
Oracle® Label Security
Administrator's Guide

18c
E87129-01
February 2018

Oracle Label Security Administrator's Guide, 18c

E87129-01

Copyright © 2006, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sumit Jeloka

Contributors: Chi Ching Chui, Rishabh Gupta, John Kati, Lakshmi Kethana, Gopal Mulagund, Paul Needham,
Hozefa Palitanawala, Vikram Pesati, Amoghavarsha Ramappa, Saikat Saha, Digvijay Sirmukaddam, Srividya
Tata, Kamal Tbeileh, Peter Wahl

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xix

Documentation Accessibility xix

Related Documentation xx

Conventions xx

 Changes in This Release for Oracle Label Security Administrator's
Guide

Changes in Oracle Database 18c xxi

Changes in Oracle Database 12c Release 2 (12.2) xxii

Part I Getting Started with Oracle Label Security

1 Introduction to Oracle Label Security

About Oracle Label Security 1-1

Benefits of Oracle Label Security 1-2

Who Has Privileges to Use Oracle Label Security? 1-2

Duties of Oracle Label Security Administrators 1-2

Components of Oracle Label Security 1-3

Oracle Label Security Architecture 1-4

Oracle Label Security Administrative Interfaces 1-5

Oracle Label Security Packages 1-5

Oracle Label Security Demonstration File 1-6

Oracle Enterprise Manager Cloud Control 1-6

How Oracle Label Security Works with Other Oracle Products 1-7

Oracle Label Security Integration with Oracle Internet Directory 1-7

Oracle Label Security Integration in a Multitenant Environment 1-7

iii

2 Understanding Data Labels and User Labels

About Label-Based Security 2-1

About User Label and Privilege Management 2-2

Label Components 2-2

Label Component Definitions and Valid Characters 2-3

Level Sensitivity Components 2-4

Compartment Components 2-5

Group Components 2-7

Industry Examples of Levels, Compartments, and Groups 2-9

Label Syntax and Type 2-9

How Data Labels and User Labels Work Together 2-10

Administration of Labels 2-12

3 Access Controls and Privileges

Access Mediation 3-1

How the Session Label and Row Label Work 3-2

The Session Label 3-3

The Row Label 3-3

Session Label Example 3-3

How User Authorizations Work 3-4

Authorizations Set by the Administrator 3-5

Authorized Levels 3-5

Authorized Compartments 3-6

Authorized Groups 3-6

Computed Session Labels 3-7

Evaluation of Labels for Access Mediation 3-8

About Read and Write Access 3-8

Difference Between Read and Write Operations 3-8

Propagation of Read/Write Authorizations on Groups 3-9

How Oracle Label Security Algorithm for Read Access Works 3-9

How the Oracle Label Security Algorithm for Write Access Works 3-11

Oracle Label Security Privileges 3-13

Privileges Defined by Oracle Label Security Policies 3-13

Special Access Privileges 3-14

READ Privilege 3-14

FULL Privilege 3-15

COMPACCESS Privilege 3-15

PROFILE_ACCESS Privilege 3-16

Special Row Label Privileges 3-16

WRITEUP Privilege 3-17

iv

WRITEDOWN Privilege 3-17

WRITEACROSS Privilege 3-17

System Privileges, Object Privileges, and Policy Privileges 3-17

Access Mediation and Views 3-18

Access Mediation and Program Unit Execution 3-18

Access Mediation and Policy Enforcement Options 3-19

Working with Multiple Oracle Label Security Policies 3-20

Multiple Oracle Label Security Policies in a Single Database 3-20

Multiple Oracle Label Security Policies in a Distributed Environment 3-20

Part II Using Oracle Label Security Functionality

4 Getting Started with Oracle Label Security

Registering Oracle Label Security with an Oracle Database 4-1

About Registering Oracle Label Security 4-1

Checking if Oracle Label Security Has Been Registered and Enabled 4-2

Registering and Enabling Oracle Label Security from SQL*Plus 4-2

Registering and Enabling Oracle Label Security Using DBCA 4-3

Enabling the LBACSYS Oracle Label Security Account 4-4

Logging in to Cloud Control or SQL*Plus for Oracle Label Security 4-5

Logging in to Oracle Label Security from Enterprise Manager Cloud Control 4-5

Logging in to Oracle Label Security from SQL*Plus 4-6

5 Creating an Oracle Label Security Policy

About Creating Oracle Label Security Policies 5-1

Step 1: Create the Label Security Policy Container 5-2

About the Label Security Policy Container 5-2

Creating a Label Policy Container 5-3

Step 2: Create Data Labels for the Label Security Policy 5-3

About Data Labels 5-4

About Policy Level Sensitivity Components 5-4

Creating a Policy Level Component 5-5

About Policy Compartment Components 5-6

Creating a Policy Compartment Component 5-7

About Policy Group Components 5-8

Creating a Policy Data Label Group 5-9

About Associating the Policy Components with a Named Data Label 5-10

Associating the Policy Components with a Named Data Label 5-10

Step 3: Authorize Users for the Label Security Policy 5-11

v

About Authorizing Users for Label Security Policies 5-12

About Authorizing Levels 5-12

Authorizing a Level 5-12

About Authorizing Compartments 5-13

Authorizing a Compartment 5-13

About Authorizing Groups 5-14

Authorizing a Group 5-14

Step 4: Grant Privileges to Users and Trusted Stored Program Units 5-15

About Granting Privileges to Users and Trusted Program Units for the Policy 5-15

Granting Privileges to a User 5-16

Granting Privileges to a Trusted Program Unit 5-16

Step 5: Apply the Policy to a Database Table or Schema 5-17

About Applying the Policy to a Database Table or Schema 5-17

Applying a Policy to a Schema 5-18

Step 6: Add Policy Labels to Table Rows 5-18

About Adding Policy Labels to Table Rows 5-19

Adding a Policy Label to a Table Row 5-19

Step 7: (Optional) Configure Auditing 5-19

About Configuring Auditing 5-20

Configuring Auditing 5-20

Using Enterprise Manager Cloud Control to Create an OLS Policy 5-20

Creating the Label Security Policy Container Using Cloud Control 5-21

Creating Policy Components Using Cloud Control 5-22

Creating Data Labels for the Policy Using Cloud Control 5-23

Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud
Control 5-23

Granting Privileges to Trusted Program Units Using Cloud Control 5-25

Applying a Policy to a Database Table with Cloud Control 5-26

Applying Policy Labels to Table Rows Using Cloud Control 5-27

Auditing Oracle Label Security Policies Using Cloud Control 5-27

6 Working with Labeled Data

How Policy Label Column and Label Tags Work 6-1

The Policy Label Column 6-2

About the Policy Label Column 6-2

Hiding the Policy Label Column 6-2

Label Tags 6-3

About Label Tags 6-3

Manually Defined Label Tags to Order Labels 6-4

Manually Defined Label Tags to Manipulate Data 6-4

Automatically Generated Label Tags 6-5

vi

Assignments of Labels to Data Rows 6-5

Presenting the Label 6-6

Converting a Character String to a Label Tag with CHAR_TO_LABEL 6-6

Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR 6-6

Converting a Label Tag to a Character String with LABEL_TO_CHAR 6-7

LABEL_TO_CHAR Examples 6-7

Retrieving All Columns from a Table When the Policy Label Column Is
Hidden 6-8

Filtration of Data Using Labels 6-9

Use of Numeric Label Tags in WHERE Clauses 6-9

Ordering Labeled Data Rows 6-10

Ordering by Character Representation of Label 6-10

Determination of the Upper and Lower Bounds of Labels 6-10

Finding Least Upper Bound with LEAST_UBOUND 6-11

Finding Greatest Lower Bound with GREATEST_LBOUND 6-12

Merging Labels with the MERGE_LABEL Function 6-12

Inserting Labeled Data 6-14

About Inserting Labeled Data 6-14

Inserting Labels Using CHAR_TO_LABEL 6-15

Inserting Labels Using Numeric Label Tag Values 6-15

Inserting Data Without Specifying a Label 6-15

Inserting Data When the Policy Label Column Is Hidden 6-16

Inserting Labels Using TO_DATA_LABEL 6-16

Changing Session and Row Labels 6-17

7 Oracle Label Security Using Oracle Internet Directory

About Label Management on Oracle Internet Directory 7-2

Configuring Oracle Internet Directory-Enabled Label Security 7-6

About Configuring Oracle Internet Directory-Enabled Label Security 7-6

Granting Permissions for Configuring OID-Enabled Oracle Label Security 7-7

Registering a Database and Configuring OID-Enabled Oracle Label Security 7-7

Step 1: Configure Your Oracle Home for Directory Usage 7-8

Step 2: Configure Oracle Internet Directory for Oracle Label Security 7-8

Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label
Security 7-9

Step 3: Set the DIP Password and Connect Data 7-9

Unregisteration of a Database with OID-Enabled Oracle Label Security 7-10

Oracle Label Security Profiles 7-10

Integrated Capabilities When Label Security Uses the Directory 7-11

Oracle Label Security Policy Attributes in Oracle Internet Directory 7-12

Subscription of Policies in Directory-Enabled Label Security 7-13

vii

Restrictions on New Data Label Creation 7-13

Administrator Duties for Oracle Internet Directory and Oracle Label Security 7-14

Bootstrapping Databases 7-14

Synchronizing the Database and Oracle Internet Directory 7-15

About Synchronizing the Database and Oracle Internet Directory 7-15

Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles 7-16

Modifying a Provisioning Profile 7-17

Changing the Database Connection Information for a Provisioning Profile 7-18

Configuring OID-Enabled Oracle Label Security with Oracle Data Guard 7-19

Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard 7-19

Step 2: After the Switchover, Update the OID Provisioning Profile 7-20

Security Roles and Permitted Actions 7-21

Permitted Tasks and Access Levels for Oracle Internet Directory 7-21

Restriction on Policy Creators for Directory-Enabled Oracle Label Security 7-22

Superseded PL/SQL Statements When OID Is Enabled with OLS 7-22

Oracle Label Security Procedures for Policy Administrators 7-23

Part III Administering an Oracle Label Security Application

8 Implementing Policy Enforcement Options and Labeling Functions

Oracle Label Security Policy Enforcement Options 8-1

About Policy Enforcement Options 8-2

Levels of Policy Enforcement Options 8-2

Categories of Policy Enforcement Options 8-3

Relationships of Policy Enforcement Options 8-4

How the HIDE Policy Column Option Works 8-6

How the Label Management Enforcement Options Work 8-6

About the Label Management Enforcement Options 8-6

LABEL_DEFAULT: Using the Session's Default Row Label 8-7

LABEL_UPDATE: Changing Data Labels 8-7

CHECK_CONTROL: Checking Data Labels 8-7

How the Access Control Enforcement Options Work 8-8

READ_CONTROL: Reading Data 8-8

WRITE_CONTROL: Writing Data 8-8

INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL 8-9

How the Overriding Enforcement Options Work 8-9

Guidelines for Using the Policy Enforcement Options 8-9

Exemptions from Oracle Label Security Policy Enforcement 8-10

Data Dictionary Views for Viewing Policy Options on Tables and Schemas 8-11

Labeling Functions 8-11

viii

Labeling Data Rows under Oracle Label Security 8-11

How Labeling Functions in Oracle Label Security Policies Works 8-12

Creating a Labeling Function for a Policy 8-13

Specifying a Labeling Function in a Policy 8-14

Inserting Labeled Data Using Policy Options and Labeling Functions 8-14

Outcome of Insert or Updates Operations on Data Based on Authorizations 8-15

Label Insertions When a Labeling Function Is Specified 8-15

Child Row Insertions in Tables with Declarative Referential Integrity 8-15

Updating Labeled Data Using Policy Options and Labeling Functions 8-15

Updating Labels Using CHAR_TO_LABEL 8-16

Evaluation of Enforcement Control Options and UPDATE 8-16

Updates to Labels When a Labeling Function Is Specified 8-17

Updates to Child Rows in Tables with Declarative Referential Integrity Enabled 8-17

Deletion of Labeled Data Using Policy Options and Labeling Functions 8-18

SQL Predicates with an Oracle Label Security Policy 8-18

Modifications to an Oracle Label Security Policy with a SQL Predicate 8-19

How Multiple SQL Predicates Affect Oracle Label Security Policies 8-19

9 Administering and Using Trusted Stored Program Units

About Trusted Stored Program Units 9-1

How a Trusted Stored Program Unit Runs 9-2

Example: Trusted Stored Program Unit 9-2

Creating and Compiling Trusted Stored Program Units 9-3

Creation of Trusted Stored Program Units 9-3

Privileges for Trusted Stored Program Units 9-3

Recompiling of Trusted Stored Program Units 9-4

Re-creation of Trusted Stored Program Units 9-4

Execution of Trusted Stored Program Units 9-4

How Setting and Returning Label Information Works 9-5

10

Auditing Under Oracle Label Security

About Oracle Label Security Auditing 10-1

Systemwide Auditing: AUDIT_TRAIL Initialization Parameter 10-2

How Oracle Label Security Auditing Is Enabled or Disabled 10-3

Oracle Label Security and Unified Auditing 10-3

Oracle Label Security Auditing Tips 10-3

Strategy for Setting SA_AUDIT_ADMIN Options 10-4

Auditing of Privileged Operations 10-4

ix

11

Using Oracle Label Security with a Distributed Database

About the Oracle Label Security Distributed Configuration 11-1

How Connections to a Remote Database Under Oracle Label Security Work 11-2

Session Labels and Row Labels in Remote Sessions 11-3

Labels in a Distributed Environment 11-4

Label Tags in a Distributed Environment 11-4

Numeric Form of Label Components in a Distributed Environment 11-5

Oracle Label Security Policies in a Distributed Environment 11-5

Replication with Oracle Label Security 11-6

About Replication Under Oracle Label Security 11-6

Replication Functionality Supported by Oracle Label Security 11-6

Row-Level Security Restriction on Replication Under Oracle Label Security 11-7

Contents of a Materialized View 11-7

How Materialized View Contents Are Determined 11-7

Complete Materialized Views 11-8

Partial Materialized Views 11-8

Requirements for Creating Materialized Views Under Oracle Label Security 11-8

Requirements for a Replication Administrator 11-9

Requirements for the Owner of the Materialized View 11-9

Requirements for Creating Partial Multilevel Materialized Views 11-10

Requirements for Creating Complete Multilevel Materialized Views 11-10

How to Refresh Materialized Views 11-10

12

Performing DBA Functions Under Oracle Label Security

Oracle Data Pump Export Use with Oracle Label Security 12-1

Full Database Export 12-1

Schema and Table-Level Export 12-2

Data Pump Import Use with Oracle Label Security 12-2

Full Database Import for the LBACSYS Schema Metadata 12-2

Schema and Table Level Import 12-3

Requirements for Import Under Oracle Label Security 12-3

Definition of Data Labels for Import 12-4

Imports of Labeled Data Without Installing Oracle Label Security 12-5

Imports of Unlabeled Data 12-5

Importing Tables with Hidden Columns 12-5

SQL*Loader Use with Oracle Label Security 12-5

Requirements for Using SQL*Loader Under Oracle Label Security 12-6

Oracle Label Security Input to SQL*Loader 12-6

Performance Tips for Oracle Label Security 12-7

Use of ANALYZE to Improve Oracle Label Security Performance 12-7

x

Creation of Indexes on the Policy Label Column 12-7

Label Tag Strategy Plan to Enhance Performance 12-8

Partitioned Data Based on Numeric Label Tags 12-9

Creation of Additional Databases After Installation 12-10

About the Creation of Additional Databases After Installation 12-10

Creating Additional Databases When the Label Security Schema Is in the Seed 12-11

Creating Additional Databases with the Custom Installation Option 12-11

Oracle Label Security Upgrades and Downgrades 12-11

About Oracle Label Security Upgrades and Downgrades 12-11

Oracle Label Security Upgrades 12-12

About Oracle Label Security Upgrades 12-12

Running the Oracle Label Security Preprocess Script Before Upgrading 12-13

Oracle Label Security Downgrades 12-13

About Oracle Label Security Downgrades 12-13

Running the Oracle Label Security Preprocess Script Before Downgrading 12-14

13

Releasability Using Inverse Groups

About Inverse Groups and Releasability 13-1

Comparison of Standard Groups and Inverse Groups 13-2

How Inverse Groups Work 13-3

Implementation of Inverse Groups with INVERSE_GROUP Enforcement 13-3

Inverse Groups and Label Components 13-4

Computed Labels with Inverse Groups 13-4

Computed Session Labels with Inverse Groups 13-5

Inverse Groups and Computed Max Read Groups and Max Write Groups 13-5

Inverse Groups and Hierarchical Structure 13-6

Inverse Groups and User Privileges 13-7

Algorithm for Read Access with Inverse Groups 13-7

Algorithm for Write Access with Inverse Groups 13-8

Algorithms for COMPACCESS Privilege with Inverse Groups 13-9

Session Labels and Inverse Groups 13-10

Initial Session and Row Labels for Standard or Inverse Groups 13-11

About the Initial Session and Row Labels for Standard or Inverse Groups 13-11

Standard Groups: Rules for Changing Initial Session/Row Labels 13-11

Inverse Groups: Rules for Changing Initial Session/Row Labels 13-11

Setting Current Session or Row Labels for Standard or Inverse Groups 13-12

About Setting Current Session or Row Labels for Standard or Inverse
Groups 13-12

Standard Groups: Rules for Changing Current Session/Row Labels 13-12

Inverse Groups: Rules for Changing Current Session/Row Labels 13-12

Examples of Session Labels and Inverse Groups 13-13

xi

Example: Simple Inverse Groups 13-13

Example: Complex Inverse Groups 13-14

Changes in Behavior of Procedures with Inverse Groups 13-15

SA_SYSDBA.CREATE_POLICY with Inverse Groups 13-16

SA_SYSDBA.ALTER_POLICY with Inverse Groups 13-16

SA_USER_ADMIN.ADD_GROUPS with Inverse Groups 13-16

SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups 13-17

SA_USER_ADMIN.SET_GROUPS with Inverse Groups 13-17

SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups 13-18

SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups 13-19

SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups 13-19

SA_COMPONENTS.CREATE_GROUP with Inverse Groups 13-20

SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups 13-20

SA_SESSION.SET_LABEL with Inverse Groups 13-20

SA_SESSION.SET_ROW_LABEL with Inverse Groups 13-20

LEAST_UBOUND with Inverse Groups 13-21

GREATEST_LBOUND with Inverse Groups 13-21

Dominance Rules for Labels with Inverse Groups 13-21

Part IV Appendixes

A Disabling and Enabling Oracle Label Security

When You Must Disable Oracle Label Security A-1

Disabling Oracle Label Security A-1

Enabling Oracle Label Security A-2

B Advanced Topics in Oracle Label Security

Analyzing the Relationships Between Labels B-1

About Dominant and Dominated Labels B-1

Non-Comparable Labels B-2

Using Dominance Functions B-2

About the Dominance Functions B-3

OLS_DOMINATES Standalone Function B-3

OLS_LABEL_DOMINATES Standalone Function B-4

OLS_STRICTLY_DOMINATES Standalone Function B-6

OLS_DOMINATED_BY Standalone Function B-6

OLS_STRICTLY_DOMINATED_BY Standalone Function B-7

SA_UTL.DOMINATES B-8

SA_UTL.STRICTLY_DOMINATES B-9

xii

SA_UTL.DOMINATED_BY B-10

SA_UTL.STRICTLY_DOMINATED_BY B-10

Queries for Audited Oracle Label Security Session Labels B-11

About Queries for Auditing Oracle Label Security Session Labels B-11

ORA_GET_AUDITED_LABEL Function B-12

Oracle Call Interface for Setting Session Labels B-12

About Using the Oracle Call Interface to Set Session Labels B-13

Using the Oracle Call Interface to Set Session Labels B-13

Example: Using Oracle Call Interface with the SYS_CONTEXT Function B-14

C Command-line Tools for Label Security Using Oracle Internet
Directory

About the Command-line Oracle Label Security Tools C-1

Oracle Label Security Commands in Categories C-1

olsadmintool Command Reference C-3

About the olsadmintool Commands C-5

olsadmintool addadmin C-5

olsadmintool addpolcreator C-5

olsadmintool adduser C-6

olsadmintool altercompartent C-6

olsadmintool altergroup C-6

olsadmintool altergroupparent C-7

olsadmintool alterlabel C-7

olsadmintool alterlevel C-8

olsadmintool alterpolicy C-8

olsadmintool audit C-8

olsadmintool createcompartment C-9

olsadmintool creategroup C-9

olsadmintool createlabel C-9

olsadmintool createlevel C-10

olsadmintool createprofile C-10

olsadmintool createpolicy C-11

olsamindtool describeprofile C-11

olsadmintool dropadmin C-11

olsadmintool dropcompartment C-12

olsadmintool dropgroup C-12

olsadmintool droplabel C-12

olsadmintool droplevel C-13

olsadmintool droppolicy C-13

olsadmintool dropprofile C-13

xiii

olsadmintool droppolcreator C-14

olsadmintool dropuser C-14

olsadmintool --help C-14

olsadmintool noaudit C-14

olsadmintool listprofile C-15

Relating Parameters to Commands for olsadmintool C-15

About Relating Parameters to Commands for olsadmintool C-15

Summaries of olsadmintool Parameters C-16

Examples of Using the olsadmintool Utility C-19

Example: Making Other Users Policy Creators C-19

Example: Creating Policies with Valid Options C-20

Example: Creating Policy Administrators C-20

Example: Creating Levels C-20

Example: Creating Compartments C-20

Example: Creating Groups C-21

Example: Creating Labels C-21

Example: Creating a Profile C-21

Example: Adding a User to a Profile C-21

Example: Adding Another User to a Profile C-22

Example: Setting Audit Options C-22

Results of These Examples C-22

D Oracle Label Security in an Oracle RAC Environment

Oracle Label Security Policy Functions in an Oracle RAC Environment D-1

Transparent Application Failover in Oracle Label Security D-2

E Oracle Label Security PL/SQL Packages

SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package E-1

About the SA_AUDIT_ADMIN PL/SQL Package E-2

SA_AUDIT_ADMIN.AUDIT E-2

SA_AUDIT_ADMIN.AUDIT_LABEL E-4

SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED E-5

SA_AUDIT_ADMIN.CREATE_VIEW E-5

SA_AUDIT_ADMIN.DROP_VIEW E-6

SA_AUDIT_ADMIN.NOAUDIT E-7

SA_AUDIT_ADMIN.NOAUDIT_LABEL E-8

SA_COMPONENTS Label Components PL/SQL Package E-9

About the SA_COMPONENTS PL/SQL Package E-10

SA_COMPONENTS.ALTER_COMPARTMENT E-10

xiv

SA_COMPONENTS.ALTER_GROUP E-11

SA_COMPONENTS.ALTER_GROUP_PARENT E-12

SA_COMPONENTS.ALTER_LEVEL E-13

SA_COMPONENTS.CREATE_COMPARTMENT E-14

SA_COMPONENTS.CREATE_GROUP E-15

SA_COMPONENTS.CREATE_LEVEL E-16

SA_COMPONENTS.DROP_COMPARTMENT E-17

SA_COMPONENTS.DROP_GROUP E-18

SA_COMPONENTS.DROP_LEVEL E-19

SA_LABEL_ADMIN Label Management PL/SQL Package E-20

About the SA_LABEL_ADMIN PL/SQL Package E-20

SA_LABEL_ADMIN.ALTER_LABEL E-20

SA_LABEL_ADMIN.CREATE_LABEL E-21

SA_LABEL_ADMIN.DROP_LABEL E-22

SA_POLICY_ADMIN Policy Administration PL/SQL Package E-23

About the SA_POLICY_ADMIN PL/SQL Package E-24

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY E-25

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY E-26

SA_POLICY_ADMIN.APPLY_TABLE_POLICY E-26

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY E-27

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY E-28

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY E-29

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY E-30

SA_POLICY_ADMIN.POLICY_SUBSCRIBE E-31

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE E-32

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY E-32

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY E-33

SA_SESSION Session Management PL/SQL Package E-34

About the SA_SESSION PL/SQL Package E-35

SA_SESSION.COMP_READ E-36

SA_SESSION.COMP_WRITE E-36

SA_SESSION.GROUP_READ E-37

SA_SESSION.GROUP_WRITE E-37

SA_SESSION.LABEL E-38

SA_SESSION.MAX_LEVEL E-39

SA_SESSION.MAX_READ_LABEL E-39

SA_SESSION.MAX_WRITE_LABEL E-40

SA_SESSION.MIN_LEVEL E-40

SA_SESSION.MIN_WRITE_LABEL E-41

SA_SESSION.PRIVS E-41

SA_SESSION.RESTORE_DEFAULT_LABELS E-42

xv

SA_SESSION.ROW_LABEL E-42

SA_SESSION.SET_LABEL E-43

SA_SESSION.SA_USER_NAME E-44

SA_SESSION.SAVE_DEFAULT_LABELS E-44

SA_SESSION.SET_ACCESS_PROFILE E-45

SA_SESSION.SET_ROW_LABEL E-46

SA_SYSDBA Policy Management PL/SQL Package E-47

About the SA_SYSDBA PL/SQL Package E-48

SA_SYSDBA.ALTER_POLICY E-48

SA_SYSDBA.CREATE_POLICY E-49

SA_SYSDBA.DISABLE_POLICY E-50

SA_SYSDBA.DROP_POLICY E-51

SA_SYSDBA.ENABLE_POLICY E-52

SA_USER_ADMIN PL/SQL Package E-52

About the SA_USER_ADMIN PL/SQL Package E-53

SA_USER_ADMIN.ADD_COMPARTMENTS E-54

SA_USER_ADMIN.ADD_GROUPS E-55

SA_USER_ADMIN.ALTER_COMPARTMENTS E-56

SA_USER_ADMIN.ALTER_GROUPS E-57

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS E-58

SA_USER_ADMIN.DROP_ALL_GROUPS E-59

SA_USER_ADMIN.DROP_COMPARTMENTS E-60

SA_USER_ADMIN.DROP_GROUPS E-60

SA_USER_ADMIN.DROP_USER_ACCESS E-61

SA_USER_ADMIN.SET_COMPARTMENTS E-62

SA_USER_ADMIN.SET_DEFAULT_LABEL E-63

SA_USER_ADMIN.SET_GROUPS E-64

SA_USER_ADMIN.SET_LEVELS E-65

SA_USER_ADMIN.SET_PROG_PRIVS E-66

SA_USER_ADMIN.SET_ROW_LABEL E-67

SA_USER_ADMIN.SET_USER_LABELS E-68

SA_USER_ADMIN.SET_USER_PRIVS E-70

SA_UTL PL/SQL Utility Functions and Procedures E-71

About the SA_UTL PL/SQL Package E-72

SA_UTL.CHECK_LABEL_CHANGE E-73

SA_UTL.CHECK_READ E-74

SA_UTL.CHECK_WRITE E-74

SA_UTL.DATA_LABEL E-75

SA_UTL.GREATEST_LBOUND E-76

SA_UTL.LEAST_UBOUND E-76

SA_UTL.NUMERIC_LABEL E-77

xvi

SA_UTL.NUMERIC_ROW_LABEL E-78

SA_UTL.SET_LABEL E-78

SA_UTL.SET_ROW_LABEL E-79

F Oracle Label Security Reference

Oracle Label Security Data Dictionary Tables and Views F-1

Oracle Database Data Dictionary Tables F-1

Oracle Label Security Data Dictionary Views F-1

ALL_SA_AUDIT_OPTIONS View F-4

ALL_SA_COMPARTMENTS F-5

ALL_SA_DATA_LABELS F-5

ALL_SA_GROUPS F-6

ALL_SA_LABELS F-6

ALL_SA_LEVELS F-7

ALL_SA_POLICIES F-7

ALL_SA_PROG_PRIVS F-8

ALL_SA_SCHEMA_POLICIES F-8

ALL_SA_TABLE_POLICIES F-9

ALL_SA_USERS F-10

ALL_SA_USER_LABELS F-11

ALL_SA_USER_LEVELS F-12

ALL_SA_USER_PRIVS F-12

CDB_OLS_STATUS F-12

DBA_SA_AUDIT_OPTIONS F-13

DBA_SA_COMPARTMENTS F-13

DBA_SA_DATA_LABELS F-13

DBA_SA_GROUPS F-14

DBA_SA_GROUP_HIERARCHY F-14

DBA_SA_LABELS F-15

DBA_SA_LEVELS F-15

DBA_SA_POLICIES F-15

DBA_SA_PROG_PRIVS F-16

DBA_SA_SCHEMA_POLICIES F-16

DBA_SA_TABLE_POLICIES F-16

DBA_SA_USERS F-16

DBA_SA_USER_COMPARTMENTS F-17

DBA_SA_USER_GROUPS F-17

DBA_SA_USER_LABELS F-18

DBA_SA_USER_LEVELS F-18

DBA_SA_USER_PRIVS F-18

xvii

DBA_OLS_STATUS F-18

USER_SA_SESSION F-19

Oracle Label Security User-Created Auditing View F-20

Restrictions in Oracle Label Security F-21

G Frequently Asked Questions about Oracle Label Security

Who Uses Oracle Label Security? G-1

How Can Oracle Label Security Address My Security Needs? G-2

Should I Use Oracle Label Security to Protect All My Tables? G-2

What Is the Difference Between Oracle Virtual Private Database and Oracle Label
Security? G-2

Can I Combine Oracle Virtual Private Database and Oracle Label Security? G-3

Can I Use Oracle Label Security with Oracle E-Business Suite? G-3

Can I Use Oracle Label Security with Oracle Database Vault? G-3

Does Oracle Label Security Provide Column-Level Access Control? G-4

Can I Base Secure Application Roles on Oracle Label Security? G-4

What Are Trusted Stored Program Units? G-4

Does VPD or OLS Add an Additional Column to the Protected Table? G-5

Why Should the Additional OLS Row Label Column Be Hidden? G-5

Index

xviii

Preface

Oracle Label Security enables access control to reach specific (labeled) rows of a
database. With Oracle Label Security in place, users with varying privilege levels
automatically have (or are excluded from) the right to see or alter labeled rows of data.

Oracle Label Security Administrator’s Guide describes how to use Oracle Label
Security to protect sensitive data. It explains the basic concepts behind label-based
security and provides examples to show how it is used.

• Audience

• Documentation Accessibility

• Related Documentation

• Conventions

Audience
Oracle Label Security Administrator’s Guide is intended for database administrators
(DBAs), application programmers, security administrators, system operators, and other
Oracle users who perform the following tasks:

• Analyze application security requirements

• Create label-based security policies

• Administer label-based security policies

• Use label-based security policies

To use this document, you need a working knowledge of SQL and Oracle
fundamentals. You should also be familiar with Oracle security features described in
Related Documentation. To use SQL*Loader, you must know how to use the file
management facilities of your operating system.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documentation
For more information, see these Oracle resources:

• Oracle Database Concepts

• Oracle Database Security Guide

• Oracle Database 2 Day + Security Guide

• Oracle Database Enterprise User Security Administrator's Guide

• Oracle Database Development Guide

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Utilities

• Oracle Database Performance Tuning Guide

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN) at

http://www.oracle.com/technetwork/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xx

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes in This Release for
Oracle Label Security Administrator's
Guide

This preface contains:

• Changes in Oracle Database 18c

• Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 18c
The following are changes in Oracle Label Security Administrator’s Guide for Oracle
Database 18c.

• LBACSYS User Created by Default as a Schema Only Account
Starting with this release, the LBACSYS user account is create as a schema only
account.

• Deprecated Columns in Oracle Label Security Views
Starting in this release, four Oracle Label Security data dictionary views have
deprecated columns.

LBACSYS User Created by Default as a Schema Only Account
Starting with this release, the LBACSYS user account is create as a schema only
account.

Users cannot login to a schema only account until an authentication method is
configured for the account by using the ALTER USER statement. LBACSYS is only used as a
login account initially to provision named Oracle Label Security administrators.
Because users do not need to log in to this account (except for initial provisioning),
LBACSYS should remain a schema only account so that default passwords do not need
to be changed or rotated.

This feature meets requirements for users who must be able to create schemas for
object ownership without actually allowing the schema owner to log in to the database.
Examples of environments that have this need include some Oracle schemas as well
as some customer schemas.

Related Topics

• Enabling the LBACSYS Oracle Label Security Account
After you complete the registration process, the default user account, LBACSYS, is
granted the LBAC_DBA database role, which provides the privileges necessary to
manage Oracle Label Security.

• Oracle Database Security Guide

xxi

Deprecated Columns in Oracle Label Security Views
Starting in this release, four Oracle Label Security data dictionary views have
deprecated columns.

Data Dictionary View Deprecated Column

ALL_SA_USER_LABELS LABELS

ALL_SA_USERS USER_LABELS

DBA_SA_USER_LABELS LABELS

DBA_SA_USERS USER_LABELS

The information in the LABELS and USER_LABELS columns is redundant. This information
is displayed in other columns in these data dictionary views.

Related Topics

• Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views,
which are exempt from any policy enforcement.

Changes in Oracle Database 12c Release 2 (12.2)
The following are changes in Oracle Label Security Administrator’s Guide for Oracle
Database 12c release 2 (12.2).

• New Features

New Features
This section contains:

• Oracle Label Security Support for Oracle Database Real Application Security
Users
Starting with this release, Oracle Label Security provides support for the Oracle
Database Real Application Security user account.

• Oracle Label Security Support for Data Guard Rolling Upgrades
Oracle Label Security now supports rolling upgrades for Oracle Data Guard.

• Enhancements for Oracle Label Security in a Multitenant Environment
Starting with this release, Oracle Label Security supports the use of Oracle Label
Security policies in application containers.

Oracle Label Security Support for Oracle Database Real Application Security
Users

Starting with this release, Oracle Label Security provides support for the Oracle
Database Real Application Security user account.

This feature enables Oracle Label Security policies to be enforced for Real Application
Security users by assigning labels and privileges to Real Application Security users.

Changes in This Release for Oracle Label Security Administrator's Guide

xxii

To configure the Oracle Database Real Application Security user for Oracle Label
Security, you can set the user_name parameter in the SA_USER_ADMIN.SET_USER_LABELS
procedure and in the SA_USER_ADMIN.SET_USER_PRIVS procedure.

Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

Oracle Label Security Support for Data Guard Rolling Upgrades
Oracle Label Security now supports rolling upgrades for Oracle Data Guard.

You can perform Oracle Data Guard rolling upgrades to new database releases or
patch sets in a rolling fashion, which reduces the planned downtime. The total
database downtime for a rolling upgrade is limited to the small amount of time that is
required to execute an Oracle Data Guard switchover operation.

See Also:

Oracle Data Guard Concepts and Administration for more information about
Oracle Data Guard rolling upgrades

Enhancements for Oracle Label Security in a Multitenant Environment
Starting with this release, Oracle Label Security supports the use of Oracle Label
Security policies in application containers.

In addition to application container support, there are changes in how you can use
Oracle Label Security in a CDB environment. As part of this enhancement, you can
query the CDB_OLS_STATUS to check the enablement status of Oracle Label Security in a
multitenant environment.

Related Topics

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

• CDB_OLS_STATUS
The CDB_OLS_STATUS data dictionary view shows the configuration status of Oracle
Label Security in the database in a multitenant environment.

Changes in This Release for Oracle Label Security Administrator's Guide

xxiii

Part I
Getting Started with Oracle Label Security

Part I introduces the terms, concepts, and relationships that constitute the basic
elements of Oracle Label Security.

• Introduction to Oracle Label Security
Oracle Label Security provides fine-grained access to individual table rows.

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

• Access Controls and Privileges
Oracle provides access controls and privileges that determine the type of access
users can have to labeled rows.

1
Introduction to Oracle Label Security

Oracle Label Security provides fine-grained access to individual table rows.

• About Oracle Label Security
Oracle Label Security controls the display of individual table rows using labels that
are assigned to individual table rows and application users.

• Benefits of Oracle Label Security
Oracle Label Security provides several benefits for controlling row level
management.

• Who Has Privileges to Use Oracle Label Security?
When you register Oracle Label Security with a database, the registration process
creates an administrative user named LBACSYS, who has the LBAC_DBA role.

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based
privileges.

• Components of Oracle Label Security
An Oracle Label Security policy has a standard set of components.

• Oracle Label Security Architecture
The Oracle Label Security works with Oracle Database authentication to perform
row level security.

• Oracle Label Security Administrative Interfaces
You can perform Oracle Label Security development and administrative tasks
using either of two interfaces.

• How Oracle Label Security Works with Other Oracle Products
You can integrate Oracle Label Security with Oracle Internet Directory (OID) and
in a multitenant environment.

About Oracle Label Security
Oracle Label Security controls the display of individual table rows using labels that are
assigned to individual table rows and application users.

Oracle Label Security is based on multi-level security (MLS) requirements that are
found in government and defense organizations. You can easily restrict sensitive
information to only authorized users. Oracle Label Security is based on Oracle Virtual
Private Database (VPD). However, unlike VPD, Oracle Label Security provides the
access mediation functions, data dictionary tables, and policy based architecture out of
the box, eliminating customized coding and providing a consistent label based access
control model that can be used by multiple applications. Oracle Label Security policies
can be applied to one or more application tables. Oracle Label Security works by
comparing the row label with a user's label authorizations. Oracle Label Security
software is installed by default, but not automatically enabled. You can easily enable
Oracle Label Security in either SQL*Plus or by using the Oracle Database
Configuration Assistant (DBCA). To manage Oracle Label Security, you can use either
Oracle Enterprise Manager Cloud Control or a set of PL/SQL packages and

1-1

standalone functions at the command line level. The default administrator for Oracle
Label Security is the user LBACSYS. To find information about Oracle Label Security
policies, you can query ALL_SA_*, DBA_SA_*, or USER_SA_* data dictionary views.

Benefits of Oracle Label Security
Oracle Label Security provides several benefits for controlling row level management.

• It enables row level data classification and provides out of the box access
mediation based on the data classification and the user label authorization or
security clearance.

• It enables you to assign label authorizations or security clearances to both
database users and application users.

• It provides both a graphical user interface and APIs for defining and storing data
classification labels and user label authorizations.

• It integrates with Oracle Database Vault and Oracle Advanced Security Data
Redaction, enabling security clearances to be use in both Database Vault
command rules and Data Redaction policy definitions.

Who Has Privileges to Use Oracle Label Security?
When you register Oracle Label Security with a database, the registration process
creates an administrative user named LBACSYS, who has the LBAC_DBA role.

You can grant this role to any database user who will be responsible for managing
Oracle Label Security policies. In addition, you can grant Oracle Label Security
administrators the EXECUTE privilege for the Oracle Label Security packages, and
privileges to manage individual Oracle Label Security policies.

Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based privileges.

These privileges are:

• Package-specific privileges: Most of the Oracle Label Security PL/SQL
packages, except for the public SA_SESSION and SA_UTL packages, require the
EXECUTE privilege.

• Role-based privileges: The Oracle Label Security-specific roles are:

– The policy_DBA role, which is created and granted to the user when he or she
creates a policy. For example, for a policy named ols_hr_pol, the role created
is named ols_hr_pol_DBA. This role adds a layer of granularity for access
control for your site's Oracle Label Security policies.

– The LBAC_DBA role, which provides the EXECUTE privilege for the SA_SYSDBA
package. This role is owned by the LBACSYS user account. The SA_SYSDBA
package enables the user to create, alter, enable, disable, and drop Oracle
Label Security policies.

You can use the Oracle Label Security package EXECUTE privilege grants along with
grants of the policy_DBA role to achieve additional separation of duty. The packages
are categorized based on different tasks. For example, you could grant the EXECUTE

Chapter 1
Benefits of Oracle Label Security

1-2

privilege on the SA_COMPONENTS and SA_LABEL_ADMIN packages to one user or role to
manage label definitions, and then grant EXECUTE on SA_USER_ADMIN to a different user or
role to manage user labels and privileges. Both of these users or roles must also be
granted the policy_DBA role for the policies for which they are responsible. In this way,
different users can be responsible for the management of different aspects of the
policies for which they are responsible. For example, user psmith could be responsible
for the label definitions of the ols_hr_pol policy, and user tjones could be responsible
for the label definitions of the ols_oe_pol policy. However, user psmith cannot modify
label definitions for the ols_oe_pol policy, nor can tjones modify the ols_hr_pol policy
label definitions.

Related Topics

• Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease
of administration.

Components of Oracle Label Security
An Oracle Label Security policy has a standard set of components.

These components are as follows:

• Labels. Labels for data and users, along with authorizations for users and
program units, govern access to specified protected objects. Labels are composed
of the following:

– Levels. Levels indicate the type of sensitivity that you want to assign to the
row, for example, SENSITIVE or HIGHLY SENSITIVE.

– Compartments. (Optional) Data can have the same level (Public, Confidential
and Secret), but can belong to different projects inside a company, for
example ACME Merger and IT Security. Compartments represent the projects
in this example, that help define more precise access controls. They are most
often used in government environments.

– Groups. (Optional) Groups identify organizations owning or accessing the
data, for example, UK, US, Asia, Europe. Groups are used both in commercial
and government environments, and frequently used in place of compartments
due to their flexibility.

• Policy. A policy is a name associated with these labels, rules, authorizations, and
protected tables.

For example, assume that a user has the SELECT privilege on an application table. As
illustrated in Figure 1-1, when the user runs a SELECT statement, Oracle Label Security
evaluates each row selected to determine whether the user can access using the
privileges and labels assigned to the user and the label on the row. You can configure
Oracle Label Security to perform security checks on UPDATE, DELETE, and INSERT
statements as well.

Chapter 1
Components of Oracle Label Security

1-3

Figure 1-1 Oracle Label Security Label-Based Security

Levels

Highly
Sensitive

Groups

+ +

Compartments

Confidential

Global

EuropeNATO

Sensitive GAMMABETAALPHA

Oracle Label Security Architecture
The Oracle Label Security works with Oracle Database authentication to perform row
level security.

Figure 1-2 shows how data is accessed under Oracle Label Security and the
sequence of label security checks.

Figure 1-2 Oracle Label Security Architecture

Oracle Database

Application

Oracle User / Session

Object Privilege

Access

Check DAC

SQL Request

USER

VPD SQL Modification

Data Record

Data Record
Oracle Label Security

Enforcement

Table

Data Record

Security Policy

Access Control
Tables

User Defined
VPD Policies

Label Security

Fine Grained

Access Mediation

In this scenario, the following actions take place:

1. An application user in an Oracle Database session sends a SQL request to query
a table.

2. Oracle Database checks the user's data access control (DAC) privileges for
performing a SELECT statement on the table.

3. If the user does have the appropriate privileges, then Oracle Database checks if
there are any Oracle Virtual Private Database (VPD) policies attached to the table.

4. Oracle Database then checks if there are any Oracle Label Security policies that
are assigned to the table.

Chapter 1
Oracle Label Security Architecture

1-4

5. Oracle Label Security then compares the labels that are assigned to individual
rows with the users' label authorizations, allowing or denying access. The session
label is based on label authorizations that are assigned to the user.

Oracle Label Security Administrative Interfaces
You can perform Oracle Label Security development and administrative tasks using
either of two interfaces.

• Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease
of administration.

• Oracle Label Security Demonstration File
The olsdemo.sql file provides a demonstration on using Oracle Label Security.

• Oracle Enterprise Manager Cloud Control
The Oracle Enterprise Manager Cloud Control Web interface can be used to
administer Oracle Label Security.

Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of
administration.

Table 1-1 lists the available Oracle Label Security administrative packages.

Table 1-1 Oracle Label Security Administrative Packages

Package Purpose

SA_SYSDBA To create, alter, and drop Oracle Label Security policies

See SA_SYSDBA Policy Management PL/SQL Package

SA_COMPONENTS To define the levels, compartments, and groups for the policy

See SA_COMPONENTS Label Components PL/SQL Package

SA_LABEL_ADMIN To perform standard label policy administrative functions, such as
creating labels

See SA_LABEL_ADMIN Label Management PL/SQL Package

SA_POLICY_ADMIN To apply policies to schemas and tables

See SA_POLICY_ADMIN Policy Administration PL/SQL Package

SA_USER_ADMIN To manage user authorizations for levels, compartments, and
groups, as well as program unit privileges. Also to administer user
privileges.

See SA_USER_ADMIN.SET_USER_PRIVS and
SA_USER_ADMIN.SET_PROG_PRIVS

SA_AUDIT_ADMIN To set options to audit administrative tasks and use of privileges

See SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL
Package

SA_SESSION To change labels during a during a session within the authorizations
set by the administrator

See SA_SESSION Session Management PL/SQL Package

Chapter 1
Oracle Label Security Administrative Interfaces

1-5

Table 1-1 (Cont.) Oracle Label Security Administrative Packages

Package Purpose

SA_UTL A set of utility functions designed for use within PL/SQL programs to
return information about the current values of the session security
attributes, as numeric label values

See SA_UTL PL/SQL Utility Functions and Procedures

Oracle Label Security Demonstration File
The olsdemo.sql file provides a demonstration on using Oracle Label Security.

This file show to create and develop an Oracle Label Security policy using the supplied
packages. You can install this script from the ORACLE_HOME/rdbms/demo directory.

Oracle Enterprise Manager Cloud Control
The Oracle Enterprise Manager Cloud Control Web interface can be used to
administer Oracle Label Security.

Figure 1-3 illustrates the Oracle Enterprise Manager interface.

Figure 1-3 Using Enterprise Manager to Configure Oracle Label Security Policies

Related Topics

• Logging in to Cloud Control or SQL*Plus for Oracle Label Security
After you complete the Oracle Label Security registration and enablement process,
you can begin using it.

• Getting Started with Oracle Label Security
Before using Oracle Label Security, you must register it with the database and
then enable the LBACSYS Oracle Label Security account.

Chapter 1
Oracle Label Security Administrative Interfaces

1-6

How Oracle Label Security Works with Other Oracle
Products

You can integrate Oracle Label Security with Oracle Internet Directory (OID) and in a
multitenant environment.

• Oracle Label Security Integration with Oracle Internet Directory
Sites that integrate their use of Oracle Label Security with Oracle Internet
Directory gain significant efficiencies of label security operation and administration.

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

Oracle Label Security Integration with Oracle Internet Directory
Sites that integrate their use of Oracle Label Security with Oracle Internet Directory
gain significant efficiencies of label security operation and administration.

You can create and manage directly policies and user authorization profiles in the
directory by means of the commands that are described in Command-line Tools for
Label Security Using Oracle Internet Directory . Changes are automatically propagated
to the associated directories.

A complete introduction to this integration is presented in Oracle Label Security Using
Oracle Internet Directory.

Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

In a multitenant environment, pluggable databases (PDBs) can be plugged in and out
of a multitenant container database (CDB) or an application container.

Note the following:

• Each PDB has its own Oracle Label Security metadata, such as policies, labels,
and user authorizations. The LBACSYS schema is a common user schema. See
Enabling the LBACSYS Oracle Label Security Account for more information about
the LBACSYS account.

• Before you plug a PDB into a CDB, if the database does not have Oracle Label
Security installed, then ensure that you have run the $ORACLE_HOME/rdbms/admin/
catols.sql script on the database. See Oracle Database Administrator’s Guide for
more information about creating CDBs.

• Because Oracle Label Security policies are scoped to individual PDBs, you can
create individual policies for each PDB. A policy defined for a PDB can be
enforced on the local tables and schema objects contained in the PDB.

• In a single CDB, there can be multiple PDBs, each configured with Oracle Label
Security.

• You cannot create Oracle Label Security policies in the CDB root or the application
root.

Chapter 1
How Oracle Label Security Works with Other Oracle Products

1-7

• You cannot enforce a local Oracle Label Security policy on a common CDB object
or a common application object.

• You cannot assign Oracle Label Security policy labels and privileges to common
users and application common users in a pluggable database.

• You cannot assign Oracle Label Security privileges to common procedures or
functions and application common procedures or functions in a pluggable
database.

• If you are configuring Oracle Label Security with Oracle Internet Directory, be
aware that the same configuration must be used throughout with all PDBs
contained in the CDB. You can determine if your database is configured for Oracle
Internet Directory by querying the DBA_OLS_STATUS data dictionary view as follows
from within any PDB:

SELECT STATUS FROM DBA_OLS_STATUS WHERE NAME = 'OLS_DIRECTORY_STATUS';

If it returns TRUE, then Oracle Label Security is Internet Directory-enabled.
Otherwise, it returns FALSE.

See Also:

• Oracle Database Security Guide for information on how the multitenant
architecture affects privileges

• Oracle Label Security Integration with Oracle Internet Directory for
information about Internet Directory-enabled Oracle Label Security

Chapter 1
How Oracle Label Security Works with Other Oracle Products

1-8

2
Understanding Data Labels and User
Labels

You should understand fundamental concepts of data labels and user labels.

• About Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive
data.

• About User Label and Privilege Management
To manage user labels and privileges, you must have the EXECUTE privilege for the
SA_USER_ADMIN package and the policy_DBA role.

• Label Components
You should understand the elements that are used in labels.

• Label Syntax and Type
After label components are defined, you can create data labels by combining
particular sets of level, compartments, and groups.

• How Data Labels and User Labels Work Together
A user can access data only within the range of his or her own label
authorizations.

• Administration of Labels
Oracle Label Security provides administrative interfaces to define and manage the
labels used in a database.

About Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive data.

Oracle Label Security controls data access based on the identity and label of the user,
and the sensitivity and label of the data. Label security adds protections beyond the
discretionary access controls that determine the operations users can perform upon
data in an object, such as a table or view.

Table 2-1 shows the three dimensions with which an Oracle Label Security policy
controls access to data.

Table 2-1 Oracle Label Security Data Dimensions

Data Dimension Explanation

Data Labels A data row label indicates the level and nature of the row's sensitivity
and specifies the additional criteria that a user must meet to gain
access to that row.

2-1

Table 2-1 (Cont.) Oracle Label Security Data Dimensions

Data Dimension Explanation

User Labels A user label specifies that user's sensitivity level plus any
compartments and groups that constrain the user's access to labeled
data. Each user is assigned a range of levels, compartments, and
groups, and each session can operate within that authorized range to
access labeled data within that range.

Policy Privileges Users can be given specific rights (privileges) to perform special
operations or to access data beyond their label authorizations.

Note that the discussion here concerns access to data. The particular type of access,
such as reading or writing the data, is covered in Access Controls and Privileges.

When an Oracle Label Security policy is applied to a database table, a column is
added to the table to contain each row's label. The administrator can choose to display
or hide this column.

About User Label and Privilege Management
To manage user labels and privileges, you must have the EXECUTE privilege for the
SA_USER_ADMIN package and the policy_DBA role.

The SA_USER_ADMIN package provides the functions to manage the Oracle Label
Security user security attributes. It contains several procedures to manage user labels
by component: that is, specifying user levels, compartments, and groups. For
convenience, there are additional procedures that accept character string
representations of full labels, rather than components. Note that the level,
compartment and group parameters use the short name defined for each component.

All of the label and privilege information is stored in Oracle Label Security data
dictionary tables. When a user connects to the database, his session labels are
established based on the information stored in the Oracle Label Security data
dictionary.

Note that a user can be authorized under multiple policies.

Related Topics

• SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based
privileges.

Label Components
You should understand the elements that are used in labels.

Chapter 2
About User Label and Privilege Management

2-2

• Label Component Definitions and Valid Characters
A sensitivity label is a single attribute with multiple components.

• Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

• Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data,
providing a finer level of granularity within a level.

• Group Components
Groups identify organizations owning or accessing the data, such as
EASTERN_REGION, WESTERN_REGION, WR_SALES.

• Industry Examples of Levels, Compartments, and Groups
Oracle Label Security levels, compartments, groups are designed to be
implemented in various industries.

Label Component Definitions and Valid Characters
A sensitivity label is a single attribute with multiple components.

All data labels must contain a level component, but the compartment and group
components are optional. An administrator must define the label components before
creating labels.

Note:

Although the administrator defines both long and short names for the label
components, only the short form of the name is displayed upon retrieval. When
users manipulate the labels, they use only the short form of the component
names. Examples of short forms are illustrated in component-specific example
tables below.

Table 2-2 Sensitivity Label Components

Component Description Examples

Level A single specification of the sensitivity of
labeled data within the ordered ranks
established

CONFIDENTIAL (1), SENSITIVE
(2), HIGHLY_SENSITIVE (3)

Compartments Zero or more categories associated with
the labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers for organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

Valid characters for specifying all label components include alphanumeric characters,
underscores, and spaces. (Leading and trailing spaces are ignored.)

The following figure illustrates the three dimensions in which data can be logically
classified, using levels, compartments, and groups.

Chapter 2
Label Components

2-3

Figure 2-1 Data Categorization with Levels, Compartments and Groups

Compartment C

Level 3

Level 2

Level 1

Compartment B
Compartment A

Group 1

Group 2

Group 3

Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

The more sensitive the information, the higher its level. The less sensitive the
information, the lower its level.

The more sensitive the information, the higher its level. The less sensitive the
information, the lower its level.

Every label must include one level. Oracle Label Security permits defining up to
10,000 levels in a policy. For each level, the Oracle Label Security administrator
defines a numeric form, a long character form, and the required short character form.

For example, you can define a set of levels such as the following'

Table 2-2 shows examples of levels.

Chapter 2
Label Components

2-4

Table 2-3 Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS

30 SENSITIVE S

20 CONFIDENTIAL C

10 PUBLIC P

Table 2-4 shows different ways of specifying levels.

Table 2-4 Forms of Specifying Levels

Form Explanation

Numeric form, also
called "tag"

The numeric form of the level can range from 0 to 9999. Sensitivity is
ranked by this numeric value, so you must assign higher numbers to
levels that are more sensitive, and lower numbers to levels that are
less sensitive. In Table 2-3, 40 (HIGHLY_SENSITIVE) is a higher level
than 30, 20, and 10.

Administrators should avoid using sequential numbers for the numeric
form of levels. A good strategy is to use even increments (such as 50
or 100) between levels. You can then insert additional levels between
two preexisting levels, at a later date.

Long form The long form of the level name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Although the administrator defines both long and short names for the level (and for
each of the other label components), only the short form of the name is displayed upon
retrieval of the records when the Oracle Label Security policy is in effect. When users
manipulate the labels, they use only the short form of the component names.

Other sets of levels that users commonly define include TOP_SECRET, SECRET,
CONFIDENTIAL, and UNCLASSIFIED or TRADE_SECRET, PROPRIETARY, COMPANY_CONFIDENTIAL,
PUBLIC_DOMAIN.

If only levels are used, a level 40 user (in this example) can access or alter any data
row whose level is 40 or less.

Note:

All levels and labels (including TOP_SECRET, SECRET, CONFIDENTIAL, and so on) in
this guide, are used as illustrations only.

Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data, providing
a finer level of granularity within a level.

Chapter 2
Label Components

2-5

Compartments associate the data with one or more security areas. All data related to a
particular project can be labeled with the same compartment. For example, you can
define a set of compartments like the following.

Table 2-5 shows examples of compartments.

Table 2-5 Compartment Example

Numeric Form Long Form Short Form

85 FINANCIAL FINCL

65 CHEMICAL CHEM

45 OPERATIONAL OP

Table 2-6 shows different ways of specifying compartments.

Table 2-6 Forms of Specifying Compartments

Form Explanation

Numeric form The numeric form can range from 0 to 9999. It is unrelated to the
numbers used for the levels. The numeric form of the compartment
does not indicate greater or less sensitivity. Instead, it controls the
display order of the short form compartment name in the label
character string. For example, assume a label is created that has all
three compartments listed in Table 2-5, and a level of SENSITIVE.
When this label is displayed in string format, it looks like this:

S:OP,CHEM,FINCL

meaning SENSITIVE: OPERATIONAL, CHEMICAL, FINANCIAL

The display order follows the order of the numbers assigned to the
compartments: 45 is lower than 65, and 65 is lower than 85. By
contrast, if the number assigned to the FINCL compartment were 5, the
character string format of the label would look like this:

S:FINCL,OP,CHEM

Long form The long form of the compartment name scan have up to 80
characters.

Short form The short form can contain up to 30 characters.

Compartments are optional. A label can contain zero or more compartments. Oracle
Label Security permits defining up to 10,000 compartments.

Not all labels need to have compartments. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE level
that does contain compartments.

When you analyze the sensitivity of data, you may find that some compartments are
only useful at specific levels.

Figure 2-2 shows how compartments can be used to categorize data.

Chapter 2
Label Components

2-6

Figure 2-2 Label Matrix

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_SENSITIVE (40).
The label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of 40 with the two named
compartments. Compartment FINCL is not more sensitive than CHEM, nor is CHEM more
sensitive than FINCL. Note also that some data in the protected table may not belong to
any compartment.

If compartments are specified, then a user whose level would normally permit access
to a row's data will nevertheless be prevented from such access unless the user's
label also contains all the compartments appearing in that row's label.

Group Components
Groups identify organizations owning or accessing the data, such as EASTERN_REGION,
WESTERN_REGION, WR_SALES.

All data pertaining to a certain department can have that department's group in the
label. Groups are useful for the controlled dissemination of data and for timely reaction
to organizational change. When a company reorganizes, data access can change right
along with the reorganization.

Groups are hierarchical. You can label data based upon your organizational
infrastructure. A group can thus be associated with a parent group.

Figure 2-3 shows how you can define a set of groups corresponding to the following
organizational hierarchy.

Figure 2-3 Group Example

WESTERN_REGION

WR_HUMAN_

RESOURCES
WR_SALES WR_FINANCE

WR_ACCOUNTS_

RECEIVABLE

WR_ACCOUNTS_

PAYABLE

Chapter 2
Label Components

2-7

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_HUMAN_RESOURCES, and
WR_FINANCE. The WR_FINANCE subgroup is subdivided into WR_ACCOUNTS_RECEIVABLE and
WR_ACCOUNTS_PAYABLE.

Table 2-7 shows how the organizational structure in this example can be expressed in
the form of Oracle Label Security groups. Notice that the numeric form assigned to the
groups affects display order only. The administrator specifies the hierarchy (that is, the
parent/child relationships) separately.

Table 2-7 Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR

1100 WR_SALES WR_SAL WR

1200 WR_HUMAN_RESOURCES WR_HR WR

1300 WR_FINANCE WR_FIN WR

1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN

1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

Table 2-8 shows different ways of specifying groups.

Table 2-8 Forms of Specifying Groups

Form Explanation

Numeric form The numeric form of the group can range from 0 to 9999, and it
must be unique for each policy.

The numeric form does not indicate any kind of ranking. It does
not indicate a parent-child relationship, or greater or less
sensitivity. It only controls the display order of the short form
group name in the label character string.

For example, assume that a label is created that has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as listed in Table 2-7.
When displayed in string format, the label looks like this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before 1200.

Long form The long form of the group name can contain up to 80
characters.

Short form The short form can contain up to 30 characters.

Groups are optional; a label can contain zero or more groups. Oracle Label Security
permits defining up to 10,000 groups.

All labels need not have groups. When you analyze the sensitivity of data, you may
find that some groups are only used at specific levels. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a SENSITIVE label that
does contain groups.

Chapter 2
Label Components

2-8

Related Topics

• Releasability Using Inverse Groups
Oracle Label Security can implement the releasability using inverse groups.

Industry Examples of Levels, Compartments, and Groups
Oracle Label Security levels, compartments, groups are designed to be implemented
in various industries.

Table 2-9 illustrates the flexibility of Oracle Label Security levels, compartments, and
groups, by listing typical ways in which they can be implemented in various industries.

Table 2-9 Typical Levels, Compartments, and Groups, by Industry

Industry Levels Compartments Groups

Business to Business TRADE_SECRET

PROPRIETARY

COMPANY_CONFIDENTIAL

PUBLIC

MARKETING

FINANCIAL

SALES

PERSONNEL

AJAX_CORP

BILTWELL_CO

ACME_INC

ERSATZ_LTD

Financial Services ACQUISITIONS

CORPORATE

CLIENT

OPERATIONS

INSURANCE

EQUITIES

TRUSTS

COMMERCIAL_LOANS

CONSUMER_LOANS

CLIENT

TRUSTEE

BENEFICIARY

MANAGEMENT

STAFF

Judicial NATIONAL_SECURITY

SENSITIVE

PUBLIC

CIVIL

CRIMINAL

ADMINISTRATION

DEFENSE

PROSECUTION

COURT

Health Care PRIMARY_PHYSICIAN

PATIENT_CONFIDENTIAL

PATIENT_RELEASE

PHARMACEUTICAL

INFECTIOUS_DISEASES

CDC

RESEARCH

NURSING_STAFF

HOSPITAL_STAFF

Defense TOP_SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

ALPHA

DELTA

SIGMA

UK

NATO

SPAIN

Label Syntax and Type
After label components are defined, you can create data labels by combining particular
sets of level, compartments, and groups.

You can use the Oracle Enterprise Manager graphical user interface or a command
line procedure. Character string representations of labels use the following syntax:

LEVEL:COMPARTMENT1,...,COMPARTMENTn:GROUP1,...,GROUPn

The text string specifying the label can have a maximum of 4,000 characters, including
alphanumeric characters, spaces, and underscores. The labels are case-insensitive.

Chapter 2
Label Syntax and Type

2-9

You can enter them in uppercase, lowercase, or mixed case, but the string is stored in
the data dictionary and displayed in uppercase. A colon is used as the delimiter
between components. It is not necessary to enter trailing delimiters in this syntax.

For example, you can create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL
SENSITIVE::WESTERN_REGION

When a valid data label is created, two additional things occur:

• The label is automatically designated as a valid data label. This functionality limits
the labels that can be assigned to data. Oracle Label Security can also create
valid data labels dynamically at run time, from those that are predefined in Oracle
Internet Directory. Most users, however, prefer to create the labels manually in
order to limit data label proliferation.

• A numeric label tag is associated with the text string representing the label. It is
this label tag, rather than the text string, that is stored in the policy label column of
the protected table.

Note:

For Oracle Label Security installations that do not use Oracle Internet
Directory, dynamic creation of valid data labels uses the TO_DATA_LABEL
function. Its usage should be tightly controlled.

Related Topics

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

• How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created
and filled.

• Label Tags
You can create label tags, either manually or automatically generating them, that
define the label components.

How Data Labels and User Labels Work Together
A user can access data only within the range of his or her own label authorizations.

A user has the following:

• Maximum and minimum levels

• A set of authorized compartments

• A set of authorized groups (and, implicitly, authorization for any subgroups)

For example, if a user is assigned a maximum level of SENSITIVE, then the user
potentially has access to SENSITIVE, CONFIDENTIAL, and UNCLASSIFIED data. The user has
no access to HIGHLY_SENSITIVE data.

Chapter 2
How Data Labels and User Labels Work Together

2-10

Figure 2-4 shows how data labels and user labels work together to provide access
control in Oracle Label Security. While data labels are discrete, user labels are
inclusive. Depending upon authorized compartments and groups, a user can
potentially access data corresponding to all levels within his or her range.

Figure 2-4 Example: Data Labels and User Labels

User 1

User 2

User Session Label

S:CHEM,FIN:WRRow 1

HS:FIN:WR_SALRow 2

U:FINRow 3

C:FIN:WR_SAL

 = HIGHLY_SENSITIVEHS
 = SENSITIVES
 = CONFIDENTIALC
 = UNCLASSIFIEDU

Row 4

Data Label

HS:FIN:WR

S:FIN:WR_SAL

As shown in the figure, User 1 can access the rows 2, 3, and 4 because her maximum
level is HS. She has access to the FIN compartment, and her access to group WR
hierarchically includes group WR_SAL. She cannot access row 1 because she does
not have the CHEM compartment. (A user must have authorization for all compartments
in a row's data label to be able to access that row.)

User 2 can access rows 3 and 4. His maximum level is S, which is less than HS in row
2. Although he has access to the FIN compartment, he only has authorization for group
WR_SAL. So, he cannot access row 1.

Figure 2-5 shows how data pertaining to an organizational hierarchy fits into data
levels and compartments.

Chapter 2
How Data Labels and User Labels Work Together

2-11

Figure 2-5 How Label Components Interrelate

UNITED_STATES

CENTRAL_REGIONEASTERN_REGION WESTERN_REGION

NEVADA

Financial OperationalChemical

 600

SensitiveLevels

Public

Highly Sensitive

CALIFORNIA

Compartments

Groups

For example, the UNITED_STATES group includes three subgroups: EASTERN_REGION,
CENTRAL_REGION, and WESTERN_REGION. The WESTERN_REGION subgroup is further subdivided
into CALIFORNIA and NEVADA. For each group and subgroup, there may be data
belonging to some of the valid compartments and levels within the database. So, there
may be SENSITIVE data that is FINANCIAL, within the CALIFORNIA subgroup.

Note that data is generally labeled with a single group whereas users' labels form a
hierarchy. If users have a particular group, then that group may implicitly include child
groups. This way a user associated with the UNITED_STATES group has access to all
data, but a user associated with CALIFORNIA would have access to data pertaining to
only that subgroup.

Administration of Labels
Oracle Label Security provides administrative interfaces to define and manage the
labels used in a database.

You define labels in Oracle Database using Oracle Label Security packages or by
using Oracle Enterprise Manager. Initially, an administrator must define the levels,
compartments, and groups that compose the labels, and then, the user can define the
set of valid data labels for the contents of the database.

Chapter 2
Administration of Labels

2-12

An administrator can apply a policy to individual tables in the database or to entire
application schemas. Finally, the administrator assigns to each database user the
label components (and privileges, if needed) required for the user's job function.

Chapter 2
Administration of Labels

2-13

3
Access Controls and Privileges

Oracle provides access controls and privileges that determine the type of access users
can have to labeled rows.

• Access Mediation
To access data protected by an Oracle Label Security policy, a user must have
authorizations based on the labels defined for the policy.

• How the Session Label and Row Label Work
It is important to understand session labels and row labels.

• How User Authorizations Work
Oracle Label Security provides authorizations set by the Oracle Label Security
administrator and authorizations set by computed session labels.

• Evaluation of Labels for Access Mediation
Oracle Label Security evaluates labels by comparing the user’s label components
to the row’s label components.

• Oracle Label Security Privileges
Oracle Label Security provides a set of database and row label privileges.

• Working with Multiple Oracle Label Security Policies
You can use multiple Oracle Label Security policies in both a single database
environments and in a distributed environments.

Related Topics

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

Access Mediation
To access data protected by an Oracle Label Security policy, a user must have
authorizations based on the labels defined for the policy.

Figure 3-1 illustrates the relationships between users, data, and labels.

• Data labels specify the sensitivity of data rows.

• User labels provide the appropriate authorizations to users.

• Access mediation between users and rows of data depends on users' labels.

3-1

Figure 3-1 Relationships Between Users, Data, and Labels

Data Sensitivity

Users

DataLabels

U
se

r
A

u
th

o
ri
za

ti
o
n
s A

ccess M
ed

iatio
n

Note:

Oracle Label Security enforcement options affect how access controls apply to
tables and schemas. This chapter assumes that all policy enforcement options
are in effect.

Related Topics

• Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

How the Session Label and Row Label Work
It is important to understand session labels and row labels.

• The Session Label
Each Oracle Label Security user has authorizations that include special
components.

• The Row Label
When a user writes data without specifying its label, a row label is assigned
automatically, using the user's session label.

• Session Label Example
The session label and the row label can fall anywhere within the range of the
user's level, compartment, and group authorizations.

Chapter 3
How the Session Label and Row Label Work

3-2

The Session Label
Each Oracle Label Security user has authorizations that include special components.

• A maximum and minimum level

• A set of authorized compartments

• A set of authorized groups

• For each compartment and group, a specification of read-only access, or read/
write access

The administrator also specifies the user's initial session label when setting up these
authorizations for the user.

The session label is the particular combination of level, compartments, and groups at
which a user works at any given time. The user can change the session label to any
combination of components for which the user is authorized.

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

The Row Label
When a user writes data without specifying its label, a row label is assigned
automatically, using the user's session label.

However, the user can set the label for the written row, within certain restrictions on
the components of the label he specifies. The level of this label can be set to any level
within the range specified by the administrator. For example, it can be set to the level
of the user's current session label down to the user's minimum level. However, the
compartments and groups for this row's new label are more restricted. The new label
can include only those compartments and groups contained in the current session
label and, among those, only the ones for which the user has write access.

When the administrator sets up the user authorizations, he or she also specifies an
initial default row label.

See Also:

• SA_USER_ADMIN PL/SQL Package

• SA_SESSION Session Management PL/SQL Package

Session Label Example
The session label and the row label can fall anywhere within the range of the user's
level, compartment, and group authorizations.

In Figure 3-2, the user's maximum level is SENSITIVE and the minimum level is
UNCLASSIFIED. However, his default session label is C:FIN,OP:WR. In this example, the

Chapter 3
How the Session Label and Row Label Work

3-3

administrator has set the user's session label so that the user connects to the
database at the CONFIDENTIAL level.

Similarly, although the user is authorized for compartments FIN and OP, and group WR,
the administrator could set the session label so that the user connects with only
compartment FIN and group WR.

Figure 3-2 User Session Label

Data

UNCLASSIFIED :FIN

UNCLASSIFIED :FIN

SENSITIVE :FIN :HR

CONFIDENTIAL :OP :WR

 TOP SECRET :OP :WR

Data Label

 UNCLASSIFIED :WR:CHEM

Default Session Label
C:FIN,OP:WR

Levels

Compartments

Groups

Related Topics

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a user
and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access,
default label indicator, and row label indicator for the specified compartments.

How User Authorizations Work
Oracle Label Security provides authorizations set by the Oracle Label Security
administrator and authorizations set by computed session labels.

Chapter 3
How User Authorizations Work

3-4

• Authorizations Set by the Administrator
The administrator explicitly sets authorizations for levels, compartments, and
groups.

• Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the
value of the session label.

Authorizations Set by the Administrator
The administrator explicitly sets authorizations for levels, compartments, and groups.

• Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label
Security policy.

• Authorized Compartments
The administrator specifies the list of compartments that a user can place in their
session label.

• Authorized Groups
You must specify a list of groups that a user can place in a session label and grant
write access for each group.

Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label Security
policy.

Table 3-1 Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity that a user can access during
read and write operations

User Min Level The minimum ranking of sensitivity that a user can access during
write operations. The User Max Level must be equal to or greater
than the User Min Level.

User Default Level The level that is assumed by default when connecting to Oracle
Database

User Default Row Level The level that is used by default when inserting data into Oracle
Database

For example, in Oracle Enterprise Manager, the administrator might set the following
level authorizations for user Joe:

Type Short Name Long Name Description

Maximum HS HIGHLY_SENSITIVE User's highest level

Minimum P PUBLIC User's lowest level

Default C CONFIDENTIAL User's default level

Row C CONFIDENTIAL Row level on INSERT

Chapter 3
How User Authorizations Work

3-5

Authorized Compartments
The administrator specifies the list of compartments that a user can place in their
session label.

Write access must be explicitly given for each compartment. A user cannot directly
insert, update, or delete a row that contains a compartment that she does not have
authorization to write.

For example, in Oracle Enterprise Manager, the administrator might set the following
compartment authorizations for user Joe:

Short Name Long Name WRITE DEFAULT ROW

CHEM CHEMICAL YES YES NO

FINCL FINANCIAL YES YES NO

OP OPERATIONAL YES YES YES

Figure 3-3 Setting Up Authorized Compartments In Enterprise Manager

In Figure 3-3, the row designation indicates whether the compartment should be used
as part of the default row label for newly inserted data. Note also that the policy option
must be in effect for this setting to be valid.

Authorized Groups
You must specify a list of groups that a user can place in a session label and grant
write access for each group.

For example, in Oracle Enterprise Manager, the administrator might set the following
group authorizations:

Short Name Long Name WRITE DEFAULT ROW Parent

WR_HR WR_HUMAN_RESOURCES YES YES YES WR

WR_AP WR_ACCOUNTS_PAYABLE YES YES NO WR_FIN

WR_AR WR_ACCOUNTS_RECEIVABLE YES YES NO WR_FIN

Chapter 3
How User Authorizations Work

3-6

Figure 3-4 Setting Up Authorized Groups in Enterprise Manager

In this figure, the row designation indicates whether the group should be used as part
of the default row label for newly inserted data. Note also that the LABEL_DEFAULT policy
option must be in effect for this setting to be valid.

Related Topics

• LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated
row uses its original label.

Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the value
of the session label.

These include:

Table 3-2 Computed Session Labels

Computed Label Definition

Maximum Read Label The user's maximum level combined with any combination of
compartments and groups for which the user is authorized.

Maximum Write Label The user's maximum level combined with the compartments and
groups for which the user has been granted write access.

Minimum Write Label The user's minimum level.

Default Read Label The single default level combined with compartments and groups
that have been designated as default for the user.

Default Write Label A subset of the default read label, containing the compartments
and groups to which the user has been granted write access. The
level component is equal to the level default in the read label.
This label is automatically derived from the read label based on
the user's write authorizations.

Default Row Label The combination of components between the user's minimum
write label and the maximum write label, which has been
designated as the default value for the data label for inserted
data.

Chapter 3
How User Authorizations Work

3-7

Related Topics

• Computed Labels with Inverse Groups
Inverse groups affect computed label values.

Evaluation of Labels for Access Mediation
Oracle Label Security evaluates labels by comparing the user’s label components to
the row’s label components.

This way, the Oracle Label Security policy can determine whether the user can access
the data. This enables Oracle Label Security to evaluate whether the user is
authorized to perform the requested operation on the data in the row.

• About Read and Write Access
Although data labels are stored in a column within data records, information about
user authorizations is stored in relational tables.

• How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

• How the Oracle Label Security Algorithm for Write Access Works
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines the
ability to insert, update, or delete data in a row.

About Read and Write Access
Although data labels are stored in a column within data records, information about
user authorizations is stored in relational tables.

When a user logs on, the tables are used to dynamically generate user labels for use
during the session.

• Difference Between Read and Write Operations
Two fundamental types of access mediation on Data Manipulation language
(DML) operations exist within protected tables: read access and write access.

• Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user's assigned groups include all
subgroups that are subordinate to the group to which the user belongs.

Difference Between Read and Write Operations
Two fundamental types of access mediation on Data Manipulation language (DML)
operations exist within protected tables: read access and write access.

The user has a maximum authorization for the data he or she can read; the user's
write authorization is a subset of that. The minimum write level controls the user's
ability to disseminate data by lowering its sensitivity. The user cannot write data with a
level lower than the minimum level the administrator assigned to this user.

In addition, there are separate lists of compartments and groups for which the user is
authorized; that is, for which the user has at least read access. An access flag
indicates whether the user can also write to individual compartments or groups.

Chapter 3
Evaluation of Labels for Access Mediation

3-8

Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user's assigned groups include all
subgroups that are subordinate to the group to which the user belongs.

In this case, the user's read/write authorizations on a parent group flow down to all the
subgroups.

Consider the parent group WESTERN_REGION, with three subgroups as illustrated in
Figure 3-5. If the user has read access to WESTERN_REGION, then the read access is also
granted to the three subgroups. The administrator can give the user write access to
subgroup WR_FINANCE, without granting write access to the WESTERN_REGION parent
group (or to the other subgroups). On the other hand, if the user has read/write access
on WESTERN_REGION, then read/write access is also granted on all of the subgroups
subordinate to it in the tree.

Write authorization on a group does not give a user write authorization on the parent
group. If a user has read-only access to WESTERN_REGION and WR_FINANCE, then the
administrator can grant write access to WR_ACCOUNTS_RECEIVABLE, without affecting the
read-only access to the higher-level groups.

Figure 3-5 Subgroup Inheritance of Read/Write Access

WESTERN_REGION

WR_HUMAN_
RESOURCES

WR_SALES WR_FINANCE

WR_ACCOUNTS_
RECEIVABLE

WR_ACCOUNTS_
PAYABLE

Read

Read

Read / Write Read / Write

Read / WriteRead

Administrator grants
user write access
to WR_FINANCE

Related Topics

• How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the
needs of Oracle Label Security.

How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

The following rules are used, in the sequence listed, to determine a user's read access
to a row of data:

Chapter 3
Evaluation of Labels for Access Mediation

3-9

1. The user's level must be greater than or equal to the level of the data.

2. The user's label must include at least one of the groups that belong to the data (or
the parent group of one such subgroup).

3. The user's label must include all the compartments that belong to the data.

If the user's label passes these tests, then it is said to dominate the row's label.

Note that there is no notion of read or write access connected with levels. This is
because the administrator specifies a range of levels (minimum to maximum) within
which a user can potentially read and write. At any time, the user can read all data
equal to or less than the current session level. No privileges (other than FULL) allow the
user to write below the minimum authorized level.

Figure 3-6 illustrates how the label evaluation process proceeds from levels to groups
to compartments. Note that if the data label is null or invalid, then the user is denied
access.

Figure 3-6 Label Evaluation Process for Read Access

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N
N

User
has at least one

group?

As a read access request comes in, Oracle Label Security evaluates each row to
determine the following:

1. Is the user's level equal to, or greater than, the level of the data?

2. If so, does the user have access to at least one of the groups present in the data
label?

3. If so, does the user have access to all the compartments present in the data label?
(That is, are the data's compartments a subset of the user's compartments?)

If the answer is no at any stage in this evaluation process, then Oracle Label Security
denies access to the row and moves on to evaluate the next row of data.

Oracle Label Security policies allow user sessions to read rows at their label and
below, which is called reading down. Sessions cannot read rows at labels that they do
not dominate.

For example, if you are logged in at SENSITIVE:ALPHA,BETA, you can read a row labeled
SENSITIVE:ALPHA because your label dominates that of the row. However, you cannot
read a row labeled SENSITIVE:ALPHA,GAMMA because your label does not dominate that of
the row.

Chapter 3
Evaluation of Labels for Access Mediation

3-10

Note that the user can gain access to the rows otherwise denied, if she or he has
special Oracle Label Security privileges.

Related Topics

• Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to
bypass certain parts of the policy.

• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or
DELETE operations to only those rows whose labels meet established policies.

How the Oracle Label Security Algorithm for Write Access Works
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines the
ability to insert, update, or delete data in a row.

WRITE_CONTROL enables you to control data access with ever finer granularity.
Granularity increases when compartments are added to levels. It increases again
when groups are added to compartments. Access control becomes even more fine
grained when you can manage the user's ability to write the data that he can read.

To determine whether a user can write a particular row of data, Oracle Label Security
evaluates the following rules, in the order given:

1. The level in the data label must be greater than or equal to the user's minimum
level and less than or equal to the user's session level.

2. When groups are present, the user's label must include at least one of the groups
with write access that appear in the data label (or the parent of one such
subgroup). In addition, the user's label must include all the compartments in the
data label.

3. When no groups are present, the user's label must have write access on all of the
compartments in the data label.

To state tests 2 and 3 another way:

• If the label has no groups, then the user must have write access on all the
compartments in the label in order to write the data.

• If the label does have groups and the user has write access to one of the groups,
she only needs read access to the compartments in order to write the data.

Just as with read operations, the label evaluation process proceeds from levels to
groups to compartments. Note that the user cannot write any data below the
authorized minimum level, nor above the current session level. The user can always
read below the minimum level.

Figure 3-7 illustrates how the process works with INSERT, UPDATE, and DELETE
operations. Note that if the data label is null or invalid, then the user is denied access.

Chapter 3
Evaluation of Labels for Access Mediation

3-11

Figure 3-7 Label Evaluation Process for Write Access

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?
User has all

compartments?

N NN N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write

access?

N

Y N

YN

N

As an access request comes in, Oracle Label Security evaluates each row to
determine the following:

1. Is the data's level equal to, or less than the level of the user?

2. Is the data's level equal to, or greater than the user's minimum level?

3. If the data's level falls within the foregoing bounds, then does the user have write
access to at least one of the groups present in the data label?

4. If so, does the user have access to all the compartments with at least read access
that are present in the data label?

5. If there are no groups but there are compartments, then does the user have write
access to all of the compartments?

If the answer is no at any stage in this evaluation process, then Oracle Label Security
denies access to the row, and moves on to evaluate the next row of data.

Consider a situation in which your session label is S:ALPHA,BETA but you have write
access to only compartment ALPHA. In this case, you can read a row with the label
S:ALPHA,BETA but you cannot update it.

In summary, write access is enforced on INSERT, UPDATE and DELETE operations upon the
data in the row.

In addition, each user may have an associated minimum level below which the user
cannot write. The user cannot update or delete any rows labeled with levels below the
minimum, and cannot insert a row with a row label containing a level less than the
minimum.

Chapter 3
Evaluation of Labels for Access Mediation

3-12

Related Topics

• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or
DELETE operations to only those rows whose labels meet established policies.

Oracle Label Security Privileges
Oracle Label Security provides a set of database and row label privileges.

• Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to
bypass certain parts of the policy.

• Special Access Privileges
A user's authorizations can be modified with any of four privileges.

• Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are
required to modify the label.

• System Privileges, Object Privileges, and Policy Privileges
Oracle Label Security privileges are different from the standard Oracle Database
system and object privileges.

• Access Mediation and Views
Prior to accessing data through a view, the users must have the appropriate
system and object privileges on the view.

• Access Mediation and Program Unit Execution
The privileges with which procedures that are owned by different users are
executed differently in Oracle Database and Oracle Label Security.

• Access Mediation and Policy Enforcement Options
An administrator can choose from among a set of policy enforcement options
when applying an Oracle Label Security policy to individual tables.

Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to bypass
certain parts of the policy.

Table 3-3 summarizes the full set of privileges that can be granted to users or trusted
stored program units. Each privilege is more fully discussed after the table.

Table 3-3 Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the policy

FULL Allows full read and write access to all data protected by
the policy

COMPACCESS Allows a session access to data authorized by the row's
compartments, independent of the row's groups

PROFILE_ACCESS Allows a session to change its labels and privileges to
those of a different user

Chapter 3
Oracle Label Security Privileges

3-13

Table 3-3 (Cont.) Oracle Label Security Privileges

Security Privilege Explanation

WRITEUP Allows users to set or raise only the level, within a row
label, up to the maximum level authorized for the user.
(Active only if LABEL_UPDATE is active.)

WRITEDOWN Allows users to set or lower the level, within a row label,
to any level equal to or greater than the minimum level
authorized for the user. (Active only if LABEL_UPDATE is
active.)

WRITEACROSS Allows a user to set or change groups and
compartments of a row label, but does not allow
changes to the level. (Active only if LABEL_UPDATE is
active.)

Special Access Privileges
A user's authorizations can be modified with any of four privileges.

• READ Privilege
A user with the READ privilege can read all data protected by the policy, regardless
of the authorizations or session label.

• FULL Privilege
The FULL privilege has the same effect and benefits as the READ privilege, with one
difference.

• COMPACCESS Privilege
The COMPACCESS privilege allows a user to access data based on the row label's
compartments, independent of the row label's groups.

• PROFILE_ACCESS Privilege
The PROFILE_ACCESS privilege allows a session to change its session labels and
session privileges to those of a different user.

READ Privilege
A user with the READ privilege can read all data protected by the policy, regardless of
the authorizations or session label.

The user does not even need to have label authorizations.

Note, in addition, that a user with READ privilege can write to any data rows for which he
or she has write access, based on any label authorizations.

Note:

Access mediation is still enforced on UPDATE, INSERT, and DELETE operations.

This privilege is useful for system administrators who need to export data but who
should not be allowed to change data. It is also useful for people who must run reports
and compile information but not change data. The READ privilege enables optimal

Chapter 3
Oracle Label Security Privileges

3-14

performance on SELECT statements, because the system behaves as though the Oracle
Label Security policy were not even present.

FULL Privilege
The FULL privilege has the same effect and benefits as the READ privilege, with one
difference.

A user with the FULL privilege can also write to all the data.

For a user with the FULL privilege, the READ and WRITE algorithms are not enforced.

Note that Oracle system and object authorizations are still enforced. For example, a
user must still have SELECT on the application table. The FULL authorization turns off the
access mediation check at the individual row level.

COMPACCESS Privilege
The COMPACCESS privilege allows a user to access data based on the row label's
compartments, independent of the row label's groups.

If a row label has no compartments, then access is determined by the group
authorizations. However, when compartments do exist and access to them is
authorized, then the group authorization is bypassed. This allows a privileged user
whose label matches all the compartments of the data to access any data in any
particular compartment, independent of what groups may own or otherwise be allowed
access to the data.

Figure 3-8 shows the label evaluation process for read access with the COMPACCESS
privilege. Note that if the data label is null or invalid, then the user is denied access.

Figure 3-8 Label Evaluation Process for Read Access with COMPACCESS Privilege

No
Access

 Access

Data
level =< user

level?

Data has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N

Y

N
N

User
has at least one

group?

Data has
compartments?

Figure 3-9 shows the label evaluation process for write access with COMPACCESS
privilege. Note that if the data label is null or invalid, then the user is denied access.

Chapter 3
Oracle Label Security Privileges

3-15

Figure 3-9 Label Evaluation Process for Write Access with COMPACCESS Privilege

No
Access

 Access

Data
level =< user

level?

Data
level => user min

level?

Data
has groups?

Data
has

compartments?

User
has at least one
group with Write

access?

User has all
compartments?

N N N

Y YYYYY

Data
has

compartments?

User
has all compartments

with Write

access?

Data has
compartments?

N

Y

N

Y

N

N

Y

N

N

PROFILE_ACCESS Privilege
The PROFILE_ACCESS privilege allows a session to change its session labels and session
privileges to those of a different user.

This is a very powerful privilege, because the user can potentially become a user with
FULL privileges. This privilege cannot be granted to a trusted stored program unit.

Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required to
modify the label.

Note that the LABEL_UPDATE enforcement option must be on for these label modification
privileges to be enforced. When a user updates a row label, the new label and old
label are compared, and the required privileges are determined.

The special row label privileges include:

• WRITEUP Privilege
The WRITEUP privilege enables the user to raise the level of data within a row,
without compromising the compartments or groups.

• WRITEDOWN Privilege
The WRITEDOWN privilege enables the user to lower the level of data within a row,
without compromising the compartments or groups.

Chapter 3
Oracle Label Security Privileges

3-16

• WRITEACROSS Privilege
The WRITEACROSS privilege allows the user to change the compartments and groups
of data, without altering its sensitivity level.

WRITEUP Privilege
The WRITEUP privilege enables the user to raise the level of data within a row, without
compromising the compartments or groups.

This privilege enables a user to raise the level up to his or her maximum authorized
level. You can find the privileges that users have by querying the
ALL_SA_USER_PRIVS data dictionary view.

For example, an authorized user can raise the level of a data row that has a level
lower than his own minimum level. If a row is UNCLASSIFIED and the user's maximum
level is SENSITIVE, then the row's level can be raised to SENSITIVE. It can be raised
above the current session level, but it cannot change the compartments.

WRITEDOWN Privilege
The WRITEDOWN privilege enables the user to lower the level of data within a row, without
compromising the compartments or groups.

The user can lower the level to any level equal to or greater than his or her minimum
authorized level. You can find the privileges that have been granted to a user by
querying the ALL_SA_USER_PRIVS data dictionary view.

WRITEACROSS Privilege
The WRITEACROSS privilege allows the user to change the compartments and groups of
data, without altering its sensitivity level.

This guarantees, for example, that SENSITIVE data remains at the SENSITIVE level, but at
the same time enables the data's dissemination to be managed.

It lets the user change compartments and groups to anything that is currently defined
as a valid compartment or group within the policy, while maintaining the level. With the
WRITEACROSS privilege, a user with read access to one group (or more) can write to a
different group without explicitly being given access to it.

You can find the privileges that have been granted to a user by querying the
ALL_SA_USER_PRIVS data dictionary view.

System Privileges, Object Privileges, and Policy Privileges
Oracle Label Security privileges are different from the standard Oracle Database
system and object privileges.

Table 3-4 Types of Privilege

Source Privileges Definition

Oracle Database System Privileges The right to run a particular type of SQL
statement

Oracle Database Object Privileges The right to access another user's object

Chapter 3
Oracle Label Security Privileges

3-17

Table 3-4 (Cont.) Types of Privilege

Source Privileges Definition

Oracle Label
Security

Policy Privileges The ability to bypass certain parts of the
label security policy

Oracle Database enforces the discretionary access control privileges that a user has
been granted. By default, a user has no privileges except those granted to the PUBLIC
user group. A user must explicitly be granted the appropriate privilege to perform an
operation.

For example, to read an object in Oracle Database, you must either be the object's
owner, or be granted the SELECT privilege on the object, or be granted the SELECT ANY
TABLE system privilege. Similarly, to update an object, you must either be the object's
owner, or be granted the UPDATE privilege on the object, or be granted the UPDATE ANY
TABLE privilege.

See Also:

Oracle Database Security Guide for more information about managing system
privileges and object privileges

Access Mediation and Views
Prior to accessing data through a view, the users must have the appropriate system
and object privileges on the view.

If the underlying table (on which the view is based) is protected by Oracle Label
Security, then the user of the view must have authorization from Oracle Label Security
to access specific rows of labeled data.

Access Mediation and Program Unit Execution
The privileges with which procedures that are owned by different users are executed
differently in Oracle Database and Oracle Label Security.

For example, In Oracle Database, if user1 executes a procedure that belongs to user2,
then the procedure runs with user2's system and object privileges. You can find the
privileges that have been granted to a user by querying the DBA_SYS_PRIVS data
dictionary view. However, any procedure executed by user1 runs with user1's own
Oracle Label Security labels and privileges. This is true even when user1 executes
stored program units owned by other users.

Figure 3-10 illustrates this process:

• Stored program units run with the DAC privileges of the procedure's owner (user2).

• In addition, stored program units accessing tables protected by Oracle Label
Security mediate access to data rows based on the label attached to the row, and
the Oracle Label Security labels and privileges of the invoker of the procedure
(user1).

Chapter 3
Oracle Label Security Privileges

3-18

Figure 3-10 Stored Program Unit Execution

LABEL

 User invokes stored

program unit

Stored Program Unit

Table accessed using stored
program unit's system and
object privileges

Row access mediated by user's
Oracle Label Security session
labels and privileges

Execute
privilege

Stored program units can become trusted when an administrator assigns them Oracle
Label Security privileges. A stored program unit can be run with its own autonomous
Oracle Label Security privileges rather than those of the user who calls it. For
example, if you possess no Oracle Label Security privileges in your own right but run a
stored program unit that has the WRITEDOWN privilege, then you can update labels. In this
case, the privileges used are those of the stored program unit, and not your own.

Trusted program units can encapsulate privileged operations in a controlled manner.
By using procedures, packages, and functions with assigned privileges, you may be
able to access data that your own labels and privileges would not authorize. For
example, to perform aggregate functions over all data in a table, not just the data
visible to you, you might use a trusted program set up by an administrator. This way
program units can thus perform operations on behalf of users, without the need to
grant privileges directly to users.

Related Topics

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

Access Mediation and Policy Enforcement Options
An administrator can choose from among a set of policy enforcement options when
applying an Oracle Label Security policy to individual tables.

These options enable enforcement to be tailored differently for each database table. In
addition to the access controls based on the labels, a SQL predicate can also be
associated with each table. The predicate can further define which rows in the table
are accessible to the user.

In cases where the label to be associated with a new or updated row should be
automatically computed, an administrator can specify a labeling function when
applying the policy. That function will thereafter always be invoked to provide the data

Chapter 3
Oracle Label Security Privileges

3-19

labels written under that policy, because active labeling functions take precedence
over any alternative means of supplying a label.

Except where noted, this guide assumes that all enforcement options are in effect.

Related Topics

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and
implement labeling functions.

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

Working with Multiple Oracle Label Security Policies
You can use multiple Oracle Label Security policies in both a single database
environments and in a distributed environments.

• Multiple Oracle Label Security Policies in a Single Database
Several Oracle Label Security policies can protect data in a single database.

• Multiple Oracle Label Security Policies in a Distributed Environment
In a distributed environment that uses Oracle Label Security, remote connections
are controlled by Oracle Label Security.

Multiple Oracle Label Security Policies in a Single Database
Several Oracle Label Security policies can protect data in a single database.

Each defined policy is associated with a set of labels used only by that policy. Data
labels are constrained by the set of defined labels for each policy.

Each policy may protect a different table, but multiple policies can also apply to a
single table. To access data, you must have label authorizations for all policies
protecting that data. To access any particular row, you must be authorized by all
policies protecting the table containing your desired rows. If you require privileges,
then you may need privileges for all of the policies affecting your work.

Multiple Oracle Label Security Policies in a Distributed Environment
In a distributed environment that uses Oracle Label Security, remote connections are
controlled by Oracle Label Security.

Related Topics

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security
in a distributed configuration.

Chapter 3
Working with Multiple Oracle Label Security Policies

3-20

Part II
Using Oracle Label Security Functionality

Part II explains how to work with Oracle Label Security functionality.

• Getting Started with Oracle Label Security
Before using Oracle Label Security, you must register it with the database and
then enable the LBACSYS Oracle Label Security account.

• Creating an Oracle Label Security Policy
An Oracle Label Security policy is a named set of commands that implements
Oracle Label Security.

• Working with Labeled Data
You can manage labeled data, view that data of security attributes for a session,
and change the value of session attributes.

• Oracle Label Security Using Oracle Internet Directory
You can use Oracle Label Security with Oracle Internet Directory.

4
Getting Started with Oracle Label Security

Before using Oracle Label Security, you must register it with the database and then
enable the LBACSYS Oracle Label Security account.

• Registering Oracle Label Security with an Oracle Database
You must register Oracle Label Security with the database in which you plan to
use it.

• Enabling the LBACSYS Oracle Label Security Account
After you complete the registration process, the default user account, LBACSYS, is
granted the LBAC_DBA database role, which provides the privileges necessary to
manage Oracle Label Security.

• Logging in to Cloud Control or SQL*Plus for Oracle Label Security
After you complete the Oracle Label Security registration and enablement process,
you can begin using it.

Registering Oracle Label Security with an Oracle Database
You must register Oracle Label Security with the database in which you plan to use it.

• About Registering Oracle Label Security
When you install Oracle Database, by default Oracle Label Security is not
enabled.

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS and CDB_OLS_STATUS data dictionary views to find
if Oracle Label Security has already been registered and enabled.

• Registering and Enabling Oracle Label Security from SQL*Plus
You can both register and enable Oracle Label Security from SQL*Plus.

• Registering and Enabling Oracle Label Security Using DBCA
You can both register and enable Oracle Label Security using Database
Configuration Assistant.

About Registering Oracle Label Security
When you install Oracle Database, by default Oracle Label Security is not enabled.

You must register Oracle Label Security with the database. Afterwards, you must
enable the default Oracle Label Security user account, LBACSYS. After you register
Oracle Label Security, you can disable and re-enable it when necessary.

If you are using a multitenant environment, then only register Oracle Label Security in
the pluggable databases (PDBs) in which you plan to create Oracle Label Security
policies. Because Oracle Label Security is not designed to protect data dictionary
objects, you cannot create policies in the root.

4-1

Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS and CDB_OLS_STATUS data dictionary views to find if
Oracle Label Security has already been registered and enabled.

1. Log into the database instance as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. If you are using a multitenant environment, then connect to the appropriate PDB.

For example, to connect to the PDB hrpdb:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

3. Run the appropriate query to find if Oracle Label Security has been registered
(configured) and enabled.

• If you want to find the Oracle Label Security status for a non-multitenant
database, or in a multitenant environment for the root only or an individual
PDB, then query DBA_OLS_STATUS. For example:

SELECT * FROM DBA_OLS_STATUS;

NAME STATUS DESCRIPTION
-------------------- ------- -------------------------------------
OLS_CONFIGURE_STATUS TRUE Determines if OLS is configured
OLS_DIRECTORY_STATUS FALSE Determines if OID is enabled with OLS
OLS_ENABLE_STATUS TRUE Determines if OLS is enabled

• If you want to find the Oracle Label Security status of all PDBs in a multitenant
environment, as a common user with administrative privileges, then query
CDB_OLS_STATUS. For example:

SELECT * FROM CDB_OLS_STATUS;

NAME STATUS DESCRIPTION
CON_ID
-------------------- ------- ------------------------------------ ------
OLS_DIRECTORY_STATUS FALSE Determines if OID is enabled with OLS 4
OLS_ENABLE_STATUS TRUE Determines if OLS is enabled 4
OLS_CONFIGURE_STATUS TRUE Determines if OLS is configured 4
OLS_DIRECTORY_STATUS FALSE Determines if OID is enabled with OLS 5
OLS_ENABLE_STATUS TRUE Determines if OLS is enabled 5
OLS_CONFIGURE_STATUS TRUE Determines if OLS is configured 5

Registering and Enabling Oracle Label Security from SQL*Plus
You can both register and enable Oracle Label Security from SQL*Plus.

1. Log into the database instance as user SYS with the SYSDBA administrative privilege.

For example:

Chapter 4
Registering Oracle Label Security with an Oracle Database

4-2

sqlplus sys as sysdba
Enter password: password

2. If you are using a multitenant environment, then connect to the appropriate PDB.

For example, to connect to the PDB hrpdb:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

3. Register and enable Oracle Label Security as follows.

EXEC LBACSYS.CONFIGURE_OLS; -- This procedure registers Oracle Label Security.
EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS; -- This procedure enables it.

4. Connect as user SYS with the SYSOPER privilege.

CONNECT SYS AS SYSOPER -- Or, CONNECT SYS@hrpdb AS SYSOPER
Enter password: password

5. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

Registering and Enabling Oracle Label Security Using DBCA
You can both register and enable Oracle Label Security using Database Configuration
Assistant.

1. Start Database Configuration Assistant (DBCA).

• UNIX: Run the following command:

$ORACLE_HOME/bin/dbca

• Windows: From the Start menu, click All Programs. Then click Oracle -
ORACLE_HOME, then Configuration and Migration Tools, and then
Database Configuration Assistant.

The Welcome screen appears.

2. Click Next.

The Operations screen appears.

3. Select Configure Database Options. Click Next.

The Database screen appears.

4. From the list, select the database where you need to configure and enable OLS.
Click Next.

The Database Content screen appears.

5. Select Oracle Label Security. Click Next.

The Connection Mode screen appears.

6. Select either Dedicated Server Mode or Shared Server Mode. Click Finish.

A dialog box is displayed informing you that the operation will require the database
to be restarted.

Chapter 4
Registering Oracle Label Security with an Oracle Database

4-3

7. Click OK.

A confirmation dialog box is displayed.

8. Click OK.

The DBCA progress screen is displayed.

9. After the operation is complete, you are prompted to perform another operation.
Click No to exit DBCA.

Enabling the LBACSYS Oracle Label Security Account
After you complete the registration process, the default user account, LBACSYS, is
granted the LBAC_DBA database role, which provides the privileges necessary to
manage Oracle Label Security.

By default, LBACSYS is created as a schema only account. It is a locked account with no
password.

1. Log into the database instance as a user who has been granted the ALTER USER
system privilege (for example, a named user who has been granted this privilege).

For example:

sqlplus sec_admin -- Or, sqlplus sec_admin@hrpdb for the hrpdb pluggable
database (PDB)
Enter password: password

If Oracle Database Vault is enabled, then log in as a user who has been granted
the DV_ACCTMGR role.

2. Enter this statement:

ALTER USER LBACSYS ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. See Oracle Database Security
Guide for the minimum requirements for creating passwords.

After you unlock user LBACSYS and provide a password, as a good practice, for day-to-
day use, grant the LBAC_DBA database role to trusted users who will administer Oracle
Label Security. Then, as a best security practice, use the ALTER statement to lock the
LBACSYS account back to schema only account. After the LBAC_DBA role has been
granted, then use the ALTER USER statement as follows:

ALTER USER LBACSYS NO AUTHENTICATION;

This way, the LBACSYS account is protected and does not require password
maintenance.

If you plan to use Enterprise Manager Cloud Control to administer Oracle Label
Security, then ensure that any users to whom you have granted the LBAC_DBA role also
have the SELECT ANY DICTIONARY privilege. By default, the LBACSYS account already has
this privilege.

Chapter 4
Enabling the LBACSYS Oracle Label Security Account

4-4

Logging in to Cloud Control or SQL*Plus for Oracle Label
Security

After you complete the Oracle Label Security registration and enablement process,
you can begin using it.

• Logging in to Oracle Label Security from Enterprise Manager Cloud Control
From Enterprise Manager Cloud Control, you use the Oracle Label Security pages
to create and manage Oracle Label Security policies.

• Logging in to Oracle Label Security from SQL*Plus
You can log in to Oracle Label Security from SQL*Plus if you have been granted
the LBAC_DBA database role.

Logging in to Oracle Label Security from Enterprise Manager Cloud
Control

From Enterprise Manager Cloud Control, you use the Oracle Label Security pages to
create and manage Oracle Label Security policies.

1. Ensure that you have configured the Cloud Control target databases that you plan
to use with Oracle Label Security.

See the Oracle Enterprise Manager online help and Oracle Database Enterprise
User Security Administrator's Guide for more information about configuring target
databases.

2. Point your browser to the Cloud Control login page.

For example:

https://myserver.example.com:7799/em

3. Log into Cloud Control as user SYSMAN.

4. In the Cloud Control home page, from the Targets menu, select Databases.

5. In the Databases page, select the link for the database to which you want to
connect.

The Database home page appears.

6. From the Security menu, select Label Security.

The Database Login page appears.

7. Enter the following information:

• Username: Enter the user name of a user who has been granted the LBAC_DBA
database role, or enter LBACSYS.

• Password: Enter the password.

• Role: Select NORMAL from the list.

• Save As: Select this check box if you want these credentials to be
automatically filled in for you the next time that this page appears. The
credentials are stored in Enterprise Manager in a secured manner. Access to
these credentials depends on the user who is currently logged in.

Chapter 4
Logging in to Cloud Control or SQL*Plus for Oracle Label Security

4-5

Logging in to Oracle Label Security from SQL*Plus
You can log in to Oracle Label Security from SQL*Plus if you have been granted the
LBAC_DBA database role.

• To use Oracle Label Security from SQL*Plus, connect as user LBACSYS or as a user
who has been granted the LBAC_DBA database role. To find if a user has been
granted this role, query the GRANTEE and GRANTED_ROLE columns of the
DBA_ROLE_PRIVS data dictionary view.

For example:

sqlplus psmith_ols -- Or, sqlplus psmith_ols@hrpdb for a PDB named hrpdb
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

Chapter 4
Logging in to Cloud Control or SQL*Plus for Oracle Label Security

4-6

5
Creating an Oracle Label Security Policy

An Oracle Label Security policy is a named set of commands that implements Oracle
Label Security.

• About Creating Oracle Label Security Policies
When you create an Oracle Label Security policy, you must follow a set of general
steps.

• Step 1: Create the Label Security Policy Container
The Oracle Label Security policy container is a storage place for the policy
settings.

• Step 2: Create Data Labels for the Label Security Policy
After you create a policy container, you are ready to create data labels for each
database table row.

• Step 3: Authorize Users for the Label Security Policy
Before users can have access to data that is protected by an Oracle Label
Security policy, they must be authorized.

• Step 4: Grant Privileges to Users and Trusted Stored Program Units
You can grant privileges to users, such as READ so that users can read data
protected an Oracle Label Security policy protects.

• Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security
policy, you can apply it to a database table or schema.

• Step 6: Add Policy Labels to Table Rows
You must add policy labels to table rows.

• Step 7: (Optional) Configure Auditing
You can audit Oracle Label Security policies by using the SA_USER_ADMIN P/L SQL
package.

• Using Enterprise Manager Cloud Control to Create an OLS Policy
You can create Oracle Label Security policies in Oracle Enterprise Manager Cloud
Control.

About Creating Oracle Label Security Policies
When you create an Oracle Label Security policy, you must follow a set of general
steps.

1. Create a policy container that defines the policy name, the name of a column that
Oracle Label Security will add to the tables to be protected, whether to hide this
column, whether to enable the policy, and default enforcement options for the
policy.

See Step 1: Create the Label Security Policy Container for more information.

2. Define the following attributes for the label: level of sensitivity, and optionally,
compartments and groups to further filter the label sensitivity. Once you have the

5-1

attributes defined, create the label itself and then associate these attributes with
the label.

See Step 2: Create Data Labels for the Label Security Policy.

3. Authorize users for the policy.

See Step 3: Authorize Users for the Label Security Policy for more information.

4. Grant privileges to these users or to trusted program units.

See Step 4: Grant Privileges to Users and Trusted Stored Program Units for more
information.

5. Apply the policy to a database table. Alternatively, you can apply the policy to an
entire schema.

See Step 5: Apply the Policy to a Database Table or Schema for more information.

6. Add the policy labels to the table rows. You must update the table that is being
used for the policy.

See Step 6: Add Policy Labels to Table Rows for more information.

7. Optionally, configure audit settings for users.

See Step 7: (Optional) Configure Auditing for more information.

Step 1: Create the Label Security Policy Container
The Oracle Label Security policy container is a storage place for the policy settings.

• About the Label Security Policy Container
The Oracle Label Security policy container stores metadata that describes how the
policy behaves.

• Creating a Label Policy Container
You can use the SA_SYSDBA.CREATE_POLICY procedure to create an Oracle Label
Security policy container.

About the Label Security Policy Container
The Oracle Label Security policy container stores metadata that describes how the
policy behaves.

This container defines the policy name, the name of a column that Oracle Label
Security will add to the tables to be protected, whether to hide this column, and default
enforcement options for the policy.

The column that you add to the tables that you want to protect will include data labels
(which you create later on) that are assigned to specific rows in a the table, based on
values in a specific column. The policy creation process creates a special role for the
policy and grants this role to the user who creates the policy. The role name is in the
format policy_DBA. For example, for a policy named EMP_OLS_POL, the role name is
EMP_OLS_POL_DBA. This role becomes effective only after a new user session begins.

You can create the policy container in Oracle Enterprise Manager Cloud Control, or
use the SA_SYSDBA.CREATE_POLICY procedure.

Chapter 5
Step 1: Create the Label Security Policy Container

5-2

Creating a Label Policy Container
You can use the SA_SYSDBA.CREATE_POLICY procedure to create an Oracle Label Security
policy container.

• To create the policy, run SA_SYSDBA.CREATE_POLICY, specifying the policy name,
column name, and default options.

For example:

BEGIN
 SA_SYSDBA.CREATE_POLICY (
 policy_name => 'emp_ols_pol',
 column_name => 'ols_col',
 default_options => 'read_control, update_control');
END;
/

Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

Step 2: Create Data Labels for the Label Security Policy
After you create a policy container, you are ready to create data labels for each
database table row.

• About Data Labels
A data label indicates the sensitivity of a database table row.

• About Policy Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

• Creating a Policy Level Component
The SA_COMPONENTS.CREATE_LEVEL procedure creates a policy level component.

• About Policy Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data,
providing a finer level of granularity within a level.

• Creating a Policy Compartment Component
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates an Oracle Label Security
compartment.

• About Policy Group Components
Groups identify organizations owning or accessing the data, such as
EASTERN_REGION, WESTERN_REGION, WR_SALES.

• Creating a Policy Data Label Group
The SA_COMPONENTS.CREATE_GROUP procedure creates a data label group.

• About Associating the Policy Components with a Named Data Label
After defining the data label components, you can create a data label itself by
associating it with an existing level.

• Associating the Policy Components with a Named Data Label
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates a data label.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-3

About Data Labels
A data label indicates the sensitivity of a database table row.

Each label is a single attribute with multiple components that control the types of
filtering to be used for user access.

Table 5-1 describes the different components of a data label.

Table 5-1 Sensitivity Data Label Components

Component Description Examples

Level A single specification of the sensitivity of
labeled data within the ordered ranks
established

CONFIDENTIAL (1), SENSITIVE
(2), HIGHLY_SENSITIVE (3)

Compartments Zero or more categories associated with
the labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers for organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

All data labels must contain a level component, but the compartment and group
components are optional. Compartments and groups are a way of fine tuning access
that users will have to the data. Valid characters for specifying all label components
include alphanumeric characters, underscores, and spaces. (Leading and trailing
spaces are ignored.) You must define the label components before you can create the
data label itself.

You can use Cloud Control to create the label and its components for an existing
policy. Alternatively, you can use the SA_COMPONENTS PL/SQL package to create the
components, and the SA_LABEL_ADMIN package to create the data label.

Related Topics

• SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an
Oracle Label Security label.

About Policy Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

The more sensitive the information, the higher its level. The less sensitive the
information, the lower its level.

Every label must include one level. Oracle Label Security permits up to 10,000 levels
in a policy. For each level, you must define a numeric form, a long character form, and
the required short character form.

Table 5-2 shows examples of levels.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-4

Table 5-2 Policy Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS

30 SENSITIVE S

20 CONFIDENTIAL C

10 PUBLIC P

Table 5-2 explains the numeric form, long form, and short form for levels.

Table 5-3 Forms of Specifying Levels

Form Explanation

Numeric form, also called
"tag"

The numeric form of the level can range from 0 to 9999.
Sensitivity is ranked by this numeric value, so you must assign
higher numbers to levels that are more sensitive, and lower
numbers to levels that are less sensitive. In Table 5-2, 40
(HIGHLY_SENSITIVE) is a higher level than 30, 20, and 10.

Administrators should avoid using sequential numbers for the
numeric form of levels. A good strategy is to use even increments
(such as 50 or 100) between levels. You can then insert
additional levels between two preexisting levels, at a later date.

Long form The long form of the level name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Although you define both long and short names for the level (and for each of the other
label components), only the short form of the name is displayed upon retrieval. When
users manipulate the labels, they use only the short form of the component names.

Examples of levels can be names such as TOP_SECRET, SECRET, CONFIDENTIAL, and
UNCLASSIFIED or TRADE_SECRET, PROPRIETARY, COMPANY_CONFIDENTIAL, PUBLIC_DOMAIN.

If you use only levels, a level 40 user (in this example) can access or alter any data
row whose level is 40 or less.

Creating a Policy Level Component
The SA_COMPONENTS.CREATE_LEVEL procedure creates a policy level component.

• To create the policy level component, run SA_COMPONENTS.CREATE_LEVEL, specifying
the policy name and details about the component.

For example:

BEGIN
 SA_COMPONENTS.CREATE_LEVEL (
 policy_name => 'emp_ols_pol',
 level_num => 40,
 short_name => 'HS',
 long_name => 'HIGHLY_SENSITIVE');
END;
/

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-5

Related Topics

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short
name and long name.

About Policy Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data, providing
a finer level of granularity within a level.

Compartments associate the data with one or more security areas. All data related to a
particular project can be labeled with the same compartment.

Table 5-4 shows an example set of compartments.

Table 5-4 Policy Compartment Example

Numeric Form Long Form Short Form

85 FINANCIAL FINCL

65 CHEMICAL CHEM

45 OPERATIONAL OP

Table 5-5 shows different ways to specify compartments.

Table 5-5 Forms of Specifying Compartments

Form Explanation

Numeric form The numeric form can range from 0 to 9999. It is unrelated to the
numbers used for the levels. The numeric form of the
compartment does not indicate greater or less sensitivity.
Instead, it controls the display order of the short form
compartment name in the label character string. For example,
assume a label is created that has all three compartments listed
in Table 5-4, and a level of SENSITIVE. When this label is
displayed in string format, it looks like this:

S:OP,CHEM,FINCL

meaning SENSITIVE: OPERATIONAL, CHEMICAL, FINANCIAL

The display order follows the order of the numbers assigned to
the compartments: 45 is lower than 65, and 65 is lower than 85.
By contrast, if the number assigned to the FINCL compartment
were 5, the character string format of the label would look like
this:

S:FINCL,OP,CHEM

Long form The long form of the compartment name scan have up to 80
characters.

Short form The short form can contain up to 30 characters.

Compartments are optional. You can include up to 10,000 compartments for a label.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-6

Not all labels must have compartments. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE level
that does contain compartments.

When you analyze the sensitivity of data, you may find that some compartments are
only useful at specific levels.

Figure 5-1 shows how compartments can be used to categorize data.

Figure 5-1 Compartments in a Label

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_SENSITIVE (HS).
The label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of 40 with the two named
compartments. Compartment FINCL is not more sensitive than CHEM, nor is CHEM more
sensitive than FINCL. Note also that some data in the protected table may not belong to
any compartment.

If you specify compartments, then a user whose level would normally permit access to
a row's data will nevertheless be prevented from such access unless the user's label
also contains all the compartments appearing in that row's label. For example, user
hpreston, who is granted access to the HS level, could be granted access only to FINCL
and CHEM but not to OP.

Creating a Policy Compartment Component
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates an Oracle Label Security
compartment.

• To create the compartment, run the SA_COMPONENTS.CREATE_COMPARTMENT procedure
to create a compartment, specifying the policy name and details about the
compartment.

For example:

BEGIN
 SA_COMPONENTS.CREATE_COMPARTMENT (
 policy_name => 'emp_ols_pol',
 comp_num => '85',
 short_name => 'FINCL',
 long_name => 'FINANCIAL');
END;
/

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-7

Related Topics

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and
specify its short name and long name.

About Policy Group Components
Groups identify organizations owning or accessing the data, such as EASTERN_REGION,
WESTERN_REGION, WR_SALES.

All data pertaining to a certain department can have that department's group in the
label. Groups are useful for the controlled dissemination of data and for timely reaction
to organizational change. When a company reorganizes, data access can change right
along with the reorganization.

Groups are hierarchical. You can label data based upon your organizational
infrastructure. A group can thus be associated with a parent group.

Figure 5-2 shows how you can define a set of groups corresponding to the following
organizational hierarchy.

Figure 5-2 Group Example

WESTERN_REGION

WR_HUMAN_

RESOURCES
WR_SALES WR_FINANCE

WR_ACCOUNTS_

RECEIVABLE

WR_ACCOUNTS_

PAYABLE

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_HUMAN_RESOURCES, and
WR_FINANCE. The WR_FINANCE subgroup is subdivided into WR_ACCOUNTS_RECEIVABLE and
WR_ACCOUNTS_PAYABLE.

Table 5-6 shows how the organizational structure in this example can be expressed in
the form of Oracle Label Security groups. The numeric form assigned to the groups
affects display order only. You specify the hierarchy (that is, the parent and child
relationships) separately. The first group listed, WESTERN_REGION, is the parent group of
the remaining groups in the table.

Table 5-6 Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR

1100 WR_SALES WR_SAL WR

1200 WR_HUMAN_RESOURCES WR_HR WR

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-8

Table 5-6 (Cont.) Group Example

Numeric Form Long Form Short Form Parent Group

1300 WR_FINANCE WR_FIN WR

1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN

1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

Table 5-7 shows the forms that you must use when you specify groups.

Table 5-7 Forms of Specifying Groups

Form Explanation

Numeric form The numeric form of the group can range from 0 to 9999, and it
must be unique for each policy.

The numeric form does not indicate any kind of ranking. It does
not indicate a parent-child relationship, or greater or less
sensitivity. It only controls the display order of the short form group
name in the label character string.

For example, assume that a label is created that has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as listed in Table 5-6.
When displayed in string format, the label looks like this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before 1200.

Long form The long form of the group name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Groups are optional. A label can contain up to 10,000 groups.

All labels do not need to have groups. When you analyze the sensitivity of data, you
may find that some groups are only used at specific levels. For example, you can
specify HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a SENSITIVE label
that does contain groups.

Creating a Policy Data Label Group
The SA_COMPONENTS.CREATE_GROUP procedure creates a data label group.

• Run the SA_COMPONENTS.CREATE_GROUP procedure for each data label group that you
need.

In the following example, the first CREATE_GROUP procedure creates the parent group, WR,
and the second procedure associates a second group with the WR group by using the
parent_name parameter.

BEGIN
 SA_COMPONENTS.CREATE_GROUP (
 policy_name => 'emp_ols_pol',
 group_num => 1000,
 short_name => 'WR',
 long_name => 'WESTERN_REGION');

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-9

END;
/
BEGIN
 SA_COMPONENTS.CREATE_GROUP (
 policy_name => 'emp_ols_pol',
 group_num => 1100,
 short_name => 'WR_SAL',
 long_name => 'WR_SALES',
 parent_name => 'WR');
END;
/

Related Topics

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short
name and long name, and optionally a parent group.

About Associating the Policy Components with a Named Data Label
After defining the data label components, you can create a data label itself by
associating it with an existing level.

Optionally, you can include compartments and groups in this association.

You can use Oracle Enterprise Manager Cloud Control or the
SA_LABEL_ADMIN.CREATE_LABEL procedure. Character string representations of labels use
the following syntax:

level:compartment1,...,compartmentn:group1,...,groupn

The text string that specifies the label can have a maximum of 4,000 characters,
including alphanumeric characters, spaces, and underscores. The label names are
case-insensitive. You can enter them in uppercase, lowercase, or mixed case, but the
string is stored in the data dictionary and displayed in uppercase. Separate each set of
components with a colon. You do not need to enter trailing delimiters in this syntax.

For example, you can create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL
SENSITIVE::WESTERN_REGION

Associating the Policy Components with a Named Data Label
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates a data label.

• Run SA_LABEL_ADMIN.CREATE_LABEL, specifying the policy name and details about the
policy components.

For example:

BEGIN
 SA_LABEL_ADMIN.CREATE_LABEL (
 policy_name => 'emp_ols_pol',
 label_tag => '1310',
 label_value => 'SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION',
 data_label => TRUE);

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-10

END;
/

When you create a data label, two additional actions occur:

• The label is automatically designated as a valid data label. This functionality limits
the labels that can be assigned to data. Oracle Label Security can also create
valid data labels dynamically at run time, from those that are predefined in Oracle
Internet Directory. Most users, however, prefer to create the labels manually in
order to limit data label proliferation.

• A numeric label tag is associated with the text string representing the label. It is
this label tag, rather than the text string, that is stored in the policy label column of
the protected table.

Note:

For Oracle Label Security installations that do not use Oracle Internet
Directory, dynamic creation of valid data labels uses the TO_DATA_LABEL
function. Its usage should be tightly controlled.

Related Topics

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

Step 3: Authorize Users for the Label Security Policy
Before users can have access to data that is protected by an Oracle Label Security
policy, they must be authorized.

• About Authorizing Users for Label Security Policies
When you authorize users, you enable them to have access to row data based on
how the data labels are defined.

• About Authorizing Levels
You can explicitly set default, minimum, and mazimum authorization levels.

• Authorizing a Level
The SA_USER_ADMIN.SET_LEVELS procedure authorizes users for policy levels
components.

• About Authorizing Compartments
After you authorize the user for a specific level, optionally you can specify
compartments to be added to a session label.

• Authorizing a Compartment
The SA_USER_ADMIN.SET_COMPARTMENTS procedure authorizes a user for the
compartments component.

• About Authorizing Groups
You can specify the list of groups that a user can place in session label.

• Authorizing a Group
The SA_USER_ADMIN.SET_GROUPS procedure authorizes users for a policy group.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-11

About Authorizing Users for Label Security Policies
When you authorize users, you enable them to have access to row data based on how
the data labels are defined.

First, you set the user's authorization for each level, compartment, and group that is
associated with the label. You can find the currently granted privileges for a user by
querying the DBA_SA_USER_PRIVS data dictionary view.

About Authorizing Levels
You can explicitly set default, minimum, and mazimum authorization levels.

Table 5-8 Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity that a user can access during
read and write operations

User Min Level The minimum ranking of sensitivity that a user can access during
write operations. The User Max Level must be equal to or greater
than the User Min Level.

User Default Level The level that is assumed by default when connecting to Oracle
Database

User Default Row Level The level that is used by default when inserting data into Oracle
Database

For example, you might set the following level authorizations for user hpreston:

Type Short Name Long Name Description

Maximum HS HIGHLY_SENSITIVE User's highest level

Minimum P PUBLIC User's lowest level

Default C CONFIDENTIAL User's default level

Row C CONFIDENTIAL Row level on INSERT

Authorizing a Level
The SA_USER_ADMIN.SET_LEVELS procedure authorizes users for policy levels
components.

Note that when you specify the levels, you must always use the short names, not the
long names.

• Run SA_USER_ADMIN.SET_LEVELS to authorize the level, specifying the policy name,
user name, and levels.

For example:

BEGIN
 SA_USER_ADMIN.SET_LEVELS (
 policy_name => 'ols_admin_pol',

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-12

 user_name => 'hpreston',
 max_level => 'HS',
 min_level => 'P',
 def_level => 'C',
 row_level => 'C');
END;
/

Related Topics

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum
levels and identifies default values for the user's session label and row label.

About Authorizing Compartments
After you authorize the user for a specific level, optionally you can specify
compartments to be added to a session label.

Write access must be explicitly given for each compartment. A user cannot directly
insert, update, or delete a row that contains a compartment that the user does not
have authorization to write.

For example, you could set the following compartment authorizations for user hpreston:

Short Name Long Name WRITE DEFAULT ROW

CHEM CHEMICAL YES YES NO

FINCL FINANCIAL YES YES NO

OP OPERATIONAL YES YES YES

Authorizing a Compartment
The SA_USER_ADMIN.SET_COMPARTMENTS procedure authorizes a user for the compartments
component.

When you specify the compartments, you must use their short names, not their long
names.

• Run SA_USER_ADMIN.SET_COMPARTMENTS to authorize a user for a compartment,
specifying the policy name, user name, and compartment details.

For example:

BEGIN
 SA_USER_ADMIN.SET_COMPARTMENTS (
 policy_name => 'ols_admin_pol',
 user_name => 'hpreston',
 read_comps => 'FINCL',
 write_comps => 'FINCL',
 def_comps => 'FINCL',
 row_comps => 'FINCL');
END;
/

After you have run this procedure, you can authorize the user for additional
compartments by running the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-13

Related Topics

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a user
and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a
user's authorizations, indicating if the compartments are authorized for write and
read privileges.

About Authorizing Groups
You can specify the list of groups that a user can place in session label.

Write access must be explicitly given for each group listed.

For example, you could set the following group authorizations:

Short Name Long Name WRITE DEFAULT ROW Parent

WR_HR WR_HUMAN_RESOURCES YES YES YES WR

WR_AP WR_ACCOUNTS_PAYABLE YES YES NO WR_FIN

WR_AR WR_ACCOUNTS_RECEIVABL
E

YES YES NO WR_FIN

Authorizing a Group
The SA_USER_ADMIN.SET_GROUPS procedure authorizes users for a policy group.

• Run SA_USER_ADMIN.SET_GROUPS to authorize the user, specifying the policy name,
user name, and authorizations that you want. When you specify the groups, you
must use the short name, not the long name.

For example:

BEGIN
 SA_USER_ADMIN.SET_GROUPS (
 policy_name => 'ols_admin_pol',
 user_name => 'hpreston',
 read_groups => 'WR_AP',
 write_groups => 'WR_AP',
 def_groups => 'WR_AP',
 row_groups => 'WR_AP');
END;
/

Related Topics

• SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-14

Step 4: Grant Privileges to Users and Trusted Stored
Program Units

You can grant privileges to users, such as READ so that users can read data protected
an Oracle Label Security policy protects.

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

• Granting Privileges to a User
The SA_USER_ADMIN.SET_USER_PRIVS procedure grants users privileges.

• Granting Privileges to a Trusted Program Unit
The SA_USER_ADMIN.SET_PROG_PRIVS procedure grants privileges to trusted program
units.

About Granting Privileges to Users and Trusted Program Units for the
Policy

After you have authorized users for policy levels, compartments, and groups, you are
ready to grant the user privileges.

Trusted program units are functions, procedures, or packages that are granted Oracle
Label Security privileges. You create a trusted stored program unit in the same way
that you create a standard procedure, function, or package, that is by using the CREATE
PROCEDURE, CREATE FUNCTION, or CREATE PACKAGE and CREATE PACKAGE BODY statements.
The program unit becomes trusted when you grant Oracle Label Security privileges to
it.

Table 5-9 summarizes the privileges that can be granted to users or trusted stored
program units.

Table 5-9 Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the
policy

FULL Allows full read and write access to all data
protected by the policy

COMPACCESS Allows a session access to data authorized by the
row's compartments, independent of the row's
groups

PROFILE_ACCESS Allows a session to change its labels and privileges
to those of a different user

WRITEUP Allows users to set or raise only the level, within a
row label, up to the maximum level authorized for
the user. (Active only if LABEL_UPDATE is active.)

Chapter 5
Step 4: Grant Privileges to Users and Trusted Stored Program Units

5-15

Table 5-9 (Cont.) Oracle Label Security Privileges

Security Privilege Explanation

WRITEDOWN Allows users to set or lower the level, within a row
label, to any level equal to or greater than the
minimum level authorized for the user. (Active only
if LABEL_UPDATE is active.)

WRITEACROSS Allows a user to set or change groups and
compartments of a row label, but does not allow
changes to the level. (Active only if LABEL_UPDATE
is active.)

Granting Privileges to a User
The SA_USER_ADMIN.SET_USER_PRIVS procedure grants users privileges.

• Run SA_USER_ADMIN.SET_USER_PRIVS, specifying the policy name, user name, and
privileges that you want to grant.

For example:

BEGIN
 SA_USER_ADMIN.SET_USER_PRIVS(
 policy_name => 'ols_admin_pol',
 user_name => 'hpreston',
 privileges => 'WRITEDOWN');
END;
/

Related Topics

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

Granting Privileges to a Trusted Program Unit
The SA_USER_ADMIN.SET_PROG_PRIVS procedure grants privileges to trusted program
units.

• Run SA_USER_ADMIN.SET_PROG_PRIVS to grant the privileges, specifying the policy
name, schema name, program unit name, and privileges that you want to grant.

For example:

BEGIN
 SA_USER_ADMIN.SET_PROG_PRIVS (
 policy_name => 'oe_ols_pol',
 schema_name => 'oe',
 program_unit_name => 'check_order_updates',
 privileges => 'READ');
END;
/

Chapter 5
Step 4: Grant Privileges to Users and Trusted Stored Program Units

5-16

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security policy,
you can apply it to a database table or schema.

• About Applying the Policy to a Database Table or Schema
When you apply a policy to a table, the policy is automatically enabled.

• Applying a Policy to a Schema
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure applies a policy to either a
table within a schema or an entire schema .

About Applying the Policy to a Database Table or Schema
When you apply a policy to a table, the policy is automatically enabled.

To disable a policy is to turn off its protections, although it is still applied to the table.
To enable a policy is to turn on and enforce its protections for a particular table or
schema.

To remove a policy is to take it entirely away from the table or schema. Note, however,
that the policy label column and the labels remain in the table unless you explicitly
drop them.

You can alter the default policy enforcement options for future tables that may be
created in a schema. This does not, however, affect policy enforcement options on
existing tables in the schema.

To change the enforcement options on an existing table, you must first remove the
policy from the table, make the desired changes, and then reapply the policy to the
table.

Be aware that you cannot enforce Oracle Label Security policies on external tables.

After you have created the policy components and configured user authorizations,
privileges, and auditing for them, you can apply the policy to a database table or to an
entire schema.

When you apply the policy to a database table, in addition to the policy name and
target schema table, you must specify the following information:

• table_options: A comma-delimited list of policy enforcement options to be used for
the table. If NULL, then the policy's default options are used.

• label_function: A string calling a function to return a label value to use as the
default. For example, my_label(:new.dept,:new.status) computes the label based
on the new values of the DEPT and STATUS columns in the row.

• predicate: An additional predicate to combine (using AND or OR) with the label-
based predicate for READ_CONTROL

Note the following aspects of using Oracle Label Security policies with schemas:

Chapter 5
Step 5: Apply the Policy to a Database Table or Schema

5-17

• If you apply a policy to an empty schema, then every time you create a table within
that schema, the policy is applied. Once the policy is applied to the schema, the
default options you choose are applied to every table added.

• If you remove the policy from a table so that it is unprotected, and then run
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY, then the table will remain unprotected. If
you wish to protect the table once again, then you must apply the policy to the
table, or re-apply the policy to the schema.

If you apply a policy to a schema that already contains tables protected by the policy,
then all future tables will have the new options that were specified when you applied
the policy. The existing tables will retain the options they already had.

Applying a Policy to a Schema
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure applies a policy to either a table
within a schema or an entire schema .

• Run SA_POLICY_ADMIN.APPLY_TABLE_POLICY to apply the policy to a schema,
specifying the policy name, schema name, and necessary options.

The following example shows how to use the SA_POLICY_ADMIN.APPLY_TABLE_POLICY
procedure to apply the ols_admin_pol policy to the HR.EMPLOYEES table.

BEGIN
 SA_USER_ADMIN.APPLY_TABLE_POLICY (
 policy_name => 'ols_admin_pol',
 schema_name => 'hr',
 table_name => 'employees',
 table_options => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
 label_function => ''hr.gen_emp_label(:new.deptartment_id,:new.salary',
 predicate => NULL);
END;
/

This example shows how to use the SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure to
apply a policy to an entire schema.

BEGIN
 SA_USER_ADMIN.APPLY_SCHEMA_POLICY (
 policy_name => 'ols_admin_pol',
 schema_name => 'hr',
 default_options => NULL);
END;
/

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

Step 6: Add Policy Labels to Table Rows
You must add policy labels to table rows.

Chapter 5
Step 6: Add Policy Labels to Table Rows

5-18

• About Adding Policy Labels to Table Rows
After you have applied a policy to a table, you must add data labels to the rows in
the table.

• Adding a Policy Label to a Table Row
You must update the table to which you are adding a policy label.

About Adding Policy Labels to Table Rows
After you have applied a policy to a table, you must add data labels to the rows in the
table.

These labels are stored in the policy label column that you created earlier in the table.
The user updating the table must have the FULL security privilege for the policy. This
user is normally the owner of the table.

Adding a Policy Label to a Table Row
You must update the table to which you are adding a policy label.

1. To add data labels to a table, in SQL*Plus, enter an UPDATE statement using the
following syntax:

UPDATE table_name
SET ols_column = CHAR_TO_LABEL('ols_policy','data_label')
WHERE UPPER(table_column) IN (column_data);

For example, suppose LABCSYS has created a policy called ACCESS_LOCATIONS and
wants to add the label SENS to the cities Beijing, Tokyo, and Singapore in the
HR.LOCATIONS table. The policy label column is called ROW_LABEL. The UPDATE
statement is as follows:

UPDATE LOCATIONS
SET ROW_LABEL = CHAR_TO_LABEL('ACCESS_LOCATIONS','SENS')
WHERE UPPER(city) IN ('BEIJING', 'TOKYO', 'SINGAPORE');

2. Run the following SELECT statement to ensure that the policy was added to the
table:

SELECT LABEL_TO_CHAR (ROW_LABEL) FROM LOCATIONS;

Step 7: (Optional) Configure Auditing
You can audit Oracle Label Security policies by using the SA_USER_ADMIN P/L SQL
package.

• About Configuring Auditing
After you authorize users for the policy and grant them privileges, you can
configure auditing for each user and for the policy itself.

• Configuring Auditing
The SA_USER_ADMIN.AUDIT procedure configures auditing for users in a non-unified
auditing environment.

Chapter 5
Step 7: (Optional) Configure Auditing

5-19

About Configuring Auditing
After you authorize users for the policy and grant them privileges, you can configure
auditing for each user and for the policy itself.

If unified auditing is not enabled, then use the procedures in this section to configure
the auditing. If it is enabled, then you must create a unified audit policy, as described
in Oracle Database Security Guide.

Table 5-10 describes the available auditing options.

Table 5-10 Auditing Options for Oracle Label Security

Option Description

APPLY Audits application of specified Oracle Label Security policies to
tables and schemas

REMOVE Audits removal of specified Oracle Label Security policies from
tables and schemas

SET Audits the setting of user authorizations, and user and program
privileges

PRIVILEGES Audits use of all policy-specific privileges

Configuring Auditing
The SA_USER_ADMIN.AUDIT procedure configures auditing for users in a non-unified
auditing environment.

• Run SA_USER_ADMIN.AUDIT to configure user auditing, specifying the policy name,
one or more users, and the appropriate audit options.

For example:

BEGIN
 SA_USER_ADMIN.AUDIT(
 policy_name => 'ols_admin_pol',
 users => 'hpreston',
 audit_option => 'REMOVE',
 audit_type => 'BY ACCESS',
 success => NULL);
END;
/

Related Topics

• SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

Using Enterprise Manager Cloud Control to Create an OLS
Policy

You can create Oracle Label Security policies in Oracle Enterprise Manager Cloud
Control.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-20

• Creating the Label Security Policy Container Using Cloud Control
You can create the Oracle Label Security policy container in Cloud Control.

• Creating Policy Components Using Cloud Control
After you create a container for the policy and set enforcement options for it, you
can create components for the policy.

• Creating Data Labels for the Policy Using Cloud Control
You can create data labels for an Oracle Label Security policy in Cloud Control.

• Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud
Control
You can authorize, grant privileges to, and set up auditing for users for a policy
during the user creation process.

• Granting Privileges to Trusted Program Units Using Cloud Control
You can grant privileges to trusted program units in Cloud Control.

• Applying a Policy to a Database Table with Cloud Control
You can apply an Oracle Label Security policy to a database table in Cloud
Control.

• Applying Policy Labels to Table Rows Using Cloud Control
You can apply Oracle Label Security policy labels to table rows in Cloud Control.

• Auditing Oracle Label Security Policies Using Cloud Control
You can audit Oracle Label Security policies in Cloud Control, except if you are
using unified auditing.

Creating the Label Security Policy Container Using Cloud Control
You can create the Oracle Label Security policy container in Cloud Control.

1. Log in to Cloud Control as the SYSTEM user.

2. To navigate to your database, select Databases from the Targets menu.

3. Click the database name in the list that appears.

The database page appears.

4. Under the Administration menu, select Security, Oracle Label Security. The
Label Security Policies page appears.

You may be required to log in to the database with appropriate credentials. You
can use the LBACSYS account credentials that you create in Enabling the LBACSYS
Oracle Label Security Account.

5. Click Create to start creating a new label security policy. The Create Label
Security Policy page appears.

6. Define the policy's name, label column, and the default policy enforcement
options.

• Name: Enter a name for the policy, for example, ACCESS_LOCATIONS.

• Label Column: (Optional) Enter a name for the label column, for example,
OLS_COLUMN. If you create an OLS policy without specifying the column name,
the column name is auto-generated as Pol_name_COL.Later on, when you apply
the policy to a table, the label column is added to that table. By default, the
data type of the policy label column is NUMBER(10). You can also specify an
existing table column of the NUMBER(10) data type as the label column.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-21

• Hide Label Column: Select to hide the column. When you first create the
policy, you may want to disable Hide Label Column during the development
phase of the policy. When the policy is satisfactory and ready for use by users,
hide the column so that it is transparent to applications.

• Enabled: Toggle to enable or disable the policy.

• Default Policy Enforcement Options: The default policy enforcement options
are used when the policy is applied. Ensure that these meet the needs of the
application to which you are applying the policy.

Select from the following options:

– Apply No Policy Enforcements (NO_CONTROL)

– Apply Policy Enforcements

For all queries (READ_CONTROL)

For Insert operations (INSERT_CONTROL)

For Update Operations (UPDATE_CONTROL)

Use session's default label for label column update
(LABEL_DEFAULT)

Operations that update the label column (LABEL_UPDATE)

Update and Insert operations so that they are read accessible
(CHECK_CONTROL)

7. Click OK.

The new policy appears in the Oracle Label Security Policies page.

Creating Policy Components Using Cloud Control
After you create a container for the policy and set enforcement options for it, you can
create components for the policy.

1. In the Oracle Label Security Policies page, select the policy you just created. Click
Edit.

2. In the Edit Label Security Policy page, select the Label Components tab.

3. Click Add 5 Rows under Levels to add levels for the policy. Enter a Long Name,
Short Name, and Numeric Tag for each level that you create. The numeric tag
corresponds to the sensitivity of the level. To create more levels, you can click
Add 5 Rows again. Use the same steps to create compartments and rows. For
compartments and groups, the numeric tags do not correspond to sensitivity.

At a minimum, you must create one level, such as SECRET. Creating compartments
and groups is optional.

The level numbers indicate the level of sensitivity for their corresponding labels. A
greater number implies greater sensitivity. Select a numeric range that can be
expanded later on, in case your security policy needs more levels. For example, if
you have created levels PUBLIC (7000) and SENSITIVE (8000), and you now want to
create an intermediate level called CONFIDENTIAL, then you can assign the numeric
value 7500 to this level.

Compartments identify categories associated with data, providing a finer level of
granularity within a level. For example, a single table might have data

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-22

corresponding to different departments that you might like to separate using
compartments. Compartments are optional.

Groups identify organizations owning or accessing the data. Groups are useful for
the controlled dissemination of data and for timely reaction to organizational
change. Groups are optional.

4. Click Apply.

Creating Data Labels for the Policy Using Cloud Control
You can create data labels for an Oracle Label Security policy in Cloud Control.

1. In the Label Security Policies page, select the policy that needs to have labels
linked to levels.

2. In the Actions box, select Data Labels. Click Go.

The Data Labels page appears.

3. Click Add.

The Create Data Label page appears.

4. Enter the following information:

• Numeric Tag: Enter a number that uniquely identifies the label. This number
should be unique across all policies.

• Level: Select a level from the list.

5. You can optionally select Compartments to add to the label. To add
compartments, click Add under Compartments. Select the compartments to be
added to the label. Click Select to add the compartments.

6. Optionally, to add groups, click Add under Groups. Select the groups to be added
to the label. Click Select to add the groups.

7. Click OK in the Create Data Label page.

The data label appears in the Data Labels page.

8. Repeat steps 3 to 7 to create more data labels.

Alternatively, you can use the SA_LABEL_ADMIN package to define label components for
a policy.

See Also:

SA_LABEL_ADMIN Label Management PL/SQL Package

Authorizing, Granting Privileges, and Auditing Users for a Policy Using
Cloud Control

You can authorize, grant privileges to, and set up auditing for users for a policy during
the user creation process.

1. In the Label Security Policies page, select the policy that needs authorization.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-23

2. In the Actions box, select Authorization. Click Go.

The Create User page appears.

3. Add users as follows:

• Under Database Users, click Add. In the Search and Select window, select
users that you want and then click Select.

• Under Non Database Users, click Add 5 Rows, and then add the user names
of the non-database users that you want to add. Most application users are
considered non-database users. A non-database user does not exist in the
database. This can be any user name that meets the Oracle Database naming
standards and can fit into the VARCHAR2(30) length field. However, be aware
that Oracle Database does not automatically configure the associated security
information for the non-database user when the application connects to the
database. In this case, the application needs to call an Oracle Label Security
function to assume the label authorizations of the specified user who is not a
real database user.

4. In the Create User page, select the user that you want to authorize. Click Next. If
you have multiple users that need the same authorizations, then select all users
who need the same authorizations. Click Next.

The Privileges step appears.

5. Next, you can assign privileges to the user you selected in the preceding step.
Privileges allow a database user to bypass certain controls enforced by the policy.
Select the privileges you want to grant. Click Next.

If you do not want to assign any privileges to the user, then click Next without
selecting any privileges.

The Labels, Compartments, and Groups step appears.

6. Next, to create the user label for the user: under Levels, use the flashlight icon to
select data to enter for the following fields:

• Maximum Level: Enter the highest level for read and write access for this
user.

• Minimum Level: Enter the lowest level for write access.

• Default Level: Enter the default level when the user logs in.

This value is equal to or greater than the minimum level and equal to or less
than the maximum level.

• Row Level: Enter the level given to the row when user writes to the table.

7. Click Add under Compartments, to add compartments to the user label. Select the
compartments to add. Click Select.

8. For each compartment that you add, you can select the following properties:

• Write: Allows the user to write to data that has the compartment as part of its
label

• Default: Adds the compartment to the user's default session label

• Row: Adds the compartment to the data label when the user writes to the table

9. Click Add under Groups, to add groups to the user label. Select the groups and
click Select.

10. For each group that you add, you can select the following properties:

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-24

• Write: Allows the user to write to data that has the group as part of its label

• Default: Adds the group to the user's default session label

• Row: Adds the group to the data label when the user writes to the table

11. Click Next.

The Audit step appears.

12. Select from the following audit options:

• Policy Applied:

Audit On Success By audits successful application of the policy to a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

Audit On Failure By audits failed application of the policy to a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

• Policy Removed:

Audit On Success By audits successful removal of the policy from a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

Audit On Failure By audits failed removal of the policy from a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

• Labels And Privileges Set:

Audit On Success By audits successful setting of user authorizations and
privileges. Select ACCESS to audit by access or SESSION to audit by session.

Audit On Failure By audits failed setting of user authorizations and privileges.
Select ACCESS to audit by access or SESSION to audit by session.

• All Policy Specific Privileges:

Audit On Success By audits successful use of policy privileges. Select ACCESS
to audit by access or SESSION to audit by session.

Audit On Failure By audits failed use of policy privileges. Select ACCESS to
audit by access or SESSION to audit by session.

13. Click Next.

14. You can review the policy authorization settings. Click Finish to create the policy
authorization. Alternatively, you can click Back to modify the authorization
settings.

Alternatively, you can use the SA_USER_ADMIN package to authorize users.

Granting Privileges to Trusted Program Units Using Cloud Control
You can grant privileges to trusted program units in Cloud Control.

1. In the Label Security Policies page, select the policy that needs authorization.

2. In the Actions box, select Authorization. Click Go.

The Authorization page appears.

3. Click the Trusted Program Units tab.

4. Click Add to add Oracle Label Security privileges for a procedure, function, or
package.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-25

The Create Program Unit page appears.

5. Enter the name of the procedure, function, or package, for which the privileges
need to be granted, in the Program Unit field. You can also use the Search icon
to search for the procedure, function, or package.

6. Select one or more policy-specific privileges that need to be granted to the
program unit. Click OK.

The trusted program unit is added to the Authorizations page.

Alternatively, you can use the SA_USER_ADMIN package to authorize trusted
program units.

Related Topics

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

Applying a Policy to a Database Table with Cloud Control
You can apply an Oracle Label Security policy to a database table in Cloud Control.

1. In the Label Security Policies page, select the policy that needs to be applied to a
table.

2. Select Apply from the Actions box. Click Go.

The Apply page appears.

3. Select the Tables tab to apply the policy to a table.

Select the Schemas tab if you are applying the policy to a schema.The process is
same as applying the policy to a table.

4. Click Create.

The Add Table page appears.

5. Next to the Table box, click the flashlight icon.

6. In the Search and Select window, enter the following information under Search:

• Schema: Enter the name of the schema in which the table appears. Leaving
this field empty displays tables in all schemas.

• Name: Optionally, enter the name of the table. Leaving this box empty
displays all the tables within the schema.

To narrow the search by using wildcards, use the percent (%) sign. For example,
enter O% to search for all tables beginning with the letter O.

7. Select the table and click Select.

The Add Table page appears.

8. Enter the following information:

• Policy Enforcement Options: Select enforcement options as needed. These
options will apply to the table on top of the enforcement options that you
selected when you created the policy in Step 1: Create the Label Security
Policy Container.

To make no change from those enforcement options, that is, to use the same
enforcement options created earlier, select Use Default Policy Enforcement.
To add more enforcement options, select from the other options listed.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-26

• Labeling Function: Optionally, specify a labeling function to automatically
compute the label to be associated with a new or updated row. That function is
always invoked thereafter to provide the data labels written under that policy,
because active labeling functions take precedence over any alternative means
of supplying a label.

• Predicate: Optionally, specify an additional predicate to combine (using AND or
OR) with the label-based predicate for READ_CONTROL.

9. Click OK.

Applying Policy Labels to Table Rows Using Cloud Control
You can apply Oracle Label Security policy labels to table rows in Cloud Control.

1. In the Label Security Policies page, select the policy, for example,
ACCESS_LOCATIONS.

2. Select Authorization from the Actions box. Click Go.

The Authorization page appears.

3. Click Add.

The Create User page appears.

4. Under Database Users, click Add.

The Search and Select window appears.

5. Select the check box corresponding to the user that owns the table. Click Select.

The Create User page lists the user that was added.

6. Click Next.

The Privileges step appears.

7. Select the appropriate privileges for the user, and then click Next.

The Labels, Compartments, and Groups page appears.

8. Click Next.

The Audit step appears.

9. Click Next.

The Review step appears.

10. Click Finish.

Auditing Oracle Label Security Policies Using Cloud Control
You can audit Oracle Label Security policies in Cloud Control, except if you are using
unified auditing.

1. In the Label Security Policies page, select the policy that you need to configure.

2. Click Edit.

The Edit Label Security Policy Settings page appears.

3. Click the Advanced tab. You can edit the audit settings under the Audit section.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-27

4. Select Include Label In Audit trail under Audit Labels, if you wish to include user
session labels in the audit table.

5. Select the Operation, to audit, under Audit Settings. You can choose from the
following operations:

• Policy Applied: Audits application of the policy to a table or schema.

• Policy Removed: Audits removal of the policy from a table or schema.

• Labels And Privileges Set: Audits setting of user authorizations and privileges.

• All Policy Specific Privileges: Audits use of policy privileges.

6. Click Add under Policy Applied to add users that will be audited for the Operation
you selected in the preceding step.

The Search and Select window appears.

7. Select the users that you need to add. Click Select.

8. Select values for Audit on Success By and Audit on Failure By, for each user
that you added.

For each user that you added, you can choose to audit successful and failed
instances of the chosen operation. You can also choose to audit by access or
session.

9. Repeat steps 5 to 8 for each operation that you choose to audit.

Related Topics

• Auditing Under Oracle Label Security
You can use Oracle Label Security auditing if you have not configured your
database to use unified auditing.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-28

6
Working with Labeled Data

You can manage labeled data, view that data of security attributes for a session, and
change the value of session attributes.

Note:

Many of the examples in this guide use the HUMAN_RESOURCES sample policy. Its
policy name is HR and its policy label column is HR_LABEL. Unless otherwise
noted, the examples assume that the SQL statements are performed on rows
within the user's authorization and with full Oracle Label Security policy
enforcement in effect.

• How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created
and filled.

• Assignments of Labels to Data Rows
For existing data rows, labels can be assigned by a labeling function that you
create.

• Presenting the Label
When you retrieve labels, you do not automatically obtain the character string
value.

• Filtration of Data Using Labels
When SQL statements are processed, Oracle Label Security makes calls to the
security policies defined in the database by create-and-apply procedures.

• Inserting Labeled Data
You can insert labeled data in a variety of situations.

• Changing Session and Row Labels
During a session, a user can change labels based on the authorizations an
administrator sets.

How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created and
filled.

• The Policy Label Column
You should understand how to use policy label columns.

• Label Tags
You can create label tags, either manually or automatically generating them, that
define the label components.

6-1

The Policy Label Column
You should understand how to use policy label columns.

• About the Policy Label Column
Each policy that is applied to a table creates a column in the database.

• Hiding the Policy Label Column
You can choose not to display the column representing a policy.

About the Policy Label Column
Each policy that is applied to a table creates a column in the database.

By default, the data type of the NUMBER.

Each row's label for that policy is represented by a tag in that column, using the
numeric equivalent of the character-string label value. The label tag is automatically
generated when the label is created, unless the administrator specifies the tag
manually at that time.

The automatic label generation follows the rules established by the administrator while
defining the label components, as described in Understanding Data Labels and User
Labels.

Note:

The act of creating a policy does not in itself have any effect on tables or
schemas. It only applies the policy to a table or schema.

Hiding the Policy Label Column
You can choose not to display the column representing a policy.

• To hide the display of a column, apply the HIDE option to the table.

After a policy using HIDE is applied to a table, a user executing a SELECT * or
performing a DESCRIBE operation will not see the policy label column. If the policy label
column is not hidden, then the label tag is displayed as data type NUMBER.

Example 1: Numeric Column Data Type (NUMBER)

DESCRIBE EMP;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)
 HR_LABEL NUMBER(10)

Chapter 6
How Policy Label Column and Label Tags Work

6-2

Example 2: Numeric Column Data Type with Hidden Column

Notice that in this example, the HR_LABEL column is not displayed.

DESCRIBE EMP;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)

Related Topics

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

Label Tags
You can create label tags, either manually or automatically generating them, that
define the label components.

• About Label Tags
The administrator first defines a set of label components to be used in a policy.

• Manually Defined Label Tags to Order Labels
By manually defining label tags, you can implement a data manipulation strategy
that permits labels to be meaningfully sorted and compared.

• Manually Defined Label Tags to Manipulate Data
An administratively defined label tag is a convenient way to reference a complete
label string (that is, a combination of label components).

• Automatically Generated Label Tags
Dynamically generated label tags have 10 digits, with no relationship to numbers
assigned to any label component.

About Label Tags
The administrator first defines a set of label components to be used in a policy.

When creating labels, the administrator specifies the set of valid combinations of
components that can make up a label, that is, a level optionally combined with one or
more groups or compartments.

Each such valid label within a policy is uniquely identified by an associated numeric
tag assigned by the administrator or generated automatically upon its first use. Manual
definition has the advantage of allowing the administrator to control the ordering of
label values when they are sorted or logically compared.

However, label tags must be unique across all policies in the database. When you use
multiple policies in a database, you cannot use the same numeric label tag in different
policies. Remember that each label tag uniquely identifies one label, and that numeric
tag is what is stored in the data rows, not the label's character-string representation.

Chapter 6
How Policy Label Column and Label Tags Work

6-3

Manually Defined Label Tags to Order Labels
By manually defining label tags, you can implement a data manipulation strategy that
permits labels to be meaningfully sorted and compared.

To do this, you must predefine all of the labels to be associated with protected data,
and assigns to each label a meaningful label tag value. Manually assigned label tags
can have up to eight digits. The value of a label tag must be greater than zero.

It may be advantageous to implement a strategy in which label tag values are related
to the numeric values of label components. In this way, you can use the tags to group
data rows in a meaningful way. This approach, however, is not mandatory. It is good
practice to set tags for labels of higher sensitivity to a higher numeric value than tags
for labels of lower sensitivity.

Table 6-1 illustrates a set of label tags that have been assigned. Notice that, in this
example, the administrator has based the label tag value on the numeric form of the
levels, compartments, and rows that were discussed in Understanding Data Labels
and User Labels.

Table 6-1 Administratively Defined Label Tags (Example)

Label Tag Label String

10000 P

20000 C

21000 C:FNCL

21100 C:FNCL,OP

30000 S

31110 S:OP:WR

40000 HS

42000 HS:OP

In this example, labels with a level of PUBLIC begin with "1", labels with a level of
CONFIDENTIAL begin with "2", labels with a level of SENSITIVE begin with "3", and labels
with a level of HIGHLY_SENSITIVE begin with "4".

Labels with the FINANCIAL compartment then come in the 1000 range, labels with the
compartment OP are in the 1100 range, and so on. The tens place is used to indicate
the group WR, for example.

Another strategy might be completely based on groups, where the tags might be 3110,
3120, 3130, and so on.

Note, however, that label tags identify the whole label, independent of the numeric
values assigned for the individual label components. The label tag is used as a whole
integer, not as a set of individually evaluated numbers.

Manually Defined Label Tags to Manipulate Data
An administratively defined label tag is a convenient way to reference a complete label
string (that is, a combination of label components).

Chapter 6
How Policy Label Column and Label Tags Work

6-4

As illustrated in Table 6-1, for example, the tag "31110" could stand for the complete
label string "S:OP:WR".

Label tags can be used as a convenient way to partition data. For example, all data
with labels in the range 1000 - 1999 could be placed in tablespace A, all data with
labels in the range 2000 - 2999 could be placed in tablespace B, and so on.

This simplified notation also comes in handy when there is a finite number of labels
and you need to perform various operations upon them. Consider a situation in which
one company hosts a human resources system for many other companies. Assume
that all users from Company Y have the label "C:ALPHA:CY", for which the tag "210"
has been set. To determine the total number of application users from Company Y, the
host administrator can enter:

SELECT * FROM tab1
 WHERE hr_label = 210;

Automatically Generated Label Tags
Dynamically generated label tags have 10 digits, with no relationship to numbers
assigned to any label component.

You cannot group the data by label.

Table 6-2 describes how automatically generated label tags work.

Table 6-2 Generated Label Tags (Example)

Label Tag Label String

100000020 P

100000052 C

100000503 C:FNCL

100000132 C:FNCL,OP

100000003 S

100000780 S:OP:WR

100000035 HS

100000036 HS:OP

Assignments of Labels to Data Rows
For existing data rows, labels can be assigned by a labeling function that you create.

In such a function, you specify the exact table and row conditions defining what label
to insert. The function can be named in the call to apply a policy to a table or schema,
or in an update by the administrator.

Related Topics

• Inserting Labeled Data
You can insert labeled data in a variety of situations.

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

Chapter 6
Assignments of Labels to Data Rows

6-5

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

Presenting the Label
When you retrieve labels, you do not automatically obtain the character string value.

By default, the label tag value is returned. Two label manipulation functions enable you
to convert the label tag value to and from its character string representation.

• Converting a Character String to a Label Tag with CHAR_TO_LABEL
The CHAR_TO_LABEL function converts character strings to a label tag, returning the
label tag for the specified character string.

• Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR
You can convert label tags to character strings.

Converting a Character String to a Label Tag with CHAR_TO_LABEL
The CHAR_TO_LABEL function converts character strings to a label tag, returning the label
tag for the specified character string.

• To convert a character string to a label tab, use the following syntax for the
CHAR_TO_LABEL function:

FUNCTION CHAR_TO_LABEL (
 policy_name IN VARCHAR2,
 label_string IN VARCHAR2)
RETURN NUMBER;

For example:

INSERT INTO emp (empno,hr_label)
VALUES (999, CHAR_TO_LABEL('HR','S:A,B:G5');

Here, HR is the label policy name, S is a sensitivity level, A,B compartments, and G5 a
group.

FUNCTION CHAR_TO_LABEL (
 policy_name IN VARCHAR2,
 label_string IN VARCHAR2)
RETURN NUMBER;

Here, HR is the label policy name, S is a sensitivity level, A,B compartments, and G5 a
group.

Conversion of a Label Tag to a Character String, with
LABEL_TO_CHAR

You can convert label tags to character strings.

Chapter 6
Presenting the Label

6-6

• Converting a Label Tag to a Character String with LABEL_TO_CHAR
The LABEL_TO_CHAR function returns a VARCHAR2 string when it converts a label tag to
a character string.

• LABEL_TO_CHAR Examples
Oracle provides examples that illustrate the use of LABEL_TO_CHAR.

• Retrieving All Columns from a Table When the Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

Converting a Label Tag to a Character String with LABEL_TO_CHAR
The LABEL_TO_CHAR function returns a VARCHAR2 string when it converts a label tag to a
character string.

When you query a table or view, you automatically retrieve all of the rows in the table
or view that satisfy the qualifications of the query and are dominated by your label. If
the policy label column is not hidden, then the label tag value for each row is
displayed. You must use the LABEL_TO_CHAR function to display the character string
value of each label.

Note that all conversions must be explicit. There is no automatic casting to and from
tag and character string representations.

• To convert a label tag to a character string, use the following syntax for the
LABEL_TO_CHAR function:

FUNCTION LABEL_TO_CHAR (
 label IN NUMBER)
RETURN VARCHAR2;

LABEL_TO_CHAR Examples
Oracle provides examples that illustrate the use of LABEL_TO_CHAR.

Example: Retrieving a Row Label from a Table or a View

To retrieve the label of a row from a table or view, specify the policy label column in
the SELECT statement.

For example:

SELECT label_to_char (hr_label) AS label, ename FROM tab1;
 WHERE ename = 'RWRIGHT';

This statement returns the following:

LABEL ENAME
------------ ----------
S:A,B:G1 RWRIGHT

Example: Retrieving a Policy Label Column

You can also specify the policy label column in the WHERE clause of a SELECT statement.

The following statement displays all rows that have the policy label S:A,B:G1

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE hr_label = char_to_label ('HR', 'S:A,B:G1');

Chapter 6
Presenting the Label

6-7

This statement returns the following:

LABEL ENAME
------------- ---------
S:A,B:G1 RWRIGHT
S:A,B:G1 ESTANTON

Alternatively, you could use a more flexible statement to look up data that contains the
string "S:A,B:G1" anywhere in the text of the HR_LABEL column:

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE label_to_char (hr_label) like '%S:A,B:G1%';

If you do not use the LABEL_TO_CHAR function, then you will see the label tag.

Example: Retrieving a Numeric Column Data Type

The following example is with the numeric column data type (NUMBER) and dynamically
generated label tags, but without using the LABEL_TO_CHAR function. If you do not use
the LABEL_TO_CHAR function, then you will see the label tag.

SQL> select empno, hr_label from emp
 where ename='RWRIGHT';

EMPNO HR_LABEL
---------- ----------
7839 1000000562

Retrieving All Columns from a Table When the Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

• To explicitly specify that you want to retrieve a label, use the LABEL_TO_CHAR
function in the SELECT statement.

For example, to retrieve all columns from the DEPT table (including the policy label
column in its character representation), enter the following:

COLUMN LABEL FORMAT a10
SELECT LABEL_TO_CHAR (hr_label) AS LABEL, DEPT.* FROM DEPT;

Running these SQL statements returns the following data:

Table 6-3 Data Returned from Sample SQL Statements re Hidden Column

LABEL DEPTNO DNAME LOC

L1 10 ACCOUNTING NEW YORK

L1 20 RESEARCH DALLAS

L1 30 SALES CHICAGO

L1 40 OPERATIONS BOSTON

By contrast, if you do not explicitly specify the HR_LABEL column, the label is not
displayed at all. Note that while the policy column name is on a policy basis, the HIDE
option is on a table-by-table basis.

Chapter 6
Presenting the Label

6-8

Related Topics

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

Filtration of Data Using Labels
When SQL statements are processed, Oracle Label Security makes calls to the
security policies defined in the database by create-and-apply procedures.

For SELECT statements, the policy filters the data rows that the user is authorized to
see. For INSERT, UPDATE, and DELETE statements, Oracle Label Security permits or
denies the requested operation, based on the user's authorizations.

• Use of Numeric Label Tags in WHERE Clauses
There are different techniques of using numeric label tags in WHERE clauses of
SELECT statements.

• Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the
numeric label tag.

• Ordering by Character Representation of Label
The LABEL_TO_CHAR function orders data rows by the character representation of the
label.

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or
the greatest lower bound of two or more labels.

• Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function merges two labels together.

Use of Numeric Label Tags in WHERE Clauses
There are different techniques of using numeric label tags in WHERE clauses of SELECT
statements.

When using labels in the NUMBER format, you can set up labels so that a list of your label
tags distinguishes the different levels. Comparisons of these numeric label tags can be
used for ORDER BY processing, and with the logical operators.

For example, if you have assigned all UNCLASSIFIED labels to the 1000 range, all
SENSITIVE labels to the 2000 range, and all HIGHLY_SENSITIVE labels to the 3000 range,
then you can list all SENSITIVE records.

SELECT * FROM emp
WHERE hr_label BETWEEN 2000 AND 2999;

To list all SENSITIVE and UNCLASSIFIED records, you can enter:

SELECT * FROM emp
WHERE hr_label <3000;

To list all HIGHLY_SENSITIVE records, you can enter:

SELECT * FROM emp
WHERE hr_label=3000;

Chapter 6
Filtration of Data Using Labels

6-9

Note:

Remember that such queries have meaning only if the administrator has
applied a numeric ordering strategy to the label tags that he or she originally
assigned to the labels. In this way, the administrator can provide for convenient
dissemination of data. If, however, the label tag values are generated
automatically, then there is no intrinsic relationship between the value of the tag
and the order of the labels.

Alternatively, you can use dominance relationships to set up an ordering strategy.

Related Topics

• Using Dominance Functions
Oracle Label Security provides functions to control dominance.

Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the numeric
label tag.

• To perform the ORDER BY operation, use a SELECT statement similar to the following:

SELECT * from emp
ORDER BY hr_label;

Notice that no functions were necessary in this statement. The statement made use of
label tags set up by the administrator.

Note:

Again, such queries have meaning only if the administrator has applied a
numeric ordering strategy to the label tags originally assigned to the labels.

Ordering by Character Representation of Label
The LABEL_TO_CHAR function orders data rows by the character representation of the
label.

• To order data rows by the character representation of a label, use a statement
similar to the following, which returns all rows sorted by the text order of the label :

SELECT * FROM emp
ORDER BY label_to_char (hr_label);

Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or the
greatest lower bound of two or more labels.

Two single-row functions operate on each row returned by a query. They return one
result for each row.

Chapter 6
Filtration of Data Using Labels

6-10

Note:

In all functions that take multiple labels, the labels must all belong to the same
policy.

• Finding Least Upper Bound with LEAST_UBOUND
The OLS_LEAST_UBOUND (OLS_LUBD) function returns a character string label that is the
least upper bound of label1 and label2:.

• Finding Greatest Lower Bound with GREATEST_LBOUND
The OLS_GREATEST_LBOUND (OLS_GLBD) standalone function determines the lowest
label of the data that can be involved in an operation, given two different labels.

Finding Least Upper Bound with LEAST_UBOUND
The OLS_LEAST_UBOUND (OLS_LUBD) function returns a character string label that is the
least upper bound of label1 and label2:.

That is, the one label that dominates both. The least upper bound is the highest level,
the union of the compartments in the labels, and the union of the groups in the labels.

For example, the least upper bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE:BETA is
HIGHLY_SENSITIVE:ALPHA,BETA.

• To find the least upper bound, use the following syntax:

FUNCTION OLS_LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

The OLS_LEAST_UBOUND function is useful when joining rows with different labels,
because it provides a high water mark label for joined rows.

The following query compares each employee's label with the label of his or her
department, and returns the higher label, whether it be in the EMP table or the DEPT
table.

SELECT ename,dept.deptno,
 OLS_LEAST_UBOUND(emp.hr_label,dept.hr_label) as label
 FROM emp, dept
 WHERE emp.deptno=dept.deptno;

This query returns the following data:

Table 6-4 Data Returned from Sample SQL Statements re Least_UBound

ENAME DEPTNO LABEL

KING 10 L3:M:D10

BLAKE 30 L3:M:D30

CLARK 10 L3:M:D10

JONES 20 L3:M:D20

MARTIN 30 L2:E:D30

Chapter 6
Filtration of Data Using Labels

6-11

Note:

The old OLS functions, LEAST_UBOUND and LUBD have been deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_LEAST_UBOUND and OLS_LUBD functions instead. Using the new
function names avoids potential name conflicts with other database
components.

Finding Greatest Lower Bound with GREATEST_LBOUND
The OLS_GREATEST_LBOUND (OLS_GLBD) standalone function determines the lowest label of
the data that can be involved in an operation, given two different labels.

This function returns a character string label that is the greatest lower bound of label1
and label2. The greatest lower bound is the lowest level, the intersection of the
compartments in the labels and the groups in the labels. For example, the greatest
lower bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE is SENSITIVE.

• To find the greatest lower bound, use the following syntax:

FUNCTION OLS_GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

Note:

The old OLS functions, GREATEST_LBOUND and GLBD were deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_GREATEST_LBOUND and OLS_GLBD functions instead. Using the new
function names avoids potential name conflicts with other database
components.

Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function merges two labels together.

It accepts the character string form of two labels and the three-character specification
of a merge format.

• To merge labels, use the following syntax:

FUNCTION merge_label (label1 IN number,
 label2 IN number,
 merge_format IN VARCHAR2)
RETURN number;

The valid merge format is specified with a three-character string:

Chapter 6
Filtration of Data Using Labels

6-12

<highest level or lowest level><union or intersection of compartments><union or

intersection of groups>

• The first character indicates whether to merge using the highest level or the lowest
level of the two labels.

• The second character indicates whether to merge using the union or the
intersection of the compartments in the two labels.

• The third character indicates whether to merge using the union or the intersection
of the groups in the two labels.

Table 6-5 defines the MERGE_LABEL format constants.

Table 6-5 MERGE_LABEL Format Constants

Format
Specification

Data Type Consta
nt

Meaning Positions in
Which Format Is
Used

max_lvl_fmt CONSTANT
varchar2(1)

H Maximum level First (level)

min_lvl_fmt CONSTANT
varchar2(1)

L Minimum level First (Level)

union_fmt CONSTANT
varchar2(1)

U Union of the two
labels

Second
(compartments)
and Third
(groups)

inter_fmt CONSTANT
varchar2(1)

I Intersection of the
two labels

Second
(compartments)
and Third
(groups)

minus_fmt CONSTANT
varchar2(1)

M Remove second
label from first label

Second
(compartments)
and Third
(groups)

null_fmt CONSTANT
varchar2(1)

N If specified in
compartments
column, returns no
compartments. If
specified in groups
column, returns no
groups.

Second
(compartments)
and Third
(groups)

For example, HUI specifies the highest level of the two labels, union of the
compartments, intersection of the groups.

The MERGE_LABEL function is particularly useful to developers if the LEAST_UBOUND function
does not provide the intended result. The LEAST_UBOUND function, when used with two
labels containing groups, may result in a less sensitive data label than expected. The
MERGE_LABEL function enables you to compute an intersection on the groups, instead of
the union of groups that is provided by the LEAST_UBOUND function.

For example, if the label of one data record contains the group UNITED_STATES, and the
label of another data record contains the group UNITED_KINGDOM, and the LEAST_UBOUND
function is used to compute the least upper bound of these two labels, then the

Chapter 6
Filtration of Data Using Labels

6-13

resulting label would be accessible to users authorized for either the UNITED_STATES or
the UNITED_KINGDOM.

If, by contrast, the MERGE_LABEL function is used with a format clause of HUI, then the
resulting label would contain the highest level, the union of the compartments, and no
groups. This is because UNITED_STATES and UNITED_KINGDOM do not intersect.

Inserting Labeled Data
You can insert labeled data in a variety of situations.

• About Inserting Labeled Data
When you insert data into a table protected by an Oracle Label Security policy,
you must supply a numeric label value tag.

• Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string and then transform
it into a label using the CHAR_TO_LABEL function.

• Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using
the CHAR_TO_LABEL function.

• Inserting Data Without Specifying a Label
There are two situations in which you do not need to specify a label in INSERT
statements.

• Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, then the existence of the column is transparent to the
insertion of data.

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

About Inserting Labeled Data
When you insert data into a table protected by an Oracle Label Security policy, you
must supply a numeric label value tag.

Usually, you can insert this value in the INSERT statement itself.

To do this, you must explicitly specify the tag for the desired label or explicitly convert
the character string representation of the label into the correct tag. Note that this does
not mean generating new label tags, but referencing the correct tag. When Oracle
Label Security is using Oracle Internet Directory, the only permissible labels (and
corresponding tags) are those pre-defined by the administrator and already in Oracle
Internet Directory.

The only times an INSERT statement may omit a label value are:

• If the LABEL_DEFAULT enforcement option was specified when the policy was
applied, or

• If no enforcement options were specified when the policy was applied and
LABEL_DEFAULT was specified when the policy was created

• If the statement applying the policy named a labeling function.

In the first two cases, the user's session default row label is used as the inserted row's
label. In the third case, the inserted row's label is created by that labeling function.

Chapter 6
Inserting Labeled Data

6-14

Related Topics

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and
implement labeling functions.

Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string and then transform it
into a label using the CHAR_TO_LABEL function.

The CHAR_TO_LABEL function automatically creates a valid data label.

• To insert labels, use an INSERT INTO statement.

Using the definition for table emp, the following example shows how to insert data with
explicit labels:

INSERT INTO emp (ename,empno,hr_label)
VALUES ('ESTANTON',10,char_to_label ('HR', 'SENSITIVE'));

Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using the
CHAR_TO_LABEL function.

• To insert labels using numeric label tag values, use an INSERT INTO statement.

For example, if the numeric label tag for SENSITIVE is 3000, it would appear as follows:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, 3000);

Inserting Data Without Specifying a Label
There are two situations in which you do not need to specify a label in INSERT
statements.

If LABEL_DEFAULT is set, or if there is a labeling function applied to the table, then you do
not need to specify a label in your INSERT statements. The label will be provided
automatically.

• To insert data without specifying a label, use an INSERT INTO statement.

For example:

INSERT INTO emp (ename, empno)
VALUES ('ESTANTON', 10);

The resulting row label is set according to the default value (or by a labeling function).

Chapter 6
Inserting Labeled Data

6-15

Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, then the existence of the column is transparent to the
insertion of data.

INSERT statements can be written that do not explicitly list the table columns and do not
include a value for the label column.

The session's row label is used to label the data, or a labeling function is used if one
was specified when the policy was applied to the table or schema.

You can insert into a table without explicitly naming the columns, as long as you
specify a value for each non-hidden column in the table. The following example shows
how to insert a row into the table described in Example 2: Numeric Column Data Type
with Hidden Column:

• To insert data when the policy label column is hidden, use the following syntax:

INSERT INTO emp
VALUES ('196','ESTANTON',Technician,RSTOUT,50000,10);

Its label will be one of the following three possibilities:

• The label you specify

• The label established by the LABEL_DEFAULT option of the policy being applied

• The label created by a labeling function named by the policy being applied

Note:

If the policy label column is not hidden, then you must explicitly include a
label value (possibly null, indicated by a comma) in the INSERT statement.

Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

This approach guarantees that the data labels are valid. However, be aware that when
Oracle Label Security is installed to work with Oracle Internet Directory, dynamic label
generation is not allowed, because labels are managed centrally in Oracle Internet
Directory, using olsadmintool commands. Therefore, when Oracle Label Security is
directory-enabled, this function, TO_DATA_LABEL, is not available and will generate an
error message if used.

1. Ensure that you have the EXECUTE privilege on the TO_DATA_LABEL function.

2. Use the TO_DATA_LABEL as necessary, for example, in an INSERT INTO statement.

For example:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, to_data_label ('HR', 'SENSITIVE'));

Chapter 6
Inserting Labeled Data

6-16

Note:

The TO_DATA_LABEL function must be explicitly granted to individuals, in order to
be used. Its usage should be tightly controlled.

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet
Directory.

Changing Session and Row Labels
During a session, a user can change labels based on the authorizations an
administrator sets.

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

Chapter 6
Changing Session and Row Labels

6-17

7
Oracle Label Security Using
Oracle Internet Directory

You can use Oracle Label Security with Oracle Internet Directory.

• About Label Management on Oracle Internet Directory
Managing Oracle Label Security metadata in a centralized LDAP repository
provides many benefits.

• Configuring Oracle Internet Directory-Enabled Label Security
You can configure Oracle Internet Directory-enabled Oracle Label Security.

• Oracle Label Security Profiles
A user profile is a set of user authorizations and privileges.

• Integrated Capabilities When Label Security Uses the Directory
The integration of Oracle Label Security and Oracle Internet Directory enables the
several capabilities.

• Oracle Label Security Policy Attributes in Oracle Internet Directory
In Oracle Internet Directory, Oracle-related metadata is stored under
cn=OracleContext.

• Subscription of Policies in Directory-Enabled Label Security
In an Oracle Internet Directory-enabled Oracle Label Security, you must subscribe
a policy before it can be applied (by SA_POLICY_ADMIN.APPLY_TABLE_POLICY or
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY).

• Restrictions on New Data Label Creation
When Oracle Label Security is used with Oracle Internet Directory, data labels
must be pre-defined in the directory.

• Administrator Duties for Oracle Internet Directory and Oracle Label Security
Administrators listed within a policy are those individuals authorized to do the
olicy-specific administrative tasks.

• Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install
Oracle Internet Directory enabled Oracle Label Security on that database.

• Synchronizing the Database and Oracle Internet Directory
After you have installed and configured Oracle Internet Directory with Oracle Label
Security, you should synchronize the database with OID and OLS.

• Security Roles and Permitted Actions
Oracle Label Security permits specific tasks and access levels for Oracle Internet
Directory, including restrictions on directory-enabled OLS policy creators.

• Superseded PL/SQL Statements When OID Is Enabled with OLS
When Oracle Internet Directory is enabled with Oracle Label Security, there are
several procedures that are superseded.

7-1

• Oracle Label Security Procedures for Policy Administrators
Several procedures in the SA_POLICY_ADMIN PL/SQL package are allowed to be run
only by policy administrators (enterprise users defined in Oracle Internet
Directory).

About Label Management on Oracle Internet Directory
Managing Oracle Label Security metadata in a centralized LDAP repository provides
many benefits.

• You can easily provision policies and user label authorizations, and distribute them
throughout the enterprise.

• When employees are terminated, you can revoke their label authorizations in one
place and the change automatically propagates throughout the enterprise.

Previous releases of Oracle Label Security relied on the Oracle Database as the
central repository for policy and user label authorizations. This leveraged the
scalability and high availability of the Oracle Database, but not the identity
management infrastructure, which includes the Oracle Internet Directory (OID).
Integrating your installation of Oracle Label Security with Oracle Internet Directory
allows label authorizations as part of your standard provisioning process.

These advantages apply also to directory-stored information about policies, user
labels, and privileges that Oracle Label Security assigns to users. These labels and
privileges are specific to the installation policies defining access control on tables and
schemas. If a site is not using Oracle Internet Directory, then such information is
stored locally in the database.

The following Oracle Label Security information is stored in the directory:

• Policy information, specifically policy name, column name, policy enforcement
options, and audit options

• User profiles identifying their labels and privileges

• Policy label components: levels, compartments, and groups

• Policy data labels

Database-specific metadata, such as the following, is not stored in the directory:

• Lists of schemas or tables, with associated policy information

• Program units, with associated policy privileges

Note the following important aspects of integrating an Oracle Label Security
installation with Oracle Internet Directory (OID):

Note:

Oracle will continue to support both the database and directory-based (OID)
architectures for Oracle Label Security. However, a single database
environment cannot host both architectures. Administrators must decide
whether to use the centralized LDAP administration model or the database-
centric model.

Chapter 7
About Label Management on Oracle Internet Directory

7-2

Note:

You can manage Oracle Label Security policies directly in the directory using
the Oracle Label Security administration tool (olsadmintool).

You can also use the graphical user interface provided by Oracle Enterprise
Manager to manage Oracle Label Security. The Oracle Enterprise Manager
help contains detailed documentation.

For sites that use Oracle Internet Directory, databases retrieve Oracle Label Security
policy information from the directory. Administrators use the olsadmintool policy
administration tool or the Enterprise Manager graphical user interface to operate
directly on the directory to insert, alter, or remove metadata as needed. Because
enterprise users can log in to multiple databases using the credentials stored in Oracle
Internet Directory, it is logical to store their Oracle Label Security policy authorizations
and privileges there as well. An administrator can then modify these authorizations
and privileges by updating such metadata in the directory.

For distributed databases, centralized policy management removes the need for
replicating policies, because the appropriate policy information is available in the
directory. Changes are effective without further effort, synchronized with policy
information in the databases by means of the Directory Integration Platform.

See Also:

Synchronization using the Directory Integration Platform is described in the
Oracle Identity Management Integration Guide

Figure 7-1 illustrates the structure of metadata storage in Oracle Internet Directory.

Chapter 7
About Label Management on Oracle Internet Directory

7-3

Figure 7-1 Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory

Groups

OracleDBCreators

OracleContextAdmins

OracleDBSecurityAdmins

OracleUserSecurityAdmins

OraclePasswordAccessibleDomains

Oracle Context
Products

User-Schema
Mapping
(Example)

Sales
(Example Database)

OracleDBAdmins
Group

Networking

Products

Common
Nickname Attribute

Oracle Label
Security

. . .Policy3

PolicyOptions

Policy ... n

PolicyOptions

Policies

Policy1

PolicyOptions

Policy2

PolicyOptions

. . .

Labels
Audit

Options Levels Compartments Groups Profiles
Policy

Creators DB Servers

Figure 7-2 illustrates how different policies stored in Oracle Internet Directory apply to
the databases accessed by different enterprise users. Directory entries corresponding
to the user and the accessed database determine the policy to be applied.

Chapter 7
About Label Management on Oracle Internet Directory

7-4

Figure 7-2 Oracle Label Security Policies Applied through Oracle Internet Directory

OLS Policies
Alpha, Beta info

OID
(b)

OID Changes

DIP Server

OLS Policies
Alpha and Beta

Oracle DB1

OLS Policies
Alpha and Beta

Oracle DB2

(a)

LDAP

SSL or SASL

SSL/non-SSL

logon as an
enterprise user

LDAP

SSL or SASL

olsadmintool

sqlplus

SSL/non-SSL

logon as an
enterprise user

PL/SQL
Programs

1. Multiple OLS policy attributes

2. Enterprise users with OLS attributes

Notes:

a. Directory Integration Platform (DIP) provisioning /
 synchronizing profile in Oracle Internet Directory (OID)
 changeable using oidprovtool.

b. User profile in OID changeable using olsadmintool.

In this figure, the directory has information about two Oracle Label Security policies,
Alpha, applying to database DB1, and Beta, applying to database DB2 Although both
policies are known to each database, only the appropriate one is applied in each case.
In addition, enterprise users who are to access rows protected by Oracle Label
Security are listed in profiles within the Oracle Label Security attributes in Oracle
Internet Directory.

As Figure 7-2 shows, the connections between different databases and the directory
are established over either SSL or SASL. The database always binds to the directory
as a known identity using password-based authentication. Links between databases
and their clients (such as a SQL*Plus session, any PL/SQL programs, and so on) can
use either SSL or non-SSL connections. The example of Figure 7-2 assumes that
users are logged on through password authentication. The choice of connection type
depends on the enterprise user model.

The Oracle Label Security policy administration tool operates directly on metadata in
Oracle Internet Directory. Changes in the directory are then propagated to the Oracle
Directory Integration and Provisioning server, which is configured to send changes to
the databases at specific time intervals.

Chapter 7
About Label Management on Oracle Internet Directory

7-5

The databases update the policy information in Oracle Internet Directory only when
policies are being applied to tables or schemas. These updates ensure that policies
that are in use will not be dropped from the directory.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for more
information on enterprise domains, user models and authentication
activities

• Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory for detailed information on Oracle Internet Directory

Configuring Oracle Internet Directory-Enabled Label
Security

You can configure Oracle Internet Directory-enabled Oracle Label Security.

• About Configuring Oracle Internet Directory-Enabled Label Security
You can configure a database for Oracle Internet Directory-enabled Label Security
after database creation or during custom database creation.

• Granting Permissions for Configuring OID-Enabled Oracle Label Security
Users who perform Oracle Internet Directory-enabled Oracle Label Security using
the Database Configuration Assistant (DBCA) must have additional privileges.

• Registering a Database and Configuring OID-Enabled Oracle Label Security
The registration and configuration process entails configuring an Oracle home for
the directory, performing the configuration, and setting a password and connect
data.

• Unregisteration of a Database with OID-Enabled Oracle Label Security
To unregister a database with Oracle Internet Directory-enabled Oracle Label
Security, you can use DBCA.

About Configuring Oracle Internet Directory-Enabled Label Security
You can configure a database for Oracle Internet Directory-enabled Label Security
after database creation or during custom database creation.

Oracle Internet Directory-enabled label security relies on the Enterprise User security
feature.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for
prerequisites and steps to configure a database for directory usage

• Oracle Database Enterprise User Security Administrator's Guide for
information about Database Configuration Assistant (DBCA).

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-6

Granting Permissions for Configuring OID-Enabled Oracle Label
Security

Users who perform Oracle Internet Directory-enabled Oracle Label Security using the
Database Configuration Assistant (DBCA) must have additional privileges.

The following steps describe what permissions are needed, and how to grant them:

1. Use Enterprise Manager to add the user to the OracleDBCreators group.

Oracle Database Enterprise User Security Administrator's Guide describes how to
add a user to an administrative group.

2. Add the user to the Provisioning Admins group.

This is necessary because DBCA creates a DIP provisioning profile for Oracle
Label Security. Use ldapmodify command with the following .ldif file to add a user
to the Provisioning Admins group:

dn: cn=Provisioning Admins,cn=changelog subscriber, cn=oracle internet directory
changetype: modify
add: uniquemember
uniquemember: DN of the user who is to be added

3. Add the user to the policyCreators group using the olsadmintool command line
tool.

DBCA bootstraps the database with the Oracle Label Security policy information
from Oracle Internet Directory, and only policyCreators can perform this bootstrap.

4. If the database is already registered with the Oracle Internet Directory using
DBCA, use Enterprise Manager to add the user to the OracleDBAdmins group of that
database.

Note that the permissions specified earlier are also needed by the administrator who
unregisters the database that has Oracle Internet Directory enabled Oracle Label
Security configuration.

Registering a Database and Configuring OID-Enabled Oracle Label
Security

The registration and configuration process entails configuring an Oracle home for the
directory, performing the configuration, and setting a password and connect data.

• Step 1: Configure Your Oracle Home for Directory Usage
First, you must configure your Oracle home directory so that you can use Oracle
Internet Directory.

• Step 2: Configure Oracle Internet Directory for Oracle Label Security
Next, you are ready to configure Oracle Internet Directory for Oracle Label
security.

• Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label Security
Registering the database and configuring Oracle Label Security can be done in
one invocation of DBCA.

• Step 3: Set the DIP Password and Connect Data
The DIP user manages Oracle Internet Directory.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-7

Step 1: Configure Your Oracle Home for Directory Usage
First, you must configure your Oracle home directory so that you can use Oracle
Internet Directory.

• Follow the instructions in Oracle Database Enterprise User Security
Administrator's Guide to configure your Oracle home for directory usage.

Step 2: Configure Oracle Internet Directory for Oracle Label Security
Next, you are ready to configure Oracle Internet Directory for Oracle Label security.

1. Register your database in the directory using Database Configuration Assistant
(DBCA).

See Oracle Database Enterprise User Security Administrator's Guide .

2. After your database is registered in the directory, configure Label Security:

a. Start DBCA, select Configure database options in a database, and click
Next.

b. Select a database and click Next.

c. Regarding the option of unregistering the database or keeping it registered,
select Keep the database registered.

d. If the database is registered with Oracle Internet Directory, the Database
options screen shows a customize button beside the Label Security check
box. Select the Label Security option and click Customize.

e. This customize dialog has two configuration options, for standalone Oracle
Label Security or for Oracle Internet Directory-enabled Oracle Label Security.
Click OID-enabled Label security configuration and enter the Oracle
Internet Directory credentials of an appropriate administrator. Click Ok.

f. Continue with the remaining DBCA steps and click Finish when it appears.

Note:

You can configure a standalone Oracle Label Security on a database
that is registered with Oracle Internet Directory. Select the standalone
option in step e.

When configuring for Oracle Internet Directory-enabled Oracle Label Security, DBCA
does the following actions in addition to registering the database:

1. Creates a provisioning profile for propagating Label Security policy changes to the
database.

2. Installs the required packages on the database side for Oracle Internet Directory-
enabled Oracle Label Security.

3. Bootstraps the database with all the existing Label Security policy information in
the Oracle Internet Directory.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-8

Related Topics

• Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install
Oracle Internet Directory enabled Oracle Label Security on that database.

Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label Security
Registering the database and configuring Oracle Label Security can be done in one
invocation of DBCA.

1. Start DBCA.

2. Select Configure database options in a database and click Next.

3. Select a database and click Next.

4. Click Register the database.

5. Enter the Oracle Internet Directory credentials of an appropriate administrator, and
the corresponding password for the database wallet that will be created.

6. Enter an optional Custom Database Name for the database.

The ability to specify a custom database name is new in Oracle Database 12c. By
default, the database CN (first part of the DN or the distinguished name) in the
directory is the DB_UNIQUE_NAME. You can change this to a custom value.

7. The Database options screen shows a Customize button beside the Label Security
check box. Select the Label Security option and click Customize.

The Customize dialog box is displayed, showing two configuration options, for
standalone Oracle Label Security or for Oracle Internet Directory-enabled Oracle
Label Security.

8. Click OID-enabled Label Security Configuration.

9. Continue with the remaining DBCA steps and click Finish.

Step 3: Set the DIP Password and Connect Data
The DIP user manages Oracle Internet Directory.

After you configure this user’s password, you must update the interface connect
information in the DIP provisioning profile.

1. Use the command line tool oidprovtool to set the password for the DIP user and
update the interface connect information in the DIP provisioning profile for that
database with the new password.

2. Upon creation, the DIP profile uses a schedule value of 3600 seconds by default,
meaning that Oracle Label Security changes are propagated to the database
every hour. You can use oidprovtool to change this value if deployment
considerations require that.

Once the database is configured for Oracle Internet Directory-enabled Oracle Label
Security, further considerations regarding enterprise user security may apply.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-9

See Also:

• Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles

• Oracle Database Enterprise User Security Administrator's Guide for further
concepts, tools, steps, and procedures

Unregisteration of a Database with OID-Enabled Oracle Label Security
To unregister a database with Oracle Internet Directory-enabled Oracle Label Security,
you can use DBCA.

DBCA does the following in this process:

1. Deletes the DIP provisioning profile for the database created for Oracle Label
Security.

2. Installs the required packages for standalone Oracle Label Security, so that after
unregistering, Oracle Internet Directory enabled Oracle Label Security becomes
standalone Oracle Label Security.

Note:

• Specific instructions for database unregistration appear in the Oracle
Database Enterprise User Security Administrator's Guide. No special
steps are required when Oracle Internet Directory-enabled Oracle
Label Security is configured.

• If a database has standalone Oracle Label Security, it cannot be
converted to Oracle Internet Directory-enabled Oracle Label Security.
You need to drop Oracle Label Security from the database and then
use DBCA again to configure Oracle Internet Directory-enabled Oracle
Label Security.

Oracle Label Security Profiles
A user profile is a set of user authorizations and privileges.

Profiles are maintained as part of each Oracle Label Security policy stored in the
Directory.If a user is added to a profile, then the authorizations and privileges defined
in that profile for that particular policy are acquired by the user, which include the
following attributes:

• Five label authorizations:

– maximum read label

– maximum write label

– minimum write label

– default read label

– default row label

Chapter 7
Oracle Label Security Profiles

7-10

• Privileges

• The list of enterprise users to whom these authorizations apply

An enterprise user can belong to only one profile, or none.

See Also:

• Oracle Label Security Policy Attributes in Oracle Internet Directory

• Oracle Database Enterprise User Security Administrator's Guide for more
information on creating and managing enterprise users

• Oracle Enterprise Manager help for information on creating and
administering Oracle Label Security profiles and policies

Integrated Capabilities When Label Security Uses the
Directory

The integration of Oracle Label Security and Oracle Internet Directory enables the
several capabilities.

• User/administrator actions

– Storing multiple Oracle Label Security policies in Oracle Internet Directory

– Managing Oracle Label Security policies and options in the directory, including

* creating or dropping a policy

* changing policy options

* changing audit settings

– Creating label components for any Oracle Label Security policies by

* creating or removing levels, compartments, or groups

* assigning numeric values to levels, compartments, or groups

* changing long names of levels, compartments, or groups

* creating children groups

– Managing enterprise users configured as users of any Oracle Label Security
policies, including

* assigning or removing enterprise users to/from profiles within policies

* assigning policy-specific privileges to enterprise users, or removing them

* changing policy label authorizations assigned to enterprise users

– Managing all user/administrator actions and capabilities by means of an
integrated set of command line tools that monitor and manage Oracle Label
Security policies in Oracle Internet Directory.

• Automatic results of Oracle Label Security

– Limiting database policy usage to directory-defined policies only (no local
policies defined or applied)

Chapter 7
Integrated Capabilities When Label Security Uses the Directory

7-11

– Synchronizing changes to policies in the directory with the databases using
Oracle Label Security (to apply after enterprise users reconnect)

– After changes are propagated by the Directory Integration Platform, having
immediate access to enterprise users' Oracle Label Security attributes when
these users log on to any database using Oracle Label Security, assuming
they are configured within any Oracle Label Security policies. These attributes
include users' label authorizations and users' privileges.

Oracle Label Security Policy Attributes in Oracle Internet
Directory

In Oracle Internet Directory, Oracle-related metadata is stored under cn=OracleContext.

Within Label Security, each policy holds the information and parameters shown in
Figure 7-1:

When Oracle Label Security is used without Oracle Internet Directory, it supports
automatic creation of data labels by means of a label function. However, when Oracle
Label Security is used with Oracle Internet Directory, such functions can create labels
only using data labels that are already defined in the directory.

Table 7-1 Contents of Each Policy

Type of Entry Contents Meaning/Sample Usage/References

Policy Name The name assigned to this policy at its creation Used in olsadmintool commands such
as olsadmintool createpolicy (refer to
Command-line Tools for Label Security
Using Oracle Internet Directory)

Column Name The name of the column that will hold the label
values relevant to this policy

Column is added to database. Refer to
How Policy Label Column and Label
Tags Work

Inserting Labeled Data

How the HIDE Policy Column Option
Works

Oracle Label Security Reference.

Used in

olsadmintool createpolicy

Enforcement Options Any combination of the following entries:

LABEL_DEFAULT,LABEL_UPDATE,
CHECK_CONTROL,READ_CONTROL,
WRITE_CONTROL,INSERT_CONTROL,
DELETE_CONTROL,UPDATE_CONTROL,
ALL_CONTROL, or NO_CONTROL

Refer to the discussions in Implementing
Policy Enforcement Options and Labeling
Functions and Oracle Label Security
Reference.

Used in

olsadmintool createpolicy

and olsadmintool alterpolicy

Options Enabled:TRUE or FALSE, Type: ACCESS or
SESSION, Success: SUCCESSFUL,UNSUCCESSFUL,
or BOTH.

Used in

olsadmintool audit

Levels Name and number for each level Used in olsadmintool create/alter/
droplevel

Chapter 7
Oracle Label Security Policy Attributes in Oracle Internet Directory

7-12

Table 7-1 (Cont.) Contents of Each Policy

Type of Entry Contents Meaning/Sample Usage/References

Compartments Name and number for each compartment Used in olsadmintool create/alter/
drop compartment

Groups Name, number, and parent for each group Used in olsadmintool create/alter/
dropgroup

Profiles Maximum and default read labels, maximum
and minimum write labels, default row label, list
of users, and a set of privileges from this list:

READ, FULL,

WRITEUP, WRITEDOWN, WRITEACROSS,

PROFILE_ACCESS, or COMPACCESS

Policies can have one or more profiles,
each of which can be assigned to many
users. Profiles reduce the need to set up
label authorizations for individual users.

All users with the same set of labels and
privileges are grouped in a single profile.
Each profile represents a different set of
labels, privileges, and users. Each profile
in a policy is unique.

Data Labels Full name and number for each valid data label Refer to Restrictions on New Data Label
Creation.

Administrators Name of each administrator authorized to
modify the parameters within this policy.

Policy administrators can modify
parameters within a policy. They are not
necessarily also policy creators, who
have the right to create or remove
policies or policy administrators. Refer to
Security Roles and Permitted Actions.

Subscription of Policies in Directory-Enabled Label Security
In an Oracle Internet Directory-enabled Oracle Label Security, you must subscribe a
policy before it can be applied (by SA_POLICY_ADMIN.APPLY_TABLE_POLICY or
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY).

In a standalone Oracle Label Security installation, the
SA_POLICY_ADMIN.APPLY_TABLE_POLICY or SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY functions
can be used directly without the need to subscribe.

Related Topics

• SA_POLICY_ADMIN Policy Administration PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as
a whole.

• Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security
policy, you can apply it to a database table or schema.

Restrictions on New Data Label Creation
When Oracle Label Security is used with Oracle Internet Directory, data labels must be
pre-defined in the directory.

They cannot be created dynamically by a label function, as is possible when label
security is not integrated with the directory.

Chapter 7
Subscription of Policies in Directory-Enabled Label Security

7-13

Administrator Duties for Oracle Internet Directory and Oracle
Label Security

Administrators listed within a policy are those individuals authorized to do the olicy-
specific administrative tasks.

• Modify existing policy options and audit settings.

• Enable or disable auditing for a policy.

• Create or remove levels, compartments, groups or children groups.

• Modify full/long names for levels, compartment, or groups.

• Define or modify enterprise user settings, in this policy, for:

– Privileges

– Maximum or minimum levels

– Read, write, or row access for levels, compartments, or groups

– Label profiles

• Remove enterprise users from a policy.

There is a higher level of administrators, called policy creators, who can create and
remove Oracle Label Security policies and the policy administrators named within
them.

Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install Oracle
Internet Directory enabled Oracle Label Security on that database.

This installation process automatically creates a Directory Integration Platform (DIP)
provisioning profile enabling policy information to be periodically refreshed in the future
by downloading it to the database.

When configuring the database for Oracle Internet Directory enabled Oracle Label
Security, the DBCA tool puts all the policy information in Oracle Internet Directory into
the database.

• To bootstrap the database, run the bootstrap utility script at $ORACLE_HOME/bin/
olsoidsync using the following parameters:

olsoidsync --dbconnectstring <"database connect string in host:port:sid format">
--dbuser <database user> --dbuserpassword <database user password> [-c] [-r]
[-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

For example:

olsoidsync --dbconnectstring yippee:1521:ora101 --dbuser lbacsys
--dbuserpassword lbacsys -c
-b "ou=Americas,o=Oracle,c=US" -h yippee -D cn=policycreator -w Easy2rem

The olsoidsync command pulls policy information from Oracle Internet Directory and
populates the information in the database. You must provide the database TNS name,
the database user name, the database user's password, the administrative context (if

Chapter 7
Administrator Duties for Oracle Internet Directory and Oracle Label Security

7-14

any), the Oracle Internet Directory host name, the bind DN and bind password, and
optionally the Oracle Internet Directory port number.

The optional -c switch causes the command to drop all the existing policies in the
database and refresh it with policy information from Oracle Internet Directory.

The optional -r switch causes the command to drop all the policy metadata (without
dropping the policies themselves) and refresh the policies with new metadata from
Oracle Internet Directory.

Without these two switches, the command will only create new policies from Oracle
Internet Directory, and will halt on any errors encountered during the refresh.

Related Topics

• Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles
The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database.

Synchronizing the Database and Oracle Internet Directory
After you have installed and configured Oracle Internet Directory with Oracle Label
Security, you should synchronize the database with OID and OLS.

• About Synchronizing the Database and Oracle Internet Directory
The Directory Integration Platform Oracle Directory Provisioning Service
synchronizes Oracle Label Security metadata in the OID directory with the
databases.

• Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles
The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database.

• Modifying a Provisioning Profile
The oidprovtool modify command changes the password for the
interface_connect_info connect string.

• Changing the Database Connection Information for a Provisioning Profile
You can change the database connection information in the DIP profile.

• Configuring OID-Enabled Oracle Label Security with Oracle Data Guard
To configure Oracle Directory-Enabled Oracle Label Security to work with Oracle
Data Guard, first you configure the primary database, then the secondary
database.

About Synchronizing the Database and Oracle Internet Directory
The Directory Integration Platform Oracle Directory Provisioning Service synchronizes
Oracle Label Security metadata in the OID directory with the databases.

Changes to the label security data in the directory are conveyed by the provisioning
integration service in the form of provisioning events. A software agent receives these
events and generates appropriate SQL or PL/SQL statements to update the database.
After these statements are processed, Oracle Label Security data dictionaries are
updated to match the changes already made in the directory.

Oracle Label Security subscribes itself to the Provisioning Integration Service
automatically during installation. The provisioning service stores the information
associated with each database in the form of a provisioning profile. The software agent

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-15

uses the identity of the user DIP, which is created as for Oracle Label Security, to
connect to the database, when synchronizing the changes in Oracle Internet Directory
with the database.

If the password for the user DIP is changed, then you must update this password in the
provisioning profile of the provisioning integration service.

Oracle Directory Integration and Provisioning (DIP) Provisioning
Profiles

The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database.

This profile is created automatically as part of the installation process for Oracle
Internet Directory-enabled Oracle Label Security. The administrator can use the
provisioning tool oidprovtool to modify the password for a database profile, using the
script $ORACLE_HOME/bin/oidprovtool. Each such profile contains the following
information:

Table 7-2 Elements in a DIP Provisioning Profile

Element Name for This Element
When Invoking oidprovtool

The LDAP host name ldap_host

The LDAP port number ldap_port

The user DN and password to bind to Oracle Internet
Directory to retrieve policy information

ldap_user

ldap_user_password

The database DN application_dn

The organization DN, that is, the administrative context in
which changes are being made

organization_dn

The callback function to be invoked, that is,
LBACSYS.OLS_DIP_NTFY

interface_name

The database connect information, which is the host name of
the database, the port number used to connect to the
database, the database SID, the database user name and
password

interface_connect_info

Event subscriptions, including all MODIFY, ADD and DELETE
events under cn=LabelSecurity in Oracle Internet Directory

operation

The time interval between synchronizations schedule

Here is an example of using oidprovtool, followed by an explanation of the parameters
in this example:

oidprovtool operation=modify ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=Easy2rem
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US" interface_name=LBACSYS.OLS_DIP_NTFY
interface_type=PLSQL interface_connect_info=yippee:1521:db1:dip:newdip schedule=60
event_subscription= "ENTRY:cn=LabelSecurity,cn=Products,cn=OracleContext,
ou=Americas,o=Oracle,c=US:ADD(*)" event_subscription=
"ENTRY:cn=LabelSecurity,cn=Products, cn=OracleContext,ou=Americas,

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-16

o=Oracle,c=US:MODIFY(*)" event_subscription="ENTRY:cn=LabelSecurity,cn=Products,
cn=OracleContext, ou=Americas,o=Oracle,c=US:DELETE"

This sample oidprovtool command creates and enables a new DIP provisioning profile
with the following attributes:

• Oracle Internet Directory in host yippee using port 389

• Oracle Internet Directory user bind DN: cn=defense_admin with password Easy2rem

• Database DN: cn=db1, cn=OracleContext, ou=Americas, o=Oracle, c=US

• Organization DN (administrative context): ou=Americas, o=Oracle, c=US

• Database on host yippee, listening on port 1521

• Oracle SID: db1

• Database user: dip with new password newdip

• Interval to synchronize directory with connected databases: 60 seconds

• All the ADD, MODIFY and DELETE events under cn=LabelSecurity to be sent to DIP

To start the DIP server, use $ORACLE_HOME/bin/oidctl. For example:

oidctl server=odisrv connect=db2 config=0 instance=0 start

This command will start the DIP server by connecting to db2 (the Oracle Internet
Directory database) with config set to 0 and instance number 0.

See also:

Oracle Identity Management Integration Guide for more information on DIP
provisioning profiles

Modifying a Provisioning Profile
The oidprovtool modify command changes the password for the
interface_connect_info connect string.

Before you change the password, you must temporarily disable the profile. After
changing the password, you then reenable the profile.

1. Disable the profile by using theoidprovtool .

The syntax is as follows:

oidprovtool operation=disable ldap_host=host ldap_port=port
ldap_user_dn=ldap_user_dn ldap_user_password=password application_dn=app_dn
organization_dn=org_dn

For example:

oidprovtool operation=disable ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=password
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"

2. Modify the password and connection information by using the following syntax:

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-17

oidprovtool operation=modify ldap_host=ldap_host ldap_port=port

ldap_user_dn=ldap_user_dn ldap_user_password=password application_dn=app_dn
organization_dn=org_dn interface_connect_info=new_connect_info

For example:

oidprovtool operation=modify ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=Easy2rem
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"
interface_connect_info=yippee:1521:db1:dip:NewestDIPpassword

3. Reenable the profile by using the following syntax:

oidprovtool operation=enable ldap_host=host ldap_port=port
ldap_user_dn=ldap_user_dn ldap_user_password=password application_dn=app_dn
organization_dn=org_dn

For example

oidprovtool operation=enable ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=password
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"

Changing the Database Connection Information for a Provisioning
Profile

You can change the database connection information in the DIP profile.

1. Disable the provisioning profile.

This step temporarily stops the propagation of label security changes in the
directory to the database, but no data is lost. Once the profile is enabled, any label
security changes that happened in the directory since the profile was disabled are
synchronized with the database.

2. Update the database connection information in the profile.

3. Enable the profile.

Note:

The database character set must be compatible with Oracle Internet
Directory for Oracle Internet Directory-enabled Oracle Label Security to
work correctly. Only then can there be successful synchronization of the
Label Security metadata in Oracle Internet Directory with the Database.

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-18

See Also:

• Oracle Database Globalization Support Guide for more information
about character sets and Globalization Support parameters

• Modifying a Provisioning Profile

• Oracle Identity Management Integration Guide for more information
about enabling and disabling of provisioning profiles

Configuring OID-Enabled Oracle Label Security with Oracle Data
Guard

To configure Oracle Directory-Enabled Oracle Label Security to work with Oracle Data
Guard, first you configure the primary database, then the secondary database.

• Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
You must set up the directory-enabled Oracle Label Security with Oracle Data
Guard.

• Step 2: After the Switchover, Update the OID Provisioning Profile
Once you complete the switchover operation, you must update the Oracle Internet
Directory provisioning profile.

Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
You must set up the directory-enabled Oracle Label Security with Oracle Data Guard.

1. Configure Oracle Data Guard for your database.

See Oracle Data Guard Broker for information about installing Oracle Data Guard.

2. Register Oracle Label Security in Oracle Internet Directory on the primary
database.

See Registering a Database and Configuring OID-Enabled Oracle Label Security
for more information.

3. Verify the that the policies have been propagated to the primary database.

a. Create the Oracle Label Security policies in an Oracle Internet Directory using
the olsadmintool utility or in Oracle Enterprise Manager Cloud Control.

See Command-line Tools for Label Security Using Oracle Internet Directory for
more information about using the olsadmintool utility.

b. Connect to the primary database as user LBACSYS.

c. Query the DBA_SA_POLICIES data dictionary view to confirm that the policies
were propagated to the primary database.

SELECT POLICY_NAME FROM DBA_SA_POLICIES;

4. Connect to the standby database as user LBACSYS and then perform the SELECT
POLICY_NAME FROM DBA_SA_POLICIES; query to ensure that the policies that were
propagated on the primary database are on the standby database, though the
redo log apply process.

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-19

5. Copy the ewallet.p12, sqlnet.ora, and ldap.ora files from the primary database to
the standby database after the OLS-OID registration is complete.

This step is useful in case of failover and the primary database is not accessible.
By default, these files are in the following locations:

• ewallet.p12, the wallet file, is in either the $ORACLE_BASE/admin/Oracle_SID/
wallet directory or the $ORACLE_HOME/admin/Oracle_SID/wallet directory.

• sqlnet.ora is in the $ORACLE_HOME/dbs directory. (Back up this file before
copying it to the standby database.)

• ldap.ora is in the $ORACLE_HOME/dbs directory.

6. Go to the directory where you copied the ewallet.p12 file.

7. Create SSO wallet file (cwallet.sso) associated to PKCS#12 wallet (ewallet.p12)
by using the following syntax:

orapki wallet create -wallet wallet_location -auto_login [-pwd password]

Step 2: After the Switchover, Update the OID Provisioning Profile
Once you complete the switchover operation, you must update the Oracle Internet
Directory provisioning profile.

In this step, after you have you have performed the switchover and completed steps 5,
6, and 7 under Step 1: Set Up Directory-Enabled Oracle Label Security with Data
Guard, you are ready to update the provisioning profile in Oracle Internet Directory
with the connection information of the new primary database.

If you do not complete the following procedure, then the policies will continue to be
propagated to the new standby database, and the old primary database will fail with an
ORA-16000 database open for read-only access error. After you have updated the
provisioning profile with the new primary database connection information, then policy
propagation takes place in the new primary database. In addition, these policies are
propagated to the new standby through the redo apply process.

1. On either the primary or the standby computer, run the following oidprovtool utility
command for the new primary database.

oidprovtool operation=modify \
ldap_host=OID_Server_hostname ldap_port=OID_Server_Port \
ldap_user_dn="cn=orcladmin" \
application_dn="LDAP_distinguised_name_of_application" \

The application_dn setting can be derived from dn=dbname, cn=oraclecontext,
default_admin_context. The ldap.ora file lists the default_admin_context setting.

2. When prompted, enter the LDAP user password.

Please enter the LDAP password:

3. When prompted, enter the interface connection information in the following format:

host:port:service_name:dip:password

DIP is the Oracle Directory Integration and Provisioning (DIP) account that is
installed with Oracle Label Security. This account is created automatically as part
of the installation process for Oracle Internet Directory-enabled Oracle Label
Security.

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-20

To specify no interface connection information, omit any settings and press
Return.

4. After you complete the provisioning profile, then restart the DIP server.

Security Roles and Permitted Actions
Oracle Label Security permits specific tasks and access levels for Oracle Internet
Directory, including restrictions on directory-enabled OLS policy creators.

• Permitted Tasks and Access Levels for Oracle Internet Directory
To manage Oracle Label Security policies in Oracle Internet Directory, certain
entities are given access control rights in the directory.

• Restriction on Policy Creators for Directory-Enabled Oracle Label Security
A member of the Policy Creators group can only create, browse, and delete Oracle
Label Security policies.

Permitted Tasks and Access Levels for Oracle Internet Directory
To manage Oracle Label Security policies in Oracle Internet Directory, certain entities
are given access control rights in the directory.

The access control mechanisms are provided by Oracle Internet Directory.

Table 7-3 describes, in abstract terms, these entities and the tasks they are enabled to
perform.

Table 7-3 Tasks That Certain Entities Can Perform

Entity Tasks This Entity Can Perform

Policy creators Create new (or delete existing) policies, create new (or remove existing) policy
administrators.

Policy administrators For Policies: modify existing policy options and audit settings, enable or disable
auditing for a policy.

For Label components: create, modify, or remove levels, compartments and
groups, such as by changing their full or long names or (for groups) by creating or
deleting their children groups.

For enterprise users: remove enterprise users from a policy, modify enterprise
users' maximum or minimum levels, their read, write, and row access for
compartments or groups, their privileges for a policy, and their label profiles.

Table 7-4 lists the specific access level operations permitted or disallowed for policy
creators, policy administrators, and label security users.

Table 7-4 Access Levels Allowed by Users in OID

Entries Policy Creators Policy Administrators Databases

cn=Policies can modify no access no access

cn=Admins, cn=Policy1 can modify no access no access

uniqueMember: cn=Policy1 can browse can browse can modify

cn=PolicyCreators no access1 no access no access

Chapter 7
Security Roles and Permitted Actions

7-21

Table 7-4 (Cont.) Access Levels Allowed by Users in OID

Entries Policy Creators Policy Administrators Databases

cn=Levels, cn=Policy1 can browse and delete can modify no access

cn=Compartments, cn=Policy1 can browse and delete can modify no access

cn=Groups, cn=Policy1 can browse and delete can modify no access

cn=AuditOptions,cn=Policy1 can browse and delete can modify no access

cn=Profiles,cn=Policy1 can browse and delete can modify no access

cn=Labels,cn=Policy1 can browse and delete can modify no access

cn=DBServers no access2 no access no access

1 The group cn=OracleContextAdmins is the owner of the group cn=PolicyCreators, so members in cn=OracleContextAdmins
can modify cn=PolicyCreators.

2 The group cn=OracleDBCreators is the owner of the group cn=DBServers, so members in cn=OracleDBCreators can modify
cn=DBServers.

Restriction on Policy Creators for Directory-Enabled Oracle Label
Security

A member of the Policy Creators group can only create, browse, and delete Oracle
Label Security policies.

This user cannot perform policy administrative tasks, such as creating label
components and adding users, even if explicitly added to the Policy Admins group of
that policy. In short, a policy creator cannot be the administrator of any policy.

Superseded PL/SQL Statements When OID Is Enabled with
OLS

When Oracle Internet Directory is enabled with Oracle Label Security, there are
several procedures that are superseded.

Only user LBACSYS is allowed to run these procedures.

For some of the procedures listed in the table, the functionality they provided is
replaced by the olsadmintool command named in the second column (and explained in
Oracle Label Security Reference).

Table 7-5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory

Disabled Procedure Replaced by olsadmintool Command

SA_SYSDBA.CREATE_POLICY olsadmintool createpolicy

SA_SYSDBA.ALTER_POLICY olsadmintool alterpolicy

SA_SYSDBA.DROP_POLICY olsadmintool droppolicy

SA_COMPONENTS.CREATE_LEVEL olsadmintool createlevel

SA_COMPONENTS.ALTER_LEVEL olsadmintool alterlevel

SA_COMPONENTS.DROP_LEVEL olsadmintool droplevel

Chapter 7
Superseded PL/SQL Statements When OID Is Enabled with OLS

7-22

Table 7-5 (Cont.) Procedures Superseded by olsadmintool When Using Oracle Internet
Directory

Disabled Procedure Replaced by olsadmintool Command

SA_COMPONENTS.CREATE_COMPARTMENT olsadmintool createcompartment

SA_COMPONENTS.ALTER_COMPARTMENT olsadmintool altercompartment

SA_COMPONENTS.DROP_COMPARTMENT olsadmintool dropcompartment

SA_COMPONENTS.CREATE_GROUP olsadmintool creategroup

SA_COMPONENTS.ALTER_GROUP olsadmintool altergroup

SA_COMPONENTS.ALTER_GROUP_PARENT olsadmintool altergroup

SA_COMPONENTS.DROP_GROUP olsadmintool dropgroup

SA_USER_ADMIN.SET_LEVELS None

SA_USER_ADMIN.SET_COMPARTMENTS None

SA_USER_ADMIN.SET_GROUPS None

SA_USER_ADMIN.ADD_COMPARTMENTS None

SA_USER_ADMIN.ALTER_COMPARTMENTS None

SA_USER_ADMIN.DROP_COMPARTMENTS None

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS None

SA_USER_ADMIN.ADD_GROUPS None

SA_USER_ADMIN.ALTER_GROUPS None

SA_USER_ADMIN.DROP_GROUPS None

SA_USER_ADMIN.DROP_ALL_GROUPS None

SA_USER_ADMIN.SET_USER_LABELS olsadmintool createprofile; olsadmintool adduser;
olsadmintool dropprofile; olsadmintool dropuser;

SA_USER_ADMIN.SET_DEFAULT_LABEL None

SA_USER_ADMIN.SET_ROW_LABEL None

SA_USER_ADMIN.DROP_USER_ACCESS olsadmintool dropuser

SA_USER_ADMIN.SET_USER_PRIVS olsadmintool createprofile; olsadmintool adduser;
olsadmintool dropprofile; olsadmintool dropuser;

SA_AUDIT_ADMIN.AUDIT olsadmintool audit

SA_AUDIT_ADMIN.NOAUDIT olsadmintool noaudit

SA_AUDIT_ADMIN.AUDIT_LABEL None

SA_AUDIT_ADMIN.NOAUDIT_LABEL None

Oracle Label Security Procedures for Policy Administrators
Several procedures in the SA_POLICY_ADMIN PL/SQL package are allowed to be run only
by policy administrators (enterprise users defined in Oracle Internet Directory).

These procedures are as follows:

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY

Chapter 7
Oracle Label Security Procedures for Policy Administrators

7-23

• SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY

• SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

• SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

• SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

• SA_POLICY_ADMIN.GRANT_PROG_PRIVS

• SA_POLICY_ADMIN.POLICY_SUBSCRIBE

• SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

• SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

• SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

• SA_POLICY_ADMIN.SET_PROG_PRIVS

• SA_POLICY_ADMIN.REVOKE_PROG_PRIVS

Chapter 7
Oracle Label Security Procedures for Policy Administrators

7-24

Part III
Administering an Oracle Label Security
Application

Part III describes how to administer an Oracle Label Security application.

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and
implement labeling functions.

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

• Auditing Under Oracle Label Security
You can use Oracle Label Security auditing if you have not configured your
database to use unified auditing.

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security
in a distributed configuration.

• Performing DBA Functions Under Oracle Label Security
Oracle Label Security supports the standard Oracle Database utilities, but certain
restrictions apply, which may require extra steps to get the expected results.

• Releasability Using Inverse Groups
Oracle Label Security can implement the releasability using inverse groups.

8
Implementing Policy Enforcement Options
and Labeling Functions

You can customize the enforcement of Oracle Label Security policies and implement
labeling functions.

• Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• Inserting Labeled Data Using Policy Options and Labeling Functions
It is important to understand how enforcement options and labeling functions affect
the insertion of labeled data.

• Updating Labeled Data Using Policy Options and Labeling Functions
Users must be authorized to change rows that are protected by Oracle Label
Security.

• Deletion of Labeled Data Using Policy Options and Labeling Functions
You can delete labeled data.

• SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of
data access rules.

Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

• About Policy Enforcement Options
Of all the enforcement controls that Oracle Label Security permits, the
administrator must choose those that meet the needs of the given application.

• Levels of Policy Enforcement Options
You can set policy, schema, and table levels of policy enforcement.

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

• Relationships of Policy Enforcement Options
Oracle Label Security has a set of policy enforcement options.

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

• How the Label Management Enforcement Options Work
The three label enforcement options control the data label written when a row is
inserted or updated.

8-1

• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or
DELETE operations to only those rows whose labels meet established policies.

• How the Overriding Enforcement Options Work
Whereas ALL_CONTROL applies all of the label management and access control
enforcement options, NO_CONTROL applies none of them.

• Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle
Enterprise Manager.

• Exemptions from Oracle Label Security Policy Enforcement
Oracle Label Security has several exceptions from OLS policy enforcement.

• Data Dictionary Views for Viewing Policy Options on Tables and Schemas
Oracle Label Security provides data dictionary views that describe the policy
enforcement options currently applied to tables and schemas.

About Policy Enforcement Options
Of all the enforcement controls that Oracle Label Security permits, the administrator
must choose those that meet the needs of the given application.

This means identifying levels of data sensitivity to exposure, alteration, or misuse, as
well as identifying which users have the need or the right to access or alter such data.
The policy enforcement options enable administrators to fine-tune users' abilities to
read or write data or labels.

Levels of Policy Enforcement Options
You can set policy, schema, and table levels of policy enforcement.

Table 8-1 lists the levels on which policy enforcement options can operate.

Table 8-1 When Policy Enforcement Options Take Effect

Level at which option set Options set at this level affect user operations ...

Policy lvel ... only when the policy has been applied to the table or schema

Schema lvel ... whenever a user acts in this schema

Table lvel ... whenever a user acts in this table

When you apply a policy to a table or schema, you can specify the enforcement
options that are to constrain use of that table or schema. If you do not specify
enforcement options at that time, then the default enforcement options you specified
when you created that policy are used automatically.

These options customize your policy enforcement to meet your security requirements
as to READ access, WRITE access, and label changes. You can also specify whether the
label column should be displayed or hidden. You can choose to enforce some or all of
the policy options for any protected table by specifying only those you want.

Optionally, you can assign each table a labeling function, which determines the label
of any row inserted or updated in that table. You can also specify, optionally, a SQL
predicate for a table, to control which rows are accessible to users, based on their
labels.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-2

When Oracle Label Security policy enforcement options are applied, they control
which rows are accessible to view or to insert, update, or delete.

Related Topics

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of
data access rules.

Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

Table 8-2 lists the categories of policy enforcement options.

• Label management options ensure that data labels written for inserted or updated
rows do not violate policies set for such labels

• Access control options ensure that only rows whose labels meet established
policies are accessible for SELECT, UPDATE, INSERT, or DELETE operations.

• Overriding options can suspend or apply all other enforcement options.

Table 8-2 Policy Enforcement Options

Type of
Enforcement

Option Description

How the Label
Management
Enforcement
Options Work

LABEL_DEFAULT Uses the session's default row label value unless the
user explicitly specifies a label on INSERT.

- LABEL_UPDATE Applies policy enforcement to UPDATE operations that set
or change the value of a label attached to a row. The
WRITEUP, WRITEDOWN, and WRITEACROSS privileges are
enforced only if the LABEL_UPDATE option is active.

- CHECK_CONTROL Applies READ_CONTROL policy enforcement to INSERT and
UPDATE statements to assure that the new row label is
read-accessible.

How the Access
Control
Enforcement
Options Work

READ_CONTROL Applies policy enforcement to all queries. Only
authorized rows are accessible for SELECT, UPDATE, and
DELETE operations. See INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL.

- WRITE_CONTROL Determines the ability to INSERT, UPDATE, and DELETE
data in a row. If this option is active, it enforces
INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL.

- INSERT_CONTROL Applies policy enforcement to INSERT operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Algorithm for
Read Access Works.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-3

Table 8-2 (Cont.) Policy Enforcement Options

Type of
Enforcement

Option Description

- DELETE_CONTROL Applies policy enforcement to DELETE operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Algorithm for
Read Access Works.

- UPDATE_CONTROL Applies policy enforcement to UPDATE operations on the
data columns within a row, according to the algorithm for
write access described in the figure in How Oracle Label
Security Algorithm for Read Access Works.

How the Overriding
Enforcement
Options Work

ALL_CONTROL Applies all enforcement options.

- NO_CONTROL Applies no enforcement options. A labeling function or a
SQL predicate can nonetheless be applied.

Remember that even when Oracle Label Security is applicable to a table, some DML
operations may not be covered by the policies being applied. The policy enforcement
options set by the administrator determine both the SQL processing behavior and what
an authorized user can actually see in response to a query on a protected table.
Except where noted, this chapter assumes that ALL_CONTROL is active, meaning that all
enforcement options are in effect. If users attempt to perform an operation for which
they are not authorized, then an error message is raised and the SQL statement fails.

Understanding the relationships among these policy enforcement options, and what
SQL statements they control, is essential to their effective use in designing and
implementing your Oracle Label Security policies.

Related Topics

• Implementation of Inverse Groups with INVERSE_GROUP Enforcement
When creating an Oracle Label Security policy, you can specify whether the policy
can use inverse group functionality to implement releasability.

Relationships of Policy Enforcement Options
Oracle Label Security has a set of policy enforcement options.

Table 8-3 describes the relationships between policy enforcement options.

Table 8-3 What Policy Enforcement Options Control

Specifying This
Option in a Policy

Controls These SQL Operations Using These Criteria and with These Effects

READ_CONTROL SELECT, UPDATE, and DELETE Only authorized rows (*) are accessible.

WRITE_CONTROL INSERT, UPDATE, and DELETE (a) Only authorized rows (**) are accessible

(b) Data labels writable unless LABEL_UPDATE is active.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-4

Table 8-3 (Cont.) What Policy Enforcement Options Control

Specifying This
Option in a Policy

Controls These SQL Operations Using These Criteria and with These Effects

WRITE_CONTROL
(necessary for
INSERT_CONTROL,
UPDATE_CONTROL,
and
DELETE_CONTROL)

- -

INSERT_CONTROL INSERT -

UPDATE_CONTROL UPDATE -

DELETE_CONTROL DELETE -

CHECK_CONTROL - Applies READ_CONTROL policy enforcement to INSERT
and UPDATE statements to assure that the new row
label is read-accessible.

How the Access
Control
Enforcement
Options Work

- Applies policy enforcement to all queries. Only
authorized rows are accessible for operations.

INSERT_CONTROL INSERT_CONTROL Applies policy enforcement to INSERT operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Auditing Is
Enabled or Disabled.

DELETE_CONTROL DELETE_CONTROL Applies policy enforcement to DELETE operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Auditing Is
Enabled or Disabled.

UPDATE_CONTROL UPDATE_CONTROL Applies policy enforcement to UPDATE operations on
the data columns within a row, according to the
algorithm for write access described in the figure in
How Oracle Label Security Auditing Is Enabled or
Disabled.

How the Overriding
Enforcement
Options Work

ALL_CONTROL Applies all enforcement options.

NO_CONTROL NO_CONTROL Applies no enforcement options. A labeling function or
a SQL predicate can nonetheless be applied.

(*) A row is authorized for READ access if the following three criteria are all met:(user-
minimum-level) < = (data-row-level) < = (session-level)(any-data-group) is a child of
(any-user-group-or-childgroup) (every-data-compartment) is also in (the user's
compartments). Refer to the figure in How Oracle Label Security Algorithm for Read
Access Works

(**) A row is authorized for READ access if the following three criteria are all met:
(user-minimum-level) < = (data-row-level) < = (session-level)(any-data-group) is a
child of (any-user-group-or-childgroup) (every-data-compartment) is also in (the user's
compartments). Refer to the figure in How Oracle Label Security Algorithm for Read
Access Works.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-5

How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

This prevents display of the column containing the policy's labels.

Once the policy has been applied, the hidden (or not hidden) status of the column
cannot be changed unless the policy is removed with the DROP_COLUMN parameter set to
TRUE. Then, the policy can be reapplied with a new hidden status.

INSERT statements doing all-column inserts do not require the values for hidden label
columns.

SELECT statements do not automatically return the values of hidden label columns.
Such values must be explicitly retrieved.

A DESCRIBE on a table may or may not display the label column. If the administrator sets
the HIDE option, then the label column will not be displayed. If HIDE is not specified for a
policy, then the label column is displayed in response to a SELECT.

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• Retrieving All Columns from a Table When the Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

How the Label Management Enforcement Options Work
The three label enforcement options control the data label written when a row is
inserted or updated.

• About the Label Management Enforcement Options
When a policy specifies the options and is applied to a table or schema, these
options apply to special situations.

• LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated
row uses its original label.

• LABEL_UPDATE: Changing Data Labels
A user updating a row can normally change its label to any label within his
authorized label range.

• CHECK_CONTROL: Checking Data Labels
If an inserted or updated row gets its label from a labeling function, the label could
be outside the user’s authorizations.

About the Label Management Enforcement Options
When a policy specifies the options and is applied to a table or schema, these options
apply to special situations.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-6

A user inserting a row can specify any data label within the range of the user's label
authorizations. If the user does not specify a label for the row being written,
LABEL_DEFAULT can do so. Updates can be restricted by LABEL_UPDATE. Inserts or updates
that use a labeling function need CHECK_CONTROL to prevent assigning a data label
outside the user's authorizations. Such a label would prevent the user from accessing
the row just written, and could enable the user to make data available inappropriately.

Any labeling function in force on a table overrides these options. Such a function can
be named in the call that applies the policy to the table. If the administrator named
such a function when applying a policy, but then disables or removes that policy, then
that function is no longer applied.

Related Topics

• SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated row
uses its original label.

However, to insert a new row, the user must supply a valid label unless a labeling
function is in force or LABEL_DEFAULT applies for the table. LABEL_DEFAULT causes the
user's session default row label to be used as the new row label.

If neither LABEL_DEFAULT nor a labeling function is in force and the user attempts to
INSERT a row, then an error occurs.

Note that any labeling function in force on a table overrides the LABEL_DEFAULT option.

LABEL_UPDATE: Changing Data Labels
A user updating a row can normally change its label to any label within his authorized
label range.

However, if LABEL_UPDATE applies, then to modify a label, the user must have one or
more of these privileges: WRITEUP, WRITEDOWN, and WRITEACROSS.

The LABEL_UPDATE option uses an Oracle after-row trigger which is called only on an
update operation affecting the label. Note that any labeling function in force on a table
overrides the LABEL_UPDATE option.

Related Topics

• Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are
required to modify the label.

CHECK_CONTROL: Checking Data Labels
If an inserted or updated row gets its label from a labeling function, the label could be
outside the user’s authorizations.

This prevents this user from being able to read or update the row. To prevent this
problem, use the CHECK_CONTROL setting to allow READ_CONTROL to apply to the new label.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-7

This ensures that this user will be authorized to read the inserted or updated row after
the operation. If not, then the insert or update operation is canceled and has no effect.

In other words, if CHECK_CONTROL is included as an option in a policy being enforced on a
row, then the user modifying that row must still be able to access it after the operation.
CHECK_CONTROL prevents a user or a labeling function from modifying a row's label to
include a level, group, or compartment that the modifying user would be prevented
from accessing.

Note that CHECK_CONTROL overrides any labeling function in force on a table.

How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or DELETE
operations to only those rows whose labels meet established policies.

• READ_CONTROL: Reading Data
READ_CONTROL limits the set of records accessible to a session for SELECT, UPDATE and
DELETE operations.

• WRITE_CONTROL: Writing Data
When an Oracle Label Security policy specifying the WRITE_CONTROL option is
applied to a table, triggers are generated and the algorithm is enforced.

• INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
The INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL options control policy
enforcement during the corresponding operations on the data columns in a row.

READ_CONTROL: Reading Data
READ_CONTROL limits the set of records accessible to a session for SELECT, UPDATE and
DELETE operations.

If READ_CONTROL is not active, then even rows in the table protected by the policy are
accessible to all users.

READ_CONTROL uses Oracle virtual private database (VPD) technology to enforce the
read access mediation algorithm illustrated in Figure 3-6.

WRITE_CONTROL: Writing Data
When an Oracle Label Security policy specifying the WRITE_CONTROL option is applied to
a table, triggers are generated and the algorithm is enforced.

WRITE_CONTROL uses Oracle after-row triggers to enforce the write access mediation
algorithm illustrated in Figure 3-7.

Note:

The protection implementation for WRITE_CONTROL is the same for all write
operations, but you need not apply all write options across the board. You can
apply WRITE_CONTROL selectively for INSERT, UPDATE, and DELETE operations by
using the corresponding policy enforcement option (INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL) instead of WRITE_CONTROL.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-8

If WRITE_CONTROL is on but LABEL_UPDATE is not specified, then the user can change both
data and labels. If you want to control updating the row labels, then specify the
LABEL_UPDATE option in addition to WRITE_CONTROL when creating your policies.

INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
The INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL options control policy
enforcement during the corresponding operations on the data columns in a row.

These options apply according to the algorithm for write access described in
Figure 3-7.

Specifying WRITE_CONTROL limits all INSERT, UPDATE, and DELETE operations. However,

• Specifying INSERT_CONTROL limits insertions but not updates or deletes.

• Specifying UPDATE_CONTROL limits updates but not insertions or deletes.

• Specifying DELETE_CONTROL limits deletes but not insertions or updates.

Related Topics

• Inserting Labeled Data Using Policy Options and Labeling Functions
It is important to understand how enforcement options and labeling functions affect
the insertion of labeled data.

• Updating Labeled Data Using Policy Options and Labeling Functions
Users must be authorized to change rows that are protected by Oracle Label
Security.

• Deletion of Labeled Data Using Policy Options and Labeling Functions
You can delete labeled data.

How the Overriding Enforcement Options Work
Whereas ALL_CONTROL applies all of the label management and access control
enforcement options, NO_CONTROL applies none of them.

In either case, labeling functions and SQL predicates can be applied. Note that the
ALL_CONTROL option can be used only on the command line. If you apply a policy with
NO_CONTROL specified, then a policy label column is added to the table, but the label
values are NULL. Because no access controls are operating on the table, you can
proceed to enter labels as desired. You can then set the policy enforcement options as
you want. NO_CONTROL can be a useful option if you have a labeling function in force to
label the data correctly, but want to let all users access all the data.

Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle
Enterprise Manager.

This functionality is described in Creating an Oracle Label Security Policy or you can
use the SA_POLICY_ADMIN package as described in SA_POLICY_ADMIN Policy
Administration PL/SQL Package.

This section documents the supported keywords.

Note that when you create a policy, you can specify a string of default options to be
used whenever the policy is applied without schema or table options being specified.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-9

If a policy is first applied to a table, and then also applied to the schema containing
that table, then the options on the table are not affected by the schema policy. The
options of the policy originally applied to the table remain in force.

In general, administrators use the LABEL_DEFAULT policy option, causing data written by
a user to be labeled with that user's row label. Alternatively, a labeling function can be
used to label the data. If neither of these two choices is used, then a label must be
specified in every INSERT statement. (Updates retain the row's original label.)

The following table suggests that certain combinations of policy enforcement options
are useful when implementing an Oracle Label Security policy. As the table indicates,
you might typically enforce READ_CONTROL and WRITE_CONTROL, choosing from among
several possible combinations for setting the data label on writes.

Table 8-4 Suggested Policy Enforcement Option Combinations

Options Access Enforcement

READ_CONTROL, WRITE_CONTROL, LABEL_DEFAULT Read and write access based on session
label. Default label provided; users can
insert/update both data and labels.

READ_CONTROL, WRITE_CONTROL, Labeling
Function

Read and write access based on session
label. Users can set/change only row data;
all row labels are set explicitly by the
labeling function.

Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range of
labels.

READ_CONTROL, WRITE_CONTROL, LABEL_UPDATE Read and write access based on session
label. Users cannot change labels without
privileges.

Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range.

Related Topics

• Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label
Security policy.

Exemptions from Oracle Label Security Policy Enforcement
Oracle Label Security has several exceptions from OLS policy enforcement.

These exemptions are as follows:

• Oracle Label Security is not enforced during DIRECT path export.

• By design, Oracle Label Security policies cannot be applied to objects in schema
SYS. As a consequence, the SYS user, and users making a DBA-privileged
connection to the database (such as CONNECT AS SYSDBA) do not have Oracle Label
Security policies applied to their actions. DBAs need to be able to administer the
database. It would make no sense, for example, to export part of a table due to an
Oracle Label Security policy being applied. The database user SYS is thus always
exempt from Oracle Label Security enforcement, regardless of the export mode,
application, or utility used to extract data from the database.

Chapter 8
Oracle Label Security Policy Enforcement Options

8-10

• Similarly, database users granted the EXEMPT ACCESS POLICY privilege, either directly
or through a database role, are exempted from some Oracle Label Security policy
enforcement controls such as READ_CONTROL and CHECK_CONTROL, regardless of the
export mode, application or utility used to access the database or update its data.
The following policy enforcement options remain in effect even when EXEMPT ACCESS
POLICY is granted:

– INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL, WRITE_CONTROL, LABEL_UPDATE,
and LABEL_DEFAULT.

– If the Oracle Label Security policy specifies the ALL_CONTROL option, then all
enforcement controls are applied except READ_CONTROL and CHECK_CONTROL.

EXEMPT ACCESS POLICY is a very powerful privilege and should be carefully managed.

Note that this privilege does not affect the enforcement of standard Oracle
Database object privileges such as SELECT, INSERT, UPDATE, and DELETE. These
privileges are enforced even if a user has been granted the EXEMPT ACCESS POLICY
privilege.

Related Topics

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

Data Dictionary Views for Viewing Policy Options on Tables and
Schemas

Oracle Label Security provides data dictionary views that describe the policy
enforcement options currently applied to tables and schemas.

• DBA_SA_TABLE_POLICIES

• DBA_SA_SCHEMA_POLICIES

Labeling Functions
Labeling functions can compute and return a label using resources such as context
variables (for example, date or username) and data values.

• Labeling Data Rows under Oracle Label Security
There are three ways to label data that is being inserted or updated.

• How Labeling Functions in Oracle Label Security Policies Works
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

• Creating a Labeling Function for a Policy
You can use the CREATE OR REPLACE FUNCTION SQL statement to create a labeling
function.

• Specifying a Labeling Function in a Policy
You can use the SA_POLICY_ADMIN package to specify a labeling function.

Labeling Data Rows under Oracle Label Security
There are three ways to label data that is being inserted or updated.

Chapter 8
Labeling Functions

8-11

• You can explicitly specify a label in every INSERT or UPDATE to the table.

• You can set the LABEL_DEFAULT option, which causes the session's row label to be
used if an explicit row label is not included in the INSERT or UPDATE statement.

• You can create a labeling function, automatically calls on every INSERT or UPDATE
statement and independently of any user's authorization.

The recommended approach is to write a labeling function to implement your rules for
labeling data. If you specify a labeling function, then Oracle Label Security embeds a
call to that function in INSERT and UPDATE triggers to compute a label.

For example, you could create a labeling function named my_label to use the contents
of COL1 and COL2 of the new row to compute and return the appropriate label for the
row. Then, you could insert, into your INSERT or UPDATE statements, the following
reference:

my_label(:new.col1,:new.col2)

If you do not specify a labeling function, then specify the LABEL_DEFAULT option.
Otherwise, you must explicitly specify a label on every INSERT or UPDATE statement.

How Labeling Functions in Oracle Label Security Policies Works
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

For example, you can use as a labeling consideration the IP address to which the user
is attached. There are many opportunities to use SYS_CONTEXT in this way.

Note:

If the SQL statement is invalid, then an error will occur when you apply the
labeling function to the table or policy. You should thoroughly test a labeling
function before using it with tables.

Labeling functions override the LABEL_DEFAULT and LABEL_UPDATE options.

A labeling function is called in the context of a before-row trigger. This enables you to
pass in the old and new values of the data record, as well as the old and new labels.

You can construct a labeling function to permit an explicit label to be passed in by the
user.

All labeling functions must have return types of the LBACSYS.LBAC_LABEL data type. The
TO_LBAC_DATA_LABEL function can be used to convert a label in character string format to
a data type of LBACSYS.LBAC_LABEL. Note that LBACSYS must have the EXECUTE privilege on
your labeling function. The owner of the labeling function must have the EXECUTE
privilege on the TO_LBAC_DATA_LABEL function, with the GRANT option.

Chapter 8
Labeling Functions

8-12

Note:

LBACSYS is a unique schema providing opaque types for Oracle Label Security.

Related Topics

• Performing DBA Functions Under Oracle Label Security
Oracle Label Security supports the standard Oracle Database utilities, but certain
restrictions apply, which may require extra steps to get the expected results.

Creating a Labeling Function for a Policy
You can use the CREATE OR REPLACE FUNCTION SQL statement to create a labeling
function.

• To use the CREATE OR REPLACE FUNCTION statement to create a labeling function for a
policy, set the return value to LBACSYS.LBAC_LABEL.

For example:

CREATE OR REPLACE FUNCTION sa_demo.gen_emp_label
 (Job varchar2,
 Deptno number,
 Total_sal number)
 Return LBACSYS.LBAC_LABEL
 as
 i_label varchar2(80);
 Begin
 /************* Determine Class Level *************/
 if total_sal > 2000 then
 i_label := 'L3:';
 elsif total_sal > 1000 then
 i_label := 'L2:';
 else
 i_label := 'L1:';
 end if;

 /************* Determine Compartment *************/
 IF Job in ('MANAGER','PRESIDENT') then
 i_label := i_label||'M:';
 else
 i_label := i_label||'E:';
 end if;
 /************* Determine Groups *************/
 i_label := i_label||'D'||to_char(deptno);
 return TO_LBAC_DATA_LABEL('human_resources',i_label);
 End;
 /

Chapter 8
Labeling Functions

8-13

Note:

When Oracle Label Security is configured to work directly with Oracle Internet
Directory, dynamic label generation is disabled, because labels are managed
centrally in Oracle Internet Directory, using olsadmintool commands. So, if the
label function generates a data label using a string value that is not already
established in Oracle Internet Directory, then an error message results.

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet
Directory.

Specifying a Labeling Function in a Policy
You can use the SA_POLICY_ADMIN package to specify a labeling function.

• Use SA_POLICY_ADMIN.REMOVE_TABLE_POLICY and SA_POLICY_ADMIN.APPLY_TABLE_POLICY
to specify the labeling function.

For example:

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY('human_resources','sa_demo','emp');

SA_POLICY_ADMIN.APPLY_TABLE_POLICY(
 POLICY_NAME => 'human_resources',
 SCHEMA_NAME => 'sa_demo',
 TABLE_NAME => 'emp',
 TABLE_OPTIONS => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
 LABEL_FUNCTION => 'sa_demo.gen_emp_label(:new.job,:new.deptno,:new.sal)',
 PREDICATE => NULL);

Inserting Labeled Data Using Policy Options and Labeling
Functions

It is important to understand how enforcement options and labeling functions affect the
insertion of labeled data.

• Outcome of Insert or Updates Operations on Data Based on Authorizations
When you attempt to insert or update data based on your authorizations, the
outcome depends upon what policy enforcement controls are active.

• Label Insertions When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

• Child Row Insertions in Tables with Declarative Referential Integrity
If declarative referential integrity protects a parent table, then the parent row must
be visible before a child row can be inserted.

Chapter 8
Inserting Labeled Data Using Policy Options and Labeling Functions

8-14

Outcome of Insert or Updates Operations on Data Based on
Authorizations

When you attempt to insert or update data based on your authorizations, the outcome
depends upon what policy enforcement controls are active.

• If INSERT_CONTROL is active, then rows you insert can only have labels within your
write authorizations. If you attempt to update data that you can read, but for which
you do not have write authorization, an error is raised. For example, if you can
read compartments A and B, but you can only write to compartment A, then if you
attempt to insert data with compartment B, then the statement will fail.

• If INSERT_CONTROL is not active, then you can use any valid label on rows you insert.

• If the CHECK_CONTROL option is active, then rows you insert can only have labels you
are authorized to read, even if the labels are generated by a labeling function.

Label Insertions When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

If the administrator has set up an automatic labeling function, then no data label a user
enters will have effect (unless the labeling function itself makes use of the user's
proposed label). New row labels are always determined by an active labeling function,
if present.

Note that a labeling function can set the label of a row being inserted to a value
outside the range that the user writing that row can see. If such a function is in use,
then the user can potentially insert a row but not be authorized to see that row. You
can prevent this situation by specifying the CHECK_CONTROL option in the policy. If this
option is active, then the new data label is checked against the user's read
authorization, and if the user cannot read it, then the insert operation is not performed.

Child Row Insertions in Tables with Declarative Referential Integrity
If declarative referential integrity protects a parent table, then the parent row must be
visible before a child row can be inserted.

The user must be able to see the parent row for the insert operation to succeed, that
is, the user must have read access to the parent row.

If READ_CONTROL is active on the parent table, then the user's read authorization must be
sufficient to authorize a SELECT operation on the parent row. For example, a user who
cannot read department 20 cannot insert child rows for department 20. Note that all
records will be visible if the user has FULL or READ privileges on the table or schema.

Updating Labeled Data Using Policy Options and Labeling
Functions

Users must be authorized to change rows that are protected by Oracle Label Security.

Chapter 8
Updating Labeled Data Using Policy Options and Labeling Functions

8-15

• Updating Labels Using CHAR_TO_LABEL
To change a row label from SENSITIVE to CONFIDENTIAL, you can change the label by
using the CHAR_TO_LABEL function.

• Evaluation of Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome
depends on which enforcement controls are active.

• Updates to Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

• Updates to Child Rows in Tables with Declarative Referential Integrity Enabled
If a child row is in a table with a referential integrity constraint, then the parent row
must be visible for the update to succeed.

Updating Labels Using CHAR_TO_LABEL
To change a row label from SENSITIVE to CONFIDENTIAL, you can change the label by
using the CHAR_TO_LABEL function.

• To change a row label, use the UPDATE SQL statement.

For example:

UPDATE emp
SET hr_label = char_to_label ('HR', 'CONFIDENTIAL')
WHERE ename = 'ESTANTON';

Evaluation of Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome depends
on which enforcement controls are active.

• If UPDATE_CONTROL is active, then you can only update rows whose labels fall within
your write authorizations. If you attempt to update data that you can read, but for
which you do not have write authorization, then an error is raised. Assume, for
example, that you can read compartments A and B, but you can only write to
compartment A. In this case, if you attempt to update data with compartment B,
then the statement will fail.

• If UPDATE_CONTROL is not active, then you can update all rows to which you have
read access.

• If LABEL_UPDATE is active, then you must have the appropriate privilege (WRITEUP,
WRITEDOWN, or WRITEACROSS) to change a label by raising or lowering its sensitivity
level, or altering its groups or compartments.

• If LABEL_UPDATE is not active but UPDATE_CONTROL is active, then you can update a
label to any new label value within your write authorization.

• If CHECK_CONTROL is active, then you can only write labels you are authorized to
read.

The following figure illustrates the label evaluation process for LABEL_UPDATE.

Chapter 8
Updating Labeled Data Using Policy Options and Labeling Functions

8-16

Figure 8-1 Label Evaluation Process for LABEL_UPDATE

No
Access

 Access

WRITE
DOWN

Privilege?

New level
< old level?

New level
> old level?

WRITE
UP

Privilege?

New
level

=< Max
=> Min

WRITE
ACROSS
Privilege?

N

Y

N N

N

Y

Y

Y

New groups
not equal to
old groups?

New comp
not equal to
old comp?

Y

NN

Y

N N

YY

Updates to Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

If the administrator has set up an automatic labeling function, then no label a user
enters will have effect (unless the labeling function itself makes use of the user's
proposed label). New row labels are always determined by an active labeling function,
if present.

Note that the security administrator can establish a labeling function that sets the label
of a row being updated to a value outside the range that you can see. If this is the
case, then you can update a row, but not be authorized to see the row. If the
CHECK_CONTROL option is on, then you will not be able to perform such an update. The
CHECK_CONTROL option verifies your read authorization on the new label.

Updates to Child Rows in Tables with Declarative Referential Integrity
Enabled

If a child row is in a table with a referential integrity constraint, then the parent row
must be visible for the update to succeed.

That is, this user must be able to see the parent row.

If the parent table has READ_CONTROL on, then the user's read authorization must be
sufficient to authorize a SELECT on the parent row.

For example, a user who cannot read department 20 in a parent table cannot update
an employee's department to department 20 in a child table. (If the user has FULL or
READ privilege, then all records will be visible.)

Chapter 8
Updating Labeled Data Using Policy Options and Labeling Functions

8-17

See Also:

Oracle Database Development Guide

Deletion of Labeled Data Using Policy Options and Labeling
Functions

You can delete labeled data.

Note the following:

• If DELETE_CONTROL is active, then you can delete only rows within your write
authorization.

• If DELETE_CONTROL is not active, then you can delete only rows that you can read.

• With DELETE_CONTROL active, and declarative referential integrity defined with
cascading deletes, you must have write authorization on all the rows to be deleted,
or the statement will fail.

You cannot delete a parent row if there are any child rows attached to it, regardless of
your write authorization. To delete such a parent row, you must first delete each of the
child rows. If DELETE_CONTROL is active on any of the child rows, then you must have
write authorization to delete the child rows.

Consider, for example, a situation in which the user is UNCLASSIFIED and there are three
rows as follows:

Row Table Sensitivity

Parent row: DEPT UNCLASSIFIED

Child row: EMP UNCLASSIFIED

Child row: EMP UNCLASSIFIED

In this case, the UNCLASSIFIED user cannot delete the parent row.

DELETE_CONTROL has no effect when DELETERESTRICT is active. DELETERESTRICT is always
enforced. In some cases (depending on the user's authorizations and the data's
labels) it may look as though a row has no child rows, when it actually does have
children but the user cannot see them. Even if a user cannot see child rows, he still
cannot delete the parent row.

SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of data
access rules.

• Modifications to an Oracle Label Security Policy with a SQL Predicate
A SQL predicate is a condition, optionally preceded by AND or OR.

• How Multiple SQL Predicates Affect Oracle Label Security Policies
Predicates can be appended to other predicates.

Chapter 8
Deletion of Labeled Data Using Policy Options and Labeling Functions

8-18

Modifications to an Oracle Label Security Policy with a SQL Predicate
A SQL predicate is a condition, optionally preceded by AND or OR.

The SQL predicate can be appended for READ_CONTROL access mediation. The following
predicate, for example, adds an application-specific test based on COL1 to determine if
the session has access to the row.

AND my_function(col1)=1

The combined result of the policy and the user-specified predicate limits the rows that
a user can read. So, this combination affects the labels and data that CHECK_CONTROL will
permit a user to change. An OR clause, for example, increases the number of rows a
user can read.

A SQL predicate can be useful if you want to avoid performing label-based filtering. In
certain situations, a SQL predicate can easily implement row-level security on tables.
Used instead of READ_CONTROL, a SQL predicate will filter the data for SELECT, UPDATE, and
DELETE operations.

Similarly, in a typical, Web-enabled human resources application, a user might have to
be a manager to access rows in the employee table. In such cases, the user's user
label would have to dominate the label on the employee's row. A SQL predicate like
the following could be added, so that an employee could bypass label-based filtering if
he wanted to view his own record in the employee table. (An OR is used so that either
the label policy will apply, or this statement will apply.)

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = employee_name

This predicate enables you to have additional access controls so that each employee
can access his or her own record.

You can use such a predicate in conjunction with READ_CONTROLs or as a standalone
predicate even if READ_CONTROL is not implemented.

Note:

Verify that the predicate accomplishes your security goals before you
implement it in an application.

If a syntax error occurs in a predicate under Oracle Label Security, then an
error will not arise when you try to apply the policy to a table. Rather, a
predicate error message will arise when you first attempt to reference the table.

How Multiple SQL Predicates Affect Oracle Label Security Policies
Predicates can be appended to other predicates.

A predicate applied to a table with an Oracle Label Security policy is appended to
other predicates that are applied by other Oracle Label Security policies, or by Oracle
Database fine-grained access control or Oracle Virtual Private Database policies. The
predicates are ANDed together.

Consider the following predicates applied to the EMP table in the SCOTT schema:

Chapter 8
SQL Predicates with an Oracle Label Security Policy

8-19

• A predicate generated by an Oracle VPD policy, such as deptno=10

• A label-based predicate generated by an Oracle Label Security policy, such as
label=100, with a user-specified predicate such as

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Correct: These predicates would be ANDed together as follows:

WHERE deptno=10 AND (label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename)

Incorrect: The predicates would not be combined in the following way:

WHERE deptno=10 AND label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Chapter 8
SQL Predicates with an Oracle Label Security Policy

8-20

9
Administering and Using Trusted Stored
Program Units

You can use trusted stored program units to enhance system security.

• About Trusted Stored Program Units
Oracle Database stored procedures, functions, and packages are sets of PL/SQL
statements stored in a database in compiled form.

• How a Trusted Stored Program Unit Runs
A trusted stored program unit runs using its own privileges, and the caller's labels.

• Example: Trusted Stored Program Unit
A trusted stored program unit with the READ privilege can read all unprotected data
and all data protected by this policy.

• Creating and Compiling Trusted Stored Program Units
You can create and compile trusted stored program units for use in Oracle Label
Security.

• How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of
session security attributes using numeric label values.

About Trusted Stored Program Units
Oracle Database stored procedures, functions, and packages are sets of PL/SQL
statements stored in a database in compiled form.

The single difference between functions and procedures is that functions return a
value and procedures do not. Trusted stored program units are like any other stored
program units in Oracle Database: the underlying logic is the same.

A package is a set of procedures and functions, together with the cursors and
variables they use, stored as a unit. There are two parts to a package, the package
specification and the package body. The package specification declares the external
definition of the public procedures, functions, and variables that the package contains.
The package body contains the actual text of the procedures and functions, as well as
any private procedures and variables.

A trusted stored program unit is a stored procedure, function, or package that has
been granted one or more Oracle Label Security privileges. Trusted stored program
units are typically used to let users perform privileged operations in a controlled
manner, or update data at several labels. This is the optimal approach to permit users
to access data beyond their authorization.

Trusted stored program units provide fine-grained control over the use of privileges.
Although you can potentially grant privileges to many users, the granting of privileges
should be done with great discretion because it might violate the security policy
established for your application. Rather than assigning privileges to users, you can
identify any application operations requiring privileges, and implement them as trusted

9-1

program units. When you grant privileges to these stored program units, you
effectively restrict the Oracle Label Security privileges required by users. This
approach employs the principle of least privilege.

For example, if a user with the label CONFIDENTIAL needs to insert data into SENSITIVE
rows, then you can grant the WRITEUP privilege to a trusted stored program to which the
user has access. In this way, the user can perform the task by means of the trusted
stored program, while staying at the CONFIDENTIAL level.

The trusted program unit performs all the actions on behalf of the user. You can thus
effectively encapsulate the security policy into a module that can be verified to make
sure that it is valid.

How a Trusted Stored Program Unit Runs
A trusted stored program unit runs using its own privileges, and the caller's labels.

In this way, the trusted stored program unit can perform privileged operations on the
set of rows constrained by the user's labels.

Oracle Database system and object privileges are intended to be bundled into roles.
Users are then granted roles as necessary. By contrast, Oracle Label Security
privileges can only be assigned to users or to stored program units. These trusted
stored program units provide a more manageable mechanism than roles to control the
use of Oracle Label Security privileges.

Example: Trusted Stored Program Unit
A trusted stored program unit with the READ privilege can read all unprotected data and
all data protected by this policy.

Consider, for example, a user who is responsible for creating purchasing forecast
reports. The user must perform a summation operation on the amount of all
purchases. Regardless of whether or not user's own labels authorize access to the
individual purchase orders. The syntax for creating the summation procedure in this
example is as follows:

CREATE FUNCTION sum_purchases RETURN NUMBER IS
 psum NUMBER;
BEGIN
 SELECT SUM(amount) INTO psum
 FROM purchase_orders;
RETURN psum;
END sum_purchases;

In this way, the program unit can gather information the end user is not able to gather,
and can make it available by means of a summation.

Note that to run SUM_PURCHASES, the user would need to be granted the standard Oracle
Database EXECUTE object privilege upon this procedure.

Related Topics

• Access Controls and Privileges
Oracle provides access controls and privileges that determine the type of access
users can have to labeled rows.

Chapter 9
How a Trusted Stored Program Unit Runs

9-2

Creating and Compiling Trusted Stored Program Units
You can create and compile trusted stored program units for use in Oracle Label
Security.

• Creation of Trusted Stored Program Units
You can create a trusted stored program unit in the same way that you create a
standard procedure, function, or package.

• Privileges for Trusted Stored Program Units
An Oracle Label Security administrator can verify the correctness of a stored
program unit code before granting the privileges to it.

• Recompiling of Trusted Stored Program Units
Recompiling a trusted stored program unit, either automatically or manually (using
ALTER PROCEDURE), does not affect its Oracle Label Security privileges.

• Re-creation of Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE or REPLACE
operation on a trusted stored program unit.

• Execution of Trusted Stored Program Units
Under Oracle Label Security all the standard Oracle Database controls on
procedure call (regarding access to tables and schemas) are still in force.

Creation of Trusted Stored Program Units
You can create a trusted stored program unit in the same way that you create a
standard procedure, function, or package.

To do this, you can use the CREATE PROCEDURE, CREATE FUNCTION, or CREATE PACKAGE and
CREATE PACKAGE BODY statements.

The program unit becomes trusted when you grant it Oracle Label Security privileges.

See Also:

Oracle Database SQL Language Reference

Privileges for Trusted Stored Program Units
An Oracle Label Security administrator can verify the correctness of a stored program
unit code before granting the privileges to it.

Typically another user, such as a developer, creates the stored program unit.
Whenever the trusted stored program unit is re-created or replaced, Oracle Label
security removes its privileges. The Oracle Label Security administrator must then
verify the code again and grant the privileges once again.

The Oracle Label Security administrator should review the program unit code carefully
and evaluate the privileges that are to be gratned granting to it. For example,
procedures in trusted packages should not perform privileged database operations
and then write result or status information into a public variable of the package. In this

Chapter 9
Creating and Compiling Trusted Stored Program Units

9-3

way, you can make sure that no violations of your site's Oracle Label Security policy
can occur.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

Recompiling of Trusted Stored Program Units
Recompiling a trusted stored program unit, either automatically or manually (using
ALTER PROCEDURE), does not affect its Oracle Label Security privileges.

You must, however, grant the EXECUTE privilege on the program unit again after
recompiling.

Re-creation of Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE or REPLACE
operation on a trusted stored program unit.

This limits the potential for misuse of a procedure's Oracle Label Security privileges.

Note that the procedure, function, or package can still run even if the Oracle Label
Security privileges have been removed.

If you re-create a procedure, function, or package, then you should carefully review its
text. When you are certain that the re-created program unit does not violate your site's
Oracle Label Security policy, you can then grant it the required privileges again.

In a development environment where trusted stored program units must frequently be
replaced (for example, during the first few months of a live system), it is advisable to
create a script that can grant the proper Oracle Label Security privileges, as required.

Execution of Trusted Stored Program Units
Under Oracle Label Security all the standard Oracle Database controls on procedure
call (regarding access to tables and schemas) are still in force.

Oracle Label Security complements these security mechanisms by controlling access
to rows.

When a trusted stored program unit is carried out, the policy privileges in force are a
union of the invoking user's privileges and the program unit's privileges. Whether a
trusted stored program unit calls another trusted program unit or a non-trusted
program unit, the program unit called runs with the same privileges as the original
program unit.

If a sequence of non-trusted and trusted stored program units is carried out, the first
trusted program unit will determine the privileges of the entire calling sequence from
that point on. Consider the following sequence:

Procedure A (non-trusted)
Procedure B with WRITEUP
Procedure C with WRITEDOWN
Procedure D (non-trusted)

Chapter 9
Creating and Compiling Trusted Stored Program Units

9-4

Here, Procedures B, C, and D all runs with the WRITEUP privilege, because B was the
first trusted procedure in the sequence. When the sequence ends, the privilege
pertaining to Procedure B is no longer in force for subsequent procedures.

Note:

Unhandled exceptions raised in trusted program units are caught by Oracle
Label Security. This means that error messages may not be displayed to the
user. For this reason, you should always thoroughly test and debug any
program units before granting them privileges.

How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of session
security attributes using numeric label values.

Although these functions can be used in program units that are not trusted, they are
primarily for use in trusted stored program units.

Note that these are public functions; you do not need the policy_DBA role to use them.
In addition, each of the functions has a parallel SA_SESSION function that returns the
same labels in character string format.

Related Topics

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based
privileges.

Chapter 9
How Setting and Returning Label Information Works

9-5

10
Auditing Under Oracle Label Security

You can use Oracle Label Security auditing if you have not configured your database
to use unified auditing.

• About Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle Database auditing by
tracking use of its own administrative operations and policy privileges.

• Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
If you have not yet enabled unified auditing, for Oracle Label Security to generate
audit records, you must first enable system-wide auditing.

• How Oracle Label Security Auditing Is Enabled or Disabled
After you have enabled systemwide auditing, you can enable or disable Oracle
Label Security auditing.

• Oracle Label Security and Unified Auditing
Oracle Database uses the unified audit trail to capture information from various
audit sources, including Oracle Label Security.

• Oracle Label Security Auditing Tips
Oracle provides a set of tips for auditing Oracle Label Security.

About Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle Database auditing by
tracking use of its own administrative operations and policy privileges.

You can use either the SA_AUDIT_ADMIN package or Oracle Enterprise Manager to set
and change the auditing options for an Oracle Label Security policy.

When you create a new policy, a label column for that policy is added to the database
audit trail. The label column is created regardless of whether auditing is enabled or
disabled, and independent of whether database auditing or operating system auditing
is used. Whenever a record is written to the audit table, each policy provides a label
for that record to indicate the session label. The administrator can create audit views
to display these labels. Note that in the audit table, the label does not control access to
the row, instead it only records the sensitivity of the row.

The auditing options that you specify apply only to subsequent sessions, not to the
current session. You can specify audit options even if auditing is disabled. No
overhead is created by making only these specifications. When you do enable Oracle
Label Security auditing, the options come into effect, and overhead is created beyond
that created by standard Oracle Database auditing.

Note that Oracle Label Security does not provide labels for audit data written to the
operating system audit trial. All Oracle Label Security audit records are written directly
to the database audit trail, even if operating system auditing is enabled. If auditing is
disabled, then no Oracle Label Security audit records are generated.

10-1

Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
If you have not yet enabled unified auditing, for Oracle Label Security to generate audit
records, you must first enable system-wide auditing.

To enable system-wide auditing, you can set the Oracle Database AUDIT_TRAIL
initialization parameter in the database's parameter file.

You can set the AUDIT_TRAIL parameter to one of the following values:

Table 10-1 AUDIT_TRAIL Parameter Settings

Setting Explanation

DB Enables database auditing and directs all audit records to the
database audit trail. This approach is recommended by Oracle.

Note that even with AUDIT_TRAIL set to DB, some records are always
sent to the operating system audit trail. These include STARTUP and
SHUTDOWN statements, as well as CONNECT AS SYSOPER or SYSDBA.

DB, EXTENDED Does all actions of AUDIT_TRAIL=DB and also populates the SqlBind
and SqlText CLOB-type columns of the AUD$ table.

OS Enables operating system auditing. This directs most of your Oracle
Database audit records to the operating system, rather than to the
database; the records will not contain Oracle Label Security labels.
By contrast, any Oracle Label Security auditing will go to the
database, with labels.

If you set AUDIT_TRAIL to OS, then the Oracle Label Security-specific
audit records are written to the database audit trail and the other
Oracle Database audit records are written to the operating system
audit trail (with no policy column in the operating system data).

NONE Disables auditing. This is the default.

After you have edited the parameter file, restart the database instance to enable or
disable database auditing as specified.

Set the AUDIT_TRAIL parameter before you set audit options. If you do not set this
parameter, then you are still able to set audit options. However, audit records are not
written to the database until the parameter is set and the database instance is
restarted.

See Also:

• Oracle Database Security Guide for information about enabling and
disabling systemwide auditing, setting audit options, and managing the
audit trail

• Oracle Database Reference or information about editing initialization
parameter

• Oracle Database SQL Language Reference for details about systemwide
AUDIT and NOAUDIT functioning

Chapter 10
Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

10-2

How Oracle Label Security Auditing Is Enabled or Disabled
After you have enabled systemwide auditing, you can enable or disable Oracle Label
Security auditing.

To use Oracle Label Security auditing, you must have the policy_DBA role and use the
SA_AUDIT_ADMIN PL/SQL package procedures.

Related Topics

• SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package
configures auditing that is specific to Oracle Label Security.

Oracle Label Security and Unified Auditing
Oracle Database uses the unified audit trail to capture information from various audit
sources, including Oracle Label Security.

You can configure OLS auditing using audit policies. Oracle Label Security auditing in
Oracle Database 12c release 1 (12.1) enables you to audit additional events such as
enabling and disabling of OLS policies.

If you have upgraded your database to Oracle Database 12c release 1 (12.1), but
have not configured it to use unified auditing, then you must use the pre-12c OLS
auditing described in this chapter.

The Oracle Database audit facility lets you hold database users accountable for the
operations they perform. It can track specific database objects, operations, users, and
privileges. Oracle Label Security supplements this by tracking use of its own
administrative operations and policy privileges. It provides the SA_AUDIT_ADMIN package
to set and change the policy auditing options.

See Also:

Oracle Database Security Guide for instructions on configuring your upgraded
database to use unified auditing. After migration, you can find the OLS unified
audit information at Oracle Database Security Guide

Oracle Label Security Auditing Tips
Oracle provides a set of tips for auditing Oracle Label Security.

• Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy that
monitors events of interest, without recording extraneous events.

• Auditing of Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.

Chapter 10
How Oracle Label Security Auditing Is Enabled or Disabled

10-3

Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy that monitors
events of interest, without recording extraneous events.

You should periodically review this strategy, because applications, user base,
configurations, and other external factors can change.

The Oracle Label Security options, and those provided by the Oracle Database audit
facility, might not directly address all of your specific or application-dependent auditing
requirements. However, through use of database triggers, you can audit specific
events and record specific information that you cannot audit and record using the more
generic audit facility.

See Also:

Oracle Database Concepts for more information about using triggers for
auditing

Auditing of Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.

Because these privileges perform sensitive operations, and because their abuse could
jeopardize security, you should closely monitor their dissemination and use.

Chapter 10
Oracle Label Security Auditing Tips

10-4

11
Using Oracle Label Security with a
Distributed Database

You should understand the special considerations for using Oracle Label Security in a
distributed configuration.

• About the Oracle Label Security Distributed Configuration
In a network configuration that supports distributed databases, multiple Oracle
Database (or other) servers can run on the same or different operating systems.

• How Connections to a Remote Database Under Oracle Label Security Work
Distributed databases act in the standard way with Oracle Label Security: the local
user ends up connected as a particular remote user.

• Session Labels and Row Labels in Remote Sessions
When connecting remotely, you can directly control the session label and row label
in effect when you establish the connection.

• Labels in a Distributed Environment
You should use the same label component definitions and label tags on any
database that is to be protected by the policy.

• Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle Database distributed
configurations.

• Replication with Oracle Label Security
You should understand how to use the replication option with tables protected by
Oracle Label Security policies.

About the Oracle Label Security Distributed Configuration
In a network configuration that supports distributed databases, multiple Oracle
Database (or other) servers can run on the same or different operating systems.

Each cooperative server in a distributed system communicates with other clients and
servers over a network.

Figure 11-1 illustrates a distributed database that includes clients and servers with and
without Oracle Label Security. As described in this chapter, if you establish database
links from the WESTERN_REGION database to the EASTERN_REGION database, then you can
access data if your user ID on EASTERN_REGION is authorized to see it, even if locally (on
WESTERN_REGION) you do not have this access.

11-1

Figure 11-1 Using Oracle Label Security with a Distributed Database

Clients

Clients

Server

Server

Clients Server

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle
Database

Oracle
Database

Oracle
Database

HQ

EASTERN_

REGION

WESTERN_

REGION

Oracle Label

Security Policies

Installed : HR

and DEFENCE

Oracle Label

Security Policy

Installed : HR

How Connections to a Remote Database Under Oracle
Label Security Work

Distributed databases act in the standard way with Oracle Label Security: the local
user ends up connected as a particular remote user.

Oracle Label Security protects the labeled data, whether you connect locally or
remotely. If the remote user has the proper labels, then you can access the data. If
not, then you cannot access the data.

The database link sets up the connection to the remote database and identifies the
user who will be associated with the remote session. Your Oracle Label Security
authorizations on the remote database are based on those of the remote user
identified in the database link.

For example, local user JANE might connect as remote user AUSTEN, in the database
referenced by the connect string sales, as follows:

Chapter 11
How Connections to a Remote Database Under Oracle Label Security Work

11-2

CREATE DATABASE LINK sales
 CONNECT TO austen IDENTIFIED BY pride
 USING 'sales'

When JANE connects, her authorizations are based on the labels and privileges of
remote user AUSTEN, because AUSTEN is the user identified in the database link. When
JANE makes the first reference to the remote database, the remote session is actually
established. For example, the remote session would be created if JANE enters:

SELECT * FROM emp@sales

You need not be an Oracle Label Security policy user in the local database. If you
connect as a policy user on the remote database, you can access protected data.

Session Labels and Row Labels in Remote Sessions
When connecting remotely, you can directly control the session label and row label in
effect when you establish the connection.

When you connect, Oracle Label Security passes these values (for all policies) over to
the remote database. Notice that:

• The local session label and row label are used as the default for the remote
session, if they are valid for the remote user.

• The remote session is constrained by the minimum and maximum authorizations
of the remote user.

• Although the local user's session labels are passed to the remote database, the
local user's privileges are not passed. The privileges for the remote session are
those associated with the remote user.

Consider a local user, Diana, with a maximum level of HS, and a session level of S. On
the remote database, the remote user identified in the database link has a maximum
level of S.

• If Diana's session label is S when the database link is established, then the S label
is passed over. This is a valid label. Diana can connect and read SENSITIVE data.

• If Diana's session label is HS when the database link is established, then the HS
level is passed across, but it is not valid for the remote user. Diana will pick up the
remote user's default label (S).

Be aware of the label at which you are running the first time you connect to the remote
database. The first time you reference a database link, your local session labels are
sent across to the remote system when a connection is made. Later, you can change
the label, but to do so, you must run the SA_SESSION.SET_LABEL procedure on the remote
database.

Diana can connect at level HS, set the label to S, and then perform a remote access.
Connection is implicitly made when the database link is established. Her default label
is S on the remote database.

On the local database, Diana can set her session label to her maximum level of HS, but
if the label of the remote user is set to S, then she can only retrieve S data from the
remote database. If she performs a distributed query, then she will get HS data from the
local database, and S data from the remote database.

Chapter 11
Session Labels and Row Labels in Remote Sessions

11-3

Labels in a Distributed Environment
You should use the same label component definitions and label tags on any database
that is to be protected by the policy.

• Label Tags in a Distributed Environment
In a distributed environment, you may choose to use the same label tags across
multiple databases.

• Numeric Form of Label Components in a Distributed Environment
In a distributed environment, the same relative ranking of the numeric form of the
level component ensures that the labels are properly sorted.

Label Tags in a Distributed Environment
In a distributed environment, you may choose to use the same label tags across
multiple databases.

However, if you choose not to use the same tags across multiple databases, then you
should retrieve the character form of the label when performing remote operations.
This will ensure that the labels are consistent.

In the following example, the character string representation of the label string is the
same. However, the label tag does not match. If the retrieved label tag has a value of
11 on the WESTERN_REGION database but a tag of 2001 on the EASTERN_REGION database,
then the tags have no meaning. Serious consequences can result.

Figure 11-2 Label Tags in a Distributed Database

Label Tag

EASTERN_REGION WESTERN_REGION

Label 600

S:A S:A

C:A

Label

3001

C:A 2001

10U

11

6

Label Tag

U 5

When retrieving labels from a remote system, you should return the character string
representation (rather than the numeric label tag), unless you are using the same
numeric labels on both databases.

If you allow Oracle Label Security to automatically generate labels on different
databases, then the label tags will not be identical. Character strings will have
meaning, but the numeric values will not, unless you have predefined labels with the
same label tags on both instances.

To avoid the complexities of label tags, you can convert labels to strings on retrieval
(using LABEL_TO_CHAR) and use CHAR_TO_LABEL when you store labels. Operations will
succeed as long as the component names are the same.

Chapter 11
Labels in a Distributed Environment

11-4

Numeric Form of Label Components in a Distributed Environment
In a distributed environment, the same relative ranking of the numeric form of the level
component ensures that the labels are properly sorted.

In the following example, the levels in the two databases are effectively the same.
Although the numeric form is different, the relative ranking of the levels numeric form is
the same. As long as the relative order of the components is the same, the labels are
perceived as identical.

Figure 11-3 Label Components in a Distributed Database

Numeric
Form

EASTERN_REGION WESTERN_REGION

Level 600

S S

C

Level

30

C 20

10U

6

5

Numeric

Form

U 4

Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle Database distributed
configurations.

Whether or not you can access protected data depends on the policies installed in
each distributed database.

Be sure to take into account the relationships between databases in a distributed
environment:

• If the same application runs on two databases and you want them to have the
same protection, then you must apply the same Oracle Label Security policy to
both the local and the remote databases.

• If the local and remote databases have a policy in common, then your local
session label and row label will override the default labels for the remote user.

• If the remote database has a different policy than the local database, then the
remote policy can restrict access to the data independent of your local policies. On
the other hand, when you make a connection as a remote user who has
authorization on the remote policy, you can access any data to which the remote
user has access to, regardless of your local authorizations.

If the remote database has no policy applied to it, you can access its data just as you
would with a standard distributed database.

Consider a situation in which three databases exist, with different Oracle Label
Security policies in force:

Chapter 11
Oracle Label Security Policies in a Distributed Environment

11-5

Database 1 has Policy A and Policy B
Database 2 has Policy A
Database 3 had Policy C

Users authorized for Policy A can obtain protected data from Database 1 and
Database 2. If the remote user is authorized for Policy C, then this user can obtain
data from Database 3 as well.

Replication with Oracle Label Security
You should understand how to use the replication option with tables protected by
Oracle Label Security policies.

• About Replication Under Oracle Label Security
You can replicate data in Oracle Label Security.

• Contents of a Materialized View
Oracle Label Security can create materialized views.

• Requirements for Creating Materialized Views Under Oracle Label Security
The requirements for creating a materialized view depend on the type of
materialized view you are creating.

• How to Refresh Materialized Views
If the contents or definition of a master table changes, then you should refresh the
materialized view.

About Replication Under Oracle Label Security
You can replicate data in Oracle Label Security.

• Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports replication using read-only materialized views
(snapshots).

• Row-Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if
READ_CONTROL is specified as one of the policy options.

Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports replication using read-only materialized views
(snapshots).

Oracle Database uses materialized views for replicating data. A materialized view is a
local copy of a local or remote master table that reflects a recent state of the master
table.

As illustrated in Figure 11-4, a master table is a table you wish to replicate, on a node
that you designate as the master node. Using a dblink account, you can create a
materialized view of the table in a different database. (This can also be done in the
same database, and on the same system.) You can select rows from the remote
master table, and copy them into the local materialized view. Here, mvEMP represents
the materialized view of table EMP, and mlog$_EMP represents the materialized view log.

Chapter 11
Replication with Oracle Label Security

11-6

Figure 11-4 Use of Materialized Views for Replication

dblink account:
REPADMIN

Master Node

EMP mvEMP

mlog$_EMP

Local Node

In a distributed environment, a materialized view alleviates query traffic over the
network and increases data availability when a node is not available.

Row-Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if
READ_CONTROL is specified as one of the policy options.

Problems occur if both of the following conditions are true:

• The Oracle Label Security policy is applied to any table relevant to replication
(such as the master table, materialized view, or materialized view log), and

• The policy returns a predicate in the WHERE clause of SELECT statements.

To avoid the additional predicate (and therefore avoid this problem), the users involved
in a replication environment should be given the necessary Oracle Label Security
privileges. To be specific, the designated users in the database link (such as REPADMIN
and the materialized view owner) must have the READ or the FULL privilege. As a result,
the queries used to perform the replication will not be modified by RLS.

See Also:

Oracle Database 2 Day + Security Guide

Contents of a Materialized View
Oracle Label Security can create materialized views.

• How Materialized View Contents Are Determined
Oracle Label Security performs a set steps when creating materialized views.

• Complete Materialized Views
Oracle Label Security supports complete materialized views.

• Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the
materialized view definition.

How Materialized View Contents Are Determined
Oracle Label Security performs a set steps when creating materialized views.

The following steps determine the contents of the view:

Chapter 11
Replication with Oracle Label Security

11-7

1. It reads the definition of the master table in the remote database.

2. It reads the rows in the master table that meet the conditions defined in the
materialized view definition.

3. It writes these rows to the materialized view in the local database.

Because Oracle Label Security writes only those rows to which you have write access
in the local database, the contents of the materialized view vary according to:

• The policy options in effect

• The privileges you have defined in the local database

• The session label

Complete Materialized Views
Oracle Label Security supports complete materialized views.

If you read all of the rows in the master table and have write access in the local
database to each label in the materialized view, then the result is a complete
materialized view of the master table. To ensure that the materialized view is
complete, you should have read access to all of the data in the master table and write
access in the local database to all labels at which data is stored in the master table.

Note:

Never revoke privileges that you granted when you created the materialized
view. If you do, then you may not be able to perform a replication refresh.

Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the
materialized view definition.

A partial materialized view is a convenient way to pass subsets of data to a remote
database.

To create a partial materialized view, a user must have write access to all the rows
being replicated. You can find the currently granted privileges for a user by querying
the DBA_SA_USER_PRIVS data dictionary view.

Requirements for Creating Materialized Views Under Oracle Label
Security

The requirements for creating a materialized view depend on the type of materialized
view you are creating.

• Requirements for a Replication Administrator
Requirements for a replication administrator, typically using a REPADMIN account,
vary depending on the configuration.

Chapter 11
Replication with Oracle Label Security

11-8

• Requirements for the Owner of the Materialized View
The privileges that belong to the owner of the materialized view are used during
the refresh of the materialized view.

• Requirements for Creating Partial Multilevel Materialized Views
A partial materialized view can include only some of the rows in a remote master
table that is protected by Oracle Label Security.

• Requirements for Creating Complete Multilevel Materialized Views
A complete materialized view can include every row in a remote master table that
is protected by Oracle Label Security.

Requirements for a Replication Administrator
Requirements for a replication administrator, typically using a REPADMIN account, vary
depending on the configuration.

In general, however, it should meet the following requirements:

• It must have the FULL Oracle Label Security privilege (mandatory for all
configurations).

• It must have the SELECT privilege on the master table.

• It must be the account that establishes the database link from the remote node to
the database containing the master table.

Requirements for the Owner of the Materialized View
The privileges that belong to the owner of the materialized view are used during the
refresh of the materialized view.

If these privileges are not sufficient, then there are two options:

• The materialized view can be created in the REPADMIN account, or

• Additional privileges must be granted to the owner of the materialized view.

Consider, for example, the following materialized view created by user SCOTT:

CREATE MATERIALIZED VIEW mvemp as
SELECT *
FROM EMP@link_to_master
WHERE label_to_char(sa_label) = 'HS';

Here, SCOTT should have permission to insert records at the HS level in the local
database. If Oracle Label Security policies are applied on the materialized view, then
SCOTT must have the FULL privilege to avoid the RLS restriction.

Different configurations can be set up depending on whether Oracle Label Security
policies are applied on the materialized view, what privileges are granted to the owner
of the materialized view, and so on. If Oracle Label Security policies are applied to the
materialized view, but SCOTT should not be granted the FULL privilege, then the REPADMIN
account must be used to create the materialized view. SCOTT can then be granted the
SELECT privilege on that table.

If no policies are applied to the materialized view, then the view can be created in
SCOTT's schema without any additional privileges. In this case, the materialized view
should be created in such a way that a WHERE condition limits the records to those
which SCOTT can read.

Chapter 11
Replication with Oracle Label Security

11-9

Finally, if SCOTT can be granted the FULL privilege, then the materialized view can be
created in SCOTT's schema, and Oracle Label Security policies can also be applied on
the materialized view.

Note that the master table can have Oracle Label Security policies containing any set
of policy options. If SCOTT has the FULL or the READ privilege, he can select all rows,
regardless of policy options.

Requirements for Creating Partial Multilevel Materialized Views
A partial materialized view can include only some of the rows in a remote master table
that is protected by Oracle Label Security.

If the partial materialized view is used in a table that Oracle Label Security protects,
then you should ensure that you have sufficient privileges to WRITE in the local
database at every label retrieved by your query. You can find your currently granted
privileges by querying the ALL_SA_USER_PRIVS data dictionary view.

Requirements for Creating Complete Multilevel Materialized Views
A complete materialized view can include every row in a remote master table that is
protected by Oracle Label Security.

If the complete materialized view is used in a table that Oracle Label Security protects,
then you must be able to have WRITE access in the local database at the labels of all of
the rows retrieved by the defined materialized view query. You can find your currently
granted privileges by querying the ALL_SA_USER_PRIVS data dictionary view.

How to Refresh Materialized Views
If the contents or definition of a master table changes, then you should refresh the
materialized view.

This ensures that the materialized view accurately reflects the contents of the master
table.

To refresh a materialized view of a remote multilevel table, you must also have
privileges to write in the local database at the labels of all of the rows that the
materialized view query retrieves

WARNING:

A materialized view can potentially contain outdated rows if you refresh a
partial or full materialized view but do not have READ access to all the rows in
the master table, and consequently do not overwrite the rows in the original
materialized view with the updated rows from the master table.

To ensure an accurate materialized view refresh, you should use job queues to refresh
the views automatically. These processes must have sufficient privileges both to read
all of the rows in the master table and to write those rows to the materialized view,
ensuring that the view is completely refreshed. Remember that the privileges used by
these processes are those of the materialized view owner.

Chapter 11
Replication with Oracle Label Security

11-10

See Also:

Oracle Database Data Warehousing Guide for information about job queues

Chapter 11
Replication with Oracle Label Security

11-11

12
Performing DBA Functions
Under Oracle Label Security

Oracle Label Security supports the standard Oracle Database utilities, but certain
restrictions apply, which may require extra steps to get the expected results.

• Oracle Data Pump Export Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• Data Pump Import Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• SQL*Loader Use with Oracle Label Security
SQL*Loader moves data from external files into tables in Oracle Database.

• Performance Tips for Oracle Label Security
You can achieve optimal performance with Oracle Label Security.

• Creation of Additional Databases After Installation
You can create and configure additional databases after you install Oracle Label
Security.

• Oracle Label Security Upgrades and Downgrades
You should be aware of how to manage Oracle Label Security upgrades and
downgrades.

Oracle Data Pump Export Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• Full Database Export
Starting with Oracle Database 12c, Oracle Label Security metadata in the LBACSYS
schema can be included when doing a full database export and import operation.

• Schema and Table-Level Export
The Data Pump export utility functions in the standard way under Oracle Label
Security.

Full Database Export
Starting with Oracle Database 12c, Oracle Label Security metadata in the LBACSYS
schema can be included when doing a full database export and import operation.

The source database can be Oracle Database 11g release 2 (11.2.0.3), or higher, but
the target database must be Oracle Database 12c or higher.

Before starting the Data Pump import on the target database, you must enable Oracle
Label Security.

12-1

Schema and Table-Level Export
The Data Pump export utility functions in the standard way under Oracle Label
Security.

There are, however, a few differences resulting from the enforcement of Oracle Label
Security policies.

Note:

You must have the EXEMPT ACCESS POLICY privilege in order to export all rows in
the table, or else no rows are exported.

• For any tables protected by an Oracle Label Security policy, only rows with labels
authorized for read access are exported. Unauthorized rows are not included in
the export file. Consequently, to export all the data in protected tables, you must
have a privilege (such as FULL or READ) that gives you complete access.

• SQL statements to reapply policies are exported along with tables and schemas
that are exported. These statements are carried out during import to reapply
policies with the same enforcement options as in the original database.

• The HIDE property is not exported. When protected tables are exported, the label
columns in those tables are also exported (as numeric values). However, if a label
column is hidden, then it is exported as a normal, unhidden column.

• The user must have EXEMPT ACCESS POLICY in order to export all rows in the table, or
else no rows are exported.

Data Pump Import Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• Full Database Import for the LBACSYS Schema Metadata
Oracle Label Security metadata in the LBACSYS schema can be included when you
perform a full database export and import operation.

• Schema and Table Level Import
You can use the Oracle Data Pump Import utility functions under Oracle Label
Security.

Full Database Import for the LBACSYS Schema Metadata
Oracle Label Security metadata in the LBACSYS schema can be included when you
perform a full database export and import operation.

The source database can be Oracle Database 11g release 2 (11.2.0.3), or higher, but
the target database must be Oracle Database 12c release 1 (12.1) or higher.

Oracle Data Pump import utility, impdp, automatically imports Label Security metadata
including policies, labels, user authorizations, schema and table policy enforcements.

Chapter 12
Data Pump Import Use with Oracle Label Security

12-2

You must register and enable Oracle Label Security for the target database before
beginning the import operation.

Related Topics

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS and CDB_OLS_STATUS data dictionary views to find
if Oracle Label Security has already been registered and enabled.

Schema and Table Level Import
You can use the Oracle Data Pump Import utility functions under Oracle Label
Security.

• Requirements for Import Under Oracle Label Security
You can use the impdp under Oracle Label Security.

• Definition of Data Labels for Import
The label definitions at the time of import must include all the policy labels used in
the export file.

• Imports of Labeled Data Without Installing Oracle Label Security
When data type for policy label columns is NUMBER, they can be imported into
databases that do not have Oracle Label Security installed.

• Imports of Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label
Security policy.

• Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is
lost.

Requirements for Import Under Oracle Label Security
You can use the impdp under Oracle Label Security.

To use the impdp under Oracle Label Security, you must prepare the import database
and ensure that the import user has the proper authorizations.

• Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare
the import database.

• Verification of Import User Authorizations
You must be authorized to run the import operation for labels required to insert
data and labels in the export file.

Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare the
import database.

1. Ensure that Oracle Label Security is enabled. See Checking if Oracle Label
Security Has Been Registered and Enabled.

2. Create any Oracle Label Security policies that protect the data to be imported.

Ensure that the policies use the same column names as in the export database.

Chapter 12
Data Pump Import Use with Oracle Label Security

12-3

3. Define in the import database all of the label components and individual labels
used in tables being imported.

Ensure that the same tag values are assigned to the policy labels in each
database. (Note that if you are importing into a database from which you exported,
then the components are most likely already defined.)

Verification of Import User Authorizations
You must be authorized to run the import operation for labels required to insert data
and labels in the export file.

Errors will be raised upon import if you do not meet the following requirements.

• To import tables or schemas with Label Security policies on them, you must have
execute privilege on the SA_POLICY_ADMIN package.

To ensure that all rows can be imported, you must have the policy_DBA role for all
policies with data being imported. After each schema or table is imported, any
policies from the export database are reapplied to the imported objects.

• You must also have the ability to write all rows that have been exported as follows:

Requirement 2:

– You can granted the FULL privilege or given sufficient authorization to write all
labels contained in the import file.

– A user-defined labeling function can be applied to the table.

Definition of Data Labels for Import
The label definitions at the time of import must include all the policy labels used in the
export file.

The DBA_SA_LABELS data dictionary view lists data labels. You can use the views
DBA_SA_LEVELS, DBA_SA_COMPARTMENTS, DBA_SA_GROUPS, and in the export database to
design SQL scripts that re-create the label components and labels for each policy in
the import database. The following example shows how to generate a PL/SQL block
that re-creates the individual labels for the HR policy:

set serveroutput on
BEGIN
 dbms_output.put_line('BEGIN');
 FOR l IN (SELECT label_tag, label
 FROM dba_sa_labels
 WHERE policy_name='HR'
 ORDER BY label_tag) LOOP
 dbms_output.put_line
 (' SA_LABEL_ADMIN.CREATE_LABEL(''HR'', ' ||
 l.label_tag || ', ''' || l.label || ''');');
 END LOOP;
 dbms_output.put_line ('END;');
 dbms_output.put_line ('/');
END;
/

If the individual labels do not exist in the import database with the same numeric
values and the same character string representations as in the export database, then
the label values in the imported tables will be meaningless. The numeric label value in

Chapter 12
Data Pump Import Use with Oracle Label Security

12-4

the table may refer to a different character string representation, or it may be a label
value that has not been defined at all in the import database.

If a user attempts to access rows containing invalid numeric labels, then the operation
will fail.

Imports of Labeled Data Without Installing Oracle Label Security
When data type for policy label columns is NUMBER, they can be imported into
databases that do not have Oracle Label Security installed.

In this case, the values in the policy label column are imported as numbers. Without
the corresponding Oracle Label Security label definitions, the numbers will not
reference any specific label.

Note that errors will be raised during the import if Oracle Label Security is not installed,
because the SQL statements to reapply the policy to the imported tables and schemas
will fail.

Imports of Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label
Security policy.

Either the LABEL_DEFAULT option or a labeling function must be specified for each table
being imported, so that the labels for the rows can be automatically initialized as they
are inserted into the table.

Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is lost.

If you want to preserve the hidden property of the label column, then you must first
create the table in the import database.

1. Before you perform the import, create the table and apply the policy with the HIDE
option. This adds the policy label column to the table as a hidden column.

2. Remove the policy from the table, so that the enforcement options specified in the
export file can be reapplied to the table during the import operation.

3. Perform the import with IGNORE=Y. Setting the IGNORE parameter to Y ignores errors
during import.

4. Manually apply the policy to the table with the HIDE option.

SQL*Loader Use with Oracle Label Security
SQL*Loader moves data from external files into tables in Oracle Database.

• Requirements for Using SQL*Loader Under Oracle Label Security
You can use SQL*Loader with the conventional path to load data into a database
protected by Oracle Label Security.

• Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword to
convey this information to SQL*Loader.

Chapter 12
SQL*Loader Use with Oracle Label Security

12-5

Requirements for Using SQL*Loader Under Oracle Label Security
You can use SQL*Loader with the conventional path to load data into a database
protected by Oracle Label Security.

Because SQL*Loader performs INSERT operations, all of the standard requirements
apply when using SQL*Loader on tables protected by Oracle Label Security policies.

Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword to
convey this information to SQL*Loader.

To specify row labels in the input file, you must include the policy label column in the
INTO TABLE clause in the control file.

To load policy labels along with the data for each row, you can specify the
CHAR_TO_LABEL function or the TO_DATA_LABEL function in the SQL*Loader control file.

Note:

When Oracle Label Security is installed to work with Oracle Internet Directory,
dynamic label generation is not allowed, because labels are managed centrally
in Oracle Internet Directory, using olsadmintool commands.

When Oracle Label Security is directory-enabled, then the function
TO_DATA_LABEL is not available and generates an error message if used.

Table 12-1 shows the variations that you can use when you load Oracle Label Security
data with SQL*Loader.

Table 12-1 Input Choices for Oracle Label Security Input to SQL*Loader

Form of Data Explanation of Results

col1 hidden integer external Hidden column loaded with tag value of data directly from data
file

col2 hidden char(5) "func(:col2)" Hidden column loaded with character value of data from data
file.func() used to translate between the character label
and its tag value. Note: func() might be char_to_label().

col3 hidden "func(:col3)" Same as in col2, field type defaults to char

col4 hidden expression "func(:col4)" Hidden column not mapped to input data.func() will be
called to provide the label value. This could be a user function.

For example, the following is a valid INTO TABLE clause in a control file that is loading
data into the DEPT table:

INTO TABLE dept
(hr_label HIDDEN POSITION (1:22) CHAR "CHAR_TO_LABEL('HR',:hr_label)",
deptno POSITION (23:26) INTEGER EXTERNAL,
dname POSITION (27:40) CHAR,
loc POSITION(41,54) CHAR)

Chapter 12
SQL*Loader Use with Oracle Label Security

12-6

The following could be an entry in the data file specified by this control file:

HS:FN 231 ACCOUNTING REDWOOD SHORES

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet
Directory.

Performance Tips for Oracle Label Security
You can achieve optimal performance with Oracle Label Security.

• Use of ANALYZE to Improve Oracle Label Security Performance
You can run the ANALYZE statement on the Oracle Label Security data dictionary
tables in the LBACSYS schema.

• Creation of Indexes on the Policy Label Column
Creating the appropriate type of index on the policy label column improves the
performance of user-raised queries on protected tables.

• Label Tag Strategy Plan to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label
tags.

• Partitioned Data Based on Numeric Label Tags
Using a numeric ordering strategy with the numeric label tags applied to the labels
can a basis for Oracle Database data partitioning.

Use of ANALYZE to Improve Oracle Label Security Performance
You can run the ANALYZE statement on the Oracle Label Security data dictionary tables
in the LBACSYS schema.

This enables the cost-based optimizer to improve execution plans on queries, which
improves Oracle Label Security performance.

Running ANALYZE on application tables improves the application SQL performance.

See Also:

Oracle Database SQL Language Reference for the ANALYZE syntax

Creation of Indexes on the Policy Label Column
Creating the appropriate type of index on the policy label column improves the
performance of user-raised queries on protected tables.

If you have applied an Oracle Label Security policy on a database table in a particular
schema, then you should compare the number of different labels to the amount of
data. Based on this information, you can decide which type of index to create on the
policy label column.

Chapter 12
Performance Tips for Oracle Label Security

12-7

• If the cardinality of data in the policy label column (that is, the number of labels
compared to the number of rows) is low, then consider creating a bitmapped
index.

• If the cardinality of data in the policy label column is high, then consider creating a
B-tree index.

Consider the following case, in which the EMP table is protected by an Oracle Label
Security policy with the READ_CONTROL enforcement option set, and HR_LABEL is the name
of the policy label column. A user raises the following query:

SELECT COUNT (*) FROM SCOTT.EMP;

In this situation, Oracle Label Security adds a predicate based on the label column.
For example:

SELECT COUNT (*) FROM SCOTT.EMP
 WHERE hr_label=100;

In this way, Oracle Label Security uses the security label to restrict the rows that are
processed, based on the user's authorizations. To improve performance of this query,
you could create an index on the HR_LABEL column.

Consider a more complex query (once again, with READ_CONTROL applied to the EMP
table):

SELECT COUNT (*) FROM SCOTT.EMP
 WHERE deptno=10

Again, Oracle Label Security adds a predicate based on the label column:

SELECT COUNT (*) FROM SCOTT.EMP
 WHERE deptno=10
 AND hr_label=100;

In this case, you might want to create a composite index based on the DEPTNO and
HR_LABEL columns, to improve application performance.

Label Tag Strategy Plan to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label tags.

In general, it is best to assign higher numeric values to labels with higher sensitivity
levels.

This is because, typically, many more users can see data at comparatively low levels
and fewer users at higher levels can see many levels of data.

In addition, with READ_CONTROL set, Oracle Label Security generates a predicate that
uses a BETWEEN clause to restrict the rows to be processed by the query. As illustrated
in the following example, if the higher-sensitivity labels do not have a higher label tag
than the lower-sensitivity labels, then the query will potentially examine a larger set of
rows. This will affect performance.

Table 12-2 shows a set of label tags assigned as follows:

Chapter 12
Performance Tips for Oracle Label Security

12-8

Table 12-2 Label Tag Performance Example: Correct Values

Label Label Tag

TS:A,B 100

S:A 50

S 20

U:A 10

Here, a user whose maximum authorization is S:A can potentially access data at
labels S:A, S, and U:A. Consider what happens when this user raises the following
query:

SELECT COUNT (*) FROM SCOTT.EMP

Oracle Label Security adds a predicate that includes a BETWEEN clause (based on the
maximum and minimum authorizations) to restrict the set of rows this user can see:

SELECT COUNT (*) FROM SCOTT.EMP
 WHERE hr_label BETWEEN 10 AND 50;

Performance improves, because the query examines only a subset of data based on
the user's authorizations. It does not fruitlessly process rows that the user is not
authorized to access.

Table 12-3 shows how unnecessary work is performed if the tag values were assigned
as follows:

Table 12-3 Label Tag Performance Example: Incorrect Values

Label Label Tag

TS:A,B 50

S:A 100

S 20

U:A 10

In this case, the user with S:A authorization can see only some of the labels between
100 and 10. Although the user cannot see TS:A,B labels (that is, rows with a label tag of
50). A query would nonetheless pick up and process these rows, even though the user
ultimately will not have access to them.

Partitioned Data Based on Numeric Label Tags
Using a numeric ordering strategy with the numeric label tags applied to the labels can
a basis for Oracle Database data partitioning.

Depending on the application, partitioning data based on label values may or may not
be useful. Consider, for example, a business-hosting CRM application to which many
companies subscribe. In the same EMP table, there might be rows (and labels) for
Subscriber 1 and Subscriber 2. That is, information for both companies can be stored
in the same table, as long as it is labeled differently. In this case, employees of
Subscriber 1 will never need to access data for Subscriber 2, so it might make sense

Chapter 12
Performance Tips for Oracle Label Security

12-9

to partition based on label. You could put rows for Subscriber 1 in one partition, and
rows for Subscriber2 in a different partition. When a query is raised, it will access only
one or the other partition, depending on the label. Performance improves because
partitions that are not relevant are not examined by the query.

The following example shows this is done. It places labels in the 2000 series on one
partition, labels in the 3000 series on another partition, and labels in the 4000 series
on a third partition.

CREATE TABLE EMPLOYEE(
 EMPNO NUMBER(10) CONSTRAINT PK_EMPLOYEE PRIMARY KEY,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(4),
 HR_LABEL NUMBER(10))
 TABLESPACE PERF_DATA
 STORAGE (initial 2M
 NEXT 1M
 MINEXTENTS 1
 MAXEXTENTS unlimited)
 PARTITION BY RANGE (hr_label)
 (partition sx1 VALUES LESS THAN (2000) NOLOGGING,
 partition sx2 VALUES LESS THAN (3000),
 partition sx3 VALUES LESS THAN (4000)
);

Creation of Additional Databases After Installation
You can create and configure additional databases after you install Oracle Label
Security.

• About the Creation of Additional Databases After Installation
When you install Oracle Database Enterprise Edition and Oracle Label Security,
an initial Oracle database is created.

• Creating Additional Databases When the Label Security Schema Is in the Seed
You can configure Oracle Label Security if the database was installed with the
label security schema is in the seed database.

• Creating Additional Databases with the Custom Installation Option
You can configure Oracle Label Security after a custom database installation.

About the Creation of Additional Databases After Installation
When you install Oracle Database Enterprise Edition and Oracle Label Security, an
initial Oracle database is created.

If you want to create additional databases, then you should do this using the Database
Configuration Assistant. Alternatively, you can create additional databases by following
the steps listed in Oracle Database Administrator’s Guide.

Each time you create a new database, you must install the Oracle Label Security data
dictionary tables, views, and packages into it, and create the LBACSYS account.

Chapter 12
Creation of Additional Databases After Installation

12-10

For the first database, this is done automatically when you install Oracle Label
Security, regardless of whether or not you choose the custom install. If you do not
choose the custom install, then you are installing the database with the label security
schema in the seed.

To create additional databases, there are different processes for configuring label
security, depending on whether the first database was installed with the custom install
or with the label security schema in the seed.

If you initially chose custom install, but did not install label security, you can install and
configure label security using either process described in this section.

Creating Additional Databases When the Label Security Schema Is in
the Seed

You can configure Oracle Label Security if the database was installed with the label
security schema is in the seed database.

1. Select the Oracle Label Security option in DBCA.

2. Select the check box to configure Oracle Label Security.

Creating Additional Databases with the Custom Installation Option
You can configure Oracle Label Security after a custom database installation.

1. Connect to the Oracle Database instance as user SYS, using the AS SYSDBA syntax.

2. Run the script $ORACLE_HOME/rdbms/admin/catols.sql.

This script installs the label-based framework, data dictionary, data types, and
packages. After the script is run, the LBACSYS account exists, with the password
LBACSYS. All the Oracle Label Security packages exist under this account.

3. Change the default password of the LBACSYS user.

Oracle Label Security Upgrades and Downgrades
You should be aware of how to manage Oracle Label Security upgrades and
downgrades.

• About Oracle Label Security Upgrades and Downgrades
Oracle provides preprocess scripts that perform upgrade and downgrade
operations.

• Oracle Label Security Upgrades
Oracle provides a preprocess script that you must run before you perform an
upgrade.

• Oracle Label Security Downgrades
Oracle provides a preprocess script that you must run before you downgrade.

About Oracle Label Security Upgrades and Downgrades
Oracle provides preprocess scripts that perform upgrade and downgrade operations.

Chapter 12
Oracle Label Security Upgrades and Downgrades

12-11

As a safety measure, before you run either the upgrade or downgrade preprocess
script, Oracle recommends that you back up your audit records. To do this, you can
archive the audit trail as described in Oracle Database Security Guide.

Before they run, the preprocess scripts check that there is enough space in the audit
tablespace to copy all the audit records, and will exit without processing if there is not.

You may continue running your applications on the database while OLS preprocess
scripts are running.

See Also:

Oracle Database Upgrade Guide for requirements for upgrading databases that
use Oracle Label Security and Oracle Database Vault

Oracle Label Security Upgrades
Oracle provides a preprocess script that you must run before you perform an upgrade.

• About Oracle Label Security Upgrades
You must upgrade Oracle Label Security for pre-Oracle Database 12c release 1
(12.1) databases.

• Running the Oracle Label Security Preprocess Script Before Upgrading
You can run the Oracle Label Security preprocess script before upgrading.

About Oracle Label Security Upgrades
You must upgrade Oracle Label Security for pre-Oracle Database 12c release 1 (12.1)
databases.

Note:

Running the olspreupgrade.sql script before upgrading is mandatory for
upgrading databases earlier than Oracle Database 12c release (12.1) that use
Oracle Label Security or Database Vault.

After you have upgraded to Oracle Database release 12c or later, you do not
need to run the Oracle Label Security preprocessing script when you patch or
upgrade the database.

Before performing the OLS upgrade process, you must run the Oracle Label Security
preprocess upgrade script, olspreupgrade.sql, to process the AUD$ table contents. The
OLS upgrade moves the AUD$table from the SYSTEM schema to the SYS schema. The
olspreupgrade.sql script is a preprocessing script required for this move. It creates a
temporary table, PREUPG_AUD$, in the SYS schema and moves the SYSTEM.AUD$ records to
SYS.PREUPG_AUD$. The moved records can no longer be viewed through the
DBA_AUDIT_TRAIL view, but can be viewed by directly accessing the SYS.PREUPG_AUD$
table, until the upgrade completes. Once the upgrade completes, the SYS.PREUPG_AUD$
table is permanently deleted and all audit records, can be viewed through the
DBA_AUDIT_TRAIL view.

Chapter 12
Oracle Label Security Upgrades and Downgrades

12-12

Running the Oracle Label Security Preprocess Script Before Upgrading
You can run the Oracle Label Security preprocess script before upgrading.

1. Copy the ORACLE_HOME/rdbms/admin/olspreupgrade.sql script from the newly
installed Oracle home to the Oracle home of the database to be upgraded.

2. Connect to the database to be upgraded. At the system prompt, enter:

CONNECT SYS AS SYSDBA
Enter password password

3. Run the Oracle Label Security preprocess script:

@$ORACLE_HOME/rdbms/admin/olspreupgrade.sql

Note:

The upgrade status for the Oracle Label Security component will be marked
INVALID if the Oracle Label Security preprocess script reports an error. If this
happens, you must correct the errors and then rerun the upgrade process. See
Oracle Database Upgrade Guide for more information about rerunning the
upgrade process for Oracle Database.

Oracle Label Security Downgrades
Oracle provides a preprocess script that you must run before you downgrade.

• About Oracle Label Security Downgrades
You can downgrade from an Oracle Database 12c release 1 (12.1) or later
database that uses Oracle Label Security or Oracle Database Vault.

• Running the Oracle Label Security Preprocess Script Before Downgrading
You must connect as SYS wth the SYSDBA administrative privilege before running the
Oracle Label Security preprocess script for a downgrade.

About Oracle Label Security Downgrades
You can downgrade from an Oracle Database 12c release 1 (12.1) or later database
that uses Oracle Label Security or Oracle Database Vault.

To do this, you must run the OLS preprocessing script, olspredowngrade.sql to process
the AUD$ table contents. The OLS downgrade script moves the AUD$ table from the SYS
schema to the SYSTEM schema. The olspredowngrade.sql script is a processing script
required in preparation for this move. It creates a temporary table, PREDWG_AUD$, in the
SYSTEM schema and moves the SYS.AUD$ records to SYSTEM.PREDWG_AUD$. The moved
records can no longer be viewed through the DBA_AUDIT_TRAIL view, but you can view
them by directly accessing the SYSTEM.PREDWG_AUD$ table until the downgrade
completes. Once the downgrade completes, the SYSTEM.PREDWG_AUD$ table is
permanently deleted. At this point, all audit records are available for viewing in the
DBA_AUDIT_TRAIL data dictionary view.

Chapter 12
Oracle Label Security Upgrades and Downgrades

12-13

Running the Oracle Label Security Preprocess Script Before Downgrading
You must connect as SYS wth the SYSDBA administrative privilege before running the
Oracle Label Security preprocess script for a downgrade.

1. Connect to the database to be downgraded. At the system prompt, enter:

CONNECT SYS AS SYSDBA
Enter password password

2. Run the OLS preprocess downgrade script:

@$ORACLE_HOME/rdbms/admin/olspredowngrade.sql

Chapter 12
Oracle Label Security Upgrades and Downgrades

12-14

13
Releasability Using Inverse Groups

Oracle Label Security can implement the releasability using inverse groups.

• About Inverse Groups and Releasability
Inverse groups indicate releasability of information.

• Comparison of Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations that own or access data.

• How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the
needs of Oracle Label Security.

• Algorithm for Read Access with Inverse Groups
You should understand how the algorithm for read access with inverse groups
works.

• Algorithm for Write Access with Inverse Groups
You should understand the algorithm for write access with inverse groups.

• Algorithms for COMPACCESS Privilege with Inverse Groups
Oracle provides algorithms for read and write access with inverse groups, for
users who have COMPACCESS privilege.

• Session Labels and Inverse Groups
Inverse groups affect session labels and row labels.

• Changes in Behavior of Procedures with Inverse Groups
The INVERSE_GROUP option affects algorithms that determine the read and write
access of the user to labeled data.

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

About Inverse Groups and Releasability
Inverse groups indicate releasability of information.

They are used to mark the dissemination of data. When you add an inverse group to a
data label, the data becomes less classified.

For example, a user with inverse groups UK and US cannot access data that only has
inverse group UK. Adding US to that data makes it accessible to all users with the
inverse groups UK and US.

When you assign releasabilities to a user, you mark the communication channel to the
user. For data to flow across the communication channel, the data releasabilities must
dominate the releasabilities assigned to the user. In other words, releasabilities
assigned to a data record must contain all the releasabilities assigned to a user.

13-1

The advantage of releasabilities lies in their power to broadly disseminate information.
Releasing data to the entire marketing organization becomes as simple as adding the
Marketing releasability to the data record.

Comparison of Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations that own or access data.

Like standard groups, inverse groups control the dissemination of information.
However, the behavior of inverse groups differs from Oracle Label Security standard
group behavior. By default, all policies created in Oracle Label Security use the
standard group behavior.

The term, releasabilities is sometimes used to refer to the behavior provided by
inverse groups. When you include inverse groups in a data label, the effect is similar to
assigning label compartment authorizations to a user. When Oracle Label Security
evaluates whether a user can view a row of data assigned to a label with inverse
groups, it checks to see whether the data, not the user, has the appropriate group
authorizations. It checks whether the data has all the inverse groups assigned to the
user. With standard groups, by contrast, Oracle Label Security checks to see whether
a user is authorized for at least one of the groups assigned to a row of data.

Consider a policy that contains three standard groups such as, Eastern, Western, and
Southern. User1's label authorizations include the groups Eastern and Western.
Assuming that User1 has been assigned the appropriate level and compartment
authorizations in the policy, then:

• With standard Oracle Label Security groups, User1 can view all data records that
have the group Eastern, or the group Western, or both Eastern and Western.

• With inverse groups, User1 can only view data records that have, at a minimum,
all the groups assigned to the user, that is, both Eastern and Western. User1
cannot view records that have only the Eastern group, only the Western group, or
that have no groups at all.

Table 13-1 shows all the rows that User1 can potentially access, given the type of
group that is used in the policy.

Table 13-1 Access to Standard Groups and Inverse Groups

If row label contains groups: User1 access with
standard groups?

User1 access with
inverse groups?

None Y N

Eastern Y N

Western Y N

Southern N N

Eastern, Western Y Y

Eastern, Southern Y N

Western, Southern Y N

Eastern, Western, Southern Y Y

Standard groups indicate ownership of information. In this way, all data pertaining to a
certain department can have that department's group in the label. When you add a

Chapter 13
Comparison of Standard Groups and Inverse Groups

13-2

group to a data label, the data becomes more classified. For example, a user with no
groups can access data that has no groups in its label. If you add the group US to the
data label, the user can no longer access the data.

See Also:

Group Components

How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the needs
of Oracle Label Security.

• Implementation of Inverse Groups with INVERSE_GROUP Enforcement
When creating an Oracle Label Security policy, you can specify whether the policy
can use inverse group functionality to implement releasability.

• Inverse Groups and Label Components
An Oracle Label Security policy created with the inverse group option uses the
same policy label components as standard groups.

• Computed Labels with Inverse Groups
Inverse groups affect computed label values.

• Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, so that a group can be
associated with a parent group.

• Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the
same.

Implementation of Inverse Groups with INVERSE_GROUP
Enforcement

When creating an Oracle Label Security policy, you can specify whether the policy can
use inverse group functionality to implement releasability.

To do this, you must specify INVERSE_GROUP as one of the default_options in the
CREATE_POLICY statement.

The INVERSE_GROUP option can be set only at policy creation time. Once a policy is
created, this option cannot be changed.

The INVERSE_GROUP option is thus policywide. It cannot be turned on or off when the
policy is applied to a table or schema. If you attempt to do so, using the procedure
APPLY_TABLE_POLICY or APPLY_SCHEMA_POLICY, then an error will be generated.

While other policy enforcement options can be dropped from a policy, the
INVERSE_GROUP policy configuration option cannot be dropped once it is set. To remove
the option, you must drop and then re-create the policy.

You can give individual users authorization for one or more inverse groups.

Chapter 13
How Inverse Groups Work

13-3

Inverse Groups and Label Components
An Oracle Label Security policy created with the inverse group option uses the same
policy label components as standard groups.

These components include levels, compartments, and groups.

With inverse groups, however, the user's read groups and write groups have a
different meaning and role in data access.

Consider the following policy example, with three levels, one compartment, and three
groups:

Table 13-2 Policy Example

Policy Component Abbreviation

Levels: -

UNCLASSIFIED UN

CONFIDENTIAL CON

SECRET SE

Compartments: -

FINANCIAL FIN

Groups: -

EASTERN EAS

WESTERN WES

SOUTHERN SOU

Two user labels have been assigned, CON:FIN and SE:FIN:EAS,WES

Two data labels have been assigned, CON:FIN:EAS and SE:FIN:EAS

User access to the data differs, depending on the type of group being used:

• If the policy uses standard groups, then:

The user with the label CON:FIN cannot read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES can read SE:FIN:EAS data.

• If the policy has the INVERSE GROUPS policy enforcement option, then:

The user with the label CON: FIN can read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES cannot read SE:FIN:EAS data.

Computed Labels with Inverse Groups
Inverse groups affect computed label values.

Chapter 13
How Inverse Groups Work

13-4

• Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label
Security automatically computes a number of labels.

• Inverse Groups and Computed Max Read Groups and Max Write Groups
Oracle Label Security provides different inverse groups to handle read and write
operations.

Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label Security
automatically computes a number of labels.

With inverse groups, these labels are as follows:

Table 13-3 Computed Session Labels with Inverse Groups

Computed Label Definition

Max Read Label The user's maximum level combined with his or her authorized
compartments and the minimum set of inverse groups that should be in
the user label (session label)

Max Write Label The user's maximum level combined with the compartments for which
the user has been granted write access. Contains the maximum
authorized inverse groups that can be set in any label. The user has
write authorizations on all these inverse groups.

Min Write Label The user's minimum level.

Default Read Label The default level, combined with compartments and inverse groups that
have been designated as default for the user.

Default Write Label A subset of the default read label, containing the compartments and
inverse groups for which the user has been granted write access.
However the inverse groups component has no significance as it is the
Max Write Groups that is always used for write access.

Default Row Label The combination of components between the user's minimum write label
and the maximum write label, which has been designated as the default
for the data label for inserted data. The Inverse groups should be a
superset of inverse groups in the default label and a subset of Max Write
Groups.

Related Topics

• Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the
value of the session label.

Inverse Groups and Computed Max Read Groups and Max Write Groups
Oracle Label Security provides different inverse groups to handle read and write
operations.

From the computed values in Table 13-3, two sets of groups are identified for label
evaluation of read and write access.

Chapter 13
How Inverse Groups Work

13-5

Table 13-4 Sets of Groups for Evaluating Read and Write Access

Sets of Groups Meaning

Max Read Groups Max Read Groups are the groups contained in the Max Read Label,
identifying the minimum set of inverse groups that can be set in any
user label.

Max Write Groups Max Write Groups are the groups contained in the Max Write Label,
identifying the maximum authorized inverse groups that can be set in
any user label. This set of groups is checked at the time of write
access, and also when setting session labels.

Note that Max Write Groups is a superset of Max Read Groups.

As shown in Table 13-5, for standard groups you can have READ ONLY and READ/WRITE
authorizations; for inverse groups you can have WRITE ONLY and READ/WRITE
authorizations.

Table 13-5 Read and Write Authorizations for Standard Groups and Inverse
Groups

Type of
Group

READ ONLY READ/WRITE WRITE ONLY

Standard
Groups

The group is present only
in Max Read Label, not in
Max Write Label.

The group is present in
both Max Read Label and
Max Write Label.

Not supported

Inverse
Groups

Not supported The group is present in
both Max Read Label and
Max Write Label.

The group is present only
in Max Write Label, not in
Max Read Label.

Although Max Read Groups identifies the set of groups contained in the Max Read
Label, this value represents the minimum set of inverse groups that can be set. For
example:

Max Read Groups: S:C1:G1,G2

Max Write Groups: S:C1:G1,G2,G3,G4,G5

Here, the user can read data that contains at least the two groups listed in Max Read
Groups.

Note that in standard groups, there can never be a situation in which there are more
groups in the Max Write Label than in the Max Read Label.

Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, so that a group can be
associated with a parent group.

For example, the EASTERN region can be the parent of two subordinate groups:
EAS_SALES, and EAS_HR.

In a policy with standard groups, if the user label has the parent group, then it can
access all data of the subordinate groups.

With inverse groups, parent-child relationships are not supported.

Chapter 13
How Inverse Groups Work

13-6

Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the same.

When the user has no special privileges, then the read algorithm and the write
algorithm are different for standard groups and inverse groups. The differences are
described later, in Algorithm for Read Access with Inverse Groups and Algorithm for
Write Access with Inverse Groups.

The effect of inverse groups on the COMPACCESS privilege is described later, in
Algorithms for COMPACCESS Privilege with Inverse Groups.

Inverse groups have no impact upon the following user privileges:

• PROFILE_ACCESS

• WRITEUP

• WRITEDOWN

• WRITEACROSS

Algorithm for Read Access with Inverse Groups
You should understand how the algorithm for read access with inverse groups works.

To read data in a table with the INVERSE GROUP option in effect, the label evaluation
process proceeds from levels to groups to compartments, as illustrated in Figure 13-1.
(Note that the current session label is the label being evaluated.)

1. The user's level must be greater than or equal to the level of data.

2. The user's label must include all the compartments assigned to the data

3. The groups in the data label must be a superset of the groups in the user label.

If the user's label passes these tests, then the user can access the data. If not, the
user is denied access. Note that if the data label is null or invalid, then the user is
denied access.

Note:

This flow diagram is true only when the user has no special privileges.

Chapter 13
Algorithm for Read Access with Inverse Groups

13-7

Figure 13-1 Read Access Label Evaluation with Inverse Groups

No
Access

 Access

Data
level =< user

level?

User has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N
N

Data has all
groups in

user label?

Related Topics

• How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

Algorithm for Write Access with Inverse Groups
You should understand the algorithm for write access with inverse groups.

To write data in a table with the INVERSE GROUP option, the label evaluation process
proceeds from levels to groups to compartments, as illustrated in Figure 13-2. (Note
that the current session label is the label being evaluated.)

1. The level in the data label must be greater than or equal to the user's minimum
level, and less than or equal to the user's session level.

2. One of the following conditions must be met:

The groups in the data label must be a superset of the groups in the user label.

or

The user has READ access privilege on the policy.

3. The user's Max Write Groups must be a superset of the data label groups.

4. The user label must have write access on all of the compartments in the data
label.

Note that if the data label is null or invalid, then the user is denied access.

Note:

This flow diagram is true only when the user has no special privileges.

Chapter 13
Algorithm for Write Access with Inverse Groups

13-8

Figure 13-2 Write Access Label Evaluation with Inverse Groups

No
Access

 Access

Data level
=< user
level?

Data level
=> user min

level?

User
has groups?

Data
has

compartments?

Data has all
groups in user

label?

N NN N

Y YYYYY

Data
has

groups?

User's max_write
groups is superset

of datalabel?

Users has all
compartments

with write
access?

N

Y

N

N

Y

N

See Also:

How the Oracle Label Security Algorithm for Write Access Works

Algorithms for COMPACCESS Privilege with Inverse
Groups

Oracle provides algorithms for read and write access with inverse groups, for users
who have COMPACCESS privilege.

The COMPACCESS privilege allows a user to access data based on the row's
compartments, independent of the row's groups.

• When compartments exist and access to them is authorized, then the group
authorization is bypassed.

• If a row has no compartments, then access is determined by the inverse group
authorizations.

Figure 13-3 and Figure 13-4 show the label evaluation process for read access and
write access for a user with the COMPACCESS privilege. If the data label is null or invalid,
then the user is denied access.

(Note that the current session label is the label being evaluated.)

Chapter 13
Algorithms for COMPACCESS Privilege with Inverse Groups

13-9

Figure 13-3 Read Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

No
Access

 Access

Data
level =< user

level?

User has
groups?

Data
has

compartments?

User has all
compartments?

N N N

Y YYYY

N

Y

N
N

Data has all
groups in user

label?

Data has
compartments?

Figure 13-4 Write Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

No
Access

 Access

Data level
=< user
level?

Data level
=> user min

level?

User
has groups?

Data
has

compartments?

Data has all
groups in user

label?

N NN N

Y YYYYY

Data
has

groups?

User's max_write
groups is superset

of datalabel?

Users has all
compartments

with write
access?

N

Y

N

N

Y

N

Session Labels and Inverse Groups
Inverse groups affect session labels and row labels.

• Initial Session and Row Labels for Standard or Inverse Groups
Oracle provides initial session and row labels for standard and inverse groups.

• Setting Current Session or Row Labels for Standard or Inverse Groups
You can set the current session or row labels for standard or inverse groups.

Chapter 13
Session Labels and Inverse Groups

13-10

• Examples of Session Labels and Inverse Groups
Oracle provides examples of using inverse groups.

Initial Session and Row Labels for Standard or Inverse Groups
Oracle provides initial session and row labels for standard and inverse groups.

• About the Initial Session and Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of Oracle Label Security
procedures that determine the session label.

• Standard Groups: Rules for Changing Initial Session/Row Labels
A user's default session label can be changed using
SA_USER_ADMIN.SET_DEFAULT_LABEL.

• Inverse Groups: Rules for Changing Initial Session/Row Labels
The default session label can include groups in the authorized list if the new write
label dominates the current default row label.

About the Initial Session and Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of Oracle Label Security procedures
that determine the session label.

The SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_USER_ADMIN.SET_ROW_LABEL procedures set
the user's initial session label and row label, respectively, to the one specified.

Standard Groups: Rules for Changing Initial Session/Row Labels
A user's default session label can be changed using SA_USER_ADMIN.SET_DEFAULT_LABEL.

In the case of standard groups, the default session label can be set to include any
groups in the authorized list, as long as the current default row label will still be
dominated by the new write label. That is, the row label will have the same or fewer
standard groups than the new write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Inverse Groups: Rules for Changing Initial Session/Row Labels
The default session label can include groups in the authorized list if the new write label
dominates the current default row label.

That is, the row label will have the same or more inverse groups than the new write
label. The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Related Topics

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label
to the one specified.

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the
one specified.

Chapter 13
Session Labels and Inverse Groups

13-11

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

Setting Current Session or Row Labels for Standard or Inverse Groups
You can set the current session or row labels for standard or inverse groups.

• About Setting Current Session or Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and
SA_SESSION.SET_ROW_LABEL procedures.

• Standard Groups: Rules for Changing Current Session/Row Labels
With standard groups, the SA_SESSION.SET_LABEL procedure can set the session
label to include groups in the user's authorized group list.

• Inverse Groups: Rules for Changing Current Session/Row Labels
With inverse groups, the addition of groups to the session label decreases a user's
ability to access sensitive data with fewer groups.

About Setting Current Session or Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and
SA_SESSION.SET_ROW_LABEL procedures.

These procedures can be used to set the user's current session label and row label,
respectively.

Standard Groups: Rules for Changing Current Session/Row Labels
With standard groups, the SA_SESSION.SET_LABEL procedure can set the session label to
include groups in the user's authorized group list.

Subgroups of authorized groups are implicitly included in the authorized list.

Note that if you change the session label, then this may affect the value of the
session's row label.

Use the SET_ROW_LABEL procedure to set the row label value for the current database
session. The compartments and groups in the label must be a subset of compartments
and groups in the session label to which the user has write access.

Inverse Groups: Rules for Changing Current Session/Row Labels
With inverse groups, the addition of groups to the session label decreases a user's
ability to access sensitive data with fewer groups.

The removal of groups enables the user to access more sensitive information. So, the
user should be allowed to add groups to the session label, as long as Max Read
Groups is a subset of the groups in the session label, and Max Write Groups is a
superset of groups in the session label. The same restriction applies when a user
removes groups from the session label.

Note that there are no subgroups of authorized groups when using inverse groups.
This is because parent groups are not allowed in policies using inverse groups.

Chapter 13
Session Labels and Inverse Groups

13-12

Use the SET_ROW_LABEL procedure to set the row label value for the current database
session. The compartments in the label must be a subset of compartments in the
session label to which the user has write access.

The user is allowed to add inverse groups to the row label, as long as the session
label inverse groups are a subset of the row label inverse groups, and Max Write
Groups is a superset of inverse groups in the row label.

For example:

• If the user has the inverse groups UK and US as his Max Read Groups, and
UK,US,CAN as his Max Write Groups. The user can set his session label to
C:ALPHA:UK,US,CAN but not to C:ALPHA:UK.

• If the user has the inverse group UK as his Max Read Groups, and UK,CAN as his
Max Write Groups.assigned to him. The user can set the session label to
C:ALPHA:UK,CAN but cannot change it to either C:ALPHA or C:ALPHA:UK,US,CAN.

Related Topics

• SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database
session.

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

Examples of Session Labels and Inverse Groups
Oracle provides examples of using inverse groups.

• Example: Simple Inverse Groups
You can create a simple policy that implements inverse groups with a set of
special labels.

• Example: Complex Inverse Groups
You can create a more complex policy that implements inverse groups with a set
of special labels.

Example: Simple Inverse Groups
You can create a simple policy that implements inverse groups with a set of special
labels.

Table 13-6 Labels for Inverse Groups Example 1

Name Definition

Max Read Label SE:ALPHA,BETA:G1,G2

Max Write Label SE:ALPHA:G1,G2,G3

Default Read Label SE:ALPHA,BETA:G1,G2

Default Write Label SE:ALPHA:G1,G2

Default Row Label SE:ALPHA:G1,G2

From which the following
values are derived:

-

Chapter 13
Session Labels and Inverse Groups

13-13

Table 13-6 (Cont.) Labels for Inverse Groups Example 1

Name Definition

Max Read Groups G1,G2

Max Write Groups G1,G2,G3

The following conclusions can be drawn:

• User01 can update data with label SE:ALPHA:G1,G2 as well as data with label
SE:ALPHA:G1,G2,G3. User1 cannot, however, update label SE:ALPHA:G1.

If standard groups were being used, rather than inverse groups, then User1 could
update data with label SE:ALPHA:G1.

• Data that User01 inserts has the label SE:ALPHA:G1,G2. (This is the same as with
standard groups.)

• If User01 leaves the default label as is, and sets the row label to SE:ALPHA:G1,G2,G3,
then user1 will insert SE:ALPHA:G1,G2,G3 in new rows of data that is written. (In
standard groups, User1 can never set more groups in the row label than in the
default label.)

Example: Complex Inverse Groups
You can create a more complex policy that implements inverse groups with a set of
special labels.

Table 13-7 Labels for Inverse Groups Example 2

Name Definition

Max Read Label C:ALPHA:

Max Write Label C:ALPHA:G1,G2,G3

Default Read Label C:ALPHA:

Default Write Label C:ALPHA:

Default Row Label C:ALPHA:

From which the following
values are derived:

-

Max Read Groups (an empty set)

Max Write Groups G1,G2,G3

The following conclusions can be drawn:

• User01 can update any data with level C, compartment ALPHA, and any combination
of groups G1, G2, G3, or no groups. User01 inserts the label C:ALPHA: in new data that
User01 writes.

• User02, who has Max Read Groups of G1,G2 or G1,G3, and so on, will not be able to
view the data written by User01. This is because User01's Default Row Label
contains no groups.

Chapter 13
Session Labels and Inverse Groups

13-14

• User01 can choose to set inverse groups in the row label, as long as the inverse
groups in the session label dominates the row label (that is, User01's session label
contains the same or fewer groups than contained in the row label).

This is true because the row label must have at least the groups in the session
label, and can at most have the Maximum Write Groups. If the session label is G1,
then you can set the groups in the row label from G1 to the Max Write Groups
(G1,G2,G3).

• If User01 sets his session label and row label to C:ALPHA:G1:G2:G3, then his data
becomes accessible to anyone who has any combination of G1,G2,G3 in his Max
Read Groups.

Changes in Behavior of Procedures with Inverse Groups
The INVERSE_GROUP option affects algorithms that determine the read and write access
of the user to labeled data.

• SA_SYSDBA.CREATE_POLICY with Inverse Groups
The SA_SYSDBA.CREATE_POLICY procedure creates the policy, defines an optional
policy-specific column name, and specifies policy options.

• SA_SYSDBA.ALTER_POLICY with Inverse Groups
The SA_SYSDBA.ALTER_POLICY procedure changes a policy's default enforcement
options, except for the INVERSE_GROUP option.

• SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The SA_USER_ADMIN.ADD_GROUPS procedure adds groups to a user, indicating whether
the groups are authorized for write as well as read.

• SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for each group.

• SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

• SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session
label.

• SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets the user's initial row label.

• SA_COMPONENTS.CREATE_GROUP with Inverse Groups
The SA_COMPONETS.CREATE_GROUP procedure create a group, including its short name
and long name, and optionally a parent group.

• SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
The SA_COMPONENTS.ALTER_GROUP_PARENT function is disabled for policies with the
inverse group option.

• SA_SESSION.SET_LABEL with Inverse Groups
The SA_SESION.SET_LABEL procedure sets the label of the current database session.

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-15

• SA_SESSION.SET_ROW_LABEL with Inverse Groups
The SET_ROW_LABEL procedure sets the default row label value for the current
database session.

• LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the least
upper bound of label1 and label2.

• GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function determines the lowest label of the data that
can be involved in an operation, given two different labels.

SA_SYSDBA.CREATE_POLICY with Inverse Groups
The SA_SYSDBA.CREATE_POLICY procedure creates the policy, defines an optional policy-
specific column name, and specifies policy options.

With inverse group support the, user has one more policy enforcement option,
INVERSE_GROUP. For example:

PROCEDURE CREATE_POLICY (
 HR IN VARCHAR2,
 SA_LABEL IN VARCHAR2 DEFAULT NULL,
 INVERSE_GROUP IN VARCHAR2 DEFAULT NULL);

Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

SA_SYSDBA.ALTER_POLICY with Inverse Groups
The SA_SYSDBA.ALTER_POLICY procedure changes a policy's default enforcement options,
except for the INVERSE_GROUP option.

Once a policy is configured for inverse groups, it cannot be changed. You can also
change the column names associated with an OLS policy.

Related Topics

• SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that are
associated with the policy.

SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The SA_USER_ADMIN.ADD_GROUPS procedure adds groups to a user, indicating whether the
groups are authorized for write as well as read.

The type of access authorized depends on the access_mode parameter.

Table 13-8 Access Authorized by Values of access_mode Parameter

Access_Mode Parameter Meaning

READ_WRITE Indicates that write is authorized. (That is, the group is contained
in both Max Read Groups and Max Write Groups.)

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-16

Table 13-8 (Cont.) Access Authorized by Values of access_mode Parameter

Access_Mode Parameter Meaning

WRITE_ONLY Indicates that the group is contained in Max Write Groups and
not in Max Read Groups

access_mode If access_mode is set to READ_WRITE, then the group is added to
both Max Read Groups and Max Write Groups.

If access_mode is set to SA_UTL.WRITE_ONLY, then the group is
added only to the Max Write Groups.

If access_mode is NULL, then it is set to SA_UTL.READ_WRITE.

in_def Specifies whether these groups should be in the default groups
(Y/N).

If in_def is NULL, then it will be set to Y or N as follows:

If access mode is READ_WRITE, in_def is set to Y.

If access mode is WRITE_ONLY, in_def is set to N.

in_row Specifies whether these groups should be in the row label (Y/N),
using the identical criteria as for in_def.

However, if in_def is Y, then in_row must also be Y.

Note that if in_def is Y in a row, then in_row must also be set to Y, but not the other way
round.

The same is the case with the in_row field.

See Also:

• Syntax for SA_USER_ADMIN.ADD_GROUPS

• Inverse Groups and Computed Max Read Groups and Max Write Groups

SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for each group.

The behavior of inverse groups is the same as described in the case of ADD_GROUPS.

See Also:

Syntax for SA_USER_ADMIN.ALTER_GROUPS

SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-17

Inverse groups are handled differently than standard groups, as follows:

Table 13-9 Assigning Groups to a User

Group Set Name Meaning

read_groups A comma-delimited list of groups that would be Max Read
Groups

write_groups A comma-delimited list of groups that would be Max Write
Groups. It must be a superset of read_groups.

If write_groups is NULL, then they are set to read_groups.

def_groups Specifies the default groups. It should at least have read_groups,
and write_groups should be a superset of def_groups.

If def_groups is NULL, then they are set to the read_groups.

row_groups Specifies the row groups. It should at least have the def_groups
and should be a subset of max write groups.

If row_groups is NULL, then they are set to the def_groups,
because for inverse groups, all def_groups are also in
write_groups.

See Also:

Syntax for SA_USER_ADMIN.SET_GROUPS

SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels, compartments,
and groups using a set of labels, instead of the individual components.

Inverse groups are handled differently than standard groups, as follows:

Table 13-10 Inverse Group Label Definitions

Name Definition

max_read_label Specifies the label string to be used to initialize the user's maximum
authorized read label. Composed of the user's maximum level,
compartments authorized for read access, and if inverse groups,
minimum set of groups that can be set in any label.(Max Read
Groups)

max_write_label Specifies the label string to be used to initialize the user's maximum
authorized write label. Composed of the user's maximum level,
compartments authorized for write access, and if inverse groups, the
maximum authorized groups that can be set in any label (Max Write
Groups). All the inverse groups in this have write authorization also. It
should be a superset of groups in max_read_label. If
max_write_label is not specified, then it is set to max_read_label.

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-18

Table 13-10 (Cont.) Inverse Group Label Definitions

Name Definition

def_label Specifies the label string to be used to initialize the user's session
label, including level, compartments, and groups (a subset of
max_read_label). If default_label is not specified, then it is set to
max_read_label. For inverse groups, component it should at least
have the groups in max_read_label, and groups in max_write_label
should be a superset of the groups in the def_label.

row_label Specifies the label string to be used to initialize the program's row
label. Includes levels, compartments, and groups: subsets of
max_write_label and def_label. If row_label is not specified, then it
is set to def_label, with only the compartments and groups
authorized for write access. The inverse groups component is set to
the same as that in def_label if the row_label is not specified. The
inverse groups in row label should at least be those in default label
and should be a subset of Max Write Groups.

See Also:

Syntax for SA_USER_ADMIN.SET_USER_LABELS

SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label.

All the rules mentioned for setting inverse groups component of session label
mentioned in Session Labels and Inverse Groups are applicable here.

See Also:

Syntax for SA_USER_ADMIN.SET_DEFAULT_LABEL

SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets the user's initial row label.

When specifying the row_label, the inverse groups component must contain at least all
the inverse groups in def_label and should be a subset of Max Write Groups.

See Also:

• Syntax for SA_USER_ADMIN.SET_ROW_LABEL

• Initial Session and Row Labels for Standard or Inverse Groups

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-19

SA_COMPONENTS.CREATE_GROUP with Inverse Groups
The SA_COMPONETS.CREATE_GROUP procedure create a group, including its short name and
long name, and optionally a parent group.

With inverse groups, the parent_name field should always be NULL. If the user specifies a
value for this field, then an error message is displayed, indicating that the group
hierarchy is disabled.

See Also:

Syntax for SA_COMPONENTS.CREATE_GROUP

SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
The SA_COMPONENTS.ALTER_GROUP_PARENT function is disabled for policies with the inverse
group option.

An error message is displayed if the user calls this function.

See Also:

Syntax for SA_COMPONENTS.ALTER_GROUP

SA_SESSION.SET_LABEL with Inverse Groups
The SA_SESION.SET_LABEL procedure sets the label of the current database session.

For the current user, this procedure follows the same rules for setting the session label
as does the SA_USER_ADMIN.SET_USER_LABEL function.

See Also:

• Syntax for SA_SESSION.SET_LABEL.

• Setting Current Session or Row Labels for Standard or Inverse Groups

SA_SESSION.SET_ROW_LABEL with Inverse Groups
The SET_ROW_LABEL procedure sets the default row label value for the current database
session.

For the current user, this procedure follows the same rules for setting the row label as
does the sa_user_admin.set_row_label function.

Chapter 13
Changes in Behavior of Procedures with Inverse Groups

13-20

See Also:

• Syntax for SA_SESSION.SET_ROW_LABEL

• Initial Session and Row Labels for Standard or Inverse Groups

LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the least
upper bound of label1 and label2.

With standard groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the union of the groups in the labels.

With inverse groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the intersection of the inverse groups in the labels.

For example, with inverse groups, the least upper bound of
HIGHLY_SENSITIVE:ALPHA:G1,G2 and SENSITIVE:BETA:G1 is HIGHLY_SENSITIVE:ALPHA,BETA:G1.

GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function determines the lowest label of the data that can
be involved in an operation, given two different labels.

This function returns a character string label that is the greatest lower bound of label1
and label2.

With standard groups, the greatest lower bound is the lowest level, and the
intersection of the compartments in the labels and the groups in the labels.

With inverse groups, the greatest lower bound is the lowest level, and the intersection
of the compartments in the labels and the union of inverse groups in the labels.

For example, with inverse groups the greatest lower bound of
HIGHLY_SENSITIVE:ALPHA:G1,G3 and SENSITIVE::G1 is SENSITIVE:G1,G3

Related Topics

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or
the greatest lower bound of two or more labels.

Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

Dominance rules for Oracle Label Security with standard groups can be summarized
as follows:

A user label dominates a data label if:

• User level is greater than or equal to the data level

Chapter 13
Dominance Rules for Labels with Inverse Groups

13-21

• User compartments are a superset of the data compartments

• User groups intersects (have at least one group from) the data groups

Dominance rules for Oracle Label Security with inverse groups can be summarized as
follows:

A user label dominates a data label if:

• User level is greater than or equal to the data level

• User compartments are a superset of the data compartments

• Data groups are a superset of user groups

Related Topics

• About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

Chapter 13
Dominance Rules for Labels with Inverse Groups

13-22

Part IV
Appendixes

Part IV contains reference material for using Oracle Label Security.

• Disabling and Enabling Oracle Label Security
You can disable and enable Oracle Label Security as necessary.

• Advanced Topics in Oracle Label Security
Oracle provides advanced functionality for Oracle Label Security, such as the
ability to analyze relationships between labels.

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet
Directory.

• Oracle Label Security in an Oracle RAC Environment
You can use Oracle Label Security in an Oracle Real Application Clusters (Oracle
RAC) environment.

• Oracle Label Security PL/SQL Packages
Oracle Label Security provides a set of PL/SQL packages.

• Oracle Label Security Reference
Oracle Label Security provides data dictionary tables and views. You should also
be aware of Oracle Label Security restrictions.

• Frequently Asked Questions about Oracle Label Security
Customers have frequently asked questions about Oracle Label Security.

A
Disabling and Enabling Oracle Label
Security

You can disable and enable Oracle Label Security as necessary.

Note:

Oracle does not support the deinstallation of Oracle Label Security.

• When You Must Disable Oracle Label Security
You may need to disable Oracle Label Security to perform upgrade tasks or
correct erroneous configurations.

• Disabling Oracle Label Security
If Oracle Database Vault has been enabled, then do not disable Oracle Label
Security.

• Enabling Oracle Label Security
You can enable Oracle Label Security in SQL*Plus.

When You Must Disable Oracle Label Security
You may need to disable Oracle Label Security to perform upgrade tasks or correct
erroneous configurations.

Another reason for disabling Oracle Label Security is if you want to test an application
without enforcing Oracle Label Security. You can reenable Oracle Label Security after
you complete the tasks.

Related Topics

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS and CDB_OLS_STATUS data dictionary views to find
if Oracle Label Security has already been registered and enabled.

Disabling Oracle Label Security
If Oracle Database Vault has been enabled, then do not disable Oracle Label Security.

See Oracle Database Vault Administrator's Guide to find if Database Vault has been
enabled.

To disable Oracle Label Security:

1. Log into the database instance as user SYS or a user who has been granted the
LBAC_DBA role.

For example:

A-1

sqlplus psmith_ols -- Or, psmith_ols@hrpdb for the hrpdb pluggable database (PDB)
Enterp password: password

2. Run the following procedure:

EXEC LBACSYS.OLS_ENFORCEMENT.DISABLE_OLS;

3. Restart the database.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

4. For Oracle Real Application Cluster (Oracle RAC) environment or a multitenant
environment, repeat these steps for each Oracle RAC node or PDB on which you
enabled Oracle Label Security.

Enabling Oracle Label Security
You can enable Oracle Label Security in SQL*Plus.

1. Log into the database instance as user SYS or a user who has been granted the
LBAC_DBA role.

For example:

sqlplus psmith_ols -- Or, psmith_ols@hrpdb for the hrpdb PDB
Enterp password: password

2. Run the following procedure:

EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;

3. Restart the database.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

4. For Oracle Real Application Cluster (Oracle RAC) environment or a multitenant
environment, repeat these steps for each Oracle RAC node or PDB on which you
disabled Oracle Label Security.

Appendix A
Enabling Oracle Label Security

A-2

B
Advanced Topics in Oracle Label Security

Oracle provides advanced functionality for Oracle Label Security, such as the ability to
analyze relationships between labels.

• Analyzing the Relationships Between Labels
You can analyze the relationships between labels.

• Queries for Audited Oracle Label Security Session Labels
You can use the unified audit trail to capture information from various audit
sources, including Oracle Label Security.

• Oracle Call Interface for Setting Session Labels
You can use an Oracle Call Interface (OCI) to set session labels.

Analyzing the Relationships Between Labels
You can analyze the relationships between labels.

• About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

• Non-Comparable Labels
It is important to understand how labels can be compared with regard to
dominance.

• Using Dominance Functions
Oracle Label Security provides functions to control dominance.

About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

A user's ability to access an object depends on whether the user's label dominates the
label of the object. If a user's label does not dominate the object's label, then the user
is not allowed to access the object.

Label dominance is analyzed in terms of all its components: levels, compartments, and
groups.

Table B-1 Dominance in the Comparison of Labels

Factor Criteria for Dominance

Level For label1 to dominate label2, the level of label1 must
be greater than or equal to that of label2.

Compartment For label1 to dominate label2, the compartments of
label1 must contain all the compartments of label2.

Group For label1 to dominate label2, label1 must contain at
least one of the groups of label2.

B-1

One label dominates another label if all of its components dominate the components of
the other label. For example, the label HIGHLY_SENSITIVE:FINANCE,OPERATIONS dominates
the label HIGHLY_SENSITIVE:FINANCE. Similarly, the label HIGHLY_SENSITIVE::WR_AP
dominates the label HIGHLY_SENSITIVE::WR_AP, WR_AR.

Related Topics

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

Non-Comparable Labels
It is important to understand how labels can be compared with regard to dominance.

The relationship between two labels cannot always be defined by dominance. Two
labels are non-comparable if neither label dominates the other.

If any compartments differ between the two labels (as with HS:A and HS:B), then they
are non-comparable. Similarly, the labels HS:A and S:B are non-comparable.

You can find existing labels by querying the DBA_SA_LABELS data dictionary view.

Using Dominance Functions
Oracle Label Security provides functions to control dominance.

• About the Dominance Functions
You can use dominance functions to specify ranges in queries.

• OLS_DOMINATES Standalone Function
The OLS_DOMINATES (OLS_DOM) function returns 1 (TRUE) if label1 dominates label2, or
0 (FALSE) if it does not.

• OLS_LABEL_DOMINATES Standalone Function
The standalone OLS_LABEL_DOMINATES function checks the dominance of session
labels.

• OLS_STRICTLY_DOMINATES Standalone Function
The OLS_STRICTLY_DOMINATES (OLS_S_DOM) function returns 1 (TRUE) if label1
dominates label2 and is not equal to it.

• OLS_DOMINATED_BY Standalone Function
The OLS_DOMINATED_BY (OLS_DOM_BY) function returns 1 (TRUE) if label1 is dominated
by label2.

• OLS_STRICTLY_DOMINATED_BY Standalone Function
The OLS_STRICTLY_DOMINATED_BY (OLS_S_DOM_BY) function returns 1 (TRUE) if label1 is
dominated by label2 and is not equal to it.

• SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2 or if the
session label for the given OLS policy dominates label.

• SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates label2
and is not equal to it.

• SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by label2.

Appendix B
Analyzing the Relationships Between Labels

B-2

• SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is dominated by
label2 and is not equal to it.

Related Topics

• Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the
numeric label tag.

About the Dominance Functions
You can use dominance functions to specify ranges in queries.

The following functions enable you to indicate dominance relationships between
specified labels.

Table B-2 Functions to Determine Dominance

Function Description

OLS_DOMINATES The value of label1 dominates, or is equal to,
that of label2.

OLS_LABEL_DOMINATES The value of the session label for the
corresponding policy_name dominates, or is
equal to, that of label.

OLS_STRICTLY_DOMINATES The value of label1 dominates that of label2,
and is not equal to it.

OLS_DOMINATED_BY The value of label1 is dominated by that of
label2.

OLS_STRICTLY_DOMINATED_BY The value of label1 is dominated by that of
label2, and is not equal to it.

Note that there are two types of dominance function. While the SA_UTL dominance
functions return BOOLEAN values, the standalone dominance functions return integers.

OLS_DOMINATES Standalone Function
The OLS_DOMINATES (OLS_DOM) function returns 1 (TRUE) if label1 dominates label2, or 0
(FALSE) if it does not.

Syntax

OLS_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

Appendix B
Analyzing the Relationships Between Labels

B-3

Parameters

Table B-3 OLS_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_DOMINATES ('1111', '1112') FROM DUAL;

OLS_DOMINATES('1111','1112')

 0

Note:

The old OLS functions, DOMINATES and DOM, have been deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_LABEL_DOMINATES and OLS_DOM functions instead. Using the new
function names avoids potential name conflicts with other database
components.

OLS_LABEL_DOMINATES Standalone Function
The standalone OLS_LABEL_DOMINATES function checks the dominance of session labels.

It returns 1 (TRUE) if the session label of the specified policy_name value dominates or is
equal to the label that is specified by the label parameter. Otherwise, this function
returns 0 (FALSE). This function is publicly available.

Note:

This feature is available starting with Oracle Database 12c release 1 (12.1.0.2).

In addition to Oracle Label Security policies, you can use this function with both Oracle
Data Redaction and Oracle Database Vault policies.

Syntax

OLS_LABEL_DOMINATES (
 policy_name IN VARCHAR2,

Appendix B
Analyzing the Relationships Between Labels

B-4

 label IN VARCHAR2)
RETURN INTEGER;

Parameters

Table B-4 OLS_LABEL_DOMINATES Parameters

Parameter Description

policy_name The name of the Oracle Label Security policy whose session
label must be checked for dominance. To find existing label
values for policies, query the POLICY_NAME and LABEL columns of
the ALL_SA_LABELS view.

label The base label against whom the dominance has to be checked

Examples

The following example checks if the session label for the hr_ols_pol policy dominates
or is equal to the hs label.

SELECT OLS_LABEL_DOMINATES ('hr_ols_pol', 'hs') FROM DUAL;

OLS_LABEL_DOMINATES('HR_OLS_POL','HS')

 0

This example shows how you can use the OLS_LABEL_DOMINATES function in an Oracle
Data Redaction policy:

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'oe',
 object_name => 'customers',
 column_name => 'customer_id',
 policy_name => 'redact_cust_user_ids',
 function_type => DBMS_REDACT.FULL,
 expression => 'OLS_LABEL_DOMINATES(''hr_ols_pol'', ''hs'') = 0');
END;
/

The following example shows how you can use the OLS_LABEL_DOMINATES function in an
Oracle Database Vault rule definition:

EXEC DBMS_MACADM.CREATE_RULE('Check OLS Factor',
'OLS_LABEL_DOMINATES(''hr_ols_pol'', ''hs'') = 1');

See Also:

• Oracle Database Advanced Security Guide for more information about
Data Redaction

• Oracle Database Vault Administrator’s Guide for more information about
Database Vault realms

Appendix B
Analyzing the Relationships Between Labels

B-5

OLS_STRICTLY_DOMINATES Standalone Function
The OLS_STRICTLY_DOMINATES (OLS_S_DOM) function returns 1 (TRUE) if label1 dominates
label2 and is not equal to it.

Syntax

OLS_STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

Parameters

Table B-5 OLS_STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Examples

The following example compares existing label tags 1111 and 1112.

SELECT OLS_STRICTLY_DOMINATES ('1111', '1112') FROM DUAL;

OLS_STRICTLY_DOMINATES('1111','1112')

 0

Note:

The old OLS functions, STRICTLY_DOMINATES and S_DOM have been deprecated in
Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_STRICTLY_DOMINATES and OLS_S_DOM functions instead. Using the
new function names avoids potential name conflicts with other database
components.

OLS_DOMINATED_BY Standalone Function
The OLS_DOMINATED_BY (OLS_DOM_BY) function returns 1 (TRUE) if label1 is dominated by
label2.

Syntax

OLS_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

Appendix B
Analyzing the Relationships Between Labels

B-6

Parameters

Table B-6 OLS_STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_DOMINATED_BY ('1111', '1112') FROM DUAL;

OLS_DOMINATED_BY('1111','1112')

 1

Note:

The old OLS functions, DOMINATED_BY and DOM_BY have been deprecated in
Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_DOMINATED_BY and OLS_DOM_BY functions instead. Using the new
function names avoids potential name conflicts with other database
components.

OLS_STRICTLY_DOMINATED_BY Standalone Function
The OLS_STRICTLY_DOMINATED_BY (OLS_S_DOM_BY) function returns 1 (TRUE) if label1 is
dominated by label2 and is not equal to it.

Syntax

OLS_STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

Parameters

Table B-7 OLS_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Appendix B
Analyzing the Relationships Between Labels

B-7

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_STRICTLY_DOMINATES ('1111', '1112') FROM DUAL;

OLS_STRICTLY_DOMINATES('1111','1112')

 0

Note:

The old OLS functions, STRICTLY_DOMINATED_BY and S_DOM_BY have been
deprecated in Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that
you use the OLS_STRICTLY_DOMINATED_BY and OLS_S_DOM_BY functions instead.
Using the new function names avoids potential name conflicts with other
database components.

SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2 or if the session
label for the given OLS policy dominates label.

Syntax

SA_UTL.DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

Syntax

SA_UTL.DOMINATES (
 ols_policy_name IN VARCHAR2,
 label IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Table B-8 SA_UTL.DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

Appendix B
Analyzing the Relationships Between Labels

B-8

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.DOMINATES(1111, 1112)
 THEN DBMS_OUTPUT.PUT_LINE('Label 1111 dominates label 1112.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Label 1112 dominates label 1111.');
 END IF;
END;
/

Label 1112 dominates label 1111.

Note:

The second SA_UTL.DOMINATES function, which takes the Oracle Label Security
policy name and label as inputs, has been deprecated in Oracle Database 12c
release 1 (12.1).

You can still use this function, but not with Oracle Data Redaction and Oracle
Database Vault conditions. Oracle recommends that you use the
OLS_LABEL_DOMINATES function instead.

The first SA_UTL.DOMINATES function, which uses the NUMBER datatype, is not
deprecated.

SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates label2 and is
not equal to it.

Syntax

SA_UTL.STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

Parameters

Table B-9 SA_UTL.STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.STRICTLY_DOMINATES(1111, 1112)
 THEN DBMS_OUTPUT.PUT_LINE('Label 1111 strictly dominates label 1112.');

Appendix B
Analyzing the Relationships Between Labels

B-9

 ELSE
 DBMS_OUTPUT.PUT_LINE('Label 1112 strictly dominates label 1111.');
 END IF;
END;
/

Label 1112 strictly dominates label 1111.

SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by label2.

Syntax

SA_UTL.DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

Parameters

Table B-10 SA_UTL.DOMINATED_BY Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.DOMINATED_BY(1111, 1112)
 THEN DBMS_OUTPUT.PUT_LINE('Label 1111 is dominated by label 1112.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Label 1112 is dominated by label 1111.');
 END IF;
END;
/

Label 1111 is dominated by label 1112.

SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is dominated by
label2 and is not equal to it.

Syntax

SA_UTL.STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

Appendix B
Analyzing the Relationships Between Labels

B-10

Parameters

Table B-11 SA_UTL.STRICTLY_DOMINATED_BY Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.STRICTLY_DOMINATED_BY(1111, 1112)
 THEN DBMS_OUTPUT.PUT_LINE('Label 1111 is strictly dominated by label 1112.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Label 1112 is strictly dominated by label 1111.');
 END IF;
END;
/

Label 1111 is strictly dominated by label 1112.

Related Topics

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or
the greatest lower bound of two or more labels.

Queries for Audited Oracle Label Security Session Labels
You can use the unified audit trail to capture information from various audit sources,
including Oracle Label Security.

• About Queries for Auditing Oracle Label Security Session Labels
You must configure Oracle Label Security auditing by creating unified audit
policies.

• ORA_GET_AUDITED_LABEL Function
The ORA_GET_AUDITED_LABEL function returns the audited session label for the
specified OLS policy and APPLICATION_CONTEXTS column value.

About Queries for Auditing Oracle Label Security Session Labels
You must configure Oracle Label Security auditing by creating unified audit policies.

OLS auditing enables you to audit additional events such as enabling and disabling of
OLS policies.

The session labels that the audit trail captures are stored in the APPLICATION_CONTEXTS
column of the UNIFIED_AUDIT_TRAIL view. You can use the
LBACSYS.ORA_GET_AUDITED_LABEL function to retrieve session labels that are stored in the
APPLICATION_CONTEXTS column. This function accepts the

Appendix B
Queries for Audited Oracle Label Security Session Labels

B-11

UNIFIED_AUDIT_TRAIL.APPLICATION_CONTEXTS column value, and the Oracle Label
Security policy name as arguments, and then returns the session label that is stored in
the column for the specified policy.

See Also:

Oracle Database Security Guide for detailed information about configuring and
using OLS auditing in a unified audit trail

ORA_GET_AUDITED_LABEL Function
The ORA_GET_AUDITED_LABEL function returns the audited session label for the specified
OLS policy and APPLICATION_CONTEXTS column value.

The AUDIT_VIEWER role has EXECUTE privilege on the ORA_GET_AUDITED_LABEL function.

Syntax

ORA_GET_AUDITED_LABEL (
 appctx_col_value IN VARCHAR2,
 ols_policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table B-12 ORA_GET_AUDITED_LABEL Parameters

Parameter Description

appctx_col_value Value in the UNIFIED_AUDIT_TRAIL.APPLICATION_CONTEXTS
column

policy_name The label security policy name

Example

The following example returns the audited session label for the hr_ols_pol policy.

SELECT ORA_GET_AUDITED_LABEL ('cust_ctx', 'hr_ols_pol') FROM DUAL;

ORA_GET_AUDITED_LABEL('X','HR_OLS_POL')

 HS

Oracle Call Interface for Setting Session Labels
You can use an Oracle Call Interface (OCI) to set session labels.

• About Using the Oracle Call Interface to Set Session Labels
When you connect using Oracle Call Interface (OCI), you can use the SYS_CONTEXT
variables to initialize the session label and the row label.

• Using the Oracle Call Interface to Set Session Labels
You can use the Oracle Call Interface to set the session labels.

Appendix B
Oracle Call Interface for Setting Session Labels

B-12

• Example: Using Oracle Call Interface with the SYS_CONTEXT Function
You can create an OCI call that uses an externalized SYS_CONTEXT function with
Oracle Label Security.

About Using the Oracle Call Interface to Set Session Labels
When you connect using Oracle Call Interface (OCI), you can use the SYS_CONTEXT
variables to initialize the session label and the row label.

You can set the variables using the OCIAttrSet function to initialize externally initialized
SYS_CONTEXT variables. These are available when Oracle Label Security is enabled.

Each policy has a SYS_CONTEXT named SA$policy_name_X. You can set these two
variables, INITIAL_LABEL and INITIAL_ROW_LABEL.

When the new values are set to valid labels within the user's authorizations, they will
be used instead of the default values stored for the user. This is the same mechanism
used for remote connections.

Related Topics

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security
in a distributed configuration.

Using the Oracle Call Interface to Set Session Labels
You can use the Oracle Call Interface to set the session labels.

1. Call OCIAttrSet with OCI_ATTR_APPCTX_SIZE to initialize the context array size with
the desired number of context attributes:

OCIAttrSet(session, OCI_HTYPE_SESSION,
 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

This defines additional attributes for OCIAttrSet.

Note that the size is ub4 type.

2. Call OCIAttrGet with OCI_ATTR_APPCTX_LIST to get a handle on the application
context list descriptor for the session:

OCIAttrGet(session, OCI_HTYPE_SESSION,
 (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Note that ctxl_desc is (OCIParam *) type.

3. Call OCIParamGet with the application context list descriptor to obtain an individual
descriptor for the i-th application context:

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, i);

Note that ctx_desc is (OCIParam *) type.

4. Call OCIAttrSet with each of the three new attributes, OCI_ATTR_APPCTX_NAME,
OCI_ATTR_APPCTX_ATTR, and OCI_ATTR_APPCTX_VALUE, to set the proper values in the
application context:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME,

Appendix B
Oracle Call Interface for Setting Session Labels

B-13

 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE,
 error_handle);

Note that only character type is supported, because application context operations
are based on the VARCHAR2 type.

Example: Using Oracle Call Interface with the SYS_CONTEXT
Function

You can create an OCI call that uses an externalized SYS_CONTEXT function with Oracle
Label Security.

Example B-1 shows how to accomplish this.

Example B-1 Using OCI to Externalize SYS_CONTEXT with OLS

#ifdef RCSID
static char *RCSid =
 "$Header: ext_mls.c 09-may-00.10:07:08 jdoe Exp $ ";
#endif /* RCSID */

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*

 NAME
ext_mls.c - externalized SYS_CONTEXT with Label Security

 DESCRIPTION
Run olsdemo.sql script before executing this example.
Usage: <executable obtained with .c file> <user_name> <password> <session-initial-
label
Example: avg_sal sa_demo sa_demo L3:M,E:D10

 PUBLIC FUNCTION(S)
<list of external functions declared/defined - with one-line descriptions>

 PRIVATE FUNCTION(S)
<list of static functions defined in .c file - with one-line descriptions>

 RETURNS
The average salary in the EMP table of the SA_DEMO schema querying as the specified
user with the specified session label.

 NOTES
<other useful comments, qualifications, and so on>

 MODIFIED (MM/DD/YY)
jlev 09/18/03 - cleanup
jdoe 05/09/00 - cleanup
 jdoe 10/13/99 - standalone OCI program to test MLS SYS_CONTEXT
 jdoe 10/13/99 - Creation

Appendix B
Oracle Call Interface for Setting Session Labels

B-14

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

/* get and print error */
static void checkerr(/*_OCIError *errhp, sword status _*/);
/* print error */
static void printerr(char *call);
static sword status;

/* return the average of employees' salary */
static CONST text *const selectstmt = (text *)
 "select avg(sal) from sa_demo.emp";

int main(argc, argv)
int argc;
char *argv[];
{
 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 dvoid *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;
 OCIStmt *stmtp = (OCIStmt *) 0;
 ub4 avg_sal = 0;
 sword status;

 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *) 0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0))
 printerr("OCIInitialize");

 if (OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0))
 printerr("OCIEnvInit");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_ERROR");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SERVER");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SVCCTX");

 if (OCIServerAttach(srvhp, errhp, (text *) "", strlen(""), 0))
 printerr("OCIServerAttach");

Appendix B
Oracle Call Interface for Setting Session Labels

B-15

 /* set attribute server context in the service context */
 if (OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp))
 printerr("OCIAttrSet:OCI_HTYPE_SVCCTX");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SESSION");

 /* set application context to 1 */
 ctxsize = 1;

 /* set up app ctx buffer */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) &ctxsize,
 (ub4) 0, (ub4) OCI_ATTR_APPCTX_SIZE, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_SIZE");

 /* retrieve the list descriptor */
 if (OCIAttrGet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp))
 printerr("OCIAttrGet:OCI_ATTR_APPCTX_LIST");

 if (status = OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp,
 (dvoid **) &ctxedesc, 1))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 /* set context namespace to SA$<pol_name>_X */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "SA$HUMAN_RESOURCES_X",
 (ub4) strlen((char *) "SA$HUMAN_RESOURCES_X"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_NAME:SA$HUMAN_RESOURCES_X");

 /* set context attribute to INITIAL_LABEL */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "INITIAL_LABEL",
 (ub4) strlen((char *) "INITIAL_LABEL"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp))
 printerr("OCIAttrSet:OCI_DTYPE_PARAM:INITIAL_LABEL");

 /* set context value to argv[3] - initial label */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) argv[3],
 (ub4) strlen((char *) argv[3]),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp))
 printerr("OCIAttrSet:argv[3]");

 /* username first command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[1],
 (ub4) strlen((char *) argv[1]), (ub4) OCI_ATTR_USERNAME,
 errhp))
 printerr("OCIAttrSet:username");

 /* password second command line argument */

Appendix B
Oracle Call Interface for Setting Session Labels

B-16

 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[2],
 (ub4) strlen((char *) argv[2]), (ub4) OCI_ATTR_PASSWORD,
 errhp))
 printerr("OCIAttrSet:password");

 if (OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
 printerr("OCISessionBegin");

 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 printerr("OCIAttrSet:OCI_ATTR_SESSION");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmtp, OCI_HTYPE_STMT,
 0, 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_STMT");

 if (OCIStmtPrepare(stmtp, errhp, (CONST OraText *) selectstmt,
 (ub4) strlen((const char *) selectstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 printerr("OCIStmtPrepare");

 if (OCIDefineByPos(stmtp, &defnp, errhp, (ub4) 1, (dvoid *) &avg_sal,
 (sb4) sizeof(avg_sal), SQLT_INT, 0, 0, 0, OCI_DEFAULT))
 printerr("OCIDefineByPos");

 if (status = OCIStmtExecute(svchp, stmtp, errhp, 1, 0, NULL, NULL,
 OCI_DEFAULT))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 if (OCISessionEnd(svchp, errhp, authp, OCI_DEFAULT))
 printerr("OCISessionEnd");

 printf("average salary is: %d\n", avg_sal);
}

void checkerr(errhp, status)
 OCIError *errhp;
 sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *) errhp, 1, NULL, &errcode, errbuf,
 (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 printf("Error - %.*s\n", 512, errbuf);
 break;
 default:
 break;
 }
}

void printerr(call)

Appendix B
Oracle Call Interface for Setting Session Labels

B-17

 char *call;
{
 printf("Error: %s\n", call);
}
/* end of file ext_mls.c */

Appendix B
Oracle Call Interface for Setting Session Labels

B-18

C
Command-line Tools for Label Security
Using Oracle Internet Directory

Oracle Label Security provides command-line tools for using Oracle Internet Directory.

• About the Command-line Oracle Label Security Tools
When you use Oracle Label Security with Oracle Internet Directory, you can create
and alter label security attributes stored in the directory.

• Oracle Label Security Commands in Categories
Oracle Label Security commands can be categorized according to policies, levels,
groups, and so on.

• olsadmintool Command Reference
The olsadmintool commands performs tasks such as adding enterprise users to
administrative groups for an Oracle Label Security policy.

• Relating Parameters to Commands for olsadmintool
You must follow a set of guidelines for using the olsadmintool parameters.

• Examples of Using the olsadmintool Utility
You use the olsadmintool commands to set up Oracle Label Security in an Oracle
Internet Directory environment.

About the Command-line Oracle Label Security Tools
When you use Oracle Label Security with Oracle Internet Directory, you can create
and alter label security attributes stored in the directory.

The commands perform updates, inserts and deletes of entries in the directory and are
implemented through a script named olsadmintool, which you call
from $ORACLE_HOME/bin/olsadmintool.

Note:

You can also use the graphical user interface provided by Oracle Enterprise
Manager to manage Oracle Label Security. Detailed documentation can be
found in Oracle Enterprise Manager help.

Oracle Label Security Commands in Categories
Oracle Label Security commands can be categorized according to policies, levels,
groups, and so on.

Table C-1 lists all the commands, in categories, with links to their explanations.

Some of these commands replace PL/SQL procedures that are used for the indicated
purposes when Oracle Label Security is used without Oracle Internet Directory. Sites

C-1

already using Oracle Label Security that add Oracle Internet Directory must replace
the use of those PL/SQL procedures by switching to use these new commands
instead.

Table C-1 Oracle Label Security Commands in Categories

Command
Category

Command Replaces PL/SQL Statement

Policies olsadmintool createpolicy SA_SYSDBA.CREATE_POLICY

Policies olsadmintool alterpolicy SA_SYSDBA.ALTER_POLICY

Policies olsadmintool droppolicy SA_SYSDBA.DROP_POLICY

Policies olsadmintool addpolcreator None; new

Policies olsadmintool droppolcreator None; new

Levels in a
Policy

olsadmintool createlevel SA_COMPONENTS.CREATE_LEVEL

Levels in a
Policy

olsadmintool alterlevel SA_COMPONENTS.ALTER_LEVEL

Levels in a
Policy

olsadmintool droplevel SA_COMPONENTS.DROP_LEVEL

Groups in a
Policy

olsadmintool creategroup SA_COMPONENTS.CREATE_GROUP

Groups in a
Policy

olsadmintool altergroup SA_COMPONENTS.ALTER_GROUP

Groups in a
Policy

olsadmintool altercompartent SA_COMPONENTS.ALTER_GROUP_PARENT

Groups in a
Policy

olsadmintool dropgroup SA_COMPONENTS.DROP_GROUP

Compartmen
ts in a Policy

olsadmintool createcompartment SA_COMPONENTS.CREATE_COMPARTMENT

Compartmen
ts in a Policy

olsadmintool altercompartent SA_COMPONENTS.ALTER_COMPARTMENT

Compartmen
ts in a Policy

olsadmintool dropcompartment SA_COMPONENTS.DROP_COMPARTMENT

Data Labels olsadmintool createlabel SA_LABEL_ADMIN.CREATE_LABEL

Data Labels olsadmintool alterlabel SA_LABEL_ADMIN.ALTER_LABEL

Data Labels olsadmintool droplabel SA_LABEL_ADMIN.DROP_LABEL

Users olsadmintool adduser None; new

Users olsadmintool dropuser SA_USER_ADMIN.DROP_USER_ACCESS

Profiles olsadmintool createprofile Replaces the use of several
methods. 1

Profiles olsadmintool listprofile None; new

Profiles olsamindtool describeprofile None; new

Profiles olsadmintool dropprofile None; new

Policy
Administrator
s

olsadmintool addadmin None; new

Appendix C
Oracle Label Security Commands in Categories

C-2

Table C-1 (Cont.) Oracle Label Security Commands in Categories

Command
Category

Command Replaces PL/SQL Statement

Policy
Administrator
s

olsadmintool dropadmin None; new

Auditing olsadmintool audit SA_AUDIT_ADMIN.AUDIT

Auditing olsadmintool noaudit SA_AUDIT_ADMIN.NOAUDIT

Help olsadmintool --help None; new

1 Replaces several methods in SA_USER_ADMIN: SET_LEVELS, SET_USER_PRIVILEGES, and
SET_DEFAULT_LABEL

olsadmintool Command Reference
The olsadmintool commands performs tasks such as adding enterprise users to
administrative groups for an Oracle Label Security policy.

You must run olsadmintool from the command line.

• About the olsadmintool Commands
You run the olsadmintool commands from a command prompt and can use special
characters to perform specific operations.

• olsadmintool addadmin
The olsadmintool addadmin command adds an enterprise user to the administrative
group for a policy.

• olsadmintool addpolcreator
The olsadmintool addpolcreator command enables the specified user to create
policies.

• olsadmintool adduser
The olsadmintool adduser command adds an enterprise user to a profile within a
policy.

• olsadmintool altercompartent
The olsadmintool altercompartment command changes the long name of a
compartment.

• olsadmintool altergroup
The olsadmintool altergroup command changes the long name for a group
component or parent group.

• olsadmintool altergroupparent
The olsadmintool altergroupparent command changes or removes the parent
group of a group.

• olsadmintool alterlabel
The olsadmintool alterlabel command changes the character string defining the
label associated with a label tag.

• olsadmintool alterlevel
The olsadmintool alterlevel command changes the long name of a level.

Appendix C
olsadmintool Command Reference

C-3

• olsadmintool alterpolicy
The olsadmintool alterpolicy command alters the options of a policy.

• olsadmintool audit
The olsadmintool olsadmintool audit command sets the audit options for a policy.

• olsadmintool createcompartment
The olsadmintool createcompartment command creates a new compartment
component.

• olsadmintool creategroup
The olsadmintool creategroup command creates a new group component.

• olsadmintool createlabel
The olsadmintool createlabel command creates a valid data label.

• olsadmintool createlevel
The olsadmintool createlevel command creates a new level component.

• olsadmintool createprofile
The olsadmintool createprofile command creates a new profile.

• olsadmintool createpolicy
The olsadmintool createpolicy command creates a policy.

• olsamindtool describeprofile
The olsadmintool describeprofile command enables you to see the contents of a
policy profile.

• olsadmintool dropadmin
The olsadmintool dropadmin command removes an enterprise user from the
administrative group of a policy.

• olsadmintool dropcompartment
The olsadmintool dropcompartment command removes a compartment component.

• olsadmintool dropgroup
The olsadmintool dropgroup command removes a group component.

• olsadmintool droplabel
The olsadmintool droplabel command drops a label from the policy.

• olsadmintool droplevel
The olsadmintool droplevel command removes a level component from a
specified policy.

• olsadmintool droppolicy
The olsadmintool droppolicy command drops a policy.

• olsadmintool dropprofile
The olsadmintool dropprofile command removes the specified profile.

• olsadmintool droppolcreator
The olsadmintool droppolcreator command cancels the ability of the specified
user to create policies.

• olsadmintool dropuser
The olsadmintool dropuser command drops a user from the specified profile in the
specified policy.

• olsadmintool --help
The olsadmintool command_name -- help command displays help information about
the specified command.

Appendix C
olsadmintool Command Reference

C-4

• olsadmintool noaudit
The olsadmintool noaudit command cancels the audit options for a policy.

• olsadmintool listprofile
The olsadmintool listprofile command to see a list of all profiles in a given
policy.

About the olsadmintool Commands
You run the olsadmintool commands from a command prompt and can use special
characters to perform specific operations.

In the olsadmintool commands, some parameters are optional, which is indicated by
enclosing such a parameter within brackets. The two most common examples are [-b
admin context] and [-p port], indicating that it is optional to specify either the
administrative context for the command or the port through which to connect to Oracle
Internet Directory. (Default port is 389.)

The use of two dashes (--, no space) is required for all parameters other than b, h, p,
D, and w, which are preceded by a single dash. The double dash indicates the need to
specify the full or long version of the name or parameter being used. If any such name
or parameter contains spaces, it must be enclosed by double quotation marks, for
example, "this is an extremely long name or parameter."

olsadmintool addadmin
The olsadmintool addadmin command adds an enterprise user to the administrative
group for a policy.

This enables the user to create, modify, or delete the specified policy's metadata. You
must provide the policy name and the new administrator's DN. This group should
contain only enterprise users.

Syntax

olsadmintool addadmin --polname policy_name --admindn admin_DN
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool addadmin --polname defense --admindn "cn=scott,c=us"
-h sales_west -D cn=lbacsys -w bind_password

olsadmintool addpolcreator
The olsadmintool addpolcreator command enables the specified user to create
policies.

You must provide the DN for the user.

Syntax

olsadmintool addpolcreator --userdn user_DN
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Appendix C
olsadmintool Command Reference

C-5

Examples

olsadmintool addpolcreator --userdn "cn=scott" -h sales_west -D cn=lbacsys -w
bind_password

olsadmintool adduser
The olsadmintool adduser command adds an enterprise user to a profile within a
policy.

You must provide the profile and policy names and the user DN.1 Enterprise users are
normal Oracle Internet Directory users with the additional capability of connecting to
the database. Users added to a profile must be enterprise users.

Syntax

olsadmintool adduser --polname policy_name --profname profile_name --userdn
enterprise_user_DN[-b admin_context] -h OID_host [-p port] -D bind_DN
-w bind_password

Example

olsadmintool adduser --polname tradesecret --profname topsales --userdn "cn=perot"
-b "cn=EDS" -h ford -p 1890 -D cn=lbacsys -w bind_password

olsadmintool altercompartent
The olsadmintool altercompartment command changes the long name of a
compartment.

You must provide the name of the policy, the short name of the compartment, and the
new long name of the compartment.

Syntax

olsadmintool altercompartment --polname policy_name --shortname
short_compartment_name --longname new_long_compartment_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool altercompartment --polname defense --shortname A --longname "Allied
Forces" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool altergroup
The olsadmintool altergroup command changes the long name for a group component
or parent group.

You must provide the name of the policy, the short name of the group, and the long
name of the group.

1 Command FootnoteEvery command must include the directory host name, the bind DN, and the bind password.
Any command may, as needed, also supply the subscriber administrative context (optional), the directory port
number (also optional), or both. See also Table C-2 for additional details on these parameters.

Appendix C
olsadmintool Command Reference

C-6

Syntax

olsadmintool altergroup --polname policy_name --shortname short_group_name
--longname "new_long_group_name"
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool altergroup --polname defense --shortname US --longname "United States
of America" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool altergroupparent
The olsadmintool altergroupparent command changes or removes the parent group of
a group.

You must provide the name of the policy, the short name of the group, and either the
short name of the parent group or the clearparent flag, but not both.

Syntax

olsadmintool altergroupparent --polname policy_name --shortname
short_group_name [--parentname new_parent_group_name] [--clearparent]
--longname "new_long_group_name" [--parentname new_short_group_name]
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Examples

olsadmintool altergroupparent --polname defense --shortname US --parentname
"Earth" -h sales_west -p 5678 -D cn=defense_admin -w bind_password

olsadmintool altergroupparent --polname defense --shortname US --clearparent
-h sales_west -p 5678 -D cn=defense_admin -w bind_password

olsadmintool alterlabel
The olsadmintool alterlabel command changes the character string defining the label
associated with a label tag.

You must provide the policy name, the numeric tag of the label, and the new character
string representing the label.

Syntax

olsadmintool alterlabel --polname policy_name --tag tag_number
--value new_label_value [-b admin_context] -h OID_host [-p port]
-D bind_DN -w bind_password

Example

olsadmintool alterlabel --polname defense --tag 100 --value "TS:A:US" -h sales_west -
D cn=defense_admin -w bind_password

Appendix C
olsadmintool Command Reference

C-7

olsadmintool alterlevel
The olsadmintool alterlevel command changes the long name of a level.

You must provide the name of the policy, the short name of the level, and the new long
name of the level.

Syntax

olsadmintool alterlevel --polname policy_name --shortname short_level_name
--longname "new_long_level_name"
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool alterlevel --polname defense --shortname TS
--longname "VERY TOP SECRET" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool alterpolicy
The olsadmintool alterpolicy command alters the options of a policy.

You must provide the name of the policy and the new options.

Syntax

olsadmintool alterpolicy --name policy_name --options new_options
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• new_options can be any combination of the following entries: INVERSE_GROUP, HIDE,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL,
READ_CONTROL,WRITE_CONTROL,INSERT_CONTROL, DELETE_CONTROL, UPDATE_CONTROL,
ALL_CONTROL, NO_CONTROL

Example

olsadmintool alterpolicy --name defense --options "READ_CONTROL,INSERT_CONTROL"
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool audit
The olsadmintool olsadmintool audit command sets the audit options for a policy.

You must provide the policy name, the options to be audited, the type of audit, and the
type of success to be audited.

Syntax

olsadmintool audit --polname policy_name --options audit_option_name
--type audit_option_type --success audit_success_type
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

Appendix C
olsadmintool Command Reference

C-8

• audit_option can be any combination of the following entries: APPLY, REMOVE, SET,
PRIVILEGE

• type can be session or access

• success can be successful, not successful, or both

Example

olsadmintool audit --polname defense --options "APPLY,PRIVILEGE" --type session
--success success -h sales_west -D cn=defense_admin -w bind_password

olsadmintool createcompartment
The olsadmintool createcompartment command creates a new compartment
component.

You must provide the name of the policy, the tag numeric value of the compartment,
the short name of the compartment, and the long name of the compartment.

Syntax

olsadmintool createcompartment --polname policy_name --tag tag_number
--shortname short_compartment_name --longname <"long_compartment_name">
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createcompartment --polname defense --tag 100 --shortname A
--longname Alpha -h sales_west -D cn=defense_admin -w bind_password

olsadmintool creategroup
The olsadmintool creategroup command creates a new group component.

You must provide the name of the policy, the tag numeric value of the group, the short
name of the group, the long name of the group, and the parent group name (optional).

Syntax

olsadmintool creategroup --polname policy_name --tag tag_number
--shortname short_group_name --longname <"long_group_name">
[--parentname parent_group_name]
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool creategroup --polname defense --tag 55 --shortname US
--longname "United States" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool createlabel
The olsadmintool createlabel command creates a valid data label.

You must provide the policy name, the numeric tag of the label to be created, and the
character string representation of the label.

Appendix C
olsadmintool Command Reference

C-9

Syntax

olsadmintool createlabel --polname policy_name --tag tag_number
--value label_value
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createlabel --polname defense --tag 100 --value "TS:A,B:US,CA"
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool createlevel
The olsadmintool createlevel command creates a new level component.

You must provide the name of the policy, the tag numeric value, the short name of the
level, and the long name of the level.

Syntax

olsadmintool createlevel --polname policy_name --tag tag_number
--shortname short_level_name --longname <"long_level_name">
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createlevel --polname defense --tag 100 --shortname TS
--longname "TOP SECRET" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool createprofile
The olsadmintool createprofile command creates a new profile.

You must provide the policy name, the profile name, and either privileges, labels, or
both privileges and labels. (A user profile can have either null label information or null
privilege information, but not both null at the same time.) For labels, specify the
maximum label users in this profile can use to read data, the maximum label users in
this profile can use to write data, the minimum label users in this profile can use to
write data, the default label for reading, the default row label for writing. For privileges,
enclose in quotation markets list of privileges, separated by commas, for members of
this profile.

Syntax

olsadmintool createprofile --polname policy_name --profname profile_name
--maxreadlabel max_read_label --maxwritelabel max_write_label
--minwritelabel min_read_label --defreadlabel default_read_label
--defrowlabel default_row_label --privileges privileges_separated_by_comma
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createprofile --polname topsecret --profname topsales
--maxreadlabel "TS:A,B:US,CA" --maxwritelabel "TS:A,B:US,CA"
--minwritelabel "C" --defreadlabel "TS:A,B:US,CA"
--defrowlabel "C:A,B:US,CA"
--privileges "READ,COMPACCESS,WRITEACROSS"
-b EDS -h ford -p 1890 -D cn=lbacsys -w lbacsyspwrd

Appendix C
olsadmintool Command Reference

C-10

olsadmintool createpolicy
The olsadmintool createpolicy command creates a policy.

You must provide the name of the policy, the name of its label column, and the
options.

Syntax

olsadmintool createpolicy --name policy_name --colname column_name
--options options_separated_by_commas
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• new_options can be any combination of the following entries: INVERSE_GROUP, HIDE,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL, READ_CONTROL,
WRITE_CONTROL,INSERT_CONTROL, DELETE_CONTROL, UPDATE_CONTROL, ALL_CONTROL,
NO_CONTROL

Example

olsadmintool createpolicy --name defense --colname defense_col
--options "READ_CONTROL,UPDATE_CONTROL" -h sales_west -p 389 -D cn=defense_admin
-w bind_password

olsamindtool describeprofile
The olsadmintool describeprofile command enables you to see the contents of a
policy profile.

You must provide the policy name and the name of the profile.

Syntax

olsadmintool describeprofile --polname policy_name --profname profile_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool describeprofile --polname defense --profname contractors
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool dropadmin
The olsadmintool dropadmin command removes an enterprise user from the
administrative group of a policy.

This means that the user is no longer able to create, modify, or delete the specified
policy's metadata. You must provide the policy name and the DN of the administrator
to be removed from the administrative group.

Syntax

olsadmintool dropadmin --polname policy_name --admindn admin_DN
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Appendix C
olsadmintool Command Reference

C-11

Example

olsadmintool dropadmin --polname defense --admindn "cn=scott,c=us"
-h sales_west -D cn=lbacsys -w bind_password

olsadmintool dropcompartment
The olsadmintool dropcompartment command removes a compartment component.

You must provide the name of the policy and the short name of the compartment.

Syntax

olsadmintool dropcompartment --polname policy_name
--shortname short_compartment_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropcompartment --polname defense --shortname A
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool dropgroup
The olsadmintool dropgroup command removes a group component.

You must provide the policy name and the short group name.

Syntax

olsadmintool dropgroup --polname policy_name --shortname short_group_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropgroup --polname defense --shortname US
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool droplabel
The olsadmintool droplabel command drops a label from the policy.

You must provide the policy name and the string representation of the label.

Syntax

olsadmintool droplabel --polname policy_name --value label_value
-h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droplabel --polname defense --value "TS:A:US"
h sales_west -D cn=defense_admin -w bind_password

Appendix C
olsadmintool Command Reference

C-12

olsadmintool droplevel
The olsadmintool droplevel command removes a level component from a specified
policy.

You must provide the name of the policy and the short name of the level.

Syntax

olsadmintool droplevel --polname policy_name --shortname short_level_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droplevel --polname defense --shortname TS
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool droppolicy
The olsadmintool droppolicy command drops a policy.

You must provide the name of the policy to be dropped. For directory-enabled
installations of Oracle Label Security, refer to Subscription of Policies in Directory-
Enabled Label Security.

Syntax

olsadmintool droppolicy --name policy_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droppolicy --name defense -h sales_west -D cn=defense_admin -w
bind_password

olsadmintool dropprofile
The olsadmintool dropprofile command removes the specified profile.

You must provide the policy name and the name of the profile to be dropped.

Note:

Dropping a profile removes the authorization on that policy for all the users in
the dropped profile. The users will be unable to see data protected by that
policy.

Syntax

olsadmintool dropprofile --polname policy_name --profname profile_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Appendix C
olsadmintool Command Reference

C-13

Example

olsadmintool dropprofile --name defense --profname employees
-h sales_west -D cn=defense_admin -w bind_password

olsadmintool droppolcreator
The olsadmintool droppolcreator command cancels the ability of the specified user to
create policies.

You must provide the user's DN.

Syntax

olsadmintool droppolcreator --userdn user_DN
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droppolcreator --userdn "cn-scott,c=us"
-b UA -h sales_west -p 1890 -D bind_DN -w bind_password

olsadmintool dropuser
The olsadmintool dropuser command drops a user from the specified profile in the
specified policy.

You must provide the policy name, the name of the profile, and the DN of the user.

Syntax

olsadmintool dropuser --polname policy_name --profname profile_name
--userdn enterprise_user_DN
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropuser --polname defense --profname contractors
--userdn "cn=hanssen,c=us" -h sales_west -D cn=defense_admin -w bind_password

olsadmintool --help
The olsadmintool command_name -- help command displays help information about the
specified command.

Syntax

olsadmintool command_name --help

olsadmintool noaudit
The olsadmintool noaudit command cancels the audit options for a policy.

You must provide the policy name and the options that are no longer to be audited.

Appendix C
olsadmintool Command Reference

C-14

Syntax

olsadmintool noaudit --polname policy_name --options audit_option_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• audit_option_name can be any combination of the following entries: APPLY, REMOVE,
SET, PRIVILEGE

Example

olsadmintool noaudit --polname defense --options "APPLY,PRIVILEGES" -h sales_west
-D cn=defense_admin -w bind_password

olsadmintool listprofile
The olsadmintool listprofile command to see a list of all profiles in a given policy.

You must provide the policy name.

Syntax

olsadmintool listprofile --polname policy_name
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool listprofile --polname defense -b CIA
-h sales_west -D cn=defense_admin -w bind_password

Relating Parameters to Commands for olsadmintool
You must follow a set of guidelines for using the olsadmintool parameters.

• About Relating Parameters to Commands for olsadmintool
All olsadmintool commands must specify connection parameters.

• Summaries of olsadmintool Parameters
The olsadmintool has parameters that to accommodate different categories of
need, such as policies, administration, and auditing.

About Relating Parameters to Commands for olsadmintool
All olsadmintool commands must specify connection parameters.

These parameters include the OID host, the bind DN, the bind password, and
optionally, the port through which the connection to Oracle Internet Directory is to be
made. The default port is 389.

All olsadmintool commands may specify, as needed, the subscriber/administrative-
context using the -b flag.

The fact that specifying a parameter is optional, such as a port or an administrative
context, is shown by enclosing the parameter within brackets. The two most common
examples are [-b admin context] and [-p port].

Appendix C
Relating Parameters to Commands for olsadmintool

C-15

Because every command must specify a host, bind DN, and password, and may, if
needed, also specify an administrative context, Table C-2 uses the abbreviation CON
to represent all of these connection parameters as a group:

[-b admin_context] h OID_host [-p port] -D bind_DN -w bind_password

Summaries of olsadmintool Parameters
The olsadmintool has parameters that to accommodate different categories of need,
such as policies, administration, and auditing.

Table C-2 summarizes the commands in several categories.

• Policies: creating, altering, or dropping policies or their components, that is,
levels, groups, and compartments

• Data labels: creating, altering, or dropping them

• Administrators and policy creators: adding or dropping them

• Users: adding or dropping users from a profile

• Auditing options: setting the options for what to audit for a policy

• Profiles: creating, listing, describing, or dropping them

• Default read or row labels: setting them

In Table C-2 and Table C-3, the column headings show only the parameters, not the
keywords that must precede them. For example, Table C-2 shows policyname and
column-name as parameters for the createpolicy command, without showing the
keywords that must precede them (--name and --colname).

Table C-2 explains the individual parameters that are used as column headings in the
summaries of Table C-2 and Table C-3.

In all these tables:

• OptionsP means policy enforcement options, that is, any combination of the
following entries, separated by a comma:

– INVERSE_GROUP

– HIDE

– LABEL_DEFAULT

– LABEL_UPDATE

– CHECK_CONTROL

– READ_CONTROL

– WRITE_CONTROL

– INSERT_CONTROL

– DELETE_CONTROL

– UPDATE_CONTROL

– ALL_CONTROL

– NO_CONTROL

Appendix C
Relating Parameters to Commands for olsadmintool

C-16

• OptionsA means audit options, that is, any comma-separated combination of the
following entries: SET, APPLY, REMOVE, or PRIVILEGE.

Table C-2 Summary: olsadmintool Command Parameters

Command
Category

Commands & Parameters - - - - - -

Policies Command policy
name

column-
name

optionsP CON - -

a policy olsadmintool createpolicy Requir
ed

Required Required Require
d

- -

a policy olsadmintool alterpolicy Requir
ed

Omitted Required Require
d

- -

a policy olsadmintool droppolicy Requir
ed

Omitted Omitted Require
d

- -

Within a Policy,
Create:

Command policy
name

tag short
name

long
name

CON parent
name

a level olsadmintool createlevel Requir
ed

Required Required Require
d

Require
d

Omitted

a group olsadmintool creategroup Requir
ed

Required Required Require
d

Require
d

[Requir
ed]

a compartment olsadmintool
createcompartment

Requir
ed

Required Required Require
d

Require
d

Omitted

Within a Policy,
Alter:

Command - - - - - -

a level olsadmintool alterlevel Requir
ed

Omitted Unused Unused Unused Omitted

a group or group
parent

olsadmintool altergroup Requir
ed

Omitted Required Require
d

Require
d

Omitted

a group or group
parent

olsadmintool
altergroupparent

Requir
ed

Omitted Required Omitted Require
d

[Requir
ed]

a group or group
parent

Command policy
name

tag short
name

long
name

CON parent
name

a compartment olsadmintool
altercompartment

Requir
ed

Omitted Required Require
d

Require
d

Omitted

Within a Policy,
Drop:

Command - - - - -

level olsadmintool droplevel Requir
ed

Omitted Required Omitted Require
d

Omitted

group olsadmintool dropgroup Requir
ed

Omitted Required Omitted Require
d

Omitted

compartment olsadmintool
dropcompartment

Requir
ed

Omitted Required Omitted Require
d

Omitted

Data Labels Command policy
name

tag value CON - -

Create label olsadmintool createlabel Requir
ed

Required Required Require
d

- -

Alter data label olsadmintool alterlabel Requir
ed

Required Required Require
d

- -

Appendix C
Relating Parameters to Commands for olsadmintool

C-17

Table C-2 (Cont.) Summary: olsadmintool Command Parameters

Command
Category

Commands & Parameters - - - - - -

Drop data label olsadmintool droplabel Requir
ed

Omitted Required Require
d

- -

Policy
Administrators

Command policy
name

userDN CON - - -

Add an Admin olsadmintool addadmin Requir
ed

Required Required - - -

Drop an Admin olsadmintool dropadmin Requir
ed

Required Required - - -

Policy Creation olsadmintool addpolcreator Omitte
d

Required Required - - -

Policy Creation olsadmintool
droppolcreator

Omitte
d

Required Required - - -

Users Command policy
name

profile
name

userDN CON - -

add a user olsadmintool adduser Requir
ed

Required Required Require
d

- -

drop a user olsadmintool dropuser Requir
ed

Required Required Require
d

- -

Auditing olsadmintool audit Requir
ed

optionsA type success CON -

auditing olsadmintool noaudit Requir
ed

Required Required Require
d

Require
d

-

Help on
olsadmintool

olsadmintool command_name
-- help

Omitte
d

Omitted Omitted Omitted Omitted -

Table C-3 Summary of Profile and Default Command Parameters

Profile Action Profile
Command

Policy
Name

Profil
e
Name

Max
Read
Labe
l

Max
Write
Labe
l

Min
Write
Labe
l

Def
Read
Labe
l

Def
Row
Labe
l

Priv'
s

CON

Create a Profile1 olsadmintool
createprofile

Required Requir
ed

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

List Profiles olsadmintool

list profile

Required Omitte
d

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

Describe a Profile olsadmintool
describe
profile

Required Requir
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

Drop a Profile olsadmintool
drop profile

Required Requir
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

1 In createprofile, specifying both privileges and labels is not required: a profile can specify labels, privileges, or both.

Appendix C
Relating Parameters to Commands for olsadmintool

C-18

Examples of Using the olsadmintool Utility
You use the olsadmintool commands to set up Oracle Label Security in an Oracle
Internet Directory environment.

Each command appears in this listing on multiple lines for readability, but in reality,
would be given out as a single long string on the command line. The summarized
results of carrying out all these commands appear in Results of These Examples,
which follows the last example.

• Example: Making Other Users Policy Creators
The olsadmintool addpolcreator command can enable other users to be policy
creators.

• Example: Creating Policies with Valid Options
The olsadmintool createpolicy command can create policies.

• Example: Creating Policy Administrators
The olsadmintool addadmin command can create policy administrators.

• Example: Creating Levels
The olsadmintool createlevel command can create individual levels.

• Example: Creating Compartments
The olsadmintool createcompartment command can create a compartment.

• Example: Creating Groups
The olsadmintool creategroup can create a group.

• Example: Creating Labels
The olsadmintool createlabel can create a label.

• Example: Creating a Profile
The olsadmintool createprofile command can create a profile.

• Example: Adding a User to a Profile
The olsadmintool adduser command can add a user to a profile.

• Example: Adding Another User to a Profile
You can use the olsadmintool adduser command to add another user to a profile.

• Example: Setting Audit Options
The olsadmintool audit command can set audit options in a non-unified auditing
environment.

• Results of These Examples
As a result of running the sets of olsadmintool commands, the sample Oracle
Label Security site has a specific structure.

Example: Making Other Users Policy Creators
The olsadmintool addpolcreator command can enable other users to be policy
creators.

ORACLE_HOME/bin/olsadmintool addpolcreator --userdn "cn=psmith,c=us"
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=lbacsys,c=us" -w
bind_password

Appendix C
Examples of Using the olsadmintool Utility

C-19

Example: Creating Policies with Valid Options
The olsadmintool createpolicy command can create policies.

ORACLE_HOME/bin/olsadmintool createpolicy --name Policy1 --colname pol1
--options READ_CONTROL,WRITE_CONTROL -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=psmith,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createpolicy --name Policy2 --colname pol2
--options READ_CONTROL -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=lbacsys,c=us" -w bind_password

Example: Creating Policy Administrators
The olsadmintool addadmin command can create policy administrators.

ORACLE_HOME/bin/olsadmintool addadmin --polname Policy1
--admindn "cn=shwong,c=us" -b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389
-D "cn=psmith,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool addadmin --polname Policy2
--admindn "cn=shwong,c=us" -b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389
-D "cn=lbacsys,c=us" -w bind_password

Example: Creating Levels
The olsadmintool createlevel command can create individual levels.

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 100
--shortname TS --longname "TOP SECRET" -b "ou=Americas,o=Oracle, c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 99
--shortname S --longname SECRET -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 98
--shortname U --longname UNCLASSIFIED -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

Example: Creating Compartments
The olsadmintool createcompartment command can create a compartment.

ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 100
--shortname A --longname ALPHA -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 99
--shortname B --longname BETA -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

Appendix C
Examples of Using the olsadmintool Utility

C-20

Example: Creating Groups
The olsadmintool creategroup can create a group.

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 100
--shortname G1 --longname GROUP1
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 99
--shortname G2 --longname GROUP2
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 98
--shortname G3 --longname GROUP3
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Example: Creating Labels
The olsadmintool createlabel can create a label.

ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1
--tag 100 --value TS:A:G1
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1 --tag 101
--value TS:A,B:G2
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Example: Creating a Profile
The olsadmintool createprofile command can create a profile.

ORACLE_HOME/bin/olsadmintool createprofile --polname Policy1 --profname Profile1
--maxreadlabel TS:A:G1 --maxwritelabel TS:A:G1 --minwritelabel U::
--defreadlabel U:A:G1 --defrowlabel U:A:G1 --privileges WRITEUP,READ
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Example: Adding a User to a Profile
The olsadmintool adduser command can add a user to a profile.

ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=nina,ou=Asia,o=microsoft,l=seattle,st=WA,c=US
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Appendix C
Examples of Using the olsadmintool Utility

C-21

Example: Adding Another User to a Profile
You can use the olsadmintool adduser command to add another user to a profile.

ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=daniel,ou=France,o=oracle,l=madison,st=WI,c=US
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Example: Setting Audit Options
The olsadmintool audit command can set audit options in a non-unified auditing
environment.

ORACLE_HOME/bin/olsadmintool audit --polname Policy1 --option "SET,APPLY"
--type SESSION --success BOTH
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w
bind_password

Results of These Examples
As a result of running the sets of olsadmintool commands, the sample Oracle Label
Security site has a specific structure.

• Policy creators: User psmith

• Policies: Policy1 and Policy2

• Policy Administrators: User shwong

• Levels, Compartments, and Groups: Refer to Table C-4.

Table C-4 Label Component Definitions from Using olsadmintool Commands

Label
Component

Tag Short Name Long Name

Level 100 TS TOP SECRET

Level 99 S SECRET

Level 98 U UNCLASSIFIED

Compartment 100 A ALPHA

Compartment 99 B BETA

Group 100 G1 GROUP1

Group 99 G2 GROUP2

Group 98 G3 GROUP3

• Data labels: Tag 100 for TS:A:G1 and tag 101 for TS:A,B:G2

• Users: Nina, from the Asia group of Microsoft, based in Seattle, Washington,
managed under the Americas organization of the US Oracle organization, and
Daniel, from the France group of Oracle in Madison, Wisconsin, managed under
the same organization.

• Profiles: Refer to Table C-5.

Appendix C
Examples of Using the olsadmintool Utility

C-22

Table C-5 Contents of Profile1 from Using olsadmintool Commands

Profile Element Contents Long-name Expansion or Meaning

MaxReadLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MaxWriteLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MinWriteLabel U:: UNCLASSIFIED (not restricted to any
compartments or groups)

DefReadLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

DefRowLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

Privileges WRITE_UP, READ User can read any row and raise the level
of rows the user writes.

• Auditing options: SET, APPLY, SESSION, and BOTH

Appendix C
Examples of Using the olsadmintool Utility

C-23

D
Oracle Label Security in an
Oracle RAC Environment

You can use Oracle Label Security in an Oracle Real Application Clusters (Oracle
RAC) environment.

• Oracle Label Security Policy Functions in an Oracle RAC Environment
Policy changes made on one instance are available to other instances in the
Oracle Real Application Clusters (Oracle RAC) environment immediately.

• Transparent Application Failover in Oracle Label Security
Session information is preserved on Transparent Application Failover.

Oracle Label Security Policy Functions in an Oracle RAC
Environment

Policy changes made on one instance are available to other instances in the Oracle
Real Application Clusters (Oracle RAC) environment immediately.

It is not necessary to restart the other instances to pick up the changes.

Important changes made on one database instance are automatically propagated to
the other instances. One example would be creating a new policy. Another would be
altering the policy options.

Propagating such changes ensures two valuable protections:

• That all users of the table are subject to the same policy

• That if any instance fails, continuation of its work by other instances will use the
same policies and parameters that were in force immediately prior to that failure.
So, if a policy had been enabled or disabled, it would be seen as such in all
instances.

If an administrator changes policy information in one instance by using the policy
functions listed in Table D-1, Oracle Label Security stores the relevant information
about whatever that function call changed. The new information is immediately
available to the other active instances in the Oracle RAC, enabling uniformity among
users of the affected policies.

Table D-1 Policy Functions Preserving Status in an Oracle RAC Environment

Policy Functions Description

SA_SYSDBA.CREATE_POLICY Creates a new policy

SA_SYSDBA.DROP_POLICY Drops an existing policy

SA_SYSDBA.ENABLE_POLICY Enables an existing policy

SA_SYSDBA.DISABLE_POLICY Disables an existing policy

D-1

Table D-1 (Cont.) Policy Functions Preserving Status in an Oracle RAC
Environment

Policy Functions Description

SA_SYSDBA.ALTER_POLICY Alters an existing policy

Transparent Application Failover in Oracle Label Security
Session information is preserved on Transparent Application Failover.

Any changes to the session's information by way of session functions listed in
Table D-2 are preserved on Transparent Application Failover.

For example, suppose a user Scott is logged on with default label Top Secret. If he
calls sa_session.set_label() to change his session label to Secret, and a failover to
another instance occurs, he will see no change but his session label remains Secret.

Preserving current user session information means that the access permissions and
restrictions on what data that user can see or affect remain as they were. Despite the
failover, the user can see and affect only the tables and rows accessible before the
failover. If preservation were not the case, failing over to another instance could cause
or enable the user to see a different set of data.

Whenever one of the session functions listed in Table D-2 is used, Oracle Label
Security stores the relevant information about whatever was changed by that function
call.

Table D-2 Session Functions Preserving Status in an Oracle RAC Environment

Session Functions Description

SA_SESSION.SET_LABEL Lets the user set a new level and new
compartments and groups to which he or she has
read access

SA_SESSION.SET_ROW_LABEL Lets the user set the default row label that will be
applied to new rows

SA_SESSION.SAVE_DEFAULT_LABELS Lets the user store the current session label and
row label as the default for future sessions

SA_SESSION.RESTORE_DEFAULT_LABELS Lets the user reset the current session label and
row label to the stored default settings

SA_SESSION.SET_ACCESS_PROFILE Sets the Oracle Label Security authorizations and
privileges of the database session to those of the
specified user

Appendix D
Transparent Application Failover in Oracle Label Security

D-2

E
Oracle Label Security PL/SQL Packages

Oracle Label Security provides a set of PL/SQL packages.

• SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package
configures auditing that is specific to Oracle Label Security.

• SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an
Oracle Label Security label.

• SA_LABEL_ADMIN Label Management PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package provides an administrative interface to
manage the labels used by a policy.

• SA_POLICY_ADMIN Policy Administration PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as
a whole.

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

• SA_SYSDBA Policy Management PL/SQL Package
The SA_SYSDBA PL/SQL package manages Oracle Label Security policies.

• SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• SA_UTL PL/SQL Utility Functions and Procedures
The SA_UTL PL/SQL package contains utility functions and procedures that are
used in PL/SQL programs.

See Also:

Using Dominance Functions for additional standalone Oracle Label Security
functions

SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL
Package

For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package
configures auditing that is specific to Oracle Label Security.

• About the SA_AUDIT_ADMIN PL/SQL Package
The SA_AUDIT_ADMIN PL/SQL package configures auditing for labels and policies, as
well as creating an auditing-related view.

E-1

• SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

• SA_AUDIT_ADMIN.AUDIT_LABEL
The SA_AUDIT_ADMIN.AUDIT_LABEL procedure records policy labels during auditing.

• SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
The SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED function shows whether labels are being
recorded in audit records for the policy.

• SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

• SA_AUDIT_ADMIN.DROP_VIEW
The SA_AUDIT_ADMIN.DROP_VIEW procedure drops the audit trail view for the specified
policy.

• SA_AUDIT_ADMIN.NOAUDIT
The SA_AUDIT_ADMIN.NOAUDIT procedure disables Oracle Label Security policy-
specific auditing.

• SA_AUDIT_ADMIN.NOAUDIT_LABEL
The SA_AUDIT_ADMIN.NOAUDIT_LABEL procedure disables the auditing of policy labels.

About the SA_AUDIT_ADMIN PL/SQL Package
The SA_AUDIT_ADMIN PL/SQL package configures auditing for labels and policies, as
well as creating an auditing-related view.

If you are using unified auditing, then see Oracle Database Security Guide for
information about creating unified audit policies for Oracle Label Security. In a unified
auditing environment, no new audit records will be generated as a result of setting the
procedures that are described in this section.

After you have enabled systemwide auditing, you can use SA_AUDIT_ADMIN PL/SQL
package procedures to enable or disable Oracle Label Security auditing. To use this
package, you must be granted the policy_DBA role (for example, HR_OLS_POL_DBA for a
role for the hr_ols_pol policy) and the EXECUTE privilege for the SA_AUDIT_ADMIN package.

See Also:

Duties of Oracle Label Security Administrators for information about the
policy_DBA role

SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

Auditing of each policy is independent of the others. The audit records capture Oracle
Label Security administrative actions and the use of Oracle Label Security privileges
that were used during logons, DML executions, and trusted stored procedure
invocations.

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-2

Syntax

SA_AUDIT_ADMIN.AUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 audit_option IN VARCHAR2 DEFAULT NULL,
 audit_type IN VARCHAR2 DEFAULT NULL,
 success IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-1 SA_AUDIT_ADMIN.AUDIT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

users Optional. A comma-delimited list of user names to audit, as follows:

• If you are auditing OLS administrative actions, then ensure that the
users you enter have the policy_DBA role and the EXECUTE privilege
for the Oracle Label Security packages.

• If you are auditing the use of OLS privileges, then these users do
not need to be OLS administrators.

• If you do not specify any users, then all users are audited.
To find users who have privileges to modify Oracle Label Security
policies, query the USER_NAME column of the DBA_SA_USERS view.

audit_option Optional. A comma-delimited list of options to be audited. Options are
as follows:

• APPLY: Audits application of specified Oracle Label Security policies
to tables and schemas

• REMOVE: Audits removal of specified Oracle Label Security policies
from tables and schemas

• SET: Audits the setting of user authorizations, and user and
program privileges

• PRIVILEGES: Audits use of all policy-specific privileges
If not specified, then all default options (that is, options not including
privileges) are audited. Audit options for privileged operations should be
set explicitly by specifying the PRIVILEGES option, which sets audit
options for all privileges.

audit_type Optional. BY ACCESS or BY SESSION. If not specified, then audit records
are written BY SESSION.

success Optional. SUCCESSFUL if the action was successful, or NOT SUCCESSFUL. If
not specified, then audit is written for both.

Examples

The following example audits any failed APPLY and REMOVE attempts by the users psmith
and rlayton.

BEGIN
 SA_AUDIT_ADMIN.AUDIT(
 policy_name => 'hr_ols_pol',
 users => 'jjones, rlayton',
 audit_option => 'apply, remove',
 audit_type => 'by access',

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-3

 success => 'not successful');
END;
/

If the you do not specify any audit options, then all options except the privilege-related
ones are audited. You must specify the auditing of privileges explicitly. For example, if
you enter the following statement, then the default options are set for the hr_ols_pol
policy:

EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol');

When you enable auditing, it will be performed on all users by session, whether their
actions are successful or not.

When you set auditing parameters and options, the new values apply only to
subsequent sessions, not to the current session.

Consider also a case in which one SA_AUDIT_ADMIN.AUDIT call (with no users specified)
enables auditing for APPLY operations for all users, and then a second call enables
auditing of REMOVE operations for a specific user. For example:

EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol', null, 'apply');
EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol', 'scott', 'remove');

In this case, SCOTT is audited for both APPLY and REMOVE operations.

SA_AUDIT_ADMIN.AUDIT_LABEL
The SA_AUDIT_ADMIN.AUDIT_LABEL procedure records policy labels during auditing.

This procedure stores the user's session label in the audit table.

Syntax

SA_AUDIT_ADMIN.AUDIT_LABEL (
 policy_name IN VARCHAR2);

Parameter

Table E-2 SA_AUDIT_ADMIN.AUDIT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example writes output indicating whether the Oracle Label Security
labels are being audited for the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.AUDIT_LABEL(
 policy_name => 'hr_ols_pol');
END;
/

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-4

SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
The SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED function shows whether labels are being
recorded in audit records for the policy.

Syntax

SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED (
 policy_name IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Table E-3 SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example writes output indicating whether the Oracle Label Security
labels are being audited for the hr_ols_pol policy.

SET SERVEROUTPUT ON
BEGIN
 IF SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED('hr_ols_pol')
 THEN DBMS_OUTPUT.PUT_LINE('OLS hr_ols_pol labels are being audited.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('OLS hr_ols_pol labels not being audited.');
 END IF;
END;
/

SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

This view contains the specified policy's label column as well as all the entries in the
audit trail written on behalf of this policy. If the view name exceeds the database limit
of 30 characters, then the user can optionally specify a shorter view name.

See Also:

Oracle Label Security User-Created Auditing View to find the columns that are
contained in the DBA_policyname_AUDIT_TRAIL view

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-5

Syntax

SA_AUDIT_ADMIN.CREATE_VIEW (
 policy_name IN VARCHAR2,
 view_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-4 SA_AUDIT_ADMIN.CREATE_VIEW Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

view_name Optional. Specifies the name of the view name. If you omit this
setting, then the name defaults to DBA_policyname_AUDIT_TRAIL.

Examples

The following example creates a view called hr_ols_pol_view for the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.CREATE_VIEW(
 policy_name => 'hr_ols_pol',
 view_name => 'hr_ols_pol_view');
END;
/

SA_AUDIT_ADMIN.DROP_VIEW
The SA_AUDIT_ADMIN.DROP_VIEW procedure drops the audit trail view for the specified
policy.

Syntax

SA_AUDIT_ADMIN.DROP_VIEW (
 policy_name IN VARCHAR2,
 view_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-5 SA_AUDIT_ADMIN.DROP_VIEW Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

view_name Specifies an existing view's name. You can find this view by first
querying the ALL_SA_POLICIES data dictionary view to find the
name of the policy on which the view was based, and then
querying ALL_VIEWS data dictionary view to find any views that
have the name of the policy.

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-6

Example

The following example drops the view called hr_ols_pol_view from the hr_ols_pol
policy.

BEGIN
 SA_AUDIT_ADMIN.DROP_VIEW(
 policy_name => 'hr_ols_pol',
 view_name => 'hr_ols_pol_view');
END;
/

SA_AUDIT_ADMIN.NOAUDIT
The SA_AUDIT_ADMIN.NOAUDIT procedure disables Oracle Label Security policy-specific
auditing.

Syntax

SA_AUDIT_ADMIN.NOAUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 audit_option IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-6 SA_AUDIT_ADMIN.NO_AUDIT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

users Optional. A comma-delimited list of users who were audited. If
not specified, then auditing is disabled for all users.

To find users who have privileges to modify Oracle Label
Security policies, query the USER_NAME column of the
ALL_SA_AUDIT_OPTIONS view.

audit_option Optional. A comma-delimited list of options to be disabled.
Options are as follows:

• APPLY: Audits application of specified Oracle Label Security
policies to tables and schemas

• REMOVE: Audits removal of specified Oracle Label Security
policies from tables and schemas

• SET: Audits the setting of user authorizations, and user and
program privileges

• PRIVILEGES: Audits use of all policy-specific privileges
If not specified, then all default options are disabled. Privileges
must be disabled explicitly.

Examples

The following example disables auditing for failed APPLY and REMOVE attempts by the
users psmith and rlayton.

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-7

BEGIN
 SA_AUDIT_ADMIN.NOAUDIT(
 policy_name => 'hr_ols_pol',
 users => 'jjones',
 audit_option => 'apply, remove');
END;
/

You can disable auditing for all enabled options, or only for a subset of enabled
options. All auditing for the specified options is disabled for all specified users (or all
users, if the users parameter is NULL). For example, the following statement disables
auditing of the APPLY and REMOVE operations for users John, Mary, and Scott:

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR', 'JOHN, MARY, SCOTT', 'APPLY, REMOVE');

Consider also a case in which one AUDIT call enables auditing for a specific user, and a
second call (with no user specified) enables auditing for all users. For example:

EXEC SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT');
EXEC SA_AUDIT_ADMIN.AUDIT ('HR');

In this case, a subsequent call to NOAUDIT with no users specified (such as the following
statement) does not reverse the auditing that was set for SCOTT explicitly in the first call.
So, auditing continues to be performed on SCOTT.

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR');

In this way, even if SA_AUDIT_ADMIN.NOAUDIT is set for all users, Oracle Label Security
still audits any users for whom auditing was explicitly set.

Auditing of privileged operations must be specified explicitly. If you run
SA_AUDIT_ADMIN.NOAUDIT with no options, the Oracle Label Security will nonetheless
continue to audit privileged operations. For example, if auditing is enabled and you
enter

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR');

then auditing will continue to be performed on the privileged operations (such as
WRITEDOWN).

SA_AUDIT_ADMIN.NOAUDIT parameters and options that you set apply only to subsequent
sessions, not to current sessions.

If you try to enable an audit option that has already been set, or if you try to disable an
audit option that has not been set, then Oracle Label Security processes the statement
without indicating an error. An attempt to specify an invalid option results in an error
message. You can find the status of audit options by querying the
ALL_SA_AUDIT_OPTIONS data dictionary view.

SA_AUDIT_ADMIN.NOAUDIT_LABEL
The SA_AUDIT_ADMIN.NOAUDIT_LABEL procedure disables the auditing of policy labels.

Syntax

SA_AUDIT_ADMIN.NOAUDIT_LABEL (
 policy_name IN VARCHAR2);

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-8

Parameters

Table E-7 SA_AUDIT_ADMIN.NO_AUDIT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example disables auditing for the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.NOAUDIT_LABEL(
 policy_name => 'hr_ols_pol');
END;
/

SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an Oracle
Label Security label.

• About the SA_COMPONENTS PL/SQL Package
The SA_COMPONENTS PL/SQL package configures compartments, groups, parent
groups, and levels.

• SA_COMPONENTS.ALTER_COMPARTMENT
The SA_COMPONENTS.ALTER_COMPARTMENT procedure changes the short name and long
name associated with a compartment.

• SA_COMPONENTS.ALTER_GROUP
The SA_COMPONENTS.ALTER_GROUP procedure changes the short name and long name
associated with a group.

• SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group
associated with a particular group.

• SA_COMPONENTS.ALTER_LEVEL
The SA_COMPONENTS.ALTER_LEVEL procedure changes the short name and long name
associated with a level.

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and
specify its short name and long name.

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short
name and long name, and optionally a parent group.

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short
name and long name.

• SA_COMPONENTS.DROP_COMPARTMENT
The SA_COMPONENTS.DROP_COMPARTMENT procedure removes a compartment.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-9

• SA_COMPONENTS.DROP_GROUP
The SA_COMPONENTS.DROP_GROUP procedure removes a group.

• SA_COMPONENTS.DROP_LEVEL
The SA_COMPONENTS.DROP_LEVEL procedure removes a level.

About the SA_COMPONENTS PL/SQL Package
The SA_COMPONENTS PL/SQL package configures compartments, groups, parent groups,
and levels.

To use this package, you must be granted the policy_DBA role (for example,
HR_OLS_POL_DBA for a role for the hr_ols_pol policy) and the EXECUTE privilege on the
SA_COMPONENTS package.

Related Topics

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

SA_COMPONENTS.ALTER_COMPARTMENT
The SA_COMPONENTS.ALTER_COMPARTMENT procedure changes the short name and long
name associated with a compartment.

Once set, the comp_num parameter cannot be changed. If the comp_num parameter is
used in any existing label, then its short name cannot be changed but its long name
can be changed.

Syntax

SA_COMPONENTS.ALTER_COMPARTMENT (
 policy_name IN VARCHAR2,
 comp_num IN NUMBER(38),
 new_short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

SA_COMPONENTS.ALTER_COMPARTMENT (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-8 SA_COMPONENTS.ALTER_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

comp_num Specifies the number of the compartment to be altered. To find a list of
existing compartment numbers, query the COMP_NUM column of the
ALL_SA_COMPARTMENTS view.

short_name Specifies the short name of the compartment to be altered (up to 30
characters). To find the current compartment, query the SHORT_NAME
column of the ALL_SA_COMPARTMENTS view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-10

Table E-8 (Cont.) SA_COMPONENTS.ALTER_COMPARTMENT Parameters

Parameter Description

new_short_name Specifies the new short name of the compartment (up to 30
characters)

new_long_name Specifies the new long name of the compartment (up to 80
characters).

Example

The following example modifies the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.ALTER_COMPARTMENT (
 policy_name => 'hr_ols_pol',
 comp_num => '48',
 new_short_name => 'FIN',
 new_long_name => 'FINANCE');
END;
/

SA_COMPONENTS.ALTER_GROUP
The SA_COMPONENTS.ALTER_GROUP procedure changes the short name and long name
associated with a group.

Once set, the group_num parameter cannot be changed. If the group is used in any
existing label, then its short name cannot be changed, but its long name can be
changed.

Syntax

SA_COMPONENTS.ALTER_GROUP (
 policy_name IN VARCHAR2,
 group_num IN NUMBER(38),
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

SA_COMPONENTS.ALTER_GROUP (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Parameters

Table E-9 SA_COMPONENTS.ALTER_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

group_num Specifies the existing group number to be altered. To find existing
group numbers, query the GROUP_NUM column of the
ALL_SA_GROUPS view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-11

Table E-9 (Cont.) SA_COMPONENTS.ALTER_GROUP Parameters

Parameter Description

short_name Specifies the existing group short name to be altered. To find
existing short names, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

new_short_name Specifies the new short name for the group (up to 30 characters)

new_long_name Specifies the new long name for the group (up to 80 characters)

Example

The following example modifies the long_name setting for the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.ALTER_GROUP (
 policy_name => 'hr_ols_pol',
 short_name => 'ER_FIN',
 new_long_name => 'ER_FINANCES');
END;
/

SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group associated
with a particular group.

Syntax

SA_COMPONENTS.ALTER_GROUP_PARENT (
 policy_name IN VARCHAR2,
 group_num IN NUMBER(38),
 new_parent_num IN NUMBER(38));

SA_COMPONENTS.ALTER_GROUP_PARENT (
 policy_name IN VARCHAR2,
 group_num IN NUMBER(38),
 new_parent_name IN VARCHAR2);

SA_COMPONENTS.ALTER_GROUP_PARENT (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_parent_name IN VARCHAR2);

Parameters

Table E-10 SA_COMPONENTS.ALTER_GROUP_PARENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

group_num Specifies the existing group number to be altered. To find existing
group numbers, query the GROUP_NUM column of the
ALL_SA_GROUPS view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-12

Table E-10 (Cont.) SA_COMPONENTS.ALTER_GROUP_PARENT Parameters

Parameter Description

short_name Specifies the existing group short name to be altered. To find
existing short names, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

new_parent_num Specifies the number of an existing group as the parent group.
To find existing parent groups, query the PARENT_NUM column of
the ALL_SA_GROUPS view.

new_parent_name Specifies the short name of an existing group as the parent
group. To find existing groups, query the SHORT_NAME column of
the ALL_SA_GROUPS view.

Example

The following example modifies the parent name for the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.ALTER_GROUP_PARENT (
 policy_name => 'hr_ols_pol',
 group_num => 2100,
 new_parent_name => 'ER');
END;
/

SA_COMPONENTS.ALTER_LEVEL
The SA_COMPONENTS.ALTER_LEVEL procedure changes the short name and long name
associated with a level.

Once they are defined, level numbers cannot be changed. If a level is used in any
existing label, then its short name cannot be changed, but its long name can be
changed.

Syntax

SA_COMPONENTS.ALTER_LEVEL (
 policy_name IN VARCHAR2,
 level_num IN NUMBER(38),
 new_short_name IN VARCHAR2 DEFAULT NULL,
 new_long_name IN VARCHAR2 DEFAULT NULL);

SA_COMPONENTS.ALTER_LEVEL (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2,
 new_long_name IN VARCHAR2);

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-13

Parameters

Table E-11 SA_COMPONENTS.ALTER_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which much exist. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

level_num Specifies the number of the level to be altered. To find existing
levels, query the LEVEL_NUM column of the ALL_SA_LEVELS view.

short_name Specifies the existing short name of the level. To find existing
level short names, query the SHORT_NAME column of the
ALL_SA_LEVELS view.

new_short_name Specifies the new short name for the level (up to 30 characters)

new_long_name Specifies the new long name for the level (up to 80 characters)

Example

The following example modifies the short and long names for the hr_ols_pol policy
level.

BEGIN
 SA_COMPONENTS.ALTER_LEVEL (
 policy_name => 'hr_ols_pol',
 level_num => 40,
 new_short_name => 'TS',
 new_long_name => 'TOP_SECRET');
END;
/

SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and specify
its short name and long name.

The comp_num parameter determines the order in which compartments are listed in the
character string representation of labels.

Syntax

SA_COMPONENTS.CREATE_COMPARTMENT (
 policy_name IN VARCHAR2,
 comp_num IN NUMBER(38),
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-14

Parameters

Table E-12 SA_COMPONENTS.CREATE_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

comp_num Specifies the compartment number (0-9999)

short_name Specifies the short name for the compartment (up to 30
characters)

long_name Specifies the long name for the compartment (up to 80
characters)

Example

The following example creates a compartment for the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.CREATE_COMPARTMENT (
 policy_name => 'hr_ols_pol',
 comp_num => '48',
 short_name => 'FIN',
 long_name => 'FINANCE');
END;
/

SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short name
and long name, and optionally a parent group.

Syntax

SA_COMPONENTS.CREATE_GROUP (
 policy_name IN VARCHAR2,
 group_num IN NUMBER(38),
 short_name IN VARCHAR2,
 long_name IN VARCHAR2,
 parent_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-13 SA_COMPONENTS.CREATE_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

group_num Specifies the group number (0-9999)

short_name Specifies the short name for the group (up to 30 characters)

long_name Specifies the long name for the group (up to 80 characters)

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-15

Table E-13 (Cont.) SA_COMPONENTS.CREATE_GROUP Parameters

Parameter Description

parent_name Specifies the short name of an existing group as the parent
group. If NULL, then the group is a top-level group.

Note that the group number affects the order in which groups will be displayed when
labels are selected.

Examples

In the following examples, the first creates a parent group, ER, and the second creates
a second group that is part of the parent group.

BEGIN
 SA_COMPONENTS.CREATE_GROUP (
 policy_name => 'hr_ols_pol',
 group_num => 2000,
 short_name => 'ER',
 long_name => 'EAST_REGION');
END;
/

BEGIN
 SA_COMPONENTS.CREATE_GROUP (
 policy_name => 'hr_ols_pol',
 group_num => 2100,
 short_name => 'ER_FIN',
 long_name => 'ER_FINANCES',
 parent_name => 'ER');
END;
/

SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short name
and long name.

The numeric values assigned to the level_num parameter determine the sensitivity
ranking (that is, a lower number indicates less sensitive data).

Syntax

SA_COMPONENTS.CREATE_LEVEL (
 policy_name IN VARCHAR2,
 level_num IN NUMBER(38),
 short_name IN VARCHAR2,
 long_name IN VARCHAR2);

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-16

Parameters

Table E-14 SA_COMPONENTS.CREATE_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which must exist. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

level_num Specifies the level number (0-9999)

short_name Specifies the short name for the level (up to 30 characters)

long_name Specifies the long name for the level (up to 80 characters)

Example

The following example creates a level for the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.CREATE_LEVEL (
 policy_name => 'hr_ols_pol',
 level_num => 40,
 short_name => 'HS',
 long_name => 'HIGHLY_SENSITIVE');
END;
/

SA_COMPONENTS.DROP_COMPARTMENT
The SA_COMPONENTS.DROP_COMPARTMENT procedure removes a compartment.

If the compartment is used in any existing label, then it cannot be dropped. You can
find all existing labels by querying the LABEL column of the ALL_SA_DATA_LABELS data
dictionary view.

Syntax

SA_COMPONENTS.DROP_COMPARTMENT (
 policy_name IN VARCHAR2,
 comp_num IN INTEGER);

SA_COMPONENTS.DROP_COMPARTMENT (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Parameters

Table E-15 SA_COMPONENTS.DROP_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-17

Table E-15 (Cont.) SA_COMPONENTS.DROP_COMPARTMENT Parameters

Parameter Description

comp_num Specifies the number of an existing compartment for the policy.
To find existing compartment numbers, query the COMP_NUM
column of the DBA_SA_COMPARTMENTS view.

short_name Specifies the short name of an existing compartment for the
policy. To find existing compartment short names, query the
SHORT_NAME column of the DBA_SA_COMPARTMENTS view.

Example

The following example removes the FIN compartment from the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.DROP_COMPARTMENT (
 policy_name => 'hr_ols_pol',
 short_name => 'FIN');
END;
/

SA_COMPONENTS.DROP_GROUP
The SA_COMPONENTS.DROP_GROUP procedure removes a group.

If the group is used in an existing label, then it cannot be dropped.

Syntax

SA_COMPONENTS.DROP_GROUP (
 policy_name IN VARCHAR2,
 group_num IN NUMBER(38));

SA_COMPONENTS.DROP_GROUP (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Parameters

Table E-16 SA_COMPONENTS.DROP_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

group_num Specifies the number of an existing group for the policy. To find
existing group numbers, query the GROUP_NUM column of the
ALL_SA_GROUPS view.

short_name Specifies the short name of an existing group. To find existing
group short names, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-18

Example

The following example removes a group based on the group number for the hr_ols_pol
policy.

BEGIN
 SA_COMPONENTS.DROP_GROUP (
 policy_name => 'hr_ols_pol',
 group_num => 2000);
END;
/

SA_COMPONENTS.DROP_LEVEL
The SA_COMPONENTS.DROP_LEVEL procedure removes a level.

If the level is used in any existing label, then it cannot be dropped.

Syntax

SA_COMPONENTS.DROP_LEVEL (
 policy_name IN VARCHAR2,
 level_num IN NUMBER(38));

SA_COMPONENTS.DROP_LEVEL (
 policy_name IN VARCHAR2,
 short_name IN VARCHAR2);

Parameters

Table E-17 SA_COMPONENTS.DROP_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which much exist. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

level_num Specifies the number of an existing level for the policy. To find
existing level numbers, query the LEVEL_NUM column of the
ALL_SA_LEVELS view.

short_name Specifies the short name for the level (up to 30 characters). To
find existing level short names, query the SHORT_NAME column of
the ALL_SA_LEVELS view.

Example

The following example drops the level 40 from the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.DROP_LEVEL (
 policy_name => 'hr_ols_pol',
 level_num => 40);
END;
/

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-19

SA_LABEL_ADMIN Label Management PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package provides an administrative interface to manage
the labels used by a policy.

• About the SA_LABEL_ADMIN PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package creates, alters, and deletes labels.

• SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

• SA_LABEL_ADMIN.DROP_LABEL
The SA_LABEL_ADMIN.DROP_LABEL procedure deletes a specified policy label.

About the SA_LABEL_ADMIN PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package creates, alters, and deletes labels.

SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

The label tag itself cannot be changed.

If you change the character string associated with a label tag, then the sensitivity of
the data in the rows changes accordingly. For example, if the label character string
TS:A with an associated label tag value of 4001 is changed to the label TS:B, then
access to the data changes accordingly. This is true even when the label tag value
(4001) has not changed. In this way, you can change the data's sensitivity without the
need to update all the rows.

Ensure that when you specify a label to alter, you can refer to it either by its label tag
or by its character string value.

Syntax

SA_LABEL_ADMIN.ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN BINARY_INTEGER,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

SA_LABEL_ADMIN.ALTER_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2,
 new_label_value IN VARCHAR2 DEFAULT NULL,
 new_data_label IN BOOLEAN DEFAULT NULL);

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-20

Parameters

Table E-18 SA_LABEL_ADMIN.ALTER_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

label_tag Identifies the integer tag assigned to the label to be altered. To
find existing label tags, query the LABEL_TAG column of the
ALL_SA_LABELS view.

label_value Identifies the existing character string representation of the label
to be altered. To find the existing label values, query the LABEL
column of the ALL_SA_LABELS view.

new_label_value Specifies the new character string representation of the label
value. If NULL, the existing value is not changed.

new_data_label TRUE if the label can be used to label row data. If NULL, the
existing value is not changed.

Example

The following example modifies the label_tag and label_value settings of hr_ols_pol
policy.

BEGIN
 SA_LABEL_ADMIN.ALTER_LABEL (
 policy_name => 'hr_ols_pol',
 label_tag => 1111,
 new_label_value => 'HS',
 new_data_label => TRUE);
END;
/

SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

Syntax

SA_LABEL_ADMIN.CREATE_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN BINARY_INTEGER,
 label_value IN VARCHAR2,
 data_label IN BOOLEAN DEFAULT TRUE);

Parameters

Table E-19 SA_LABEL_ADMIN.CREATE_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-21

Table E-19 (Cont.) SA_LABEL_ADMIN.CREATE_LABEL Parameters

Parameter Description

label_tag Specifies a unique integer value representing the sort order of the
label, relative to other policy labels (0-99999999). This value
must be 1 to 8 digits long.

label_value Specifies the character string representation of the label to be
created. Use the short name of the level, compartment, and
group. You can find these values by querying the SHORT_NAME
column of the ALL_SA_LEVELS, ALL_SA_COMPARTMENTS, and
ALL_SA_GROUPS views.

data_label TRUE if the label can be used to label row data. Use this to define
the label as valid for data.

When you identify valid labels, you specify which of all the possible combinations of
levels, compartments, and groups can potentially be used to label data in tables.

Example

The following example creates a label for the hr_ols_pol policy.

BEGIN
 SA_LABEL_ADMIN.CREATE_LABEL (
 policy_name => 'hr_ols_pol',
 label_tag => 1111,
 label_value => 'HS:FIN',
 data_label => TRUE);
END;
/

Note:

If you create a new label by using the TO_DATA_LABEL procedure, then a system-
generated label tag of 10 digits is generated automatically.

However, when Oracle Label Security is installed to work with Oracle Internet
Directory, dynamic label generation is not permitted, because labels are
managed centrally in Oracle Internet Directory, using olsadmintool commands.

So, when Oracle Label Security is directory-enabled, the TO_DATA_LABEL function
is not available and will generate an error message if used.

SA_LABEL_ADMIN.DROP_LABEL
The SA_LABEL_ADMIN.DROP_LABEL procedure deletes a specified policy label.

Any subsequent reference to the label (in data rows, or in user or program unit labels)
will raise an invalid label error.

Use this procedure only while setting up labels, prior to data population. If you should
inadvertently drop a label that is being used, you can recover it by disabling the policy,
fixing the problem, and then re-enabling the policy.

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-22

Syntax

SA_LABEL_ADMIN.DROP_LABEL (
 policy_name IN VARCHAR2,
 label_tag IN BINARY_INTEGER);

SA_LABEL_ADMIN.DROP_LABEL (
 policy_name IN VARCHAR2,
 label_value IN VARCHAR2);

Parameters

Table E-20 SA_LABEL_ADMIN.DROP_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

label_tag Specifies the integer tag assigned to the label to be dropped. To
find existing label tags, query the LABEL_TAG column of the
ALL_SA_LABELS view.

label_value Specifies the string value of the label to be dropped. To find
existing label values, query the LABEL column of the
ALL_SA_LABELS view.

WARNING:

Do not drop a label that is in use anywhere in the database. You can find labels
by querying the ALL_SA_LABELS data dictionary view.

Example

The following example drops the hr_ols_pol policy label based on its label_tag setting.

BEGIN
 SA_LABEL_ADMIN.DROP_LABEL (
 policy_name => 'hr_ols_pol',
 label_tag => 1111);
END;
/

SA_POLICY_ADMIN Policy Administration PL/SQL
Package

The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as a
whole.

• About the SA_POLICY_ADMIN PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package configures schema and table policies, and
performs subscribe and unsubscribe actions.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-23

• SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY procedure changes the default
enforcement options for the policy.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY procedure disables the enforcement of
the policy for all tables in a schema.

• SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The SA_POLICY_ADMIN.DISABLE_TABLE_POLICY procedure disables the enforcement of
the policy for a table without changing the enforcement options, labeling function,
or predicate values.

• SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the tables in the specified
schema.

• SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The SA_POLICY_ADMIN.ENABLE_TABLE_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the specified table.

• SA_POLICY_ADMIN.POLICY_SUBSCRIBE
In an Oracle Internet Directory-enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_SUBSCRIBE procedure subscribes to the policy for usage in
SA_POLICY_ADMIN.APPLY_TABLE_POLICY and SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

• SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
In an Oracle Internet Directory enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE procedure unsubscribes to the policy.

• SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY procedure removes the specified policy
from a schema.

• SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The SA_POLICY_ADMIN.REMOVE_TABLE_POLICY procedure removes the specified policy
from a table.

About the SA_POLICY_ADMIN PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package configures schema and table policies, and
performs subscribe and unsubscribe actions.

To use this package, you must be granted the policy_DBA role (for example,
HR_OLS_POL_DBA for a role for the hr_ols_pol policy) and the EXECUTE privilege for the
SA_POLICY_ADMIN package.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-24

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY procedure changes the default enforcement
options for the policy.

Any new tables created in the schema will automatically have the new enforcement
options applied. The existing tables in the schema are not affected.

To change enforcement options on a table (rather than a schema), you must first drop
the policy from the table, make the change, and then reapply the policy.

If you alter the enforcement options on a schema, then this will take effect the next
time a table is created in the schema. As a result, different tables within a schema may
have different policy enforcement options in force.

Syntax

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2);

Parameters

Table E-21 SA_POLICY_ADMIN.ALTER_SCHEMA Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table. To find existing schemas
associated with this policy, query the POLICY_NAME and
SCHEMA_NAME columns of the ALL_SA_TABLE_POLICIES view.

default_options The default options to be used for new tables in the schema.
Separate each option with a comma.

See Table 8-2 for a listing of the default enforcement options.

Example

The following example adds the UPDATE_CONTROL default option to the HR schema.

BEGIN
 SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 default_options => 'read_control, write_control, update_control');
END;
/

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-25

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the tables
in a schema and enables the policy for these tables.

That is, it applies to those tables that do not already have the policy applied. Then,
whenever a new table is created in the schema, the policy is automatically applied to
that table, using the schema's default options. No changes are made to existing tables
in the schema that already have the policy applied.

Syntax

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-22 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table to protect

default_options The default options to be used for tables in the schema.
Separate each option with a comma. If the default_options
parameter is NULL, then the policy's default options will be used
to apply the policy to the tables in the schema.

See Table 8-2 for a listing of the default enforcement options.

Example

The following example applies the READ_CONTROL and WRITE_CONTROL options to the HR
schema.

BEGIN
 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 default_options => 'read_control, write_control');
END;
/

SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

A policy label column is added to the table if it does not exist, and is set to NULL. When
a policy is applied, it is automatically enabled. To change the table options, labeling
function, or predicate, you must first remove the policy, and then reapply it.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-26

Syntax

SA_POLICY_ADMIN.APPLY_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 table_options IN VARCHAR2 DEFAULT NULL,
 label_function IN VARCHAR2 DEFAULT NULL,
 predicate IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-23 SA_POLICY_ADMIN.APPLY_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table that the policy protects

table_name The table to be protected by the policy

table_options A comma-delimited list of policy enforcement options to be used
for the table. If NULL, then the policy's default options are used.

See Table 8-2 for a listing of the default enforcement options.

label_function A string calling a function to return a label value to use as the
default. For example, my_label(:new.dept,:new.status)
computes the label based on the new values of the DEPT and
STATUS columns in the row.

predicate An additional predicate to combine (using AND or OR) with the
label-based predicate for READ_CONTROL

Example

The following statement applies the hr_ols_pol policy to the EMPLOYEES table in the HR
schema.

BEGIN
 SA_POLICY_ADMIN.APPLY_TABLE_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 table_name => 'EMPLOYEES',
 table_options => NULL,
 label_function => 'hs(:new.dept,:new.status)',
 predicate => 'no_control');
END;
/

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY procedure disables the enforcement of the
policy for all tables in a schema.

However, it does not change the enforcement options, labeling function, or predicate
values.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-27

This procedure removes the row level security predicate and DML triggers from all the
tables in the schema.

Syntax

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

Parameters

Table E-24 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table for this policy. To find this
schema, query the POLICY_NAME and SCHEMA_NAME columns of
the ALL_SA_TABLE_POLICIES view.

Example

The following example disables the hr_ols_pol policy for the HR schema.

BEGIN
 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR');
END;
/

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The SA_POLICY_ADMIN.DISABLE_TABLE_POLICY procedure disables the enforcement of the
policy for a table without changing the enforcement options, labeling function, or
predicate values.

This procedure removes the row level security predicate and DML triggers from the
table.

Syntax

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-28

Parameters

Table E-25 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table. To find this schema, query
the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

table_name The table in the schema specified by schema_name. To find this
table, query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME
columns of the ALL_SA_TABLE_POLICIES view.

Example

The following statement disables the hr_ols_pos policy on the EMPLOYEES table in the HR
schema:

BEGIN
 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 table_name => 'EMPLOYEES');
END;
/

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the tables in the specified
schema.

It accomplishes this by re-applying the row level security predicate and DML triggers.
The result is similar to enabling a policy for a table, but it covers all the tables in the
schema.

Syntax

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2);

Parameters

Table E-26 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status,
query the POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-29

Table E-26 (Cont.) SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY Parameters

Parameter Description

schema_name The schema that contains the table. To find this schema, query
the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

Example

The following example enables the hr_ols_pol policy for the HR schema.

BEGIN
 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR');
END;
/

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The SA_POLICY_ADMIN.ENABLE_TABLE_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the specified table.

It accomplishes this by reapplying the row level security predicate and DML triggers.

Syntax

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 table_name IN VARCHAR2);

Parameters

Table E-27 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

schema_name The schema that contains the table. To find this schema, query
the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

table_name The table in the schema specified by schema_name. To find this
table, query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME
columns of the ALL_SA_TABLE_POLICIES view.

Example

The following statement reenables the hr_ols_pol policy on the EMPLOYEES table in the
HR schema:

BEGIN
 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY(
 policy_name => 'hr_ols_pol',

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-30

 schema_name => 'HR',
 table_name => 'EMPLOYEES');
END;
/

SA_POLICY_ADMIN.POLICY_SUBSCRIBE
In an Oracle Internet Directory-enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_SUBSCRIBE procedure subscribes to the policy for usage in
SA_POLICY_ADMIN.APPLY_TABLE_POLICY and SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

You must call this procedure for a policy before that policy can be applied to a table or
schema. Subscribing is needed only once, not for each use of the policy in a table or
schema.

You cannot drop any subscribed policy unless it has been removed from any table or
schema to which it was applied, and then unsubscribed.

Syntax

SA_POLICY.POLICY_SUBSCRIBE(
 policy_name IN VARCHAR2);

Parameter

Table E-28 SA_POLICY_ADMIN.POLICY_SUBSCRIBE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Note:

This procedure must be used before policy usage only in the case of Oracle
Internet Directory-enabled Oracle Label Security configuration. In the
standalone Oracle Label Security case, the policy can be used in
APPLY_TABLE_POLICY and APPLY_SCHEMA_POLICY directly without the need to
subscribe.

Example

The following statement subscribes the database to the hr_ols_pol policy so that it can
used by applying on tables and schema.

BEGIN
 SA_POLICY_ADMIN.POLICY_SUBSCRIBE(
 policy_name => 'hr_ols_pol');
END;
/

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-31

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
In an Oracle Internet Directory enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE procedure unsubscribes to the policy.

You can use this procedure only if the policy is not in use; that is, it has not been
applied to any table or schema. (If it has been applied to tables or schemas, then it
must be removed from all of them before it can be unsubscribed.) A policy can be
dropped in Oracle Internet Directory only if is not subscribed in any of the databases
that have registered with that Oracle Internet Directory. To unsubscribe a policy, use
the olsadmintool dropprofile command.

You cannot drop any subscribed policy unless it has been removed from any table or
schema to which it was applied, and then unsubscribed.

Syntax

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE(
 policy_name IN VARCHAR2);

Parameter

Table E-29 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following statement unsubscribes the database to the hr_ols_pol policy.

BEGIN
 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE(
 policy_name => 'hr_ols_pol');
END;
/

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY procedure removes the specified policy
from a schema.

The policy will be removed from all the tables in the schema and, optionally, the label
column for the policy will be dropped from all the tables.

Syntax

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 drop_column IN BOOLEAN DEFAULT FALSE);

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-32

Parameters

Table E-30 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table associated with this policy.
To find this schema, query the SCHEMA_NAME of the
ALL_SA_SCHEMA_POLICIES view.

drop_column If TRUE, then the policy's column will be dropped from the tables,
otherwise, the column will remain.

Example

The following example drops the human_resource policy's column from the HR schema.

BEGIN
 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 drop_column => TRUE);
END;
/

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The SA_POLICY_ADMIN.REMOVE_TABLE_POLICY procedure removes the specified policy from
a table.

The policy predicate and any DML triggers will be removed from the table, and the
policy label column can optionally be dropped. Policies can be removed from tables
belonging to a schema that is protected by the policy.

Syntax

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY (
policy_name IN VARCHAR2,
schema_name IN VARCHAR2,
table_name IN VARCHAR2,
drop_column IN BOOLEAN DEFAULT FALSE);

Parameters

Table E-31 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-33

Table E-31 (Cont.) SA_POLICY_ADMIN.REMOVE_TABLE_POLICY Parameters

Parameter Description

schema_name The schema that contains the table associated with this policy.
To find this schema, query the SCHEMA_NAME of the
ALL_SA_SCHEMA_POLICIES view.

table_name The table in the schema specified by schema_name. To find this
table query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME
columns of the ALL_SA_TABLE_POLICIES view.

drop_column Whether the column is to be dropped: if TRUE, then the policy's
column will be dropped from the table, otherwise, it will remain

Example

The following statement removes the hr_ols_pol policy from the EMPLOYEES table in the
HR schema:

BEGIN
 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY(
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 table_name => 'EMPLOYEES',
 drop_column => TRUE);
END;
/

SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

• About the SA_SESSION PL/SQL Package
The SA_SESSION PL/SQL package manages user name, levels, labels, and read
and write permissions for a user session.

• SA_SESSION.COMP_READ
The SA_SESSION.COMP_READ function returns a comma-delimited list of compartments
that the user is authorized to read.

• SA_SESSION.COMP_WRITE
The SA_SESSION.COMP_WRITE function returns a comma-delimited list of
compartments to which the user is authorized to write.

• SA_SESSION.GROUP_READ
The SA_SESSION.GROUP_READ function returns a comma-delimited list of groups that
the user is authorized to read.

• SA_SESSION.GROUP_WRITE
The SA_SESSION.GROUP_WRITE function returns a comma-delimited list of groups that
the user is authorized to write.

• SA_SESSION.LABEL
The SA_SESSION.LABEL function returns the label that is associated with the
specified policy for the current session.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-34

• SA_SESSION.MAX_LEVEL
The SA_SESSION.MAX_LEVEL function returns the maximum Oracle Label Security
level authorized for the session.

• SA_SESSION.MAX_READ_LABEL
The SA_SESSION.MAX_READ_LABEL function returns the label string that was used to
initialize the user's maximum authorized read label.

• SA_SESSION.MAX_WRITE_LABEL
The SA_SESSION.MAX_WRITE_LABEL function returns the label string that was used to
initialize the user's maximum authorized write label.

• SA_SESSION.MIN_LEVEL
The SA_SESSION.MIN_LEVEL function returns the minimum Oracle Label Security
level authorized for the session.

• SA_SESSION.MIN_WRITE_LABEL
The SA_SESSION.MIN_WRITE_LABEL function retrieves the label string that was used to
initialize the user's minimum authorized write label.

• SA_SESSION.PRIVS
The SA_SESSION.PRIVS function returns the set of current session privileges, in a
comma-delimited list.

• SA_SESSION.RESTORE_DEFAULT_LABELS
The SA_SESSION.RESTORE_DEFAULT_LABELS procedure restores the session label and
row label to those stored in the data dictionary.

• SA_SESSION.ROW_LABEL
The SA_SESSION.ROW_LABEL function returns the name of the row label that is
associated with the policy for the current session.

• SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database
session.

• SA_SESSION.SA_USER_NAME
The SA_SESSION.SA_USER_NAME function returns the name of the current Oracle Label
Security user, as set by the SA_SESSION.SET_ACCESS_PROFILE procedure (or as
established at login).

• SA_SESSION.SAVE_DEFAULT_LABELS
The SA_SESSION.SAVE_DEFAULT_LABELS procedure stores the current session label
and row label as your initial session label and default row label.

• SA_SESSION.SET_ACCESS_PROFILE
The SA_SESSION.SET_ACCESS_PROFILE procedure sets the Oracle Label Security
authorizations and privileges of the database session to those of the specified
user.

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

About the SA_SESSION PL/SQL Package
The SA_SESSION PL/SQL package manages user name, levels, labels, and read and
write permissions for a user session.

Users can change labels during a session within the authorizations set by the
administrator.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-35

You do not need special privileges to use this package.

See Also:

SA_UTL PL/SQL Utility Functions and Procedures for additional functions that
return numeric label tags and BOOLEAN values

SA_SESSION.COMP_READ
The SA_SESSION.COMP_READ function returns a comma-delimited list of compartments that
the user is authorized to read.

Syntax

SA_SESSION.COMP_READ (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-32 SA_SESSION.COMP_READ Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the compartments that the user can read for the
hr_ols_pol policy.

SELECT SA_SESSION.COMP_READ ('hr_ols_pol') FROM DUAL;

SA_SESSION.COMP_WRITE
The SA_SESSION.COMP_WRITE function returns a comma-delimited list of compartments to
which the user is authorized to write.

This function is a subset of SA_SESSION.COMP_READ.

Syntax

SA_SESSION.COMP_WRITE (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-36

Parameter

Table E-33 SA_SESSION.COMP_WRITE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the compartments that the user can modify for the
hr_ols_pol policy.

SELECT SA_SESSION.COMP_WRITE ('hr_ols_pol') FROM DUAL;

SA_SESSION.GROUP_READ
The SA_SESSION.GROUP_READ function returns a comma-delimited list of groups that the
user is authorized to read.

Syntax

SA_SESSION.GROUP_READ (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-34 SA_SESSION.GROUP_READ Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the list of groups that a user can read for the hr_ols_pol
policy.

SELECT SA_SESSION.GROUP_READ ('hr_ols_pol') FROM DUAL;

SA_SESSION.GROUP_WRITE
The SA_SESSION.GROUP_WRITE function returns a comma-delimited list of groups that the
user is authorized to write.

This function is a subset of SA_SESSION.GROUP_READ.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-37

Syntax

SA_SESSION.GROUP_WRITE (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-35 SA_SESSION.GROUP_WRITE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the groups the user is authorized to modify for the
hr_ols_pol policy.

SELECT SA_SESSION.GROUP_WRITE ('hr_ols_pol') FROM DUAL;

SA_SESSION.LABEL
The SA_SESSION.LABEL function returns the label that is associated with the specified
policy for the current session.

Syntax

SA_SESSION.LABEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-36 SA_SESSION.LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the label that is associated with the hr_ols_pol policy.

SELECT SA_SESSION.LABEL ('hr_ols_pol') FROM DUAL;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-38

SA_SESSION.MAX_LEVEL
The SA_SESSION.MAX_LEVEL function returns the maximum Oracle Label Security level
authorized for the session.

Syntax

SA_SESSION.MAX_LEVEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-37 SA_SESSION.MAX_LEVEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum Oracle Label Security level that is
authorized for the hr_ols_pol policy.

SELECT SA_SESSION.MAX_LEVEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.MAX_READ_LABEL
The SA_SESSION.MAX_READ_LABEL function returns the label string that was used to
initialize the user's maximum authorized read label.

The return string is composed of the user's maximum level, compartments authorized
for read access, and groups authorized for read access.

Syntax

SA_SESSION.MAX_READ_LABEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-38 SA_SESSION.MAX_READ_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum read label privileges for the hr_ols_pol
policy.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-39

SELECT SA_SESSION.MAX_READ_LABEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.MAX_WRITE_LABEL
The SA_SESSION.MAX_WRITE_LABEL function returns the label string that was used to
initialize the user's maximum authorized write label.

This return string is composed of the user's maximum level, compartments authorized
for write access, and groups authorized for write access.

Syntax

SA_SESSION.MAX_WRITE_LABEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-39 SA_SESSION.MAX_WRITE_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum write label privileges for the hr_ols_pol
policy.

SELECT SA_SESSION.MAX_WRITE_LABEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.MIN_LEVEL
The SA_SESSION.MIN_LEVEL function returns the minimum Oracle Label Security level
authorized for the session.

Syntax

SA_SESSION.MIN_LEVEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-40 SA_SESSION.MIN_LEVEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the current minimum level for the hr_ols_pol policy.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-40

SELECT SA_SESSION.MIN_LEVEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.MIN_WRITE_LABEL
The SA_SESSION.MIN_WRITE_LABEL function retrieves the label string that was used to
initialize the user's minimum authorized write label.

The return string contains only the level, with no compartments or groups.

Syntax

SA_SESSION.MIN_WRITE_LABEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-41 SA_SESSION.MIN_WRITE_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum write label privileges for the hr_ols_pol
policy.

SELECT SA_SESSION.MIN_WRITE_LABEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.PRIVS
The SA_SESSION.PRIVS function returns the set of current session privileges, in a
comma-delimited list.

Syntax

SA_SESSION.PRIVS (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-42 SA_SESSION.Privs Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the current session privileges for the hr_ols_pol policy.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-41

SELECT SA_SESSION.PRIVS ('hr_ols_pol') FROM DUAL;

SA_SESSION.RESTORE_DEFAULT_LABELS
The SA_SESSION.RESTORE_DEFAULT_LABELS procedure restores the session label and row
label to those stored in the data dictionary.

This command is useful to reset values after a SA_SESSION.SET_LABEL command has
been processed.

Syntax

SA_SESSION.RESTORE_DEFAULT_LABELS (
 policy_name in VARCHAR2);

Parameter

Table E-43 SA_SESSION.RESTORE_DEFAULT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example restores the default labels for the hr_ols_pol policy.

BEGIN
 SA_SESSION.RESTORE_DEFAULT_LABELS (
 policy_name => 'hr_ols_pol');
END;
/

SA_SESSION.ROW_LABEL
The SA_SESSION.ROW_LABEL function returns the name of the row label that is associated
with the policy for the current session.

Syntax

SA_SESSION.ROW_LABEL (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-44 SA_SESSION.ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-42

Example

The following example returns the row label that is associated with the hr_ols_pol
policy.

SELECT SA_SESSION.ROW_LABEL ('hr_ols_pol') FROM DUAL;

SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database session.

You can set the session label to:

• Any level equal to or less than the maximum, and equal to or greater than the
minimum level

• Include any compartments in the authorized compartment list

• Include any groups in the authorized group list. (Subgroups of authorized groups
are implicitly included in the authorized list.)

Note that if you change the session label, this change may affect the value of the
session's row label. The session's row label contains the subset of compartments and
groups for which the user has write access. This may or may not be equivalent to the
session label. For example, if you use the SA_SESSION.SET_LABEL procedure to set your
current session label to C:A,B:US and you have write access only on the A
compartment, then your row label would be set to C:A.

Syntax

SA_SESSION.SET_LABEL (
 policy_name IN VARCHAR2,
 label IN VARCHAR2);

Parameters

Table E-45 SA_SESSION.SET_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The value to set as the label

Example

The following example sets the label for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SET_LABEL (
 policy_name => 'hr_ols_pol',
 label => 'C:A,B:US');
END;
/

Appendix E
SA_SESSION Session Management PL/SQL Package

E-43

Related Topics

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label
to the one specified.

SA_SESSION.SA_USER_NAME
The SA_SESSION.SA_USER_NAME function returns the name of the current Oracle Label
Security user, as set by the SA_SESSION.SET_ACCESS_PROFILE procedure (or as
established at login).

This is how you can determine the identity of the current user in relation to Oracle
Label Security, rather than in relation to your Oracle login name.

Syntax

SA_SESSION.SA_USER_NAME (
 policy_name IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table E-46 SA_SESSION.SA_USER_NAME Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example finds the name of the Oracle Label Security user for the
hr_ols_pol policy.

SELECT SA_SESSION.SA_USER_NAME ('hr_ols_pol') FROM DUAL;

SA_SESSION.SAVE_DEFAULT_LABELS
The SA_SESSION.SAVE_DEFAULT_LABELS procedure stores the current session label and
row label as your initial session label and default row label.

This procedure permits you to change your defaults to reflect your current session
label and row label. The saved labels will be used as the initial default settings for
future sessions.

When you log in to a database, your default session label and row label are used to
initialize the session label and row label. When the administrator originally authorized
your Oracle Label Security labels, he or she also defined your default level, default
compartments, and default groups. If you change your session label and row label,
and want to save these values as the default labels, you can use the
SA_SESSION.SAVE_DEFAULT_LABELS procedure.

This procedure is useful if you have multiple sessions and want to be sure that all
additional sessions have the same labels. You can save the current labels as the
default, and all future sessions will have these as the initial labels.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-44

Consider a situation in which you connect to the database through Oracle Forms and
want to run a report. By saving the current session labels as the default before you call
Oracle Reports, you ensure that Oracle Reports will initialize at the same labels as are
being used by Oracle Forms.

Syntax

SA_SESSION.SAVE_DEFAULT_LABELS (
 policy_name IN VARCHAR2);

Parameter

Table E-47 SA_SESSION.SAVE_DEFAULT_LABELS Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example saves the label defaults for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SAVE_DEFAULT_LABELS (
 policy_name => 'hr_ols_pol');
END;
/

Note:

The SA_SESSION.SAVE_DEFAULT_LABELS procedure overrides the settings
established by the administrator.

SA_SESSION.SET_ACCESS_PROFILE
The SA_SESSION.SET_ACCESS_PROFILE procedure sets the Oracle Label Security
authorizations and privileges of the database session to those of the specified user.

Note that the originating user retains the PROFILE_ACCESS privilege.

The user who executes the SA_SESSION.SET_ACCESS_PROFILE procedure must have the
PROFILE_ACCESS privilege. The logged-in database user (the Oracle user ID) does not
change. That user assumes only the authorizations and privileges of the specified
user. By contrast, the Oracle Label Security user name is changed.

This administrative procedure is useful for various tasks:

• With SA_SESSION.SET_ACCESS_PROFILE, you can see the result of the authorization
and privilege settings for a particular user.

• Applications need to have proxy accounts connect as (and assume the identity of)
application users, for purposes of accessing labeled data. With the

Appendix E
SA_SESSION Session Management PL/SQL Package

E-45

SA_SESSION.SET_ACCESS_PROFILE privilege, the proxy account can act on behalf of the
application users.

Syntax

SA_SESSION.SET_ACCESS_PROFILE (
 policy_name IN VARCHAR2
 user_name IN VARCHAR2);

Parameters

Table E-48 SA_SESSION.SET_ACCESS_PROFILE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Name of the user whose authorizations and privileges should be
assumed (typically, the user associated with this policy). To find
this user, query the USER_NAME and POLICY_NAME columns of the
DBA_SA_USERS view.

Example

The following example enables user psmith to have Oracle Label Security
authorizations and privileges for the database session.

BEGIN
 SA_SESSION.SET_ACCESS_PROFILE (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones');
END;
/

SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

The compartments and groups in the label must be a subset of the compartments and
groups in the session label to which the user has write access. When the
LABEL_DEFAULT option is set, this row label value is used on insert if the user does not
explicitly specify the label.

If the SA_SESSION.SET_ROW_LABEL procedure is not used to set the default row label
value, then this value is automatically derived from the session label. It contains the
level of the session label and the subset of the compartments and groups in the
session label for which the user has write authorization.

The row label is automatically reset if the session label changes. For example, if you
change your session level from HIGHLY_SENSITIVE to SENSITIVE, then the level
component of the row label automatically changes to SENSITIVE.

The user can set the row label independently, but only to include:

Appendix E
SA_SESSION Session Management PL/SQL Package

E-46

• A level that is less than or equal to the level of the session label, and greater than
or equal to the user's minimum level

• A subset of the compartments and groups from the session label, for which the
user is authorized to have write access

If the user tries to set the row label to an invalid value, then the operation is not
permitted and the row label value is unchanged.

Syntax

SA_SESSION.SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 row_label IN VARCHAR2);

Parameters

Table E-49 SA_SESSION.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The value to set as the default row label

Example

The following example sets the row label for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SET_ROW_LABEL (
 policy_name => 'hr_ols_pol',
 label => 'HR');
END;
/

Related Topics

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the
one specified.

SA_SYSDBA Policy Management PL/SQL Package
The SA_SYSDBA PL/SQL package manages Oracle Label Security policies.

• About the SA_SYSDBA PL/SQL Package
The SA_SYSDBA PL/SQL package creates, modifies, enables or disables, and drops
Oracle Label Security policies.

• SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that are
associated with the policy.

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-47

• SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

• SA_SYSDBA.DROP_POLICY
The SA_SYSDBA.DROP_POLICY procedure deletes the policy and its associated user
labels and data labels from the database.

• SA_SYSDBA.ENABLE_POLICY
The SA_SYSDBA.ENABLE_POLICY procedure enforces access control on the tables and
schemas protected by the policy.

About the SA_SYSDBA PL/SQL Package
The SA_SYSDBA PL/SQL package creates, modifies, enables or disables, and drops
Oracle Label Security policies.

To use this package, you must be granted the LBAC_DBA role and the EXECUTE privilege
on the SA_SYSDBA package. The SA_SYSDBA package is an invoker’s rights package, so
you must provide the following INHERIT PRIVILEGES grant to the user SYS before you can
use this package:

GRANT INHERIT PRIVILEGES ON USER SYS TO LBACSYS;

You only need to grant this privilege on user SYS. You do not need to grant it on other
users.

SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that are
associated with the policy.

SA_SYSDBA.ALTER_POLICY can only be used to change column name for policies that are
not applied on any user tables or schemas. Otherwise, this error appears:

12474, 00000, "cannot change column name for a policy in use"

Syntax

SA_SYSDBA.ALTER_POLICY (
 policy_name IN VARCHAR2,
 default_options IN VARCHAR2 DEFAULT NULL,
 column_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-50 SA_SYSDBA.ALTER_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-48

Table E-50 (Cont.) SA_SYSDBA.ALTER_POLICY Parameters

Parameter Description

default_options Specifies the default enforcement options to be used when the
policy is applied and no table- or schema-specific options are
specified. Includes enforcement options and the option to hide
the label column. Separate each option with a comma.

See Categories of Policy Enforcement Options for a listing of the
default enforcement options.

column_name Specifies the column name associated with the policy. To find
this column name, query the COLUMN_NAME column of the
ALL_SA_POLICIES view.

Example

The following example updates the hr_ols_pol policy to use a different set of default
options. Because the name of the column does not need to change, the column_name
parameter is omitted.

BEGIN
 SA_SYSDBA.ALTER_POLICY (
 policy_name => 'hr_ols_pol',
 default_options => 'read_control, delete_control');
END;
/

SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security policy,
defines a policy-specific column name, and specifies default policy options.

After you create the policy, a role for it is created and granted to you. The format of the
role name is policy_DBA (for example, my_ols_pol_DBA).

Syntax

SA_SYSDBA.CREATE_POLICY (
 policy_name IN VARCHAR2,
 column_name IN VARCHAR2 DEFAULT NULL,
 default_options IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-51 SA_SYSDBA.CREATE_POLICY Parameters

Parameter Description

policy_name Specifies the policy name, which must be unique within the
database. It can have a maximum of 30 characters, but only the
first 26 characters in the policy_name are significant. Two
policies may not have the same first 26 characters in the
policy_name.

To find a list of existing policies, query the POLICY_NAME column
of the ALL_SA_POLICIES data dictionary view.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-49

Table E-51 (Cont.) SA_SYSDBA.CREATE_POLICY Parameters

Parameter Description

column_name Specifies the name of the column to be added to tables protected
by the policy. If NULL, then the name policy_name_COL is used.
Two Oracle Label Security policies cannot share the same
column name.

default_options Specifies the default options to be used when the policy is
applied and no table- or schema-specific options are specified.
Includes enforcement options and the option to hide the label
column. Separate each option with a comma.

See Categories of Policy Enforcement Options for a listing of the
default enforcement options.

Example

The following example creates a policy container whose default options are
READ_CONTROL and WRITE_CONTROL. The WRITE_CONTROL option encompasses the
INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL options.

BEGIN
 SA_SYSDBA.CREATE_POLICY (
 policy_name => 'hr_ols_pol',
 column_name => 'ols_col',
 default_options => 'read_control, write_control');
END;
/

SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

The policy is not enforced for all subsequent access to the database.

To disable a policy means that no access control is enforced on the tables and
schemas protected by the policy. The administrator can continue to perform
administrative operations while the policy is disabled.

Note:

This feature is extremely powerful, and should be used with caution. When a
policy is disabled, anyone who connects to the database can access all the
data normally protected by the policy. So, your site should establish guidelines
for use of this feature.

Normally, a policy should not be disabled in order to manage data. At times, however,
an administrator may need to disable a policy to perform application debugging tasks.
In this case, the database should be run in single-user mode. In a development
environment, for example, you may need to observe data processing operations
without the policy turned on. When you reenable the policy, all of the selected
enforcement options become effective again.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-50

Syntax

SA_SYSDBA.DISABLE_POLICY (
 policy_name IN VARCHAR2);

Parameters

Table E-52 SA_SYSDBA.DISABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status,
query the POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

Example

The following example disables the hr_ols_pol policy:

EXEC SA_SYSDBA.DISABLE_POLICY ('hr_ols_pol');

SA_SYSDBA.DROP_POLICY
The SA_SYSDBA.DROP_POLICY procedure deletes the policy and its associated user labels
and data labels from the database.

This procedure purges the policy and these associations from the system entirely. You
can optionally drop the label column from all tables controlled by the policy. The policy
does not need to be disabled before you drop it.

Syntax

SA_SYSDBA.DROP_POLICY (
 policy_name IN VARCHAR2,
 drop_column BOOLEAN DEFAULT FALSE);

Parameters

Table E-53 SA_SYSDBA.DROP_POLICY Parameters

Parameter Description

policy_name Specifies the policy to be dropped. To find existing policies, query
the POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

drop_column Indicates that the policy column should be dropped from
protected tables (TRUE)

Example

The following example deletes the hr_ols_pol policy.

EXEC SA_SYSDBA.DROP_POLICY ('hr_ols_pol');

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-51

SA_SYSDBA.ENABLE_POLICY
The SA_SYSDBA.ENABLE_POLICY procedure enforces access control on the tables and
schemas protected by the policy.

A policy is automatically enabled when it is created. After creation or enablement, the
policy is enforced for all subsequent access to tables protected by the policy.

Syntax

SA_SYSDBA.ENABLE_POLICY (policy_name IN VARCHAR2);

Parameters

Table E-54 SA_SYSDBA.ENABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status,
query the POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

Example

The following example enables the hr_ols_pol policy.

EXEC SA_SYSDBA.ENABLE_POLICY('hr_ols_pol');

SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• About the SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package configures compartments, groups. user
access, labels, levels, and privileges.

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a
user's authorizations, indicating if the compartments are authorized for write and
read privileges.

• SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user,
indicating if the groups are authorized for write and read privileges.

• SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access,
default label indicator, and row label indicator for the specified compartments.

• SA_USER_ADMIN.ALTER_GROUPS
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for the specified groups.

• SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The SA_USER_ADMIN.DROP_ALL_COMPARTMENTS procedure drops all compartments from
a user's authorizations.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-52

• SA_USER_ADMIN.DROP_ALL_GROUPS
The SA_USER_ADMIN.DROP_ALL_GROUPS procedure drops all groups from a user's
authorizations.

• SA_USER_ADMIN.DROP_COMPARTMENTS
The SA_USER_ADMIN.DROP_COMPARTMENTS procedure drops the specified compartments
from a user's authorizations.

• SA_USER_ADMIN.DROP_GROUPS
The SA_USER_ADMIN.DROP_GROUPS procedure drops the specified groups from a user's
authorizations.

• SA_USER_ADMIN.DROP_USER_ACCESS
The SA_USER_ADMIN.DROP_USER_ACCESS procedure removes all Oracle Label Security
authorizations and privileges from the specified user.

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a user
and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label
to the one specified.

• SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum
levels and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the
one specified.

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

About the SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package configures compartments, groups. user access,
labels, levels, and privileges.

To use this package, you must be granted the policy_DBA role (for example,
HR_OLS_POL_DBA for a role for the hr_ols_pol policy) and the EXECUTE privilege on the
SA_USER_ADMIN package.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-53

SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a
user's authorizations, indicating if the compartments are authorized for write and read
privileges.

This procedure is useful if you have already used the SA_USER_ADMIN.SET_COMPARTMENTS
procedure for the user but then decide that you want to grant this user authorization for
additional compartments, or to update the current set of compartments. You also can
use it in place of SA_USER_ADMIN.SET_COMPARTMENTS.

Syntax

SA_USER_ADMIN.ADD_COMPARTMENTS (
policy_name IN VARCHAR2,
user_name IN VARCHAR2,
comps IN VARCHAR2,
access_mode IN VARCHAR2 DEFAULT NULL,
in_def IN VARCHAR2 DEFAULT NULL,
in_row IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-55 SA_USER_ADMIN.ADD_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user can be either a new user or a
user who has already been authorized for this policy's
compartments. To find an existing user, query the USER_NAME
column of the DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to add, by short name
only. To find existing compartments, query the SHORT_NAME
column of the ALL_SA_COMPARTMENTS view.

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

• SA_UTL.READ_ONLY indicates no write access
• SA_UTL.READ_WRITE indicates that write is authorized
• If access_mode is NULL, then it is set to SA_UTL.READ_ONLY.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then it is set to Y.

in_row Specifies whether these compartments should be in the row label
(Y/N)

If in_row is NULL, then it is set to N.

Example

The following example adds compartments to the hr_ols_pol policy.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-54

BEGIN
 SA_USER_ADMIN.ADD_COMPARTMENTS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 comps => 'FIN',
 access_mode => SA_UTL.READ_ONLY,
 in_def => 'y',
 in_row => 'y');
END;
/

SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user, indicating if
the groups are authorized for write and read privileges.

This procedure is useful if you have already used the SA_USER_ADMIN.SET_GROUPS
procedure for the user but then decide that you want to grant this user authorization for
additional groups or to update the current set of groups. You also can use it in place of
SA_USER_ADMIN.SET_GROUPS.

Syntax

SA_USER_ADMIN.ADD_GROUPS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-56 SA_USER_ADMIN.ADD_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user. This user can be either a new user or a user who
has already been authorized for this policy's groups. To find an existing
user, query the USER_NAME column of the DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to add, by short name only. To find a
list of existing groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

access_mode One of two public variables that contain string values that can specify
the type of access authorized. The variable names, values, and
meaning are as follows:

• SA_UTL.READ_ONLY indicates no write access
• SA_UTL.READ_WRITE indicates that write is authorized
• If access_mode is NULL, then access_mode is set to

SA_UTL.READ_ONLY.

in_def Specifies whether these groups should be in the default groups (Y/N)

If in_def is NULL, then it is set to Y.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-55

Table E-56 (Cont.) SA_USER_ADMIN.ADD_GROUPS Parameters

Parameter Description

in_row Specifies whether these groups should be in the row label (Y/N)

If in_row is NULL, then it is set to N.

Example

The following example adds several groups to the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.ADD_GROUPS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 groups => 'ER_FIN, SR_FIN, NR_FIN, WR_FIN',
 access_mode => SA_UTL.READ_WRITE,
 in_def => 'y',
 in_row => 'y');
END;
/

SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access, default
label indicator, and row label indicator for the specified compartments.

Syntax

SA_USER_ADMIN.ALTER_COMPARTMENTS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-57 SA_USER_ADMIN.ALTER_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the compartment.
To find authorized users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to modify, using the
short name only. To find existing compartments, query the
SHORT_NAME column of the ALL_SA_COMPARTMENTS view.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-56

Table E-57 (Cont.) SA_USER_ADMIN.ALTER_COMPARTMENTS Parameters

Parameter Description

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

SA_UTL.READ_ONLY indicates no write access

SA_UTL.READ_WRITE indicates that write is authorized

If access_mode is NULL, then access_mode for the compartment is
unaltered.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then in_def for the compartment is unaltered.

in_row Specifies whether these compartments should be in the row label
(Y/N)

If in_row is NULL, then in_row for the compartment is unaltered.

If in_def is N, then in_row cannot be Y. This is because the row
label compartments must be a subset of the session label
compartments.

Example

The following example modifies compartments for the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.ALTER_COMPARTMENTS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 comps => 'FIN',
 access_mode => SA_UTL.READ_ONLY,
 in_def => 'y',
 in_row => 'y');
END;
/

SA_USER_ADMIN.ALTER_GROUPS
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for the specified groups.

Syntax

SA_USER_ADMIN.ALTER_GROUPS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-57

Parameters

Table E-58 SA_USER_ADMIN.ALTER_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to alter, by short name only. To
find existing groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

access_mode Two public variables contain string values that can specify the
type of access authorized. The variable names, values, and
meaning are as follows:

SA_UTL.READ_ONLY indicates no write access

SA_UTL.READ_WRITE indicates that write is authorized

If access_mode is NULL, then access_mode for the group is
unaltered.

in_def Specifies whether these groups should be in the default groups
(Y/N)

If in_def is NULL, then in_def for the group is unaltered.

in_row Specifies whether these groups should be in the row label ((Y/N)

If in_row is NULL, then in_row for the group is unaltered.

If in_def is N, then in_row cannot be Y. This is because the row
label groups must be a subset of the session label groups.

Example

The following example sets the access mode for the existing groups to be read only.

BEGIN
 SA_USER_ADMIN.ALTER_GROUPS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 groups => 'ER',
 access_mode => SA_UTL.READ_ONLY);
END;
/

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The SA_USER_ADMIN.DROP_ALL_COMPARTMENTS procedure drops all compartments from a
user's authorizations.

Syntax

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-58

Parameters

Table E-59 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the compartment.
To find existing users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

Example

The following example drops all compartments for the hr_ols_pol policy for user
jjones.

BEGIN
 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones');
END;
/

SA_USER_ADMIN.DROP_ALL_GROUPS
The SA_USER_ADMIN.DROP_ALL_GROUPS procedure drops all groups from a user's
authorizations.

Syntax

SA_USER_ADMIN.DROP_ALL_GROUPS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Table E-60 SA_USER_ADMIN.DROP_ALL_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

Example

The following example drops all groups from the hr_ols_pol policy for user jjones.

BEGIN
 SA_USER_ADMIN.DROP_ALL_GROUPS (
 policy_name => 'hr_ols_pol',

Appendix E
SA_USER_ADMIN PL/SQL Package

E-59

 user_name => 'jjones');
END;
/

SA_USER_ADMIN.DROP_COMPARTMENTS
The SA_USER_ADMIN.DROP_COMPARTMENTS procedure drops the specified compartments
from a user's authorizations.

Syntax

SA_USER_ADMIN.DROP_COMPARTMENTS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2);

Parameters

Table E-61 SA_USER_ADMIN.DROP_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the compartment.
To find existing users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to drop. To find all
comps for this policy, query the POLICY_NAME and COMP columns
of the DBA_SA_USER_COMPARTMENTS view.

Example

The following example drops the FINANCIAL compartment from the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.DROP_COMPARTMENTS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 comps => 'HR');
END;
/

SA_USER_ADMIN.DROP_GROUPS
The SA_USER_ADMIN.DROP_GROUPS procedure drops the specified groups from a user's
authorizations.

Syntax

SA_USER_ADMIN.DROP_GROUPS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-60

Parameters

Table E-62 SA_USER_ADMIN.DROP_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to drop, by short name only. To
find a list of groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

Example

The following example drops the NR_FIN group from the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.DROP_GROUPS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 groups => 'ER');
END;
/

SA_USER_ADMIN.DROP_USER_ACCESS
The SA_USER_ADMIN.DROP_USER_ACCESS procedure removes all Oracle Label Security
authorizations and privileges from the specified user.

Syntax

SA_USER_ADMIN.DROP_USER_ACCESS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Table E-63 SA_USER_ADMIN.DROP_USER_ACCESS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. To find all users associated with this
policy, query the USER_NAME and POLICY_NAME columns of the
DBA_SA_USER_PRIVS view.

Examples

The following example removes user jjones's authorization for the hr_ols_pol policy.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-61

BEGIN
 SA_USER_ADMIN.DROP_USER_ACCESS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones');
END;
/

SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a user and
identifies default values for the user's session label and row label.

After you have set the compartment, you can configure additional compartments by
using the SA_USER_ADMIN.ADD_COMPARTMENTS procedure. (See
SA_USER_ADMIN.ADD_COMPARTMENTS.)

All users must have their levels set before their authorized compartments can be
established.

The write compartments, if specified, must be a subset of the read compartments.
(The write compartments are those to which the user should have write access.)

Syntax

SA_USER_ADMIN.SET_COMPARTMENTS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_comps IN VARCHAR2,
 write_comps IN VARCHAR2 DEFAULT NULL,
 def_comps IN VARCHAR2 DEFAULT NULL,
 row_comps IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-64 SA_USER_ADMIN.SET_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name to assign compartments

read_comps A comma-delimited list of compartments authorized for read
access, by short name only

To find all compartments, query the SHORT_NAME column of the
ALL_SA_COMPARTMENTS view.

write_comps A comma-delimited list of compartments authorized for write
access (subset of read_comps), by short name only. If
write_comps are NULL, then they are set to the read_comps.

def_comps Specifies the default compartments, by short name only. This
must be a subset of read_comps. If the def_comps are NULL, then
they are set to the read_comps.

row_comps Specifies the row compartments, by short name only. This must
be a subset of write_comps and def_comps. If the row_comps are
NULL, then they are set to the components in def_comps that are
authorized for write access.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-62

Example

The following example sets compartments for the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.SET_COMPARTMENTS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 read_comps => 'FIN',
 write_comps => 'FIN',
 def_comps => 'FIN',
 row_comps => 'FIN');
END;
/

SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label to
the one specified.

As long as the row label will still be dominated by the new write label, you can set the
session label to:

• Any level equal to or less than his maximum, and equal to or greater than his
minimum label

• Include any compartments in the authorized compartment list

• Include any groups in the authorized group list. (Subgroups of authorized groups
are implicitly included in the authorized list.)

The row label must be dominated by the new write label that will result from resetting
the session label. If this condition is not true, then the SET_DEFAULT_LABEL procedure will
fail.

For example, suppose the current row label is S:A,B, and that you have write access to
both compartments. If you attempt to set the new default label to C:A,B, then the
SET_LABEL procedure will fail. This is because the new write label would be C:A,B, which
does not dominate the current row label.

To successfully reset the session label in this case, you must first lower the row label
to a value that will be dominated by the resulting session label.

Syntax

SA_USER_ADMIN.SET_DEFAULT_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 def_label IN VARCHAR2);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-63

Parameters

Table E-65 SA_USER_ADMIN.SET_DEFAULT_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized with label
components. To find this user, query the USER_NAME column of
the ALL_SA_USER_LABELS view.

def_label Specifies the label string to be used to initialize the user's default
labels. This label may contain any compartments and groups that
are authorized for read access. To find existing labels, query the
LABEL column of the ALL_SA_LABELS view.

Example

The following example sets the default label for hr_ols_pol for user jjones.

BEGIN
 SA_USER_ADMIN.SET_DEFAULT_LABEL (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 def_label => 'HS');
END;
/

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

All users must have their levels set before their authorized groups can be established.
You can find information about a user's level authorization by querying the
DBA_SA_USER_LEVELS data dictionary view.

Syntax

SA_USER_ADMIN.SET_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_groups IN VARCHAR2,
 write_groups IN VARCHAR2 DEFAULT NULL,
 def_group IN VARCHAR2 DEFAULT NULL,
 row_groups IN VARCHAR2 DEFAULT NULL);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-64

Parameters

Table E-66 SA_USER_ADMIN.SET_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user is a first-time user for group
authorization, but the user must already be authorized for levels.
To find users who have been authorized for levels, query the
USER_NAME column of the DBA_SA_USER_LEVELS view.

read_groups A comma-delimited list of groups authorized for read, by short
name only.

To find existing groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

write_groups A comma-delimited list of groups authorized for write, by short
name only. This must be a subset of read_groups. If set to NULL,
then this setting defaults to read_groups.

def_groups Specifies the default groups, by short name only. This must be a
subset of read_groups. If set to NULL, then this setting defaults to
read_groups.

row_groups Specifies the row groups, by short name only. This must be a
subset of write_groups and def_groups. If set to NULL, then this
setting defaults to the groups in def_groups that are authorized
for write access.

Example

The following example defines groups for the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.SET_GROUPS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 read_groups => 'ER_FIN',
 write_groups => 'ER_FIN',
 def_groups => 'ER_FIN',
 row_groups => 'ER_FIN');
END;
/

SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum levels
and identifies default values for the user's session label and row label.

Syntax

SA_USER_ADMIN.SET_LEVELS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_level IN VARCHAR2,
 min_level IN VARCHAR2 DEFAULT NULL,

Appendix E
SA_USER_ADMIN PL/SQL Package

E-65

 def_level IN VARCHAR2 DEFAULT NULL,
 row_level IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-67 SA_USER_ADMIN.SET_LEVELS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user does not need to have any
Oracle Label Security authorizations before you run this
procedure.

max_level The highest level for read and write access, by short name only.

To find existing levels, query the SHORT_NAME column of the
ALL_SA_LEVELS view.

min_level The lowest level for write access, by short name only. If set to
NULL, then the default is the lowest level for the policy.

def_level Specifies the default level (equal to or greater than the minimum
level, and equal to or less than the maximum level). Use the short
name only. If set to NULL, then the default is the max_level.

row_level Specifies the row level (equal to or greater than the minimum
level, and equal to or less than the default level). Use the short
name only. If set to NULL, then it is set to the def_level.

Example

The following example sets levels for the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.SET_LEVELS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 max_level => 'PUB',
 min_level => 'HS');
END;
/

SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for program
units.

If the privileges parameter is NULL, then the program unit's privileges for the policy are
removed.

To grant privileges to a stored program unit, you must have the policy_DBA role, and
the EXECUTE permission on the SA_USER_ADMIN.SA_USER_ADMIN package. You can use
either the SA_USER_ADMIN package or Oracle Enterprise Manager to manage Oracle
Label Security privileges.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-66

Syntax

SA_USER_ADMIN.SET_PROG_PRIVS (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 program_unit_name IN VARCHAR2,
 privileges IN VARCHAR2);

Parameters

Table E-68 SA_SESSION.SET_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The name of the schema that contains the program unit

program_unit_name Specifies the program unit to be granted privileges

privileges A comma-delimited character string of policy-specific privileges.
If you set privileges to NULL, then the program unit's privileges for
the policy are removed.

See About Granting Privileges to Users and Trusted Program
Units for the Policy for list of available privileges to grant.

Example

The following example gives the READ privilege to the SUM_PURCHASES function (described
in Example: Trusted Stored Program Unit):

BEGIN
 SA_USER_ADMIN.SET_PROG_PRIVS (
 policy_name => 'hr_ols_pol',
 schema_name => 'HR',
 program_unit_name => 'check_emp_hours',
 privileges => 'READ');
END;
/

When the check_emp_hours procedure is then called, it runs with the READ privilege as
well as the current user's Oracle Label Security privileges. Using this technique, the
user can be allowed to find the value of the total employee hours that were logged,
without learning what hours any individual employee logged.

SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the one
specified.

The user can set the row label independently, but only to:

• A level that is less than or equal to the level of the session label, and greater than
or equal to the user's minimum level

• Include a subset of the compartments and groups from the session label, for which
the user is authorized to have write access

Appendix E
SA_USER_ADMIN PL/SQL Package

E-67

If you try to set the row label to an invalid value, then the operation is disallowed, and
the row label value is unchanged.

Syntax

SA_USER_ADMIN.SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 row_label IN VARCHAR2);

Parameters

Table E-69 SA_USER_ADMIN.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user must have the sufficient
compartment, group, and level authorizations. To find this user,
query the USER_NAME column of the DBA_SA_USER_COMPARTMENTS,
DBA_SA_USER_GROUPS, and DBA_SA_USER_LEVELS views.

row_label Specifies the label string to be used to initialize the user's row
label. The label must contain only those compartments and
groups from the default label that are authorized for write access.
To find existing compartments and groups, query the
ALL_SA_COMPARTMENTS and ALL_SA_GROUPS views.

Example

The following example sets the row label for the hr_ols_pol policy for user jjones.

BEGIN
 SA_USER_ADMIN.SET_ROW_LABEL (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 row_label => 'HS');
END;
/

Related Topics

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels, compartments,
and groups using a set of labels, instead of the individual components.

Syntax

SA_USER_ADMIN.SET_USER_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,

Appendix E
SA_USER_ADMIN PL/SQL Package

E-68

 max_read_label IN VARCHAR2,
 max_write_label IN VARCHAR2 DEFAULT NULL,
 min_write_label IN VARCHAR2 DEFAULT NULL,
 def_label IN VARCHAR2 DEFAULT NULL,
 row_label IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-70 SA_USER_ADMIN.SET_USER_LABELS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. The user can be an existing database
user, a Real Application Security user, or any named user that
resides in Oracle Internet Directory. This user does not need any
Oracle Label Security authorizations before you run this
procedure.

max_read_label Specifies the label string to be used to initialize the user's
maximum authorized read label. Composed of the user's
maximum level, compartments authorized for read access, and
groups authorized for read access.

To find information for these settings, query the DBA_SA_USERS
data dictionary view.

max_write_label Specifies the label string to be used to initialize the user's
maximum authorized write label. Composed of the user's
maximum level, compartments authorized for write access, and
groups authorized for write access. If max_write_label is not
specified, then it is set to max_read_label.

min_write_label Specifies the label string to be used to initialize the user's
minimum authorized write label. Contains only the level, with no
compartments or groups. If min_write_label is not specified,
then it is set to the lowest defined level for the policy, with no
compartments or groups.

def_label Specifies the label string to be used to initialize the user's session
label, including level, compartments, and groups (a subset of
max_read_label). If default_label is not specified, then it is set
to max_read_label.

row_label Specifies the label string to be used to initialize the program's row
label. Includes level, components, and groups: subsets of
max_write_label and def_label. If row_label is not specified,
then it is set to def_label, with only the compartments and
groups authorized for write access.

Examples

The following example sets user labels for the hr_ols_pol policy for user jjones.

BEGIN
 SA_USER_ADMIN.SET_USER_LABELS (
 policy_name => 'hr_ols_pol',
 user_name => 'jjones',
 max_read_label => 'HS:FIN',
 max_write_label => 'HS',
 def_label => 'HS',

Appendix E
SA_USER_ADMIN PL/SQL Package

E-69

 row_label => 'HS');
END;
/

The following example sets user labels for the XSOLSPOL1 policy for the Oracle
Database Real Application Security user XSUSER1. To execute the following example,
you must either be an administrative user named LBACSYS, be granted the LBAC_DBA
database role and granted the EXECUTE privilege, or be granted the XSOLSPOL1_DBA role
and granted the EXECUTE privilege on the SA_USER_ADMIN package.

EXEC SA_USER_ADMIN.SET_USER_LABELS('XSOLSPOL1', 'XSUSER1',‘MID','MID');

In this specification:

• XSOLSPOL1 is the name of an existing OLS policy.

• XSUSER1 is the name of an existing Oracle Database Real Application Security user.

• MID is the value of the max_read_label.

• MID is the value of the max_write_label.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for users.

These privileges do not become effective until the next time the user logs into the
database. The new set of privileges replaces any existing privileges. A NULL value for
the privileges parameter removes the user's privileges for the policy.

To assign policy privileges to users, you must have the EXECUTE privilege for the
SA_USER_ADMIN package, and must have been granted the policy_DBA role.

Syntax

SA_USER_ADMIN.SET_USER_PRIVS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privileges IN VARCHAR2);

Parameters

Table E-71 SA_USER_ADMIN.SET_USER_PRIVS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-70

Table E-71 (Cont.) SA_USER_ADMIN.SET_USER_PRIVS Parameters

Parameter Description

user_name The name of the user to be granted privileges. The user can be
an existing database user, a Real Application Security user, or
any named user that resides in Oracle Internet Directory. This
user should already have been authorized for policy levels,
compartments, and groups. To find this user, query the
USER_NAME column of the DBA_SA_USER_COMPARTMENTS,
DBA_SA_USER_GROUPS, and DBA_SA_USER_LABELS views.

privileges A character string of policy-specific privileges separated by
commas. See About Granting Privileges to Users and Trusted
Program Units for the Policy for list of available privileges to
grant.

Examples

The following example grants user jgodfrey full privileges for the hr_ols_pol policy
settings.

BEGIN
 SA_USER_ADMIN.SET_USER_PRIVS (
 policy_name => 'hr_ols_pol',
 user_name => 'jgodfrey',
 privileges => 'FULL');
END;
/

The following example grants Oracle Database Real Application Security user XSUSER1
the READ privilege for the Oracle Label Security policy XSOLSPOL1. To execute the
following example, you must either be an administrative user named LBACSYS, be
granted the LBAC_DBA database role and granted the EXECUTE privilege, or be granted the
XSOLSPOL1_DBA role and granted the EXECUTE privilege on the SA_USER_ADMIN package.

EXEC SA_USER_ADMIN.SET_USER_PRIVS('XSOLSPOL1', 'XSUSER1','READ');

In this specification:

• XSOLSPOL1 is the name of an existing OLS policy.

• XSUSER1 is the name of an existing Oracle Database Real Application Security user.

• READ is the privilege to be granted to XSUSER1 in OLS policy XSOLSPOL1.

Related Topics

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

SA_UTL PL/SQL Utility Functions and Procedures
The SA_UTL PL/SQL package contains utility functions and procedures that are used in
PL/SQL programs.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-71

• About the SA_UTL PL/SQL Package
The SA_UTL PL/SQL package utility functions include returning the values such as
user privileges or label information.

• SA_UTL.CHECK_LABEL_CHANGE
The SA_UTL.CHECK_LABEL_CHANGE function checks if the user can change the data
label for a policy protected table row.

• SA_UTL.CHECK_READ
The SA_UTL.CHECK_READ function checks if a user can read a policy-protected table
row.

• SA_UTL.CHECK_WRITE
The SA_UTL.CHECK_WRITE function to checks if the user can insert, update, or delete
data in a policy protected table row.

• SA_UTL.DATA_LABEL
The SA_UTL.DATA_LABEL function returns TRUE if the label is a data label.

• SA_UTL.GREATEST_LBOUND
The SA_UTL.GREATEST_LBOUND function returns a label that is the greatest lower
bound of the two label arguments.

• SA_UTL.LEAST_UBOUND
The SA_UTL.LEAST_UBOUND function returns a label that is the least upper bound of
the label arguments.

• SA_UTL.NUMERIC_LABEL
The SA_UTL.NUMERIC_LABEL function returns the current session label.

• SA_UTL.NUMERIC_ROW_LABEL
The SA_UTL.NUMERIC_ROW_LABEL function returns the current row label. .

• SA_UTL.SET_LABEL
The SA_UTL.SET_LABEL procedure sets the label of the current database session.

• SA_UTL.SET_ROW_LABEL
The SA_UTL.SET_ROW_LABEL procedure sets the row label of the current database
session.

About the SA_UTL PL/SQL Package
The SA_UTL PL/SQL package utility functions include returning the values such as user
privileges or label information.

These programs return information about the current values of the session security
attributes, as numeric label values. They are primarily for use in trusted stored
program units. You do not need special privileges to use this package.

Related Topics

• How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of
session security attributes using numeric label values.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-72

SA_UTL.CHECK_LABEL_CHANGE
The SA_UTL.CHECK_LABEL_CHANGE function checks if the user can change the data label
for a policy protected table row.

This function returns 1 if the user can change the data label. It returns 0 if the user
cannot change the data label. The input values are the policy name, the current data
label, and the new data label.

Syntax

SA_UTL.CHECK_LABEL_CHANGE (
 policy_name IN VARCHAR2,
 current_label IN NUMBER,
 new_label IN NUMBER)
RETURN NUMBER;

Note:

You must have update privileges on the table to write any data into the table.

Parameters

Table E-72 SA_UTL.CHECK_LABEL_CHANGE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

current_label The current value of the label. To find existing label values,
query the LABEL column of the ALL_SA_LABELS view.

new_label The new value for the label

Example

The following example indicates if users can change data labels in policy-protected
rows.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.CHECK_LABEL_CHANGE('hr_ols_pol',2000, 2200) = 1
 THEN DBMS_OUTPUT.PUT_LINE('Users can chagne data labels in policy-protected
rows.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Users cannot change data labels in policy-protected rows.');
 END IF;
END;
/

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-73

SA_UTL.CHECK_READ
The SA_UTL.CHECK_READ function checks if a user can read a policy-protected table row.

This function returns 1 if the user can read the table row. It returns 0 if the user cannot
read the table row.

Note:

The user must have the SELECT privilege on the table to read any data from the
table.

Syntax

SA_UTL.CHECK_READ (
 policy_name IN VARCHAR2,
 label IN NUMBER)
RETURN NUMBER;

Parameters

Table E-73 SA_UTL.CHECK_READ Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The label to be checked. To find existing label values, query the
LABEL column of the ALL_SA_LABELS view.

Example

The following example indicates if users can read a policy-protected row.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.CHECK_READ('hr_ols_pol',2000) = 1
 THEN DBMS_OUTPUT.PUT_LINE('Users can read policy-protected rows.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Users cannot read policy-protected rows.');
 END IF;
END;
/

SA_UTL.CHECK_WRITE
The SA_UTL.CHECK_WRITE function to checks if the user can insert, update, or delete data
in a policy protected table row.

The user should already have the UPDATE privilege on the table to write any data into
the table. This function returns 1 if the user can write to the table row. It returns 0 if the

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-74

user cannot write to the table row. The input values are the policy name and the row
data label.

Syntax

SA_UTL.CHECK_WRITE (
 policy_name IN VARCHAR2,
 label IN NUMBER)
RETURN NUMBER;

Parameters

Table E-74 SA_UTL.CHECK_WRITE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The label to be checked. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

Example

The following example indicates if users can write to policy-protected rows.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.CHECK_WRITE('hr_ols_pol',2000) = 1
 THEN DBMS_OUTPUT.PUT_LINE('Users can write to policy-protected rows.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Users cannot write to policy-protected rows.');
 END IF;
END;
/

SA_UTL.DATA_LABEL
The SA_UTL.DATA_LABEL function returns TRUE if the label is a data label.

Syntax

SA_UTL.DATA_LABEL(
 label IN NUMBER)
RETURN BOOLEAN;

Parameters

Table E-75 SA_UTL.DATA_LABEL Parameter

Parameter Description

label The label to be checked. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-75

Example

The following example indicates if the label 2000 is a data label.

SET SERVEROUTPUT ON
BEGIN
 IF SA_UTL.DATA_LABEL(2000)
 THEN DBMS_OUTPUT.PUT_LINE('Label 2000 is a data label.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Label 2000 is not a data label.');
 END IF;
END;
/

SA_UTL.GREATEST_LBOUND
The SA_UTL.GREATEST_LBOUND function returns a label that is the greatest lower bound of
the two label arguments.

Syntax

SA_UTL.GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

Parameters

Table E-76 SA_UTL.GREATEST_LBOUND Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Examples

The following example compares existing label tags 3110 and 3111.

SELECT SA_UTL.GREATEST_LBOUND(3110,3111) FROM DUAL;

SA_UTL.GREATEST_LBOUND(3110,3111)

 3111

SA_UTL.LEAST_UBOUND
The SA_UTL.LEAST_UBOUND function returns a label that is the least upper bound of the
label arguments.

Syntax

SA_UTL.LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-76

Parameters

Table E-77 SA_UTL.LEAST_UBOUND Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing labels 3110 and 3111.

SELECT SA_UTL.LEAST_UBOUND(3110,3111) FROM DUAL;

SA_UTL.LEAST_UOUND(3110,3111)

 3110

See Also:

Determination of the Upper and Lower Bounds of Labels. The functions
described here are the same as those described in that topic, except that these
return a number instead of a character string.

SA_UTL.NUMERIC_LABEL
The SA_UTL.NUMERIC_LABEL function returns the current session label.

This function takes a policy name as the input parameter and returns a NUMBER value.

Syntax

SA_UTL.NUMERIC_LABEL (
 policy_name)
RETURN NUMBER;

Parameters

Table E-78 SA_UTL.NUMERIC_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns a the session numeric label for the user who is currently
connected to the database instance.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-77

SET SERVEROUTPUT ON
DECLARE
 num_label number;
BEGIN
 num_label := SA_UTL.NUMERIC_LABEL('hr_ols_pol');
 DBMS_OUTPUT.PUT_LINE('Numeric label: '||num_label);
END;
/

SA_UTL.NUMERIC_ROW_LABEL
The SA_UTL.NUMERIC_ROW_LABEL function returns the current row label. .

This function takes a policy name as the input parameter and returns a NUMBER value

Syntax

SA_UTL.NUMERIC_ROW_LABEL (
 policy_name)
RETURN NUMBER;

Parameters

Table E-79 SA_UTL.NUMERIC_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Examples

The following example returns the session numeric row label for the user who is
currently connected to the database instance.

SET SERVEROUTPUT ON
DECLARE
 num_row number;
BEGIN
 num_row := SA_UTL.NUMERIC_ROW_LABEL('hr_ols_pol');
 DBMS_OUTPUT.PUT_LINE('Numeric row label: '||num_row);
END;
/

SA_UTL.SET_LABEL
The SA_UTL.SET_LABEL procedure sets the label of the current database session.

The session's write label and row label are set to the subset of the label's
compartments and groups that are authorized for write access.

Syntax

SA_UTL.SET_LABEL (
 policy_name IN VARCHAR2,
 label IN LBAC_LABEL);

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-78

Parameters

Table E-80 SA_UTL.SET_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The label to set as the session label. To find existing label
values, query the LABEL column of the ALL_SA_LABELS view.

You must pass this parameter through as an output of the
TO_LBAC_DATA_LABEL function, which converts a label in
character form to an LBAC_LABEL type. (The example in the next
section shows how to do this.)

Example

The following example sets the label for the hr_ols_pol policy.

BEGIN
 SA_UTL.SET_LABEL (
 policy_name => 'hr_ols_pol',
 label => to_lbac_data_label('hr_ols_pol','hs:pii'));
END;
/

Related Topics

• How Labeling Functions in Oracle Label Security Policies Works
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

SA_UTL.SET_ROW_LABEL
The SA_UTL.SET_ROW_LABEL procedure sets the row label of the current database
session.

The compartments and groups in the label must be a subset of compartments and
groups in the session label that are authorized for write access.

Syntax

SA_UTL.SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 label IN BINARY_INTEGER);

Parameters

Table E-81 SA_UTL.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-79

Table E-81 (Cont.) SA_UTL.SET_ROW_LABEL Parameters

Parameter Description

label The label to set as the session default row label. To find existing
label values, query the LABEL column of the ALL_SA_LABELS view.

Example

The following example sets the row label for the hr_ols_pol policy to 3000.

BEGIN
 SA_UTL.SET_ROW_LABEL (
 policy_name => 'hr_ols_pol',
 label => 1111);
END;
/

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-80

F
Oracle Label Security Reference

Oracle Label Security provides data dictionary tables and views. You should also be
aware of Oracle Label Security restrictions.

• Oracle Label Security Data Dictionary Tables and Views
Oracle Label Security provides data dictionary tables, data dictionary views, and
an user-created auditing view.

• Restrictions in Oracle Label Security
Several restrictions exist in this Oracle Label Security release.

Oracle Label Security Data Dictionary Tables and Views
Oracle Label Security provides data dictionary tables, data dictionary views, and an
user-created auditing view.

• Oracle Database Data Dictionary Tables
Oracle Label Security does not label the Oracle data dictionary tables; accss is
controlled by standard Oracle Database system and object privileges.

• Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views,
which are exempt from any policy enforcement.

• Oracle Label Security User-Created Auditing View
The SA_AUDIT_ADMIN.CREATE_VIEW procedure can be used to create an audit trail
view for a specific policy.

Oracle Database Data Dictionary Tables
Oracle Label Security does not label the Oracle data dictionary tables; accss is
controlled by standard Oracle Database system and object privileges.

See Also:

Oracle Database Reference for detailed information about all data dictionary
tables and views

Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views, which
are exempt from any policy enforcement.

Access to the data dictionary views is granted by default to the SELECT_CATALOG_ROLE, a
standard Oracle Database role that lets you examine the Oracle Database data
dictionary.

F-1

• ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle
Label Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure
settings.

• ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current
user about Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

• ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle
Label Security policy labels and tags, based on the SA_LABEL_ADMIN.CREATE_LABEL
procedure settings.

• ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s
Oracle Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP and
SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

• ALL_SA_LEVELS
The ALL_SA_LEVELS data dictionary view shows for the current user information
about levels, based on the SA_COMPONENTS.CREATE_LEVEL procedure.

• ALL_SA_POLICIES
The ALL_SA_POLICIES data dictionary view shows for the current user information
about Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY
procedure.

• ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user information
about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

• ALL_SA_TABLE_POLICIES
The ALL_SA_TABLE_POLICIES data dictionary view shows for the current user
information about a policy added to a database table, based
SA_POLICY_ADMIN.APPLY_TABLE_POLICY settings.

• ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information about
Oracle Label Security user privileges, based on SA_USER_ADMIN.SET_USER_LABELS
and SA_USER_ADMIN.SET_USER_PRIVS.

• ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-
specific information about users, based on the SA_USER_ADMIN.SET_USER_LABELS
procedure settings.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-2

• ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the
minimum and maximum levels assigned to users, based on the
SA_USER_ADMIN.SET_LEVELS procdure.

• ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-
specific privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS
procedure.

• CDB_OLS_STATUS
The CDB_OLS_STATUS data dictionary view shows the configuration status of Oracle
Label Security in the database in a multitenant environment.

• DBA_SA_AUDIT_OPTIONS
The DBA_SA_AUDIT_OPTIONS data dictionary view data dictionary view shows for the
entire database the Oracle Label Security audit options.

• DBA_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows for the entire database
information about Oracle Label Security policy compartments.

• DBA_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the entire database the
labels and label tags for the specified Oracle Label Security policy.

• DBA_SA_GROUPS
The ALL_SA_GROUPS data dictionary view shows for the entire database information
about Oracle Label Security policy groups.

• DBA_SA_GROUP_HIERARCHY
The DBA_SA_GROUP_HIERARCHY data dictionary view shows the hierarchy of groups
(that is, parent-child relationships) in a policy.

• DBA_SA_LABELS
The DBA_SA_LABELS data dictionary view shows for the entire database information
about the tags and types of labels for a policy.

• DBA_SA_LEVELS
The DBA_SA_LEVELS data dictionary view shows for the entire database information
about levels associated with a policy.

• DBA_SA_POLICIES
The DBA_SA_POLICIES data dictionary view shows for the entire database
information about Oracle Label Security policies, based on the
SA_SYSDBA.CREATE_POLICY procedure.

• DBA_SA_PROG_PRIVS
The DBA_SA_PROG_PRIVS data dictionary view shows for the entire database
information about the policy-specific privileges for program units.

• DBA_SA_SCHEMA_POLICIES
The DBA_SA_SCHEMA_POLICIES data dictionary view shows for the entire database
information about policies that have been applied to all tables in the schema.

• DBA_SA_TABLE_POLICIES
The DBA_SA_TABLE_POLICIES data dictionary view shows for the entire database
information about a policy that has been added to a database table.

• DBA_SA_USERS
The DBA_SA_USERS data dictionary view shows for the entire database information
about the privileges that Oracle Label Security users have.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-3

• DBA_SA_USER_COMPARTMENTS
The DBA_SA_USER_COMPARTMENTS data dictionary view shows for the entire database
the user authorizations, based on the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

• DBA_SA_USER_GROUPS
The DBA_SA_USER_GROUPS data dictionary view shows for the entire database the
groups associated with users, based on the SA_USER_ADMIN.ADD_GROUPS procedure.

• DBA_SA_USER_LABELS
The DBA_SA_USER_LABELS data dictionary view shows for the entire database label-
specific information about users.

• DBA_SA_USER_LEVELS
The DBA_SA_USER_LEVELS data dictionary view shows for the entire database the
minimum and maximum levels that have been assigned to users.

• DBA_SA_USER_PRIVS
The DBA_SA_USER_PRIVS data dictionary view shows for the current user the policy-
specific privileges that have been granted to users.

• DBA_OLS_STATUS
The DBA_OLS_STATUS data dictionary view shows the configuration status of Oracle
Label Security in the database.

• USER_SA_SESSION
The USER_SA_SESSION data dictionary view shows the security attribute values for
the current database session.

ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle Label
Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure settings.

See SA_AUDIT_ADMIN.AUDIT.

This view displays whether auditing is configured to generate audit records per
session (BY SESSION) or per access (BY ACCESS) and for successful or unsuccessful
operations. Possible values are as follows:

• A dash (-) indicates that the audit option is not set.

• The S character indicates that the audit option is set BY SESSION.

• The A character indicates that the audit option is set BY ACCESS.

• Each audit option has two possible settings, WHENEVER SUCCESSFUL and WHENEVER NOT
SUCCESSFUL, separated by a slash (/).

For example, in the following output, user jjones is audited with the BY ACCESS audit
type for successful actions involving policy-specific privileges. User rlayton is audited
with the BY SESSION audit type: audit records are written for failed attempts to remove
policies and for successful attempts at setting user authorizations.

SELECT * FROM DBA_SA_AUDIT_OPTIONS;

POLICY_NAME USER_NAME APY REM SET_ PRV
----------- ------------ --- ---- ---- ---
HR_OLS_POL JJONES -/- -/- -/- A/-
HR_OLS_POL RLAYTON -/- -/S S/- -/-

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-4

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

USER_NAME VARCHAR2(128) NOT NULL Name of the user associated with
the policy

APY VARCHAR2(3) NULL Audit option; refers to the
application of specified Oracle
Label Security policies to tables
and schemas

REM VARCHAR2(3) NULL Audit option; refers to the removal
of specified Oracle Label Security
policies from tables and schemas

SET_ VARCHAR2(3) NULL Audit option; refers to the setting
of user authorizations, and user
and program privileges

PRV VARCHAR2(3) NULL Audit option; refers to the use of
all policy-specific privileges

ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current user
about Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COMP_NUM NUMBER(4) NOT NULL Compartment number in the range
of (0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name for the compartment

LONG_NAME VARCHAR2(80) NOT NULL Long name for the compartment

Related Topics

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and
specify its short name and long name.

ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle Label
Security policy labels and tags, based on the SA_LABEL_ADMIN.CREATE_LABEL procedure
settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-5

Column Datatype Null Description

LABEL VARCHAR2(4000) NULL Short name of the level,
compartment, or group that was
specified as the label value

LABEL_TAG NUMBER NULL Integer that represents the sort
order of the label, relative to
other policy labels (0-99999999)

Related Topics

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s Oracle
Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP and
SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

GROUP_NUM NUMBER(4) NOT NULL Group number (0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name of the group

LONG_NAME VARCHAR2(80) NOT NULL Long name of the group

PARENT_NUM NUMBER(4) NULL Numerical ID for the associated
parent group

PARENT_NAME VARCHAR2(30) NULL Name of the group assigned as
the parent for the group

Related Topics

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short
name and long name, and optionally a parent group.

• SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group
associated with a particular group.

ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information about
the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

Access to ALL_SA_LABELS is PUBLIC. However, only the labels authorized for read access
by the session are visible.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-6

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

LABEL VARCHAR2(4000) NOT NULL Short name of the level
associated with this label

LABEL_TAG NUMBER(30) NOT NULL Integer tag assigned to the label

LABEL_TYPE VARCHAR2(15) NULL Type of label

Related Topics

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

• SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

ALL_SA_LEVELS
The ALL_SA_LEVELS data dictionary view shows for the current user information about
levels, based on the SA_COMPONENTS.CREATE_LEVEL procedure.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

LEVEL_NUM NUMBER(4) NOT NULL Level number (0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name for the level

LONG_NAME VARCHAR2(80) NOT NULL Long name for the level

Related Topics

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short
name and long name.

ALL_SA_POLICIES
The ALL_SA_POLICIES data dictionary view shows for the current user information about
Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY procedure.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column that was
added to tables protected by the
policy

STATUS VARCHAR2(8) NULL Whether the policy has been
enabled or disabled

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-7

Column Datatype Null Description

POLICY_OPTIONS VARCHAR2(4000) NULL Options that were set for this
policy

See Categories of Policy
Enforcement Options for a listing
of the possible enforcement
options.

Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user information
about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

Column Datatype Null Description

SCHEMA_NAME VARCHAR2(128) NOT NULL Name of the schema that
contains the program unit

PROGRAM_NAME VARCHAR(128) NOT NULL Program unit that was granted
privileges

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

PROGRAM_PRIVILEGES VARCHAR2(4000) NULL Policy-specific privileges.

See About Granting Privileges to
Users and Trusted Program Units
for the Policy for list of possible
privileges.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user information
about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

SCHEMA_NAME VARCHAR2(128) NOT NULL Name of the schema associated with
this policy

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-8

Column Datatype Null Description

STATUS VARCHAR2(8) NULL Whether the policy has been
enabled or disabled for the schema
(by the
SA_POLICY_ADMIN.APPLY_SCHEMA_PO
LICY or
SA_POLICY_ADMIN.DISABLE_SCHEMA_
POLICY for procedure)

SCHEMA_OPTIONS VARCHAR2(4000) NULL Options that have been applied.

Related Topics

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

ALL_SA_TABLE_POLICIES
The ALL_SA_TABLE_POLICIES data dictionary view shows for the current user information
about a policy added to a database table, based SA_POLICY_ADMIN.APPLY_TABLE_POLICY
settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

SCHEMA_NAME VARCHAR2(128) NOT NULL Schema that contains the table that
the policy protects

TABLE_NAME VARCHAR2(128) NOT NULL Table to be protected by the policy

STATUS VARCHAR2(8) NULL Whether the policy has been
enabled or disabled for the table
(by the
SA_POLICY_ADMIN.APPLY_TABLE_PO
LICY or
SA_POLICY_ADMIN.DISABLE_TABLE_
POLICY for procedure)

TABLE_OPTIONS VARCHAR2(4000) NULL Policy enforcement options to be
used for the table

FUNCTION VARCHAR2(1024) NULL Name of the function to return a
label value to use as the default

PREDICATE VARCHAR2(256) NULL Predicate to combine (using AND or
OR) with the label-based predicate
for READ_CONTROL

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-9

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information about
Oracle Label Security user privileges, based on SA_USER_ADMIN.SET_USER_LABELS and
SA_USER_ADMIN.SET_USER_PRIVS.

Column Type Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_PRIVILEGES VARCHAR2(4000) NULL Policy-specific privileges granted
to the user.

MAX_READ_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized read label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized write label

MIN_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
minimum authorized write label

DEFAULT_READ_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
read access

DEFAULT_WRITE_LABE
L

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
write access

DEFAULT_ROW_LABEL VARCHAR2(4000) NULL Label string to initialize the
program's row label; includes
level, components, and groups

USER_LABELS VARCHAR2(4000) NULL Retained solely for backward
compatibility and will be removed
in the next release.

The USER_LABELS column is
deprecated starting with Oracle
Database 18c because it is
redundant. The information in this
column is displayed in other
ALL_SA_USERS and DBA_SA_USERS
columns.

Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-10

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-specific
information about users, based on the SA_USER_ADMIN.SET_USER_LABELS procedure
settings.

Column Datatype Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

LABELS VARCHAR2(4000) NULL Retained solely for backward
compatibility and will be removed
in the next release.

The LABELS column is deprecated
starting with Oracle Database
12c release (12.2.0.2) because it
is redundant. The information in
this column is displayed in
ALL_SA_USER_LABELS and
DBA_SA_USER_LABELS columns.

MAX_READ_LABEL VARCHAR2(4000) NOT NULL Label string to initialize the user's
maximum authorized read label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized write label

MIN_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
minimum authorized write label

DEFAULT_READ_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
read access

DEFAULT_WRITE_LABE
L

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
write access

DEFAULT_ROW_LABEL VARCHAR2(4000) NULL Label string to initialize the
program's row label; includes
level, components, and groups

Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-11

ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the minimum
and maximum levels assigned to users, based on the SA_USER_ADMIN.SET_LEVELS
procdure.

It also lists the user's session label and row label default values.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

MAX_LEVEL VARCHAR2(30) NOT NULL Short name of the highest level for
read and write access

MIN_LEVEL VARCHAR2(30) NOT NULL Short name of the lowest level for
read and write access

DEF_LEVEL VARCHAR2(30) NOT NULL Short name of the default level

ROW_LEVEL VARCHAR2(30) NOT NULL Short name of the row level

Related Topics

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum
levels and identifies default values for the user's session label and row label.

ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-specific
privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS procedure.

Column Datatype Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_PRIVILEGE
S

VARCHAR2(4000) NULL Policy-specific privileges granted to
the user

Related Topics

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

CDB_OLS_STATUS
The CDB_OLS_STATUS data dictionary view shows the configuration status of Oracle Label
Security in the database in a multitenant environment.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-12

Column Datatype Null Description

NAME VARCHAR2(20) NOT NULL Name of the status. Values are:

• OLS_CONFIGURE_STATUS

• OLS_DIRECTORY_STATUS

• OLS_ENABLE_STATUS

STATUS VARCHAR2(5) NOT NULL Indicates the status of the feature mentioned in
the corresponding name column. For example, a
TRUE value for the OLS_CONFIGURE_STATUS status
says that Oracle Label Security has been
configured.

DESCRIPTION VARCHAR2(4000) NOT NULL Description of the status:

• OLS_CONFIGURE_STATUS:Determines if Oracle
Label Security is configured.

• OLS_DIRECTORY_STATUS: Determines if Oracle
Internet Directory is enabled with Oracle
Label Security.

• OLS_ENABLE_STATUS: Determines if Oracle
Label Security is enabled.

CON_ID NUMBER NOT NULL The container database ID number

DBA_SA_AUDIT_OPTIONS
The DBA_SA_AUDIT_OPTIONS data dictionary view data dictionary view shows for the
entire database the Oracle Label Security audit options.

Its columns are the same as ALL_SA_AUDIT_OPTIONS.

Related Topics

• ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle
Label Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure
settings.

DBA_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows for the entire database
information about Oracle Label Security policy compartments.

Its columns are the same as ALL_SA_COMPARTMENTS.

Related Topics

• ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current
user about Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

DBA_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the entire database the labels
and label tags for the specified Oracle Label Security policy.

Its columns are the same as ALL_SA_DATA_LABELS.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-13

Related Topics

• ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle
Label Security policy labels and tags, based on the SA_LABEL_ADMIN.CREATE_LABEL
procedure settings.

DBA_SA_GROUPS
The ALL_SA_GROUPS data dictionary view shows for the entire database information
about Oracle Label Security policy groups.

Its columns are the same as ALL_SA_GROUPS.

Related Topics

• ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s
Oracle Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP and
SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

DBA_SA_GROUP_HIERARCHY
The DBA_SA_GROUP_HIERARCHY data dictionary view shows the hierarchy of groups (that
is, parent-child relationships) in a policy.

Column Type Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security policy

HIERARCHY_LEV
EL

NUMBER NULL Indicates the level of a particular group in
a group hierarchy. A group with no parent
group will have HIERARCHY_LEVEL 1. Its
child group will have HIERARCHY_LEVEL 2
and so on.

For example, consider these groups in
the following order:

1. G1, G4

2. G2, G5

3. G3

Here, G1 and G4 have HIERARCHY_LEVEL
1; G2 and G5 have HIERARCHY_LEVEL 2,
and G3 has HIERARCHY_LEVEL 3.

The parent-child relationships are:

• G3 is the child group of G2, and G2 is
the child group of G1.

• G5 is the child group of G4.

GROUP_NAME VARCHAR2(4000) NULL Short name of the group intended to
indicate the hierarchy level

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-14

DBA_SA_LABELS
The DBA_SA_LABELS data dictionary view shows for the entire database information
about the tags and types of labels for a policy.

Its columns are the same as ALL_SA_LABELS.

Related Topics

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

DBA_SA_LEVELS
The DBA_SA_LEVELS data dictionary view shows for the entire database information
about levels associated with a policy.

Its columns are the same as ALL_SA_LEVELS.

Related Topics

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

DBA_SA_POLICIES
The DBA_SA_POLICIES data dictionary view shows for the entire database information
about Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY procedure.

This view also shows whether the policy has been enabled or disabled and its
subscription status.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column that was added
to tables protected by the policy

STATUS VARCHAR2(8) NULL Whether the policy has been
enabled or disabled

POLICY_OPTIONS VARCHAR2(4000) NULL Options that were set for this policy.

See Categories of Policy
Enforcement Options for a listing of
the possible enforcement options.

POLICY_SUBSCRIBE
D

VARCHAR2(5) NULL Indicates the policy's subscription
status, based on the
SA_POLICY_ADMIN.POLICY_SUBSCRIB
E or
SA_POLICY_ADMIN.POLICY_UNSUBSCR
IBE procedure

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-15

DBA_SA_PROG_PRIVS
The DBA_SA_PROG_PRIVS data dictionary view shows for the entire database information
about the policy-specific privileges for program units.

Its columns are the same as ALL_SA_PROG_PRIVS.

Related Topics

• ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user information
about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

DBA_SA_SCHEMA_POLICIES
The DBA_SA_SCHEMA_POLICIES data dictionary view shows for the entire database
information about policies that have been applied to all tables in the schema.

Its columns are the same as ALL_SA_SCHEMA_POLICIES.

Related Topics

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

DBA_SA_TABLE_POLICIES
The DBA_SA_TABLE_POLICIES data dictionary view shows for the entire database
information about a policy that has been added to a database table.

Its columns are the same as ALL_SA_TABLE_POLICIES.

Related Topics

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

DBA_SA_USERS
The DBA_SA_USERS data dictionary view shows for the entire database information about
the privileges that Oracle Label Security users have.

Its columns are the same as ALL_SA_USERS.

Related Topics

• ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information about
Oracle Label Security user privileges, based on SA_USER_ADMIN.SET_USER_LABELS
and SA_USER_ADMIN.SET_USER_PRIVS.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-16

DBA_SA_USER_COMPARTMENTS
The DBA_SA_USER_COMPARTMENTS data dictionary view shows for the entire database the
user authorizations, based on the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

This view also indicates whether the compartments are authorized for write and read
privileges

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

COMP VARCHAR2(30) NOT NULL Short name of compartments that were
added

RW_ACCESS VARCHAR2(5) NULL Access mode. Possible values are:

• SA_UTL.READ_ONLY indicates no
write access

• SA_UTL.READ_WRITE indicates that
write is authorized

DEF_COMP VARCHAR2(1) NOT NULL Whether the compartments are in the
default compartments

ROW_COMP VARCHAR2(1) NOT NULL whether the compartments are in the
row label

Related Topics

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a
user's authorizations, indicating if the compartments are authorized for write and
read privileges.

DBA_SA_USER_GROUPS
The DBA_SA_USER_GROUPS data dictionary view shows for the entire database the groups
associated with users, based on the SA_USER_ADMIN.ADD_GROUPS procedure.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

GRP VARCHAR2(30) NOT NULL Short name of groups that were added

RW_ACCESS VARCHAR2(5) NULL Access mode. Possible values are:

• SA_UTL.READ_ONLY indicates read-
only access

• SA_UTL.READ_WRITE indicates read
and write access

DEF_GROUP VARCHAR2(1) NOT NULL Whether the group is in a default group

ROW_GROUP VARCHAR2(1) NOT NULL Whether the group is in a label

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-17

Related Topics

• SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user,
indicating if the groups are authorized for write and read privileges.

DBA_SA_USER_LABELS
The DBA_SA_USER_LABELS data dictionary view shows for the entire database label-
specific information about users.

Its columns are the same as ALL_SA_USER_LABELS.

Related Topics

• ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-
specific information about users, based on the SA_USER_ADMIN.SET_USER_LABELS
procedure settings.

DBA_SA_USER_LEVELS
The DBA_SA_USER_LEVELS data dictionary view shows for the entire database the
minimum and maximum levels that have been assigned to users.

This view also shows the default values for the user's session label and row label.

Its columns are the same as ALL_SA_USER_LEVELS.

Related Topics

• ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the
minimum and maximum levels assigned to users, based on the
SA_USER_ADMIN.SET_LEVELS procdure.

DBA_SA_USER_PRIVS
The DBA_SA_USER_PRIVS data dictionary view shows for the current user the policy-
specific privileges that have been granted to users.

Its columns are the same as ALL_SA_USER_PRIVS.

Related Topics

• ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-
specific privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS
procedure.

DBA_OLS_STATUS
The DBA_OLS_STATUS data dictionary view shows the configuration status of Oracle Label
Security in the database.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-18

Column Datatype Null Description

NAME VARCHAR2(20) NULL Name of the status. Values are:

• OLS_CONFIGURE_STATUS

• OLS_DIRECTORY_STATUS

• OLS_ENABLE_STATUS

STATUS VARCHAR2(5) NULL Indicates the status of the feature mentioned in
the corresponding name column. For example, a
TRUE value for the OLS_CONFIGURE_STATUS status
says that Oracle Label Security has been
configured.

DESCRIPTION VARCHAR2(4000) NULL Description of the status:

• OLS_CONFIGURE_STATUS:Determines if Oracle
Label Security is configured.

• OLS_DIRECTORY_STATUS: Determines if Oracle
Internet Directory is enabled with Oracle
Label Security.

• OLS_ENABLE_STATUS: Determines if Oracle
Label Security is enabled.

USER_SA_SESSION
The USER_SA_SESSION data dictionary view shows the security attribute values for the
current database session.

Access to this view is PUBLIC.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

SA_USER_NAME VARCHAR2(4000) NULL Name of the current session user

PRIVS VARCHAR2(4000) NULL Current session privileges

MAX_READ_LABEL VARCHAR2(4000) NULL Label string that initialized the
user's maximum authorized read
label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string that initialized the
user's maximum authorized write
label

MIN_LEVEL VARCHAR2(4000) NULL Minimum Oracle Label Security
level authorized for the session

LABEL VARCHAR2(4000) NULL Label for the current database
session

COMP_WRITE VARCHAR2(4000) NULL Compartments to which the user
is authorized to write

GROUP_WRITE VARCHAR2(4000) NULL Groups to which the user is
authorized to write

ROW_LABEL VARCHAR2(4000) NULL Row label that is associated with
the policy for the current session

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-19

Oracle Label Security User-Created Auditing View
The SA_AUDIT_ADMIN.CREATE_VIEW procedure can be used to create an audit trail view for
a specific policy.

By default, this view is named DBA_policyname_AUDIT_TRAIL.

Column Datatype Null Description

USERNAME VARCHAR2(128) NULL Name of the user whose actions were
audited

USERHOST VARCHAR2(128) NULL Client host machine name

TERMINAL VARCHAR2(255) NULL Identifier of the user's terminal

TIMESTAMP DATE NULL Date and time of the creation of the audit
trail entry (date and time of user login for
entries created by AUDIT SESSION) in the
local database session time zone

OWNER VARCHAR2(128) NULL Creator of the object affected by the action

OBJ_NAME VARCHAR2(128) NULL Name of the object affected by the action

ACTION NUMBER NOT NULL Numeric action type code. The
corresponding name of the action type is
in the ACTION_NAME column.

ACTION_NAME VARCHAR2(47) NULL Name of the action type corresponding to
the numeric code in the ACTION column

COMMENT_TEXT VARCHAR2(4000) NULL Text comment on the audit trail entry,
providing more information about the
statement audited

Also indicates how the user was
authenticated. The method can be one of
the following:

• DATABASE: Authentication was done
by password

• NETWORK: Authentication was done by
Oracle Net Services or by strong
authentication

SESSIONID NUMBER NOT NULL Numeric ID for each Oracle session

ENTRYID NUMBER NOT NULL Numeric ID for each audit trail entry in the
session

STATEMENTID NUMBER NOT NULL Numeric ID for each statement run

RETURNCODE NUMBER NOT NULL Oracle error code generated by the action.
Some useful values:

• 0: Action succeeded
• 2004: Security violation

EXTENDED_TIMEST
AMP

TIMESTAMP (6)
WITH TIME ZONE

NULL Timestamp of the creation of the audit trail
entry (timestamp of user login for entries
created by AUDIT SESSION) in UTC
(Coordinated Universal Time) time zone

OLS_COL VARCHAR2(4000) NULL Name of the column that was added to the
tables that Oracle Label Security protects

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-20

Related Topics

• SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

Restrictions in Oracle Label Security
Several restrictions exist in this Oracle Label Security release.

These restrictions are as follows:

• CREATE TABLE AS SELECT restriction

If you attempt to perform CREATE TABLE AS SELECT in a schema that is protected by
an Oracle Label Security policy, then the statement will fail.

• Label tag restriction

Label tags must be unique across the policies in the database. When you use
multiple policies in a database, you cannot use the same numeric label tag in
different policies.

• Export restriction

Before Oracle Database 12c release 1 (12.1), the LBACSYS schema could not be
exported due to the use of opaque types in Oracle Label Security. An export of the
entire database (parameter FULL=Y) with Oracle Label Security installed can be
done, except that the LBACSYS schema would not be exported.

From Oracle Database release 12c on, this restriction has been removed. See Full
Database Export for additional details on the database versions that the export
can be supported from.

• Oracle Label Security removal restriction

You cannot remove Oracle Label Security, but you can disable it. See Disabling
Oracle Label Security.

• Shared schema support restriction

User accounts defined in the Oracle Internet Directory cannot be given individual
Oracle Label Security authorizations. However, authorizations can be given to the
shared schema to which the directory users are mapped.

The Oracle Label Security function SET_ACCESS_PROFILE can be used
programmatically to set the label authorization profile to use after a user has been
authenticated and mapped to a shared schema. Oracle Label Security does not
enforce a mapping between users who are given label authorizations in Oracle
Label Security and actual database users.

• Hidden columns restriction

PL/SQL does not recognize references to hidden columns in tables. A compiler
error will be generated.

Appendix F
Restrictions in Oracle Label Security

F-21

G
Frequently Asked Questions about
Oracle Label Security

Customers have frequently asked questions about Oracle Label Security.

• Who Uses Oracle Label Security?
Sensitivity labels can categorize data in virtually every industry.

• How Can Oracle Label Security Address My Security Needs?
Oracle Label Security can label data and restrict access with a high degree of
granularity.

• Should I Use Oracle Label Security to Protect All My Tables?
No, you should not use Oracle Label Security to protect all of your tables.

• What Is the Difference Between Oracle Virtual Private Database and Oracle Label
Security?
Oracle Virtual Private Database (VPD) is provided at no additional cost with the
Enterprise Edition of Oracle Database.

• Can I Combine Oracle Virtual Private Database and Oracle Label Security?
Yes. You can use a WHERE clause or a VPD policy.

• Can I Use Oracle Label Security with Oracle E-Business Suite?
Oracle Applications use Oracle Virtual Private Database (VPD) to provide new
functionality and security protections.

• Can I Use Oracle Label Security with Oracle Database Vault?
You can protect Oracle Database Vault tables using Oracle Label Security just as
you would do for an Oracle Database table.

• Does Oracle Label Security Provide Column-Level Access Control?
No, Oracle Label Security is not column aware.

• Can I Base Secure Application Roles on Oracle Label Security?
Yes, you can base secure application roles on Oracle Label Security.

• What Are Trusted Stored Program Units?
Trusted stored program units are stored procedures, functions, and packages that
execute with the system and object privileges (DAC) of the definer.

• Does VPD or OLS Add an Additional Column to the Protected Table?
When you apply an Oracle Label Security (OLS) policy to a table, the policy adds
an additional column to the table.

• Why Should the Additional OLS Row Label Column Be Hidden?
Most applications are designed with access control mechanisms in mind, so
Oracle Label Security must do this transparently.

Who Uses Oracle Label Security?
Sensitivity labels can categorize data in virtually every industry.

G-1

These industries include health care, law enforcement, energy, retail, national security,
and defense industries.

The following list gives some examples of sensitivity labels:

• Internal

• ConfidentialPhysician OnlyHighly SensitiveWidget CorporationConfidential:
Chicago OperationSensitive: Finance : EuropeTop SecretUnclassified

How Can Oracle Label Security Address My Security
Needs?

Oracle Label Security can label data and restrict access with a high degree of
granularity.

This is especially useful when multiple organizations or companies share a single
application. Sensitivity labels can be used to restrict application users to an
organization or to a subset of data within an organization.

Data privacy is important to consumers and regulatory measures continue to be
announced. Oracle Label Security can be used to implement privacy policies on data,
restricting access to only those who have a need-to-know.

Should I Use Oracle Label Security to Protect All My
Tables?

No, you should not use Oracle Label Security to protect all of your tables.

The traditional Oracle discretionary access control (DAC) object privileges such as
SELECT, INSERT, UPDATE, and DELETE combined with database roles and stored
procedures are sufficient in most cases. You can find a user’s privileges by querying
the DBA_SYS_PRIVS data dictionary view.

In addition, there are many other ways that you can protect access to your database
tables, such using Oracle Virtual Private Database (VPD), Oracle Database Vault,
Oracle Data Redaction, Transparent Data Encryption (TDE), or Transparent Sensitive
Data Protection (TSDP).

What Is the Difference Between Oracle Virtual Private
Database and Oracle Label Security?

Oracle Virtual Private Database (VPD) is provided at no additional cost with the
Enterprise Edition of Oracle Database.

Oracle Label Security is an add-on security option for the Oracle Database Enterprise
Edition.

Oracle VPD is a term used for several powerful security features like, fine grained
access control (FGAC), application context and global application context. VPD
policies are written using PL/SQL, and can be assigned to an individual table or view.

Appendix G
How Can Oracle Label Security Address My Security Needs?

G-2

An information request, that accesses a table or view protected by VPD, is modified
according to the policy assigned to the table or view.

VPD policies can be as simple as enforcing access during business hours. VPD
policies can restrict access by comparing the value of an attribute in an individual row
with an application context value. Global application context allows an application
context to be accessed across multiple database sessions, reducing or eliminating the
need to create a separate application context for each user session.

Oracle Label Security is an out-of-the-box solution for row level security. No coding or
software development is required, allowing the administrator to focus completely on
the policy. Oracle Label Security provides an interface for creating policies, specifying
enforcement options, defining data sensitivity labels, establishing user label
authorizations, and protecting individual tables or schemes.

Data sensitivity labels provide a powerful and flexible method of restricting access to
data. For example, data belonging to different organizations or companies can be
separated using data sensitivity labels and selectively shared between companies by
changing the data sensitivity label.

Depending on the complexity of the security policy, Oracle Virtual Private Database
may be the preferred method for implementing your security policy. Oracle Label
Security is best suited for situations where access control decisions need to be based
on the sensitivity of the information.

Can I Combine Oracle Virtual Private Database and Oracle
Label Security?

Yes. You can use a WHERE clause or a VPD policy.

• A WHERE clause can be appended to an OLS policy, which provides one more level
of granularity. An example would be that users, regardless of their label
authorizations, are only allowed to connect from a specific IP address or subnet,
and during business hours only.

• A VPD policy, whether column sensitive or not, can evaluate user labels and
determine access to columns and rows without the need to apply data labels.

Can I Use Oracle Label Security with Oracle E-Business
Suite?

Oracle Applications use Oracle Virtual Private Database (VPD) to provide new
functionality and security protections.

In addition, you can use other Oracle security products with Oracle E-Business Suite,
such are Oracle Database Vault. Contact Oracle Support for more information.

Can I Use Oracle Label Security with Oracle Database
Vault?

You can protect Oracle Database Vault tables using Oracle Label Security just as you
would do for an Oracle Database table.

Appendix G
Can I Combine Oracle Virtual Private Database and Oracle Label Security?

G-3

In addition, Oracle Label Security can be used together with Database Vault features.
You can assign Oracle Label Security labels to Database Vault Factors. These labels
are then merged with the user clearance labels, following the algorithms documented
in Merging Labels with the MERGE_LABEL Function, before access control decisions
are being made by comparing the merged user labels with the row labels.

The following example on the Oracle Technology Network Web site discusses using
Oracle Label security along with Oracle Database Vault features:

http://www.oracle.com/technetwork/database/security/label-security-

factors-093209.html

Does Oracle Label Security Provide Column-Level Access
Control?

No, Oracle Label Security is not column aware.

This behavior is available with Virtual Private Database (VPD). A VPD policy can be
written so that it only becomes active when a certain column is part of a SQL
statement against a protected table. If the column sensitivity switch is on, then VPD
either returns only those rows for which the sensitive column values are accessible to
the user, or it returns all rows with all cells in the sensitive column being empty, except
those values that the user is allowed to see.

The following link on the Oracle Technology Network Web site contains an example:

http://www.oracle.com/technetwork/database/security/index-088277.html

A column-sensitive VPD policy can determine access to a specific column by
evaluating OLS user labels, which this example demonstrates:

http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html

Can I Base Secure Application Roles on Oracle Label
Security?

Yes, you can base secure application roles on Oracle Label Security.

The procedure that determines if the SET ROLE command is executed can evaluate OLS
user labels. In this case, the OLS policy does not need to be applied to a table, since
row labels are not part of this solution.

What Are Trusted Stored Program Units?
Trusted stored program units are stored procedures, functions, and packages that
execute with the system and object privileges (DAC) of the definer.

If the invoker is a user with Oracle Label Security user clearances (labels), the
procedure executes with a combination of the definer's DAC privileges and the
invoker's security clearances.

Trusted stored procedures are procedures that are either granted the Oracle Label
Security privilege FULL or READ. When a trusted stored program unit is run, the policy

Appendix G
Does Oracle Label Security Provide Column-Level Access Control?

G-4

http://www.oracle.com/technetwork/database/security/label-security-factors-093209.html
http://www.oracle.com/technetwork/database/security/label-security-factors-093209.html
http://www.oracle.com/technetwork/database/security/index-088277.html
http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html

privileges in force are a combination of the invoking user's privileges and the program
unit's privileges.

Does VPD or OLS Add an Additional Column to the
Protected Table?

When you apply an Oracle Label Security (OLS) policy to a table, the policy adds an
additional column to the table.

The name of this column needs to be specified when the policy is initially created.

An existing column can be used to store the OLS row labels. This column must have
the NUMBER(10) data type.

Oracle Virtual Private Database (VPD) does not add an additional column to the
protected table.

Why Should the Additional OLS Row Label Column Be
Hidden?

Most applications are designed with access control mechanisms in mind, so Oracle
Label Security must do this transparently.

When an application queries a table with a SELECT FROM tablename statement, it returns
all columns, including the unhidden label column. Existing applications may not be
designed to display an additional column, and malfunction. However, if the label
column is hidden, then it is displayed only when its name is included in the SQL
statement. A SELECT FROM tablename would return all columns as expected by the
application, excluding the hidden OLS column.

Appendix G
Does VPD or OLS Add an Additional Column to the Protected Table?

G-5

Index

A
access control

discretionary, 3-17
understanding, 3-1

access mediation
and views, 3-18
enforcement options, 3-19
introduction, 3-1
label evaluation, 3-8
program units, 3-18

ADD_GROUPS procedure
inverse groups, 13-16

ALL_CONTROL option, 8-3, 8-4, 8-9
ALL_SA_AUDIT_OPTIONS view, F-4
ALL_SA_COMPARTMENTS view, F-5, F-13
ALL_SA_DATA_LABELS view, F-5, F-13
ALL_SA_GROUPS view, F-6, F-14
ALL_SA_LABELS view, F-6
ALL_SA_LEVELS view, F-7
ALL_SA_POLICIES view, F-7
ALL_SA_PROG_PRIVS view, F-8
ALL_SA_SCHEMA_POLICIES view, F-8
ALL_SA_TABLE_POLICIES view, F-9
ALL_SA_USER_LABELS view, F-11
ALL_SA_USER_LEVELS view, F-12
ALL_SA_USER_PRIVS view, F-12
ALL_SA_USERS view, F-10
ALTER_GROUP_PARENT

inverse groups, 13-20
ALTER_GROUPS procedure

inverse groups, 13-17
ALTER_POLICY procedure

inverse groups, 13-16
ANALYZE command, 12-7
APPLY_SCHEMA_POLICY procedure

with inverse groups, 13-3
APPLY_TABLE_POLICY procedure

with inverse groups, 13-3
architecture, Oracle Label Security, 1-4
AS SYSDBA clause, 12-11
AUDIT_LABEL_ENABLED function, E-5
AUDIT_TRAIL parameter, 10-2
auditing

audit trails, 10-1, 10-2, E-5

auditing (continued)
creating audit view, E-5
disabling, E-8
dropping audit view, E-6
enabling

SA_AUDIT_ADMIN.AUDIT procedure, E-2
finding audit options, F-4
finding if labels are recorded, E-5
Oracle Label Security, 10-1, 10-3
recording policy labels, E-4
SA_AUDIT_ADMIN package, E-2
SA_AUDIT_ADMIN.AUDIT_LABEL procedure,

E-4
SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED

function, E-5
SA_AUDIT_ADMIN.CREATE_VIEW

procedure, E-5
SA_AUDIT_ADMIN.DROP_VIEW procedure,

E-6
SA_AUDIT_ADMIN.NOAUDIT_LABEL

procedure, E-8
strategy, 10-4
systemwide, 10-2
types of, 5-27
views, E-5

B
B-tree indexes, 12-7

C
CDB_OLS_STATUS data dictionary view, 4-2
CDB_OLS_STATUS view, F-12
CDBs, 1-7

Oracle Label Security, 1-7
CHAR_TO_LABEL function, 6-6, 6-15, 6-16
CHECK_CONTROL option

and label update, 8-16, 8-17
and labeling functions, 8-15
definition, 8-4
with other options, 8-9

CHECK_WRITE function, E-74
child rows

deleting, 8-18

Index-1

child rows (continued)
inserting, 8-15
updating, 8-17

Cloud Control login, 5-21
COMPACCESS privilege, 3-15

inverse groups, 13-7, 13-9
compartments

altering, E-10
creating, E-14
definition, 2-5, 5-6
deleting, E-17
example, 2-5, 5-6
finding, F-17
finding compartments user can read in session,

E-36
finding compartments user can write to in

session, E-36
finding user information, F-5
SA_COMPONENTS.ALTER_COMPARTMENT

procedure, E-10
SA_COMPONENTS.CREATE_COMPARTMENT

procedure, E-14
SA_COMPONENTS.DROP_COMPARTMENT

procedure, E-17
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.ADD_COMPARTMENTS

procedure, E-54
SA_USER_ADMIN.ALTER_COMPARTMENTS,

E-56
SA_USER_ADMIN.DROP_COMPARTMENTS

procedure, E-60
SA_USER_ADMIN.SET_COMPARTMENTS

procedure, E-62
setting authorizations, 3-6, 5-13

components
SA_COMPONENT package, E-10
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

procedure, E-58
CON, C-15
configuration of Oracle Label security

finding status, F-18
finding status in multitenant environment,

F-12
connection parameters, C-15
CREATE FUNCTION statement, 9-3
CREATE PACKAGE BODY statement, 9-3
CREATE PACKAGE statement, 9-3
CREATE PROCEDURE statement, 9-3
CREATE TABLE AS SELECT statement, F-21
CREATE_GROUP procedure

inverse groups, 13-20
CREATE_POLICY procedure

inverse groups, 13-16
creating databases, 12-10

D
data

label-based access, 2-1
data dictionary tables, 2-2, 12-7, 12-10, F-1
data labels

checking if label is data label, E-75
finding label and tag information, F-5
SA_UTL.DATA_LABEL function, E-75

Data Pump export
row labels, 12-2

Data Pump import, 12-2
database links, 11-2
databases, creating additional, 12-10
DBA_OLS_STATUS view, F-18
DBA_policyname_AUDIT_TRAIL view, F-20
DBA_SA_AUDIT_OPTIONS view, F-13
DBA_SA_COMPARTMENTS view, 12-4, F-13
DBA_SA_DATA_LABELS view, F-13
DBA_SA_GROUP_HIERARCHY view, F-14
DBA_SA_GROUPS view, 12-4, F-14
DBA_SA_LABELS view, 12-4, F-15
DBA_SA_LEVELS view, 12-4, F-15
DBA_SA_POLICIES view, F-15
DBA_SA_PROG_PRIVS view, F-16
DBA_SA_SCHEMA_POLICIES view, 8-11, F-16
DBA_SA_TABLE_POLICIES view, 8-11, F-16
DBA_SA_USER_COMPARTMENTS view, F-17
DBA_SA_USER_GROUPS view, F-17
DBA_SA_USER_LABELS view, F-18
DBA_SA_USER_LEVELS view, F-18
DBA_SA_USER_PRIVS view, F-18
DBA_SA_USERS view, F-16
default port, C-15
default row label, E-46
DELETE_CONTROL option, 8-4, 8-18
DELETERESTRICT option, 8-18
deleting labeled data, 8-18
demobld.sql file, 1-6
disabling OLS, A-1
disabling Oracle Label Security, A-1
discretionary access control (DAC), 3-17
distributed databases

connecting to, 11-2
multiple policies, 3-20
Oracle Label Security configuration, 11-1
remote session label, 11-3

dominance
definition, 3-9
functions

about, B-3
greatest lower bound, 6-12
inverse groups, 13-21
least upper bound, 6-11
overview, B-1

Index

Index-2

DOMINATED_BY function, B-10
DOMINATES function, B-1
DROP USER CASCADE restriction, F-21
dropping for specified compartments, E-60
duties

of security administrators, 1-2

E
enabling OLS, A-1
enforcement options

and UPDATE, 8-16
combinations of, 8-9
exemptions, 8-10
guidelines, 8-9
INVERSE_GROUP, 13-3
list of, 8-2
overview, 8-2
viewing, 8-11

EXEMPT ACCESS POLICY privilege, 8-10
Export utility

LBACSYS restriction, F-21
policy enforcement, 8-10
row labels, 3-14, 12-4

external tables, 5-17

F
FULL privilege, 3-15, 3-16
function call, D-1, D-2

G
granularity

to data access, 3-11
GREATEST_LBOUND function

inverse groups, 13-21
groups

altering, E-11
altering parent groups, E-12
creating group parent, E-15
definition, 2-7, 5-8
deleting, E-18
example, 2-7, 5-8
finding for entire database, F-17
finding hierarchy of parent-child relationships,

F-14
finding policy groups, F-6
hierarchical, 2-7, 2-10, 5-8, F-14
inverse, 13-2
parent, 2-7, 3-9, 5-8, 13-6
read/write access, 3-9
SA_COMPONENTS.ALTER_GROUP

procedure, E-11

groups (continued)
SA_COMPONENTS.ALTER_GROUP_PARENT

procedure, E-12
SA_COMPONENTS.CREATE_GROUP

procedure, E-15
SA_COMPONENTS.DROP_GROUP, E-18
SA_SESSION.GROUP_READ function, E-37
SA_SESSION.GROUP_WRITE function, E-37
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.ADD_GROUPS procedure,

E-55
SA_USER_ADMIN.ALTER_GROUPS

procedure, E-57
SA_USER_ADMIN.DROP_ALL_GROUPS

procedure, E-59
SA_USER_ADMIN.DROP_GROUPS

procedure, E-60
SA_USER_ADMIN.SET_GROUPS procedure,

E-64
setting authorizations, 3-6, 5-14

H
HIDE, 6-2, E-48, E-49
HIDE option

default, E-49
discussion of, 8-6
example, 6-2
importing hidden column, 12-5
inserting data, 6-16
not exported, 12-2
per-table basis, 6-8
PL/SQL restriction, F-21
policy label column

inserting data when hidden, 6-16
schema level, 8-2

I
impdp

See Data Pump import
Import utility

importing labeled data, 12-4
importing policies, 12-2
importing unlabeled data, 12-5
with Oracle Label Security, 12-3

indexes, 12-7
INITIAL_LABEL variable, B-13
INITIAL_ROW_LABEL variable, B-13
initialization parameters

AUDIT_TRAIL, 10-2
INSERT_CONTROL option, 8-4, 8-15
inserting labeled data, 6-14, 8-14
INTO TABLE clause, 12-6
inverse groups

Index

3

inverse groups (continued)
and label components, 13-4
COMPACCESS privilege, 13-7, 13-9
computed labels, 13-4
dominance, 13-21
implementation of, 13-3
introduction, 13-2
Max Read Groups, 13-5
Max Write Groups, 13-5
parent-child unsupported, 13-6
read algorithm, 13-7
session labels, 13-10
SET_DEFAULT_LABEL, 13-11
SET_LABEL, 13-12
SET_ROW_LABEL, 13-11, 13-12
user privileges, 13-7
write algorithm, 13-8

INVERSE_GROUP enforcement option
behavior of procedures, 13-15
implementation, 13-3

L
label components

defining, E-10
in distributed environment, 11-4
industry examples, 2-9
interrelation, 2-10

label evaluation process
COMPACCESS read, 3-15
COMPACCESS write, 3-15
inverse groups, COMPACCESS, 13-9
LABEL_UPDATE, 8-16
read access, 3-9
read access, inverse groups, 13-7
write access, 3-11
write access, inverse groups, 13-8

label policy containers
creating, 5-3

label tags
converting from string, 6-6
converting to string, 6-7
distributed environment, 11-4
example, 6-4
inserting data, 6-15
introduction, 2-9, 5-10
manually defined, 6-4
strategy, 12-8
using in WHERE clauses, 6-9

LABEL_DEFAULT option
and labeling functions, 8-11, 8-12
authorizing compartments, 3-6
authorizing groups, 3-6
importing unlabeled data, 12-5
inserting labeled data, 6-15

LABEL_DEFAULT option (continued)
with enforcement options, 8-9
with SA_SESSION.SET_ROW_LABEL, E-46

LABEL_TO_CHAR function, 6-7, 6-10
LABEL_UPDATE option

and labeling functions, 8-7, 8-12
and privileges, 8-7
and WRITE_CONTROL, 8-8
and WRITEUP, 3-13, 5-15
definition, 8-4
evaluation process, 8-16
with enforcement options, 8-9

label-based security, 2-1
labeling functions

ALL_CONTROL and NO_CONTROL, 8-9
and CHECK_CONTROL, 8-15
and LABEL_DEFAULT, 8-7, 8-11
and LABEL_DEFAULTlLABEL_DEFAULT

option
and labeling functions, 8-7

and LABEL_UPDATE, 8-6, 8-7
and LBACSYS, 8-12
creating, 8-13
example, 8-11
how they work, 8-12
importing unlabeled data, 12-5
in force, 8-6
inserting data, 6-15
introduction, 3-19
override manual insert, 8-15
specifying, 8-14
testing, 8-12
UPDATE, 8-17
using, 8-11
with enforcement options, 8-9

labels, E-75, E-78
administering, 2-12
altering, E-20
and performance, 3-14
checking if a data label, E-75
checking if changed, E-73
creating, E-21
data and user, 2-10
deleting, E-22
finding greatest lower bound, E-76
finding least upper bound, E-76
finding tags and types of, F-6
merging, 6-12
non-comparable, B-2
relationships between, B-1
restoring default for session, E-42
SA_LABEL_ADMIN package, E-20
SA_LABEL_ADMIN.ALTER_LABEL procedure,

E-20

Index

Index-4

labels (continued)
SA_LABEL_ADMIN.CREATE_LABEL

procedure, E-21
SA_LABEL_ADMIN.DROP_LABEL procedure,

E-22
SA_SESSION.LABEL function, E-38
SA_SESSION.MAX_READ_LABEL function,

E-39
SA_SESSION.MAX_WRITE_LABEL function,

E-40
SA_SESSION.MIN_WRITE_LABEL function,

E-41
SA_SESSION.RESTORE_DEFAULT_LABELS,

E-42
SA_SESSION.SET_LABEL procedure, E-43
SA_SESSION.SET_ROW_LABEL procedure,

E-46
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.SET_USER_LABELS

procedure, E-68
SA_UTL.CHECK_LABEL_CHANGE function,

E-73
SA_UTL.GREATEST_LBOUND function, E-76
SA_UTL.LEAST_UBOUNDfunction, E-76
SA_UTL.SET_LABEL procedure, E-78
saving default session label, E-44
setting row label, E-46
syntax, 2-9, 5-10
valid, 2-9, 5-10, 6-3
with inverse groups, 13-4

LBAC_LABEL data type, 8-12
LBACSYS

export, 12-1
import, 12-1
login, 5-21

LBACSYS default user account
about, 4-4
best practice guideline, 4-4
enabling, 4-4

LBACSYS schema
and labeling functions, 8-12
creating additional databases, 12-10
data dictionary tables, 12-7
export restriction, F-21

LEAST_UBOUND function
inverse groups, 13-21

levels
about, 5-4
altering levels, E-13
creating, E-16
definition, 2-4, 5-4
deleting, E-19
example, 2-4, 5-4
finding, F-7

levels (continued)
SA_COMPONENTS.ALTER_LEVEL

procedure, E-13
SA_COMPONENTS.CREATE_LEVEL

procedure, E-16
SA_COMPONENTS.DROP_LEVEL

procedure, E-19
SA_SESSION.MAX_LEVEL function, E-39
SA_SESSION.MIN_LEVEL function, E-40
SA_USER_ADMIN.SET_LEVELS procedure,

E-65
setting authorizations, 3-5, 5-12

logging into Oracle Label Security
from Cloud Control, 4-5
from SQL*Plus, 4-6

login
Cloud Control, 5-21
LBACSYS, 5-21

M
materialized views, 11-6, 11-9
Max Read Groups, 13-5
Max Write Group, 13-5
MERGE_LABEL function, 6-12
multitenant container databases

See CDBs

N
NO_CONTROL option, 8-4, 8-9
NUMBER data type, 6-2

O
object privileges

and Oracle Label Security privileges, 3-17
and trusted stored program units, 3-18, 9-2

OCI interface, B-13
OCI_ATTR_APPCTX_LIST, B-13
OCI_ATTR_APPCTX_SIZE, B-13
OCIAttrSet, B-13
OCIParamGet, B-13
OLS_DOMINATED_BY function, B-6
OLS_DOMINATES function, B-3
OLS_GLBD function, 6-12
OLS_GREATEST_LBOUND function, 6-12
OLS_LABEL_DOMINATES function

about, B-4
in Data Redaction policies, B-4
in Database Vault policies, B-4

OLS_LEAST_UBOUND function, 6-11
OLS_LUBD function, 6-11
OLS_STRICTLY_DOMINATED_BY function, B-7
OLS_STRICTLY_DOMINATES function, B-6

Index

5

OptionsA, C-16
Oracle Data Redaction

using OLS_LABEL_DOMINATES function
with, B-4

Oracle Database Vault
using OLS_LABEL_DOMINATES function

with, B-4
Oracle Enterprise Manager

administering labels, 2-12
Oracle Internet Directory

configuring OLS after switchover to standby
database, 7-19

integration with OLS, 1-7
OID with Oracle Data Guard, 7-19
Oracle Label Security

about, 7-2
administrator duties in, 7-14
bootstrapping databases, 7-14
configuring, about, 7-6
configuring, permission for, 7-7
configuring, steps, 7-7
integrated capabilities of, 7-11
PL/SQL procedures for policy

administrators, 7-23
policy attributes in, 7-12
profiles, about, 7-10
provisioning profiles, about, 7-16
provisioning profiles, changing database

connection information, 7-18
provisioning profiles, managing, 7-17
restrictions on new data label creation,

7-13
security roles and permitted actions, 7-21
subscribing policies in, 7-13
superseded PL/SQL statements, 7-22
synchronizing database with OID, 7-15
un-registering database, 7-10

Oracle Label Security
about, 1-1
benefits, 1-2
checking if registered and enabled, 4-2
DBA_OLS_STATUS data dictionary view,

4-2
privileges required to use, 1-2
registering, 4-1

Oracle Label Security (OLS)
integration with Oracle Internet Directory, 1-7

Oracle Label Security data dictionary views
about, F-1
ALL_SA_AUDIT_OPTIONS, F-4
ALL_SA_COMPARTMENTS, F-5, F-13
ALL_SA_DATA_LABELS, F-5, F-13
ALL_SA_GROUPS, F-6, F-14
ALL_SA_LABELS, F-6
ALL_SA_LEVELS, F-7, F-15

Oracle Label Security data dictionary views (continued)
ALL_SA_POLICIES, F-7
ALL_SA_PROG_PRIVS, F-8
ALL_SA_SCHEMA_POLICIES, F-8
ALL_SA_TABLE_POLICIES, F-9
ALL_SA_USER_LABELS, F-11
ALL_SA_USER_LEVELS, F-12
ALL_SA_USER_PRIVS, F-12
ALL_SA_USERS, F-10
CDB_OLS_STATUS, F-12
DBA_OLS_STATUS, F-18
DBA_SA_AUDIT_OPTIONS, F-13
DBA_SA_GROUP_HIERARCHY, F-14
DBA_SA_LABELS, F-15
DBA_SA_POLICIES, F-15
DBA_SA_PROG_PRIVS, F-16
DBA_SA_SCHEMA_POLICIES, F-16
DBA_SA_TABLE_POLICIES, F-16
DBA_SA_USER_COMPARTMENTS, F-17
DBA_SA_USER_GROUPS, F-17
DBA_SA_USER_LABELS, F-18
DBA_SA_USER_LEVELS, F-18
DBA_SA_USER_PRIVS, F-18
DBA_SA_USERS, F-16
policies

finding information about schema
policies, F-8

USER_SA_SESSION, F-19
Oracle Label Security profiles, 7-10
ORDER BY clause, 6-10

P
packages

Oracle Label Security, 1-5
SA_AUDIT_ADMIN, E-2
SA_COMPONENTS, E-10
SA_LABEL_ADMIN, E-20
SA_POLICY_ADMIN, E-24
SA_SESSION, E-35
SA_SYSDBA, E-48
SA_USER_ADMIN, E-53
SA_UTL, E-72
trusted stored program units, 9-1

partitioning, 6-4, 12-9
PDBs, 1-7

Oracle Label Security, 1-7
performance, Oracle Label Security

ANALYZE command, 12-7
indexes, 12-7
label tag strategy, 12-8
partitioning, 12-9
READ privilege, 3-14

PL/SQL
recreating labels for import, 12-4

Index

Index-6

PL/SQL (continued)
SA_UTL package, 9-5, E-72
trusted stored program units, 9-1

pluggable databases
See PDBs

policies
about creating, 5-17
enforcement guidelines, 8-9
enforcement options, 3-19, 6-1, 8-2, 8-9
finding for current user, F-7
finding for entire database, F-15
finding information about table policies, F-9
finding privileges for program units, F-8
multiple, 2-2, 6-3
OID subscription, E-31
OID unsubscription, E-32
privileges, 3-17, E-70
SA_POLICY_ADMIN package, E-24
SA_POLICY_ADMIN.POLICY_SUBSCRIBE

procedure, E-31
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

procedure, E-32
policies, schema

altering, E-25
applying, E-26
deleting, E-32
disabling, E-27
enabling, E-29
SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY

procedure, E-25
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

procedure, E-26
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

policy, E-29
SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

procedure, E-32
policies, schema, disabling

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
procedure, E-27

policies, table
applying, E-26
deleting, E-33
disabling, E-28
enabling, E-30
SA_POLICY_ADMIN.APPLY_TABLE_POLICY

procedure, E-26
SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

procedure, E-28
SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

procedure, E-30
SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

procedure, E-33
policy label column

indexing, 12-7
introduction, 6-2

policy label column (continued)
retrieving, 6-7
retrieving hidden, 6-8
storing label tag, 2-9, 5-10

policy label containers
about, 5-2

policy management
altering policies, E-48
creating policies, E-49
deleting policies, E-51
disabling policies, E-50
enabling policies, E-52
SA_SYSDBA package, E-48
SA_SYSDBA.ALTER_POLICY procedure,

E-48
SA_SYSDBA.CREATE_POLICY procedure,

E-49
SA_SYSDBA.DISABLE_POLICY procedure,

E-50
SA_SYSDBA.DROP_POLICY policy, E-51
SA_SYSDBA.ENABLE_POLICY procedure,

E-52
policy_DBA role, 2-2, E-20, E-70

about, 1-2
auditing policy_DBA role users, E-2
how to use, 1-2
required for Data Pump import operations, 12-4
required for label management, E-20
required for Oracle Label Security auditing, E-2
required for

SA_USER_ADMIN.SET_PROG_PRIVS
procedure, E-66

required for
SA_USER_ADMIN.SET_USER_PRIVS
procedure, E-70

predicates
access mediation, 3-19
errors, 8-19
label tag performance strategy, 12-8
multiple, 8-19
used with policy, 8-19

privileges
COMPACCESS, 3-15
FULL, 3-15, 3-16
Oracle Label Security, 1-2, 3-13
PROFILE_ACCESS, 3-16
program units, 3-18
READ, 3-13, 3-14, 5-15
row label, 3-16
SA_USER_ADMIN.SET_USER_PRIVS

procedure, E-70
trusted stored program units, 9-4
WRITEACROSS, 3-16, 3-17
WRITEDOWN, 3-16, 3-18
WRITEUP, 3-16, 3-17

Index

7

PROFILE_ACCESS privilege, 3-16
program units

finding policy privileges for, F-8
propagated, D-1

R
RAC, D-1
re-enabling Oracle Label Security, A-1
read access

algorithm, 3-9, 3-15
introduction, 3-8

read label, 3-7
READ privilege, 3-13, 3-14, 5-15
READ_CONTROL option

algorithm, 3-9
and CHECK_CONTROL, 8-7
and child rows, 8-15
definition, 8-4
referential integrity, 8-17
with other options, 8-9
with predicates, 8-19

reading down, 3-9
referential integrity, 8-15, 8-17, 8-18
registering Oracle Label Security, 4-1
releasability, 13-2
remote users, 11-2
REPADMIN account, 11-9
replication

materialized views (snapshots), 11-6, 11-9,
11-10

with Oracle Label Security, 11-6, 11-7
replication administrator, 11-9
restrictions, Oracle Label Security, F-21
row labels

default, 3-6, 3-7, D-2, E-35, E-46, E-79
example, 3-3
finding current, E-78
in distributed environment, 11-3
inserting, 6-15
LABEL_DEFAULT option, 6-14, 8-7
privileges, 3-16
restoring, E-42
SA_USER_ADMIN.SET_ROW_LABEL

procedure, E-67
SA_UTL.NUMERIC_ROW_LABEL function,

E-78
SA_UTL.SET_ROW_LABEL procedure, E-79
saving defaults, E-44
setting, E-46, E-79
setting compartments, E-62
setting for current database session, E-79
setting for user’s initial use, E-67
setting groups, E-64
setting levels, E-65

row labels (continued)
understanding, 3-3
updating, 3-16
viewing, E-78

S
SA_AUDIT_ADMIN

procedures, listed, E-2
SA_AUDIT_ADMIN PL/SQL package

about, E-2
SA_AUDIT_ADMIN.AUDIT procedure, E-2
SA_AUDIT_ADMIN.AUDIT_LABEL procedure,

E-4
SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED

procedure, E-5
SA_AUDIT_ADMIN.CREATE_VIEW procedure,

E-5
SA_AUDIT_ADMIN.DROP_VIEW procedure, E-6
SA_AUDIT_ADMIN.NOAUDIT procedure, E-7
SA_AUDIT_ADMIN.NOAUDIT_LABEL

procedure, E-8
SA_COMPONENTS

procedures, listed, E-10
SA_COMPONENTS package, E-10
SA_COMPONENTS PL/SQL package

about, E-10
SA_COMPONENTS.ALTER_COMPARTMENT

procedure, E-10
SA_COMPONENTS.ALTER_GROUP procedure,

E-11
SA_COMPONENTS.ALTER_GROUP_PARENT

procedure, E-12
SA_COMPONENTS.ALTER_LEVEL procedure,

E-13
SA_COMPONENTS.CREATE_COMPARTMENT

procedure, E-14
SA_COMPONENTS.CREATE_GROUP

procedure, E-15
SA_COMPONENTS.CREATE_LEVEL

procedure, E-16
SA_COMPONENTS.DROP_COMPARTMENT

procedure, E-17
SA_COMPONENTS.DROP_GROUP procedure,

E-18
SA_COMPONENTS.DROP_LEVEL procedure,

E-19
SA_LABEL_ADMIN

procedures, listed, E-20
SA_LABEL_ADMIN PL/SQL package

about, E-20
SA_LABEL_ADMIN.ALTER_LABEL procedure,

E-20
SA_LABEL_ADMIN.CREATE_LABEL procedure,

E-21

Index

Index-8

SA_LABEL_ADMIN.DROP_LABEL procedure,
E-22

SA_POLICY_ADMIN
procedures, listed, E-24

SA_POLICY_ADMIN PL/SQL package
about, E-24

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
procedure, E-25

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
procedure, E-26

SA_POLICY_ADMIN.APPLY_TABLE_POLICY
procedure, E-26

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLI
CY procedure, E-27

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
procedure, E-28

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLI
CY procedure, E-29

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
procedure, E-30

SA_POLICY_ADMIN.POLICY_SUBSCRIBE
procedure, E-31

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
procedure, E-32

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLI
CY procedure, E-32

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
procedure, E-33

SA_SESSION
procedures and functions, listed, E-35

SA_SESSION PL/SQL package
about, E-35

SA_SESSION.COMP_READ function, E-36
SA_SESSION.COMP_WRITE function, E-36
SA_SESSION.GROUP_READ function, E-37
SA_SESSION.GROUP_WRITE function, E-37
SA_SESSION.LABEL function, E-38
SA_SESSION.MAX_LEVEL function, E-39
SA_SESSION.MAX_READ_LABEL function,

E-39
SA_SESSION.MAX_WRITE_LABEL function,

E-40
SA_SESSION.MIN_LEVEL function, E-40
SA_SESSION.MIN_WRITE_LABEL function,

E-41
SA_SESSION.PRIVS function, E-41
SA_SESSION.RESTORE_DEFAULT_LABELS

procedure, E-42
SA_SESSION.ROW_LABEL function, E-42
SA_SESSION.SA_USER_NAME function, E-44
SA_SESSION.SAVE_DEFAULT_LABELS

procedure, E-44
SA_SESSION.SET_ACCESS_PROFILE

procedure, E-44, E-45
SA_SESSION.SET_LABEL procedure, E-43

SA_SESSION.SET_LABEL procedure (continued)
and SA_SESSION.RESTORE_DEFAULT_LABELS,

E-42
SA_SESSION.SET_ROW_LABEL procedure,

E-46
SA_SYSDBA

procedures, listed, E-48
SA_SYSDBA PL/SQL package

about, E-48
SA_SYSDBA.ALTER_POLICY procedure, E-48
SA_SYSDBA.CREATE_POLICY procedure,

E-49
SA_SYSDBA.DISABLE_POLICY procedure,

E-50
SA_SYSDBA.DROP_POLICY procedure, E-51
SA_SYSDBA.ENABLE_POLICY procedure, E-52
SA_USER_ADMIN package

administering stored program units, E-66
overview, 2-2
procedures, listed, E-53

SA_USER_ADMIN PL/SQL package
about, E-53

SA_USER_ADMIN.ADD_COMPARTMENTS
procedure, E-54

SA_USER_ADMIN.ADD_GROUPS procedure,
E-55

SA_USER_ADMIN.ALTER_COMPARTMENTS
procedure, E-56

SA_USER_ADMIN.ALTER_GROUPS procedure,
E-57

SA_USER_ADMIN.DROP_ALL_COMPARTMEN
TS procedure, E-58

SA_USER_ADMIN.DROP_ALL_GROUPS
procedure, E-59

SA_USER_ADMIN.DROP_COMPARTMENTS
procedure, E-60

SA_USER_ADMIN.DROP_GROUPS procedure,
E-60

SA_USER_ADMIN.DROP_USER_ACCESS
procedure, E-61

SA_USER_ADMIN.SET_COMPARTMENTS
procedure, E-62

SA_USER_ADMIN.SET_DEFAULT_LABEL
procedure, E-63

SA_USER_ADMIN.SET_GROUPS procedure,
E-64

SA_USER_ADMIN.SET_LEVELS procedure,
E-65

SA_USER_ADMIN.SET_ROW_LABEL
procedure, E-67

SA_USER_ADMIN.SET_USER_LABELS
procedure, E-68

SA_USER_ADMIN.SET_USER_PRIVS
procedure, E-70

SA_UTL package

Index

9

SA_UTL package (continued)
dominance functions, B-8
overview, 9-5
procedures and functions, listed, E-72

SA_UTL PL/SQL package
about, E-72

SA_UTL.CHECK_LABEL_CHANGE function,
E-73

SA_UTL.CHECK_READ function, E-74
SA_UTL.CHECK_WRITE function, E-74
SA_UTL.DATA_LABEL function, E-75
SA_UTL.GREATEST_LBOUND function, E-76
SA_UTL.LEAST_UBOUND function, E-76
SA_UTL.NUMERIC_LABEL function, E-77
SA_UTL.NUMERIC_ROW_LABEL function, E-78
SA_UTL.SET_LABEL procedure, E-78
SA_UTL.SET_ROW_LABEL procedure, E-79
schemas

applying policies to, 8-9, E-48
default policy options, E-49
restrictions on shared, F-21

session labels
changing, E-43
computed, 3-7
distributed database, 11-3
example, 3-3
finding, E-77
OCI interface, B-13
restoring to default, E-42
SA_UTL.SET_LABEL, E-78
saving defaults, E-44
setting compartments, E-62
setting groups, E-64
setting user initial, E-63
understanding, 3-3

sessions
compartments readable by user, E-36
compartments writeable by user, E-36
finding current OLS user, E-44
finding row label, E-42
finding security attributes for, F-19
finding session label number, E-77
finding session privileges, E-41
SA_SESSION package, E-35
SA_SESSION.COMP_READ function, E-36
SA_SESSION.COMP_WRITE function, E-36
SA_SESSION.GROUP_READ function, E-37
SA_SESSION.GROUP_WRITE function, E-37
SA_SESSION.LABEL function, E-38
SA_SESSION.MAX_LEVEL function, E-39
SA_SESSION.MAX_READ_LABEL function,

E-39
SA_SESSION.MAX_WRITE_LABEL function,

E-40
SA_SESSION.MIN_LEVEL function, E-40

sessions (continued)
SA_SESSION.MIN_WRITE_LABEL function,

E-41
SA_SESSION.PRIVS, E-41
SA_SESSION.RESTORE_DEFAULT_LABELS

procedure, E-42
SA_SESSION.ROW_LABEL function, E-42
SA_SESSION.SA_USER_NAME function,

E-44
SA_SESSION.SAVE_DEFAULT_LABELS

procedure, E-44
SA_SESSION.SET_ACCESS_PROFILE

procedure, E-45
SA_SESSION.SET_LABEL procedure, E-43
SA_USER_ADMIN.SET_COMPARTMENTS

procedure, E-62
SA_USER_ADMIN.SET_DEFAULT_LABEL

procedure, E-63
SA_USER_ADMIN.SET_LEVELS procedure,

E-65
SA_UTL.SET_LABEL procedure, E-78
SA_UTL.SET_ROW_LABEL procedure, E-79
saving default session label, E-44
setting label for, E-78
setting OLS privileges for user, E-45
setting row label for, E-79

SET_ACCESS_PROFILE procedure, F-21
SET_DEFAULT_LABEL procedure

inverse groups, 13-11, 13-19
SET_GROUPS procedure

inverse groups, 13-17
SET_LABEL procedure

definition, E-35
inverse groups, 13-12, 13-20
on remote database, 11-3

SET_PROG_PRIVS function, E-66
SET_ROW_LABEL procedure, 13-12

inverse groups, 13-11, 13-12, 13-19, 13-20
SET_USER_LABELS procedure

inverse groups, 13-18
setting label for database session, E-78
shared schema restrictions, F-21
SQL*Loader, 12-5
STRICTLY_DOMINATED_BY function, B-10
STRICTLY_DOMINATES function, B-9
SYS account

policy enforcement, 8-10
SYS_CONTEXT

and labeling functions, 8-12
variables, B-13

SYSDBA privilege, 10-2
system privileges, 3-17, 3-18

Index

Index-10

T
table rows

checking if user can read, E-74
checking if user can write to, E-74
SA_UTL.CHECK_READ function, E-74
SA_UTL.CHECK_WRITE function, E-74

TO_DATA_LABEL function, 6-16, E-21
TO_LBAC_DATA_LABEL function, 8-12
TO_LBAC_DATA_LABEL function, example of

using, E-78
triggers, 8-12
trusted program units

about, 5-15
trusted stored program units

creating, 9-3
error handling, 9-4
example, 9-2
executing, 9-4
introduction, 9-1
privileges, 3-18, 9-4
re-compiling, 9-4
replacing, 9-4

U
unified audit trail, 10-3
UPDATE_CONTROL option, 8-4, 8-16
updating labeled data, 8-15
user authorizations, E-60

adding for compartments, E-54
adding for groups, E-55
altering for compartments, E-56
altering for groups, E-57
compartments, 3-6, 5-13
dropping for all compartments, E-58
dropping for all groups, E-59
dropping for specified groups, E-60
groups, 3-6, 5-14
levels, 3-5, 5-12
removing all OLS privileges from user, E-61
row labels

default, 3-6, 3-7, D-2, E-35, E-46, E-79
SA_USER_ADMIN.SET_USER_PRIVS

procedure, E-70
understanding, 3-4, 5-12

USER_SA_SESSION view, F-19
users

finding label-specific information of, F-11
finding level-specific information of, F-12
finding policy-specific privileges of, F-12
finding privileges of OLS users, F-10
LBACSYS default user account, 4-4

utilities
SA_UTL package, E-72

V
views

access mediation, 3-18
ALL_SA_AUDIT_OPTIONS, F-4
ALL_SA_COMPARTMENTS, F-5
ALL_SA_GROUPS, F-6
ALL_SA_LABELS, F-5, F-6
ALL_SA_LEVELS, F-7
ALL_SA_POLICIES, F-7
ALL_SA_PROG_PRIVS, F-8
ALL_SA_SCHEMA_POLICIES, F-8
ALL_SA_TABLE_POLICIES, F-9
ALL_SA_USER_LABELS, F-11
ALL_SA_USER_LEVELS, F-12
ALL_SA_USER_PRIVS, F-12
ALL_SA_USERS, F-10
CDB_OLS_STATUS, F-12
DBA_OLS_STATUS, F-18
DBA_SA_AUDIT_OPTIONS, F-13
DBA_SA_COMPARTMENTS, F-13
DBA_SA_DATA_LABELS, F-13
DBA_SA_GROUP_HIERARCHY, F-14
DBA_SA_GROUPS, F-14
DBA_SA_LABELS, F-15
DBA_SA_LEVELS, F-15
DBA_SA_POLICIES, F-15
DBA_SA_PROG_PRIVS, F-16
DBA_SA_SCHEMA_POLICIES, 8-11, F-16
DBA_SA_TABLE_POLICIES, 8-11, F-16
DBA_SA_USER_COMPARTMENTS, F-17
DBA_SA_USER_GROUPS, F-17
DBA_SA_USER_LABELS, F-18
DBA_SA_USER_LEVELS, F-18
DBA_SA_USER_PRIVS, F-18
DBA_SA_USERS, F-16

W
write access

algorithm, 3-11, 3-15
introduction, 3-8

write label, 3-7
WRITE_CONTROL option

algorithm, 3-11
definition, 8-4
introduction, 8-8
LABEL_UPDATE, 8-8
with INSERT, UPDATE, DELETE, 8-8
with other options, 8-9

WRITEACROSS privilege, 3-17, 8-3, 8-7, 8-16
WRITEDOWN privilege, 3-18, 8-3, 8-7, 8-16
WRITEUP privilege, 3-16, 3-17

Index

11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Changes in This Release for Oracle Label Security Administrator's Guide
	Changes in Oracle Database 18c
	LBACSYS User Created by Default as a Schema Only Account
	Deprecated Columns in Oracle Label Security Views

	Changes in Oracle Database 12c Release 2 (12.2)
	New Features
	Oracle Label Security Support for Oracle Database Real Application Security Users
	Oracle Label Security Support for Data Guard Rolling Upgrades
	Enhancements for Oracle Label Security in a Multitenant Environment

	Part I Getting Started with Oracle Label Security
	1 Introduction to Oracle Label Security
	About Oracle Label Security
	Benefits of Oracle Label Security
	Who Has Privileges to Use Oracle Label Security?
	Duties of Oracle Label Security Administrators
	Components of Oracle Label Security
	Oracle Label Security Architecture
	Oracle Label Security Administrative Interfaces
	Oracle Label Security Packages
	Oracle Label Security Demonstration File
	Oracle Enterprise Manager Cloud Control

	How Oracle Label Security Works with Other Oracle Products
	Oracle Label Security Integration with Oracle Internet Directory
	Oracle Label Security Integration in a Multitenant Environment

	2 Understanding Data Labels and User Labels
	About Label-Based Security
	About User Label and Privilege Management
	Label Components
	Label Component Definitions and Valid Characters
	Level Sensitivity Components
	Compartment Components
	Group Components
	Industry Examples of Levels, Compartments, and Groups

	Label Syntax and Type
	How Data Labels and User Labels Work Together
	Administration of Labels

	3 Access Controls and Privileges
	Access Mediation
	How the Session Label and Row Label Work
	The Session Label
	The Row Label
	Session Label Example

	How User Authorizations Work
	Authorizations Set by the Administrator
	Authorized Levels
	Authorized Compartments
	Authorized Groups

	Computed Session Labels

	Evaluation of Labels for Access Mediation
	About Read and Write Access
	Difference Between Read and Write Operations
	Propagation of Read/Write Authorizations on Groups

	How Oracle Label Security Algorithm for Read Access Works
	How the Oracle Label Security Algorithm for Write Access Works

	Oracle Label Security Privileges
	Privileges Defined by Oracle Label Security Policies
	Special Access Privileges
	READ Privilege
	FULL Privilege
	COMPACCESS Privilege
	PROFILE_ACCESS Privilege

	Special Row Label Privileges
	WRITEUP Privilege
	WRITEDOWN Privilege
	WRITEACROSS Privilege

	System Privileges, Object Privileges, and Policy Privileges
	Access Mediation and Views
	Access Mediation and Program Unit Execution
	Access Mediation and Policy Enforcement Options

	Working with Multiple Oracle Label Security Policies
	Multiple Oracle Label Security Policies in a Single Database
	Multiple Oracle Label Security Policies in a Distributed Environment

	Part II Using Oracle Label Security Functionality
	4 Getting Started with Oracle Label Security
	Registering Oracle Label Security with an Oracle Database
	About Registering Oracle Label Security
	Checking if Oracle Label Security Has Been Registered and Enabled
	Registering and Enabling Oracle Label Security from SQL*Plus
	Registering and Enabling Oracle Label Security Using DBCA

	Enabling the LBACSYS Oracle Label Security Account
	Logging in to Cloud Control or SQL*Plus for Oracle Label Security
	Logging in to Oracle Label Security from Enterprise Manager Cloud Control
	Logging in to Oracle Label Security from SQL*Plus

	5 Creating an Oracle Label Security Policy
	About Creating Oracle Label Security Policies
	Step 1: Create the Label Security Policy Container
	About the Label Security Policy Container
	Creating a Label Policy Container

	Step 2: Create Data Labels for the Label Security Policy
	About Data Labels
	About Policy Level Sensitivity Components
	Creating a Policy Level Component
	About Policy Compartment Components
	Creating a Policy Compartment Component
	About Policy Group Components
	Creating a Policy Data Label Group
	About Associating the Policy Components with a Named Data Label
	Associating the Policy Components with a Named Data Label

	Step 3: Authorize Users for the Label Security Policy
	About Authorizing Users for Label Security Policies
	About Authorizing Levels
	Authorizing a Level
	About Authorizing Compartments
	Authorizing a Compartment
	About Authorizing Groups
	Authorizing a Group

	Step 4: Grant Privileges to Users and Trusted Stored Program Units
	About Granting Privileges to Users and Trusted Program Units for the Policy
	Granting Privileges to a User
	Granting Privileges to a Trusted Program Unit

	Step 5: Apply the Policy to a Database Table or Schema
	About Applying the Policy to a Database Table or Schema
	Applying a Policy to a Schema

	Step 6: Add Policy Labels to Table Rows
	About Adding Policy Labels to Table Rows
	Adding a Policy Label to a Table Row

	Step 7: (Optional) Configure Auditing
	About Configuring Auditing
	Configuring Auditing

	Using Enterprise Manager Cloud Control to Create an OLS Policy
	Creating the Label Security Policy Container Using Cloud Control
	Creating Policy Components Using Cloud Control
	Creating Data Labels for the Policy Using Cloud Control
	Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud Control
	Granting Privileges to Trusted Program Units Using Cloud Control
	Applying a Policy to a Database Table with Cloud Control
	Applying Policy Labels to Table Rows Using Cloud Control
	Auditing Oracle Label Security Policies Using Cloud Control

	6 Working with Labeled Data
	How Policy Label Column and Label Tags Work
	The Policy Label Column
	About the Policy Label Column
	Hiding the Policy Label Column

	Label Tags
	About Label Tags
	Manually Defined Label Tags to Order Labels
	Manually Defined Label Tags to Manipulate Data
	Automatically Generated Label Tags

	Assignments of Labels to Data Rows
	Presenting the Label
	Converting a Character String to a Label Tag with CHAR_TO_LABEL
	Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR
	Converting a Label Tag to a Character String with LABEL_TO_CHAR
	LABEL_TO_CHAR Examples
	Retrieving All Columns from a Table When the Policy Label Column Is Hidden

	Filtration of Data Using Labels
	Use of Numeric Label Tags in WHERE Clauses
	Ordering Labeled Data Rows
	Ordering by Character Representation of Label
	Determination of the Upper and Lower Bounds of Labels
	Finding Least Upper Bound with LEAST_UBOUND
	Finding Greatest Lower Bound with GREATEST_LBOUND

	Merging Labels with the MERGE_LABEL Function

	Inserting Labeled Data
	About Inserting Labeled Data
	Inserting Labels Using CHAR_TO_LABEL
	Inserting Labels Using Numeric Label Tag Values
	Inserting Data Without Specifying a Label
	Inserting Data When the Policy Label Column Is Hidden
	Inserting Labels Using TO_DATA_LABEL

	Changing Session and Row Labels

	7 Oracle Label Security Using Oracle Internet Directory
	About Label Management on Oracle Internet Directory
	Configuring Oracle Internet Directory-Enabled Label Security
	About Configuring Oracle Internet Directory-Enabled Label Security
	Granting Permissions for Configuring OID-Enabled Oracle Label Security
	Registering a Database and Configuring OID-Enabled Oracle Label Security
	Step 1: Configure Your Oracle Home for Directory Usage
	Step 2: Configure Oracle Internet Directory for Oracle Label Security
	Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label Security
	Step 3: Set the DIP Password and Connect Data

	Unregisteration of a Database with OID-Enabled Oracle Label Security

	Oracle Label Security Profiles
	Integrated Capabilities When Label Security Uses the Directory
	Oracle Label Security Policy Attributes in Oracle Internet Directory
	Subscription of Policies in Directory-Enabled Label Security
	Restrictions on New Data Label Creation
	Administrator Duties for Oracle Internet Directory and Oracle Label Security
	Bootstrapping Databases
	Synchronizing the Database and Oracle Internet Directory
	About Synchronizing the Database and Oracle Internet Directory
	Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles
	Modifying a Provisioning Profile
	Changing the Database Connection Information for a Provisioning Profile
	Configuring OID-Enabled Oracle Label Security with Oracle Data Guard
	Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
	Step 2: After the Switchover, Update the OID Provisioning Profile

	Security Roles and Permitted Actions
	Permitted Tasks and Access Levels for Oracle Internet Directory
	Restriction on Policy Creators for Directory-Enabled Oracle Label Security

	Superseded PL/SQL Statements When OID Is Enabled with OLS
	Oracle Label Security Procedures for Policy Administrators

	Part III Administering an Oracle Label Security Application
	8 Implementing Policy Enforcement Options and Labeling Functions
	Oracle Label Security Policy Enforcement Options
	About Policy Enforcement Options
	Levels of Policy Enforcement Options
	Categories of Policy Enforcement Options
	Relationships of Policy Enforcement Options
	How the HIDE Policy Column Option Works
	How the Label Management Enforcement Options Work
	About the Label Management Enforcement Options
	LABEL_DEFAULT: Using the Session's Default Row Label
	LABEL_UPDATE: Changing Data Labels
	CHECK_CONTROL: Checking Data Labels

	How the Access Control Enforcement Options Work
	READ_CONTROL: Reading Data
	WRITE_CONTROL: Writing Data
	INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

	How the Overriding Enforcement Options Work
	Guidelines for Using the Policy Enforcement Options
	Exemptions from Oracle Label Security Policy Enforcement
	Data Dictionary Views for Viewing Policy Options on Tables and Schemas

	Labeling Functions
	Labeling Data Rows under Oracle Label Security
	How Labeling Functions in Oracle Label Security Policies Works
	Creating a Labeling Function for a Policy
	Specifying a Labeling Function in a Policy

	Inserting Labeled Data Using Policy Options and Labeling Functions
	Outcome of Insert or Updates Operations on Data Based on Authorizations
	Label Insertions When a Labeling Function Is Specified
	Child Row Insertions in Tables with Declarative Referential Integrity

	Updating Labeled Data Using Policy Options and Labeling Functions
	Updating Labels Using CHAR_TO_LABEL
	Evaluation of Enforcement Control Options and UPDATE
	Updates to Labels When a Labeling Function Is Specified
	Updates to Child Rows in Tables with Declarative Referential Integrity Enabled

	Deletion of Labeled Data Using Policy Options and Labeling Functions
	SQL Predicates with an Oracle Label Security Policy
	Modifications to an Oracle Label Security Policy with a SQL Predicate
	How Multiple SQL Predicates Affect Oracle Label Security Policies

	9 Administering and Using Trusted Stored Program Units
	About Trusted Stored Program Units
	How a Trusted Stored Program Unit Runs
	Example: Trusted Stored Program Unit
	Creating and Compiling Trusted Stored Program Units
	Creation of Trusted Stored Program Units
	Privileges for Trusted Stored Program Units
	Recompiling of Trusted Stored Program Units
	Re-creation of Trusted Stored Program Units
	Execution of Trusted Stored Program Units

	How Setting and Returning Label Information Works

	10 Auditing Under Oracle Label Security
	About Oracle Label Security Auditing
	Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
	How Oracle Label Security Auditing Is Enabled or Disabled
	Oracle Label Security and Unified Auditing
	Oracle Label Security Auditing Tips
	Strategy for Setting SA_AUDIT_ADMIN Options
	Auditing of Privileged Operations

	11 Using Oracle Label Security with a Distributed Database
	About the Oracle Label Security Distributed Configuration
	How Connections to a Remote Database Under Oracle Label Security Work
	Session Labels and Row Labels in Remote Sessions
	Labels in a Distributed Environment
	Label Tags in a Distributed Environment
	Numeric Form of Label Components in a Distributed Environment

	Oracle Label Security Policies in a Distributed Environment
	Replication with Oracle Label Security
	About Replication Under Oracle Label Security
	Replication Functionality Supported by Oracle Label Security
	Row-Level Security Restriction on Replication Under Oracle Label Security

	Contents of a Materialized View
	How Materialized View Contents Are Determined
	Complete Materialized Views
	Partial Materialized Views

	Requirements for Creating Materialized Views Under Oracle Label Security
	Requirements for a Replication Administrator
	Requirements for the Owner of the Materialized View
	Requirements for Creating Partial Multilevel Materialized Views
	Requirements for Creating Complete Multilevel Materialized Views

	How to Refresh Materialized Views

	12 Performing DBA Functions Under Oracle Label Security
	Oracle Data Pump Export Use with Oracle Label Security
	Full Database Export
	Schema and Table-Level Export

	Data Pump Import Use with Oracle Label Security
	Full Database Import for the LBACSYS Schema Metadata
	Schema and Table Level Import
	Requirements for Import Under Oracle Label Security
	Preparing the Import Database
	Verification of Import User Authorizations

	Definition of Data Labels for Import
	Imports of Labeled Data Without Installing Oracle Label Security
	Imports of Unlabeled Data
	Importing Tables with Hidden Columns

	SQL*Loader Use with Oracle Label Security
	Requirements for Using SQL*Loader Under Oracle Label Security
	Oracle Label Security Input to SQL*Loader

	Performance Tips for Oracle Label Security
	Use of ANALYZE to Improve Oracle Label Security Performance
	Creation of Indexes on the Policy Label Column
	Label Tag Strategy Plan to Enhance Performance
	Partitioned Data Based on Numeric Label Tags

	Creation of Additional Databases After Installation
	About the Creation of Additional Databases After Installation
	Creating Additional Databases When the Label Security Schema Is in the Seed
	Creating Additional Databases with the Custom Installation Option

	Oracle Label Security Upgrades and Downgrades
	About Oracle Label Security Upgrades and Downgrades
	Oracle Label Security Upgrades
	About Oracle Label Security Upgrades
	Running the Oracle Label Security Preprocess Script Before Upgrading

	Oracle Label Security Downgrades
	About Oracle Label Security Downgrades
	Running the Oracle Label Security Preprocess Script Before Downgrading

	13 Releasability Using Inverse Groups
	About Inverse Groups and Releasability
	Comparison of Standard Groups and Inverse Groups
	How Inverse Groups Work
	Implementation of Inverse Groups with INVERSE_GROUP Enforcement
	Inverse Groups and Label Components
	Computed Labels with Inverse Groups
	Computed Session Labels with Inverse Groups
	Inverse Groups and Computed Max Read Groups and Max Write Groups

	Inverse Groups and Hierarchical Structure
	Inverse Groups and User Privileges

	Algorithm for Read Access with Inverse Groups
	Algorithm for Write Access with Inverse Groups
	Algorithms for COMPACCESS Privilege with Inverse Groups
	Session Labels and Inverse Groups
	Initial Session and Row Labels for Standard or Inverse Groups
	About the Initial Session and Row Labels for Standard or Inverse Groups
	Standard Groups: Rules for Changing Initial Session/Row Labels
	Inverse Groups: Rules for Changing Initial Session/Row Labels

	Setting Current Session or Row Labels for Standard or Inverse Groups
	About Setting Current Session or Row Labels for Standard or Inverse Groups
	Standard Groups: Rules for Changing Current Session/Row Labels
	Inverse Groups: Rules for Changing Current Session/Row Labels

	Examples of Session Labels and Inverse Groups
	Example: Simple Inverse Groups
	Example: Complex Inverse Groups

	Changes in Behavior of Procedures with Inverse Groups
	SA_SYSDBA.CREATE_POLICY with Inverse Groups
	SA_SYSDBA.ALTER_POLICY with Inverse Groups
	SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
	SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_GROUPS with Inverse Groups
	SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
	SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
	SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
	SA_COMPONENTS.CREATE_GROUP with Inverse Groups
	SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
	SA_SESSION.SET_LABEL with Inverse Groups
	SA_SESSION.SET_ROW_LABEL with Inverse Groups
	LEAST_UBOUND with Inverse Groups
	GREATEST_LBOUND with Inverse Groups

	Dominance Rules for Labels with Inverse Groups

	Part IV Appendixes
	A Disabling and Enabling Oracle Label Security
	When You Must Disable Oracle Label Security
	Disabling Oracle Label Security
	Enabling Oracle Label Security

	B Advanced Topics in Oracle Label Security
	Analyzing the Relationships Between Labels
	About Dominant and Dominated Labels
	Non-Comparable Labels
	Using Dominance Functions
	About the Dominance Functions
	OLS_DOMINATES Standalone Function
	OLS_LABEL_DOMINATES Standalone Function
	OLS_STRICTLY_DOMINATES Standalone Function
	OLS_DOMINATED_BY Standalone Function
	OLS_STRICTLY_DOMINATED_BY Standalone Function
	SA_UTL.DOMINATES
	SA_UTL.STRICTLY_DOMINATES
	SA_UTL.DOMINATED_BY
	SA_UTL.STRICTLY_DOMINATED_BY

	Queries for Audited Oracle Label Security Session Labels
	About Queries for Auditing Oracle Label Security Session Labels
	ORA_GET_AUDITED_LABEL Function

	Oracle Call Interface for Setting Session Labels
	About Using the Oracle Call Interface to Set Session Labels
	Using the Oracle Call Interface to Set Session Labels
	Example: Using Oracle Call Interface with the SYS_CONTEXT Function

	C Command-line Tools for Label Security Using Oracle Internet Directory
	About the Command-line Oracle Label Security Tools
	Oracle Label Security Commands in Categories
	olsadmintool Command Reference
	About the olsadmintool Commands
	olsadmintool addadmin
	olsadmintool addpolcreator
	olsadmintool adduser
	olsadmintool altercompartent
	olsadmintool altergroup
	olsadmintool altergroupparent
	olsadmintool alterlabel
	olsadmintool alterlevel
	olsadmintool alterpolicy
	olsadmintool audit
	olsadmintool createcompartment
	olsadmintool creategroup
	olsadmintool createlabel
	olsadmintool createlevel
	olsadmintool createprofile
	olsadmintool createpolicy
	olsamindtool describeprofile
	olsadmintool dropadmin
	olsadmintool dropcompartment
	olsadmintool dropgroup
	olsadmintool droplabel
	olsadmintool droplevel
	olsadmintool droppolicy
	olsadmintool dropprofile
	olsadmintool droppolcreator
	olsadmintool dropuser
	olsadmintool --help
	olsadmintool noaudit
	olsadmintool listprofile

	Relating Parameters to Commands for olsadmintool
	About Relating Parameters to Commands for olsadmintool
	Summaries of olsadmintool Parameters

	Examples of Using the olsadmintool Utility
	Example: Making Other Users Policy Creators
	Example: Creating Policies with Valid Options
	Example: Creating Policy Administrators
	Example: Creating Levels
	Example: Creating Compartments
	Example: Creating Groups
	Example: Creating Labels
	Example: Creating a Profile
	Example: Adding a User to a Profile
	Example: Adding Another User to a Profile
	Example: Setting Audit Options
	Results of These Examples

	D Oracle Label Security in an Oracle RAC Environment
	Oracle Label Security Policy Functions in an Oracle RAC Environment
	Transparent Application Failover in Oracle Label Security

	E Oracle Label Security PL/SQL Packages
	SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
	About the SA_AUDIT_ADMIN PL/SQL Package
	SA_AUDIT_ADMIN.AUDIT
	SA_AUDIT_ADMIN.AUDIT_LABEL
	SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
	SA_AUDIT_ADMIN.CREATE_VIEW
	SA_AUDIT_ADMIN.DROP_VIEW
	SA_AUDIT_ADMIN.NOAUDIT
	SA_AUDIT_ADMIN.NOAUDIT_LABEL

	SA_COMPONENTS Label Components PL/SQL Package
	About the SA_COMPONENTS PL/SQL Package
	SA_COMPONENTS.ALTER_COMPARTMENT
	SA_COMPONENTS.ALTER_GROUP
	SA_COMPONENTS.ALTER_GROUP_PARENT
	SA_COMPONENTS.ALTER_LEVEL
	SA_COMPONENTS.CREATE_COMPARTMENT
	SA_COMPONENTS.CREATE_GROUP
	SA_COMPONENTS.CREATE_LEVEL
	SA_COMPONENTS.DROP_COMPARTMENT
	SA_COMPONENTS.DROP_GROUP
	SA_COMPONENTS.DROP_LEVEL

	SA_LABEL_ADMIN Label Management PL/SQL Package
	About the SA_LABEL_ADMIN PL/SQL Package
	SA_LABEL_ADMIN.ALTER_LABEL
	SA_LABEL_ADMIN.CREATE_LABEL
	SA_LABEL_ADMIN.DROP_LABEL

	SA_POLICY_ADMIN Policy Administration PL/SQL Package
	About the SA_POLICY_ADMIN PL/SQL Package
	SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
	SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
	SA_POLICY_ADMIN.APPLY_TABLE_POLICY
	SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
	SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
	SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
	SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
	SA_POLICY_ADMIN.POLICY_SUBSCRIBE
	SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
	SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
	SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

	SA_SESSION Session Management PL/SQL Package
	About the SA_SESSION PL/SQL Package
	SA_SESSION.COMP_READ
	SA_SESSION.COMP_WRITE
	SA_SESSION.GROUP_READ
	SA_SESSION.GROUP_WRITE
	SA_SESSION.LABEL
	SA_SESSION.MAX_LEVEL
	SA_SESSION.MAX_READ_LABEL
	SA_SESSION.MAX_WRITE_LABEL
	SA_SESSION.MIN_LEVEL
	SA_SESSION.MIN_WRITE_LABEL
	SA_SESSION.PRIVS
	SA_SESSION.RESTORE_DEFAULT_LABELS
	SA_SESSION.ROW_LABEL
	SA_SESSION.SET_LABEL
	SA_SESSION.SA_USER_NAME
	SA_SESSION.SAVE_DEFAULT_LABELS
	SA_SESSION.SET_ACCESS_PROFILE
	SA_SESSION.SET_ROW_LABEL

	SA_SYSDBA Policy Management PL/SQL Package
	About the SA_SYSDBA PL/SQL Package
	SA_SYSDBA.ALTER_POLICY
	SA_SYSDBA.CREATE_POLICY
	SA_SYSDBA.DISABLE_POLICY
	SA_SYSDBA.DROP_POLICY
	SA_SYSDBA.ENABLE_POLICY

	SA_USER_ADMIN PL/SQL Package
	About the SA_USER_ADMIN PL/SQL Package
	SA_USER_ADMIN.ADD_COMPARTMENTS
	SA_USER_ADMIN.ADD_GROUPS
	SA_USER_ADMIN.ALTER_COMPARTMENTS
	SA_USER_ADMIN.ALTER_GROUPS
	SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
	SA_USER_ADMIN.DROP_ALL_GROUPS
	SA_USER_ADMIN.DROP_COMPARTMENTS
	SA_USER_ADMIN.DROP_GROUPS
	SA_USER_ADMIN.DROP_USER_ACCESS
	SA_USER_ADMIN.SET_COMPARTMENTS
	SA_USER_ADMIN.SET_DEFAULT_LABEL
	SA_USER_ADMIN.SET_GROUPS
	SA_USER_ADMIN.SET_LEVELS
	SA_USER_ADMIN.SET_PROG_PRIVS
	SA_USER_ADMIN.SET_ROW_LABEL
	SA_USER_ADMIN.SET_USER_LABELS
	SA_USER_ADMIN.SET_USER_PRIVS

	SA_UTL PL/SQL Utility Functions and Procedures
	About the SA_UTL PL/SQL Package
	SA_UTL.CHECK_LABEL_CHANGE
	SA_UTL.CHECK_READ
	SA_UTL.CHECK_WRITE
	SA_UTL.DATA_LABEL
	SA_UTL.GREATEST_LBOUND
	SA_UTL.LEAST_UBOUND
	SA_UTL.NUMERIC_LABEL
	SA_UTL.NUMERIC_ROW_LABEL
	SA_UTL.SET_LABEL
	SA_UTL.SET_ROW_LABEL

	F Oracle Label Security Reference
	Oracle Label Security Data Dictionary Tables and Views
	Oracle Database Data Dictionary Tables
	Oracle Label Security Data Dictionary Views
	ALL_SA_AUDIT_OPTIONS View
	ALL_SA_COMPARTMENTS
	ALL_SA_DATA_LABELS
	ALL_SA_GROUPS
	ALL_SA_LABELS
	ALL_SA_LEVELS
	ALL_SA_POLICIES
	ALL_SA_PROG_PRIVS
	ALL_SA_SCHEMA_POLICIES
	ALL_SA_TABLE_POLICIES
	ALL_SA_USERS
	ALL_SA_USER_LABELS
	ALL_SA_USER_LEVELS
	ALL_SA_USER_PRIVS
	CDB_OLS_STATUS
	DBA_SA_AUDIT_OPTIONS
	DBA_SA_COMPARTMENTS
	DBA_SA_DATA_LABELS
	DBA_SA_GROUPS
	DBA_SA_GROUP_HIERARCHY
	DBA_SA_LABELS
	DBA_SA_LEVELS
	DBA_SA_POLICIES
	DBA_SA_PROG_PRIVS
	DBA_SA_SCHEMA_POLICIES
	DBA_SA_TABLE_POLICIES
	DBA_SA_USERS
	DBA_SA_USER_COMPARTMENTS
	DBA_SA_USER_GROUPS
	DBA_SA_USER_LABELS
	DBA_SA_USER_LEVELS
	DBA_SA_USER_PRIVS
	DBA_OLS_STATUS
	USER_SA_SESSION

	Oracle Label Security User-Created Auditing View

	Restrictions in Oracle Label Security

	G Frequently Asked Questions about Oracle Label Security
	Who Uses Oracle Label Security?
	How Can Oracle Label Security Address My Security Needs?
	Should I Use Oracle Label Security to Protect All My Tables?
	What Is the Difference Between Oracle Virtual Private Database and Oracle Label Security?
	Can I Combine Oracle Virtual Private Database and Oracle Label Security?
	Can I Use Oracle Label Security with Oracle E-Business Suite?
	Can I Use Oracle Label Security with Oracle Database Vault?
	Does Oracle Label Security Provide Column-Level Access Control?
	Can I Base Secure Application Roles on Oracle Label Security?
	What Are Trusted Stored Program Units?
	Does VPD or OLS Add an Additional Column to the Protected Table?
	Why Should the Additional OLS Row Label Column Be Hidden?

	Index

