, Oracle OLAP:

1. Changes the value of the LOCK_LANGUAGE_DIMS option to FALSE (thereby
setting the status to ALL) before executing the EXPORT statement.

2. Executes the EXPORT statement. Oracle OLAP exports all of the values of
the language dimension.

3. Changes the value of the LOCK_LANGUAGE_DIMS option to TRUE and
resets the status of the language dimension according to the value of the
SESSION_NLS_LANGUAGE option.

Examples
Example 4-7 Creating a Language Dimension

This example illustrates creating a language dimension named mylangs that supports
the use of both French and American and that specifies that the default language is
American.

NLS_LANGUAGE = "AMERICAN*®

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD "FRENCH®" "AMERICAN®
CONSIDER mylangs

PROPERTY "$DEFAULT_LANGUAGE® *AMERICAN®

SHOW OBJ(PROPERTY "$DEFAULT LANGUAGE®™ *mylangs")
AMERICAN

REPORT mylangs
MYLANGS

FRENCH
AMERICAN

Example 4-8 Attaching a Language Dimension

Assume that in an analytic workspace named myaw that you have created a language
dimension named mylangs as described in Example 4-7. Assume also that you have

4-12

ORACLE

Chapter 4
$DEFAULT LANGUAGE

created a products dimension and a prod-desc variable with the following definitions
and values.

DEFINE MYLANGS DIMENSION TEXT
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")
AMERICAN

DEFINE PRODUCTS DIMENSION TEXT
DEFINE PROD_DESC VARIABLE TEXT <PRODUCTS MYLANGS>

MYLANGS
FRENCH
AMERICAN
PRODUCTS
PRODO1
PROD02
------ PROD_DESC------
—————— PRODUCTS-------
MYLANGS PRODO1 PROD02
FRENCH Pantalons JupesAMERICAN Trousers Skirts

Assume that you attach the analytic workspace. By displaying the options for the
analytic workspace and requesting a report of mylangs and prod_desc, shows that
Oracle OLAP has limited the mylangs dimension to American which is the value of the
SESSION_NLS_LANGUAGE option.

SHOW NLS_LANGUAGE

AMERICAN

AW ATTACH myaw RW

" Get the default language in our language dimension
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs™)
AMERICAN

SHOW SESSION_NLS LANGUAGE

AMERICAN

SHOW LOCK_LANGUAGE_DIMS

yes

SHOW STATIC_SESSION_LANGUAGE

no

REPORT mylangs

MYLANGS
AMERICAN
REPORT prod_desc
------ PROD_DESC------
------ PRODUCTS-------
MYLANGS PRODO1 PROD02
AMERICAN Trousers Skirts

4-13

Chapter 4
$DEFAULT _LANGUAGE

Example 4-9 Changing NLS_LANGUAGE

Assume that you have attached the analytic workspace myaw as described in

Example 4-8. Now you change the value of NLS_LANGUAGE to French. Because the
value of STATIC_SESSION_LANGUAGE is set to NO, making this change effectively
changes the value of the SESSION_NLS_LANGUAGE option to French. When the
value of SESSION_NLS_LANGUAGE option is French, as a report of mylangs and
prod_desc illustrates, Oracle OLAP limits the mylangs dimension to French.

SET NLS_LANGUAGE= "FRENCH"
SHOW OBJ(PROPERTY "$DEFAULT_LANGUAGE®™ "mylangs®)
AMERICAN

SHOW NLS_LANGUAGE

FRENCH

SHOW SESSION_NLS LANGUAGE
FRENCH

SHOW LOCK_LANGUAGE_DIMS

oui

SHOW STATIC_SESSION_LANGUAGE
non

REPORT mylangs
MYLANGS

FRENCH

REPORT prod_desc

—————— PROD_DESC------

—————— PRODUCTS-------
MYLANGS PRODO1 PRODO2
FRENCH Pantalons Jupes

Example 4-10 Setting NLS_LANGUAGE to a Value that is Not in a Language
Dimension

Assume that in the analytic workspace named myaw (described in Example 4-9) the
value of NLS_LANGUAGE is set first to American and then set to Spanish. As
illustrated in the following code, because the language dimension, mylangs, does not
include Spanish as one of its values, Oracle OLAP limits the mylangs dimension using
the value of the $SDEFAULT_LANGUAGE property which is American.

"Change the value of NLS_LANGUAGE to AMERICAN
SET NLS_LANGUAGE= "AMERICAN"
"Change the value of NLS_LANGUAGE to SPANISH
SET NLS_LANGUAGE= "SPANISH*®

SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")
AMERICAN

SHOW NLS_LANGUAGE
SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS
si

SHOW STATIC_SESSION_LANGUAGE

ORACLE 4-14

Chapter 4
$GID_DEPTH

no

REPORT mylangs
MYLANGS

AMERICAN

REPORT prod_desc

------ PROD_DESC------

------ PRODUCTS-------
MYLANGS PRODO1 PRODO2
AMERICAN Trousers Skirts

Assume that you had defined the mylangs language dimension without specifying a
default language using the following code.

DEFINE mylangs DIMENSION TEXT

MAINTAIN mylangs ADD "FRENCH® "AMERICAN®
CONSIDER mylangs

PROPERTY "$DEFAULT_LANGUAGE" **

In this case, when you set the value of NLS_LANGUAGE to Spanish, because the
language dimension, mylangs does not have a value specified for

its SDEFAULT_LANGUAGE property, Oracle OLAP limits the mylangs dimension using
the first value in the mylangs dimension which is French.

NLS_LANGUAGE = "SPANISH"
SHOW OBJ(PROPERTY *$DEFAULT LANGUAGE™ *mylangs")

SHOW NLS_LANGUAGE

SPANISH

SHOW SESSION_NLS_LANGUAGE
SPANISH

SHOW LOCK_LANGUAGE_DIMS

Sl

SHOW STATIC_SESSION_LANGUAGE
no

REPORT mylangs

MYLANGS
FRENCH
REPORT prod_desc
------ PROD_DESC------
—————— PRODUCTS-------
MYLANGS PRODO1 PROD02
FRENCH Pantalons Jupes

$GID_DEPTH

ORACLE

The $GID_DEPTH property specifies the number of levels of grouping ids in the
grouping id relation to which it is added.

The $GID_DEPTH property, which is automatically created and set when a
GROUPINGID command populates a grouping id relation, specifies the number of
levels of grouping ids in the grouping id relation to which it is added.

4-15

Chapter 4
$GID_LIST

Syntax

You cannot explicitly define a $GID_DEPTH property. Oracle OLAP automatically
creates a $GID_DEPTH property on a grouping id relation when the execution of a
GROUPIONGID command creates the relation.

$GID_DEPTH = intlevels
Parameters

intlevels
An INTEGER value that specifies the number of levels of grouping ids.

For an example of using the $GID_DEPTH property, see Example 9-145.

$GID _LIST

The $GID_LIST property contains the names of the levels used to create the grouping
ids.

The $GID_LIST property contains the names of the levels used to create the grouping
ids in a relation created when the GROUPINGID command with either the ROLLUP or
GROUPSET keyword executes.

Syntax

You cannot explicitly define a $GID_LIST property. Oracle OLAP automatically creates
a $GID_LIST property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_LIST = levels

Parameters

levels
A TEXT expression which is the levels, separated by hyphens (-), of the hierarchies of
the dimension for which grouping ids were created.

$GID_TYPE

ORACLE

$GID_TYPE property specifies the grouping type of the grouping ids.

The $GID_TYPE property, which is automatically created and set when a
GROUPINGID command with either the ROLLUP or GROUPSET keyword populates
a grouping id relation, specifies whether the grouping type of the grouping ids.

Syntax

You cannot explicitly define a $GID_TYPE property. Oracle OLAP automatically
creates a $GID_TYPE property on a grouping id relation when the execution of a
GROUPIONGID command with either the ROLLUP or GROUPSET keyword creates
the relation.

$GID_TYPE = ROLLUP | GROUPSET

4-16

Chapter 4
$LOOP_AGGMAP

Parameters

ROLLUP

Specifies that the grouping ids are of the rollup type.

For more information on this type of grouping type, see the discussion of ROLLUP in
the rollup cube clause of a SQL SELECT statement in Oracle Database SQL Language
Reference.

GROUPSET

Specifies that the grouping ids are of the grouping set type.

For more information on this type of grouping type, see the discussion of grouping
sets in the grouping sets clause of a SQL SELECT statement in Oracle Database SQL
Language Reference.

$LOOP_AGGMAP

The SLOOP_AGGMAP property is used to determine how to loop the formula on
which it is assigned when a SQL OLAP_TABLE function with the LOOP OPTIMIZED
clause is executed. It specifies the name of an aggmap object to use when Oracle
OLAP generates a UNION subclause that includes the formula. The value that you
specify for this property overrides all other aggmaps associated with a variable (for
example, aggmaps for which the variable has an $AGGMAP property) and can be
used to clarify which aggmap Oracle OLAP should use when the underlying variables
of a formula are associated with different aggmaps.

Syntax

You add or delete a SLOOP_AGGMAP property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

e To add the property, issue the following statement.

PROPERTY '$LOOP_AGGMAP' agggmap-name

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_AGGMAP'
Parameters

aggmap_name
The name of an aggmap object.

$LOOP_DENSE

ORACLE

The $LOOP_DENSE property is used to determine how to loop the formula on which it
is assigned when an OLAP_TABLE SQL function with the LOOP OPTIMIZED clause
is executed.

It specifies that Oracle OLAP loops densely over the formula (that is, that it loops over
every tuple of the formula—even those member cells that do not have values).

4-17

Chapter 4
$LOOP_TYPE

¢ See Also:

e Oracle OLAP DML Reference for information on looping in OLAP_TABLE
e SET_PROPERTY

Syntax

You add or delete a SLOOP_DENSE property to the most recently defined or
considered formula (see DEFINE and CONSIDER commands) using a PROPERTY
statement:

* To add the property, issue the following statement.

PROPERTY '$LOOP_DENSE' dimension_list

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_DENSE'
Parameters

dimension_list
One or more names of the dimensions of the formula separated by commas.

$LOOP TYPE

ORACLE

The $LOOP_TYPE property specifies how to loop over a formula that contains multiple
variables when the formula is used in an OLAP_TABLE SQL function that has the
LOOP OPTIMIZED clause.

The type of looping can impact performance and the number rows that are returned
when the formula contains NA aware functions such as NVL or if NULL TRACKING is
disabled. For information on null tracking, see "NA2 Bits and Null Tracking".

Syntax

You add or delete a $SLOOP_TYPE property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

* To add the property, issue the following statement.

PROPERTY '$LOOP_TYPE' {DENSE' | INNER' | 'OUTER'}

* To delete the property, issue the following statement.

PROPERTY DELETE '$SLOOP_TYPE'

Parameters

DENSE

Returns variable values for all possible combinations of tuples. If null tracking is not
specified for a composite, you get NA values for non-existent data as well as for
intentionally null values.

4-18

Chapter 4
$LOOP_VAR

DENSE is similar to a cross join in a SQL SELECT statement. It results in the
Cartesian product of all of the base dimensions of the variables.

INNER

(Default) Returns variable values only when a tuple has data in all of the variables.
NVL values are not included.

INNER is similar to a SQL inner join.

OUTER

Returns a variable value when the tuple has data in any of the variables. NVL values
are included.

OUTER is similar to a SQL outer join.

$LOOP_VAR

The $LOOP_VAR property specifies that when an OLAP_TABLE SQL function with
the LOOP OPTIMIZED clause is executed, the formula on which it is assigned is
looped in the same manner as the variable or QDR specified in the property.

¢ See Also:

e Oracle OLAP DML Reference for more information on looping in
OLAP_TABLE

e SET_PROPERTY

Syntax

You add or delete a SLOOP_VAR property to the most recently defined or considered
formula (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$LOOP_VAR' gdr | variable

* To delete the property, issue the following statement.
PROPERTY DELETE '$LOOP_VAR'
Parameters

qdr
A QDR for a dimension of the formula.

variable
A variable with the same dimensions as the formula.

ORACLE 4-19

Chapter 4
$NATRIGGER

$NATRIGGER

ORACLE

The SNATRIGGER property specifies values for Oracle OLAP to substitute for NA
values that are in a dimensioned variable, but not in the session cache for the variable

(if any).

To calculate the values, Oracle OLAP takes the steps described in "Usage

Notes", SNATRIGGER. The results of the calculation are either stored in the variable
or cached in the session cache for the variable as described in "Usage Notes",
VARCACHE.

Note:

When you want to trigger the aggregation of a variable, you can use
the $SAGGMAP property rather than the SNATRIGGER property.

Syntax

You add or delete a SNATRIGGER property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

* To add the property, issue the following statement.
PROPERTY '$NATRIGGER' value
* To delete the property, issue the following statement.

PROPERTY DELETE '$NATRIGGER'

Parameters

value
A TEXT expression that is the value of the property. The text can be any expression
that is valid for defining a formula.

Usage Notes
How Oracle OLAP Calculates Data for a Variable with NA Values

When calculating the data for a dimensioned variable, Oracle OLAP takes the
following steps for each cell in the variable:

1. Isthere is a session cache for the variable.
* Yes. Go to step 2.
* No. Go to step 3.
2. Does that cell in the session cache for the variable have an NA value.
* Yes. Go to step 3.
* No.Gotostep7.
3. Does that cell in variable storage have an NA value.

* Yes. Go to step 4.

4-20

Chapter 4
$NATRIGGER

* No.Gotostep 7.
4. Does the variable have an $AGGMAP property?

* Yes. Aggregate the variable using the aggmap specified for the SAGGMAP
property and, then, go to step 5.

* No. Go to step 6.

5. What is the value of the cell after aggregating the variable?
* NA, go to step 6.
* Non-NA, go to step 7.

6. Does the variable have a $SNATRIGGER property?

* Yes. Execute the expression specified for the SNATRIGGER property and,
then, go to step 7.

* No.Gotostep 7.
7. Calculate the data.

8. Apply the NAFILL function or the NASKIP, NASKIP2, or NASPELL options, as
appropriate.

Making NA Triggers Recursive or Mutually Recursive

You can make NA triggers recursive or mutually recursive by including triggered
objects within the value expression. You must set the RECURSIVE option to YES
before a formula, program, or other SNATRIGGER expression can invoke a trigger
expression again while it is executing. For limiting the number of triggers that can
execute simultaneously, see the TRIGGERMAXDEPTH option.

Using SNATRIGGER with Composites

You can set an $NATRIGGER expression on a variable that is dimensioned by a
composite, but Oracle OLAP evaluates the $NATRIGGER expression only for the
dimension-value combinations that exist in the composite.

SNATRIGGER Ignored by EXPORT and AGGREGATE

The AGGREGATE command and the AGGREGATE function ignore

the SNATRIGGER property setting for a variable during an aggregation operation. The
statements fetch the stored value only, and do not invoke the SNATRIGGER
expression. The SNATRIGGER property remains in effect for other operations.

In executing an EXPORT (EIF) statement, Oracle OLAP does not evaluate

the SNATRIGGER property expression on a variable when it simply exports the
variable. However, Oracle OLAP does evaluate the SNATRIGGER property
expression when the variable is part of an expression that Oracle OLAP calculates
during the export operation.

Examples
Example 4-11 Adding an SNATRIGGER Property to a Variable

The following statements define a dimension with three values and define a variable
that is dimensioned by the dimension. They add the SNATRIGGER property to the
variable, then put a value in one cell of the variable and leave the other cells empty so
their values are NA. Finally, they report the values in the cells of the variable.

ORACLE 4-21

Chapter 4
$STORETRIGGERVAL

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3

DEFINE v1 DECIMAL <d1>
PROPERTY *$NATRIGGER® *500.0°
vi(dl 1) = 333.3

REPORT v1

The preceding statements produce the following output.

D1 V1
1 333.3
2 500.0
3 500.0

$STORETRIGGERVAL

ORACLE

The $STORETRIGGERVAL property specifies whether, when a $SNATRIGGER
expression executes, Oracle OLAP replaces the NA values in the variable with the
results of the expression.

Note:

Applications typically use the $VARCACHE property rather than
the $STORETRIGGERVAL property because the functionality of
the $STORETRIGGERVAL property is subsumed within the $VARCACHE

property.

See also "How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

Syntax

You add or delete a $STORETRIGGERVAL property to the most recently defined or
considered object using a PROPERTY statement:

e To add the property, issue the following statement.
PROPERTY '$STORETRIGGERVAL' value

e To delete the property, issue the following statement.
PROPERTY DELETE '$ASTORETRIGGERVAL'

Parameters

value
A BOOLEAN expression that contains the value of the property.

Examples
Example 4-12 Storing an $SNATRIGGER Property Value

The following statements cause Oracle OLAP to store the SNATRIGGER expression
value in the NA cells of the v1 variable when Oracle OLAP evaluates the expression.

4-22

Chapter 4
$VARCACHE

TRIGGERSTOREOK = yes
CONSIDER v1
PROPERTY *$STORETRIGGERVAL® yes

$VARCACHE

The $VARCACHE property specifies whether Oracle OLAP stores or caches variable
data that is the result of the execution of an AGGREGATE function or a SNATRIGGER
expression.

Syntax

You add or delete a $VARCACHE property to the most recently defined or considered
object (see DEFINE and CONSIDER commands) using a PROPERTY statement:

e To add the property, issue the following statement.

PROPERTY '$VARCACHE' value

e To delete the property, issue the following statement.

PROPERTY DELETE '$VARCACHE'

Parameters

value

One of the following TEXT expressions that indicate where Oracle OLAP should place
variable data that is the result of calculations performed when the AGGREGATE
function or $SNATRIGGER value executes:

* VARIABLE specifies that Oracle OLAP populates the variable with data that is the
result of the execution of the AGGREGATE function or SNATRIGGER property.
When you specify this option, the data that is the result of the aggregation is
permanently stored in the variable when the analytic workspace is updated and
committed.

* SESSION specifies that Oracle OLAP caches data that is the result of the
execution of the AGGREGATE function or SNATRIGGER property in the session
cache (See "What is an Oracle OLAP Session Cache?"). When you specify this
option, the data that is the result of the execution of the AGGREGATE function
or SNATRIGGER property is ignored during updates and commits and is
discarded after the session.

@ Important:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data
even when you specify SESSION. In this case, specifying SESSION is the
same as specifying NONE.

* NONE specifies that Oracle OLAP calculates new variable data each time the
AGGREGATE function or SNATRIGGER value executes; Oracle OLAP does not
store or cache the data.

ORACLE 4-23

ORACLE

Chapter 4
$VARCACHE

e DEFAULT specifies that you do not want Oracle OLAP to use the $VARCACHE
property when determining what to do with data that is calculated by the
AGGREGATE function. (See "How Oracle OLAP Determines Whether to Store or
Cache Aggregated Data".)

Usage Notes

How Oracle OLAP Determines Whether to Store or Cache Results
of SNATRIGGER

When a SNATRIGGER expression executes, what Oracle OLAP does with variable
data that results from the execution of the expression is determined based on whether
or not the variable that has the $SNATRIGGER property also has

a $STORETRIGGERVAL property and, if not, if the value of the SNATRIGGER
property is an AGGREGATE function.

When a SNATRIGGER expression executes, Oracle OLAP goes through the following
process:

1. Does the variable with the SNATRIGGER property also have
a $STORETRIGGERVAL property? If it does, then Oracle OLAP goes to step la.
If it does not, then Oracle OLAP goes to step 2.

a. Isthe value of the TRIGGERSTOREOK option, YES or NO? If itis YES, then
Oracle OLAP goes to step 1b. If it is NO, then Oracle OLAP goes to step 2.

b. Is the value of the $STORETRIGGERVAL property, YES or NO? If it is YES,
then Oracle OLAP stores the results of the $NATRIGGER expression and end
decision-making process. If it is NO, then Oracle OLAP does not store the
results of the SNATRIGGER expression and end decision-making process.

2. Is the SNATRIGGER expression an AGGREGATE function? If it is, then Oracle
OLAP follows the steps described in "How Oracle OLAP Determines Whether to
Store or Cache Aggregated Data" to determine what to do with the result
of SNATRIGGER expression execution. If it is not, then Oracle OLAP goes to step
3.

3. Does the variable with the $NATRIGGER property also have a $VARCACHE
property? If it does, then Oracle OLAP goes to step 4. If it does not, then Oracle
OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then go to
step 5. If it does not, then Oracle OLAP uses the value of the $VARCACHE
property (that is, STORE, CACHE, or NONE) to determine what happens to the variable
data values that are the result of SNATRIGGER expression execution and end
decision-making process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data values that are the result of SNATRIGGER expression execution
and end decision-making process.

How Oracle OLAP Determines Whether to Store or Cache Aggregated Data

When an AGGREGATE command executes, Oracle OLAP always stores the results of
the calculation directly in the variable in the same way it stores the results of an
assignment statement. However, when an AGGREGATE function executes, Oracle
OLAP sometimes stores the results of the calculation directly in the variable and
sometimes caches it in the session cache. (See "What is an Oracle OLAP Session
Cache?" in SESSCACHE for more information about the session cache.)

4-24

Chapter 4
$VARCACHE

To determine where to place the data that is the result of AGGREGATE function
execution, Oracle OLAP goes through the following process to determine whether to
store or cache aggregated variable data:

1. Isthere a CACHE statement in the specification for the aggmap that is being used
by the current AGGREGATE function? If there is, then Oracle OLAP goes to step
2. If there is not, then Oracle OLAP goes to step 3.

2. Isthe CACHE statement a CACHE DEFAULT statement? If it is, then Oracle
OLAP goes to step 3. If it is not, then Oracle OLAP uses the CACHE statement in
the aggregation specification to determine what to do with variable data that is the
result of the calculation and ends the decision-making process.

3. Does the variable being aggregated have a $VARCACHE property? If it does, then
Oracle OLAP goes to Step 4. If it does not, then Oracle OLAP goes to step 5.

4. Does the $VARCACHE property have a value of DEFAULT? If it does, then Oracle
OLAP goes to step 5. If it does not, then Oracle OLAP uses the value of
the $VARCACHE property determines what happens to the variable data
calculated using the AGGREGATE function, and ends the decision-making
process.

5. Use the current setting of the VARCACHE option to determine what happens to
the variable data calculated using the AGGREGATE function. End decision-
making process.

See Also:

e "How Oracle OLAP Determines Whether to Store or Cache Aggregated
Data"

"How Oracle OLAP Determines Whether to Store or Cache Results
of $NATRIGGER"

* "What is an Oracle OLAP Session Cache?"

e The description of the NA keyword of the CACHE statement for information
on caching NA values calculated by the AGGREGATE function

Examples
Example 4-13 Setting the $VARCACHE Property

For a variable named v1, the following statements cause Oracle OLAP to cache the
variable data that is the result of the execution of an AGGREGATE function
or $NATRIGGER expression.

CONSIDER v1
PROPERTY *$SVARCACHE®™ "v1-

ORACLE 4-25

OLAP DML Options

This chapter contains the following topics:
e About Options

e Options: Alphabetical Listing

e Options by Category

* One topic for each of the OLAP DML options, arranged alphabetically beginning
with ALLOCERRLOGFORMAT.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Functions: A - K, OLAP DML Functions: L - Z , OLAP DML Commands: A-G, and
OLAP DML Commands: H-Z.

About Options

An OLAP DML option is a special type of analytic workspace object that specifies the
characteristic of some aspect of how Oracle OLAP calculates or formats data or what
Oracle OLAP operations are activated. Some options are read-only, while others are
read/write options for which you can specify values. Read/write options have default
values.

You can use the SET (=) command to retrieve the value of an option into a predefined
variable and to specify a new value for a read/write option. Use the SHOW command
to display the value of an option.

Options: Alphabetical Listing

ORACLE

A

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER
AWWAITTIME

BADLINE
BMARGIN

CALENDARWEEK
COLWIDTH
COMMAS
COMPILEMESSAGE
COMPILEWARN

5-1

ORACLE

DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES
DECIMALCHAR
DECIMALOVERFLOW
DECIMALS
DEFAULTAWSEGSIZE
DIVIDEBYZERO
DSECONDS

ECHOPROMPT
EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION
ERRNAMES
ERRORNAME
ERRORTEXT
ESCAPEBASE
EXPTRACE

INF_STOP_ON_ERROR

LCOLWIDTH
LIKECASE
LIKEESCAPE
LIKENL
LIMIT.SORTREL
LIMITSTRICT
LINENUM
LINESLEFT

LOCK_LANGUAGE_DIMS

LSIZE

MAXFETCH
MODDAMP
MODERROR
MODGAMMA

Chapter 5
Options: Alphabetical Listing

5-2

ORACLE

MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE
MONTHABBRLEN
MONTHNAMES
MULTIPATHHIER

NASKIP

NASKIP2

NASPELL
NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG
NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT
NLS_TERRITORY
NOSPELL

OKFORLIMIT
OKNULLSTATUS
OUTFILEUNIT

PAGENUM

PAGEPRG

PAGESIZE

PAGING

PARENS
PERMITERROR
PERMITREADERROR
PRGTRACE

RANDOM.SEED.1 and RANDOM.SEED.2

RECURSIVE
ROLE
ROOTOFNEGATIVE

Chapter 5
Options: Alphabetical Listing

5-3

SECONDS
SESSCACHE
SESSION_NLS_LANGUAGE
SPARSEINDEX
SQLBLOCKMAX

SQLCODE

SQLERRM

SQLMESSAGES
STATIC_SESSION_LANGUAGE

THIS_AW
THOUSANDSCHAR
TMARGIN
TRACEFILEUNIT
TRIGGERMAXDEPTH
TRIGGERSTOREOK

USERID
USETRIGGERS

VARCACHE

WEEKDAYSNEWYEAR
WRAPERRORS

YESSPELL
YRABSTART

ZEROROW
ZSPELL

Options by Category

ORACLE

Analytic Workspace Options
Globalization Support
Multi-Language Support Options
Aggregation Options

Allocation Options

Model Options

Chapter 5
Options by Category

5-4

Chapter 5
Options by Category

Compilation Options

Error Options

Debugging Options

SQL Embed Options

File Reading and Writing Options
EIF Options

Report Options

NA Values Options

Date-only Data Type Options
Datetime Options

Numeric Options

RANK Function Monitoring Options

Analytic Workspace Options

AWWAITTIME
DEFAULTAWSEGSIZE

Globalization Support

NLS_CALENDAR
NLS_CURRENCY
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_DUAL_CURRENCY
NLS_ISO_CURRENCY
NLS_LANG

NLS_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_SORT

NLS_TERRITORY

Multi-Language Support Options

LOCK_LANGUAGE_DIMS
NLS_DATE_LANGUAGE
NLS_LANG

NLS_LANGUAGE
SESSION_NLS_LANGUAGE
STATIC_SESSION_LANGUAGE

Aggregation Options
MULTIPATHHIER
SESSCACHE
VARCACHE

Allocation Options

ALLOCERRLOGFORMAT
ALLOCERRLOGHEADER

ORACLE' 5.5

ORACLE

Model Options

MODDAMP
MODERROR
MODGAMMA
MODINPUTORDER
MODMAXITERS
MODOVERFLOW
MODSIMULTYPE
MODTOLERANCE
MODTRACE

Compilation Options

COMPILEMESSAGE
COMPILEWARN
THIS_AW

Error Options

BADLINE
ERRNAMES
ERRORNAME
ERRORTEXT
INF_STOP_ON_ERROR
MODERROR
PERMITERROR
PERMITREADERROR
SQLERRM
SQLMESSAGES
WRAPERRORS

Debugging Options

EXPTRACE
MODTRACE
PRGTRACE

SQL Embed Options

SQLBLOCKMAX
SQLCODE
SQLERRM
SQLMESSAGES

File Reading and Writing Options

ECHOPROMPT
ESCAPEBASE
INF_STOP_ON_ERROR
OUTFILEUNIT

Chapter 5
Options by Category

5-6

ORACLE

EIF Options

EIFBYTES
EIFEXTENSIONPATH
EIFNAMES
EIFSHORTNAMES
EIFTYPES
EIFUPDBYTES
EIFVERSION

Report Options

BMARGIN
COLWIDTH
COMMAS
DECIMALCHAR
DECIMALS
LCOLWIDTH
LINENUM
LINESLEFT
LSIZE
NASPELL
NOSPELL
PAGENUM
PAGEPRG
PAGESIZE
PAGING
PARENS
THOUSANDSCHAR
TMARGIN
YESSPELL
ZEROROW
ZSPELL

NA Values Options

LIMITSTRICT
NASKIP

NASKIP2

NASPELL
RECURSIVE
TRIGGERMAXDEPTH
TRIGGERSTOREOK

Date-only Data Type Options

CALENDARWEEK
DATEFORMAT
DATEORDER
DAYABBRLEN
DAYNAMES

Chapter 5
Options by Category

5-7

Chapter 5
ALLOCERRLOGFORMAT

DSECONDS
MONTHABBRLEN
MONTHNAMES
WEEKDAYSNEWYEAR
YRABSTART

Datetime Options

CALENDARWEEK
DSECONDS
SECONDS

Numeric Options

DECIMALOVERFLOW

DIVIDEBYZERO

RANDOM.SEED.1 and RANDOM.SEED.2
ROOTOFNEGATIVE

RANK Function Monitoring Options

RANK_CALLS
RANK_CELLS
RANK_SORTS

ALLOCERRLOGFORMAT

ORACLE

The ALLOCERRLOGFORMAT option determines the contents and the formatting of
the error log that you specify with the ERRORLOG argument to the ALLOCATE
command.

Syntax
ALLOCERRLOGFORMAT = text

Parameters

text

Characters that determine the contents and formatting of the error log that you specify
with an ERRORLOG statement in an ALLOCMAP command. By placing an INTEGER
value before the formatting character, you can specify the number of characters that
the object occupies in the error log. You can specify escape sequences as formatting
characters. For valid escape sequences, see "Escape Sequences"”. The following
table lists the characters that specify the contents of the error log. The default value of
ALLOCERRLOGFORMAT is the following.

*%8p %8y %8z %e (%n)"

Character Output Specified

b The basis object being processed.
c The child node of the dimension being processed.
d The name of the dimension being processed.

5-8

Chapter 5
ALLOCERRLOGHEADER

Character Output Specified

e A description of the error encountered.

n The error code of the error encountered.

p The parent node of the dimension being processed.

r The name of the relation being allocated down.

s The source object being processed.

t The target object being processed.

n The basis value of the child cell receiving the allocation.
y The source value of the parent cell being allocated.

z The basis value of the parent cell being allocated.

Examples
Example 5-1 Setting the ALLOCERRLOGFORMAT Option

This example sets the ALLOCERRLOGFORMAT option and produces the results
shown in the last line.

ALLOCERRLOGFORMAT = "%8p %8y %8z %e (%n)"
SHOW ALLOCERRLOGFORMAT
%8p %8y %8z %e (%n)

ALLOCERRLOGHEADER

ORACLE

The ALLOCERRLOGHEADER option determines the column headings for the error
log that you specify with the ERRORLOG argument to the ALLOCATE command. To
specify additional formatting for the error log, use the ALLOCERRLOGFORMAT
option.

Syntax
ALLOCERRLOGHEADER = text

Parameters

text

Characters that determine the content and formatting of the column headers that are
the first line of the error log that you specify with the ALLOCATE command. (See
ALLOCERRLOGFORMAT for a list of the characters you can use.)

When you specify NA as the value for this option, then ALLOCATE does not write any
header to the error log. The following is the default value of

ALLOCERRLOGHEADER.
"Dim Source Basis\n%-8d %-8v %-8b Description\n
Examples

Example 5-2 Setting the ALLOCERRLOGHEADER Option

The following statements define the heading for the error log specified by an
ALLOCATE statement and show the value of the ALLOCERRLOGHEADER option.

5-9

Chapter 5
AWWAITTIME

ALLOCERRLOGHEADER = "Dim Source Basis\n %-8d %-8v %-8b Description \n

SHOW ALLOCERRLOGHEADER

The preceding statement produces the following results.

Dim Source Basis
%-8d %-8s %-8b Description

An allocation operation that has a variable named budget as both the source and basis
objects and which encounters a deadlock when allocating down the division
dimension produces the following entry in the error log.

Dim Source Basis
Division Budget Budget Description

Accdiv 650000 NA A deadlock occurred allocating data (5)

AWWAITTIME

ORACLE

The AWWAITTIME option holds the number of seconds that an AW ATTACH
command with the WAIT keyword waits for an analytic workspace to become available
for access. The default value of AWWAITTIME is 20 seconds.

Data Type

INTEGER

Syntax
AWWAITTIME = seconds

Parameters

seconds
The number of seconds to wait for an analytic workspace to be available. The default
value is 20 seconds.

Usage Notes
Workspace Sharing

When your user ID has the appropriate access rights and no user has read/write
exclusive access to the workspace, you can get read-only access to an analytic
workspace, no matter how many other users are using it. When another user has read/
write access and commits the workspace, your view of the workspace does not
change; you must detach and reattach the workspace to see the changes.

Examples
Example 5-3 Specifying a Wait Time of One Minutes

Assume that you want to wait for 60 seconds when attaching an analytic workspace.
To do so, reset the value of the AWWAITTIME option by issuing the following
statement.

AWWAITTIME = 60

5-10

Chapter 5
BADLINE

BADLINE

When a program, model, or input file is executing, the BADLINE option controls
whether Oracle OLAP records, in the current outfile, the line that caused an error.

¢ See Also:
PROGRAM, MODEL, and INFILE.

Data Type
BOOLEAN

Syntax
BADLINE = {YES|NO}

Parameters

YES

When an error occurs during the execution of a program, model, or input file, Oracle
OLAP records in the current outfile the name of the program, model, or file in which
the error occurred and the line that caused the error. When an error message is
included in the output, the BADLINE information appears immediately after the error
message.

NO
(Default) When an error occurs in a program, model, or input file, Oracle OLAP does
not record the error in the current outfile.

Examples
Example 5-4 Using the BADLINE Option
In a simple program called test, the variable myint1 is divided by zero.

DEFINE test PROGRAM
PROGRAM

VARIABLE myintl INTEGER
VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program when the DIVIDEBYZERO option is set to NO, then an error
occurs because division by zero is not allowed. When BADLINE is set to YES, the
following messages are recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. Set DIVIDEBYZERO to
YES if you want NA to be returned as the result of division by zero.
In DEMOITEST PROGRAM:

myint2 = 250/myintl

ORACLE 5-11

Chapter 5
BMARGIN

Example 5-5 Finding Errors in Program Lines
In a simple program called test, the variable myint1 is divided by 0 (zero).

DEFINE test PROGRAM
PROGRAM

VARIABLE myintl INTEGER
VARIABLE myint2 INTEGER

myintl = 0
myint2 = 250/myintl
END

When you run the program, an error occurs because division by zero is not allowed
(that is, when DIVIDEBYZERQO is set to NO).

When BADLINE is set to NO only the error is recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When BADLINE is set to YES, the line that causes the error and the name of the
program in which the error occurred are recorded in the current outfile.

ERROR: (MXXEQO1) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

In TESTBAD PROGRAM:

myint2 = 250/myintl

In EDDE.RUNCMD PROGRAM:

BMARGIN

ORACLE

The BMARGIN option defines the number of blank lines for the bottom margin of
output pages. BMARGIN is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and DESCRIBE. The BMARGIN option is
usually set in the initialization section of report programs.

Data Type

INTEGER
Syntax
BMARGIN =n
Parameters

n
An INTEGER expression that specifies the number of lines to set aside for the bottom
margin in a report. The default is 1.

Usage Notes
Setting BMARGIN for a File

To set BMARGIN for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set BMARGIN to the desired value. The new value

5-12

Chapter 5
CALENDARWEEK

remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, BMARGIN
returns to its default value of 1 for the file.

When you set BMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE statements that send output to a file.
That is, the value of BMARGIN is automatically saved for the default outfile

Examples
Example 5-6 Setting the Bottom Margin of a Report Page

Suppose you want to be able to make notes on the bottom of a report page. You can
set a large bottom margin of 5 lines. Here is the statement that you would include in
the initialization section of your report program.

BMARGIN = 5

CALENDARWEEK

ORACLE

The CALENDARWEEK option determines whether weeks should be aligned with the
actual calendar year.

Note:

You can only use this function with dimensions of type WEEK.

Data Type
BOOLEAN

Syntax
CALENDARWEEK = {YES|NO}

Parameters

YES

(Default) Specifies that weeks are aligned with the calendar year. For example, if you
have defined a dimension of type WEEK, Oracle OLAP numbers its values so that the
first week in the calendar year is week 1, the second week in the calendar year is
week 2, and so on. Weeks are aligned with the calendar year regardless of any
beginning or ending date specified in the WEEK dimension definition.

NO

Specifies that weeks are not aligned with the calendar year. Instead, weeks are
numbered so that they are aligned with the date specified in the dimension definition.
For example, if you have defined a dimension of type WEEK with a beginning or
ending date, its values are numbered so that the week corresponding to the date in
the dimension definition is week 1, the following week is week 2, and so on.

Usage Notes

Fiscal Years

5-13

Chapter 5
COLWIDTH

Setting CALENDARWEEK to NO causes weeks to be numbered so that the number 1 is
assigned to the week beginning or ending on the date specified in the DEFINE
DIMENSION statement. This week is then assigned to a fiscal year, which is the
calendar year of the first January 1 on or after the week's starting date. For example, if
you define a dimension of type WEEK with a starting date of 02Jan1996 (or,
equivalently, an ending date of 08Jan1996), the week starting 02Jan1996 is considered
week 1 of fiscal year 1997. If, by contrast, you had given the dimension a starting date
between 02Jan1995 and 01Jan1996, then the week starting on that date is week 1 of
fiscal year 1996.

Examples
Example 5-7 Aligning Weeks with the Calendar Year

The following statements define a dimension of type WEEK, define its ending date,
add values to the dimension, and produce a report.

DEFINE week dimension WEEK ENDING "18Jan97*"
MAINTAIN week ADD "21Dec96" "25Jan97"
REPORT W 22 CONVERT(week DATE)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
w51.96 21Dec96
w52.96 28Dec96
wl.97 04Jan97
w2.97 11Jan97
w3.97 18Jan97
w4 .97 25Jan97

Example 5-8 Aligning Weeks with a Specified Ending Date

The following statements set the CALENDARWEEK option to NO, which aligns the
weeks with the ending date that is specified in the definition of the week dimension in
"Example 5-7" .

CALENDARWEEK = NO
REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
w50.97 21Dec96
w51.97 28Dec96
w52 .97 04Jan97
w53.97 11Jan97
wl.98 18Jan97
w2.98 25Jan97

COLWIDTH

The COLWIDTH option controls the default width of data columns in report output. For
output from the ROW command and HEADING command, COLWIDTH affects all
columns except the first column. For output from REPORT, COLWIDTH affects all
data columns and the label columns for a composite or a conjoint dimension.

ORACLE 5-14

Chapter 5
COLWIDTH

Note:

For an individual column, the COLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

Data Type

INTEGER

Syntax
COLWIDTH =n
Parameters

n
An INTEGER expression that specifies the desired column width in number of
characters. You can set COLWIDTH to any value from 1 to 4,000. The default is 10.

" Note:

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000
characters.

Examples
Example 5-9 Setting the Default Column Width in a Report

Suppose you want to look at unit sales for six months. Because the data values are
not large, you do not need a width of 10 characters for your data columns. You can set
COLWIDTH to provide a narrower default column.

LIMIT district TO "Atlanta®

LIMIT month TO "Oct95" TO “"Mar96"
COLWIDTH = 6

REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA

—————————————————— UNITS-—=————— ==

—————————————————— MONTH--=-=====——=—————-
PRODUCT Oct95 Nov95 Dec95 Jan96 Feb96 Mar96
Tents 503 345 259 279 305 356
Canoes 317 282 267 281 309 386
Racquets 1,365 1,270 1,357 1,125 1,304 1,263
Sportswear 3,065 2,327 1,955 2,591 2,829 3,137
Footwear 3,445 3,247 2,831 3,089 3,282 3,475

ORACLE 5-15

COMMAS

ORACLE

Chapter 5
COMMAS

The COMMAS option controls the use of the character that separates thousands and
millions in numeric output. This character is typically a comma; however, it might be
different depending on your NLS_TERRITORY setting. The THOUSANDSCHAR
option records the character that is currently being used for separating thousands. The
COMMAS option controls whether the character appears in numeric output.

COMMAS affects all commands that produce output, including the ROW command,
HEADING, REPORT, and SHOW.

Note:

You can use the COMMA and NOCOMMA attributes of a HEADING, REPORT,
or ROW command to override the COMMAS setting.

Data Type
BOOLEAN

Syntax
COMMAS = {NO|YES}

Parameters

NO
Numeric output does not contain a character that separates thousands, millions, and
S0 on.

YES
(Default) Numeric output contains a character that separates thousands, millions, and
S0 on.

Examples
Example 5-10 Showing Numerical Data Without Commas

Suppose you want to look at the cost of goods sold, without commas in the data
values. You can set COMMAS to NO before producing your report.

COMMAS = NO

LIMIT line TO "Cogs"

LIMIT month TO "Jan96" "Feb96"

REPORT DOWN division ACROSS month: DECIMAL 0 actual

These statements produce the following output.

LINE: COGS
----- ACTUAL ------
------ MONTH------

DIVISION Jan96 Feb96

Canping 368044 385120

5-16

Chapter 5
COMPILEMESSAGE

Sporting 287558 315299
Clothing 567767 610727

COMPILEMESSAGE

You use the COMPILEMESSAGE option to specify whether you want Oracle OLAP to
send to the current outfile non-irrecoverable error messages during execution of the
COMPILE command. Non-irrecoverable error messages are those indicating errors
that do not prevent a program from compiling.

¢ See Also:

For more information about compiling objects, see COMPILE.

Data Type
BOOLEAN

Syntax
COMPILEMESSAGE = {YES|NO}

Parameters

YES
(Default) Indicates that Oracle OLAP should record non-irrecoverable error messages
during execution of the COMPILE command.

NO
Indicates that Oracle OLAP should suppress non-irrecoverable error messages during
execution of the COMPILE command.

Examples
Example 5-11 Suppressing Error Messages During Compilation

The following statement specifies that Oracle OLAP should suppress non-
irrecoverable error messages during execution of the COMPILE command.

COMPILEMESSAGE = NO

COMPILEWARN

ORACLE

The COMPILEWARN option controls whether Oracle OLAP records a warning
message in the current outfile when a compilable object, such as a program or a
model, is being compiled automatically. (When you use the COMPILE command to
explicitly compile an object, Oracle OLAP does not display the COMPILEWARN
message.)

A compilable object is automatically compiled in the following cases:

* The first time it is executed after being edited.

5-17

Chapter 5
DATEFORMAT

* The first time it is executed in a session when it was compiled in a previous
session after the last time the analytic workspace was updated and committed.

» After an analytic workspace object referred to in the code has been renamed or
deleted. When the object name in the code has not been redefined, you receive an
error message.

* When the code refers to objects in another analytic workspace and the objects in
the currently attached analytic workspace do not have the same object type
(variable, relation, and so on), data type (INTEGER, TEXT, and so on), or dimensions
as the objects available when the code was previously compiled.

Data Type
BOOLEAN

Syntax
COMPILEWARN = {YES|NO}

Parameters

YES
Oracle OLAP records a message warning you that a compilable object is being
compiled automatically. The message explains why the compilation was necessary.

NO
(Default) Oracle OLAP does not record a message warning you that an object is being
compiled automatically.

Examples
Example 5-12 Specifying That You Want Compiler Warnings

When COMPILEWARN is set to YES, when you run the do_report program just after
editing it, Oracle OLAP places the following message in your current outfile before the
do_report output.

DO_REPORT 1is being automatically compiled.

DATEFORMAT

ORACLE

The DATEFORMAT option holds the template used for displaying DATE-only data
type values and converting DATE-only values to text values. The template can include
format specifications for any of the four components of a date (day, month, year, and
day of the week). It can also include additional text.

¢ See Also:

"Date-only Data Type Options"

Data Type
TEXT

5-18

ORACLE

Chapter 5
DATEFORMAT

Syntax
DATEFORMAT = template

Parameters

template

A TEXT expression that specifies the template for displaying dates. Each component
in the template must be preceded by a left angle bracket and followed by a right angle
bracket. You can include additional text before, after, or between the components.
The default template is *<DD><MTXT><YY>".

The following tables present the valid formats for each component. The tables provide
two display examples, one for March 1, 1990 and another for November 12, 2051.
The following table presents the valid formats for days.

Format Meaning March 1,1990 November 12, 2051
<D> One digit or two digits 1 12

<DD> Two digits 01 12

<DS> Space-padded, two digits 1 12

<DT> Ordinal, uppercase 1ST 12TH

<DTL> Ordinal, lowercase 1st 12th

The following table presents the valid formats for weeks. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051

<W> Numeric 4 1

<WT> First letter, W S
uppercase

<WTXT> First three letters, WED SUN
uppercase.

<WTXTL> First three letters, Wed Sun
lowercase

<WTEXT> Full name, WEDNESDAY SUNDAY
uppercase

<WTEXTL> Full name, Wednesday Sunday
lowercase

Note that when you specify a format of <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL>, the case
in which the value is specified in DAYNAMES affects the displayed value:

* When the name in DAYNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

e When the name in DAYNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in DAYNAMES.

The following table presents the valid formats for months. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

5-19

ORACLE

Chapter 5

DATEFORMAT
Format Meaning March 1, 1990 November 12,
2051

<M> One digit or two digits 1 11
<MM> Two digits 03 11
<MS> Space-padded, two digits 3 11
<MT> First letter, uppercase M N
<MTXT> First three letters, MAR NOV

uppercase
<MTXTL> First three letters, Mar Nov

lowercase

Note that when you specify a format of <MTXT> or <MTXTL>, the case in which the value
is specified in MONTHNAMES affects the displayed value:

* When the name in MONTHNAMES is entered as all lowercase, the entire name is
converted to uppercase. Otherwise, the first letter is converted to uppercase and
the second and subsequent letters remain in their original case.

* When the name in MONTHNAMES is entered as all uppercase, the second and
subsequent letters are converted to lowercase. Otherwise, the entire name
remains in the case specified in MONTHNAMES.

The following table presents the valid formats for years. The table provides two
display examples, one for March 1, 1990 and another for November 12, 2051.

Format Meaning March 1, 1990 November 12,
2051
<YY> Two digits or four 90 2051
digits
<YYYY> Four digits 1990 2051

Usage Notes
Specifying Angle Brackets as Text in a DATEFORMAT Template

To include an angle bracket as additional text in a template, specify two angle brackets
for each angle bracket to be included as text (for example, to display the entire date in
angle brackets, specify "<<<D><M><YY>>>").

Month and Day Names

The names used in the month component for the MT, MTXT, MTXTL, MTEXT, and
MTEXTL formats are drawn from the current setting of the MONTHNAMES option.
The names used in the day-of-the-week component for the WT, WTXT, WTXTL,
WTEXT, and WTEXTL formats are drawn from the current setting of the DAYNAMES
option.

Specifying Abbreviations for Day and Month

You can set the DAYABBRLEN and MONTHABBRLEN options to use abbreviations of
different lengths for day and month names.

Out-of-Range Years for DATEFORMAT

When you specify the YY format, and a year outside the range of 1950 to 2049 is to be
displayed, the year is displayed in four digits.

5-20

ORACLE

Chapter 5
DATEFORMAT

Automatic Conversion of DATE-only Values to Text Values

When you use a value with DATE-only data type where a text data type is expected.
Oracle OLAP also uses the date template in the DATEFORMAT option to
automatically convert the date to a text value. When you want to override the current
DATEFORMAT template, you can convert the date result to text by using the
CONVERT function with a date-format argument.

Once a DATE-only value is stored in a text variable, the DATEFORMAT template is no
longer used to format the display of the value, and subsequent changes to
DATEFORMAT have no impact.

DATE-only Dimension Values

The DATEFORMAT option does not how Oracle OLAP displays DATE-only values of
DAY, WEEK, MONTH, QUARTER, and YEAR dimensions. How these values are
displayed is controlled by a VNF (value name format) attached to the dimension
definition, or by default conventions for DAY, WEEK, MONTH, QUARTER, and YEAR
dimensions as described in the Default VNFs for DWMQY Dimensions table in Date-
only Dimension Values.

Examples
Example 5-13 Changing the Format of Dates

The following statements define a DATE-only variable and set its value to March 24,
1997, then set the date format to two digits each in the order of day, month, and year,
and send the result to the current outfile.

DEFINE datevar VARIABLE DATE
datevar = "24Mar97°"
DATEFORMAT = "<DD>/<MM>/<YY>"
SHOW datevar

These statements produce the following output.

24/03/97

The following statements change the date format to month (text), day (two digits), and
year (four digits), and send the result to the current outfile.

DATEFORMAT = "<MTEXTL> <D>, <YYYY>"
SHOW DATEVAR

These statements produce the following output.

March 24, 1997

The following statements change the date format to day of the week (text), month
(text), day (one or two digits), and year (four digits), and send the result to the current
outfile.

DATEFORMAT = "<WTEXTL> <MTEXTL> <D>, <YYYY>"
SHOW DATEVAR

These statements produce the following output.

Monday March 24, 1997

5-21

Chapter 5
DATEORDER

Example 5-14 Including Text in the Format of a Date

The following statements save and then change the DATEFORMAT option to include
extra text for an analytic workspace startup greeting.

PUSH DATEFORMAT

DATEFORMAT = "Hello. Today is <wtextl>, the <dtl> -
OF <MTEXTL>."

SHOW TODAY

POP DATEFORMAT

When today's date is May 30, 1997, the following output is sent to the current outfile
when the program is run.

Hello. Today is Friday, the 30th of May.

DATEORDER

ORACLE

The DATEORDER option holds three characters that indicate the intended order of the
month, day, and year components of the DATE-only values in an analytic workspace
for those cases in which their interpretation is ambiguous. Oracle OLAP automatically
refers to DATEORDER whenever you enter an ambiguous DATE-only value or convert
one from a text value. For information about date values, see "Date-only Data Type".

Data Type
ID

Syntax
DATEORDER = order

Parameters

order

One of the following text expressions: *MDY*®, "DMY™, "YMD", "YDM*", "MYD", "DYM". Each
letter represents a component of the date. M stands for the month, D for the day, and Y
for the year. The default date order is “MDY".

Usage Notes
Ambiguous Dates

When you enter an unambiguous DATE-only value or convert a text value that has
only one interpretation as a date, it is handled without consulting the DATEORDER
option. For example, in 03-24-97 the 97 can only refer to the year. Considering what is
left, the 24 cannot refer to the month, so it must be the day. Only 03 is left, so it must be
the month. When, however, the interpretation is ambiguous, as in the value 3-5-97, the
current value of DATEORDER is used to interpret the meaning of each component.

DATEORDER and TEXT-to-DATE-only Conversion

When you use a text value where a DATE-only value is expected, or when you store a
text value in a DATE-only variable, the text value must conform to a style listed "Date-
only Input Values". Oracle OLAP automatically converts the text value to a DATE-only
value. When the meaning of the text value is ambiguous, the current setting of
DATEORDER is used to interpret the value.

5-22

Chapter 5
DAYABBRLEN

To override the current DATEORDER setting in converting a text value to a DATE-only
value, use the CONVERT function with the date-order argument.

Essential Date Components

Suppose you want to assign a date value to a DAY, WEEK, MONTH, QUARTER, or
YEAR dimension using a MAINTAIN statement or to a valueset using the LIMIT
command. When you specify the value in the form of a DATE-only expression or a text
literal, Oracle OLAP uses the DATEORDER option to interpret the value. When
supplying a text literal, you can use any valid input style for dates. However, you must
supply only the date components that are necessary for identifying a time period in the
particular type of dimension or valueset you are using. For example, for a MONTH
dimension or its valueset, you can specify a complete date, such as 30jun97, or you
can provide only the essential components, such as jun97 or 0697.

DWMQY Dimension Phases

The DATEORDER option is used to interpret a phase argument to a DEFINE
DIMENSION statement for DAY, WEEK, MONTH, QUARTER, and YEAR dimensions.

Examples
Example 5-15 Changing the Date Order

The following statements define and assign a value to a DATE-only variable, specify
the date format and the date order, and send the output to the current outfile.

DEFINE datevar VARIABLE DATE
dATEFORMAT = "<MTXT> <D>, <YYYY>"
DATEORDER = "MDY*"

DATEVAR = "3 5 1997"

SHOW DATEVAR

These statements produce the following output.

MAR 5, 1997

The following statements change the date order, and, therefore, the way the same
value of the DATE-only variable is interpreted.

DATEORDER = "DMY*"
SHOW DATEVAR

These statements produce the following output.

MAY 3, 1997

DAYABBRLEN

ORACLE

The DAYABBRLEN option specifies the number of characters to use for abbreviations
of day names that are stored in the DAYNAMES option. You can specify how many
characters to use for abbreviating particular day names when you specify the <WT>,
<WTXT>, and <WTXTL> formats with the DATEFORMAT text option.

Data Type
TEXT

5-23

ORACLE

Chapter 5
DAYABBRLEN

Syntax

DAYABBRLEN = specification [;|, specification]...

where speci fi cati on is a text expression that has the following form:
startpos [- endpos] : length

You can define many different groups of days, each with different abbreviation lengths.
When you do so, separate the groups with a comma or a semicolon as shown in the
syntax.

Parameters

startpos [- endpos]

Numbers that represent the first and last days whose abbreviation length is defined by
length. These numeric positions apply to the corresponding lines of text in the
DAYNAMES option. You can specify these ranges of values in reverse order, endpos
[-startpos], when you prefer.

The DAYNAMES option can have more than seven lines, so you can specify startpos
and endpos greater than seven in the setting of DAYABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
DAYNAMES option, then Oracle OLAP has no text values to abbreviate for that
range. When you later change your day names list so that startpos is valid, the
specified abbreviation is applied.

length

A number that specifies the length in characters (not bytes) of abbreviated day
names. When you do not specify an abbreviation length for a given position in the
DAYNAMES option, or when you explicitly set a given position to zero, Oracle OLAP
uses the default abbreviations of one character for <WT> and three characters for
<WTXT> and <WTXTL>. Oracle OLAP never uses abbreviations when you have
designated the full name specifications <WTEXT> and <WTEXTL>.

Usage Notes
Ambiguous Day Names

You can use DAYABBRLEN to interpret ambiguous names, for example, whether *T*
stands for Tuesday or Thursday. When the DAYABBRLEN for Tuesday was 1 and for
Thursday was 2, then "T" would always match Tuesday, and it would require at least
"Th* to match Thursday. This interpretation does not depend on the order of Tuesday
and Thursday in the week; it would work the same way when the two days were
reversed. If, on the other hand, the DAYABBRLEN for each of these was 2, then "T*
would not match either one, and you would have to enter at least *Tu* or "Th* to get a
match.

Examples
Example 5-16 Specifying Day Abbreviations

The following DAYABBRLEN setting specifies that the first five days of the week are
abbreviated with one character and the last two days are abbreviated with two
characters.

DAYABBRLEN = "1-5:1, 6-7:2°
DATEFORMAT = "<WTXT> <MTXT> <D>, <YYYY>"
SHOW CONVERT ("2 august 2005" DATE)

5-24

Chapter 5
DAYNAMES

These statements product the following result, with Tuesday abbreviated to one
character.

T AUGUST 2, 2005

DAYNAMES

ORACLE

The DAYNAMES option holds the list of valid names for the days of the week. The
names are used to display values of type DATE-only or to convert DATE-only values
to text.

Oracle OLAP consults the DAYNAMES list when it displays or converts a date using
the <WT>, <WTXT>, <WTXTL>, <WTEXT>, or <WTEXTL> formats. These formats are specified in
the DATEFORMAT option. When you have multiple sets of day names, Oracle OLAP
chooses the synonym whose number of characters and capitalization pattern best
match the DATEFORMAT specification.

Data Type
TEXT

Syntax
DAYNAMES = name-list

Parameters

name-list

A multiline text expression that lists the names of the seven days of the week. Each
name occupies a separate line. Regardless of which day you are treating as the first
day of the week, the list must begin with the name for Sunday. The default value is
the list of English names for the days of the week, in uppercase. You can include
multiple sets of seven names in your list. The eighth name is a synonym for the first
name, the ninth name is a synonym for the second name, and so on.

Examples
Example 5-17 Specifying Day Names

The following statements set DAYNAMES to the French names for the days of the
week and send the output to the current outfile.

DAYNAMES = “dimanche\nlundi\n-
mardi\nmercredi\njeudi\nvendredi\nsamedi*
SHOW DAYNAMES

These statements produce the following output.

dimanche
lundi
mardi
mercredi
jeudi
vendredi
samedi

5-25

Chapter 5
DECIMALCHAR

DECIMALCHAR

(Read-only) The DECIMALCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option.

DECIMALCHAR only affects the way Oracle OLAP formats numbers in output. When
you format numbers for input, use a period (.) for the decimal marker. To use a
different decimal marker, enclose the value in single quotes and use the TO_NUMBER
function to convert the value from text to a valid number.

Data Type
ID

Syntax
DECIMALCHAR

Examples
Example 5-18 Identifying the Decimal and Thousands Markers

The statements in this example show the DECIMALCHAR and THOUSANDSCHAR
values.

e The following statement might produce a comma as output.
SHOW THOUSANDSCHAR
e The following statement might produce a period as output.
SHOW DECIMALCHAR
e With these values, the following statement might produce the output that follows it.

SHOW TOTAL(sales)
63,181,743.50

DECIMALOVERFLOW

The DECIMALOVERFLOW option controls the result of arithmetic operations that
produce out-of-range numbers. Decimal numbers are stored as a mantissa and an
exponent. Decimal overflow occurs when the result of a calculation is very large and
can no longer be represented by the exponent portion of the decimal representation.

Data Type
BOOLEAN

Syntax
DECIMALOVERFLOW = YES|NO

ORACLE 5-26

Chapter 5
DECIMALS

Parameters

YES
Allows overflow. A calculation that generates overflow executes without error, and the
results of the calculation are NA.

NO
(Default) Disallows overflow. A calculation involving overflow stops executing, and an
error message is produced.

Examples
produce the following result.

NA

Example 5-19 The Effect of DECIMALOVERFLOW

This example shows the effect of changing the value of the DECIMALOVERFLOW
option.

When you execute a SHOW statement such as the following without changing
DECIMALOVERFLOW from its default value of NO, an error occurs.

SHOW 1000000.0 ** 133

When you change DECIMALOVERFLOW to YES, the same statement executes without
an error and produces NA as the result of the operation. The statements

DECIMALOVERFLOW = YES
SHOW 1000000.0 ** 133

DECIMALS

ORACLE

The DECIMALS option controls the number of decimal places that are shown in
numeric output. Values are rounded to fit the specified number of decimal places.
(Note, however, that the setting of DECIMALS does not affect the format of INTEGER
values in output. INTEGER values are shown with no decimal places, unless you
explicitly apply a DECIMAL attribute to them in a HEADING, REPORT, or ROW
command.)

Data Type
INTEGER
Syntax
DECIMALS =n
Parameters

n
An INTEGER expression that specifies the number of decimal places to include in all
output of DECIMAL and SHORTDECIMAL values; n can be any number in the range
0 to 40 or the number 255. (When you set DECIMALS to 255, you are specifying the

5-27

Chapter 5
DEFAULTAWSEGSIZE

formats for values of both SHORTDECIMAL and DECIMAL data types. See
"Example 5-21".) The default is 2.

Examples
Example 5-20 Showing Data with No Decimal Places

To show no decimal places in numeric output, set the DECIMALS option to 0 (zero)
before you produce your report.

DECIMALS = 0

LIMIT line TO "COGS™

LIMIT month TO "Jan96" "Feb96"

REPORT DOWN division ACROSS month: budget

These statements produce the following output.

LINE: COGS
——————— BUDGET--------
———————— MONTH--------
DIVISION Jan96 Feb96
Camping 355,933 385,308
Sporting 279,773 323,982
Clothing 528,370 546,468

Example 5-21 Comparing 2 Decimal Places with Best Presentation Format

This example contrasts the effects of setting DECIMALS to 2 and setting it to 255 ("best
presentation” format).

The OLAP DML statements

DECIMALS = 2
SHOW JOINCHARS(1.1 "A")

produce the following output.

1.10A

The OLAP DML statements

DECIMALS = 255
SHOW JOINCHARS(1.1 *A%)

produce the following output.

1.1A

DEFAULTAWSEGSIZE

ORACLE

The DEFAULTAWSEGSIZE option holds the default maximum segment size for an
analytic workspace created in your database session. The setting is in effect for the
duration of your session. For each new session, DEFAULTAWSEGSIZE reverts to the
default value.

5-28

Chapter 5
DIVIDEBYZERO

Tip:

To change the maximum size for new segments in an existing workspace, use
the AW command with the SEGMENTSIZE keyword. To discover the current
maximum size for new segments, use the AW function with the
SEGMENTSIZE keyword.

Syntax
DEFAULTAWSEGSIZE =n

Parameters

n
The number of bytes.

Examples
Example 5-22 Displaying the Maximum Segment Size for a Session

The following statement lists the current maximum segment size for workspaces.

SHOW DEFAULTAWSIZE

Example 5-23 Setting the Maximum Segment Size for a Session

The following statement sets the maximum segment size to approximately 1/2
gigabyte.

DEFAULTAWSIZE = 536870910

DIVIDEBYZERO

ORACLE

The DIVIDEBYZERO option controls the result of division by zero. (Note that division
by zero includes raising zero to a negative power; for example, 0 ** -2.)

Data Type
BOOLEAN

Syntax
DIVIDEBYZERO = YES|NO

Parameters

YES

Allows division by zero. A statement involving division by zero executes without error;
however, the result of the division by zero is NA. When you are dividing by a
dimensioned variable or expression, setting DIVIDEBYZERO to YES enables you to
get results for most of the expression's values when a few calculations might involve
dividing by zero.

5-29

Chapter 5
DSECONDS

I(\IDoefauIt) Disallows division by zero. A statement involving division by zero stops
executing and produces an error message.

Examples

Example 5-24 The Effect of DIVIDEBYZERO

This example shows the effect of changing the value of the DIVIDEBYZERO option.

When you execute a SHOW statement, such as the following, without changing the
DIVIDEBYZERO option from its default value of NO, Oracle OLAP attempts to divide
100 by 0 and then produces an error message.

SHOW 100 /7 O

When you change DIVIDEBYZERO to YES, the same statement executes without error
and produces NA as the result of the division. The statements

DIVIDEBYZERO = YES
SHOW 100 7 O

produce the following result.

NA

DSECONDS

ORACLE

(Read-only) The DSECONDS option returns the elapsed time as a DECIMAL value.
When Oracle is installed on UNIX, the DSECONDS option is the elapsed number of
seconds since Oracle was started. When Oracle is installed on Windows, the
DSECONDS option is the elapsed number of seconds since the computer on which
Oracle is installed was rebooted. As an aid to enhancing a program's speed,
DSECONDS can be used to determine how much time elapses while the program is
running.

¢ Note:

The SECONDS option for information about retrieving elapsed time as an
INTEGER value.

Data Type
DECIMAL

Syntax
DSECONDS

Examples
Example 5-25 Timing a Program Using DSECONDS

The following program puts the value of DSECONDS at the start of the program in a
variable called t1 and then displays the difference between t1 and the value of
DSECONDS after the program executes.

5-30

Chapter 5
ECHOPROMPT

DEFINE prodsummary PROGRAM

PROGRAM

VARIABLE t1 DECIMAL

tl = dseconds

LIMIT product TO ALL

BLANK

FOR product

DO
ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL O LSET -

"$"WIDTH 18 <RSET " (Actual)" sales rset " (Plan)" sales.plan>

DOEND

BLANK

ROW WIDTH 35 LSET "The program took " rset " seconds." -
(dseconds - tl1)

END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoes $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

The program took .20 seconds.

ECHOPROMPT

ORACLE

The ECHOPROMPT option determines if input lines and error messages should be
echoed to the current outfile. When ECHOPROMPT is set to YES and you have
specified a debugging file with DBGOUTFILE, the input lines and error messages are
echoed to the debugging file instead of the current outfile.

Data Type
BOOLEAN

Syntax
ECHOPROMPT = {YES|NO}

Parameters

YES
Input lines and error messages are echoed to the current outfile or the debugging file
specified by DBGOUTFILE.

NO
(Default) Input lines and error messages do not appear in the current outfile or in the
debugging file.

Examples

Example 5-26 Using ECHOPROMPT

Suppose you want to have all input lines and error messages included in the disk file
that contains your output. Set ECHOPROMPT to YES before issuing an OUTFILE
statement that sends the output to the disk file. In the following statements, the disk file
is in the current directory object.

5-31

Chapter 5
EIFBYTES

ECHOPROMPT = YES
OUTFILE "newcalc.dat"

EIFBYTES

(Read-only) The EIFBYTES option holds the number of bytes read by the most recent
IMPORT (EIF) command or written by the most recent EXPORT (EIF) command.

Data Type
INTEGER

Syntax
EIFBYTES

Examples
Example 5-27 Finding Out the Number of Bytes

To find out how many bytes of information were exported to an EIF file when you
exported the dimensions of the demo workspace, you use the following statements.

LIMIT name TO OBJ(TYPE) EQ *DIMENSION®
EXPORT ALL TO EIF FILE “*myfile.eif"
SHOW EIFBYTES

The SHOW statement produces the following output.

2,038

EIFEXTENSIONPATH

ORACLE

The EIFEXTENSIONPATH option contains a list of directory objects that identify the
locations where EIF extension files should be created.

Data Type
TEXT

Syntax
EIFEXTENSIONPATH = path-expression

Parameters

path-expression

A text expression that contains one or more directory object names. When you specify
multiple aliases, you must enter each one on a separate line. Specify multiple aliases
in the order in which they should be used for storing EIF extension files.

Usage Notes
When Extension Files Are Created

When the size of an EIF file grows beyond the size specified for EIF files by the
FILESIZE argument to the EXPORT (EIF) command, or the current disk or location
becomes full, an EIF extension file is created.

5-32

Chapter 5
EIFNAMES

Before creating a new extension file, the location specified by EIFEXTENSIONPATH is
checked for sufficient disk space. The required amount of disk space is the amount
specified for FILESIZE in the EXPORT (EIF). When no value has been specified for
FILESIZE, then a check is made for at least 80K of disk space (the minimum size
allowed by FILESIZE). When there is insufficient disk space, checking continues
through the list until a location with enough available disk space is found.

Multiple Paths in EIFEXTENSIONPATH

When EIFEXTENSIONPATH contains multiple directory objects, the first extension file
is created in the first alias in the list. The second extension file is created in the second
alias on the list, and so on. When the end of the list is reached, the process starts over
again at the beginning. When EIFEXTENSIONPATH contains a single directory object,
all extension files are created in that location.

Examples
Example 5-28 Establishing a Location for Extension Files

The following statement establishes the eifext directory object as the location in which
EIF extension files should be created.

EIFEXTENSIONPATH = "eifext”

EIFNAMES

ORACLE

The EIFNAMES option holds a list of the names of all the objects imported by the most
recent IMPORT (EIF) command.
Data Type

TEXT

Syntax
EIFNAMES

Examples
Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from the
demo analytic workspace to a file called myfile_eif. After importing the contents of the
file into a new workspace, you can use the EIFNAMES option to see the names of the
objects you have just imported.

The following statements

AW CREATE mytest
IMPORT ALL FROM EIF FILE “"myfile.eif"
SHOW EIFNAMES

produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

5-33

Chapter 5
EIFSHORTNAMES

EIFSHORTNAMES

The EIFSHORTNAMES option controls the structure of the extension of EIF overflow
(extension) file names.

Data Type
BOOLEAN

Syntax
EIFSHORTNAMES = YES|NO

Parameters

YES
Sets the extension of EIF overflow (extension) file names to xx, where each x is an
automatically assigned lowercase letter between a and z.

NO

(Default) Sets the extension of EIF overflow (extension) file names have the structure
filename.ennn, where nnn is a three-digit number beginning with 001, to distinguish
them from workspace extension file names. For example, when an EIF file is named
export.eif, the extension files are named export.e001, export.e002, and so on,

Examples
Example 5-29 Limiting the Extension of a File Name to Three Characters

The following statement specifies that the file extension for EIF extension file names
must be in the form xx.

EIFSHORTNAMES = YES

EIFTYPES

ORACLE

The EIFTYPES option holds a list of the types of objects that are contained in the list
produced by the EIFNAMES option. The types are listed in the same order as the
corresponding object names in the EIFNAMES list.

Data Type
TEXT

Syntax
EIFTYPES

Examples
Example 5-30 Checking What You Have Imported

Suppose you have exported the units variable and the productset valueset from an
analytic workspace named demo to a file called myfile._eif. After importing the contents
of the file into a new workspace, you can use the EIFNAMES and EIFTYPES options
to see the names and object types of the objects you have just imported.

5-34

Chapter 5
EIFUPDBYTES

Create the workspace and import the objects with these statements.

AW CREATE mytest
IMPORT ALL FROM EIF FILE *myfile.eif”

Send the names of the imported objects to the current outfile with this statement

SHOW EIFNAMES

to produce this output.

DISTRICT
PRODUCT
MONTH
UNITS
PRODUCTSET

Send the types of the imported objects to the current outfile with this statement

SHOW EIFTYPES

to produce this output.

DIMENSION
DIMENSION
DIMENSION
VARIABLE
VALUESET

EIFUPDBYTES

ORACLE

The EIFUPDBYTES option controls the frequency of updates when you are using the
IMPORT (EIF) command with its UPDATE keyword. The value of EIFUPDBYTES has
an effect only when the UPDATE keyword is specified in this command.

Data Type
INTEGER

Syntax
EIFUPDBYTES =n

Parameters

n
An INTEGER expression that specifies the minimum number of bytes to be read
between updates, during an import. When EIFUPDBYTES has a value of 0, an
update is triggered after each analytic workspace object is imported. When
EIFUPDBYTES has a value greater than 0, an update is triggered each time the
specified number of bytes is imported. The default is 0 (zero).

Examples
Example 5-31 Reducing Update Frequency

In the following example, the UPDATE keyword in the IMPORT (EIF) command
ensures that updates occur periodically. The setting of EIFUPDBYTES ensures that
the updates do not occur too often.

5-35

Chapter 5
EIFVERSION

EIFUPDBYTES = 500000
IMPORT ALL FROM EIF FILE "finance.eif® UPDATE

EIFVERSION

ORACLE

The EIFVERSION option is used with the EXPORT (EIF) and IMPORT (EIF)
commands to copy data between different versions of Express® Server or Oracle
OLAP. The version from which the data is exported is referred to as the source. The
version to which the data is imported is referred to as the target.

Before you use the EXPORT command to export data to an EIF file, you use the
EIFVERSION option to specify the internal version or build number of the target. Then,
when you use EXPORT to copy data from the source to an EIF file, the data is in a
format that can be imported by the target. Generally, you can import data from an EIF
file into any target that has a later version number than the one you specify for the EIF
file with EIFVERSION. However, when you set EIFVERSION to a value that is lower
than the default version (that is, the version number of the current process), and you
try to export data that the earlier version cannot manage, an error is generated. For
example, when you try to export an aggmap to a 6.2 version of Express Server, an
error is generated because Express Server 6.2 cannot manage aggmap.

You can use the EVERSION function to determine the internal version or build number
of the target.

Syntax
EIFVERSION =n

Parameters

n
The internal version or build number of an Express Server or Oracle OLAP process
which is the target into which you want the data imported.

By default, EIFVERSION is set to the internal version or build number of the current
process.

Examples
Example 5-32 Exporting and Importing Between Different Versions

This example shows how to use EIFVERSION when you want to export data from
Oracle OLAP to an EIF file and then import it into Express Server version 6.2.0.

This statement (issued from the target 6.2.0 Express Server)

SHOW EVERSION

returns the following version and build information

0, Build: 60232
0, Build: 60232

Module Mgr, Version:

6.2.0.0.
OES Kernel, Version: 6.2.0.0.

The following statements export the data from Oracle OLAP (which has a higher build
number than 60232) to an EIF file that can be read in Express 6.2.0

EIFVERSION = 60232
EXPORT ALL TO EIF FILE “"myeif.eif"

5-36

Chapter 5
ERRNAMES

ERRNAMES

The ERRNAMES option controls whether the value of the ERRORTEXT option
contains the name of the error (that is, the value of the ERRORNAME option) and the
text of the error message.

Data Type
BOOLEAN

Syntax
ERRNAMES = {NO|YES}

Parameters

NO
ERRORTEXT contains only the text of the error message.

YES
(Default) ERRORTEXT contains the name and the text of the error message.

Examples
Example 5-33 ERRORTEXT Value Depending on ERRNAMES Setting

Suppose that you run the following program.

VARIABLE myint INTEGER
myint = 35/0
SHOW ERRORTEXT

When the value of ERRNAMES is set to YES, the program returns the following value
for ERRORTEXT.

ERROR: (MXXEQO1l) A division by zero was attempted. (If you want NA to
be returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

When the value of ERRNAMES is set to NO, the program returns the following value for
ERRORTEXT.

ERROR: A division by zero was attempted. (If you want NA to be
returned as the result of a division by zero, set the DIVIDEBYZERO
option to YES.)

ERRORNAME

ORACLE

The ERRORNAME option holds the name of the first error that occurs when you
execute a program or when you execute an OLAP DML statement.

Data Type
TEXT

5-37

Chapter 5
ERRORTEXT

Syntax
ERRORNAME

Usage Notes
ERRORNAME and SIGNAL

You can create your own error conditions in a program with the SIGNAL command.
SIGNAL sets ERRORNAME and ERRORTEXT to the values you specify.

You can use the special name PRGERR with the SIGNAL command to communicate to a
calling program that an error has occurred. The command SIGNAL PRGERR sets
ERRORNAME to a blank value and passes an error condition to the calling program
without causing another error message to be displayed. For information on using
SIGNAL to pass an Oracle OLAP error up a chain of nested programs, see the TRAP
command.

Examples
Example 5-34 Using ERRORNAME with TRAP

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error name to the current outfile.

DEFINE myreport PROGRAM

LD Monthly Report

PROGRAM

TRAP ON CLEANUP NOPRINT

PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

POP month DECIMALS LSIZE PAGESIZE
RETURN

CLEANUP:

POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

END

ERRORTEXT

ORACLE

The ERRORTEXT option holds the text of the first error message that occurs when
you execute a program or a statement. The name of the error whose message is
found in ERRORTEXT is contained in the ERRORNAME option.

¢ See Also:
ERRORNAME option, ERRNAMES option, TRAP command

Data Type
TEXT

5-38

Chapter 5
ESCAPEBASE

Syntax
ERRORTEXT

Examples
Example 5-35 ERRORTEXT with the SIGNAL Command

In a report program that uses a TRAP command to handle errors, you can use the
SIGNAL command to send the appropriate error message to the current outfile.

DEFINE myreport PROGRAM

LD Monthly Report

PROGRAM

TRAP ON CLEANUP NOPRINT

PUSH month DECIMALS LSIZE PAGESIZE
LIMIT month TO LAST 1

POP month DECIMALS LSIZE PAGESIZE
RETURN

CLEANUP:

POP month DECIMALS LSIZE PAGESIZE
SIGNAL ERRORNAME ERRORTEXT

END

ESCAPEBASE

The ESCAPEBASE option specifies the type of escape that is produced by the INFILE
keyword of the CONVERT function.

Syntax
ESCAPEBASE = 'escape-type'

Parameters

escape-type

Specify "d" for decimal escape, "x" for hexadecimal escape.

The default escape type is decimal, which produces the INTEGER value for a character
in the following form.

“\dnnn*

A hexadecimal escape is the INTEGER value for a character in the following form.

“\xnn*

Examples

For an example of using ESCAPEBASE with CONVERT to convert a text value to an
escape sequence, see Example 7-50.

EXPTRACE

The EXPTRACE option controls whether OLAP DML programs in the analytic
workspace named EXPRESS are traced when the PRGTRACE option is set to YES. The
EXPRESS analytic workspace is always attached and contains, among other things,

ORACLE 5-39

Chapter 5
INF_STOP_ON_ERROR

OLAP DML programs documented as OLAP DML statements and other "helper" OLAP
DML programs.

Data Type
BOOLEAN

Syntax
EXPTRACE = {YES|NO}

Parameters

YES
All programs are traced, including OLAP DML programs provided as OLAP DML
statements.

NO
(Default) OLAP DML programs provided as OLAP DML statements are not traced.
Only other types of programs are traced.

Usage Notes
How to Identify OLAP DML Programs Provided as OLAP DML Statements

Some OLAP DML statements are implemented as OLAP DML programs. These
programs are affected by EXPTRACE. To send to the current outfile a list of these
programs, issue the following statement.

SHOW AW(PROGRAM “express®)

Examples
Example 5-36 Tracing System DML Programs

After the following statements are issued, system DML programs such as LISTNAMES
and ALLSTAT are traced in addition to user-defined programs.

PRGTRACE = YES
EXPTRACE = YES

INF_ STOP_ON_ERROR

ORACLE

The INF_STOP_ON_ERROR option specifies the behavior of Oracle OLAP when an
error occurs during the execution of an INFILE statement.

Syntax
INF_STOP_ON_ERROR ={YES|NO}
Parameters

YES
When an error occurs, report the error and stop reading from the file.

NO
When an error occurs, report the error and continue reading from the file.

5-40

Chapter 5
LCOLWIDTH

Examples
Example 5-37 Using INF_STOP_ON_ERROR with DBMS_EXECUTE

Assume that you have an file named attachmyaw. inf that includes the following OLAP
DML statement that detaches an analytic workspace named myaw

AW DETACH myaw

Assume that the myaw workspace is not attached when a SQL application issues the
DBMS_AW_EXECUTE statement with an OLAP DML INFILE statement to read the
attachmyaw. infinfile file.

When the INF_STOP_ON_ERR option is set to NO then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP continues to read the file, and the
DBMS_AW.EXECUTE procedure completes successfully.

DBMS_AW.EXECUTE(" INF_STOP_ON_ERR = NO *);
DBMS_AW_.EXECUTE(" INFILE attachmyaw.inf");

The current directory is MYDIR.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.
ERROR: (ORA-34344) Analytic workspace MYAW is not attached.

PL/SQL procedure successfully completed.

When the INF_STOP_ON_ERR option is set to YES then the error Analytic workspace
MYAW is not attached is reported, Oracle OLAP stops reading the file, and the
DBMS_AW_EXECUTE procedure aborts.

DBMS_AW.EXECUTE(" INF_STOP_ON_ERR = YES ");
DBMS_AW.EXECUTE(" INFILE attachmyaw.inf");

The current directory is MYSPL.
DECLARE
*

ERROR at line 1:

ORA-35166: (ORA-34344) Analytic workspace MYAW is not attached.
ORA-06512: at "SYS.DBMS_AW", line 27

ORA-06512: at "SYS.DBMS_AW", line 115

ORA-06512: at line 8

LCOLWIDTH

The LCOLWIDTH option controls the default width of the label column in reports. For
output from ROW command and HEADING, LCOLWIDTH affects the first column. For
output from REPORT, LCOLWIDTH affects the first column unless the first column is a
data column or part of a set of columns that represent the base dimensions of a
composite or a conjoint dimension.

Note:

For an individual column, the LCOLWIDTH value is always overridden by a
WIDTH attribute in a HEADING, REPORT, or ROW command

ORACLE 5-41

ORACLE

¢ See Also:

COLWIDTH

Data Type
INTEGER

Syntax
LCOLWIDTH =n

Parameters

n

An INTEGER expression that specifies the desired column width in number of

Chapter 5
LCOLWIDTH

characters. You can set LCOLWIDTH to any value from 1 to 4000. The default is 14.

Note:

characters

Examples

Example 5-38 Setting Default Column Widths

The maximum width of a line in a report is 4,000 characters. Therefore, the
combined width of all the columns of a report cannot be greater than 4,000

Suppose you want to look at unit sales for six months. Because the longest product
name is 10 characters, you do not need the default width of 14 for your label column.
Also, because the sales figures are not large, you do not need a width of 10 characters
for your data columns. You can set LCOLWIDTH and COLWIDTH to give smaller
default column widths.

LIMIT district TO "Atlanta”

LIMIT month TO "Oct95" TO “"Mar96"

LCOLWIDTH = 10
COLWIDTH = 6

REPORT ACROSS month: units

These statements produce the following output.

DISTRICT: ATLANTA

Tents 503
Canoes 317
Racquets 1,365
Sportswear 3,065
Footwear 3,445

5-42

Chapter 5
LIKECASE

LIKECASE

ORACLE

The LIKECASE option controls whether the LIKE operator is case sensitive.

Tip:

The LIKENL option controls whether the LIKE operator recognizes newline
characters.

Data Type
BOOLEAN

Syntax
LIKECASE = {YES|NO}

Parameters

YES
(Default) Specifies that the LIKE operator is case sensitive.

NO
Specifies that the LIKE operator is not case sensitive.

Examples
Example 5-39 The Effect of LIKECASE
The following statements show the use of the LIKECASE option.

LIKECASE = YES
SHOW "oracle® LIKE "Oracle%”

The output of this SHOW statement is
NO

The SHOW statement
SHOW "ORACLE® LIKE "%orc%"

produces the following output.

NO

The statements

LIKECASE = NO
SHOW "ORACLE" like "orc%"

produce the following output.

YES

5-43

Chapter 5
LIKEESCAPE

LIKEESCAPE

ORACLE

The LIKEESCAPE option lets you specify an escape character for the LIKE operator.

Data Type
ID

Syntax
LIKEESCAPE = char

Parameters

char

A text expression that specifies the character to use as an escape character in a LIKE
text comparison. The default is no escape character.

The LIKE escape character affects the LISTNAMES program, which accepts a LIKE
argument that it uses in a LIKE text comparison.

Usage Notes
Using the Escape Character

The LIKE escape character lets you find text expressions that contain the LIKE
operator wildcard characters, which are an underscore (), which matches any single
character, and a percent character (%), which matches any string of zero or more
characters.

To include an underscore or percent character in a text comparison, first specify an
escape character with the LIKEESCAPE option. Then, in your LIKE expression,
precede the underscore or percent character with the LIKEESCAPE character you
specified.

You might want to avoid using a backslash (\) as the LIKE escape character, because
the backslash is the standard OLAP DML escape character. You would therefore need
two backslashes to indicate that LIKEESCAPE should treat the second backslash as a
literal character.

Examples
Example 5-40 Using an Escape Character with the LIKE Operator

This example demonstrates how to specify an escape character and how to use it with
the LIKE operator.

Suppose you have a variable named prodstat that contains the following text values.

DEFINE prodstat TEXT <product>
prodstat(product "Tents") = -

"What are the results of the fabric testing?"
prodstat(product "Canoes®) = -

"How has the flooding affected distribution?*®
prodstat(product "Racquets®) = -

"The best-selling model is Whack_it!"
prodstat(product "Sportswear®) = -

"90% of the stock is ready to ship.”

5-44

ORACLE

Chapter 5
LIKEESCAPE

prodstat(product "Footwear®) = -
"When are the new styles going to be ready?"

Suppose you have the following program, named findeschar, to find certain characters
in the text contained in the cells of the prodstat variable. The program uses the LIKE
operator.

ARGUMENT findstring TEXT
FOR product
IF prodstat LIKE findstring
THEN SHOW JOINCHARS(product * - * prodstat)

Before the program can find a text value that contains a percent character (%) or an
underscore (), you must specify an escape character by using the LIKEESCAPE
option. Suppose you want to use a question mark (?) as the escape character. Before
you set the escape character to a question mark, the following statement finds text that
contains a question mark.

CALL findeschar("%?%") "Find any text that contains a question mark.

The preceding statement produces the following output.

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

The following statements specify the question mark (?) as the escape character and
then call the FINDESCHAR program.

LIKEESCAPE = "?*
CALL findeschar("%?%") "Find any text that ends with a percent character.

The preceding statement does not find any text because none of the text values in
prodstat ends in a percent character. To find any text that contains a percent
character, the following statement adds another wildcard character. LIKEESCAPE
interprets the first percent character as the wildcard that matches zero or more
characters, the second percent character as the literal percent character (%) because
it is preceded by the question mark escape character, and the third percent character
as another wildcard character. The result is that LIKEESCAPE looks for a percent
character preceded by and followed by zero or more characters.

CALL findeschar("%?%%") "Find any text that contains a percent character.

The preceding statement produces the following output.

Sportswear - 90% of the stock is ready to ship.

The following statement finds text that contains an underscore.

CALL findeschar("%?%") "Find any text that contains an underscore.

The preceding statement produces the following output.

Racquets - The best-selling model is Whack it!

The following statement doubles the escape character to find text that contains the
escape character.

CALL findeschar("%??%") "Find any text that contains a question mark.

The preceding statement produces the following output.

5-45

LIKENL

ORACLE

Chapter 5
LIKENL

Tents - What are the results of the fabric testing?
Canoes - How has the flooding affected distribution?
Footwear - When are the new styles going to be ready?

Example 5-41 Using an Escape Character with the LISTNAMES Program

This example demonstrates how to find the name of an object that contains a LIKE
argument wildcard character. These following statements use the LIKEESCAPE option
to specify an escape character, define a couple of object names that contain an
underscore, and then list the dimensions whose names include an underscore.

LIKEESCAPE = *?°

DEFINE my_textdim DIMENSION TEXT
DEFINE my_intdim DIMENSION INTEGER
LISTNAMES DIMENSION LIKE "%?%"

The preceding statement produces the following output.

3 DIMENSIONs

MY_INTDIM
MY_TEXTDIM
_DE_LANGDIM

The LIKENL option controls whether the LIKE operator recognizes newline characters
between lines of a text expression, when deciding whether a text value is like a text
pattern. (In the OLAP DML, the representation of a newline character is "\n".)

The LIKENL option applies to the text expressions on either side of the LIKE operator.

Data Type
BOOLEAN

Syntax
LIKENL = {YES|NO}

Parameters

YES
(Default) Specifies that the LIKE operator recognizes newline characters between
lines of a text expression.

NO

Specifies that the LIKE operator ignores newline characters between lines of a text
expression. Newline characters are ignored in both of the expressions being
compared.

Examples
Example 5-42 The Effect of LIKENL
The following statements show the use of the LIKENL option:

e The statement

SHOW textvar

5-46

produces the following output.

Hello
world

The statements

LIKENL = YES
SHOW textvar LIKE "%low%"

produce the following output.
NO

The statement

SHOW * Hello\nworld® LIKE "%\n%"

produces the following output.
YES
The statement

SHOW “Hello\nworld® LIKE "%low%"

produces the following output.
NO
The statements

LIKENL = NO
SHOW textvar LIKE "%low%"

produce the following output.
YES
The statement

SHOW “Hello\nworld® LIKE "%\n%"

produces the following output.
YES
The statement

SHOW “Hello\nworld® LIKE "%low%"

produces the following output.

YES

LIMIT.SORTREL

ORACLE

Data Type
BOOLEAN

Chapter 5
LIMIT.SORTREL

The LIMIT.SORTREL option controls if a sort is done when you limit a dimension to a
related dimension.

5-47

Chapter 5
LIMITSTRICT

Syntax
LIMIT.SORTREL ={YES|NO}

Parameters

YES
(Default) Oracle OLAP performs a sort when you limit a dimension to a related
dimension.

NO
Oracle OLAP does not perform a sort when limiting to a related dimension.

Usage Notes
The Sorting Explained

Normally, when you limit a dimension to a related dimension, the values of the
dimension being limited are arranged in the order of the related dimension. When
there are multiple values of the first dimension related to a value of the related
dimension, the values are sorted in the order of the default status of the first
dimension. It is this sort that LIMIT.SORTREL suppresses.

Output Lists when LIMIT.SORTREL Is NO

When LIMIT.SORTREL is NO, the output for any given dimension may not list values in
logical order.

Examples
Example 5-43 Efficient Processing

You are performing calculations on a variable dimensioned by a large dimension
named product. Your product dimension has all levels of the product hierarchy
embedded in it: category, vendor, brand, and so on. You are performing the
calculations one level at a time, using the relationship between product and
productlevel. Because the order of the dimension values is not important for the
calculations and because you are limiting product using a related dimension, you use
LIMIT.SORTREL to suppress unnecessary sorting which makes the process more
efficient.

LIMIT.SORTREL = NO

LIMITSTRICT

The LIMITSTRICT option is a BOOLEAN option that determines how Oracle OLAP
behaves when a list of values in a LIMIT command, a LIMIT function, or a QDR
contains a nonexistent value.

Syntax
LIMITSTRICT = YES | NO

ORACLE 5-48

ORACLE

Chapter 5
LIMITSTRICT

Parameters

YES

(Default) When a list of values in a LIMIT command, a LIMIT function, or a QDR
contains a nonexistent value, Oracle OLAP stops executing the limit and issues an
error.

NO

When a list of values in a LIMIT command, a LIMIT function, or a QDR contains a
nonexistent value, Oracle OLAP processes the limit while treating the specified value
as an NA.

Examples
Example 5-44 Limiting with LIMITSTRICT Set to YES

Assume that you have two dimensions (prod and year) and one variable (sales) with
the following definitions and values.

DEFINE prod DIMENSION TEXT
DEFINE year DIMENSION TEXT
DEFINE sales VARIABLE INTEGER <prod year>

2003 2,459 3,534
2004 3,366 3,018

When LIMITSTRICT is set to YES, then Oracle OLAP treats requests to limit by the
nonexistent prod value of "1DontExist", as a request to limit by an invalid value:

e Limiting prod to just nonexistent value, results in the error message ORA-34706
and does not change the values in status for prod.

->LIMIT prod to "ldontexist”
ORA-34706: ldontexist is not a valid TESTLIMITSTRICT!PROD.

->REPORT prod

Radios
TVs

5-49

Chapter 5
LINENUM

» Limiting prod to a list of values that includes the nonexistent value results in the
error message ORA-34706 and does not change the values in status for prod

->LIMIT prod to "ldontexist®" "Radios”
ORA-34706: Idontexist is not a valid TESTLIMITSTRICT!PROD.

->REPORT prod

Radios
TVs

» Specifying a nonexistent prod value in a QDR for sales also results in the error
message ORA-34706.

->REPORT sales (year "2004"prod "IDontExist")
ORA-34706: IDontExist is not a valid TESTLIMITSTRICT!PROD.

Example 5-45 Limiting with LIMITSTRICT Set to NO

Assume that you have the same two dimensions (prod and year) and variable (sales)
described in Example 5-44.

When LIMITSTRICT is set to N0, then Oracle OLAP treats requests to limit by the
nonexistent prod value of "1DontExist", as a request to limit by an NA value:

e Limiting prod to just nonexistent value, results in the error message ORA-35654
and does not change the values in status for prod.

->LIMIT prod to "ldontexist”
ORA-35654: The status of the TESTLIMITSTRICT!PROD dimension cannot be set to
null.

->REPORT prod
PROD

Radios
TVs

» Limiting prod to a list of values that includes a nonexistent value does not result in
an error message. Instead, prod is limited to the existing values.

->LIMIT prod to "ldontexist® "Radios"®

->REPORT prod

Radios

» Specifying a nonexistent prod value in a QDR for sales does not result in an error
message. Instead, a report of sales displays an NA value.

->REPORT sales (year "2004"prod "IDontExist")
—————————— NA

LINENUM

The LINENUM option contains the current line number of the output. Its value is
incremented automatically as output lines are produced. The LINENUM option is

ORACLE 5-50

ORACLE

Chapter 5
LINENUM

meaningful only when PAGING is set to YES and only for output from commands such
as REPORT and LISTNAMES.

¢ See Also:
RECNO

Data Type
INTEGER

Syntax
LINENUM =n

Parameters

n
An INTEGER expression. Normally you do not want to set LINENUM explicitly, but just
want to check its current value.

Usage Notes
Starting a New Page

When PAGING is set to YES, LINENUM increases by 1 after each line of output. When
LINENUM equals PAGESIZE minus BMARGIN, a new page automatically begins.

At the beginning of each new page, LINENUM is automatically reset to 1.
LINENUM Compared to PAGESIZE

Because the lines in the bottom margin are included in PAGESIZE, LINENUM can
never reach PAGESIZE when BMARGIN is set to a number greater than 0 (zero).

The Effect of PAGING on LINENUM

When PAGING is set to NO (its default), the value of the LINENUM option continues to
increment as more output lines are produced. When you set PAGING to YES,
LINENUM is set to 1 and it begins counting lines on the current page.

The Effect of OUTFILE on LINENUM

When you use an OUTFILE statement to direct output to a file, LINENUM is set to 1 for
the file. When you use OUTFILE with the EOF keyword to redirect output to the default
outfile, LINENUM contains the value that it last held for the default outfile.

Sending LINENUM in Output

When you produce output that contains the value of LINENUM, and a new page is
created by this output, the value of LINENUM is recorded as 1 when your output
consists of a single line. However, when the output is a multiline value, the value of
LINENUM may be recorded as a value that is larger than PAGESIZE.

5-51

Chapter 5
LINESLEFT

Examples
Example 5-46 Keeping the Heading Size Constant

Suppose you have a heading that varies between one and two lines from page to
page. Regardless of this variation, you want to draw a line across the page at a
constant position below the heading. Include the following statement in the page
heading program that you use with your report program.

WHILE LINENUM LT 5
BLANK
ROW W LSIZE ROW CENTER "-----—mmmmmmmmmmmmmmmmmee .

LINESLEFT

ORACLE

(Read-only) The LINESLEFT option contains the number of lines left on the current
page. The LINESLEFT option is meaningful only when PAGING is set to YES and only
for output from commands such as REPORT and LISTNAMES.

Data Type
INTEGER

Syntax
LINESLEFT

Usage Notes
Controlling Page Breaks

LINESLEFT is used primarily in report programs to check the number of lines left on a
particular page. When the number of lines left is less than that required for a part of
the report that you do not want interrupted by a page break, you can then use a PAGE
statement to skip to a new page.

The Effect of PAGESIZE on LINESLEFT

When you change the value of PAGESIZE, the value of LINESLEFT is adjusted
accordingly. First, LINESLEFT is subtracted from the old value of PAGESIZE, which
gives the lines already used. This result is then subtracted from the new value of
PAGESIZE which gives the new value of LINESLEFT. When LINESLEFT becomes
less than 1, a new page is started at the next output line.

The Effect of PAGING on LINESLEFT

When you set PAGING to NO, LINESLEFT is set to the value of PAGESIZE, and it
keeps this value until PAGING is set to YES. When you set PAGING to YES, LINESLEFT
begins counting the lines on the current page.

The Effect of OUTFILE on LINESLEFT

When you use an OUTFILE statement to direct output to a file, LINESLEFT is set to 66
for the file, to match the default value of PAGESIZE. When you set PAGESIZE to a
new value for the current outfile, LINESLEFT is adjusted accordingly. For example,
assume that you direct output to a file and then set PAGESIZE to 40. In this case,
Oracle OLAP sets LINESLEFT to 40 for the file which ensures that the first line of
output to the file triggers a new page when PAGING is set to YES.

5-52

Chapter 5
LOCK_LANGUAGE_DIMS

When you use an OUTFILE statement with the EOF keyword to redirect output to the
default outfile, LINESLEFT contains the value that it last held for the default outfile.

Sending LINESLEFT in Output

When you produce output that contains the value of LINESLEFT, the lines that contain
this value are never included in the value recorded for LINESLEFT.

Examples
Example 5-47 Including a Footnote

In a report, you want a one-line footnote preceded by two blank lines at the bottom of a
page. Use the following statements to generate the footnote when three lines remain
on the page.

IF LINESLEFT EQ 3
THEN DO
BLANK 2
ROW W 50 "Subject To Change Without Notice."
DOEND

LOCK_LANGUAGE_DIMS

ORACLE

The LOCK_LANGUAGE_DIMS option specifies if the status of language dimension
can be changed.

¢ See Also:

"Working with Language Dimension Status"

in SDEFAULT_LANGUAGE, $DEFAULT_LANGUAGE property,
SESSION_NLS_LANGUAGE option, and STATIC_SESSION_LANGUAGE
option.

Data Type
BOOLEAN

Syntax
LOCK_LANGUAGE_DIMS= TRUE | FALSE

Parameters

TRUE

Specifies that Oracle OLAP returns an error if a LIMIT statement tries to limit the
status of a language dimension.

When a program changes the value the LOCK_LANGUAGE_DIMS option from
FALSE to TRUE, Oracle OLAP resets the status of the language dimension in any
attached analytic workspace according to the value of the
SESSION_NLS_LANGUAGE option.

5-53

ORACLE

Chapter 5
LOCK_LANGUAGE_DIMS

FALSE

Sets the status of the language dimension to ALL, and specifies that programs can
modify the status of the language dimension using LIMIT.

When a program changes the value the LOCK_LANGUAGE_DIMS option from TRUE
to FALSE, Oracle OLAP resets the status of the language dimension in any attached
analytic workspace to ALL.

Examples
Example 5-48 Explicitly Limiting a Language Dimension

Assume that your analytic workspace contains a language dimension named mylangs
that has the following definition and values.

DEFINE MYLANGS DIMENSION TEXT
PROPERTY *$DEFAULT_LANGUAGE®™ -
"AMERICAN"

MYLANGS

FRENCH
AMERICAN

Assume also, as shown by the following report, that when you attach the analytic
workspace that the status of mylangs is American.

REPORT mylangs

MYLANGS

AMERICAN

As the following code illustrates, you can explicitly change the status of mylangs to
French using LIMIT if you first set the value of LOCK_LANGUAGE_DIMS to FALSE.
You cannot use LIMIT against a language dimension when the value of
LOCK_LANGUAGE_DIMS has its default value of TRUE.

" Try to LIMIT mylangs

LIMIT mylangs to "FRENCH®
ORA-33558: The status or contents of the MYAW3!MYLANGS dimension cannot be changed
while the LOCK_LANGUAGE_DIMS option is set to yes.

" Got an error
SHOW LOCK_LANGUAGE_DIMS
TRUE

" Got the error because LOCK_LANGUAGE_DIMS was TRUE
"Change LOCK_LANGUAGE_DIMS to FALSE
LOCK_LANGUAGE_DIMS = FALSE

" Try to LIMIT mylangs again

LIMIT mylangs TO "FRENCH®

" Verify if the LIMIT worked. It did

REPORT mylangs
MYLANGS

5-54

LSIZE

ORACLE

Chapter 5
LSIZE

FRENCH

" Then relock the language
LOCK_LANGUAGE_DIMS = TRUE

The LSIZE option defines the line size within which the STDHDR program centers the
standard header. LSIZE can be set in the initialization section of a report program.

Data Type
INTEGER

Syntax
LSIZE =n

Parameters

n
An INTEGER expression that specifies the line size within which the STDHDR program
centers the standard header, or the maximum line size for output from a HEADING
statement. The default is 80 characters for a line.

The maximum width of any line in a report, including a heading line, is 4,000
characters. Therefore, it generally makes sense to set LSIZE to a value of 4000 or
less.

Usage Notes
Centering Report Segments

Because STDHDR centers the running page heading within the width of LSIZE, you
can use it with LSIZE to center parts of your report. (Start by setting LSIZE to the width
of the longest line in your report.)

Creating Centered Headings

You can use LSIZE in centering your own headings for each page or at the beginning
of a section. Start by setting LSIZE to the width of your line. Then use a HEADING
statement with a WIDTH of LSIZE and the keyword CENTER before the text of your
heading. See Example 5-49.

Setting LSIZE for a File

To set LSIZE for a file, first make the file your current outfile by specifying its name in
an OUTFILE statement, then set LSIZE to the desired value. The new value remains
in effect until you reset it or until you use an OUTFILE statement to direct output to a
different outfile. When you direct output to a different outfile, LSIZE returns to its
default value of 80 for the file.

When you set LSIZE for the default outfile, the new value remains in effect until you
reset it, regardless of intervening OUTFILE commands that send output to a file. That
is, the value of LSIZE is automatically saved for the default outfile.

5-55

Chapter 5
MAXFETCH

Examples
Example 5-49 Centering a Heading

Suppose you design a quarterly sales report to have a short line width of 50 characters
so that readers have plenty of room to make notes in the margins. To center your
headings, include the following lines near the beginning of your report program.

PAGEPRG = "stdhdr*®

LSIZE = 50
PAGING = YES
PAGE

HEADING WIDTH LSIZE CENTER "Quarterly Sales”

The following output is produced at the beginning of the report.

96/05/13 15:05:16 PAGE 1

Quarterly Sales

MAXFETCH

ORACLE

The MAXFETCH option sets an upper limit on the size of a data block generated by a
FETCH statement specified in the OLAP_comrand parameter of the OLAP_TABLE
function.

¢ See Also:

For more information on using FETCH statements, see FETCH command. For
more information on The OLAP_TABLE function, see Oracle OLAP DML
Reference.

Return Value

INTEGER

Syntax
MAXFETCH = integer-expression

Parameters

integer-expression

An INTEGER expression representing the maximum size in bytes of a data block
generated by FETCH. The minimum value for MAXFETCH is 1K (approximately 1,000
bytes), and the maximum value is 2GB (approximately 2,000,000,000 bytes). The
default value of MAXFETCH is 256K.

Usage Notes
Improving Performance of Queries Using OLAP_TABLE

The setting of MAXFETCH can effect the performance of queries using the OLAP_TABLE
function. Large queries with joins of OLAP_TABLE function may run faster with higher

5-56

Chapter 5
MODDAMP

settings. However, larger settings use more memory which can cause slower
performance when there are multiple users. The setting of MAXFETCH does not affect
a SELECT using only one OLAP_TABLE function.

MAXFETCH can cause a FETCH error

When FETCH cannot package a data block within the size limit set by MAXFETCH, it
produces an error, and no data is returned to the client. By setting MAXFETCH, you
can produce an error, rather than run out of memory, when you attempt to fetch too
much data.

Examples
Limiting Data Blocks to 4K

The following statement limits the size of data blocks to 4K.

MAXFETCH = 4096

MODDAMP

ORACLE

The MODDAMP option specifies a weighting factor that damps out oscillations
between iterations when you use the Gauss-Seidel method for solving simultaneous
equations in a model. MODDAMP can allow the solution of models that would
otherwise never converge because the oscillation between equations is stable. In
these cases, the oscillations never decay without damping.

With the Gauss-Seidel method, Oracle OLAP tests each model equation for
convergence or divergence in each iteration over a block of simultaneous equations.
The tests are made by comparing the results of the current iteration to the results from
the previous iteration. When MODDAMP specifies a weighting factor that is greater
than zero, the value that Oracle OLAP tests and stores after each iteration is a
weighted average of the current and previous results. For equations that oscillate
between iterations, you can therefore use MODDAMP to damp out the oscillations and
either prevent divergence or speed up the convergence of the equations.

Data Type
DECIMAL

Syntax
MODDAMP = {n|0.00}

Parameters

n

A decimal value, greater than or equal to zero and less than one, that specifies the
weighting factor. The closer MODDAMP is to 0.00, the more weight is given to the
value from the current iteration. The default value is 0.00, which gives full weight to
the current iteration.

When MODDAMP is greater than zero, Oracle OLAP calculates the weighted average
for the current iteration as follows.

calcvalue * (1 - MODDAMP) + weightavg

where:

5-57

ORACLE

Chapter 5
MODDAMP

» cal cval ue is the value calculated from the model equation in the current
iteration.

« wei ght avg is the weighted average calculated in the previous iteration.

See "Stored Weighted Average".

Usage Notes
Specifying the Solution Method

The MODDAMP option is used only with the Gauss-Seidel method for solving
simultaneous equations. The MODSIMULTYPE option determines the solution method
that is being used. The possible settings for MODSIMULTYPE are GAUSS, for the
Gauss-Seidel method, and AITKENS, for the Aitkens delta-squared method.

Effect of MODDAMP on Convergence Speed

MODDAMP is used in calculating the results of all model equations in every
simultaneous block, whether they oscillate between iterations or not. For equations
that do not oscillate, convergence is slowed down when the value of MODDAMP is
greater than zero. Therefore, when your model contains some equations that oscillate
and some that do not, you might be able to speed up overall convergence by setting
MODDAMP to a small nonzero value, such as 0.20. A small nonzero value slows down
the convergence of non-oscillating equations only slightly, while speeding up the
convergence of oscillating equations.

Stored Weighted Average

When the model equation does not converge or diverge on the current iteration, the
weighted average calculated in the current iteration is stored. In the next iteration,
Oracle OLAP uses this stored average as weightavg (that is, the weighted average
calculated in the previous iteration) in the formula for the weighted average.

In the first iteration over a block, Oracle OLAP uses the starting value of the target
variable (or dimension value) as the weightavg (that is, the weighted average
calculated in the previous iteration).

Iteration Results Compared

In tests for convergence and divergence in each iteration, Oracle OLAP compares the
results of the current iteration to the results from the previous iteration. When
MODDAMP is greater than zero, Oracle OLAP tests a conpari son val ue thatis
calculated as follows.

(weightavg - weightavg) | (weightavg PLUS MODGAMMA)
where wei ght avg is the weighted average calculated in the previous iteration

For an explanation of the test for convergence, see the MODTOLERANCE option. For
an explanation of the test for divergence, see the MODOVERFLOW option.

Options to Control the Solution of Simultaneous Blocks

Altering the value of MODDAMP is just one step you can take in attempting to speed
up or attain convergence of a simultaneous block. MODEL lists additional options that
you can use to control the solution of simultaneous blocks and provides information on
running and debugging models.

5-58

ORACLE

Chapter 5
MODDAMP

Examples
Example 5-50 Using the Default MODDAMP Value

The following statements trace a model called income.bud, specify that the Gauss-
Seidel method should be used for solving simultaneous blocks, limit a dimension, and
run the income.bud model.

MODTRACE = YES
MODSIMULTYPE = "GAUSS®
LIMIT division TO *Camping*®
income._bud budget

These statements produce the following output.

(MOD=INCOME.BUD) BLOCK 1: SIMULTANEOUS
(MOD=INCOME.BUD) ITERATION 1: EVALUATION
(MOD= INCOME.BUD) revenue = marketing * 300 - cogs

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 35) = 368.650399101

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 36) = 369.209604252

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 37) = 368.718556135

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 38) = 369.149674626

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 39) = 368.771110244
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH

(MOD= INCOME.BUD) END BLOCK 1

"JAN97" ITER 40) = 369.103479583

The MODDAMP option is set to its default value of 0.00. The equation for the Revenue
line item converged in 40 iterations over a block of simultaneous equations. In the
trace lines, you can see the results that were calculated for the Revenue line item in
the final 6 iterations.

Example 5-51 Setting MODDAMP to Speed Up the Convergence of a Model

The following statements change the value of MODDAMP and run the income.bud
model.

MODDAMP = 0.2
income._bud budget

These statements produce the following output.

(MOD=INCOME.BUD) BLOCK 1: SIMULTANEOUS

(MOD=INCOME.BUD) ITERATION 1: EVALUATION

(MOD=INCOME.BUD) revenue = marketing * 300 - cogs
(MOD=INCOME.BUD) BUDGET (LINE REVENUE MONTH "JAN97" ITER 1) = 276.200000000

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 2) = 416.187139753
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 3) = 368.021098186
(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 4) = 367.209906847

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 5) = 369.271224267

5-59

Chapter 5
MODERROR

(MOD= INCOME.BUD) BUDGET (LINE REVENUE MONTH *JAN97" ITER 6) = 368.965397407
(MOD= INCOME.BUD) END BLOCK 1

In "Example 5-50", the equation for the Revenue line item converged in 40 iterations.
With MODDAMP set to 0.2 in the current example, the same equation converged in
just 6 iterations.

MODERROR

ORACLE

The MODERROR option determines the action that Oracle OLAP takes when a block
of simultaneous equations in a model cannot be solved within a specified number of
iterations.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks

Data Type
ID

Syntax
MODERROR = {{STOP'|'CONTINUE'}

Parameters

'STOP!
(Default) Oracle OLAP sends an error message to the current outfile and stops
executing the model.

'CONTINUE'
Oracle OLAP sends a warning message to the current outfile, stops executing the
current block, and resumes execution at the next block in the model.

Usage Notes
Block-Solution Failure

When every equation in a simultaneous block passes a convergence test, the block is
considered solved. When any equation diverges or fails to converge within a specified
number of iterations, the solution of the block fails and an error occurs. MODERROR
controls the action that Oracle OLAP takes when an error occurs.

Attaining Convergence for a Simultaneous Block in a Model

When an error occurs, you might be able to attain convergence for the block by
changing the value of one or more options that control the solution of simultaneous
blocks. For example, you can increase the number of iterations that is attempted or
you can change the criteria used in testing for convergence and divergence.

Using 'STOP"

5-60

Chapter 5
MODGAMMA

When MODERROR is set to STOP and execution of the model halts because of an
error, you can run the MODEL.XEQRPT program to produce a report about the
execution of the model. The report specifies the block where the solution failed and
shows the values of the model options that were used in solving simultaneous blocks.

Using 'CONTINUE!

When MODERROR is set to CONTINUE and one block in the model is a simultaneous
block that either diverges or fails to converge, Oracle OLAP executes any remaining
blocks in the model.

Moreover, Oracle OLAP executes the model for the remaining values in the status of
any additional dimensions of the solution variable that are not dimensions of the
model. In this case, when you run the MODEL.XEQRPT program when Oracle OLAP
finishes executing the model, you see a report on the solution for the final values of the
additional dimensions.

When the simultaneous blocks in the model converged when the model was executed
for the final values of the additional dimensions, then MODEL .XEQRPT reports that the
blocks were solved, even though an earlier execution of the model for another
dimension value might have failed. When you want to see the MODEL.XEQRPT for the
dimension values where the failure occurred, you can set MODERROR to STOP and
rerun the model.

Examples
Example 5-52 Debugging a Model

This example assumes that you are connected through OLAP Worksheet and enter
the following statements in the Command Input window. The statements set
MODERROR to DEBUG so that you can debug the myModel model (which contains a
block of simultaneous equations) when the simultaneous block fails to converge.

MODERROR = "DEBUG*"
myModel actual

When the simultaneous block fails to converge, you can type an Oracle OLAP or
debugger command in the Command Input window in OLAP Worksheet. Because the
solution variable, actual, is dimensioned by division, you might want to display the
current value of division.

SHOW division
Camping

MODGAMMA

The MODGAMMA option specifies a value to use in testing how much an equation in a
simultaneous block of a model is changing between iterations. MODGAMMA controls
the degree to which the test compares the absolute amount of the change between
iterations versus the proportional change. MODGAMMA is especially important in
testing equations that result in very small values.

ORACLE 5-61

ORACLE

Chapter 5
MODGAMMA

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks.

Data Type
INTEGER

Syntax
MODGAMMA = {n|1}

Parameters

n
An INTEGER value to use in testing for convergence and divergence. As Oracle OLAP
calculates each equation in a simultaneous block, it constructs a comparison value
that is based on the results of the equation for the current iteration and the previous
iteration. When the comparison value passes a tolerance test, the equation is
considered to have converged. When the comparison value meets an overflow test,
the equation is considered to have diverged.

The comparison value that is tested is as follows.

(thisResult - prevResult) DIVIDED BY (prevResult PLUS MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration.

Oracle OLAP calculates the absolute value of the enclosed expression. The default
value of MODGAMMA is 1.

Usage Notes
Testing Convergence

In the test for convergence, the MODTOLERANCE option determines how closely the
results of an equation must match between successive iterations. With the default
value of 3 for MODTOLERANCE, the equation is considered to have converged when
the comparison value is less than 0.001.

Testing Divergence

In the test for divergence, the MODOVERFLOW option determines how dissimilar the
results of an equation must be in successive iterations. With the default value of 3 for
MODOVERFLOW, the equation is considered to have diverged when the comparison
value is greater than 1000.

Comparison Value

The comparison value that Oracle OLAP evaluates in tests of convergence and
divergence is fundamentally a proportional value. It expresses the change between
iterations as a proportion of the previous results. In the test for convergence, the
change between iterations must be small in proportion to the previous results. In the
test for divergence, the change between iterations must be large in proportion to the
previous results. By testing a proportional value, rather than testing the absolute

5-62

ORACLE

Chapter 5
MODGAMMA

amount of change, Oracle OLAP can apply the same test criteria to all equations,
regardless of the magnitude of the equation results.

However, the comparison value that Oracle OLAP tests is not strictly proportional.
When the results of an equation are very close to zero, the denominator of a strictly
proportional comparison value would also be very close to zero, and thus the
comparison value itself would generally be large. Therefore, the test for convergence
would be difficult to satisfy, while the test for divergence would be easy to meet. To
solve this problem, Oracle OLAP adds the value of MODGAMMA to the denominator
of the comparison value. When the default value of 1 is used for MODGAMMA, the
effect of MODGAMMA is as follows:

e When the equation results are close to zero, the denominator is close to one and
the test is essentially a test of the absolute change between iterations.

e When the equation results are very large, the effect of adding MODGAMMA to the
denominator is negligible, and the test is close to being a strictly proportional test.

Controlling Test Sensitivity

For equation values close to zero, you can control the sensitivity to the tests for
convergence and divergence by changing the value of MODGAMMA. When equation
values are very small, you essentially scale the changes in model values between
iterations when you change the value of MODGAMMA. For example, when you
change MODGAMMA from 1 to 2, the comparison value is essentially cut in half. As a
consequence, you reduce the likelihood that divergence occurs.

Ways to Increase Speed of Convergence of Model Equations

The default value of MODGAMMA is appropriate in most situations. When you
increase the value of MODGAMMA, the model equations converge more quickly, but
the results are less precise. The smaller the equation value, the more pronounced is
the effect of increasing MODGAMMA; convergence is attained relatively more quickly
for small model values, while more precision is lost.

You can also force the simultaneous blocks of a model to converge more quickly by
decreasing the value of MODTOLERANCE and thereby relaxing the test for
convergence. However, when you do this, you sacrifice the precision of all the results,
not just the results of equations with small values.

Therefore, when a model contains some equations with large values and some
equations with very small values, it might be preferable to increase MODGAMMA
rather than decreasing MODTOLERANCE. By increasing MODGAMMA, you might be
able to force equations with small values to converge more quickly while retaining the
precision of equations with large values.

Examples
Example 5-53 Using the Default MODGAMMA Value

The following statements specify a trace for a model called income.bud, specify that the
Gauss-Seidel method should be used for solving simultaneous blocks, limit a
dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = "GAUSS®
LIMIT division TO "Camping”
income.bud budget

These statements produce the following output.

5-63

Chapter 5
MODINPUTORDER

(MOD= INCOME.BUD) BLOCK 1: SIMULTANEOUS

(MObé-INCOME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 16) = 0.026243533
(MOD=-i&COME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 17) = 0.024054312
(MObé-INCOME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 18) = 0.025788293
(MObé-INCOME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 19) = 0.024390642
(MOD;-iNCOME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 20) = 0.025501664
(MOD;-iNCOME.BUD) BUDGET (LINE NET.INCOME MONTH "JAN97" ITER 21) = 0.024608562

In the trace, you can see the results that were calculated for the NET.INCOME line
item in the final six iterations over a block of simultaneous equations.

The value of MODTOLERANCE is its default value of 3. Consequently, for an equation
to pass the convergence test, its comparison value must be less than .001.

MODGAMMA is set to its default value of 1. The equation for the NET.INCOME line
item passed the convergence test in the twenty-first iteration. The comparison value
for Net. Income in the twenty-first iteration was calculated as follows.

(0.024608562967 - 0.025501664970 = 0.00087) / (0.025501664970 + 1)

Example 5-54 Setting MODGAMMA to Speed up the Convergence of a Model

The following statements change the MODGAMMA setting and run the income.bud
model.

MODGAMMA = 2
income.bud budget

With MODGAMMA set to 2, the equation for Net. Income converges in the eighteenth
iteration. The comparison value for Net. Income in the eighteenth iteration is calculated
as follows.

(0.025788293304 - 0.024054312748 = 0.00086) / (0.024054312748 + 2)

MODINPUTORDER

ORACLE

The MODINPUTORDER option controls whether the equations in a simultaneous
block of a model are executed in the order in which you place them or in an order
determined by the model compiler. MODINPUTORDER has no effect on the order of
equations in simple blocks and step blocks.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks.

Data Type
BOOLEAN

5-64

ORACLE

Chapter 5
MODINPUTORDER

Syntax
MODINPUTORDER = {YES|NO}

Parameters

YES
The equations in a simultaneous block of a model are executed in the order in which
they appear in the model.

NO
(Default) The equations in a simultaneous block are executed in an order determined
by the model compiler.

Examples
Example 5-55 Using the Default Order
The following statements define the income.calc model.

DEFINE income.calc MODEL

MODEL

DIMENSION line month

Net.Income = Opr.lIncome - Taxes

Opr.Income = Gross.Margin - TOTAL(Marketing + Selling + R.D)
Marketing = LAG(Opr.Income, 1, month)

Gross.Margin = Revenue - Cogs

END

The following statements compile the model and produce a compilation report using
the MODEL.COMPRPT program.

COMPILE income.calc
MODEL .COMPRPT income.calc

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>
BLOCK 1 (SIMPLE)
INCOME.CALC 5: gross.margin = revenue - cogs
BLOCK 2 (SIMULTANEQUS <MONTH>)
INCOME.CALC 4: marketing = lag(opr.income, 1, month)
INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)
END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes
END BLOCK 1

When you compile income.calc with MODINPUTORDER set to its default value of NO,
you can see that the compiler reverses the order of the equations in the simultaneous
block.

Example 5-56 Changing the MODINPUT Value

The following statements set the value of MODINPUTORDER to YES, compile the
model, and produce a compilation report.

MODINPUTORDER = YES
COMPILE income.calc
MODEL .COMPRPT income.calc

5-65

Chapter 5
MODMAXITERS

These statements produce the following output.

MODEL INCOME.CALC <LINE MONTH>

BLOCK 1 (SIMPLE)
INCOME.CALC 5: gross.margin = revenue - cogs

BLOCK 2 (SIMULTANEOUS <MONTH>)
INCOME.CALC 3: opr.income = gross.margin - total(marketing + selling + r.d)
INCOME.CALC 4: marketing = lag(opr.income, 1, month)

END BLOCK 2
INCOME.CALC 2: net.income = opr.income - taxes

END BLOCK 1

You can see that the compiler leaves the simultaneous equations in the order in which
you placed them.

MODMAXITERS

The MODMAXITERS option determines the maximum number of iterations Oracle
OLAP performs in attempting to solve a block of simultaneous equations in a model.

Note:

"Model Options" for descriptions of all of the options that control the solution of
simultaneous blocks, and

Data Type
INTEGER

Syntax
MODMAXITERS = {n|50}

Parameters

n
A positive INTEGER value that indicates the maximum number of iterations Oracle
OLAP should perform in attempting to solve a simultaneous block. The default is 50.

Usage Notes
Reporting Model Execution Results

When any equation in a simultaneous block diverges or fails to converge within the
number of iterations specified by MODMAXITERS, the solution of the block fails and
an error occurs. You can use the MODEL.XEQRPT program to produce a report on
the results of the model's execution. The report indicates whether a simultaneous
block diverged or failed to converge. When a block failed to converge, you can
experiment with increasing the value of MODMAXITERS to see if convergence can be
attained.

ORACLE 5-66

Chapter 5
MODOVERFLOW

Examples
Example 5-57 Model with MODMAXITERS

Suppose a model named MYMODEL contains a block of simultaneous equations that
failed to converge within 50 iterations. The following statements increase the value of
MODMAXITERS and run the model again.

MODMAXITERS = 100
myModel actual

MODOVERFLOW

ORACLE

The MODOVERFLOW option is used in testing whether any equation in a
simultaneous block of a model has diverged. MODOVERFLOW determines how
dissimilar the results of an equation must be in successive iterations for the equation
to be considered to have diverged.

¢ Note:

"Model Options" for a list of all of the options that control the solution of
simultaneous blocks.

Data Type
INTEGER

Syntax
MODOVERFLOW = {n|3}

Parameters

n
An INTEGER value to use in testing for divergence. As Oracle OLAP calculates each

equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value meets a divergence test, the equation is considered to have

diverged.

The comparison value that is tested is as follows.

(thisResult - prevResult) | (prevResult + MODGAMMA)

where t hi sResul t is the result of this iteration and pr evResul t is the result of the
previous iteration

In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of MODGAMMA
is 1.

In the divergence test, Oracle OLAP tests whether the comparison value is greater
than 10 to the power of MODOVERFLOW. The calculation for this test is as follows.

Comparison value > 10**MODOVERFLOW

5-67

ORACLE

Chapter 5
MODOVERFLOW

For the equation to be considered to have diverged, the comparison value must meet
the test described earlier. The default value of MODOVERFLOW is 3. With this
default, the comparison value meets the test when it is greater than 1000.

Usage Notes
Equation Divergence

When an equation diverges, an error occurs. The MODERROR option controls the
action that Oracle OLAP takes when an error occurs.

Faster Divergence During Development

While you are developing a model, you can sometimes save time by using a small
value for MODOVERFLOW. When Oracle OLAP is performing many iterations over a
particular simultaneous block, a smaller value of MODOVERFLOW can cause rapid
divergence of that block. When you set the MODOVERFLOW option to CONTINUE,
execution of the model continues when the divergence occurs, and you can
concentrate on debugging the other blocks in the model. After you have debugged the
model, you can use a larger value for MODOVERFLOW.

Examples
Example 5-58 Using the Default MODOVERFLOW Value

The following statements specify a trace for a model called income.est, limit a
dimension, and run the model.

MODTRACE = YES

LIMIT division TO *Camping*®
income._est budget

These statements produce the following output.

(MOD= INCOME.EST) BLOCK 1: SIMULTANEOUS

(MOD= INCOME.EST) ITERATION 1: EVALUATION

(MOD= INCOME.EST) selling = marketing * 3

(MOD= INCOME.EST) BUDGET (LINE SELLING MONTH "JAN97" ITER 1) = 3

(Méb; INCOME.EST) BUDGET (LINE SELLING MONTH *JAN97® ITER 2) = -997
(MOb;-INCOME.EST) BUDGET (LINE SELLING MONTH *JAN97* ITER 3) = 6.00902708124
(MOb;-INCOME.EST) BUDGET (LINE SELLING MONTH *JAN97* ITER 49) = 34.2715693388
(MOb;-INCOME.EST) BUDGET (LINE SELLING MONTH *JAN97* ITER 50) = -7.22300601861

In the trace, you can see the results that were calculated for the Selling line item in the
first three iterations and the forty-ninth and fiftieth iterations over a block of
simultaneous equations. The block failed to converge after 50 iterations.

The value of MODOVERFLOW is its default value of 3. Consequently, for an equation
to meet the divergence test, its comparison value must be greater than 1000.

Example 5-59 Speeding Up the Divergence

The following statements change the MODOVERFLOW setting and run the income.est
model.

5-68

Chapter 5
MODSIMULTYPE

MODOVERFLOW = 2
income.est budget

With MODOVERFLOW set to 2, any comparison value of more than 100 meets the
test for divergence. In this example, the equation for Selling meets the test in the
second iteration. In the second iteration, Oracle OLAP calculates the comparison
value for Selling as follows.

(-997 - 3) / (3 + 1) = 250

Because this comparison value is greater than 100, the equation for Selling diverges
in the second iteration.

MODSIMULTYPE

ORACLE

The MODSIMULTYPE option specifies the method to use for solving simultaneous
blocks in a model.

Note:

"Model Options" for a list of all of the options that control the solution of
simultaneous blocks.

Data Type
ID

Syntax
MODSIMULTYPE = {{AITKENS'|'GAUSS"}

Parameters

'AITKENS'

(Default) Oracle OLAP uses the Aitkens delta-squared solution method. In the first
two of every three iterations over a block of simultaneous equations, the equations
are solved using the values from the previous iteration, and the results are tested for
convergence and divergence. In every third iteration, the results are obtained not by
solving the equations, but by making a next-guess calculation. This calculation uses
the results of the previous three iterations. The results of the guesses are not tested
for convergence and divergence, and the solution always continues to the next
iteration.

'GAUSS'

Oracle OLAP uses the Gauss-Seidel solution method. Equations in a simultaneous
block are solved in each iteration over the block. The results are tested for
convergence and divergence in each iteration.

Usage Notes

Solving Simultaneous Blocks

5-69

ORACLE

Chapter 5
MODSIMULTYPE

Oracle OLAP uses an iterative method to solve the equations in a simultaneous block.
In each iteration, except the next-guess iterations in an Aitkens solution, a comparison
value is calculated from the result of the current iteration and the result of the previous
iteration. When the comparison value falls within a specified tolerance (see the
MODTOLERANCE option), the equation is considered to have converged. When the
comparison value is too great (see the MODOVERFLOW option), the equation is
considered to have diverged and solution of the block ends.

When all equations in a block converge, the block is considered solved. When any
equation diverges or when any equation fails to converge after a specified number of
iterations (see the MODMAXITERS option), solution of the block (and of the model)
fails and Oracle OLAP generates an error.

Next-Guess Calculation

The Aitkens method requires three values to perform a next-guess calculation.
Therefore, in the first three iterations over a simultaneous block, Oracle OLAP solves
the equations. The fourth iteration is a next-guess iteration that uses the results from
the first three iterations in its calculation.

Thereafter, every third iteration is a next-guess iteration that calculates results by
using the previous guess and the equation results from the intervening two iterations.
For example, the seventh iteration makes a next-guess calculation that is based on the
guess from the fourth iteration and the equation results from the fifth and sixth
iterations.

Memory Required

The Aitkens method usually speeds convergence, and it generally produces more
accurate results than the Gauss-Seidel method. However, the Aitkens method requires
more memory because the results of three previous iterations are stored.

In general, use the Aitkens method. Use the Gauss-Seidel method only when limited
memory is a problem on your system.

Handling NA Values When Solving Simultaneous Blocks in a Model

In calculating equation results and making next-guess calculations, Oracle OLAP
observes the setting of the NASKIP2 option. NASKIP2 controls how NA values are
handled when + (plus) and - (minus) operations are performed. The setting of
NASKIP2 is important when you specify a solution variable that contains NA values.
Because the values in the solution variable are used as the initial values in the first
iteration over a simultaneous block, the results of the equations might be NA when
there are NA values in the solution variable. An NA result in the first iteration might also
produce NA results in later iterations. Therefore, to avoid obtaining NA for the results,
you can ensure that the solution variable does not contain NA values or you can set
NASKIP2 to YES before running the model.

Data Type Problems

A simultaneous equation might fail to converge when it assigns data to a variable with
an INTEGER data type or when you specify a solution variable with an INTEGER data
type for a dimension-based model. Oracle OLAP converts the data to decimal values
when it calculates the equation in each iteration, but the results are stored in the
INTEGER variable between iterations which has the effect of rounding the values and
thereby interfering with a progression toward convergence.

Function Problems

5-70

Chapter 5
MODTOLERANCE

A simultaneous equation might fail to converge when it contains a function that
produces rounded values (such as INSTRB or ROUND) or when it contains a function
that introduces discontinuities in the data (such as MAX or MIN).

Starting-Value Problems

The solution of a simultaneous block is sensitive to starting values. For example, when
a model has a proportional relationship between two model values, then starting
values close to zero inhibits convergence. Consequently, attempt to use starting
values that are reasonable for the equations being solved.

Order of Equations

The solution of a simultaneous block is also sensitive to the order of the equations.
When you compile a model, the model compiler determines an optimal equation order
that is based on the dependencies among the equations.

To force the equations in a simultaneous block to be solved in a particular order, you
can write the equations in the desired order and set the MODINPUTORDER option to
YES before compiling the model. When MODINPUTORDER is YES, the model compiler
leaves the equations in a simultaneous block in the order in which they appear in the
model.

By placing simultaneous equations in a particular order and setting
MODINPUTORDER to YES before compiling the model, you might be able to
encourage convergence in some models. In general, however, it is preferable to rely
on the model compiler to order the equations.

Producing an Execution Report

After running a model, you can use the MODEL.XEQRPT program to produce a report
about the execution of the model.

Examples
Example 5-60 Economizing on Memory Requirements

When a model named budget98 is a complex model that iterates over a large number
of dimension values in a simultaneous block, you can economize on the memory
requirements of the model solution by using the Gauss-Seidel method.

The following statements specify the Gauss-Seidel method and run the model.

MODSIMULTYPE = "GAUSS*"
budget98 budget

MODTOLERANCE

ORACLE

The MODTOLERANCE option is used in testing whether each equation in a
simultaneous block of a model has converged. MODTOLERANCE determines how
closely the results of an equation must match between successive iterations for the
equation to be considered to have converged.

Data Type
INTEGER

5-71

ORACLE

Chapter 5
MODTOLERANCE

Syntax
MODTOLERANCE = {n|3}

Parameters

n

An INTEGER value to use in testing for convergence. As Oracle OLAP calculates each
equation in a simultaneous block, it constructs a comparison value that is based on
the results of the equation for the current iteration and the previous iteration. When
the comparison value passes a tolerance test, the equation is considered to have
converged.

The comparison value that is tested is as follows.

(thisResult - prevResult) / (prevResul t+ MODGAMMA)

where thisResult is the result of this iteration and prevResult is the result of the
previous iteration

In the preceding calculation, MODGAMMA is an INTEGER option that controls the
degree to which the comparison value represents the absolute amount of change
between iterations versus the proportional change. The default value of MODGAMMA
is 1.

In the tolerance test, Oracle OLAP tests whether the comparison value is less than 10
to the negative power of MODTOLERANCE. The calculation for this test is as follows.

Conparison value < 10**-MODTOLERANCE

An equivalent way of writing this calculation is as follows.

Conparison value < (1 / (10**MODTOLERANCE))

For the equation to be considered to have converged, the comparison value must
meet the test described earlier. The default value of MODTOLERANCE is 3. With this
default, the comparison value meets the test when it is less than 0.001.

Usage Notes
Failure to Converge

When an equation fails to converge after a specified number of iterations, an error
occurs. The MODMAXITERS option controls the maximum number of iterations that
are attempted. The MODERROR option controls the action that Oracle OLAP takes
when an error occurs.

Precision of Results

Because MODTOLERANCE controls how closely results of an equation must match
between iterations, it therefore controls the precision of the results of the solution. A
small value of MODTOLERANCE results in less precision, while a large value provides
more precision.

Large and Small Values

When a model contains some equations with large values and some equations with
very small values, it might be preferable to increase the value of the MODGAMMA
option rather than decreasing MODTOLERANCE. By increasing MODGAMMA, you

5-72

ORACLE

Chapter 5
MODTOLERANCE

might be able to force equations with small values to converge more quickly while
retaining the precision of equations with large values.

Faster Convergence During Development

While you are developing a model, you might want to use a small value for
MODTOLERANCE. While this gives less precise results, the model equations
converges more quickly. After you have debugged the model, you can increase the
value of MODTOLERANCE and thereby increase the precision of the final results.

Options for Controlling the Solution of Simultaneous Blocks

For a list of all the options that you can use to control the solution of simultaneous
blocks, see "Model Options".

Examples
Example 5-61 Using the Default MODTOLERANCE Value

The following statements specify a trace for a model called income.plan, specify that
the Gauss-Seidel method should be used for solving simultaneous blocks, limit a
dimension, and run the model.

MODTRACE = YES
MODSIMULTYPE = "GAUSS®
LIMIT division TO "Camping”
income._plan budget

These statements produce the following output.

(MOD=INCOME.PLAN) BLOCK 1: SIMULTANEOUS

(MOD= INCOME.PLAN) ITERATION 1: EVALUATION

(MOD='INCOME.PLAN) marketing = .15 * net.income

(MOD='INCOME.PLAN) BUDGET(LINE MARKETING MONTH "JAN97" ITER 1) = 11887.403671736

(MOD=INCOME.PLAN) BUDGET(LINE MARKETING MONTH "JAN97* ITER 6) = 73379.713232251
(MOD=INCOME.PLAN) BUDGET(LINE MARKETING MONTH "JAN97* ITER 7) = 73474.784648631

(MOD= INCOME.PLAN) BUDGET(LINE MARKETING MONTH "JAN97* ITER 8) = 73446.025848156
(MOD='INCOME.PLAN) END BLOCK 1

In the trace, you can see the results that were calculated for the Marketing line item in
the final three iterations over a block of simultaneous equations.

MODTOLERANCE is set to its default value of 3. Consequently, for an equation to
pass the convergence test, its comparison value must be less than 0.001. In the
seventh iteration, Oracle OLAP calculates the comparison value for Marketing as
follows.

(73474 .784648631100 - 73379.713232251300) / (73379.713232251300 + 1) = 0.0013

This comparison value is greater than 0.001, so it did not pass the test for
convergence.

In the eighth iteration, Oracle OLAP calculated the comparison value as follows.

(73446.025848156700 - 73474.784648631100) /(73474.784648631100 + 1) = 0.0004

Because this comparison value is less than 0.001, it passed the convergence test.

5-73

Chapter 5
MODTRACE

Example 5-62 Setting MODTOLERANCE to Speed Up the Convergence of a
Model

The following statements change the MODTOLERANCE value and run the income.bud
model.

MODTOLERANCE = 2
income.plan budget

With MODTOLERANCE set to 2, any comparison value of less than 0.01 passes the
test for convergence. In this example, the equation for Marketing passes the test in the
seventh iteration.

MODTRACE

ORACLE

The MODTRACE option controls whether each equation in a model is recorded in a
file during execution of the model. MODTRACE is used primarily as a debugging tool
to uncover problems by tracing the execution of a model.

Tip:

The INFO function lets you obtain specific items of information about the
structure of the compiled model and the solution status of a model you have
run. See INFO (MODEL).

Data Type
BOOLEAN

Syntax
MODTRACE = {YES|NO}

Parameters

YES

Oracle OLAP sends the text of each model equation to the current outfile before
calculating the model equation, and then sends the results of the calculation to the
current outfile.

When you have used a DBGOUTFILE statement to specify a debugging file, Oracle
OLAP sends MODTRACE output to the debugging file instead of the current oultfile.

NO
(Default) Oracle OLAP does not send the text of model equations and results to a file
while a model executes.

Usage Notes
Previewing the Solution Order

MODTRACE sends the equations of a model to the current outfile in the order in which
they are being solved. Before you run the model, you might want to use the
MODEL.COMPRPT program to get a preview of the solution order. A preview can be
especially helpful when the model is large and complex. The MODEL.COMPRPT program,
which you can run after compiling a model, produces a report that shows how the

5-74

ORACLE

Chapter 5
MODTRACE

compiler has organized the model equations into blocks and the order in which the
blocks and equations are solved.

Understanding Trace Information

MODTRACE shows the name of the current model on each line of the trace. The trace
includes the following types of lines.

e Block. A block line gives the block number and block type of the block that is about
to be executed. The type of block can be simple, step-forward, step-backward, or
simultaneous. For a step-forward or step-backward block, the block line specifies
the dimension being stepped over. For a simultaneous block with a cross-
dimensional dependency, the block line specifies the dimensions involved in the
dependency. See MODEL command for information on blocks in a model.

e [teration. These lines occur in simultaneous blocks and specify the number of the
iteration that is about to be performed for the current block. When you are using
the Aitkens solution method, the next-guess iterations are identified. (The
MODSIMULTYPE option determines the solution method being used.)

» Equation. The equation that is about to be calculated.

* Results. A results line follows each equation line and shows the results assigned
by the equation. It shows the variable to which the results were assigned and the
current value of each model dimension. In a simultaneous block, it also shows the
current iteration number. For example, when actual is the solution variable and the
model dimensions are line and month, a results line in a simultaneous block might
look like the following one.

(MOD= INCOME.CALC) ACTUAL (LINE OPR.INCOME MONTH "JAN96"
ITER 1) = 108.9600000

Using MODTRACE with Dimension-Based Equations

When you run a model that contains dimension-based equations, Oracle OLAP
automatically loops over all the dimensions of the solution variable. In the trace, the
results lines show the current value of each dimension listed in a DIMENSION
statement, but they do not show the current values of extra dimensions that are not
listed in DIMENSION statement. See DIMENSION (in models) for more information
about using DIMENSION statements.

Thus, when the model dimensions are line and month, and when the solution variable
is dimensioned by line, month, and division, the current value of division is not shown
in the results lines. Oracle OLAP executes the entire model for the first value in the
status of division, then for the second value in the status, and so on.

When you run a model that assigns values to variables, Oracle OLAP automatically
loops over all the dimensions (or bases of a composite) of those variables. In this
case, the current value of each of the variable's dimensions is shown in the trace.

Examples
Example 5-63 Debugging a Model with MODTRACE
The following statements define a model named income.budget.

DEFINE income.budget MODEL

LD Model for estimating budget items
MODEL

DIMENSION line month

5-75

ORACLE

Chapter 5
MODTRACE

Opr.Income = Gross.Margin - Marketing
Gross.Margin = Revenue - Cogs

Revenue = LAG(Revenue, 1, month) * 1.02

Cogs = LAG(Cogs, 1, month) * 1.01

Marketing = LAG(Opr.Income, 1, month) * 0.20
END

This model estimates budget line items on an income statement. The model equations
are based on a line dimension. The following statements compile the model and run
the MODEL.COMPRPT program.

COMPILE income.budget
MODEL . COMPRPT income.budget

The MODEL . COMPRPT statement produces the following compilation report.

MODEL INCOME.BUDGET <LINE MONTH>
BLOCK 1 (SIMPLE)
INCOME_BUDGET 4: revenue = lag(revenue, 1, month) * 1.02

INCOME_BUDGET 5: cogs = lag(cogs, 1, month) * 1.01
INCOME_BUDGET 3: gross.margin = revenue - cogs

BLOCK 2 (STEP-FORWARD <MONTH>)
INCOME_BUDGET 6: marketing = lag(opr.income, 1, month) * 0.20
INCOME_BUDGET 2: opr.income = gross.margin - marketing

END BLOCK 2

END BLOCK 1

When you want to debug this model, you can trace its execution, line by line, by
turning on MODTRACE before running the model.

The following statements limit dimensions, specify tracing, and run the model.

LIMIT month TO "Jan97" TO “"Mar97-"
LIMIT division TO "Camping”
MODTRACE = YES

income.budget budget

These statements produce the following line-by-line results.

(MOD=INCOME.BUDGET) BLOCK 1: SIMPLE

(MOD=INCOME.BUDGET) revenue = lag(revenue, 1, month) * 1.02
(MOD=INCOME.BUDGET) BUDGET (LINE REVENUE MONTH "JAN97") = 744491.1966
(MOD=INCOME.BUDGET) BUDGET (LINE REVENUE MONTH "FEB97") = 759381.020532
(MOD=INCOME.BUDGET) BUDGET (LINE REVENUE MONTH "MAR97") = 774568.64094264
(MOD=INCOME.BUDGET) cogs = lag(cogs, 1, month) * 1.01

(MOD=INCOME.BUDGET) BUDGET (LINE COGS MONTH "JAN97") = 382386.2323
(MOD=INCOME.BUDGET) BUDGET (LINE COGS MONTH "FEB97") = 386210.094623
(MOD=INCOME.BUDGET) BUDGET (LINE COGS MONTH "MAR97") = 390072.19556923
(MOD=INCOME.BUDGET) gross.margin = revenue - cogs

(MOD=INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH "JAN97") = 362104.9643
(MOD=INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH "FEB97") = 373170.925909
(MOD=INCOME.BUDGET) BUDGET (LINE GROSS.MARGIN MONTH "MAR97") = 384496.44537341
(MOD=INCOME.BUDGET) BLOCK 2 STEP-FORWARD <MONTH>

(MOD=INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD=INCOME.BUDGET) BUDGET (LINE MARKETING MONTH "JAN97") = 39938.192
(MOD=INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD=INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH "JAN97%) = 322166.7723
(MOD=INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20
(MOD=INCOME.BUDGET) BUDGET (LINE MARKETING MONTH "FEB97") = 64433.35446
(MOD=INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD=INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH "FEB97") = 308737.571449
(MOD=INCOME.BUDGET) marketing = lag(opr.income, 1, month) * 0.20

5-76

Chapter 5
MONTHABBRLEN

(MOD=INCOME.BUDGET) BUDGET (LINE MARKETING MONTH "MAR97") = 61747.5142898
(MOD= INCOME.BUDGET) opr.income = gross.margin - marketing
(MOD=INCOME.BUDGET) BUDGET (LINE OPR.INCOME MONTH "MAR97") = 322748.93108361
(MOD=INCOME.BUDGET) END BLOCK 2

(MOD=INCOME.BUDGET) END BLOCK 1

In Block 1, which is a simple block, Oracle OLAP solved the equations one at a time,
looping over the three values in the status of month as it solved each equation. In Block
2, which is a step-forward block over the month dimension, Oracle OLAP stepped over
the values in the status of month, solving all the equations in the block for each month
in turn.

MONTHABBRLEN

ORACLE

The MONTHABBRLEN option specifies the number of characters to use for
abbreviations of month names that are stored in the MONTHNAMES option. You can
specify how many characters to use for abbreviating particular month names when you
specify the <MT>, <MTXT>, and <MTXTL> formats with the DATEFORMAToption or a VNF
(value name format) specified for a dimension of type dimensions of type DAY, WEEK,
MONTH, QUARTER, or YEAR.

Data Type
TEXT

Syntax
MONTHABBRLEN = specification [;|, specification]...
where speci fi cati on is a text expression that has the following form:

startpos [- endpos] : length
Parameters

startpos [-endpos]

Numbers that represent the first and last months whose abbreviation length is defined
by length. These numeric positions apply to the corresponding lines of text in the
MONTHNAMES option. You can specify these ranges of values in reverse order,
endpos [-startpos], if you prefer.

The MONTHNAMES option can have more than 12 lines, so you can specify startpos
and endpos greater than 12 in the setting of MONTHABBRLEN. When you specify a
range where neither startpos nor endpos has a corresponding text value in the
MONTHNAMES option, MONTHABBRLEN has no text values to abbreviate for that
range. When you later change your month names list so that startpos is valid, the
specified abbreviation is applied.

length

A number that specifies the length in characters (not bytes) of abbreviated month
names. When you do not specify an abbreviation length for a given position in the
MONTHNAMES option, or when you explicitly set a given position to zero, the default
abbreviation is used. The default abbreviations are one character for <MT> and three
characters for <MTXT> and <MTXTL>. Abbreviations are never used when you have
designated the full name specifications <MTEXT> and <MTEXTL>.

5-77

Chapter 5
MONTHNAMES

Usage Notes
Ambiguous Month Names

You can use MONTHABBRLEN to interpret ambiguous names, for example, whether A
stands for April or August. When the MONTHABBRLEN for April was 1 and for August
was 2, then A would always match April, and it would require at least Au to match
August. This interpretation does not depend on the order of April and August in the
year; it would work the same way when the two months were reversed. If, on the other
hand, the MONTHABBRLEN for each of these was 2, then A would not match either
one, and you would have to enter at least Ap or Au to get a match.

Examples
Example 5-64 Specifying Month Abbreviations

The following MONTHABBRLEN setting specifies that the first 10 months of the year
are abbreviated to one character and the last 2 months are abbreviated to two
characters.

MONTHABBRLEN = "1-10:1, 11-12:2"
SHOW CONVERT ("2 August 2005" DATE)

These statements product the following result, with August abbreviated to the letter A.

02A05

MONTHNAMES

ORACLE

The MONTHNAMES option holds the list of valid names for months that is used in
handling values with a DATE-only data type and values of dimensions of type DAY,
WEEK, MONTH, QUARTER, and YEAR. The list of names is used to interpret dates
that are entered and to format dates that are displayed or converted to text values.

The MONTHNAMES list is used when you enter a date that includes a month name or
abbreviation. See the DATEFORMAT option for a discussion of methods for entering
DATE-only values. The MONTHNAMES list is also used when you display or convert a
date using the <MT>, <MTXT>, <MTXTL>, <MTEXT>, or <MTEXTL> formats. These formats are
specified in the DATEFORMAT option. When you have multiple sets of month names,
Oracle OLAP chooses the synonym whose number of characters and capitalization
pattern best match the DATEFORMAT specification.

¢ See Also:
MONTHABBRLEN option

Data Type
TEXT

Syntax
MONTHNAMES = name-list

5-78

Chapter 5
MONTHNAMES

Parameters

name-list

A multiline text expression that lists the names of the 12 months of the year. Each
month name occupies a separate line. Regardless of which month you are treating as
the first month of the year, the list must begin with the name for January. The default
value is the list of English month names, all in capital letters.

You can include more than 1 set of 12 names in your list. Any name in the list is
considered a valid name for input. The thirteenth name is a synonym for the first
name, the fourteenth name is a synonym for the second name, and so on.

Examples
Example 5-65 Specifying Two Sets of Month Names

The following statement creates two sets of month names, one in uppercase English
and the second in lowercase French.

MONTHNAMES = -
"JANUARY -

bééEMBER -

janvier -

&ééembre'

Example 5-66 Specifying English Month Names

The following statements define a DATE-only variable, assign a value to that variable,
assign a setting to DATEFORMAT, and send the output to the current outfile. The
DATEFORMAT value includes <MTEXT>, which specifies uppercase, so the English
month names are used.

DEFINE datevar DATE

datevar = "27feb98"

DATEFORMAT = "<MTEXT> <D>, <YYYY>"
SHOW datevar

These statements produce the following output.

FEBRUARY 27, 1998

Example 5-67 Specifying French Month Names

The following statements assign a new setting to DATEFORMAT and send the output
to the current outfile. The DATEFORMAT value includes <MTEXTL>, which specifies
lowercase, so the French month names are used.

DATEFORMAT = "le <D> <MTEXTL> <YYYY>"
SHOW datevar

These statements produce the following output.

le 27 fevrier 1998

ORACLE 5-79

Chapter 5
MULTIPATHHIER

MULTIPATHHIER

ORACLE

The MULTIPATHHIER option specifies that a given cell that contains detail data can
have multiple paths into a cell that contains aggregated data. Certain calculations
require this kind of multiple-path aggregation.

Data Type
BOOLEAN

Syntax
MULTIPATHHIER = {YES|NO}

Parameters

YES
Allows a detail data cell to aggregate in multiple paths to the same ancestor cell.

NO
(Default) Disallows a detail data cell to aggregate in multiple paths to the same
ancestor cell.

Usage Notes
When to Use MULTIPATHHIER

The only time you set the MULTIPATHHIER option to YES is when a calculation
requires the use of multiple paths.

Interpreting an XSHIERCKO1 Error Message

When you use the AGGREGATE command, dimension hierarchies are automatically
checked for circularity. When MULTIPATHHIER is set to NO, or when the default of NO
has not been changed, then the following error message is displayed when a detail
data cell uses multiple paths to the same aggregate data cell.

ERROR: (XSHIERCKO1) One or more loops have been detected
in your hierarchy n over N. The loops include 2 items
(UNDIRECTED: X and Y).

In the preceding error message, X is the name of the detail data cell, and Y is the name
of the ancestor cell into which the detail data cell takes multiple paths to aggregate.
For more information, see Example 5-68.

This error message is displayed because the multiple paths taken by the detail data
cell have been interpreted as a circular hierarchy. When this is a mistake and you did
not intend to create multiple paths, then change the hierarchy. Otherwise, set the
MULTIPATHHIER option to YES.

Examples
Example 5-68 Defining Multiple Paths in a Hierarchy

This example shows how you can define multiple paths in a hierarchy, the error
message that results when you attempt to aggregate data, how to interpret that
message, and how to resolve the problem.

5-80

Chapter 5
MULTIPATHHIER

The following statements create two paths from a detail data cell to an ancestor cell
that contains aggregated data.

DEFINE geog TEXT DIMENSION

DEFINE path INTEGER DIMENSION

DEFINE geog-geog RELATION geog <geog path>
MAINTAIN geog ADD "Al" "bl® "b2" "Top®
MAINTAIN path ADD 2

geog.geog(geog "Al" path 1) = "Bl"
geog.geog(geog "Al" path 2) = "B2"
geog.geog(geog "Bl" path 1) = "Top”
geog.geog(geog "B2" path 1) = "Top”

First, a geography dimension named geog and a second dimension named path are
defined.

A relation named geog.geog is defined, in which the geography dimension is
dimensioned by itself and the path dimension.

Dimension values named A1, B1, B2, and Top are added to the geog dimension.

Two dimension values are added to the path dimension. Because path was defined
with an INTEGER data type, the dimension values that are automatically assigned to it
are the INTEGER values 1 and 2.

Finally, the hierarchy for the geog dimension is created. The Al dimension value is the
detail data. The B1 and B2 dimension values are the second level of the hierarchy. The
Top dimension value is the top of the hierarchy.

Al has two aggregation paths: Al aggregates into B1, which aggregates into Top; Al
aggregates into B2, which aggregates into Top.

The following statements define a variable named myvar, assign a data value of 1 to its
detail data level (A1), and define an aggmap for that variable.

DEFINE myvar INTEGER VARIABLE <geog>
myvar(geog "Al*) =1

DEFINE myvar.aggmap <geog>

AGGMAP "RELATION geog.geog"

An attempt to aggregate myvar generates the following error message.

AGGREGATE myvar USING myvar.aggmap

ERROR: (XSHIERCKO1) One or more loops have been detected
in your hierarchy GEOG.GEOG over GEOG. The loops include 2
items (UNDIRECTED: Al and TOP).

The multiple paths of aggregation that have been created for A1 have been interpreted
as a circular hierarchy, because the MULTIPATHHIER option is currently set to NO.

When you had made a mistake and created these multiple paths by mistake, you
would fix the problem in the hierarchy.

However, in this case, the multiple paths have been created because a calculation
requires them. Therefore, the solution is to set MULTIPATHHIER to YES. Now you can
execute the AGGREGATE command without error.

ORACLE 5-81

NASKIP

ORACLE

Chapter 5
NASKIP

The NASKIP option controls whether NA values are considered as input to aggregation
functions.

" See Also:

$SNATRIGGER property, NASKIP2 option which controls how NA values are
treated with the + (plus) and - (minus) operators, and NASPELL option.

Data Type
BOOLEAN

Syntax
NASKIP = NO|YES

Parameters

NO
(Default) NA values are considered by aggregation functions. When any of the values
being considered are NA, the function returns NA for that value.

YES
NA values are ignored by aggregation functions. Only expressions with actual values
are used in calculations.

Usage Notes
Statements Affected by NASKIP
The following OLAP DML statements are affected by NASKIP.

AGGREGATE command
AGGREGATE function
ANY

AVERAGE

COUNT

CUMSUM

DEPRDECL
DEPRDECLSW
DEPRSL

DEPRSOYD

EVERY

FINTSCHED
FPMTSCHED

IRR

LARGEST

MEDIAN
MOVINGAVERAGE

5-82

ORACLE

Chapter 5
NASKIP

MOVINGMAX
MOVINGMIN
MOVINGTOTAL
NONE

NPV
SMALLEST
STDDEV
TCONVERT
TOTAL
VINTSCHED
VPMTSCHED

Other statements are not affected by the setting of NASKIP, they always ignore NA
values.

Examples
Example 5-69 The Effect of NASKIP on the TOTAL Function

In the demo workspace, the 1997 values for sales are NA. The TOTAL function returns
different results depending on the setting of NASKIP.

The statements

ALLSTAT
NASKIP = YES
SHOW TOTAL(sales)

produce the following result.

63,181,743.50

In contrast, the OLAP DML statements

NASKIP = NO
SHOW TOTAL(sales)

produce the following result.

NA

Example 5-70 The Effect of NASKIP on the MOVINGMIN Function

This example aggregates values for three months: the current month and the two
months before it. The first report of SALES shows the NA values for months in 1997.
When NASKIP is YES, the MOVINGMIN function returns NA only for March 1997
because all the values considered for that month were NA. When NASKIP is NO, the
third statement (REPORT DOWN month sales) shows NA values for January through

March 1997, because at least one value considered by MOVINGMIN for those months
was NA.

LIMIT district TO "Seattle”
LIMIT month TO *"Jul96® TO "Mar97-"
REPORT DOWN month sales

The preceding statements produce the following report of SALES data.

5-83

Chapter 5
NASKIP

DISTRICT: SEATTLE

MONTH Tents Canoes Racquets Sportswear Footwear
Jul96 123,700.17 157,274.03 60,198.52 78,305.97 78,019.87
Aug96 120,650.72 128,660.89 45,046.71 66,853.26 83,347.55
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 99,464.05
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,537.58
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72

Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

The statements

NASKIP = YES
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for March 1997.

DISTRICT: SEATTLE

MONTH Tents Canoes Racquets Sportswear Footwear

Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep96 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Jan97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Feb97 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72
Mar97 NA NA NA NA NA

The statements

NASKIP = NO
REPORT DOWN month MOVINGMIN(sales -2, 0, 1, month)

produce the following report, which shows NA values for January through March 1997.

DISTRICT: SEATTLE

MONTH Tents Canoes Racquets Sportswear Footwear

Jul96 108,663.59 125,823.37 57,666.37 57,713.27 73,085.88
Aug96 119,066.18 128,660.89 45,046.71 60,322.88 78,019.87
Sep9%6 97,188.43 122,702.13 42,257.14 63,777.36 78,019.87
Oct96 91,578.77 79,925.93 39,729.25 55,021.85 83,347.55
Nov96 56,044.34 77,357.10 39,024.93 44,004.12 65,216.94
Dec96 41,576.26 67,609.36 36,156.10 40,575.34 62,113.72

Jan97 NA NA NA NA NA
Feb97 NA NA NA NA NA
Mar97 NA NA NA NA NA

ORACLE 5-84

Chapter 5
NASKIP2

NASKIP2

The NASKIP2 option controls how NA values are treated in arithmetic operations with
the + (plus) and - (minus) operators. The result is NA when any operand is NA unless
NASKIP2 is set to YES.

¢ See Also:
$NATRIGGER property, NASKIP option, and NASPELL option.

Data Type
BOOLEAN

Syntax
NASKIP2 = YES|NO

Parameters

YES
Zeroes are substituted for NA values in arithmetic operations using the + (plus) and -
(minus) operators. The two special cases of NA + NA and NA - NA both result in NA.

NO

(Default) NA values are treated as NAs in arithmetic operations using the + (plus) and -
(minus) operators. When any of the operands being considered is NA, the arithmetic
operation evaluates to NA.

Usage Notes
Operators in Function Arguments

NASKIP2 is independent of NASKIP. NASKIP2 applies only to arithmetic operations
with the + (plus) and - (minus) operators. NASKIP applies only to aggregation
functions. However, when an expression argument to an aggregation function contains
a+ (plus) and - (minus) operator, the results of the calculation depend on both NASKIP
and NASKIP2. See Example 5-71.

How NASKIP2 Works

The following four lines show four steps in the evaluation of a complex expression that
contains NAs when NASKIP2 is set to YES.

3% (NA+NA) - 5* (NA + 3)
3*NA - 5% 3
NA - 15
-15

ORACLE 5-85

ORACLE

Chapter 5
NASKIP2

Examples

Example 5-71 Effects of NASKIP and NASKIP2 When an Expression in an
Aggregation Function Contains a Negative Values

In the following examples, INTEGER variables X and z, dimensioned by the INTEGER
dimension INTDIM, have the values shown in the second and third columns of the
report. The sum of X + Z is given for each combination of NASKIP and NASKIP2
settings, starting with their defaults. The example also shows that when the + (plus)
operator is used in the expression argument to the TOTAL function, the results that
are returned by TOTAL depend on the settings of both NASKIP and NASKIP2.

* NASKIP Set to YES, NASKIP2 Set to NO

In this example, NASKIP is set to YES, which means NA values are ignored by the
TOTAL function. NASKIP2 is set to NO, which means that the result of a + (plus)
operation is NA when any of the operands are NA.

NASKIP = YES
NASKIP2 = NO
COLWIDTH = 5

REPORT LEFT W 6 DOWN intdim x, z, X + z

These statements produce the following output. With NASKIP2 set to NO, the
expression X + Z evaluates to NA when either X or Z is NA.

INTDIM X Z x+z

1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(x + z)

This statement produces the following result.

13

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(X) + TOTAL(Z)

This statement produces the following result.
18
e NASKIP Set to YES, NASKIP2 Set to YES

In this example, NASKIP is set to YES, which means NA values are ignored by the
TOTAL function. NASKIP2 is set to YES, which means that NA values are ignored by
the + (plus) operator

NASKIP = YES
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim X, z, X + z

5-86

ORACLE

Chapter 5
NASKIP2

These statements produce the following output. With NASKIP2 set to YES, NA
values are ignored when the expression X + Z is evaluated.

INTDIM X Z X+Z

1 NA 2 2
2 3 NA 3
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(X + z)

This statement produces the following result.

18

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(X) + TOTAL(2)

This statement produces the following result.
18
NASKIP Set to NO, NASKIP2 Set to YES

In this example, NASKIP is set to NO, which means that when any values
considered by the TOTAL function are NA, TOTAL returns NA. NASKIP2 is set to
YES, which means that NA values are ignored by the + (plus) operator.

NASKIP = NO
NASKIP2 = YES
REPORT LEFT W 6 DOWN intdim x, z, X + z

These statements produce the following result.

INTDIM X Z X+1Z

1 NA 2 2
2 3 NA 3
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(X + z)

This statement produces the following result.

18

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(X) + TOTAL(2)

This statement produces the following result.
NA
NASKIP Set to NO, NASKIP Set to NO

5-87

NASPELL

ORACLE

Chapter 5
NASPELL

In this example, NASKIP is again set to NO, which means that when any values
considered by the TOTAL function are NA, TOTAL returns NA. NASKIP2 is also set
to NO, which means that the result of a + (plus) operation is NA when any of the
operands are NA.

NASKIP = NO
NASKIP2 = NO
REPORT LEFT W 6 DOWN intdim x, z, X + z

These statements produce the following result.

INTDIM X Z X+1Z

1 NA 2 NA
2 3 NA NA
3 7 6 13

The following statement uses a + (plus) operator within the expression argument to
the TOTAL function.

SHOW TOTAL(X + z)

This statement produces the following result.

NA

The next statement uses the + (plus) operator to add the results that are returned
by two TOTAL functions.

SHOW TOTAL(x) + TOTAL(Z)

This statement produces the following result.

NA

The NASPELL option controls the spelling that is used for NA values in output.

Data Type
TEXT

Syntax
NASPELL = {'text|'NA}
Parameters

text
The spelling to use for any NA value in output. When you specify an expression rather
than a text literal, you can omit the single quotes. The default is NA.

Usage Notes
Setting NASPELL to "0"

Setting NASPELL to the text character 0 (zero) causes NA values to appear as 0.
However, they are still treated as NAs in calculations.

5-88

Chapter 5
NLS_ CALENDAR

Assigning NA Values

NASPELL affects only Oracle OLAP output; it does not affect the way you assign an NA
value. For example, even when you have set NASPELL to NONE, you assign an NA
value as follows.

varl = NA

$NATRIGGER Takes Precedence over NASPELL

Oracle OLAP evaluates an $NATRIGGER property expression before applying the
NASPELL option. When the $NATRIGGER expression is NA, then the NASPELL option
has an effect.

Examples
Example 5-72 Showing NA Values as "NONE"

Suppose you have a variable called current.month, which has a value of NA whenever
no current month has been specified. In this case, you would like the value to appear
as None rather than NA.

When NASPELL is set to its default value of NA, the OLAP DML statement

SHOW current.month

produces the following output.

NA

In contrast, the OLAP DML statements

NASPELL = "None*"
SHOW current.month

produce the following output.

None

NLS_ CALENDAR

ORACLE

The NLS_CALENDAR option specifies the calendar for the session.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type

TEXT

Syntax

NLS_CALENDAR = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

5-89

Chapter 5
NLS_CURRENCY

Examples
Example 5-73 Changing Calendar Systems

The following statement sets NLS_CALENDAR to the Thai Buddha calendar.
NLS_CALENDAR = "THAI BUDDHA®

NLS_CURRENCY

The NLS_CURRENCY option specifies the local currency symbol for the L number
format element for the session. (See the TO_NUMBER function for a description of
number format elements.)

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_CURRENCY = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_DATE_FORMAT

ORACLE

The NLS_DATE_FORMAT option specifies the default format for datetime values.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type

TEXT

Syntax

NLS_DATE_FORMAT = option-value
Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

See Example 5-74.

5-90

Chapter 5
NLS_DATE_LANGUAGE

NLS_DATE_LANGUAGE

The NLS_DATE_LANGUAGE option specifies the language for days, months, and
similar language-dependent datetime format elements.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_ DATE_LANGUAGE = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples
Example 5-74 Setting the Language for Dates

The following statements set the language for dates to Spanish and change the default
date format.

NLS_DATE_LANGUAGE = "SPANISH"
NLS_DATE_FORMAT = *Month DD, YYYY"

A SHOW SYSDATE statement now generates the date in Spanish.
Septiembre 08, 2000

NLS _DUAL_CURRENCY

ORACLE

The NLS_DUAL_CURRENCY option specifies a second currency symbol that takes
the place of the letter U in a number format mode and is used primarily to identify the
Euro symbol. (Note that when you want to identify the Euro symbol as the value of
NLS DUAL_CURRENCY, the instance character set must support that symbol.)

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_DUAL_CURRENCY= option-value

5-91

Chapter 5
NLS_ISO_CURRENCY

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_ISO_CURRENCY

The NLS_ISO_CURRENCY option specifies the international currency symbol for the
C number format element.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_ISO_CURRENCY = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

NLS_LANG

ORACLE

(Read-only) The NLS_LANG option specifies the current language, territory, and
database character set, which are determined by session-wide globalization
parameters.

Data Type
TEXT

Syntax
NLS_LANG

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples
Example 5-75 Checking the Current Value of NLS_LANG
A SHOW NLS_LANG statement might produce the following.

AMERICAN_AMERICA_WEB1S08859P1

5-92

Chapter 5
NLS_LANGUAGE

NLS_LANGUAGE

The NLS_LANGUAGE option specifies the current language for the session. the
setting of this option determines the value of the SESSION_NLS LANGUAGE option.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_LANGUAGE = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples

Example 5-76 Effects of Changing NLS_LANGUAGE
In this example, the NLS_LANG option is initially set to:
AMERICAN_AMERICA_WEB1S08859P1

The value of YESSPELL is yes.

A change to the language setting:

NLS_LANGUAGE = "FRENCH"

changes the value of NLS_LANG to
FRENCH_AMERICAN _WE81S08859P1

The value of YESSPELL is now oui.

NLS_NUMERIC_CHARACTERS

ORACLE

The NLS_NUMERIC_CHARACTERS option specifies the decimal marker and
thousands group marker for the session. NLS_NUMERIC_CHARACTERS affects the
display of numeric data and the setting of the OLAP DML THOUSANDSCHAR option,
the DECIMALCHAR option, or both.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opt i on =
val ue.

Data Type
TEXT

5-93

Chapter 5
NLS_SORT

Syntax
NLS_NUMERIC_CHARACTERS = option-value

Parameters

See Setting NLS Parameters in Oracle Database Globalization Support Guide for
more information about NLS parameters, including valid values.

Examples
Example 5-77 Changing the Decimal Marker to a Comma

The following statement changes the decimal marker to a comma, and the thousands
marker to a space.

NLS_NUMERIC_CHARACTERS = *, *

The result of the following statement

show 1234.56

is now

1 234,56

NLS_SORT

ORACLE

The NLS_SORT option specifies the sequence of character values used when sorting
or comparing text. The value of NLS_SORT affects the GT, GE, LT, and LE operators,
SORT command, and the SORTLINES function.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_SORT = option-value

Parameters

See NLS_SORT in Oracle Database Globalization Support Guide for more information
about the NLS_SORT parameter.

Examples
Example 5-78 Binary and Linguistic Sorts
A dimension named words has the following values.

cerveza, Colorado, cheremoya, llama, luna, lago

This example shows the results of a binary sort.

5-94

Chapter 5
NLS_TERRITORY

NLS_SORT = "BINARY*"

SORT words A words

STATUS words

The current status of WORDS is:

Colorado, cerveza, cheremoya, lago, llama, luna

A Spanish language sort results in this order.

NLS_SORT = "SPANISH®

SORT words A words

STATUS words

The current status of WORDS is:

cerveza, cheremoya, Colorado, lago, llama, luna

An extended Spanish language sort results in this order.

NLS_SORT = "XSPANISH"

SORT words A words

STATUS words

The current status of WORDS is:
cerveza TO cheremoya, lago TO llama

NLS_TERRITORY

ORACLE

The NLS_TERRITORY option specifies current territory for the session.

Within a session, you can dynamically modify the value of this option using the OLAP
DML syntax show below or by using the SQL statement ALTER SESSION SET opti on =
val ue.

Data Type
TEXT

Syntax
NLS_TERITORRY = option-value

Parameters

See NLS_TERRITORY in Oracle Database Globalization Support Guide for
information about NLS_TERRITORY parameters.

Examples

Example 5-79 Effects of Changing NLS_TERRITORY
In this example, the NLS_LANG option is initially set to:
AMERICAN_AMERICA_WE81S08859P1

The thousands marker is a comma (,), and the decimal marker is a period (.).

SHOW TO_NUMBER("12345")
12,345.00

A change to the territory setting:

NLS_TERRITORY = *FRANCE"

5-95

Chapter 5
NOSPELL

changes the value of NLS_LANG to
AMERICAN_FRANCE .WE81S08859P1

The thousands marker is now a period (.), and the decimal marker is a comma (,).

SHOW TO_NUMBER("12345")
12.345,00

NOSPELL

(Read-only) The NOSPELL option holds the text that is used for FALSE Boolean values
in the output of OLAP DML statements.

The value of the NOSPELL option is the word for "no" in the current language, as
specified by the NLS_LANGUAGE option. For example, when NLS_LANGUAGE is set
to "American," then the default value of NOSPELL is NO.

Data Type
TEXT

Syntax
NOSPELL

Examples
Example 5-80 Seeing the Effect of the NOSPELL Option

Suppose you have a variable called BOOLVAR that currently has a value of NO. When
"non" is the word for "no" in the language specified by the NLS_LANGUAGE option,

SHOW boolvar

produces the following output.

non

OKFORLIMIT

ORACLE

The OKFORLIMIT option controls whether you can limit the dimension you are looping
over within an explicit FOR loop.

Tip:

To set the status of the dimension you are looping over in a loop that is
generated by a REPORT statement, use a TEMPSTAT statement.

Data Type
BOOLEAN

Syntax
OKFORLIMIT = {NO|YES}

5-96

Chapter 5
OKNULLSTATUS

Parameters

NO
(Default) You cannot limit the dimension you are looping over within an explicit FOR
loop.

YES
You can limit the dimension you are looping over within an explicit FOR loop.

Examples
Example 5-81 Allowing Limits Within a Loop

The following program excerpt sets OKFORLIMIT to YES, thereby allowing the user to
limit market within a FOR loop.

OKFORLIMIT = YES
FOR market
DO
LIMIT market TO CHILDREN USING market.market
REPORT market
DOEND

OKNULLSTATUS

ORACLE

The OKNULLSTATUS option determines whether Oracle OLAP allows a dimension
status list to be set to null. The default is to not allow an empty status list. When null
status lists are not allowed, Oracle OLAP produces an error message when you
execute a LIMIT command that would result in a null status list.

Data Type
BOOLEAN

Syntax
OKNULLSTATUS = {YES|NO}

Parameters

YES

Indicates that null status lists are allowed. With this setting, when you execute a LIMIT
command (without the IFNONE argument) that results in a dimension status list being
null, the status list is set to null, and no error message is produced.

NO

(Default) Indicates that null status lists are not allowed. With this setting, when you
execute a LIMIT command (without the IFNONE argument and without the NULL
keyword) that would result in a dimension status list being null, the status list is not
changed and an error message is produced.

Usage Notes

Conditions When OKNULLSTATUS Has No Effect

5-97

Chapter 5
OUTFILEUNIT

The value of OKNULLSTATUS has no effect in the following situations.

* When a LIMIT command includes an IFNONE argument.

* When a LIMIT command uses the NULL keyword to set a dimension status list to
null.

* When a LIMIT command sets a valueset to null (unless the IFNONE argument is
used). The valueset is set to null, and no error message is produced, even when
OKNULLSTATUS is NO.

* When a LIMIT function is specified to return a null dimension status list. The value
returned is NA, and no error message is produced, even when OKNULLSTATUS is
NO.

See the LIMIT command for more information about using null status in dimensions
and valuesets.

Examples
Example 5-82 Using OKNULLSTATUS

The following statement turns off error messages about the null status of dimensions
and allows dimension status lists to be set to null.

OKNULLSTATUS = YES

OUTFILEUNIT

ORACLE

(Read-only) The OUTFILEUNIT option holds the file unit number of the current
OUTFILE destination, set by the last OUTFILE statement. The first time you redirect
output to a given file, OUTFILE assigns that file an arbitrary INTEGER as a file unit
number.

Data Type
INTEGER

Syntax
OUTFILEUNIT

Usage Notes
OUTFILE and OUTFILEUNIT

You automatically change the setting of OUTFILEUNIT whenever you specify a
different file with an OUTFILE statement. For example, after the statement OUTFILE
nyfil ename, the value of OUTFILEUNIT is the file unit number assigned to myfilename.

Examples
Example 5-83 Using OUTFILEUNIT with FILEQUERY

Suppose you have saved the file unit number for a file in a variable called filenum.
Your current outfile is another disk file. You want to set the value of PAGEPRG for the
first file to the value that it has for the current outfile. Because the file unit number for
the current outfile is contained in the OUTFILEUNIT option, you can use FILEQUERY
with the OUTFILEUNIT number to get the PAGEPRG setting for the current outfile.

5-98

Chapter 5
PAGENUM

FILESET filenum PAGEPRG FILEQUERY(OUTFILEUNIT PAGEPRG)

PAGENUM

ORACLE

The PAGENUM option holds the current page number of output. You can use
PAGENUM with PAGEPRG to produce the page number on each page of a report.
The PAGENUM option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data Type
INTEGER

Syntax
PAGENUM =n

Parameters

n
An INTEGER expression that specifies the page number to use for the next page of
output. The default is 1.

Usage Notes
Starting with Page 1

When you are sending output to the default outfile, set both PAGENUM and LINENUM
to 1 whenever you want to produce a report starting on page 1. You can set these
options in the initialization section of your report program. When you use an OUTFILE
statement to send output to a file, PAGENUM is automatically set to 1.

Setting PAGENUM in Mid-Page

The value of PAGENUM is incremented automatically when the last line of output has
been generated on a page. When you set PAGENUM when an output page is only
partially full, the value of PAGENUM is incremented by 1 before the next page is
produced. Consequently, you usually have to set PAGENUM to a value of one less
than the number you want to show on the following page.

The Effect of PAGING on PAGENUM

When you set PAGING to NO, PAGENUM stops counting and keeps its last value.
When you reset PAGING to YES, PAGENUM resumes counting at the page number
where it left off.

The Effect of OUTFILE on PAGENUM

When you use an OUTFILE statement to direct output to a file, PAGENUM is setto 1
for the file. When you use an OUTFILE statement with the EOF keyword to redirect
output to the default outfile, PAGENUM contains the number that it last held for the
default outfile.

Examples
Example 5-84 Changing the Heading for Page 2

Suppose you want each page of a report to have a standard running page heading
and a custom title, and pages after the first page to also have the heading

5-99

Chapter 5
PAGEPRG

"(Continued)". You can define a page heading program called report.head that uses
the PAGENUM value to determine when to add the "(Continued)" heading.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
PAGING = YES
HEADING WIDTH LSIZE CENTER "Annual Sales Report®
BLANK
IF PAGENUM GT 1
THEN HEADING WIDTH LSIZE CENTER *(Continued)"
BLANK
END

In your report program, set the PAGEPRG option to use the report.head program.

PAGEPRG = "report.head"

When you run the report program, each page after the first page starts with a heading
such as the following.

15JAN95 15:05:16 Page 2
Annual Sales Report

(Continued)

PAGEPRG

ORACLE

The PAGEPRG option holds the name of a program or the text of a statement to be
executed at the beginning of each page of output. You can use this program or
statement to create titles and column headings on multiple pages of a report. A
program can also contain other statements appropriate for execution at the start of
every page. Normally, you set the value of PAGEPRG in the initialization section of a
report program.

The PAGEPRG option is meaningful only when PAGING is set to YES and only for
output from statements such as REPORT and LISTNAMES.

Data Type
TEXT

Syntax
PAGEPRG = {program’|'statement'|'NONE'|'STDHDR'"}

Parameters
program
The name of a program to be executed after every page break. When you specify the

program name as a text expression, you can omit the single quotes.

statement
The text of a statement to be executed after every page break. When you specify the
statement as a text expression, you can omit the single quotes.

5-100

ORACLE

Chapter 5
PAGEPRG

NONE
Indicates that no statement or program is executed automatically after a page break.

STDHDR

(Default) Makes STDHDR the program name that PAGEPRG stores. You can also set
PAGEPRG to "DEFAULT" to make STDHDR the program name that PAGEPRG stores.

STDHDR produces a heading with the date and time on the left and the page number

on the right.

Usage Notes
Using a STDHDR Program in a PAGPRG Program

When you create a PAGEPRG program, you can include the STDHDR program as a
line in the program. Generally, you place STDHDR before the other statements that
produces the custom heading. See Example 5-85.

Keeping Header Information Current

You can use Oracle OLAP functions such as TODAY, TOD, and PAGENUM in a
program that is specified by the PAGEPRG option. You can also have a header
program that accepts arguments, such as the title for a particular report. In this case
you would set the PAGEPRG option to a text expression that invokes the report
header program with arguments. See Example 5-86.

Setting PAGEPRG for a File

To set PAGEPRG for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set PAGEPRG to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
PAGEPRG returns to its default value of *STDHDR" for the file.

When you set PAGEPRG for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of PAGEPRG is automatically saved for the default outfile.

Examples
Example 5-85 Creating a Custom Heading

Suppose you want each page of a report to include both the standard running page
heading and the title "Annual Sales Report." To accomplish this, create a program
called report.head.

DEFINE report.head PROGRAM
PROGRAM
STDHDR
BLANK
HEADING WIDTH LSIZE CENTER "Annual Sales Report®
BLANK
IF PAGENUM GT 1
THEN HEADING WIDTH LSIZE CENTER *(Continued)"
BLANK
END

Specify this program to execute after every page break by setting the PAGEPRG

option in the report program. You can include PUSH and POP commands to save the
PAGEPRG setting that is active.

5-101

Chapter 5
PAGESIZE

PUSH PAGEPRG PAGING
PAGEPRG = "report.head"
PAGING = YES
... (body of report program)
POP PAGEPRG PAGING

When you run the report, each page contains the following heading.

15JAN98 15:05:16 Page 1
Annual Sales Report

Each page after the first page also contains the subheading "(Continued)" because of
the PAGENUM test in the IF statement.

Example 5-86 Using Program Arguments

As an alternative to specifying the report name in the report.head program, you can
pass the report name to the report.head program from your report program. You can
do this by setting the PAGEPRG option to a text expression that invokes the
report.head program with the report name as an argument. Suppose your report
program contains the following statement.

PAGEPRG = "CALL report.head(\"Annual Sales Report\")"

Then you can change the first few lines of the report.head program to the following.

ARGUMENT titlevar TEXT

STDHDR

BLANK

HEADING WIDTH LSIZE CENTER titlevar

PAGESIZE

ORACLE

The PAGESIZE option specifies the size of a page of output. The value of PAGESIZE
is the number of output lines to be produced on each page. PAGESIZE is usually used
in the initialization section of report programs. The PAGESIZE option is meaningful
only when PAGING is set to YES and only for output from statements such as REPORT
and LISTNAMES. PAGESIZE also controls the LINELEFT option. When PAGESIZE is
changed, Oracle OLAP adjusts LINELEFT accordingly.

¢ See Also:
PAGE command, PAGING option, LINESLEFT option

Data Type
INTEGER

Syntax
PAGESIZE = n

5-102

PAGING

ORACLE

Chapter 5
PAGING

Parameters

n
An INTEGER expression that specifies the number of output lines on a page; n includes
the top and bottom margins (controlled by the TMARGIN and BMARGIN options). The
default is 66 lines, which is suitable for printing report output on 8 1/2" by 11" paper.

Usage Notes
Usable Output Lines with Standard Heading and Default Settings

When you use the standard heading and the default settings for the PAGESIZE,
TMARGIN, and BMARGIN options, the total number of usable output lines is 61.

Qutput Lines

Lines from PAGESIZE 66
Lines for TMARGIN -2
Lines for the standard heading -2
Lines for BMARGIN -1
Lines available for output 61

Eliminating Headings and Page Breaks

You can produce pages with no headings by using the statement PAGEPRG="NONE" or
suppress page breaks entirely by using the statement PAGING = NO.

Setting PAGESIZE for a File

To set PAGESIZE for a file, first make the file your current outfile by specifying its
name in an OUTFILE statement, then set PAGESIZE to the desired value. The new
value remains in effect until you reset it or until you use an OUTFILE statement to
direct output to a different outfile. When you direct output to a different outfile,
PAGESIZE returns to its default value of 66 for the file.

When you set PAGESIZE for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of PAGESIZE is automatically saved for the default outfile.

Examples
Example 5-87 Printing on Legal Paper

In this example, you want to produce a report on legal-size paper (8 1/2" by 14").
Include the following statement in the initialization section of your report program.

PAGESIZE = 84

The PAGING option controls the production of paged output in Oracle OLAP. When
you set PAGING to YES, output from statements such as DESCRIBE, REPORT, ROW
command, HEADING, SHOW, and LISTNAMES is produced in a page-oriented
format. Output is produced in page-size segments with standard top and bottom
margins and headings. You can use a variety of paging-related options to change the
size of the page, the size of the margins, and the headings on each page.

5-103

ORACLE

Chapter 5
PAGING

Paging is useful primarily for making output more attractive when you plan to print
output that you send to a file. However, you can also send paged output to the default
outfile. Normally you would set the PAGING option in the initialization section of a
report program to turn paging on for your report.

Data Type
BOOLEAN

Syntax
PAGING = {YES|NO}

Parameters

YES
Produces output with page breaks, top and bottom margins, and page headings.

NO
(Default) Produces output that contains no page breaks, top and bottom margins, or
page headings. Output is continuous, one line after another.

Usage Notes
Setting PAGING for a File

To set PAGING for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set PAGING to the desired value. The new value
remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, PAGING
returns to its default value of NO for the file.

When you set PAGING for the default outfile, the new value remains in effect until you
reset it, regardless of intervening OUTFILE commands that send output to a file. That
is, the value of PAGING is automatically saved for the default outfile.

Paging-Related Options

Oracle OLAP uses default values for page length, page headings, and top and bottom
margins. You can change these values by setting the PAGESIZE, PAGEPRG,
TMARGIN, and BMARGIN options. Other paging options that become meaningful
when PAGING is set to YES are LINENUM, LINELEFT, and PAGENUM.

The value of PAGING for the current outfile determines whether the paging-related
options are used. You must set PAGING to YES for the current outfile to make the
paging options take effect.

Toggling PAGING On and Off
Toggling PAGING on and off, has the following effect on paging options:
* When you toggle PAGING from on (YES) to off (NO):

— The value of the LINENUM option continues to increment as more output lines
are produced.

— The LINELEFT option is set to PAGESIZE.
— The PAGENUM option stops counting and retains its current value
* When you toggle PAGING from off (NO) to on (YES):

5-104

PARENS

ORACLE

Chapter 5
PARENS

— LINENUM is set to 1 and it begins counting lines on the current page.
— LINELEFT begins counting the lines left on the current page.
— PAGENUM resumes counting at the page number where it left off.

Changing Ouftfiles

When you use an OUTFILE statement to direct output to a file, all the paging-related
options are set to their default values for the file. When you use an OUTFILE
statement with the EOF keyword to redirect output to the default outfile, the paging-
related options contain the values that they last held for the default outfile.

Examples
Example 5-88 Setting Paging Options

Suppose you are writing a report program and you want to control page breaks and
the top margin. You can include the following lines in the initialization section of your
program. These lines send output to a file named repfile.txt, turn the PAGING option
on, and change the page size and top margin.

OUTFILE “repfile.txt"

PAGING = YES
PAGESIZE = 84
TMARGIN = 6

The PARENS option controls whether negative numbers are represented in output
with parentheses or a minus sign.

Data Type
BOOLEAN

Syntax
PARENS = {YES|NO}

Parameters

YES
Encloses negative values in parentheses, instead of using a minus sign.

NO
(Default) Uses a minus sign to represent negative values.

Usage Notes
Overriding PARENS

The setting of the PARENS option is overridden by a PAREN or NOPAREN attribute in
a HEADING, REPORT, or ROW command. The PAREN attribute specifies the use of
parentheses; the NOPAREN attribute specifies the use of a minus sign.

Allowing Space for Parentheses

When you use parentheses to represent negative values in a report, Oracle OLAP
lines up the positive and negative values in the column. To do this, it reserves the

5-105

Chapter 5
PERMITERROR

right-most character in each numeric column for the closing parenthesis. The column
is always reserved, even when there are no negative values in the output.
Consequently, each value requires more space than when you use the minus sign,
and you might have to increase your column width to accommodate your data.

Examples
Example 5-89 Showing Negative Values in Parentheses

In a report, you would like to show negative values in parentheses, so you first set
PARENS to YES.

LIMIT line TO "Cogs"

LIMIT division TO "Sporting”

LIMIT month TO "Jan96" TO "Jun96"

PARENS = YES

DECIMALS = 0

REPORT DOWN month budget actual budget-actual

These statements produce the following output.

DIVISION: SPORTING

—————————————— LINE-===mmmmmmmemm
—————————————— COGS-~=mmmmmm o
BUDGET-ACT
MONTH BUDGET ACTUAL UAL
Jan96 279,773 287,558 (7,785)
Feb96 323,982 315,299 8,683
Mar96 302,178 326,185 (24,007)
Apro6 386,101 394,544 (8,443)
May96 433,998 449,862 (15,864)
Jun96 448,042 457,348 (9,305)

PERMITERROR

ORACLE

The PERMITERROR option controls if an error is signaled on attempted access of a
variable for which read or write permission is denied by a PERMIT statement.

¢ See Also:

"Startup Programs", PERMITREADERROR option, PERMIT command, and
PERMITRESET command.

Data Type
BOOLEAN

Syntax
PERMITERROR = NO | YES

5-106

ORACLE

Chapter 5
PERMITERROR

Parameters

NO

When you set PERMITERROR to N0, an error condition is not created on attempted
access of a variable for which read or write permission is denied with a PERMIT
statement. Values for which you do not have read permission are displayed as NAs.
When you try to change a value for which you do not have write permission, the
request is ignored.

YES

(Default) When PERMITERROR is YES, an error is signaled upon attempted access of
a variable for which read or write permission is denied with a PERMIT statement. The
error, which can be trapped, terminates the Oracle OLAP operation that initiated the
illegal access.

Usage Notes
PERMITERROR With Non-Data Objects

The setting of PERMITERROR is ignored for violations of permission for non-data
objects such as programs, models, and valuesets. Attempted access of variables and
relations with permission, whether or not they have dimensionality, is always affected
by the setting of PERMITERROR.

Maintaining Dimensions

The setting of PERMITERROR is ignored for violations of maintain and permit
permission. Attempted violations of permission to maintain dimensions and to change
permission are always treated as errors. Attempted violations of read or write
permission for dimensions are, similarly, always treated as errors.

Obtaining Data Without Full Permission

When PERMITERROR is YES and you attempt to fetch a dimensioned variable that
contains values that do not have read permission, an error condition is created when
the first of those values is encountered. You can avoid creating an error condition by
limiting the dimensions in advance so that only permissible values are in status, or by
setting PERMITERROR to NO, before doing the report.

Examples
Example 5-90 Report Without Full Permission

In the following example, the read permission on the price variable prevents you from
seeing price data for any values of product other than Tents. However, when you set
PERMITERROR to NO, you can still do a report of the price variable for Dec. 1996
without creating an error condition.

PERMITERROR = no
DESCRIBE price

The output of this statement is

DEFINE PRICE VARIABLE DECIMAL <MONTH PRODUCT>
LD Wholesale Unit Selling Price
PERMIT READ WHEN product eq "Tents®

The statements

5-107

Chapter 5
PERMITREADERROR

LIMIT month TO "Dec96"
REPORT price

produce the following output.

----PRICE----

----MONTH----
PRODUCT DEC96
Tents 165.64
Canoes NA
Racquets NA
Sportswear NA
Footwear NA

The statements

PERMITERROR = yes
REPORT price

produce the following error,

ERROR: You do not have permission to read this value of PRICE

and the following output.

---PRICE---

-—-MONTH---
PRODUCT DEC96
Tents 165.64

PERMITREADERROR

The PERMITREADERROR option controls if an error is signaled on attempted read of
a variable, valueset, formula, or relation for which read or write permission is denied by
a PERMIT statement.

¢ See Also:

"Startup Programs", PERMITERROR option, PERMIT command, and
PERMITRESET command.

Data Type
BOOLEAN

Syntax
PERMITREADERROR = NO | YES

ORACLE 5-108

Chapter 5
PRGTRACE

Parameters

NO

(Default) When the value of PERMITREADERROR is YES, an error condition is not
created on attempted access of a variable, valueset, formula, or relation for which
read or write permission is denied with a PERMIT statement. Values for which you do
not have read permission are displayed as NAs. When you try to change a value for
which you do not have write permission, the request is ignored.

YES

When PERMITERROR is YES , an error is sighaled upon attempted to read a variable,
valueset, formula, or relation for which read or write permission is denied with a
PERMIT statement. The error, which can be trapped, terminates the Oracle OLAP
operation that initiated the illegal access.

PRGTRACE

ORACLE

The PRGTRACE option controls whether each line of a program is recorded in the
current outfile or in a debugging file during execution of the program. PRGTRACE is
primarily used as a debugging tool to uncover problems by tracing the execution of a
program.

OLAP DML programs provided as OLAP DML statements are not traced unless
EXPTRACE is set to YES.

When you have used a DBGOUTFILE statement to specify a debugging file, Oracle
OLAP sends PRGTRACE output to the debugging file instead of the current outfile.

Data Type
BOOLEAN

Syntax
PRGTRACE = {YES|NO}

Parameters

YES
Oracle OLAP records each line in a program before it is executed.

NO
(Default) Oracle OLAP does not record each line in a program.

Usage Notes
PRGTRACE Output

PRGTRACE records the name of the current program at the beginning of each
program line. It includes an equals sign to indicate a compiled line.

(PRG= SALESREP) . . .

It includes a colon to indicate an uncompiled line.

(PRG: SALESREP) . . .

5-109

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.?

A compiled line is a line that has been translated into an efficient internal form,
whereas an uncompiled line has not. Oracle OLAP ordinarily stores lines in compiled
form to make programs work more efficiently, especially programs that contain loops.

Uncompiled Program Lines

Oracle OLAP compiles a program before running it. Therefore, the only lines that are
marked as uncompiled in the PRGTRACE output are lines that cannot be compiled,
such as lines that include ampersand substitution.

Examples
Example 5-91 Tracing Program Execution

Suppose you have a program called salesrep that produces a simple budget report.

DEFINE salesrep PROGRAM

PROGRAM

PUSH month division line

TRAP ON cleanup

LIMIT month TO &ARGS

LIMIT division TO ALL

LIMIT line TO FIRST 1

REPORT DOWN division across month: dec 0 budget

cleanup:
POP month division line
END

When you want to debug this program, you can trace the execution of each of its lines
by turning on PRGTRACE and executing the program.

PRGTRACE = yes
salesrep FIRST 3

PRGTRACE produces the following output in the current outfile or debugging file.

(PRG= SALESREP) push month division line

(PRG= SALESREP) trap on cleanup

(PRG: SALESREP) limit month to &args

(PRG= SALESREP) limit division to all

(PRG= SALESREP) limit line to first 1

(PRG= SALESREP) report down division across month: decO budget
LINE: REVENUE

------------- BUDGET------=---
------------- MONTH=—=— =~ === -
DIVISION JAN95 FEB95 MAR95
CAMPING 679,149 707,945 780,994
SPORTING 482,771 517,387 525,368
CLOTHING 983,888 1,016,528 992,331

(PRG= SALESREP) cleanup:
(PRG= SALESREP) pop month division line

RANDOM.SEED.1 and RANDOM.SEED.2

ORACLE

The RANDOM.SEED.1 and RANDOM.SEED.2 options specify values used by
RANDOM when computing random numbers. To compute the number, RANDOM
uses the values of the options RANDOM.SEED.1 and RANDOM.SEED.2, and then
changes the values for the next time.

5-110

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.2

When you want to reproduce the same sequence of random numbers when you are
developing and debugging your application programs set RANDOM.SEED.1 and
RANDOM.SEED.2 to some specific values just before using RANDOM.

Data Type
INTEGER

Syntax
RANDOM.SEED.1|JRANDOM.SEED.2 = n

Parameters

n
An INTEGER expression that specifies the value to use when generating random
numbers. The default is for RANDOM.SEED.1 is 12345 and RANDOM.SEED.2 is
1073.

Usage Notes
Reproducing a Random Sequence

As illustrated in Example 8-64, when you want to reproduce the same sequence of
random numbers when you are developing and debugging your application programs,
set RANDOM.SEED.1 and RANDOM.SEED.2 to some specific values just before
using RANDOM. To duplicate the sequence, set these options to the same values just
before using RANDOM again. Then changes in the behavior of your programs are
caused by your changes to the programs and not by differing sequences of random
numbers.

Examples
Example 5-92 Explicitly Seeding RANDOM for a Test

Assume that you have the following dimension and variable in your analytic workspace

DEFINE id DIMENSION TEXT
DEFINE myvar VARIABLE INTEGER <id>

As shown in the following code, when you use RANDOM to populate myvar without
seeding it first. Oracle OLAP populates myvar with different values each time the
RANDOM executes.

myvar = 0
myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR

al 11
a2 19
a3 14
myvar = 0

myvar = RANDOM (10, 20)
REPORT myvar

1D MYVAR

ORACLE 5-111

ORACLE

Chapter 5
RANDOM.SEED.1 and RANDOM.SEED.?

al 16
a2 13
a3 12

Now, assume that you want to write a test that uses RANDOM to create predictable
values for myvar. As the following code illustrates, to ensure that the results of
RANDOM are the same from time to time, you must set the values of
RANDOM.SEED.1 and RANDOM.SEED.2 right before the execution of RANDOM.

myvar = 0
RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3

myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR

al 10
a2 16
a3 13
myvar = 0

RANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3
myvar = RANDOM (10, 20)
REPORT myvar

1D MYVAR

al 10
a2 16
a3 13

The values that you set for RANDOM.SEED.1 and RANDOM.SEED.2 do not stay the
same throughout a session. As the following code illustrates, when you do not reseed
with the same values before each execution, the values produced by RANDOM are
not the same.

myvar = ORANDOM.SEED.1 = 5
RANDOM.SEED.2 = 3

myvar = RANDOM (10, 20)
REPORT myvar

ID MYVAR

al 10
a2 16
a3 13
myvar = 0

myvar = RANDOM (10, 20)
REPORT myvar

1D MYVAR

al 11
a2 16
a3 20

5-112

Chapter 5
RECURSIVE

RECURSIVE

ROLE

ORACLE

The RECURSIVE option controls the ability of a formula or SNATRIGGER expression
to call itself.

Syntax
RECURSIVE = {YES|NO}

Parameters

YES

Specifying YES allows a formula or SNATRIGGER expression to call itself. Set this
option to YES when you define a formula or an expression for the SNATRIGGER
property that uses a recursive method of computation.

NO

(Default) Specifying NO prevents a formula or SNATRIGGER expression from calling
itself. When you attempt to evaluate a recursive formula or SNATRIGGER expression,
then Oracle OLAP displays an error message, which states that the RECURSIVE
option is currently set to NO. Until the workspace contains a recursive formula

or $NATRIGGER expression, keep this option set to NO to detect errors that could
result in infinite looping behavior.

Usage Notes
For Formulas and $NATRIGGER Expressions Only

When you set RECURSIVE to YES, only formulas and $NATRIGGER property
expressions are affected. This option does not affect programs; that is, a program can
be recursive regardless of the setting of the RECURSIVE option unless the program is
a SNATRIGGER expression. A SNATRIGGER expression cannot call itself unless the
RECURSIVE option is YES.

Limiting $NATRIGGER Recursion

You can limit the depth of recursion for SNATRIGGER property expressions with the
TRIGGERMAXDEPTH option, which sets the maximum number of SNATRIGGER
expressions that Oracle OLAP executes simultaneously.

(Read-only) The ROLE option holds a list of Oracle Database roles associated with the
user ID under which an Oracle OLAP session is running.

Data Type
TEXT

Syntax
ROLE

5-113

Chapter 5
ROOTOFNEGATIVE

Examples
Example 5-93 Displaying a List of Groups or Roles
This statement displays a list of the roles associated with the current session user ID.

SHOW ROLE

ROOTOFNEGATIVE

ORACLE

The ROOTOFNEGATIVE option determines the result of any attempt to obtain a root
of a negative number.

Data Type
BOOLEAN

Syntax
ROOTOFNEGATIVE = YES|NO

Parameters

YES

Allows any attempt to obtain a root of a negative number. Consequently, a statement
that attempts to obtain a root of a negative number executes without an error;
however, the result of the attempt to obtain the root is NA. When you are working with
a dimensioned variable or expression, setting ROOTOFNEGATIVE to YES enables
you to obtain the root of most of the expression's values when a few of the values
might be negative.

NO

(Default) Disallows any attempt to obtain a root of a negative number. Any statement
that attempts to obtain a root of a negative number stops executing and an error
message is produced.

Usage Notes
Raising to a Noninteger Power

Raising a number to a noninteger power (for example, 5 ** 0.3 or 14 ** 2.7) is an
attempt to obtain a root.

Examples
Example 5-94 The Effect of ROOTOFNEGATIVE

The following example shows the effect of changing the value of the
ROOTOFNEGATIVE option. The variable TESTNUMBER has a value of -56. When
you execute a SHOW statement such as the following one, without changing the
ROOTOFNEGATIVE option from its default value of NO, an attempt is made to obtain
the square root and then an error message is produced.

SHOW SQRT(testnumber)

When you change ROOTOFNEGATIVE to YES, the same statement executes without
error

5-114

Chapter 5
SECONDS

ROOTOFNEGATIVE = YES
SHOW SQRT(testnumber)

and produces the following result.

NA

SECONDS

(Read-only) The SECONDS option holds the number of seconds since January 1,
1970. As an aid to enhancing a program's speed, SECONDS can be used to
determine how many real seconds elapse while the program is running.

Data Type
INTEGER

Syntax
SECONDS

Examples
Example 5-95 Timing a Program Using SECONDS

The following program puts the value of SECONDS at the start of the program in a
variable called t1, then displays the difference between t1 and the value of SECONDS
after the program executes.

DEFINE prodsummary PROGRAM

PROGRAM

VARIABLE t1 INTEGER

tl = seconds

LIMIT product TO ALL

BLANK

FOR product

DO
ROW WIDTH 16 name.product ACROSS month Jun96: DECIMAL O LSET -

"$"WIDTH 18 <RSET " (actual)® sales RSET " (plan)" sales.plan>

DOEND

BLANK

ROW WIDTH 35 LSET "the program took * RSET " SECOND(S)." -
(SECONDS-t1)

END

Running this program produces the following results.

3-Person Tents $95,121 (actual) $80,138 (plan)
Aluminum Canoces $157,762 (actual) $132,931 (plan)
Tennis Racquets $97,174 (actual) $84,758 (plan)
Warm-up Suits $79,630 (actual) $73,569 (plan)
Running Shoes $153,688 (actual) $109,219 (plan)

The program took 2 second(s).

ORACLE 5-115

Chapter 5
SESSCACHE

SESSCACHE

ORACLE

Typically used only when debugging, the SESSCACHE option controls whether Oracle
OLAP creates an Oracle OLAP session cache described in "What is an Oracle OLAP
Session Cache".

Data Type
BOOLEAN

Syntax
SESSCACHE = {YES|NO}

Parameters

YES
The session cache is created to hold the data described in "What is an Oracle OLAP
Session Cache".

NO

Oracle OLAP does not read or write to the session cache. When you specify NO,
caching does not occur even when you have specified caching by coding a CACHE
SESSION statement in the specification for one or more aggmap objects, by setting
one or more $YARCACHE properties to SESSION, or by setting the VARCACHE option
to SESSION.

Usage Notes
What is an Oracle OLAP Session Cache?
An Oracle OLAP session cache is a special place in memory used to hold:

e All data that was calculated on the fly when an AGGREGATE function executed in
the following situations:

— The specification for the aggregation included a CACHE SESSION.

— The specification for the aggregation did not include a CACHE SESSION
statement, but the variable being aggregated had a $VARCACHE property
with the value of SESSION.

— The specification for the aggregation did not include a CACHE SESSION
statement and the variable being aggregated did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

e The NA values (only) that were calculated when an AGGREGATE function
executed and the specification for the aggregation included a CACHE NA
statement.

e All data that was calculated when a SNATRIGGER expression executed in the
following situations:

— The variable with the SNATRIGGER property also had a $VARCACHE
property with the value of SESSION.

— The variable with the $NATRIGGER property did not have a $VARCACHE
property, but the VARCACHE option was set to SESSION.

5-116

Chapter 5
SESSION_NLS_LANGUAGE

There is one internal cache for a session. Cached data is ignored by UPDATE and
COMMIT statements. However, once data is cached, Oracle OLAP uses the values in
the cache for all calculations unless an AGGREGATE function with the FORCECALC
keyword executes. In this case, the FORCECALC keyword specifies that Oracle OLAP
recalculate the values.

When a session is terminated, its cache is cleared. To clear the session cache without
terminating the session, issue a CLEAR statement.

The effectiveness of a session cache is tracked in the V$AW_CALC dynamic performance
view.

SESSION_NLS LANGUAGE

(Read-only) The SESSION_NLS_ LANGUAGE option is an OLAP session-wide, option
that holds the value of NLS_LANGUAGE when the value of
STATIC_SESSION_LANGUAGE is NO; or, when the value of
STATIC_SESSION_LANGUAGE is YES, the value of NLS_LANGUAGE the last time
that the value of STATIC_SESSION_LANGUAGE was NO.

¢ See Also:
"SESSION_NLS_LANGUAGE" in $DEFAULT_LANGUAGE

Data Type
TEXT

Syntax
SESSION_NLS_LANGUAGE

Examples

For examples of retrieving how the value of SESSION_NLS LANGUAGE is impacted
by changes in the value of NLS LANGUAGE and STATIC_SESSION_LANGUAGE,
see Example 4-9 and Example 5-102.

Example 5-96 SESSION_NLS_LANGUAGE is a Session-Wide Option

Assume that you have two analytic workspace, one named myaw3 and another named
myaw4. Assume also, as shown in the following code, that they both have language
dimensions named mylangs and that the languages for mylangs in myaw3are American
and French and that the languages for mylangs in myaw4 are American and German.

REPORT myaw3!mylangs
MYLANGS

AMERICAN
FRENCH

REPORT myaw4!mylangs
MYLANGS

AMERICAN

ORACLE 5-117

Chapter 5
SPARSEINDEX

GERMAN

Now assume that you attach both of these analytic workspaces while

NLS LANGUAGE and SESSION_NLS LANGUAGE are set to American. As shown in
the following code, Oracle OLAP limits mylangs in both analytic workspace to
American.

REPORT myaw3!mylangs
MYLANGS

AMERICAN

REPORT myaw4!mylangs
MYLANGS

AMERICAN

SPARSEINDEX

ORACLE

The SPARSEINDEX option controls the type of index algorithm that composites use to
load and access their values. The value of SPARSEINDEX at the time a named
composite is defined, or an unnamed composite is created, determines the type of
algorithm the composite uses by default. When you specify an index algorithm in a
DEFINE COMPOSITE statement, this overrides the default specified by the
SPARSEINDEX option.

Choosing an index algorithm is important only in regard to performance issues. Any
recommendations are for the version of Oracle OLAP that is associated with this
documentation. You can test how using different algorithms affect performance by
using a CHGDFN statement to change the algorithm for a composite (for example,
before loading data).

Data Type
TEXT

Syntax
SPARSEINDEX = {{BTREE'|'HASH'"}

Parameters

BTREE

A standard indexing method that is recommended for composites. Use BTREE unless
you are an advanced user. BTREE tends to group similar values together, which
results in better locality of access. BTREE is the default algorithm.

HASH

A standard indexing method that should only be used when a composite has only two
or three base dimensions. HASH is generally not recommended for composites
because using HASH results in a very large index table, which can be too large to fit
into memory.

5-118

Chapter 5
SQLBLOCKMAX

Examples
Example 5-97 Using the HASH Algorithm

The following example sets SPARSEINDEX to HASH so that composites that are
subsequently defined or created are created using the HASH index algorithm by
default.

SPARSEINDEX = *HASH"

SQLBLOCKMAX

ORACLE

The SQLBLOCKMAX option controls the maximum number of records retrieved from
an Oracle Database instance at one time. This option provides a means of fine-tuning
the performance of data fetches.

Data Type
INTEGER

Syntax
SQLBLOCKMAX = records

Parameters

records

An INTEGER that identifies the number of records you want fetched at one time. While
you can set SQLBLOCKMAX to any INTEGER, no appreciable change in performance
results in setting it over 100. The default is 10 records.

Usage Notes

Opening Cursors

Only cursors opened after SQLBLOCKMAX is reset use the new block size.
Number of Records

When a program typically opens a cursor, reads one record, and closes the cursor, set
SQLBLOCKMAX to 1. Otherwise, the SQL FETCH statement retrieves 10 records and
discards 9 of them. The same is true for other routine fetches of less than 10 records.

Block Size

When your program is fetching small records, you can increase SQLBLOCKMAX to
reduce the number of blocks required for the fetch. Oracle OLAP fetches the data into
a 64K buffer. The block size in bytes is the number of records multiplied by the size of
the records. When the block size exceeds the 64K limit imposed by the buffer, Oracle
OLAP automatically reduces the number of records fetched. See Example 5-98.

Examples
Example 5-98 Defining a Cursor with SQLBLOCKMAX

The following program fragment defines a cursor for fetching 50-byte records from a
database. The new block size easily fits into Oracle OLAP's 64K buffer (50 bytes * 100
= 50k block size).

5-119

Chapter 5
SQLCODE

SQLBLOCKMAX = 100
SQL DECLARE CURSOR cl FOR SELECT * FROM mydata
SQL OPEN cl

SQLCODE

(Read-only) The SQLCODE option holds the value returned by the Oracle RDBMS
after the most recently attempted SQL operation.

Return Value

INTEGER. 0 after a successful operation, -1 after an error, or 100 after all requested
rows have been fetched.

Syntax
SQLCODE

Usage Notes
Handling SQL Errors

Oracle OLAP does not signal an error when SQLCODE becomes nonzero. Therefore,
your program must test the value of SQLCODE and take the appropriate action.
Because each SQL operation sets SQLCODE, you must test for errors after each
operation to avoid missing an error condition.

Tip:

After an error, the SQLERRM option typically contains an error message.

You can write programs that look for a specific error code. For example, the most
common warning code is 100, which indicates that the cursor reached the end of its
table selection and the FETCH statement is complete.

Examples
Example 5-99 Using SQLCODE When Fetching Data

The following program fragment includes a WHILE loop that tests for the value of
SQLCODE and stops trying to fetch data when the end of the cursor's active set is
reached.

WHILE SQLCODE EQ 0
SQL FETCH cursorl INTO :employee, :title

SQLERRM

(Read-only) After the database reports an error and SQLCODE has a nonzero value,
the SQLERRM option usually contains text that explains the problem.

Data Type
TEXT

ORACLE 5-120

Chapter 5
SQLMESSAGES

Syntax
SQLERRM

Usage Notes
Oracle Relational Manager

You can set the SQLMESSAGES option to YES to send the value of SQLERRM to the
current output file automatically.

Examples
Example 5-100 Displaying Error Messages

The following statements attempt to create a table and check for error messages
afterward.

SQL CREATE TABLE Products -
(Prod_ID CHAR(8) -
Prod_Name VARCHAR(30) -
Suggested_Price DECIMAL(10,2))
IF SQLCODE NE 0
SHOW SQLERRM

Example 5-101 Sample Error Message

The following statement is incomplete and does not provide sufficient information to
create a table.

SQL CREATE TABLE Products

The Oracle RDBMS returns an error message such as the following.

ORA-00906: Missing left parenthesis.

SQLMESSAGES

ORACLE

The SQLMESSAGES option controls whether error messages are sent to the current
output file.

Data Type

BOOLEAN

Syntax

SQLMESSAGES = {YES|NO}
Parameters

YES
Error messages are sent to the current output file.

NO
(Default) Error messages are only stored as values of SQLERRM.

5-121

Chapter 5
STATIC_SESSION_LANGUAGE

Usage Notes
Typical Usage

You want to set SQLMESSAGES to YES while you are developing an application so
that you can diagnose errors quickly. When your application is in use, you probably
want it to capture and handle errors in a different manner with SQLMESSAGES set to
NO.

STATIC_SESSION_LANGUAGE

ORACLE

The STATIC_SESSION_LANGUAGE option is a read/write option that controls if
Oracle OLAP keeps the value of the SESSION_NLS LANGUAGE option
synchronized with the value of the NLS_LANGUAGE option.

¢ See Also:
"Working with Language Dimension Status" in $DEFAULT_LANGUAGE

Data Type
BOOLEAN

Syntax
STATIC_SESSION_LANGUAGE =NO | YES

Parameters

NO

Specifies that whenever the value of the NLS_LANGUAGE option changes, Oracle
OLAP changes the value of SESSION_NLS LANGUAGE to the value of the
NLS_LANGUAGE option. (Default)

YES
Specifies that the value of SESSION_NLS_LANGUAGE does not change when the
value of NLS_LANGUAGE changes.

Examples

Example 5-102 Changing NLS_LANGUAGE Without Changing the Language of
the OLAP Session

Example 4-9 illustrates how changing the NLS_LANGUAGE value can change the
language of the OLAP session. This example illustrates how you can keep the
language of the OLAP session the same even as the value of the NLS_LANGUAGE
option changes.

Assume that you attach your analytic workspace while the NLS_LANGUAGE is
American. As the following code illustrates by changing the value of the
STATIC_SESSION_LANGUAGE to Yes, you can insure that even as the value of the
NLS_ LANGUAGE option is changed to French, the value of the

5-122

THIS_AW

Chapter 5
THIS_AW

SESSION_NLS_LANGUAGE stays American which means that Oracle OLAP limits

the language dimension (mylangs) to American.

SHOW NLS_LANGUAGEFRENCH
AMERICAN

" Make the session language static
STATIC_SESSION_LANGUAGE = yes

"Change the value of NLS_LANGUAGE to FRENCH
SET NLS_LANGUAGE= *"FRENCH"

SHOW OBJ(PROPERTY "$DEFAULT_LANGUAGE®™ “"mylangs"®)
AMERICAN

SHOW NLS_LANGUAGE

FRENCH

SHOW SESSION_NLS_LANGUAGE

AMERICAN

SHOW LOCK_LANGUAGE_DIMS

oui

SHOW STATIC_SESSION_LANGUAGE

oul

REPORT mylangs

MYLANGS
AMERICAN
REPORT prod_desc
------ PROD_DESC------
—————— PRODUCTS-------
MYLANGS PRODO1 PROD02
AMERICAN Trousers Skirts

(Read-only) The THIS_AW option is the value of the workspace name that Oracle

OLAP uses when it replaces occurrences of the THIS_AW keyword to create a

qualified object name.

Data Type
TEXT

Syntax
THIS_AW

THOUSANDSCHAR

ORACLE

(Read-only) The THOUSANDSCHAR option is the value specified for the
NLS_NUMERIC_CHARACTERS option discussed in NLS Options.

5-123

Chapter 5
TMARGIN

Note:

The value of THOUSANDSCHAR only affects the way Oracle OLAP formats
numbers in output. It does not affect the way numbers should be formatted for
input.

Data Type
ID

Syntax
THOUSANDSCHAR

Examples
Example 5-103 Displaying the Decimal and Thousands Markers

The following statements show the DECIMALCHAR and THOUSANDSCHAR values.
Assume that you issue the following statements.

SHOW THOUSANDSCHAR
SHOW DECIMALCHAR

Assume that a comma is displayed as the marker for THOUSANDSCHAR and that a
period is displayed as the marker for DECIMALCHAR. With these values, a SHOW
TOTAL(sales) statement would produce the following output.

63,181,743.50

TMARGIN

ORACLE

The TMARGIN option defines the number of blank lines for the top margin of output
pages, above the running page heading. In other words, the top margin lines are
produced before the program that is defined by PAGEPRG, if any, is run.

TMARGIN is meaningful only when PAGING is set to YES and only for output from
statements such as REPORT and DESCRIBE. The TMARGIN option is usually set in
the initialization section of report programs.

Data Type
INTEGER

Syntax
TMARGIN =n

Parameters

n
An INTEGER expression that specifies the number of lines to set aside for the top
margin in a report. The default is 2.

5-124

Chapter 5
TRACEFILEUNIT

Usage Notes
Setting TMARGIN for a File

To set TMARGIN for a file, first make the file your current outfile by specifying its name
in an OUTFILE statement, then set TMARGIN to the desired value. The new value
remains in effect until you reset it or until you use an OUTFILE statement to direct
output to a different outfile. When you direct output to a different outfile, TMARGIN
returns to its default value of 2 for the file.

When you set TMARGIN for the default outfile, the new value remains in effect until
you reset it, regardless of intervening OUTFILE commands that send output to a file.
That is, the value of TMARGIN is automatically saved for the default outfile.

Examples
Example 5-104 Setting the Top Margin of a Report

In this example, you want to save space when you produce a long report, so you set a
small top margin of 1 line. Here is the statement that you would include in the
initialization section of your report program.

TMARGIN = 1

TRACEFILEUNIT

(Read-only) The TRACEFILEUNIT option records the unit number of the Oracle trace
file which is a writable output file that collects information about the activity in the
Oracle session.

Syntax
TRACEFILEUNIT

Usage Notes
Use of the TRACEFILEUNIT Value

With the OUTFILE or DBGOUTFILE commands, you can specify the unit number
stored in the TRACEFILEUNIT option to send the output to the Oracle trace file.

Examples
Example 5-105 Specifying the Oracle Trace File with DBGOUTFILE

In the following code, the DBGOUTFILE command specifies the value of
TRACEFILEUNIT option.

DBGOUTFILE TRACEFILEUNIT

TRIGGERMAXDEPTH

The TRIGGERMAXDEPTH option determines the maximum number of SNATRIGGER
property expressions that Oracle OLAP can execute simultaneously.

ORACLE 5-125

ORACLE

Chapter 5
TRIGGERMAXDEPTH

Data Type

INTEGER

Syntax
TRIGGERMAXDEPTH =n

Parameters

n
An INTEGER expression that specifies the maximum number of SNATRIGGER property
expressions that can execute simultaneously. The default value is 50.

Usage Notes
About the SNATRIGGER Property

The TRIGGERMAXDEPTH option works with the SNATRIGGER property of a
variable.

Recursive Triggers

While a SNATRIGGER expression is executing, it cannot be invoked again by a
formula, program, or other SNATRIGGER expression that it invokes unless the
RECURSIVE option is set to YES. The TRIGGERMAXDEPTH option governs the
depth of recursion of SNATRIGGER expressions and prevents infinite recursions or
excessively deep recursions, which can cause Oracle OLAP to malfunction.

Examples
Example 5-106 Setting the Maximum Trigger Depth

This example sets the maximum trigger depth, exceeds it, then sets the depth to a
higher value. Usually the TRIGGERMAXDEPTH value would be much higher than 2,
which is used in this example. The default value is 50.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 2

DEFINE v1 DECIMAL <d1>
PROPERTY “$NATRIGGER® *v2 + 1°
DEFINE v2 DECIMAL <d1>
PROPERTY “$NATRIGGER® *v3 + 1°
DEFINE v3 DECIMAL <d1>
PROPERTY “$NATRIGGER® *v4 + 1°
DEFINE v4 DECIMAL <d1>

v4(dl 1) = 333.3

RECURSIVE = YES
TRIGGERMAXDEPTH = 2

SHOW v1

The preceding statements produce the following output.

ERROR: Depth of NA trigger calls exceeds allowable (maximum depth 2)

The following statements set the maximum trigger depth to a higher value and show
the value of the variable.

5-126

Chapter 5
TRIGGERSTOREOK

TRIGGERMAXDEPTH = 3
SHOW v1

The preceding statements produce the following output.

336.3

TRIGGERSTOREOK

The TRIGGERSTOREOK option controls whether you can
use $STORETRIGGERVAL properties to specify that NA values in an object be
permanently replaced by the values specified by a $SNATRIGGER property.

Note:

The value of the TRIGGERSTOREOK option is only one factor that Oracle
OLAP uses to determine what to do with variable data that is the result

of SNATRIGGER expression execution. For a discussion of the other factors
and their interrelationship, see "How Oracle OLAP Determines Whether to
Store or Cache Results of SNATRIGGER".

Data Type
BOOLEAN

Syntax
TRIGGERSTOREOK = {NO|YES}

Parameters

NO
(Default) NA values are not permanently replaced with the SNATRIGGER property
expression that is set for a variable.

YES

NA values are permanently replaced with the SNATRIGGER property expression that
is set for a variable. The default value is NO.

For Oracle OLAP to permanently replace NA values for a variable with the

valid $NATRIGGER property expression that is set for the variable, you must set both
the TRIGGERSTOREOK option and the $STORETRIGGERVAL property for the
variable to YES.

Usage Notes
About the $NATRIGGER and STORETRIGGERVAL Properties

The TRIGGERSTOREOK option works with the $SNATRIGGER
and $STORETRIGGERVAL properties of a variable.

ORACLE 5-127

ORACLE

Chapter 5
TRIGGERSTOREOK

Examples
Example 5-107 Replacing NA Values Temporarily

This example replaces the NA values in the cells of a variable temporarily. The
following statements define a dimension with three values and define a variable
dimensioned by the dimension. They add the $NATRIGGER property to the variable,
then put a value in one cell of the variable and leave the other cells empty, so that their
values are NA. Finally, they report the values in the cells of the variable.

DEFINE d1 INTEGER DIMENSION
MAINTAIN d1 ADD 3

DEFINE v1 DECIMAL <d1>
PROPERTY *$NATRIGGER® *500.0°
vi(dl 1) = 333.3

REPORT v1

The preceding statements produce the following output.

D1 V1
1 333.30
2 500.00
3 500.00

This statement deletes the $NATRIGGER property from the v1 variable.

CONSIDER v1
PROPERTY DELETE "$NATRIGGER"
REPORT v1

The preceding statements produce the following output.

D1 V1
1 333.30
2 NA
3 NA

Example 5-108 Replacing NA Values Permanently

The following statements add the $SNATRIGGER property to the v1 variable that was
defined in the previous example and set the TRIGGERSTOREOK option and

the $STORETRIGGERVAL properties to YES. They then report the values in the cells
of the variable.

CONSIDER v1

PROPERTY "$NATRIGGER" *800.0"
TRIGGERSTOREOK = YES

PROPERTY *STORETRIGGERVAL® YES
REPORT v1

The preceding statements produce the following output.

D1 V1
1 333.30
2 800.00
3 800.00

5-128

USERID

Chapter 5
USERID

The following statements delete the $NATRIGGER property from the v1 variable and
report the values in the cells of the variable.

CONSIDER v1
PROPERTY DELETE "$NATRIGGER"
REPORT v1

The preceding statements produce the following output.

D1 Vi
1 333.30
2 800.00
3 800.00

(Read-only) The USERID option holds the user ID for the current Oracle Database
session which is the same value as that returned by SYSINFO(USER).

Data Type
TEXT

Syntax
USERID

Examples
Example 5-109 Displaying the Session User ID

This statement displays the Oracle user ID associated with the current session.

SHOW USERID

USETRIGGERS

ORACLE

The USETRIGGERS option determines if a trigger program as triggers execute.

Tip:

Oracle OLAP does not support recursive triggers. Set the USETRIGGERS
option to NO before you issue the same DML statement within a trigger program
that triggered the program itself. For example, assume that you have written a
TRIGGER_DEFINE program. Within the TRIGGER_DEFINE program, you
must set the USETRIGGERS option to NO before you issue a DEFINE
statement

¢ See Also:

"Trigger Programs"

5-129

Chapter 5
VARCACHE

Data Type
BOOLEAN

Syntax
USETRIGGERS = {NOJ|YES}

Parameters

YES
(Default) Trigger programs execute.

NO
Trigger programs do not execute.

Examples

Example 5-110 Changing USETRIGGERS to NO

Assume you have just created a new analytic workspace. As illustrated in the following
statement, the default value of the USETRIGGERS option is YES, but you can set the
option to NO at any time.

SHOW USETRIGGERS
yes

USETRIGGERS = NO
SHOW USETRIGGERS
no

VARCACHE

ORACLE

The VARCACHE option specifies whether Oracle OLAP stores or caches all variable
data that is the result of the execution of an AGGREGATE function or SNATRIGGER
property expression.

Note:

The value of the VARCACHE option is only one factor that Oracle OLAP uses
to determine whether variable data computed when the AGGREGATE function
or SNATRIGGER property executes is stored or cached. For a discussion of
the other factors and their interrelationship, see "How Oracle OLAP Determines
Whether to Store or Cache Results of SNATRIGGER" and "How Oracle OLAP
Determines Whether to Store or Cache Aggregated Data".

Syntax
VARCACHE = {VARIABLE | SESSION | NONE}

5-130

Chapter 5
WEEKDAYSNEWYEAR

Parameters

VARIABLE

Specifies that Oracle OLAP stores the data in the variable in the database. When you
specify this option, the results of the calculation are permanently stored in the variable
when the analytic workspace is updated and committed.

SESSION

Specifies that Oracle OLAP caches the calculated data in the session cache (See
"What is an Oracle OLAP Session Cache?"). When you specify this option, the results
of the calculation are ignored during updates and commits and are discarded after the
session.

" Note:

When SESSCACHE is set to NO, Oracle OLAP does not cache the data even
when you specify SESSION. In this case, specifying SESSION is the same as
specifying NONE.

NONE

For data that is calculated on the fly using the AGGREGATE function, specifies that
Oracle OLAP calculates the data each time the AGGREGATE function executes;
Oracle OLAP does not store or cache the data calculated by the AGGREGATE
function

Usage Notes
The VARCACHE Option Can Affect All Variables

When you set the VARCACHE option, its setting can affect all variables. When you
have not set the $VARCACHE property on a variable and there is no CACHE statement in
the aggmaps that you use with the AGGREGATE function to calculate data on the fly,
then it is the VARCACHE option that determines how or if that data is stored.

WEEKDAYSNEWYEAR

ORACLE

For a dimension of type WEEK, the WEEKDAYSNEWYEAR option determines how
many days of the new year there must be for a week to be identified as week 1 of the
new year.

By default, week 1 in a given year is the first week that contains at least one day in the
new year. For example, January 1, 2000, is a Saturday. Using the default, the first
week in that year (W1.00) is the period from Sunday, December 26, 1999, through
Saturday, January 1, 2000.

Using WEEKDAYSNEWYEAR, you can specify how many days of the year must be
present in week 1 in that year. When you use WEEKDAYSNEWYEAR to specify that
the first week in a year must contain two or more days, then the week of December 26,
1999, through January 1, 2000, is the last week in 1999 (W53.99), and the week of
January 2 through January 8 is the first week in the year 2000 (W1.00).

5-131

Chapter 5
WRAPERRORS

Data Type

INTEGER

Syntax
WEEKDAYSNEWYEAR = days

Parameters

days
An INTEGER expression in the range 1 through 7 that indicates how many days in the
year must be present in week 1 of that year. The default value for days is 1.

Examples

The Effect of WEEKDAYSNEWYEAR

The following statements send a list of weeks with the associated ending dates for
each of those weeks to the current oultfile.

DEFINE week DIMENSION WEEK

MAINTAIN week ADD "12 18 99" "1 15 00"
weekdaysnewyear = 2

REPORT W 22 CONVERT(week date)

These statements produce the following output.

WEEK CONVERT(WEEK DATE)
W51.99 18DEC99
W52.99 25DEC99
W53.99 01JANOO
W1.00 08JANOO
W2.00 15JANOO

January 1, 2000, is a Saturday, so setting WEEKDAYSNEWYEAR to 2 causes the
week from January 2 through January 8 to appear as W1.00.

WRAPERRORS

ORACLE

The WRAPERRORS option determines if Oracle OLAP displays long error messages
as multiple lines with each line being 72 characters in length.

Data Type

BOOLEAN

Syntax
WRAPERRORS = NO | YES

Parameters

NO
Error messages are not wrapped. (Default)

5-132

Chapter 5
YESSPELL

YES
Error message are wrapped. Oracle OLAP inserts a line break after each group of 72
characters.

Usage Notes
Change in Default Behavior as of Oracle OLAP 10.2

In pre 10.2 releases of Oracle OLAP, long error messages are always wrapped.

YESSPELL

(Read-only) The YESSPELL option holds the text that is used for TRUE Boolean values
in the output of OLAP DML statements.

The value of the YESSPELL option is the word for "yes" in the current language, as
specified by the NLS_LANGUAGE option. For example, when NLS_LANGUAGE is set
to American, then the value of YESSPELL is YES. When NLS_LANGUAGE is set to
Spanish, then the value of YESSPELL is SlI.

Data Type
TEXT

Syntax
YESSPELL

Examples
Example 5-111 Seeing the Effect of the YESSPELL Value

Suppose you have a variable called BOOLVAR that currently has a value of YES. When
"si" is the word for "yes" in the language specified by the NLS _LANGUAGE option,

SHOW boolvar

produces the following output.

si

YRABSTART

ORACLE

The YRABSTART option sets the specific 100-year period associated with years that
are read or displayed using a two-digit abbreviation.

Data Type

INTEGER

Syntax
YRABSTART = year

5-133

Chapter 5
ZEROROW

Parameters

year
A four-digit INTEGER expression that indicates the year at which the 100-year period
begins. You can specify any value in the range 1000 to 9999. However, when you
specify a value greater than 9900 for year, requests to read or display two-digit year
values that correspond to a year later than 9999 result in a return value of NA. The
default is 1950; two-digit year abbreviations are interpreted as being in the range
1950 to 2049 unless a different range is set through YRABSTART.

Examples
Example 5-112 Using the Default Value
The following statements specify a date format and send output to the current outfile.

DATEFORMAT = “<Mtextl> <d>, <yyyy>"
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 1996

Example 5-113 Setting the 100-Year Period for a Date

The following statements set a 100-year period of 2000 to 2099 and send the output to
the current outfile.

YRABSTART = 2000
SHOW MAKEDATE(96 9 13)

These statements produce the following output.

September 13, 2096

ZEROROW

ORACLE

For output produced by the REPORT and ROW commands, the ZEROROW option
suppresses report rows with numeric values that are all NAs or all zeros or would be
represented as zeros. When your report includes a small number, such as 0.004, the
number of decimal places being shown affects whether ZEROROW treats that number
as zero. When you are producing a report with totals, the actual number is used to
calculate the total, even when the number is suppressed.

Data Type

BOOLEAN

Syntax

ZEROROW = {YES|NO}
Parameters

YES
Suppresses report rows that contain any numeric values when all the numeric values
would be shown either as zeros or NAs.

5-134

ORACLE

Chapter 5
ZEROROW

NO
(Default) Produces all rows of the report, regardless of the values they contain.

Usage Notes
Non-Numeric Data

Even when a row contains non-numeric data, such as TEXT, ID, or BOOLEAN values,
along with numeric values, the row is suppressed when ZEROROW is YES and all the
numeric values would be shown either as zeros or NAs.

The Effect of NASPELL and ZSPELL

The value of NASPELL does not affect the way ZEROROW handles NA values. The
value of ZSPELL does not affect the functioning of ZEROROW; numeric zero values
are treated as zeros regardless of their spelling in output.

Examples
Example 5-114 Suppressing Report Rows of All-Zero Data

Suppose you have a variable called worstcase, that is dimensioned by division, month,
and line, in which you store the results of calculations to project sales. When you
produce a report of the results, you want to suppress any rows for which the value of
the worst-case projections is zero for all months in the status. Set ZEROROW to YES,
as shown in the following statements.

ZEROROW = YES

LIMIT line TO "Revenue*

LIMIT month TO "Nov95" TO "Febh96"

REPORT WIDTH 8 DOWN division ACROSS month: worstcase

These statements produce the following report.

LINE: REVENUE

----------------- WORSTCASE=----—-mmmmmmemm

------------------- MONTH= === —mmmm oo
DIVISION Nov95 Dec95 Jan96 Feb96
Canping 0.00 0.00 45,500.00 47,400.00
Sporting 0.00 0.00 29,200.00 28,400.00
Clothing 0.00 0.00 15,200.00 14,900.00

In the preceding report, no rows are suppressed, because some months for each
division have projected sales. However, when you lay out this report with month down
and division across, the rows for Nov95 and Dec95 are suppressed, because these
months have no projected sales.

REPORT DOWN month ACROSS division: worstcase

This statement produces the following report.

LINE: REVENUE

----------- WORSTCASE------------

------------ DIVISION-=-—=-—=———-
MONTH Camping Sporting Clothing
Jan96 45,500.00 29,200.00 15,200.00
Feb96 47,400.00 28,400.00 14,900.00

5-135

ZSPELL

ORACLE

Chapter 5
ZSPELL

The ZSPELL option holds the default text that is used for representing numeric zero
values in output produced by the HEADING, REPORT, and ROW commands.

Data Type
TEXT

Syntax
ZSPELL = {'text|'OFF}

Parameters

text
The spelling to use as the default spelling for numeric zero values. When you specify
an expression rather than a text literal, you can omit the single quotes.

OFF
(Default) Shows a zero (0) with the appropriate number of decimal places (determined
by a DECIMAL attribute) for each numeric zero value.

Usage Notes
Assigning Zero Values

ZSPELL affects output only; it does not affect the way you assign a zero value. For
example, even when you have set ZSPELL to NONE, you still assign a zero value as
follows.

varl = 0

Showing Decimal Places

The default of OFF means that a zero value is shown as 0 (zero), with the number of
decimal places indicated by a DECIMAL attribute (for example, 0.00). When you set
ZSPELL to the text character 0, zero values are shown as a 0 with no decimal places,
regardless of any DECIMAL specification.

Effect of ZSPELL on Values Close to Zero

When your output includes a small number, such as 0.004, the number of decimal
places shown affects whether ZSPELL treats the number as zero. See
Example 5-116.

Examples

Example 5-115 Showing Zero Values as NONE

This example changes the value of ZSPELL, so that a zero value in the DECIMAL
variable testvar is shown as NONE in report output. When ZSPELL is set to its default
value of OFF, the Oracle OLAP statements

testvar = 0.00
ROW testvar

5-136

ORACLE

Chapter 5
ZSPELL

produce the following output.

0.00

In contrast, these OLAP DML statements

ZSPELL = "NONE*"
ROW testvar

produce the following output.

NONE

Example 5-116 Showing Very Small Numbers

This example illustrates how the number of decimal places shown in output affects
whether ZSPELL treats very small numbers as zeros. When ZSPELL is set to its
default value of OFF, these OLAP DML statements

ZSPELL = "OFF"
testvar = 0.004
ROW DECIMAL 3 testvar

produce the following output.

0.004

The following statements set ZSPELL to NONE and specify two decimal places for the
output.

ZSPELL = "NONE*"
ROW DECIMAL 2 testvar

These statements produce the following output.

NONE

With ZSPELL still set to NONE, the following statement specifies three decimal places
for the output.

ROW DECIMAL 3 testvar

This statement produces the following output.

0.004

5-137

OLAP DML Programs

This chapter provides information about creating OLAP DML programs. It includes the
following topics:

e Programs Provided With the OLAP DML

e Creating OLAP DML Programs

e Specifying Program Contents

e Compiling Programs

e Testing and Debugging Programs

e Executing Programs

e« Common Types of OLAP DML Programs

e User-Written Programs Looked For by Oracle OLAP

Programs Provided With the OLAP DML

ORACLE

The OLAP DML provides a number of programs that you can use to work with OLAP
cubes and cube dimensions as previously defined in the Oracle Database data
dictionary. These programs are listed in "Cube-Aware OLAP DML Statements".

It also provides the following programs that work directly on the analytic workspace:

* ALLCOMPILE which uses the COMPILE command to compile every compilable
object in your current analytic workspace, one at a time.

* ALLSTAT sets the status of all dimensions in the current analytic workspace to the
default status list of the dimension.

AWDESCRIBE sends information about the current analytic workspace to the
current outfile. After a summary page, it provides a report in two parts: An
alphabetic list of analytic workspace objects showing name, type, and description;
and a DESCRIBE of each object by object type.

« COPYDFN defines a new object in the analytical workspace by copying the
definition from an already-defined object in the current workspace or in an
attached workspace.

* FORECAST.REPORT produces a standard report of a forecast created using the
FORECAST command. The report shows the parameters of the forecast, including
the forecast formula and Mean Absolute Percent Error, followed by a display of the
forecasted values.

* FULLDSC produces a report that lists the definition of one or more workspace
objects, including the properties and triggers of the object(s).

* ISDATE determines whether a text expression to see if it can be converted to a
DATE value It returns YES when the text expression represents a valid date; NO
when it does not. (Note that, ISDATE does not actually make the conversion. You
must use CONVERT to make the conversion.)

6-1

Chapter 6
Creating OLAP DML Programs

* LISTBY produces a report of the names of all objects in an analytic workspace that
are dimensioned by or related to one or more specified dimensions or composites.
You can use LISTBY with a dimension or composite in any attached workspace.

* LISTNAMES produces a report that lists the names of the objects in an analytic
workspace. You can limit the list to particular types of objects, and you can have
the names for each type of object listed in alphabetical order.

« MODEL.COMPRPT produces a report that shows how model equations are
grouped into blocks. For step blocks and for simultaneous blocks with a cross-
dimensional dependence, the report lists the dimensions involved in the
dependence.

« MODEL.DEPRT produces a report that lists the variables and dimension values on
which each model equation depends. When a dependence is dimensional, the
report gives the name of the dimension.

« MODEL.XEQRPT produces a report about the execution of the model. The report
specifies the block where the solution failed and shows the values of the model
options that were used in solving simultaneous blocks.

* PAGE, commonly used in report programs or with LISTNAMES, forces a page
break in output when PAGING is set to YES. An optional argument to PAGE
specifies a conditional page break based on how many lines are left on the page.

e REGRESS.REPORT produces a standard report of a regression performed using
the REGRESS command.

e STATUS sends to the current outfile the status of one or more dimensions,
dimension surrogates, or valuesets, or the status of all dimensions in an analytic
workspace.

e STDHDR generates the standard Oracle OLAP heading at the top of every page
of report output.

* VALSPERPAGE calculates the maximum number of values for a variable of a
specified width that fits on one page. Pages are units of storage in the workspace.

Because the ISDATE and VALSPERPAGE programs are like simple functions, they
are documented in alphabetical sequence along with OLAP DML functions in OLAP
DML Functions: A - K and OLAP DML Functions: L - Z . The other programs provided
with the OLAP DML are documented in alphabetical sequence along with the OLAP
DML commands in OLAP DML Commands: A-G and OLAP DML Commands: H-Z.

Creating OLAP DML Programs

ORACLE

An OLAP DML program is written in the OLAP DML. It acts on data in the analytic
workspace and helps you accomplish some workspace management or analysis task.
You can write OLAP DML programs to perform tasks that you must do repeatedly in
the analytic workspace, or you can write them as part of an application that you are
developing.

To create an OLAP DML program, take the following steps:

1. Issue a DEFINE PROGRAM statement to define the program object. When the
program that you are defining is used is a function, include the dat at ype or the
di mensi on argument.

2. Add contents to the program that specify the processing that you want performed
as described in "Specifying Program Contents".

6-2

3.
4,
5.

Chapter 6
Specifying Program Contents

Compile the program as described in "Compiling Programs".
Test and debug the program as described in "Testing and Debugging Programs".

Execute the program as described in "Executing Programs".

Specifying Program Contents

The content of a program consists of the following OLAP DML statements:

1.

A PROGRAM statement that indicates the beginning of the program contents.
(Omit when coding the specification in an Edit window of the OLAP Worksheet.)

(Optional) VARIABLE statements that define any local variables.

(Optional) ARGUMENT statements that declare arguments. (See "Passing
Arguments" for more information.)

Additional OLAP DML statements that specify the processing you want performed.
You can use almost any of the OLAP DML statements in a program. There are
also some OLAP DML statements, such as flow-of-control statements, that are
only used in programs.

Use the following formatting guidelines as you add lines to your program:
» Each line of code can have a maximum of 4,000 bytes.

* To continue a single statement on the next line, place a hyphen (-) at the end
of the line to be broken. The hyphen is called a continuation character.

e You cannot use a continuation character in the middle of a text literal.

* To write multiple statements on a single line, separate the statements with
semicolon (3).

* Enclose literal text in single quotation marks (*). To include a single quotation
mark within literal text, precede it with a backslash (\). To specify escape
sequences, see "Escape Sequences".

e Precede comments with double quotation marks ("*). You can place a
comment, preceded by double quotation marks, either at the beginning of a
line or at the end of a line, after some statements.

A final END statement that indicates the end of the contents of the program. (Omit
when coding the specification in an Edit window of the OLAP Worksheet.)

Creating User-Defined Functions

One type of program that is commonly written is a user-define function that you can
use in OLAP DML statements in much the same way as you use an OLAP DML
function. A user-defined function is simply an OLAP DML program that returns a value.
For an example of a user-defined function, see Example 9-44.

ORACLE

When you create a user-defined function, you use a DEFINE PROGRAM statement
that includes the dat at ype and di nensi on arguments. Within the program, you
include a RETURN statement that returns a value. The return expression in the
program should match the data type that is specified in its definition. When the data
type of the return value does not match the data type that is specified in its definition,
then the value is converted to the data type in the definition.

6-3

Chapter 6
Specifying Program Contents

User-defined functions can accept arguments. A user-defined function returns only a
single value. However, when you supply an argument to a user-defined function in a
context that loops over a dimension (for example, in a REPORT statement), then the
function returns results with the same dimensions as its argument.

You must declare the arguments using an ARGUMENT statement within the program,
and you must specify the arguments in parentheses following the name of the
program.

¢ See Also:

"Passing Arguments" for more information about using arguments with
programs.

Passing Arguments

Use ARGUMENT statements to declare both simple and complex arguments (such as
expressions). ARGUMENT statement also make it convenient to pass arguments from
one program to another, or to create your own user-defined functions because by
using these statements you can declare an argument of any data type, dimension, or
valueset. Any ARGUMENT statements must precede the first executable line in the
program. When you run the program, these declared arguments are initialized with the
values you provided as arguments to the program. The program can then use these
arguments in the same way it would use local variables.

Using Multiple Arguments

A program can declare as many arguments as needed. When the program is executed
with arguments specified, the arguments are matched positionally with the declared
arguments in the program. When you run the program, you must separate arguments
with spaces rather than with commas or other punctuation. Punctuation is treated as
part of the arguments. For an example of passing multiple arguments, see

Example 9-45.

Handling Arguments Without Converting Values to a Specific Data Type

Sometimes you want your OLAP DML program to be able to handle arguments without
converting values to a specific data type. In this case, you can specify a data type of
WORKSHEET in the ARGUMENT and VARIABLE statements that define the arguments
and temporary variables for the program. You can use WKSDATA to determine the
actual data type of the argument or variable.

Passing Arguments as Text with Ampersand Substitution

ORACLE

It is very common to pass a simple text argument to a program. However, there are
some situations in which you might want to write more general programs or pass a
more complicated text argument, such as an argument that is all of the data in an
analytic workspace object or the results of an expression. In these cases, you can
pass the argument using a substitution expression. Passing an argument in this way is
called ampersand substitution.

6-4

Chapter 6
Specifying Program Contents

For the following types of arguments, you must always use an ampersand to make the
appropriate substitution:

* Names of workspace objects, such as units or product

e Statement keywords, such as COMMA or NOCOMMA in the REPORT statement, or A or D
in the SORT command

When you use ampersand substitution to pass the names rather than the values of
workspace objects to a program, the program has access to the objects themselves.
This feature is useful when the program must manipulate the objects in several
operations.

Note:

You cannot compile and save any program line that contains an ampersand.
Instead, the line is evaluated at run time, which can reduce the speed of your
programs. Therefore, to maximize performance, avoid using ampersand
substitution when another technique is available.

For an example of using ampersand substitution to pass multiple dimension values,
see Example 10-18. For an example of using ampersand substitution to pass the text
of an expression, see Example 9-47. For an example of using ampersand substitution
to pass object names and keywords, see Example 9-48.

¢ See Also:

"Substitution Expressions” for more information about ampersand substitution.

Program Flow-of-Control

ORACLE

Like most programming languages, the OLAP DML has several statements that you
can use to determine the flow-of-control within a program. However, you must code
explicit loops less frequently in an OLAP DML program because of the intrinsic looping
nature of many OLAP DML statements.

The following table lists OLAP DML flow-of-control statements. The looping
characteristic of OLAP DML statements is discussed in "OLAP DML Statements Apply
to All of the Values of a Data Object".

The OLAP DML contains the flow-of-control statements typically found in a
programming language. The following table lists these statements:

Table 6-1 Statements For Determining Flow-of-Control

__|
Statement Description

BREAK Transfers program control from within a SWITCH, FOR, or WHILE
statement to the statement immediately following the DOEND
associated with SWITCH, FOR, or WHILE.

6-5

Chapter 6
Specifying Program Contents

Table 6-1 (Cont.) Statements For Determining Flow-of-Control

Statement

Description

CONTINUE

DO ... DOEND

FOR

GOTO

IF...THEN...ELSE
command

OKFORLIMIT

RETURN

SIGNAL

SWITCH command

TEMPSTAT

TRAP

WHILE

Transfers program control to the end of a FOR or WHILE loop
(just before the DO/DOEND statement), allowing the loop to
repeat. You can use CONTINUE only within programs and only
with FOR or WHILE.

Brackets a group of one or more statements. DO and DOEND are
normally used to bracket a group of statements that are to be
executed under a condition specified by an IF statement, a group
of statements in a repeating loop introduced by FOR or WHILE, or
the CASE labels for a SWITCH statement.

Specifies one or more dimensions whose status controls the
repetition of one or more statements.

Alters the sequence of statement execution within the program by
indicating the next program statement to execute.

Executes one or more statements in a program if a specified
condition is met. Optionally, it also executes an alternative
statement or group of statements when the condition is not met.

An option that determines whether you can limit the dimension
you are looping over within an explicit FOR loop.

Terminates execution of a program before its last line. You can
optionally specify a value that the program returns.

Produces an error message and halts normal execution of the
program. When the program contains an active trap label,
execution branches to the label. Without a trap label, execution of
the program terminates and, if the program was called by another
program, execution control returns to the calling program.

Provides a multipath branch in a program. The specific path taken
during program execution depends on the value of the control
expression that is specified with SWITCH.

Limits the dimension you are looping over, inside a FOR loop or
inside a loop that is generated by a REPORT statement. Status is
restored after the statement following TEMPSTAT. If a DO ...
DOEND phrase follows TEMPSTAT, status is restored when the
matched DOEND or a BREAK or GOTO statement is
encountered.

Causes program execution to branch to a label when an error
occurs in a program or when the user interrupts the program.
When execution branches to the trap label, that label is
deactivated.

Repeatedly executes a statement while the value of a Boolean
expression remains TRUE.

Preserving the Environment Settings

There are two types of environments:

e Session environment. The dimension status, option values, and output destination
that are in effect before a program is run constitute the session environment.

ORACLE

6-6

Chapter 6
Specifying Program Contents

* Program environment. The dimension status, option values, and output destination
that you use in a program constitute the program environment.

Changing the Program Environment

To perform a task within a program, you often must change the output destination or
some dimension and option values. For example, you might run a monthly sales report
that always shows the last six months of sales data. You might want to show the data
without decimal places, include the text "No Sales" where the sales figure is zero, and
send the report to a file. To set up this program environment, you can use the following
statements in your program.

LIMIT month TO LAST 6
DECIMALS = 0

ZSPELL = "No Sales”
OUTFILE monsales.txt

To avoid disrupting the session environment, the initialization section of a program
should save the values of the dimensions and options that are set in the program.
After the program executes, you can restore the saved environment, so that other
programs do not need to be concerned about whether any values have been changed.
In addition, when you have sent output to a file, then the exit sections should return the
output destination to the default outfile.

Ways to Save and Restore Environments

The following suggestions let you save the environment of a program or a session:

e When you want to save the current status or value of a dimension, a valueset, an
option, or a single-cell variable that is changed in the current program, then use
PUSHLEVEL and PUSH statements. You can restore the current status values
using POPLEVEL and POP statements.

e When you want to save, access, or update the current status or value of a
dimension, a valueset, an option, a single-cell variable, or a single-cell relation for
use in the current session, then use a named context. Use the CONTEXT
command to define the context.

Contexts are the most sophisticated way to save object values for use during a
session. With contexts, you can access, update, and commit the saved object values.
In contrast, PUSH and POP simply allow you to save and restore values. Typically,
you use PUSH and POP statements within a program to make changes that apply only
during the execution of the program.

Saving the Status of a Dimension or the Value of an Option

ORACLE

A PUSH statement saves the current status of a dimension, the value of an option, or
the value of a single-cell variable. For example, to save the current value of the
DECIMALS option so you can set it to a different value for the duration of the program,
use the following statement in the initialization section.

PUSH DECIMALS

You do not need to know the original value of the option to save it or to restore it later.
You can restore the saved value with a POP statement.

6-7

Chapter 6
Specifying Program Contents

POP DECIMALS

You must make sure a POP statement is executed when errors cause abnormal
termination of the program and when the program ends normally. Therefore, place the
POP statement in the normal and abnormal exit sections of the program.

Saving Several Values at Once

You can save the status of one or more dimensions and the values of any number of
options and variables in a single PUSH statement, and you can restore the values with
a single POP statement, as shown in the following example.

PUSH month DECIMALS ZSPELL

POP month DECIMALS ZSPELL

Using Level Markers

When you are saving the values of several dimensions and options, then PUSHLEVEL
and POPLEVEL statements provide a convenient way to save and restore the session
environment.

You first use a PUSHLEVEL statement to establish a level marker. Once the level
marker is established, you use a PUSH statement to save the status of dimensions
and the values of options or single-cell variables.

When you place multiple PUSH statements between the PUSHLEVEL and
POPLEVEL statements, then all the objects that are specified in those PUSH
statements are restored with a single POPLEVEL statement.

By using PUSHLEVEL and POPLEVEL, you save some typing as you write your
program because you must only type the list of objects once. You also reduce the risk
of omitting an object from the list or misspelling the name of an object.

For an example of creating level markers, see Example 10-85. Example 10-86
illustrates nesting PUSHLEVEL and POPLEVEL statements.

Using CONTEXT to Save Several Values at Once

As an alternative to using PUSHLEVEL and POPLEVEL, you can use the CONTEXT
command. After you create a context, you can save the current status of dimensions
and the values of options, single-cell variables, valuesets, and single-cell relations in
the context. You can then restore some or all of the object values from the context.
The CONTEXT function returns information about objects in a context.

Handling Errors

When an error occurs anywhere in a program, Oracle OLAP performs the following
actions:

1. Stores the name of the error in the ERRORNAME option, and the text of the error
message in the ERRORTEXT option.

ORACLE 6-8

Chapter 6
Specifying Program Contents

Note:

When the ERRNAMES option is set to the default value of YES, the
ERRORTEXT option contains the name of the error (that is, the value of
the ERRORNAME option) and the text of the error message.

2. When ECHOPROMPT is YES, then Oracle OLAP echoes input lines, error
messages, and output lines, to the current outfile. When you use the OUTFILE or
DBGOUTFILE statement, you can capture the error messages in a file. See
Example 10-69 for an example of directing output to a file.

3. When error trapping is off, then the execution of the program is halted. When error
trapping is on, then the error is trapped.

Trapping an Error

To make sure the program works correctly, anticipate errors and set up a system for
handling them. You can use a TRAP statement to turn on an error-trapping
mechanism in a program. When error trapping is on and an error is signaled, then the
execution of the program is not halted. Instead, error trapping does the following:

1. Turns off the error-trapping mechanism to prevent endless looping in case
additional errors occur during the error-handling process

2. Branches to the label that is specified in the TRAP statement

3. Executes the statements following the label

Passing an Error to a Calling Program

To pass an error to a calling program, you can use one of two methods. The method
you use depends on when you want the error message to be produced. With the first
method, Oracle OLAP produces the message immediately and then the error condition
is passed through the chain of programs. With the second method, Oracle OLAP
passes the error through the chain of programs first and then produces the message.
See "Passing an Error: Method One" and "Passing an Error: Method Two" for details.

With both methods, the appropriate error handling happens in each program in the
chain, and at some point Oracle OLAP sends an error message to the current outfile.

Passing an Error: Method One

ORACLE

Using this method, Oracle OLAP produces the message immediately and then the
error condition is passed through the chain of programs.

Use a TRAP statement with the (default) PRINT option. When an error occurs, Oracle
OLAP produces an error message, and execution branches to the trap label. After the
trap label, perform whatever cleanup you want, and then execute the following
statement.

SIGNAL PRGERR

Using this statement creates an error condition that is passed up to the program from
which the current program was run. However, PRGERR does not produce an error
message. PRGERR sets the ERRORNAME option to a blank value.

6-9

Chapter 6
Specifying Program Contents

When the calling program contains a trap label, execution branches to the label. When
each of the programs in a sequence of nested programs uses TRAP and SIGNAL in
this way, you can pass the error condition up through the entire sequence of
programs.

Passing an Error: Method Two

Using this method, Oracle OLAP passes the error through the chain of programs first
and then produces the message.

Use a TRAP statement with the NOPRINT option. When an error occurs, execution
branches to the trap label, but the error message is suppressed. After the trap label,
perform whatever cleanup you want, then execute the following statement.

SIGNAL ERRORNAME ERRORTEXT

The options ERRORNAME and ERRORTEXT contain the name and message of the
original error, so this SIGNAL statement reproduces the original error. The error is
then passed up to the program from which the current program was run.

When the calling program also contains a trap label, execution branches to its label.
When each of the programs in a sequence of nested programs uses TRAP. . _NOPRINT
and SIGNAL ERRORNAME ERRORTEXT in this way, you can pass the error condition up
through the entire sequence of programs. Oracle OLAP produces the error message
at the end of the chain.

When you reach a level where you want to handle the error and continue the
application, omit the SIGNAL statement. You can display your own message with a
SHOW statement.

Suppressing Error Messages

ORACLE

When you do not want to produce the error message that is normally provided for a
given error, then you can use TRAP statement with a NOPRINT keyword.

TRAP ON error NOPRINT

When you use the NOPRINT keyword with TRAP, control branches to the error label, and
an error message is not issued when an error occurs. The statements following the
error label are then executed.

When you suppress the error message, you might want to produce your own message
in the abnormal exit section. A SHOW statement produces the text you specify but does
not signal an error.

TRAP ON error NOPRINT
error:
SHOW *The report will not be produced. "

The program continues with the next statement after producing the message.

6-10

Chapter 6
Specifying Program Contents

Creating Your Own Error Messages

All errors that occur when a statement or statement sequence does not conform to its
requirements are signaled automatically. In your program, you can establish additional
requirements for your own application. When a requirement is not met, you can
execute a SIGNAL statement to signal an error.

You can give the error any name. When a SIGNAL statement is executed, the error
name you specify is stored in the ERRORNAME option, just as an OLAP DML error name is
automatically stored. When you specify your own error message in a SIGNAL statement,
then your message is produced just as an OLAP DML error message is produced.
When you are using a TRAP statement to trap errors, a SIGNAL statement branches to
the TRAP label after the error message is produced.

For an example of signaling an error, see Example 10-123.

When you want to produce a warning message without branching to an error label,
then you can use a SHOW statement as illustrated in Example 10-121.

Handling Errors in Nested Programs

When handling errors in nested programs, the error-handling section in each program
should restore the environment. It can also handle any special error conditions that are
particular to that program. For example, when your program signals its own error, then
you can include statements that test for that error.

Any other errors that occur in a nested program should be passed up through the
chain of programs and handled in each program. To pass errors through a chain of
nested programs, you can use one of two methods, depending on when you want the
error message to be produced:

* The error message is produced immediately, and the error condition is then
passed through the chain of programs as illustrated in Example 10-157.

e The error is passed through the chain of programs first, and the error message is
produced at the end of the chain as illustrated inExample 10-158.

A SIGNAL statement is used in both methods.

Handling Errors While Saving the Session Environment

ORACLE

To correctly handle errors that might occur while you are saving the session
environment, place your PUSHLEVEL statement before the TRAP statement and your PUSH
statements after the TRAP statement.

PUSHLEVEL *"firstlevel*
TRAP ON error
PUSH

In the abnormal exit section of your program, place the error label (followed by a
colon) and the statements that restore the session environment and handle errors. The
abnormal exit section might look like this.

6-11

Chapter 6
Compiling Programs

error:
POPLEVEL "firstlevel*®
OUTFILE EOF

These statements restore saved dimension status and option values and reroute
output to the default outfile.

Compiling Programs

You can explicitly compile a program by using a COMPILE statement. If you do not
explicitly compile a program, then it is compiled when you run the program for the first
time.

When a program is compiled, it translates the program statements into efficient
processed code that executes much more rapidly than the original text of the program.
When errors are encountered in the program, then the compilation is not completed,
and the program is considered to be uncompiled.

After you compile a program, the compiled code is used each time you run the
program in the current session. When you update and commit your analytic workspace
after compiling a program, the compiled code is saved in your analytic workspace and
used to run the program in future sessions. Therefore, be sure to update and commit
after compiling a program. Issuing an update and commit after program compilation is
particularly critical when the program is part of an application that is run by many
users. Unless the compiled version of the program is saved in the analytic workspace,
the program is recompiled individually in each user session.

Example 9-69 illustrates using COMPILE to compile a program

Finding Out If a Program Has Been Compiled

You can use the ISCOMPILED choice of the 0BJ function to determine whether a specific
program in your analytic workspace has been compiled since the last time it was
modified. The function returns a Boolean value.

SHOW OBJ(ISCOMPILED “myprogram®)

Programming Methods That Prevent Compilation

Program lines that include ampersand substitution are not compiled. Any syntax errors
are not caught until the program is run. A program whose other lines compiled
correctly is considered to be a compiled program.

When your program defines an object and then uses the object in the program, the
program cannot be compiled. COMPILE treats the reference to the object as a
misspelling because the object does not yet exist in the analytic workspace.

Testing and Debugging Programs

Even when your program compiles cleanly, you must also test the program by running
it. Running a program helps you detect errors in statements with ampersand
substitution, errors in logic, and errors in any nested programs.

ORACLE 6-12

Chapter 6
Testing and Debugging Programs

To test a program by running it, use a full set of test data that is typical of the data that
the program processes. To confirm that you test all the features of the program,
including error-handling mechanisms, run the program several times, using different
data and responses. Use test data that:

» Falls within the expected range
* Falls outside the expected range

» Causes each section of a program to execute

Generating Diagnostic Messages

Each time you run the program, confirm that the program executes its statements in
the correct sequence and that the output is correct. As an aid in analyzing the
execution of your program, you can include SHOW or TRACE statements in the program
to produce diagnostic or status messages. Then delete the these statements after your
tests are complete.

When you detect or suspect an error in your program or a nested program, you can
track down the error by using the debugging techniques that are described in the rest
of this section.

Identifying Bad Lines of Code

When you set the BADLINE option to YES, additional information is produced, along
with any error message when a bad line of code is encountered. When the error
occurs, the error message, the name of the program, and the program line that
triggered the error are sent to the current outfile. You can edit the specified program to
correct the error and then run the original program. See Example 5-4 for an example
of using BADLINE.

Sending Output to a Debugging File

When your program contains an error in logic, then the program might execute without
producing an error message, but it executes the wrong set of statements or produces
incorrect results. For example, suppose you write a Boolean expression incorrectly in
an IF statement (for example, you use NE instead of EQ). The program executes the
statements you specified, but it does so under the wrong conditions.

To find an error in program logic, you must often see the order in which the statements
are being executed. One way you can do this is to create a debugging file and then
examine the file to diagnose any problems in your programs by issuing the following
DML statements:

1. Create a debugging file, by issuing an DBGOUTFILE statement.

2. Specify that you want each program line to be sent to the debugging file when a
line executes by setting the PRGTRACE option to YES.

3. (Optional) When you want the debugging file to interweave the program lines with
both the program input and error messages, set the ECHOPROMPT option to YES.

ORACLE 6-13

Chapter 6
Executing Programs

" See Also:
The following examples of using a debugging file:

e Example 9-76
e Example 9-77

Executing Programs

You can invoke a program that does not return a value by using a CALL statement.
You enclose arguments in parentheses, and they are passed by value. For example,
suppose you create a simple program named addit to add two INTEGER values. You
can use a CALL statement in the main program of your application to invoke the
program.

You can also invoke programs in much the same way as you issue OLAP DML
statements. You invoke user-defined functions in the same way as you use built-in
functions. You use the program name in an expression and enclose the program
arguments, if any, in parentheses. For a program that does not return a value (a user-
defined command), you use the program name as you would an OLAP DML
command. When you invoke a user-defined program as a function, the program
returns NA.

You can also create programs that execute automatically when Oracle OLAP:

* Executes an AW ATTACH. AW CREATE, AW DELETE, AW DETACH, DEFINE,
MAINTAIN, PROPERTY, UPDATE, or SET statement as described in "Trigger
Programs".

 Encounters an NA value as described in $NATRIGGER.

Common Types of OLAP DML Programs

This section provides overview information about the following types of programs:
e Startup Programs

* Data Import and Export Programs

e Trigger Programs

» Aggregation, Allocation, and Modeling Programs

» Forecasting Programs

* Programs to Export and Import Workspace Objects

Startup Programs

ORACLE

Startup programs are programs that you write and that Oracle OLAP checks for by
name when an AW ATTACH statement executes. Startup programs do not exist within
an analytic workspace unless you define and write them. In a startup program you can
execute any OLAP DML statements, or run any of your own programs. For example, a
startup program might set options to values appropriate to your application.

6-14

Chapter 6
Common Types of OLAP DML Programs

When you first attach an analytic workspace, Oracle OLAP looks for and executes the
Oracle OLAP startup programs (if they exist) in the order indicated:

1. Permission programs. The execution of a permission program is determined by
the attachment mode specified in the AW ATTACH statement and whether or not
a related permission program exists in the analytic workspace you are attaching.
For more information, see "Permission Programs".

2. OnAttach programs. The execution of an OnAttach program is determined by how
you code the ONATTACH and NOONATTACH clauses of the AW ATTACH
statement and whether or not a program named ONATTACH exists in the analytic
workspace you are attaching. For more information, see "OnAttach Programs".

3. Autogo programs. The execution of an Autogo program is determined by how you
code the AUTOGO and NOAUTOGO clauses of the AW ATTACH statement and
whether or not a program named AUTOGO exists in the analytic workspace you
are attaching. For more information, see "Autogo Programs".

4. Trigger program. The execution of a Trigger program is determined by whether or
not a program named TRIGGER_AW exists in an already attached analytic
workspace. When a TRIGGER_AW program exists in one attached analytic
workspace, it is executed whenever you create, attach, detach, or delete any other
analytic workspace. For more information, see "Trigger Programs" and
TRIGGER_AW.

" Note:
Within a session, when you:

e Reattach an attached workspace, Oracle OLAP does not look for and
execute permission programs and OnAttach programs.

e Reattach a previously detached workspace, Oracle OLAP does not execute
permission programs, OnAttach programs, or Autogo programs, unless you
detached that workspace using an AW DETACH statement that included
the NOCACHE keyword .

Permission Programs

Permission programs are programs that you write that give permission to users to

access workspace data. When a user first attaches an analytic workspace, Oracle
OLAP checks to see if a permission program that is appropriate for the attachment
mode exists.

Note:

When you reattach an attached workspace, Oracle OLAP does not look for and
execute permission programs.

The permission program for each attachment mode must have a particular name as
outlined in the following table:

ORACLE 6-15

Chapter 6
Common Types of OLAP DML Programs

Table 6-2 Names of Permission Programs for Different Attachment Modes
|

Attachment Modes Name of Program
Read-only PERMIT_READ
Multiwriter, Read/write PERMIT_WRITE

When an appropriate permission program exists, Oracle OLAP executes the program.
When a user specifies a password when attaching the analytic workspace, then the
password is passed as an argument to the permission program for processing.

Note:

A dimension surrogate has the access permissions of its dimension. Use a
PERMIT on a dimension to grant or deny permission to access the values of a
dimension surrogate for that dimension.

Permission programs allow you to control two levels of access to the analytic
workspace in which they reside.

» Access at the analytic workspace level—Depending on the return value of the
permission program, the user is or is not granted access to the entire analytic
workspace. You can use the return value to indicate to Oracle OLAP whether or
not the user has the right to attach the workspace.

* Access at the object level—Within a permission program for read-only or read/
write attachment, you can specify PERMIT statements that grant or restrict access
to individual workspace objects. PERMIT programs must be in the same
workspace as the objects for which they issue PERMIT statements.

< Note:

All of the objects referred to in a given permission program must exist in the
same analytic workspace.

To create a permission program, define a user-defined function (as described in
"Creating User-Defined Functions") with a recognized name, then define the contents
for the program as described in "Specifying Program Contents".

OnAttach Programs

An OnAttach program can have any name or it can explicitly be named ONATTACH.

ORACLE 6-16

Chapter 6
Common Types of OLAP DML Programs

Note:

When an analytic workspace is created as an OLAP cube using the OLAP API,
the OLAP API may also create a program named ONATTACH. You cannot modify
an ONATTACH program that is automatically created in this way. Additionally,
overriding the execution of ONATTACH is not recommended.

Consequently, when this type of ONATTACH program exists in an analytic
workspace, create a different type of startup program to specify behavior that
you want performed when that analytic workspace is attached.

How you specify the execution of an OnAttach program varies depending on its name:

e When a program named ONATTACH. exists in an analytic workspace, each time you
attach the workspace, that program executes automatically unless you include a
NOOTTACH keyword in the AW ATTACH statement, or unless you include an
ONATTACH clause that specifies a different program name.

* To execute an OnAttach program that is not named ONATTACH, specify the name of
the program within the ONATTACH clause of AW ATTACH statement.

Note:

When you reattach an attached cached workspace, Oracle OLAP does not look
for and execute OnAttach programs. To force an analytic worksapce to be fully
detached so that Oracle OLAP will look for and execute OnAttach programs
when you retach the workspace, specify the NOCACHE keyword in the
DETACH statement that detaches the analytic workspace.

Autogo Programs

An Autogo program can have any name or it can explicitly be named AUTOGO.
How you specify the execution of an Autogo program varies depending on its name:

* When a program named AUTOGO exists in an analytic workspace, each time you
attach the workspace, that program executes automatically unless you include a
NOAUTOGO keyword in the AW ATTACH statement, or unless you include an
AUTOGO clause that specifies a different program name.

* To execute an Autogo program that is not named AUTOGO, specify the name of the
program within the AUTOGO clause of AW ATTACH statement.

Data Import and Export Programs

The OLAP DML provides support for importing data from relational tables, flat files,
and spreadsheets into analytic workspace objects; and for exporting data from analytic
workspace objects to relational tables, flat files, and spreadsheets.

ORACLE 6-17

Chapter 6
Common Types of OLAP DML Programs

Importing Data to and Exporting Data from Relational Tables

You can embed SQL statements in OLAP DML programs using the OLAP DML SQL
statement. Using the OLAP DML SQL statement you can import data from relational
tables into analytic workspace objects and export data from analytic workspace
objects to relational tables.

Importing Data From Relational Tables to Workspace Objects

Using the OLAP DML SQL statement within an OLAP DML program you can copy
relational data into analytic workspace objects using either an implicit cursor or an
explicit cursor:

* To copy data from relational tables into analytic workspace objects using an
implicit cursor, use the SQL SELECT statement. You can use this OLAP DML
statement interactively in the OLAP Worksheet or within an OLAP DML program.

* To copy data from relational tables into analytic workspace objects using an
explicit cursor, use the following statements in the order indicated. You can only
use these statements within an OLAP DML program. You cannot use them
interactively in the OLAP Worksheet.

1. SQL DECLARE CURSOR defines a SQL cursor by associating it with a
SELECT statement or procedure.

2. SQL OPEN activates a SQL cursor.

3. SQL FETCH and SQL IMPORT retrieve and process data specified by a
cursor.

4. SQL CLOSE closes a SQL cursor.

5. SQL CLEANUP cancels a SQL cursor declaration and frees the memory
resources of an SQL cursor.

For examples of programs that copy table data into workspace objects, see SQL
FETCH and SQL IMPORT.

Exporting Data from OLAP DML Objects to Relational Tables

Within a program, you can use an OLAP DML SQL statement with the INSERT
keyword to copy data from analytic workspace objects into relational tables. Typically,
you do this by issuing the following statements in your OLAP DML program:

1. SQL PREPARE statements, to precompile the INSERT and UPDATE statements.

2. SQL EXECUTE statements, to execute the statements that you precompiled in
Step 1.

Importing Data to and Exporting Data from Flat Files

Oracle OLAP provides several statements that you can use to read data from flat files
or to write data to flat files. These statements are frequently used together in a special
program.

ORACLE 6-18

Chapter 6
Common Types of OLAP DML Programs

Importing Data to and Exporting Data from Spreadsheets

Within an OLAP DML program you can use an IMPORT statement to import data from
a spreadsheet into analytic workspace objects. You can use an EXPORT statement to
export data from analytic workspace objects into a spreadsheet.

Trigger Programs

DEFINE, MAINTAIN, PROPERTY, SET (=) UPDATE, and AW commands are
recognized by Oracle OLAP as events that can trigger the execution of OLAP DML
programs.

» Programs triggered by DEFINE, MAINTAIN, PROPERTY, UPDATE, or SET
commands, are called object trigger programs and are discussed in this section
and in the topic for the TRIGGER command.

* A program named TRIGGER_AW that is defined within one analytic workspace
and which is triggered when another analytic workspace is created, attached,
detached or deleted. See the discussion of the "TRIGGER_AW" for more
information.

Trigger programs are frequently written to maintain application-specific metadata.
Trigger programs have certain characteristics depending on the statement that triggers
them. Some trigger programs execute before the triggering statement executes; some
after. Oracle OLAP passes arguments to programs triggered by some statements, but
not others. Oracle OLAP does not change dimension status before most trigger
programs execute, but does change dimension status before some MAINTAIN
statements trigger program execution. In most cases, you can give a trigger program
any name that you choose, but some events require a program with a specific name.
"Characteristics of Object Trigger Programs" discusses these characteristics.

¢ See Also:
The following statements:

¢ TRIGGER function, DESCRIBE command, and OBJ function that retrieve
information about triggers.

* USETRIGGERS option that you can use to disable all triggers.

Creating an Object Trigger Program

ORACLE

Once an object is defined in an analytic workspace, you can create a trigger program
for that object by following the following procedure:

1. Define the program as described in DEFINE PROGRAM.

2. Determine what to name the program and whether the program can be a user-
defined program. (See Table 6-3.) If the program can be a user-defined program,
decide whether or not you want to define the trigger program as a user-defined
function.

3. Code the actual program as described in"Specifying Program Contents".

4. Keep the following points in mind when coding trigger programs:

6-19

Chapter 6
Common Types of OLAP DML Programs

* Use Table 6-3 to determine if Oracle OLAP passes values to the program. If it
does, use an ARGUMENT statement to declare these arguments in your
program and the VARIABLE statement to define program variables for the
values. (See Table 6-4 for specific information about the arguments.)

* A program that is triggered by an Assign event is executed each time Oracle
OLAP assigns a value to the object for which the event was defined. Thus, a
program triggered by an Assign event is often executed over and over again
as the assignment statements loops through an object assigning values. You
can use TRIGGERASSIGN to assign a value that is different from the value
specified by the assignment statement that triggered the execution of the
program.

* In some cases, Oracle OLAP changes the status of the dimension being
maintained when a Maintain event triggers the execution of a program. See
Table 6-5 for details

» Use the CALLTYPE function within a program to identify that the program was
invoked as a trigger.

5. When the trigger program is not a TRIGGER_AFTER_UPDATE,
TRIGGER_BEFORE_UPDATE, or TRIGGER_DEFINE program, associate the
program with the desired object and event using the TRIGGER command.

6. There is no support for recursive triggers. You must set the USETRIGGERS
option to NO before you issue the same DML statement within a trigger program
that triggered the program itself. For example, assume that you have written a
program named TRIGGER_MAINTAIN_ADD that is triggered by MAINTAIN ADD
statements. Within the TRIGGER_MAINTAIN_ADD program, you must set the
USETRIGGERS option to NO before you issue a MAINTAIN statement.

Characteristics of Object Trigger Programs

ORACLE

Object trigger programs have certain characteristics depending on the statement that
triggers them. Some trigger programs execute before the triggering statement
executes; some after. Oracle OLAP passes arguments to programs triggered by some
statements, but not others. Oracle OLAP does not change dimension status before
most trigger programs execute, but does change dimension status before some
MAINTAIN statements trigger program execution. In most cases, you can give a
trigger program any name that you choose, but some events require a program with a
specific name.

Table 6-3 lists the OLAP DML statements that trigger programs, the required name of
the program (if any), whether or not Oracle OLAP uses values returned by the
program, and whether or not Oracle OLAP passes arguments to the program.

Keep the following points in mind when designing trigger programs:

» Triggers that execute before the DML statement—For trigger programs that
execute before the triggering OLAP DML statement executes, you can define the
trigger program as a user-defined function that returns a BOOLEAN value. The value
returned by the program determines if Oracle OLAP executes the statement that
triggered the execution of the trigger program. When the program returns FALSE,
Oracle OLAP does not execute the triggering statement; when it returns TRUE or NA,
the triggering statement executes.

* Arguments passed to trigger programs—Oracle OLAP passes arguments to some
trigger programs. These programs are identified in Table 6-3. Descriptions of
these arguments are provided in Table 6-4. Use the ARGUMENT statement to

6-20

ORACLE

Chapter 6
Common Types of OLAP DML Programs

declare these arguments in your program. Use VARIABLE to define program
variables for the values. Use the WKSDATA function to retrieve the data type of an
argument with a WORKSHEET data type.

Assign trigger programs—Oracle OLAP executes a program triggered by an
Assign event each time it assigns a value to the object for which the event was
defined. Thus, a program triggered by an Assign event is often executed over and
over again as the assignment statements loops through an object assigning
values. With each execution, the value to be assigned is passed as argumentl to
the Assign trigger program. (See Table 6-4 for more information and

Example 10-163 for an example.) Within the Assign trigger program, you can use
a TRIGGER ASSIGN statement to assign a different value than that specified by
the assignment statement that triggered the execution of the Assign trigger
program.

You can only assign values to a formula when the formula has an Assign trigger
defined for it. When you assign a value to a formula with an Assign event, Oracle
OLAP executes the trigger program for the event for assigned value and passes
the assigned value to the trigger program. The Assign trigger does not change the
definition of the formula itself. See Example 10-165 for an example of an Assign
trigger on a formula.

Maintain trigger programs and dimension status —In some cases, Oracle OLAP
changes the status of the dimension being maintained when a Maintain event
triggers the execution of a program. See Table 6-5 for details.

Maintain triggers and dimension surrogates—Maintain triggers for dimension
surrogates are different than Maintain triggers for other objects. You can only
successfully issue a MAINTAIN statement against a dimension surrogate, when
the dimension surrogate has a Maintain trigger. Issuing a MAINTAIN statement for
a surrogate dimension that does not have a Maintain trigger, returns an error.
Also, for Maintain Add and Maintain Merge triggers, whether or not an argument is
passed to the program depends on the object on which the trigger is defined:

— For dimension surrogates with a Maintain trigger, Oracle OLAP executes the
trigger program one time for each value added or merged and passes that
value into the program.

— For other objects with a Maintain trigger, Oracle OLAP executes the trigger
program only once after the MAINTAIN statement executes and no values are
passed into the program

Table 6-3 Object Trigger Program Characteristics

Triggering Statement (event) Program Name Return Passed
Values Arguments

= (assignment) statement (SET) No required hame No Yes
DEFINE TRIGGER_DEFINE No No
MAINTAIN ADD No required name No No
MAINTAIN DELETE (not ALL) No required name Yes No
MAINTAIN DELETE ALL No required name Yes No
MAINTAIN MERGE No required name No No
MAINTAIN MOVE No required name Yes Yes
MAINTAIN RENAME No required name Yes Yes

6-21

ORACLE

Chapter 6
Common Types of OLAP DML Programs

Table 6-3 (Cont.) Object Trigger Program Characteristics

__|
Triggering Statement (event) Program Name

Return Passed
Values Arguments

PROPERTY

UPDATE (Update AW)
UPDATE (Update AW)

No required name Yes Yes

TRIGGER_AFTER_UPDATE No No

TRIGGER_BEFORE_UPDATE Yes No
UPDATE (Update Multi) No required name No No

Table 6-4 Arguments Passed to Trigger Programs

Event Argumentl Argument2
Property When the PROPERTY statement is When the value of argument1 is
assigning a property to an object, the DELETE, the name of the property or
name of the property. When the the literal ALL. In all other cases, the
PROPERTY statement is deleting one or name of the property. (WORKSHEET
more properties, the literal DELETE. data type)
(TEXT data type)
Assignment The value to assign. When you know the ~ None. Oracle OLAP passes only
data type of the object to which the value one argument to the program.
is assigned, specify that data type for the
argument. When you do not know the
actual data type, specify WORKSHEET as the
data type of the argument.
Maintain (Dimension surrogates only) The
Add value added. (WORKSHEET data
type)
Maintain The dimension value to rename. (TEXT The new name of the dimension
Rename data type) member. (WORKSHEET data type)
Maintain (Dimension surrogates only) The
Merge value merged. (WORKSHEET data
type)
Maintain The position of the dimension value to The literal BEFORE or AFTER.
Move move. (TEXT data type) (WORKSHEET data type)

Table 6-5 How Programs Triggered by Maintain Events Effect Dimension

Status

Event Subevent

Dimension Status Before Program Execution

Maintain Add

Maintain Delete

Status set to dimension values just added.

Maintain Delete All Current status is not changed.

Maintain Merge

Maintain Move

Maintain Rename Current status is not changed.

Status set to dimension values about to be deleted.

Status set to dimension values just merged.

Status set to dimension values about to be moved.

6-22

Chapter 6
Common Types of OLAP DML Programs

Aggregation, Allocation, and Modeling Programs

To aggregate, allocate, or model data using the OLAP DML, you first specify the
calculation that you want performed by defining a calculation specification as outlined
in "Creating Calculation Objects". Later, to populate variables with aggregated,
allocated or modeled values as a database maintenance procedure, write a program
to execute the calculation object. For more information on the OLAP DML statements
that you use in these programs, see "Running a Model", "Executing the Aggregation”,
and "Allocating Data".

Forecasting Programs

The OLAP DML has several related statements that allow you to forecast data using
the Geneva Forecasting engine which is a statistical forecasting engine from Roadmap
Technologies that is used extensively in demand planning applications.

To forecast using the Geneva Forecasting engine, take the following steps:
1. Add the future time values to the time dimension.
2. Create a variable to hold the results of the forecast.

3. Write a forecasting program. Within the program, issue the following statements in
the order indicated:

a. FCOPEN function -- Creates a forecasting context.
b. FCSET command -- Specifies the forecast characteristics.

c. FCEXEC command -- Executes a forecast and populates Oracle OLAP
variables with forecasting data.

d. FCQUERY function -- Retrieves information about the characteristics of a
forecast or a trial of a forecast.

e. FCCLOSE command -- Closes a forecasting context.

For examples of using these statements to forecast data see Example 9-119.

Programs to Export and Import Workspace Objects

ORACLE

You can export an entire workspace, several workspace objects, a single workspace
object, or a portion of an analytic workspace object to a specially formatted EIF file.
Then you can import the information into a different workspace within the same
schema or a different one.

One reason for exporting and importing is to move your data to a new location.
Another purpose is to remove extra space from your analytic workspace after you
have added and then deleted many objects or dimension values. To do this, issue an
EXPORT statement to put all the data in an EIF file, create another workspace with a
different name, and then use an IMPORT statement to import the EIF file into the new
workspace. When you have imported into the same database, you can delete the old
workspace and refer to the new one with the same workspace alias that you used for
the original one.

The following statement copies all the data and definitions from the current analytic
workspace to an EIF file called reorg.eif in a directory object called mydir.

6-23

Chapter 6
User-Written Programs Looked For by Oracle OLAP

EXPORT ALL TO EIF FILE "mydir/reorg.eif"

User-Written Programs Looked For by Oracle OLAP

AUTOGO

ORACLE

Oracle OLAP looks for the Oracle OLAP programs with the following names and
executes them as explained in the topic for each program.

AUTOGO

ONATTACH

ONDETACH

PERMIT_READ
PERMIT_WRITE
TRIGGER_AFTER_UPDATE
TRIGGER_AW
TRIGGER_BEFORE_UPDATE
TRIGGER_DEFINE

An AUTOGO program is a program that you can create and that Oracle OLAP checks
for by name when an AW ATTACH command executes.

When you attach an analytic workspace that contains a program named AUTOGO,
unless the AW ATTACH statement includes an NOAUTOGO clause or an AUTOGO
clause that specifies a program with a different name, Oracle OLAP executes the
ONATTACH program.

< Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the Autogo program has thrown an exception.

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name AUTOGO use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

6-24

Chapter 6
User-Written Programs Looked For by Oracle OLAP

AUTOGO (password)

Parameters

See AW ATTACH for explanation of password.

Examples

For examples of how attachment programs behave, see Example 9-50.

ONATTACH

ORACLE

An ONATTACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH command executes.

When you attach an analytic workspace that contains a program named ONATTACH,
unless the AW ATTACH statement includes an NOONATTACH clause or an
ONATTACH clause that specifies a program with a different name, Oracle OLAP
executes the ONATTACH program.

Depending on the statements in the onattach program, the user is granted or denied
access to specific objects or sets of object values. For multiwriter attachment, you can
use ACQUIRE commands to provide access to individual workspace objects. For
read-only and read/write attachment, you can use PERMIT commands that grant or
restrict access to individual workspace objects. All of the objects referred to in a given
onattach program must exist in the same analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the onattach program has thrown an exception.

" Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name ONATTACH use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

ONATTACH ({READ|WRITE|JEXCLUSIVE|MULTI} password)

6-25

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Parameters

See AW ATTACH for explanations of the attachment modes (that is, READ, WRITE,
EXCLUSIVE, and MULTI) and password.

Usage Notes
ONATTACH Programs Created by the OLAP API

When an analytic workspace is created as an OLAP cube using the OLAP API, the
OLAP API may also create a program named ONATTACH. You can not modify an
ONATTACH program that is automatically created in this way. Additionally, overriding
the execution of this ONATTACH is not recommended.

Consequently, when this type of ONATTACH program exists in an analytic workspace,
create a different type of startup program to specify behavior that you want performed
when that analytic workspace is attached.

Examples

For examples of how attachment programs behave, see Example 9-50.

ONDETACH

ORACLE

An ONDETACH program is a program that you can create and that Oracle OLAP
checks for by name when an AW DETACH command executes. Depending on the
value returned by the program, Oracle OLAP executes the code within the program
immediately after detaching the analytic workspace.

¢ Note:

Oracle OLAP checks for other programs when a user attaches an analytic
workspace. See "Startup Programs" for more information.

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully detached the analytic workspace; or FALSE
when it has not or when the detach program has thrown an exception.

Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name ONDETACH use the syntax shown in DEFINE
PROGRAM.

6-26

Chapter 6
User-Written Programs Looked For by Oracle OLAP

PERMIT_READ

ORACLE

A PERMIT_READ program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read-only command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_read program the user is granted or denied access to specific objects or sets of
object values. Within permit_read program, you can specify PERMIT commands that
grant or restrict access to individual workspace objects. All of the objects referred to in
a given permit_read must exist in the same analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

¢ See Also:

PERMITERROR option, PERMITREADERROR option, and PERMIT_WRITE
program

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_read program has thrown an exception

¢ Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name PERMIT_READ use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_READ (password)

Parameters

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument
to the program for processing.

6-27

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Examples

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 9-50.

PERMIT_WRITE

ORACLE

A PERMIT_WRITE program is a program that you can create and that Oracle OLAP
checks for by name when an AW ATTACH read/write command executes. Depending
on the value returned by the program, Oracle OLAP executes the code within the
program after attaching the analytic workspace. Depending on the statements in the
permit_write program, the user is granted or denied access to specific objects or sets
of object values. Within permit_write program, you can specify PERMIT commands
that grant or restrict access to individual workspace object. All of the objects referred
to in a given permit_write program must exist in the same analytic workspace.

¢ Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

¢ See Also:

PERMITERROR option, PERMITREADERROR option, and PERMIT_READ
program

Return Value
BOOLEAN

TRUE when Oracle OLAP has successfully set up and attached the analytic workspace;
or FALSE when it has not or when the permit_write program has thrown an exception

¢ Note:

You are encouraged to use the normal return values rather than relying on
exceptions to create a return value of FALSE.

Syntax

To define a program with the name PERMIT_WRITE use the syntax shown in DEFINE
PROGRAM. Code the actual program as a user-defined function with the following
argument.

PERMIT_WRITE (password)

6-28

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Parameters

See AW ATTACH for an explanation of password. When a user specifies a password
when attaching the analytic workspace, then the password is passed as an argument
to the program for processing.

Examples

To see the order in which permission programs are executed when an analytic
workspace is attached, see Example 9-50.

TRIGGER_AFTER_UPDATE

ORACLE

A TRIGGER_AFTER_UPDATE program is a program that you can create in an
analytic workspace and that Oracle OLAP checks for by name when an UPDATE
command for that analytic workspace executes. When the program exists in the same
analytic workspace that you are updating, Oracle OLAP executes the program after
executing the UPDATE.

" Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_AFTER_UPDATE program to execute

Note:

"Trigger Programs".

Syntax
To create a program with the name TRIGGER_AFTER_UPDATE, follow the guidelines
presented in "Trigger Programs".

Examples
Example 6-1 TRIGGER_AFTER_UPDATE Program
Assume you have defined the following program in your analytic workspace.

DEFINE TRIGGER_AFTER_UPDATE PROGRAM

PROGRAM

SHOW JOINCHARS ("calltype = * CALLTYPE)

SHOW JOINCHARS ("triggering event = " TRIGGER(EVENT))

SHOW JOINCHARS ("triggering subevent = * TRIGGER(SUBEVENT))
END

When you issue an UPDATE statement the program executes and displays the
following output.

6-29

Chapter 6
User-Written Programs Looked For by Oracle OLAP

calltype = TRIGGER
triggering event = AFTER_UPDATE
triggering subevent = AW

TRIGGER_AW

ORACLE

A TRIGGER_AW program is a program that you can create in one analytic workspace
and that Oracle OLAP checks for by name when that analytic workspace is current
and you create, attach, detach, or delete any other analytic workspace.

Note:

Oracle OLAP checks for this program and other programs when a user
attaches an analytic workspace. See "Startup Programs" for more information.

¢ See Also:

"Trigger Programs"

Return Value

None.

Syntax

To create a program with the name TRIGGER_AW, follow the guidelines presented in"How
to Create a TRIGGER_AW Program".

Usage Notes

How to Create a TRIGGER_AW Program

You create a TRIGGER_AW program by following the following procedure:
1. Define the program as described in DEFINE PROGRAM.

2. Name the program TRIGGER_AW.

3. Code the actual program as described in "Specifying Program Contents".

Note:

There is no support for recursive triggers. You must set the
USETRIGGERS option to NO before you issue an AW statement within an
TRIGGER_AW program

6-30

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Examples
Example 6-2 A TRIGGER_AW Program

Assume that you have defined a program with the following definition in an analytic
workspace named my_aw.

DEFINE TRIGGER_AW PROGRAM
PROGRAM

SHOW CALLTYPE

SHOW TRIGGER(EVENT)

SHOW TRIGGER(SUBEVENT)
SHOW TRIGGER(NAME)

END

When attach the my_aw workspace, the specified values are displayed.

AW ATTACH MY_AW

TRIGGER
AW
ATTACH
MY _AW

TRIGGER_BEFORE_UPDATE

ORACLE

A TRIGGER_BEFORE_UPDATE program is a program that you can create and that
Oracle OLAP checks for by name when an UPDATE command executes. When the
program exists in the same analytic workspace that you are updating, Oracle OLAP

executes the program and then, depending on the value returned by the program (if

any), either does nor does not update the workspace.

" Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_BEFORE_UPDATE program to execute

Note:

"Trigger Programs"

Return Value

You can write the program as a function that returns a BOOLEAN value. In this case,
when the program returns FALSE, Oracle OLAP does not execute the UPDATE
statement that triggered the execution of the TRIGGER_BEFORE_UPDATE program;
when the program returns TRUE or NA, the UPDATE statement executes.

Syntax

To create a program with the name TRIGGER_UPDATE, follow the guidelines presented in
"Trigger Programs".

6-31

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Examples
Example 6-3 TRIGGER_BEFORE_UPDATE Program

Assume that an analytic workspace named myaw has an
TRIGGER_BEFORE_UPDATE program with the following definition.

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN

PROGRAM

SHOW JOINCHARS ("calltype = * CALLTYPE)

SHOW JOINCHARS ("triggering event = " TRIGGER(EVENT))

SHOW JOINCHARS ("triggering subevent = * TRIGGER(SUBEVENT))
RETURN TRUE

END

Assume that you define a TEXT variable named myvar and, then, issue an UPDATE
statement. The TRIGGER_BEFORE_UPDSATE program executes.

calltype = TRIGGER
triggering event = BEFORE_UPDATE
triggering subevent = AW

Because the program returned TRUE, the definition for myvar exists after you detach
and reattach the workspace.

AW DETACH myaw
AW ATTACH myaw
DESCRIBE

DEFINE TRIGGER_BEFORE_UPDATE PROGRAM BOOLEAN

PROGRAM

SHOW JOINCHARS ("calltype = * CALLTYPE)

SHOW JOINCHARS ("triggering event = " TRIGGER(EVENT))

SHOW JOINCHARS ("triggering subevent = * TRIGGER(SUBEVENT))
RETURN TRUE

END

DEFINE MYVAR VARIABLE TEXT

However, if you modified the program so that it returned FALSE, then when you detach
and reattach the workspace, not only would the myvar definition not in the workspace,
the definition for the TRIGGER_BEFORE_UPDATE program would also not be in the
workspace.

TRIGGER_DEFINE

A TRIGGER_DEFINE program is a program that you create and that Oracle OLAP
checks for by name when a DEFINE command executes. When the program exists in
the same analytic workspace in which you are defining a new object, Oracle OLAP
executes the program.

ORACLE 6-32

ORACLE

Chapter 6
User-Written Programs Looked For by Oracle OLAP

Note:

The USETRIGGERS option must be set to its default value of TRUE for a
TRIGGER_DEFINE program to execute

Note:

"Trigger Programs"

Syntax

To create a program with the name TRIGGER_DEFINE, follow the guidelines presented in
"Trigger Programs".

Examples
Example 6-4 A TRIGGER_DEFINE Program

Assume that you have written a TRIGGER_DEFINE program with the following
description in your analytic workspace.

DEFINE TRIGGER_DEFINE PROGRAM

PROGRAM

SHOW JOINCHARS ("calltype = " CALLTYPE)

SHOW JOINCHARS (“triggering event = * TRIGGER(EVENT))

SHOW JOINCHARS ("fully qualified object name ="TRIGGER(NAME))
SHOW JOINCHARS ("type of object = "OBJ(TYPE TRIGGER(NAME))
DESCRIBE &TRIGGER(NAME)

END

Assume, as shown in the following statements, that you issue a DEFINE VARIABLE
statement to define a variable named myvar. As shown by the output following the
statement, Oracle OLAP defines the variable and executes the TRIGGER_DEFINE
program.

DEFINE myvar VARIABLE TEXT

calltype = TRIGGER

triggering event = DEFINE

fully qualified object name =MYAWIMYVAR
type of object = VARIABLE

DEFINE MYVAR VARIABLE TEXT

6-33

OLAP DML Functions: A - K

This chapter contains the following topics:
e About OLAP DML Functions

e Functions: Alphabetical Listing

e Functions by Category

e One topic for each of the OLAP DML functions that begins with the letters A - K,
beginning with ABS.

Reference topics for the remaining OLAP DML functions appear in alphabetical order
in OLAP DML Functions: L - Z.

For other OLAP DML reference topics, see OLAP DML Properties, OLAP DML
Options , OLAP DML Commands: A-G, and OLAP DML Commands: H-Z.

About OLAP DML Functions

OLAP functions work in much the same way as functions work in other programming
languages. They initiate action and return a value. The one exception is the looping
nature of OLAP DML functions as discussed in "OLAP DML Statements Apply to All of
the Values of a Data Object".

Most of the OLAP DML functions are standard text and calculation functions. Other
OLAP DML functions return more complex information. For example, the OLAP DML
provides the AW and OBJ functions that you can use to retrieve many different types
of information about an analytic workspace and its objects and the AGGREGATE
function that you can use to calculate aggregate data on-the-fly at user request.

Additionally, you can augment the functionality of the OLAP DML by writing an OLAP
DML program for use as a function.

Tip:

Many OLAP DML statements can be coded as a 3-character abbreviation that
consists of the first letter of the statement plus the next two consonants.

Functions: Alphabetical Listing

ORACLE

A

ABS
ADD_MONTHS
AGGCOUNT
AGGMAPINFO

7-1

ORACLE

AGGREGATE function
AGGREGATION
AGGROPS
ALLOCOPS
ANTILOG
ANTILOG10
ANY

ARCCOS
ARCSIN
ARCTAN
ARCTAN2

ARG
ARGCOUNT
ARGFR

ARGS

ASCII
ASCIISTR
AVERAGE

AW function

BACK
BASEDIM
BASEVAL
BEGINDATE
BIN_TO_NUM
BITAND
BLANKSTRIP

CALLTYPE
CHARTOROWID
CATEGORIZE

CEIL
CHANGEBYTES
CHANGECHARS
CHANGEDRELATIONS
CHANGEDVALUES
CHARLIST
CHGDIMS

CHR

COALESCE
COLVAL

CONTEXT function
CONVERT
CORRELATION
COSs

COSH

Chapter 7
Functions: Alphabetical Listing

7-2

Chapter 7
Functions: Alphabetical Listing

COUNT

CUMSUM
CURRENT_DATE
CURRENT_TIMESTAMP

DAYOF
DBTIMEZONE
DDOF
DECODE
DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD

ENDDATE
ENDOF
EVERY
EXISTS
EXP
EVERSION
EXTBYTES
EXTCHARS
EXTCOLS
EXTLINES
EXTRACT

FCOPEN
FCQUERY
FILEERROR
FILEGET
FILENEXT
FILEOPEN
FILEQUERY
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
FINTSCHED
FLOOR
FPMTSCHED
FROM_TZ

GET
GREATEST

ORACLE 7.3

ORACLE

GROUPINGID function
GROWRATE

HEXTORAW
HIERCHECK
HIERHEIGHT
HIERSHAPE

INFO
INITCAP
INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTAT
INSTR functions
INTPART
IRR
ISDATE
ISEMPTY
ISINFINITE
ISNAN
ISSESSION
ISVALUE

JOINBYTES
JOINCHARS
JOINCOLS
JOINLINES

KEY

LAG
LAGABSPCT
LAGDIF
LAGPCT
LARGEST
LAST_ DAY
LEAD

LEAST

LIMIT function
LIMITMAPINFO

Chapter 7
Functions: Alphabetical Listing

7-4

ORACLE

LNNVL
LOCALTIMESTAMP
LOG function
LOG10

LOWCASE

LOWER

LPAD

LTRIM

MAKEDATE

MAX

MAXBYTES
MAXCHARS
MEDIAN

MIN

MMOF

MODE

MODULO
MONTHS_BETWEEN
MOVINGAVERAGE
MOVINGMAX
MOVINGMIN
MOVINGTOTAL

NA2

NAFILL

NAFLAG
NEW_TIME
NEXT_DAY
NLS_CHARSET_ID

NLS_CHARSET_NAME

NLSSORT

NONE

NORMAL

NPV

NULLIF

NUMBYTES
NUMCHARS
NUMLINES
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVL

NVL2

OBJ

Chapter 7
Functions: Alphabetical Listing

7-5

ORACLE

OBJLIST
OBJORG
OBSCURE
ORA_HASH

PARTITION
PARTITIONCHECK
PERCENTAGE

QUAL

RANDOM

RANK
RAWTOHEX
RECNO
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REM
REMAINDER
REMBYTES
REMCHARS
REMCOLS
REMLINES
REPLACE
REPLBYTES
REPLCHARS
REPLCOLS
REPLLINES
RESERVED
ROUND

ROW function
ROWIDTOCHAR
ROWIDTONCHAR
RPAD

RTRIM
RUNTOTAL

SESSIONTIMEZONE
SIGN

SIN

SINH

SMALLEST

Chapter 7
Functions: Alphabetical Listing

7-6

ORACLE

SMOOTH
SORT function
SORTLINES
SOUNDEX
SQLFETCH
SQRT
STARTOF
STATALL
STATDEPTH
STATEQUAL
STATFIRST
STATLAST
STATLEN
STATLIST
STATMAX
STATMIN
STATRANK
STATVAL
STDDEV
SUBSTR functions
SUBTOTAL
SYS_CONTEXT
SYSDATE
SYSINFO
SYSTEM
SYSTIMESTAMP

TALLY

TAN

TANH
TCONVERT
TEXTFILL

TO_BINARY_DOUBLE
TO_BINARY_FLOAT

TO_CHAR
TO_DATE
TO_DSINTERVAL
TO_NCHAR
TO_NUMBER
TO_TIMESTAMP

TO_TIMESTAMP_TZ

TO_YMINTERVAL
TOD

TODAY

TOTAL
TRANSLATE
TRIGGER function
TRIM

Chapter 7
Functions: Alphabetical Listing

7-7

Chapter 7
Functions by Category

TRUNCATE
TZ OFFSET

UNIQUELINES
UNRAVEL
UPPER
UPPER

VALSPERPAGE
VALUES
VINTSCHED
VPMTSCHED
VSIZE

WEEKOF
WIDTH_BUCKET
WKSDATA
WRITABLE

YYOF

Functions by Category

ORACLE

The OLAP DML provides the typical numeric and text functions:

Conversion functions

Datetime functions

Date-only functions

Financial functions

File management functions

NA functions

Numeric (general) functions
Numeric aggregation functions
Program argument and context functions
Reporting functions

Statistical and forecasting functions
Text functions

It also has functions that are unique to its data model:

Analytic workspace and object information functions
Aggregation, allocation, and model specification functions
System and Database information functions

Time-series functions

Object value retrieval functions

7-8

ORACLE

Status manipulation functions

Analytic workspace and object information functions

AW function
CHANGEDRELATIONS
CHANGEDVALUES
BASEDIM

EXISTS

ISEMPTY
ISSESSION
ISVALUE
LIMITMAPINFO
OBJ

OBJLIST

OBJORG
PARTITION
RESERVED

TALLY

TRIGGER function
VALSPERPAGE
VSIZE

WRITABLE

Aggregation, allocation, and model specification functions

AGGCOUNT
AGGMAPINFO
AGGREGATE function
AGGREGATION
AGGROPS
ALLOCOPS
HIERCHECK

INFO
CHANGEDRELATIONS
CHANGEDVALUES
ISEMPTY
PARTITIONCHECK

Conversion functions

ASCII
ASCIISTR
BIN_TO_NUM

CHR

CONVERT

FROM_TZ
HEXTORAW
RAWTOHEX
TCONVERT
TO_BINARY_DOUBLE

Chapter 7
Functions by Category

7-9

Chapter 7
Functions by Category

TO_BINARY_FLOAT
TO_CHAR
TO_DATE
TO_NCHAR
TO_NUMBER
TO_TIMESTAMP
TO_TIMESTAMP_TZ

System and Database information functions

CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
LOCALTIMESTAMP
SESSIONTIMEZONE
SYS_CONTEXT
SYSDATE

SYSINFO

SYSTEM

Datetime functions

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT

FROM_TZ

LAST DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME

ROUND (datetime)
NEW_TIME
NUMTODSINTERVAL
NUMTOYMINTERVAL
SESSIONTIMEZONE
SYSDATE
SYSTIMESTAMP
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TOD

TRIM

TRUNCATE (datetime)
TZ_OFFSET

Date-only functions

BEGINDATE

ORACLE 7-10

ORACLE

DAYOF
DDOF
ENDDATE
ENDOF
ISDATE
MAKEDATE
MMOF
STARTOF
TODAY
WEEKOF
YYOF

Financial functions

DEPRDECL
DEPRDECLSW
DEPRSL
DEPRSOYD
FINTSCHED
FPMTSCHED
GROWRATE
IRR

NPV
VINTSCHED
VPMTSCHED

File management functions

FILEERROR
FILEGET
FILENEXT
FILEOPEN
FILEQUERY
GET
RECNO

NA functions

COALESCE
NA2
NAFILL
NAFLAG
NULLIF
NVL

NVL2

Numeric (general) functions

ABS
ANTILOG
ANTILOG10
ARCCOS

Chapter 7
Functions by Category

7-11

ORACLE

ARCSIN
ARCTAN
ARCTAN2
BIN_TO_NUM
BITAND
CEIL

COos

COSH
DECODE
EXP

FLOOR
GREATEST
INTPART
ISINFINITE
ISNAN
LEAST

LOG function
LOG10

MAX

MIN
MODULO
NULLIF
ORA_HASH
RANDOM
RANK

REM
REMAINDER
ROUND (number)
SIGN

SIN

SINH
SMOOTH
SORT function
SQRT

TAN

TANH
TRUNCATE (number)
VSIZE
WIDTH_BUCKET

Numeric aggregation functions

ANY
AVERAGE
COUNT
EVERY
LARGEST
MEDIAN
MODE
NONE

Chapter 7
Functions by Category

7-12

ORACLE

PERCENTAGE
SMALLEST
TCONVERT
TOTAL

Object value retrieval functions

BASEVAL
CHGDIMS
HIERHEIGHT
KEY

QUAL

ROW function
SORT function
UNRAVEL
VALUES
WKSDATA

Program argument and context functions

ARG

ARGCOUNT
ARGFR

ARGS

BACK

CALLTYPE
CONTEXT function

Reporting functions

COLVAL
RUNTOTAL
SUBTOTAL

Statistical and forecasting functions

CATEGORIZE
CORRELATION
FCOPEN
FCQUERY
INFO

NORMAL
ORA_HASH
RANDOM
STDDEV

Status manipulation functions

CHGDIMS
INSTAT
LIMIT function
STATALL
STATDEPTH

Chapter 7
Functions by Category

7-13

ORACLE

STATEQUAL
STATFIRST
STATLAST
STATLEN
STATLIST
STATMAX
STATMIN
STATRANK
STATVAL
VALUES

Text functions

ASCII
ASCIISTR
BLANKSTRIP
CHANGEBYTES
CHANGECHARS
CHARLIST
EXTBYTES
EXTCHARS
EXTCOLS
EXTLINES
FILTERLINES
FINDBYTES
FINDCHARS
FINDLINES
INITCAP

INLIST
INSBYTES
INSCHARS
INSCOLS
INSLINES
INSTR functions
JOINBYTES
JOINCHARS
JOINCOLS
JOINLINES
LEAST
LENGTH functions
LOWCASE
LOWER

LPAD

LTRIM
MAXBYTES
MAXCHARS

NLS_CHARSET_ID
NLS_CHARSET_NAME

NLSSORT
NULLIF

Chapter 7
Functions by Category

7-14

ABS

ORACLE

NUMBYTES
NUMCHARS
NUMLINES
OBSCURE
REGEXP_COUNT
REGEXP_INSTR
REGEXP_REPLACE
REGEXP_SUBSTR
REMBYTES
REMCHARS
REMCOLS
REMLINES
REPLACE
REPLBYTES
REPLCHARS
REPLCOLS
REPLLINES
RPAD

RTRIM

SORT function
SORTLINES
SOUNDEX
SUBSTR functions
TEXTFILL
TRANSLATE
TRIM
UNIQUELINES
UPPER

UPPER

VSIZE

Time-series functions

CUMSUM

LAG

LAGABSPCT
LAGDIF

LAGPCT

LEAD
MOVINGAVERAGE
MOVINGMAX
MOVINGMIN
MOVINGTOTAL

The ABS function calculates the absolute value of an expression. Because the
absolute value of a real number is its numeric value without regard to its sign, this
function always returns a positive value. For example, 3 is the absolute value of both 3
and -3.

Chapter 7
ABS

7-15

Chapter 7
ADD_MONTHS

Return Value
DECIMAL.

The dimensionality of the result is the same as the specified expression.

Syntax

ABS(expression)

Parameters

expression
The expression whose absolute value is to be calculated.

Examples
Example 7-1 Finding Values in an Absolute Range

Suppose you are interested in how close your planned 1996 sales figures for
sportswear in Boston were to the actual sales. You would like to see those months
where budgeted figures are off by more than $5,000 in either direction. You can use
ABS to help you find those months.

LIMIT product TO "Sportswear"

LIMIT district TO "Boston®

LIMIT month TO YEAR "Yr96"

LIMIT month KEEP ABS(sales - sales.plan) GT 5000
REPORT DOWN month sales sales.plan sales - sales._plan

These statements produce the following output.

DISTRICT: BOSTON

———————————— PRODUCT-------------
——————————— SPORTSWEAR--------—--
SALES -
MONTH SALES SALES.PLAN SALES.PLAN
Jun96 79,630.20 73,568.52 6,061.68
Jul96 95,707.30 80,744.18 14,963.12
Aug96 82,004.00 71,811.45 10,192.55
Sep96 89,988.60 78,282.07 11,706.53
Dec96 50,281.40 56,720.87 -6,439.47

ADD_MONTHS

ORACLE

The ADD_MONTHS function returns the date that is n months after the specified date.

Return Value

DATETIME

Syntax
ADD_MONTHS(start_datetime, n)

7-16

Chapter 7
AGGCOUNT

Parameters

start_datetime

A DATETIME expression that identifies the starting date. When the day component of
start_datetime is the last day of the month or when the returned month has fewer
days, then the returned day component is the last day of the month. Otherwise, the
day component of the returned date is the same as the day component of
start_datetime. See Example 7-2.

n
An INTEGER that identifies the number of months to be added to st art _dat eti nme.

Examples
Example 7-2 End-of-Month Calculation

The following statement displays the date of the day that is one month after January
30, 2000.

SHOW ADD_MONTHS("30Jan00", 1)

Because February 29 was the last day of February 2000, ADD_MONTHS returns
February 29, 2000.

29-Feb-00

AGGCOUNT

The AGGCOUNT function retrieves the values of the Aggcount variable associated
with the specified variable. An Aggcount variable is an INTEGER variable that Oracle
OLAP automatically creates when it executes a DEFINE VARIABLE statement that
includes a USING AGGOUNT phrase.

" See Also:

"Aggcount Variables"

Return Value
INTEGER

The values of the Aggcount variable that are the non-NA counts of the number of leaf
nodes that contribute to the calculation of aggregate values when RELATION (for
aggregation) statements that have an AVERAGE, HAVERAGE, WAVERAGE, or
HWAVERAGE execute.

Syntax
AGGCOUNT (variable-name)

ORACLE 7-17

ORACLE

Chapter 7
AGGCOUNT

Parameters

variable-name
The name of the variable with which the Aggcount variable is associated.

Examples
Example 7-3 Reporting on an Aggcount Variable

Assume that within your analytic workspace you have objects with the following
definitions.

DEFINE geog DIMENSION TEXT
DEFINE time DIMENSION TEXT
DEFINE product DIMENSION TEXT
DEFINE cc_geog_product COMPOSITE <geog product> COMPRESSED
DEFINE sales VARIABLE DECIMAL <time cc_geog_product <geog product>> WITH AGGCOUNT
DEFINE geog_parentrel RELATION geog <geog>
DEFINE product_parentrel RELATION product <product>
DEFINE time_parentrel RELATION time <time>
DEFINE aggsales AGGMAP
AGGMAP
RELATION time_parentrel OPERATOR AVERAGE ARGS COUNT YES
RELATION geog_parentrel
RELATION product_parentrel
END

Notice that the definition for the sales variable includes a request for an Aggcount
variable and that, within the aggsales aggmap, the RELATION statement for the
time_parentrel relation incudes an AVERAGE operator.

Assume also that when only the base values of the sales variable are populated, sales
has the following values for Radios and TVs.

REPORT sales

PRODUCT: Radio

————————————— SALES-------———--—-

—————————————— TIME----—=--——-——
GEOG 2004 2005 Average
Maine 122.93 176.69 NA
California 168.32 150.92 NA
Quebec NA NA NA
Ontario 187.46 164.46 NA
USA NA NA NA
Canada NA NA NA
World NA NA NA
PRODUCT: TV

————————————— SALES-------———--—-

—————————————— TIME---——=--———-—
GEOG 2004 2005 Average
Maine 184.75 135.40 NA
California 139.89 145.71 NA
Quebec NA NA NA
Ontario 123.63 113.32 NA
USA NA NA NA

7-18

ORACLE

Canada
World

PRODUCT: AV

Maine
California
Quebec
Ontario
USA
Canada
World

Chapter 7
AGGCOUNT

Because no aggregation has occurred, for AV, Oracle OLAP has not yet populated the
Aggcount variable and the Aggcount variable for sales contains only NA values.

Now assume that you aggregate the sales variable by issuing the following statement.

AGGREGATE sales USING aggsales

A report of sales shows the following values.

REPORT sales

PRODUCT: Radio

Maine
California
Quebec
Ontario
USA
Canada
World

PRODUCT: TV

187.46
291.24
187.46
478.70

149.81
159.62

NA
175.96
309.42
175.96
485.38

Maine
California
Quebec
Ontario
USA
Canada
World

PRODUCT: AV

160.07
142.80

NA
118.47
302.87
118.47
421.35

Maine
California

309.88
302.42

7-19

Quebec

Ontario 311.
USA 615.
Canada 311.
World 926.

NA NA NA
09 277.78 294.43
88 608.71 612.30
09 277.78 294.43
97 886.49 906.73

Chapter 7
AGGMAPINFO

A report of the Aggcount variable shows that it is populated with the INTEGER values

that are needed to aggregate the average sales.

REPORT AGGCOUNT (sales)

PRODUCT: Radio

Maine
California
Quebec
Ontario
USA
Canada
World

PRODUCT: TV

Maine
California
Quebec
Ontario
USA
Canada
World

PRODUCT: AV

Maine
California
Quebec
Ontario
USA
Canada
World

AGGMAPINFO

The AGGMAPINFO function returns information about the specification of an aggmap
object in your analytic workspace.

ORACLE

2005 Average
NA NA 2
NA NA 2
NA NA NA
NA NA 2
2 2 4
NA NA 2
3 3 6

2005 Average
NA NA 2
NA NA 2
NA NA NA
NA NA 2
2 2 4
NA NA 2
3 3 6

You can get information about an aggregation specification (that is, an aggmap object
with a map type of AGGMAP) only after it has been compiled. You can compile an
aggregation specification using a COMPILE statement or by including the FUNCDATA
keyword when you execute the AGGREGATE command. When an aggregation
specification has not been compiled before you use it with the AGGMAPINFO function,

7-20

Chapter 7
AGGMAPINFO

then it is compiled by AGGMAPINFO. You do not have to compile an aggmap for use
with ALLOCATE.

Return Value

Varies depending on the type of information that is requested. See the following table
for more information.

Syntax
AGGMAPINFO (name {choice | {choice-at-position rel-pos} })
Parameters

name
The name of the aggmap object.

choice
Specifies the type of information returned. See the following table for details.

Table 7-1 Keywords for the choice Parameter of the AGGMAPINFO function

__|
Keyword Data Type Description

ADDED_MODELS TEXT The models that are currently added to an aggmap using
AGGMAP ADD or REMOVE model statements.The
names of the models are returned as a multi-line text
string.

AGGINDEX BOOLEAN Indicates the setting for the AGGINDEX statement in the
aggmap. A YES setting specifies that all possible indexes
(composite tuples) are created whenever the aggmap is
recompiled. (Applies to AGGMAP type aggmaps only.)

CHILDREN member- TEXT The dimension members used in the right-hand side of

name equations used to calculate temporary calculated
members added using MAINTAIN ADD SESSION
statements. The names of the members are returned as
a multi-line text string.

CUSTOMMEMBERS TEXT The members added using MAINTAIN ADD SESSION
statements. The names of the members are returned as
a multi-line text string.

DIMENSION TEXT The names of the dimensions of the models or relations
used by the aggmap. The names of the members are
returned as a multi-line text string.

FCACHE BOOLEAN Indicates whether Oracle OLAP has a cache for the
AGGREGATE function. (Applies to AGGMAP type
aggmaps only.)

ORACLE 7-21

ORACLE

Chapter 7
AGGMAPINFO

Table 7-1 (Cont.) Keywords for the choice Parameter of the AGGMAPINFO
function

__|
Keyword Data Type Description

MAPTYPE TEXT The type of the aggmap.

* Returns AGGMAP for an aggregation specification
(that is, when the specification has been entered
with an AGGMAP statement). You can use this type
of aggmap only with the AGGREGATE command or
AGGREGATE function.

* Returns ALLOCMAP for an allocation specification
(that is, when the specification has been entered
with an ALLOCMAP statement). You can use this
type of aggmap only with ALLOCATE.

e Returns NA when the aggmap has been defined but
a specification has not been entered with an
AGGMAP or ALLOCMAP statement.

MODELS TEXT The models in the aggmap. The names of the models
are returned as a multi-line text string.

NUMRELS INTEGER The total number of RELATION statements in an
aggmap specification.

RELATIONS TEXT The name of relation that is specified by a RELATION

statement in the aggmap specification. Each statement
is displayed on a separate line.

STORE BOOLEAN Indicates whether the CACHE statement in the aggmap
is set to STORE. A YES setting specifies that the data
that is calculated on the fly is stored in the cache.
(Applies to AGGMAP-type aggmaps only.)

VARIABLES TEXT The variables for which this aggmap object has been
specified as the default aggmap using AGGMAP ADD or
REMOVE model statements or the SAGGMAP property.
The names of the variables are returned as a multi-line
text string.

choice-at-position

Specifies exactly which piece of information you want returned.

PRECOMPUTE returns the text of the limit clause that follows the PRECOMPUTE
keyword in a RELATION statement. You must use the rel-pos argument to specify a
single RELATION statement. Returns NA when the RELATION statement does not
have a PRECOMPUTE keyword. (Applies to AGGMAP type aggmaps only.)
RELATION returns the name of the relation that follows the RELATION statement that
you specify with the rel-pos argument.

STATUS returns the status list that results from the compilation of the PRECOMPUTE
clause in the RELATION statement that you specify with the rel-pos argument.
(Applies to AGGMAP type aggmaps only.)

rel-pos

An INTEGER that specifies a RELATION statement in the aggmap. The INTEGER
indicates the position of the statement in the list of RELATION statements. You can
use the rel-pos argument only with the RELATION, PRECOMPUTE, or STATUS
keywords. For example, to get information about the first RELATION statement in an
aggmap, use an INTEGER with a value of 1 as the rel-pos argument. To get information

7-22

ORACLE

Chapter 7
AGGMAPINFO

about the fourth RELATION statement in an aggmap, use the INTEGER 4, and so on.

You may use any INTEGER between 1 and the total number of RELATION statements
in an aggmap specification. You can use the NUMRELS keyword to obtain the total

number of RELATION statements for an aggmap object.

Examples
Example 7-4 Retrieving Information About an Aggmap Object
Suppose an aggmap named sales.agg has been defined with the following statement.

DEFINE sales.agg AGGMAP <time, product, geography>

Suppose the following specification has been added to sales.agg with an AGGMAP
statement.

AGGMAP

RELATION time.r PRECOMPUTE (time ne "Year98")
RELATION product.r

RELATION geography.r

CACHE STORE

END

Once a specification has been added to the aggmap, you can use AGGMAPINFO to
get information about its specification.

To see the names of the hierarchies that are specified by the RELATION statements,
use the following statement.

SHOW AGGMAPINFO(sales.agg RELATIONS)

The following results are displayed.

time.r
product.r
geography.r

The following statement and result tell you how many RELATION statements are in

the aggmap object.

SHOW AGGMAPINFO(sales.agg NUMRELS)
3

The following statement and result verifies that data that is calculated on the fly is
stored in the cache for the session. The result is YES because the aggmap contains a
CACHE STORE statement.

show AGGMAPINFO(sales.agg STORE)
YES

The following statement displays the relation name that is specified in the second
RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg RELATION 2)
product.r

The following statement displays the limit clause that follows the PRECOMPUTE
keyword in the first RELATION statement in the aggmap.

SHOW AGGMAPINFO(sales.agg PRECOMPUTE 1)
time NE "YEAR98"

7-23

Chapter 7
AGGREGATE function

Suppose the time dimension values are Jan98 to Dec99, Year98, and Year99. The
following statement displays the status list for the dimension in the first RELATION
statement in the aggmap.

SHOW AGGMAPINFO(sales.agg STATUS 1)
Jan98 TO Dec99, Year99

Because the limit clause in the RELATION statement specifies that the time dimension
values should not equal Year98, all time dimension values other than Year98 are
included in its status.

The following statement displays the aggmap type of sales.agg.

SHOW AGGMAPINFO(sales.agg MAPTYPE)
AGGMAP

AGGREGATE function

ORACLE

The AGGREGATE function calculates the data in the variable that is not specified as
PRECOMPUTE in the specified aggmap. (For information about specifying
precompute data, see PRECOMPUTE statement and the PRECOMPUTE clause of
the RELATION (for aggregation) statement.) The aggregation is limited to those values
that are currently in status.

¢ See Also:
AGGREGATE command

Note:

When the variable you want to aggregate has an $AGGMAP property, you do
not have to use the AGGREGATE function to aggregate the data that has not
been precomputed.

Return Value
The same data type as the aggregated variable.

Syntax

AGGREGATE (var ... [USING aggmap] - [FROM fromspec|FROMVAR
textvar] [FORCECALC FORCEORDER] [COUNTVAR countvar])

Parameters

var
The name of the variable whose data is calculated (if necessary) and returned.

USING
This keyword indicates that the aggregation is performed using the specified aggmap.

7-24

ORACLE

Chapter 7
AGGREGATE function

aggmap
The name of a previously-defined aggmap that specifies how the data is aggregated.
For information about aggmaps, see DEFINE AGGMAP.

FROM

This keyword indicates that the detail data is obtained from a different object. A
FROM clause is only one way in which you can specify the variable from which detalil
data should be obtained when performing aggregation. See "Ways of Specifying
Where to Obtain Detail Data for Aggregation”.

fromspec
An arbitrarily dimensioned variable, formula, or relation from which the detail data for
the aggregation is obtained.

FROMVAR

This keyword indicates that the detail data is obtained from different objects to
perform a capstone aggregation. A FROMVAR clause is only one way in which you
can specify the variable from which detail data should be obtained when performing
aggregation. See "Ways of Specifying Where to Obtain Detail Data for Aggregation”.

textvar
An arbitrarily dimensioned variable used to resolve any leaf nodes. Specify NA to
indicate that a node does not need detail data to calculate the value.

FORCECALC

Specifies that any value that is not specified in a PRECOMPUTE clause of a
RELATION statement that is in the aggmap should be recalculated, even when there
is a value stored in the desired cell. Use the FORCECALC keyword when you want
users to be able to change detail data cells and see the changed values reflected in
dynamically-computed aggregate cells.

Note:

You can also set an $AGGREGATE_FORCECALC property on a variable to
specify this behavior as the default aggregation behavior. In this case, you do
not have to include the FORCECALC keyword with the AGGREGATE function.

FORCEORDER

Specifies that the calculation must be performed in the order in which the RELATION
statements are listed in the aggmap. Use this option when you have changed some
values calculated by the AGGREGATE command. Otherwise, the optimization
methods used by the AGGREGATE function may cause the modified values to be
ignored. FORCEORDER slows performance.

Note:

You can also set an $AGGREGATE_FORCEORDER property on a variable to
specify this behavior as the default aggregation behavior. In this case, you do
not have to include the FORCEORDER keyword with the AGGREGATE
function.

7-25

ORACLE

Chapter 7
AGGREGATE function

COUNTVAR countvar

Indicates that Oracle OLAP should use the user-defined variable specified by
countvar to store the non-NA counts of the number of leaf nodes that contributed to
aggregate values calculated for RELATION (for aggregation) statements that have an
AVERAGE, HAVERAGE, HWAVERAGE, or WAVERAGE operator.

Note:

Typically, you do not use a user-defined Countvar variable to store the counts
for average aggregations. Instead, you use an Oracle OLAP-created Aggcount
variable. You must use an Aggcount variable when the aggregation
specification includes a RELATION (for aggregation) statement with an
average operator that is for a compressed composite.

For more information on Aggcount variables, see "Aggcount Variables".

The countvar variable must be an INTEGER variable with the same dimensions in the
same order as the dimensions of the variable specified by var. When you aggregate
several variables together, you must define an INTEGER variable for each one to record
the results.

Usage Notes
Steps for Supporting Run-Time Calculations
Follow these steps when combining pre-aggregation with run-time aggregation:

1. Create an aggmap that limits the amount of data to be precalculated.
2. Execute the AGGREGATE command with the FUNCDATA argument.

3. When you have made any changes after executing the AGGREGATE command
(see "Compiling the Aggmap"), recompile the aggmap with a COMPILE statement.

4. Add an $AGGREGATE_FROM property to the data variables (see "Using NA
Values to Trigger Run-Time Calculations").

5. UPDATE and COMMIT the analytic workspace.
Compiling the Aggmap

Be sure to compile the aggmap at the time you load data, either with an explicit
COMPILE statement or with the FUNCDATA argument to the AGGREGATE
command. Otherwise, the aggmap is recompiled at run time for each session in which
the AGGREGATE function is used. Perform other calculations (such as calculating
models) before you compile the aggmap.

You must recompile the aggmap after maintaining any of the dimensions in the
aggmap definition or any of the relations that are included in the text of the aggmap.

Run-Time Changes to Data Values

When users are able to change data values at run time, then the data may get out of
synchronization. You can prevent this problem in the following ways:

e Use an ALLOCATE statement to distribute the data in a new aggregate to the
contributing values lower in the hierarchy.

7-26

ORACLE

Chapter 7
AGGREGATE function

* Do not precalculate the data that is subject to run-time changes because the
stored aggregates cannot be altered to reflect changes made at run time to the
contributing values.

Using NA Values to Trigger Run-Time Calculations

By adding an $NATRIGGER property to a variable, you can implicitly call the
AGGREGATE function each time the data is queried. The following statements cause
sales data to be aggregated using the sales.aggmap aggmap.

CONSIDER sales
PROPERTY "$NATRIGGER" "AGGREGATE(sales USING sales.aggmap)”

From now on, a statement such as REPORT SALES executes the AGGREGATE function,
so that computed values are returned instead of NAs.

Using the AGGREGATE Function after Partial Rollups

When your batch window is not sufficiently long to preaggregate all of the data to
generate, you can perform the aggregation in stages on consecutive days and use the
AGGREGATE function to calculate the balance. For each stage, you must do the
following:

1. Change the PRECOMPUTE phrase of the RELATION statement in the aggmap so
that new data is aggregated.

2. Execute the AGGREGATE command with the FUNCDATA keyword.

3. Verify that the SNATRIGGER property is set on the variables so that the
AGGREGATE function calculates the balance of the data.

Using Multiple Aggmaps

Whenever possible, use only one aggmap to rollup a variable. However, in some
situations, a variable requires multiple aggmaps to roll up the data in the desired
manner. When a variable requires multiple aggmaps to rollup data problems are
created when some data is calculated on the fly, because the metadata retained for
the AGGREGATE function corresponds to the last aggmap. The AGGREGATE
function needs metadata that is the union of all of the aggmaps used by the
AGGREGATE command. The solution is to create an additional aggmap for use by the
AGGREGATE function that correctly identifies the NA values. Be sure to compile this

aggmap.

Do not use the AGGREGATE function with multiple aggmaps unless you feel
comfortable answering the following question:

When the aggmap is compiled for use by the AGGREGATE function, does the
status that results from each PRECOMPUTE clause accurately define the nodes
within that dimension at which data has been pre-computed?

When you cannot answer "yes" to this question with confidence, do not use the
AGGREGATE function with multiple aggmaps.

Examples

This section contains several examples of using the AGGREGATE function. For
additional aggregation examples, see the examples for the AGGMAP command.

7-27

ORACLE

Chapter 7
AGGREGATE function

Example 7-5 Using the AGGREGATE Function as the Formula of an
Expression

Example 9-32 illustrates performing the final capstone aggregation using an
AGGREGATE command. You could also perform the capstone aggregation at run
time as the expression of a formula.

Assume that your analytic workspace contains the following object definitions.

DEFINE GEOG.D DIMENSION TEXT

DEFINE GEOG.PARENTREL RELATION GEOG.D <GEOG.D>

DEFINE TIME.D DIMENSION TEXT

DEFINE TIME.PARENTREL RELATION TIME.D <TIME.D>

DEFINE SALES_JAN76 VARIABLE INTEGER <GEOG.D>

DEFINE SALES_FEB76 VARIABLE INTEGER <GEOG.D>

DEFINE SALES_MAR76 VARIABLE INTEGER <GEOG.D>

DEFINE SALES_CAPSTONE76 VARIABLE INTEGER <GEOG.D TIME.D>
DEFINE CAPSTONE_SOURCE VARIABLE TEXT <TIME.D>

Now you create two aggmap objects with the following definitions. Note that in this
case the capstone_aggmap consists of a RELATION statement with a PRECOMPUTE NA
clause.

DEFINE LEAF_AGGMAP AGGMAP

AGGMAP

RELATION geog.parentrel OPERATOR SUM
END

DEFINE CAPSTONE_AGGMAP AGGMAP

AGGMAP

RELATION time.parentrel OPERATOR SUM PRECOMPUTE (NA)
END

In Example 9-32, the final capstone aggregation is performed using an AGGREGATE
command. In this example, the capstone aggregation is defined as a formula named
T _sales_capstone76 that has an AGGREGATE function as the expression of the
formula.

DEFINE F_SALES_CAPSTONE76 FORMULA INTEGER <GEOG.D TIME.D>
EQ AGGREGATE (sales_capstone76 USING capstone_aggmap fromvar capstone_source)

When you report on the unaggregated variables and formulas in your analytic
workspace, you see the following results.

GEOG.D SALES_JAN76 SALES_FEB76 SALES_MAR76

Boston 1,000 2,000 3,000
Medford 2,000 4,000 6,000
San Diego 3,000 6,000 9,000
Sunnydale 4,000 8,000 12,000
Massachusetts NA NA NA
California NA NA NA
United States NA NA NA

-------------------------- TIME . Dmmmmmmmmmm oo
GE0G.D Jan76 Feb76 Mar76 76Q1

Boston 1,000 2,000 3,000 6,000
Medford 2,000 4,000 6,000 12,000

7-28

ORACLE

San Diego
Sunnydale
Massachusetts
California
United States

3,000
4,000

6,000
8,000
NA
NA
NA

9,000
12,000

Chapter 7

AGGREGATE function

18,000
24,000

Boston
Medford

San Diego
Sunnydale
Massachusetts
California
United States

Now you aggregate the leaf variables using the following AGGREGATE statement.

AGGREGATE sales_jan76 sales_feb76 sales_mar76 USING leaf_aggmap

A report of the leaf variables shows that they are aggregated.

Boston
Medford

San Diego
Sunnydale
Massachusetts
California
United States

SALES_JAN76

SALES_FEB76

SALES_MAR76

Boston
Medford

San Diego
Sunnydale
Massachusetts
California
United States

While a report of the sales_capstone76 variable does not show the aggregated values
for 76Q1 because they are not stored in the variable.

Boston
Medford

San Diego
Sunnydale
Massachusetts

7-29

ORACLE

Chapter 7

AGGREGATE function
California 7,000 14,000 21,000 NA
United States 10,000 20,000 30,000 NA

Example 7-6 Aggregating Data on the Fly for a Report

The units variable is aggregated entirely on the fly using the tp.agg aggmap.
This is the object definitions for the variable units.

DEFINE units VARIABLE INTEGER <time product>

The parent relation for time contains these values.

---TIME.PARENTREL----
--TIME.HIERARCHIES---

TIME STANDARD YTD
Jan01 Q1.01 Last.Ytd
Feb01 01.01 Last.Ytd
Mar01 Q1.01 Last.Ytd
Q1.01 2001 NA

The parent relation for the product dimension contains these values.

PRODUCT.PA
PRODUCT RENTREL
Food Na
Snacks Food
Drinks Food

Popcorn Snacks
Cookies Snacks

Cakes Snacks
Soda Drinks
Juice Drinks

In the units variable, data is stored only at the lowest level of each dimension
hierarchy.

——————————————————— UNITS-—————— == -

——————————————————— TIME-—-—=—=—= ===
PRODUCT Jan01 Feb01 Mar01 Q1.01
Food NA NA NA NA
Snacks NA NA NA NA
Drinks NA NA NA NA
Popcorn 2 2 4 NA
Cookies 3 6 3 NA
Cakes 4 4 2 NA
Soda 7 3 9 NA
Juice 1 3 2 NA

The aggmap specifies that all data is calculated on the fly.

DEFINE tp.agg AGGMAP

LD <time product> Aggmap

AGGMAP

RELATION time.parentrel PRECOMPUTE (NA)
RELATION product.parentrel PRECOMPUTE (NA)
END

7-30

ORACLE

Chapter 7
AGGREGATE function

The following REPORT statement uses the AGGREGATE function to calculate the
data.

REPORT aggregate(units USING tp.agg)

——————————————————— TIME-==—==———— oo
PRODUCT Jan01 Feb01 Mar01 01.01
Food 17 18 20 55
Snacks 9 12 9 30
Drinks 8 6 11 25
Popcorn 2 2 4 8
Cookies 3 6 3 12
Cakes 4 4 2 10
Soda 7 3 9 19
Juice 1 3 2 6

Example 7-7 Using SNATRIGGER to Aggregate Data

When the AGGREGATE function is added to units in the $SNATRIGGER property, a
simple REPORT statement displays aggregated results.

CONSIDER units
PROPERTY "$NATRIGGER™ "AGGREGATE(units USING tp.agg)”
REPORT units

——————————————————— UNITS-—==——— e

——————————————————— TIME-==—=————— o
PRODUCT Jan01 Feb01 Mar01 01.01
Food 17 18 20 55
Snacks 9 12 9 30

Example 7-8 Calculating all but one Value on the Fly

The AGGREGATE function calculates the complement of the data specified in the
PRECOMPUTE clause of the RELATION statement. It returns those values that are
currently in status.

For example, when you are using an aggmap that contains this RELATION statement.

RELATION letter.letter PRECOMPUTE ("AA™)

Then the AGGREGATE function calculates all aggregations except AA, as shown here.

REPORT AGGREGATE(units USING letter.aggmap)

AGGREGATE(UNITS
LETTER USING LETTER.AGGMAP)

AAB
ABA
ABB
AAAA
AABA
ABAA
ABBB

P EPNENENW>W

7-31

Chapter 7
AGGREGATION

ABBA 1

AGGREGATION

ORACLE

Within a model, the AGGREGATION function allows you to create a model that
represents a custom aggregate. Such an aggmap can be used for dynamic
aggregation with the AGGREGATE function.

" Note:

Because the AGGREGATION function is intended only for dynamic
aggregation, a model that contains such a function cannot be used with the
AGGREGATE command.

Syntax
AGGREGATION(dimval-list)

Parameters

dimval-list

A list of one or more dimension values to include in the custom aggregation. The
specified values must belong to the same dimension to which the target dimension
value belongs. You must specify each dimension value as a text literal. That is, they
cannot be represented by a text expression such as a variable.

Examples

Example 7-9 Using the AGGREGATION Function to Create a Custom
Aggregate

The following lines of code from a program perform these steps:

1. Add the new dimension value my_time to the time dimension.
MAINTAIN time ADD *My Time"

2. Define the model mytime_custagg and set the specification of the model using the
AGGREGATION function.

DEFINE mytime_custagg MODEL
MODEL JOINLINES("DIMENSION time" "My _Time = AGGREGATION(\"23\" \"24\")")

(Note that backslash escape characters are required to include quotation marks
within a quoted string.)

3. Define the sales_aggmap aggmap.

DEFINE sales_aggmap AGGMAP <time cpc <customer product channel> >
AGGMAP

RELATION prntrel.time

RELATION prntrel.chan

RELATION prntrel.prod

RELATION prntrel.cust

END

7-32

Chapter 7
AGGROPS

4. Add the model mytime_custagg to sales_aggmap.
AGGMAP ADD mytime_custagg TO sales_aggmap
5. Limit the dimensions to the values of interest and run a report.

" Run a report

LIMIT time TO “My_Time® "23" *24°

LIMIT channel TO *5°

LIMIT product TO *70*"

LIMIT customer TO "114°

REPORT DOWN time AGGREGATE(sales USING sales_aggmap)

The report generates the following output.

CHANNEL: 5
PRODUCT: 70
--AGGREGATE (SALES---
USING SALES_AGGMAP)-
------ CUSTOMER------
TIME 114
my_time 682,904.34
23 84,982.92
24 597,921.42

AGGROPS

The AGGROPS function returns the keywords for all of the aggregation operators that
you can specify in a RELATION (for aggregation) statement, listed one name on each
line in a multiline text value.

Return Value

TEXT

Syntax
AGGROPS

Example
Example 7-10 Displaying a List of the Aggregation Operators

When you issue an AGGROPS statement, Oracle OLAP returns a list of all of the
aggregation operators.

SHOW AGGROPS

SUM

WSUM
SSUM

AND

OR

FIRST
LAST
HFIRST
HLAST
AVERAGE
WAVERAGE
HAVERAGE

ORACLE 7-33

Chapter 7
ALLOCOPS

HWAVERAGE
MIN

MAX
WFIRST
WLAST
HWFIRST
HWLAST
WMIN
WMAX
NOAGG

ALLOCOPS

ANTILOG

ORACLE

The ALLOCOPS function returns the keywords for all of the allocation operators that
you can specify in a RELATION (for allocation) statement, listed one hame on each
line in a multiline text value.

Return Value

TEXT

Syntax
ALLOCOPS

Examples
Example 7-11 Displaying a List of the Allocation Operators

When you issue an ALLOCOPS statement, Oracle OLAP returns a list of all of the
allocation operators.

SHOW ALLOCOPS

FIRST
LAST
HFIRST
HLAST
MIN
MAX
EVEN
HEVEN
COPY
HCOPY
PROPORT IONAL

The ANTILOG function calculates the value of e (the base of natural logarithms) raised
to a specific power.

Return Value

DECIMAL

Syntax
ANTILOG(n)

7-34

Chapter 7
ANTILOG10

Parameters

n
The power of e to be returned by the ANTILOG function.

Examples
Example 7-12 Calculating the Value of e Raised to the Second Power
The following function calculates the value of e raised to the second power.

ANTILOG(2)

This function returns the following value.

7.38906

ANTILOG10

ANY

ORACLE

The ANTILOG10 function calculates the value of 10 raised to a specified power.

Return Value
DECIMAL
Syntax
ANTILOG10(n)
Parameters

n
The power of 10 to be returned by the ANTILOG10 function.

Examples

Example 7-13 Calculating the Value of Ten Raised to the Third Power
The following function calculates the value of 10 raised to the third power.
ANTILOG10(3)

This function returns the following value.

1,000.00

The ANY function returns YES when any values of a Boolean expression are TRUE, or NO
when none of the values of the expression are TRUE.

Return Value

BOOLEAN.

7-35

ORACLE

Chapter 7
ANY

Syntax

ANY (boolean-expression [CACHE] [dimension ...])
Parameters

boolean-expression
The Boolean expression to be evaluated

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension

The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.

By default, ANY returns a single YES or NO value. When you indicate one or more
dimensions for the result, ANY tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes
The Effect of NASKIP on ANY

ANY is affected by the NASKIP option. When NASKIP is set to YES (the default), ANY
ignores NA values and returns YES when any of the values of the expression that are not
NA are TRUE and returns NO when none of the values are TRUE. When NASKIP is set to
NO, ANY returns NA when any value of the expression is NA. When all the values of the
expression are NA, ANY returns NA for either setting of NASKIP.

Data with a Type of DAY, WEEK, MONTH, QUARTER, or YEAR

When boolean-expression is dimensioned by a dimension with a type of DAY, WEEK,
MONTH, QUARTER, or YEAR, you can specify any other dimension of this type as a
related dimension. Oracle OLAP uses the implicit relation between these dimensions.
To control the mapping of one of these dimension to another (for example, from weeks
to months), you can define an explicit relation between the dimensions and specify the
name of the relation as the dimension argument to the ANY function.

For each time period in the related dimension, Oracle OLAP tests the data values for
all the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods.

7-36

ARCCOS

ORACLE

Chapter 7
ARCCOS

Examples
Example 7-14 Testing for Any True Values by District

Suppose you want to find out which districts had at least one month with sales greater
than $150,000 for sportswear. You use the ANY function to determine whether the
Boolean expression (sales GT 150000) is TRUE for any month. To have the result
dimensioned by district, specify district as the second argument in the ANY
function.

LIMIT product TO "SPORTSWEAR®
REPORT HEADING "High Sales®™ ANY(sales GT 150000, district)

The preceding statements produce the following output.

DISTRICT High Sales
Boston NO
Atlanta YES
Chicago NO
Dallas YES
Denver NO
Seattle NO

Example 7-15 Testing for Any True Values by Region

You might also want to find out which regions had at least one month in which at least
one district had sportswear sales greater than $150,000. Because the region
dimension is related to the district dimension, you can specify region instead of
district as a dimension for the results of ANY.

report heading "High Sales® any(sales gt 150000, region)

The preceding statement produces the following output.

REGION High Sales
East YES
Central YES
west NO

The ARCCOS function calculates the angle value (in radians) of a specified cosine.

Return Value

NUMBER

Syntax
ARCCOS(expression)
Parameters

expression
An expression that contains the decimal value of a cosine.

7-37

ARCSIN

ARCTAN

ORACLE

Chapter 7
ARCSIN

Usage Notes
Invalid Cosine Values

When you provide an ineligible value for the cosine expression (that is, a value greater
than 1 or less than -1), ARCCOS returns a value of NA.

Examples

Example 7-16 Calculating the Arc of a Cosine

This example calculates the arc of a cosine that has a value of 0.54030. The statement
SHOW ARCCOS(.54030)

produces the following result.

1.00

The ARCSIN function calculates the angle value (in radians) of a specified sine.

Return Value

NUMBER

Syntax
ARCSIN(expression)
Parameters

expression
An expression that contains the decimal value of a sine.

Usage Notes
Invalid Sine Values

When you provide an ineligible value for the sine expression (that is, a value greater
than 1 or less than -1), ARCSIN returns a value of NA.

Examples
Example 7-17 Calculating the Arc of a Sine
This example calculates the arc of a sine that has a value of 0.84147. The statement

SHOW ARCSIN(.84147)

produces the following result.

1.00

The ARCTAN function calculates the angle value (in radians) of a specified tangent.

7-38

Chapter 7
ARCTAN2

To retrieve a full-range (0 - 2 pi) numeric value indicating the arc tangent of a given
ratio, use ARCTAN2.

Return Value

NUMBER

Syntax
ARCTAN(expression)
Parameters

expression
An expression that contains the decimal value of a tangent.

Examples
Example 7-18 Calculating the Arc of a Tangent
This example calculates the arc of a tangent that has a value of 1.56. The statement

SHOW ARCTAN(1.56)

produces the following result.

1.00

ARCTANZ2

ORACLE

The ARCTANZ2 function returns a full-range (0 - 2 pi) numeric value indicating the arc
tangent of a given ratio. The function returns values in the range of -pi to pi, depending
on the signs of the arguments. The values are expressed in radians.

To calculate the angle value (in radians) of a specified tangent that is not a ratio, use
ARCTAN.

Return Value
NUMBER
Syntax
ARCTANZ2 (n/ m)
Parameters

n
A numeric expression that specifies one component of the ratio. The argument n can
be in an unbounded range.

m
A numeric expression that specifies the other component of the ratio.

Examples
Example 7-19 Finding the Arc Tanget

The following example returns the arc tangent of.3 and.2.

7-39

ARG

ORACLE

Chapter 7
ARG

SHOW ARCTAN2(.3/.2)

.982793723

Within an OLAP DML program, the ARG function lets you reference arguments
passed to a program. The function returns one argument as a text value.

Note:

Typically users use an ARGUMENT statement to define arguments in a
program, thereby negating the need for using the ARG function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Argruments that Are Passed Into a Program" .

Return Value

TEXT

Syntax
ARG(n)

Parameters

n

The number by position of the argument whose value you want to reference. ARG(1)
returns the first argument to the program, ARG(2) returns the second argument, and so
forth. When the program is called with fewer than n arguments, ARG returns a null
value. ARG also returns a null value when n is zero or negative.

Examples
Example 7-20 Assighing Arguments

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any two periods of months, so you do not want to limit the month
dimension to any particular month in the program. Instead, you use ARG functions in
the LIMIT command so that the starting and ending months for the two periods can be
supplied as arguments when the program is run.

Notice the UPCASE function preceding the ARG functions. UPCASE allows the
arguments to be specified in upper- or lowercase, even though dimension values in
the analytic workspace are in uppercase. A prefixed & (ampersand) would have a
similar effect because it tells Oracle OLAP to substitute the values of ARG before the
LIMIT command is executed -- in this case, a value of the month dimension. However,
an & (ampersand) has the disadvantage of preventing compilation of program lines in
which it appears, and slower execution results.

DEFINE salesrpt PROGRAM
PROGRAM
PUSH month product district

7-40

Chapter 7
ARGCOUNT

TRAP ON cleanup

LIMIT month TO UPCASE(ARG(1)) TO UPCASE(ARG(2))
LIMIT product TO "CANOES*"

LIMIT district TO all

REPORT grandtotals DOWN district sales

LIMIT month TO UPCASE(ARG(3)) TO UPCASE(ARG(4))
REPORT grandtotals DOWN district sales

cleanup:

POP month product district

END

To run the program, you specify the program name (salesrpt) followed by two sets of
months to mark the beginning and the end of the two periods of sales to be reported.
Then, when the LIMIT MONTH statements are executed, Oracle OLAP passes the
months specified on the command line as return values for ARG(1), ARG(2), ARG(3), and
ARG(4) in the LIMIT commands.

salesrpt "Jan95" "Mar95" "Jan96" “Mar96"

This statement produces the following output.

PRODUCT: Canoes

------------ SALES--———m oo

———————————— MONTH---=====—————-
DISTRICT Jan95 Feb95 Mar95
Boston 66,013.92 76,083.84 91,748.16
Atlanta 49,462.88 54,209.74 67,764.20
Chicago 45,277.56 50,595.75 63,576.53
Dallas 33,292.32 37,471.29 43,970.59
Denver 45,467.80 51,737.01 58,437.11
Seattle 64,111.50 71,899.23 83,943.86

303,625.98 341,996.86 409,440.44

PRODUCT: Canoes

------------ SALES--——m—mmmmmm -

———————————— MONTH-----===——=———-
DISTRICT Jan96 Feb96 Mar96
Boston 70,489.44 82,237.68 97,622.28
Atlanta 56,271.40 61,828.33 77,217.62
Chicago 48,661.74 54,424.94 68,815.71
Dallas 35,244.72 40,218.43 46,810.68
Denver 44,456.41 50,623.19 57,013.01
Seattle 67,085.12 74,834.29 87,820.04

322,208.83 364,166.86 435,299.35

ARGCOUNT

ORACLE

Within an OLAP DML program, the ARGCOUNT function returns the number of
arguments that were specified when the current program was invoked.

Return Value

INTEGER

7-41

ARGFR

ORACLE

Chapter 7
ARGFR

Syntax
ARGCOUNT

Examples
Example 7-21 Checking the Number of Arguments

In the following example, the program, a user-defined function, verifies that three
arguments are passed. When the number of arguments passed is not equal to 3, the
program terminates with -1 as a return value.

DEFINE threearg PROGRAM INTEGER
LD User-defined function expecting three arguments
PROGRAM
ARGUMENT division TEXT
ARGUMENT product TEXT
ARGUMENT month MONTH
IF ARGCOUNT NE 3
THEN RETURN -1
ELSE
DO

Within an OLAP DML program, the ARGFR function lets you reference the arguments
that are passed to a program. The function returns a group of one or more arguments,
beginning with the specified argument number, as a single text value. You can use
ARGFR only within a program that is invoked as a command, not as a user-defined
function or with a CALL statement.

" Note:

Typically, users use an ARGUMENT statement to define arguments in a
program, thereby negating the need for using the ARGFR function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Arguments that Are Passed Into a Program” .

Return Value
TEXT

Syntax
ARGFR(n)
Parameters

n
The number by position of the first argument in the group of arguments you want to
reference. ARGFR(1) returns the first argument and all subsequent arguments, ARGFR(2)

7-42

ORACLE

Chapter 7
ARGFR

returns the second argument and all subsequent arguments, and so forth. When there
are fewer than n arguments, ARGFR returns a null value. ARGFR also returns a null
value when n is 0 (zero) or negative.

Examples
Example 7-22 Passing Arguments Using ARG and ARGFR

Suppose you have a program that produces a sales report. You want to be able to
produce this report for any product and any period of months, so you do not want to
limit the product and month dimensions to specific values in the program. Instead, you
can use the LIMIT command using ARG for the product argument and an ARGFR
function for the month argument. This way, these items can be specified when the
program is run.

When ARGFR is included in the LIMIT command preceded by an ampersand (&),
Oracle OLAP substitutes the values of &ARGFR before the command is executed and,
consequently, treats the whole argument as a phrase of the LIMIT command. The
salesrprt program has a LIMIT command that includes &ARGFR.

DEFINE salesrpt PROGRAM

PROGRAM

PUSH product month district
TRAP ON cleanup

LIMIT product TO UPCASE(ARG(1))
LIMIT month TO &ARGFR(2)

LIMIT district TO ALL

REPORT grandtotals DOWN district sales
cleanup:

POP product month district

END

The command line for the salesrpt program must include two or more arguments. The
first argument is the product for the report, and the second and subsequent arguments
are the months. In the LIMIT month statement, the &ARGFR(2) function returns the
months that were specified as arguments on the command line.

The following statement executes the salesrpt program, specifying Jan96, Feb96, Mar96,
and Apr96 for the values of month.

salesrpt "Canoes™ "Jan96" TO "Apr96"

The statement produces the following output.

PRODUCT: CANOES

Boston 70,489.44 82,237.68 97,622.28 134,265.60
Atlanta 56,271.40 61,828.33 77,217.62 109,253.38
Chicago 48,661.74 54,424.94 68,815.71 93,045.46
Dallas 35,244.72 40,218.43 46,810.68 64,031.28
Denver 44,456.41 50,623.19 57,013.01 78,038.13
Seattle 67,085.12 74,834.29 87,820.04 119,858.56

322,208.83 364,166.86 435,299.34 598,492.41

The following statement specifies the first three months of 1996.

7-43

ARGS

ORACLE

Chapter 7
ARGS

salesrpt "Tents" quarter "Q1.96"

The statement produces the following output.

PRODUCT: TENTS

————————————— SALES------——————-

————————————— MONTH----====————-
DISTRICT Jan96 Feb96 Mar96
Boston 50,808.96 34,641.59 45,742.21
Atlanta 46,174.92 50,553.52 58,787.82
Chicago 31,279.78 31,492.35 42,439.52
Dallas 50,974.46 53,702.75 71,998.57
Denver 35,582.82 32,984.10 44,421.14
Seattle 45,678.41 43,094.80 54,164.06

260,499.35 246,469.11 317,553.32

Within an OLAP DML program, the ARGS function lets you reference the arguments
that are passed to a program. The function returns all the arguments as a single text
value. You can use the ARGS function only within a program that is be invoked as a
command, not as a user-defined function or with a CALL statement.

Note:

Typically, programmers use an ARGUMENT statement to define arguments in
a program, thereby negating the need for using the ARGS function to reference
arguments passed to the program. For more information on how to use
ARGUMENT to define arguments that are passed to a program, see "Declaring
Arguments that Are Passed Into a Program” .

Return Value
TEXT

When no arguments have been specified for the program, ARGS returns a null value

Syntax
ARGS

Examples
Example 7-23 Passing Arguments Using ARGS

Assume you have a program that produces a simple sales report. You want to be able
to produce this report for any month, so you do not want to limit the month dimension to
any fixed month in the program. You can use the ARGS function in your LIMIT
command so that the months for the report can be supplied as an argument when the
program is run.

When ARGS is included in the LIMIT command preceded by an ampersand (&), Oracle
OLAP substitutes the values of &ARGS before the command is executed and,

7-44

ASCII

ORACLE

Chapter 7
ASCII

consequently, treats the whole argument as a phrase of the LIMIT command. The
salesreport program has a LIMIT command that includes &ARGS.

DEFINE salesrpt PROGRAM
PROGRAM

PUSH month product district
TRAP ON cleanup

LIMIT month TO &ARGS

LIMIT product TO "CANOES*"
LIMIT district TO ALL
REPORT grandtotals DOWN district sales
cleanup:

POP month product district
END

When you execute the following statement, the LIMIT command uses the values Jan96
and Feb96 for the month dimension.

salesrpt "Jan96" "Feb96"

The statement produces the following output.

PRODUCT: CANOES

———————— SALES--------

———————— MONTH--------
DISTRICT Jan96 Feb96
Boston 70,489.44 82,237.68
Atlanta 56,271.40 61,828.33
Chicago 48,661.74 54,424.94
Dallas 35,244.72 40,218.43
Denver 44,456.41 50,623.19
Seattle 67,085.12 74,834.29

322,208.83 364,166.86

The ASCII function returns the decimal representation of the first character of an
expression.

Return Value

INTEGER

Syntax

ASCII (text-exp)
Parameters

text-exp
A text expression.

Usage Notes

Returning EBCDIC Values

7-45

Chapter 7
ASCIISTR

When your database character set is 7-bit ASCII, then this function returns an ASCII
value. When your database character set is EBCDIC Code, then this function returns
an EBCDIC value. There is no corresponding EBCDIC character function

Examples
Example 7-24 Finding the ASCII Decimal Equivalent of a Character
The following example returns the ASCII decimal equivalent of the letter "Q".

SHOW ASCII("Q")
81

ASCIISTR

The ASCIISTR function takes a string in any character set and returns an ASCII
version of that string.

Returns

NTEXT

Syntax
ASCIISTR(text-exp)
Parameters

text-exp
A text expression.

Usage Notes
How ASCIISTR Converts Non-ASCIl Characters

The ASCIISTR function converts non-ASCII characters to \xxxx, where xxxx
represents a UTF-16 code unit.

¢ See:

Implementing a Unicode Solution in the Database for information on Unicode
character sets and character semantics.

AVERAGE

ORACLE

The AVERAGE function calculates the average of the values of an expression.

Return Value

DECIMAL

Syntax
AVERAGE (expression [CACHE] [dimension ...])

7-46

ORACLE

Chapter 7
AVERAGE

Parameters

expression
The expression whose values are to be averaged.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension

The name of a dimension of the result; or, the name of a relation between one
dimension of expression and another dimension that you want as a dimension of the
result.

By default, AVERAGE returns a single value. When you indicate one or more
dimensions for the result, AVERAGE calculates values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of expression or related to one of its dimensions.

Tip:

When you specify a dimension that is not an actual dimension of expression,
but, instead, is dimension that is related to a dimension of expression and
when there are multiple relations between the two dimensions, Oracle OLAP
uses the default relation between the dimensions to perform the calculation.
(See the RELATION command for more information on default relations.)
When you do not want Oracle OLAP to use this default relation, specify the
related dimension by specifying the name of a specify relation.

Usage Notes
NA Values and AVERAGE

AVERAGE is affected by the NASKIP option in the same manner as other aggregate
functions. When NASKIP is set to YES (the default), AVERAGE ignores NA values and
returns the average of the values that are not NA. When NASKIP is set to NO,
AVERAGE returns NA when any value of the expression is NA. When all the values of
the expression are NA, AVERAGE returns NA for either setting of NASKIP.

Averaging Over a Dimension of Type DAY, WEEK, MONTH, QUARTER, or YEAR

When expression is dimensioned by a dimension of type DAY, WEEK, MONTH,
QUARTER, or YEAR, you can specify any other dimension that has one of these types
as a related dimension. Oracle OLAP uses the implicit relation between the two
dimensions. To control the mapping of one of these types of dimensions to another
(for example, from weeks to months), you can define an explicit relation between the
two dimensions and specify the name of the relation as the dimension argument to the
AVERAGE function.

For each time period in the related dimension, Oracle OLAP averages the data for all
the source time periods that end in the target time period. This method is used
regardless of which dimension has the more aggregate time periods. To control the
way in which data is aggregated or allocated between the periods of two dimensions,
you can use the TCONVERT function.

7-47

Chapter 7
AW function

Examples
Example 7-25 Calculating Average Monthly Sales

This example shows how to calculate the average monthly sales of sportswear for
each sales district.

LIMIT product TO "SPORTSWEAR"
REPORT W 14 HEADING "Average Sales® AVERAGE(sales district)

The preceding statements produce the following output.

DISTRICT Average Sales
Boston 69,150.41
Atlanta 151,192.36
Chicago 95,692.99
Dallas 162,242.89
Denver 88,892.72
Seattle 54,092.32

You might also want to see the average monthly sales for each region. Because the
region dimension is related to the district dimension, you can specify region instead
of district as a dimension for the results of AVERAGE.

AW function

ORACLE

The AW function returns information about currently attached workspaces.

Return Value

The return value depends on the keyword you specify, as described in the following
table.

Syntax

AW(keyword [workspacel))
Parameters

keyword

Indicates the specific information you want. The keywords that you can use with the
AW function are listed in the following table with the data type of the value they return
and the meaning of the information.

Keyword Information Returned

ACQUIRED

Data Type

TEXT When an analytic workspace is attached in
multiwriter mode, returns the names of any
acquired variables, relations, valuesets,
dimension names, or partitions, in the analytic

workspace

AGGMAP TEXT A list of all aggmap objects in the workspace.
When there are several, Oracle OLAP returns
a multiline text value with each object name on

a separate line.

7-48

Chapter 7
AW function

Keyword

Data Type

Information Returned

ALIASLIST

ATTACHED

CHANGED

COMPOSITE

DATE

DIMENSION

EXISTS

FORMULA

FROZEN

FULLNAME

ISUPDATED

ORACLE

TEXT

BOOLEAN

BOOLEAN

TEXT

DATE

TEXT

BOOLEAN

TEXT

Boolean

TEXT

TEXT

A list of currently assigned aliases for the
workspace. When there are several, Oracle
OLAP returns a multiline text value with each
alias on a separate line.

Indicates whether the specified workspace is
attached. The workspace argument is required.

When you have read/write access to the
workspace, indicates whether you have made
changes since the last time the workspace was
updated. When you have read-only access to
the workspace, indicates whether another user
has updated the workspace and committed the
changes since you attached it.

A list of all named composite objects in the
specified workspace.

The date of your most recent update in the
current session. When you have not updated in
the current session, it returns the date of the
most recent commit before you attached the
workspace. When you have attached a shared
workspace as read-only, DATE does not take
into account any updates or commits that have
occurred since you attached the workspace.

A list of all the dimensions defined in the
workspace. When there are several
dimensions, Oracle OLAP returns a multiline
text value with each dimension name on a
separate line.

Indicates whether the specified analytic
workspace has been defined in the Oracle
Database instance.

A list of all the formulas defined in the
workspace. When there are several formulas,
Oracle OLAP returns a multiline text value with
each formula name on a separate line.

TRUE if the specified analytic workspace is
currently frozen, or FALSE if it is not.

The full name of the specified workspace. The
full name includes the schema that contains
the workspace.

When the specified analytic workspace is not
attached in multiwriter mode, returns TRUE
when the workspace is updated but not
committed. When he specified analytic
workspace is attached in multiwriter mode,
returns TRUE when at least one variable or
dimension belonging to the workspace is
updated but not committed.

7-49

Chapter 7
AW function

Keyword

Data Type

Information Returned

LIST

LISTNAMES

MODEL

MULTI

NAME
OPTION

PAGESIZE
PROGRAM

READERS

RELATION

RO

RW

SEGMENTSIZ
E

SHARED

ORACLE

TEXT

TEXT

TEXT

TEXT

TEXT
TEXT

INTEGER
TEXT

INTEGER

TEXT

TEXT

TEXT

DECIMAL

BOOLEAN

A list of all currently attached workspaces.
Each line of the multiline text value contains
the name of an analytic workspace.

A list of all the objects defined in the
workspace. Each line of the multiline text value
contains the name of an analytic workspace
object.

A list of all the models defined in the
workspace. When there are several models,
Oracle OLAP returns a multiline text value with
each model name on a separate line.

Indicates if you have multi-writer access to the
analytic workspace.

The name of the current workspace.

A list of all the Oracle OLAP options defined in
the EXPRESS workspace. When the workspace
is not EXPRESS, AW(OPTION) returns NA,
because options are defined only in the
EXPRESS workspace. For the EXPRESS
workspace, AW(OPTION) returns a multiline text
value with each option name on a separate
line.

The size of the page, in bytes.

A list of all the programs defined in the
workspace. When there are several programs,
Oracle OLAP returns a multiline text value with
each program name on a separate line.

The total number of current users of the
database who have read-only access.

A list of all the relations defined in the
workspace. When there are several relations,
Oracle OLAP returns a multiline text value with
each relation name on a separate line

Indicates whether you have read-only access
to the workspace.

Indicates whether you have read/write access
to the workspace.

The current maximum segment size for the
workspace. It is the most recent value
specified using an AW SEGMENTSIZE statement.

Indicates whether the workspace is being
shared by other users.

7-50

BACK

ORACLE

Chapter 7
BACK

Keyword Data Type Information Returned

TIME ID The time of your most recent update in the
current session. When you have not updated in
the current session, it returns the time of the
most recent commit before you attached the
workspace. When you have attached a shared
workspace as read-only, TIME does not take
into account any updates or commits that have
occurred since you attached the workspace.

VALUSET TEXT A list of all the valuesets that are defined in the
workspace. When there are several valuesets,
Oracle OLAP returns a multiline text value with
each valueset name on a separate line.

VARIABLE TEXT A list of all the variables defined in the
workspace. When there are several variables,
Oracle OLAP returns a multiline text value with
each variable name on a separate line.

WRITERS INTEGER The number of current users of the database
who have write access.

workspace

A text expression that indicates the name of the workspace for which you want
information. When you do not specify this argument, the AW function ordinarily
returns information about the current workspace. The ATTACHED, LIST, and NAME
keywords are exceptions to this rule.

Usage Notes
Analytic Workspace Status Information

You can use the SHARED, CHANGED, RO, and RW keywords to get information
about the current status of a shared workspace. You can check if SHARED, RO, and
CHANGED are TRUE to find out if another user has updated an analytic workspace
since you attached it.

Examples
Example 7-26 Ascertaining the Active Workspace

The following program line checks which workspace is currently active so the program
can choose the appropriate data to report. With this method, you can use the same
report program in several workspaces, each containing different data.

REPORT IF AW(NAME) EQ "mysales® THEN mysales ELSE gensales

The BACK function returns the names of all currently executing programs, listed one
name on each line in a multiline text value. When multiple programs are executing,
one program has called another in a series of nested executions.

The first name in the return value is that of the program containing the call to BACK.
The last name is that of the initial program, which made the first call to another
program.

7-51

Chapter 7
BASEDIM

BACK can only be used in a program.

Return Value

TEXT

Syntax
BACK

Examples
Example 7-27 Debugging a Program Using the BACK Function

The following example uses three programs. programl calls program2, and program2
calls program3.

DEFINE programl PROGRAM

PROGRAM

SHOW *This is program number 1°
CALL program2

END

DEFINE program2 PROGRAM

PROGRAM

SHOW *This is program number 2°
CALL program3

END

DEFINE program3 PROGRAM

PROGRAM

SHOW *This is program number 3°
SHOW "These programs are currently executing:*
SHOW BACK

END

Executing programl produces the following output.

This is program number 1

This is program number 2

This is program number 3

These programs are currently executing:
PROGRAM3

PROGRAM2

PROGRAM1

BASEDIM

The BASEDIM function loops over a concat dimension and returns the name of the
dimension from which the current value of a concat dimension comes.

Return Value

TEXT

Syntax
BASEDIM(concatdim [LEAF])

ORACLE 7-52

ORACLE

Chapter 7
BASEDIM

Parameters

concatdim
Specifies the concat dimension for which you want the names of the base or
component dimensions. The data type of the values returned is TEXT.

LEAF

The LEAF keyword causes BASEDIM to return the names of the component
dimensions of the concatdim dimension. The base dimensions of a concat dimension
are the simple, conjoint, or other concat dimensions that you specify with the
basedimlist argument when you define the concat. Simple dimensions and conjoint
dimensions are the bottom-level components, or leaves, of a concat dimension.
When you specify a concat dimension as a base dimension when defining a concat,
then the base dimensions of that inner concat are component dimensions of the outer
concat. Using the LEAF keyword results in BASEDIM returning the names of the
component simple and conjoint dimensions of the inner concat dimension.

When the base dimensions are all simple dimensions or conjoint dimensions, then the
base dimensions are the bottom-level components and therefore BASEDIM returns
the names of those dimensions whether or not you use the LEAF keyword.

When the base dimensions are all simple dimensions or conjoint dimensions, then the
base dimensions are the bottom-level components and therefore BASEDIM returns
the names of those dimensions whether or not you use the LEAF keyword.

Examples
Example 7-28 Returning Base Dimension Names

In this example the product dimension is limited to two values, the district dimension
is limited to its first three values and the region dimension has only three values. The
example defines a nonunique concat dimension with region and district as its base
dimensions and then defines another nonunique concat dimension with product and
the first concat dimension as its base dimensions. The example then gets the names
of the base dimensions of the outer concat.

LIMIT district TO "Boston® TO "Chicago”

LIMIT product TO "Tents""Canoes”

DEFINE region.district DIMENSION CONCAT(region district)

DEFINE product.region.district DIMENSION CONCAT(product region.district)
REPORT BASEDIM(product.district.region)

The preceding statements return the following.

PRODUCT

PRODUCT

REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT
REGION.DISTRICT

Example 7-29 Returning Component Dimension Names

This example uses the same objects as the previous example. It gets the names of the
component dimensions of the concat dimension.

REPORT BASEDIM(product.region.district LEAF)

7-53

Chapter 7
BASEVAL

The preceding statement returns the following.

PRODUCT
PRODUCT
REGION
REGION
REGION
DISTRICT
DISTRICT
DISTRICT

BASEVAL

ORACLE

The BASEVAL function loops over a concat dimension and returns the values of the
base dimensions of a concat dimension. When a base dimension is a concat
dimension, then the values of its base dimensions are returned, also.

Return Value

The following are the rules that determine the data types of the values returned by
BASEVAL.:

e The data type of the return value is NTEXT when any of the component
dimensions of concatdim is of type NTEXT, or when any component dimension is
a conjoint that uses a simple dimension of type NTEXT.

e The data type of the return value is the data type of the component dimensions
when all of the component dimensions have the same data type and when none of
the component dimensions is a conjoint.

e The data type of the return value is TEXT in all other cases.

Syntax
BASEVAL (concatdim)

Parameters

concatdim

Specifies the concat dimension for which you want the base values. The data types of
the values returned depend on the data types of the base dimensions of the concat
dimension.

Examples
Example 7-30 Returning NTEXT Values

The following example creates two simple dimensions and a nonunique concat
dimension, then gets the values of the concat dimension.

DEFINE textdim DIMENSION TEXT

DEFINE ntextdim DIMENSION NTEXT

MAINTAIN textdim ADD "v1* *"v2°

MAINTAIN ntextdim ADD *nl1® "n2®

DEFINE concatdim DIMENSION CONCAT(textdim ntextdim)
REPORT w 18 BASEVAL(concatdim)

The preceding statement returns the following.

7-54

Chapter 7
BEGINDATE

CONCATDIM BASEVAL (CONCATDIM)
<textdim: vi1> vl
<textdim: v2> v2
<ntextdim: nl> nl
<ntextdim: n2> n2

The data type of the returned values is NTEXT. The BASEVAL function converted the
vl and v2 TEXT values into NTEXT values before returning them.

Example 7-31 Returning the Base Values of a Base Concat Dimension

This example defines the simple dimensions state and city and adds values to them.
It defines a nonunique concat dimension, statecity, with state and city as the bases
and then defines another nonunique concat dimension, geog, with region, district, and
statecity as its bases. Finally, the REPORT statement returns the values returned by
the BASEVAL function.

DEFINE city DIMENSION TEXT

DEFINE state DIMENSION TEXT

MAINTAIN city ADD "Boston® “Worcester® "Portsmouth® "Portland® -
"Burlington® "Hartford®™ “"New York®" “Albany®

MAINTAIN state ADD "MA" "NH" "ME" "VT® "CT" "NY"

DEFINE statecity DIMENSION CONCAT(state city)

DEFINE geog DIMENSION CONCAT(region district statecity)

LCOLWIDTH = 20

REPORT W 16 BASEVAL(geog)

The preceding statement returns the following.

GEOG BASEVAL (GEOG)
<region: East> East

<region: Central> Central
<region: West> West

<district: Boston> Boston
<district: Atlanta> Atlanta
<district: Chicago> Chicago
<district: Dallas> Dallas
<district: Denver> Denver
<district: Seattle> Seattle

<state: MA> MA
<state: NH> NH
<state: ME> ME
<state: VT> VT
<state: CT> CT
<state: NY> NY
<city: Boston> Boston

<city: Worcester> Worcester
<city: Portsmouth> Portsmouth
<city: Portland> Portland
<city: Burlington> Burlington
<city: Hartford> Hartford
<city: New York> New York
<city: Albany> Albany

BEGINDATE

ORACLE

For dimensions of type DAY, WEEK, MONTH, QUARTER, or YEAR, the BEGINDATE
function returns the first date of the first time period in dimension status for which the

7-55

Chapter 7
BIN_TO_NUM

expression has a non-NA value. For example, assume that an expression is
dimensioned by month, and that Jan97 is the first dimension value for which the
expression has a non-NA value. In this case, BEGINDATE returns the date January 1,
1997.

" Note:

You cannot use this function for time dimensions that are implemented as
hierarchical dimensions of type TEXT.

Return Value
DATE-only or text

When all the values of the expression are NA, BEGINDATE returns NA.

Syntax
BEGINDATE(expression)

Parameters

expression
The expression must have exactly one dimension that has a type of DAY, WEEK,
MONTH, QUARTER, or YEAR.

Examples
Example 7-32 Finding the Beginning Date

The following statements limit the values in the month, product, and district
dimensions, then send the first date for which the units variable contains a non-NA
value for unit sales of tents in the Chicago district to the current outfile.

LIMIT month TO ALL

LIMIT product TO "TENTS®
LIMIT district TO "CHICAGO*®
SHOW BEGINDATE(units)

These statements produce the following output.

01JAN9S

BIN_TO_NUM

ORACLE

The BIN_TO_NUM function converts a bit vector to its equivalent number.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of
interest using grouping sets.

Return Values

NUMBER

7-56

BITAND

Chapter 7
BITAND

Syntax

BIN_TO_NUM(expression [, expression]...)
Parameters

expression
An expression that evaluates to either 0 (zero) or 1 (one) which is the value of a bit in
the bit vector.

Examples
Example 7-33 Converting Bit Vectors to a Number

SHOW BIN_TO_NUM(1,0,1,0)
10.00

The BITAND function computes a logical AND operation on the bits of two nonnegative
values. This function is commonly used with the DECODE function.

An AND operation compares two bit values. When the values are the same, the
operator returns 1. When the values are different, the operator returns 0. Only
significant bits are compared. For example, an AND operation on the integers 5
(binary 101) and 1 (binary 001 or 1) compares only the rightmost bit, and results in a
value of 1 (binary 1).

Return Value

INTEGER

Syntax

BITAND (argumentl , argument?)
Parameters

argumentl
A nonnegative INTEGER expression.

argument2
A nonnegative INTEGER expression.

Examples

See Example 7-65.

BLANKSTRIP

ORACLE

The BLANKSTRIP function removes leading or trailing blank spaces from text values.
BLANKSTRIP is useful for such purposes as removing unwanted blank spaces from
imported fixed-length fields.

7-57

Chapter 7
CALLTYPE

Return Value

TEXT or NTEXT

Syntax
BLANKSTRIP(text-expression [TRAILING|LEADING|BOTH])

Parameters

text-expression

A text expression from which to remove blank spaces. When you specify a TEXT
expression, the return value is TEXT. When you specify an NTEXT expression, the
return value is NTEXT.

TRAILING
Removes blank spaces at the end of the text.

LEADING
Removes blank spaces at the beginning of the text.

BOTH
Removes both leading and trailing spaces.

Examples
Example 7-34 Stripping Leading and Trailing Blanks

In this example, we remove both leading and trailing blank spaces from the field
prodlabel in an imported worksheet and store the results in a variable called product.

product = BLANKSTRIP(prodlabel, BOTH)

CALLTYPE

ORACLE

Within an OLAP DML program, the CALLTYPE function indicates whether a program
was invoked as a function, as a command, by using a CALL statement, or triggered by
the execution of an OLAP DML statement.

Return Value

TEXT

The return value of CALLTYPE is:

e FUNCTION when the program was invoked as a function that returns a value.
* COMMAND when the program was invoked as a command.

e CALL when the program was invoked using a CALL statement.

* TRIGGER when the program is a trigger program (that is, when a TRIGGER
command associated the program with an object event) was invoked in response
to an OLAP DML statement.

Syntax
CALLTYPE

7-58

Chapter 7
CATEGORIZE

Examples
Example 7-35 Determining the Calling Method

This sample program, called myprog, demonstrates how CALLTYPE returns different
values depending on how the program is invoked.

DEFINE myprog PROGRAM

PROGRAM

SHOW CALLTYPE

RETURN("This is the return value®)
END

The following statements invoke myprog: 1) as command; 2) with a CALL statement; 3)
as a function.

myprog
CALL myprog
SHOW myprog

The three statements send the following output to the current outfile. Note that the
return value of myprog appears only when the program is called as a function.

COMMAND

CALL

FUNCTION

This is the return value

CATEGORIZE

ORACLE

The CATEGORIZE function groups the values of a numeric expression into
categories. You define the categories by specifying a series of increasing numeric
values. The result that CATEGORIZE returns is dimensioned by all the dimensions of
expression. For each cell in expression, CATEGORIZE returns one of the following:
the category in which the number falls, zero (0) for a value below the range of the first
category, minus one (-1) for a value above the range of the last category, or NA for an
NA value.

Return Value

DECIMAL

Syntax

CATEGORIZE(expression {values|group-expression})

where val ues has the following syntax:
bottom-value [next-lowest-break-value] top-value

Parameters

expression
The numeric expression whose values are to be categorized.

7-59

ORACLE

Chapter 7
CATEGORIZE

bottom-value
A number that specifies the lowest number in the series and sets the bottom limit of
category 1.

next-lowest-break-value
A number that specifies the beginning of the range of the next category.

top-value
A number that specifies the highest number in the series and sets the upper limit of
the highest category.

group-expression
A one-dimensional numeric expression that defines the break values for the
categories.

Examples
Example 7-36 Specifying Category Range Values

Assume that your analytic workspace contains the following geography and items
dimensions and sales?2 variable.

DEFINE geography DIMENSION TEXT

MAINTAIN geography ADD "gl® "g2" "g3"

DEFINE items DIMENSION TEXT

MAINTAIN items ADD "lteml®™ "ltem2" "ltem3" "ltem4" "ltem5"
DEFINE sales2 DECIMAL <geography items>

Assume the sales?2 variable has the following data values.

------------- SALES2--------mmm——
----------- GEOGRAPHY - -—-=———————
ITENS gl g2 93
Iteml 30.00 15.00 12.00
Iten?2 10.00 20.00 18.00
Iten3 15.00 20.00 24.00
Itemd 30.00 25.00 25.00
Itens NA 7.00 21.00

This statement reports the result of categorizing the sales2 variable.

REPORT CATEGORIZE(sales2 10 15 20 25)

The preceding statement produces the following output.

-CATEGORIZE(SALES2 10 15 20 25)-

----------- GEOGRAPHY -~ == - === ——
ITENS gl g2 g3

Iteml -1.00 2.00 1.00
Iten?2 1.00 3.00 2.00
Iten3 2.00 3.00 3.00
Itemd -1.00 3.00 3.00
Itens NA 0.00 3.00

Example 7-37 Specifying a Group-Expression

These statements define a groups dimension and a groupval variable.

7-60

CEIL

ORACLE

Chapter 7
CEIL

DEFINE groups DIMENSION TEXT

MAINTAIN groups ADD "Grpl® *Grp2® "Grp3" “Grp4*"
DEFINE groupvals DECIMAL <groups>
groupvals(groups "Grpl®) = 10

groupvals(groups "Grp2®) = 15

groupvals(groups "Grp3®) = 20

groupvals(groups "Grp4®) = 25

This statement reports the result of calling the CATEGORIZE function with the sales
variable as the expression argument and the groupvals variable as the group-
expression argument of the call.

REPORT CATEGORIZE(sales, groupvals)

The preceding statement produces the same output as the statement in the
"Example 7-36" .

The CEIL function returns the smallest whole number greater than or equal to a
specified number.

Return Value

NUMBER

Syntax
CEIL(n)

Parameters

n
A number (NUMBER data type) that you specify.

Examples

Example 7-38 Displaying the Smallest Integer Greater Than or Equal to a
Number

The following statements show results returned by CEIL.
e The statement

SHOW CEIL(15.7)

produces the following result
16
e The statement

SHOW CEIL(-6.457)

produces the following result.

-6

7-61

Chapter 7
CHANGEBYTES

CHANGEBYTES

The CHANGEBYTES function changes one or more occurrences of a specified string
in a text expression to another string.

Return Value

TEXT

Syntax
CHANGEBYTES(text-expression oldtext newtext [number])

Parameters

text-expression

A TEXT expression in which bytes are to be changed. When text-expression is a
multiline TEXT expression, CHANGEBYTES preserves the line breaks in the returned
value.

oldtext
A TEXT expression that contains one or more bytes that to be changed.

newtext
A TEXT expression that contains one or more bytes that to replace oldtext.

number

An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

Examples

Example 7-39 Changing Text Values Using Bytes

This example shows how to change one instance of a portion of a text value.
The statement

SHOW CHANGEBYTES("Hello there, Joe\nHello there, Jane”®,
"there®, - "to you", 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHANGECHARS

ORACLE

The CHANGECHARS function changes one or more occurrences of a specified string
in a text expression to another string.

Return Value

When all arguments are TEXT values, the return value is TEXT. When all arguments
are NTEXT values, the return value is NTEXT. When the arguments include both

7-62

Chapter 7
CHANGEDRELATIONS

TEXT and NTEXT values, the function converts all TEXT values to NTEXT before
performing the function operation, and the return value is NTEXT.

Syntax
CHANGECHARS(text-expression oldtext newtext [number] [UPCASE])

Parameters

text-expression

The TEXT or NTEXT expression in which characters are to be changed. When text-
expression is a multiline text value, CHANGECHARS preserves the line breaks in the
returned value.

oldtext
A TEXT or NTEXT expression that contains one or more characters to be changed.

newtext
A TEXT or NTEXT expression that contains one or more characters to replace oldtext.

number

An INTEGER that represents the number of times oldtext should be replaced with
newtext when oldtext appears more than once in text-expression. The default is to
change all occurrences of oldtext.

UPCASE
Specifies that CHANGECHARS should uppercase text-expression and oldtext before
trying to find a match. CHANGECHARS does not uppercase the return value.

Examples

Example 7-40 Changing the Values of Text Characters

This example shows how to change one instance of a portion of a text value.
The statement

SHOW CHANGECHARS("Hello there, Joe\nHello there, Jane",
"there", - "to you", 1)

produces the following output.

Hello to you, Joe
Hello there, Jane

CHANGEDRELATIONS

ORACLE

For a given variable and aggmap object, the CHANGEDRELATIONS function
determines if there are any changes in the aggmap and the relations in the aggmap
since the last time the variable was aggregated.

Return Value
BOOLEAN.

TRUE when changes have occurred, FALSE when they have not, or NA when the function
cannot determine if changes have occurred.

7-63

Chapter 7
CHANGEDVALUES

Syntax

CHANGEDRELATIONS(variable [[[PARTITION partition [,PARTITION partition]...)]
aggmap])

Parameters

variable
The name of the variable whose aggmap object you want to check for changes.

partition
The name of one or more partitions of variable, separated by commas, whose
aggmap you want to check for changes.

aggmap

The name of the aggmap object you want to check for changes. When you do not
specify a value for aggmap, the function uses the aggmap specified in the $AGGMAP
property for variable, if any.

CHANGEDVALUES

ORACLE

The CHANGEDVALUES function identifies if any value in a variable has changed (or
the number of values that have changed) since the last time a variable was
aggregated.

Return Value
BOOLEAN unless you specify NUMBER for r et ur nt ype.

When the function returns a BOOLEAN value, that value is TRUE when any value has
changed since the variable was last aggregated, FALSE when no values have
changed, or NA when the function cannot determine if any values have changed or
not.

When the function returns a NUMBER value, that value is the number of values that
have changed since the variable was last aggregated.

Syntax

CHANGEDVALUES (variable [(PARTITION partition [,PARTITION partition]...)]
[returntype])

Parameters

variable
The name of the variable to check for changed values.

partition
The name of one or more partitions of variable, separated by commas, to check for
changed values.

returntype
NUMBER when you want the function to return a numeric value that is the number of
values that have changed. When you want the function to return whether or not any

7-64

Chapter 7
CHARLIST

value has changed since the last aggregation, specify BOOLEAN or leave this
argument empty as BOOLEAN is the default value for returntype.

CHARLIST

The CHARLIST function transforms an expression into a multiline text value with a
separate line for each value of the original expression.

Return Value

NTEXT when the expression is NTEXT; otherwise, TEXT.

Syntax
CHARLIST(expression [dimensions])

Parameters

expression

The expression to be transformed into a multiline text value. When the expression has
a data type other than TEXT or NTEXT, CHARLIST automatically converts the expression
to TEXT.

dimensions

The dimensions of the return value. When you do not specify a dimension, CHARLIST
returns a single value. When you provide one or more dimensions for the return value,
CHARLIST returns a multiline text value for each value in the current status list of the
specified dimension. Each dimension must be an actual dimension of the expression;
it cannot be a related or base dimension.

Examples
Example 7-41 Deleting Workspace Objects

You can use CHARLIST with the NAME dimension to create lists of workspace
objects. Suppose you want to delete all objects of a certain type in your workspace, for
example, all worksheets. You can use CHARLIST and an ampersand (&) to do this.

LIMIT NAME TO OBJ(TYPE) EQ *WORKSHEET*®
DELETE &CHARLIST(NAME)

Example 7-42 Creating a List of Top Sales People

Assume you have stored the names of the sales people who sold the most for each
product in product.memo, a text variable with the dimensions of product and . You then
want to create a list of top sales people broken out by product. To do this, you can
created a variable dimensioned by product and then use CHARLIST with the product
to create a separate list of all of the top sales people for each product.

DEFINE topsales VARIABLE TEXT <product>
topsales = CHARLIST(product.memo product)

CHARTOROWID

The CHARTOROWID function converts a value from a text data type to ROWID data
type.

ORACLE 7-65

Chapter 7
CHGDIMS

Return Value

ROWID

Syntax
CHARTOROWID(char)

Parameters

char
A text expression to convert.

Examples
Example 7-43 Converting a Value from Text to a Rowid

Assume that your analytic workspace contains the erowid dimension with the following
definition.

DEFINE erowid DIMENSION ROWID

As the following code illustrates, you can add text values to it using the
CHARTOROWID function.

MAINTAIN erowid ADD CHARTOROWID("AAAFd1AAFAAAABSAA/™)
REPORT erowid

EROWID

AAAFd1AAFAAAABSAA/

CHGDIMS

ORACLE

The CHGDIMS function changes the dimensionality of an expression or changes the
dimension status during the evaluation of expression.

Return Value

Data type of the original expression.

Syntax
CHGDIMS (expression, limit-type)
where | i mi t - t ype is one of the following:

[CACHE] LIMITSAVE val ueset-1i st
[CACHE] LIMIT val ueset-1Ii st

TO di nmensi on-1i st

ADD di nensi on-11i st

Parameters

expression
The expression you want to modify.

7-66

ORACLE

Chapter 7
CHGDIMS

CACHE

Specifies that Oracle OLAP caches the result of the limit and saves it for use in
subsequent executions of CHGDIMS until the OLAP DML statement that called
CHGDIMS finishes execution.

LIMITSAVE

Specifies that Oracle OLAP sets the value of dimension status for expression to the
position before the CHGDIMS command executed (that is, specifying LIMITSAVE
does not change the current dimension status value). For example, you specify
CHGDIMS with LIMITSAVE if expression is the LAG function so that the lag is from
the current value; or if you are coding CHGDIMS inside of an outer loop, like a SQL
SELECT statement, and you want to keep the dimension status value set by the outer
loop.

LIMIT

Specifies the Oracle OLAP sets the value of dimension status for expression to the
first position in the new status before evaluating expression in much the same way as
if a LIMIT TO command was issued just before evaluating expression.

valueset-list
The name of a valueset or a LIMIT function.

TO dimension-list
Specifies that Oracle OLAP evaluate expression as though the dimensions of
expression are the dimensions specified by dimension-list.

ADD dimension-list

Specifies that Oracle OLAP evaluateexpression as though the dimensions of
expression are the dimensions of expression plus the dimensions specified by
dimension-list

Examples
Assume that you have the following objects in your analytic workspace.

DEFINE PRODUCT DIMENSION TEXT
DEFINE GEOG DIMENSION TEXT
DEFINE SALES VARIABLE INTEGER <PRODUCT GEOG>

Assume, also, that the sales variable has the following values.

——————————————————— SALES-—-——-——— o

—————————————————— PRODUCT--=====————— o
GEOG Trousers Skirts Dresses Shoes
USA 13 20 32 18
Canada 17 32 15 28

The following lines of code show how the value returned by a TOTAL(sales) expression
varies depending on how you qualify that expression.

"Total over all dims with standard status
SHOW TOTAL(sales)
175

"Total over all dims using new status for product
SHOW CHGDIMS(TOTAL(sales) LIMIT LIMIT(product TO FIRST 2))

7-67

CHR

ORACLE

Chapter 7
CHR

82
"Total just over product

SHOW TOTAL(CHGDIMS(sales TO product))
83

The CHR function converts an integer value (or any value that can be implicitly
converted to an integer value) into a character.

" Note:

Use of this function results in code that is not portable between ASCII- and
EBCDIC-based architectures.

Return Value

A text value. For single-byte character sets, if nunber > 256, the function returns the
binary equivalent of nunber MOD 256. For multibyte character sets, nunber must resolve
to one entire code point. Invalid code points are not validated, and the result of
specifying invalid code points is indeterminate.

Syntax
CHR(number [USING NCHAR_CS])

Parameters

number
An integer value, or any value that can be implicitly converted to an integer value.

¢ See Also:

"Automatic Conversion of Numeric Data Types"

USING NCHAR_CS
Specifies that the function returns the value in the national character set. When you
do not specify this clause, the function returns the value in the database character set.

Examples
Example 7-44 Converting an Integer Value Into a Character

Assume that you have an ASCII-based system with the WE8ISO8859P1 database
character set. In this case, the following statement returns the letter C.

SHOW CHR(67)
c

7-68

Chapter 7
COALESCE

COALESCE

COLVAL

ORACLE

The COALESCE function returns the first non-NA expression in a list of expressions, or
NA when all of the expressions evaluate to NA.

Return Value

Data type of the first argument.

Syntax
COALESCE (expr [, expr]...)

Parameters

expr
An expression.

Examples
Example 7-45 Using COALESCE to Determine the Sales Price of a Product

Assume that you have defined the following objects in your analytic workspace. (Note
that the sale formula uses the COALESCE function for its calculations.)

DEFINE product_id DIMENSION TEXT
DEFINE supplier_id DIMENSION TEXT
DEFINE list_price VARIABLE DECIMAL <product_id supplier_id>
DEFINE min_price VARIABLE DECIMAL <product_id supplier_id>

DEFINE sale FORMULA DECIMAL <Product_id supplier_id>
EQ COALESCE(0.9*list_price, min_price, 5)

The following code illustrates limiting supplier_id to a single value and displaying a
report that shows the list price, minimum price, and sale price for the products
provided by that supplier.

LIMIT supplier_id TO "102050*
REPORT DOWN product_id list_price min_price sale

2382 850.00 731.00 765.00
3355 NA NA 5.00
1770 NA 73.00 73.00
2378 305.00 247.00 274.50
1769 48.00 NA 43.20
1660 16.45 16.45 14.80

The COLVAL function returns a numeric value from a column to the left of the current
column in the same row of a report. COLVAL can only be used in the ROW command
and the REPORT command.

7-69

Chapter 7
CONTEXT function

Return Value

DECIMAL when the selected column contains numeric or Boolean data; NA when the
column (n) contains only a TEXT or ID value; or an error when the specified column is
the current column, a column to the right of the current column, or a nonexistent
column

Syntax
COLVAL(n)

Parameters

n
The number of the column in the current row whose value you want; n can be any
INTEGER expression.

Use a positive number to identify an absolute column number (counting left to right
from the left margin of the report). In figuring an absolute column number, you must
count all columns shown in the report. For example, when you are using a REPORT
command that produces a column of labels down the left side of the report, you count
this column of labels as column 1.For example, COLVAL(2) identifies the second
column from the left margin of the report.

Use a negative number to identify a relative column number (counting right to left from
the current column). For example, COLVAL(-2) identifies the column that is two
columns to the left of the current column.

Examples
Example 7-46 Performing Column Calculations in a Report

Suppose in a report you want to show actual sales and planned sales, along with the
difference between the two. You can use the COLVAL function to calculate this
difference.

LIMIT month TO "Jun96”
LIMIT district TO "Boston®
FOR product
ROW product sales sales.plan COLVAL(2)-COLVAL(3)

These statements produce the following output.

Tents 95,120.83 80,138.18 14,982.65
Canoes 157,762.08 132,931.39 24,830.69
Racquets 97,174.44 84,758.46 12,415.98
Sportswear 79,630.20 73,568.52 6,061.68
Footwear 153,688.02 109,219.15 44,468.87

CONTEXT function

ORACLE

The CONTEXT function lets you obtain information about object values that are saved
in a context. You must first create the context with the CONTEXT command.

Return Value

The data type of the return value of the CONTEXT function depends on the arguments
you provide. When you use the CONTEXT function without supplying any arguments,

7-70

Chapter 7
CONVERT

it returns a multiline text value that contains the names of all the contexts in the current
session.

Syntax
CONTEXT ([context-name [UPDATE|namel]])

Parameters

context-name

A text expression that contains the name of the context. Using the CONTEXT function
with only the context-name returns a multiline text value that contains the names of all
the objects saved in that context.

UPDATE
When you specify UPDATE with the CONTEXT function, the return value is the
number of times values have been saved or dropped from the context.

name
The name of an object whose value is saved in the context. When you specify name
with the CONTEXT function, the return value is the saved status or value of that
object.

Examples
Example 7-47 Listing Context Names

In the following statement, the CONTEXT function returns the name of the only context
in the current session which is the same context used in Example 9-72.

SHOW CONTEXT

The statement produces the following output.

democontextl

Example 7-48 Listing Saved Values

In the following statement, the CONTEXT function returns the values of the product
dimension that are saved in the context named democontextl.

SHOW CONTEXT("democontextl® product)

The statement produces the following output.

Tents
Canoes

CONVERT

ORACLE

The CONVERT function converts values from one type of data to another.

Return Value

The return value depends on the value of the type argument.

Syntax

CONVERT (expression, type [argument...])

7-71

Parameters

expression

Chapter 7
CONVERT

The expression or variable to be converted.

type

The type of data to which you want to convert expression. The keywords that
represent the types are described in the following table:

Keyword

Description

BINARY

BOOLEAN
BYTE

DATE
DATETIME
DECIMAL
DSINTERVAL
ID

INFILE

INTEGER

LONGINTEGE
R

ORACLE

Does not indicate conversion to a standard Oracle data type
but allows additional conversion capabilities. BINARY does
no conversion. The internal representation of every value,
regardless of data type, is returned as a text value.

. For TEXT data types, the result is the value itself and is,
therefore, of variable length.

e For ID and DECIMAL data types, the result is 8 bytes
long; ID values is blank filled, when necessary.

. For BOOLEAN or INTEGER, the default result is 2 or 4
bytes long respectively (see the arguments explanation
for an additional argument that lets you vary the width
slightly).

e For all other data types, the result is 4 bytes long.

See "PACKED and BINARY Conversion".

Conversion to Oracle OLAP BOOLEAN data type.

Converts a single character into an ASCII INTEGER value in

the range 0 to 255. Or BYTE converts an INTEGER within this

range into a character. An INTEGER outside this range is
taken modulo 256 and then converted; that is, 256 is
subtracted from the INTEGER until the remainder is less
than 256, and that within-range remainder is then converted
into a character.

Conversion to Oracle OLAP DATE data type.

Conversion to Oracle OLAP DATETIME data type.

Conversion to Oracle OLAP DECIMAL data type.

Conversion to Oracle OLAP DML DSINTERVAL data type.

Conversion to Oracle OLAP ID data type.

Encloses an ID, TEXT, DATE, or RELATION value within

single quotes, so that it can be read with an INFILE

statement. Consequently, expression must have 1D, TEXT,

DATE, or RELATION value values. In the case of TEXT values

with no alphanumeric equivalent, INFILE converts them to

the correct escape sequences.

Conversion to Oracle OLAP INTEGER data type.

Conversion to Oracle OLAP LONGINTEGER data type.

7-72

ORACLE

Chapter 7
CONVERT

Keyword Description

NTEXT Conversion to standard Oracle OLAP data types.
Corresponds to the NCHAR and NVARCHAR2 SQL data types.
An NTEXT character is encoded in UTF8 Unicode. This
encoding might be different from the NCHAR character set of
the database, which can be UTF16. A conversion from NTEXT
to TEXT can result in data loss when the NTEXT value cannot
be represented in the database character set.

NUMBER [(p, Conversion to Oracle OLAP NUMBER data type.

[sD]

PACKED Converts a number to a decimal value and then to packed
format -- a text value 8 bytes long containing 15 digits and a
plus or minus sign. Fractions cannot be represented in
packed numbers; therefore the conversion process rounds
decimal numbers to the nearest INTEGER. See "PACKED
and BINARY Conversion".

ROWID Converts a text value to a ROWID value.

SHORTDECIM Conversion to Oracle OLAP SHORTDECIMAL data type.

AL

SHORTINTEG Conversion to Oracle OLAP SHORTINTEGER data type.

ER

TEXT Conversion to standard Oracle OLAP data types.
Corresponds to CHAR and VARCHAR2 data types in SQL. A
TEXT character is encoded in the database character set.

TIMESTAMP Conversion to Oracle OLAP DML TIMESTAMP data type.

TIMESTAMP_L Conversion to Oracle OLAP DML TIMESTAMP_LTZ data

TZ type.

TIMESTAMP_ Conversion to Oracle OLAP DML TIMESTAMP_TZ data type.

TZ

UROWID Converts a text value to a UROWID value.

YMINTERVAL Conversion to Oracle OLAP DML YMINTERVAL data type.

argument

When you specify TEXT, NTEXT, ID, DATE, or INFILE for the type, you can specify
additional arguments to determine how the conversion should be done as outlined in

the following table:

Keyword When Syntax for All Parameters

for type Converti

argument ng From

TEXT Any TEXT [decimal-int| DECIMALS [comma-bool|
numeric COMMAS [paren-bool|PARENS]]]

NTEXT Any NTEXT [decimal-int| DECIMALS [comma-bool|
numeric COMMAS [paren-bool|PARENS]]]

ID Any ID [decimal-intDECIMALS]
numeric

TEXT, Any ID|TEXT|NTEXT ['date_format']

NTEXT, datetime

or ID

7-73

ORACLE

Chapter 7
CONVERT

Keyword When Syntax for All Parameters
fortype Converti
argument ng From

TEXT, DATE ID|TEXT|NTEXT ['dateformat’]
NTEXT,
or ID

ID or DATE ID [dwmgqy-dimension]|TEXT [dwmqy-dimension|'vnf]
TEXT for
a
dimensio
n of type
DAY,
WEEK,
MONTH,
QUARTE
R, or
YEAR
with VNF

DATE TEXT, DATE [date-order|dwmqy-dimname]
NTEXT,
orID

NTEXT TEXT NOXLATE
TEXT NTEXT NOXLATE

INFILE INFILE [width-exp|LSIZE [escape-int|Q]]
IBINARY BINARY [width-exp]

with

BOOLEAN

or

INTEGER

decimal-int

An INTEGER expression that controls the number of decimal places to be used when
converting numeric data to TEXT or ID values. When this argument is omitted,
CONVERT uses the current value of the DECIMALS option (the default is 2).

comma-bool

A Boolean expression that determines whether commas are used to mark thousands
and millions in the text representation of the numeric data. When the value of the
expression is YES, commas are used. When this argument is omitted, CONVERT uses
the current value of the COMMAS option (the default is YES).

paren-bool

A Boolean expression that determines whether negative values are enclosed in
parentheses in the text representation of the numeric data. When the value of the
expression is YES, parentheses are used; when the value is NO, a minus sign precedes
negative values. When this argument is omitted, CONVERT uses the current value of
the PARENS option (the default is NO).

date_format

A text expression that specifies the template to use when converting a datetime
expression to text. The valid formats for each date field are the same as the formats
that you can specify using the DATE_ FORMAT command.

7-74

ORACLE

Chapter 7
CONVERT

When you do not include the date _format argument, the format of the result is
determined by the default date format for the session as described in "Default
Datetime Format Template".

dateformat

A text expression that specifies the template to use when converting a DATE-only
expression to text. The template can include format specifications for any of the four
components of a date (day, month, year, and day of the week). Each component in
the template must be preceded by a left angle bracket (<)and followed by a right angle
bracket (>). You can include additional text before, after, or between the components.
The valid formats for each date component are the same as the formats allowed in
the DATEFORMAT option.

In the following statement, CONVERT returns today's date as a text value that is
formatted by a dateformat argument.

SHOW CONVERT(TODAY TEXT "<MM>-<DD>-<YY>")

In this example, today's date is March 31, 1998, and the SHOW statement presents it
in the following format.

03-31-98

When you do not include the dateformat argument, the format of the result is
determined by the current setting of the DATEFORMAT option.

dwmqy-dimension

The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. Oracle
OLAP uses the VNF of dwmgqy-dimension when converting a DATE-only value to a
TEXT or an ID value. When you have not specified the VNF of dwmqy-dimension,
Oracle OLAP uses its default VNF.

In the following statement, CONVERT returns today's date as a text value that is
formatted by the VNF of the YEAR dimension.

show convert(today text year)

In this example, today's date is March 31, 1998, and the SHOW statement presents it
in the following format.

YR98

vnf

A text template that specifies the value name format to use when converting values of
a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR to text. The template
can include format specifications for any of the components of a time period. Time
period components include all the components of a date (day, month, year, and day of
the week), plus the fiscal year and period components. The template can also include
the name of the DAY, WEEK, MONTH, QUARTER, or YEAR dimension as a
component. Each component in the template must be preceded by a left angle
bracket and followed by a right angle bracket. You can include additional text before,
after, or between the components.

The vnf argument to the CONVERT function is similar to the template in a VNF
command. However, a VNF command template must be designed for precise and
unambiguous interpretation of input, while the vnf argument is not so constrained.
Therefore, the format styles allowed in the vnf argument are more extensive than
those allowed in a VNF command template.

Valid format styles for a vnf argument include all the format styles allowed in the
template of a VNF command, plus all the format styles allowed in a DATEFORMAT

7-75

ORACLE

Chapter 7
CONVERT

template. DATEFORMAT provides the following format styles that are not allowed in
VNF command templates but that are valid in the vnf argument to the CONVERT
function:

e Ordinal styles for the day of the month (DT and DTL)
» First-letter style for the month (MT)
» Styles for the day of the week (W, WT, WTXT, WTXTL, WTEXT, and WTEXTL)

Append a B code to any of these formats to indicate that you want to display the
beginning day or month of the period, rather than the final day or month.

You can use any combination of VNF and DATEFORMAT format styles with for any
dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR. This syntax contrasts
with the template in a VNF command, in which only certain format combinations are
valid for each type of dimension.

In the following statement, CONVERT returns the current value of the MONTH
dimension as a text value that is formatted by a vnf argument.

SHOW CONVERT(month TEXT "<MTEXTL>, <YYYY>")

In this example, the first MONTH value in status is DEC97, and the SHOW statement
presents it in the following format.

December, 1997

When you do not include the vnf argument, the format of the result is determined by
the VNF of the dimension whose values you are converting. When the dimension has
no VNF, the result is formatted according to the default VNF for the type of dimension
being converted.

date-order

A text expression that specifies how to interpret the specified text value as a DATE-
only value when the order of the text value's components (month, day, and year) is
ambiguous. The expression can be one of the following: *MDY*, *DMY*", “YMD™, "YDM",
"MYD", or "DYM". Each letter represents a component of the date: M stands for month, D
stands for day, and Y stands for year.

When you do not include the date-order or dwmqy-dimname argument, any ambiguity
in the interpretation of a text expression is resolved by the current setting of the
DATEORDER option. Refer to the DATEORDER option for a complete description of
DATE-only values and how they are interpreted.

dwmgqy-dimname

The name of a dimension of type DAY, WEEK, MONTH, QUARTER, or YEAR whose
VNF or default date-order determines how to interpret the specified text value as a
DATE-only value when the order of the text value's components is ambiguous.

When you do not include the date-order or dwmgqy-dimname argument, any ambiguity
in the interpretation of a text expression is resolved by the current setting of the
DATEORDER option. Refer to the DATEORDER option for a complete description of
DATE-only values and how they are interpreted.

width-exp

An INTEGER expression that indicates the width of the output from CONVERT. The
minimum width is 7. The default width is the current value of the LSIZE option. This
argument is required when you specify the escape-int argument.

7-76

ORACLE

Chapter 7
CONVERT

escape-int
Indicates whether escape sequences are to be used in the output. For this argument
you can specify a value listed in the following table:

Valu Description
e

-1 Do not use escapes. Precede -1 with a comma (,-1) so that Oracle
OLAP does not subtract 1 from a preceding WIDTH argument.

(Default) Use escapes for unprintable characters.
Use escapes for all characters.

For more information on escape sequences in the OLAP DML, see "Escape
Sequences".

width-exp

An INTEGER expression that controls the width of the converted result. It can evaluate
to 1, 2, or 4 bytes. The default width is 2 for BOOLEAN, or 4 for INTEGER. When an INTEGER
value is too large to fit in the specified width, the result is NA. When the width is invalid
or specified for some other data type, an error occurs.

NOXLATE

A keyword indicating that no character set conversion should be performed. Instead,
Oracle OLAP only tags the converted value with the target data type, leaving the data
as it was before the CONVERT function was called. Use this keyword only when it is
necessary to store binary data in a TEXT or NTEXT variable.

Usage Notes
INFILE Conversion

The maximum number of characters in a line is 4,000. An error occurs when you try an
INFILE conversion that produces a line with more than 4,000 characters. This type of
error can occur when the source line exceeds 99 characters and enough of them need
escape sequences.

Converting DATE-only Values to Numeric Values

The result of converting a value that has the DATE-only data type to a value with any
numeric data type is the sequence number that represents the date (the sequence
number 1 represents January 1, 1900).

Oracle OLAP first converts the DATE-only value to an INTEGER value that is the
sequence number that represents the DATE-only value. When the target data type is a
numeric data type other than INTEGER, Oracle OLAP then converts that INTEGER
value to the specified numeric data type.

The value 32,767 is the largest possible value for a SHORTINTEGER, and (as an
INTEGER value) represents the date September 17, 1992. Therefore, CONVERT
returns NA when you attempt to convert any DATE-only later than September 17, 1992
to a SHORTINTEGER value.

Converting Numeric Values to DATE-only Values

The result is the DATE-only whose sequence number matches the specified number
(January 1, 1900 is represented by the sequence number 1); or NA, when the result
is outside the range of valid dates. Valid dates range from January 1, 1900 (sequence
number 1) to December 31, 9999 (sequence number 2,958,464).

7-77

ORACLE

Chapter 7
CONVERT

When the numeric data type is an INTEGER data type, Oracle OLAP converts the
INTEGER value directly to the DATE-only value whose sequence number matches the
specified number. When the numeric data type is not INTEGER, Oracle OLAP first
converts the numeric value to an INTEGER value and then converts that INTEGER
value to a DATE-only value.

Converting DATE-only Dimension Values to ID Values
When the result is more than eight characters long, the result is truncated.
Converting Relation Values to INTEGER Values

The result is an INTEGER value that represents the position of the value in the
relation's dimension. This behavior reflects the fact that the values of a relation are
dimension values, not TEXT values.

Converting Values From One Numeric Data Type to Another

The result is the value in the specified data type; or NA when the value is outside the
range of valid values for the target data type.

Thus, when you try to convert an INTEGER value that is larger than 32,767 or smaller
than -32,767 to a SHORTINTEGER value, CONVERT returns NA.

String-to-Datetime Conversion Rules
The following formatting rules apply when converting string values to datetime values:

* You can omit punctuation included in the format string from the datetime string if
all the digits of the numeric format elements, including leading zeros, are specified.
In other words, specify 02 and not 2 for two-digit format elements such as MM,
DD, and YY.

* You can omit time fields found at the end of a format string from the datetime
string.

* When a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in the following table:

Table 7-6 Oracle Format Matching

___|
Original Format Element Additional Format Elements to Try instead Of the Original

"MON® and "MONTH*®

“uM*
"MON "MONTH"
"MONTH" "MON®
"Yy*® "YYYY®
"RR*" "RRRR"

Converting Null and Blank Text Values to BYTE Values

CONVERT returns the same value for a null string (**) as it does for a blank string
("). In both cases, you get a result of 32.

PACKED and BINARY Conversion

7-78

Chapter 7
CORRELATION

The PACKED and BINARY types are useful for creating binary files that contain
PACKED and BINARY data. To create such a file, use FILEOPEN statement with the
BINARY keyword to open the file and FILEPUT to write values to it. You can use the
ROW function as an argument to the FILEPUT statement to help format the file.

Examples
Example 7-49 Converting Decimal Values to Text

This example shows how to use the JOINCHARS and CONVERT functions to
combine some text with the value of the variable price for a product and month, and
show the price without decimal places.

LIMIT month TO *Jul96”

LIMIT product to "Canoes”

SHOW JOINCHARS("Price of Canoes = $" CONVERT(price TEXT 0))
Price of Canoes = $200

Example 7-50 Converting Text Values to Escape Sequences

This example shows how to use the CONVERT function with the ESCAPEBASE
option to convert a TEXT value from its default decimal escape sequences to
hexadecimal escape sequences.

DEFINE textvar VARIABLE TEXT

textvar = "testvalue®

SHOW CONVERT(textvar INFILE 9 1)
"\d116\d101\d115\d116\d118\d097\d108\d117\d101"
ESCAPEBASE = "x"

SHOW CONVERT(textvar INFILE 9 1)
"\X74\XxB65\X73\X74\Xx76\Xx61\x6C\x75\x65"

CORRELATION

The CORRELATION function returns the correlation coefficients for the pairs of data
values in two expressions. A correlation coefficient indicates the strength of
relationship between the data values. The closer the correlation coefficient is to
positive or negative 1, the stronger the relationship is between the data values in the
expressions. A correlation coefficient of 0 (zero) means no correlation and a +1 (plus
one) or -1 (minus one) means a perfect correlation. A positive correlation coefficient
indicates that as the data values in one expression increase (or decrease), the data
values in the other expression also increase (or decrease). A negative correlation
coefficient indicates that as the data values in one expression increase, the data
values in other expression decrease.

Return Value

DECIMAL

Syntax

CORRELATION(expressionl expression2 [PEARSON|SPEARMAN|KENDALL] -
[BASEDON dimension-list])

ORACLE 7-79

ORACLE

Chapter 7
CORRELATION

Parameters

expressionl
A dimensioned numeric expression with at least one dimension in common with
expression2.

expression2
A dimensioned numeric expression with at least one dimension in common with
expressionl.

PEARSON

Calculates the Pearson product-moment correlation coefficient. Use this method when
the data is interval-level or ratios, such as units sold and price for each unit, and the
data values in the expressions have a linear relationship and are distributed normally.

SPEARMAN

Calculates Spearman's rho correlation coefficient. Use this nonparametric method
when the expressions do not have a linear relationship or a normal distribution. In
computing the correlation coefficient, this method ranks the data values in
expressionl and in expression2 and then compares the rank of each element in
expressionl to the corresponding element in expression2. This method assumes that
most of the values in the expressions are unique.

KENDALL

Calculates Kendall's tau correlation coefficient. This nonparametric method is similar
to the SPEARMAN method in that it also first ranks the data values in expressionl
and in expression2. The KENDALL method, however, compares the ranks of each
pair to the successive pairs. Use this method when few of the data values in
expressionl and in expression2 are unique.

BASEDON dimension-list

An optional list of dimensions along which CORRELATION computes the correlation
coefficient. Both expressionl and expression2 must be dimensioned by all of the
dimension-list dimensions. CORRELATION correlates the data values of expression1
to those of expression2 along all of the dimension-list dimensions. CORRELATION
returns an array that contains one correlation coefficient for each cell that is
dimensioned by all of the dimensions of expression1 and expression2 except those in
dimension-list.

When you do not specify a dimension-list argument, then CORRELATION computes
the correlation coefficient over all of the common dimensions of expression1 and
expression2. When all of the dimensions of the two expressions are the same, then
CORRELATION returns a single correlation coefficient. When either expression
contains dimensions that are not shared by the other expression, then
CORRELATION returns an array that contains one correlation coefficient for each cell
that is dimensioned by the dimensions of the expressions that are not shared.

Usage Notes
The Effect of NASKIP on CORRELATION

CORRELATION is affected by the NASKIP option. When NASKIP is set to YES (the
default), then CORRELATION ignores NA values. When NASKIP is set to NO, then an
NA value in the expressions results in a correlation coefficient of NA.

7-80

ORACLE

Chapter 7
CORRELATION

Examples
Example 7-51 Correlating with the PEARSON Method

Assume that your analytic workspace contains two variables named units and price.
The two dimensions of the price variable, month and product, are shared by the units
variable, which has a third dimension, district.

The following CORRELATION statement does not specify a dimension-list argument.
The output of the CORRELATION function in the statement is one correlation
coefficient for each of the dimension values in the dimension that the variables do not
have in common.

REPORT CORRELATION(units price pearson)

The preceding statement produces the following output.

CORRELATION

(UNITS

PRICE

DISTRICT PEARSON)
Boston -0.75
Atlanta -0.85
Chicago -0.83
Dallas -0.66
Denver -0.83
Seattle -0.69

The following statements limit the month and product dimensions.

LIMIT month to "Jan96" TO "Mar96"
LIMIT product TO "Tents® TO "Racquets”

The following statement reports the correlation coefficient based on the product
dimension for the limited dimension values that are in status.

REPORT CORRELATION(units price pearson basedon product)

CORRELATION(UNITS PRICE PEARSON-
-------- BASEDON PRODUCT)--------

------------- MONTH----=—=—=————-
DISTRICT Jan96 Febh96 Mar96
Boston -0.96 -0.90 -0.89
Atlanta -0.97 -0.97 -0.97
Chicago -0.96 -0.95 -0.95
Dallas -0.98 -0.98 -0.99
Denver -0.97 -0.97 -0.97
Seattle -0.89 -0.83 -0.83

The following statement reports the correlation coefficient based on the month
dimension for the limited dimension values.

REPORT CORRELATION(units price pearson basedon month)

CORRELATION(UNITS PRICE PEARSON-
--------- BASEDON MONTH)---------

DISTRICT Tents Canoes Racquets

7-81

COS

COSH

ORACLE

Chapter 7

COosS
Boston -0.59 -0.92 -0.55
Atlanta -0.73 -0.83 0.03
Chicago -0.91 -0.84 -0.68
Dallas -0.86 -0.92 0.31
Denver -0.98 -0.94 -0.67
Seattle -0.98 -0.89 -0.70
The COS function calculates the cosine of an angle expression.
Return Value
NUMBER
The result returned by COS is a value with the same dimensions as the specified
expression.
Syntax
COS(angle-expression)
Parameters
angle-expression
A numeric expression that contains an angle value, which is specified in radians.
Examples
Example 7-52 Calculating the Cosine of an Angle in Radians
This example calculates the cosine of an angle of 1 radian. The statements
DECIMALS = 5
SHOW COS(1)
produce the following result.
0.54030
Example 7-53 Calculating the Cosine of an Angle in Degrees
This example calculates the cosine of an angle of 60 degrees. Because 1 degree =
2 * (pi) / 360 radians, 60 degrees is about 60 * 2 * 3.14159 / 360 radians. The
statement
SHOW COS(60 * 2 * 3.14159 / 360)
produces the following result.
0.50000
The COSH function calculates the hyperbolic cosine of an angle expression.
7-82

COUNT

ORACLE

Chapter 7
COUNT

Return Value

NUMBER

Syntax

COSH(expression)
Parameters

expression
A numeric expression that contains an angle value, which is specified in radians.

Examples
Example 7-54 Calculating the Hyperbolic Cosine of an Angle
This example calculates the hyperbolic cosine of an angle of 1 radian. The statements

DECINALS = 5
SHOW COSH(1)

produce the following result.

1.54030

The COUNT function counts the number of TRUE values of a Boolean expression. It
returns 0 (zero) when no values of the expression are TRUE.

Return Value

INTEGER

Syntax
COUNT (boolean-expression [CACHE] [dimension...])

Parameters

boolean-expression
The Boolean expression whose TRUE values are to be counted.

CACHE
Specifies slightly different internal behavior. Specify this keyword only when the
original performance is extremely slow.

dimension

The name of a dimension of the result; or, the name of a relation between one
dimension of boolean-expression and another dimension that you want as a
dimension of the result.

By default, COUNT returns a single YES or NO value. When you indicate one or more
dimensions for the result, COUNT tests for TRUE values along the dimensions that are
specified and returns an array of values. Each dimension must be either a dimension
of boolean-expression or related to one of its dimensions.

7-83

CUMSUM

ORACLE

Chapter 7
CUMSUM

Tip:

When you specify a dimension that is not an actual dimension of boolean-
expression, but, instead, is dimension that is related to a dimension of
boolean-expression and when there are multiple relations between the two
dimensions, Oracle OLAP uses the default relation between the dimensions to
perform the calculation. (See the RELATION command for more information
on default relations.) When you do not want Oracle OLAP to use this default
relation, specify the related dimension by specifying the name of a specify
relation.

Usage Notes
The Effect of NASKIP on COUNT

COUNT is affected by the NASKIP option. When NASKIP is set to YES (the default),
COUNT returns the number of TRUE values of the Boolean expression, regardless of
how many other values are NA. When NASKIP is set to NO, COUNT returns NA when
any value of the expression is NA. When all the values of the expression are NA,
COUNT returns NA for either setting of NASKIP.

Examples
Example 7-55 Counting True Values by District

You can use COUNT to find the number of months in which each district sold more
than 2,000 units of sportswear. To obtain a count for each district, specify district as
the dimension for the result.

LIMIT product TO "SPORTSWEAR®
REPORT HEADING "Count® COUNT(units GT 2000, district)

The preceding statement statements produce the following output.

DISTRICT Count

Boston 0
Atlanta 23
Chicago 11
Dallas 24
Denver 7
Seattle 0

The CUMSUM function computes cumulative totals over time or over another
dimension. When the data being totaled is one-dimensional, CUMSUM produces a
single series of totals, one for all values of the dimension. When the data has
dimensions other than the one being totaled over, CUMSUM produces a separate
series of totals for each combination of values in the status of the other dimensions.

Return Value

DECIMAL

7-84

ORACLE

Chapter 7
CUMSUM

Syntax
CUMSUM(cum-expression [STATUS] total-dim [reset-dim] [INSTAT])

Parameters

cum-expression
A numeric variable or calculation whose values you want to total, for example UNITS.

STATUS

When cum-expression is multidimensional, CUMSUM creates a temporary variable to
use while processing the function. When you specify the STATUS keyword,
CUMSUM uses the current status instead of the default status of the dimensions for
calculating the size of this temporary variable. When the dimensions of the expression
are limited to a few values and are physically fragmented, you can improve the
performance of CUMSUM by specifying STATUS.

When you use CUMSUM with the STATUS keyword in an expression that requires
going outside of status for results (for example, with the LEAD or LAG functions or
with a qualified data reference), the results outside of status are returned as NA.

¢ Note:

When you specify the STATUS keyword when the data being totaled is one-
dimensional, an error results

total-dim
The dimension of cum-expression over which you want to total.

reset-dim

Specifies that the cumulative totals in a series should start over with each new reset
dimension value, for example at the start of each new year. The reset dimension can
be any of the following:

* Any dimension related to total-dim through an explicitly defined relation.

* Any dimension with a type of DAY, WEEK, MONTH, QUARTER, or YEAR, when
total-dim also has a type of DAY, WEEK, MONTH, QUARTER, or YEAR.
CUMSUM uses the implicit relation between the two dimensions, so they do not
have to be related through an explicit relation. See "Overriding an Implicit
Relation”.

* Arelation dimensioned by total-dim. CUMSUM uses the related dimension as the
reset dimension which enables you to choose which relation is used when there
are multiple relations.

INSTAT

Specifies that CUMSUM uses only the values of total-dim that are currently in status.
When you do not specify INSTAT, CUMSUM produces a total for all the values of
total-dim, independent of its current status. See "INSTAT Ignores Current Status By
Default".

Usage Notes

Overriding an Implicit Relation

7-85

ORACLE

Chapter 7
CUMSUM

When you specify dimensions with a type of DAY, WEEK, MONTH, QUARTER, or
YEAR for both the total-dim argument and the reset-dim argument, CUMSUM uses the
implicit relation between the two dimensions even when an explicit relation exists.
However, you can override the default and use the explicit relation by specifying the
name of the relation for the reset-dim argument.

INSTAT Ignores Current Status By Default

Unless you specify the INSTAT keyword, CUMSUM ignores the current status in
calculating totals. Suppose MONTH is the dimension being totaled over (and INSTAT
has not been specified). The CUMSUM total for a given month uses the values for all
preceding months, even when some are not in the status. When a reset dimension is
specified, the total for a given month uses the values for all preceding months that
correspond to the same value of the reset dimension (for example, all preceding
months in the same year). To calculate year-to-date totals, specify YEAR as the reset
dimension.

Examples

The totals for CUMSUM(UNITS, MONTH) include values for all months beginning with
the first month, JAN95. The totals for CUMSUM(UNITS, MONTH YEAR) include only
the values starting with JAN96.

Example 7-56 Multiple CUMSUM Calculations

This example shows cumulative units totals for tents and canoes in the Atlanta district
for the first six months of 1996. The report shows the units figures themselves, year-to-
date totals calculated using year as the reset dimension, and totals calculated with no
reset dimension using all preceding months. Assume that you issue the following
statements.

LIMIT district TO "Atlanta®

LIMIT product TO "Tents® "Canoes”

LIMIT month TO "Jan96" TO "Jun96"

REPORT DOWN month units CUMSUM(units, month year) -
CUMSUM(units, month)

The following report is displayed.

DISTRICT: ATLANTA

------------------------ PRODUCT === mmmmmmmmm e
--------- TENTS-------====== =——=—====CANOES-=--===mmmm=
CUMSUM(UNI CUMSUM(UNI
TS, MONTH CUMSUM(UNI TS, MONTH CUMSUM(UNI
MONTH ~ UNITS YEAR) TS, MONTH) UNITS YEAR) TS, MONTH)
Jange 279 279 5,999 281 281 5,162
Feb96 305 584 6,304 309 590 5,471
Mar96 356 940 6,660 386 976 5,857
Apro6 537 1,477 7,197 546 1,522 6,403
May96 646 2,123 7,843 525 2,047 6,928
Jun9e 760 2,883 8,603 608 2,655 7,536

Example 7-57 Resetting for a Quarter

This example shows cumulative totals for the same products and district, for the entire
year 1996. Because quarter is specified as the reset dimension, totals start
accumulating at the beginning of each quarter. The cumulative totals for Jan96, Apr96,
Jul96, and 0ct96 are the same as the units figures for those months. Assume that you
issue the following statements.

7-86

Chapter 7
CURRENT_DATE

LIMIT district TO "Atlanta”

LIMIT product TO "Tents" "Canoes"

limit month TO year "Yr96*

REPORT DOWN month units CUMSUM(units, month quarter)

A report displays.
DISTRICT: ATLANTA
—————————————————— PRODUCT------=====—==———-
———————— TENTS-------- --——---CANOES--------
CUMSUM(UNI CUMSUM(UNI
TS, MONTH TS, MONTH
MONTH UNITS QUARTER) UNITS QUARTER)
Jan96 279 279 281 281
Feb96 305 584 309 590
Mar96 356 940 386 976
Apro6 537 537 546 546
May96 646 1,183 525 1,071
Jun96 760 1,943 608 1,679
Jul96 852 852 626 626
Aug96 730 1,582 528 1,154
Sep96 620 2,202 520 1,674
Oct96 554 554 339 339
Nov96 380 934 309 648
Dec96 284 1,218 288 936

CURRENT_DATE

The CURRENT_DATE function returns the current date in the se